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Investigation of radiation damping in sandwich structures
using finite and boundary element methods and a nonlinear
eigensolver

Suhaib Koji Baydoun® and Steffen Marburg
Chair of Vibroacoustics of Vehicles and Machines, Technical University of Munich, Boltzmannstrafie 15, Garching, 85748, Germany

ABSTRACT:

The fully coupled vibroacoustic interaction of sandwich panels is studied using the finite and the boundary element
methods. The extent of radiation damping is quantified for various configurations based on both harmonic response
analyses and modal analyses. The underlying nonlinear eigenvalue problem is solved using a projection method
based on contour integration yielding the shifted (wet) eigenfrequencies, modal radiation loss factors, and air-loaded
structural modes. The numerical results clearly illustrate the relevance of air-loading when studying the vibration of
sandwich structures. Further, the numerically obtained estimates for radiation damping are compared to both theoret-
ical expressions and experimental results found in the literature. Although good agreement is observed in general,
the comparison indicates the limited applicability of commonly used theoretical expressions when coincidence
occurs in a frequency range where the modes are still well separated. Moreover, possible sources of error when
experimentally determining radiation damping are discussed in detail. The results presented in this paper provide
deep insights into the phenomenon of acoustic radiation damping and help to estimate its relevance in future
research. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

The exposure of human beings to vibration and noise
can have implications ranging from annoyance to health
damage. Hence, researchers of various fields, such as mate-
rial scientists and control engineers, are concerned with the
development of passive and active damping devices as well
as the exploitation of material-inherent damping. This is
particularly important for lightweight structures, which—
generally speaking—are either stiff and weakly damped or
exhibit high damping but rather poor elastic properties.'™

However, an often neglected contribution to the overall
damping of structures is the dissipation of vibrational energy
due to sound radiation. While acoustic radiation damping is
a rather insignificant aspect in many bulky engineering
applications, it is the primary energy dissipating mechanism
for stiff lightweight structures with large radiating surfaces.
It follows that attempts to reduce the vibrational response of
these lightweight structures by additional mechanical damp-
ing can only be successful if the extent of mechanical damp-
ing is comparable or larger than the extent of radiation
damping.* Therefore, engineers are in need of reliable and
flexible methods for the quantification of radiation damping
in an early stage of the design process.

However, due to the coupled nature of the problem,
involving the behaviors of both structure and surrounding
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fluid, radiation damping is not generally amenable to analyt-
ical quantifications. Early theoretical methods predict the
modal radiation damping of rectangular plates™® and cylin-
drical shells.” Expressions for frequency averaged radiation
damping are also derived, assuming that a sufficiently large
number of modes contributes to the vibration of the plate.”
These methods are all based on theoretical expressions of
the radiation resistance”'! or theoretical expressions of the
acoustic impedance of the plates.'* They are only valid for
homogeneous plates that are confined in an acoustically
rigid baffle prohibiting flow between the two sides of the
plate. Later, correction factors are proposed to account for
unbaffled plates'® with arbitrary boundary conditions.'*
However, their applicability to more complex geometric and
material configurations can hardly be judged.

Sandwich structures, consisting of two thin and stiff
face sheets enclosing a thick, lightweight and often aniso-
tropic core, account for such complex configurations. While
sandwich structures excel at the ratio of bending stiffness to
mass, they exhibit relatively high flexural wave speeds com-
pared to those of solid plates with equivalent mechanical
properties. In consequence, coincidence between bending
and acoustic waves occurs at relatively low frequencies.
Moreover, due to the anisotropy, sandwich panels do not
only exhibit a single critical frequency, but rather a range of
frequencies in which coincidence occurs, thus giving rise to
efficient sound radiation and hence high acoustic radiation
damping in a wide frequency range.

©Author(s) 2020.
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Analytical expressions for the flexural vibration of
sandwich panels can be derived from Hamilton’s princi-
ple."” Experimental'®'” and numerical approaches'® 2" have
been followed to investigate the vibroacoustic behavior of
sandwich panels with respect to different core and face
materials, lay-ups, and geometric configurations—see also
the review by D’Alessandro et al.?' Besides vibroacoustic
studies, many researchers have also made efforts to quantify
material-inherent damping of sandwich panels to enhance
damping by means of viscoelastic treatments.” Most of the
experimental studies are conducted in air and hence the
thereby obtained loss factors include the effects of acoustic
radiation damping.

Clarkson and Brown deduced the radiation loss factors
of a honeycomb sandwich platform by means of reference
measurements inside a vacuum chamber.”? Zhou and
Crocker determined radiation damping of sandwich plates
clamped between two reverberation chambers based on
principles of energy flow.'® Apart from these two articles,
however, little published data on actual values for radiation
damping of sandwich structures exist, although radiation
damping can account for the major share in the overall
damping and therefore undermine the effectiveness of addi-
tional mechanical damping.

In this paper, we employ a numerical framework based
on the finite element method (FEM) and the boundary ele-
ment method (BEM) in order to better understand the phe-
nomenon of acoustic radiation damping. The structural and
acoustic responses are fully coupled to enable the modeling
of a mutual structural acoustic interaction as it occurs in
many sandwich structures. The cores are represented by
three-dimensional solid finite elements in order to capture
local bending deformations of the individual face sheets that
cause sound radiation in addition to the global bending
deformations. Using this framework, we contribute in the
following aspects to gain a deeper insight into the phenome-
non of acoustic radiation damping:

« First, we study the extent of radiation damping for three
sandwich panels subject to different boundary conditions
in both acoustic full- and halfspaces. The harmonic radia-
tion loss factors are obtained by relating the radiated
sound power to the vibrational energy of the structure.
The panels are excited by point forces as well as diffuse
acoustic fields. The results indicate a strong influence of
boundary conditions and excitations in the low frequency
range, where the responses are mainly determined by
modal behavior.

e Second, using a nonlinear eigensolver based on contour
integration, we perform modal analyses of the air-loaded
sandwich panels to deduce their modal radiation loss fac-
tors and eigenfrequencies. The latter are lowered com-
pared to the in vacuo eigenfrequencies due to the effect of
added mass and damping. The modal radiation loss fac-
tors, which are inherent properties of the structural acous-
tic system, agree well with the harmonic loss factors at
the respective eigenfrequencies. Furthermore, we propose
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a more effective strategy for checking and filtering the
eigenvalues when using contour integration and also pro-
vide guidance in choosing the solver-specific parameters.

» Last, we compare our numerically obtained estimates for
radiation damping to theoretical expressions and experi-
mental results found in the literature, generally yielding a
good agreement. However, the comparison also indicates
the limited applicability of commonly used theoretical
expressions when coincidence occurs in a frequency range
where the modes are still well separated. Finally, we dis-
cuss experimental quantification of radiation damping and
associated sources of error such as the reinjection of
acoustic energy and the reliability of reverberation room
measurements in the low frequency range.

Il. NUMERICAL QUANTIFICATION OF ACOUSTIC
RADIATION DAMPING

A. Coupled formulation for structural acoustic
interaction

We consider the fully coupled structural acoustic inter-
action in order to determine the vibratory response of sand-
wich structures. Under the assumption of a harmonic time
dependency e ', the equations of linear elasticity and
acoustics are discretized using FEM?? and direct collocation
BEM.?* The resulting systems of equations read

(K — o’Mu = f, +ff, (1)
and
Hp — G(vf - v}) +Hp'. ?)

Therein, u and p are the vectors of unknown displacement
and sound pressure values at the nodes, respectively. The
stiffness and mass matrices of the structure are denoted with
K and M, respectively. The structure is excited by external
forces f as well as fluid forces f;. The latter act by virtue of
the acoustic field. Structure-inherent damping is not consid-
ered in this work and, hence, acoustic radiation damping is
the only dissipative mechanism occurring. Further, H and G
are the frequency dependent boundary element (BE) matri-
ces, relating the structural particle velocity vy to the sound
pressure. Acoustic excitation is taken into account by the
incident sound pressure field p' and the corresponding inci-
dent particle velocity V}. The angular frequency is defined
as w = 2xf, and i denotes the imaginary unit.

Since we are particularly interested in applications that
exhibit considerable levels of radiation damping, the influ-
ence of the acoustic field on the structural response is not
generally negligible. Consequently, it is not sufficient to
determine the in vacuo response of the structure by solving
Eq. (1), and subsequently evaluate the acoustic field using
Eq. (2) in a post-processing step. Instead, Egs. (1) and (2)
are mutually coupled on the sound radiating surface, i.e.,

fr =Cyp and vy = —iwCxu. (3)
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FIG. 1. Symmetric motion involving thickness deformation of the core
(left) and antisymmetric motion corresponding to global bending deforma-
tion of the sandwich panel (right).

The mesh coupling is established by the coupling matrices Cgf
and Cg;, relating the displacement and pressure degrees of free-
dom (DOFs).25 Since structural acoustic interaction is mainly
relevant for thin-walled lightweight structures, most research-
ers rely on shell finite elements for modeling the structural
subdomain.'®*** While the sandwich panels considered
in this work can certainly be modeled using layered shell for-
mulations as well, nevertheless, we will follow a different
approach involving three-dimensional solid finite elements for
the representation of the thick core. Additionally, shell ele-
ments are employed for the thin face sheets. While this
approach leads to more DOFs compared to the use of layered
shell elements, it enables us to capture local bending deforma-
tions of the individual face sheets, which otherwise would not
be possible. These local bending deformations of the face
sheets—also known as symmetric motion—involve thickness
deformations of the core. They cause sound radiation in addi-
tion to the global bending deformations (anti-symmetric
motion). These two types of lamb waves,”® which are shown
in Fig. 1, coexist in sandwich panels.

Regarding the boundary conditions of the panel, both
the freely suspended and the simply supported cases are
considered in this work. The simply supported conditions
are modeled by constraining the displacement DOFs of the
face sheet edges, as is schematically shown in Fig. 2.

The approach for modeling the vibroacoustic behavior
of a sandwich panel using finite and boundary elements is
schematically depicted in Fig. 3. The shell finite elements
that represent the face sheets are defined with an offset of
half the shell thickness. In this way, their nodes coincide
with the outer nodes of the solid elements representing the

Do !
Do «

FIG. 2. Modeling of simply supported boundary conditions by constraining
the displacement DOFs of the face sheet edges.

single boundary element mesh with a closed surface is used.
Otherwise, when the panel is confined in an acoustically rigid
baffle, the two independent acoustic subdomains on each side
of the panel are modeled using a halfspace formulation with
a modified Green’s function.”” In this way, the dissipation of
vibrational energy due to sound radiation is considered simul-
taneously on both sides of the baffled panel. The boundary
element meshes corresponding to a baffled panel are shown
in Fig. 4. Note that it is also possible to only model half of
the baffled panel along with a single acoustic halfspace.
However, this approach would require separate computations
and subsequent superpositions of the symmetric and antisym-
metric responses (cf. Fig. 1). While this would result in fewer
DOFs, nevertheless, we use a full model involving two
acoustic halfspaces for the sake of convenience.

In the case of a single acoustic subdomain, the global sys-
tem of equations containing the coupling conditions emerges as

1

If the panel is confined in a baffle, the global system com-
prises three subdomains. Assuming that just one side of the
panel is excited by an incident sound field (which actually
resembles the situation in a window test rig), the resulting
monolithic equation is given as

f;

K- COZM —Csf i
—Gv} + Hp'

. 4
1wGCy H “@

1 11
K-oM -cf —cP
GO HO pt
iwgmc™ o g | [p™

core. These nodes on the top and bottom surfaces are also £,
the ones that are coupled to the nodes of the bqundary ele- — | _ghyi + HOpi |, )
ment mesh. In the case of an unbaffled panel—i.e., a panel Y
with free edges where acoustic short-circuiting occurs—a 0
Structural FE mesh Acoustic BE mesh
Face sheet —_—_——
[ ) [ ] ([ ] [ ] ([ ] [ ] [ ] (]
Core o0 00000000 00
L] [ ] L [ ] L ] [ ] L ) L ]
Face sheet e e e e e e e e
>——e [} - [} *—0—0 ° °
¢ Non-
. Coupled
Shell Solid BE e coupled
FE FE node

FIG. 3. (Color online) Cross-sectional schematic illustrating the numerical modeling of a (non-baffled) sandwich panel and the surrounding acoustic field.
The structural FE mesh is coupled to the closed acoustic BE mesh via non-coincident nodes on the radiating surface.
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FIG. 4. (Color online) Cross-sectional schematic of two halfspace BE
meshes representing the acoustic fields on either side of a baffled panel.

where ( -)<I) and ( -)(H) denote the acoustic halfspaces on the
respective sides of the panel. In the case of geometrical sym-
metry with respect to the plane of the baffle, HY = HW
and GV = g hold, and consequently, the numerical inte-
gration for assembling the BE matrices needs to be per-
formed only once.

The complex sound power P in linear time-harmonic
acoustics can be obtained from

1 *
P= 5 ervf dr, 6)
where vy denotes the fluid particle velocity, and (-)" is the
conjugate complex. In the discrete setting, the sound power
is evaluated as a post-processing step. The nodal values for
the sound pressure are related to the particle velocity via Eq.
(2), and the integration of their interpolation functions
results in the boundary mass matrix ®. Finally, substitution
by the acoustic impedance matrix Z = (H"'G)" @ yields
the complex sound power in the discrete setting

1
P=5vLv;. @

Only the real part Re(+) of the above expression contributes
to the radiation to the far-field and hence to the structural
damping due to sound radiation. The latter is quantified
by relating the radiated sound power to the power corre-
sponding to the total energy of the vibrating structure.?®
The time-averaged total vibrational energy equals twice the
time-averaged kinetic energy, or equivalently, twice the
time-averaged potential energy. For harmonic problems,
these energy quantities can be determined from the struc-
tural response via®’

1
Ep = Ew2uT(M + My)u*, (8)
and
E, = 1uTKu* 1fHu 9)
) 28

where the first term in Eq. (9) corresponds to the energy due
to the elastic strain, and the second term is the work done by

J. Acoust. Soc. Am. 147 (3), March 2020

external forces. The evaluation of the kinetic energy Ej
requires knowledge of the additional mass My due to acous-
tic loading. This frequency dependent mass contribution
could be approximated by the second order term of a Taylor
expansion of the acoustic impedance matrix Z.>° However,
for our purposes it is more convenient to simply use the
potential energy E, to quantify the radiation loss factor.
Hence, the radiation loss factor is expressed by*®

~ Re(P)
|wE,|

Ny (10)

Note that the kinetic energy E; could be equally used to
evaluate the radiation loss factor. Recent results*'~? show
that spurious numerical damping could lead to an overesti-
mation of damping phenomena when studying them with
BEM. However, the occurrence of numerical damping does
not seem to be an issue in exterior acoustics.

B. Modal analysis of structural acoustic interaction

Modal analyses provide useful information on the prop-
erties of the system, such as the eigenfrequencies of the
fluid-loaded structure. In this work, in particular, it serves as
an alternative way to quantify the extent of radiation damp-
ing. The modal radiation loss factors can be deduced from
the complex eigenvalues of the structural acoustic system.
At resonance, these modal loss factors are expected to agree
with the continuous radiation loss factor defined in Eq. (10).

The purely structural equation subject to acoustic load-
ing is obtained by forming the Schur complement of Eq. (4)
and thereby omitting the pressure DOFs, > i.e.,

K — oM + ioCiH'GCy] u
B(o)

—f, + Cy (pi - H’le}),

an

in which ioCs¢H 'GCy can be interpreted as the effect of
fluid loading. Note that the Schur complement of Eq. (5) can
be obtained in a similar manner. By setting the right-hand
side to zero, we arrive at the definition of the structural
acoustic eigenvalue problem (EVP)

B(®)v=0, (12)
with the fluid-loaded structural mode v and the complex
eigenfrequency @. The EVP in Eq. (12) is nonlinear since the
BE matrices H and G implicitly depend on the frequency.
Several methods have been proposed for the solution of
Eq. (12) during the last years. Peters er al.>* employed a
truncated Taylor series to approximate the frequency depen-
dent matrices, and the resultant polynomial EVP is solved
using symmetric linearization. In a subsequent work, the
computational effort associated with the linearized EVP is
addressed by means of Krylov subspace model order reduc-
tion of the structural subproblem.** However, the success of
this method strongly depends on the convergence radius of
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the Taylor approximation and the decay of the coefficients of
the polynomial approximation. As a remedy, the frequency
range of interest needs to be subdivided, whereas proper
choices of these sub-frequency ranges can hardly be made a
priori.

Therefore, in recent years alternative approaches for the
solutions of nonlinear EVPs have been proposed, which can
be classified as contour integral methods.”>>* Using con-
tour integration, a nonlinear EVP is converted to a general-
ized EVP of reduced dimension that exhibits identical
eigenvalues inside a predefined region in the complex plane.
Contour integral methods are particularly appealing because
of their general applicability and suitability for the execu-
tion on distributed parallel computers.

While we assume that the other contour integral methods
would also fulfill our purpose of investigating air-loaded
modes and radiation damping of sandwich panels, we choose
to use the block Sakurai Sugiura method (block $S)**% in
this work. A comparison of different eigenvalue solvers is
beyond the scope of this work. Moreover, we note that the
focus of our contribution is not the further development of
existing methods but rather its application in the context of
air-loaded elastic structures. Most of following content on
block SS can be also found in the papers by Asakura er al.*®
and Zheng et al.*®* Since we nevertheless propose a more
effective strategy for checking and filtering the eigenval-
ues—which is crucial when using contour integral meth-
ods—the procedure is briefly outlined in what follows.

Block SS is a direct method, and it essentially works by
replacing the nonlinear EVP in Eq. (12) by the generalized
EVP

H,y = ZHa\,

with the eigenpair (y, 2). The block Hankel matrices
H,, H, € CKKL gre defined as

13)

[ My, M, Mg |
M, :
H, = )
: Mok 3
| Mg, Myk 3 Mok |
'M1 M, Mg T
M, :
H, = ; (14)
: Mo >
| Mg Mok 2 Mag 1 |

where K and L are user-specified positive integers. The
proper choice of K and L will be discussed in detail later on.
The moments M; € C*** are computed from

1
Mz:—.fj;a’UHBfl(a)Vdo, 1=0,...,2K — 1,
27 Jo
(15)
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where U and V contain randomly chosen source vectors as
columns, and (-)" denotes the Hermitian transpose. The
original system matrix B is evaluated at the complex fre-
quency parameter o. The latter is defined along C—a closed
non-self-intersecting continuous loop in the complex plane.
Once the reduced EVP in Eq. (13) is solved, the fluid-loaded
structural mode can be recovered from

v =S{. (16)
The corresponding eigenvalue A equals the complex eigen-
frequency @ of the original system in Eq. (12). The block
matrix S = [So,...,Skx_1] is also obtained by contour inte-
gration via

1

S = ——
" om

+61B’1(0)Vda, 1=0,....,K—1. (17
C

C. Algorithm and choice of parameters for modal
analysis of moderately coupled structural acoustic
interaction

The range of obtained eigenvalues is enclosed by the
contour C along which the integrals in Eqgs. (15) and (17)
are evaluated. This contour needs to be predefined by the
user. In the context of fluid-loaded structures, a suitable
choice of the contour is an ellipse that has its major axis
aligned with the real axis. The two vertices on the real axis
correspond to the upper and lower limits (fiax, fmin) Of the
frequency range of interest. A suitable ellipse is shown in
Fig. 5 and can be expressed by

a(0) =7+ p(cosO +ilsin0), 0 € [0,2n), (18)
where Y= (fmax +fmin)/2 and p = (fmax _fmin)/z- The fac-
tor { defines the shape of the ellipse and should be chosen
according to the expected ratio of imaginary and real parts
of the eigenvalues. Generally, the ellipse should be wide
and short ({ < 1)—especially in the case of weak to moder-
ately strong structural acoustic coupling. With the definition
of the contour at hand, the integrals in Egs. (15) and (17) are

approximated using the N-point trapezoidal rule, i.e.,

& L (00) =7\ o n
S-Ly OB (o0)V,  19)
= P
M, = UHS,, 20)
Im ® Integration point
° ¢ Eigenvalue found
- o © o > ¢ Eigenvalue missed

\'\i_o.__./o/ Re
o

FIG. 5. (Color online) Elliptic contour in the complex plane enclosing the
eigenvalues of interest.
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where N denotes the number of integration points on the
contour, and 0; =2n(j—1)/N,j=1,...,N. Using the
approximated moments M;, the (appr0x1mated) Hankel
matrices H; and H, can be assembled according to Eq.
(14). Finally, the corresponding generalized EVP H 11//J
= A/Hzlll is solved and the complex elgenfrequenmes Wj,

as well as the fluid-loaded modes v;, j=1,...,KL, are
recovered from
6)j =vy+ p/i,-, Vi = S\il/ (21)

The main challenge with the use of block SS lies in the
choice of the following parameters: the degree of moments
K, the number of source vectors L, and the number of inte-
gration points N. These parameters are related to the compu-
tational effort of the method, as well as to the completeness
of the determined eigenvalues, i.e., whether all eigenvalues
lying inside the contour are found.

Given a fixed number of integration points N, Sakurai
et al*® suggest to set the degree of moments to K = N /4 as
a good compromise between accuracy and numerical effi-
ciency of the algorithm. With L = 1, we have the original SS
method,” while the choice L> 1 results in the block SS
method,36 which achieves higher accuracy at a similar
numerical cost.*' In this work, we found that the eigensolu-
tions improved with an increasing number of L up to
roughly L = 10. Higher values than that did not change the
results anymore as long as the product KL was large enough.
This product defines the dimension of the subspace and
hence corresponds to the number of eigenvalues that are
obtained from the reduced system. Therefore, KL should be
at least as large as the expected number of eigenvalues
inside the contour. This number can be estimated a priori by
an empirical formula.*® However, in our case of sandwich
structures interacting with air, we will rather rely on the
knowledge of the number of in vacuo eigenfrequencies
inside the given frequency range [fmin, fmax]. More specifi-
cally, we solve the purely structural EVP

(K - wgryM) Va = 0, (22)
with the in vacuo modes v4ry and eigenfrequencies wgry prior
to the solution of the structural acoustic EVP in Eq. (12).
Then, assuming that in a given frequency range, the number
of structural acoustic eigenvalues roughly equals the number
ngry of eigenfrequencies, we set the dimension of the
reduced EVP such that KL > ngyy.

The number of integration points N determines the
number of linear systems of equations B(a)X = V that have
to be solved for evaluating Eq. (19), accounting for the main
computational effort. In cases where the algorithm is exe-
cuted in a parallel computing environment, N is chosen
according to the available computing nodes. Sakurai er al.*
note that a large N is not necessary for an accurate quadra-
ture and suggest, e.g., N=16 or 32. Whereas the results of
Zheng et al.* confirm this suggestion, they also show that
iteratively increasing N is a suitable way for checking
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whether all eigenvalues inside the contour are found and
also for distinguishing them from spurious eigenvalues. The
latter mainly occur due to the projection.

However, in the context of weak to moderately strong
structural acoustic interaction, a more effective strategy for
checking and filtering the eigenvalues is available based on
the modal assurance criterion (MAC).*? Assuming that the
modes of a structure subject to light fluid-loading are similar
to the in vacuo modes, the validity of a complex eigenvalue
@; can be simply tested by checking the occurrence of its
associated mode v; in the range of in vacuo modes, i.e.,

|VJHVdry.,i |2

MAC(Vj, Vdry,i) =", H.
Vi Vdry,iV; Vdry,i

1, ooy Mdry -
(23)

The values of MAC range from 0, indicating no correspon-
dence between the two modes, to 1, representing a consistent
correspondence. In the case of air-loaded sandwich panels,
we can expect to find an in vacuo mode vq,y for each actual
fluid-loaded mode v; that satisfies MAC = 0.95...1.00.
Otherwise, v; and the corresponding eigenvalue @; are identi-
fied as spurious. On the other hand, if we are interested in the
complex eigenfrequencies corresponding to particular modes,
a criterion based on Eq. (23) is useful to check if that eigen-
frequency has been found by block SS. If not, the accuracy of
the projection needs to be improved by increasing the number
of integration points N—of course given that the underlying
elliptic contour actually encloses that eigenvalue. Once all
desired modes are found, the accuracy of eigenpairs (@, V)
can be assessed by inserting them into Eq. (12) and comput-
ing the backward error

(24)

Furthermore, the accuracy of eigenpairs can be subsequently
improved by repeating the contour integration (19) with
additional integration points placed in between the previous
ones. In this way, the additional numerical effort is limited
to the computations required for the new integration points,
while the intermediate solutions corresponding to the previ-
ous integration points can be reused. Thus, a strategy with a
gradually increasing number of N is only marginally more
expensive than a single execution of the procedure with the
final (i.e., largest) number of N.

lll. RADIATION DAMPING OF RECTANGULAR
HONEYCOMB SANDWICH PANELS

In the following, we will study the vibroacoustic behav-
ior of three honeycomb sandwich panels in air with particu-
lar focus on acoustic radiation damping. The results
obtained using the presented numerical framework are then
compared to theoretical expressions as well as to experimen-
tal results available in the literature.

Panel A consists of two plywood face sheets enclosing
a paper honeycomb core. The vibroacoustic behavior of a
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similar panel is experimentally investigated in the pioneering
work by Moore,16 which has also served as a benchmark for
other researchers in the past."** Panels B and C are made of
plane weave fabric-reinforced graphite composite face sheets
and a polyurethane foam-filled honeycomb core.'” The dimen-
sions and the material properties of the panels A, B, and C are
presented in Table I. The freely suspended boundary condition
is denoted with “-free” and the simply supported case with
“-SS.” For example, panel A subject to simply supported
boundary conditions will be referred to as panel A-SS in what
follows. Unless otherwise stated, the freely suspended panels
are excited by a point force of F, = I N at the corner node
(x=y=0, z="1/2), and the simply supported panels like-
wise at the center node (x=1,/2,y=1,/2,z=h/2).
Moreover, excitation by diffuse acoustic fields will also be
considered in Sec. IIID. The definition of the coordinate sys-
tem is depicted in Fig. 6.

A. Mesh and discretization error

Eight-noded quadrilateral shell finite elements based on
the Reissner-Mindlin theory are employed for the modeling of
the face sheets. The cores of the panels are modeled using 20-
noded hexahedral solid finite elements. The respective stiff-
ness and mass matrices are extracted from ANSYS.* For all
three panels, a uniform finite element mesh with 48 and 96
elements along the in-plane directions and 2 elements in the
thickness direction is used (recall that all 3 panels have an
aspect ratio of roughly 2:1). The finite element (FE) meshes
result in 240000 displacement DOFs. This corresponds to
three quadratic elements per bending wave length of panel A
in the frequency range up to 2000 Hz. For panels B and C, this
mesh results in at least 6 and 13 elements per bending wave
length, respectively, in the considered frequency ranges.

TABLE 1. Geometry and properties of the honeycomb sandwich panels
taken from the literature (Refs. 16 and 19). Values that are not explicitly
given in these references are assumed and marked with a star “*.”

Panel A Panel B Panel C
Face sheets (Ref. 16) (Ref. 19) (Ref. 19)
Thickness t 6.35mm 0.5mm 0.5 mm
Density Py 657 kg/m? 1600kg/m>  1600kg/m?
Young’s modulus  E 7 GPa 49 GPa 39GPa
Poisson’s ratio Vg 0.3 0.15 0.15
Core
Thickness h 76.2 mm 6.35 mm 12.7 mm
Density Pe 28 kg/m? 160kg/m? 120kg/m?
Young’s modulus  E.E, 4 MPa 10 MPax 10 MPax
Young’s modulus  E. 370 MPa 100 MPax 100 MPax
Shear modulus Gy 0.2 MPa 0.5 MPax 0.5 MPax
Shear modulus G,: 50 MPa 140 MPa 60 MPa
Shear modulus G, 23 MPa 90 MPa 100 MPa
Poisson’s ratio Ve 0.1 0.15 0.15

Dimensions® Ly x 1, 1.22 x 2.44m? 1.12x0.62m? 1.12 x 0.62m?

“The dimensions of panels B-SS and C-SS in the simulations are reduced to
0.88 x 0.42 m* in order to account for the dimension reduction due to the
clamping in the window test rig (Ref. 19) and thus ensure comparability
between the experimental and numerical results.
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FIG. 6. (Color online) Coordinate system of the sandwich panels.

Quadrilateral boundary elements with bilinear interpola-
tion functions are used for the discretization of the surround-
ing acoustic field. These elements have their DOF-carrying
nodes inside the element, rather than on the element edges,
resulting in a sound pressure interpolation that is discontinu-
ous across element boundaries.*” The corresponding BE
matrices H and G are extracted from the non-commercial soft-
ware AKUSTA.*® A treatment for the nonuniqueness problem
that occurs in exterior BE formulations is not required since
the respective first irregular frequencies of the panels are
beyond the frequency range of interest, e.g., the first spurious
mode of panel A occurs at approximately 27 kHz.

Regarding the size of the boundary element mesh, there
are no guidelines available in the literature for coupled
structural acoustic radiation problems. Therefore, in this
work, the adequate mesh size for the acoustic field is chosen
based on a convergence study. Figure 7 shows the relative
difference in radiated sound power of panel A-SS for differ-
ent BE mesh sizes. These meshes do not conform with the
above defined structural finite element mesh. Consequently,
the relative difference shown in Fig. 7 is related to the dis-
cretization error of the acoustic field, as well as to the error
introduced by the mesh coupling. It is calculated from
€relp = |P — Prer|/Prer, Where P denotes the reference
sound power for a mesh with 48 and 96 elements along the
in-plane directions corresponding to 19 584 pressure DOFs
for each acoustic halfspace. This reference BE mesh con-
forms with the above defined FE mesh. As we expected, the
relative difference displayed in Fig. 7 decreases monotoni-
cally as we refine the mesh. Moreover, the relative differ-
ence is of the same order of magnitude at four different
frequency points, although some of those frequencies lie
well above the coincidence frequency range of the panel
(see Sec. II1 E for discussion on coincidence).

——250Hz
o —o— 500Hz
Z 10} 1000Hz |
5 —— 2000Hz
5
<
o
2 102 |
=
Q
(=4
1073

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Pressure DOFs -10*

FIG. 7. (Color online) Relative difference in radiated sound power of panel
A-SS for different BE mesh sizes. The reference sound power is obtained
using a conforming BE mesh with 19 584 pressure DOFs for each acoustic
halfspace.
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Based on this convergence study, we choose the BE
mesh with 24 and 48 elements along the in-plane directions
for all upcoming simulations. This mesh has 5148 pressure
DOFs for each halfspace and, similarly, 10296 DOFs for
the acoustic fullspace corresponding to the unbaffled panels.
Compared to the reference mesh that has four times more
DOFs, it results in a relative difference of less than 3.3%
(0.14dB) at all considered frequency points. Finally, in
order to assess the influence of the discretization error on
the eigenfrequencies, the modal analysis that is presented in
Sec. III B was repeated with the reference mesh, resulting in
maximum relative differences of 0.17% in the imaginary
and 0.07% in the real part of the eigenvalues.

B. Modal analysis and eigenfrequencies

The modal analysis scheme presented in Sec. II is now
applied to panel A to obtain its air-loaded modes and associ-
ated eigenfrequecies. From a preceding in vacuo analysis,
we expect panel A-Free to have 15 eigenfrequencies in the
frequency range [fmin = 10Hz,f.x = 500Hz]. Trivially,
panel A-Free also exhibits six rigid body modes which are
not affected by the acoustic loading. The in vacuo analysis
of panel A-SS yields 11 eigenfrequencies in the frequency
range [fmin = 100 Hz, fi,x = 600 Hz]. These bounds are also
chosen for the definition of the respective ellipses in Eq.
(18). The number of integration points N was gradually
increased until the accuracy of the eigenpairs stagnated,
resulting in N=32. Moreover, K=8 moments, L=15
source vectors, and an aspect ratio of { = 0.1 were chosen
for both panels. In the considered examples, we found that
the eigensolutions are relatively insensitive to the choice of
K and L as long as the resulting subspace was large enough
and L > 10. After solving the generalized EVP, the modes
corresponding to the eigenvalues lying inside the contour
are checked using MAC as given in Eq. (23).

The eigenfrequencies of the air-loaded panel corre-
spond to the real part of the -eigenvalue, i.e.,
fi =Re(®;)/(2n). They are given in Tables II and III, along
with the in vacuo eigenfrequencies fqy,; and their relative
difference A; = Vdry.j —ﬁ‘|/fdry_j. As we expect, the eigenfre-
quencies of the air-loaded panels are generally lowered due

TABLE II. Comparison between in vacuo and air-loaded eigenfrequencies
of panel A-SS.

J Jaryj f; A; €EVP,

1 160 Hz 157Hz —2.39% 24 %107
2 222 Hz 218 Hz —1.83% 3.6 x 107°
3 316Hz 314Hz —0.67% 2.5%107°
4 322Hz 317Hz —1.38% 1.7x10°°
5 370Hz 366 Hz —0.96% 34x10°°
6 431Hz 430 Hz —0.13% 53x107°
7 444 Hz 442 Hz —0.44% 1.4 x 107
8 507 Hz 503 Hz —0.65% 5.8x 107
9 538 Hz 538 Hz —0.14% 1.6 x 10°°
10 544 Hz 541 Hz —0.43% 12x10°°
11 558 Hz 557Hz —0.10% 29 %107
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TABLE III. Comparison between in vacuo and air-loaded eigenfrequencies
of panel A-Free.

j fry f; A; €EVP,

1 69.5Hz 67.7Hz —2.53% 4.4 %107
2 77.3Hz 75.9Hz —1.85% 4.7 x 107°
3 157Hz 154 Hz —1.94% 6.0 x 107°
4 176 Hz 171 Hz —2.74% 1.8 x 1073
5 229Hz 225Hz —1.80% 1.3 %1077
6 251 Hz 246 Hz —2.26% 1.5 %1073
7 255Hz 251 Hz —1.73% 4.1 x 107
8 308 Hz 301 Hz —2.26% 53x107°
9 324Hz 318 Hz —1.83% 1.9 x 1073
10 366 Hz 359Hz —2.18% 4.1x%x107
11 390 Hz 389 Hz —0.03% 72 %1077
12 403 Hz 394 Hz —2.04% 1.0 x 1073
13 439Hz 432Hz —1.61% 4.1 x 107°
14 453 Hz 446 Hz —1.64% 53 x10°°
15 459 Hz 458 Hz —0.32% 1.0x 1077

to the effect of added mass and radiation damping. The
actual extent of the frequency shift depends on the shape of
the associated mode. For example, the eigenfrequency f; of
panel A-SS associated with the fundamental bending mode
is significantly lowered (A; = —2.39 %), while the eigenfre-
quency fi; of panel A-Free that belongs to an in-plane mode
is almost unaffected by the air-loading (A;; = —0.03 %).

Regarding the numerical accuracy of the frequency
shifts Aj, we distinguish between the discretization error and
the accuracy of the eigensolver. As mentioned in Sec. IIT A,
the discretization error of the wet eigenfrequencies of panel
A-SS is at most 0.07%. Although this might seem suffi-
ciently accurate at first sight, it nevertheless needs to be set
in relation to the frequency shifts. In the presented exam-
ples, the discretization error is mostly 1 order of magnitude
smaller than the computed frequency shifts A; in both pan-
els. The accuracy of the eigensolver is assessed by comput-
ing the relative residuals of the air-loaded eigenpairs by
using Eq. (24). They are given in Tables II and III and show
that errors of order O(107°) are achieved. This verifies the
accuracy of the presented modal analysis scheme.

C. Radiated sound power

Expressing the sound radiation by means of modal con-
tributions is a popular procedure to accelerate active control
applications. For instance, a few (orthogonal) surface veloc-
ity patterns are usually sufficient to approximate the total
radiated sound power at a certain frequency. These patterns,
also known as acoustic radiation modes,46 are the eigenvec-
tors of the acoustic impedance matrix and computed using
BEM or analytical methods.*’

Alternatively, we can express the radiated sound power
in terms of the fluid-loaded modes of the structure. This
requires orthonormalization*® of the modal basis obtained
from block SS such that

VIB(w)V =1 (25)
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holds with the orthonormal modal matrix V containing the
fluid-loaded modes V; as columns. Due to orthonormalization
with respect to the frequency dependent matrix B(w), these
modes are now also frequency dependent. Given a structural
force excitation f;, the structural displacement in Eq. (11)
can be expressed by exploiting the condition (29), i.e.,

u=VV'f,. (26)
For an individual mode V;, the modal particle displacement
d; at the acoustic nodes can be written as”

d; = C v ¥/t (27)
Inserting Eq. (27) into Eq. (7) yields the complex modal
sound power contributions

1
Py = > 0’d]Zd].

> (28)

Figure 8 displays the real parts of the sound power resulting
from point force excitations of panels A-SS and A-Free.
Here, panel A-SS is not excited at the center but at the node
(x=0.61lm,y=1.754m,z=0.038m) to ensure that a
larger number of modes participate in the response.

As expected, several resonances occur in the considered
frequency ranges. In the case of panel A-SS, the peaks are
noticeably rounded. Given that structure-inherent damping
is not modeled here, this clearly indicates the effect of
energy dissipation by sound radiation. While the first couple
of resonances of A-Free exhibit sharp maxima, the effect of
acoustic radiation damping also comes into play in the
higher frequency range.

Besides the sound power that is obtained from a harmonic
analysis, Fig. 8 also displays the diagonal modal contributions
Re(Pj;), as well as the superposition of all (diagonal and off-
diagonal) contributions, i.e., > > Re(Pjy). The total modal
superposition agrees well with the harmonic sound power

1073

Sound power in W

o Harmonic
: £ ==~ Modal superposition
------ Modal contributions

oL : . 2Tt n
10 100 200 300 400 500 600

Frequency in Hz

except in the higher frequency range, where the modal basis is
obviously not sufficient. The relative differences between the
harmonic sound power and the total modal superposition are
given in Fig. 9.

At the resonances, the diagonal values almost exclusively
contribute to the radiated sound power. The rigid body modes
of panel A-Free are also included in the modal basis, and
determine the sound radiation up to around 50 Hz. At around
100Hz, they even exceed the total radiated sound power,
which is an indication that off-diagonal sound power contribu-
tions with negative signs occur, i.e., Re(Pj) < 0, j # k.

The modal displacements d; are generally not orthogo-
nal with respect to the acoustic impedance matrix Z, and
cross-coupling between two modes can occur. Therefore,
the off-diagonal sound power contributions are not necessar-
ily zero. In fact, the occurrence of these off-diagonal contri-
butions can be interpreted in that the spatial distribution of
inertial forces of the structure is different from the spatial
distribution of the inertial forces due to the acoustic loading.
We notice that despite the relatively weak structural acous-
tic interaction between the sandwich panels and the air,
these off-diagonal values significantly contribute to the
overall sound power radiation.

D. Acoustic radiation damping

By relating the power loss due to far-field sound radia-
tion to the vibrational energy of the structure, the radiation
loss factor quantifies the extent of acoustic radiation damp-
ing. The harmonic radiation loss factor as given in Eq. (10)
is the result of a frequency-wise response analysis and gen-
erally depends on the excitation.

Figure 10 displays the radiation loss factor for the pan-
els A-SS and A-Free subject to point-force excitation. While
both panels show qualitatively similar behaviors with an
increase of radiation damping toward the coincidence region
and a subsequent plateauing, significant differences in the
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FIG. 8. (Color online) Radiated sound power of panels A-SS and A-Free subject to point-excitation. Results were obtained from a harmonic analysis, the

total modal superposition, and the diagonal modal contributions.
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FIG. 9. Relative difference between the radiated sound power of panels A-SS and A-Free, obtained from a harmonic analysis and the total modal

superposition.

magnitudes are observed in the low frequency range. Panel
A-SS already exhibits considerable radiation damping in the
low frequency range by virtue of the fundamental bending
mode that exhibits a monopole radiation characteristic. In
contrast, the effect of acoustic short-circuiting in conjunc-
tion with freely moving edges of panel A-Free lead to much
lower radiation loss factors in the low frequency range. At
the higher frequency range, when the panels contain a few
bending waves, the effect of boundary conditions becomes
insignificant, and both panels exhibit similar radiation loss
factors. Values of 7, > 0.01 across a wide frequency range
indicate the relevance of acoustic radiation damping in hon-
eycomb sandwich structures—particularly when considering
that material-inherent loss factors are typically of the same
order of magnitude.

Besides the boundary conditions, the excitation can have
a significant influence on radiation damping at low frequen-
cies as well. This is reflected in Fig. 11, which is a close-up
of Fig. 10 in the low frequency range. Additionally, it shows
averaged loss factors of the panels subject to 100 randomly
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FIG. 10. (Color online) Harmonic radiation loss factors of panels A-SS and
A-Free subject to point excitation. The dashed line indicates the estimated
critical frequency [cf. Eq. (31)].
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located point forces as well as loss factors for diffuse field
excitation. The responses to a diffuse incident field were
computed as the mean values of 50 simulations, where the
excitation in each simulation was given by the summation of
1145 random incident plane waves arriving from uniformly
distributed directions in space. For a detailed description of
this procedure, we refer to the appendix of a paper by
Rafaely.** Regarding the extent of radiation damping, we
notice that the diffuse field excitation leads to higher loss fac-
tors in the low frequency range in both panels. This can be
explained by the spatially uniform distribution of the incident
pressure fields in the low frequency range that almost act like
a plane wave excitation. For panel A-Free around 125 Hz in
particular, this leads to monopole radiation characteristic
which is not achieved by point excitation.

In addition to the harmonic radiation loss factor, modal
loss factors can be obtained characterizing the radiation damp-
ing of each individual fluid-loaded structural mode. These
modal radiation loss factors are properties of the structural
acoustic system and hence independent of the excitation. At
the complex eigenfrequency ;, the modal radiation loss factor
is defined as™

(29)

in which Im(®;) is negative due to the choice of the time
dependency e~'’. The modal loss factors are given in Fig.
11 for panels A-SS and A-Free at their respective eigenfre-
quencies. In the case of point excitation, the harmonic loss
factors deviate from some of the modal loss factors, indicat-
ing that the respective modes are not (or not exclusively)
excited in the harmonic analysis. This is particularly obvi-
ous for the in-plane mode of panel A-Free that occurs at
f11 = 389 Hz and exhibits only marginal radiation damping
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FIG. 11. (Color online) Harmonic radiation loss factors of panels A-SS and A-Free subject to point and diffuse field excitations. Additionally, modal loss

factors are given at their respective eigenfrequencies.

(11,1 =2 x 107*). On the other hand, the harmonic loss fac-
tor corresponding to the diffuse field excitation coincides
with all modal loss factors for both panels without excep-
tion. Summing up, both the modal and the harmonic radia-
tion loss factors provide useful measures to characterize the
extent of radiation damping.

E. Comparison to theoretical and experimentally
obtained radiation loss factors

So far, we have placed our attention only on numerical
methods and how they can be employed to study the radia-
tion damping of sandwich structures. In the following, we
will compare our numerical results to commonly used theo-
retical expressions and experimental results available in the
literature.

Theoretical expressions for radiation damping rely on
approximations of the radiation resistance R,,g’11 i.e.,

R,
"= (30)

— T
WMpanel

where mpanel denotes the mass of the panel. Several authors
have derived the radiation resistance of simply supported,
baffled plates based on the concept of power flow,*” and
correction factors have been proposed for taking the effect
of acoustic short-circuiting into account.> All of these
expressions assume a multi-modal radiation of the panel and
thus are not applicable in the low frequency range. A sum-
mary and discussion of these expressions for radiation resis-
tance can be found in a publication by Renji and Nair'' in
which the authors also point out that some of the expressions
in the above-mentioned literature have inconsistent factors.
Here, we use the expression as given in Eq. (11) of the paper
by Renji and Nair."!
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The accuracy of theoretical radiation resistance esti-
mates, in turn, depends on the prediction of the critical fre-
quency. For composite panels with symmetric cross-ply
laminates, the critical frequency f, under consideration of
transverse shear effects can be estimated from”"

f2 _ C4ps
¢ 4n’D[(3+a)/4 — c2py/N]|’

€19}

where p, denotes the surface density of the panel, ¢ is the speed
of sound, and o = (D, + 2D¢s)/D with D = +/D11D2,. The
flexural rigidity values Dy, Dy, D>, Dgg, and the shear rigidity
N can be obtained from the properties of the face sheets and the
core based on laminate theory.”* Using Eq. (31) yields critical
frequency estimates of 146 Hz for panel A, 122 Hz for panel B,
and 780 Hz for panel C.

The third-octave band-averaged theoretical estimates for
the radiation loss factor resulting from Eq. (30) are given in
Figs. 12 and 13, along with the numerically obtained results
for panels A-SS, B-SS, and C-SS. The critical frequencies
cannot be identified directly from the numerical results
becayse this would require determining the bending wave
content by means of a spatial Fourier transform. However,
from Figs. 12 and 13 we can observe that the radiation loss
factor exhibits a plateau in the higher frequency range. This
plateauing that generally occurs above the critical frequency
is in accordance with the theoretical results, while the actual
radiation loss factors at the critical frequencies are signifi-
cantly overestimated by the theoretical expressions. In the
higher frequency range, where the radiation loss factors level
out, the theoretical and numerical results of all three panels
are in good agreement. This indicates that enough modes
contribute to the radiation of the panel in this frequency
range so that the theoretical expressions are valid. At lower
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FIG. 12. (Color online) Radiation loss factors of panel A-SS. Comparison
of numerical results with experimentally determined values taken from the
literature (Ref. 16) and theoretical expressions.

frequencies, however, the radiation damping of panels B-SS
and C-SS strongly depends on which modes are excited.
Moreover, the modes are still widely separated while signifi-
cant radiation damping already occurs. However, as already
mentioned above, the theoretical expressions assume a
multi-modal radiation of the panel. This leads to the conclu-
sion that they are not sufficient to comprehensively assess
the radiation damping of such sandwich structures, at least
when coincidence and, thus, efficient sound radiation already
occur at low frequencies.

Furthermore, experimentally determined loss factors of
similar panels are taken from the literature, and they are also
compared to our numerical results in what follows. Panel
A-SS was tested my Moore'® in a window between two
reverberation rooms. It was excited by a loudspeaker in the
sending room, and the sound pressure, as well as the space
averaged mean square accelerations of the panel, were mea-
sured in the receiving room. By relating the radiated sound
power to the vibrational level, Moore'® obtained third-
octave band-averaged radiation efficiencies of panel A-SS
(see Fig. 5.8 in Ref. 16). The associated radiation loss factor
can be obtained from the radiation efficiency &, via
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: (32)
ps®

N

where p denotes the density of air. Zhou and Crocker'® have
conducted similar measurements to obtain the third-octave
band-averaged radiation loss factors of the panels B-SS and
C-SS. The panels were clamped in a window between two
reverberation rooms and excited by a shaker. Since the loss
factors resulting from the above-mentioned experiments are
associated with the sound radiation of only one side of the
panel, they are multiplied by a factor of 2 in order to com-
pare them to our numerical results.

The experimentally determined radiation loss factors of
panels A-SS, B-SS, and C-SS are displayed in Figs. 12 and
13, along with the numerical results. In general, the experi-
mental and numerical results agree well for all three panels.
Above the critical frequency, the experimental loss factors
exhibit a similar leveling-off as the numerical results,
although in this frequency range the theoretical estimates
provide better agreements with the numerical results.
Conversely, around the critical frequency, where the theo-
retical expressions significantly overestimate radiation
damping, the experimental values provide better agreements
with the numerical results than the theoretical estimates do.
In the subcritical range, however, the experimentally
obtained loss factors fall significantly below the numerical
ones. Two explanations are possible for this discrepancy.

The first explanation is related to the boundary condi-
tions of the panels. When testing panels in a window test
rig, they are typically clamped between the two walls of
adjacent rooms. This clamping, however, is far from ideally
rigid and will, to a certain extent, always exhibit compli-
ance. It is clear that the boundary conditions of a particular
window test rig can hardly be reproduced in simulations,
and as a compromise, simply supported boundary conditions
were imposed on all face sheet edges, as shown in Fig. 2.
The difference to the actual boundary conditions in the test
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FIG. 13. (Color online) Radiation loss factors of panels B-SS and C-SS. Comparison of numerical results with experimentally determined values taken from

the literature (Ref. 19) and theoretical expressions.
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rig will certainly have an influence on the low frequency
results.

The second possible explanation for the discrepancy
between the experimentally and numerically obtained loss
factors is related to the reliability of reverberation room
measurements in the low frequency range, in general. The
low modal density of the room results in a nonuniform
sound pressure field, and therefore microphone-based mea-
surements are subject to high uncertainties. This issue could
be addressed by a recently proposed experimental procedure
in which mobility measurements are combined with a
numerically obtained acoustic impedance matrix to compute
the acoustic response.” In this way, experimental estimates
of the radiation loss factor that only depend on the proper-
ties of the panel could be obtained.

In addition to the simply supported panels, the freely
suspended, non-baffled panels B-Free and C-Free are also
studied, and their respective numerical and experimental
radiation loss factors are displayed in Fig. 14. Zhou and
Crocker'? obtained the experimental values by exciting the
freely hanging panels with a shaker and measuring both the
sound pressure in the reverberation room and the mean
vibrational velocity of the panel. While the numerical and
experimental loss factors qualitatively show similar behav-
iors with an increase toward the coincidence region and a
subsequent plateau, the actual magnitudes differ signifi-
cantly in the higher frequency range. There, the numerically
determined loss factors are higher throughout than the
experimental ones.

This deviation could be related to the reinjection of
energy due to reflections in the reverberation rooms. While
the numerical models assume that all the radiated sound
energy disappears in the far-field, in fact, part of the acoustic
energy in a reverberant room is transferred back to the panel
and, hence, serves as an excitation in addition to the
mechanical excitation by the shaker. This line of reasoning
becomes clear when considering how Zhou and Crocker'®
obtained the radiation loss factor estimates from their
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experimental data. For this purpose, recall the power bal-
ance inside a reverberation room, i.e.,

w("lroom + nc)Eroom = CO"IrEpaneh (33)
where Eyoom and Epel denote the total mean energies of the
acoustic field and the panel, respectively. The dissipation loss
factor of the reverberation room #,,, includes the sound
power absorption of the walls due to air. The coupling loss fac-
tor 1, reflects the transfer of acoustic energy from the room to
the panel—similar to the radiation loss factor #, that quantifies
the energy transfer from the panel to the acoustic field in the
room. The energy quantities are given as

ﬁzvroom
o2

Eroom = (34)

_ =2
) Epanel = MpanelV™,

where p and v are the experimentally obtained averaged val-

ues for the sound pressure and the vibrational velocity.

Further, V,oom denotes the volume of the reverberation

room. The coupling loss factor 7. in Eq. (33) is defined

based on considerations of statistical energy analysis (SEA)

from the reciprocal relationship'"
nc =1, npdnel )

nmom

(35)

with the modal density of the panel 7pae1 and the modal den-
sity of the room 7;0m. Combining Egs. (30), (33), (34), and
(35), we arrive at an expression for the radiation resistance
that reads

=2
R. — ®P~VroomNroomMpanel
=

(36)

Npanel *

pczrnpanel52 - lszvroom
ToOm
Indeed, Zhou and Crocker used another, simplified expres-
sion in order to deduce the radiation resistance from their
experimental data. Their expression [cf. Eq. (21) in Ref. 19]
reads
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FIG. 14. (Color online) Radiation loss factors of panels B-Free and C-Free. Comparison of numerical results with experimentally determined values taken
from the literature (Ref. 19). The deviation in the high frequency range could be related to reinjection of acoustic energy in the reverberation room.
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R, = wﬁzvro;ingroom . (37)
pcto

A comparison to Eq. (36) reveals that Eq. (37) misses the
second term in the denominator and as a consequence,
neglects the reinjection of acoustic energy into the panel.
This could lead to an underestimation of the radiation resis-
tance, which would explain the deviation between the
numerical and experimental estimates for radiation damping
that we observe in Fig. 14 in the higher frequency range. In
future experiments, the second term in the denominator of
Eq. (36) could be evaluated to assess its impact on the actual
radiation damping values.

Finally, we note that the above-mentioned paper'® is
not the only publication of experimental results where the
reinjection of acoustic energy is left unconsidered. In fact,
in the pioneering work®* on radiation damping of sandwich
panels, Clarkson and Brown deduce radiation damping by
means of reference measurements in a vacuum chamber.
However, the measurements in air are conducted inside the
(disabled) vacuum chamber as well, which clearly leads to
reflection at the inner walls of the chamber, and therefore to
unwanted reinjection of acoustic energy.

IV. SUMMARY AND CONCLUSION

Using a fully coupled FEM/BEM formulation, we have
systematically studied the acoustic radiation damping of
sandwich structures. The extent of radiation damping is
quantified by the harmonic radiation loss factor relating the
radiated sound power to the structure-inherent power.
Besides harmonic response analyses, modal analyses of
sandwich panels interacting with the surrounding air have
also been performed. The underlying nonlinear EVP has
been solved using a projection method based on contour
integration, resulting in the complex eigenfrequencies and
modes of the air-loaded structure. Spurious eigenvalues that
arise due to the contour integration are identified by check-
ing the occurrence of the associated air-loaded modes in the
range of in vacuo modes. This criterion is also used to check
the completeness of the eigenvalue solution. The final eigen-
values provide the shifted (wet) eigenfrequencies, as well as
the modal radiation loss factors, of the sandwich structure.

The numerical framework has been applied to three hon-
eycomb sandwich panels subject to various boundary condi-
tions and excitations. The reduction in eigenfrequencies of
more than 2% compared to the in vacuo eigenfrequencies
clearly indicates the relevance of air-loading when studying
the vibration of sandwich structures. Moreover, radiation
loss factors of 8% in the coincidence region and larger than
1% across wide frequency ranges demonstrate that the phe-
nomenon of acoustic radiation damping significantly contrib-
utes to the overall damping. Furthermore, it is observed that
the simply supported, baffled panels exhibit significantly
larger radiation damping than the freely suspended, unbaffled
panels in the lower frequency range. At higher frequencies,
the effects of boundary conditions and excitations are
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insignificant. The modal radiation loss factors quantifying
the radiation damping of each individual structural mode
show excellent agreement with the harmonic radiation loss
factors corresponding to the diffuse field excitation.

The comparison of the numerical results to the theoreti-
cal expressions for radiation damping yields good agreement
above the critical frequency. However, commonly used theo-
retical expressions overestimate the radiation damping at the
critical frequency, and they are also inaccurate in the lower
frequency range, where the modes of the panel are widely
separated and the response of the panel depends on the exci-
tation. Given that sandwich structures exhibit high radiation
damping already in the low frequency range, this deficiency
of the theoretical expressions underlies the importance of
numerical quantification of radiation damping.

Furthermore, we have compared our numerical results
to experimentally obtained radiation loss factors found in
the literature. While they qualitatively show similar behav-
iors with an increase toward the coincidence region and sub-
sequent plateaus, we have also observed some significant
deviations. In the case of the baffled panels, the deviation in
the low frequency range could be explained by the effect of
boundary conditions and also by the low modal density of
reverberation rooms. A recently proposed procedure based
on mobility measurements could resolve the latter issue.’
The deviation in the loss factors of the unbaffled panels in
the high frequency range could have its origin in the reinjec-
tion of acoustic energy into the panel when testing them in
reverberation rooms. While the numerical models assume
that all the radiated acoustic energy disappears in the far-
field, in fact, part of the acoustic energy in a reverberant
room serves as an excitation in addition to the mechanical
excitation. The latter should be taken into consideration
when experimentally determining radiation damping.

Future research will address the choice of nonlinear
eigensolvers for computing air-loaded eigenfrequencies and
modes. While the block SS method used in this paper is com-
putationally efficient and achieved errors of order O(107°) in
the considered examples, it also has some disadvantages: Ill-
conditioning of the Hankel matrices could result in inaccurate
eigenpairs,” and the choice of input parameters could repre-
sent a daunting task for the engineer. Other contour integral
methods®”>* or iterative eigensolvers,5 S in conjunction with in
vacuo modes as initial guesses, could prove to be more suit-
able. Proper benchmarking with regard to nonlinear FEM-
BEM EVPs is certainly an issue for future research.
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