
TECHNISCHE UNIVERSITÄT MÜNCHEN
FAKULTÄT FÜR INFORMATIK

Lehrstuhl für Sprachen und Beschreibungsstrukturen

Linear Tree Transducers
From Equivalence to Balancedness

Raphaela Löbel

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Uni-
versität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Francisco Javier Esparza Estaun

Prüfer der Dissertation:
1. Prof. Dr. Helmut Seidl
2. Prof. Dr. Sebastian Maneth

Die Dissertation wurde am 06.07.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 09.11.2020 angenommen.

Persevera!
Petrus Canisius

Abstract

This thesis studies two decision problems on linear tree transducers with serialized
output – equivalence and balancedness. We show that equivalence of linear tree
transducers with output in the free group is decidable in polynomial time. The
decision procedure is based on an ordered form which guarantees that equivalent
linear tree transducers process their input in the same order. This normal form is
further analysed on two other types of linear tree transducers. First, if the output
is interpreted as words in the free monoid, thus no inverses exist and the two words
are only equivalent if they are literally the same. Second, the output is interpreted
over the involutive monoid, thus the output alphabet consists of disjoint sets A and
A = {a | a ∈ A} where occurrences of the form aa , a ∈ A reduce to the empty
word.
For the second decision problem – balancedness – the output is again interpreted
over the involutive monoid. A word is balanced if it reduces to the empty word,
i.e., consists of properly nested opening (A) and closing letters (A). We consider
2-copy tree transducers (2-TWs) which call in their starting axiom two linear tree
transducers on the same input. Thus, the processed transduction is not linear
and the output language is not context-free. However, the output language of a
linear tree transducer is context-free. We reduce balancedness of 2-TWs to the two
questions whether a context-free grammar is well-formed and whether equivalence
of linear tree transducers is decidable. A word is well-formed if it is a prefix of a
balanced word or, equivalently, reduces to a word over opening letters only. We
show that well-formedness of context-free grammars is decidable in polynomial time.
Therefore, we provide a polynomial time algorithm to compute the longest common
suffix of a context-free grammar after reduction. The algorithm performs a fixed-
point iteration for that we (i) introduce a polynomial size representation for a
language L to compute the longest common suffix of L, and (ii) show that the
reduced longest common suffix of a context-free grammar G is the same as the
reduced longest common suffix of the words with a derivation tree up to height 4N
where N the number of nonterminals in G.

v

Zusammenfassung

Diese Arbeit untersucht zwei Entscheidungsprobleme über lineare Baumübersetzer
– Äquivalenz und Balanciertheit. Wir zeigen, dass die Äquivalenz von linearen
Baumübersetzern mit Ausgabe in der freien Gruppe in polynomieller Zeit entschei-
dbar ist. Der Entscheidungsalgorithmus basiert auf einer geordneten Normalform,
die sicher stellt, dass äquivalente lineare Baumübersetzer ihre Eingabe in der gle-
ichen Reihenfolge verarbeiten. Diese geordnete Normalform wird zusätzlich für
zwei weitere Arten von linearen Baumübersetzern analysiert. Zum einen wenn die
Ausgabe als Wörter im freien Monoid interpretiert wird und somit keine Inversen
vorkommen und zwei Wörter ausschließlich äquivalent sind, wenn sie in jedem Buch-
staben übereinstimmen. Zum anderen wenn die Ausgabe über einem Monoid mit
Involution interpretier wird, d.h. das Ausgabealphabet besteht aus disjunkten Men-
gen A und A = {a | a ∈ A} und alle Vorkommen der Form aa , a ∈ A reduzieren
sich zum leeren Wort.
Für das zweite Entscheidungsproblem – Balanciertheit – wird die Ausgabe wieder
über einem Monoid mit Involution interpretiert. Ein Wort ist balanciert, wenn es
sich zum leeren Wort reduzieren lässt, d.h. es besteht aus korrekt geklammerten
öffnenden (A) und schließenden Buchstaben (A). Wir betrachten Baumübersetzer
mit zwei Kopien (2-TWs), die in ihrer Startregel zwei lineare Baumübersetzer mit
der gleichen Eingabe aufrufen. Somit ist die durchgeführte Übersetzung nicht linear
und die Ausgabesprache ist nicht kontextfrei. Wir reduzieren Balanciertheit von
2-TWs zu den zwei Fragen, ob eine kontextfreie Grammatik wohlgeformt ist und ob
Äquivalenz von linearen Baumübersetzern entscheidbar ist. Ein Wort ist wohlge-
formt, wenn es ein Prefix eines balancierten Wortes ist oder, anders formuliert,
sich zu einem Wort über ausschließlich öffnenden Buchstaben reduzieren lässt. Wir
zeigen, dass Wohlgeformtheit von kontextfreien Grammatiken in polynomieller Zeit
entscheidbar ist. Dafür verwenden wir einen polynomiellen Algorithmus zur Berech-
nung des längsten gemeinsamen Suffixes einer kontextfreien Grammatik nach Re-
duktion. Der Algorithmus führt eine Fixpunktiteration durch, für die wir (i) eine
polynomiell große Repräsentation einer Sprache L zur Berechnung des längsten
gemeinsamen Suffixes von L einführen und (ii) zeigen, dass der längste gemeinsame
Suffix einer kontextfreien Grammatik G gleich dem längsten gemeinsamen Suffix
aller Wörter, die einen Ableitungsbaum mit maximaler Höhe 4N haben, ist, wobei
N die Anzahl der Nichtterminale in G ist.

vii

List of Publications

This thesis includes the content of the following four publications:

[BP16] Adrien Boiret and Raphaela Palenta. Deciding equivalence of lin-
ear tree-to-word transducers in polynomial time. In Srecko Brlek
and Christophe Reutenauer, editors, Developments in Language
Theory - 20th International Conference, DLT 2016, Proceedings,
volume 9840 of Lecture Notes in Computer Science, pages 355–
367. Springer, 2016

[LPS18] Michael Luttenberger, Raphaela Palenta, and Helmut Seidl. Com-
puting the longest common prefix of a context-free language in
polynomial time. In Rolf Niedermeier and Brigitte Vallée, ed-
itors, 35th Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2018, volume 96 of LIPIcs, pages 48:1–48:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018

[LLS20a] Raphaela Löbel, Michael Luttenberger, and Helmut Seidl. Equiv-
alence of linear tree transducers with output in the free group.
In Natasa Jonoska and Dmytro Savchuk, editors, Developments
in Language Theory - 24th International Conference, DLT 2020,
Proceedings, volume 12086 of Lecture Notes in Computer Science,
pages 207–221. Springer, 2020

[LLS20b] Raphaela Löbel, Michael Luttenberger, and Helmut Seidl. On the
balancedness of tree-to-word transducers. In Natasa Jonoska and
Dmytro Savchuk, editors, Developments in Language Theory - 24th
International Conference, DLT 2020, Proceedings, volume 12086 of
Lecture Notes in Computer Science, pages 222–236. Springer, 2020

The publications [BP16, LPS18] are published under my former name Raphaela
Palenta. Chapters 2 and 4 are based on [LLS20b] where Sections 2.3 and 2.4
subsume and improve the result presented in [LPS18]. Chapter 3 is based on
[LLS20a] whereas Section 3.3 recaps the result shown in [BP16].

ix

Contents

Abstract v

Zusammenfassung vii

List of Publications ix

1 Introduction 1
Well-formedness and Longest Common Suffix. 6
Equivalence. 8
Balancedness. 9

2 Well-formedness of Context-free Grammars 11
2.1 Preliminaries . 12
2.2 lcs-equivalent Sublanguages . 23
2.3 Deciding Well-formedness . 28
2.4 Reduced Longest Common Suffix Computation 43
2.5 Summary . 59

3 Equivalence of Linear Tree Transducers 61
3.1 Preliminaries . 63
3.2 Deciding Equivalence . 68
3.3 Ordered Form for Linear Tree-to-Word Transducers 77
3.4 Summary . 85

4 Balancedness 87
4.1 2-copy Tree-to-Word Transducers . 88
4.2 Balancedness of 2-TWs . 89
4.3 Eliminating Inverted Letters in Well-formed LTWBs 91
4.4 Summary . 95

5 Conclusion 97

Bibliography 103

xi

1 Introduction

Tree transformations are widespread in different applications, e.g. in functional pro-
gramming [Wad90, Voi05], document processing [MN99, MBPS05, HMNI14] or au-
tomatic translation of natural languages [MGHK09, Mal17, BSQM13]. Tree trans-
ducers can be seen as a form of recursive programs that take as input ranked trees
and produce as output trees or as serialization thereof words. The former model is
called tree-to-tree transducer and the latter one tree-to-word transducer. We will
only consider deterministic tree transducers as equivalence of non-deterministic
transducers is undecidable [Gri68]. Early results on tree-to-tree transducers date
back to the 1970s and 1980s where equivalence of bottom-up [Zac79] and top-down
[Ési80] tree-to-tree transducers was shown to be decidable. A tree-to-tree trans-
ducer takes as input a tree and produces as output again a tree. It can either
process over the input tree from bottom to top, i.e., from the leaves to the root
node or from top to bottom, i.e., starting from the root node down to the leaves.

Example 1. A rule of a bottom-up tree-to-tree transducer has the general form

a(q1(x1), . . . , qm(xm))→ q(tX)

where a is an input symbol of rank m, q, q1, . . . , qm are the states of the transducer,
the variables x1, . . . , xm represent subtrees that are already processed and tX is the
output tree that is produced and can contain the variables x1, . . . , xm as placeholders
for the already processed subtrees. For example, the rule g(q1(x1)) → q2(C(B, x1))
applied on the tree f(g, h) on the left yields the tree shown on the right. States
are in blue color, their parameters in green color and the parameters of a state are
depicted as its subtrees.

f

g

q1

A

B

h

f

q2

C

B A

B

h

1

1 Introduction

A rule of a top-down tree-to-tree transducer has the general form

q(f(x1, . . . , xm))→ tQ(X)

where q is a state, f is an input symbol of rank m, such that the variables x1, . . . , xm
represent the subtrees of the input tree and tQ(X) is an output tree that can contain
recursive calls of the form qj(xi) with qj a state and variable xi representing a
subtree of the input tree. For example, the rule q(f(x1, x2))→ C(A(q1(x2)), q2(x1))
applied on the tree on the left side yields the tree on the right side. States are in
blue color, their parameter (the input tree) is depicted as subtree and the output is
in green color.

q

f

g h

C

A

q1

h

q2

g

In contrast to deterministic tree-to-tree transducers, equivalence of deterministic
tree-to-word transducers was shown to be decidable in 2015 [SMK15] and was thus
an open problem for at least 35 years [Eng80]. A tree-to-word transducer takes as
input a tree and processes from top to bottom over this input tree and produces
thereby a word.

Example 2. A rule of a tree-to-word transducer is in general of the form

q(f(x1, . . . , xm))→ u0q1(xi1)u1 . . . ul−1ql(xil)ul

where q, q1, . . . , ql are states, f is an input symbol of rank m such that the variables
x1, . . . , xm represent the subtrees of the input tree, u0, . . . , ul are output words and
the variables xij represent one of the m subtrees of the input. For example, the four
rules

(i) q(f(x1, x2)) → ab q1(x1) bb q2(x2)
(ii) q1(f(x1, x2)) → b q3(x2) b q3(x1)
(iii) q2(g(x1)) → a q3(x1) b q3(x1)
(iv) q3(h) → d

applied on the tree f(f(h, h), g(h)) on the left side lead to the following step-wise
transductions where states are in blue color with their parameter (the input tree)
depicted as subtree and the output words are in green color.

2

q

f

f

h h

g

h

ab q1

f

h h

bb q2

g

h

abb q3

h

b q3

h

bba q3

h

b q3

h

abbdbdbbadbd

(i)

(ii), (iii)

(iv)

Different steps towards solving the equivalence of tree-to-word transducers have
been made. A large class of tree-to-word transductions for which equivalence
was shown to be decidable are those definable in monadic second-order (MSO)
logic [EM06] that can be described by macro tree-to-word transducers with lin-
ear size increase [EM03]. Macro tree transducers use additional parameters to
accumulate output values, i.e., the left-hand side of a rule has the general form
q(f(x1, . . . , xm), y1, . . . , yk) where the additional parameters yi can be output as
well. Without these additional parameters different restricted classes of tree-to-
word transducers have been considered, e.g. those that are non-copying, i.e., in
every rule of the transducer any subtree xi of the input occurs at most once on
the right-hand side of the rule. We call these tree-to-word transducers linear and
sequential if additionally the order in which the subtrees are processed is the same
as the order in the input tree. Thus, if q1(xi1), . . . , ql(xil) are the recursive calls on
the right-hand side of a rule then i1 < i2 < . . . < il and l is at most the rank of the
input symbol of the rule. For example, in Example 2 rule (i) fulfills the sequential
property, rule (ii) is not sequential but linear and rule (iii) is not linear as the
subtree x1 is copied. Equivalence of sequential tree-to-word transducers was shown
to be decidable in polynomial time [SLLN09]. Additionally, in [LLN+11] a normal
form for sequential tree-to-word transducers was provided that allows for learning
[LLN+14]. The key concept of this normal form is that the output is produced as
early as possible and was already used for string transducers [Moh00, Cho03], i.e.,
transducers that take as input words and produce words as output, and tree-to-tree
transducers [EMS09, FSM10]. Producing the output as early as possible means that
at any point of the production the further output that will be produced relies on
the further input. Thus, in case of tree-to-word transducer the words of the output
language of a state has no common prefix or suffix. If there would be a common
prefix or suffix this constant output could already be produced without knowing
the further input.

3

1 Introduction

Example 3. The following rules of a tree-to-word transducer

q(f(x1))→ ab q(x1) q(g)→ a

process input trees of the form fn(g) to output words (ab)na. The output is not
produced as early as possible since the output always starts with an a independently
of the input. With other words the longest common prefix of the output language is
a. In contrast, state q′ with

q′(f(x1))→ ba q′(x1) q′(g)→ ε

is earliest and aq′(t) produces the same output as q(t) for input trees of the form
fn(g).

A state that produces the output as early as possible is called earliest and a trans-
ducer M is earliest if every state of M is earliest. Accordingly in [Boi16] an earliest
normal form for linear tree-to-word transducers was provided, i.e., for non-copying
but not necessarily order-preserving transducers. Equivalence of linear tree-to-word
transducers in normal form can be decided in polynomial time [Boi16]. However,
building an equivalent tree-to-word transducer that is in normal form takes expo-
nential time. We lifted this normal form such that only the order of the processed
subtrees is normalized and showed that with this partial normal form the equiv-
alence of linear tree-to-word transducers is decidable in polynomial time [BP16].
The normal form is called partial as not all but only so called ultimately periodic
states have to be earliest. A state is ultimately periodic if the output language
is either of the form vp∗ or p∗v; thus the language is periodic but might have ad-
ditionally a constant prefix or suffix. In case of linear tree-to-word transductions
the output languages can be described by a context-free grammar. Therefore, the
longest common prefix (suffix) of a context-free grammar has to be computed if
we test whether a state of a linear tree-to-word transducer is earliest. This raises
the question whether there is an efficient algorithm to compute the longest common
prefix (suffix) of a context-free language. Surprisingly, there were no results on that
even so context-free grammars have already been introduced in the 1950s by Chom-
sky [Cho56] and intensively studied in the following decades [Flo62, HU69, HU79].
A context-free grammar encoding a single derivation tree and thus representing
exactly one word is called straight-line program (SLP for short). SLPs and es-
pecially the compressed pattern matching on SLPs have been extensively studied
[KRS95, PR99, Ryt03, Loh06, LL06] due to their use as compression of large strings
that is important e.g. in large genome databases or XML processing. The longest
common prefix (suffix) of two SLPs can be computed in polynomial time [Loh12].
We showed that the longest common prefix (suffix) of a context-free language that
can represent infinitely many words, can be computed in polynomial time [LPS18].

4

We come back to the observation of the beginning that the decidability of equiv-
alence of tree-to-tree transducers seemed to be easier to solve than in the case of
tree-to-word transducers. One reason for that might be that tree-to-word trans-
ducers can produce their output in an unstructured way. Even if the output is
structured, e.g. is a valid XML document with properly opening and closing tags,
these corresponding opening and closing tags do not have to be produced together
but can be output in many different ways. On the other hand the output does not
need to be structured what leads to the question whether the output of a tree-to-
word transducer is structured or as we will say balanced. Formally, we consider a
language over opening letters A and corresponding closing letters A = {a | a ∈ A}
and want to decide whether every word in this language is balanced, i.e., for every
opening letter there is a properly matching closing letter. For example, abb a is
balanced while bab a , aa b and a are not balanced, a, b ∈ A, a 6= b. In case of
context-free grammars decidability of balancedness for a single pair of opening and
closing letters was shown to be decidable by Knuth already in 1967 [Knu67]. In the
beginning of the 21st century a polynomial time algorithm for deciding balanced-
ness was presented [MT06]. Additionally the case of multiple pairs of opening and
corresponding closing letters was shown to be decidable [BB02] and again a poly-
nomial time algorithm was presented [TM07]. More recently it was proven that
balancedness of MSO definable tree-to-word transducer for a single pair of opening
and closing letters is decidable [MS18]. Whether this result can be extended to the
case of multiple pairs of opening and closing letters is still an open problem. We
present a polynomial time algorithm to decide balancedness of the output of 2-copy
tree-to-word transducers (2-TWs for short) for multiple pairs of different kind of
brackets. These transducers call in their start axiom two linear tree-to-word trans-
ducers on the given input tree and process therefore a non-linear transduction.

Example 4. We consider 2-TW M with axiom q(x1) q′(x1) and the following rules

q(f(x1)) → a q(x1) b q′(f(x1)) → b q′(x1) a
q(h) → ε q′(h) → ε

M transforms input trees of the form fn(h) to output words anbnb na n. Note that
the output language is not context-free.

We reduce balancedness of 2-TWs to two other decision problems: (a) the well-
formedness of context-free grammars and (b) the equivalence of linear tree-to-word
transducers over the free group. A context-free grammar is well-formed if every
word produced by the grammar is a prefix of a balanced word. For example, abb and
abb a are well-formed, while ab , aa b are not well-formed. If L1, L2 are the (context-
free) output languages of two linear tree-to-word transducer called in the axiom of
a balanced 2-TW, then L1 and L2 have to be well-formed. The inverted language

5

1 Introduction

L2 is obtained from L2 by reversing every word and replacing an opening by the

corresponding closing letter and vice versa, e.g. a b aa = aa ba. In the same lines a
context-free grammar or the transduction of a linear tree-to-word transducer T can
be inverted, called T . Then we observe that the output of a transduction T1(t)T2(t)
with T1 and T2 producing well-formed output only, is balanced if T1(t) and T2 (t)
are the same after removing matching opening and closing brackets. We show that
with the prerequisite that T1 and T2 are well-formed we can test T1 and T2 for
equivalence over the free group to obtain a decision procedure for balancedness of
2-TWs. To arrive at a polynomial time decision procedure equivalence of linear
tree-to-word transducers has to be decidable in polynomial time. We show that
the polynomial time algorithm for equivalence of linear tree-to-word transducers
where word equivalence is considered [BP16] can be extended to the free group. In
fact, due to the inverses provided in the free group the algorithm becomes easier
and cleaner as well as the proofs for the correctness. The observation that results
can be lifted from words to the free group and the argumentation in fact becomes
more direct and therefore even shorter was already made for other results. E.g.
Plandowski extended his result of the existence of polynomial size test sets for
context-free languages from words [KPR92] to the free group [Pla94].

Well-formedness and Longest Common Suffix. We consider a well-formed word
w ∈ (A ∪ A)∗, i.e., there is a word v ∈ (A ∪ A)∗ such that wv is balanced. We
denote with ρ(w) the reduced word we obtain from w by removing all properly
matching opening and closing brackets. Then, w is well-formed if ρ(w) ∈ A∗.
We show that deciding well-formedness of a context-free grammar G relies on the
computation of the reduced longest common suffix of G. Similar to the idea in
[TM07] to decide balancedness of a context-free grammar we observe that any
sentential form αXβ, α, β ∈ (A ∪ A)∗ derived from a well-formed context-free
grammar leads to the following constraints for the words produced by nonterminal
X. If ρ(α) = w, ρ(β) = u v, u, v, w ∈ A∗ then for all γ ∈ (A∪A)∗ derivable from X
with ρ(γ) = uγ vγ , (a) w = w′uγ and (b) vγ = v′γu has to hold. These conditions
can be checked if we compute the longest common suffix of the reduced language of
every nonterminal in G. We presented a polynomial time algorithm to compute the
longest common prefix (suffix) of a context-free grammar over a general alphabet
Σ in [LPS18]. There no reduction had to be taken into account such that we can
not directly apply this result here. In fact, it needs completely new comprehensive
proofs to obtain a polynomial time algorithm for the computation of the reduced
longest common suffix. The underlying ideas of the proofs, however, stayed the
same. As the longest common suffix is a suffix of the shortest word of the language
the size of the shortest word is an upper bound. But the size of the shortest word
of a context-free grammar can be exponential in the size of the grammar.

6

Example 5. Let n ∈ N be fixed. The context-free grammar G has nonterminals
A1, . . . An, axiom An and the rules

An → An−1An−1

. . .
A1 → A0A0

A0 → a

Every nonterminal Ai produces the word a2i, e.g. for n = 3 the context-free grammar
G has the derivation A3 →∗ A2A2 →∗ A1A1 A1A1 →∗ A0A0 A0A0 A0A0 A0A0 →∗
a23.

Every nonterminal in the above example is an SLP and represents a word that
is exponential in the size of the SLP. The challenge in computing the longest com-
mon suffix of two SLPs efficiently is to find algorithms that directly work on the
grammar – the compressed word – and do not decompress the word as this leads in
general to a exponential runtime. An SLP for a shortest word w of a context-free
grammar can be computed in polynomial time. However, the question remains how
we can determine a second word v of a given CFG G that together with a fixed
shortest word defines the longest common suffix (lcs) of the reduced language L
of G, i.e., lcs(ρ(w), ρ(v)) = lcs(ρ(L)). If we consider the longest common suffix of
a language after reduction we say reduced longest common suffix. We show that
it is enough to consider the words of a CFG G with a derivation tree of height at
most 4N to compute the reduced longest common suffix of G where N is the num-
ber of nonterminals in G. The proof is a combinatorical argumentation combined
with a pumping argument. We investigate how often a pumping tree can be re-
peated/pumped such that the resulting words could change (shorten) the reduced
longest common suffix.

Example 6. Consider the context-free language L = aab(a)n(ab)n with n ≥ 0.
Then L contains for n = 0, 1, 2, 3, . . . the words

aab n = 0
aabaab n = 1

aabaaabab n = 2
aabaaaababab n = 3

. . .

The word aab(a)2(ab)2 together with the shortest word aab define the longest com-
mon suffix of language L, i.e., lcs(L) = lcs(aab, aabaaabab) = ab. Enumerating
more words aab(a)i(ab)i with i ≥ 3 containing the pumping tree more than two
times do not change the longest common suffix of L.

7

1 Introduction

In the above Example 6 the language L contains just one pumping tree while
in general a context-free grammar can contain many different pumping trees. We
therefore additionally have to reason about the impact of the combination of dif-
ferent pumping trees on the reduced longest common suffix of a language.

Equivalence. A normal form for linear tree-to-word transducers was shown in
[Boi16]. The construction of this normal form is exponential in the size of the
original transducer. We showed that this normal form can be adapted to obtain
a polynomial time equivalence test for linear tree-to-word transducers [BP16]. We
further extend this result by considering linear tree transducers with outputs in
the free group. In fact, we show that with the same underlying ideas as in [BP16]
the equivalence of tree transducers with output in the free group is decidable in
polynomial time. If two linear tree transducers process their input in the same order
then a context-free grammar simulating the parallel runs of the two transducers can
be constructed, cf. [SLLN09], and equivalence can be tested in polynomial time by
the morphism equivalence result from Plandowski [Pla94]. We therefore define an
order for linear tree transducers such that transducers that are equivalent and
ordered process their input in the same order. The following example illustrates
the key observation for the characterization of the output languages in equivalent
transductions that process their input in different orders.

Example 7. We consider the following two linear tree-to-word transducers T1, T2

T1 : q0(g(x1, x2))→ a q1(x1) q2(x2)b T2 : q′0(g(x1, x2))→ q′2(x2) a q′1(x1)b

q1(f(x)) → ba q1(x) q′1(f(x)) → ba q′1(x)
q1(h) → b q′1(h) → ε

q2(f(x)) → q2(x) ba q′2(f(x)) → q′2(x) ab
q2(h) → a q′2(h) → ab

both performing equivalent transductions from input trees of the form g(fk(h), f j(h))
to the output language abab(ab)k+j. The output language of T1 is aL1 L2 b with
L1 = (ba)k b and L2 = a (ba)j the output languages of q1, q2, respectively. The
output language of T2 is L′2 aL

′
1b with L′2 = ab (ab)j and L′1 = (ba)k the output

languages of q′2, q
′
1, respectively. The order of the recursive calls on the subtrees

x1, x2 in the rules of the states q0 , q
′
0 differs but the transduction is the same as the

output languages of q1 , q
′
1, q2 , q

′
2 are all periodic and the periods are conjugates of

each other.

Based on the characterization of the output languages in an unordered part of
the transduction we show how to order the recursive calls on the subtrees. In fact,
this rewriting to obtain an ordered linear tree transducer is easier and cleaner in

8

case inverses provided by the free group can be used compared to the procedure
needed in the word case [BP16]. We recap the ordering of linear tree-to-word
transducers from [BP16] based on the new results to explicitly show the differences
in the rewriting if inverses are used or not.

Balancedness. For context-free languages the question of balancedness is the ques-
tion whether the language is contained in the Dyck language given by the grammar

S → ε | [S]S

While the general question whether a context-free grammar is a subset of another
context-free grammar is undecidable, the question whether a context-free language
is a Dyck language is decidable [Knu67, BB02]. Balancedness was naturally ex-
tended to the case of multiple pairs of different brackets which we consider here.
We show that balancedness of the output language of a 2-copy tree-to-word trans-
ducer (2-TW) is decidable in polynomial time. Assume that T1(x0)T2(x0) is the
axiom of a 2-TW M . Thus, T1, T2 are the two linear tree-to-word transducers
called on the input tree in the axiom and the output is evaluated in the free invo-
lutive monoid. In Section 4.2 we reduce balancedness of M to the following two
decision problems, (a) well-formedness of the output languages of T1, T2 and (b)
equivalence of T1 and T2 over the free group. The transducer T2 produces for an
input tree t the inverted output of T2 on t – a word is inverted by reversing the
word and replacing opening by corresponding closing letters and vice versa. It is
notable that in the free group other rewriting rules apply than in the rewriting
system we consider for balancedness. For balancedness the order of corresponding
opening and closing letters are important, e.g. aa reduces to ε while a a do not
reduce any further and is not balanced; in the free group aa−1 as well as a−1a are
equivalent to the empty word. However, as we test the output languages of T1

and T2 for well-formedness no patterns of the form a a can occur in the output of
T1 and T2 and inverted letters can therefore be interpreted as inverses in the free
group. Additionally, we present in Section 4.3 an alternative approach to decide
equivalence of linear tree-to-word transducers over the involutive monoid. The key
observation thereby is that all inverted letters occurring in the rules of (ultimately)
periodic states can be removed by a rewriting similar to the ordering used for linear
tree-to-word transducers.

9

2 Well-formedness of Context-free
Grammars

We consider context-free grammars over an involutive monoid; therefore let A be
an alphabet opening letters and A = {a | a ∈ A} be the alphabet of correspond-
ing closing letters. Then a word w ∈ (A ∪ A)∗ is called reduced if it contains
no occurrences aa−, a ∈ A of matching opening and closing letters. Every word
w ∈ (A ∪ A)∗ reduces to a unique reduced word independently of the order in
which matching opening and closing letters are canceled. The reduced word of w
is denoted by ρ(w), e.g. ρ(acbb c) = a. We call words that reduce to the empty
word ε balanced and words that are prefixes of a balanced word well-formed, i.e.,
w is well-formed if ρ(w) ∈ A∗. For example aa baa b is balanced and aa b is well-
formed as ρ(aa b) = a ∈ A∗. We extend the notations accordingly to languages,
i.e., a language is balanced if all contained words are balanced and a language is
well-formed if all contained words are well-formed. While the question whether
the language produced by a context-free grammar is balanced was already intro-
duced by Knuth in 1967 [Knu67] and investigated further [MT06, BB02, TM07],
the tightly connected question of well-formedness was not discussed. Moreover, we
could not find any straightforward modifications to the existing decision algorithms
for balancedness to obtain a decision algorithm for well-formedness. In Section 2.3
we show that well-formedness can be reduced to the computation of the reduced
longest common suffix of a context-free grammar. I.e., we consider the longest
common suffix after reduction of the produced words. Therefore the polynomial al-
gorithm to compute the longest common suffix of a context-free grammar without
considering any reduction [LPS18] cannot be applied. The underlying ideas of the
proofs are very similar, however, completely new proofs for the case with reduction
were needed. We present a fixed point algorithm to compute the reduced longest
common suffix of a context-free grammar that terminates in polynomial time. Two
important components are needed to obtain this algorithm. The first component
is a polynomial size representation of arbitrary languages for the computation of
the longest common suffix. We show in Section 2.2 that for the computation of
the longest common suffix we can represent any language by a language consisting
of at most three words. More precisely, we represent every language by the so
called lcs-summary consisting of the lcs of the language and the lcs-extension. The
lcs-extension is the maximal word by that the lcs of the language can be extended

11

2 Well-formedness of Context-free Grammars

if another language is concatenated from the left and might be unbounded in the
length. For example, the language L1 = (ab)∗a has the longest common suffix a and
if a language L′1 ⊆ (ab)∗ is concatenated from the left the lcs can be extended by
any factor (ab)i; the language L2 = {a, aba, baba} can at most be extended by bab if
bab is a suffix of the longest common suffix of the language concatenated from the
left, e.g. lcs({abab}L2) = lcs({ababa, abababa, ababbaba}) = baba. The second com-
ponent is a bound on the height of the derivation trees of a context-free grammar
that need to be considered for the computation of the longest common suffix. We
show in Section 2.3 that for a given context-free grammar G the reduced longest
common suffix of the words with a derivation tree of height at most 4N is the same
as for all words produced by G. The proof is based on the analysis of simple linear
well-formed grammars of the form

S → αX β X → σ1X τ1 | σ2X τ2 | γ

with σi, τi, γ ∈ (Σ∪Σ)∗. In Section 2.4 we show that the reduced longest common
suffix of the language produced by such a grammar is the same as the reduced
longest common suffix of αγβ and either ασiγτiβ or ασiσjγτjτiβ with i ∈ {1, 2}
and j ∈ {1, 2} independently chosen from i.

Outline We state basic notation and definitions in Section 2.1. In Section 2.2
we present a polynomial size representation of languages called lcs-summary that
we use in the computation of the longest common suffix. The lcs-summary of a
language L consists of the longest common suffix of L and the maximal extension
of the longest common suffix. The maximal extension of the longest common suffix
v of a language L is the maximal word w for that it exists a language L′ such
that vw is the longest common suffix of L′L. We show that the lcs-summary of
the concatenation or union of two languages L1, L2 can be computed if only the
lcs-summary of L1, L2 is known. The main result of Chapter 2, i.e., how to decide
well-formedness of a context-free grammar is presented in Section 2.3. The com-
prehensive combinatorical results that are needed to compute the reduced longest
common suffix of a context-free grammar can be found in Section 2.4.

2.1 Preliminaries

As usual, N (N0) denotes the natural numbers (including 0). The power set of a set
S is denoted by 2S . Σ denotes some generic (nonempty) alphabet, Σ∗ =

⋃
k∈N0

Σk

and Σω{(wi)i∈N0 | wi ∈ Σ} denote the set of all finite words and the set of all infinite
words, respectively. Then Σ∞ = Σ∗∪Σω is the set of all countable words. We denote
the empty word by ε. Concatenation of words and languages is defined as always.
For a finite word w = w0 . . . wl, its reverse wR is defined by wR = wl . . . w1w0 with

12

2.1 Preliminaries

εR = ε. A is used to denote an alphabet of opening brackets with A = {a | a ∈ A}
the derived alphabet of closing brackets, and B := A ∪ A the resulting alphabet of
opening and closing brackets.

Longest common prefix and suffix We first define the longest common prefix of
a language, and then reduce the definition of the longest common suffix to it by

means of the reverse. We write
p
v to denote the prefix relation on Σ∞, i.e. we have

u
p
v w if either

• u,w ∈ Σ∗ and there exists v ∈ Σ∗ s.t. w = uv, or
• u ∈ Σ∗ and w ∈ Σω and there exists v ∈ Σω s.t. w = uv, or
• u,w ∈ Σω and u = w.

We extend Σ∞ by a greatest element > 6∈ Σ∞ w.r.t.
p
v s.t. u

p
v > for all u ∈

Σ∞> := Σ∞ ∪ {>}. Then every set L ⊆ Σ∞> has an infimum w.r.t.
p
v which is called

the longest common prefix of L, abbreviated by lcp(L). Alternatively, we can use
the following equivalent set-theoretic definition of the lcp from which many of its
properties become obvious. We embed Σ∗ ∪ Σω into 2Σω by treating words as sets
of infinite paths through the infinite |Σ|-ary tree. A finite word u ∈ Σ∗ is identified
with the set of all infinite paths uΣω := {uw ∈ Σω} that start with u resp. the
subtree rooted at u of Σω. An infinite word w ∈ Σω is identified with {w}. Thus,
for u ∈ Σ∞, we set h(u) := uΣω, if u ∈ Σ∗, and h(u) := {u} otherwise. We then

have h(u) = {w ∈ Σω | u
p
v w}, i.e. we can alternatively define

p
v by means of

u
p
v v :⇔ h(u) ⊇ h(v). Thus, > becomes the greatest element w.r.t.

p
v by setting

h(>) := ∅ and we can identify εω with ∅. Therefore we define εω := >. Extend
h to languages L ⊆ Σ∞ by means of ĥ(L) :=

⋃
w∈L h(w). The lcp(L) is then the

unique word in Σ∞> satisfying

h(lcp(L)) = ĥ({lcp(L)}) =
⋂
{zΣω | ĥ(L) ⊆ zΣω}

and thus is the infimum w.r.t.
p
v. We give an example in Figure 2.1. We define

εω := >, >R := >, and >w := > =: w> for all w ∈ Σ∞> . Note, that for all w ∈ Σ∞> ,
lcp(εω, w) = w as h(εω) = h(>) = ∅ ⊆ h(w). Additionally we have for all w ∈ Σ∞> ,
lcp(ε, w) = ε as h(w) ⊆ Σω = h(ε).

In Section 2.3 we will need to study the longest common suffix (lcs) of a language
L. For L ⊆ Σ∗, we can simply set lcs(L) := lcp(LR)R, but also for certain infinite
words the lcs can be defined. Recall that for u,w ∈ Σ∗ and w 6= ε the ω-regular
expression uwω denotes the unique infinite word uwww . . . in

⋂
k∈N0

uwkΣω; such
a word is also called ultimately periodic. For the lcs we will use the expression w

ω

u
to denote the “reverse” of (uR)(wR)ω, i.e. the infinite word . . . wwwu that ends

13

2 Well-formedness of Context-free Grammars

ε

a

aa

aaa

aaaa aaab

aab

aaba aabb

ab

aba

abaa abab

abb

abba abbb

b

ba

baa

baaa baab

bab

baba

babab

(ba)ω

babb

bb

bba

bbaa bbab

bbb

bbba bbbb

Figure 2.1: Given language L = {ba(ba)ω, baa, bba, baaa, bbaa}. The paths corre-
sponding to the words contained in L are marked bold. The longest
common prefix of L is then the branching point of these paths, i.e., b.

on the suffix u with infinitely many copies of w left of u; these words are used to
abbreviate the fact that we can generate a word wku for unbounded k ∈ N0.

Definition 1 (Ultimately left-periodic words, longest common suffix).

• Let Σup denote the set of all expressions of the form w

ω

u with u ∈ Σ∗ and
w ∈ Σ+. Σup is called the set of ultimately left-periodic words. Define
the reverse of an expression w

ω

u ∈ Σup by means of (w

ω

u)R := uR(wR)ω.
Accordingly, set (uwω)R := (wR)

ω

uR for u ∈ Σ∗, w ∈ Σ+.

• The suffix order on Σ∗ ∪ Σup ∪ {>} is defined by u
s
v v :⇔ uR

p
v vR.

• The longest common suffix (lcs) of a language L ⊆ Σ∗ ∪ Σup is lcs(L) :=
lcp(LR)R.

Note that a term like lcs(x

ω

, w) is always supposed to be read as lcs(. . . xxxxx,w) =
lcp((xR)ω, w)R and to evaluate to a word in {>} ∪Σ∗ ∪Σup. For instance, we have

lcs((bba)

ω

, (ba)

ω

a) = lcp((abb)ω, a(ab)ω)R = a, and
lcs((ab)

ω

, (ba)

ω

b) = lcp((ba)ω, b(ab)ω)R = (ab)

ω

.

Additionally, by definition ε

ω

= > s.t. lcs(x

ω

, ε

ω

) = lcs(x

ω

,>) = lcs(x

ω

) = x

ω

while
lcs(ε, x) = ε for all x ∈ {>} ∪ Σ∗ ∪ Σup.

As usual, we write u
s
@ v if u

s
v v, but u 6= v and u

p
@ v if u

p
v v, but u 6= v.

As the lcp is the infimum w.r.t.
p
v, we also have for x, y, z ∈ {>} ∪ Σ∗ ∪ Σup and

L,L′ ⊆ {>} ∪ Σ∗ ∪ Σup that

14

2.1 Preliminaries

• lcs(x, y) = lcs(y, x),
• lcs(x, lcs(y, z)) = lcs(x, y, z),

• lcs(L)
s
v lcs(L′) for L ⊇ L′, and

• lcs(Lx) = lcs(L)x for x ∈ {>} ∪ Σ∗.
We prove the following technical properties of the lcs which allow to simplify the
computation of the lcs, in particular in the case of ultimately periodic words.

Lemma 1. Let u, v, w, x, y, z ∈ Σ∗.

1. Let w 6= ε, then

u
s
v w ω

iff u
s
@ uw

iff ∃w′, w′′, k : w = w′w′′ ∧ w′′
s
@ w ∧ u = w′′wk

2. u
s
v w ω

iff u
s
v uw

iff ∃v : uw = vu ∧ v ω

u = w

ω

3. Let u,w 6= ε, then

u

ω

v = w

ω

iff ∃p, q ∈ Σ∗ : pv = vq ∧ u ∈ p∗ ∧ w ∈ q∗

4. lcs(w,wu) = lcs(w,wuk) (∀k ≥ 1)
= lcs(w, u

ω

)

5. lcs(w

ω

, u

ω

) =

{
(wu)

ω
if wu = uw

lcs(uw, u

ω

) = lcs(wu,w

ω

) = lcs(wu, uw) if wu 6= uw

6. lcs(u

ω

, (wu)

ω

) = lcs(u

ω

, w

ω

)u

7. lcs(u

ω

, w

ω

, (wu)

ω

) = lcs(u

ω

, w

ω

)

Proof. 1. u
s
v w ωs

@ > iff u
s
@ uw iff ∃w′, w′′, k : w = w′w′′ ∧w′′

s
@ w∧u = w′′wk

with w 6= ε

Assume that there are w′, w′′, k such that w = w′w′′, w′′
s
@ w and u = w′′wk.

Then u = w′′wk
s
@ wk+1

s
@ w′′wkw = uw.

Assume u
s
@ uw. Then, we show by induction on |u| that u

s
v w ω

. If |u| ≤ |w|,
then w = w′u and therefore u

s
v w

s
@ w

ω

. Thus, assume |u| > |w| such that

u = u′w. Then, u′
s
@ u′w as u′w = u

s
@ uw = u′ww. Hence, by induction

u′
s
v w ωs

@ > and thus u′
s
v w ω

w = w

ω

.

Assume u
s
v w

ω

. Then, there is k ∈ N0 such that wk
s
v u

s
@ wk+1 as w 6= ε.

Thus, u = w′′wk for some factorization w = w′w′′ with w′′
s
@ w.

15

2 Well-formedness of Context-free Grammars

2. u
s
v w ω

iff u
s
v uw iff ∃v : uw = vu ∧ w ω

= v

ω

u

Assume w = ε. Then u
s
v w

ω

= > and u
s
v uw = u and ∃v : u = uw = wv =

v ∧ w ω

= > = v

ω

u follow directly. Thus, w 6= ε from now on.

Assume u
s
v w

ω s
@ >. Then ∃w′, w′′,m : w = w′w′′ ∧ w′′

s
@ w ∧ u = w′′wm

by preceding result. Let v = w′′w′ such that |v| = |w| > 0. Then uw =

w′′wmw = (w′′w′)w′′wm = vu. Hence ∀k : wk
s
v vku

s
v v

ω

vku = v

ω

u ∧ vku =

uwk
s
v w ω

wk = w

ω

.

Assume ∃v : uw = vu. Then u
s
@ uw = vu and therefore u

s
v w ωs

@ >.

3. u

ω

v = w

ω

iff ∃p, q ∈ Σ∗ : pv = vq ∧ u ∈ p∗ ∧ w ∈ q∗

Assume u

ω

= w

ω

. Let p be the primitive root of u, and q that of w. Then,

u

ω

= p

ω

and w

ω

= q

ω

s.t. v
s
v w

ω

= q

ω s
@ >. Thus, ∃q̂ : vq = q̂v s.t.

p

ω

v = q

ω

= q̂

ω

v. Therefore, p

ω

= q̂

ω

and thus p = q̂ as both are primitive.

Assume ∃p, q ∈ Σ∗ : pv = vq∧u ∈ p∗∧w ∈ q∗ Let u = pi, then u

ω

v = (pi)

ω

v =
v(qi)

ω

= q

ω

= w

ω

.

4. lcs(w,wu) = lcs(w,wuk) = lcs(w, u

ω

) for all k ≥ 1

If u = ε, then lcs(w,wu) = w = lcs(w,wuk) = lcs(w,>). So we assume u 6= ε
from here on. We pick m such that w = w′u′′um for suitable w′, u′, u′′ with

u = u′u′′ and u′′
s
@ u and lcs(w, u) = u′′um and lcs(w′, u′) = ε. Hence for all

k ≥ 1,
lcs(w,wuk) = lcs(w′u′′um, w′u′′um+k)

= lcs(w′u′′um, um+1)
= lcs(w′, u′)u′′um

= lcs(w, u

ω

)

5. lcs(w

ω

, u

ω

) =

{
(wu)

ω

if wu = uw

lcs(uw, u

ω

) = lcs(wu,w

ω

) = lcs(wu, uw) if wu 6= uw

W.l.o.g. |w| ≤ |u|. If w = ε, then lcs(w

ω

, u

ω

) = lcs(>, u ω

) = u

ω

= (wu)

ω

.
Thus, we assume 0 < |w| ≤ |u|.

Assume that w 6
s
v wu ∨ u 6

s
v uw. W.l.o.g. consider the case w 6

s
v wu. Then

lcs(w, u

ω

) = lcs(w,wul)
s
@ w for all l > 0. So we assume w

s
v wu ∧ u

s
v uw

from now on. Then it exists ŵ, û : wu = ûw ∧ uw = ŵu.

Assume that ŵ = w∨ û = u. Then wu = uw as wu = ûw = uw∨uw = ŵu =
wu. Hence, w

ω

= u

ω

= (wu)

ω

= lcs(w

ω

, u

ω

) as w, u have the same primitive
root.

16

2.1 Preliminaries

Now, assume that ŵ 6= w ∧ û 6= u. Then u = u′w as |w| ≤ |u| and u
s
v

uw = ŵu. Hence û = wu′ as ûw = wu = wu′w. Then lcs(w

ω

, u

ω

) =

lcs(ŵ

ω

ŵu, u

ω

u′wu) = lcs(ŵ, w)u
s
@ wu. From this the second case of the

statement follows.

6. lcs(u

ω

, (wu)

ω

) = lcs(u

ω

, w

ω

)u

lcs(u

ω

, (wu)

ω

) =

{
(wu)

ω

if uw = wu

lcs(uwu,wuu) = lcs(uw,wu)u if uw 6= wu

= lcs(u

ω

, w

ω

)u

7. lcs(u

ω

, w

ω

, (wu)

ω

) = lcs(u

ω

, w

ω

)

lcs(u

ω

, w

ω

, (wu)

ω

) = lcs(lcs(u

ω

, w

ω

), lcs(u

ω

, (wu)

ω

))
= lcs(lcs(u

ω

, w

ω

), lcs(u

ω

, w

ω

)u)
= lcs(lcs(u

ω

, w

ω

), u

ω

)
= lcs(u

ω

, w

ω

)

The next lemma formalizes that whenever L is not empty, we can find for any x ∈ L
a witness y ∈ L s.t. lcs(L) = lcs(x, y) which we will use in the following frequently
without explicitly referring to this lemma every time.

Lemma 2. Let L ⊆ Σ∗ be nonempty. Then for any x ∈ L we have lcs(L) =
lcs(lcs(x, z) | z ∈ L); in particular, there is some witness y ∈ L (w.r.t. x) s.t.
lcs(L) = lcs(x, y) = lcs(x, y, z) for all z ∈ L.

Proof. Trivially true if L = ∅. Therefore, assume L 6= ∅. Let R = lcs(L) and
pick any x ∈ L. If x = R, we have lcs(x, y) = R for all y ∈ L; so choose any

y ∈ L. Thus, assume R
s
@ x. Let Lx = {lcs(x, y) | y ∈ L} and S := lcs(Lx). Then

R
s
v S as for all y ∈ L we have R

s
v y and thus R

s
v lcs(x, y). But also S

s
v R

as ∀y ∈ L : S
s
v lcs(x, y)

s
v y. Thus, R ∈ Lx as ∀z ∈ Lx : R

s
v z

s
v x. Then

there is some y ∈ L s.t. R = lcs(x, y); by minimality of R we trivially have that
lcs(x, y, z) = lcs(x, y) for all z ∈ L.

Involutive Monoid. We briefly recall the basic definitions and properties of the
finitely generated involutive monoid, but refer the reader for details and a formal
treatment to e.g. [Sak]. Let A be a finite alphabet (of opening brackets/letters).
From A we derive the alphabet A := {a | a ∈ A} of closing letters where we assume
that A ∩ A = ∅. Set B := A ∪ A . We use Latin letters p, q, . . . to denote words

17

2 Well-formedness of Context-free Grammars

over A, while Greek letters α, β, γ, . . . will denote words over B. We extend · to an
involution on B∗ by means of ε := ε, a := a for all a ∈ A, and αβ := β α for all
other α, β ∈ B∗. Let

ρ→ be the binary relation on B∗ defined by αaaβ
ρ→ αβ for

any α, β ∈ B∗ and a ∈ A, i.e.
ρ→ cancels nondeterministically one pair of matching

opening and closing brackets. A word α ∈ B∗ is reduced if it does not contain
any infix of the form aa for any a ∈ A, i.e. α is reduced if and only if it has no
direct successor w.r.t.

ρ→. For every α ∈ B∗ canceling all matching brackets in any
arbitrary order always results in the same unique reduced word which we denote
by ρ(α); we write α

ρ
= β if ρ(α) = ρ(β). Then B∗/

ρ
= is the free involutive monoid

generated by A, and ρ(α) is the shortest word in the
ρ
=-equivalence class of α. For

L ⊆ B∗ we set ρ(L) := {ρ(w) | w ∈ L}.

Well-formed Languages and Context-free Grammars. We introduce the notation
of context-free grammars (CFGs) that we use in the following. We write →G for
the rewrite rules of the context-free grammar G and assume that G is reduced to
the productive nonterminals that are reachable from its axiom S. For simplicity,
we assume for the proofs and constructions that the rules of G are of the form

X →G Y Z X →G Y X →G u v

for nonterminals X,Y, Z and u, v ∈ A∗. We write LX := {α ∈ B∗ | X →∗G α} for
the language generated by the nonterminal X. Specifically for the axiom S of G we
set L := LS . The height of a derivation tree w.r.t. G is measured in the maximal
number of nonterminals occurring along a path from the root to any leaf, i.e. any
derivation tree has height at least 1. We write L≤hX for the subset of LX of words
that possess a derivation tree of height at most h s.t.

L≤1
X = {u v | X →G u v} L≤h+2

X = L≤h+1
X ∪

⋃
X→GY Z

L≤h+1
Y L≤h+1

Z ∪
⋃

X→GY

L≤h+1
Y

We will also write L<hX for L≤h−1
X and L=h

X for L≤hX \ L
<h
X . The prefix closure of

L ⊆ B∗ is denoted by Prf(L) := {α′ | α′α′′ ∈ L}. Given a derivation tree of G
that yields the word κ, a path within this tree, and a specific nonterminal X of G,
we may factorize κ into the product of (word) contexts (finite words with a “hole”
which represent a pumping tree w.r.t. G) (α, β), (σ1, τ1), . . ., (σk, τk) and a single
word γ s.t. S →∗G αXβ, X →∗G σiXτi, and X →∗G γ. We denote such factorizations
by simply writing κ = (α, β)(σ1, τ1) . . . (σk, τk)γ. Concatenation of contexts with
contexts resp. words is thus defined by means of substituting the right operand into
the “hole” of the context, i.e. (σ, τ)(µ, ν) = (σµ, ντ) and (σ, τ)γ = στγ. Given such
a factorization, we are often interested in the “simple” linear language induced by
it:

(α, β)[(σ1, τ1) + . . .+ (σk, τk)]
∗γ := {ασi1 . . . σikγτik . . . τi1γ | i1 . . . il ∈ {1, . . . , k}

∗}

18

2.1 Preliminaries

Formally, this is the language generated by the “simple” linear grammar

S → αXβ X → σ1Xτ1 | . . . | σkXτk | γ

and is thus always a sublanguage of L(G).

Definition 2 ((Weakly) Well-formedness, Height difference). Let α ∈ B∗ and L ⊆
B∗.

1. Let ∆(α) := |α|A−|α|A be the difference of opening brackets to closing brack-

ets. α is nonnegative if ∀α′
p
v α : ∆(α′) ≥ 0. L ⊆ B∗ is nonnegative if every

α ∈ L is nonnegative.

2. A context-free grammar G with L(G) ⊆ B∗ is nonnegative if L(G) is nonneg-
ative. For a nonterminal X of G let dX := sup({−∆(α′) | α′α′′ ∈ LX}∪{0}).
Note that dX ≥ 0 as we can always choose α′ = ε in the definition of dX .

3. A word α is weakly well-formed (wwf for short) resp. well-formed (wf for
short) if ρ(α) ∈ A ∗A∗ resp. if ρ(α) ∈ A∗. A context-free grammar G is wf if
L(G) is wf. L ⊆ B∗ is wwf resp. wf if every word of L is wwf resp. wf.

4. A context-free grammar G is bounded well-formed (bwf for short) if it is
wwf and for every nonterminal X there is a (shortest) word rX ∈ A∗ with
|rX | = dX s.t. rXLX is wf.

We summarize some consequences of Definition 2.

Remark 1. Let L ⊆ B∗.

• L is wf if and only if Prf(L) is wf if and only if L is a subset of the prefix closure
of the Dyck language generated by S → ε S → SS S → aSa (a ∈ A).

• L is nonnegative if and only if the image of L under the homomorphism that
collapses A to a singleton is wf. Hence, if L is wf, then L is nonnegative.

• ∆ is an ω-continuous homomorphism from the language semiring generated
by B to the tropical semiring 〈Z ∪ {−∞},min,+〉. Thus it is decidable in
polynomial time if G is nonnegative using the Bellman-Ford algorithm.

• If L is not wf, then there exists some α ∈ Prf(L) \ {ε} s.t. ∆(α) < 0 or

α
ρ
= uab for u ∈ A∗ and a, b ∈ A (with a 6= b).

• If LX is wwf, then dX = sup{|y| | γ ∈ LX , ρ(γ) = y z}.

In particular, because G is context-free it follows that, if G is wf, then for every
nonterminal X there is rX ∈ A∗ s.t.

19

2 Well-formedness of Context-free Grammars

• rX ∈ ρ(Prf(LX)),
• |rX | = dX and
• rXLX is wf.

Lemma 3. A context-free grammar G is well-formed iff G is bounded well-formed
with rS = ε for S the axiom of G.

Proof. Let S be the axiom of G. W.l.o.g. G is reduced to the nonterminals which
are reachable from S and which are productive. First, assume that G is well-
formed. Then for every nonterminal X of G we can define its left-context LlX =
{α ∈ B∗ | S →∗G αXβ}. As L := L(G) is well-formed and every α ∈ LlX is a
prefix of some word of L, also LlX is well-formed; hence mX := min{∆(LlX)} ≥ 0
is defined. Fix any λX ∈ LlX with ∆(λX) = mX . Then for any γ = γ′γ′′ ∈ LX
also λXγ

′ is a prefix of a word of L, thus well-formed, and therefore ∆(λXγ
′) ≥ 0.

It follows that dX = max{−∆(γ′) | γ′γ′′ ∈ LX} ≤ mX . In particular, there is a
γX = γ′Xγ

′′
X ∈ LX s.t. −∆(γ′X) = dX ; as L is well-formed, LX has to be weakly well-

formed s.t. γ′X
ρ
= rX sX and λX

ρ
= xrX . Hence, for every γ ∈ LX we have γ

ρ
= y z

and λXγ
ρ
= xrXy z are well-formed, i.e. y

s
v rX and thus rXLX is well-formed. In

particular, we have rS = ε for the axiom S.

Now, assume that G is bwf and thus by definition also nonnegative. We fix for
every X any rX ∈ A∗ s.t. rXLX is well-formed; hence, LX is weakly well-formed

and dX = max{|y| | γ ∈ LX , ρ(γ) = y z}. Then r̂X := max
s
v{y | γ ∈ LX , ρ(γ) =

y x}
s
v rX is well defined with dX = |rX |. As G is also nonnegative, we have dS = 0

resp. rS = ε and thus L = LS is well-formed.

The words rX mentioned in Definition 2 can be computed in polynomial time
using the Bellman-Ford algorithm similar to [TM07]; more precisely, a straight-
line program (SLP for short) (see e.g. [Loh12] for more details on SLPs), i.e. a
context-free grammar generating exactly one word, can be extracted from G for
each rX . We therefore use the prefix closure of a context-free grammar G, that can
be constructed in polynomial time.

Remark 2. Let G be a context-free grammar over the nonterminals X. Define Gp
by the following rules:

• If X →G Y Z, then X →Gp Y Z, Xp →Gp Yp, and Xp →Gp Y Zp and Xp →Gp

Y Z.

• If X →G Y , then X →Gp Y , Xp →Gp Yp, and Xp →Gp Y .

• If X →G u v, then X →Gp u v, and Xp →Gp u v

20

2.1 Preliminaries

Then LX(G) = LX(Gp) and LXp(Gp) ∪ {ε} = Prf(LX(G)). In particular, we can
construct Gp in time polynomial in the size of G.

Lemma 4. Let L = L(G) be wf. Let X be some nonterminal of G. Derive from G
the CFG Gp s.t. Prf(LX) = L(GpX). Let rX ∈ A∗ be the shortest word s.t. rXLX is
wf.

1. Then rX is also the shortest word s.t. rXPrf(LX) is wf.

2. There is a shortest α ∈ Prf(LX) s.t. ρ(α) = rX .

3. Every shortest α ∈ Prf(LX) with ρ(α) = rX has a derivation tree w.r.t. GpX
that does not contain any pumping tree and thus has height bounded by the
number of nonterminals of GpX .

4. An SLP for rX can be computed in polynomial time.

Proof. 1. As LX ⊆ Prf(LX), we only need to show that uXPrf(LX) is still wf.
For every α′ ∈ Prf(LX) there is some α ∈ LX s.t. α = α′α′′ (by definition).
As L is wf, LX is wwf, hence α is wwf, and thus α′ and α′′ are wwf, too.
Hence, ρ(α′) = r s, ρ(α′′) = u v and ρ(α) = x y for some r, s, u, v, x, y ∈ A∗

s.t. r su v
ρ
= x y. If s = s′u, then r = x ; else u = u′s and x = r u′ . Thus

r
p
v x

p
v uX .

2. There is some β ∈ LX s.t. ρ(β) = uX y for some y ∈ A∗. Then there is some

prefix β′
p
v β s.t. ρ(β′) = uX . By definition, β′ ∈ Prf(LX). Hence, there is

also some shortest α ∈ Prf(LX) s.t. ρ(α) = uX .

3. Let α ∈ Prf(LX) = L(GpX) be a shortest word s.t. ρ(α) = uX . Assume that
there is some factorization α = βργ%δ s.t. βρkγ%kδ ∈ L(GpX) for all k ∈ N0.

Consider k = 0 and let ρ(βγδ) = r s. If r = uX , then there would be a prefix
of βγδ that would reduce to uX contradicting our assumption that α is a

shortest such word. Hence, r
p
@ uX . Thus ∆(βγδ) ≥ −|r| > −|uX |.

Note that −|uX | = ∆(α) = ∆(βγδ) + ∆(ρ%). Thus, ∆(ρ%) < 0; a contradic-
tion to the wfness of uXPrf(LX).

4. Split every nonterminal Y of GpX into N + 1 copies Y0, . . . , YN , split every
rule Y → UV into the rules Yi+1 → UiVi | Yi, and derive from every rule
Y → γ the rule Y0 → γ. In other words, unfold GpX into an acyclic grammar
that generates exactly all derivation trees of height at most N . We compute
inductively for every nonterminal a pair of SLPs representing a wwf word u v
as follows: For every rule Y0 → γ ∈ B, we choose either u = γ, v = ε or u = ε,

21

2 Well-formedness of Context-free Grammars

v = γ such that u v = γ. For every rule Yi+1 → UiVi, we have inductively
computed SLPs for Ui and Vi representing words r s and u v, respectively.
Then we can compute SLPs representing the reduced word ρ(r su v): either
s = s′u (i.e. |s| ≥ |u|) or u = u′s (i.e. |s| ≤ |u|), i.e. we simply have to
restrict and then concatenate the respective SLPs. For the rule Yi+1 → Yi
there is nothing to do. We are thus left for Yi+1 with a family of SLPs
representing words ui vi: w.l.o.g. assume |u0| ≥ |ui| for all i; as for every
derivation XN →∗ αYi+1γ we need to have that αui viγ is wwf for every i, we
also have that αu0 u0ui viγ is wwf for every i. We thus may normalize all SLP
pairs by means of ui vi 7→ u0 ρ(u0ui)vi. As we want to maximize the descent,
we then assign to Yi+1 the pair of SLPs encoding u0 and the shortest of all
ρ(u0ui)vi. This amounts to a constant amount of SLP operations per rule of
the unfolded grammar.

We show that deciding whether a context-free grammar G produces a negative
word, i.e., a word α such that ∆(α) < 0 can be done considering only derivation
trees up to height N with N the number of nonterminals in G.

Lemma 5. Let L = L(G) = Prf(L(G)) be a prefix-closed context-free language. We
can decide in time polynomial in G whether there is a word α ∈ L s.t. ∆(α) < 0.

Proof. Let N be the number of nontermimals of G. Assume there is a word α ∈ L
with ∆(α) < 0, then w.l.o.g. ∆(α) = −1 as L is prefix-closed. Pick any shortest
such α ∈ L with ∆(α) = −1.

If α has a derivation tree of height at most N , then we simply apply standard
fixed-point/Kleene iteration to the operator F obtained from the rewrite rules of
G via the homomorphism ∆ over the tropical semiring

F (X)X := min{∆(Y) + ∆(Z),∆(Y),∆(γ) | X →G Y Z,X →G Y,X →G γ}

Then FN (∞)S = min{∆(β) | β ∈ L≤N} ≤ ∆(α) = −1 with L≤N all words of L
that possess a derivation tree of height at most N .

Assume thus that every such α has a derivation tree of height at least N + 1.
Pick a longest path from the root to a leaf in such a derivation tree, and moving
bottom-up along this path, pick the first nonterminal X occurring a second time
in order to obtain a factorization α = βργ%δ s.t. βρkγ%kδ ∈ L for all k ∈ N0 and
ρ% 6= ε; in particular, note that ρ% ∈ L≤NX . Then −1 = ∆(α) = ∆(βγδ) + ∆(ρ%)
and ∆(βγδ) ≥ 0; otherwise there would be a prefix π of βγδ with ∆(π) = −1
contradicting the minimality of α. Hence, ∆(ρ%) ≤ −1. Thus, we only need to
decide whether there is a pumpable derivation tree X →≤NG ρX% of height at most
N s.t. ∆(ρ%) < 0. This can be done by transforming the rewrite rules X → Y Z

22

2.2 lcs-equivalent Sublanguages

into weighted edges X
FNY (∞)
−−−−→ Z and X

FNZ (∞)
−−−−→ Y , and then check for negative

cycles in this graph. (This amounts to take the derivative of F at FN (∞).)

2.2 lcs-equivalent Sublanguages

We show that we can compute the longest common suffix of the union L ∪ L′
and the concatenation LL′ of two languages L,L′ ⊆ Σ∗ if we know both lcs(L)
and lcs(L′), and in addition, the longest word lcsext(L) resp. lcsext(L′) by which
we can extend lcs(L) resp. lcs(L′) when concatenating another language from left.
Analogous results w.r.t. the lcp have been presented already in [LPS18] but the
maximal prefix extension is not studied there explicitly.
We then show that the relation L ≈lcs L

′ ⇔ lcs(L) = lcs(L′)∧ lcsext(L) = lcsext(L′)
is an equivalence relation on Σ∗ that respects both union and concatenation of
languages (see Lemmas 8 and 9). It follows that for every language L ⊆ Σ∗ there
is some subset Tlcs(L) ⊆ L of size at most 3 with L ≈lcs Tlcs(L).
In this section we do not consider the involution, thus let Σ denote an arbitrary
alphabet.

Definition 3. For L ⊆ Σ∗ with R = lcs(L) the maximal suffix extension (lcsext)
of L is defined by lcsext(L) := lcs(z

ω| zR ∈ L).
For L,L′ ⊆ Σ∗, L ≈lcs L

′ if lcs(L) = lcs(L′) and lcsext(L) = lcsext(L′), i.e., if both
the longest common suffix and the maximal suffix extension are the same.

Note that by definition we have both lcsext(∅) = lcs(∅) = > and lcsext({R}) =
lcs(ε

ω

) = >. The definition of lcsext can be motivated as follows:

Example 8. Consider the language L = {R, xR, yR} with lcs(L) = R and lcsext(L) =
lcs(x

ω

, y

ω

). Assume we prepend some word u ∈ Σ∗ to L resulting in the language
uL = {uR, uxR, uyR}. Then lcs(uL) is given by lcs(u, lcsext(L)) lcs(L):

lcs(u{xR, yR,R}) = lcs(u, ux, uy)R
= lcs(lcs(u, ux), lcs(u, uy))R (as lcs(u, ux) = lcs(u, x

ω

))
= lcs(lcs(u, x

ω

), lcs(u, y

ω

))R
= lcs(u, lcs(x

ω

, y

ω

))R
= lcs(u, lcsext(L)) lcs(L)

In particular, if xy = yx, we can extend lcs by any finite suffix of lcsext(L) = (xy)

ω

— note that, if x = ε = y, then lcsext(L) = > by our definition that ε

ω

= >; but if

xy 6= yx, we can extend it at most to lcsext(L) = lcs(x

ω

, y

ω

) = lcs(xy, yx)
s
@ xy.

Corollary 1. The maximal suffix extension lcsext(L) is the longest word u ∈ Σ∞

such that lcs(uL) = u lcs(L).

23

2 Well-formedness of Context-free Grammars

If lcs(L) is not contained in L, then lcs(L) has to be a strict suffix of every shortest
word in L, and thus immediately lcsext(L) = ε. As in the case of the lcs, also
lcsext(L) is already defined by two words in L.

Lemma 6. Let L ⊆ Σ∗ with |L| ≥ 2 and R := lcs(L). Fix any xR ∈ L\{R}. Then
there is some yR ∈ L \ {R} such that for all zR ∈ L,

lcsext(L) = lcs(x

ω

, y

ω

) = lcs(x

ω

, y

ω

, z

ω

) =

{
x

ω

if xy = yx

lcs(xy, yx) if xy 6= yx

If xy = yx, then R ∈ L.

Proof. Note that x 6= ε as xR 6= R. Let p be the primitive root of x. If ∀zR ∈
L : zx = xz, then ∀zR ∈ L : z ∈ p∗. Thus lcsext(L) = p

ω

= x

ω

= z

ω

= lcs(x

ω

, z

ω

)
and R ∈ L as otherwise R = lcs(L) = piR for piR the shortest word in L.

So assume ∃zR ∈ L : zx 6= xz, then z 6= ε and lcsext(L) = lcs(lcs(x

ω

, y

ω

) | yR ∈
L \ {R})

s
v lcs(x

ω

, z

ω

) = lcs(xz, zx). Hence, there is some yR ∈ L \ {R} s.t.
lcsext(L) = lcs(x

ω

, y

ω

) = lcs(xy, yx).

The next lemma allows to reduce the computation of maximal suffix extension lcsext
to that of the longest common suffix.

Lemma 7. Let L ⊆ Σ∗ with R = lcs(L). If lcsext(L) ∈ Σ∗, then for all xR ∈ L\{R}
there exists m ∈ N such that

lcs(xmL) = lcsext(L) lcs(L) and lcsext(L)
s
@ xm

Proof. Fix any xR ∈ L \ {R}. Thus x 6= ε s.t. there is some m ∈ N with |xm| >
|lcsext(L)|. As lcsext(L) ∈ Σ∗ there is some y ∈ L s.t. for all zR ∈ L,

lcsext(L) = lcs(x

ω

, y

ω

)
= lcs(xy, yx)
= lcs(x

ω

, y

ω

, z

ω

)

= lcs

(
lcs(x

ω

, y

ω

)
lcs(x

ω

, z

ω

)

)
s
@ xm

s
v x ω

Pick any zR ∈ L. If lcs(x

ω

, z

ω

)
s
w xm, then lcs(x

ω

, z

ω

)
s
w lcs(xm, z

ω

) = xm.

If lcs(x

ω

, z

ω

)
s
@ xm, then lcs(x

ω

, z

ω

) = lcs(xm, z

ω

) = lcs(xm, xmz) (Lemma 1). In
particular for z = y we thus have

lcsext(L) = lcs(x

ω

, y

ω

) = lcs(xm, xmy)

24

2.2 lcs-equivalent Sublanguages

Hence, lcs(xmL) = lcs(xmzR | zR ∈ L) = lcs(xmxR, xmyR, xmzR | zR ∈ L)
= lcs(xmxR, xmyR)
= lcs(xm, xmy)R
= lcsext(L)R

Example 9. Consider L = {sktkR | k ∈ N0} with R = lcs(L). By definition
we have lcsext(L) = lcs((st)ω, (sk+2tk+2)ω | k ≥ 0). If s and t commute, then
lcsext(L) = (st)ω, and thus lcsext(L) is unbounded. Thus assume st 6= ts s.t.

lcs(ts, stk+1) = lcs(ts, st)
s
@ ts, st and

lcs((st)ω, (sk+2tk+2)ω) = lcs((ts)ω, (tsk+2tk+1)ω)t = lcs(tst, stt)

Hence, lcs(ststL) = lcs(tst, stt)R = lcsext(L) lcs(L).

We show that we can compute the lcs and the extension lcsext of the union respec-
tively the concatenation of two languages solely from their lcs and lcsext. To this
end, we define the lcs-summary of a language.

Definition 4. For a language L ⊆ Σ∗ we define the lcs-summary lcssum(L) =
(lcs(L), lcsext(L)). The equivalence relation ≈lcs on 2Σ∗ is defined by

L ≈lcs L
′ iff lcssum(L) = lcssum(L′)

Lemma 8. Let L,L′ ⊆ Σ∗ with lcssum(L) = (R,E) and lcssum(L′) = (R′, E′), then

lcssum(L ∪ L′) =



(R′, E′) if R = >
(R,E) if R′ = >
(R, lcs(E, lcs(E′, E′δ)δ)) if R′ = δR

s
@ >

(R′, lcs(E′, lcs(E,Eδ)δ)) if R = δR′
s
@ >

(lcs(R,R′), ε) else

Proof. Assume that R′ = >, then L′ = ∅ and therefore lcssum(L∪L′) = lcssum(L) =
(R,E). The case R = > is symmetric.

W.l.o.g. R 6= > 6= R′ from here on. If R 6
s
v R′ and R′ 6

s
v R then the maximal

suffix extension of L ∪ L′ is empty and lcssum(L ∪ L′) = (lcs(R,R′), ε). Thus, we

assume R
s
v R′ = δR from here on s.t. lcs(L ∪ L′) = R. (The case R′

s
v R = δR′

is symmetric.) If R 6∈ L, then E = lcsext(L) = ε and thus lcsext(L ∪ L′) = ε =
lcs(E, lcs(E′, E′δ)δ).
So assume R ∈ L. If R′ 6∈ L′, then for suitable xR′, yR′ ∈ L′, ε = E′ = lcsext(L′) =
lcs(x

ω

, y

ω

) = lcs(x, y). Thus, lcs((zδ)

ω| zδR ∈ L′) = lcs(xδ, yδ) = δ and hence

lcsext(L ∪ L′) = lcs(lcsext(L), δ) = lcs(E, lcs(E′, E′δ)δ)

25

2 Well-formedness of Context-free Grammars

Thus also assume that R′ ∈ L′. Then

lcsext(L ∪ L′) = lcs(w

ω

, (zδ)

ω| zδR ∈ L′, wR ∈ L)

= lcs

(
lcsext(L),

lcs(zδ)

ω| zδR ∈ L′)

)
From R′ = δR ∈ L′ follows that lcs(zδ)

ω| zδR ∈ L′) = lcs(lcs(δ

ω

, (zδ)

ω

)) | zδR ∈
L′). In Lemma 1 was shown that lcs(δ

ω

, (zδ)

ω

) = lcs(δ

ω

, z

ω

)δ and lcs(E′, δ

ω

) =
lcs(E′, E′δ). Thus

lcs(lcs(δ

ω

, (zδ)

ω

) | zδR ∈ L′) = lcs(δ

ω

, lcsext(L′))δ = lcs(lcsext(L′), lcsext(L′)δ)δ

Therefore lcsext(L ∪ L′) = lcs(E, lcs(E′, E′δ)δ).

Lemma 9. Let L,L′ ⊆ Σ∗ with lcssum(L) = (R,E) and lcssum(L′) = (R′, E′), then

lcssum(LL′) =


(>,>) if RR′ = >
(RR′, E) if RR′

s
@ > ∧ E′ = >

(lcs(R,E′)R′, ε) if RR′
s
@ > ∧R 6

s
v E′

(RR′, lcs(E, δ)) if RR′
s
@ > ∧ E′ = δR

Proof. If R = > or R′ = >, then L = ∅ or L′ = ∅, respectively, such that LL′ = ∅.
Therefore we obtain lcssum(LL′) = (>,>). Thus, we assume R 6= > 6= R′, i.e.
L 6= ∅ 6= L′ from here on. If E′ = >, then L′ = {R′} such that lcssum(LL′) =
lcssum(LR′) = (RR′, E).
Thus, we additionally assume that E′ 6= > and therefore L′ contains at least two
words. Fix xR′, yR′ ∈ L′ \ {R′} such that

E′ = lcsext(z

ω

| zR′ ∈ L′) = lcs(x

ω

, y

ω

)

Consider
lcs(LL′) = lcs(wRzR′ | wR ∈ L, zR′ ∈ L′)

If E′ = ε and therefore lcs(x

ω

, y

ω

) = ε, then

lcs(LL′) = lcs(wRzR′ | wR ∈ L, zR′ ∈ L′)
s
v lcs(wRxR′, wRyR′ | wR ∈ L)
= lcs(xR′, yR′)
= R′

and
lcsext(LL′) = lcs((wRz)

ω| wR ∈ L, zR′ ∈ L′)
s
v lcs((wRx)

ω

, (wRy)

ω| wR ∈ L)
s
v lcs(x, y)
= ε

26

2.2 lcs-equivalent Sublanguages

Therefore, lcssum(LL′) = (R′, ε) = (lcs(R,E′)R′, ε).
Now, assume that E′ 6= ε such that R′ ∈ L′. Then

lcs(LL′) = lcs(wRzR′ | wR ∈ L, zR′ ∈ L′)

= lcs

(
R

lcs(lcs(wR,wRz) | wR ∈ L, zR′ ∈ L′)

)
R′

Consider then

lcs(R,E′) = lcs(R, lcsext(L′)) = lcs(R, lcs(z

ω

| zR′ ∈ L′)) = lcs(R,Rx,Ry)

If R 6
s
v E′, then R

s
A lcs(R,E′) = lcs(R,Rx,Ry). Thus also lcs(LL′) = lcs(RL′) =

lcs(R,E′)R′
s
@ RR′. Therefore, lcssum(LL′) = (lcs(R,E′)R′, ε).

If R
s
v E′ = δR, then lcs(LL′) = RR′ and

lcsext(LL′) = lcs(z, δ | zR ∈ L \ {R}) = lcs(lcs(z

ω

| zR ∈ L), δ) = lcs(E, δ)

The computation of the lcs-summary as described in Lemmas 8 and 9 can be illus-
trated as follows.

(L ∪ L′)

lcs(L)

lcs(L′)

lcs(L′)
δ

lcsext(L)

lcsext(L′)
δδδ

(LL′)
lcs(L′)

lcs(L′)lcs(L)

lcs(L)δ

lcsext(L)

lcsext(L′) lcs(L′)

Example 10. Consider L = {a, baa} and L′ = {aa, baaa} such that lcssum(L) =
(a, (ba)ω) and lcssum(L′) = (aa, (ba)ω). Then

lcs(L ∪ L′) = lcs
(
a, aa

)
= a

lcs(LL′) = lcs
(
a, (ba)ω

)
aa = aaa

lcsext(L ∪ L′) = lcs
(
(ba)ω, lcs((ba)ω, (ba)ωa)

)
= a

lcsext(LL′) = lcs
(
(ab)ω, a

)
= ε as (ba)ω = (ab)ωa

As both the lcs and the lcsext are determined by already two words (cf. Lem-
mas 2 and 6), it follows that every L ⊆ Σ∗ is ≈lcs-equivalent to some sublanguage
Tlcs(L) ⊆ L consisting of at most three words where the words xR, yR can be chosen
arbitrarily up to the stated constraints (with R = lcs(L)).

Tlcs(L) :=


L if |L| ≤ 2

{R, xR, yR} if {R, xR, yR} ⊆ L ∧ lcsext(L) = lcs(x

ω

, y

ω

)

{xR, yR} if R = lcs(xR, yR) ∧R 6∈ L ∧ {xR, yR} ⊆ L

27

2 Well-formedness of Context-free Grammars

Corollary 2. Let L ⊆ Σ∗ be a language. Then L is ≈lcs-equivalent to some sub-
language Tlcs(L) ⊆ L consisting of at most three words.

In summary, Lemmas 8 and 9 yield that given L,L′ with L ≈lcs L
′, for all L′′

L ∪ L′′ ≈lcs L
′ ∪ L′′ L′′L ≈lcs L

′′L′ LL′′ ≈lcs L
′L′′

The equivalence classes given by ≈lcs build a language semiring with the operations
union and concatenation. Therefore lcssum is a homomorphism, i.e., for all L,L′

lcssum(L ∪ L′) = lcssum(L) ∪ lcssum(L′) lcssum(LL′) = lcssum(L) lcssum(L′)

This allows us to use the sublanguages Tlcs(L) in Section 2.3 as polynomial size
representation for the language L produced by a nonterminal.

2.3 Deciding Well-formedness

In this section we introduce the results leading to the polynomial time algorithm
for deciding well-formedness of a language given by a context-free grammar. The
decision procedure combines results of [TM07] and [LPS18]. Let G be a context-
free grammar with L = L(G) ⊆ B∗. In [TM07] it was shown how to decide in
polynomial time whether L is balanced, i.e. ρ(L) = {ε}. The main observation is
that for every sentential form αXβ produced by G (with α, β ∈ B∗) and for any

γ ∈ LX it has to hold that αγβ
ρ
= ε. This implies that all words in LX are weakly

well-formed (ρ(LX) ∈ A ∗A∗) and have a constant height difference as the number
of closing and opening letters (after reduction) is constrained by the context (α, β).
This in turn implies that LX has a canonical maximally reduced representative
rX vX with dX = |rX | and ρ(rXLX) = {vX}. In case of well-formedness such
a canonical representative does not need to exist anymore. While the question
whether L is balanced enforces that the height difference has to be constant, in the
case of well-formedness the height-difference is only bounded from below, but in
general unbounded from above as the following example shows.

Example 11. Let G be a context-free grammar with axiom X and rules

X →G aaXa | ε

Then L = L(G) = {a2ka k | k ∈ N0} with ρ(L) = a∗ and we obtain rX = ε,
rXLX = L ≈lcs {ε, a} and therefore lcssum(ρ(rXLX)) = (ε, aω).

28

2.3 Deciding Well-formedness

Fixed-point iteration We use Tlcs to compute a finite ≈lcs-equivalent representa-
tion T≤hX of the reduced language generated by each nonterminal X of the given
context-free grammar inductively for increasing derivation height h. In particular,
we show that we only have to compute up to derivation height 4N + 1 (with N
the number of nonterminals) in order to decide whether G is wf. In Lemma 11
we show that, if G is wf, then we have T≤4N+1

X ≈lcs T
≤4N
X for all nonterminals X

of G – we have reached the fixed point. The complementary result is then shown
in Lemma 12, i.e., if G is not wf, then we either cannot compute up to T≤4N+1

X as

we discover some word that is not wf, or we have T≤4N
X 6≈lcs T≤4N+1

X for at least
one nonterminal X.
In the following, we assume that G is a context-free grammar over B = A∪A with
nonterminals X. Set N := |X|. We further assume that G is nonnegative, and that
we have computed for every nonterminal X of G a word rX ∈ A∗ represented as
an SLP such that |rX | = dX and rX ∈ Prf(ρ(LX)), cf. Lemma 4. Note that rX is
(after reduction) a longest word of closing brackets in ρ(LX); if G is wf, then rX
is unique. In order to decide whether G is wf we compute the languages ρ(rXL

≤h
X)

modulo ≈lcs for increasing derivation height h using fixed-point iteration. Assume
inductively that
• rXL≤hX is wf and

• we have computed T≤hX := Tlcs(ρ(rXL
≤h
X)) ≈lcs ρ(rXL

≤h
X) for all X ∈ X up to

height h.
Then we can compute Tlcs(ρ(rXL

≤h+1
X)) for each nonterminal as follows:

T≤h+1
X = Tlcs

(
ρ
(
T≤hX ∪

⋃
X→GY

rXrY T≤hY ∪
⋃

X→GY Z

rXrY T≤hY rZ T≤hZ

))
(2.1)

Inductively, we can still observe that T≤h+1
X ≈lcs ρ(rXL

≤h+1
X) as

ρ(rXL
≤h+1
X)

= ρ(rXL
≤h
X) ∪

⋃
X→GY

ρ(rXrY rY L
≤h
Y) ∪

⋃
X→GY Z

ρ(rXrY rY L
≤h
Y rZ rZL

≤h
Z)

≈lcs T≤hX ∪
⋃
X→GY

ρ(rXrY T≤hY) ∪
⋃
X→GY Z

ρ(rXrY T≤hY rZ T≤hZ)

≈lcs Tlcs

(
ρ
(
T≤hX ∪

⋃
X→GY

rXrY T≤hY ∪
⋃
X→GY Z

rXrY T≤hY rZ T≤hZ

))
= T≤h+1

X

Note that each language T≤h+1
X consists of at most three words (cf. Corollary 2).

Thus, each step of the fixed-point iteration can be computed in polynomial time.

Example 12. Consider the following context-free grammar

S = abbabaX X = baXaba b aba | aXbb aba | ε

29

2 Well-formedness of Context-free Grammars

We obtain rS = ε and rX = a. Thus, the grammar can be equivalently rewritten to
nonterminals [rSS], [rXX] producing the languages rSLS and rXLX , respectively.

[rSS] = abbab[rXX] [rXX] = ab[rXX]aba b aba | [rXX]bb aba | a

Therefore, the following languages are computed in the fixed-point iteration

rSLS
≤h+1 = rSL

≤h
S ∪ abbab rXLX

≤h

rXLX
≤h+1 = rXL

≤h
X ∪ ab rXLX

≤h aba baba ∪ rXLX≤h bbaba ∪ a

As rSLS
≤h+1 depends on rXLX

≤h and rXLX
≤h+1 only on rXLX

≤h we can calculate
rXL

h
X for increasing h until convergence. Afterwards rSLS is computed.

rXL
0
X = ∅

ρ([rXLX]0) = ∅ lcs = >, lcsext = >
ρ([rXLX]0) ≈lcs ∅
rXL

≤1
X = a

ρ(rXLX
≤1) = a lcs = a, lcsext = >

ρ(rXLX
≤1) ≈lcs a

rXLX
≤2 = a

∪ ab a aba baba
∪ a bbaba

ρ(rXLX
≤2) = a

∪ baba
∪ abbaba lcs = a, lcsext = lcs(bab

ω

, abbab

ω

)
= babbab

ρ(rXLX
≤2) ≈lcs ρ(rXLX

≤2)

rXLX
≤3 = a

∪ ab a aba baba
∪ a bbaba

∪ ab baba aba baba

∪ ab abbaba aba baba
∪ baba bbaba
∪ abbaba bbaba

ρ(rXLX
≤3) = a

∪ baba
∪ abbaba
∪ abbbaba
∪ ababbbaba
∪ bababbaba
∪ abbababbaba lcs = a, lcsext = lcs(bab

ω

, abbbab

ω

)

30

2.3 Deciding Well-formedness

= bbab

ρ(rXLX
≤3) ≈lcs a

∪ baba
∪ abbbaba

ρ(rXL
≤4
X) ≈lcs a

∪ ab a aba baba

∪ ab baba aba baba

∪ ab abbbaba aba baba
∪ a bbaba
∪ baba bbaba
∪ abbbaba bbaba

ρ(rXL
≤4
X) ≈lcs a

∪ baba
∪ abbbaba
∪ ababbbbaba
∪ abbaba
∪ bababbaba
∪ abbbababbaba lcs = a, lcsext = lcs(bab

ω

, abbbab

ω

)
= bbab

ρ(rXL
≤4
X) ≈lcs a

∪ baba
∪ abbbaba

Thus, lcssum(ρ(rXL
≤h
X)) converges after three iterations. I.e., the above fixed-

point iteration yields ρ(rXLX) ≈lcs {a, baba, abbbaba} with lcs(ρ(rXLX)) = a and
lcsext(ρ(rXLX)) = bbab. For ρ(rSLS) we therefore obtain

ρ(rSLS) ≈lcs abbab a
∪ abbab baba
∪ abbababbbaba lcs = bbaba, lcsext = lcs(a

ω

, abbabab

ω

) = ε

ρ(rSLS) ≈lcs abbaba
∪ abbababbbaba

We show in the remaining part of this section that the above introduced fixed-point
iteration (2.1) can be used to decide well-formedness of context-free grammars.
First, we consider well-formed languages and show that the fixed-point iteration
terminates after at most 4N iterations with N the number of nonterminals. Sec-
ond, we show that in the case that the language produced by a context-free grammar
is not well-formed we either find a counterexample in 4N iterations or the repre-
sentations T≤hX of at least one nonterminal of the context-free grammar does not

31

2 Well-formedness of Context-free Grammars

converge within 4N iterations. Again, N is the number of nonterminals of the
context-free grammar.

Convergence for well-formed CFGs Lemma 11 states the first result, i.e., if G is
wf then the representations T≤hX have converged at the latest for h = 4N modulo
≈lcs. The basic idea underlying the proof of Lemma 11 is similar to [LPS18]. We
show that from every derivation tree of height at least 4N + 1 we can construct a
derivation tree of height at most 4N such that both trees carry the same information
w.r.t. the lcs and lcsext (after reduction). However, Lemma 11 extends the central
result of [LPS18]. There, a polynomial time algorithm to compute the longest
common prefix (lcp) of a language given by a context-free grammar was presented.
But the languages were just interpreted over a simple alphabet without taking any
reduction into account. In case of the computation of the longest common prefix it
therefore sufficed to show that the lcp has already converged at derivation height
4N . Here, we need to show that also the maximal extension lcsext of the lcs has
converged. This then guarantees that, if G is not wf, but the minimal derivation
height h0 for which we find a counterexample is higher than 4N , then we will
detect this as lcssum(rXL

≤4N
X) has not converged (modulo ≈lcs) for at least one

nonterminal X. 1

We sketch the proof idea of Lemma 11. In order to show that we only need to
compute Tρlcs(rXL

≤4N
X) if G is wf, we have to show that any derivation tree w.r.t.

rXLX of height at least 4N+1 has no influence on lcssum(ρ(rXLX)). More precisely,
we assume that a witness κ for the reduced longest common suffix with respect to a
shortest word (after reduction) has a derivation tree of height at least 4N + 1. Any
such derivation tree induces a “simple” well-formed linear grammar of the form

S → αXβ X → σ1Xτ1 | σ2Xτ2 | σ3Xτ3 | γ (α, β, γ, σi, τi ∈ B∗)

The language L′ generated by this grammar can be described by the rational ex-
pression

(α, β)[(σ1, τ1) + (σ2, τ2) + (σ3, τ3)]∗γ :=
∑

i1...il∈{1,2,3}∗
ασi1 . . . σilγτil . . . τi1β

1 As every context-free grammar is a special case of well-formed LTWB we can use Lemma 29 to
remove closing brackets for all nonterminals that produce an ultimately periodic language after
reduction. But unfortunately, we currently do not know if we can transform in polynomial
time a well-formed context-free grammar G over B into a context-free grammar G′ over A
s.t. ρ(L(G)) = L(G′) (and further s.t. derivations are in bijection). We have not been able
to make direct use of the results of [LPS18]: When transforming a well-formed simple linear
grammar over B, our proofs in Section 2.4 indicate that we might need to introduce auxiliary
nonterminals in order to partition the language w.r.t. the pumping trees resp. contexts that
are used at least once s.t. the resulting grammar might be exponentially larger.

32

2.3 Deciding Well-formedness

L′ is a sublanguage of the language L generated by G and has the same reduced
longest common suffix as L. We first show that we can remove the negative letters
a ∈ A occurring in α, γ, σi and that each τi is either of the form τi

ρ
= ri ti ri with

ti 6= ε or τi
ρ
= ri tiri (with ri, ti ∈ A∗).

Lemma 10. Let L = (α, β)[(σ1, τ1) + . . . + (σn, τn)]∗γ be a wf language with
α, β, σi, γ ∈ B∗ and n ≥ 0. Then there are u, si, w, ri, ti ∈ A∗ such that

L
ρ
= (u, β)[(s1, τ1) + . . .+ (sn, τn)]∗w and

ρ(τi) = ri tiri or ρ(τi) = ri ti ri, ti 6= ε.

Moreover, for any i1, . . . , il ∈ {1, . . . , n}, it holds that ασi1 . . . σilγτil . . . τi1β
ρ
=

usi1 . . . silwτil . . . τi1β.

Proof. As α has to be wf, simply set u = ρ(α) ∈ A∗. Let ρ(σi) = xi yi for any

i ∈ {1, . . . , n}. Then uxi has to be wf for all i ∈ {1, . . . , n}, i.e. we have u
ρ
= uxi xi

for all i ∈ {1, . . . , n}. As uσiσi
ρ
= uxi yixi yi has to be wf, we have yi = sixi.

Pick J ∈ {1, . . . , n} such that xJ is a longest word of {x1, . . . , xn}. Then uσiσJ
ρ
=

uxJ xJxi sixixJ sJxJ has to be wf, i.e., (xJxi)sixJxi is wf for all i ∈ {1, . . . , n}.
Thus there exist ŝi such that ρ(xJxi)si = ŝi ρ(xJxi), resp. xJxi si

ρ
= ŝixJxi as

ρ(xJxi) ∈ A∗. Therefore,

uσi1 . . . σil
ρ
= uxJ xJxi1 si1xi1 . . . xil silxil
ρ
= uxJ ŝi1xJ xi1 si2xi2 . . . xil silxil
ρ
= . . .
ρ
= uxJ ŝi1 . . . ŝilxJ

for all i1, . . . , il ∈ {1, . . . , n}. Thus, set u = ρ(uxJ), si = ŝi and γ = ρ(xJγ).

Now, we analogously show that ρ(γ) = w ∈ A∗. If ρ(γ) = xw, then u = u′x resp.

u
ρ
= uxx and thus usiγ

ρ
= uxxsixw. So xsix is wf for all i ∈ {1, . . . , n}. Hence, we

find ŝi with xsi = ŝix such that usi1 . . . silγ
ρ
= uxxsi1 . . . sinxw

ρ
= ux ŝi1 . . . ŝilxxw

for i1, . . . , il ∈ {1, . . . , n}. Thus, set si = ŝi and u = ρ(ux).

It is left to show that for i ∈ {1, . . . , n} we have either ρ(τi) = ri tiri or ρ(τi) =
ri ti ri with ti 6= ε in the last case. Let ρ(τi) = xi yi for i ∈ {1, . . . , n}. Then
Li := (u, β)(si, τi)

∗w has to be wf for any i ∈ {1, . . . , n} as Li ⊆ L and L is wf by

assumption. Thus τ2
i

ρ
= xi yixi yi has to be wwf. If |yi| ≥ |xi|, then yixi has to be

wf, i.e. xi
s
v yi. Setting ri = xi and ti = ρ(yixi), we have

τi
ρ
= xi yi = xi ρ(yixi)xi = ri tiri

33

2 Well-formedness of Context-free Grammars

Otherwise |yi| < |xi| and xiyi is wf with yi
s
@ xi. Then set ri = yi and ti =

ρ(xiyi) 6= ε such that

τi
ρ
= xi yi = ρ(xiyi)yi yi = tiri ri = ri ti ri

Therefore, L′ is of the form (u, β)[(s1, τ1) + (s2, τ2) + (s3, τ3)]∗w with u, si, w ∈ A∗

and β, τi ∈ B∗. Our goal is to show that the reduced longest common suffix of L′ is
already determined by uwβ and a word (u, β)(si, τi)w or (u, β)(si, τi)(sj , τj)w (for
i 6= j) as we could then prune one pumping tree from the derivation tree of the
witness κ leading inductively to a witness with height at most 4N . Therefore we use
the central combinatorical observation from Section 2.4 (Lemmas 15, 16 and 18)2

that states that for any well-formed language L ⊆ B∗ of the form

L = (α, β)[(µ1, ν1) + (µ2, ν2)]∗γ := {αµi1 . . . µilγνil . . . νi1β | i1 . . . il ∈ {1, 2}
∗}

we have that its longest common suffix after reduction lcsρ(L) := lcs(ρ(L)) is de-
termined by the reduced longest common suffix of αγβ and either (α, β)(µi, νi)γ =
αµiγνiβ or (α, β)(µi, νi)(µj , νj)γ = αµiµjγνjνiβ for some i ∈ {1, 2} but arbitrary
j ∈ {1, 2} in the latter case I.e. we need at most two copies of the pumping trees
where we can choose to either use the same pumping tree at most twice or two
distinct pumping trees at most once.

Lemma 11. Let G be a context-free grammar with N nonterminals and L(G) be
well-formed. For every nonterminal X let rX ∈ A∗ s.t. |rX | = dX and rXLX wf.
Then ρ(rXLX) ≈lcs ρ(rXL

≤4N
X).

Proof. Let S be the axiom of G. W.l.o.g. G is reduced to the nonterminals which
are reachable from S and which are productive. Additionally assume that L(G)
contains at least two words; otherwise lcsext(ρ(rXLX)) = > and the claim of the
lemma follows directly. As for every nonterminal X, rXLX is wf, we have for any

ζ ∈ LX that ρ(ζ) = u v, u, v ∈ A∗ with u
s
v rX = r′Xu s.t. rXζ

ρ
= r′Xv and thus

|ρ(rXζ)| = |r′Xv| = |rXv| − |u| = ∆(rXζ)

Let κ0 ∈ LX be a shortest word after reduction, i.e., ∆(rXκ0) = min{∆(rXζ) | ζ ∈
rXLX}. Let κ1 ∈ LX be a second shortest word after reduction, i.e., ∆(rXκ1) =
min{∆(rXζ) | ζ ∈ rXLX ,∆(ζ) > ∆(κ0)}. We show that then w.l.o.g. κ0 ∈ L≤NX
and κ1 ∈ L≤2N

X .

2This observation strengthens the combinatorical results in [LPS18] and also allows to greatly
simplify the original proof of convergence given there.

34

2.3 Deciding Well-formedness

Claim κ0 ∈ L≤NX and κ1 ∈ L≤2N
X . For any S →∗G αXβ and X →∗G γ we need to

have that for all k ≥ 0,

∆((α, β)(σ, τ)kγ) = ∆(αγβ) + k∆(στ) ≥ 0

and thus ∆(τ) ≥ −∆(σ). Any word ζ ∈ LX \ L≤NX has a derivation tree with a
path from its root to some leaf along which at least N + 1 nontermimals occur, i.e.
along at least one nonterminal occurs twice which gives rise to a factorization of
the form

ζ = (α, β)(σ, τ)γ

such that

|ρ(rXζ)| = ∆(rXζ) = ∆(rXαγβ) + ∆(στ) ≥ ∆(rXαγβ) = |ρ(rXαβγ)|

Removing the pumping tree that gives rise to the factor (σ, τ) thus leads to a word
αγβ that is shorter than ζ before reduction, and at most as long as ζ after reduction.
Hence, rXL

≤N
X already contains all shortest words after reduction, i.e.

min{∆(rXζ) | ζ ∈ rXLX} = min{∆(rXζ) | ζ ∈ rXL≤NX }

and thus w.l.o.g. κ0 ∈ L≤NX .

Next, we consider κ1. Any path that consists of at least 2N + 1 nonterminals
contains at least one terminal three times which gives rise to a factorization of the
form

κ1 = (α, β)(σ1, τ1)(σ2, τ2)γ

If ∆(σ1τ1) = ∆(σ2τ2) = 0, we can remove both pumping trees and obtain αβγ ∈
L≤NX with |ρ(αγβ)| = |κ1|. So assume ∆(σiτi) > 0 for i = 1 or i = 2. Removing
(σi, τi) leads to (α, β)(σj , τj)γ (j 6= i) with

∆(rXκ1) > ∆((rXα, β)(σj , τj)γ) ≥ ∆(rXκ0)

As κ1 is a second shortest word after reduction, ∆((α, β)(σj , τj)γ) = ∆(κ0) has to
hold and thus ∆(σjτj) = 0. Therefore, we can remove (σj , τj) to obtain the word

(α, β)(σi, τi)γ ∈ L≤2N
X as a second shortest word after reduction as ∆(rXκ1) =

∆((rXα, β)(σi, τi)γ). Thus, the claim follows.

Let R := lcsρ(rXLX). If lcsext(ρ(rXLX)) ∈ A

ω

, then ρ(κ0) = R and ρ(κ1) = xR for
some x ∈ A+. Then for any ζ ∈ LX we have ρ(rXζ) = yR with x

ω

= y

ω

, i.e. xy =
yx. Thus, Tlcs(ρ(rXLX)) is in this case given by {ρ(rXκ0), ρ(rXκ1)} ⊆ rXL≤2N

X .

Therefore, assume from here on that the lcsρ of rXLX can at most be finitely ex-
tended, i.e., lcsext(ρ(rXLX)) ∈ A∗. Moreover, we can assume that ρ(rXLX) con-
tains at least three distinct words; otherwise the lemma follows directly with the

35

2 Well-formedness of Context-free Grammars

shown bounds on the height of the derivation trees of κ0 and κ1. We distinguish
the two cases whether R = lcsρ(rXLX) is a strict suffix of every word in rXLX , in

particular R
s
@ ρ(rXκ0), or if R is a, and thus the shortest word after reduction, in

particular R = ρ(rXκ0).

• If R = lcsρ(rXLX)
s
@ ρ(rXκ0), there is some witness κ ∈ LX s.t.

R = lcs(ρ(rXκ0), ρ(rXκ))
s
@ rXκ0

In particular, we have that ρ(rXκ0) = . . . aR and ρ(rXκ) = . . . bR for two
distinct opening parenthesis a, b ∈ A (a 6= b).

• If R = lcsρ(rXLX) = ρ(rXκ0), then recall Lemma 7. The maximal extension
E of the lcs R is given by

E = lcsextρ(L) = lcs(ρ(rXζR)

ω

| ζ ∈ LX , ρ(rXζ) 6= R)

As E is assumed to be finite, ρ(rXLX) has to contain at least two other
reduced words, both longer than ρ(rXκ0). In particular, there has to be a
second shortest word after reduction κ1 s.t. we find a witness κ for E w.r.t.
κ1, i.e.,

E = lcs(ρ(rXζR)

ω

| ζ ∈ LX , ρ(rXζ) 6= R) = lcs(ρ(rXκ1R)

ω

, ρ(rXκR)

ω

)

and
ER = lcsρ(xmrXLX)

s
@ ρ(xmrXκ0) = xmR = xm−1 ρ(rXκ1)

Thus, we can reduce this case to the case where R is a strict suffix of any
word in rXLX by extending rX to xmrX .

Note that then any witness for ER w.r.t. xmrXκ0 is also a witness w.r.t.
xmrXκ1 and vice versa.

Assume thus w.l.o.g. that R = lcsρ(rXLX)
s
@ ρ(rXκ0) from here on. Choose κ in

LX such that

1. lcs(ρ(rXκ0), ρ(rXκ)) = lcsρ(rXLX).

2. |κ| is minimal w.r.t. to all words in rXLX satisfying 1.,

3. |ρ(rXκ)| is minimal w.r.t. to all words in rXLX satisfying 2..

W.l.o.g. ρ(rXκ0) = . . . aR and ρ(rXκ) = . . . bR with a 6= b and a, b ∈ A. Note that
there is a unique factorization rXκ = ζbξ s.t. both ζ and ξ are wf and ρ(ξ) = R.
Therefore, for every prefix (before reduction) ψ of rXκ we can interpret ∆(ψ) as the

36

2.3 Deciding Well-formedness

height of the last letter of ψ. Then the letter b in ρ(rXκ) = . . . bR is the last letter
in rXκ of height ∆(rXκ)− |R| and is, thus, uniquely identified. This specific letter
b splits rXκ into rXκ = ζbξ; as this b is the last letter in κ on height ∆(κ)− |R|, ξ
has to be wf with ρ(ξ) = R; as rXκ is wf and ζ is a prefix thereof, trivially also ζ
is wf.
Assume every derivation tree of κ contains a path to a letter within bξ along which
some nontermimal A occurs at least 4 times (see Fig. 2.2). This gives rise to a

A

A

A

A

α σ1 σ2 σ3 γ τ3 τ2 τ1 β

b ξζ

Figure 2.2: We assume that the given derivation tree of the witness κ contains a
path (drawn as dashed line) which (i) leads to one of the letters within
bξ and (ii) consists of at least 3N+1 nonterminals so that by the pigeon-
hole principle at least one nontermimal A occurs at least 4 times; specif-
ically, consider precisely the first 3N + 1 nonterminals along such path
and let A be the nonterminal that occurs both at least 4 times within
this fragment and also occurs the earliest. W.r.t. the nonterminal A we
factorize the witness as κ = (α, β)(σ1, τ1)(σ2, τ2)(σ3, τ3)γ

ρ
= . . . b lcsρ(L).

factorization
κ = (α, β)(σ1, τ1)(σ2, τ2)(σ3, τ3)γ

Any word

η ∈ {(α, β)(σ1, τ1)k1(σ2, τ2)k2(σ3, τ3)k3γ | ki ∈ {0, 1}, k1 + k2 + k3 < 3}

is shorter (before reduction) than κ, hence cannot be a witness w.r.t. κ0, i.e.,

aR
s
v lcsρ(rXκ, rXη). Let

L = (rXα, β)[(σ1, τ1) + . . .+ (σ3, τ3)]∗γ

Then L is wf with R = lcsρ(rXLX) = lcsρ(L) as L ⊆ rXLX contains both rXκ
and rXαγβ with the latter not a witness w.r.t. rXκ0 s.t. lcsρ(rXκ, rXαγβ) = R.

37

2 Well-formedness of Context-free Grammars

Our goal is to show that already rXασiγτiβ or rXασiσjγτjτiβ for some i 6= j is a
witness w.r.t. rXαγβ. We make the following observations.

• rXα has to be wf, all other factors β, γ, σi, τi have to be wwf.
• As noted already at the beginning, we have both ∆(σi) ≥ 0 and ∆(σiτi) ≥ 0.
• By choice of the path used for the factorization, we have ρ(τ3τ2τ1β) = x y

with y
s
v R = lcsρ(L) = lcsρ(rXLX).

Lemma 10 reduces the factors α, β, γ, σi to words in A∗ such that we assume L =
(u, β)[(s1, τ1) + . . .+ (s3, τ3)]∗w and ρ(τi) = ri tiri or ρ(τi) = ri ti ri, ti 6= ε. W.l.o.g.
we may further assume that β = ε as this amounts to changing R = lcsρ(L) to
R := ρ(lcsρ(L)β); we therefore set κ = (α, ε)(σ1, τ1)(σ2, τ2)(σ3, τ3)γ. Assume for
some i ∈ {1, 2, 3} that ρ(τi) = ri ti ri with ti 6= ε. As we show in Lemmas 15 and 16
we always have for j 6= i and any i1, . . . , il ∈ {i, j},
• usi1 . . . silsjwτj

ρ
= usi1 . . . silp

kjw and

• usi1 . . . silsjwri ti ri
ρ
= usi1 . . . silp

kiw.

Hence L
ρ
= u(pk1 +pk2 +pk3)∗w and thus lcsρ(L) = lcsρ(uw, us1wτ1, us2wτ2, us3wτ3)

and lcsextρ(L) = lcsextρ({uw, us1wτ1, us2wτ2, us3wτ3}), therefore ρ(rXLX) ≈lcs

ρ(rXL
≤2N
X).

So it remains the case that for all i ∈ {1, 2, 3} we have τi = ri tiri. Hence

L = (u, ε)[(s1, r1 t1r1) + (s2, r2 t2r2) + (s3, r3 t3r3)]∗w

As before rirj has to be wwf for any i, j ∈ {1, 2, 3}. Let {i1, i2, i3} = {1, 2, 3} such

that ri3
s
v ri2

s
v ri1 . Note that ρ(t3r3r2 t2r2r1 t1r1) = x y with y

s
v lcsρ(L) = R

as t3r3r2 t2r2r1 t1r1 is a suffix of κ and κ is a shortest witness by assumption.
Hence |R| ≥ |y| = ∆(t3r3r2 t2r2r1 t1r1) + |x| = |t1t2t3| + |r3| + |x|. We show that
|R| ≥ |y| ≥ |tiri| for all i ∈ {1, 2, 3}.

• If |r1| ≤ |t2r2| ∧ |r2| ≤ |t3r3| then |y| = |t1t2t3r3| ≥ |t1t2r2| ≥ |t1r1|.

• If |r1| > |t2r2| ∧ |r2| + |r1| − |t2r2| ≤ |t3r3| then |t2r2| < |r1| ∧ |r1| ≤ |t2t3r3|
and |y| = |t1t2t3r3| ≥ |t1r1| > |t1t2r2|.

• If |r1| ≤ |t2r2| ∧ |r2| > |t3r3|, then |x| = |r2| − |t3r3| and |y| = |t1t2t3r3| +
|r2| − |t3r3| = |t1t2r2| ≥ max(|t1r1|, |t1t2t3r3|).

• If |r1| > |t2r2| ∧ |t3r3| < |r2| + |r1| − |t2r2|, then |x| = |r1| − |t2t3r3| and
|y| = |t1t2t3r3|+ |r1| − |t2t3r3| = |t1r1| ≥ max(|t1t2r2|, |t1t2t3r3|).

Consider the language

L′ = (u, ε)[(s1, r 1t1r1) + (s2, r2 t2r2)]∗(s3, r 3t3r3)w

38

2.3 Deciding Well-formedness

for that we show that lcsρ(L) = lcsρ(L′). We have L′ ⊆ L and thus R = lcsρ(L)
s
v

lcsρ(L′). Note that (u, ε)(s3, r3 t3r3)w cannot be a witness w.r.t. uw as its length
after reduction is strictly smaller than that of rXκ, hence the two words have to coin-

cide on at least the last 1+ |R| letters s.t. lcsρ(L′)
s
v lcsρ(rXκ, (u, ε)(s3, r3 t3r3)w) =

R, i.e., lcsρ(L) = lcsρ(L′) = R. Let

w̃ = ρ(s3wr3 t3r3)

If w̃
ρ
= x y is only wwf, then u = u′x and suitable conjugates of si exist that allow

us to move x from u = u′x through any sequence si1 . . . sil next to w̃ as done before.
Thus assume w.l.o.g. that w̃ is already wf. By Lemma 18, we have

R = lcsρ(L′) = lcsρ


uw̃

us1w̃r1 t1r1

us2w̃r2 t2r2

us1s1w̃r1 t1t1r1

us2s2w̃r2 t2t2r2


Neither us1w̃r1 t1r1 nor us2w̃r2 t2r2 can be witnesses again because their length
before reduction is strictly less than that of rXκ. Hence, either us1s1w̃r 1t1t1r1

or us2s2w̃r 2t2t2r2 is a witness w.r.t. us3wr3 t3r3 and thus also w.r.t. uw. W.l.o.g.
us1s1w̃r 1t1t1r1 is a witness. Consider then the language

L′′ = (u, ε)[(s1, r 1t1r1)∗ + (s3, r3 t3r3)∗]w

Again L′′ ⊆ L s.t. R = lcsρ(L)
s
v lcsρ(L′′). On the other side also lcsρ(L′′)

s
v

lcsρ(uw, us1s1wr1 t1t1r1) = R such that R = lcsρ(L) = lcsρ(L′′). Using Lemma 18

and now that r1, r2, r3

s
v R = lcsρ(L′′), we obtain

R = lcsρ(L′′) = lcsρ


uw

us1wr1 t1r1

us3wr3 t3r3

us1s3wr3 t3r3r1 t1r1

us3s1wr1 t1r1r3 t3r3


But by our assumption that rXκ is a witness w.r.t. uw of minimal length before
reduction, none of theses words can be witnesses. Hence, our assumption that such
a factorization exists, cannot hold.

So, every path leading to the occurrence of b that defines the lcsρ of L or to a
letter right of it has to have height at most 3N . By minimality, we can also assume
that any path fragment that leads from the main path (leading to lcsρ-defining
occurrence of b) to a letter left of this b contains any nonterminal at most once, see
Fig. 2.3. Hence, the derivation tree can have height at most 4N .

39

2 Well-formedness of Context-free Grammars

A

A

A

A

µ φ ρ ψ νbξ

b ξζ

Figure 2.3: Assume that the lcsρ-defining occurrence of b is not contained in rX such
that κ = ζbξ with both rXζ and ξ wf and ρ(rXκ) = ρ(rXζ)b lcsρ(L).
Consider any path that leads to a letter within ζ. (If b is contained
in rX , then this cannot happen.) The first nonterminal along this
path that is not also contained in the path leading to b defines a
subtree that does not contain the marked b anymore. Assume this
subtree contains a path with at least N + 1 nonterminals such that
we can factorize ζ = (µ, ν)(φ, ψ)ρ. Then κ = (µ, νbξ)(φ, ψ)ρ and
L′ = (µ, νbξ)(φ, ψ)∗ρ is a sublanguage of LX ; thus rXL

′ is wf. Hence,
(rXµ, νbξ)(φ, ψ)0ρ = rXµρνbξ is wf. As bξ is wf, too, we have that

rXµρνbξ
ρ
= ρ(rXµρν)b lcsρ(L) is a shorter (before reduction) witness

than κ. Hence, we can always assume that all subtrees rooted at a node
left of the path leading to the marked b have height at most n−1. Thus,
if all paths leading to a letter within bξ contain at most 3N nontermi-
nals, then the derivation tree can have at most height 4N .

If a context-free grammar G contains only words over A∗ then G is well-formed by
definition and lcs(ρ(L(G))) = lcs(L(G)). We therefore conclude that the longest
common suffix of a context-free grammar (over A∗) can be computed in polynomial
time (cf. [LPS18]).

Corollary 3. Let G be a context-free grammar. Then an SLP representing the
longest common suffix of L(G) can be computed in polynomial time.

Convergence for not well-formed CFGs We consider the case that the fixed-point
iteration 2.1 is applied on a context-free grammar that produces a language that is
not well-formed. Note that, if all constants rXrY and all T≤hX are wf, but G is not

wf, then the computation has to fail while computing rXrY T≤hY rZ as illustrated by
the following example.

40

2.3 Deciding Well-formedness

Example 13. Consider the nonnegative context-free grammar G given by the rules

S → Uc U → AV |Wn V → UB Wi → Wi−1Wi−1 (2 ≤ i ≤ n)

A → a B → b B → b W1 → BB

with axiom S and a fixed parameter n ∈ N. Except for B all nonterminals generate
nonnegative languages. Note that the nonterminals Wn to W1 form an SLP that
encodes the word b2

n
by means of iterated squaring which only becomes productive

at height h = n+ 1. For h ≥ n+ 3 we have:

L≤hS = {akb2nb kc | k ≤ bh−(n+3)
2 c}

L≤hU = {akb2nb k | k ≤ bh−(n+2)
2 c} L≤hWi

= {b2i} L≤hB = {b}
L≤hV = {akb2nb k+1 | k ≤ bh−(n+3)

2 c} L≤hA = {a} L≤h
B

= {b }

Here the words rX used to cancel the longest prefix of closing brackets (after reduc-
tion) are rS = rU = rV = rW = rA = rB = ε and rB = b. Note that rXL

≤h
X is

wf for all nonterminals X up to h ≤ h0 = 2n+1 + (n + 2) s.t. Tlcs(ρ(rSL
≤h
S)) ≈lcs

T≤hS = {b2nc, akb2n−k(h)c} for k(h) = b(h − (n + 3))/2c and n + 3 ≤ h ≤ h0; in

particular, the lcs of T≤hS has already converged to c at h = n+ 3, only its maximal
extension lcsext changes for n+ 3 ≤ h ≤ h0. We discover the first counterexample
a2nb that G is not wf while computing T≤h0+1

V = Tlcs(ρ(T≤h0U b)).

As illustrated in Example 13, if G is not wf, then the minimal derivation height
h0 + 1 at which we discover a counterexample might be exponential in the size of
the grammar. The following lemma states that up to this derivation height h0 the
representations T≤hX cannot have converged (modulo ≈lcs).

Lemma 12. If L = L(G) is not wf, then there is some least h0 s.t. rXL
≤h0
Y rZ is

not wf with X →G Y Z. For h ≤ h0, all rXL
≤h
X are wf s.t. T≤hX ≈lcs ρ(rXL

≤h
X). If

h0 ≥ 4N + 1, then at least for one nonterminal X we have T≤4N+1
X 6≈lcs T

≤4N
X .

Proof. We write Tρlcs(L) and lcsρ(L) for Tlcs(ρ(L)) and lcs(ρ(L)), respectively. We
assume that all nullary rules X → u v are already reduced and w.l.o.g. wwf. Further
w.l.o.g. G is nonnegative (cf. Lemma 5) and for all constant rules X →G r, rXr is
wf. Then there is some word α ∈ L(G) that is not wf. We show that there is some
rule X →G Y Z and words αX = αY αZ with αY ∈ LY and αZ ∈ LZ such that

• rXαY rZ is not wf,
• rXrY is wf and
• rY αY is wf.

To this end, consider any derivation of α. We set X := S and αX := α. We have
rX = rS = ε with rXαX is not wf.

41

2 Well-formedness of Context-free Grammars

As rXαX is not wf, there is some rule X →G Y Z and factorization αX = αY αZ .
Otherwise we have a contradiction to the assumption that rXr is wf for all
constant rules X →G r.

If rY αY is not wf:
Redefine X := Y and αX := αY and descend accordingly into the deriva-
tion tree of αY .

If rZαZ is not wf:
Redefine X := Z and αX := αZ and descend accordingly into the deriva-
tion tree of αZ .

Otherwise rZαZ is wf, thus αZ
ρ
= uZ vZ with rZ = r′ZuZ .

Thus rXαY rZ is not wf as rXαX = rXαY αZ
ρ
= rXαY rZ r

′
ZvY

This procedure yields that there is some least derivation height n0 such that

• rXL≤n0
X is wf for every nonterminal X,

• rXrY is wf for all rules X →G Y Z and
• there exists a nonterminal X0 with X0 →G Y Z, αY ∈ Ln0

Y , and rX0αY rZ not
wf anymore.

As all rY L
≤n0
Y are wf, we have ρ(rY L

≤n0
Y) ≈lcs T

ρ
lcs(rY L

≤n0
Y) ≈lcs T

≤n0
Y . Thus also

ρ(rXL
≤n0
Y) = ρ(rXrY) ρ(rY L

≤n0
Y) ≈lcs ρ(rXrY)T≤n0

Y

As G is nonnegative, also rXL
≤n0
Y rZ is nonnegative. Thus, as rXαY rZ is not

wf, we have that lcsρ(rXL
≤n0
Y)rZ is not wf, and thus ρ(rXrY)T≤n0

Y rZ is not wf. If

n0 ≤ 4N+1 we discover the error by iteratively computing T≤hX ≈lcs Tlcs(ρ(rXL
≤h
X)).

Otherwise

rZ
s
v lcsρ(rXL

≤4N+1
Y) = lcs(ρ(rXrY)T≤4N+1

X) but rZ 6
s
v lcsρ(rXL

≤n0
Y)

Thus ρ(rXL
≤4N+1
Y) 6≈lcs rXL

≤n0
Y and thus rY L

≤4N+1
Y 6≈lcs rY L

≤n0
Y . Therefore, for

at least one nonterminal lcssum cannot have converged.

Lemmas 11 and 12 yield that the fixed-point iteration (2.1) converges latest in
step 4N if and only if the language given by the context-free grammar G is well-
formed. Deciding well-formedness in polynomial time therefore amounts to the
following steps. Let G be a context-free grammar with N the number of nontermi-
nals. W.l.o.g. we assume that all nonterminals are reachable from the axiom S and
productive.

• For all nonterminals X in G compute SLPs representing rX and check whether
G produces any negative word, cf. Lemmas 4 and 5. If rS for the axiom S is
not empty or G is not nonnegative then G is not well-formed.
• For all nonterminals X compute iteratively T≤hX (2.1) up to height at most

4N + 1.

42

2.4 Reduced Longest Common Suffix Computation

• If for all nonterminals X the languages T≤4N
X converged, i.e., T≤4N

X = T≤4N+1
X ,

then the language produced by G is well-formed.
Otherwise, if during the fixed-point iteration some calculation failed as the
result would not be well-formed or there is some nonterminal X such that
the representation T≤4N

X has not converged, i.e., T≤4N
X 6= T≤4N+1

X , then the
language produced by G is not well-formed.

Theorem 1. Well-formedness of context-free grammars over B can be decided in
polynomial time.

2.4 Reduced Longest Common Suffix Computation

This section contains the combinatorical results underlying the proofs of Lemmas 11
and 12. They are concerned with the reduced lcs of simple linear grammars of the
form

S → αXβ X → σ1Xτ1 | . . . | σkXτk | γ (α, β, σi, τi, γ ∈ B∗)

Assuming that the grammar is well-formed, we showed in Lemma 10 that we can
rewrite each rule so that the simple linear grammar takes the form

S → uX X → s1Xτ1 | . . . | skXτk | w

with u, v, w, si, ri, ti ∈ A∗ and τi = ri tiri or τi = ri ti ri. Both grammars generate
the same language after reduction, and there is a one-to-one correspondence of the
rewrite rules s.t. the derivations of both grammars are in bijection.

These results generalize and improve on the results of [LPS18] by specifically par-
titioning L into classes of conjugates w.r.t. R = lcsρ(L) which allows us to swap
equivalent witnesses for R. Lemmas 13 and 14 consider the longest common suffix in
the case without closing letters. Both lemmas are stronger versions of the analogous
results for the longest common prefix as presented in [LPS18]. Most importantly,
both lemmas now state that, if e.g. (u, ε)(s1, t1)2w = us2

1wt
2
1 is a witness of the lcs

w.r.t. (u, ε)w = uw, then also (u, ε)(s1, t1)(s2, t2)w = us1s2wt2t1 is a witness w.r.t.
uw; i.e. only the outer context resp. pumping tree matters in the end.

Lemma 13. Let L = (u, ε)[(s1, t1) + (s2, t2)]∗ε be well-formed. Then

lcs(L) = lcs


u

us1t1
us1s1t1t1

us2t2
us2s2t2t2



43

2 Well-formedness of Context-free Grammars

Additionally, if siti 6= ε, i ∈ {1, 2} holds, then

lcs(L) = lcs


u

us1t1
us1s2t2t1

us2t2
us2s1t1t2


If si = ε, then usisititi is not required.

Proof. First, assume that s2t2 = ε. Then in [LPS18, Theorem 7] was shown that
lcs(L) = lcs(u, us1t1, us1s1t1t1). In [LPS18] the longest common prefix was consid-
ered, however, the case of the longest common suffix is symmetric.
We thus will assume from here on that s1t1 6= ε 6= s2t2. Let R := lcs(L) and

u = u′R. As R
s
v uski t

k
i for all k ≥ 0 we have R

s
@ t

ω

i if t 6= ε. Thus, it exists t̂i
such that Rti = t̂iR. If ti = ε, then set t̂i = ε. We show that in the case that

R
s
@ t1 = t′1R and R

s
@ t2 = t′2R then

lcs(L) = lcs

 u
us1t1
us2t2

 = lcs

 u′

us1t
′
1

us2t
′
2

R

As t′1 6= ε 6= t′2 we get L = (u′R, ε)[(s1, t
′
1R) + (s2, t

′
2R)]∗ε. Therefore lcs(u′, t′1) = ε

or lcs(u′, t′2) = ε. Thus, assume w.l.o.g. that t1
s
v R with R = Ṙt1 from here

on. Then Ṙt1t1 = Rt1 = t̂1R = t̂1Ṙt1. Thus, canceling t1 from the right yields

R = Ṙt1 = t̂1Ṙ. Additionally, we observe that Ṙ
s
@ Ṙs1 as Ṙt1 = R

s
v us1t1 =

u′Ṙt1s1t1 = u′t̂1Ṙs1t1. Therefore, it exists ṡ1 such that Ṙs1 = ṡ1Ṙ. If s1 = ε, we
set ṡ1 = ε.

We consider the case R
s
@ t2 = t′2R = t′2t̂1Ṙ with t′2 6= ε. Then we have

(u, ε)(s1, t1)+ε = (u′t̂1Ṙ, ε)(s1, t1)+ε

= (u′t̂1ṡ1, R)(ṡ1, t̂1)∗ε

(u, ε)(s1, t1)∗(s2, t2)[(s1, t1) + (s2, t2)]∗ε = (u, ε)(s1, t1)∗(s2, t
′
2R)[(s1, t1) + (s2, t2)]∗ε

= (u,R)(s1, t̂1)∗(s2, t
′
2)[(s1, t1) + (s2, t2)]∗ε

Therefore ε
!

= lcs(u′, t̂1ṡ1, ṡ1t̂
+
1 , t
′
2t̂
∗
1). If lcs(u′, t̂1ṡ1) = ε then us1t1 is a witness. If

lcs(u′, ṡ1t̂
+
1) = ε and t̂1 6= ε then lcs(u′, ṡ1t̂1) = ε and us1s1t1t1 is a witness and

us2s1t1t2. Note that if t̂1 = ε then ṡ1 6= ε and we are in the first case where us1t1
is a witness. If lcs(u′, t′2) = ε then us2t2 is a witness.

44

2.4 Reduced Longest Common Suffix Computation

We therefore consider the case that t2
s
v R with R = R̈t2 from here on. Then

R̈t2t2 = Rt2 = t̂2R = t̂2R̈t2 and canceling t2 from the right yields R = R̈t2 = t̂2R̈
and u = u′R = u′R̈t2 = u′t̂2R̈. W.l.o.g. we assume that |t1| ≤ |t2|. We find
conjugates s̈2, z, z̈, s̈1, ẗ1 such that

• R̈s2 = s̈2R̈ as R̈t2 = R
s
v us2t2 = u′R̈t2s2t2 = u′t̂2R̈s2t2 and therefore

R̈
s
v R̈s2.

• t2 = zt1 ∧ Ṙ = R̈z as R = Ṙt1 = R̈t2 and |t1| ≤ |t2|; therefore R̈zt1 = Ṙt1.

• R̈z = z̈R̈ as t̂2R̈ = R̈t2 = R = Ṙt1 = t̂1Ṙ = t̂1R̈z and therefore R̈
s
v R̈z.

• R̈s1 = s̈1R̈ as R̈t1
s
v z̈R̈t1 = R̈zt1 = R̈t2 = R

s
v us1t1 = u′t̂2R̈s1t1 and

therefore R̈
s
v R̈s1 if t2 6= ε. Otherwise, if t2 = ε then R̈ = Rt2 = R = Ṙ = R̈

and s̈1 = ṡ1 = s.

• R̈t1 = ẗ1R̈ as t̂2R̈ = R̈t2 = R
s
v t̂1R = Rt1 = R̈t2t1 = t̂2R̈t1 and therefore

R̈
s
v R̈t1.

• t̂2 = z̈ẗ1 = t̂1z̈ as t̂2R̈ = R = Ṙt1 = t̂1Ṙ = t̂1R̈z = t̂1z̈R̈ and thus t̂2 = t̂1z̈.
Additionally, t̂2R̈ = R = R̈t2 = R̈zt1 = z̈R̈t1 = z̈ẗ1R̈ holds and thus t̂2 = z̈ẗ1.

Using these conjugates we obtain

(u, ε)(s1, t1)+ε

= (u′t̂1Ṙ, ε)(s1, t1)+ε (u = u′R ∧R = t̂1Ṙ)

= (u′t̂1ṡ1, R)(ṡ1, t̂1)∗ε (Ṙs1 = ṡ1Ṙ ∧R = Ṙt1 ∧Rt1 = t̂1R)

= u′t̂1ṡ1R us1t1

+ (u′t̂1ṡ1ṡ1, t̂1R)(ṡ1, t̂1)∗ε (u, ε)(s1, t1)≥2ε

(u, ε)(s1, t1)∗(s2, t2)[(s1, t1) + (s2, t2)]∗ε

= (u′t̂2R̈, ε)(s1, t1)∗(s2, t2)[(s1, t1) + (s2, t2)]∗ε u = u′t̂2R̈

= (u′t̂2, R̈)(s̈1, ẗ1)∗(s̈2, t̂2)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε R̈si = s̈iR̈ ∧ R̈t1 = ẗ1R̈ ∧
R̈t2 = t̂2R̈

= (u′t̂2, R̈)(s̈1, ẗ1)∗(s̈2, t̂1z̈)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε t̂2 = t̂1z̈

= (u′t̂2, z̈R̈)(s̈1, t̂1)∗(s̈2, t̂1)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε z̈ẗ1 = t̂1z̈

= (u′t̂2, Ṙ)(s̈1, t̂1)∗(s̈2, t̂1)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε z̈R̈ = R̈z ∧ Ṙ = R̈z

= (u′t̂2, t̂1Ṙ)(s̈1, t̂1)∗(s̈2, ε)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε move t̂1 from (s̈2, t̂1) to the
right

= (u′t̂2, R)(s̈1, t̂1)∗(s̈2, ε)[(s̈1, ẗ1) + (s̈2, t̂2)]∗ε R = t̂1Ṙ

= (u′z̈ẗ1, R)(s̈1, t̂1)∗(s̈2, ε)[(s̈1, ẗ1) + (s̈2, z̈ẗ1)]∗ε t̂2 = z̈ẗ1

= u′z̈ẗ1s̈2R us2t2

+ (u′z̈ẗ1s̈1, t̂1R)(s̈1, t̂1)∗(s̈2, ε)[(s̈1, ẗ1)+(s̈2, z̈ẗ1)]∗ε (u, ε)(s1, t1)+(s2, t2)[(si, ti)]
∗ε

45

2 Well-formedness of Context-free Grammars

+ (u′z̈ẗ1, ẗ1R)(s̈2s̈1, ε)[(s̈1, ẗ1) + (s̈2, z̈ẗ1)]∗ε (u, ε)(s2, t2)(s1, t1)[(si, ti)]
∗ε

+ (u′z̈ẗ1, z̈ẗ1R)(s̈2s̈2, ε)[(s̈1, ẗ1) + (s̈2, z̈ẗ1)]∗ε (u, ε)(s2, t2)≥2[(si, ti)]
∗ε

If us1t1 or us2t2 is a witness then the claim of the lemma follows. Thus, assume
that neither us1t1 nor us2t2 is a witness w.r.t. u, i.e.

lcs(u′, t̂1ṡ1, z̈ẗ1s̈2) 6= ε

W.l.o.g. t2 6= ε and thus also t̂2 6= ε as otherwise t1 = ε as 0 = |t2| ≥ |t1| s.t.
R = Ṙ = R̈ and ṡ1 = s̈1. Then L = u(s1 + s2)∗ = u′(s̈1 + s̈2)∗R and thus
lcs(u′, s̈1, s̈2) = ε. Therefore us1t1 = us1 or us2t2 = us2 would be a witness.

Assume that t1 = ε. Then we have t̂1 = ẗ1 = ε and Ṙ = R and ṡ1 6= ε 6= s̈1 and
t̂2 = z̈ẗ1 = z̈ 6= ε s.t.

(u, ε)(s1, t1)+ε = u′ṡ+
1 R

(u, ε)(s1, t1)∗(s2, t2)[(s1, t1) + (s2, t2)]∗ε = (u′z̈, R)(s̈1, ε)
∗(s̈2, ε)[(s̈1, ε) + (s̈2, z̈)]

∗ε

Therefore ε
!

= lcs(u′, ṡ1, z̈s̈2, s̈1, z̈). If lcs(u′, ṡ1) = ε then us1t1 would be a witness.If
lcs(u′, z̈s̈2) = ε then us2t2 would be a witness. We therefore need to consider the
cases lcs(u′, s̈1) = ε and lcs(u′, z̈) = ε. In fact, lcs(s̈1, z̈) 6= ε holds as z̈R̈ = z̈ẗ1R̈ =

t̂2R̈ = R
s
v usk1tk1 = u′Rsk1 = u′z̈R̈sk1 = u′z̈s̈k1R̈ for all k and therefore z̈

s
@ s̈

ω

1 . Thus
lcs(u′, s̈1) = ε if and only if lcs(u′, z̈) = ε and therefore us1s2t2t1 is a witness if and
only if us2s2t2t2 is a witness.

Last, we consider the case that t1 6= ε. Then t̂1 6= ε 6= ẗ1 and therefore ε
!

=
lcs(u′, t̂1, ẗ1). We obtain

lcs(L) = lcs

 u
us1s1t1t1
us2s2t2t2

 = lcs

 u′R

u′t̂1ṡ1ṡ1t̂1R
u′z̈ẗ1s̈2s̈2z̈ẗ1R


= lcs

 u
us1s2t2t1
us2s1t1t2

 = lcs

 u′R

u′z̈ẗ1s̈1s̈2t̂1R
u′z̈ẗ1s̈2s̈1ẗ1R



In Lemma 13 we considere languages of the form (u, ε)[(s1, t1) + (s2, t2)]∗ε. Now,
we extend this result to languages of the form (u, ε)[(s1, t1) + (s2, t2)]∗w.

46

2.4 Reduced Longest Common Suffix Computation

Lemma 14. Let L = (u, ε)[(s1, t1) + (s2, t2)]∗w be well-formed.Then

lcs(L) = lcs


uw

us1wt1
us1s1wt1t1

us2wt2
us2s2wt2t2


and additionally, if siti 6= ε then

lcs(L) = lcs


uw

us1wt1
us1s2wt2t1

us2wt2
us2s1wt1t2


If si = ε, then usisiwtiti is not required.

Proof. Assume first that s2t2 = ε. Then in [LPS18, Theorem 7] was shown that
lcs(L) = lcs(uw, us1wt1, us1s1wt1t1).

We therefore assume from here on that s1t1 6= ε 6= s2t2. Let R = lcs(L). We first

consider the case R
s
@ w = w′R with w′ 6= ε. Then R

s
v Rti as R

s
v usiwti =

usiw
′Rti. Thus, it exists t̂i such that Rti = t̂iR. Therefore

L = (u, 1)[(s1, t1) + (s2, t2)]∗w′R = (u,R)[(s1, t̂1) + (s2, t̂2)]∗w′

If follows that ε
!

= lcs(w′, w′t̂1, w
′t̂2); thus lcs(w′, w′t̂1) = ε or lcs(w′, w′t̂2) = ε

and therefore lcs(w′, t̂1) = ε or lcs(w′, t̂2) = ε. With this we obtain lcs(L) =

lcs

 uw
us1wt1
us2wt2

.

Second, we consider the case w
s
v R = R′w. Then w

s
v wti as R = R′w

s
v usiwti.

Thus, it exists t̂i such that wti = t̂iw. Therefore

L = (u′R′, w)[(s1, t̂1) + (s2, t̂2)]∗ε

and we can apply Lemma 13 to L′ = (u′R′, ε)[(s1, t̂1) + (s2, t̂2)]∗ε.

We now consider the three cases where the right part of the two pumping trees can
contain closing letters,

• both pumping trees are “negative” of the form r t r, i.e., (u, ε)[(s1, r1 t1 r1) +
(s2, r2 t2 r2)]∗w,

47

2 Well-formedness of Context-free Grammars

• one pumping tree is “negative” of the form r t r and one “negative” of the
form r tr, i.e., (u, ε)[(s1, r1 t1 r1) + (r2 t2r2)]∗w,
• both pumping trees are “positive” of the form r tr, i.e., (u, ε)[(s1, r1 t1r1) +

(r2 t2r2)]∗w.
The central observation in Lemmas 15 and 16 is that, if at least one of the contexts
(si, τi) is negative, i.e. τi

ρ
= ri ti ri with ti 6= ε, then the simple linear well-formed

L can be normalized to a regular language over A whose lcs and lcsext are already
determined by (u, v)ε and (u, v)(si, τi)ε. We give an example on that.

Example 14. Consider the linear language L given by the rules

S → uX X → sXr t r | ε

where we assume that the language is wf with t 6= ε and, for the sake of this example,
also |tr| > |s|. As uskr t kr is wf for all k ∈ N, we have (s

ω

)R = (t

ω

r)R, i.e., there
is a conjugate p of the primitive root q of t such that
• qr = rp,
• s = pm,
• t = qn and
• m ≥ n for suitable m,n ∈ N0.

The last property has to hold as otherwise we could generate a negative word by
pumping the context (s, r t r). Further as |tr| > |s| we have trs

ρ
= rpm−n, s.t. r =

r′pm−n, qr′ = r′p, and u = u′r′ as usr t r is wf. We thus may replace X → sXr tr
with X → pm−nX as

usk+1r t k+1r
ρ
= u′r′(pm)k+1pm−nr′ (q n)k+1r′pm−n
ρ
= u′r′(pm)kpnr′ (q n)k+1r′pm−n
ρ
= u′(qm)kqn(q n)k+1qm−nr′
ρ
= u′(qm−n)k+1r′
ρ
= u(pm−n)k+1

and obtain a regular language L′ ⊆ A∗ whose derivations are in bijection with those
of L. Now, lcssum(L) is already determined by u and up which in turn implies
that u and usr tr determine lcssumρ(L). In case of multiple contexts (sj , τj) the
existence of one context of the form (si, ri ti ri) enforces that all contexts have to
be compatible with the primitive root of ti which subsequently allows us to replace
every rule X → siXτi by a

ρ
=-equivalent rule X → pkiX over A.

We first consider the case that both pumping trees are negative.

Lemma 15. Let L = (u, ε)[(s1, r1 t1 r1) + (s2, r2 t2 r2)]∗w be wf with t1 6= ε. Then
there is a primitive word p, constants k1, k2 such that for all i1, . . . , il, j ∈ {1, 2}

usi1 . . . silsjwrj tj rj
ρ
= usi1 . . . silp

kjw

48

2.4 Reduced Longest Common Suffix Computation

and L
ρ
= u(pk1 + pk2)∗w with lcsρ(L) = lcsρ

 uw
us1wr1 t1 r1

us2wr2 t2 r2

.

Proof. Let R = lcsρ(L). We first show that there are pi, p̂i,mi, ni such that

si = pmii ti = p̂nii mi ≥ ni siwri ti
ρ
= pmi−nii wri

If t2 = ε, then let p2,m2 be such that s2 = pm2
2 and p2 be primitive; set n2 = 0.

Assume thus ti 6= ε. (Note that t1 6= ε already by assumption of the lemma.) Then
uskiwri ti

k is wf for all k ≥ 1. Therefore s

ω

i wi = t

ω

i ri. Hence by Lemma 1 we find

pi, p̂i,mi, ni such that si = pmii , ti = p̂nii , piwri p̂i
ρ
= wri , whereas mi ≥ ni as L is

wf and thus nonnegative. For all i1, . . . , il, j ∈ {1, 2} we thus have

usi1 . . . silsjwrj tj rj
ρ
= usi1 . . . sil(p

mj−nj
j)wrj rj

ρ
= usi1 . . . sil(p

mj−nj
j)w

If m1 = n1 and m2 = n2 then we obtain for all i1, . . . , il ∈ {1, 2},

usi1 . . . silwril til ril . . . ri1 ti1 ri1
ρ
= uw

such that L
ρ
= uw with lcsρ(L) = uw. Hence, p can be chosen as ε.

Thus, assume that m1 > n1 or m2 > n2. We then need to show that p1 = p2. If
s2 = ε, then t2 = ε as L is wf and thus nonnegative. Therefore, simply choose p2

as p1 and m2 = n2 = 0. So, assume s2 6= ε such that p2 6= ε and m2 > 0. Then for
all k, l ≥ 1 the following has to be wwf:

sk1s
l
2wr2 t2

lr2r1 t1
k = pkm1

1 p
l(m2−n2)
2 wr2 r2r1 t1

k

ρ
= pkm1

1 p
l(m2−n2)
2 wr1 t1

k

If m2 > n2, then p

ω

2w = t

ω

1 r1 = p

ω

1w, i.e., p1 = p2. If m2 = n2 > 0 and thus t2 6= ε
and m1 > n1. Then for all k, l ≥ 1 the following has to be wwf:

sk2s
l
1wr1 t1

lr1r2 t2
k = pkm2

2 p
l(m1−n1)
1 wr1 r1r2 t2

k

ρ
= pkm2

2 p
l(m1−n1)
1 wr2 t2

k

Hence, p

ω

1w = t

ω

2 r2 = p

ω

2w, i.e., p1 = p2.

As s1, s2 ∈ p+ we obtain that L
ρ
= u(pm1−nj + pm2−n2)∗w and therefore lcsρ(L) =

lcsρ(uw, us1wr1 t1 r1, us2wr2 t2 r2).

Next, we consider the case that one pumping tree is negative and one is positive.
Still, we can show that the language can be normalized to a regular language over
A.

49

2 Well-formedness of Context-free Grammars

Lemma 16. Let L = (u, ε)[(s1, r1 t1 r1) + (s2, r2 t2r2)]∗w be wf with t1 6= ε. Then
there is a primitive period p and constants k1, k2 such that for all i1, . . . , il ∈ {1, 2}

1. usi1 . . . sils1wr1 t1 r1
ρ
= usi1 . . . silp

k1w

2. usi1 . . . sils2wr2 t2r2
ρ
= usi1 . . . silp

k2w

3. L
ρ
= u(pk1 + pk2)∗w

4. lcsρ(L) = lcsρ

 uw
us1wr1 t1 r1

us2wr2 t2 r2


Proof. W.l.o.g. t2 6= ε otherwise we can apply Lemma 15. Let R = lcs(L). As
t1 6= ε and sk1wr1 t1

k is wwf for all k ≥ 1 we have s

ω

1w
s
= t

ω

1 r1. Thus by Lemma 1
there exist p, p̂,m1, n1 such that

s1 = pm1 t1 = p̂n1 m1 ≥ n1 s1wr1 t1
ρ
= pm1−n1wr1

W.l.o.g. p and p̂ are primitive with p

ω

w = p̂

ω

r1. Thus, for all i1, . . . , il ∈ {1, 2} we
have

usi1 . . . sils1wr1 t1 r1 = usi1 . . . silp
m1wr1 p̂

n1r1
ρ
= usi1 . . . silp

m1−n1wr1 r1
ρ
= usi1 . . . sil(p

m1−n1)w

I.e. the first statement follows.
As tl2r2r1 t

k
1 = tl2r2r1 p̂

n1·k has to be wwf for all k, l ≥ 1 it follows that t

ω

2 r2 = p̂

ω

r1.
Lemma 1 thus yields that there are p̌, n2 such that

t2 = p̌n2 p̌r2r1 p̂
ρ
= r2r1

Note that p̌ is primitive as p̂ is primitive and p̌

ω

r2 = p̂

ω

r1.
We show that s2 = pm2 for some m2 ∈ N0. If s2 = ε we set m2 = 0. Thus, assume

that s2 6= ε. Then r2
s
@ s

ω

2w as sl2wr2 is wf for l sufficiently large. We have that

sl2wr2 t
l
2r2r1 t1

k is wwf for all k, l ≥ 1. Let c > n2 and l so large such that r2
s
@ sl2w.

Then

sl2wr2 t
l
2r2r1 t1

cl = sl2wr2 p̌
n2lr2r1 p̂

cln1
ρ
= sl2wr2 r2r1 p̂

(cn1−n2)l ρ= sl2wr1 p̂
(cn1−n2)l

Therefore, we obtain s

ω

2w
s
= p̂

ω

r1 = p

ω

w, i.e., s2 = pm2 for some m2 ∈ N. Moreover,

as p

ω

w = p̂

ω

r1 = p̌

ω

r2 we obtain that pwr2 p̌
ρ
= wr2 .

In the next step, we show that for all i1 . . . il ∈ {1, 2}, l ≥ 0 we have

usi1 . . . sils2wr2 t2r2
ρ
= usi1 . . . sil(p

m2+n2)w

50

2.4 Reduced Longest Common Suffix Computation

W.l.o.g. t2 6= ε. First, assume that w
s
@ r2 = r′2w. Then usi1 . . . sils2wr2

ρ
=

usi1 . . . sils2r′2 is wf for all i1 . . . il ∈ {1, 2}, l ≥ 0. Further p̌r2w p
ρ
= r2w

ρ
= r′2 such

that
t2r2w

ρ
= p̌n2r2w p

n2pn2
ρ
= r2w p

n2

Hence, for all i1, . . . , il ∈ {1, 2},

usi1 . . . sils2wr2 t2r2
ρ
= usi1 . . . sils2r′2 r

′
2wr2 t2r2 r2 = r′2w

ρ
= usi1 . . . sils2r′2 t2r2ww wr2

ρ
= r′2

ρ
= usi1 . . . sils2r′2 r

′
2p
n2w t2r2w

ρ
= r2w p

n2
ρ
= r′2p

n2

ρ
= usi1 . . . silp

m2+n2w s2 = pm2

Second, assume that r2

s
v w = w′r2. As pwr2

ρ
= pwr2 p̌ p̌

ρ
= wr2 p̌

ρ
= w′p̌ we obtain

pw′ = w′p̌. Thus, for all i1, . . . , il ∈ {1, 2},

usi1 . . . sils2wr2 t2r2
ρ
= usi1 . . . sils2w

′t2r2 w = w′r2
ρ
= usi1 . . . silp

m2w′p̌n2t2r2 s2 = pm2 , t2 = p̌n2

ρ
= usi1 . . . silp

m2+n2w′r2 pw′ = w′p̌
ρ
= usi1 . . . silp

m2+n2w w = w′r2

Thus, the second statement of the lemma follows and we can conclude that

L
ρ
= u(pm1−n1 + pm2+n2)∗w

and therefore lcsρ(L) = lcs(uw, upw) = lcsρ(uw, us1wr1 t1 r1, us2wr2 t2r2).

Last, we consider the case that both pumping trees (contexts) are positive, i.e.,
τi = ri tiri for i = 1, 2. In this case the language (u, ε)[(s1, r1 t1r1) + (s2, r2 t2r2)]∗w
does not normalize to a regular language over A which makes the proof much more
involved. Lemma 18 shows that the lcs and lcsext of the simple linear well-formed
language L is already determined by (u, v)ε and either some word (u, v)(si, τi)ε or
some word (u, v)(si, τi)(sj , τj)ε for some i ∈ {1, 2} with the important point that j
can be chosen arbitrarily from {1, 2} — this is central to the proof of Lemma 11.
We illustrate the idea of the proof of Lemma 18 in the following example.

Example 15. Consider the well-formed language

L = (abbaba, ε)[(ba, aba baba) + (a, bbaba)]∗ε

We have R := lcsρ(L) = bbaba as we will see in the following. To this end, set
u := a, r := aba, s1 := ba, s2 := a, t1 := b so that

L = (uR, ε)[(s1, r t1r) + (s2, R)]∗ε

Note that we have

51

2 Well-formedness of Context-free Grammars

• r = aba = r′s1 for r′ := a
• r′s1 = a ba = ab a = ŝ1r

′ for ŝ1 := ab
• r′s2 = a a = ŝ2 r

′ for ŝ2 := s2 = a
• R = t21r = lcsρ(L)

In particular, note that aba = r 6
s
v rs2 = abaa, i.e. there is no conjugate that allows

us to move r “through” s2; we only find a conjugate ŝ2 with r′s2 = ŝ2r
′ (because of

well-formedness). By splitting the language depending on the innermost context, we
can use these conjugates to rewrite the contexts so that all factors are words over
A:

(uR, ε)[(s1, r t1r) + (s2, R)]∗ε

= (ut21r, ε)[(s1, r t1r) + (s2, t
2
1r)]

∗ε

= (ut21r, ε)ε split w.r.t. innermost

+ (ut21r, ε)[(s1, r t1r) + (s2, t
2
1r)]

∗[s1r t1r + s2t
2
1r] context

= (ut21r, ε)ε move t1r from innermost

+ (ut21r, t1r)[(s1, t1) + (s2, t1rt1)]∗[s1r + s2t1] context to the right

= (ut21r, ε)ε r = r′s1

+ (ut21r
′s1, t1r)[(s1, t1) + (s2, t1rt1)]∗[s1r + s2t1]

= (ut21r, ε)ε move r′ to the middle

+ (ut21ŝ1, t1r)[(ŝ1, t1) + (ŝ2, t1rt1)]∗[r′s1r + r′s2t1]

= (ut21r, ε)ε r1 = r′1s1

+ (ut21ŝ1, t1r)[(ŝ1, t1) + (ŝ2, t1rt1)]∗[ε+ r′s2t1]

Note that the derivations w.r.t. the linear grammars underlying both languages are
in bijection. We split the rewritten language one last time, this time w.r.t. the
outermost context, which leads us to:

L
ρ
= (ut21r, ε)ε

+ (ut21ŝ1, t1r)ε

+ (ut21ŝ1, t1r)r
′s2t1

+ (ut21ŝ1, t1r)(ŝ1, t1)[(ŝ1, t1) + (ŝ2, t1r t1)]∗[ε+ r′s2t1]

+ (ut21ŝ1, t1r)(ŝ2, t1r t1)[(ŝ1, t1) + (ŝ2, t1r t1)]∗[ε+ r′s2t1]

52

2.4 Reduced Longest Common Suffix Computation

Substituting the actual values yields

L
ρ
= a bbaba

+ (abbab, baba)ε

+ (abbab, baba)aab

+ (abbab, baba)(ab, b)[(ab, b) + (a, babab)]∗[ε+ aab]

+ (abbab, baba)(a, babab)[(ab, b) + (a, babab)]∗[ε+ aab]

= a bbaba

+ . . . a bbaba

+ . . . a bbaba

+ . . . b bbaba

+ . . . a bbaba

i.e. only the words included in

(abbaba, ε)(ba, aba baba)[(ba, aba baba) + (a, bbaba)]+ε
ρ
= (abbab, baba)(ab, b)[(ab, b) + (a, babab)]∗[ε+ aab]
= . . . a b bbaba

are witnesses for the longest common suffix w.r.t. the shortest word abbaba. Thus,
we need to use in this case at most two contexts where the outermost context has to
be (abbaba, ε)(ba, aba baba), while the remaining contexts can be chosen arbitrarily.

We state one more technical lemma that we will use in the proof of Lemma 18.

Lemma 17. Let L = (r, ε)(s, t)+ε be wf with r
s
v lcs(L) ∧ t 6= ε ∧ rt = t̂r ∧ r 6

s
v rs.

Then it exist words x, y, s̃ ∈ A∗ such that for all k ≥ 0

(r, ε)(s, t)k+1 = (x, r)(s̃, t̂)ky and lcs(L) = lcs(xy, t̂)r = lcs(st, ts)t
s
@ t̂r

Proof. We have r 6= ε as r 6
s
v rs. Additionally it follows that st 6= ts as otherwise

there is a primitive p and constants m,n such that s = pm and t = pn. Then rpn =

rt = t̂r such that lcs(r, rp) = lcs(r, rpk+1) = lcs(r, rpn) = r, i.e., r
s
v rp. Therefore

it exists conjugate q with rp = qr and t̂ = qn. Thus also r
s
v rs = rpm = qmr

which contradicts the assumption that r 6
s
v rs.

First, we consider the case r
s
@ t = t′r. Then t′ 6= ε and t̂ = rt′ as rt′r = rt = t̂r.

With rsk+1tk+1 = rsk+1(t′r)k+1 = rsskt′t̂kr we obtain

L = (rs, r)(s, t̂)∗t′ = rst′r + (rss, t̂r)(s, t̂)∗t′

53

2 Well-formedness of Context-free Grammars

as rstr
ρ
= rst′. Therefore set x = rs, y = t′ and s̃ := s. Then

lcs

(
rst

rsk+2tk+2

)
= lcs

(
rst′r

rsk+2tkt′rt′r

)
= lcs

(
rs
r

)
t′r

s
@ rt′r = t̂r

and lcs

(
rs
r

)
t′r = lcs

(
rst′

t̂

)
r. Thus,

lcs(L) = lcs

(
rst

rsstt

)
= lcs

(
rst′

rsst′rt′

)
r = lcs

(
rst′

t̂

)
r = lcs

(
xy

t̂

)
r
s
@ t̂r

As lcs

(
rst

rsstt

)
= lcs

(
rst

rsst′rt

)
= lcsρ

(
rs
r

)
t = lcs

(
t′rs
st′r

)
t = lcs

(
ts
st

)
t

we obtain lcs(st, ts)t = lcs(L).

Second, we consider the case t
s
v r = r′t. Then r′tt = rt = t̂r = t̂r′t and therefore

r′t = t̂r′. As r′t = r
s
v rst = r′tst = t̂r′st we obtain r′

s
v r′s and therefore we find

š such that r′s = šr′. Then

rsk+1tk+1 = r′tsk+1tk+1 = t̂ššk t̂kr′t = t̂ššk t̂kr

and L = (t̂š, r)(š, t̂)∗ε. Therefore, we set x = t̂š, y = ε and s̃ = š. As t̂r′ = r′t =

r 6
s
v rs = r′ts = t̂šr′ we observe that t̂ 6

s
v t̂š. Then lcs

(
t̂š

št̂

)
= lcs

(
t̂š

t̂

)
s
@ t̂ and

lcs

(
rst

rsk+2tk+2

)
= lcs

(
t̂šr

t̂šk+2t̂k t̂r

)
= lcs

(
t̂š

t̂

)
r
s
@ t̂r

Therefore, lcs(L) = lcs

(
rst

rsstt

)
= lcs

(
t̂šr

t̂ššt̂r

)
= lcs

(
t̂š

t̂

)
r = lcs

(
xy

t̂

)
r
s
@

t̂r = rt and as lcs

(
rst

rsstt

)
= lcs

(
r′tst

r′tsstt

)
= lcs

(
ts
st

)
t we obtain lcs(st, ts)t =

lcs(L).

Finally, we consider the most involved case of two positive pumping trees.

Lemma 18. Let L = (u, ε)[(s1, r1 t1r1) + (s2, r2 t2r2)]∗w be wf.

Then lcsρ(L) = lcsρ


uw

us1wr1 t1r1

us2wr2 t2r2

us1s1wr 1t1t1r1

us2s2wr2 t2t2r2



54

2.4 Reduced Longest Common Suffix Computation

If r1, r2

s
v lcsρ(L), then further lcsρ(L) = lcsρ


uw

us1wr1 t1r1

us2wr2 t2r2

us1s2wr2 t2r2r1 t1r1

us2s1wr1 t1r1r2 t2r2


Proof. W.l.o.g. we assume that |r1| ≥ |r2| and as us2s1wr1 t1r1r2 t2r2 ∈ L is wf it

follows that r1r2 is wf. Let therefore r2
s
v r1 = r′1r2, i.e.,

L = (u, ε)[(s1, r′1r2 t1r
′
1r2) + (s2, r2 t2r2)]∗w

Then tk2r2r1
ρ
= tk2r

′
1 has to be wf for all k > 0 and therefore r′1

s
@ t

ω

2 . Thus,

it exists t̂2 such that r′1t2 = t̂2r
′
1. Let R = lcsρ(L). If R

s
@ r2 then R

s
@ r2

s
v

(u, ε)[(s1, r′1r2 t1r
′
1r2)+(s2, r2 t2r2)]+w and thus R = lcsρ(L) = lcsρ(uw, usiwri tiri),

i ∈ {1, 2}.
Therefore assume r2

s
v R = lcsρ(L) from here on. If r1

s
v w then it exists w′

such that w = w′r1. Moving r1 from w to the end using r′1t2 = t̂2r1 yields

L
ρ
= (u, r1)[(s1, t1) + (s2, t̂2)]∗w′

Thus, we can apply Lemma 14 on (u, r1)[(s1, ε) + (s2, t̂2)]∗w′ such that we obtain
lcsρ(L) = lcsρ(uw, us1wr1 t1r1, us2wr2 t2r2, us1s1wr 1t1t1r1, us2s2wr2 t2t2r2).

Therefore assume w
s
@ r1 = ṙ1w with ṙ1 6= ε from here on. Consider the case

w
s
@ r2 = ṙ2w. Then ṙ1 = r′1ṙ2 as ṙ1w = r1 = r′1r2 = r′1ṙ2w. Furthermore u = u′ṙ2

as ṙ2w = r2

s
v R

s
v uw. Thus

L = (u, ε)[(s1, r′1ṙ2w t1r
′
1ṙ2w) + (s2, ṙ2w t2ṙ2w)]∗w

ρ
= (u′ṙ2, w)[(s1, r′1ṙ2 t1r

′
1ṙ2) + (s2, ṙ2 t2ṙ2)]∗ε

As us1wr1 t1r1
ρ
= us1ṙ2 r′1 t1r1 and us2wr2 t2r2

ρ
= us2ṙ2 t2r2 are words of L and

thus wf we observe that usi
ρ
= usiṙ2 ṙ2, i ∈ {1, 2}. Moreover, us1s1wr1 t1t1r1

ρ
=

us1ṙ2 ṙ2s1ṙ2 r′1 t1t1r1 and us2s2wr2 t2t2r2
ρ
= us2ṙ2 ṙ2s2ṙ2 t2t2r2 are wf and there-

fore there exist ŝi such that ṙ2si = ŝiṙ2. Thus,

L
ρ
= (u′, r2)[(ŝ1, r′1 t1r

′
1) + (ŝ2, t2)]∗ε

and therefore this case is a special case of r2

s
v w with r2 = w = ε.

Assume thus r2
s
v w = w′r2 from here on. As r2(r1 t1r1)

ρ
= (r′1 t1r

′
1)r2 and

r2(r2 t2r1)
ρ
= t2r2 we can move r2 from w = w′r2 to the end of L such that

L = (u, ε)[(s1, r′1r2 t1r
′
1r2) + (s2, r2 t2r2)]∗w′r2

ρ
= (u, r2)[(s1, r′1 t1r

′
1) + (s2, t2)]∗w′

55

2 Well-formedness of Context-free Grammars

We will therefore assume w.l.o.g. that r2 = ε from here on such that w = w′,
r1 = r′1, r1t2 = t̂2r1 and

L = (u, ε)[(s1, r1 t1r1) + (s2, t2)]∗w
= (u, ε)[(s1, ṙ1w t1ṙ1w) + (s2, t2)]∗w

If R
s
@ w then w = w′R with w′ 6= ε and r1 = ṙ1w = ṙ1w

′R. Thus,

L
ρ
= (u, ε)[(s1, ṙ1w′R t1ṙ1w

′R) + (s2, t2)]∗w′R

As R
s
v us2wt2 = us2w

′Rt2 i.e., R
s
v Rt2 it exists t̃2 such that Rt2 = t̃2R. We

therefore obtain
L

ρ
= (u,R)[(s1, ṙ1w′ t1ṙ1w

′) + (s2, t̃2)]∗w′

and as w′ 6= ε we have R = lcsρ(w′R, t̃2R), i.e., R = lcsρ(L) = lcsρ(uw, us2wt2).

Therefore, assume w
s
v R from here on. As w

s
v R

s
v us2wt2 i.e. w

s
v wt2 it

exists t̃2 such that wt2 = t̃2w. Thus

L = (u,w)[(s1, ṙ1 t1ṙ1) + (s2, t̃2)]∗ε

and we can assume w.l.o.g. that w = ε. Hence u = u′R and r1 = ṙ1w = ṙ1 such
that

L = (u′R, ε)[(s1, r1 t1r1) + (s2, t2)]∗ε

As us1r1 t1r1 is well-formed it follows that us1
ρ
= us1r1 r1. Moreover, we have that

us1s1r1 t1t1r1
ρ
= us1r1 r1s1r1 t1t1r1 is wf. Thus it exists ŝ1 such that r1s1 = ŝ1r1.

As us1s
l
2t
l
2r1 t1r1

ρ
= us1r1 r1s

l
2t
l
2r1 t1r1 is wf for all l we have that r1s

l
2t
l
2r1 is wf

for all l. Consider the case R
s
@ r1, i.e., r1 = r′1R with r′1 6= ε. If we have at least

one copy of (s1, r1 t1r1), then the words end on r1 = r′1R:

(u, ε)[(s1, r1 t1r1) + (s2, t2)]∗(s1, r1 t1r1)[(s1, r1 t1r1) + (s2, t2)]∗ε
ρ
= (u, r′1R)[(s1, r1 t1r1) + (s2, t2)]∗(s1, r1 t1)[(s1, t1) + (s2, t̂2)]∗ε

Thus, R = lcsρ(u′R, us1r1 t1r1).

Therefore, assume r1
s
v R = R′r1 from here on. Then u = u′R′r1 and there

exists t̃1 such that R′t1 = t̃1R
′ as R = R′r1

s
v usk1r1 t

k
1r1 for all k. We therefore

consider
L = (u′R′r1, ε)[(s1, r1 t1r1) + (s2, t2)]∗ε

If r1

s
v r1s2 then it exists ŝ2 such that r1s2 = ŝ2r1 and therefore

L = (u′R′, r1)[(ŝ1, t1) + (ŝ2, t̂2)]∗ε

We thus can apply Lemma 13.

Therefore, assume r1 6
s
v r1s2 from here on. Thus,

56

2.4 Reduced Longest Common Suffix Computation

• s2t2 6= t2s2 as otherwise we have uR′r1s2s2t2r1 t1r1 = uR′ŝ1r1s2t2r1 t1r1 =

uR′ŝ1r1t2s2r1 t1r1 = uR′ŝ1t̂2r1s2r1 t1r1, a contradiction to r1 6
s
v r1s2.

• there exist x2, y2, s̃2 such that for all l ≥ 0, r1s
l+1
2 tl+1

2 = x2s̃
l
2y2t̂

l
2r1 and

lcs((r1, ε)(s2, t2)+ε) = lcs(x2y2, t̂2)r1 = lcs(s2t2, t2s2)t2
s
@ t̂2r1 with |x2y2| =

|s2t2| ≥ |t2| = |t̂2|, cf. Lemma 17.

• R = R′r1

s
v lcs((u′R′r1, ε)(s2, t2)+ε) = lcs((x2, r1)(s̃2, t̂2)∗ε)

s
@ x2y2r1, t̂2r1

and therefore it exists t̂′2 such that t̂2 = t̂′2R
′ with t̂′2 6= ε and it exists z2

such that x2y2 = z2R
′ with z2 6= ε.

We partition L into the following components

1. u

= u′R

2. (u, ε)(s1, r1 t1r1)+ε
ρ
= (u′R′, r1)(ŝ1, t1)+ε R = R′r1, r1s1 = ŝ1r1

3. (u, ε)(s1, r1 t1r1)∗(s2, t2)ε

= (u′R′, ε)(ŝ1, r1 t1r1)∗(r1s2, t2)ε r1s1 = ŝ1r1
ρ
= (u′R′, r1)(ŝ1, t1)∗x2y2 r1s2t2 = x2y2r1

= (u′R′, r1)(ŝ1, t1)∗z2R
′ x2y2 = z2R

′

= (u′R′, R)(ŝ1, t̃1)∗z2 R′t1 = t̃1R
′, R = R′r1

4. (u, ε)(s1, r1 t1r1)∗(s2, t2)(s2, t2)+ε

= (u′R′, ε)(ŝ1, r1 t1r1)∗(r1s2, t2)(s2, t2)+ε r1s1 = ŝ1r1

= (u′R′, ε)(ŝ1, r1 t1r1)∗(x2s̃2, t̂2r1)(s̃2, t̂2)∗ε r1s
l+1
2 tl+1

2 = x2s̃
l
2y2t̂

l
2r1

ρ
= (u′R′, r1)(ŝ1, t1)∗(x2s̃2, t̂

′
2R
′)(s̃2, t̂2)∗ε t̂2 = t̂′2R

′

= (u′R′, R)(ŝ1, t̃1)∗(x2s̃2, t̂
′
2)(s̃2, t̂2)∗ε R′t1 = t̃1R

′

5. (u, ε)(s1, r1 t1r1)∗(s2, t2)+(s1, r1 t1r1)[(s1, r1 t1r1) + (s2, t2)]∗ε
ρ
= (u, r1)(s1, t1)∗(s2, t̂2)(s2, t̂2)∗(s1, r1 t1)[(s1, r1 t1r1) + (s2, t2)]∗ε

using r1t2 = t̂2r1

= (u,R)(s1, t̃1)∗(s2, t̂
′
2)(s2, t̂2)∗(s1, r1 t1)[(s1, r1 t1r1) + (s2, t2)]∗ε

using t̂2 = t̂′2R
′, R′t1 = t̃1R

′, R = R′r1

We consider the case R′
s
@ t1. Then t1 = t′1R

′ with t′1 6= ε and t̃1 = R′t′1 as
R′t′1R

′ = R′t1 = t̃1R
′. The partition of L thus becomes

57

2 Well-formedness of Context-free Grammars

1. u′R

2. (u′R′, r1)(ŝ1, t1)+ε = . . . t′1R

3. (u′R′, R)(ŝ1, t̃1)∗z2 = . . . z2t̃
∗
1R = . . . z2R+ . . . t′1R

4. (u′R′, R)(ŝ1, t̃1)∗(x2s̃2, t̂
′
2)(s̃2, t̂2)∗ε = . . . t̂′2t̃

∗
1R

= . . . t̂′2R+ . . . t̃1R = . . . t̂′2R+ . . . t′1R

5. (u,R)(s1, t̃1)∗(s2, t̂
′
2)(s2, t̂2)∗(s1, r1 t1)[(s1, r1 t1r1) + (s2, t2)]∗ε

= . . . t̂′2t̃
∗
1R = . . . t̂′2R+ . . . t′1R

Hence R = lcs(u′R, t′1R, z2R, t̂
′
2R) and therefore

R = lcsρ(u, us1r1 t1r1, us2t2, us2s2t2t2)
= lcsρ(u, us1r1 t1r1, us2t2, us2s1r1 t1r1t2)

Therefore, consider the case t1
s
v R′ = R′′t1 from here on. Then R′′t1 = t̃1R

′′

as R′′t1t1 = R′t1 = t̃1R
′ = t̃1R

′′t1. We observe that R = R′′t1r1

s
v us1r1 t1r1 =

u′R′′t1r1s1r1 t1r1 = u′t̃1 R
′′ŝ1 t1r1, i.e., R′′

s
v R′′ŝ1. Therefore it exists s̃1 such that

R′′ŝ1 = s̃1R
′′. Hence the partition becomes

1. u
= u′R

2. (u, ε)(s1, r1 t1r1)+ε
ρ
= (u′R′′t1, r1)(ŝ1, t1)+ε R′ = R′′t1
ρ
= (u′t̃1s̃1, R)(s̃1, t̃1)∗ε R′′t1 = t̃1R

′′, R′′ŝ1 = s̃1R
′′

= . . . s̃1R+ . . . s̃1t̃1R

3. (u, ε)(s1, r1 t1r1)∗(s2, t2)ε
ρ
= (u′R′, R)(ŝ1, t̃1)∗z2

= . . . z2R+ . . . z2t̃1R

4. (u, ε)(s1, r1 t1r1)∗(s2, t2)(s2, t2)+ε
ρ
= (u′R′, R)(ŝ1, t̃1)∗(x2s̃2, t̂

′
2)(s̃2, t̂2)∗ε

= . . . t̂′2R+ . . . t̂′2t̃1R

5. (u, ε)(s1, r1 t1r1)∗(s2, t2)+(s1, r1 t1r1)[(s1, r1 t1r1) + (s2, t2)]∗ε
ρ
= (u,R)(s1, t̃1)∗(s2, t̂

′
2)(s2, t̂2)∗(s1, r1 t1)[(s1, r1 t1r1) + (s2, t2)]∗ε

= . . . t̂′2R+ . . . t̂′2t̃1R

58

2.5 Summary

If t̃1 6= ε then

R = lcs(u′R, s̃1R, t̃1R, z2R, t̂
′
2R)

= lcsρ(u, us1r1 t1r1, us1s1r1 t1t1r1, us2t2, us2s2t2t2)
= lcsρ(u, us1r1 t1r1, us1s2t2r1 t1r1, us2t2, us2s1r1 t1r1t2)

Otherwise, if t̃1 = ε then

R = lcs(u′R, s̃1R, z2R, t̂
′
2R)

= lcsρ(u, us1r1 t1r1, us2t2, us2s2t2t2)
= lcsρ(u, us1r1 t1r1, us2t2, us2s1r1 t1r1t2)

2.5 Summary

In this chapter we showed that well-formedness of a context-free grammar G is de-
cidable in polynomial time. The decision problem was reduced to the computation
of the reduced longest common suffix of G.

Section 2.1 analysed basic properties of well-formed (context-free) languages and
introduced useful techniques for the computation of the longest common suffix.
We showed that a nonterminal X of a well-formed context-free grammar produces
not necessarily a well-formed language but a bounded well-formed language. Thus,
there is a minimal word rX such that rXLX is well-formed. We showed that for
a context-free grammar G we can check that every nonterminal X produces a
bounded well-formed language and if so compute an SLP representing rX by only
considering derivation trees up to heightN withN the number of nonterminals inG.
Then, the grammar G can be equivalently rewritten such that every nonterminal X
produces the language rXLX . For this grammar the longest common suffix of each
nonterminal is computed to check that for all left contexts α of X, i.e., G→∗ αXβ,
rX is in fact a suffix of ρ(α). To show that the reduced longest common suffix
of a context-free grammar can be computed in polynomial time we needed two
ingredients. First, we presented in Section 2.2 a polynomial size representation
for a language L to compute the longest common suffix – the lcs-summary. The
lcs-summary consists of the longest common suffix of L and the maximal suffix
extension lcsext. The word lcsext is the longest word by that the longest common
suffix of a language can be extended if another language is concatenated from the
left. Second, we show in Section 2.3 that the fixed-point iteration to compute the
reduced longest common suffix of a context-free grammarG terminates after at most
4N + 1 rounds in both cases, if G is well-formed as well as if G is not well-formed.
Again, N is the number of nonterminals in G. For that we proved that in both cases
the lcs-summary converges after 4N + 1 iterations or a counter-example showing

59

2 Well-formedness of Context-free Grammars

the non well-formedness is found. The results for convergence are in both cases
based on an analyses of the reduced longest common suffix of simple linear well-
formed languages of the form ασ1 . . . σkγτk . . . τ1β. In Section 2.4 we showed that
for L = (α, β)[(σ1, τ1)+(σ2, τ2)]∗γ the reduced longest common suffix is determined
by αγβ and either a word (α, β)(σi, τi)γ or some word (α, β)(σi, τi)(σj , τj)γ with
i, j ∈ {1, 2} where j can be independently chosen from i.

Notably, the results of Section 2.4 subsume our polynomial time algorithm to
compute the longest common prefix of a context-free grammar presented in [LPS18]
and provide easier and more direct proofs. However, it remains as an open ques-
tion whether well-formed context-free grammars can be rewritten to an equivalent
context-free grammar without inverted letters in polynomial time. This would have
allowed to use the results in [LPS18] to compute the reduced longest common suffix
of well-formed context-free grammars.

60

3 Equivalence of Linear Tree Transducers

Tree transducers are a fundamental model in formal language theory and early
results date back to the 1970s and 1980s where equivalence of bottom-up [Zac79]
and top-down [Ési80] tree-to-tree transducers was shown to be decidable. Nowa-
days, tree-to-tree transductions are well understood as the output is constructed
in a structured way [Ési80, FV98, EM99, Fri11]. In contrast, in case of tree-to-
word transducers the output is not necessarily produced in a structured way and
decidability of equivalence was a long standing open problem but solved in 2015
by Seidl, Maneth and Kemper [SMK15]. Due to the complexity of this problem
different restricted classes of tree-to-word transducers have been studied. Staworko
et al. [SLLN09] provided a polynomial time procedure for deciding equivalence of
sequential tree-to-word transducers, i.e., transductions where the subtrees are al-
ways processed from left to right as given in the input (order-preserving) and not
copied. For that they reduced the equivalence problem to the morphism equivalence
problem for context-free languages that was shown to be decidable in polynomial
time by Plandowski [Pla94]. Some years later, a canonical normal form for se-
quential tree-to-word transducers was provided that can be applied to learning
[LLN+11, LLN+14]. Boiret showed that a normal form can be obtained for linear
tree-to-word transducers, i.e., transductions that are non-copying but not necessar-
ily order-preserving [Boi16]. However, the construction of this normal form may
require exponential time. We improved on that by only normalizing the order in
which the subtrees are processed and obtained a polynomial time decision proce-
dure for equivalence of linear tree-to-word transducers [BP16]. We further extend
this result by showing that the approach can be applied to linear tree transducers
with outputs in the free group. Thus, output words are considered as equivalent not
just when they are literally equal, but also when they become equal after cancella-
tion of matching opening and closing occurrences of letters. In fact, the techniques
used in [SMK18] to obtain the equivalence of general tree-to-word transducers are
applicable in the free group. But in the case of linear tree transducers with outputs
either in a free monoid or a free group a randomized polynomial time procedure
to decide equivalence is given. We show that equivalence of linear tree transducers
with outputs in a free group can be decided in polynomial time without random-
ization. Clearly, this result includes the case of outputs in a free monoid from
2016 [BP16]. The underlying idea of the procedures is the same. However, the
construction as well as the arguments for its correctness, are not only more general

61

3 Equivalence of Linear Tree Transducers

but also much cleaner than in the case with outputs in a free monoid only. The
observation that reasoning over the free group may simplify arguments has also
been made, e.g., by Plandowski proving the existence of polynomial size test sets
for context-free languages in free groups [Pla94] and thereby improving the previ-
ous result in free monoids [KPR92]. In his case he could shorten the proof of the
main lemma from 10 to 2 pages. Similar to Plandowski’s techniques we considered
advanced properties of the periodicity of words for our proofs in a free monoid. The
existence of inverses provided in a free group shorten these proofs a lot, cf. Sec-
tion 3.1. We show that equivalence of same-ordered linear tree transducers, i.e.,
transducers that process their subtrees in the same order, can also be reduced to the
morphism equivalence problem for context-free languages. Therefore, equivalence
of linear tree transducers that are same-ordered is decidable in polynomial time.
We characterize the languages produced by the states in equivalent transductions
that process their subtrees in different orders. These languages have a common
underlying periodicity and can therefore be with some adaptations arbitrarily per-
muted. With these observations we define an order in which subtrees have to be
processed and normalize the transducers accordingly. Then equivalent transducers
have to be same-ordered and thus equivalence can be tested in polynomial time
using Plandowski’s result on morphism equivalence on context-free grammars in
the free group [Pla94].

Additionally, we recap in Section 3.3 the normalization results from [BP16] for linear
tree transducers with output in the free monoid, i.e., tree-to-word transducers. Even
if the equivalence result in this case is covered by the results with outputs in the
free group (Section 3.2), the normalization procedure may introduce inverses. We
therefore give a normalization algorithm for tree-to-word transducers such that the
normalized (ordered) transducer is still a tree-to-word transducer. Thus, the rules
do not contain any inverses as it may be the case for the ordered transducer over
the free group – even if the transducer before the normalization was a tree-to-word
transducer. In fact the construction for ordered tree-to-word transducers is more
involved and moreover may lead to a (polynomial) size increase of the transducer.
Note that compared to [BP16] the notation and proofs are adjusted and now based
on the results over the free group presented in Section 3.2.

Outline In Section 3.1 the technical results for the characterization of the output
languages occurring in equivalent transductions that process their inputs in different
orders is given. Then the reduction from the equivalence of same-ordered linear tree
transducers to the morphism equivalence problem is given in Section 3.2. Further,
we define ordered linear tree transducers and show how any linear tree transducer
can be ordered in polynomial time to obtain a polynomial decision procedure for
equivalence of linear tree transducers with outputs in the free group. This result

62

3.1 Preliminaries

subsumes the equivalence result from 2016 [BP16]. We reformulate the results
from [BP16] in Section 3.3 as the procedure to build an ordered linear tree-to-word
transducer is much more involved since no inverses as in the free group can be
used.

3.1 Preliminaries

Free Group. We use A to denote an unranked alphabet. The free monoid gener-
ated by A is denoted by 〈A∗, ·, ε〉 with A∗ the set of all finite words over A, · the
concatenation of finite words, and ε the empty word. As usual, we simply write
uv for u · v with u, v ∈ A∗. From A we derive the alphabet of inverse elements
A−1 = {a−1 | a ∈ A} and let −1 : (A ∪ A−1)∗ → (A ∪ A−1)∗ be the canonical invo-
lution on (A ∪ A−1)∗ such that (uv)−1 = v−1u−1 and (u−1)−1 = u and ε−1 = ε for
u, v ∈ (A∪A−1)∗. Further, let = denote the least equivalence relation on (A∪A−1)∗

for which uv = uxx−1v holds true for any u, x, v ∈ (A ∪ A−1)∗. Then the free
group FA generated by A is the quotient of the free monoid generated by A modulo
=. A word w ∈ (A ∪ A−1)∗ is reduced if it does not include any subword of the
form aa−1 for a ∈ (A∪A−1). Every equivalence class w.r.t. = contains exactly one
reduced word. If not noted otherwise, we will assume that all words are reduced.
We will always omit · for the concatenation of words over A∗ but use · as group
operation over reduced words of FA, i.e., · is concatenation, followed by reduction,
i.e., repeated cancellation of subwords a a−1 or a−1a. Thus, a b c−1 · c b−1 a = a a.
The inverse w−1 of some element w ∈ FA is obtained by reverting the order of the
letters in w while replacing each letter a with a−1 and each a−1 with a. Thus,
e.g., (a b c−1)−1 = c b−1a−1. In light of the inverse operation (.)−1, we have that
v · w = v′w′ where v = v′u (as words) for a maximal suffix u so that u−1 is a
prefix of w with w = u−1w′. For an element w ∈ FA, 〈w〉 = {wl | l ∈ Z} denotes
the cyclic subgroup of FA generated from w. As usual, we use the convention that
w0 = ε, and w−l = (w−1)l for l > 0. An element p ∈ FA different from ε, is called
primitive if wl = p for some w ∈ FA and l ∈ Z implies that w = p or w = p−1, i.e.,
p and p−1 are the only (trivial) roots of p. For example, ab and (ab)−1 = b−1a−1

are primitive; while abba−1 is not primitive as (aba−1)2 = aba−1 · aba−1 = abba−1.
Thus, primitive elements generate maximal cyclic subgroups of FA. We state two
crucial technical lemmas.

Lemma 19. Assume that ym = β · yn · β−1 with y ∈ FA primitive. Then m = n,
and β = yk for some k ∈ Z.

Proof. Since β · yn · β−1 = (β · y · β−1)n, we find by [LS15, Proposition 2.17] a
primitive element c such that y and β · y · β−1 are powers of c. As y is primitive, c

63

3 Equivalence of Linear Tree Transducers

can be chosen as y. Accordingly,

yj = β · y · β−1 (3.1)

holds for some j. If β is a power of y, then β · y · β−1 = y, and the assertion of the
lemma holds. Likewise if j = 1, then β and y commute. Since y is primitive, then
β necessarily must be a power of y.

For a contradiction, therefore now assume that β is not a power of y and j 6= 1.
W.l.o.g., we can assume that j > 1. First, assume now that y is cyclically reduced
i.e., the first and last letter, a and b, respectively, of y are not mutually inverse
(a−1 6= b). Then for each n > 0, yn is obtained from y by n-concatenation of y as a
word (no reduction taking place). Likewise, either the last letter of β is different a−1

or the first letter of β−1 is different from b−1 because these two letters are mutually
inverse. Assume that the former is the case. Then β ·y is obtained by concatenation
of β and y as words (no reduction taking place). By (3.1), β · yn = yj·n · β. for
every n ≥ 1. Let m > 0 denote the length of β as a word. Since β can cancel only
a suffix of yj·n of length at most m, it follows, that the word β y must be a prefix
of the word ym+1. Since β is not a power of y, the word y can be factored into
y = y′c for some non-empty suffix c such that β = yj

′
y′, implying that y′c = cy′

and thus yc = cy hold. As a consequence, y = pl for some p ∈ FA and l > 1 — in
contradiction to the irreducibility of y.

If on the other hand, the first letter of β−1 is not the inverse of the last letter
of y, then y · β−1 is obtained as the concatenation of y and β−1 as words. As a
consequence, yβ−1 is a suffix of ym+1, and we arrive at a contradiction.

We conclude that the statement of the lemma holds whenever y is cyclically reduced.
Now assume that y is not yet cyclically reduced. Then we can find a maximal suffix
r of y (considered as a word) such that y = r−1sr holds and s is cyclically reduced.
Then s is also necessarily primitive. (If s = cn, then y = (r−1cr)n). Then assertion
(3.1) can be equivalently formulated as

sj = (r · β · r−1) · y · (r · β · r−1)−1

We conclude that r · β · r−1 = sl for some l ∈ Z. But then β = (r−1 · s · r)l = yl,
and the claim of the lemma follows.

Lemma 20. Assume that x1, x2 and y1, y2 are distinct elements in FA and that

xi · α · yj · β = γ · y′j · α′ · x′i · β′ (3.2)

holds for i = 1, 2 and j = 1, 2. Then there is some primitive element p and
exponents r, s ∈ Z such that x1 · α = x2 · α · pr and y1 = ps · y2.

64

3.1 Preliminaries

Proof. By the assumption (3.2),

γ = (x1 · α · yj · β) · (y′j · α′ · x′1 · β′)−1

= (x2 · α · yj · β) · (y′j · α′ · x′2 · β′)−1

for all j = 1, 2. Thus,

x1 · α · yj · ββ′−1x′−1
1 α′−1y′−1

j = x2 · α · yj · β · β′−1 · x′−1
2 · α′

−1 · y′−1
j implying

y−1
j · α−1 · x−1

2 · x1 · α · yj = β · β′−1 · x′−1
2 · x′1 · β′ · β−1

for j = 1, 2. Hence,

y−1
1 · α−1 · x−1

2 · x1 · α · y1 = y−1
2 · α−1 · x−1

2 · x1 · α · y2 implying

(x2 · α)−1x1 · α = (y1 · y−1
2) · ((x2 · α)−1 · x1 · α) · (y1 · y−1

2)−1

Since x1 is different from x2, also x1 · α is different from x2 · α. Let p denote a
primitive root of (x2 · α)−1 · x1 · α. Then by Lemma 19,

x1 · α = x2 · α · pr
y1 = ps · y2

for suitable exponents r, s ∈ Z.

As the elements of FA are words, they can be represented by straight-line pro-
grams (SLPs). An SLP is a context-free grammar where each non-terminal occurs
as the left-hand side of exactly one rule. We briefly recall basic complexity results
for operations on elements of FA when represented as SLPs [Loh14].

Lemma 21. Let U, V be SLPs representing words w1, w2 ∈ {a, a−1 | a ∈ A},
respectively. Then the following computations and decision problems can be realized
in polynomial time
• compute an SLP for w−1 ;
• compute the primitive root of w1 if w1 6= ε;
• compute an SLP for w = w1 with w reduced;
• decide whether w1 = w2;
• decide whether it exists g ∈ FA, such that w1 ∈ g · 〈w2〉 and compute an SLP

for such g.

Linear Tree Transducer. In the following, we introduce deterministic linear tree
transducers which produce outputs in the free group FA. For convenience, we follow
the approach in [SMK18] where only total deterministic transducers are considered
— but equivalence is relative w.r.t. some top-down deterministic domain automaton
D. We use Σ to denote a finite ranked alphabet. TΣ denotes the set of all trees

65

3 Equivalence of Linear Tree Transducers

(or terms) over Σ. The depth depth(t) of a tree t ∈ TΣ equals 0, if t = f() for
some f ∈ Σ of rank 0, and otherwise, depth(t) = 1 + max{depth(ti) | i = 1, . . . ,m}
for t = f(t1, . . . , tm). A top-down deterministic automaton (DTA) D is a tuple
(H,Σ, δD, h0) where H is a finite set of states, Σ is a finite ranked alphabet, δD :
H × Σ → H∗ is a partial function where δD(h, f) ∈ Hk if the rank of f equals k,
and h0 is the start state of D. For every h ∈ H, we define the set dom(h) ⊆ TΣ by
f(t1, . . . , tm) ∈ dom(h) iff δD(h, f) = h1 . . . hm and ti ∈ dom(hi) for all i = 1, . . . , k.
D is called reduced if dom(h) 6= ∅ for all h ∈ H. The language L(D) accepted by
D is the set dom(h0). We remark that for every DTA D with L(D) 6= ∅, a reduced
DTA D′ can be constructed in polynomial time with L(D) = L(D′). Therefore, we
subsequently assume w.l.o.g. that each DTA D is reduced.

A (total deterministic) linear tree transducer with output in FA (LT for short) is
a tuple M = (Σ,A, Q, S,R) where Σ is the ranked alphabet for the input trees, A
is the finite (unranked) output alphabet, Q is the set of states, S is the axiom of
the form u0 or u0 · q0(x0) ·u1 with u0, u1 ∈ FA and q0 ∈ Q, and R is the set of rules
which contains for each state q ∈ Q and each input symbol f ∈ Σ, one rule of the
form

q(f(x1, . . . , xm))→ u0 · q1(xσ(1)) · . . . · un−1 · qn(xσ(n)) · un (3.3)

Here, m is the rank of f , n ≤ m, u0, . . . , un ∈ FA and σ is an injective mapping from
{1, . . . , n} to {1, . . . ,m}. The semantics of a state q is the function JqK : TΣ → FA

defined by

JqK(f(t1, . . . , tm)) = u0 · Jq1K(tσ(1)) · . . . · un−1 · JqnK(tσ(n)) · un

if there is a rule of the form (3.3) in R. Then the translation of M is the function
JMK : TΣ → FA defined by JMK(t) = u0 if the axiom of M equals u0, and JMK(t) =
u0 · JqK(t) · u1 if the axiom of M is given by u0 · q(x0) · u1.

Example 16. Let A = {a, b}. As a running example we consider the LT M with
input alphabet Σ = {f2, g1, k0} where the superscripts indicate the rank of the input
symbols. M has axiom q0(x0) and the following rules

q0(f(x1, x2))→ q1(x2)bq2(x1) q0(g(x1))→ q0(x1) q0(k)→ ε
q1(f(x1, x2))→ q0(x1)q0(x2) q1(g(x1))→ abq1(x1) q1(k)→ a
q2(f(x1, x2))→ q0(x1)q0(x2) q2(g(x1))→ abq2(x1) q2(k)→ ab

Two LTs M , M ′ are equivalent relative to the DTA D iff their translations coincide
on all input trees accepted by D, i.e., JMK(t) = JM ′K(t) for all t ∈ L(D).

To relate the computations of the LT M and the domain automaton D, we
introduce the following notion. A mapping ι : Q → H from the set of states of M
to the set of states of D is called compatible if either the set of states of M is empty
(and thus the axiom of M consists of an element of FA only), or the following holds:

66

3.1 Preliminaries

1. ι(q0) = h0;

2. If ι(q) = h, δD(h, f) = h1 . . . hm, and there is a rule in M of the form (3.3)
then ι(qi) = hσ(i) for all i = 1, . . . , n;

3. If ι(q) = h and δD(h, f) is undefined for some f ∈ Σ of rank m ≥ 0, then M
has the rule q(f(x1, . . . , xm)) → ⊥ for some dedicated symbol ⊥ which does
not belong to A.

Lemma 22. For an LT M and a DTA D = (H,Σ, δD, h0), an LT M ′ with a set
of states Q′ together with a mapping ι : Q′ → H can be constructed in polynomial
time such that the following holds:

1. M and M ′ are equivalent relative to D;

2. ι is compatible.

Proof. In case that the axiom of M is in FA, we obtain M ′ from M using the axiom
of M and using empty sets of states and rules, respectively. Assume therefore that
the axiom of M is of the form u0 · q0(x0) ·u1. Then LT M ′ is constructed as follows.
The set Q′ of states of M ′ consists of pairs 〈q, h〉, q ∈ Q, h ∈ H where ι(〈q, h〉) = h.
In particular, 〈q0, h0〉 ∈ Q′. As the axiom of M ′ we then use u0 · 〈q0, h0〉(x0) · u1.
For a state 〈q, h〉 ∈ Q′, consider each input symbol f ∈ Σ. Let m ≥ 0 denote the
rank of f . If δD(h, f) is not defined, M ′ has the rule

〈q, h〉(f(x1, . . . , xm))→ ⊥

Otherwise, let δD(h, f) = h1 . . . hm, and assume that M has a rule of the form (3.3).
Then we add the states 〈qi, hσ(i)〉 to Q′ together with the rule

〈q, h〉(f(x1, . . . , xm))→ u0 · 〈q1, hσ(1)〉(xσ(1)) · . . . · un−1 · 〈qn, hσ(n)〉(xσ(n)) · un

By construction, the mapping ι is compatible. We verify for each state 〈q, h〉 of
M ′ and each input tree t ∈ dom(h) that JqK(t) = J〈q, h〉K(t) holds. This proof is by
induction on the structure of t. From that, the equivalence of M and M ′ relative
to D follows.

Example 17. Let LT M be defined as in Example 16. Consider DTA D with start
state h0 and the transition function δD = {(h0, f) 7→ h1h1, (h1, g) 7→ h1, (h1, h) →
ε}. According to Lemma 22, LT M ′ for M then is defined as follows. M ′ has axiom
〈q0, h0〉(x0) and the rules

〈q0, h0〉(f(x1, x2))→ 〈q1, h1〉(x2) b 〈q2, h1〉(x1)
〈q1, h1〉(g(x1))→ ab 〈q1, h1〉(x1) 〈q1, h1〉(k)→ a
〈q2, h1〉(g(x1))→ ab 〈q2, h1〉(x1) 〈q2, h1〉(k)→ ab

67

3 Equivalence of Linear Tree Transducers

The rules that have left-hand sides 〈q0, h0〉(g(x1)), 〈q0, h0〉(h), 〈q1, h1〉(f(x1, x2)),
〈q2, h1〉(f(x1, x2)), all have right-hand-sides ⊥. The compatible map ι is then given
by ι = {〈q0, h0〉 7→ h0, 〈q1, h1〉 7→ h1, 〈q2, h1〉 7→ h1}. For convenience, we denote the
pairs 〈q0, h0〉, 〈q1, h1〉, 〈q2, h1〉 with q0, q1, q2, respectively.

Subsequently, we w.l.o.g. assume that each LT M with corresponding DTA D for
its domain, comes with a compatible map ι. Moreover, we define for each state q
of M , the set L(q) = {JqK(t) | t ∈ dom(ι(q))} of all outputs produced by state q (on
inputs in dom(ι(q))), and L(i)(q) = {JqK(t) | t ∈ dom(ι(q)), depth(t) < i} for i ≥ 0.

Beyond the availability of a compatible map, we also require that all states of M
are non-trivial (relative to D). Here, a state q of M is called trivial if L(q) contains
a single element only. Otherwise, it is called non-trivial. This property will be
established in Theorem 2.

3.2 Deciding Equivalence

In the first step, we show that equivalence relative to the DTAD of same-ordered LTs
is decidable. For a DTA D, consider the LTs M and M ′ with compatible mappings ι
and ι′, respectively. M and M ′ are same-ordered relative to D if they process their
input trees in the same order. We define set of pairs 〈q, q′〉 of co-reachable states
of M and M ′. Let u0 · q0(x1) · u1 and u′0 · q′0(x1) · u′1 be the axioms of M and M ′,
respectively, where ι(q0) = ι′(q′0) is the start state of D. Then the pair 〈q0, q

′
0〉 is

co-reachable. Let 〈q, q′〉 be a pair of co-reachable states. Then ι(q) = ι′(q′) should
hold. For f ∈ Σ, assume that δD(ι(q), f) is defined. Let

q(f(x1, . . . , xm)) → u0 · q1(xσ(1)) · u1 · . . . · un−1 · qn(xσ(n)) · un
q′(f(x1, . . . , xm)) → u′0 · q′1(xσ′(1)) · u′1 · . . . · u′n−1 · q′n(xσ′(n′)) · u′n′

(3.4)

be the rules of q, q′ for f , respectively. Then 〈qj , q′j′〉 is co-reachable whenever
σ(j) = σ′(j′) holds. In particular, we then have ι(qj) = ι′(q′j′).

The pair 〈q, q′〉 of co-reachable states is called same-ordered, if for each correspond-
ing pair of rules (3.4), n = n′ and σ = σ′. Finally, M and M ′ are same-ordered if
for every co-reachable pair 〈q, q′〉 of states of M,M ′, and every f ∈ Σ, each pair of
rules (3.4) is same-ordered whenever δD(ι(q), f) is defined.

Given that the LTs M and M ′ are same-ordered relative to D, we can represent the
set of pairs of runs of M and M ′ on input trees by means of a single context-free
grammar G. The set of nonterminals of G consists of a distinct start nonterminal
S together with all co-reachable pairs 〈q, q′〉 of states q, q′ of M,M ′, respectively.
The set of terminal symbols T of G is given by {a, a−1, ā, ā−1 | a ∈ A} for fresh
distinct symbols ā, ā−1, a ∈ A. Let 〈q, q′〉 be a co-reachable pair of states of M,M ′,
and f ∈ Σ such that δD(ι(q), f) is defined. For each corresponding pair of rules

68

3.2 Deciding Equivalence

(3.4), G receives the rule

〈q, q′〉 → u0 · ū′0 · 〈q1, q
′
1〉 · u1 · ū′1 · . . . · un−1 · ū′n−1 · 〈qn, q′n〉 · un · ū′n

where ū′i is obtained from u′i by replacing each output symbol a ∈ A with its
barred copy ā as well as each inverse a−1 with its barred copy ā−1. For the axioms
u0q(x1)u1 and u′0q

′(x1)u′1 of M,M ′, respectively, we introduce the rule S → u0 ·
ū′0 · 〈q, q′〉 · u1 · ū′1 where again ū′i are the barred copies of u′i. We define morphisms
f, g : T ∗ → FA by

f(a) = a f(a−1) = a−1 f(ā) = f(ā−1) = ε
g(ā) = a g(ā−1) = a−1 g(a) = g(a−1) = ε

for a ∈ A. Then M and M ′ are equivalent relative to D iff g(w) = f(w) for all w ∈
L(G). Combining Plandowski’s polynomial construction of a test set for a context-
free language to check morphism equivalence over finitely generated free groups
[Pla94, Theorem 6], with Lohrey’s polynomial algorithm for checking equivalence of
SLPs over the free group [Loh04], we deduce that the equivalence of the morphisms
f and g on all words generated by the context-free grammar G, is decidable in
polynomial time. Consequently, we obtain:

Corollary 4. Equivalence of same-ordered LTs relative to a DTA D is decidable in
polynomial time.

Next, we observe that for every LTM with compatible map ι and non-trivial states
only, a canonical ordering can be established.

Definition 5. We call M ordered (relative to D) if for all rules of the form (3.3),
with L(qi) · ui · . . . · uj−1 · L(qj) ⊆ v · 〈p〉, p ∈ FA the ordering σ(i) < . . . < σ(j)
holds.

We show that two ordered LTs, when they are equivalent, are necessarily same-
ordered. The proof of this claim is split in two parts. First, we prove that the set
of indices of subtrees processed by equivalent co-reachable states are identical and
second, that the order is the same.

Lemma 23. Let M,M ′ be LTs with compatible maps ι and ι′, respectively, and
non-trivial states only so that M and M ′ are equivalent relative to the DTA D. Let
〈q, q′〉 be a pair of co-reachable states of M and M ′. Assume that δD(ι(q), f) is
defined for some f ∈ Σ and consider the corresponding pair of rules (3.4). Then
the following holds:

1. {σ(1), . . . , σ(n)} = {σ′(1), . . . , σ′(n′)};

2. σ = σ′.

69

3 Equivalence of Linear Tree Transducers

Proof. Since 〈q, q′〉 is a co-reachable pair of states, there are elements α, α′, β, β′ ∈
FA such that

α · JqK(t) · β = α′ · Jq′K(t) · β′

holds for all t ∈ dom(ι(q)). Consider the first statement. Assume for a contradiction
that qk(xj) occurs on the right-hand side of the rule for q but xj does not occur on
the right-hand side of the rule for q′. Then, there are input trees t = f(t1, . . . , tm)
and t′ = f(t′1, . . . , t

′
m), both in dom(ι(q)), such that JqkK(tj) 6= JqkK(t′j) and ti = t′i

for all i 6= j. Moreover, there are µ1, µ2 ∈ FA s.t.

α · JqK(t) · β = α · µ1 · JqkK(tj) · µ2 · β 6= α · µ1 · JqkK(t′j) · µ2 · β = α · JqK(t′) · β

But then,

α · JqK(t) · β = α′ · Jq′K(t) · β′ = α′ · Jq′K(t′) · β′ = α · JqK(t′) · β

— a contradiction. By an analogous argument for some xj only occurring in the
right-hand side of the rule for q′ the first statement follows.

Consider the second statement. Assume for contradiction that the mappings σ and
σ′ in the corresponding rules (3.4) differ. Let k denote the minimal index so that
σ(k) 6= σ′(k). W.l.o.g., we assume that σ′(k) < σ(k). By the first statement, n = n′

and {σ(1), . . . , σ(n)} = {σ′(1), . . . , σ′(n)}. Then there are `, `′ > k such that

σ′(k) = σ(`) < σ(k) = σ′(`′)

Let t = f(t1, . . . , tn) ∈ dom(ι(q)) be an input tree. For that we obtain

µ0 := u0 · Jq1K(tσ(1)) · . . . · uk−1

µ1 := uk · Jqk+1K(tσ(k+1)) · . . . · u`−1

µ2 := u` · Jq`K(tσ(`)) · . . . · un

µ′0 := u′0 · Jq′1K(tσ′(1)) · . . . · u′k−1

µ′1 := u′k · Jq′k+1K(tσ′(k+1)) · . . . · u′`′−1

µ′2 := u′`′ · Jq′`′K(tσ′(`′)) · . . . · u′n

as illustrated in the following picture.

u0 q1(xσ(1))u1 . . . uk−1 q′k(xσ′(k)) u′k . . . u
′
`′−1 q′`′(xσ′(`)) u′`′ . . . u

′
n−1 q

′
n(xσ′(n))u

′
n

u0 q1(xσ(1))u1 . . . uk−1 qk(xσ(k)) uk . . . u`−1 q`(xσ(`)) u` . . . un−1 qn(xσ(n))un

µ0 µ1 µ2

µ′0 µ′1 µ′2

σ(k) =
σ ′(` ′)σ

′ (k)
=
σ(`)

Then for all input trees t′ ∈ dom(ι(qk)), t
′′ ∈ dom(ι(q′k)),

α · µ0 · JqkK(t′) · µ1 · Jq`K(t′′) · µ2 · β = α′ · µ′0 · Jq′kK(t′′) · µ′1 · Jq′`′K(t′) · µ′2 · β′

70

3.2 Deciding Equivalence

Let γ′ = µ−1
0 · α−1 · α′ · µ′0. Then

JqkK(t′) · µ1 · Jq`K(t′′) · µ2 · β = γ′ · Jq′kK(t′′) · µ′1 · Jq′`′K(t′) · µ′2 · β′

By Lemma 20, we obtain that for all w1, w2 ∈ L(qk) and v1, v2 ∈ L(q`), w
−1
2 ·w1 ∈

µ1 · 〈p〉 · µ−1
1 and v1 · v−1

2 ∈ 〈p〉 for some primitive p.

If ` = k + 1, i.e., there is no further state between qk(xσ(k)) and q`(xσ(`)), then

µ1 = uk, L(qk) ⊆ w · uk · 〈p〉 · u−1
k and L(q`) ⊆ 〈p〉 · v for some fixed w ∈ L(qk) and

v ∈ L(q`). As σ(k) > σ′(k) = σ(`), this contradicts M being ordered.

For the case that there is at least one occurrence of a state between qk(xσ(k)) and

q`(xσ(`)), we show that for all α1, α2 ∈ uk · L(qk+1) · . . . · u`−1 =: L̂, α−1
1 · α2 ∈ 〈p〉

holds. We fix w1, w2 ∈ L(qk) and v1, v2 ∈ L(q`) with w1 6= w2 and v1 6= v2. For
every α ∈ L̂, we find by Lemma 20, primitive pα and exponent rα ∈ Z such that
v1 · v−1

2 = prαα holds. Since pα is primitive, this means that pα = p or pα = p−1.
Furthermore, there must be some exponent r′α such that w−1

1 · w2 = α · pr′α · α−1.
For α1, α2 ∈ L̂, we therefore have that

pr
′
α1 = (α−1

1 · α2) · pr
′
α2 · (α−1

1 · α2)−1

Therefore by Lemma 19, α−1
1 · α2 ∈ 〈p〉. Let us fix some wk ∈ L(qk), α ∈ L̂ =

uk · L(qk+1) · . . . · u`−1, and wl ∈ L(ql). Then L(qk) ⊆ wk · α · 〈p〉 · α−1, L̂ ⊆ α · 〈p〉
and L(ql) ⊆ 〈p〉 · wl. Therefore,

L(qk) · uk · . . . · L(q`) ⊆ wk · α · 〈p〉 · α−1 · α · 〈p〉 · 〈p〉 · wl = wk · α · 〈p〉 · wl

As σ(k) > σ′(k) = σ(`), this again contradicts M being ordered.

As equivalence of same-ordered and therefore ordered LTs is decidable in polynomial
time it remains to show that every LT can be ordered in polynomial time. For that,
we rely on the following characterization.

Lemma 24. Assume that L1, . . . , Ln are neither empty nor singleton subsets of FA

and u1, . . . , un−1 ∈ FA. Then there are v1, . . . , vn ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln ⊆ v · 〈p〉 (3.5)

holds if and only if for i = 1, . . . , n, Li ⊆ vi · 〈pi〉 with

pn = p
pi = (ui · vi+1) · pi+1 · (ui · vi+1)−1 for i < n

and

v−1 · v1 · u1 · . . . · vn−1 · un−1 · vn ∈ 〈p〉 (3.6)

71

3 Equivalence of Linear Tree Transducers

Proof. Let s1 = ε. For i = 2, . . . , n we fix some word si ∈ L1 ·u1 ·L2 · . . . ·Li−1 ·ui−1.
Likewise, let tn = ε and for i = 1, . . . , n − 1 fix some word ti ∈ ui · Li+1 · . . . · Ln,
and define vi = s−1

i · v · t
−1
i .

First assume that the inclusion (3.5) holds. Let p′i = ti · p · t−1
i . Then for all i,

si · Li · ti ⊆ v · 〈p〉, and therefore

Li ⊆ s−1
i · v · 〈p〉 · t

−1
i = s−1

i · v · t
−1
i · ti · 〈p〉 · t

−1
i = vi〈p′i〉

We claim that p′i = pi for all i = 1, . . . , n. We proceed by induction on n − i. As
tn = ε, we have that p′n = p = pn. For i < n, we can rewrite ti = ui · wi+1 · ti+1

where wi+1 ∈ Li+1 and thus is of the form vi+1 · pki+1

i+1 for some exponent ki+1.

p′i = ti · p · t−1
i

= ui · wi+1 · ti+1 · p · t−1
i+1 · w

−1
i+1 · u

−1
i

= ui · wi+1 · pi+1 · w−1
i+1 · u

−1
i by I.H.

= ui · vi+1 · pi+1 · v−1
i+1 · u

−1
i

= pi

It remains to prove the inclusion (3.6). Since wi ∈ Li, we have by (3.5) that
v−1 · w1 · u1 · . . . wn · un ∈ 〈p〉 holds. Now we calculate:

v−1 · w1 · u1 · . . . un−1 · wn = v−1 · v1 · pk11 · u1 · . . . · un−1 · vn · pknn
= v−1 · v1 · u1 · v2 · pk1+k2

2 · u2 · . . . · un−1 · vn · pknn
. . .
= v−1 · v1 · u1 · . . . vn−1 · un−1 · vn · pkn

where k = k1 + . . .+ kn. Since pn = p, the claim follows.
The other direction of the claim of the lemma follows directly:

L1u1 . . . Ln−1un−1Ln
⊆ v1 · 〈p1〉 · u1 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
= v1 · u1 · v2 · 〈p2〉 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
= v1 · u1 · v2 · 〈p2〉 · u2 · . . . · vn−1 · 〈pn−1〉 · un−1 · vn · 〈pn〉
· · ·
= v1 · u1 · v2 · . . . · un−1 · vn · 〈pn〉
= v1 · u1 · v2 · . . . · un−1 · vn · 〈p〉
⊆ v · 〈p〉

where the last inclusion follows from (3.6).

Let us call a non-empty, non-singleton language L ⊆ FA periodic, if L ⊆ v · 〈p〉 for
some v, p ∈ FA. Lemma 24 then implies that if a concatenation of languages and el-
ements from FA is periodic, then so must be all non-singleton component languages.
In fact, the languages in the composition can then be arbitrarily permuted.

72

3.2 Deciding Equivalence

Corollary 5. Assume for non-empty, nonsingleton languages L1, . . . , Ln ⊆ FA and
u1, . . . , un−1 ∈ FA that property (3.5) holds. Then for every permutation π, there
are elements uπ,0, . . . , uπ,n ∈ FA such that

L1 · u1 · . . . · Ln−1 · un−1 · Ln = uπ,0 · Lπ(1) · uπ,1 · . . . · uπn−1 · Lπ(n) · uπ,n

Proof. For i = 1, . . . , n, let vi and pi be defined as in Lemma 24. Then for all i,
Li ⊆ vi · 〈pi〉. Moreover, the languages L′i defined by L′n = v−1

n · Ln and for i < n,

L′i = (ui · vi+1 · . . . · un−1 · vn)−1 · (v−1
i · Li) · (ui · vi+1 · . . . · un−1 · vn)

all are subsets of 〈p〉. Therefore their compositions can arbitrarily be permuted.
At the same time,

L1 · u1 · . . . · Ln−1 · un−1 · Ln = v1 · u1 · . . . · vn−1 · un−1 · vn · L′1 · . . . L′n
From that, the corollary follows.

Example 18. We reconsider LT M ′ and DTA B from Example 17. We observe
that L(q1) ⊆ a〈ba〉, L(q2) ⊆ 〈ab〉, and thus L(q0) = L(q1) · b · L(q2) ⊆ 〈ab〉. Ac-
cordingly, the rule for state q0 and input symbol f is not ordered. Following the
notation of Corollary 5, we find v1 = a, u1 = b and v2 = ε, and the rule for q0 and
f can be reordered to

q0(f(x1, x2))→ ab · q2(x1) · b−1a−1 · q1(x2) · b

This example shows major improvements compared to the construction in [BP16]
which we recap in Section 3.3, see Example 19. Since we have inverses at hand,
only local changes must be applied to the sub-sequence q1(x2) · b ·q2(x1). In contrast
to the construction in [BP16], neither auxiliary states nor further changes to the
rules of q1 and q2 are required.

By Corollary 5, the order of occurrences of terms qk(xσ(k)) can be permuted in every
sub-sequence qi(xσ(i)) ·ui · . . . ·uj−1 ·qj(xσ(j)) where L(qi) ·ui · . . . ·uj−1 ·L(qj) ⊆ u ·〈p〉
is periodic, to satisfy the requirements of an ordered LT. A sufficient condition for
that is, according to Lemma 24, that L(qk) is periodic for each qk occurring in that
sub-sequence. Therefore we will determine the subset of all states q where L(q) is
periodic, and if so elements vq, pq such that L(q) ⊆ vq · 〈pq〉. In order to do so we
compute an abstraction of the sets L(q) by means of a complete lattice which both
reports constant values and also captures periodicity.

Let D = 2FA denote the complete lattice of subsets of the free group FA. We
define a projection α : D → D by α(∅) = ∅, α({g}) = {g}, and for languages L with
at least two elements,

α(L) =

{
g · 〈p〉 if L ⊆ g · 〈p〉 and p is primitive

FA otherwise

73

3 Equivalence of Linear Tree Transducers

The projection α is a closure operator, i.e., is a monotonic function with L ⊆
α(L), and α(α(L)) = α(L). The image of α can be considered as an abstract
complete lattice D], partially ordered by subset inclusion. Thereby, the abstraction
α commutes with least upper bounds as well as with the group operation. For that,
we define abstract versions t, ? : (D])2 → D] of set union and the group operation
by

A1 tA2 = α(A1 ∪A2) A1 ? A2 = α(A1 ·A2)

In fact, “t” is the least upper bound operation for D]. The two abstract operators
can also be more explicitly defined by:

∅ t L = L t ∅ = L
FA t L = L t FA = FA

{g1} t {g2} =

{
{g1} if g1 = g2

g1 · 〈p〉 if g1 6= g2, p primitive root of g−1
1 · g2

{g1} t g2 · 〈p〉 = g2 · 〈p〉 t {g1} =

{
g2 · 〈p〉 if g1 ∈ g2 · 〈p〉
FA otherwise

g1 · 〈p1〉 t g2 · 〈p2〉 =

{
g1 · 〈p1〉 if p2 ∈ 〈p1〉 and g−1

2 · g1 ∈ 〈p1〉
FA otherwise

Likewise, the abstract product operator “?” can explicitly be defined by:

∅ ? L = L ? ∅ = ∅
FA ? L = L ? FA = FA for L 6= ∅
{g1} ? {g2} = {g1 · g2}
{g1} ? g2 · 〈p〉 = (g1 · g2) · 〈p〉
g1 · 〈p〉 ? {g2} = (g1 · g2) · 〈g−1

2 · p · g2〉

g1 · 〈p1〉 ? g2 · 〈p2〉 =

{
(g1 · g2) · 〈p2〉 if g−1

2 · p1 · g2 ∈ 〈p2〉
FA otherwise

Lemma 25. For all subsets L1, L2 ⊆ FA,

α(L1 ∪ L2) = α(L1) t α(L2)
α(L1 · L2) = α(L1) ? α(L2)

Proof. As ∅ ∪ L = L ∪ ∅ = ∅, it follows that α(∅ ∪ L) = α(L ∪ ∅) = α(∅) = ∅ =
∅ t L′ = L′ t ∅ = α(∅) t α(L) = α(L) t α(∅).

Assume that α(L1) = FA. Let L2 be some language, then α(L1 ∪ L2) = α(L2 ∪
L1) = FA and α(L1) t α(L2) = FA t α(L2) = FA = α(L2) t FA = α(L2) t α(L1).
The case where α(L2) = FA is analogous.

For α(L1) = {g1}, α(L2) = {g2}, both languages are singleton, and we obtain
that {g1}∪{g2} = {g1} if and only if g1 = g2. Accordingly, α(L1∪L2) = α({g1}) =

74

3.2 Deciding Equivalence

{g1} = α({g1}) t α({g2}). If g1 6= g2 then {g1} ∪ {g2} ⊆ g1 · 〈g−1
1 · g2〉 and

α(L1 ∪ L2) = g1 · 〈p〉 with p the primitive root of g−1
1 g2. Therefore, α(L1 ∪ L2) =

g1 · 〈p〉 = α({g1}) t α({g2}).
Assume that α(L1) = {g1} and α(L2) = g2 · 〈p2〉 for some primitive p2. If

g1 ∈ g2 · 〈p2〉, then α(L1 ∪ L2) = g2 · 〈p2〉 = α(L1) t α(L2). Otherwise, i.e., if
g1 6∈ g2 · 〈p2〉, then L1 ∪L2 is not contained in g · 〈p〉 for any p (since p2 was chosen
primitive), and therefore, α(L1 ∪ L2) = FA = α(L1) t α(L2). A similar argument
applies if α(L2) = {g1}, and α(L1) = g2 · 〈p2〉.

Assume that α(L1) = g1 · 〈p1〉 and α(L2) = g2 · 〈p2〉 for some primitive p1, p2.
If p2 ∈ 〈p1〉 as well as g−1

2 · g1 ∈ 〈p1〉, then g1 · 〈p1〉 = g2 · 〈p2〉 (due to primitivity
of p1, p2). Moreover, α(L1 ∪ L2) = g1 · 〈p1〉 = α(L1) t α(L2). Otherwise, i.e., if
p2 6∈ 〈p1〉 or g−1

2 ·g1 6∈ 〈p1〉, then L1∪L2 cannot be subset of g ·〈p〉 for any g, p ∈ FA.
Therefore, α(L1 ∪ L2) = FA = α(L1) t α(L2).

For the concatenation with the empty set and the product operator we find
α(∅ · L) = α(L · ∅) = α(∅) = ∅ = α(∅) ? α(L) = α(L) ? α(∅).

Assume that α(L1) = FA. Then L1 6⊆ g · 〈p〉 for any g, p ∈ FA. Assume that
L2 ⊆ FA is nonempty. Then by Lemma 24, L1 ·L2 and L2 ·L1 cannot be contained
in g′ · 〈p′〉 for any g′, p′. Therefore, α(L1 ·L2) = α(L2 ·L1) = FA = α(L1) ? α(L2) =
α(L2) ? α(L1).

For α(L1) = {g1}, α(L2) = {g2}, both languages are singletons, and we obtain
α(L1 · L2) = {g1 · g2} = {g1} ? {g2} = α(L1) ? α(L2).

Now assume that α(L1) = {g1} and α(L2) = g2〈p2〉. Then L1 = {g1}, while L1·L2

is not a singleton language, but contained in g1 · g2 · 〈p2〉. Therefore, α(L1 · L2) =
g1 · g2 · 〈p2〉 = α(L1) ? α(L2). Likewise, if α(L1) = g1 · 〈p1〉 and α(L2) = {g2}, then
L2 = {g2}, and L1 · L2 is a non-singleton language contained in g1 · g2 · 〈g−1

2 p1g2〉.
Therefore, α(L1 · L2) = g1 · g2 · 〈g−1

2 p1g2〉 = α(L1) ? α(L2).
Finally, let α(L1) = g1 · 〈p1〉 and α(L2) = g2 · 〈p2〉 be both ultimately periodic

languages. By Lemma 24, L1 ·L2 is ultimately periodic if and only if g−1
2 · p1 · g2 ∈

〈p2〉. Thus if L1 · L2 is ultimately periodic, then α(L1 · L2) = g1 · g2 · 〈p2〉 =
α(L1) ? α(L2). Otherwise, L1 · L2 6⊆ g · 〈p〉 for any g, p ∈ FA, and therefore
α(L1 · L2) = FA = α(L1) ? α(L2).

We conclude that α in fact represents a precise abstract interpretation in the sense
of [Mül06]. Accordingly, we obtain:

Lemma 26. For every LT M and DTA D with compatible map ι, the sets α(L(q))
with q a state of M can be computed in polynomial time.

Proof. We introduce one unknown Xq for every state q of M , and one constraint
for each rule of M of the form (3.3) where δ(ι(q), f) is defined in D. This constraint
is given by:

Xq w u0 ? Xq1 ? . . . ? un−1 ? Xqn ? un (3.7)

75

3 Equivalence of Linear Tree Transducers

As the right-hand sides of the constraints (3.7) all represent monotonic functions,
the given system of constraints has a least solution. In order to obtain this solution,

we consider for each state q of M , the sequence X
(i)
q , i ≥ 0 of values in D] where

X
(0)
q = ∅, and for i > 0, we set X

(i)
q as the least upper bound of the values

obtained from the constraints with left-hand side Xq of the form (3.7) by replacing

the unknowns Xqj on the right-hand side with the values X
(i−1)
qj . By induction on

i ≥ 0, we verify that for all states q of M ,

X(i)
q = α(L(i)(q))

holds. Note that the induction step thereby, relies on Lemma 25.

As each strictly increasing chain of elements in D] consists of at most four elements,
we have that the least solution of the constraint system is attained after at most
3 · N iterations, if N is the number of states of M , i.e., for each state q of M ,

X
(3N)
q = X

(i)
q for all i ≥ 3N . The elements of D] can be represented by SLPs where

the operations ? and t run in polynomial time, cf. Lemma 21. Since each iteration
requires only a polynomial number of operations ? and t, the statement of the
lemma follows.

We now exploit the information provided by the α(L(q)) to remove trivial states
as well as order sub-sequences of right-hand sides which are periodic.

Theorem 2. Let D be a DTA such that L(D) 6= ∅. For every LT M with compatible
map ι, an LT M ′ with compatible map ι′ can be constructed in polynomial time such
that

1. M and M ′ are equivalent relative to D;

2. M ′ has no trivial states;

3. M ′ is ordered.

Proof. By Lemma 26, we can, in polynomial time, determine for every state q of
M , the value α(L(q)). We use this information to remove from M all trivial states.
W.l.o.g., assume that the axiom of M is given by u0 · q0(x0) · u1. If the state q0

occurring in the axiom of M is trivial with L(q0) = {v}, then M ′ has no states or
rules, but the axiom u0 · v · u1.

Therefore now assume that q0 is non-trivial. We then construct an LT M ′ whose
set of states Q′ consists of all non-trivial states q of M where the compatible map
ι′ of M ′ is obtained from ι by restriction to Q′. Since L(M) 6= ∅, the state of M
occurring in the axiom is non-trivial. Accordingly, the axiom of M is also used
as axiom for M ′. Consider a non-trivial state q of M and f ∈ Σ. If δ(ι(q), f) is

76

3.3 Ordered Form for Linear Tree-to-Word Transducers

not defined then M ′ has the rule q(f(x1, . . . , xm) → ⊥. Assume that δ(ι(q), f) is
defined and M has a rule of the form (3.3). Then M ′ has the rule

q(f(x1, . . . , xm))→ u0 · g1 · . . . · un−1 · gn · un

where for i = 1, . . . , n, gi equals qi(xσ(i)) if qi is non-trivial, and equals the single
word in L(qi) otherwise. Obviously, M and M ′ are equivalent relative to D where
M ′ now has no trivial states, while for every non-trivial state q, the semantics of q
in M and M ′ are the same relative to D. Our goal now is to equivalently rewrite
the right-hand side of each rule of M ′ so that the result is ordered. For each state
q of the LT we determine whether there are v, p ∈ FA such that L(q) ⊆ v · 〈p〉,
cf. Lemma 26. So consider a rule of M ′ of the form (3.3). By means of the
values α(L(qi)), i = 1, . . . , n, together with the abstract operation “?”, we can
determine maximal intervals [i, j] such that L(qi) · ui · . . . · uj−1 · L(qj) is periodic,
i.e., α(L(qi)) ? ui · . . . ? uj−1 ? α(L(qj)) ⊆ v · 〈p〉 for some v, p ∈ FA. We remark
that these maximal intervals are necessarily disjoint. By Corollary 5, for every
permutation π : [i, j]→ [i, j], elements u′, u′i, . . . , u

′
j , u
′′ ∈ FA can be found so that

qi(xσ(i)) · ui · . . . · uj−1 · qj(xσ(j)) is equivalent to

u′ · qπ(i)(xσ(π(i))) · u′i · . . . · u′j−1 · qπ(j)(xσ(π(j))) · u′′

In particular, this is true for the permutation π with σ(π(i)) < . . . < σ(π(j)).
Accordingly, we rewrite the unordered interval such that it is ordered.

Assuming that all group elements are represented as SLPs, the overall construc-
tion runs in polynomial time.

In summary, we arrive at the main theorem of this chapter.

Theorem 3. The equivalence of LTs relative to some DTA D can be decided in
polynomial time.

Proof. Assume we are given LTs M,M ′ with compatible maps (relative to D). By
Theorem 2, we may w.l.o.g. assume that M and M ′ both have no trivial states
and are ordered. It can be checked in polynomial time whether or not M and M ′

are same-ordered. If they are not, then by Lemma 23, they cannot be equivalent
relative to D. Therefore now assume that M and M ′ are same-ordered. Then their
equivalence relative to D is decidable in polynomial time by Corollary 4. Altogether
we thus obtain a polynomial decision procedure for equivalence of LTs relative to
some DTA D.

3.3 Ordered Form for Linear Tree-to-Word Transducers

We consider linear tree-to-word transducers (LTW for short) over the free monoid
〈A∗, ·, ε〉 in this section. The rules and therefore the outputs of a tree-to-word

77

3 Equivalence of Linear Tree Transducers

transducer contain only words w ∈ A∗, no inverses a−1 ∈ A−1 occur. Thus, this is a
special case of the before considered linear tree transducers LTs. We remind, that we
use · to denote concatenation followed by reduction. Even if we consider only output
over the free monoid this will be used to build conjugates of words. For example,
w−1

1 · w · w1 yields the conjugate w2w1 of w = w1w2. We showed in Theorem 2
that for every LTM an equivalent ordered LTM ′ can be constructed in polynomial
time. This construction can introduce inverses in the rules of the ordered LT M ′

even if the initial LT M is an LTW. In fact, the LT M from the running example
in Section 3.2 is an LTW, cf. Example 17. However, the equivalent ordered LT M ′

constructed in Example 18 is not an LTW since the reordering introduces inverses.
We recap the underlying idea of the ordering in the following example.

Example 19. Recall the LTW M from Section 3.2 with axiom q0(x0) and the
following rules

q0(f(x1, x2))→ q1(x2) b q2(x1)
q1(g(x1))→ ab q1(x1) q1(k)→ a
q2(g(x1))→ ab q2(x1) q2(k)→ ab

The top rule with left-hand side q0(f(x1, x2)) is not ordered as L(q) = L(q1)bL(q2) ⊆
(ab)∗ with L(q1) ⊆ a(ba)∗, L(q2) ⊆ (ab)∗ but the recursive call on subtree x2 is left
of the recursive call on the subtree x1. The underlying idea of the ordering is that if
the states q1 and q2 produce languages over the same period then the recursive calls
can be permuted. With inverses at hand this we do not have to change the rules of
q1 and q2; we replace the rule with left-hand side q0(f(x1, x2)) by

q0(f(x1, x2))→ ab q2(x1) · b−1a−1 · q1(x2) b

Then q, q2 and b−1a−1q1b produce all languages over the same period ab. We
observe two concepts for that inverses are introduced:
• The inverse a−1 is used to remove the constant prefix a of the language
L(q1) ⊆ a(ab)∗.

• The inverse b−1 together with the additional constant b after the recursive call
of q1 shifts the period of the language a−1 ·L(q1) ⊆ 〈ba〉, i.e., b−1a−1 ·L(q1) b ⊆
〈ab〉.

Without inverses a new state qab1 , L(qab1) ⊆ (ab)∗ with corresponding rules has to
be introduced such that Jqab1 K(t) = b−1a−1 · q1(t) b for all t ∈ dom(ι(q1)). Then, the
LTW M can be ordered as follows.

q0(f(x1, x2))→ ab q2(x1) qab1 (x2)
qab1 (g(x1))→ ab q1(x1) qab1 (k)→ ε
q2(g(x1))→ ab q2(x1) q2(k)→ ab

In Lemma 24 the languages of the states occurring in an interval of the form
L(qi)ui . . . uj−1L(qj) ⊆ v〈p〉 were characterized. Now, we have to distinguish for

78

3.3 Ordered Form for Linear Tree-to-Word Transducers

the periodic languages of the form v〈p〉 two cases, i.e., languages of the form v · 〈p〉
and 〈p〉 · v. In the free group we could cover both cases with the form v · 〈p〉 as
v · 〈v−1 · p · v〉 = 〈p〉 · v. We call a language L ⊆ A∗ ultimately periodic if L ⊆ vp∗

or L ⊆ p∗ v with v, p ∈ A∗. Accordingly, we call a state q of an LTW producing an
ultimately periodic language, L(q) ⊆ vp∗ or L(q) ⊆ p∗v, ultimately periodic. Let
q be an ultimately periodic state with L(q) ⊆ vp∗. Then q and q′ are conjugates

w.r.t. w, w
p
v pω, if JqK(t) = vwJq′K(t) · w−1, for all t ∈ dom(ι(q)).1 We show that

for each LTW an equivalent LTW that is ordered can be constructed in polynomial
time. The crucial operation thereby is to compute, given an ultimately periodic

state q, a state qpw such that q and qpw are conjugates w.r.t. some w
p
v pω. For

an ultimately periodic state q, L(q) ⊆ vp∗ and w
p
v pω we give a procedure to

determine a state q′ that is a conjugate to q w.r.t. w in Algorithm 1. Note, that
the constructions consider the case that a state is ultimately periodic of the form
vp∗. The case that a state is ultimately periodic of the form p∗v can be handled
by taking the reversed state qr. For a word w = w0 . . . wn ∈ A∗, wi ∈ A, we denote
by wr the reversed word wn . . . w0. The reversed state qr of state q is obtained as
follows. For each rule q(f(x1, . . . , xm)) → u0q1(xσ(1)) . . . un−1qn(xσ(n))un we get
the rule qr(f(x1, . . . , xm))→ urnq

r
n(xσ(n))u

r
n−1 . . . u

r
1q
r
1(xσ(1))u

r
0 with qri the reversed

state of qi. By induction we have JqrK(t) = (JqK(t))r for all t ∈ dom(ι(q)). Thus, if

q is quasi-periodic with L(q) ⊆ p∗v (v 6
s
v p) then we can construct qr in polynomial

time with L(qr) ⊆ vr(pr)∗. We remind that if no explicit DTA D and corresponding
map ι for a LTW is given then we implicitly assume these. This shortens notation

1We use
p

v to denote the prefix relation, i.e., v
p

v w if w = vv′ for some v′ ∈ A∗ and
s

v to denote

the suffix relation, i.e, v
s

v w if w = v′v for some v′ ∈ A∗. Additionally, wω = www . . . denotes
an infinite word. For a detailed definition see Section 2.1.

79

3 Equivalence of Linear Tree Transducers

and is frequently used in this section.

Input : DTA B, LTW M with state q such that L(q) ⊆ vp∗, and w
p
@ pω

Output: LTW M ′ such that M ′ and M are equivalent relative to D. M ′

contains state qpw with pw the primitive root of w−1pw and
JqpwK(t) = w−1v−1 · JqK(t)w for all t ∈ dom(ι(q))

// For all states we determined whether they produce languages of the
form vp∗ or p∗v, see Lemma 26

Let M ’ be a copy of M
for each state q̇ in M ′ with L(q̇) ⊆ ṗ∗ (ṗ primitive) do

Rename state q̇ and therefore each corresponding rule and each
recursive call on a right-hand side of a rule by q̇ṗ in M ′;

end
shiftPeriod(q,w);
Function shiftPeriod(q,w)

for each rule q(f(x1, . . . , xm))→ u0q1(xσ(1)) . . . un−1qn(xσ(n))un in M ′

with f ∈ dom(ι(q)) do
Set v, p such that L(q) ⊆ vp∗ (p primitive and v minimal);
Set vi, pi such that L(qi) ⊆ vip∗i (pi primitive and vi minimal);
Add a rule qpw(f(x1, . . . , xm))→
w−1v−1 · u0v1 . . . un−1vnunw q

pw
1 (xσ(1))q

pw
2 (xσ(2)) . . . q

pw
n (xσ(n)) to

M ′;
for each qpwi occuring on the right-hand side of the before added
rule do

if qpwi does not already exist in M ′ then
add shiftPeriod(qi,uivi+1 . . . un−1vnunw) to M ′;

end

end

end
for each rule q(g(x1, . . . , xm))→ ⊥ do

Add a rule qpw(g(x1, . . . , xm))→ ⊥ to M ′;
end

end
Algorithm 1: Shift period of an ultimately periodic state q with L(q) ⊆ vp∗.

Lemma 27. Let M be an LTW with an ultimately periodic state q, L(q) ⊆ vp∗,

and M ′ be the LTW obtained from Algorithm 1 with input M , q and w
p
@ pω. The

following properties hold for Algorithm 1:

• The algorithm is correct, i.e., M and M ′ are equivalent and for all additionally
introduced states qp, JqpK(t) = w−1v−1 · JqK(t)w for all t ∈ dom(ι(q)).
• The algorithm runs in polynomial time and M ′ has polynomial size in M .

80

3.3 Ordered Form for Linear Tree-to-Word Transducers

Proof. Algorithm 1 is based on the observations in Lemma 24 and Corollary 5. By
induction, in each recursive call of function shiftPeriod with parameters q̇, ẇ with
L(q̇) ⊆ v̇ṗ∗ and ẇ−1ṗẇ = pw we have by Corollary 5 that

(uivi+1 . . . un−1vn−1un)−1 · pi · (uivi+1 . . . un−1vn−1un) = ṗ

and thus

ẇ−1(uivi+1 . . . un−1vn−1un)−1 · pi · (uivi+1 . . . un−1vn−1un)ẇ = ẇ−1 · ṗ · ẇ = pw

where q̇(f(x1, . . . , xm)) → u0q1(xσ(1)) . . . un−1qn(xσ(n))un is a rule in M ′ and f ∈
dom(ι(q)). Thus, each state qpwi occurring on the right-hand side of the rule added in
function shiftPeriod(q,w) is already contained in M ′ or added in the next step.
Furthermore, we show that Jqpwi K(t) = w−1v−1

i · JqiK(t) · w for all t ∈ dom(ι(q)).
Let q̂(f(x1, . . . , xm))→ u0q1(xσ(1)) . . . un−1qn(xσ(n))un be a rule reachable from q.
Then by induction there are v̂, p̂ ∈ A∗ such that L(q̂) ⊆ v̂p̂∗ (p̂ primitive) and there
is w such that w−1 · p̂ · w = p, cf. Lemma 24. Thus,

(uivi+1 . . . un−1vnun)−1 v−1
i · L(qi) · (uivi+1 . . . un−1vnun) ⊆ p̂∗

and therefore

w−1 (uivi+1 . . . un−1vnun)−1 v−1
i · L(qi) · (uivi+1 . . . un−1vnun)w ⊆ w−1 · p̂∗ ·w = p∗,

cf. Corollary 5.
We analyse the complexity of the algorithm. All operations in the algorithm run

in polynomial time using SLPs and the abstractions α(L(qi)), cf. Lemma 26. It
therefore remains to estimate the increase in size of M ′. Let k be the number of
disjoint states reachable from the given state q with L(q) ⊆ vp∗. Then in the worst
case for each of these k states q1, . . . , qk a new state qpi is introduced. Thus, the size
of the transducer is at most doubled if all states are reachable from q. Note, however,
that the size of the transducer might not be increased at all, cf. Example 19.

With the polynomial time procedure given in Algorithm 1 at hand we strengthen
Theorem 2 and show that for every LTWM an equivalent LTM ′ can be constructed
in polynomial time that is ordered.

Theorem 4. Let D be a DTA such that L(D) 6= ∅. For every LTW M with com-
patible map ι, an LTW M ′ with compatible map ι′ can be constructed in polynomial
time such that

1. M and M ′ are equivalent relative to D;
2. M ′ has no trivial states;
3. M ′ is ordered.

81

3 Equivalence of Linear Tree Transducers

Proof. Using Lemma 26 we determine in polynomial time for every state q of M
the value α(L(q)). With this information we remove all trivial states from M , such
that we obtain in polynomial time an LTW M ′ with no trivial states and M and
M ′ are equivalent relative to D, cf. Theorem 2. Thus, M ′ set of states Q′ consists
of all non-trivial states q of M and the compatible map ι′ of M ′ is obtained from ι
by restriction to Q′.

Consider a rule q(f(x1, . . . , xm)) → u0q1(xσ(1)) . . . un−1qn(xσ(n))un in M ′. With
Lemma 26 we determine maximal intervals [i, j] such that L(qi)ui . . . uj−1L(qj) ⊆
v1p
∗v2 with v1, p, v2 ∈ A∗, i.e., α(L(qi)) ? ui · . . . ? uj−1 ? α(L(qj)) ⊆ v · 〈p′〉 with

v, p′ ∈ FA. These intervals are necessarily disjoint. Let qi(xσ(i))ui . . . uj−1qj(xσ(j))
be such a maximal interval on the right-hand side of a rule that is not ordered.
We first assume that L(qi)ui . . . uj−1L(qj) ⊆ vp∗. Let vk, pk ∈ A∗ be such that
L(qk) ⊆ vkp∗k, k ∈ {i, . . . , j}. With shiftPeriod(qk, wk) in Algorithm 1 we obtain
states qpk with wk = ukvk+1 . . . uj−1vj such that JqkK(t) = vkwkJq

wk
k K(t) · w−1

k . By
Corollary 5 we have that

JqiK(ti)ui . . . ujJqjK(tj) = viui . . . vj−1uj−1vjJq
p
i K(ti) · Jq

p
j K(tj)

for all tk ∈ dom(ι(qk)), k ∈ {i, . . . , j}. Additionally, L(qpi), . . . ,L(qpj) ⊆ p∗j and
thus the recursive calls of the states qpk can be arbitrarily permuted. Therefore, we
rewrite the unordered interval qi(xσ(i))ui . . . uj−1qj(xσ(j)) by

viui . . . vj−1uj−1vjq
wi
π(i)(xσ(π(i))) . . . q

wj
π(j)(xσ(π(j)))

where π : [i, j] → [i, j] is the permutation such that σ(π(i)) < . . . < σ(π(j)).
For each additionally introduced state qp we extend the compatible mapping ι′ by
ι′(qp) = ι′(q).

Assume now that the unordered interval qi(xσ(i))ui . . . uj−1qj(xσ(j)) on the right-
hand side of a rule produces a language of the form v′p∗v with v minimal and

v 6
p
v p. As we removed all trivial states the constant suffix v is produced by state

qj , i.e., L(qj) ⊆ p∗jv and L(qi)ui . . . uj−2L(qj)uj ⊆ v̇ṗ∗. We therefore remove the
constant suffix v from L(qj) as follows. We build the reversed state qrj with Jqrj K(t) =
(JqjK(t))r for all t ∈ dom(ι(qj)), i.e., L(qrj) ⊆ vr(prj)

∗. Using Algorithm 1 we
build state (qrj)

pj such that vrJ(qrj)
pj K(t) = Jqrj K(t) for all t ∈ dom(ι(qj)), thus

L((qrj)
pj) ⊆ p∗j . For state (qrj)

pj we build the reversed state and call it q
pj
j . Then

Jqpjj K(t) = (J(qrj)
pj K(t))r for all t ∈ dom(ι(qj)) and therefore

(vrJ(qrj)
pj K(t))r = (J(qrj)

pj K(t))rv
= Jqpjj K(t)v
= (Jqrj K(t))

r

= JqjK(t)

82

3.3 Ordered Form for Linear Tree-to-Word Transducers

I.e., Jqpjj K(t)v = JqjK(t) for all t ∈ dom(ι(qj)) and therefore

JqiK(ti)ui . . . uj−2Jqj−1K(tj−1)uj−1JqjK(tj)
= JqiK(ti)ui . . . uj−2Jqj−1K(tj−1)uj−1Jq

pj
j K(tj)v

for all tk ∈ dom(ι(qk)). Thus, L(qi)ui . . . uj1L(q
pj
j) ⊆ v′p∗ and we follow the before

discussed case to order the interval.
In total, we arrive at an ordered LTW M ′ with M and M ′ are equivalent relative
to D.

It remains to analyse the runtime of the rewriting of the unordered rules. As
for each interval [i, j] Algorithm 1 is called at most j − i + 2 times and each call
increases the size of M ′ at most polynomially. In case reversed states have to be
constructed the construction still runs in polynomial time and M ′ is only increased
by the additional states produced by Algorithm 1 as the intermediate constructed
reversed states are not contained in M ′. In total, the overall procedure runs in
polynomial time. Note, that some states qwkk may already exist in M ′. This can be
tested before calling Algorithm 1 such that no additional states are added in this
case. Further optimizations might be possible; if all recursive calls of a state qk on
the right-hand sides of the rules are replaced then the state qk can be removed from
M ′, cf. Example 19.

We give a comprehensive example on how to compute an ordered LTW. Especially,
the example covers the following two cases, (i) the interval that has to be ordered

is of the form v′p∗v with v 6
p
v p and therefore an additional step is needed to remove

the constant suffix v; (ii) the size of the transducer increases due to the ordering.

Example 20. We consider the ranked input alphabet {f (2), k(2), g(1), h(0)} where the
superscripts indicate the rank. Let D be a DTA with start state h0 and the transition
function δD = {(h0, f) 7→ h1h1, (h0, k) 7→ h1h1, (h1, g) 7→ h1, (h1, h) 7→ ε}.
LTW M has the axiom q0(x0) and the following rules:

q0(f(x1, x2)) → q1(x2) a q2(x1) q0(k(x1, x2)) → q1(x1) q2(x2)
q1(g(x1)) → q1(x1) ab q1(h) → a
q2(g(x1)) → ba q2(x1) q2(h) → d

All omitted rules have right-hand side ⊥. The compatible map ι is then given by
ι = {q0 7→ h0, q1 7→ h1, q2 7→ h2}.
Thus, the state q0 of M produces either a language of the form a(ab)k+`d if the input
tree is of the form f(gk(h), g`(h)) or a language of the form a(ab)k(ba)`d if the input
tree is of the form k(gk(h), g`(h)). As the former language is periodic of the form
ad · 〈d−1 · ab · d〉, respectively a(ab)∗d, the rule with left-hand side q0(f(x1, x2)) is
not ordered. Following the proof of Theorem 4 we first remove the constant suffix d

83

3 Equivalence of Linear Tree Transducers

of the language (ba)∗d produced by state q2. We obtain state qba2 with the following
rules

qab2 (g(x1)) → qba2 (x1) ba d · d−1

→ qba2 (x1) ba

qba2 (h) → d · d−1

→ ε

For all t ∈ dom(ι(q2)) the following holds, Jq2K(t) = Jqba2 K(t) d and we obtain the
following set of rules

q0(f(x1, x2)) → q1(x2) a qab2 (x1) d q0(k(x1, x2)) → q1(x1) qba2 (x2) d

q1(g(x1)) → q1(x1) ab q1(h) → a

qab2 (g(x1)) → qba2 (x1) ba qab2 (h) → ε

Now, consider the interval q1(x2) a qba2 (x1) of the rule with left-hand side q0(f(x1, x2))
with L(q1 a q

ba
2) ⊆ a(ab)∗ a (ba)∗ = aa (ba)∗. For state q1 with a output language of

the form a(ab)∗ we build state qba1 with L(qba1) ⊆ (ba)∗. With Algorithm 1 and w = a
we obtain the following rules

qba1 (g(x1)) → a−1a−1 · a ab a qba1 (x1)
→ ba qba1 (x1)

qba1 (h) → a−1a−1 · a a
→ ε

Thus, for all t ∈ dom(ι(q1)), Jqba1 K(t) = a−1a−1 ·Jq1K(t)·a and the rule with left-hand
side q0(f(x1, x2)) is replaced by the ordered rule q0(f(x1, x2))→ aa qba2 (x1) qba1 (x2) d.
In total, we arrive at the following rules

q0(f(x1, x2)) → aa qba2 (x1) qba1 (x2) d q0(k(x1, x2)) → q1(x1) qba2 (x2) d

q1(g(x1)) → q1(x1) ab q1(h) → a

qab1 (g(x1)) → ba qba1 (x1) qab1 (h) → ε

qab2 (g(x1)) → qba2 (x1) ba qab2 (h) → ε

We observe that state q1 can not be removed because of the recursive call of q1 on
the right-hand side of the rule with left-hand side q0(k(x1, x2)). The size of M is
therefore increased while building the ordered form.

Equivalence of ordered LTWs without trivial states can be decided in polynomial
time by first checking whether they are same-ordered (Lemma 23) and if they are
same-ordered then checking equivalence via the morphism equivalence, cf. Corol-
lary 4.

84

3.4 Summary

3.4 Summary

In this chapter we showed that equivalence of linear tree transducers with output
in the free group can be decided in polynomial time. Therefore, we introduced an
ordered form that guarantees that equivalent transducers process their input in the
same order, i.e., they are same-ordered. Then, a context-free grammar (over the
free group) simulating all parallel runs of two linear same-ordered tree transduc-
ers can be constructed and equivalence is decidable via morphism equivalence on
context-free grammars. The decision procedure follows the same lines as in [BP16]
where equivalence of linear tree-to-word transducers was shown to be decidable in
polynomial time. But the result given here is stronger as it subsumes the result
from [BP16]. Additionally, we showed that the use of inverses lead to easier and
more direct proofs underlying the ordered form that is the analogon to the partial
normal form in [BP16]. We recapped the results for linear tree-to-word transducer
and adjusted them to the new ordered form in Section 3.3. Without the use of
inverses additional states might be introduced such that the size of the equiva-
lent transducer in ordered form is polynomially larger compared to the original
transducer.

85

4 Balancedness

Structured text requires that pairs of opening and closing brackets are properly
nested. This applies to text representing program code as well as to XML or HTML
documents. Again, as introduced in Chapter 2 we call properly nested words over
an alphabet B = A ∪ A of opening (A) and closing (A = {a | a ∈ A}) brackets
balanced. Thus, a word w ∈ B∗ is balanced if ρ(w) = ε. Balanced words need
not necessarily be constructed in a structured way. Therefore deciding whether
the set of words produced by some kind of text processor consists of balanced
words only is a non-trivial problem. For the case of a single pair of brackets, i.e.,
|A| = 1, and context-free languages, decidability of this problem has been settled
by Knuth [Knu67] and a polynomial time algorithm is presented by Minamide and
Tozawa [MT06]. Recently, these results were generalized to the output languages of
monadic second-order logic (MSO) definable tree-to-word transductions [MS18]. In
contrast, balancedness of non-determinsitc recursive program schemes was shown
to be undecidable [Kob19]. The case when the alphabet B consists of multiple pairs
of different kind of brackets (|A| > 1), though, seems to be more intricate than the
case of a single pair of brackets. Still, balancedness for context-free languages was
shown to be decidable by Berstel and Boasson [BB02] where a polynomial time
algorithm again has been provided by Tozawa and Minamide [TM07]. Whether or
not these results can be generalized to MSO definable transductions as e.g. done by
finite copying macro tree transducers with regular look-ahead, remains as an open
problem. Here, we provide a first step to answering this question.

We consider deterministic 2-copy tree-to-word transducers (2-TW) which process
their input at most twice by calling in their axioms at most two linear tree-to-
word transducers on the input. The output languages of linear deterministic tree-
to-word transducers are context-free, but this does not need to be the case for
2-TWs. 2-TWs form a subclass of MSO definable transductions which allows to
specify transductions such as prepending an XML document with the list of its
section headings, or appending such a document with the list of figure titles. For
2-TWs we show that balancedness is decidable in polynomial time. Let T1 and
T2 be the two linear tree-to-word transducers called in the axiom of a 2-TW M ,
i.e., M performs the transduction T1(t)T2(t) for an input tree t. Balancedness of
M is decided by first checking that T1 and T2 produces well-formed output only.
Here, T2 denotes the transduction obtained if the output of T2 on an input tree
t is inverted. In a second step we check whether T1 and T2 are equivalent after

87

4 Balancedness

reduction. The output language of a linear tree-to-word transducer is context-
free and an respective context-free grammar for this language can directly be read
from the rules of the transducer. This allows us to use the polynomial decision
procedure for well-formedness from Chapter 2 to decide whether T1 and T2 produce
only well-formed output. Then it remains to decide equivalence of T1 and T2

considering the reduced outputs of the transducers. For example, if T1(t) produces
the output abaa and T2(t) the output baa bb a for an input tree t, then abaa and

baa bb a = abbaa b are not equivalent as words but equivalent after reduction,
ρ(abaa) = ab = ρ(abbaa b). However, as well-formedness of the (inverted) outputs
of T1 (T2) is checked before equivalence of the outputs can be decided over the free
group where inverted letters are interpreted as inverses. In general, the rewriting
rules of the involutive monoid over A and the free group over A may lead to different
reduced words, as in the involutive monoid a a does not reduce further while in the
free group a−1a is equivalent to the empty word. We recap that equivalence of
linear tree transducers over the free group is obtained via an ordered form. We
show that this ordered form can be obtained for linear tree-to-word transducers
where the output is interpreted over the involutive monoid. In fact, the canonical
form of (ultimately) periodic states on that the ordering is based can be used to
remove inverted letters from the rules of (ultimately) periodic states. Thus, we show
that the rules of a state q with the output language L(q) and ρ(L(q)) is ultimately
periodic can be rewritten such that L(q) = ρ(L(q)).

Outline Section 4.1 introduces linear tree-to-word transducers that are interpreted
over the involutive monoid and 2-TWs. In Section 4.2 we present the main result
of this chapter – the reduction from balancedness of 2-TWs to well-formedness
and equivalence of linear tree-to-word transducers. Additionally, we analyse in
Section 4.3 how inverted letters in the rules of (ultimately) periodic states can be
eliminated and thus an ordered linear tree-to-word transducer over the involutive
monoid can be constructed.

4.1 2-copy Tree-to-Word Transducers

We define a (total deterministic) linear tree-to-word transducer (LTWB for short)
M = (Σ,B, Q, S,R) over the free involutive monoid generated by a finite alphabet
A where A = {a | a ∈ A} is the alphabet of inverted letters derived from A and
B = A ∪ A , cf. Section 2.1. The definition is analogously to LTs but the output
alphabet is B and the output can thus be interpreted over the involutive monoid.
As before we use Latin letters u, v, . . . to denote words over A and Greek letters
α, β, γ, . . . to denote words over B. Σ is a finite ranked input alphabet, B is the
finite (unranked) output alphabet, Q is a finite set of states, the axiom S is of the

88

4.2 Balancedness of 2-TWs

form γ0 or γ0q(x1)γ1 with γ0, γ1 ∈ B∗ and R is a set of rules of the form

q(f(x1, . . . , xm))→ γ0q1(xσ(1))γ1 . . . qn(sσ(n))γn

with q, qi ∈ Q, f ∈ Σ, γi ∈ B∗, n ≤ m and σ an injective mapping from {1, . . . , n} to
{1, . . . ,m}. As we consider total deterministic transducers there is exactly one rule
for each pair q ∈ Q and f ∈ Σ. Again, we consider an LTWB together with a top-
down deterministic domain automaton D and a compatible map ι, cf. Section 3.1.
A 2-copy tree-to-word transducer (2-TW) is a tuple N = (Σ,B, Q, S,R) that is
defined in the same way as an LTWB but the axiom S is of the form γ0 or of the
form γ0q1(x1)γ1q2(x1)γ2, with γi ∈ B∗. We define the semantics JqK : TΣ → B∗ of a
state q with rule q(f(t1, . . . , tm))→ γ0q1(tσ(1))γ1 . . . γn−1qn(tσ(n))γn inductively by

JqK(f(t1, . . . , tm)) = γ0Jq1K(tσ(1))γ1 . . . γn−1JqnK(tσ(n))γn

The semantics JMK of an LTWB M with axiom γ0 is given by ρ(γ0); if the axiom is of
the form γ0q(x1)γ1 it is defined by γ0JqK(t)γ1 for all t ∈ TΣ; while the semantics JNK
of a 2-TW N with axiom γ0 is again given by γ0 and for axiom γ0q1(x1)γ1q2(x1)γ2

it is defined by γ0Jq1K(t)γ1Jq2K(t)γ2 for all t ∈ TΣ. For a state q we define the output
language L(q) = {JqK(t) | t ∈ TΣ}; For a 2-TWM we let L(M) = {JMK(t) | t ∈ TΣ}.

Additionally, we may assume w.l.o.g. that all states q of an LTWB are non-trivial
after reduction, i.e., ρ(L(q)) contains at least two words. We call a 2-TWM balanced
if ρ(L(M)) = {ε}. We say an LTWB M is well-formed if ρ(L(M)) ⊆ A∗. To shorten
notation we say that state q fulfills some property if the reduced output language
ρ(L(q)) fulfills this property. For example, q is balanced (well-formed, ultimately
periodic, . . .) if ρ(L(q)) is balanced (well-formed, ultimately periodic, . . .). We
use q to denote the inverse transduction of q which is obtained from a copy of
the transitions reachable from q by involution of the right-hand side of each rule.
For example, given a rule q(f(x1, . . . , xm)) → γ0q1(xσ(1))γ1 . . . γn−1qn(xσ(n))γn we
obtain q (f(x1, . . . , xm)) → γn qn (xσ(n))γn−1 . . . γ1 q1 (xσ(1))γ0 . As a consequence,

Jq K(t) = JqK(t) for all t ∈ TΣ, and thus, L(q) = L(q) . We say that two states q, q′

are equivalent iff for all t ∈ TΣ, ρ(JqK(t)) = ρ(Jq′K(t)). Accordingly, two 2-TWs M ,
M ′ are equivalent iff for all t ∈ TΣ, ρ(JMK(t)) = ρ(JM ′K(t)).

4.2 Balancedness of 2-TWs

Let M denote a 2-TW. W.l.o.g., we assume that the axiom of M is of the form
q1(x1)q2(x1) for two states q1, q2. If this is not yet the case, an equivalent 2-TW
with this property can be constructed in polynomial time. We reduce balancedness
of M to decision problems for linear tree-to-word transducers alone.

Proposition 1. The 2-TW M is balanced iff the following two properties hold:

89

4 Balancedness

• Both L(q1) and L(q2) are well-formed;

• q1 and q2 are equivalent.

Proof. Assume first that M with axiom q1(x1)q2(x1) is balanced, i.e., ρ(L(M)) = ε.
Then for all w′, w′′ with w = w′w′′ ∈ L(M), ρ(w′) = u ∈ A∗ and ρ(w′′) = u . Thus,
both L(q1) and L(q2) consist of well-formed words only. Assume for a contradiction

that q1 and q2 are not equivalent. Then there is some t ∈ TΣ such that Jq1K(t) 6
ρ
=

Jq2 K(t). Let ρ(Jq1K(t)) = u ∈ A∗ and ρ(Jq2 K(t)) = Jq2K(t) = v with v ∈ A∗ and
u 6= v. Then ρ(Jq1K(t)Jq2K(t)) = ρ(uv) 6= ε as u 6= v, u, v ∈ A∗. Since M is
balanced, this is not possible.

Now, assume that L(q1) and L(q2) are well-formed, i.e., for all t ∈ TΣ, ρ(Jq1K(t)) ∈
A∗ and ρ(Jq2K(t)) ∈ A ∗. Additionally assume that q1 and q2 are equivalent, i.e., for

all t ∈ TΣ, Jq1K(t)
ρ
= Jq2 K(t) ρ

= Jq2K(t) . Therefore for all t ∈ TΣ, Jq2K(t)
ρ
= Jq1K(t)

and hence,
ρ(Jq1K(t)Jq2K(t)) = ρ(Jq1K(t)Jq1K(t)) = ε

Therefore, the 2-TW M must be balanced.

The output languages of states q1 and q2 are generated by means of context-free
grammars of polynomial size. Let L(G) denote the language produced by a context-
free grammar G and q be a state of an LTWB. Then the rules for a CFG G with
L(G) = L(q) can be directly read from the rules of state q.

Example 21. Consider LTWB M with input alphabet Σ = {f (2), g(0)} (the super-
script denotes the rank), output alphabet B = {a, a }, axiom q3(x1) and rules

q3(f(x1, x2))→ aq2(x1)q2(x2)a q2(g)→ ε
q2(f(x1, x2))→ aq1(x1)q1(x2)a q2(g)→ ε
q1(f(x1, x2))→ q3(x1)q3(x2) q1(g)→ aa

We obtain a CFG producing exactly the output language of M by nondeterministi-
cally guessing the input symbol, i.e. the state qi becomes the nonterminal Wi. The
axiom of this CFG is then W3, and as rules we obtain

W3 → aW2W2a | ε W2 → aW1W1a | ε W1 →W3W3 | aa

Note that the rules of M and the associated CFG use a form of iterated squaring, i.e.
W3 →2 W 4

3 , that allows to encode potentially exponentially large outputs within the
rules (see also Example 13). In general, words thus have to be stored in compressed
form as SLPs [Loh12].

Therefore, Theorem 1 of Section 2.3 implies that well-formedness of q1, q2 can
be decided in polynomial time. Accordingly, it remains to consider the equivalence

90

4.3 Eliminating Inverted Letters in Well-formed LTWBs

problem for well-formed LTWBs. Since the two transducers in question are well-
formed, they are equivalent as LTWBs iff they are equivalent when their outputs are
considered over the free group FA where inverted letters are interpreted as inverses.
In the free group FA, we have that a−1a reduces to ε — which does not hold in our
rewriting system. If sets L(q1),L(q2) of outputs for q1 and q2 , however, are well-
formed, it follows for all u ∈ L(q1), v ∈ L(q2) that ρ(uv) = ρ(ρ(u) ρ(v)) cannot
contain a a. Therefore, ρ(uv) = ε iff uv−1 is equivalent to ε over the free group FA.
In Theorem 3 we have proven that equivalence of LTs is decidable in polynomial
time. Thus, we obtain our main theorem.

Theorem 5. Balancedness of 2-TWs is decidable in polynomial time.

4.3 Eliminating Inverted Letters in Well-formed LTWBs

We reduced balancedness of 2-TWs to well-formedness and equivalence of well-
formed LTWBs in Section 4.2. Given the well-formedness of the LTWBs equiva-
lence can be decided over the free group. In this section we present an alternative
approach [LLS19] that we discovered before showing that equivalence of LTs is
decidable in polynomial time. The underlying idea is the same – we order the
LTWBs such that they are same-ordered and then decide equivalence of same-
ordered LTWBs (over the free group). A state q of an LTWBis called ultimately
periodic if ρ(L(q)) ⊆ vp∗ or ρ(L(q)) ⊆ p∗v, v, p ∈ A∗. The key observation is that
all inverted letters occurring in the output of ultimately periodic states can be elim-
inated. Thus, we can rewrite the rules of an ultimately periodic state q such that
no inverted letters occur on the right-hand sides, i.e., ρ(L(q)) = L(q)). This rewrit-
ing is analogously to the canonical form q(f(x1, . . . , xm))→ piq1(xσ(1)) . . . qn(xσ(n))
used in Algorithm 1 for LTWs.

The procedure of removing inverted letters can analogously applied to context-free
grammars since the output of linear tree transducers produce context-free languages
and there is a direct correspondence between these two models, cf. Example 21. This
is of special interest as it is still an open problem whether there is a polynomial time
transformation from a well-formed context-free grammar G over B to a context-free
grammar G′ over A such that ρ(L(G)) = L(G) and the derivations are in bijection.

Let M be an LTWB that is well-formed and q be a state of M . Then q does not
have to be well-formed but bounded well-formed, i.e., there is rq such that rqL(q)
is well-formed. For example, an LTWB with axiom aq(x0) and state q producing
the language a (ba)na , n ∈ N is well-formed while q is only bounded well-formed
with rq = a.

Definition 6. We call a well-formed LTWB M suffix-empty if for all states q in
M , ρ(L(q)) ∈ A∗ and lcs(ρ(L(q))) = ε.

91

4 Balancedness

We show that the rules of a well-formed LTWB M can be adjusted such that every
state produces a well-formed language with empty longest common suffix.

Lemma 28. Let M be a well-formed LTWB and D be a DTA. Then an equivalent
LTWB M ′ w.r.t. D can be constructed in polynomial time such that M ′ is suffix-
empty.

Proof. Let q be a state of a well-formed LTWB M . Then L(q) is bounded well-
formed and we can construct in polynomial time a CFG G such that L(G) = L(q).
From G we compute (SLPs) for the minimal word rq ∈ A∗ such that rqL(q) is
well-formed Lemma 4) and sq the reduced longest common suffix of ρ(rqL(q))
(Lemma 11). For every rule q(f(x1, . . . , xm)) → γ0q1(xσ(1))γ1 . . . qn(xσ(n))γn we
add a rule

q′(f(x1, . . . , xm))→ rqγ0rq1 q
′
1(xσ(1))sq1γ1 . . . rqn q

′
n(xσ(n))sqnγnsq

to M ′. Let S = γ0q(x1)γ1 be the axiom in M , then we add the axiom S′ =
γ0rq q

′(x1)sqγ1 to M ′.

Let q be a state in M . We prove by induction over the size of the input tree that
for all t ∈ dom(ι(q)), Jq′K(t) = rqJqK(t)sq . For the base case let t = h ∈ Σ(0) and
q(h) → γ0 be the corresponding rule in M . Then Jq′K(h) = rqγ0sq = rqJqK(h)sq .
Let f(x1, . . . , xm) ∈ dom(ι(q)) and q(f(x1, . . . , xm))→ γ0q1(xσ(1))γ1 . . . qn(xσ(n))γn
be the corresponding rule in M . Then

Jq′K(f(x1, . . . , xm))
= rqγ0rq1 Jq′1K(xσ(1))sq1γ1 . . . rqn Jq′nK(xσ(n))sqnγnsq
= rqγ0rq1 rq1Jq1K(xσ(1))sq1 sq1γ1 . . . rqn rqnJqnK(xσ(n))sqn sqnγnsq
ρ
= rqγ0Jq1K(xσ(1))γ1 . . . JqnK(xσ(n))γnsq
= rqJqK(f(x1, . . . , xm))sq

Let S = γ0q(x1)γ1 be the axiom in M . Then for all t ∈ dom(ι(q)), JM ′K =
γ0rq Jq′K(t)sqγ1 = γ0rq rqJqK(t)sq sqγ1 = γ0JqK(t)γ1 = JMK. Thus, M and M ′ are
equivalent w.r.t. D. From the construction it directly follows that for all states q
in M ′, ρ(L(q)) ⊆ A∗ and lcs(ρ(L(q))) = ε.

Example 22. Consider a well-formed LTWB with axiom q(x1), states q, q′ and the
rules

q(f(x1)) → ab q′(x1) q′(f(x1)) → ab q(x1) ab
q(g) → ab q′(g) → ab

We omit a corresponding DTA. Then rq = ε, rq′ = ab are the minimal words
such that rqL(q) and rq′L(q′), respectively, are well-formed and sq = ab and sq′ =

92

4.3 Eliminating Inverted Letters in Well-formed LTWBs

abab are the longest common suffixes of ρ(rL(q)) and ρ(r′L(q′)), respectively. We
therefore obtain

q(f(x1)) → ε ab ab q′(x1) abab ab q′(f(x1)) → ab ab ε q(x1) ab ab abab
→ q′(x1) ab → q(x1)

q(g) → ε ab ab q′(g) → ab ab abab
→ ε → ε

The semantics did not change through the rewriting, but ρ(L(q)), ρ(L(q′)) ⊆ A∗ and
lcs(ρ(L(q))) = lcs(ρ(L(q′))) = ε.

Let M be a well-formed and suffix-empty LTWB. We observe that M does not
contain any ultimately periodic state q of the form ρ(L(q)) ⊆ p∗v with v 6= ε as
then lcs(ρ(L(q))) 6= ε, a contradiction to the suffix-empty property of M . Let q be
an ultimately periodic state of M with ρ(L(q)) ⊆ vp∗. We show that if the rules
of q are in the canonical form q(f(x1, . . . , xm)) → ρ(γ0) q1(xσ(1)) . . . qn(xσ(n)), i.e.,
first all (reduced) output is produced and then the consecutive recursive calls on
the subtrees follow (cf. Algorithm 1), then no inverted letters occur in the output.

Lemma 29. Let M be a well-formed LTWB and D be a DTA. Then an LTWB M ′

can be constructed in polynomial time such that for all ultimately periodic states q,
ρ(L(q)) = L(q), i.e., q does not produce any inverted letter in the output and M
and M ′ are equivalent w.r.t. D.

Proof. W.l.o.g. we assume that M is suffix-empty. Therefore, every ultimately

periodic state q in M is of the form ρ(L(q)) ⊆ vp∗ with v 6
s
@ pi for any i. Let M ′

be a copy of M . Then we basically apply Algorithm 1 to every ultimately periodic
states of M ′ (cf. Theorem 4) such that every rule of an ultimately periodic state q
is in the canonical form

q(f(x1, . . . , xm))→ γ0 q1(xσ(1)) . . . qn(xσ(n))

where we discuss in the following how inverted letters are handled as Algorithm 1
processes LTWs. Let q(f(x1, . . . , xm))→ γ0q1(xσ(1))γ1 . . . γn−1qn(xσ(n))γn be a rule
of an ultimately periodic state q in M ′ with ρ(L(q)) ⊆ vp∗ and ρ(L(qi)) ⊆ vip

∗
i .

Then ρ(γ0v1γ1 . . . γn−1vnγn) ∈ A∗ as M ′ is suffix-empty. Thus, no inverted letters
occur in the produced rules if the words are reduced. However, the parameter w
for shifting the period can be instantiated with a word containing inverted letters
(even after reduction) if in the algorithm shiftPeriod(qi, γivi+1 . . . γn−1vnγnw is
recursively called as γivi+1 . . . γn−1vnγn is not necessarily well-formed. As M ′ is
suffix-empty, the languages ρ(L(q1)), . . . , ρ(L(qn)) are periodic, i.e., ρ(L(qi)) ⊆ p∗i .
Additionally, if ρ(L(q1)) ⊆ v1p

∗
1 with v1 6= ε then γ1L(q2)γ2 . . . γn−1L(qn)γn is

93

4 Balancedness

well-formed. Thus, w.l.o.g. we assume that all ρ(L(qi)) are periodic and thus ε ∈
ρ(L(qi)). Let ρ(γivi+1 . . . γn−1vnγn) = x y. Since the output of every rule is well-
formed and M ′ is suffix-empty we have that

γ0v1γ1 . . . γi−1L(qi)x y
ρ
= γ0v1γ1 . . . γi−1xxL(qi)x y

Thus, xL(qi)x y ⊆ A∗ and y−1 · ρ(xpix)y ∈ p∗. As (x−1 · y)−1 · pi · x−1 · y =
y−1 · xpi · x−1 · y = y−1 · ρ(xpix)y we can interpret the inverted letters as inverses
in the free group over A and proceed with the algorithm. The described procedure
runs in polynomial time and may increase the size of the LTWB polynomially as
discussed in Theorem 4.

Example 23. Consider the well-formed and suffix-empty LTWB M with axiom
q(x0) and rules

q(f(x1, x2))→ ab q1(x2) b q2(x1) a ab

q1(g(x1))→ ab q1(x1) b bab q1(h)→ ε
q2(g(x1))→ q2(x1) ba q2(h)→ ε

We omit a corresponding DTA. We observe that ρ(L(q1)) ⊆ (ab)∗, ρ(L(q2)) ⊆ (ba)∗

and ρ(L(q)) ⊆ (ab)∗. With Algorithm 1 we obtain for the top rule with left-hand
side q(f(x1, x2))

qab(f(x1, x)) → ρ(abb a ab) qab1 (x2) qab2 (x1)

→ ab qab1 (x2) qab2 (x1)

Even if ρ(L(q1)) ⊆ (ab)∗ we bring the rules in the canonical form to eliminate all
inverted letters on right-hand sides. The rules are constructed by a recursive call of
function shiftPeriod with parameter w = b−1 · a−1 · ab = ε as inverted letters are
interpreted as inverses in the free group over A.

qab1 (g(x1)) → ρ(abb bab) qab1 (x1)
→ abab qab1 (x1)

qab1 (h) → ε

To construct the rules for qab2 function shiftPeriod with paramter w = a−1 ·ab = b.

qab2 (g(x1)) → b−1 · bab qab2 (x1)
→ ab qab2 (x1)

qab2 (h) → b−1 · b
→ ε

In total we arrive at LTWB M ′ with axiom qab(x0) and rules

qab(f(x1, x2))→ ab qab1 (x2) qab2 (x1)

qab1 (g(x1))→ abab qab1 (x1) qab1 (h)→ ε

qab2 (g(x1))→ ab qab2 (x1) qab2 (h)→ ε

94

4.4 Summary

with M ′ is equivalent to M .

Analogously to Theorem 4 we can order a well-formed and suffix-empty LTWB M
where for every ultimately period state q, ρ(L(q)) = L(q) holds. Then, equivalent
well-formed and ordered LTWBs are same-ordered and thus, equivalence can be
decided in polynomial time by a reduction to the morphism equivalence problem
over the free group (cf. Corollary 4).

4.4 Summary

In this chapter we showed that balancedness of 2-copy tree transducers is decidable
in polynomial time. A 2-TW M calls in the axiom (γ0 q1(x1) γ1 q2(x1) γ2) two
linear tree-to-word transducers on the input tree and performs therefore a non-
linear transduction. We reduced the decision problem of balancedness of M to the
question whether the output of q1 and q2 is well-formed and the question whether
q1 and q2 are equivalent considering the output after reduction. Further, we showed
that due to the previous check that q1 and q2 are well-formed we can check q1 and
q2 for equivalence over the free group. Thus, Chapter 2 and Chapter 3 provide the
results needed to decide balancedness of 2-TWs in polynomial time.

Additionally, we presented in Section 4.3 an approach to build the ordered form
of linear well-formed tree-to-word transducers with output in the involutive monoid.
The key observation thereby is that through the construction of the ordered form
inverted letters are eliminated in (ultimately) periodic states. Since this approach
can analogously be applied on context-free grammars this is one step in answering
the question whether for a well-formed context-free grammar an equivalent gram-
mar without inverses can be constructed (in polynomial time).

95

5 Conclusion

In this thesis we studied three different types of linear tree transducers with seri-
alized output, (i) LTWs with output interpreted as words in the free monoid, (ii)
LTWBs with output interpreted over the involutive monoid, and (iii) LTs with out-
put interpreted in the free group. For LTWBs we considered the special case that
the output is always well-formed, thus reduces to a word over the opening letters
only. Chapter 3 and Section 4.3 contain the following core contributions:

• We showed that equivalence of linear tree transducers with output in the free
group is decidable in polynomial time. This subsumes our previous result
on equivalence of linear tree-to-word transducers. Additionally, we showed
that equivalence of well-formed LTWBs can be decided in the free group by
interpreting inverted letters as inverses.

• We introduced an ordered form for LTs that simplifies the partial normal
form from [BP16] and showed that equivalent LTs in ordered form process
their input in the same order, i.e., they are same-ordered.

• We gave a polynomial-time reduction from equivalence of same-ordered LTs
to the morphism equivalence problem of context-free grammars over the free
group by simulating all parallel runs of two LTs with a context-free grammar.

• We showed that the ordered form can be obtained for LTWs (cf. [BP16])
as well as for well-formed LTWBs. The technical challenge thereby is that
no inverses as in the free group can be used which leads to more involved
constructions to build the ordered form and a polynomial size increase of the
obtained transducer. Additionally, in case of well-formed LTWBs we showed
that the construction removes inverted letters from ultimately periodic states.

While equivalence of deterministic tree-to-word transducer was shown to be decid-
able [SMK15], the decision procedure given in [SMK15] is not based on a normal
form. Therefore, the question arises whether a normal form for a larger class of
tree transducers with serialized output can be given. Here, we observed that the
use of inverses provided by the free group lead to simpler proofs. Therefore, it
might be beneficial to consider the output in the free group also for non linear tree
transducers to obtain a normal form.

97

5 Conclusion

In Chapter 2 we showed that well-formedness of context-free grammars is decid-
able in polynomial time. Therefore, we reduced the decision problem to the compu-
tation of the reduced longest common suffix of a context-free grammar. Chapter 2
contains the following core contributions:

• We gave basic characteristics of well-formed (context-free) languages and pro-
vided comprehensive computation rules for the longest common suffix.

• We defined a polynomial size representation of a language, the lcs-summary, to
compute the longest common suffix of a language. The lcs-summary consists
of the longest common suffix of the language and the maximal suffix extension
which is the longest word to which the suffix can be extended if another
language is concatenated from the left.

• We showed that the reduced longest common suffix of a context-free grammar
G is the same as the reduced longest common suffix of the words with a
derivation tree up to height 4N , where N is the number of nonterminals in G.
Therefore, we can compute an SLP representing the reduced longest common
suffix of a context-free grammar in polynomial time.

• We provided easier and shorter proofs for the computation of the longest
common prefix (suffix) of a context-free grammar where no reduction is taken
into account [LPS18]. Further, we extended these results by analysing the
reduced longest common suffix of linear well-formed languages of the form
{ασ1 . . . σkγτk . . . τ1β | α, β, γ, σi, τi ∈ B∗} with B the set of opening and
corresponding closing letters.

Unfortunately we could not directly use the results from [LPS18] on the computa-
tion of the longest common prefix (suffix) of a context-free grammar to compute
the reduced longest common suffix of a context-free grammar. The reason for this
is that we were not able to rewrite a context-free grammar G over B∗ to an equiv-
alent context-free grammar G′ such that ρ(L(G)) = L(G′). Moreover, the question
is whether G′ would be of size polynomial in G. The proofs given in Section 2.4
to compute the reduced longest common suffix of simple well-formed languages
indicate that it might only be possible to find a reduced equivalent grammar of
exponential size.

Finally, we showed in Chapter 4 that balancedness of 2-copy tree transducers
can be decided in polynomial time. The decision procedure combines the two re-
sults about well-formedness of context-free grammars and equivalence of linear tree
transducers over the free group. It is a natural question whether the decision algo-
rithms for balancedness of 2-TWs can be extended to tree transducer models where
more than two linear tree-to-word transducers are called in the axiom. However, in
case of two transducers it is clear that the opening letters remaining after reduction

98

and produced by the first transducers have to be closed by the second transducer.
Considering three transducers this property does not hold anymore and more nested
dependencies between the different transducers arise. Therefore, the extension of
balancedness to other similar transducer models remains as an open problem.

99

Acknowledgements

Vielen Dank, Helmut, für die Möglichkeit, diese Arbeit zu verfassen, die Einführung
in dieses Thema und alle Unterstützung!

Vielen Dank, Michael L., für die vielen hilfreichen und unterstützenden thema-
tischen Diskussionen sowie alle Gespräche über Gott und die Welt!

Vielen Dank, allen aktuellen und vorherigen Kollegen und besonders Stefan, für ein
wunderbares Arbeitsumfeld und manches Korrekturlesen!

Vielen Dank, allen Freunden, meiner Familie und insbesondere meinen Eltern, für
die Unterstützung und Hilfe vor allem am Ende dieser Arbeit, die mir die Fertig-
stellung (zu 99,9%) vor dem nächsten Großprojekt ermöglicht haben!

Vielen Dank, Rico, für alles – vor allem das gemeinsame Bewältigen und Überleben
der letzten Monate und Wochen!

July 2020

101

Bibliography

[BB02] J. Berstel and L. Boasson. Formal properties of XML grammars and
languages. Acta Inf., 38(9):649–671, 2002.

[Boi16] Adrien Boiret. Normal form on linear tree-to-word transducers. In
Adrian-Horia Dediu, Jan Janoušek, Carlos Mart́ın-Vide, and Bianca
Truthe, editors, Language and Automata Theory and Applications:
10th International Conference, LATA 2016, pages 439–451. LNCS
9618, Springer, 2016.

[BP16] Adrien Boiret and Raphaela Palenta. Deciding equivalence of linear
tree-to-word transducers in polynomial time. In Srecko Brlek and
Christophe Reutenauer, editors, Developments in Language Theory -
20th International Conference, DLT 2016, Proceedings, volume 9840 of
Lecture Notes in Computer Science, pages 355–367. Springer, 2016.

[BSQM13] Fabienne Braune, Nina Seemann, Daniel Quernheim, and Andreas
Maletti. Shallow local multi-bottom-up tree transducers in statisti-
cal machine translation. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, ACL 2013, 4-9 August
2013, Sofia, Bulgaria, Volume 1: Long Papers, pages 811–821. The
Association for Computer Linguistics, 2013.

[Cho56] Noam Chomsky. Three models for the description of language. IRE
Trans. Inf. Theory, 2(3):113–124, 1956.

[Cho03] Christian Choffrut. Minimizing subsequential transducers: a survey.
Theor. Comput. Sci., 292(1):131–143, 2003.

[EM99] Joost Engelfriet and Sebastian Maneth. Macro tree transducers, at-
tribute grammars, and MSO definable tree translations. Inf. Comput.,
154(1):34–91, 1999.

[EM03] Joost Engelfriet and Sebastian Maneth. Macro tree translations of
linear size increase are MSO definable. SIAM J. Comput., 32(4):950–
1006, 2003.

103

Bibliography

[EM06] Joost Engelfriet and Sebastian Maneth. The equivalence problem for
deterministic MSO tree transducers is decidable. Information Process-
ing Letters, 100(5):206–212, 2006.

[EMS09] Joost Engelfriet, Sebastian Maneth, and Helmut Seidl. Deciding equiv-
alence of top-down XML transformations in polynomial time. J. Com-
put. Syst. Sci., 75(5):271–286, 2009.

[Eng80] Joost Engelfriet. Some open questions and recent results on tree trans-
ducers and tree languages, pages 241–286. Academic Press, 12 1980.

[Ési80] Zoltán Ésik. Decidability results concerning tree transducers I. Acta
Cybern., 5(1):1–20, 1980.

[Flo62] Robert W. Floyd. On ambiguity in phrase structure languages. Com-
mun. ACM, 5(10):526, 1962.

[Fri11] Sylvia Friese. On normalization and type checking for tree transducers.
PhD thesis, Technical University Munich, 2011.

[FSM10] Sylvia Friese, Helmut Seidl, and Sebastian Maneth. Minimization of de-
terministic bottom-up tree transducers. In Yuan Gao, Hanlin Lu, Shin-
nosuke Seki, and Sheng Yu, editors, Developments in Language Theory,
14th International Conference, DLT 2010, London, ON, Canada, Au-
gust 17-20, 2010, Proceedings, volume 6224 of Lecture Notes in Com-
puter Science, pages 185–196. Springer, 2010.

[FV98] Zoltán Fülöp and Heiko Vogler. Syntax-Directed Semantics - Formal
Models Based on Tree Transducers. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, 1998.

[Gri68] Timothy V. Griffiths. The unsolvability of the equivalence prob-
lem for lambda-free nondeterministic generalized machines. J. ACM,
15(3):409–413, 1968.

[HMNI14] Shizuya Hakuta, Sebastian Maneth, Keisuke Nakano, and Hideya
Iwasaki. Xquery streaming by forest transducers. In Isabel F. Cruz,
Elena Ferrari, Yufei Tao, Elisa Bertino, and Goce Trajcevski, editors,
IEEE 30th International Conference on Data Engineering, Chicago,
ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 952–963. IEEE
Computer Society, 2014.

[HU69] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their
relation to automata. Addison-Wesley series in computer science and
information processing. Addison-Wesley, 1969.

104

Bibliography

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[Knu67] D. E. Knuth. A characterization of parenthesis languages. Information
and Control, 11(3):269–289, 1967.

[Kob19] Naoki Kobayashi. Inclusion between the frontier language of a non-
deterministic recursive program scheme and the dyck language is un-
decidable. Theor. Comput. Sci., 777:409–416, 2019.

[KPR92] Juhani Karhumäki, Wojciech Plandowski, and Wojciech Rytter. Poly-
nomial size test sets for context-free languages. In Werner Kuich, edi-
tor, Automata, Languages and Programming, 19th International Collo-
quium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings, vol-
ume 623 of Lecture Notes in Computer Science, pages 53–64. Springer,
1992.

[KRS95] Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. Pattern-
matching for strings with short descriptions. In Zvi Galil and Esko
Ukkonen, editors, Combinatorial Pattern Matching, 6th Annual Sym-
posium, CPM 95, Espoo, Finland, July 5-7, 1995, Proceedings, volume
937 of Lecture Notes in Computer Science, pages 205–214. Springer,
1995.

[LL06] Yury Lifshits and Markus Lohrey. Querying and embedding compressed
texts. In Rastislav Kralovic and Pawel Urzyczyn, editors, Mathemat-
ical Foundations of Computer Science 2006, 31st International Sym-
posium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1,
2006, Proceedings, volume 4162 of Lecture Notes in Computer Science,
pages 681–692. Springer, 2006.

[LLN+11] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, S lawek Sta-
worko, and Marc Tommasi. Normalization of sequential top-down tree-
to-word transducers. In Adrian-Horia Dediu, Shunsuke Inenaga, and
Carlos Mart́ın-Vide, editors, Language and Automata Theory and Ap-
plications: 5th International Conference, LATA 2011, pages 354–365.
LNCS 6638, Springer, 2011.

[LLN+14] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, S lawek Sta-
worko, and Marc Tommasi. Learning sequential tree-to-word trans-
ducers. In Adrian-Horia Dediu, Carlos Mart́ın-Vide, José-Luis Sierra-
Rodŕıguez, and Bianca Truthe, editors, Language and Automata The-
ory and Applications: 8th International Conference, LATA 2014, pages
490–502. LNCS 8370, Springer, 2014.

105

Bibliography

[LLS19] Raphaela Löbel, Michael Luttenberger, and Helmut Seidl. On the bal-
ancedness of tree-to-word transducers, 2019.

[LLS20a] Raphaela Löbel, Michael Luttenberger, and Helmut Seidl. Equivalence
of linear tree transducers with output in the free group. In Natasa
Jonoska and Dmytro Savchuk, editors, Developments in Language The-
ory - 24th International Conference, DLT 2020, Proceedings, volume
12086 of Lecture Notes in Computer Science, pages 207–221. Springer,
2020.

[LLS20b] Raphaela Löbel, Michael Luttenberger, and Helmut Seidl. On the bal-
ancedness of tree-to-word transducers. In Natasa Jonoska and Dmytro
Savchuk, editors, Developments in Language Theory - 24th Interna-
tional Conference, DLT 2020, Proceedings, volume 12086 of Lecture
Notes in Computer Science, pages 222–236. Springer, 2020.

[Loh04] Markus Lohrey. Word problems on compressed words. In Josep Dı́az,
Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Au-
tomata, Languages and Programming: 31st International Colloquium,
ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume
3142 of Lecture Notes in Computer Science, pages 906–918. Springer,
2004.

[Loh06] Markus Lohrey. Word problems and membership problems on com-
pressed words. SIAM J. Comput., 35(5):1210–1240, 2006.

[Loh12] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey.
Groups Complexity Cryptology, 4(2), 2012.

[Loh14] Markus Lohrey. The Compressed Word Problem for Groups. Springer
Briefs in Mathematics. Springer, 2014.

[LPS18] Michael Luttenberger, Raphaela Palenta, and Helmut Seidl. Comput-
ing the longest common prefix of a context-free language in polynomial
time. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium
on Theoretical Aspects of Computer Science, STACS 2018, volume 96
of LIPIcs, pages 48:1–48:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018.

[LS15] Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory.
Classics in Mathematics. Springer, 2015.

[Mal17] Andreas Maletti. Survey: Finite-state technology in natural language
processing. Theor. Comput. Sci., 679:2–17, 2017.

106

Bibliography

[MBPS05] Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl.
XML type checking with macro tree transducers. In Chen Li, editor,
Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 13-15, 2005, Bal-
timore, Maryland, USA, pages 283–294. ACM, 2005.

[MGHK09] Andreas Maletti, Jonathan Graehl, Mark Hopkins, and Kevin Knight.
The power of extended top-down tree transducers. SIAM J. Comput.,
39(2):410–430, 2009.

[MN99] Sebastian Maneth and Frank Neven. Structured document transfor-
mations based on XSL. In Richard C. H. Connor and Alberto O.
Mendelzon, editors, Research Issues in Structured and Semistruc-
tured Database Programming, 7th International Workshop on Database
Programming Languages, DBPL’99, Kinloch Rannoch, Scotland, UK,
September 1-3, 1999, Revised Papers, volume 1949 of Lecture Notes in
Computer Science, pages 80–98. Springer, 1999.

[Moh00] Mehryar Mohri. Minimization algorithms for sequential transducers.
Theor. Comput. Sci., 234(1-2):177–201, 2000.

[MS18] Sebastian Maneth and Helmut Seidl. Balancedness of MSO transduc-
tions in polynomial time. Inf. Process. Lett., 133:26–32, 2018.

[MT06] Y. Minamide and A. Tozawa. XML validation for context-free gram-
mars. In APLAS, pages 357–373. LNCS 4279, Springer, 2006.

[Mül06] Markus Müller-Olm. Variations on Constants - Flow Analysis of Se-
quential and Parallel Programs, volume 3800 of Lecture Notes in Com-
puter Science. Springer, 2006.

[Pla94] Wojciech Plandowski. Testing equivalence of morphisms on context-
free languages. In Algorithms - ESA ’94, Second Annual European
Symposium, pages 460–470. LNCS 855, Springer, 1994.

[PR99] Wojciech Plandowski and Wojciech Rytter. Complexity of language
recognition problems for compressed words. In Juhani Karhumäki,
Hermann A. Maurer, Gheorghe Paun, and Grzegorz Rozenberg, editors,
Jewels are Forever, Contributions on Theoretical Computer Science in
Honor of Arto Salomaa, pages 262–272. Springer, 1999.

[Ryt03] Wojciech Rytter. Application of lempel-ziv factorization to the approx-
imation of grammar-based compression. Theor. Comput. Sci., 302(1-
3):211–222, 2003.

107

Bibliography

[Sak] Jacques Sakarovitch. Elements of Automata Theory. Cambridge Uni-
versity Press.

[SLLN09] Slawomir Staworko, Grégoire Laurence, Aurélien Lemay, and Joachim
Niehren. Equivalence of deterministic nested word to word transducers.
In Miroslaw Kutylowski, Witold Charatonik, and Maciej Gebala, edi-
tors, Fundamentals of Computation Theory, 17th International Sympo-
sium, FCT 2009, Wroclaw, Poland, September 2-4, 2009. Proceedings,
volume 5699 of Lecture Notes in Computer Science, pages 310–322.
Springer, 2009.

[SMK15] Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence
of deterministic top-down tree-to-string transducers is decidable. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 943–962. IEEE Computer Society, 2015.

[SMK18] Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence of
deterministic top-down tree-to-string transducers is decidable. J. ACM,
65(4):21:1–21:30, 2018.

[TM07] Akihiko Tozawa and Yasuhiko Minamide. Complexity results on bal-
anced context-free languages. In Helmut Seidl, editor, Foundations
of Software Science and Computational Structures, 10th International
Conference, FOSSACS 2007, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2007, Proceed-
ings, volume 4423 of Lecture Notes in Computer Science, pages 346–
360. Springer, 2007.

[Voi05] Janis Voigtländer. Tree transducer composition as program transfor-
mation. PhD thesis, Dresden University of Technology, 2005.

[Wad90] Philip Wadler. Deforestation: Transforming programs to eliminate
trees. Theor. Comput. Sci., 73(2):231–248, 1990.

[Zac79] Z. Zachar. The solvability of the equivalence problem for deterministic
frontier-to-root tree transducers. Acta Cybern., 4(2):167–177, 1979.

108

	Abstract
	Zusammenfassung
	List of Publications
	Introduction
	Well-formedness and Longest Common Suffix.
	Equivalence.
	Balancedness.

	Well-formedness of Context-free Grammars
	Preliminaries
	`39`42`"613A``45`47`"603Alcs-equivalent Sublanguages
	Deciding Well-formedness
	Reduced Longest Common Suffix Computation
	Summary

	Equivalence of Linear Tree Transducers
	Preliminaries
	Deciding Equivalence
	Ordered Form for Linear Tree-to-Word Transducers
	Summary

	Balancedness
	2-copy Tree-to-Word Transducers
	Balancedness of 2-TWs
	Eliminating Inverted Letters in Well-formed LTWBs
	Summary

	Conclusion
	Bibliography

