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Relating Relative Entropy, Optimal
Transport and Fisher Information: A
Quantum HWI Inequality
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Abstract. Quantum Markov semigroups characterize the time evolution
of an important class of open quantum systems. Studying convergence
properties of such a semigroup and determining concentration properties
of its invariant state have been the focus of much research. Quantum
versions of functional inequalities (like the modified logarithmic Sobolev
and Poincaré inequalities) and the so-called transportation cost inequali-
ties have proved to be essential for this purpose. Classical functional and
transportation cost inequalities are seen to arise from a single geometric
inequality, called the Ricci lower bound, via an inequality which inter-
polates between them. The latter is called the HWI inequality, where
the letters I, W and H are, respectively, acronyms for the Fisher informa-
tion (arising in the modified logarithmic Sobolev inequality), the so-called
Wasserstein distance (arising in the transportation cost inequality) and
the relative entropy (or Boltzmann H function) arising in both. Hence,
classically, the above inequalities and the implications between them form
a remarkable picture which relates elements from diverse mathematical
fields, such as Riemannian geometry, information theory, optimal trans-
port theory, Markov processes, concentration of measure and convexity
theory. Here, we consider a quantum version of the Ricci lower bound
introduced by Carlen and Maas and prove that it implies a quantum
HWI inequality from which the quantum functional and transportation
cost inequalities follow. Our results hence establish that the unifying pic-
ture of the classical setting carries over to the quantum one.

1. Introduction

Realistic physical systems that are relevant for quantum information process-
ing are inherently open. They undergo unwanted but unavoidable interactions
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with the surrounding environment and are hence subject to noise and deco-
herence. Under the Markovian approximation, which is valid when the system
is only weakly coupled to its environment, the resulting dissipative dynamics
of the system is described by a quantum Markov semigroup (QMS), whose
generator we denote by L. The analysis of quantum Markov semigroups is
hence a key component of the theory of open quantum systems and quantum
information. An important problem in the study of a QMS is the analysis
of its convergence properties, in particular its mixing time, which is the time
taken by any state evolving under the action of the QMS to come close to its
invariant state.1

1.1. Functional and Transportation Cost Inequalities

Classically, given a measure μ, functional inequalities, e.g. the Poincaré inequal-
ity (usually denoted as PI(λ)) [29] and the (modified) logarithmic Sobolev
inequality (or log-Sobolev in short), denoted as MLSI(α) [22], constitute a
powerful tool for deriving mixing times of a Markov semigroup with invari-
ant measure μ and determining concentration properties of μ. They are also
related to the so-called transportation cost inequalities denoted by TC1(c1)
and TC2(c2). Here α, c1 and c2 denote constants appearing in the respective
inequalities. Consider a compact manifold M, and let P(M) be the set of prob-
ability measures on M. Given a measure μ ∈ P(M), the inequality TC1(c1)
(resp. TC2(c2)) provides an upper bound on the so-called Wasserstein distance
W1 (resp. W2), between any probability measure ν ∈ P(M) and the given mea-
sure μ, in terms of the square root of the relative entropy of ν with respect
to μ. Since μ is fixed, this relative entropy is simply a functional of ν and,
due to its close links with the Boltzmann H-functional, is often denoted by the
letter H in the literature. The notion of Wasserstein distances first appeared
in the theory of optimal transport, which was initiated by Monge [21] and
later analysed by Kantorovich [15]. In its original formulation by Monge, the
problem of optimal transport concerns finding the optimal way, in the sense of
minimal transportation cost, of moving a sand pile between two locations (see
also [30]). In 1986, Marton [20] showed that transportation cost inequalities
are also useful for deriving concentration of measure properties of the given
measure μ.2

The classical inequalities discussed above can be shown to be obtainable
from a single geometric inequality, involving a quantity called the Ricci curva-
ture of the manifold M, and referred to as the Ricci lower bound. In fact, there
is an inherent relation between the geometry of the manifold and a diffusion
process (whose associated Markov semigroup has generator L, say) defined on

1Here we assume that the QMS is primitive, i.e. it has a unique invariant state.
2Given a metric space (X , d), a probability measure µ is said to satisfy Gaussian (resp. expo-
nential) concentration on it if there exist positive constants a, b such that for any A ⊆ X ,
and r > 0,

µ(A) ≥ 1/2 =⇒ µ(Ar) ≥ 1 − ae−bf(r).

where Ar := {x ∈ X : d(x,A) < r} and f(r) = r2 (resp. r).
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it: the diffusion process can be used to explore the geometry of M, and con-
versely, the latter determines the mixing time of the diffusion process. Finding
a quantum analogue of this appealing geometric inequality is hence a problem
of fundamental interest and is considered in this paper. Before we present our
results on this problem, we first need to explain the statement of the Ricci
lower bound in the classical setting. In fact, it is instructive to start from the
very definition of curvature which generalizes to the Ricci curvature for the
case of a Riemannian manifold.

1.2. Ricci Curvature and Ricci Lower Bound (Classical Setting)

Given a surface S embedded in the Euclidean space R
3, the Gauss curvature κ

of S is a measure of its local boundedness. More precisely, given a point x ∈ S
and any two mutually orthogonal unit tangent vectors u, v at x, the distance
between two geodesics γu and γv, starting at x, with respective directions u
and v, obeys the following Taylor expansions:

dg(γu(t), γv(t)) =
√

2t

(
1 − κ(x)

12
t2 + Ot→0(t3)

)
, t ≥ 0, (1.1)

where dg is the geodesic distance defined with respect to the metric g induced
on S by the Euclidean metric. In the case when κ = 0 uniformly on the surface,
the latter is flat, and we recover the Pythagoras theorem from Eq. (1.1). More
generally, let x be a point on a d-dimensional compact Riemannian manifold
M, let u belong to the tangent space TxM at the point x of M, and com-
plete the vector u into an orthonormal basis (u, v2, . . . , vd) of TxM. Then, the
Ricci curvature of M, evaluated at u, is the averaged Gauss curvature over
orthogonal surfaces defined by all the geodesics starting at x with direction
given by the unit vectors belonging to the vector subspace spanned by u and
any other vector vi, i = 2, . . . , d. The expression for the Ricci curvature [30] is
given in terms of the Laplace–Beltrami operator (denoted simply as Δ), and
hence, the curvature is usually denoted as Ric(Δ). Since Δ is the generator
of the heat semigroup, the curvature provides a bridge between the geometry
of the manifold and the evolution on it induced by heat diffusion. There is
an important inequality, known as the Ricci lower bound, which is denoted
by Ric(Δ) ≥ κ [3], and is the property that the Ricci curvature is uniformly
bounded below by a real parameter κ ≥ 0. Intuitively, the inequality is related
to concentration of the uniform measure on M, which is known to be the
unique invariant measure of heat diffusion. For example, in the case of the
sphere, which has constant Ricci curvature given in terms of its radius, the
Haar measure can be shown to concentrate around any great circle. One can
relax the condition of uniformity of the measure in order to allow for the study
of concentration of measure phenomena for different measures μ, invariant for
other diffusions processes on M. In this more general framework, the Ricci
lower bound is denoted by Ric(L) ≥ κ, where L denotes the generator of the
diffusion semigroup associated with μ (Fig. 1).
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Figure 1. The Gauss curvature

More recently, Sturm [27,28] and Lott–Villani [18] showed that Ric(L) ≥ κ can
be viewed as a (refined) convexity property (called the κ-displacement convex-
ity) of H along geodesics on the Riemannian manifold obtained by endowing
the set of probability measures P(M) on M with the Wasserstein distance W2

[31]. This discovery led to a more robust notion of a Ricci lower bound, which
does not explicitly depend on the expression of the Ricci curvature, and hence
can be extended to more general metric spaces. Starting from this convexity
property, one can then construct a diffusion semigroup for which H decreases
the most along the direction of evolution induced by the semigroup. In this
case, the path on the Riemannian manifold (P(M),W2), which corresponds
to the actual evolution under the diffusion, is said to be gradient flow for H.
It is a striking fact that this diffusion coincides with the one whose generator
appears in the Bakry–Émery condition (see [10,14]).
In [23], the authors introduced the so-called HWI(κ)-interpolation inequality,
using which they reproved the so-called Bakry–Émery theorem, which states
that for κ > 0, Ric(L) ≥ κ implies MLSI(α) (for diffusions on R

n with asso-
ciated generator L). The letters W, I and H are, respectively, acronyms for
the Wasserstein distance W2 (appearing in TC2(c2)), the Fisher information
(which arises in MLSI(α)) and the relative entropy (also called the Boltzmann
H-functional, as mentioned above) which appears in both these inequalities.
They also showed that MLSI(α) implies TC2(c2). The term interpolation here
comes from the fact that in the case κ = 0 and c > 0, TC2(c) together with
HWI(0) gives back MLSI(α).
In [11,12,19], a modified version of the Ricci lower bound was defined for
Markov processes on finite sets, which led to the unification of the previously
discussed functional and concentration inequalities in this discrete framework.
In particular, it was proved in [11] that one can recover the Poincaré and
modified log-Sobolev inequalities from the Ricci lower bound, provided the
diameter of P(M), with respect to the Wasserstein distance, W2, is bounded.

1.3. Ricci Lower Bound (Quantum Setting)

In the case of a quantum system with a finite-dimensional Hilbert space H, the
set P(M) is replaced by the set D(H) of quantum states (i.e. density matrices)
on H. Then, in analogy with the classical case, starting with a primitive QMS
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Figure 2. Chain of quantum functional- and Tala-
grand inequalities and related concentrations for a prim-
itive semigroup (Λt)t≥0 with generator L defined on a
Hilbert space of dimension d. The implication MLSI(α)
⇒ PI(λ) was proved in [16]. Here, “Exp.” refers to the
notion of exponential concentration, whereas “Gauss.” refers
to the stronger notion of Gaussian concentration. The
implications MLSI(α)⇒TC2(c2)⇒PI(λ)⇒Exp., as well as
TC2(c2)⇒TC1(c1)⇒Gauss. were proved in [24]

with generator L, Carlen and Maas [6,7] defined a quantum Wasserstein dis-
tance W2,L which renders D(H) with a Riemannian structure, and for which
the master equation associated with the QMS is gradient flow for the quantum
relative entropy.

In [7], the authors proved that a quantum MLSI(α), first introduced
in [16], holds provided the quantum relative entropy (between a state on a
geodesic on this manifold and the invariant state of the QMS) satisfies a quan-
tum analogue of the κ-displacement convexity property along geodesics, for
α = κ > 0. This is denoted below by Ric(L) ≥ κ in analogy with the classical
case, with L being the generator of the QMS.

The quantum versions of the Ricci lower bound, the HWI inequality,
and the functional and transportation cost inequalities, all fit into a unifying
picture which is analogous to the classical setting. It is given in Fig. 2.

Our Contribution: In this paper, we analyse the quantum version of the Ricci
lower bound introduced by Carlen and Maas [7] and derive various implications
of it in Theorem 3. Moreover, we show that Ric(L) ≥ κ implies a quantum
version of the celebrated HWI(κ) inequality which interpolates between the
modified logarithmic Sobolev inequality and the transportation cost inequal-
ity (Theorem 5). We show that, in the case of κ > 0, HWI(κ) ⇒ MLSI(κ)
(Corollary 2), recovering the result of [7]. On the other hand, in Corollary 3,
we establish that in the case when κ ∈ R, Ric(L ≥ κ) together with TC2(c2)
implies MLSI(α). Moreover, in the case when κ = 0, we show that, under the
assumption of boundedness of the diameter D of the set of states with respect
to the quantum Wasserstein distance W2,L, Ric(L) ≥ 0 implies PI(c1D

−2) for
some universal constant c1 (Theorem 6). Moreover, in the case of a unital QMS
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(i.e. one which has the completely mixed state as its unique invariant state),
we show that it also implies MLSI(c2D

−2) for some universal positive constant
c2 (Theorem 7). We hence extend the results of [11] to the quantum regime.

1.4. Layout of the Paper

In Sect. 2, we introduce the necessary notations and definitions, including
quantum Markov semigroups, the quantum Wasserstein distance and quantum
functional inequalities. The quantum version of κ-displacement convexity is
studied in Sect. 3. In Sect. 4, we prove the quantum HWI(κ) inequality, show
that it implies MLSI(κ) in the case when κ > 0 and derive interpolation results
between MLSI(κ) and TC2(c2) from it. In Sect. 5, we show that in the case
in which κ = 0, PI(λ) holds with a constant λ proportional to D−2, where D
stands for the diameter of the set of states. In Sect. 6, we show that under the
further assumption of the QMS being unital, MLSI(α1) holds with a constant
α1 also proportional to D−2.

2. Notations and Preliminaries

2.1. Operators, States and Entropic Quantities

In this paper, we denote by (H, 〈.|.〉) a finite-dimensional Hilbert space of
dimension d with associated inner product 〈.|.〉, by B(H) the algebra of lin-
ear operators acting on H, and by Bsa(H) ⊂ B(H) the subspace of self-
adjoint operators. Moreover, the Hilbert–Schmidt inner product 〈., .〉, where
〈A,B〉 = Tr(A∗B) ∀A,B ∈ B(H), provides B(H) with a Hilbert space struc-
ture. Here, the trace Tr is unnormalized, adopting the uses of the community
of quantum information theory, so that Tr(I) = d. Let P(H) be the cone of
positive semi-definite operators on H and P+(H) ⊂ P(H) the set of (strictly)
positive operators. Further, let D(H) := {ρ ∈ P(H) | Tr ρ = 1} denote the set
of density operators (or states) on H, and D+(H) := D(H)∩P+(H) denote the
subset of faithful states. We denote the support of an operator A by supp(A).
Let I ∈ P(H) be the identity operator on H, and id : B(H) �→ B(H) the
identity map on operators on H. For p, q ≥ 1, the p-Schatten norm of an oper-
ator A ∈ B(H) is denoted by ‖A‖p := (Tr |A|p)1/p, and the p → q-norm of a
superoperator Λ : B(H) → B(H) by ‖Λ‖p→q. Such a linear map is said to be
unital if Λ(I) = I. Given two states ρ, σ ∈ D(H), the quantum relative entropy
between ρ and σ is defined as:

D(ρ‖σ) :=
{

Tr(ρ(log ρ − log σ)) if supp(ρ) ⊆ supp(σ),
+∞ else.

2.2. Quantum Markov Semigroups and the Detailed Balance Condition

In the Heisenberg picture, a quantum Markov semigroup (QMS) on a finite-
dimensional Hilbert space H is given by a one-parameter family (Λt)t≥0 of
linear, completely positive, unital maps on B(H) satisfying the following prop-
erties

• Λ0 = id;
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• Λt ◦ Λs = Λt+s—semigroup property;
• ∀X ∈ B(H), lim

t→0
||Λt(X) − X||∞ = 0—strong continuity.

The parameter t plays the role of time. For each quantum Markov semigroup,
there exists an operator L called the generator, or Lindbladian, of the semi-
group, such that

d
dt

Λt = Λt ◦ L = L ◦ Λt. (2.1)

In the Schrödinger picture, the dual of Λt is written Λ∗t, for any t ≥ 0. Sim-
ilarly, we denote by L∗ the dual of L. The QMS is said to be primitive (or
ergodic) if there exists a unique invariant state σ, i.e. such that Λ∗t(σ) = σ.
Such a QMS is said to satisfy the detailed balance condition if the following
holds:

Tr(σL(X)∗Y ) = Tr(σX∗L(Y )), X, Y ∈ B(H). (2.2)

In the context of quantum logarithmic Sobolev inequalities (introduced later),
the quantum Fisher information of ρ with respect to the state σ, first defined
in [25], is particularly useful:

Iσ(ρ) :=
{−Tr(L∗(ρ)(log ρ − log σ)), ρ ∈ D+(H)

+∞, otherwise.

This quantity is also referred to as entropy production and denoted by EPσ

in the literature. We will use both notations in what follows. The following
theorem provides a structure for the generators of primitive QMS satisfying
the detailed balance condition:

Theorem 1 ([1,7]). Let σ ∈ D+(H), and let (Λt)t≥0 be a quantum Markov
semigroup on B(H). Suppose that the generator L of (Λt)t≥0 satisfies the
detailed balance condition with respect to a full-rank invariant state σ. Then
there exists an index set J of cardinality |J | ≤ d2 − 1, where d = dim(H),
such that L takes the following form for any f ∈ B(H):

L(f) =
∑
j∈J

cj

(
e−ωj/2L̃∗

j [f, L̃j ] + eωj/2[L̃j , f ]L̃∗
j

)
(2.3)

where ωj ∈ R and cj > 0 for all j ∈ J , and {L̃j}j∈J is a set of operators in
B(H) with the properties:

1. 1
dim(H)Tr(L̃∗

j L̃k) = δk,j for all j, k ∈ J
2. Tr(L̃j) = 0 for all j ∈ J
3. {L̃j}j∈J = {L̃∗

j}j∈J
4. {L̃j}j∈J consists of eigenvectors of the modular operator Δρ : f �→ ρfρ−1

with

Δσ(L̃j) = e−ωj L̃j .

Finally for each j ∈ J
cj = cj′ , and ωj = −ωj′ when L̃∗

j = L̃j′ . (2.4)
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Conversely, given any faithful (full-rank) state σ, any set {L̃j}j∈J satisfying
the above four conditions for some {ωj}j∈J ⊂ R and any set {cj}j∈J of
positive numbers satisfying the symmetry condition (2.4), the operator L given
by Eq. (2.3) is the generator of a quantum Markov semigroup (Λt)t≥0 which
satisfies the detailed balance condition.

2.3. The Wasserstein Distance W2,L
In this section, we recall the construction of the Wasserstein metric W2,L first
defined in [7]. Assume given a generator L of a primitive QMS, with invariant
state σ, of the form of (2.3). Given an operator X ∈ B(H), its non-commutative
gradient is defined as:

∇X := (∂1X, . . . , ∂J X), X ∈ B(H),

where ∂jX = [L̃j ,X] for all j ∈ J . Similarly, given a vector A ≡ (A1, . . . , A|J |)
∈ ⊕

j∈J B(H), the divergence of A is defined as

div(A) :=
∑
j∈J

cj [Aj , L̃
∗
j ] ≡ −

∑
j∈J

cj∂
∗
j Aj ,

where ∂∗
j X := [L̃∗

j ,X]. For �ω := (ω1, . . . , ω|J |), define the linear operator [ρ] �ω
on

⊕
j∈J B(H) through

[ρ] �ωA := ([ρ]ω1A1, . . . , [ρ]ω|J |A|J |), A ≡ (A1, . . . , A|J |),

where for any ω ∈ R,

[ρ]ω := Rρ ◦ fω(Δρ), fω(t) := eω/2 t − e−ω

log t + ω
, t ∈ R, (2.5)

where Rρ : B(H) → B(H) denotes the operator of left multiplication by ρ.
Intuitively, [ρ]ω can be understood as a non-commutative way of multiplying
by ρ:

Lemma 1 (see Lemma 5.8 of [7]). For any ω ∈ R, and ρ ∈ D+(H),

[ρ]ω(A) =
∫ 1

0

eω(1/2−s)ρsAρ1−sds.

Let (γ(s))s∈(−ε,ε) be a differential path in D+(H) for some ε > 0 and
denote ρ := γ(0). Then Tr(γ̇(0)) = d

ds

∣∣
s=0

Tr(γ(s)) = 0. Carlen and Maas
proved that there is a unique vector field V ∈ ⊕

j∈J B(H) of the form V =
∇U , where U ∈ B(H) is traceless and self-adjoint, for which the following
non-commutative continuity equation holds:

γ̇(0) = −div([ρ] �ω∇U). (2.6)

Define the inner product 〈., .〉L,ρ on
⊕

j∈J B(H) through:

〈W,V〉L,ρ :=
∑
j∈J

cj〈Wj , [ρ]ωj
Vj〉, (2.7)

where 〈A,B〉 := Tr(A∗B) denotes the usual Hilbert–Schmidt inner product
on B(H). Hence, looking upon D+(H) as a manifold, for each ρ ∈ D+(H), we
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can identify the tangent space Tρ at ρ with the set of gradient vector fields
{∇U : U ∈ B(H), U = U∗} through the correspondence provided by the
continuity equation (2.6). Defining the metric gL through the relation

‖γ̇(0)‖2
gL,ρ

:= ‖V(0)‖2
L,ρ, (2.8)

this endows the manifold D+(H) with a smooth Riemannian structure. In
this framework, Carlen and Maas then defined the modified non-commutative
Wasserstein distance W2,L to be the energy associated with the metric gL,
i.e.:

W2,L(ρ, σ) := inf
γ

{(∫ 1

0

‖V(s)‖2
L,γ(s)ds

)1/2

: γ(0) = ρ, γ(1) = σ

}
, (2.9)

where the infimum is taken over smooth paths γ : [0, 1] → D+(H), and V :
[0, 1] → ⊕

i∈J B(H) is related to γ through the continuity equation (2.6). The
paths achieving the infimum, if they exist, are the minimizing geodesics with
respect to the metric gL. The following lemma, proved in [24], follows from a
standard argument:

Lemma 2. With the above notations, the Wasserstein distance between two
faithful states ρ, σ is equal to the minimal length over the smooth paths joining
ρ and σ:

W2,L(ρ, σ) = inf
γ(s) const. speed

{∫ 1

0

‖γ̇(s)‖gL,γ(s)ds : γ(0) = ρ, γ(1) = σ

}
,

(2.10)

where the infimum is taken over curves γ of constant speed, i.e. such that
s �→ ‖γ̇(s)‖gL,γ(s) is constant on [0, 1].

This definition for the quantum Wasserstein distance, W2,L, is natural in the
sense that the master equation

ρ̇t = L∗ρt,

is gradient flow for D(.‖σ), where σ is the invariant state associated with
L. This means that L∗ρ = − gradL D(ρ‖σ), where the gradient gradL of a
differentiable functional F : D+(H) → R is defined as the unique element in
the tangent space at ρ so that

d
dt

F(γ(t))
∣∣∣∣
t=0

= gL,ρ(γ̇, gradgL,ρ
F(ρ)) (2.11)

for all smooth paths γ(t) defined on (−ε, ε) for some ε > 0 with γ(0) = ρ. In
particular, for γ(t) = ρt ≡ Λ∗t(ρ),

d
dt

D(ρt‖σ)
∣∣∣∣
t=0

= −gL,ρ(L∗(ρ),L∗(ρ)) = −‖L∗(ρ)‖2
gL,ρ

. (2.12)

The following lemma is going to play a crucial role in the rest of this paper:
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Lemma 3. For any ρ ∈ D+(H), the map D �ω(ρ) : U �→ −div([ρ] �ω∇U) is
invertible and positive in the sense of Loewner order on the Hilbert space of
self-adjoint, traceless operators. Moreover, if ρ ≥ εI for some ε > 0, then:

D �ω(ρ)−1 ≤ KL ε−1 id,

where KL := supj∈J
ωj

eωj/2−e−ωj/2 ‖(−div ◦∇(.))−1‖2→2 > 0.

Proof. Let W be the space of self-adjoint, traceless operators on H. From
Theorem 7.3 of [7], for any C1 path (γ(t))t∈(−ε,ε), with γ(0) = ρ, there exists
a unique vector field of the form ∇U for which the continuity equation γ̇(0) =
−div([ρ] �ω(∇U)) holds. Moreover, by ergodicity of (Λt)t≥0, ker(∇) consists of
multiples of the identity. Therefore, there exists a unique U ∈ W such that
γ̇(0) = −div([ρ] �ω(∇U)). Now, for any U, V ∈ W:

〈U,D �ω(ρ)[V ]〉 =
∑
j∈J

cj〈∂jU, [ρ]ωj
∂jV 〉

=
∑
j∈J

cj〈[ρ]ωj
∂jU, ∂jV 〉

=
∑
j∈J

cj〈∂∗
j ([ρ]ωj

∂jU), V 〉

= −〈div([ρ] �ω∇U), V 〉
= 〈D �ω(ρ)[U ], V 〉,

which means that D �ω(ρ) is indeed self-adjoint. By the same argument, we can
show that the superoperators ∇ : B(H) → ⊕j∈J B(H) and −div : ⊕j∈J B(H) →
B(H) are adjoint to each other, where B(H) and ⊕j∈J B(H) are provided
with the inner products 〈., .〉 and

∑
j∈J cj 〈., .〉, respectively. Indeed for any

U ∈ B(H) and V = (V1, . . . , V|J |) ∈ ⊕j∈J B(H):∑
j∈J

cj〈Vj , ∂jU〉 =
∑
j∈J

cj Tr((Vj)∗[L̃j , U ])

=
∑
j∈J

cj Tr([V ∗
j , L̃j ]U)

= −
∑
j∈J

cj Tr([Vj , L̃
∗
j ]

∗U)

= 〈−div(V), U〉.
Assume now that ρ ≥ εI for some ε > 0, so that for any j ∈ J :

[ρ]ωj
=

∫ 1

0

eωj(1/2−α)Lα
ρ R1−α

ρ dα ≥ ε
eωj/2 − e−ωj/2

ωj
id > 0.

Hence, −div ◦[ρ] �ω ◦ ∇(.) is positive and

(−div ◦[ρ] �ω ◦ ∇(.))−1 ≤ ε−1 sup
j∈J

ωj

eωj/2 − e−ωj/2
(−div ◦∇(.))−1,

and the result follows. �
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The above lemma allows us to extend the definition of the Wasserstein distance
to non-faithful states:

Proposition 1 (Extension of the metric to D(H)). Let ρ, ω ∈ D(H) and let
{ρn}n∈N and {ωn}n∈N be sequences of faithful states satisfying

Tr[(ρ − ρn)2] → 0, Tr[(ω − ωn)2] → 0, (2.13)

as n → ∞. Then the sequence {W2,L(ρn, ωn)}n∈N converges. Moreover, the
limit does not depend on the choice of the approximating sequences {ρn}n∈N

and {ωn}n∈N.

Proof. The proof is similar to the one given in Proposition 4.5 of [6]. It is
enough to show that {W2,L(ρn, ωn)}n∈N is Cauchy. By the triangle inequality,
it is even enough to prove that W2,L(ρn, ρm) → 0 as m,n → ∞. Let ε ∈ (0, 1)
and set ρ̄ := (1−ε)ρ+ε I

d . Let N ∈ N be such that for any n ≥ N , Tr[(ρ−ρn)2] ≤
ε2. For n ≥ N , consider the convex interpolation γ(s) := (1 − s)ρn + sρ̄. Since
γ(s) ≥ εs I

d for s ∈ [0, 1], we find from Eq. 2.10 that

W2L(ρn, ρ̄) ≤
∫ 1

0

‖γ̇(s)‖gL,γ(s)ds

=
∫ 1

0

⎡
⎣∑

j∈J
cj〈∂j(−div ◦[γ(s)] �ω ◦ ∇)−1(γ̇(s)),

[γ(s)]ωj
∂j(−div ◦[γ(s)] �ω ◦ ∇)−1(γ̇(s))〉

⎤
⎦

1
2

ds

=
∫ 1

0

√
〈γ̇(s), (−div([γ(s)] �ω∇(.)))−1 γ̇(s)〉ds

≤
√

dKL
ε

∫ 1

0

s−1/2
√

Tr[(γ̇(s))2]ds,

where we used Lemma 3 in the second, third and fourth lines above. Now

Tr[(γ̇(s))2] = Tr[(ρ − ρn + ε(I/d − ρ))2]

≤ 2Tr[(ρ − ρn)2] + 2ε2 Tr[(I/d − ρ)2]

≤ 2
(
1 + Tr[(I/d − ρ)2]

)
ε2.

Hence, W2,L(ρn, ρ̄) ≤ √
K(L, ρ)ε, for some constant K(L, ρ) depending on ρ

and L. Since ε is arbitrary, we conclude by triangle inequality that W2,L(ρm, ρn)
≤ W2,L(ρm, ρ̄) + W2,L(ρ̄, ρn) → 0. �

The above proposition justifies the following definition: The modified Wasser-
stein distance W2,L between two states ρ, ω ∈ D(H) is defined as

W2,L(ρ, ω) := lim
n→∞ W2,L(ρn, ωn),
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where {ρn}n∈N and {ωn}n∈N are arbitrary sequences in D+(H) satisfying
(2.13). It can be shown that (D(H),W2,L) forms a complete metric space
as follows:

Lemma 4. For any ρ, ω ∈ D(H),

‖ρ − ω‖1 ≤ 2

⎛
⎝∑

j∈J
cj(e−ωj/2 + eωj/2)‖L̃j‖2

∞

⎞
⎠

1/2

W2,L(ρ, ω).

Proof. The proof follows from a direct application of inequality (2.39) of
Lemma 6 of [24]: for any X ∈ Bsa(H):

|Tr(X(ρ − ω))| ≤
√

d ‖X‖LipW2,L(ρ, ω),

where

‖X‖Lip :=

⎛
⎝1

d

∑
j∈J

cj(e−ωj/2 + eωj/2)‖∂jX‖2
∞

⎞
⎠

1/2

≤ 2√
d

⎛
⎝∑

j∈J
cj(e−ωj/2 + eωj/2)‖L̃j‖2

∞

⎞
⎠

1/2

‖X‖∞.

The result follows from the duality relation between the norms ‖.‖∞ and
‖.‖1. �

Proposition 2. The metric space (D(H),W2,L) is complete.

Proof. This directly follows from Lemma 4 and Proposition 1: assume that
{ρn}n∈N is a Cauchy sequence in (D(H),W2,L), that is W2,L(ρn, ρm) → 0 as
m,n → ∞. Then, by Lemma 4, {ρn}n∈N is also Cauchy with respect to the
trace norm ‖.‖1. By completeness of the normed vector space (B(H), ‖.‖1),
this implies existence of ρ∞ ∈ B(H) such that ‖ρn − ρ∞‖1 → 0 as n → ∞.
Moreover, ρ∞ ∈ D(H): indeed, for any ψ ∈ (H, 〈.|.〉),

〈ψ|ρ∞ψ〉 = 〈ψ|(ρ∞ − ρn)ψ〉 + 〈ψ|ρn ψ〉,
which implies the positivity of ρ∞, since |〈ψ|(ρ∞−ρn)ψ〉| ≤ ‖ρ∞−ρn‖1〈ψ|ψ〉 →
0 as n → ∞, and 〈ψ|ρnψ〉 ≥ 0 for all n. Moreover

|Tr(ρn − ρ∞)| ≤ ‖ρn − ρ∞‖1 → 0, n → ∞,

which implies Tr ρ∞ = 1. We conclude that W2,L(ρn, ρ∞) → W2,L(ρ∞, ρ∞) =
0 by Proposition 1. �

2.4. Quantum Functional and Transportation Cost Inequalities

A primitive QMS (Λt)t≥0 with unique invariant state σ is said to satisfy:
1. a Poincaré inequality with constant λ > 0, if for all f ∈ Bsa(H) with

Tr(σf) = 0,

λ Varσ(f)2 ≤ −Tr(σfL(f)), (PI(λ))

where Varσ(f) := Tr(σf2) − Tr(σf)2.
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2. a modified logarithmic Sobolev inequality with constant α1 > 0 if for all
ρ ∈ D+(H),

2α1D(ρ‖σ) ≤ EPσ(ρ) = Iσ(ρ). (MLSI(α1))

3. a transportation cost inequality of order 2 with constant c2 > 0 if for all
ρ ∈ D+(H),

W2,L(ρ, σ) ≤
√

2c2D(ρ‖σ). (TC2(c2))

4. MLSI+TC2(c) inequality with constant c > 0 if for all ρ ∈ D+(H),

W2,L(ρ, σ) ≤ c
√

Iσ(ρ). (MLSI+TC2(c))

That (MLSI(α1)) implies (TC2(c2)) for c2 = α−1
1 was proved in [24]. Hence,

the following corollary easily follows:

Corollary 1. Assume that (Λt)t≥0 satisfies (MLSI(α1)) for some α1 > 0. Then
it also satisfies (MLSI+TC2(c)) with c = α−1

1 .

3. Quantum Ricci Lower Bound and κ-Displacement Convexity

In their celebrated paper [3] (see also [2]), Bakry and Emery found an elegant
criterion which implies the logarithmic Sobolev inequality in the setting of dif-
fusions. In this case of Markov semigroups defined on a Riemannian manifold
M, this criterion, called the Ricci lower bound, which is a special case of the
Bakry–Emery condition, was shown later on to be equivalent to the so-called
κ-displacement convexity of the relative entropy along geodesics in the Wasser-
stein space of probability measures on M in [26]. This notion of κ-displacement
convexity was extended to the framework of (necessarily non-diffusive) finite
Markov chains by Maas in [19]. Carlen and Maas generalized this notion to
the quantum regime in [7] and proved that it implies the modified logarith-
mic Sobolev inequality as well as the contractivity of the Wasserstein metric
under the flow associated with the underlying quantum semigroup (Λt)t≥0. In
their previous article [6], the same authors had already studied this quantum
extension of the notion of κ-displacement convexity in the particular case of
the fermionic Fokker–Planck equation. In this section, we provide a system-
atic analysis of the κ-displacement convexity, including a study of the geodesic
equations on the Riemannian manifold (D+(H), gL).

3.1. Geodesic Equations

Similarly to Theorem 2.4 of [12], Carlen and Maas provided in [7] the set of
faithful states D+(H) with a Riemannian structure with associated Riemann-
ian distance given by W2,L. Therefore, the local existence and uniqueness of
constant speed geodesics is guaranteed by standard Riemannian geometry. We
first recall that a constant speed geodesic (γ(s), U(s))s∈[0,1], where U is related
to γ through Eq. (2.6), satisfies a Euler–Lagrange equation that we derive in
Theorem 2. This result is a direct generalization of Theorem 5.3 in [6]. We
start by recalling the abstract framework. Let (V, 〈., .〉) be a finite-dimensional
real Hilbert space. Let W ⊂ V be a subspace of V, and z ∈ V\W. Consider
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the affine subspace Wz := z + W, and let M ⊂ Wz be a relatively open sub-
set. Let D : M → B(W) be a smooth function such that D(x) is self-adjoint
and invertible for all x ∈ M. We shall write C(x) := D(x)−1. Consider the
Lagrangian L : W×M → R defined by L(p, x) = 〈C(x)p, p〉 and the associated
minimization problem:

inf
u(.)∈C1([0,1],M)

(∫ 1

0

L(u′(t), u(t))dt : u(0) = u0, u(1) = u1

)
,

where u0, u1 ∈ M are given boundary values. Then, the Euler–Lagrange equa-
tions are equivalent to the following system of equations:⎧⎨

⎩
u′(t) − D(u(t))v(t) = 0,

v′(t) +
1
2
〈∂xD(u(t))v(t), v(t)〉 = 0.

(3.1)

Here, we apply this abstract result to the case where V = Bsa(H), with inner
product 〈., .〉 the usual Hilbert–Schmidt inner product, W = {A ∈ V : Tr(A) =
0}, z := I/dim(H), and M = D+(H). Indeed, any density operator ρ can be
written as ρ = I/dim H + K, for some self-adjoint and traceless operator
K. For any ρ ∈ D+(H), we already proved in Lemma 3 that D �ω(ρ) : U �→
−div([ρ] �ω∇U) is invertible and self-adjoint. Now we use the following identity
(see [6] p. 21):

d
dt

(ρ + tA)α

∣∣∣∣
t=0

=
∫ 1

0

∫ α

0

ρα−β

(1 − s)I + sρ
A

ρβ

(1 − s)I + sρ
dβds (3.2)

for any 0 < α < 1, ρ ∈ D+(H) and A ∈ W. Hence for all A,U ∈ W,

d
dt

∣∣∣∣
t=0

〈D �ω(ρ + tA)[U ], U〉 =
d
dt

∣∣∣∣
t=0

∑
j∈J

cj〈∂jU, [ρ + tA]ωj
∂jU〉

=
d
dt

∣∣∣∣
t=0

∑
j∈J

cj〈∂jU,

∫ 1

0

eωj(1/2−α)(ρ + tA)α

∂jU(ρ + tA)1−α〉dα

= 〈A,∇U.ρ∇U〉, (3.3)

where for two vectors �V1, �V2 in
⊕

j B(H),

�V1.ρ �V2 :=
∑
j∈J

cj

∫ 1

0

∫ 1

0

eωj(1/2−α)(χj( �V1, �V ∗
2 , ρ, α, s)

+ χj( �V ∗
1 , �V2, ρ, 1 − α, s))dαds, (3.4)

where

χj( �V1, �V2, ρ, α, s) :=
∫ α

0

ρβ

(1 − s)I + sρ
(V1)j ρ1−α (V2)j

ρα−β

(1 − s)I + sρ
dβ.

Therefore, in our context the Euler–Lagrange equations (3.1) reduce to the
following:
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Theorem 2. The geodesic equations in the Riemannian manifold (D+(H),W2,L)
are given by ⎧⎪⎪⎨

⎪⎪⎩

d
ds

γ(s) + div([γ(s)] �ω∇U(s)) = 0,

dU(s)
ds

+
1
2
∇U(s).γ(s)∇U(s) = 0.

(3.5)

3.2. Different Formulations of Quantum κ-Displacement Convexity

In analogy with [12], we say that a primitive quantum Markov semigroup
(Λt)t≥0 with associated invariant state σ and generator L of the form of
Eq. (2.3) has Ricci curvature bounded from below by a constant κ ∈ R if
the following inequality holds:

d2

ds2

∣∣∣∣
s=0

D(γ(s)‖σ) ≥ κ‖γ̇(0)‖2
gL,ρ

, (Ric(L) ≥ κ)

where (γ(s), U(s))s∈(−ε,ε) is the unique solution to the geodesic equation
(3.5) such that D+(H) � ρ := γ(0) and U(0) = U . We also refer to the above
inequality as the quantum Ricci lower bound. Theorem 2 is useful to derive
an expression for the second derivative of the relative entropy D(γ(s)‖σ) with
respect to s, where (γ(s))s∈(−ε,ε) is a constant speed geodesic with associated
tangent vector ∇U(s) at each s. We already know from the gradient flow
equation (2.12) that

d
ds

D(γ(s)‖σ)

= −gL,γ(s)(γ̇(s),L∗(γ(s)))

=
∑
j∈J

cj〈∂jU(s), [γ(s)]ωj
∂j(log γ(s) − log σ)〉

=
∑
j∈J

cj〈∂jU(s), [γ(s)]ωj
(L̃j log(e−ωj/2γ(s)) − log(eωj/2γ(s))L̃j)〉,

where the second line comes from Theorem 5.10 in [7], and the last identity
comes from Lemma 5.9 of [7]. Now by identity (5.6) of the same paper,

[γ(s)]ωj
(L̃j log(e−ωj/2γ(s)) − log(eωj/2γ(s))L̃j) = e−ωj/2L̃jγ(s) − eωj/2γ(s)L̃j ,

so that we finally get

d
ds

D(γ(s)‖σ) =
∑
j∈J

cj〈∂jU(s), e−ωj/2L̃jγ(s) − eωj/2γ(s)L̃j〉.

Differentiating once more, we get:

d2

ds2
D(γ(s)‖σ)

∣∣∣∣
s=0

=
∑
j∈J

cj

{
〈∂j

d
ds

U(s)
∣∣∣∣
s=0

, e−ωj/2L̃jρ − eωj/2ρL̃j〉

+〈∂jU, e−ωj/2L̃j γ̇(0) − eωj/2γ̇(0)L̃j〉
}

. (3.6)



2130 N. Datta, C. Rouzé Ann. Henri Poincaré

We first take care of the second line of Eq. (3.6). Using Theorem 2 as well as
Eq. (2.3), we find

〈∂jU, e−ωj/2L̃j γ̇(0) − eωj/2γ̇(0)L̃j〉
= −〈∂jU, e−ωj/2L̃j div([ρ] �ω∇U) − eωj/2 div([ρ] �ω∇U)L̃j〉
= −〈∂jU, e−ωj/2L̃j

∑
k∈J

ck[[ρ]ωk
∂kU, L̃∗

k] − eωj/2
∑
k∈J

ck[[ρ]ωk
∂kU, L̃∗

k]L̃j〉

=
∑
k∈J

ck

(
e−ωj/2〈∂k(L̃∗

j∂jU), [ρ]ωk
∂kU〉 − eωj/2〈∂k(∂jUL̃∗

j ), [ρ]ωk
∂kU〉

)

=
∑
k∈J

ck〈∂k

(
e−ωj/2L̃∗

j∂jU − eωj/2∂jUL̃∗
j

)
, [ρ]ωk

∂kU〉.

Hence by (2.3),∑
j∈J

cj〈∂jU, e−ωj/2L̃j γ̇(0) − eωj/2γ̇(0)L̃j〉 = −
∑

k

ck〈∂kL(U), [ρ]ωk
∂kU〉

= −〈∇L(U),∇U〉L,ρ. (3.7)

By (3.5), the first line of (3.6) is equal to
1
2

∑
j∈J

cj〈∂j(∇U.ρ∇U), eωj/2ρL̃j − e−ωj/2L̃jρ〉

=
1
2

∑
j∈J

cj〈∇U.ρ∇U, [L̃∗
j , ρL̃j ]eωj/2 − e−ωj/2[L̃∗

j , L̃jρ]〉

=
1
2
〈∇U.ρ∇U,L∗(ρ)〉, (3.8)

where we used that, replacing L̃j by L̃∗
j so that ωj → −ωj and cj → cj ,

L∗(ρ) =
∑
j∈J

cj

(
eωj/2[L̃∗

jρ, L̃j ] + e−ωj/2[L̃j , ρL̃∗
j ]
)

=
∑
j∈J

cj

(
e−ωj/2[L̃jρ, L̃∗

j ] + eωj/2[L̃∗
j , ρL̃j ]

)
,

Hence, using (3.7) and (3.8), (3.6) reduces to

d2

ds2
D(γ(s)‖σ)

∣∣∣∣
s=0

=
1
2
〈∇U.ρ∇U,L∗(ρ)〉 − 〈∇L(U),∇U〉L,ρ. (3.9)

One can compare this expression with the one derived in Proposition 4.3 of
[12]. To make this analogy more clear, we denote the quantity on the right-hand
side of Eq. (3.9) by B(ρ, U) so that

d2

ds2
D(γ(s)‖σ)

∣∣∣∣
s=0

= B(ρ, U). (3.10)

The following lemma extends Lemma 4.6 of [12] to the quantum regime, as
well as part of the proof of Proposition 5.11 of [6], and is proven to be useful
in what follows:
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Lemma 5. Let (γ(s))s∈[0,1] be a smooth curve in D+(H). For each t ≥ 0, set
γ(s, t) := Λ∗st(γ(s)), and let (U(s, t))s∈[0,1] be a smooth curve satisfying the
continuity equation

∂s(γ(s, t)) + div([γ(s, t)] �ω∇U(s, t)) = 0, s ∈ [0, 1]. (3.11)

Therefore,
1
2
∂t‖∂sγ(s, t)‖2

gL,γ(s,t)
+ ∂sD(γ(s, t)‖σ) = −sB(γ(s, t), U(s, t)).

Proof. Start by noticing that

∂sD(γ(s, t)‖σ) = ∂s Tr(γ(s, t)(log γ(s, t) − log σ))

= Tr(∂sγ(s, t)(log γ(s, t) − log σ))

= −Tr((log γ(s, t) − log σ) div([γ(s, t)] �ω∇U(s, t)))

= −〈log γ(s, t) − log σ,div([γ(s, t)] �ω∇U(s, t))〉
= −

∑
j∈J

cj〈log γ(s, t) − log σ, [[γ(s, t)]ωj
(∂jU(s, t)), L̃∗

j ]〉

=
∑
j∈J

cj〈∂j(log γ(s, t) − log σ), [γ(s, t)]ωj
(∂jU(s, t))〉

=
∑
j∈J

cj〈[γ(s, t)]ωj
(∂j(log γ(s, t) − log σ)), ∂jU(s, t)〉

=
∑
j∈J

cj〈∂∗
j [γ(s, t)]ωj

(∂j(log γ(s, t) − log σ)), U(s, t)〉

= −〈L∗(γ(s, t)), U(s, t)〉,
where in the third line we used (3.11), in the last line we used Theorem 5.10
of [7], and in the second line we used that

Tr(γ(s, t)∂s log γ(s, t)) = Tr
(

γ(s, t)∂s

∫ ∞

0

1
(1 + u)I

− 1
γ(s, t) + uI

du

)

= Tr γ(s, t)
∫ ∞

0

1
γ(s, t) + uI

∂sγ(s, t)
1

γ(s, t) + uI
du

= Tr ∂sγ(s, t)
= 0.

Moreover, by definition of the metric gL through Eqs. (2.8) and (2.7),
1
2
∂t‖∂sγ(s, t)‖2

gL,γ(s,t)

=
1
2
∂t

∑
j∈J

cj〈∂jU(s, t), [γ(s, t)]ωj
∂jU(s, t)〉

=
∑
j∈J

cj

(
〈∂t(∂jU(s, t)), [γ(s, t)]ωj

∂jU(s, t)〉

+
1
2
〈∂jU(s, t), ∂t([γ(s, t)]ωj

)∂jU(s, t)〉
)
. (3.12)
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From (3.3), ∑
j∈J

cj〈∂jU(s, t), ∂t([γ(s, t)]ωj
)∂jU(s, t)〉

= 〈∂tγ(s, t),∇U(s, t).γ(s,t)∇U(s, t)〉
= s〈L∗(γ(s, t)),∇U(s, t).γ(s,t)∇U(s, t)〉. (3.13)

Moreover, ∑
j∈J

cj〈∂t(∂jU(s, t)), [γ(s, t)]ωj
∂jU(s, t)〉

= −
∑
j∈J

cj〈∂tU(s, t), [[γ(s, t)]ωj
(∂jU(s, t)), L̃∗

j ]〉

= −〈∂tU(s, t),div([γ(s, t)] �ω(∇U(s, t)))〉
= 〈∂tU(s, t), ∂sγ(s, t)〉
= ∂t(〈U(s, t), ∂sγ(s, t)〉) − 〈U(s, t), ∂s∂tγ(s, t)〉
= ∂t‖∂sγ(s, t)‖2

gL,γ(s,t)
− 〈U(s, t), ∂s∂tγ(s, t)〉

= ∂t‖∂sγ(s, t)‖2
gL,γ(s,t)

− 〈U(s, t), ∂s(sL∗(γ(s, t)))〉, (3.14)

where we used once again (3.11) in the third and fifth lines above. Therefore,
using (3.13) and (3.14), the right-hand side of (3.12) reduces to

1
2
∂t‖∂sγ(s, t)‖2

gL,γ(s,t)
= 〈U(s, t), ∂s(sL∗(γ(s, t)))〉

− 1
2
s〈L∗(γ(s, t)),∇U(s, t).γ(s,t)∇U(s, t)〉.

Hence,

1
2
∂t‖∂sγ(s, t)‖2

gL,γ(s,t)
+ ∂sD(γ(s, t)‖σ)

= s〈U(s, t),L∗∂s(γ(s, t))〉 − 1
2
s〈L∗γ(s, t), ∇U(s, t).γ(s,t)∇U(s, t)〉

= −s〈L(U(s, t)),div([γ(s, t)] �ω∇U(s, t))〉
− 1

2
s〈L∗γ(s, t),∇U(s, t).γ(s,t)∇U(s, t)〉

= s〈∇L(U(s, t)),∇U(s, t)〉L,γ(s,t)

− 1
2
s〈L∗(γ(s, t)),∇U(s, t).γ(s,t)∇U(s, t)〉

= −sB(γ(s, t), U(s, t)),

which is what needed to be proved. �

Theorem 3. Let L be the generator of an ergodic QMS (Λt)t≥0, with unique
invariant state σ, of the form of Eq. 2.3). Then, for κ ∈ R, the following are
equivalent:

(i) Ric(L) ≥ κ
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(ii) For all ρ ∈ D+(H), and U ∈ W, the space of self-adjoint, traceless oper-
ators on H,

B(ρ, U) ≥ κ‖∇U‖2
L,ρ .

(iii) For all ρ, ω ∈ D+(H) and all t ≥ 0, writing ρt := Λ∗t(ρ):

1
2

d
dt

∣∣∣∣
t+

(W2,L(ρt, ω))2 +
κ

2
W2,L(ρt, ω)2 ≤ D(ω‖σ) − D(ρt‖σ). (3.15)

(iv) Equation (3.15) holds for any ρ, ω ∈ D(H).
(v) κ-displacement convexity of the relative entropy: given any constant speed

geodesic (γ(s))s∈[0,1] in D(H),

D(γ(s)‖σ) ≤ (1 − s)D(γ(0)‖σ) + sD(γ(1)‖σ) − κ

2
s(1 − s)W2,L(γ(0), γ(1))2.

(3.16)

Proof. The proof is inspired by the one of Theorem 4.5 of [12]. That (i) ⇔ (ii)
follows from Eq. (3.10). We use Lemma 5 to show that (ii) ⇒ (iii): Take a
smooth path (γ(s), U(s))s∈[0,1] such that γ(0) = ω, γ(1) = ρ and∫ 1

0

‖γ̇(s)‖2
gL,γ(s)

ds ≤ W2,L(ρ, ω)2 + ε. (3.17)

With the notations of Lemma 5,
1
2
∂t

(
e2κst‖∂sγ(s, t)‖2

gL,γ(s,t)

)
+ ∂s

(
e2κstD(γ(s, t)‖σ)

) ≤ 2κte2κstD(γ(s, t)‖σ).

Integrating with respect to t ∈ [0, h], for some h > 0, and s ∈ [0, 1],

1
2

∫ 1

0

(
e2κsh‖∂sγ(s, h)‖2

gL,γ(s,h)
− ‖∂sγ(s, 0)‖2

gL,γ(s,0)

)
ds (3.18)

+
∫ h

0

(
e2κtD(γ(1, t)‖σ) − D(γ(0, t)‖σ)

)
dt

≤ 2κ

∫ 1

0

ds

∫ h

0

dt t e2κstD(γ(s, t)‖σ). (3.19)

The following inequality, for which a classical equivalent is given in the proof
of Theorem 4.5 of [12], can be derived similarly to Lemma 5.1 of [9]:

m(κh)W2,L(ρh, ω)2 ≤
∫ 1

0

e2κsh‖∂sγ(s, h)‖2
gL,γ(s,h)

ds, (3.20)

where m(x) := xex/ sinh(x). Indeed, define f : s �→ e2κsh and denote Lf :=∫ 1

0
1

f(s)ds. Then, let g : [0, 1] �→ [0, 1] be the smooth increasing map defined
as g(s) = L−1

f

∫ s

0
1

f(u)du and denote its inverse k such that k′(g(s)) = Lff(s).
Then define the reparametrized curve (γ(k(r), h), k′(r)U(k(r), h))r∈[0,1] which
satisfies the continuity equation:

∂rγ(k(r), h) = k′(r)∂1γ(k(r), h)

= −k′(r) div([γ(k(r), h)] �ω∇U(k(r), h)),
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where we used Eq. (3.11) in order to establish the second line. This curve
satisfies γ(k(0), h) = ω and γ(k(1), h) = ρh, so that

W2,L(ρh, ω)2 ≤
∫ 1

0

‖∂rγ(k(r), h)‖2
gL,γ(k(r),h)

dr

=
∫ 1

0

k′(r)2‖∇U(k(r), h)‖2
L,γ(k(r),h)dr

=
∫ 1

0

k′(g(s))‖∇U(s, h)‖2
L,γ(s,h)ds

= Lf

∫ 1

0

f(s)‖∂sγ(s, h)‖2
gL,γ(s,h)

ds,

which directly leads to (3.20). This inequality, together with (3.17), implies

m(hκ)
2

W2,L(ρh, ω)2 − 1
2
W2,L(ρ, ω)2 − ε +

∫ h

0

e2κtdt D(ρh‖σ) − hD(ω‖σ)

≤ 1
2

∫ 1

0

e2κsh‖∂sγ(s, t)‖2
gL,γ(s,t)

ds − 1
2

∫ 1

0

‖γ̇(s)‖2
gL,γ(s)

ds

+
∫ h

0

e2κtD(ρt‖σ) dt − hD(ω‖σ)

≤ 2κ

∫ 1

0

∫ h

0

te2κstD(γ(s, t)‖σ) dt ds.

where, in the first inequality, we also used the monotonicity of the relative
entropy so that D(ρh‖σ) = D(ρh‖Λ∗hσ) ≤ D(ρt‖Λ∗tσ) = D(ρt‖σ), and in the
second one that for all t > 0, γ(1, t) = ρt, γ(0, t) = ω, as well as (3.19). Since
for all s ∈ [0, 1], t �→ D(γ(s, t)‖σ) is bounded,

lim
h→0

1
h

∫ 1

0

∫ h

0

te2κstD(γ(s, t)‖σ)dt ds = 0.

Moreover,

lim
h→0

1
h

(∫ h

0

e2κtdt D(ρh‖σ) − hD(ω‖σ)

)
= D(ρ‖σ) − D(ω‖σ)

Since ε > 0 is arbitrary, we arrive at

d
dh

∣∣∣∣
h=0+

(
m(κh)

2
W2,L(ρh, ω)2

)
+ D(ρ‖σ) − D(ω‖σ) ≤ 0.

The result for t = 0 follows from the fact that the first term in the left-hand
side above is equal to κ

2 W2,L(ρh, ω)2 + 1
2

d
dh

∣∣
h=0+ W2,L(ρh, ω)2. The case t ≥ 0

directly follows from the case t = 0.
(iii) ⇒ (iv) follows from Theorem 3.3 of [9] together with the fact that
(D(H),W2,L) is complete (cf. Proposition 2).
(iv) ⇒ (v) follows directly from Theorem 3.2 of [9].
(v) ⇒ (i) can easily be proved as follows: let 0 < ε < ε′, and without loss of gen-
erality, let γ : (−ε′, ε′) → D+(H) be speed 1 geodesic, and that γ(0) = ρ. Then,
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construct the following constant speed geodesic γ̃ : [0, 1] → D+(H) as follows:
for any s ∈ [0, 1], γ̃(s) := γ(2εs−ε). It then follows that W2,L(γ̃(0), γ̃(1)) = 2ε.
Moreover, by applying (3.16) to γ̃, we find, after a suitable rearrangement of
the terms:

D(γ(ε)‖σ) − 2D(ρ‖σ) + D(γ(−ε)‖σ)
ε2

≥ κ.

The result follows after taking the limit ε → 0. �

3.3. Other Equivalent Formulations of Displacement Convexity

Here, we provide other characterizations of the Ricci curvature lower bound in
terms of some contraction properties of the Wasserstein metric along the semi-
group (Pt)t≥0. In the next theorem, the characterization of displacement con-
vexity in terms of gradient estimates can be interpreted as a non-commutative
version of Bakry–Émery’s original gradient bound (see Theorem 4.7.2 of [4]):
in particular they showed that the Ricci curvature lower bound is equivalent
to the following pointwise inequality for smooth enough functions:

Γ (Pt(f), Pt(f)) ≤ e−2κtPt(Γ (f, f)) , (3.21)

where Γ stands for the carré du champ operator:

Γ (f, g) := ∇f.∇g .

Proposition 3 (Gradient estimate). Ric(L) ≥ κ is equivalent to the following
gradient estimate: for any ρ ∈ D+(H), any U ∈ Bsa(H) with Tr(U) = 0, and
all t > 0:

‖∇(Λt(U))‖2
L,ρ ≤ e−2κt‖∇U‖2

L,Λ∗t(ρ). (3.22)

Proof. Define for u ∈ [0, t] ρu ≡ Λ∗u(ρ) and Uu ≡ Λu(U). Then,

Φ(s) := e−2κs‖∇Ut−s‖2
L,ρs

≡ e−2κs
∑
j∈J

cj〈∂j(Ut−s), [ρs]ωj
∂j(Ut−s)〉.

Then, Φ(0) = ‖∇Ut‖2
L,ρ and Φ(t) = e−2κt‖∇U‖2

L,ρt
. It is then enough to prove

that Φ has non-negative derivative to prove the claim. But:

Φ′(s) = 2e−2κs
[

− κ‖∇Ut−s‖2
L,ρs

+
1
2

∂

∂s
‖∇Ut−s‖2

L,ρs

]

= 2e−2κs
[

− κ‖∇Ut−s‖2
L,ρs

+
∑
j∈J

cj〈∂j∂sUt−s, [ρs]ωj
∂jUt−s〉

+
1
2

∑
j∈J

cj〈∂jUt−s, ∂s([ρs]ωj
)∂jUt−s〉

]

= 2e−2κs
[

− κ‖∇Ut−s‖2
L,ρs

− 〈∇L(Ut−s),∇Ut−s〉L,ρs

+
1
2
〈L∗(ρs),∇Ut−s.ρs

∇Ut−s〉
]

= 2e−2κs
[

− κ‖∇Ut−s‖2
L,ρs

+ B(ρs, Ut−s)
]
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where we used Eq. (3.3) in the second line. We conclude by a use of (ii) of
Theorem 3. For the reverse implication, assume that Eq. (3.22) holds. Then,

0 ≤ e−2κ t‖∇U‖2
L,ρt

− ‖∇ (ΛtU)‖2
L,ρ

= (e−2κt − 1)‖∇U‖2
L,ρ + e−2κt(‖∇U‖2

L,ρt
− ‖∇U‖2

L,ρ)

− ‖∇(Λt(U))‖2
L,ρ + ‖∇U‖2

L,ρ .

By dividing by t and letting t → 0, we once again obtain that −κ‖∇U‖2
L,ρ +

B(ρ, U) ≥ 0. �

In the commutative diffusive setting, the Ricci curvature lower bound is
also known to be equivalent to the contraction of the Wasserstein distance
along the semigroup (Pt)t≥0 (see Theorem 9.7.2 of [4]):

W2(Pt∗(ν), Pt∗(ν′)) ≤ e−κtW2(ν, ν′) .

This still holds true in the non-commutative, finite-dimensional setting:

Proposition 4. For any κ ∈ R, Ric(L) ≥ κ is equivalent to the contraction of
the Wasserstein distance along the flow generated by (Λt)t≥0: for any ρ, ω ∈
D+(H)

W2,L(Λt∗(ρ),Λt∗(ω)) ≤ e−κtW2,L(ρ, ω) . (3.23)

Proof. The direct implication follows from Proposition 3.1 of [9] and Theorem
3(iii). The reverse implication is proved as in inequality (2.12) of [9], using
the smooth Riemannian structure provided by (D+(H),W2,L) in the finite-
dimensional case. �

In the commutative diffusive setting, the contraction of (3.21) is actually
known to be equivalent to its “square root” version, usually referred to as the
strong gradient bound :√

Γ (Pt(f), Pt(f)) ≤ e−κtPt(
√

Γ (f, f)) . (3.24)

The proof of (3.24)⇒(3.21) follows by a simple use of Jensen’s inequality,
the converse being the content of Theorem 3.3.18 of [4]. The advantage of
this formulation arises from the fact that some canonical semigroups (e.g. the
quantum Ornstein–Uhlenbeck semigroup on R

n) saturate the inequality, or
equivalently:

[L, ∇] = κ∇ .

Therefore, the Ricci lower bound is equivalent to comparing the commu-
tation of a semigroup with the gradient to the one of a canonical semigroup. A
similar reasoning recently lead [13] to formulate a Bakry–Émery condition for
birth and death processes on N in terms of a comparison to the Poisson pro-
cess. Going back to our non-commutative setting, [7] showed that the quantum
Ornstein–Uhlenbeck semigroup, as well as its fermionic version on the Clifford
algebra, does satisfy such a commutation relation. They used this fact to derive
the modified logarithmic Sobolev constant for these QMS via the contraction
(3.23). In the next proposition, we recall their argument:
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Proposition 5. Assume that the following equalities hold: there exists κ ∈ R

such that, for any j ∈ J and any t ≥ 0,

∂j ◦ Λt = e−κtΛt ◦ ∂j . (3.25)

Then, Ric(L) ≥ κ holds.

Proof. From Proposition 4, it is enough to prove that (3.23) holds. Assume that
(γ(s))s∈[0,1] is a minimal geodesic relating ρ to σ and denote by (A(s))s∈[0,1]

the unique solution of the continuity equation

γ̇(s) = divA(s) .

By duality, Eq. (3.25) implies that Λt∗γ̇(s) = e−κt div �Λt∗A(s), where �Λt∗A :=
(Λt∗Aj)j∈J . Then, denoting γ(s, t) := Λt∗(γ(s)),

gL,γ(s,t)(γ̇(s, t), γ̇(s, t)) = e−2κt
∑
j∈J

〈P∗t(Aj(s)), [γ(s, t)]−1
ωj

(Pt∗(Aj(s)))〉

≤ e−2κt
∑
j∈J

〈Aj(s), [γ(s)]−1
ωj

Aj(s))〉

= e−2κtgL,γ(s)(γ̇(s), γ̇(s)) ,

where the inequality arises from the property of monotonicity of Fisher infor-
mation metrics (cf. [17]). The result follows after taking the integral over the
geodesic path. �

3.4. Example: The Quantum Depolarizing Semigroup

In this section, we derive a Ricci curvature lower bound on perhaps the sim-
plest possible QMS: the depolarizing semigroup: define (Λdep

t )t≥0 on B(Cd) as
follows,

Λdep
t (X) = e−tX + (1 − e−t)

1
d

Tr(X) I .

Theorem 4. The quantum depolarizing semigroup (Λdep
t )t≥0 satisfies Ric(Ldep)

≥ 1
2 .

Proof. In the Schrödinger picture, the generator Ldep
∗ can be written as

Ldep
∗ (ρ) =

I

d
Tr(ρ) − ρ =

1
d2

d2∑
j=1

(Uj ρUj − ρ), ρ ∈ D(Cd),

where the operators Uj can be chosen to be self-adjoint (e.g. generalized Pauli
matrices [32]). In this case, cj = 1

2d2 , L̃j = Uj and ωj = 0, j = 1, . . . , d2. Now,
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given a vector �V = (V1, . . . , Vd2) ∈ ⊕
j B(Cd) and ρ ∈ D+(Cd),

〈 �V , �V 〉Ldep, ρ =
1

2d2

d2∑
j=1

〈Vj , [ρ]0(Vj)〉

=
1

2d2

d2∑
j=1

∫ 1

0

〈Vj , ρs Vjρ
1−s〉ds

=
1

2d2

d2∑
j=1

∫ 1

0

Tr(V ∗
j ρs Vjρ

1−s) ds

Now, given U ∈ Bsa(Cd) and ρ ∈ D+(Cd), the following holds:

∇U.ρ∇U

= − 1
2d2

d2∑
j=1

∫ 1

0

∫ 1

0

∫ α

0

ρβ

(1 − s)I + sρ
∂jU ρ1−α∂jU

ρα−β

(1 − s)I + sρ
dβdsdα

+
∫ 1

0

∫ 1

0

∫ 1−α

0

ρβ

(1 − s)I + sρ
∂jU ρα∂jU

ρ1−α−β

(1 − s)I + sρ
dβdsdα,

where we used that, since Uj = U∗
j , (∇U)∗ = −∇U . Then:

1
2
〈∇U.ρ∇U, Ldep

∗ (ρ)〉

= − 1
4d2

d2∑
j=1

∫ 1

0

∫ 1

0

dsdα

{∫ α

0

Tr
(
I

d
− ρ

)

ρβ

(1 − s)I + sρ
∂jU ρ1−α∂jU

ρα−β

(1 − s)I + sρ
dβ

+
∫ 1−α

0

Tr
(
I

d
− ρ

)
ρβ

(1 − s)I + sρ
∂jU ρα∂jU

ρ1−α−β

(1 − s)I + sρ
dβ

}
.

By cyclicity of the trace, and since
∫ 1

0
1

((1−s)I+sρ)2 ds = ρ−1, forgetting about
the positive contributions coming from the terms in d−1

I, the above expression
can be lower bounded as follows:

1
2
〈∇U.ρ∇U, Ldep

∗ (ρ)〉

≥ 1
4d2

d2∑
j=1

∫ 1

0

{∫ α

0

Tr(ρβ∂jUρ1−α∂jUρα−β)dβ

+
∫ 1−α

0

Tr(ρβ∂jUρα∂jUρ1−α−β)dβ

}
dα
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=
1

4d2

d2∑
j=1

∫ 1

0

{
α Tr(∂jUρ1−α∂jUρα) + (1 − α)Tr(∂jU ρα∂jUρ1−α)

}
dα

=
1

4d2

d2∑
j=1

∫ 1

0

Tr(∂jU ρα∂jUρ1−α) dα.

On the other hand,

〈∇Ldep(U), ∇U〉Ldep, ρ =
1

2d2

d2∑
j=1

∫ 1

0

Tr
[
∂j

(
I

d
Tr(U) − U

)∗
ρs ∂jU ρ1−s

]
ds

=
1

2d2

d2∑
j=1

∫ 1

0

Tr[ ∂jU ρs∂jU ρ1−s ] ds

Therefore,

B(ρ, U) ≥ − 1
4d2

d2∑
j=1

∫ 1

0

Tr[ ∂jU ρs∂jU ρ1−s ] ds =
1
2
‖∇U‖2

Ldep,ρ,

and the result follows. �

Remark 1. This result was independently found in [8].

4. A Quantum HWI Inequality

In [7] it was proved that, in the case when κ > 0, Ric(L) ≥ κ implies MLSI(α1)
for κ = α1. This is, for example, the case of the classical and quantum
Ornstein–Uhlenbeck processes. Here, we study the case of κ ∈ R. In [12],
the authors proved that, in the classical discrete framework, Ric(L) ≥ κ for
κ ∈ R implies an HWI-like inequality (see Theorem 7.3). Here, we provide a
quantum generalization of their result.

Theorem 5. Assume that Ric(L) ≥ κ, for some κ ∈ R. Then L satisfies the
following inequality

∀ρ ∈ D+(H), D(ρ‖σ) ≤ W2,L(ρ, σ)
√

Iσ(ρ) − κ

2
W2,L(ρ, σ)2. (HWI(κ))

Proof. By Theorem 3, for any ρ, ω ∈ D+(H)

1
2

d
dt

∣∣∣∣
t=0+

W2,L(ρt, ω)2 +
κ

2
W2,L(ρ, ω)2 ≤ D(ω‖σ) − D(ρ‖σ).

Taking ω := σ, this implies that

D(ρ‖σ) ≤ −1
2

d
dt

∣∣∣∣
t=0+

W2,L(ρt‖σ)2 − κ

2
W2,L(ρ, σ)2. (4.1)



2140 N. Datta, C. Rouzé Ann. Henri Poincaré

Then,

−1
2

d
dt

∣∣∣∣
t=0+

W2,L(ρt, σ)2 = lim inf
s→0+

1
2s

(W2,L(ρ, σ)2 − W2,L(ρs, σ)2)

≤ lim sup
s→0+

1
2s

(W2,L(ρ, ρs)2 + 2W2,L(ρ, ρs)W2,L(ρs, σ))

≤ lim sup
s→0+

1
2s

W2,L(ρ, ρs)2 + W2,L(ρ, σ)
√

Iσ(ρ)

= W2,L(ρ, σ)
√

Iσ(ρ).

where the second inequality follows from Lemma 7 of [24]. The result follows
from inserting this back into (4.1). �

In the case when κ > 0, we recover the result of [7]:

Corollary 2 (Quantum Bakry–Émery theorem). Assume that Ric(L) ≥ κ, for
some κ > 0. Then L satisfies MLSI(κ).

Proof. By Theorem 5, L satisfies HWI(κ). MLSI(κ) follows from an application
of Young’s inequality:

xy ≤ cx2 +
1
4c

y2, ∀x, y ∈ R, c > 0, (4.2)

in which we set x = W2,L(ρ, σ), y =
√

Iσ(ρ), and c = κ
2 . �

In the case Ric(L) ≥ κ for κ ∈ R, HWI(κ) still implies a modified log-Sobolev
inequality under the further condition that a transportation cost inequality
holds. This is a direct quantum generalization of Theorem 7.8 of [12] (see also
Corollary 3.1 of [23])

Corollary 3. Assume that Ric(L) ≥ κ, κ ∈ R, and that TC2(c2) holds with
c−1
2 ≥ max(0,−κ). Then MLSI(α1) holds for

α1 = max
[

1
4c2

(1 + c2κ)2 , κ

]

Proof. The proof is identical to the one of Corollary 3.1 of [23]. �

Similarly, we can show that Ric(L) ≥ κ for κ ∈ R implies MLSI as long as
MLSI+TC2 holds.

Corollary 4. Assume that Ric(L) ≥ κ, κ ∈ R, and that the inequality MLSI
+ TC2(c) (defined in Sect. 2.4) holds with c−1 ≥ max(κ, 0), then MLSI(α1)
holds, with

α1 =
1

c (2 − κc)
.

Proof. See Corollary 3.2 of [23]. �
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The diameter of D(H) in the Wasserstein distance W2,L is defined as follows:

DiamL(D(H)) = sup
ρ,ω∈D(H)

W2,L(ρ, ω).

Another straightforward consequence of the κ-displacement convexity of the
quantum relative entropy for κ > 0 is the following estimate on the diameter
DiamL(D(H)), which is a quantum analogue of the Bonnet–Myers theorem
(see Proposition 7.3 of [11]).

Proposition 6. Assume that Ric(L) ≥ κ holds for κ > 0. Then for any two
states ρ, ω ∈ D(H),

W2,L(ρ, ω)2 ≤ 4
κ

(D(ρ‖σ) + D(ω‖σ)).

Therefore,

DiamL(D(H)) ≤ sup
ρ∈D(H)

√
8
κ

D(ρ‖σ).

Proof. The result follows directly from the convexity of the quantum relative
entropy (cf. (v) of Theorem 3):

0 ≤ D(γ(1/2)‖σ) ≤ 1
2
D(ρ‖σ) +

1
2
D(ω‖σ) − κ

8
W2,L(ρ, ω)2.

for a given constant speed geodesic (γ(s))s∈[0,1] relating ρ and ω. �

5. From Ricci Lower Bound to the Poincaré Inequality

In this section, we show that Ric(L) ≥ 0 together with a condition of finiteness
of the diameter of D(H) with respect to the distance W2,L implies the Poincaré
inequality, hence extending Proposition 5.9 of [11] to our non-commutative set-
ting. Throughout this section, we fix (Pt)t≥0 to be a primitive QMS on B(H),
H finite dimensional, with unique invariant state σ and associated generator
L, satisfying σ-DBC. The next result is a non-commutative extension of the
fourth equivalent statement in Theorem 4.7.2 of [4]:

Proposition 7. (Reverse quantum Poincaré inequality) Assume that Ric(L) ≥ κ
holds. Then for any ρ ∈ D+(H), any U ∈ Bsa(H) and all t > 0:

Tr(Λ∗t(ρ)U2) − Tr(ρ(Λt(U))2) ≥ e2κt − 1
2κ

‖∇Λt(U)‖2
L,ρ (5.1)
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Proof. The proof is similar to the one of Theorem 3.5 of [11]. For u ≥ 0, let
ρu ≡ Λ∗u(ρ) and Uu ≡ Λu(U). Then, from Proposition 3,

2e2κs‖∇Ut‖2L,ρ

= 2e2κs‖∇(ΛsUt−s)‖2L,ρ

≤ 2‖∇Ut−s‖2L,ρs

= 2
∑
j∈J

cj〈∂jUt−s, [ρs]ωj ∂jUt−s〉

≤
∑
j∈J

cj〈∂jUt−s, (e
−ωj/2Rρs + eωj/2Lρs)∂jUt−s〉

=
∑
j∈J

cj

(
eωj/2 Tr[ρs∂jUt−s(∂jUt−s)

∗] + e−ωj/2 Tr[ρs(∂jUt−s)
∗∂jUt−s]

)

=
∑
j∈J

cj

(
eωj/2 Tr(ρs[L̃j , Ut−s][Ut−s, L̃

∗
j ]) + e−ωj/2 Tr(ρs[Ut−s, L̃

∗
j ][L̃j , Ut−s])

)

=
∑
j∈J

cj

(
Tr(ρs(L̃jU

2
t−sL̃

∗
j eωj/2 + e−ωj/2L̃∗

j U2
t−sL̃j))

+eωj/2 Tr(ρs(−L̃jUt−sL̃
∗
j Ut−s − Ut−sL̃jUt−sL̃

∗
j + Ut−sL̃jL̃

∗
j Ut−s))

+e−ωj/2 Tr(ρs(Ut−sL̃
∗
j L̃jUt−s − L̃∗

j Ut−sL̃jUt−s − Ut−sL̃
∗
j Ut−sL̃j))

)

= Tr(ρsL(U2
t−s))

+
∑
j∈J

cj

(
eωj/2 Tr(ρs(−L̃jUt−sL̃

∗
j Ut−s − Ut−sL̃jUt−sL̃

∗
j

+Ut−sL̃jL̃
∗
j Ut−s + U2

t−sL̃jL̃
∗
j ))

+ e−ωj/2 Tr(ρs(Ut−sL̃
∗
j L̃jUt−s − L̃∗

j Ut−sL̃jUt−s

−Ut−sL̃
∗
j Ut−sL̃j + L̃∗

j L̃jU
2
t−s))

)

= Tr(ρsL(U2
t−s)) − Tr(ρsUt−sL(Ut−s)) − Tr(ρsL(Ut−s)Ut−s)

=
∂

∂s
Tr(ρsU

2
t−s)

where we used (2.38) of [24], with Rρ(A) ≡ Aρ and Lρ(A) ≡ ρA, in the fourth
line. The claim follows after integrating the above inequality from 0 to t. �

Theorem 6. Ric(L) ≥ 0 + DiamL(D(H)) ≤ D ⇒ PI( 1
eD2 ).

Proof. Let f ∈ Bsa(H) be an eigenvector of L with associated eigenvalue
opposite to the spectral gap λ of L. Without loss of generality, ‖f‖∞ = 1,
and by primitivity of (Λt)t≥0, Tr(σf) = 0. Now, note that Λt(f) = e−λtf .
Therefore, the reverse Poincaré inequality (5.1) in the case when κ = 0 implies
that for any ρ ∈ D+(H),

‖∇f‖2
L,ρ ≤ e2λt

2t
‖f‖2

∞.
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Optimizing over t and using ‖f‖∞ = 1, we find

‖∇f‖2
L,ρ ≤ eλ‖f‖2

∞.

Given the following spectral decomposition of f =
∑

μ μPμ, since Tr(σf) = 0,
the minimum and maximum eigenvalues of f , respectively, denoted by μmin and
μmax, obey μmin < 0 < μmax. Since we assumed ‖f‖∞ = 1, this implies that
given a path (γ(s), U(s))s∈[0,1] in D(H) joining the states γ(0) = Pμmax

Tr(Pμmax )

and γ(1) = Pμmin

Tr(Pμmin )
such that

∫ 1

0
‖γ̇(s)‖2

gL,γ(s)
ds ≤ W2,L(γ(0), γ(1))2 + ε,

1 ≤ |μmax − μmin| =
∣∣∣∣Tr f

(
Pμmin

Tr(Pμmin)
− Pμmax

Tr(Pμmax)

)∣∣∣∣
=

∣∣∣∣Tr
(

f

∫ 1

0

γ̇(s)ds

)∣∣∣∣

=

∣∣∣∣∣∣
∫ 1

0

∑
j∈J

cj〈∂jf, [γ(s)]ωj
∂jU(s)〉ds

∣∣∣∣∣∣
≤

√
(D2 + ε)

(∫ 1

0

‖∇f‖2
L,γ(s)ds

)1/2

≤
√

(D2 + ε)λe,

where in the last line we used the Cauchy–Schwarz inequality with respect to
the inner product

∑
j∈J cj〈. ,

∫ 1

0
[γ(s)]ωj

ds .〉, and the result directly
follows. �

6. From Ricci Lower Bound to Modified Log-Sobolev Inequality

In [11], a modified logarithmic Sobolev inequality was proved to hold under
the conditions that Ric(L) ≥ 0 and that the diameter of the underlying space,
in terms of the modified Wasserstein distance, is bounded. Here, we extend
their results to the quantum regime under the further assumption that the
semigroup (Λt)t≥0 is unital, leaving the study of the general case to later. The
idea of the proof is to get a non-tight logarithmic Sobolev inequality from
HWI(0) and then to tighten it using ideas borrowed from [5]. In what follows,
we denote by d the dimension of H.

Given two states ρ, ω ∈ D(H), with associated spectral decompositions
ρ =

∑
i∈A λiPi, ω =

∑
j∈B μjQj , where A and B are two finite index sets, a

coupling of ρ and ω is a probability distribution q on A × B such that∑
i∈A

q(i, j) = μj Tr(Qj)

∑
j∈B

q(i, j) = λi Tr(Pi).

The set of couplings between ρ and ω is denoted by Π(ρ, ω). In analogy with the
classical literature (see, for example, [12]), given an ergodic semigroup (Λt)t≥0
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with associated generator L, the coupling Wasserstein distance of order two
between ρ and ω is defined as follows:

W2,L,c(ρ, ω)2 := inf
q∈Π(ρ,σ)

∑
i∈A, j∈B

q(i, j)W2,L(ρi, ωj)2,

where

ρi :=
Pi

Tr Pi
, ωj :=

Qj

Tr(Qj)
, i ∈ A, j ∈ B.

The following result is a quantum generalization of Proposition 2.14 of [12]:

Proposition 8. Let (Λt)t≥0 be a primitive QMS, with unique invariant state
σ and associated generator L, satisfying the detailed balance condition. Then,
for any ρ, ω ∈ D+(H),

W2,L(ρ, ω) ≤ W2,L,c(ρ, ω).

Proof. Let ρ =
∑

i∈A λiPi, ω =
∑

j∈B μjQj the spectral decompositions of
the states ρ and ω. For (i, j) ∈ A × B, define ρi := Pi

Tr(Pi)
, ωj := Qj

Tr(Qj)
, and

let ε > 0. By definition of the Wasserstein distance W2,L, there exists a curve
γij : [0, 1] �→ D(H) from ρi to ωj such that

∫ 1

0

‖γ̇ij(s)‖2
gL,γij(s)

ds ≤ W2,L(ρi, ωj)2 + ε.

For any coupling q : A × B → R+ of the states ρ and ω, define the path
(γ(s))s∈[0,1] on D(H) as

γ(s) =
∑

i∈A, j∈B
q(i, j) γij(s).

Therefore, γ(0) = ρ and γ(1) = ω. Now,

W2,L(ρ, ω)2 ≤
∫ 1

0

‖γ̇(s)‖2
gL,γ(s)

ds

≤
∑

i∈A, j∈B
q(i, j)

∫ 1

0

‖γ̇ij(s)‖2
gL,γ(s)

ds

≤
∑

i∈A, j∈B
q(i, j) W2,L(ρi, ωj)2 + ε.

where we used the convexity of gL in the second line (see equation (8.15) of [7]).
As ε is arbitrary, the result follows after optimizing over the
couplings q. �

In what follows, we restrict our analysis to the case of a primitive QMS (Λt)t≥0

with unique invariant state I/d that satisfies the detailed balance condition.
In order to prove the main result of this section, we need the following two
lemmas that are extensions of Lemmas 6.2 and 6.3 of [11]:
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Lemma 6. Assume that Ric(L) ≥ 0 and DiamL(D(H)) ≤ D. Then for any
δ > 0 and f ∈ Bsa(H) such that Tr(f2) = d:

D
(
f2/d‖I/d

) ≤ δD2 II/d(f2/d) +
1

4d δ
Tr(f21[1,∞)(f2))

Proof. The case when f is not of full support is trivial, as then Iσ(f2/d) =
∞. Without loss of generality, we assume that f has full support, so that
f2/d ∈ D+(H). Write f =

∑
i∈A ϕ(i)Pi the spectral decomposition of f , for

some index set A. From HWI(0), and Young’s inequality (4.2) with c = δD2,
x =

√
Iσ(f2/d), and y = W2,L(f2/d, I/d):

D(f2/d‖I/d) ≤ δD2 II/d(f2/d) +
1

4δD2
W2,L(f2/d, I/d)2.

From Proposition 8, for any coupling q : A × B → R+ between f2/d and I/d
such that q(i, j) = 0 for all j �= i whenever ϕ(i)2 ≤ 1,

D(f2/d‖I/d) ≤ δD2 II/d(f2/d) +
1

4δD2

∑
i,j: ϕ(i)2>1

q(i, j)W2,L

(
Pi

Tr(Pi)
,

Pj

Tr(Pj)

)2

,

≤ δD2 II/d(f2/d) +
1

4d δ
Tr(f21(1,∞)(f2)).

We recall that such a coupling q exists due to Strassen’s theorem. �

Lemma 7. For any A > 1, there exists γ > 0 such that for any f ∈ Bsa(H)
with Tr(f2) = d,

1
d
Tr(f21[A2,∞)(f2)) ≤

(
A

A − 1

)2

VarI/d(f), (6.1)

D(f2/d‖I/d) ≤ γ VarI/d(f) +
1
d
Tr(f2 log f21[A2,∞)(f2)). (6.2)

Proof. This is a direct rewriting of Lemma 2.5 of [5]. �

Theorem 7. Let (Λt)t≥0 be a primitive semigroup with unique invariant state
I/d and associated generator L. Assume that Ric(L) ≥ 0 and that DiamL(D(H))
≤ D. Then MLSI(cD−2) holds, for some universal constant c.

Proof. Let A > 1 and f ∈ Bsa(H) of spectral decomposition f =
∑

i∈A ϕ(i)Pi,
with Tr(f2) = d. Without loss of generality, we can assume f positive definite.
Then, set fA := f ∨ A ≡ ∑

i: ϕ(i)≥A ϕ(i)Pi + A1(−∞,A)(f). Define the state
ρA = f2

A/Tr(f2
A). By (6.2),

D(f2/d‖I/d) ≤ γ VarI/d(f) +
1
d

Tr(f2 log f21[A2,∞)(f2)). (6.3)
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By Theorem 6,

γ VarI/d(f) ≤ −2eD2γ
1
d
〈f,L(f)〉 ≤ γeD2

2
II/d(f2/d), (6.4)

where in the last inequality, we used the strong regularity of Dirichlet forms
of unital semigroups (see [16]). Moreover,

1
d

Tr(f2 log f21[A2,∞)(f2)) =
1
d

Tr(f2
A log f2

A) − 1
d
A2 log A2 Tr(1(−∞,A)(f))

≤ (1 + A2)D(ρA‖I/d) +
Tr(f2

A)
d

log
(

Tr f2
A

d

)
− A2 log A2

d
Tr(1(−∞,A)(f)),

(6.5)

where in the last line we used that 1
d Tr(f2

A) ≤ 1 + A2. However, from Lemma
6 applied to fA, since II/d(ρA) ≤ d

Tr(f2
A)

II/d(f2/d) by convexity of monotone

Riemannian metrics (see, for example, equation (8.16) of [7]),

D(ρA‖I/d) ≤ d δ D2

Tr(f2
A)

II/d(f2/d) +
1

4Tr(f2
A)δ

Tr(f2
A1[ 1d Tr(f2

A),∞)(f
2
A))

≤ δD2

A2
II/d(f2/d) +

1
4d δA2

Tr(f21[A2,∞)(f2)), (6.6)

where in the last line we used that A2 ≤ 1
d Tr(f2

A). Using (6.1) and (6.4)
together with Theorem 6,

D(ρA‖I/d) ≤ δD2

A2
II/d(f2/d) +

1
4δ(A − 1)2

VarI/d(f)

≤ δD2

A2
II/d(f2/d) − eD2

2δ(A − 1)2
1
d
〈f,L(f)〉

≤
(

δD2

A2
+

eD2

8δ(A − 1)2

)
II/d(f2/d)

Now,

Tr(f2
A)

d
log

(
Tr(f2

A)
d

)
− A2 log(A2)

d
Tr(1(−∞,A)(f))

≤ 1
d

(
A2 Tr(1(−∞,A)(f)) + Tr(f21[A2,∞)(f2))

)

log
[1
d

(
A2 Tr(1(−∞,A)(f)) + Tr(f21[A2,∞)(f2))

)]

− A2 log(A2)
d

Tr(1(−∞,A)(f))

= A2 1
d

Tr(1(−∞,A)(f)) log
(

1
d

Tr(1(−∞,A)(f)) +
Tr(f21[A2,∞)(f2))

dA2

)

+
1
d

Tr(f21[A2,∞)(f2)) log
(

A2 1
d

Tr(1(−∞,A](f)) +
1
d

Tr(f21[A2,∞)(f2))
)
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≤ A2 log
(

1 +
Tr(f21[A2,∞)(f2))

dA2

)
+

1
d

Tr(f21[A2,∞)(f2)) log(1 + A2)

≤ (1 + log(1 + A2))
1
d

Tr(f21[A2,∞)(f2)),

where in the fourth line we used that 1
d Tr(f2) = 1. Using once more (6.1) and

(6.4) together with Theorem 6, we find

Tr(f2
A)

d
log

(
Tr(f2

A)
d

)
− A2 log(A2)

d
Tr(1(−∞,A](f))

≤ eD2A2(1 + log(1 + A2))
2(1 − A)2

II/d(f2/d) (6.7)

The result follows after combining (6.7), (6.3), (6.4), (6.5) and (6.6). �

7. Conclusion

In this paper, we prove that a classical picture, relating various inequalities
which are useful in the analysis of Markov semigroups, carries over to the quan-
tum setting. Classically, a key element of this picture is a geometric inequality
called the Ricci lower bound. Functional and transportation cost inequalities,
which play an important role in the study of mixing times of a primitive
Markov semigroup and concentration properties of its invariant measure, can
be obtained from this geometric inequality. The connection between them is
provided by an interpolating inequality called the HWI inequality. In this
paper, we analyse a quantum version of the Ricci lower bound (due to Carlen
and Maas [7]) and show that it implies a quantum HWI inequality, from which
quantum versions of the functional and transportation cost inequalities (which
are relevant for the analysis of quantum Markov semigroups) follow.
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