

Demo Engineering: Using Software Theater

for Exploratory Projects

Han Xu

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Nassir Navab

Prüfer der Dissertation: 1. Prof. Dr. Bernd Brügge

 2. Prof. Dr. Anne Brüggemann-Klein

Die Dissertation wurde am 15.07.2020 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 23.11.2020 angenommen.

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

LEHRSTUHL FÜR ANGEWANDTE SOFTWARETECHNIK

ii

Abstract

With the growing maturity of new enabling technologies such as smart sensors, AR/VR,

wearable computers, IoT, more and more projects of exploratory nature are emerging. In

this dissertation, we introduce Software Theater as an alternative way for describing

requirements based on screenplays. In particular Software Theater supports the delivery

of systems by demonstrating the requirements through theatrical plays. The goal was to

find a better way to demonstrate the requirements of innovative systems where the

traditional textual description of requirements posed communication problems between

developers and customers. Our hypothesis is that Software Theater is more intuitive and

engaging than textual descriptions for users to understand and envisage a visionary

system. Software Theater is particularly suitable for the co-development and

demonstration of visionary concepts, in particular during the analysis, integration testing

and delivery of systems that are based on a new user experience paradigm and new

technologies. Software Theater was empirically evaluated in 11 projects with 80 students.

On a Likert scale, the majority of the participants validated our hypothesis.

iii

Acknowledgements

There are many people who I should thank for their help in the accomplishment of this

dissertation. I would like first to thank my supervisor, Prof. Bernd Bruegge. To me,

Bernd is not only a professor, an educator, but also a thinker and sometimes a magician

who is capable of turning dreams into reality. I have learned a lot from him academically

and philosophically. I would also like to express my thanks to my second supervisor,

Prof. Anna Brueggemann-Klein for reviewing and guiding me to finish up the

dissertation. I am particularly grateful to my industrial supervisors from Siemens, Dr.

Naoufel Boulila and Dr. Oliver Creighton, who have, together with Prof. Bernd Bruegge,

defined this challenging but interesting research topic. It was a wonderful journey and I

really appreciate it that I was trusted and given the opportunity and freedom to explore

the vast ocean of knowledge as I desired, which has resulted in the completion of this

dissertation as one thing and more importantly the acquisition of intellectual treasure

that will benefit me in the rest of my life. I should also give thanks to Siemens-DAAD

scholarship for having sponsored my doctoral research. My special thanks are extended

to Ms. Rebekka Kammler and Ms. Irmgard Kasperek from DAAD Special Program 522,

and Ms. Monika Markl from TU Munich, who had helped me a lot for my arrival and

stay in Germany. Other colleagues at Chair of Applied Software Engineering have

contributed and helped with my doctoral research in one way or another. I would like to

give thanks to Stephan Krusche and Dora Dzvonyar, for having worked together and co-

authored papers on Software Theater, to Juan Haladjian, Zardosht Hodaie, Lara Marie

Reimer, Florian Bodilee, and Marko Jovanović for useful discussions on using Software

Theater, to Nadine Frankenberg for proof-reading the dissertation, to Helmut Naughton,

Barbara Reichart, Florian Schneider, Tobias Roehm, Walid Maalej, Dennis Pagano, who

have given me valuable advices at doctoral seminars, to Jan Knobloch, Nitesh Narayan,

Hoda Naguib, Yang Li, Emitza Guzman, Stefan Nosovic, Rana Alkadhi for having

provided me with strength and support during my process of writing, and to Helma

Schneider and Uta Weber for your always kind support to me. I appreciate the insight

into the film theory provided to me by Chunguang Zhu. Finally, I would like to express

my gratitude to my family, especially my wife for her constant understanding, patience

and devotion; and to my parents for their support all the time.

iv

Conventions

Font Conventions

• Bold is used for terms when they are defined

• Italic is used when emphasizing an important word or phrase in its context

• Term is used when emphasizing a particular term with well-defined meaning

• "Double-quoted text" means the text is quoted from a cited publication

Citation Style

In-text citations in this dissertation use the format [<last name of the first author><year

of publication>], such as [Bruegge2012] and [Rosson2012]. For citations of books, we will

also specify the page number or chapter number to help readers locate the source, such

as [Bruegge2010, p.51] or [Cockburn2000, ch.11].

v

Table of Contents

Abstract ... ii

Acknowledgements ... iii

Conventions .. iv

Table of Contents ...v

Chapter 1 Introduction .. 1

1.1 Problem Statement ... 2

1.2 Research Scope ... 2

1.3 Structure of the Dissertation .. 3

Chapter 2 Foundation ... 4

2.1 Different Models in Software and Requirement Engineering 4

2.1.1 Two domains in software engineering ... 5

2.1.2 Three worlds of information systems .. 6

2.1.3 Four models of software systems . .. 9

2.1.4 Informal models and formal models for communication........................... 11

2.1.5 Communication in requirements engineering .. 12

2.2 Requirements Description in Scenarios, Stories and Use Cases 13

2.2.1 The CREWS's scenario classification framework 13

2.2.2 Use cases and scenarios in software engineering 17

2.2.3 Scenarios in usability engineering ... 18

2.2.4 Stories in agile development .. 19

2.2.5 Personas in user interface design .. 20

2.2.6 Summary: the anatomy of scenarios ... 22

2.3 Understanding Dual Perspectives of Scenarios .. 24

2.3.1 Scenarios as artifacts vs. scenario creation as a process 24

2.3.2 Different forms of scenarios for different purposes 25

vi

2.3.3 Benefits of scenarios reviewed from the dual perspectives 25

2.3.4 Summary: the value of this distinction ... 28

Chapter 3 Demo Engineering Using Software Theater and Tornado Model.................. 29

3.1 Challenges with Exploratory Projects.. 30

3.1.1 Constant changes as in every software development 30

3.1.2 Uncertainties from interplay between different levels 30

3.1.3 Inexperience resulting from novelty .. 31

3.1.4 Summary: how to address these challenges .. 32

3.2 Demo Engineering .. 33

3.2.1 Software Theater: scenario-based demonstration 34

3.2.2 Tornado Model: demo-oriented development ... 37

3.3 The Workflow of Demo Engineering 40

3.3.1 Preparation .. 40

3.3.2 Implementation .. 41

3.3.3 Presentation ... 44

3.4 Principles of Demo Engineering and Software Theater 48

3.4.1 Co-development of the user model and the system model 48

3.4.2 Using prototypes with scenarios .. 51

3.4.3 Focus and minimal effort with demo-oriented development 53

3.4.4 Using theatrical techniques for the demonstration 55

3.5 Related Works on Software Theater .. 57

3.5.1 Laurel's Computers as Theatre ... 57

3.5.2 Mahaux and Maiden's Improvisional Theater .. 58

3.5.3 Role-playing based on CRC Cards.. 58

3.5.4 Rice and et al.'s Forum Theatre ... 59

Chapter 4 Software Theater Patterns and Best Practices .. 60

4.1 Heuristics from Theater Theory ... 60

vii

4.1.1 Forms of the performance ... 60

4.1.2 Story and storytelling of the performance .. 62

4.2 Software Theater Patterns ... 66

4.2.1 Dialogue pattern .. 67

4.2.2 Narrator pattern .. 69

4.2.3 Monologue pattern .. 71

4.2.4 Metaphor pattern .. 72

4.2.5 Conflict pattern ... 74

4.2.6 Twist pattern ... 76

4.2.7 Contrast pattern .. 77

4.2.8 Straightforward pattern .. 78

4.3 Software Theater Best Practices .. 79

4.3.1 Setting up additional screens for synchronized illustration 79

4.3.2 Using video as an alternative to theater ... 79

4.3.3 Illustrating negative sides as well.. 81

4.3.4 Getting customers involved in creating demo scenarios 81

Chapter 5 Software Theater Example and Evaluation ... 82

5.1 The Practical Course of iPraktikum .. 82

5.2 Example: The Zeyes Project .. 86

5.2.1 Preparation: from visionary scenarios to formalized scenarios 86

5.2.2 Implementation: create the demo backlog and the demo system 88

5.2.3 Presentation: performing the demonstration using Software Theater 91

5.3 Evaluation .. 93

5.3.1 Evaluation design .. 93

5.3.2 Evaluation results .. 94

5.3.3 Threats to validity... 98

Chapter 6 Conclusion .. 99

viii

6.1 Contributions .. 99

6.2 Future Works ... 101

6.2.1 Theater script editor ... 101

6.2.2 Software for creating scenario videos based on virtual worlds 102

Appendix Examples of Theater scripts .. 103

Bibliography ... 111

1

Chapter 1
Introduction

"I think that in the discussion of natural problems we ought to

begin not with the Scriptures, but with experiments and demonstrations."

-- Galileo Galilei

In the early days of computer systems, the main focus of software development was the

implementation of functionalities based on data structures, algorithms, and

communication mechanisms. In those days, computer systems came with simple

command-line interfaces (CLI) and were designed primarily for trained vocational users.

However, with the development of advanced graphic user interfaces, computer systems

were becoming diversified in terms of purpose and usage, and entered people's daily life.

This trend has contributed to the emergence of user-centered design [Norman1986] and

participatory design [Schuler1993], where the focus of system development was extended

from the system requirements of the system to include the usability and user experience

of users as well. In addition, to improve the communication among developers and users,

Carroll introduced scenarios, which were defined as "narrative description of what people

do and experience as they try to make use of computer systems and applications"

[Carroll1995]. Since then, scenarios have been used in requirements engineering and

usability engineering. For example, Sutcliffe created a SCenario Requirements Analysis

Method (SCRAM) that combined the scenario-based approach and the model-based

approach with an emphasis on dependency analysis based on models [Sutcliffe1998,

Sutcliffe2002]. Jarke et al. developed CREWS (Cooperative Requirements Engineering

With Scenarios) methods and tools [Jarke1999, Maiden1998] and used scenarios as

informal representations of system behaviors for requirements elicitation and validation.

The usability engineering community used scenarios for describing user-observable

2

system interactions in a specific context from the user's perspective; in this context,

scenarios were viewed as a common language for communication between developers and

users [Carroll2000, p.58; Rosson2001, p.23].

1.1 Problem Statement

Scenarios used in 1990s were mostly based on textual description, which limited them in

terms of expressiveness. In addition, according to the "three-world" conceptualization

introduced by Jarke et al. [Jarke1993], the content of these scenarios was restricted to

the description of system worlds and usage worlds, not addressing the description of

subject worlds. The usage world can be basically described using UML models such as

use cases showing the interaction between actors and the system. The system world

describes the internals of the system in the solution domain. The subject world is

involved in the interaction of real user accessing physical objects. For example, a

visionary application that uses augmented reality glasses to perform quality inspection of

parts produced in a factory requires the modeling of interaction of the user with physical

objects to perform the inspection task. In this case, the subject world needs to be

addressed which cannot be described with text-based scenarios.

1.2 Research Scope

In this dissertation, we describe Software Theater [Xu2015, Krusche2018] as an

alternative way for representing requirements and performing demonstration based on

screenplays like a theater. The goal was to find a better way for innovative systems to

demonstrate the requirements where the traditional textual description of the

requirements posed communication problems between developers and users. Software

Theater is a new way to demonstrate requirements based on scenarios that allow to

involve the subject world. Our hypotheses are:

• H1) Software Theater is suitable for presenting future systems in the context of

exploratory projects involving the subject world;

3

• H2) Software Theater is more intuitive and engaging than textual descriptions for

users to "see" (i.e., understand and envisage) the future system;

• H3) Software Theater creates more faithfulness and confidence for the evaluation of

the future system.

1.3 Structure of the Dissertation

This dissertation is organized in the following chapters.

• Chapter 2 introduces the necessary background knowledge in software engineering

and scenario-based design that forms the foundation for understanding our views

and opinions throughout the dissertation. Certain concepts introduced in this

chapter will be used as an analysis tool in the remainder of this dissertation.

• Chapter 3 first introduces the challenges faced by exploratory projects nowadays

and then describes why Demo Engineering and Software Theater could be used to

address these challenges. Next, it elaborates on what Demo Engineering and

Software Theater are and how to use them. Finally, it describes the principles

behind Demo Engineering and Software Theater as well as related works.

• Chapter 4 first describes the heuristics learned from the theater theory and then

introduces Software Theater patterns and best practices that we have identified by

carrying on real-world projects. These patterns and best practices are helpful for

beginner users to get started with Software Theater quickly.

• Chapter 5 illustrates the use of Software Theater in real-world projects by example

and empirically evaluates the use of Software Theater. The results are compared

with the hypotheses described above.

• Chapter 6 concludes this dissertation and describes directions for future research,

such as a tool for authoring theater scripts, and a software platform for creating

video-based scenarios in virtual worlds.

4

Chapter 2
Foundation

"Don't listen to the person who has the answers;

listen to the person who has the questions."

-- Albert Einstein

Henry Ford said, "If I had asked people what they wanted, they would have said faster

horses." This is a well-known quote that has been frequented cited when talking about

new product development. However, it should not be interpreted "why should we get

users involved if they cannot tell us that they want a car?" To unravel this puzzle, one

needs to recognize the distinction between application domain and solution domain

[Bruegge2010, p.41]; then it becomes naturally to understand the fact that: users are

only concerned with their requirements from the application domain, and the developers

cannot expect them to possess the knowledge and skills to envision future systems which

belong to the solution domain, especially novel systems that they never see before. This

is one example that a proper conceptualization is essential in obtaining insight and in-

depth understanding. This chapter introduces necessary knowledge that is helpful to

understand discussions in the remainder of the dissertation.

2.1 Different Models in Software and Requirement
Engineering

Modeling allows us to "focus at any one time on only the relevant details and ignore

everything else" [Bruegge2010, p.5]. In this section, we introduce different models that

will be used for discussions in the remainder of the dissertation.

5

2.1.1 Two domains in software engineering

Followed the prologue of this chapter, application domain "represents all aspects of the

user's problem [including] the physical environment in which the system will run, the

users, and their work processes" [Bruegge2010, p.722] and solution domain is "the space

of all possible systems, [which] focus on system design, object design, and

implementation activities." [Bruegge2010, p.746] The purpose of distinguishing

application domain and solution domain is the separation of concerns in software

engineering practices. The models of software systems are therefore separated into two

sections: application domain models and system models (see Figure 2.1). From software

engineering process point of view, system analysis phase deals with the modeling of

application domain, and system design phase deals with the modeling of solution domain

(see Figure 2.1) [Bruegge2010, p.41].

 2.1 The application domain and system domain (from [Bruegge2010, p.42])

6

While users are concerned with their requirements belonging to the application domain,

developers are concerned with the technical solutions belonging to the solution domain [1].

Users describe the current problems as well as what they what using their knowledge

and imagination. Since they have not seen cars before (thus having no concept of car in

their minds), they will naturally not tell you they want something like a car. Car is a

concept belonging to the solution domain, and it is the developers' or requirements

engineers' responsibility to figure it out (see Figure 2.2).

Figure 2.2 Application domain and solution domain

2.1.2 Three worlds of information systems

Jarke et al. proposed three-world conceptualization for the modeling of information

systems [Jarke1993, Jarke1999]. Unlike the distinction of application domain and

solution domain, which is intended for separation of concerns in the software engineering

1 Developers also need to learn about users' requirements at the same time.

7

practice, the three-world conceptualization is used to model the context or domain of

discourse of requirements engineering [Jarke1993]. Following this spirit, Jarke et al.

defined subject world, system world, and usage world of information systems (see Figure

2.3) [Jarke1992, Jarke1999]:

• Subject world is the application domain that should be faithfully represented by

the information in the system. The subject world is the physical world where the

users "touch and feel".

• System world is the solution domain (the system implementation) that manages

the information representing physical objects in the subject world and exposes an

accessible interface to the user. Normally, operations in the system world could

create observable consequences in the subject world.

• Usage world represents the production environment (or the context) where the

system is situated and manipulated by the users.

Figure 2.3 Three worlds conceptualization of information systems (from [Jarke1999])

8

In the remainder of this dissertation, we will use the three-world conceptualization as a

reference framework to describe the dimensions that a specific scenario involves. The

three worlds make it easier to precisely describe scenarios that require physical objects as

the participatory objects (e.g., ubiquitous applications for smart home scenarios) because

the interplay among the user, the system, and the physical participatory objects can be

specified separately. For example, in a light remote control app, you could switch on and

off the light remotely on your mobile phone. When you touch the ON button in the app,

the light should be powered on. Other examples of scenarios using three worlds are given

in Table 2.1.

Table 2.1 Scenarios described in three worlds

Name of scenario
Scenario description

Usage World System World Subject World

Roaming the login
on another device by
scanning QR code

1. Use the app on mobile
phone to scan the QR
code displayed on PC

2. authorize
(client id)

3. The same app on PC
automatically logs in
without needing to enter
the username and password

Transfer photos
from one mobile
phone to another by
shaking in the near

1. Select photos on mobile
phone A and put it close
to mobile phone B. Both
phones shake at the same
time

2. transfer
(connection,
file)

3. Mobile phone B receives
the photo sent from mobile
phone A

Unlock a shared bike
by scanning QR
code

1. Use the shared-bike app
on mobile phone to scan
the QR code

2. unlock
(bike id)

3. The Bike is unlocked
remotely from the Internet

Open doors of a
shared car using
mobile phone

2. Find the "car" display
in the share-car app.

3. Select book it now

4. unlock
(car id)

1. Read the plate number of
the car near you

5. Doors of the car are
opened

9

2.1.3 Four models of software systems [2]

In the study of human-computer interaction, Norman distinguishes three different

conceptual models of a system in user-centered system development: system image,

design model, and user model [Norman1986, Norman2013]. The system image is what

people can derive from the information available, including documentation, instructions,

and online information describing the system. The design model [3] (or the designer's

conceptual model) is the designer's conception of how the system works. The user model

(or the user's conceptual model) is formed from the system image as well as from the

user's prior knowledge and expectations. The user model is continually refined through

the user's interaction with the system [Norman1986]. It should be noted that in theory

the user model could not be directly constructed from the design model.

Norman's conceptual models were proposed for describing concepts in the domain of user

interaction design. In this context, since design models and user models only focus on

user-perceivable aspects of the system (i.e., the user interface and interaction), therefore,

both user models and design models are about the application domain of the system.

However, when it comes to software engineering, the developer's conceptual model

should cover not only the user interface, but also technical details relevant to the

underlying implementation. To fill this gap, Bernd et al. extended Norman's three

models to a four-model conceptualization (see Figure 2.4) [Bruegge2012, Xu2013]:

• System Model describes the technical details of the underlying structure and

behavior of the system implementation. The system model serves as an abstraction

of the implementation so that developers could use it as a convention for technical

communication and concentrate on technical things.

2 The account of the four models in this section is revised and adapted from Section 2.5 of [Xu2013].
3 Note that the design model mentioned here should be distinguished from design models used in object-oriented

design.

10

Figure 2.4 Four models of software systems (from [Xu2013])

• Design Model is the designer's mental model about how the interaction should

happen between the user and the system. Since the user only cares about the user-

perceivable behavior of the system, the design model is mainly about the user

interface and interaction.

• User Model is the user's mental model about how the system should work in

specific contexts from the usage point of view.

• Interface Model. In order to hide the technical complexity of the system model, the

interface model is spin off from the system model, referring to the user-visible

aspects of the system [Bruegge2015]. It should be noted that the system model in a

broad sense comprises user interface components as well. If not otherwise

mentioned in the remainder of this dissertation, when we mention system model, it

refers to the broad sense of system model.

Both the design model and the user model are mental models, which means they are

"conceptual models formed through experience, training, and instruction" [Norman2013].

Ideally, user models should be consistent with design models; however, in practice, we

11

need much effort to maintain the consistency between design models and user models.

For the users to be satisfied with the system implementation, the design models should

be consistent with the user models and are faithfully implemented by the system models

and interface models. One of the ways to achieve this goal is to get users involved in the

iterations of software design and evaluation because it provides an opportunity to verify

the design models with the user models, and vice versa. Besides, communication is

crucial in guaranteeing the efficacy of user involvement, which will be discussed in more

detail in Section 2.1.5.

Unlike the application domain and solution domain in software engineering (as well as

the associated application domain models and system models) and the three worlds of

information systems, which are objective concepts, four models of software systems are

not all objective. While the system model and the interface model, belonging to the

solution domain, are objective, the user model and the design model, representing the

user's and the designer's mental models about the system respectively, are subjective.

2.1.4 Informal models and formal models for communication

Software systems can be described using different levels of formality. Informal models,

such as user stories and scenarios, are used to describe how to use the system to achieve

specific tasks from the user's point of view [Bruegge2012]. Examples of informal models

include sketches [Brajnik2014], paper prototyping [Rettig1994], storyboards

[Madsen1993], text-based scenarios [Achour1998] and video-based scenarios

[Creighton2006, Xu2013]. Formal models, such as UML diagrams, are used to describe

components or working mechanisms of a system. Formal models are more accurate and

rigorous than informal models, which make them suitable for describing technical aspects

of software systems and therefore serve as a technical language among the developers.

However, UML models would be a nightmare for users who are technically

unsophisticated [Pressman2009, p.51]. As summarized by Bruegge et al. [Bruegge2012],

12

the informal models and formal models are different in purpose and preciseness (see

Table 2.2).

Table 2.2 Comparison of informal model and formal model

 Informal models Formal models

Purpose Communication with users about
requirements

Communication among developers
about implementation specification

Preciseness Possibly incomplete, ambiguous,
unverified Rigorous, unambiguous, consistent

2.1.5 Communication in requirements engineering

Communication plays a vital role in requirements engineering. Cohn stated, "software

requirements is a communication problem" [Cohn2004, p.3]. There are two challenges in

requirements engineering, according to Pressman [Pressman2009, p.119]: 1) users do not

know their requirements or cannot express it precisely; 2) users' requirements change

over time. Reaching agreement on the requirements requires the joint effort of developers

and users. Leffingwell defined the communication gap between users and developers as

the user and developer syndrome and summarized common problems that were observed

in practice (see Table 2.3) [Leffingwell1999, pp.83-84].

Table 2.3 The user and the developer syndrome (from [Leffingwell1999, p.84])

Problem Solution

Users do not know what they want, or
they know what they want but cannot
articulate it.

Recognize and appreciate the user as domain
expert; try alternative communication and
elicitation techniques.

Users think they know what they want
until developers give them what they said
they wanted.

Provide alternative elicitation techniques earlier:
storyboarding, role-playing, throwaway prototypes,
and so on.

Analysts think they understand user
problems better than users do.

Put the analyst in the user's place. Try role-
playing for an hour or a day.

Everybody believes everybody else is
politically motivated.

Yes, its part of human nature, so let's get on with
the program.

13

2.2 Requirements Description in Scenarios, Stories and Use
Cases

Scenarios, stories, and use cases are terms that are frequently mentioned in the software

engineering literature. Although they have different names, they do share some

similarities when looking at concrete examples. Basically, they are all about narrative

descriptions of how users interact with systems in order to achieve their goals

[Carroll1995]. According to Rolland et al., all these concepts could be loosely considered

as a sort of scenario because they all "emphasize some description of the real world"

[Rolland1998]. But apart from this commonality, they have subtle differences and are

associated with preferred connotations in different contexts. This section will describe

the differences between scenarios, use cases, and stories. In particular, we distinguish

between the broad sense of scenario (or generic scenarios) and narrow sense of scenarios

(or specific scenarios). This distinction is meaningful because, on the one hand, it gives

us insight into where these concepts share properties in common so that we could reuse

experiences gained from one concept for another; and on the other hand, it prevents us

from using terms ambiguously in the literature. In the following, we first describe the

scenario classification framework proposed by Rolland et al. [Rolland1998], then review

and compare specific scenarios based on this framework.

2.2.1 The CREWS's scenario classification framework

In the CREWS project [Jarke1999], Rolland et al. proposed a classification framework

for scenarios [Rolland1998]. The scenarios here refer to the broad sense of scenario,

covering text, graphics, image, video, or software prototype depending on the Medium.

The framework classifies scenarios from four different views: Form, Content, Purpose

and Lifecycle (see Figure 2.5). Each of these views, when applicable, is further divided

into different Facets; and each Facet is measured by a set of relevant Attributes, whose

possible type of value is defined by the Domains [Rolland1998]. In the remainder of this

14

dissertation, when the terms Form, Content, and Purpose are used in association with

scenarios, they have the meanings described below:

• "The Form view deals with the expression mode of a scenario. Are scenarios

formally or informally described, in a static, animated or interactive form? These

are the kinds of questions about scenarios which emerge from this view.

• The Content view concerns the kind of knowledge which is expressed in a scenario.

Scenarios can, for instance, focus on the description of a system functionality or

they can describe a broader view in which the functionality is embedded into a

larger business process with various stakeholders and resources bound to it.

• The Purpose view is used to capture the role that a scenario is aiming to play in

the RE process. Describing the functionality of a system, exploring design

alternatives or explaining drawbacks or inefficiencies of a system are examples of

roles that can be assigned to a scenario." [Rolland1998]

Figure 2.5 Classification Framework for Scenarios (from [Rolland1998])

15

Table 2.4 summarizes the CREWS' scenario classification framework in terms of Views,

Facets, Attributes and Domains.

Table 2.4 Scenario classification framework proposed by the CREWS Project
(created according to [Rolland1998])

View Facet Attribute Domain Description

Form Description Medium SET (ENUM
{text, graphics,
image, video,
software
prototype})

Medium used for the description

Notations ENUM {formal,
semi formal,
informal}

The formality level of the
notations used for the description

Presentation Animation BOOLEAN Scenarios can be in animated or
static. Animated presentations
highlight the expected behavior of
the future system in a natural
way. Static presentations are in
graphics and/or text.

Interactivity ENUM {none,
hypertext-like,
advanced}

Scenarios can have a certain level
of interactivity.
Hypertext-like interactivity allows
the user to follow hypertext links.
Advanced interactivity allows the
user to trigger different actions
and events based on the user's
choice.

Content Abstraction Instance BOOLEAN Instance scenarios or concrete
scenarios describe details of
individual actors, events and
episodes with little or no
abstraction.

Type BOOLEAN Type scenarios or abstract
scenarios are described in a more
abstract way without mentioning
particular entity instances. Type
scenarios can vary in the level of
abstraction.

Mixed BOOLEAN Mixed scenarios contain different
levels of abstraction.

Context System
internal

BOOLEAN The scenario describes the
interaction between components
within the system boundary.

System
interaction

BOOLEAN The scenario treats the system as
a black box and only describes the

16

interaction between the system
with its environment including
the actor or other system.

Organizational
context

BOOLEAN The scenario contains explanation
of the application domain
knowledge, including knowledge
on the stakeholders' motivation,
goals, social relationships and
responsibilities etc.

Organizational
environment

BOOLEAN The scenario contains information
about the environment where the
organization is in, such as team
distribution and government
regulations etc.

Argumentation Positions BOOLEAN Descriptions of alternative
solutions to a problem

Arguments BOOLEAN Arguments for objecting or
supporting a given position.

Issues BOOLEAN Descriptions of problems or
conflicts of the solution.

Decisions BOOLEAN Choices of a particular position.
Coverage Functional SET (ENUM

{structure,
function,
behavior})

Most scenario models focus on
descriptions of behavioral aspects.

Intentional SET (ENUM
{goal, problem,
responsibility,
opportunity,
cause, goal
dependency})

Intentional models are seldom
included in scenario approaches

Non-functional SET (ENUM
{performance,
time constraints,
cost constraints,
user support,
document,
examples,
backup/recovery,
maintainability,
flexibility,
portability,
security/safety,
design
constraints, error
handling})

Only a few scenario models give
explicit and extended guidelines
about what kind of non-functional
requirements on should express,
and how to express them.

Purpose Descriptive BOOLEAN Primarily for the purpose of
capturing requirements. Also
useful to investigate the
opportunities for process

17

2.2.2 Use cases and scenarios in software engineering

Use cases have the root in software engineering and are used for the Purpose of

describing user requirements [Jacobson1992; Bruegge2010, p.121]. According to Bruegge

et al., "use cases describe the behavior of the system as seen from an actor's point of

view. Behavior described by use cases is also called external behavior. A use case

describes a function provided by the system as a set of events that yields a visible result

improvements or to investigate
the impacts of a new system and
therefore for business process re-
engineering.

Exploratory BOOLEAN Scenarios used to explore and
evaluate possible solutions to
support an argumented choice.
Helpful in exploring various
solutions and selecting the most
appropriated one

Explanation BOOLEAN Scenarios that provide detailed
illustrations of these situations
and their rationale

Lifecycle Lifespan Lifespan ENUM
{transient,
persistent}

Transient scenarios are thrown
after being used. Persistent
scenarios exist as long as the
documentation of the project they
belong to.

Operation Capture ENUM
{fromscratch,
byreuse}

About the generation of scenarios,
from scratch or by reuse.

Integration BOOLEAN Whether or not the scenario is
integrated, which means the
scenario is combined based on
fragmented pieces.

Refinement BOOLEAN Whether or not the scenario is
refined, which means the scenario
is improved in terms of
understandability and reusability
without increasing content.

Expansion BOOLEAN Whether or not the scenario is
expanded, which means new
knowledge is added.

Deletion BOOLEAN Whether or not the scenario is
deleted.

18

for the actors. Actors initiate a use case to access system functionality. The use case can

then initiate other use cases and gather more information from the actors." [Bruegge2010,

pp.44-46] As a comparison, a scenario means an instance of use case in software

engineering.

In practice, software engineering, typically, we need to create multiple use cases to cover

the complete functionality of the system. As Bruegge et al. described: "a use case is an

abstraction that describes all possible scenarios involving the described functionality. A

scenario is an instance of a use case describing a concrete set of actions. Scenarios are

used as examples for illustrating common cases; their focus is on understandability. Use

cases are used to describe all possible cases; their focus is on completeness." [Bruegge2010,

p.50] Goldsmith also pointed out that use cases should describe all the possible paths

that may happen when an actor uses the system to achieve his goal, including both

successful paths and failure paths [Goldsmith2004, p.154].

2.2.3 Scenarios in usability engineering

Unlike use cases, which are mainly used in software engineering, scenarios are used

widely in usability engineering as well [Rosson2012]. Carroll defined scenario in his

Scenario-Based Design book as "a narrative description of what people do and experience

as they try to make use of computer systems and applications" [Carroll1995]. As a

comparison to scenarios in software engineering being defined as instances of use cases,

scenarios in usability engineering focus on the concrete description of the interaction

with the system from the user's perspective [Carroll1995]. Although there is a subtle

difference between scenarios (in usability engineering) and use cases (as well as scenarios

as instances of use cases), they share one commonality in terms of Content: they all

describe sequences of events in terms of input and output of the system. Besides, in

terms of Abstraction (refer to Section 2.2.1), use cases are more general than scenarios

and "intended to be a complete description of what a system will do. [...] Scenarios focus

less on completeness of coverage." [Rosson2001, p.19]

19

Bruegge et al. from the software engineering community pointed out that, "scenarios

cannot (and are not intended to) replace use cases, as they focus on specific instances

and concrete events (as opposed to complete and general descriptions)." [Bruegge2010,

p.132] Rosson and Carroll proposed a way of integrating use cases and scenarios in

usability engineering: "one way to integrate the two methods is to develop use cases as a

functional specification of user-system exchanges, and write scenarios that raise and

consider the usability implications of these exchanges." [Rosson2001, p.19]

Regarding the difference between scenarios and stories, Cohn from the agile community

believed that "interaction design scenarios are much more detailed than user stories,

often describing the persona and the context of the system use in great detail. Also, a

scenario often describes a broader scope than does a user story." [Cohn2004, p.254] Apart

from those mentioned above, according to Carroll et al., there is yet another major

difference between use cases and scenarios in terms of Context (refer to Section 2.2.1):

use cases do not cover motivation, experience and usability issues, but scenarios do

[Carroll1998].

2.2.4 Stories in agile development

User stories were initially used in Extreme Programming (XP) [Beck1999] as a sort of

lightweight requirement allowing developers and customers to set up common

understanding of user requirements in a more natural way. This is achieved by taking

prose text as the Form to describe requirements in the user's everyday language, instead

of using structured formats (like use cases), the Form that is usually for describing

system functions from the technical point of view. As described by Bruegge et al., "a

user story is a single functional requirement formulated by the customer that is realized

and integration tested during an iteration. At the end of iteration, a release candidate is

produced and demonstrated to the customer." [Bruegge2010, p.471] Cohn explained, "a

user story describes functionality that will be valuable to either a user or purchaser of a

20

system or software. User stories are composed of three aspects: A written description of

the story used for planning and as a reminder; Conversations about the story that serve

to flesh out the details of the story; Tests that convey and document details and that

can be used to determine when a story is complete." [Cohn2004, p.4]

Apart from requirements elicitation, another Purpose of user stories in XP is to drive

the project planning [Bruegge2010, p.670]. Unlike use cases, which describe

functionalities planned for the whole project, user stories only focus on the functionalities

that are to be implemented in a sprint. As Cohn described, "use cases are often

permanent artifacts that continue to exist as long as the product is under active

development or maintenance. Stories, on the other hand, are not intended to outlive the

iteration in which they are added to the software." [Cohn2004, p.139]

2.2.5 Personas in user interface design

Unlike use cases and stories, personas are, by definition, not a subtype of scenarios but

are relevant to and often used together with scenarios. Personas were originally used by

Cooper in user interface design and gained popularity when personas were used as a key

component in his Goal-Directed Design (GDD) methodology [Cooper2004]. The purpose

of personas is to envision the personality, motivation, and preferences of potential end

users [Rosson2012]. Personas are, in nature, the models of the end users. As Cooper

described, "personas are detailed, composite user archetypes that distinct groupings of

behaviors, attitudes, aptitudes, goals, and motivations observed and identified during the

Research phase. Personas serve as the main characters in a narrative, scenario-based

approach to design that iteratively generates design concepts in the Framework

Definition phase, provides feedback that enforces design coherence and appropriateness

in the Refinement phase, and represents a powerful communication tool that helps

developers and managers to understand design rationale and to prioritize features based

on user needs. In the Modeling phase, designers employ a variety of methodological tools

to synthesize, differentiate, and prioritize personas, exploring different types of goals and

21

mapping personas across ranges of behavior to ensure there are no gaps or duplications."

[Cooper2007]

The persona method works because designers could capture the sympathy of the end

users by envisioning how the users would do in a specific context. In this sense, personas

and scenarios are related concepts, and in practice scenarios are often associated with a

role or persona describing the goal and character of a user. A persona describes the

profile and behavior of a typical category of user pertaining to the system. As

Gudjonsdottir stated, "personas are fictitious characters that represent the needs of the

intended users, and scenarios complementing the personas describe how their needs can

be met." [Gudjonsdottir2010] Some practitioners also consider personas as a way of

communicating user requirements [Long2009].

Although personas and scenarios are not the same types of artifact, persona method and

scenario-based design have something in common, as Rosson and Carroll admitted that

"clearly persona-centered design are similar in many ways to SBD" [Rosson2012]. Nielsen

also pointed out that scenarios are considered the focal point of the entire persona

method. [Nielsen2012] To be specific, personas provide a user-centric framework for

envisioning scenarios. Instead of creating scenarios in an unorganized way, personas help

establish a user-centric framework for developing scenarios. For example, a designer

could start from the characteristics of a typical user, then analyze his or her typical daily

tasks, and finally work out required functionalities of the system. Personas provide a

mechanism for guiding structured brainstorming and keeping the resulting scenarios

relevant to the user. On the other hand, personas ensure that designers will think from

the user's perspective, which is helpful in filling the gap between design models and user

models.

22

2.2.6 Summary: the anatomy of scenarios

As described above, scenarios have been widely used in software engineering and

usability engineering; however, a consensus on the precise definition of scenario has yet

to be reached across different communities. As Sutcliffe has pointed out, "the term

'scenario' has been hijacked by too many authors to have any commonly accepted

meaning." [Sutcliffe2002, p.121] In our opinion, different researchers viewed scenarios

with different focuses.

• Nielsen highlighted the easy-to-create feature of scenarios and views scenario as "an

especially cheap kind of prototype" that supports only limited number of features

on the user-interface level [Nielsen1993, p.94].

• Rolland et al. emphasized the narrative nature of scenarios and categorize all the

approaches that use examples, scenes, and narrative description of contexts, mock-

ups, and prototypes as scenario-based approaches because "these approaches

emphasize some description of the real world." [Rolland1998]

• Carroll et al. stressed the user-centric property of scenarios. As Carroll described,

"scenarios are stories—stories about people and their activities." [Carroll2000, p.46]

Rosson and Carroll et al. described, "scenarios are stories about use, they maintain

a central focus on use as the goal of design." [Rosson2004]

In this dissertation, we promote the distinction between scenarios in a broad sense and

scenarios in a narrow sense. While authors tend to use scenarios in a narrow sense in

their own ways, scenarios in a broad sense is a umbrella concept that encompasses not

only scenarios in a narrow sense but also similar concepts like use cases and stories (see

Figure 2.6)[4]. A possible definition for the broad sense of scenario is "the description of

the user's interaction with the system in a specific context from the user's perspective"

4 Since in the context of software engineering, the scenario is an instance of use case (see Section 2.2.2), that is

why there is an arrowed line from "Scenario in SE" to "Use Case".

23

[Xu2013]. In the remainder of this dissertation, if not otherwise specified, when we

mention 'scenario', we refer to this broad sense of scenario defined here.

Figure 2.6 Scenarios, stories and use cases

Table 2.4 summarizes the difference of scenarios in software engineering (SE), scenarios

in usability engineering (UE), stories, and use cases according to the CREWS

classification framework described in Section 2.2.1.

Table 2.4 Comparing scenarios, use case and story

CREWS Attributes Use cases in
SE

Scenarios
in SE

Scenarios in
UE

Stories in
Agile

Form.Description.[Medium] Text Text Text Text

Form.Description.[Notations] Semi-formal Informal Informal Informal

Content.Abstraction Type Instance Mixed Mixed

Content.Context.
[System interaction] True True True True

Content.Context.
[Organizational context] False False True True

24

2.3 Understanding Dual Perspectives of Scenarios

In this section, we extend the existing understanding of scenarios and promote the

distinction of two perspectives of scenarios: scenarios as artifacts and scenario creation as

a process, which are what we call dual perspectives of scenarios.

2.3.1 Scenarios as artifacts vs. scenario creation as a process

Whether user stories should take structured or unstructured format has been around in

the agile community for a while. According to the description of user stories in Section

2.2, user stories refer to a subclass of scenarios with unstructured prose-text format; thus,

the question mentioned above could be reformulated as "whether scenarios should be

structured or unstructured?" or further extended as "which Form and level of

Abstraction of scenarios should be used for which Purpose?" In this section, we start

from this specific question, then take a step further and promote the distinction of dual

perspectives of scenarios: scenarios as artifacts and scenario creation as a process.

Scenarios as artifacts refer to the static perspective of scenarios. As artifacts, scenarios

describe the design and usage of the system, which could be used for communication

with the stakeholders. Besides, scenarios as artifacts enable developers to conduct design

evaluation and rationale analysis with stakeholders. Scenarios for this Purpose should be

concise and easy-to-read, and therefore a structured format is appropriate.

Scenario creation as a process refers to the dynamic perspective of scenarios. Scenario

creation is a process of idea exploration, where ideas come to mind and go through a

quick screening process. This process starts with a goal that guides the creation of

scenarios and ends with the scenarios being created as artifacts. This perspective of

scenarios highlights the idea generation nature of scenarios. Scenarios for this Purpose

provide a context for developers to immerse themselves and generate ideas; therefore, an

unstructured format without a predefined framework is appropriate.

25

2.3.2 Different forms of scenarios for different purposes

Jarke et al. recognized that "the degree of formality required depends on the purpose of

scenarios and on the intended audience" [Jarke1998]. Starting from this argument, we

open up further discussion below. Scenario creation is a process of brainstorming and

thought experiment so that developers could "dry-run" the design ideas using scenarios.

For this Purpose, scenarios should take a Form that facilitates idea generation,

possibility exploration, and imagination stimulation without setting any frame that

might limit the imagination. Therefore, a prose-text format like user stories is

appropriate in this context. Descriptive scenarios, which serve as the artifacts for the

Purpose of specification and communication, should be concise, clear, and unambiguous;

therefore, a structured format such as formalized scenarios and use cases fit best.

2.3.3 Benefits of scenarios reviewed from the dual perspectives

The distinction between scenarios as artifacts and scenario creation as a process brings

us in-depth insight into the nature of scenarios. In this section, we recap the benefits of

scenarios from the dual perspective of scenarios, respectively.

Benefits from the static perspective of scenarios (as artifacts):

• Easiness to understand. Regardless of the Medium of a scenario (text, picture, or

video), its Content is always concrete and story-like. In software engineering,

scenarios serve as a common language among stakeholders. Compared to semi-

formal models such as UML diagrams, scenarios, as an informal model, are easier

to understand for stakeholders without technical background [Pressman2009, p.51].

• Removal of ambiguity and assumptions. The concreteness of scenarios helps to

clarify implicit assumptions and unforeseen situations in the design. For example,

assumed conditions would be subconsciously verified when you read concrete

examples of the usage.

26

• Better communication and better stakeholder involvement. As mentioned in

Section 2.1.3, stakeholder involvement relies on stakeholder communications. The

concrete and story-like description of the system usage "help[s] in bridging the gap

between the various stakeholders and the requirements engineers" [Pohl1997].

Haumer et al. also confirmed, "scenarios are proposed as an ideal means to support

the definition of the current-state model and to drive the change definition, i.e., to

achieve better stakeholder involvement" [Haumer1998]. Besides, "scenarios, because

of their concrete and story-like quality, widen the possibility of discussion and

negotiation among designers and other stakeholders." [Jiang2010]

• Basis for Rationale Analysis. Carroll pointed out that design evaluation and

rationale analysis could be conducted based on scenarios. [Carroll2000, p.125] By

studying different solutions and identifying positive and negative points,

stakeholders can reason about the situation and provide feedbacks about the design.

This process also helps to identify new scenarios or update existing scenarios.

• Cheap form for quick design evaluation and feedback. In Section 2.1.3, we have

mentioned that design evaluation is an important activity during stakeholder

involvement. Compared to executable systems, scenarios are cheap to create and

easy to modify, which makes it fit for rapid iterations in the new product

development process. When new ideas pop up, developers could quickly create

scenarios and verify the new design with the stakeholders; after receiving the

feedback from the stakeholders, the developers could easily modify the scenarios

and verify with the stakeholders once again.

Benefits from the dynamic perspective of scenarios (scenario creation)

• Situation deduction and design brainstorming. In its most general sense, the

scenario creation process is a situation development deduction process (such as

chessboard reasoning). In strategy management, this property of scenarios is

employed to form the basis for scenario-based decision making, where scenarios are

used as a tool to make situation deduction [Jarke1998]. In software engineering,

27

scenarios often take easy-to-create Forms such as use cases or user stories, which

allows "dry-runs" of the design in a rapid way. As Goodwin described, "scenarios

are the stories that drive design decisions" [Goodwin2011a].

• Stimulate imagination and idea generation. Scenarios provide a tool for exploring

possibilities in requirements and usability engineering. As Jarke pointed out, "the

main purpose of developing scenarios is to stimulate thinking about possible

occurrences, assumptions relating these occurrences, possible opportunities and

risks, and courses of action." [Jarke1998] Go and Carroll also described, "[scenario-

based design] provides a good brainstorming tool for planning and allows the

stakeholders to consider alternative choices in decision-making" [Go2004].

• Context supports opportunity and problem identification. By creating concrete

scenarios in specific contexts, potential problems and opportunities could be better

identified. Weidenhaupt et al. described, "scenarios present possible ways to use a

system to accomplish some desired function." [Weidenhaupt1998] Benyon and

Macaulay also agreed, "scenarios raise design questions, suggest design solutions

and aid communication within the team" [Benyon2002].

• Focus enforcement. When designing a system, developers could be distracted by

other designing constraints. Scenarios set up a context for the design and help

developers to focus on the relevant aspects of the system that are important to the

users, instead of being drifting into technical details. As Carroll described, "sharing

and developing scenarios helps to control the uncertainties of design work, while

sharpening and strengthening design goals" [Carroll2000, p.55].

28

2.3.4 Summary: the value of this distinction

Distinguishing between scenarios as artifacts and scenario creation as a process brings us

insight into the dual perspectives of scenarios. This insight leads us to review the

benefits of scenarios from two perspectives, and provides guidance on "using different

Forms of scenarios for different Purposes", which in turns answers the question "should

user stories be structured or unstructured". Besides, Rolland et al. proposed a

classification framework for scenarios, but they did not mention the process perspective

of scenarios; they admitted, "the process dimension of scenarios is seldom considered in

the literature." [Rolland1998] The distinction we made in this section highlighted the

process perspective of scenarios. We fill this gap because this dissertation emphasizes the

importance of the process perspective of scenarios.

29

Chapter 3
Demo Engineering Using Software
Theater and Tornado Model

"Words are but wind; but seeing is believing."

-- Thomas Fuller

Different software engineering approaches have different focuses and different designed

purposes. Object-oriented software engineering organizes software engineering activities

around building object-oriented models based on user requirements and then resorting to

coding and testing. Software systems built with this approach features more flexibility

and extendibility as supported by encapsulation, abstraction, inheritance, and

polymorphism of object-oriented programming, which makes it suitable for implementing

systems like large-scale enterprise information management systems. Scenario-based

software engineering organizes software engineering activities around creating scenarios,

which focuses more on the development of user requirements and is suitable for user-

centered system development.

In this chapter, we describe Demo Engineering, which focuses on developing demo

systems, creating theater scripts, and presenting demo systems in a theatrical way.

Demo Engineering employs Software Theater [Xu2015, Krusche2018] for the

demonstration and Tornado Model [Bruegge2012] for the implementation of demo

systems. Software Theater and Tornado Model form the basis for Demo Engineering:

they deal with different aspects of demonstration and complement each other in the

whole process. Demo Engineering is suitable for the co-development and integration

testing of new concepts, new user experience, and new technologies, which makes it a

solution to the challenges posed by exploratory projects. In the rest of this chapter, we

30

first describe the challenges faced and then introduce the concepts of Software Theater

and Tornado Model as well as the relevant foundations.

3.1 Challenges with Exploratory Projects

Exploratory projects mentioned in this dissertation mean projects with the goal of

creating innovative systems by trying out new concepts, new user experience, and new

enabling technologies. These projects are exploratory because they are to explore new

possibilities rather than focusing on implementation using off-the-shelf technologies.

These exploratory projects bring not only novelty but also uncertainties, which are the

"two sides of the same coin". In the following of this section, we analyze the software

engineering challenges faced by exploratory projects.

3.1.1 Constant changes as in every software development

Change is a common phenomenon in software development and is considered as constant

and inevitable [Bruegge2010]. However, certain changes, despite being unavoidable, could

be made to happen earlier by speeding up the iteration cycle. For example, some changes

occur due to external reasons such as insufficient communication among the stakeholders,

inaccurate requirement specification or inappropriate handling of user feedback, etc. The

IKIWISI (I'll know it when I see it) issue [Boehm2000, Cao2008] is one of the examples

of this category. In our opinion, the impact of these changes could be mitigated by

embracing the changes proactively (e.g., facilitating continuous user involvement and

rapid iteration).

3.1.2 Uncertainties from interplay between different levels

Exploratory projects need to explore and evaluate innovative ideas. Innovation at

different levels brings different degrees of competitiveness. Technical innovation alone is

hard to gain traction on the market quickly because it is about the system world and not

directly tangible to the users; therefore, it takes some time for the users to perceive the

31

technical benefit underlying the user interface. Concept innovation and user experience

innovation based on off-the-shelf technologies have direct visibility to the users but are

easier to be followed by other competitors due to the lack of technical barriers. To seek

greater competitiveness on the market, one of the strategies is to promote collaboration

of innovations at different levels, that is, to try out new possibilities at the levels of

concept, user experience, and technology in the parallel and to find the "best"

combination. However, this will pose challenges for software engineering because from

development process point of view exploratory projects are not like traditional projects

that follow a process starting from requirements to implementation; as a comparison, the

project team could be requested to look for applicable concepts or killer applications for

a specified technology or to renovate user experience by employing emerging technologies.

Besides, tryouts at one level may lead to design changes at another level. For example,

we are developing a system that relies on imaging sensors for object recognition, and in

order to obtain improved performance in one parameter, we need to replace the imaging

sensors from one model to another model. However, as every benefit comes with a price,

by doing so, we would compromise the performance in another parameter, which is

required by a usable design. This kind of interplay between different levels is making the

development process of exploratory projects more challenging than traditional ones. As

Jarke et al. described, "in these innovation-driven settings, requirements become part of

both the business solution and the system solution, and they constantly bridge new

solutions to organizational and societal problems … revisiting requirements as

implementation progresses and emphasizes the dynamics and intertwining of these

activities." [Jarke2011]

3.1.3 Inexperience resulting from novelty

Unlike traditional software systems, exploratory projects today are based on emerging

technologies (e.g., deep learning and smart sensors) that enable new concepts (e.g.,

smart home and sensor-based sports training) and new paradigms of user interaction

(e.g., voice recognition and eye control). Some of these innovative systems do not work

alone but also need to interact with the surrounding environment. The usability of user

32

interaction, in these cases, is not only a matter of user interface design but also relies on

the use of enabling technologies. For example, let us assume that we are developing an

application that employs AR glasses to perform quality inspection of parts. This

application requires interaction with physical objects (i.e., that parts produced in a

factory) to perform its function (i.e., to check if the parts have any flaw) using a novel

interface device (i.e., AR glasses). However, the interaction paradigm of this system goes

beyond traditional "keyboard-mouse-display" fashion and is cognitively unfamiliar to the

users; to fill the gap, we need to employ scenarios whose Forms are more intuitive and

tangible than traditional text-based scenarios. Besides, according to the "three-world"

conceptualization (see Section 2.1.2) [Jarke1993], the Content of scenarios in this

example involves not only the system world and usage world but also the subject world.

In a nutshell, both Content and Forms of scenarios need to be extended to cater for

novel systems of this kind.

3.1.4 Summary: how to address these challenges

This section describes how to address the challenges mentioned above. In the

development of traditional systems, text-based scenarios are mainly used to represent

the design and usage of the system for the purpose of illustration and evaluation. When

it comes to exploratory projects, we also need a representation of the system, but with

further demands: in terms of Content, it should cover both the system world and the

usage world; in terms of the Form, it should be intuitive enough for the users to "touch

and feel" the new system and faithful enough to support reliable evaluation of the system;

besides, it should be easy and cost-efficient to create. To summarize, in order to perform

a cost-efficient but reliable illustration and evaluation of systems developed in

exploratory projects, we need to satisfy the following demands:

• D1: We need a representation of the future system that could represent the current

design so that innovative tryouts at different levels (concept, UX, and technology)

could be faithfully reflected while keeping the implementation cost minimal.

33

• D2: We need a way to illustrate the future system in a lifelike setting so that the

applicability of new concepts, the usability of new user experience, and the

feasibility of new technologies could be evaluated reliably.

• D3: We need to get the environment involved when we are illustrating systems like

ubiquitous computing and context-aware computing, and the status of all the three

worlds (system world, usage world, and subject world) should be illustrated in the

parallel to enable the users to understand the interplay among the user, the system

and the environment.

3.2 Demo Engineering

Although different software development approaches will all deliver the software systems

implemented in certain programming languages, they follow different processes, have

different focuses, and as a result fit for different purposes. Object-oriented software

engineering focuses on creating object-oriented models, which will be translated to source

code in certain object-oriented programming language. Software systems built with this

approach features more flexibility and extendibility coming from high cohesion and low

coupling. Scenario-based software engineering focuses on creating scenarios that

represent the future systems from the user's point view. This approach highlights the

importance of user involvement and is suitable for user-centered software development.

Demo Engineering focuses on working with demos: delivering demo systems using

Tornado Model [Bruegge2012] and presenting demonstrations using Software Theater

[Xu2015, Krusche2018]. Instead of seeking decoupling and flexibility of software systems

as in object-oriented software engineering, the goal of Demo Engineering is to create

demo systems for demonstrating the applicability of new concepts, the usability of new

user experience, and the feasibility of new technologies. It should be noted that Demo

Engineering is not going for the implementation of full-fledged systems. The tenet is to

create demo systems (similar to proofs of concept) that faithfully represent innovative

34

tryouts in the current design while keeping the implementation cost minimal. It is also

not a goal to achieve decoupling and flexibility, which actually might not be possible for

exploratory projects that try to make extreme use of available technologies because the

deep co-design of concept, user experience, and technologies would result in tightly

coupled hardware/software systems. In this dissertation, we describe Demo Engineering

using Software Theater and Tornado Model as an answer to the challenges faced by

exploratory projects (as described in Section 3.1). This section introduces the concept of

Software Theater and Tornado Model, and the next section describes the workflow of

Demo Engineering.

3.2.1 Software Theater: scenario-based demonstration

Theater, according to Wikipedia, "[has] been an important part of human culture for

more than 2500 years and evolved a wide range of different theories and practices"

[LouisAlain2019]. As per the definition of theater from Marvin Carlson, an American

theatrologist, "theater is a collaborative form of fine art that uses live performers,

typically actors or actresses, to present the experience of a real or imagined event before

a live audience in a specific place, often a stage. The performers may communicate this

experience to the audience through combinations of gestures, speech, song, music, and

dance. Elements of art, such as painted scenery and stagecraft such as lighting are used

to enhance the physicality, presence and immediacy of the experience." [Carlson1986]

Similar to the traditional theater that presents a dramatic story on the stage, the usage

of software systems could also be presented with the means of theatric elements [Xu2015,

Krusche2018]. Software Theater is a way to present demo systems based on screenplays

using theatrical techniques, including props, equipment, and performance skills.

[Krusche2018]

35

Figure 3.1 The demo system as a subset of the full-fledged system

Software theater, as its name suggests, can be technically explained from two aspects:

the software aspect and the theater aspect.

• The software aspect of Software Theater refers to the representations of future

systems that are ready for the demonstration. In Demo Engineering, we use demo

systems to represent and illustrate future systems. A demo system is a subset of

the full-fledged future system that only represents the innovative tryouts (either

concepts, user experience, or technologies) and relevant participating components

necessary for the demonstration and evaluation (see Figure 3.1). A demo system is

made up of demo components across features and layers. The Forms of demo

components are either real implementations (e.g., for evaluating the feasibility of

the new technologies) or mock implementations (e.g., for participating components).

• The theater aspect is about performing the demonstration on the "stage" [5]. Like in

a theater, such a stage provides the "real" setup and props that promote "real"

experience from the audience and, at the same time, support the evaluation of the

5 The "stage" is quoted here because it does not require a real stage. It could be a meeting room, a lecture hall,

where is arranged like a stage with theatric setup and props.

36

innovative tryouts. Software Theater creates a lifelike environment and atmosphere,

where the actors illustrate the demo system in a theatrical way, highlighting how

to use the future system to solve problems and make a difference in everyday life.

Similar to illustrating prototypes based on predefined scenarios (see Section 3.4.2),

Software Theater presents demo systems based on theater scripts (equivalent to

screenplays in a theater play). The theater scripts describe the event flow of the

performance as well as relevant details on the participating actors and the props.

Props are essential for the performance of demonstration. According to Reid,

"Props contribute a link between actor and environment. All objects which the

actors handle are classified as props...They are an intrinsic part of the action and

are not to be confused with dressing the set by placing objects on it for purely

visual effect." [Reid1997]

Figure 3.2 The Theater World is another world in addition to system world, usage world,
and subject world by focusing on scene, props, and actors.

37

According to the three-world conceptualization (see Section 2.1.2), the system world

includes the computer system that manages the state and behavior of participating

objects ("subjects") sitting in the subject world; and the usage world comprises the users

as well as the usage of the system (represented in scenarios). With the introduction of

Software Theater, the three-world conceptualization could be extended to four worlds,

with an additional world: theater world, which complements the other three worlds (see

Figure 3.2). The theater world is consist of all the objects needed for performing

Software Theater performances, in particular, the demo system from the system world,

the participating objects from the subject world, and the demo script from the usage

world, etc. In addition, the theater world involves the scenes, props, and real actors.

3.2.2 Tornado Model: demo-oriented development

The Tornado Model is a demo-oriented development that aims to deliver systems by

providing a series of demos to be demonstrated to stakeholders for evaluation and

feedback [Bruegge2012]. These demonstrations can be considered as the "touch point" in

a tornado, where the stakeholders could "feel and see" the future system (or part of it)

and provide feedback. After the demonstration of "touch point" and the corresponding

feedback, the system evolves to the next iteration of demo.

Figure 3.3 Tornado Model provides a process that starts with a visionary scenario and
then funnels down to a demo scenario (picture taken from [Bruegge2012])

38

Figure 3.4 shows a typical project lifecycle following the Tornado Model. The process

starts with a visionary scenario and then transforms into a demo scenario. Visionary

scenarios represent design ideas of the future system and are used for envisioning

requirements. In practice, it often requires several rounds of iterations to reach a "stable"

version and could have rollbacks. As the main purpose in this phase is to explore

different alternatives in the application domain, low-fidelity prototypes are sufficient;

therefore, visionary scenarios are usually taking the Form of textual descriptions or

sketches. Demo scenarios are derived from visionary scenarios that are selected for the

demonstration (see Figure 3.2). In terms of Content, demo scenarios are a refined and

normalized version of selected visionary scenarios, illustrating how problems are

addressed using the future system from the user's perspective. Demo scenarios consist of

a set of demo components, which are are either real implementation (when the focus is

the feasibility of new technologies) or mock implementation (when the focus is the

applicability of new concepts or usability of new user experience), or a mix of them.

Before demonstrating the demo system in Software Theater, demo scenarios need to be

converted to theater scripts (see Figure 3.2).

Figure 3.4 A typical project lifecycle following Tornado Model (from [Bruegge2012])

39

The Tornado Model is also an evolutionary software design process that highlights the

importance of the interplay between user models and system models (see Section 2.1.3).

The initial version of the design is depicted using low-fidelity prototypes (for example, a

sketchy user interface created with Balsamiq) (see Figure 3.5, left). Low-fidelity

prototypes are used in the early phases to get user feedback about the user interface as

early as possible in the design process, enabling the users to explore possible design

alternatives or to reformulate the requirements. In the middle of the project, as only

promising alternatives are left, medium-fidelity prototypes (for example, software

mockups as shown in Figure 3.5, middle) are used for a more reliable and tangible

evaluation of the design. At the end of the project, the combined design of concept, user

experience, and technology that finally wins out is implemented and delivered (as shown

in Figure 3.5, right).

Figure 3.5 Evolution of user interface, from low-fidelity to high-fidelity (from
[Bruegge2012])

40

3.3 The Workflow of Demo Engineering [6]

Exploratory projects of different characteristics could use Software Theater and Tornado

Model in different ways to cater for their specific situations, but the key ideas should

stay the same. Figure 3.6 depicts a reference workflow for Demo Engineering using

Software Theater with Tornado Model, which is categorized into three major activities,

divided by UML swim lanes: preparation, implementation, and presentation. The first

two (preparation of formalized scenarios and implementation of the demo system) is

based on Tornado Model, and the last one (presentation of the demo system) is

conducted according to Software Theater. We will describe each of these activities in the

following sections.

Figure 3.6 Demo Engineering: the reference workflow (adapted from [Krusche2018])

3.3.1 Preparation

First, the project team receives, among others, as-is scenarios from the customer (and/or

the user, same below) that serve as the problem statement. Then the project team works

6 This workflow was first described in Section 3 of [Krusche2018] and is refined and adapted in this section.

41

out visionary scenarios together with the customer. As described in Section 2.3.4,

different Forms of scenarios should be employed for different Purposes. In order to

stimulate imaginations as much as possible, user stories (refer to Section 2.2.4) are

suggested as the format for writing visionary scenarios. It might take several iterations

for the project team and the customer to reach an agreement on the visionary scenarios.

Next, visionary scenarios are turned into formalized format (like use cases). A formalized

scenario "describes the same Content as the visionary scenario, but in a structured way"

[Krusche2018], which usually comprises six components:

• Scenario name

• Participating actors

• Flow of events

• Entry conditions

• Exit conditions

• Quality requirements

This step is necessary because organizing scenarios in a structured way (formalization)

"helps to identify areas of ambiguity as well as inconsistencies and omissions in a

requirements specification" [Bruegge2010, p.174]. Besides, it forms the basis for the next

steps toward demonstration because structured scenarios help to analyze the event of

flow and to identify the actors and props required in the theater script. However, it

should be noted that, in practice, the step of creating formalized scenarios could be

omitted sometimes, for example, when the scenarios are familiar enough to the project

team.

3.3.2 Implementation

The next step is to implement the demo system. As mentioned in Section 3.2, a demo

system is a subset of the full-fledged future system, which includes only demo

42

components that are valuable and meaningful for the live demonstration. The demo

system should cover those innovative tryouts reflecting new concepts, new user

experience, or new technologies (see Figure 3.1). The scope of the implementation is

defined by the demo backlog, a list of prioritized tasks for implementation. The demo

backlog is created based on demo scenarios, a subset of visionary scenarios that are

selected for demonstration; at the same time, demo scenarios rely on the demo backlog

to include necessary demo components for performing the demonstration. As depicted in

Figure 3.7, to create the demo backlog, it starts from writing demo scenarios. The initial

version of demo scenarios is usually derived from formalized scenarios created from the

previous step. Then it continues to identify demo components that are necessary for the

demonstration. These demo components are to be implemented by the project team. It

should be noted that it is normal if certain demo components cannot be implemented as

expected in the end, for example, when it turns out to be not technically feasible or

unable to meet the desired specification. In this case, the relevant demo scenario needs

to be modified by removing the parts that are affected by the absence of the component.

Figure 3.7 Creating demo scenarios and the demo backlog (adapted from [Krusche2018])

In order to identify participating objects and methods associated with the demo

components, an effective way is to inspect the flow of events in the relevant demo

43

scenarios. In practice, one could use textual analysis methods, e.g., Abbott's technique

[Abbott1983], to "identify nouns as candidates for classes (participating objects) and

verbs as candidates for operations (participating methods)" [Krusche2018].

As mentioned previously, the goal of Demo Engineering is to create demo systems for

the purpose of demonstration in a faithful and reliable way while keeping the

development cost minimal. A major difference between demo-oriented development and

other development methods is that not every object and method needs to be faithfully

implemented. Real implementations are only for demo components that have introduced

new technologies; thus, the feasibility of the new technologies could be reliably evaluated.

For other components, such as those that try out only new concepts and new user

experience [7], mock implementation is sufficient for the evaluation of their applicability

and usability. For components that have not introduced any innovative tryout, they are

normally not considered to be part of the demo system, unless they are necessary for

supporting the demonstration as participating components.

In order to create the mockups, we could use mock object pattern [Mackinnon2000],

where real collaborators (i.e., participating objects) are replaced with mock collaborators

(see Figure 3.8) [Krusche2018]. It enables the project team to focus only on the real

implementations of identified objects and methods and to mock other parts of the

system that are not relevant [Krusche2018]. The dependency injection pattern

[Martin1996] enables the switch between mock and real implementations during the

development [Krusche2018]. It is suggested that mocked subsystems, objects, and

methods in the class diagram should be highlighted so that all the team members could

be aware of the decision [Krusche2018].

7 Certain design of user experience may rely on specific enabling technology to achieve the desired effect. In such

cases, since the usability of the user experience is decided by the feasibility of a particular technology, the demo

system should include the associated demo component for real implementation as well.

44

Figure 3.8 Model-based demonstration using the mock object pattern (adapted from
[Krusche2018])

The implementation of the demo system could follow any continuous integration and

continuous delivery process, such as Rugby [Krusche2016]. It should be noted that the

implementation process, like any other software development, is never supposed to be a

linear process. The demo backlog and demo scenarios are likely to be modified as the

project goes on, especially when it passes milestone points (e.g., when the

implementation of an important component is finished).

3.3.3 Software Theater Presentation

The presentation is performed using the demo system according to the theater script.

The theater script (or screenplay) is created based on a demo scenario, which reflects the

same flow of events but is written from a theatrical perspective. Performing the

demonstration in Software Theater is not just going through all the functions of the

demo system; the mood and atmosphere created by the actors, stage setup, and props

are also essential in delivering a successful demonstration. Apart from the flow of event,

details about how the actors should behave (e.g., giving the right mood), how the stage

should be prepared (e.g., intended atmosphere and scene) and what props are required

(e.g., to enhance the performance effect), should be considered and recorded in parallel

to writing the flow of event.

45

Table 3.1 A typical plan for review meetings (from [Bruegge2010, p113])

A good opportunity to perform Software Theater is at review meetings because review

meetings are organized according to the predefined milestones, and all the stakeholders

(including the customers) are supposed to be present. According to Bruegge

[Bruegge2010, p113], a typical plan for review meetings with stakeholders is arranged

like Table 3.1. For exploratory projects using Demo Engineering, a common arrangement

is to perform Software Theater at two review meetings: design review and customer

acceptance test. At the kick-off meeting, since it is the starting point of the project, the

main focus is requirement clarification and problem statement, and the form is mainly

text, pictures, and videos.

• At the design review, since the project team have settled the requirements and

worked out the main design after having explored different possibilities [8], Software

Theater could be used for illustrating and evaluating the applicability of concepts

and the usability of user experience. For certain enabling technologies, their

technical feasibilities could also be evaluated at this phase, if the relevant demo

components have been implemented. For participating objects and methods

8 Given the fact that "change is the only constant" as well as the nature of exploratory projects, settled

requirements and worked-out design have the possibility of being reverted and reworked again.

46

without innovative tryouts, mock implementations are enough. Videos could also

be used as an alternative to live demonstrations at design review (see Section 3.2.1).

• At the customer acceptance test, as the demo system has already been

implemented, Software Theater performed at this phase focus on the integration

testing of the applicability of concepts, the usability of user experience, and the

feasibility of enabling technologies. It is important that demo components with

innovative tryouts be faithfully implemented to ensure a reliable evaluation. For

example, the response time is a key performance indicator for object recognition

features. Therefore, this part of the demonstration should be highlighted during the

demonstration. To this end, a scenario about object scanning and recognition

should be included in the demo scenario and the theater script should have a

footnote such as "when the actor starts to scan an object using the App, the second

screen [9] should give a close-up view of the App so that the system response could

be clearly observed by the audience".

Table 3.2 Presentations at different phases of a project

Milestone Purpose Content

Kick-off Requirements clarification and
problem statement

Text, Pictures, Videos

Design review Illustration of concepts, user
experience, and some technologies

Mockups, Implementation

Customer
acceptance test

Integration testing of concepts,
user experience and technologies

Mockups, Implementation

9 It is suggested to set up two screens on the stage, showing different worlds (subject world, system world, and

usage world) in the parallel. See Section 4.2.1 for more details.

47

After the demonstration, the project team collects feedback from the audience, which

will be used as input for the next iteration. The artifacts generated from the workflow,

such as visionary scenarios, formalized scenarios (including demo scenarios), and theater

scripts, could be modified according to the feedback, which will lead to the next version

of demo system and the next round of demonstration. Figure 3.9 shows all the artifacts

generated from the workflow in an analysis object model and illustrates how these

artifacts are related to each other. For instance, the action items are connected to

participating methods that need to be implemented for the demonstration.

Figure 3.9 Artifacts generated from the workflow of Demo Engineering (adapted from
[Krusche2018])

It should be noted that the workflow described above represents only one work cycle of

the project. In real-world projects, it requires multiple cycles to close an exploratory

project, depending on the size of the project.

48

3.4 Principles of Demo Engineering and Software Theater

This section describes the principles and supporting theories behind Demo Engineering

and Software Theater.

3.4.1 Co-development of the user model and the system model [10]

In the following, we review the user model and the system model (refer to Section 2.1.3)

according to the yin-yang principle and, on top of that, point out that user model and

system model depend on and transform to each other, finally conclude that user model

and system model should be given equal attention and be co-developed in user-centered

software development.

Yin and yang are concepts that originated from the ancient Chinese text The Book of

Change [11] [Cleary1992]. The Book of Change, as its name suggests, describes the

philosophy of change in terms of yin and yang. Yin and yang could be understood at

different levels: two modes, four forms, and eight trigrams [Cleary1992].

• Two modes describe the static properties of yin and yang, as the two sides of

duality: yin and yang are ubiquitous (e.g., birth and death, heaven and earth, good

and bad) [12]; yin symbolizes feminine, dark and passive, while yang symbolizes

masculine, bright, and active; yin and yang are opposite but complementary [13].

[Chan1963, Cleary1992, Fang2012]

10 This section is abridged and adapted from the Section 2 of [Xu2013].
11 Also known as I Ching or Yi-jing. They are different translations referring to the same thing.
12 It should be noted that different pairs of yin and yang could be identified for the same thing when looking at it

from different perspectives.
13 It should be noted that being opposite just means that they are two sides of the duality and should not be

viewed as logically contrary; they are complementary to each other instead.

49

• Four forms reveal the dynamic nature of yin and yang: yin and yang depend on

each other and transform to each other in a continuous manner; every yin comes

with a bit of yang, and every yang comes with a bit of yin. Therefore, we have four

forms of yin and yang: climaxing yin, climaxing yang, incipient yin, and incipient

yang [Cleary1992].

Figure 3.10 Yin and Yang shown in a Taiji diagram (from [Xu2013])

The Taiji diagram (see Figure 3.10a) depicts the two modes and four forms of yin and

yang. The circle is divided into two halves by an S-line: the white area represents the yin

mode, and the black area represents the yang mode. The yin mode comprises climaxing

yin and incipient yang (the black hole in the white half), and the yang mode comprises

climaxing yang and incipient yin (the white hole in the black half) [Cleary1992]. The

philosophy of yin and yang is all about harmony and balance during the development of

things, which could also be taken as reference for the yin and yang in software

development. In our opinion, the user model and system model are the yin and yang in

user-centered software development:

• User model, reflecting the user's expectation and understanding of the system, is

the yin; and system model, representing the underlying implementation of the

system, is the yang (as depicted in Figure 3.10b).

50

• User model and system model are opposite because one is concerned with external,

user-visible aspects of the system, and the other is concerned with the internal,

user-invisible aspects of the system.

• User model and system model are complementary to each other because the

internal mechanics and external experience together constitute a complete model of

the software system.

• User model and system model depend on and transform into each other constantly.

System model depends on user model in that the system model is created based on

the requirements reflected in the user model. From another perspective, user model

transforms to system model because, in the software engineering process, user

requirements reflecting the user model will gradually be transformed into the

implementation that reflects the system model. In order to explain how system

model transforms into user model, it is necessary to mention that certain changes,

despite being unavoidable, could be made to happen earlier by speeding up the

iteration cycle (see Section 3.1.1). For example, users need to see the working

system to build their user models, and then to give feedback that might lead to

further improvement of the system. It is common that, after having tried out an

early version of the system (incipient yang), the users would change their minds

and propose further requirements (climaxing yin) [Cohn2004]. Therefore, the end of

one iteration would be the start of the next iteration. In other words, system model

facilitates the refinement of user model, and user model again pushes further

improvement of system model. This explains the process of system model

"transforming" into user model (see Figure 3.10c).

The duality between the user model and system model reminds us that the user model

and system model should be co-developed and receive equal attention during user-

centered development. This insight also reflects the following principles of Demo

Engineering:

51

• Demo Engineering highlights the importance of user involvement. Presenting demo

systems using Software Theater enables users to "touch and feel" the systems in an

engaging, sympathetic, and tangible manner, which is helpful in generating high-

quality feedback for further refinement of the systems.

• Demo Engineering emphasizes the faithfulness of demo systems. Only when new

ideas being demonstrated with sufficient implementation, would it be possible to

make evaluation of these new ideas reliably.

• Demo Engineering recognizes the interplay between different levels of the system

and advocates the integration testing of new concepts, new user experience, and

new technologies in an theatrical way.

3.4.2 Using prototypes with scenarios

As mentioned in Section 2.2, some authors considered scenarios and prototypes as two

"points" on the same spectrum and would represent scenarios (in a broad sense) with

different Mediums [Nielsen1993, Rolland1998]. In this dissertation, we hold the opinion

that scenarios and prototypes are relevant but different concepts (focusing on different

aspects of the system) and should be used together.

Generally speaking, scenarios are stories about use, which describe a procedure or a

process of how to use the system to achieve specific goals. Prototypes, however, are

simulations of the full-fledged future system [Bruegge2010, p.43]. As Nielsen described,

"the entire idea behind prototyping is to save on the time and cost to develop something

that can be tested with real users." [Nielsen1993, p.94] A prototype is intended for being

used for testing purposes but does not describe the usage on its own. Anton and Potts

pointed out a significant difference between scenarios and prototypes: an executable

prototype is a behavior generator, and a scenario is a behavior description [Anton1998].

That is, a prototype is an approximate representation of the future system with limited

function and fidelity. A prototype requires a certain amount of implementation (or

52

simulation), at least for the part under evaluation, so that the user could experiment

with that part and give feedback. Prototypes enable technical evaluation of the system

to a certain extent, depending on the fidelity of the prototype. On the other hand, a

scenario is a description about the usage of the system (which could be simulated by

prototypes) in the context from the user's perspective. Evaluation with scenarios focuses

on the concept and user experience that are tangible to users.

Figure 3.11 Prototypes and scenarios depicted in three-worlds conceptualization

As depicted in Figure 3.11, the relationship between prototypes and scenarios could be

clarified in terms of the three-world conceptualization (refer to Section 2.1.2): prototypes

simulating the future system are about the system world and scenarios describing the

interaction between the user and the system in the context are about the usage world

[Ben1999].

The purpose of creating prototypes is for users to experience and evaluate how the

future systems would look like, so that users could provide valuable feedback for the

next iteration. In practice, prototypes are often used together with scenarios

[Weidenhaupt1998]. As Pohl describes, "when presenting the prototype to the

53

stakeholders, the usage scenarios are provided as tasks which the stakeholders shall

perform with the prototype" [Pohl2010, p.459]. Compared to communicating with

stakeholders with text-based scenarios in a "dry" way, illustrating future systems using

prototype-based scenarios is more intuitive and easy to understand. There are different

ways to use prototypes with scenarios. A prototype can be used with a guide or without

a guide. It could be either user-performed [Pohl2010, p. 459], or developer-performed

[Sutcliffe1997]. As Weidenhaupt et al. reported, combining the development of scenarios

and prototypes enables stakeholders to check, discuss and update scenarios and

prototypes at the ground level, and can lead to better customer satisfaction

[Weidenhaupt1998]. This is particularly true when we are developing innovative

applications based on emerging technologies (such as wearable computing, internet of

things, and AR/VR). Demo Engineering uses Software Theater for the demonstration of

future systems, which creates more empathy and context. Besides, unlike vertical

prototyping or horizontal prototyping, Demo Engineering using Tornado Model focuses

on faithful integration testing of concept, user experience, and technology with minimal

effort, which will be described in the next section.

3.4.3 Focus and minimal effort with demo-oriented development

To address the challenges posed by exploratory projects (as described in Section 3.1), we

need a demo system that "just fits" for the integration testing of new concepts, new user

experience, and new technologies. In order to achieve faithful and minimal effort, the

demo system should be implemented in a "no more, no less" fashion. Tornado Model is a

demo-oriented development method that aims to develop such demo systems

continuously in different phases of the development project [Bruegge2012, Bruegge2015].

The basic tenet is to start with low-fidelity prototypes for potential tryouts on the long

list and employ high-fidelity prototypes for those selected on the shortlist. This is also

following the spirit of idea funnel (see Figure 3.12), which has been used for effective

idea management in innovation management [Luecke2003, Pikkarainen2011]. In an idea

funnel, ideas are evaluated and screened using different techniques at different phases

54

[Luecke2003, p.62; Dabholkar2013, p.15]. At the top of the funnel, since there is a heap

of potential ideas under consideration, low criteria is applied to narrow the list of

candidate ideas quickly. As the ideas go through the funnel, only a shortlist of ideas

survives at the bottom of the funnel. Since only a small amount of ideas are left now,

high criteria could be adopted to make further in-depth evaluation [Kohavi2013]. This is

somehow consistent with the spirit of lean startup as well, which advocates evaluating

ideas with the minimal viable products (MVP). [Ries2011]

Figure 3.12: Idea funnel for effective idea management (from [Luecke2003])

The spirit of Tornado Model is also similar to that of prototyping techniques in the

sense that they both emphasize the implementation of selected parts of the future system.

A major difference between them lies in how to make such selections. While prototyping

can be vertically, horizontally, or mixed (see Figure 3.13), Tornado Model stresses more

on "focus" and "no more, no less". To be specific, Tornado Model only implements those

components that are required for the demonstration: real implementations are used for

where faithfulness is important, such as those components using new technologies (whose

feasibility needs to be evaluated); and mock implementations are used for participating

objects without innovative tryouts.

55

Figure 3.13 Vertical prototype and horizontal prototype (from [Nielsen1993, p.94])

3.4.4 Using theatrical techniques for the demonstration

As mentioned in Section 3.1, exploratory projects are to develop innovative systems that

are not seen in the market (for instance, using new interaction paradigms like gesture in

the air, eye control, etc.). For situations like that, text-based scenarios and prototypes

are not enough because they cannot highlight the innovative tryouts of the future system

in a lifelike context and therefore cannot deliver the empathy and "touch and feel" to the

users, let alone makes a reliable evaluation on the feasibility of the new technologies. In

other words, for these exploratory projects, new concepts and new user experience lead

to a situation that the user model cannot be rapidly constructed by just watching the

changes of the user interface in the system world.

Using prototypes with scenarios (see Section 3.4.2) has been proved to be a useful way

to enhance design and user participation in the demonstration [Weidenhaupt1998,

Sutcliffe1997, Sutcliffe2013]. In a step further, theatrical techniques could be applied to

the demonstration of software systems [Mahaux2010, Xu2015, Krusche2018]. Needless to

say, the cost for performing demonstrations in Software Theater is higher than writing

56

text-based scenarios; however, it is worth considering the benefits of using theatrical

techniques than text-based scenarios as well as the significance of the exploratory

projects. Like text-based novels, the performances in films and theaters are all about

telling stories. Actually a performance and a novel could tell the same story in terms of

the materials of the story (which is consist of the plot, characters, setting, theme, etc.);

however, they differ in the form of narration: novel is mainly based on written language

and performance is based on the acting of the actors as well as pictures and sound

[Monaco2013, p.54] [14]. According to Monaco [Monaco2013], this essential difference

makes further distinctions between performances and novels: performances are more life-

life and create a much rich experience for the audience; performance leaves more room

for the audience to interpret the connotation, as compared to novels where "we see and

hear only what [the author] wants us to see and hear", because for performances, the

audience "see and hear a great deal more than a director necessarily intends"

[Monaco2013, p.54].

Demonstrations can be considered as a proof-of-concept method that shows functional

and non-functional aspects of the future system to the stakeholders and inspires feedback

from them. Basically, it is a process of establishing synchronization between the user

model and the design model (refer to Section 2.1.3). Demonstrations can be used to

verify not only requirements but also other aspects such as software design, accessibility,

and usability, etc. Ideally, a demonstration should be carried out whenever there is a

major change that may cause uncertain consequences; however, in practice, due to the

cost reason, the performance of demonstration only happens at milestones. In our

opinion, no matter a demonstration is based on a partially-implemented prototype or a

fully-implemented system, putting the demonstration into a usage world is helpful,

especially for applications with novel interaction paradigms such as wearable computing

applications and IoT-based smart home systems. As mentioned in Section 3.4.2,

14 The original description in [Monaco2000] was about films. Although there are differences between films and

theatrical plays, the citations used in this section do not go beyond their commonalities.

57

scenarios stimulate more and deeper discussions among stakeholders [Sutcliffe1997,

Pohl2010]; presenting scenarios in Software Theater strengthens this benefit because it is

more intuitive and tangible to the audience. When the actors present the demo system

according to the theater script in a lifelike scene, people in the audience are virtually

placed "on the scene" and could "touch and feel" the future system, which will generate

more empathy and lead to more insightful feedback. Besides, Software Theater employs

theatrical techniques and film tricks during the performance, which makes it easier to

highlight the existing problems (e.g., the pain points of the user) and the benefits of the

future system. Furthermore, with the aid of stage equipment (such as projectors and

audio effects), it is possible to perform stage montage to achieve expected effects that are

not viable in other forms of demonstration due to technical barriers.

3.5 Related Works on Software Theater

This section describes related works that also employ certain kinds of live performances.

We will also compare them with Software Theater and point out the differences.

3.5.1 Laurel's Computers as Theatre

In the book Computers as Theatre [Laurel2014], Laurel elaborated on the dramatic

foundations and highlighted the linkage between theater and user interaction design.

According to Laurel, "we have at least two reasons to consider theatre as a promising

foundation for thinking about the designing human-computer experiences. First, there is

significant overlap in the fundamental objective of the two domains - that is,

representing action with multiple agents. Second, theatre suggests the basis for a model

of human-computer activity that is familiar, comprehensible, and evocative."

[Lauren2014, p.30] However, Laure's Computers as Theatre only focused on using the

heuristics learned from theater to form general rules for user interaction design and did

not enact the theatrical performance itself; nevertheless, its description of the dramatic

58

foundation, e.g. the story structure [Laurel2014, p.96] and the dramatic devices

[Laurel2014, p.105] is enlightening to this dissertation (see Section 4.1).

3.5.2 Mahaux and Maiden's Improvisional Theater

Mahaux and Maiden proposed using Improvisional Theater to support team-based

innovation in the requirements engineering process [Mahaux2008, Mahaux2010]. The

commonality of Improvisional Theater and Software Theater is that they both employ

the form of theater in order to improve communication and increase mutual

understandings with stakeholders. But they differ in several aspects. First, the purpose

of Improvisional Theater is to generate creative ideas in the requirements engineering

process, while the purpose of Software Theater is to demonstrate and evaluate future

systems developed under exploratory projects, including the applicability of new

concepts, usability of new user experience design and feasibility of new technologies.

Second, Improvisional Theater, as its name suggests, takes advantage of unplanned

improvisional performance to stimulate the creativity of team members, while Software

Theater uses a predefined theater script for the demonstration.

3.5.3 Role-playing based on CRC Cards

The CRC (Class, Responsibilities, and Collaborators) Cards were introduced by XP

practitioners Kent Beck and Ward Cunningham in 1989 as a teaching tool for object-

oriented programming. [Beck1989] Some also employ CRC cards for role-playing where

students are asked to play the role of specific classes and interact with other each, as an

effort to understand the responsibility of a class and how a class interacts with another.

While CRC cards method shares some commonality with Software Theater in that role-

playing is similar to acting a role in a theatrical play; however, they are different in

multiple aspects. In terms of purpose, role-playing using CRC cards is designed for

teaching object-oriented programming, while Software Theater is intended for the

demonstration and evaluation of future systems. Besides, CRC cards represent classes,

59

and the role-playing activities illustrate the behavior of the classes, while in Software

Theater, the actors illustrate the future system by interacting with the demo system.

3.5.4 Rice and et al.'s Forum Theatre

Rice and et al. used forum theatre (a kind of interactive theatre) to elicit requirements

in the development of new technologies [Rice2007]. They also discovered that storytelling

using theatre and video is useful in promoting user involvement because it is easier for

technologically naive users (for instance, the elders) to understand future systems, and it

"can increase designer empathy towards end users". [Rice2007] However, as Rice and et

al. pointed out that "we found theatre particularly useful at the stage of the

requirements gathering, it may not be equally well suited for very early requirements

gathering, or later, more specific prototype evaluation" [Rice2007]. The main reason for

this discrepancy is that Forum Theatre focuses only on requirements elicitation, while

Software Theater is intended for the demonstration and evaluation of a functional demo

system. Besides, it is related to the targeted types of projects. Software Theater is used

for exploratory projects with both novelty and uncertainty. The live demonstration is

partially to address to challenges brought by the uncertainties, and the cost is worth

compared to the novelty achieved in the end.

60

Chapter 4
Software Theater Patterns and Best
Practices

“I have not failed. I've just found 10000 ways that won't work.”

-- Thomas A. Edison

We have elaborated on the concept and principles of Software Theater in Section 3. This

chapter first introduces the heuristics that we have learned from the film and theater

theory, then on top of that describe the rules that we should follow when using Software

Theater. Next, based on these rules, we describe Software Theater patterns and best

practices, where patterns refer to the typical recurring design of performance for the

specific context (similar to the tropes used in novels and films) and best practices refer

to tips and hints that help make appropriate use of Software Theater in other respects.

4.1 Heuristics from Theater Theory

Software Theater demonstrates software systems by live performance on the stage.

Looking into the theories behind theater helps us to take full advantage of its strong

points and to overcome its limitations.

4.1.1 Forms of the performance

Theater and film are similar forms of performance in the sense that they both are

performed by actors according to the screenplay, although films sometimes are based on

narration and pictures (such as documentation films). As Cooper and Dancyger

described in Writing the Short Film, "as a narrative form, [film] has more in common

61

with theater." [Cooper2005, p.101]. However, apart from this common point, the

characteristics of theater and film differ in several aspects [Monaco2013]:

• Theatrical plays are more live and interactive than films, bringing more immediacy

and intimacy [Monaco2013, p.60]. As Monaco described, "theater has one

advantage over film, and it is a great one: theater is live. [...] It is also true that

the people who perform in film are, quite obviously, not in communication with

their audience". [Monaco2013, p.58]

• Films could inherently support more forms of mediums and show more details than

theatrical plays. [Monaco2013, p.57] For example, a film could use techniques like

close-up and sound effect, etc. to enhance the visual and aural experience of story

telling. But for a theatrical play on the stage, the audience "has difficulty

comprehending all but the broadest gestures." [Monaco2013, p.58]

• Compared to theatrical plays that are based on performing a series of events, films

could carry more communications to the audience. [Monaco2013, p.58] For example,

the director of a film could insert voice-overs to explain the story or use close-up

lens to highlight crucial details of the film.

Software Theater is performed based on theater but does not need to follow every

conventional restriction on theatrical plays. Recognizing these differences helps us to

make appropriate use of theater for the purpose of demonstrating software systems.

• In this dissertation, we have advocated using theatrical plays for demonstrating

software systems. However, there are cases where a Software Theater cannot be

performed due to technical, spatial or geographical reasons. In such cases, film-

based Software Cinema [Creighton2006] could be used as an alternative. As

mentioned above, films are less interactive than theaters, but the expressive power

is beyond theaters. (See Section 4.3.3 for the best practice of using video as an

alterative to theater)

62

• Due to the limitation of the stage, conventional theaters suffer from the missing of

visual details in the audience because the fine details on the stage cannot be clearly

observed by the audience. In Software Theater, it is crucial for the audience to see

the changes on the user interface while the actors are demonstrating the system on

the stage. To enhance the audience's visual perception, it is suggested to set up at

least one projection screen above the stage. This screen could be used either for

close-up of details on the stage or sharing the screen of mobile phones or computers

to enable the audience to know the status of the system world. (See Section 4.3.1

for the best practice of Setting up additional screens for synchronized illustration)

• Theatrical plays normally do not use voice-overs (because it would interrupt the

storytelling on the stage) and therefore carry less communication to the audience.

However, using voice-over is not a problem when we are demonstrating software

systems; besides, for short performances, narration is more efficient in introducing

the background and developing the story because "there is too little time available

[...] to allow the action to develop on its own." [Cooper2005, p.146] (See Narrator

pattern described in Section 4.2.2)

4.1.2 Story and storytelling of the performance

The same materials of the story could be performed in different manners and result in

different qualities of the performance. The story is one thing and the storytelling is

another - both are important for delivering distinctive and impressive performances.

First, we look at the storytelling. In the theory of films and theaters, there are different

well-known structures for storytelling, including Freytag's 5-point structure

(Introduction, Rise, Climax, Return or Fall, Resolution) [Freytag1898; Laurel2014, p.96],

Watts's 8-point arc (Stasis, Trigger, The quest, Surprise, Critical choice, Climax,

Reversal, Resolution) [Watts1996; Caldwell2017, p.14], and Campbell's 12-point journey

(Ordinary World, Call to Adventure, Refusal, Meeting with the Mentor, Crossing the

Threshold, Tests/Allies/Enemies, Approach to Inmost cave, Ordeal, Reward, The road

63

back, Resurrection, Return with elixir) [Campbell2004; Vogler2007, p.7], etc. Although

above-mentioned structures, among others, have different points and definitions, they

could be mapped to a common model of three acts: Act 1, Act 2, and Act 3 (see Figure

4.1) [Caldwell2017, p.18]. Caldwell summarized what these acts do:

• "Act 1 - the setup introduces the characters and the rules of the world. The

audience/player learns where the story takes place (the setting), what the main

character wants (motivation), and the dramatic question (what the story is really

about, that the audience can relate to). This act contains only the minimum

amount of information the audience needs to start the story.

• Act 2 - Increasing Conflict forces the main character to confront obstacles that

stand between them and what they want, their goal. These conflicts build until the

final crisis that has to be resolved… one way or another. This act is where the bulk

of the conflict takes place.

• Act 3 - Resolution follows the Climax that is the transition to Act 3. Here, the

conflict is resolved, the big questions are answered, and a new status quo is

established. It’s the shortest act, with a resolution which gives the story its

meaning." [Caldwell2017, p.8]

Figure 4.1 The three-act structure (from [Caldwell2017, p.8]

64

In our opinion, the performance used for Software Theater is short compared to a

regular film or theater, and could take this three-act structure as a reference framework:

• Software Theater Act 1 introduces the background about the project (e.g. why the

project? what is the purpose of the system? who is supposed to use it? where the

system is used, a hospital, or a factory?) as well as the actors (e.g. their roles, goals,

and personalities). Although the context information is not the main part of the

story, it foreshadows the conflict in the next act. As Cooper and Dancyger

described, "character, plot and conflict are intricately related to one another. [...]

Plot qualities are closely related to character. [...] The more powerful the barriers

that stands in the way of the character achieving his or her goal, the more

compelling the plot. If the character faces no barriers in achieving his or her goal,

there is no story." [Cooper2005, p.91] Giving a clear explanation about the actor's

task and goal helps the audience to understand his or her difficulty with existing

system and makes it natural to anticipate the new system. To this end, we could

employ voice-over or screen illustration to provide additional information to the

audience. (See Section 4.2.2 for the Narrator pattern and Section 4.3.1 for the best

practice of Setting up additional screens for synchronized illustration)

• Software Theater Act 2 illustrates the interaction with the system for achieving

specific goals. In order to create dramatic effects, storytelling devices, e.g. conflict

and twist, could be applied to maintain the attention of the audience. Conflict and

twist are general concepts that can be embodied in different concrete forms.

According to Cooper and Dancyger, conflicts could be created from the actor's

perspective: actor vs. actor (e.g. different opinions and demands between actors),

actor vs. setting (e.g. the external difficulty for the actor to achieve the goal), actor

vs. community (e.g. the actor advocating the new system as opposed to others

defending for the existing system) [Cooper2005, p.120]. In Software Theater,

contrast between the existing system and the new system could be considered as

yet another form of conflict. Twists could be embodied as turns, surprises, reversals

65

[Cooper2005, p.106; Laurel2014, p.105] as well as shock [Caldwell2007, p.91] and

coincidence [Caldwell2017, p.200], to name just a few.

• Software Theater Act 3 concludes the performance with the conflict and the twist

resolved. Since Software Theater is to demonstrate a new system, it is suggested to

create an atomsphere of happy ending: the task is successfully completed and the

actors are satisfied with the result.

Next, we look at the story. In the context of films (especially feature films) and theaters,

screenwriters start with basic ideas of the story, then attach dramatic elements to the

story to make it more interesting and attractive, and finally adapt it into the form of

screenplay [Cooper2005, p.113]. However, in the context of Software Theater, we start

with demo scenarios, which describe a sequence of event illustrating the usage of the

demo system. Compared to stories in films and theaters, these demo scenarios are more

about factual information and therefore require more effort to be made dramatic. On the

other hand, considering the purpose of Software Theater, these "usage scenes" derived

from demo scenarios are indispensable to the performance. Therefore, we distinguish

between two dimensions concerning with the performance of Software Theater, which are

labelled as the core of the story and the drama of the story.

• Core of the story is the tenet of the story that the performance must convey to the

audience. In the context of Software Theater, the core of the story is a sequence of

events illustrating the usage of the demo system. These "usage scenes" are crucial

in fulfilling the goal of Software Theater - demonstrating the applicability of the

concept, the usability of the user interaction and the feasbility of the technology.

These "usage scenes" by themselves constitute less dramatic elements and are more

about factual information. There are several patterns and best practices for passing

factual information to the audience in Software Theater: voice-over, monologue,

dialogue, metaphor, and screen illustration, etc. (see Section 4.2 for Dialogue

pattern, Narrator patter, and Metaphor pattern; and Section 4.3.1 for Setting up

additional screens for synchronized illustration).

66

• Drama of the story. According to Caldwell, "dramatic stories are more than just

what is happening ... they are about why things are happening and how it affects

the viewer." [Caldwell2017, p.4]. Attaching dramatic elements to the story's core

makes the story logically complete and attractive. As Caldwell stated, "dramatic

stories are still a sequence of events, but the fundamental different is that they are

a sequence of connected events" [Caldwell2017, p.4]. The drama of the story

represents the dramatic quality of the performance, which evoke the audience's

engagement and sympathy. However, it should be noted that the drama should be

developed to support conveying the core of the story. In Software Theater, it

means that the project team should figure out a drama that fits for the "usage

scene" and lends itself to highlighting the usefulness of the system. This requires

the project team to identify the features of the new system and to design the

drama around the killer application scenarios of these features. To enhance the

dramatic quality of the performance, dramatic devices, such as conflict, twist,

contrast, and so on, could be employed. (see Section 4.2.5 for Conflict pattern,

Section 4.2.6 for Twist pattern, and Section 4.2.7 for Contrast pattern)

4.2 Software Theater Patterns

Patterns have been used in software engineering as a way to outline the essential part of

a solution as well as the corresponding context that the solution fits for [Alexander1977].

Following the same spirit, this section describes Software Theater patterns that we have

identified based on the heuristics from the theater theory as well as our practical

experience. These patterns could be classified into two categories: patterns for passing

information to the audience, and patterns for developing dramatic stories. In software

engineering, there are different forms to outline patterns, such as Alexander's schema

[Alexander1977], Gang-of-four's schema [Gamma1996], and Gang-of-five's schema

[Buschmann1996]. In the following, we adopt an abridged version of Gang-of-five's

schema [Buschmann1996, p.20] for describing patterns in Software Theater:

67

• Name: the name of the pattern.

• Context: the context where the pattern emerges. It could be either passing factual
information to the audience or drama development for the story.

• Problem: the situation and problem that the pattern addresses.

• Solution: the essential part of the pattern that addresses the problem.

• Consequences: The benefits and drawbacks of the pattern, and/or any point that
needs to be noted when using the pattern.

• Example: an example describing how to use the pattern.

• Source: instead of providing a snippet of sample code, we provide a link to the
recorded video of the demonstration that has used the pattern.

• Related Patterns: patterns that are related and could be potentially used as an
alternative to the pattern in discussion

4.2.1 Dialogue pattern

Figure 4.2 The Dialogue pattern illustrated

68

• CONTEXT: Passing information to the audience

• PROBLEM: Additional information is required as prerequisite knowledge for the

audience to understand the demonstration, especially when the system has a new

concept or new interaction paradigm that the audience has never seen before. Such

information could be the background about why the system is required, what

constraints the system is faced, etc.

• SOLUTION: The Dialogue pattern passes information to the audience by the

conversation between two actors on the stage. A typical way to apply Dialogue

pattern is to set up two actors on the stage: one acts as a novice, and the other

acts as an expert; the novice actor deliberately asks questions about the system,

and the expert actor answers these questions. The audience receives additional

information through listening to the dialogue between them.

• CONSEQUENCES: To apply this pattern, it is important to insert the necessary

information into the conversation, while writing the theater script, such that the

conversation goes in a natural way fitting the whole story. This could be easily

achieved in most cases, which makes the Dialogue pattern the commonly used

among all the patterns in the context of information passing.

• EXAMPLE: The BSB Reservation Project from iPraktikum 2017/2018 [15]

employed Dialogue pattern to introduce their IoT-based seat reservation system for

the library. In this project, the team developed a mobile app for seat reservation in

the library. Using the app, a user could reserve a seat in the library in advance.

When he arrives in the library and finds the seat, he needs to check in by entering

the check-in code of the seat in the app. The check-in code is dynamically

generated for every reservation and valid for only once. Therefore, in order to show

the dynamically generated check-in code, a hardware gadget (the ePaper display)

15 Homepage of iPraktikum 2017/2018: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/937

69

needs to be mounted on the desk. Since this kind of interaction via a gadget was

not familiar to every user in their daily life, to help the audience to understand the

purpose and usage of the gadget, a novice actor asked the expert actor why there is

a display on the desk and how to use it.

• SOURCE: https://youtu.be/VVAsaXuJPsQ

• RELATED PATTERNS: Narrator, Monologue, Metaphor

4.2.2 Narrator pattern

Figure 4.2 Narrator pattern illustrated

• CONTEXT: Passing information to the audience

70

• PROBLEM: Similar to Dialogue pattern, the Narrator pattern is another

commonly used way for providing additional information to the audience. The

difference lies in who gives voice to it. The Narrator pattern fits for situations

where it would be confusing or unsmoothly if the information were given by one of

the actors on the stage.

• SOLUTION: The Narrator pattern passes information to the audience by setting

up a dedicated role, the narrator, who gives information to the audience in the

form of voice-over and normally does not show up on the stage. For general

information about the system, the narrator could explain at the beginning of the

demonstration; for explanations about the usage of the system, the narrator could

commentate on while the actors are interacting with the system.

• CONSEQUENCES: To apply the Narrator pattern, it is important to reserve an

appropriate length of time in the theater script for the narration. The Narrator

pattern is the mostly used pattern because the information could be easily and

accurately passed to the audience without having to think about the coherence and

continuity of the actor's lines. The fact that the information is pushed to the

audience by the narrator, not embedded between the lines, makes it more effective

in communicating to the audience. The downside is that the Narrator pattern

interrupts the actors' performance on the stage and sacrifices the dramatic quality

of the performance.

• EXAMPLE: The ZIMTlog project from iPraktikum 2016/2017 [16] developed for

ZEISS Industrial Metrology (ZIMT) used the Dialogue pattern. The background of

the project was that ZIMT, the manufacturer, would like to monitor expensive

machines they produced during international transportation to its customers. In

order to track the conditions of the machines, ZIMT would attach a sensor to each

machine so that any shock in all three axes and deviation in temperature and

16 Homepage of iPraktikum 2016/2017: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/949

71

humidity could be detected. The project was to develop a corresponding mobile

app for this monitoring system so that ZEISS colleagues could use it to read the

sensor data and get a first clue on where to start inspecting the damaged machines.

Since the machine and the associated sensor were inside a package box, the process

of retrieving sensor data was not directly visible to the audience, though it was

essential for the audience to understand the whole working procedure. Therefore, a

narrator was introduced and arranged to explain what was happening with the

machine and sensor during intervals of the performance.

• SOURCE: https://youtu.be/enpEO6bGaZQ

• RELATED PATTERNS: Monologue, Dialogue, Metaphor, Illustration

4.2.3 Monologue pattern

Figure 4.3 The Monologue pattern illustrated

• CONTEXT: Passing information to the audience

72

• PROBLEM: The Monologue pattern is yet another way of passing information to

the audience. It is used when the single actor on the stage wants to communicate

something to the audience, while not intending to bring another actor on the stage

or to use a narrator to interrupt his or her performance.

• SOLUTION: The Monologue pattern passes information to the audience by talking

to him or herself.

• CONSEQUENCES: The Monologue pattern relies on the single actor to tell

everything to the audience. It should be noted that the information should be not

overloaded when using this pattern. Besides, mixing the story with the background

or side information could potentially confuse the audience.

• EXAMPLE: The NeuPro project from iPraktikum 2019 [17] developed a system to

support workers to clean and repair boats by controlling a robotic arm using an

iOS app. Since the Software Theater focused on demonstrating the feasibility of

the new approach (using an iOS app to control the robotic arm), the scenario is

plain and straightforward; therefore, the actor simply walked through all the

functions on the mobile phone and explained what was happening with the robotic

arm as she demonstrated the app.

• SOURCE: https://youtu.be/05ObdDu6FHU

• RELATED PATTERNS: Dialogue, Narrator, Metaphor

4.2.4 Metaphor pattern

• CONTEXT: Passing information to the audience, especially internal mechanism of

the system

17 Homepage of iPraktikum 2019: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/1037

73

• PROBLEM: The Metaphor pattern is another pattern for providing additional

information to the audience but more on explaining the internals of the system, for

example, explaining an algorithm or illustrating internal interactions between

different modules of the system.

Figure 4.5 The Metaphor pattern illustrated

• SOLUTION: As its name suggests, the Metaphor pattern sets up fictional actors

on the stage, each mimicking one module of the system, in addition to actors

representing users of the system. The fictional actors could explain themselves

(including their roles and their current status in the system) and illustrate how

they coordinate with each other in order to accomplish a specific task.

• CONSEQUENCES: The Metaphor pattern could be considered as an option when

you want to illustrate the internal workings of the system. The benefit is that it is

easier for the audience to understand the abstract concepts behind the user

interface; however, it also relies on the writing of theater script.

74

• EXAMPLE: The AllianzMan project from iPraktikum 2014/2015 [18] used the

Metaphor pattern. The project was to develop a mobile app that would use sensors

to detect illegal intrusions at home. In that demonstration, a fictional actor,

"AllianzMan", was introduced as a metaphor for the home security system and

further fictional actors for integral components required by the system (that is,

Sensor Value Change Experts, Timeline Exports, Occupant Identification Experts,

and Intrusion Domain Experts). During the demonstration, the "AllianzMan"

explained to the user the main features of the system (i.e., learning the habit of the

user in normal cases and triggering an alarm when an abnormal behavior was

detected). Then, the "AllianzMan" and its "Experts" components coordinated

somehow on the stage, mimicking status changes of the components and the

interaction between components. Later, when an intrusion happened, these

fictional actors cooperated with each other, ended up identifying it as an illegal

intrusion, and sent an alarm to the user.

• SOURCE: https://youtu.be/efHEQQaVp6U

• RELATED PATTERNS: Narrator, Monologue, Dialogue

4.2.5 Conflict pattern

• CONTEXT: Drama development for the story.

• PROBLEM: In order to create dramatic effects, storytelling devices could be

applied to maintain the attention and interest of the audience. The Conflict

pattern achieves this goal by introducing conflicts between the intent and the

reality.

18 Homepage of iPraktikum 2014/2015: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/619

75

• SOLUTION: Typical conflicts in Software Theater include: 1) different actors have

different opinions (the new application reconciles the conflict); 2) the actor finds it

hard or impossible to achieve his or her goal (the new application helps him or her

to overcome the dilemma); 3) the actor wants to do something that is assumed as

impossible or inappropriate by other people (the new application convinces people

to adopt the new belief).

• CONSEQUENCES: As a means to increase tension in the story, creating conflicts

helps to attract the audiences' attention and maintain their interest. However, it

should be noted that whenever you create a conflict, you would have to close the

conflict by introducing a solution. The story shall not come to an end with open

conflicts unresolved. Besides, considering the length of Software Theater, one or

two conflicts are by experience enough for a ten-minute performance.

• EXAMPLE: The LocalHero project from iPraktikum 2019/2020 [19] is a community-

based application that enables users to assist people who are in need of help. In the

demonstration at the Customer Acceptance Test, in order to show that the

LocalHero app is not only useful to people receiving helps, but also welcomed by

people offering helps, an actor played the role of a retired doctor, who felt boring

because he could use his expertise to help people anymore. Then, the LocalHero

app was introduced to him to enable him to help people in need of medical

assistance nearby. The doctor felt happy again when he helped people via receiving

requests from the LocalHero app.

• SOURCE: https://youtu.be/B3cZeolpBLQ

• RELATED PATTERNS: Twist, Contrast, Straightforward

19 Homepage of iPraktikum 2019/2020: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/1063

76

4.2.6 Twist pattern

• CONTEXT: Drama development for the story.

• PROBLEM: Twist is another commonly used storytelling device to create dramatic

effects, especially for introducing a solution to the conflict. The Twist pattern

achieves this by introducing a sudden change that is not expected by the audience.

• SOLUTION: Examples twists in Software Theater include turns (the situation gets

changed by using the new app), surprises (the actor receives an unexpected benefit

by using the new app), reversals (the story gets an completely unexpected ending

due to the introduction of the new app), shock (used to intensify the problem

faced), and coincidence (used to bridge the leap in the story).

• EXAMPLE: The Chargify project developed from iPraktikum 2019 [20] developed an

app that helps owners of electric cars to plan the charging schedule based on the

users' calendar and daily habits. To exemplify the usefulness of the app in

improving the user's everyday life, the project team developed a story using

surprise: the app estimated the charging time based on his travel plan in the day

and turned out that the user would have enough time for breakfast; then he

prepared breakfast for his wife and his wife was surprised and thanked for his

arrangement.

• CONSEQUENCES: Twist could be positive and negative. In Software Theater,

negative twists could be used for introducing problems and positive twists for

putting an end to the conflict. Similar to the Conflict pattern, the use of twist is

suggested to be limited to once or twice for a ten-minute performance.

• SOURCE: https://youtu.be/G33uFJSfaQk

• RELATED PATTERNS: Conflict, Contrast, Straightforward

20 Homepage of iPraktikum 2019: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/1037

77

4.2.7 Contrast pattern

• CONTEXT: Drama development for the story.

• PROBLEM: An effective way to highlight the benefit of a new system is to

compare it with the existing system, illustrating the significant differences in a

everyday life context.

• SOLUTION: A common way to use Contrast pattern is to show how a daily

routine is carried out in existing system, expose the drawbacks, and create the

conflict; then, introduce the new system and show how everyday life gets improved.

• EXAMPLE: The Zeyes project from iPraktikum 2016/2017 [21] developed an app to

support the users to do inventory management in an easier way, e.g. counting the

available items using bar codes or RFID tags. To highlight the benefit of this new

system, the project team set up a comparison between the existing method and the

new method. In the demonstration, two actors performed the same task (counting

items) in the parallel: one using manual counting and the other using the app. The

result turned out that exiting method was slow and awkward, and the new method

was fast and convenient. In the end, the actor using the existing method was in

chaos and then looked at the new system.

• CONSEQUENCES: The key for using Contrast pattern is to identify the right case

where the benefit of the new system is overwhelming compared to the existing

system.

• SOURCE: https://youtu.be/MTayd0kyY6Y

• RELATED PATTERNS: Conflict, Twist, Straightforward

21 Homepage of iPraktikum 2016/2017: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/949

78

4.2.8 Straightforward pattern

• CONTEXT: Drama development for the story.

• PROBLEM: Not every project could be presented in a dramatic way. For example,

some projects focus more on demonstrating the feasibility of a new technology,

especially in industrial contexts, instead of highlighting the usefulness of the

system in the user's everyday life.

• SOLUTION: As its name suggests, the Straightforward pattern presents the demo

system in a plain and straightforward way, just going through all the functions

step by step and shows the result to the audience. It is a special case for drama

development because there is basically no dramatic element, e.g. conflict or twist,

in the story.

• CONSEQUENCES: It is suggested to use the Straightforward pattern only when

the Conflict, Twist, and Contrast patterns are all not fit in the story.

• EXAMPLE: The KneeHapp2 project from iPraktikum 2014/2015 [22] developed a

sensor-based solution to rehabilitation. The project introduced a smart bandage

with built-in sensors, which could be used to monitor the users' movements during

the rehabilitation exercises, such as side hop, two-leg hop, and one-leg hop, etc. To

demonstrate the new solution, the actors go through these functions: one actor

with the bandage on the leg performed the movement, and the other actor watched

the result recognized by the app on an iPad.

• SOURCE: https://youtu.be/E19A3_ZL2ig

• RELATED PATTERNS: Conflict, Twist, Contrast

22 Homepage of iPraktikum 2014/2015: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/619

79

4.3 Software Theater Best Practices

In this section, we describe best practices for better preparing and performing

demonstrations using Software Theater.

4.3.1 Setting up additional screens for synchronized illustration

Unlike traditional theatrical plays that focus on creating the atmosphere and developing

the story, Software Theater focuses also on the details that are necessary for the

audience to "touch and feel" the future system. The actors' performance according to the

theater script reflects the usage world. It is suggested to show the user interface (the

user-perceivable aspect of the system world) and relevant participatory objects (the

subject world) whose status is managed by the system in the parallel. To this purpose, it

is required to set up two screens on the stage, one for the user interface (via screen

sharing) and the other for displaying the participatory objects in real time (via a moving

camera). Figure 4.2 shows a recommended equipment setup for the stage of Software

Theater. In this way, the three worlds could be shown to the audience simultaneously.

The screen could also be used to project illustration slides about the demo system while

the narrator is explaining the system.

4.3.2 Using video as an alternative to theater

There are situations where live demonstrations cannot be performed, for example, due to

physical limitations of the stage or unavailability of certain demo components. In these

cases, live demonstrations could be replaced by remote demonstrations via online video

streaming or by playing recorded videos (called Software Cinema [Creighton2005,

Creighton2006]) as an alternative solution. Video-based demonstrations could be

considered as an "offline" version of Software Theater. As described in Section 4.1.1, the

relationship between Software Cinema and Software Theater is like that of film and

theater: films are not live performances and less interactive than theaters. However,

compared to live demonstrations where "a gesture, once made, can never be made the

80

same way twice" [Monaco2013, p.60], videos are easier to be mocked up and, when

necessary, use post-production techniques, such as green-screen technology, to achieve

expected visual effects [Bruegge2008].

Figure 4.2 Recommended equipment setup for Software Theater

Besides, videos could also be used to record the performance of Software Theater for

archival purposes. It is recommended to set up a dedicated camera for doing this. The

archived videos could be useful at a later occasion. For example, at the customer

acceptance test meeting, sometimes it is necessary to review the demonstration videos

from the design review, because the video provides context information about the

ongoing project as well as design decisions. As described by Bruegge [Bruegge2010, p6],

"when acquiring knowledge and making decisions about the system or its application

domain, software engineers also need to capture the context in which decisions were

made and the rationale behind these decisions". Furthermore, Software Theater videos

could also serve as training and reference purposes for similar projects in the future.

81

4.3.3 Illustrating negative sides as well

Software Theater is not only used to demonstrate the positive sides of the future system;

instead, it could also be used to illustrate the negative sides of the future system. The

purpose of Software Theater is to give the customers a faithful demonstration of the

future system so that they could decide if they want to go productization or not.

Showing constraints of the future system is essential for the decision. Besides, Software

Theater could also be used to illustrate the negative sides of alternative solutions that

were not adopted. By comparing both solutions to the same problem, the audience

(including decision makers) could better understand the rationale behind the current

design, especially when it is a matter of user experience because Software Theater could

better present user's feelings toward the usability design.

4.3.4 Getting customers involved in creating demo scenarios

As depicted in Figure 3.2, demo scenarios are used as input for developing demo systems

and for creating theater scripts. They are key artifacts created in the whole Demo

Engineering process, and the customer's opinion is essential for the success of the project.

Apart from showing concepts, user experience and technical feasibility of the future

system, the demonstration should also address other aspects of concerns from the

customer. Examples of important questions that should be acquired from customers

include: what are scenarios for killer application of the future system, which are highly

expected to be demonstrated; which parts are mocked and which parts are faithfully

implemented; and so on.

82

Chapter 5
Software Theater Example and
Evaluation

"So we believe that human factors may offer

some of the best opportunities for innovation..."

-- David Kelly and Tom Kelly

In this chapter, we first describe the basic information about iPraktikum, a practical

course at Technical University of Munich, which has been using Software Theater for

exploratory projects with real customers. Then we take one of the projects as example

and review each step of Software Theater in the real world setting. Finally we describe

the evaluation of using Software Theater in iPraktikum.

5.1 The Practical Course of iPraktikum

At Technical University of Munich, the Department of Informatics has conducted

practical courses for software engineering education. In recent years, this course is known

as iPraktikum [23], which regularly receives about one hundred students (mostly majoring

in computer science) every semester. In this practical course, participants are organized

into teams and develop iOS-based applications. The projects come from real industrial

customers with real-world requirements, ranging from mobile apps for end-users, proofs-

of-concepts of IoT-based industrial applications, to feasibility studies of emerging

23 More information can be found on the course website:

https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/1114

83

technologies. Unlike software projects aiming to implement well-defined requirements

using matured technologies before the given deadline, these projects are of exploratory

nature and in many times with only partially defined requirements or even open-ended

requirements. For example, some customers would specify only system requirements (e.g.,

using the latest AR technologies) and request the project team to identify potential killer

applications within their business domains (e.g., to propose next-generation concepts for

their products or services).

According to our past experience in operating these practical courses, we limit the size of

each team to around ten students, where everyone is supposed to participate in the

development, and some are assigned additional functional roles, such as release

management, usability design, and system modeling. Besides, each team has a dedicated

Project Leader whose role is assumed by a PhD researcher in software engineering and a

Coach whose role is filled by an experienced student that is chosen from developers of

past courses. The project manager is the owner of the project and is responsible for

ensuring the delivery of the project on time. The coach serves as a scrum master and

takes care of the day-to-day problems, making sure that the project moves on along the

agile process. To give necessary assistance to students taking additional roles (such as

system modeling, release management, usability design, or being a coach), each role has

an Instructor Team, which is made up of three PhD researchers in the relevant fields.

Figure 5.1 illustrates the organizational structure for five projects from an iPraktikum.

The iPraktikum has a multi-project organization, where students are separated into

teams, and each team works on a topic from a specific industrial customer [Bruegge2012,

Bruegge2015]. The time frame for these projects is designed to match the length of one

semester, including three milestones: Kick-off, Design Review, and Customer Acceptance

Test (CAT). At each milestone, we organize a plenary meeting that expects all the

stakeholders, including team members, coaches, project leaders, instructors, and

customers, to participate.

84

Figure 5.1 Example of the organizational chart for five projects from iPraktikum (from
[Krusche2018])

• The Kick-off meeting takes place at the very beginning of the iPraktikum, where

the industrial customers present their problems and requirements to all the

students using slides, pictures, or videos. The main purpose of the kick-off meeting

is for the students to know basically what the tasks are. After the meeting, the

project teams should make clear and analyze the problems and requirements within

two to three weeks. [Bruegge2012]. Then, in the following five to six weeks, they

are supposed to finish requirements analysis and system design activities.

• The Design Review meeting is arranged eight weeks after the Kick-off meeting,

where the project teams should present their results of requirement analysis and

system design to the customers. While we highlight the importance of presenting

technical architecture and design of the future system, we also encourage the

85

project teams to illustrate as-is scenarios and visionary scenarios using Software

Theater and/or Trailer (i.e. video-based scenario, refer to Section 4.3.3). At this

phase, the demonstration focuses on illustrating the main concept of the future

system; therefore, the demo system is made up of more mock implementations than

real implementations. To help the project teams to prepare for the demo systems

and the demonstrations, the Instructor Team holds a course-wide lecture, where

the instructors explain the Demo Engineering workflow and show videos of

example demonstrations from the past. This lecture takes place three weeks before

the Design Review so that the project teams would have enough time to apply

them in their projects. Before the Design Review, the project teams are supposed

to rehearse the demonstrations multiple times and iteratively adapt the

interactions between the actors and the demo systems. A Dry-Run session without

the presence of customers takes place one week before the official Design Review

meeting, which gives each team a chance to practice the demonstration and receive

feedback from the audience (other project teams). Performing Software Theater at

this milestone is important because it gives the stakeholders a chance to evaluate

the project in the middle and give realistic feedback to the project team. After

refining the requirements based on the feedback, if necessary, the project teams

move on to the implementation [Bruegge2015].

• After the Design Review, the project teams carry on the implementation for seven

weeks and then present their final results (the demo systems) at the Customer

Acceptance Test (CAT) meeting. At this phase, the demonstrations focus not only

on the concepts but also on usability and technical feasibility. The demonstrations

provide the customers with tangible feelings on the future system in terms of

concepts, user experience, and technologies, so that they could decide to proceed to

productization or not.

86

5.2 Example: The Zeyes Project [24]

To exemplify how Demo Engineering works from the demo-oriented development to the

live demonstration using Software Theater, we describe a real world project for instance

in the following. The project "Zeyes" is taken from iPraktikum 2016/2017 [25]. The

industrial customer is Zeiss Meditec, a department of Zeiss, specializing in medical

technologies. The goal of the project is to develop an app to support Zeiss Meditec's

customers (e.g., surgeries) to do inventory management, including stock taking and

ordering new products.

5.2.1 Preparation: from visionary scenarios to formalized scenarios

At the Kick-off meeting, the customer first introduced some basic information about

Zeiss Meditec (including its history, business scope, and vision, etc.) and presented the

general goal of the project (including the targeted users and intended situations for the

future system, etc.). Next, since the topic of the project is for a vertical industrial

domain (i.e., hospitals), the customer explained in more detail about the problems and

challenges faced by end users (i.e., cataract surgeons) as well as their daily works,

helping the team to better understand the context and capture the potential constraints.

Then the customer defined main tasks for the team to solve (see Figure 5.2).

24 This example was first described in Section 4 of [Krusche2018] and is adapted in this section.
25 Homepage of iPraktikum 2016/2017: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-

teaching/949

87

Figure 5.2 Main tasks defined by the customer

One of the visionary scenarios received from the customer was:

"The sales representative for Mexico is in charge of managing several

customers. The sales process of consumables involves much more operational

activities for the sales representative than the sales of devices. She needs to

visit each customer regularly to initiate replenishment orders for the customer

and to conduct stock checks. Both processes are quite manual today and

reduce the time she can talk to the customer about new products and

application related questions during her visit. The manual process introduces

errors in stock taking.

She already works with her smartphone for the customer account

management, so she would appreciate if she could also use it for ordering and

stock management. This would be desirable because mistakes in stock taking

88

intro- duce organizational issues and costs, and every minute that she saves

in this process can be used to have value added discussions with the

customer." (From [Krusche2018])

As the project went on, after internal experiments and discussions with the customer,

the team selected scenarios with innovative tryouts for the demonstration. Those

scenarios were converted to formalized scenarios (a structured format for scenarios,

including name, participating actors, flow of events, entry conditions, and exit

conditions). Figure 5.3 shows one of the formalized scenarios from the project.

Figure 5.3 A formalized scenario for the stock taking (from [Krusche2018])

5.2.2 Implementation: create the demo backlog and the demo system

The next step was to create the demo backlog based on the demo scenarios. Figure 5.4

depicts the subsystem decomposition that focuses on the components included in the

demo backlog. The Zeyes app runs on the user's smartphone at the user's site (i.e., a

89

hospital), which is used to identify items by either scanning barcodes (using Smartphone

Camera) or reading NFC tags (using NFC Reader) [26]. "It communicates with the

Customer Service Hub to retrieve customer information, to submit reports, and to place

orders." [Krusche2018] Since the team did not introduce any innovative tryout to the

scenario of "submitting an order", this scenario was not necessary for the demonstration

and was not included in the demo scenario. Therefore, the Order Manager and the

Order Subsystem were not part of the demo system (greyed out in the figure). Besides,

since NFC was not supported by iPhones at the time of the project, the team decided to

mock up the NFC Reader component (marked in blue). Until then, the team had defined

the scope of the implementation, and which parts went real implementations, which

parts went mock implementations.

Figure 5.4 Participating components required by the demonstration (from [Krusche2018])

Next, the team further identified the participating objects and methods for

implementation based on the selected demo components (see Figure 5.5). The blue parts

26 NFC is short for Near Field Communication.

90

were components selected for mock implementations. For example, the NFC Connector

would be indicated as available but always return the pre-defined data. The interface

getInventory provided by the Stock Taking Subsystem was also selected for mock

implementation because "the data of real server responses contained cryptic item names"

[Krusche2018]; therefore, the team "changed the getInventory method in the Inventory

object to return more understandable item names" for the demo system [Krusche2018].

Figure 5.5 Participating objects and methods required for the demonstration (from
[Krusche2018])

91

Figure 5.6 Demo backlog with tasks to realize for the demonstration (from [Krusche2018])

"After identifying the participating methods and objects, the team created the demo

backlog, including implementation tasks and organizational tasks." [Krusche2018] Figure

5.6 shows "an excerpt from the demo backlog for this demonstration, including action

items for the implementations as well as for the preparation of props." [Krusche2018]

5.2.3 Presentation: performing the demonstration using Software
Theater

When the demo system was implemented (including real implementations and mock

implementations), the team started to prepare for the demonstration. First, they created

the theater script to cover all the demo scenarios. They decided to set up a narrator

leading the audience through the scene (refer to Section 5.1.2 for the Narrator pattern)

and two actors (representing employees) performing the stock taking process. They also

decided to compare as-is scenario and visionary scenario on the stage in the parallel: one

actor (Christina) performing stock taking process manually (the traditional way) and the

other actor (Matthias) performing the same task using the Zeyes app (the new way).

Figure 5.7 shows an excerpt from the theater script, where you could see that Christina

was instructed to show being frustrated while Matthias being more pleasant with the

Zeyes app. Figure 5.8 shows one of the scenes of the live demonstration.

92

Figure 5.7 An example of the theater script (taken from [Krusche2018])

Figure 5.8 Software Theater: comparing stock taking manually vs. using Zeyes app (from
[Krusche2018])

93

5.3 Evaluation [27]

The evaluation was conducted by surveying the participants of iPraktikum 2016/2017 [28].

In the following, we first introduce the design of the evaluation, and then describe the

result and our analysis.

5.3.1 Evaluation design

We prepared a list of questions regarding the usage of Software Theater. These questions

were sent to 91 participants (including team members and coaches) in the form of three-

point Likert. The purpose is to evaluate the efficacy of using Software Theater in real-

world projects. In the following, we list these questions as well as the relevant purposes.

• Question 1: The other teams' Software Theater demos helped me to understand

their projects better.

Purpose: Each team is supposed to be familiar with its own project but unfamiliar

with projects developed by other teams. These questions are to evaluate if Software

Theater is helpful for the audience without prior knowledge to understand the

future system.

• Question 2: Create a Software Theater demo gave us confidence about our system's

usefulness.

Purpose: Presenting a new system with merely mock implementations is only at

the concept level. Developers would feel more confident if the potential

uncertainties in the system could be verified with real implementations. Besides,

demonstrating the new system in representative scenarios create more confidence in

its usefulness.

27 The evaluation is based on a survey that was first described in Section 6 of [Krusche2018].
28 Homepage: https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/949

94

• Question 3: I want to use Software Theater to create demonstrations in future

projects

Purpose: This question is to evaluate if people are willing to use Software Theater

in the future, which reflects their overall satisfaction on it.

• Question 4: Creating a Software Theater demo helped my team to understand the

project requirements.

Purpose: It is assumed that demonstrating the system in the context helps develop

empathy and visual sense about the usage of the system. This question is to

evaluate that assumption from the team member's perspective.

• Question 5: Creating a Software Theater demo helped my team to communicate

with the customer.

Purpose: In our opinion, Software Theater is yet another informal model for

communication. This question is to evaluate if Software Theater helps the

communication between developers and customers.

• Question 6: I would have preferred to prepare a demo without Software Theater.

Purpose: This question is introduced as a reversed worded item to reduce response

bias [Paulhus1991].

5.3.2 Evaluation results

We received 80 responses from 11 teams in total, among which 70 were team members

and 10 were team coaches, and the overall response rate was 88 %.

95

Figure 5.9 Results of the 3-point Likert survey (Adapted from [Krusche2018])

The results of the three-point Likert survey are shown in Figure 5.9. In the following, we

go through every question and analyze the results.

• Question 1: The other teams' Software Theater demos helped me to understand

their projects better.

Analysis: It is a strong positive result that 70% of the participants agreed with the

assumption. This is as expected, and we are confident about this result since the

intuitiveness is the nature of theatrical plays.

• Question 2: Creating a Software Theater demo gave us confidence about our

system's usefulness.

Analysis: 55% of the participants agreed with the assumption. It is a positive result,

but a bit lower than our expectations. However, considering that 25% of

participants chose neutral, which means that only 20% were negative, the result is

acceptable. In our opinion, the criteria of "being confidence" (in this question) are

more subjective than "understandable" (in the first question), which might be a

reason that participants tended to choose "Neutral" instead of "Agree".

96

• Question 3: I want to use Software Theater to create demonstrations in future

projects.

Analysis: 55% of the participants agreed that they would use Software Theater in

future projects, and 28% stayed neutral. We are satisfied with this positive result

because the difference in the nature of projects may influence their overall opinions

toward Software Theater. For example, if a project were in lack of exploratory

nature, then it would be harder for the team members to experience the benefits of

Software Theater.

• Question 4: Creating a Software Theater demo helped my team to understand the

project requirements.

Analysis: The result shows that the opinions were divided concerning this question.

Each opinion (agree, neutral, and disagree) accounts for about 33% proportion.

After analysis, we believe that the subjective nature of this question influenced

some participants to choose neutral; besides, for projects whose requirements were

simple and clear, they would have the tendency of not attributing the

understanding of project requirements to Software Theater.

• Question 5: Creating a Software Theater demo helped my team to communicate

with the customer.

Analysis: 29% of the participants agreed, 30% were neutral, and 41% disagreed.

We attribute the result to the same reasons as in Question 4. They disagreed more

because "communicating with the customer" is more difficult for the participants to

measure than "understanding the project requirements".

• Question 6: I would have preferred to prepare a demo without Software Theater.

Analysis: Only 19% of the participants would have preferred not to use Software

Theater in their projects; 55% disagreed, and 26% were neutral. These results meet

our expectations because not every project was of exploratory nature, and different

team members have their individual differences toward the usage of Software

Theater. These biases contributed to the negative and neutral opinions.

97

Table 5.1 Correlations of the Hypotheses and Questions

Hypothesis Relevant Questions

H1) Software Theater is suitable for presenting visionary

systems in the context of exploratory projects

Question 3

H2) Software Theater is more intuitive and engaging than

textual descriptions for users to "see" (i.e., understand and

envisage) the future system.

Question 1, 4, 5

H3) Software Theater creates more faithfulness and

confidence for the evaluation of the future system

Question 2

According to the questions analyzed above, we have the following evaluation of our

hypotheses and the overall results show that the hypotheses are supported.

• Hypothesis 1) Software Theater is suitable for presenting visionary systems in the

context of exploratory projects.

Analysis: This hypothesis is strongly supported by the results of Question 3.

Projects with exploratory nature (53%) chose to use Software Theater in the future;

as a comparison, a small number of projects (18%) that are less exploratory would

not use it in the future.

• Hypothesis 2) Software Theater is more intuitive and engaging than textual

descriptions for users to "see" (i.e., understand and envisage) the future system.

Analysis: The results of Question 1 provide strong evidence that Software Theater

helps users to understand the project better (agreed by 70% of the participants). In

addition, the results of Question 4 show that Software Theater, in some projects,

help to understand the requirements, which will lead to the development of the

future system. The results of Question 5 show that Software Theater, in some

projects, is more efficient for the team to communication with the customer.

98

• Hypothesis 3) Software Theater creates more faithfulness and confidence for the

evaluation of the future system.

Analysis: The results of Question 2 verify that Software Theater gives the team

members confidence about the system's usefulness, which was agreed by the

majority of the participants (55%).

5.3.3 Threats to validity

One limitation of the evaluation is that we did not set up a control group because we

did not have two teams working on exactly the same topic in our projects. Another

threat is that the survey based on Likert scales may be subject to distortion [Garland

1991]. For instance, respondents may have avoided using extreme response categories

(central tendency bias), and they may tend to agree with what we have stated in the

question (acquiescence bias). They may also suffer from social desirability bias. For

example, they might not want to give negative feedback because they try to portray

themselves or the practical course in a more favorable manner. To mitigate these threats,

we did the survey in an anonymous way and prevented multiple responses from the same

person. Another threat to the validity of the evaluation is that most students

(developers in project teams) were excited about carrying out projects with real

customers, which might give them the tendency to give positive feedback. To address

this potential threat, we deliberately added an item in reversed wording to the question

list, such as Question 6.

99

Chapter 6
Conclusion

"The advance of technology is based on making it fit in so that

you don't really even notice it, so it's part of everyday life."

--- Bill Gates

This dissertation has described how to use Demo Engineering with Software Theater for

exploratory projects. Adopting new technologies and new systems is not always easy and

straightforward for the users because they will have to renovate their current practices

that have been used in their everyday lives, and they might worry about the

uncertainties resulting from the new concepts, new experience, and new enabling

technologies. As illustrated in this dissertation, Software Theater, as an intuitive, lifelike,

and sympathetic means of communications, fills these gaps and enables the users to

"touch and feel" the new system. In the following, we elaborate on the contributions of

this dissertation and propose directions for future works.

6.1 Contributions

The major contributions of this dissertation is the systematic description of Demo

Engineering and Software Theater, including the concept, the principles, the workflow as

well as the patterns and best practices. We have explained why Demo Engineering and

Software Theater are introduced, what they are, as well as when and how they should be

used.

• Why. Exploratory projects are to explore new possibilities by trying out new

concepts, new experience, and new enabling technologies. They bring not only

100

novelty but also uncertainties. Demo Engineering and Software Theater are to

address these challenges of exploratory projects (see Section 3.1).

• What. Software Theater focuses on demonstrating systems based on theater scripts

and presenting them in a theatrical way. Software Theater provides a way to

present these demo systems in a lifelike setting so that the applicability of new

concepts, the usability of new user experience, and the feasibility of new

technologies could be evaluated reliably (see Section 3.2).

• When. Software Theater is particularly used review meetings, such as sprint review,

design reviews and final deliveries. The demonstration at the design review focuses

more on the illustration of concepts and user experience while the demonstration at

the deliveries focuses on system acceptance testing (see Section 3.3.3).

• How. The workflow of Demo Engineering is divided into three activities:

preparation (from visionary scenarios to formalized scenarios), implementation

(creating demo backlog and the demo system), and presentation (performing the

demonstration using Software Theater) (see Section 3.3). Besides, we also described

patterns and best practices for using Software Theater (see Section 4).

Another contribution of this dissertation is that we have reviewed research works on

scenario-based design, based on which we extended the existing understanding of

scenarios and made further analysis.

• We identified three-model conceptualization as a useful analysis tool for scenarios

describing ubiquitous applications. Unlike traditional desktop applications, these

ubiquitous applications involve not only the system world and usage world but also

the subject world (see Section 2.1.2).

• We revealed the dual perspectives of scenarios and promoted the distinction of

scenarios as artifacts and scenario creation as a process. This distinction brings us

insight into the properties and usages of scenarios, and enables us to use

appropriate Forms of scenarios for different Purposes (see Section 2.3).

101

• We used yin and yang as an analysis tool for analyzing the relationship between

user models and systems models, and promoted the co-development of user models

and system models, which forms one of the principles behind Demo Engineering

(see Section 3.4.1).

6.2 Future Works

This dissertation forms a basis for using Software Theater, and we have used it for real-

world projects already. However, if relevant supporting tools were available, Software

Theater would become more popular and easier to be adopted. In the following, we point

out two directions for developing such Software Theater tools.

6.2.1 Theater script editor

Creating theater scripts is a requisite step for the stage performance of Software Theater.

There are screenplay writing tools on the market, such as Celtx, Final Draft, etc.

[Batty2014]. However, as described in Section 4.1, the performances in Software Theater

are short in terms of duration and employ only limited dramatic techniques, therefore,

those tools for professional screenplay writers are too heavyweight for use in Software

Theater. What is required is a theater script writer that just fits for Software Theater.

In the light of the characteristics of Software Theater, the theater script writer could

provide predefined templates for typical structures of story (guiding beginner users to

have a quick start with theater script writing), hints for using Software Theater best

practices and patterns (helping delivering better performances), correlation between

demo scenarios and theater script (ensuring that the demo scenarios selected for

demonstration are fully covered in the theater script). For example, to create a theater

script for an ubiquitous application, the theater script editor could guide the user to

consider the flow of events in three worlds: the system world shows the user interface of

the system (e.g., mirroring the screen of a mobile phone to the projection screen at the

forefront of the stage); the usage world illustrates the interaction between the user and

102

the system as well as its context (e.g., the actor on the stage operates on the mobile

phone in a specific situation); the subject world shows the status changes of the objects

managed by the system (e.g., using a second camera to live stream a smart home device

to the second projection screen on the stage).

6.2.2 Software for creating scenario videos based on virtual worlds

We experimented with creating video-based scenarios using virtual world technologies in

2012 [Xu2012]. We have verified the technical feasibility of creating videos by

programming using the OpenSim platform. As a prototype project, we created videos

using existing 3D models (e.g. actors and objects). The massive usage of the approach

relies on the creation of customized 3D models on the user's own, which requires 3D

reconstruction equipment. Such equipment was still expensive in 2012; however, with the

popularity and mass production of depth sensors in recent years, the price of 3D

reconstruction devices have dropped substantially to a level that is affordable by

ordinary users today. Therefore, now it is a good timing to further explore the possibility

of building the software for creating video-based scenarios using today's hardware and

virtual world platforms based on the previous prototyped work [Xu2012]. This software

will provide another option for creating scenario videos in a programmable way.

103

Appendix
Examples of Theater Scripts

Example 1: ZeissMed BrainGame Project [29]

[The young pathologist comes into the library of the pathology with a stack of heavy

books, that are supposed to prepare him for his work at the Pathology. PROPS: with

the mobile phone in the pocket]

NARRATOR: This is James on his first day of work at the pathology.

[James has heard about the new Convivo technology they use here, and has therefore

brought with him all the books he could possibly

find on the subject, hoping to impress his new boss.

The old pathologist is on his phone just giving him a glance - then looking really

surprised...]

OP: Hi James, good to see you Would you mind telling me what you are doing with all

these books?

[The young pathologist says proudly]

YP: I am preparing for my internship sir.

[The old pathologist shakes his head and beard]

OP: Did no one tell you we make diagnoses based on Convivo images here.

And Zeiss has come out with this app called BrainGame that teaches you how to

diagnose CONVIVO images.

[The young pathologist in a sceptic voice]

YP: Soooo I don't need all these heavy books?

OP: No Go ahead and download the BrainGame App...

29 This project is from iPraktikum 2019/2020. More details could be found at:

https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/1063

104

YP: OK I downloaded the app...

[The young pathologist connects the phone to the beamer and opens the BrainGame

App for the first time. The PROJECTION SCREEN shows the mirroring screen of the

phone.]

OP: See this is the Lessons Area where you have multiple Lessons with tutorials and

questions where you can learn to diagnose Convivo images step by step. But lets first set

up your profile...

[The young pathologist tabs on the profile image in the tab bar and is asked to setup his

profile.]

OP: Oh I forgot you don't have a ZeissId jet so you can't log in...But you can start

studying without it and the app will still track your progress (that you can see here),

you can also set learning reminders (down here) and visit your bookmarked tutorials and

questions (here).

OP: Have fun studying!

YP: Thanks I will get straight to it - wait what is this area good for?

[The young pathologist clicks on the practice area.]

OP: This is the Practice Area. Here you will be asked Questions randomly. You can also

apply filters if you want to practice something a little more specific.

[The young pathologist clicks through the practice area.]

OP: For the beginning let me apply a filter that gives you only very simple yes/no

questions.

[The old pathologist applies the filters and filters for the QuestionType YesNo, closes the

filter and hands the phone back to the young pathologist.

The young pathologist looks at the question for a second - then smiles]

YP: I think I know the answer to this one, I think this shows a glioma... It looks like I

was correct

[The young pathologist looks at the old pathologist hoping for acknowledgment]

OP: Yeah but you still have a lot of practice ahead of you till you can pass the final test

- good look!

105

[The young pathologist looks confused but the old pathologist has gotten up and is

about to leave]

YP: What final test???

[The old pathologist turns around and says in a mysterious voice]

OP: You will see when you have completed all the Lessons in the Lessons Area

[The old pathologist leaves the scene; the presentation is carried on...The PROJECTION

SCREEN switches to the slides of the presentation. The MAIN CAMERA moves the

focus from James to the presenter.

...several few minutes later, after the presentation. The MAIN CAMERA moves the

focus to James.

The young pathologist jumps out of his chair and talks to himself]

YP: Yes I have completed the final Lesson, lets see if I have unlocked a Test...

[The young pathologist connects the iPhone to the beamer and is in the LessonsArea of

the App. The PROJECTION SCREEN switches back to the mirroring screen of James'

mobile phone.]

YP: Oh yes there it is - I am so ready to do this - I have studied so hard the last 3

minutes..... Ahm 3 Weeks

[The young pathologist clicks on the test and starts reading the test description]

YP: [reads out test description]

[The old pathologist enters the scene interrupting the young pathologist. PROPS: a

carton board printing ZeissID and Password on it.]

OP: Hey James, how is it going.

[The young pathologist acts really excited]

YP: I am just about to start the final test

[The young pathologist clicks on start test and is asked for his ZeissID and Password]

YP: Oh I need my ZeissID and Password

OP: Ah I think I have it with me.

[The old pathologist shows to James the ZeissID and Password on the carton board]

OP: Here you go.

106

[The young pathologist enters his ZeissID and Password receives the message that his

ZeissID and Password are correct and starts the Test]

OP: Also I would upload a profile picture if you want to have one on your certificate!

YP: Oh I think I have just the right one...

[The young pathologist opens the library selects the image and clicks on ok]

YP: Nice, I have successfully logged in!

[The young pathologist starts the test]

OP: Good luck!

YP: Thank you

[The young pathologist starts takes the test, the app shows a 29 minutes later screen]

NARRATOR: 29 minutes later James is answering his final question

[The young pathologist answers the last question and gets his test result]

YP: Yes I have successfully completed the test, now I only have to click the "Request

Certificate" button and I will hopefully receive the certificate later so that I will be

officially allowed to make diagnoses based on Convivo images.

[The young pathologist sends an email to Zeiss and gets a notification that the email was

successfully sent. Immediately, somebody walk toward James, PROPS: with the

certificate in hand, and hand it over to James]

NARRATOR: Congratulations James!

107

Example 2: The Quartett Mobile Project [30]

[PROPS: restart Wiremock server; Tobias sends commands to e-tron via myAudi to

wake it up]

[Andrea leaves her car and walks towards Bob's place]

[Bob opens door and they welcome each other]

B: Did you find a close parking space? The situation is crazy here lately.

A: Not at all, I had to park 2 streets away. But I got here with my new e-tron :D

B: Oh that's cool!

A: Wait, let me check if my car is locked.

[A pulls out iPhone, asks Siri "Hey Siri, did I lock my car?"]

[PROJECTION SCREEN: livestream from iPad shows car, if it is outside lecture hall]

B: I always forget that as well…

[Siri responds that the car is unlocked, A confirms to lock car]

B: Luckily you've got this app! Actually, can you show me how this works?

[Car is locked, lights flash]

A: Sure!

[Both sit down]

A: This is the shortcut I just used.

[A opens Apple Shortcuts, shows conditionals, maybe explain a little]

30 This project is from iPraktikum 2019/2020. More details could be found at:

https://ase.in.tum.de/lehrstuhl_1/component/content/article/106-teaching/1063

108

A: We can also get the car's location, that's going to be handy later when I need to find

my car again. And I can even send an address to the in-car navigation!

[Opens "Take me home" shortcut, briefly explains the two actions]

B: Hm, sending a message to your partner would be cool, right?

A: Yeah, let's add that!

[A adds message block at end of shortcut]

A: I think I've gotta go now.

[They get up]

B: Anyway, it was nice to see you again!

A: Absolutely. Bye!

B: Bye!

[Andrea leaves, starts "Where is my car" via Siri]

109

[Maps opens]

A: Nice, here I got the directions to my car.

Narrator:

[Communication with car is complicated and response times vary a lot, phone -> server,

server -> car via sms, car wakes up, retrieves task from server, executes task, send

response to server, phone requests task status]

A: Let's also send my home address to the in-car navigation.

[starts "Take me home" shortcut]

110

[finds car after some time]

Ah, there it is, let's see if my address is already put in.

[home address is shown via stream with iPad]

This app is really handy!

111

Bibliography

[Abbott1983] Russell J. Abbott. Program Design by Informal English

Descriptions. Communications of the ACM. Volume 26, Issue 11,

1983.

[Achour1998] Camille Ben Achour. Writing and Correcting Textual Scenarios for

System Design. Proceedings of the 28th Natural Language and

Information System Workshop. 1998.

[Alexander1977] Christopher Alexander. A pattern language: towns, buildings,

construction. Oxford University Press. 1977.

[Anton1998] Annie I. Antón and Colin Potts. A representational framework for

scenarios of system use. Requirements Engineering. Volume 3, Issue

3-4, 1998.

[Batty2014] Craig Batty. Show Me Your Slugune and I'll Let You Have the

Firstlook: Some Thoughts on Today's Digital Screenwriting Tools

and Aprs. Media International Australia. Volume 153, Issue 1, 2014.

[Beck1989] Kent Beck and Ward Cunningham. A laboratory for teaching

object-oriented thinking. Proceedings on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA).

1989.

[Beck1999] Kent Beck. Change with Extreme Programming. IEEE Computer.

Volume 10, Issue 32, October 1999.

[Boehm2000] Barry Boehm. Requirements that Handle IKIWISI, COTS, and

Rapid Change. Computer. July, 2000.

112

[Ben1999] Camille Ben Achour and Carine Souveyet. Bridging the Gap

between Users and Requirements Engineering. International journel

of computer systems science & engineering (Special issue on object-

oriented informationsystems). 1999.

[Benyon2002] David Benyon and Catriona Macaulay. Scenarios and the HCI-SE

design problem. Interacting with computers. Volume 14, 2002.

[Bushmann1996] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerlad, Michael Stal. Pattern-Oriented Software Architecture.

John Wiley&Sons. 1996.

[Brajnik2014] Giorgio Brajnik and Cristina Giachin. Using sketches and

storyboards to assess impact of age difference in user experience.

International Journal of Human-Computer Studies. Volume 72,

Issue 6, 2014.

[Bruegge2008] Bernd Bruegge, Harald Stangl and Maximilian Reiß. An experiment

in teaching innovation in software engineering. Proceedings of the

23rd ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA), 2008.

[Bruegge2010] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software

Engineering: Using UML, Patterns, and Java (Third Edition).

Prentice Hall. 2010.

[Bruegge2012] Bernd Bruegge, Stephan Krusche and Martin Wagner. Teaching

Tornado: From Communication Models to Releases. Proceedings of

the 8th edition of the Educators' Symposium. 2012.

[Bruegge2015] Bernd Bruegge, Stephan Krusche and Lukas Alperowitz. Software

engineering project courses with industrial clients. ACM

Transactions on Computing Education. Volume 15, Issue 4, 2015.

113

[Caldwell2017] Craig Caldwell. Story Structure and Development: A Guide for

Animators, VFX Artists, Game Designers, and Virtual Reality.

CRC Press. 2017.

[Cao2008] Lan Cao and Balasubramaniam Ramesh. Agile requirements

engineering practices: An empirical study. IEEE Software.

January/Febuary, 2008.

[Carlson1986] Marvin Carlson. Psychic polyphony. Journal of Dramatic Theory

and Criticism. September, 1986.

[Carroll1990] John M. Carroll and Mary Beth Rosson. Human-Computer

Interaction Scenarios as a Design Representation. Proceedings of

the 23rd Annual Hawaii International Conference on System

Sciences. 1990.

[Carroll1995] John M. Carroll. Scenario-based design: envisioning work and

technology in system development. John Wiley and Sons. 1995.

[Carroll1998] John M. Carroll, Mary Beth Rosson, Juergen Koenemann.

Requirements Development in Scenario-Based Design. IEEE

Transactions on Software Engineering. Volume 24, Issue 12, 1998.

[Carroll2000] John M. Carroll. Making Use: Scenario-Based Design of Human-

Computer Interactions. The MIT Press. 2000.

[Chan1963] Wing-Tsit Chan. A Source Book in Chinese Philosophy. Princeton

University Press. 1963.

[Cleary1992] Thomas Cleary, trans. I Ching - The Book of Change. Shambhala

Publications. 1992.

[Cohn2004] Mike Cohn. User Stories Applied: For Agile Software Development.

Addison-Wesley. 2004.

114

[Control2008] Project Portfolio Control/Portfolio Management

Performance/Different Contexts: Project Portfolio Control and

Portfolio. Project Management Journal. Volume 39, Issue 2, 2008.

[Cooper2004] Alan Cooper. The inmates are running the asylum. Sams-Pearson

Education. 2004.

[Cooper2005] Pat Cooper and Ken Dancyger. Writing the Short Film (Third

Edition). Elsevier Focal Press. 2005.

[Cooper2007] Alan Cooper, Robert Reimann and David Cronin. About Face 3.0:

The essentials of interaction design. Wiley Publishing. 2007.

[Creighton2005] Oliver Creighton. Software Cinema: Employing Digital Video in

Requirements Engineering. PhD Thesis. Technical University of

Munich. 2005.

[Creighton2006] Oliver Creighton, Martin Ott and Bernd Bruegge. Software

Cinema-Video-based Requirements Engineering. Proceedings of the

14th IEEE International Requirements Engineering Conference.

2006.

[Dabholkar2013] Vinay Dabholkar and Rishikesha T. Krishnan. 8 Steps to

innovation: Going from Jugaad to Excellence. HarperCollins

Publishers. 2013.

[Fang2012] Tony Fang. Yin Yang: A New Perspective on Culture. Management

and Organization Review. Volume 8, Issue 1, 2012.

[Freytag1898] Gustav Freytag. Technique of the Drama (2nd Edition). Translated

by Elias J. MacEwan. Scott Foreman and Company. 1898.

115

[Gamma1996] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

Design Patterns: Elements of Reusable Software. Addison-Wesley.

1996.

[Go2014] Kentaro Go and John M. Carroll. The blind men and the elephant:

Views of scenario-based system design. Interactions. November,

2004.

[Goldsmith2004] Robin F. Goldsmith. Discovering Real Business Requirements for

Software Project Success. Artech House. 2004.

[Goodwin2011] Kim Goodwin. Interview: Kim Goodwin - Developing Effective

Scenarios. Retrieved May 19, 2015 from:

http://www.uie.com/brainsparks/2011/08/05/kim-goodwin-

developing-effective-scenarios/.

[Goodwin2011a] Kim Goodwin. Designing with Scenarios: Putting Personas to Work.

Retrieved Jan 16, 2020 from: https://uie.fm/shows/spoolcast/kim-

goodwin-designing-with-scenarios-putting-personas-to-work.

[Grudin2006] Jonathan Grudin. Why Personas Work: The Psychological

Evidence. The persona lifecycle: Keeping people in mind throughout

the product design. Morgan Kaufmann. 2006.

[Gudjonsdottir2010] Rosa Gudjonsdottir. Personas and Scenarios in Use. PhD Thesis.

KTH Royal Institute of Technology. 2010.

[Haumer1998] Peter Haumer. Requirements Elicitation and Validation with Real

World Scenes. IEEE Transactions on Software Engineering. Volume

24, Issue 12, 1998.

[Campbell2004] Joseph Campbell. The Hero With a Thousand Faces (Third

Edition). Princeton University Press. 2004.

116

[Jacobson1992] Ivar Jacobson, Magnus Christerson, Patrik Jonsson and Gunnar

Overgaard. Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley. 1992.

[Jarke1992] Matthias Jarke, John Mylopoulos, Joachim W Schmidt and Yannis

Vassiliou. DAIDA: An Environment for Evolving Information

Systems. ACM Transactions on Information Systems. Volume 10,

Issue 1, 1992.

[Jarke1993] Matthias Jarke and Klaus Pohl. Establishing visions in context:

towards a model of requirements processes. Proceedings of the 14th

International Conference on Information Systems. 1993.

[Jarke1998] Matthias Jarke, X. Tung Bui and John M. Carroll. Scenario

Management: An Interdisciplinary Approach. Requirements

Engineering. Volume 3, Issue 3–4, 1998.

[Jarke1999] Matthias Jarke. CREWS: Towards Systematic Usage of Scenarios ,

Use Cases and Scenes. CREWS Report 99-02. 1999.

[Jarke2011] Matthias Jarke, Pericles Loucopoulos, Kalle Lyytinen, John

Mylopoulos and William Robinson. The brave new world of design

requirements. Information Systems. Volume 36, Issue 7, 2011.

[Jiang2010] Hao Jiang, John M. Carroll and Roderick Lee. Extending the Task-

Artifact Framework with Organizational Learning. Knowledge and

Process Management. Volume 17, Issue 1, 2010.

[Kohavi2013] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu and

Nils Pohlmann. Online Controlled Experiments at Large Scale.

Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining. 2013.

117

[Krusche2016] Stephan Krusche. Rugby - A Process Model for Continuous

Software Engineering. PhD Thesis. Technical University of Munich.

2016.

[Krusche2018] Stephan Krusche, Dora Dzvonyar, Han Xu and Bernd Bruegge.

Software Theater — Teaching Demo Oriented Prototyping. ACM

Transactions on Computing Education. Volume 1, Issue 1, January

2018.

[Laurel2014] Brenda Laurel. Computers as Theatre (Second Edition). Addison-

Wesley Publishing. 2014.

[Lenfle2008] Sylvain Lenfle. Exploration and project management. International

Journal of Project Management. Volumn 26, Issue 5, 2008.

[Leffingwell1999] Dean Leffingwell and Don Widrig. Managing Software

Requirements. Addison-Wesley. 1999.

[Long2009] Frank Long. Real or Imaginary: The Effectiveness of Using Peronas

in Product Design. Proceedings of the Irish Ergonomics Society

annual conference. 2009.

[LouisAlain2019] LouisAlain. "Theater", Wikipedia. Retrieved March 29, 2019 from:

https://en.wikipedia.org/w/index.php?title=Theatre&oldid=885842

072 [02.03.2019].

[Luecke2003] Richard Luecke and Ralph Katz. Managing creativity and

innovation: practical strategies to encourage creativity. Harvard

Business School Press. 2003.

[Mackinnon2000] Tim Mackinnon, Steve Freeman and Philip Craig. Endo-Testing:

Unit Testing with Mock Objects. Extreme programming examined.

Addison-Wesley Longman Publishing. 2001.

118

[Madsen1993] Kim Halskov Madsen and Peter H. Aiken. Experiences using

cooperative interactive storyboard prototyping. Communications of

the ACM. Volume 36, Issue 6, 1993.

[Mahaux2008] Martin Mahaux and Neil Maiden. Theater improvisers know the

requirements game. IEEE Software. Volume 25, Issue 5, 2008.

[Mahaux2010] Martin Mahaux, Patrick Heymans and Neil Maiden. Making it all

up: Getting in on the Act to Improvise Creative Requirements.

Proceedings of the 18th IEEE International Requirements

Engineering Conference. 2010.

[Maiden1998] Neil Maiden. CREWS-SAVRE: Scenarios for acquiring and

validating requirements. Automated Software Engineering. Volume

5, Issue 4, 1998.

[Martin1996] Robert Cecil Martin. The Dependency Inversion Principle. C++

Report. 1996. Retrieved May 4, 2015 from:

https://web.archive.org/web/20110714224327/http://www.objectm

entor.com/resources/articles/dip.pdf

[Monaco2013] James Monaco. How to Read a Film: Movies, Media, and Beyond

(4rd Edition). Harbor Electronic Publishing. 2013.

[Mueller2008] Ralf Mueller, Miia Martinsuo and Tomas Blomquist. Project

Portfolio Control and Portfolio Management Performance in

Different Contexts. Project Management Journal. Volume 39, Issue

2, 2008.

[Nielsen1993] Jakob Nielsen. Usability Engineering. Morgan Kaufmann. 1993.

[Nielsen2012] Lene Nielsen. Personas - User Focused Design. Human-Computer

Interaction Series. Springer. 2012.

119

[Norman1986] Donald Norman. Cognitive Engineering. User Centered System

Design: New Perspectives on Human-Computer Interaction.

Lawrence Erlbaum Associates Publishers. 1986.

[Norman2013] Donald Norman. The Design of Everyday Things (Revised and

Expanded Edition). Basic Books. 2013.

[Paulhus1991] Delroy L. Paulhus. Measurement and Control of Response Bias.

Measures of social psychological attitudes (Volume 1): Measures of

personality and social psychological attitudes. Academic Press. 1991.

[Pohl1997] Klaus Pohl and Peter Haumer. Modelling contextual information

about scenarios. Proceedings of the 3rd International Workshop on

Requirements Engineering: Foundation for Software Quality

(RESFQ). 1997.

[Pohl2010] Klaus Pohl. Requirements engineering: fundamentals, principles,

and techniques. Springer Berlin. 2010.

[Pressman2009] Roger S. Pressman. Software Engineering: A Practitioner's

Approach (Seventh Edition). McGraw Hill. 2009.

[Reid1997] Francis Reid. Designing for the Theatre. Taylor & Francis. 1997.

[Ries2011] Eric Ries. The Lean Startup: How today's entrepreneurs use

continuous innovation to create radically successful businesses.

Crown Pub. 2011.

[Rettig1994] Marc Rettig. Prototyping for Tiny Fingers. Communications of the

ACM. April, 1994.

[Rice2007] Mark Rice, Alan Newell and Margaret E. Morgan: Forum theatre

as a requirements gathering methodology in the design of a home

120

telecommunication system for older adults. Behaviour &

Information Technology. Volume 26, No. 4, July-August, 2007.

[Rolland1998] Colette Rolland, Camille Ben Achour, C Cauvet, Jolita Ralyté,

Alistair G. Sutcliffe, Neil A.M. Maiden, Matthias Jarke and Peter

Haumer. A Proposal for a Scenario Classification Framework.

Requirements Engineering. Volume 3, Issue 1, 1998.

[Rosson2001] Mary Beth Rosson and John M. Carroll. Usability Engineering:

Scenario-Based Development of Human-Computer Interaction.

Morgan Kaufmann. 2001.

[Rosson2004] Mary Beth Rosson, John M. Carroll and Con Rodi. Teaching

computer scientists to make use. Putting Scenarios Into Practice:

The State of the Art in Scenarios and Use Cases. 2004.

[Rosson2012] Mary Beth Rosson, John M. Carroll. Scenario Based Design.

Human Computer Interaction Handbook: Fundamentals, Evolving

Technologies, and Emerging Applications (Third Edition). CRC

Press. 2012.

[Schuler1993] Douglas Schuler and Aki Namioka, eds. Participatory design:

Principles and practices. CRC Press. 1993.

[Sutcliffe2002] Alistair Sutcliffe. User-Centred Requirements Engineering. Springer

London. 2002.

[Sutcliffe1997] Alistair Sutcliffe. A technique combination approach to

requirements engineering. Proceedings of the 3rd IEEE

International Symposium on Requirements Engineering. 1997.

[Vogler2007] Christopher Vogler. The Writer's Journey: Mythic Structure for

Writers (Third Edition). Michael Wiese Productions. 2007.

121

[Watts1996] Nigel Watts. Writing a novel. NTC Publishing Group. 1996.

[Weidenhaupt1998] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke and Peter

Haumer. Scenarios in system development: current practice. IEEE

Software. Issue April, 1998.

[Xu2012] Han Xu, Oliver Creighton, Naoufel Boulila and Bernd Bruegge.

From Pixels to Bytes: Evolutionary Scenario Based Design with

Video. Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering (FSE).

2012.

[Xu2013] Han Xu, Oliver Creighton, Naoufel Boulila and Bernd Bruegge.

User Model and System Model: the Yin and Yang in User-Centered

Software Development. Proceedings of the ACM International

Symposium on New ideas, New paradigms, and Reflections on

Programming and Software (SPLASH/Onward). 2013.

[Xu2015] Han Xu, Stephan Krusche and Bernd Bruegge. Using Software

Theater for the Demonstration of Innovative Ubiquitous

Applications. Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE). 2015.

