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Abstract. Construction projects are multidisciplinary and contractual. The 
collaboration among the project participants and the quality of the exchanged 
building information throughout the project lifecycle are prescribed in legal 
agreements. The Level of Development (LOD) concept is widely used for 
describing the building elements’ maturity. Detailing models to a certain LOD is 
crucial for integrating the partial models as well as consumes additional time and 
costs. Every LOD comprises requirements for both Level of Geometry (LOG) 
and Level of Information (LOI). Thus far, the validation of LOD is limited to the 
LOI, whereas, checking the quality of the LOG is a complex and unsolved task. 
This paper proposes a framework for validating the LOG of building elements. In 
more detail, a LOG dataset is modelled, and then a formal metric is defined based 
on an extracted set of geometric features. Finally, a random forest model is 
developed for predicting the LOG. 

1. Introduction 

Several countries worldwide are promoting the research and development of BIM-based 
methodologies to facilitate their integration in the projects’ life cycle. As construction projects 
are multi-disciplinary, a fundamental pillar for integrating BIM is describing the building 
elements’ maturity at a particular design phase. This is crucial for the overall collaboration 
among the project participants as it acts as an agreement of (what) information should be 
available at what time (when). Based on that information, it can be decided for what the model 
can be used for (purpose), which makes it possible to determine what model deliverables are 
expected from the involved actors (who) (Beetz, Borrmann and Weise, 2018). The exchange of 
complete BIM data within the Architecture, Engineering, and Construction (AEC) industry is 
crucial, as it is prescribed in legal agreements, where the information for each specific model 
is specified. Accordingly, a common legal framework for organizing this data is required.  
Data quality is described by the compliance of its characteristics to requirements (ISO, 2015). 
More specifically, the quality of building information quality is expressed by the correctness 
and completeness of the topological relationships, geometric detailing, and semantics. Various 
guidelines were published to deliver a standard in which practitioners can use as a basis for a 
common language in their projects. A popular concept for defining the content of a model at a 
certain point during the design process is the Level of Development (LOD) (BIMForum, 2019). 
The LOD refers to the completeness and reliability of the building elements’ information. A 
similar concept was introduced by the European Standardization Organization (CEN) (DIN, 
2019), which defines the term Level of Information Needs (LOIN) comprising specifications 
for LOG and LOI for supporting a particular use-case. 
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Currently, practitioners rely on the LOD concept terminology to specify which information they 
need to deliver and/or to carry out their tasks (Leite et al., 2011). However, as the different 
LOD specifications are loosely defined, each practitioner has a different interpretation of what 
a specific LOD means and which information should be present in the model (van Berlo and 
Bomhof, 2014). Such inconsistencies cause severe miscommunication and additional 
expenditure, which increases project risks (Leite et al., 2011). For example, a structural 
engineer might model a highly detailed structural system in case it was understood that building 
elements are at high LOD, giving the impression that they are stable and less subject to change. 
However, the building model might be a sketch at the early design phase, which would 
drastically change in the subsequent phases (van Berlo and Bomhof, 2014).  
Exchanging building models among the project participants requires checking the models’ 
conformance with the defined LOD requirements, which includes semantics, a.k.a Level of 
Information (LOI), and geometric information, a.k.a. Level of Geometry (LOG). While 
checking the completeness of the semantic information is straightforward (Abualdenien and 
Borrmann, 2019) and several commercial software solutions exist for this purpose, confirming 
that the modelled geometry fulfils the expected LOG is a complex and still unsolved task.  
This paper addresses the currently existing gap of determining the LOG of building elements 
by investigating the major characteristics representing the increase of detailing based on a 
formal metric. To this end, a set of BIM elements of different family types are modelled at 
multiple LOGs, and the geometric information of each level is investigated. In more detail, in 
each LOG, the geometrical features are extracted, and their complexity is measured using a 
combination of various advanced geometry processing algorithms. Finally, this paper 
contributes with a standard criterion that facilitates inferring the LOG of any given building 
element. 
The paper is organized as follows: Section 2 discusses the background and related work. Section 
3 provides an overview of the framework developed in this paper, explaining the approach 
followed to generate the LOG dataset and extracting geometric features. A model for predicting 
the LOG of building elements is developed and evaluated in Section 4. Finally, Section 5 
summarizes our progress hitherto and presents an outlook for future research. 

2. Background and Related Work 

2.1 3D Shapes 

The 3D representation of objects is a fundamental aspect for numerous domains, starting from 
computer graphics to building information modelling. A popular approach to represent shapes 
in various applications is the polygonal mesh representation, which explicitly captures a shape’s 
surface characteristics and topology (Botsch et al., 2010; Garland, 1999; Shikhare, 2001). 
Polygonal meshes require only a small number of polygons to represent simple shapes 
(regardless of their size). Additionally, it has the necessary capability to comprehensively 
represent complex shapes with high resolution, capturing the salient surface features. 
Accordingly, simple shapes are represented by few large polygons, while detailed and complex 
shapes are represented by many small polygons. The mesh polygons comprise a set of vertices, 
which are interpolated through a connectivity graph to approximate the desired surface. 
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2.2 Shape Complexity 

As detailed below, there are strong indicators that there is a correlation between LOG and shape 
complexity. The meaning and measurement of a shape complexity can vary according to 
different aspects. Processing geometric models can be as simple as iterating over a mesh’s 
vertices, faces, and edges, or as complex as performing different calculations to extract 
information about the curvature or shape topology. Numerous researchers have developed 
algorithms to retrieve the most dominant features (Botsch et al., 2010), including detecting 
sharp edges, deducing surface patches, and decomposing the shape into smaller and meaningful 
shapes, a.k.a segmentation (Shapira, Shamir and Cohen-Or, 2008). Dominant features provide 
an essential description of the geometrical objects’ resolution and detailing. In the same context, 
Hanocka et al. (2019) and Nikhila et al. (2020) have developed MeshCNN and PyTorch3D by 
employing deep-learning approaches to analyze, process, and extract features from 3D shapes.  
A popular classification for shape complexity was firstly introduced by Forrest, where it defines 
three main types (Forrest, 1974): (1) geometric, describes the shapes’ basic features, such as 
lines, curves, faces…etc., (2) combinatorial, refers to the topology of the shape, i.e. the number 
of components that comprise it, and (3) dimensional, which classifies the shape as 2D, 2.5D or 
3D. Other researchers have interpreted shapes as a set of rules through shape grammars 
(Heisserman, 1994). Shape grammars describe the shape decomposition as a set of rules and 
series of transformations, including addition, subtraction, rotation, etc.  

Accordingly, defining what a shape complexity means in the AEC industry requires the 
specification of which geometric features are essential for capturing the degree of maturity of 
building elements at the different LOGs.  

2.3 Level of Development (LOD) 

As a response to the need of having a consensus about what information should exist during the 
development of building elements, various guidelines were published to deliver a standard, 
which practitioners can use as a basis for a common language in their projects. Prior to the LOD 
concept, a relatively similar concept, a.k.a Level of Detail (LoD), was already common in 
computer graphics. The LoD is used to bridge the graphical complexity and rendering 
performance by regulating the amount of detail used to represent the virtual world. In computer 
graphics, the LoD concept is mainly concerned with the geometrical detailing (Luebke et al., 
2003). In Geographic Information System (GIS), the LoD represents different levels of 
geometric and semantic complexity of a city model (Kolbe, Gröger and Plümer, 2005).  

In the AEC industry, the LOD represents the completeness and reliability of the geometrical 
and semantical information associated with building elements (BIMForum, 2019). The first 
initiative was by VicoSoftware®	 (Trimble, 2013; VicoSoftware, 2005), where the Level of 
Detail (LoD) was introduced. The LoD concept has then been adopted and refined by the 
American Institute of Architects (AIA) to become the Level of Development (LOD) (AIA, 
2008). The AIA introduced a definition of the LOD that comprises five levels, starting from 
LOD 100 and reaching LOD 500. The BIMForum working group developed LOD 350 and 
published the Level of Development Specification based on the AIA definitions (BIMForum, 
2019). At the same time, Trimble’s Project Progression Planning (Trimble, 2013) was published 
and is widely used in practice. 
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2.4 LOG Analysis and Validation 

The process of adopting a LOD specification in a particular country (or even internally in the 
individual firms) requires a comprehensive analysis and understanding of which geometric and 
semantic information should be present at each LOD. However, practitioners have an 
inconsistent understanding of the information necessary at each LOD (Abualdenien and 
Borrmann, 2019; van Berlo and Bomhof, 2014). This is because although the specification of 
semantics is usually simplified to a list of properties, defining the geometrical complexity is 
highly vague and systematically checking it is an unresolved task. 

In this regard, Leite et al. (2011) evaluated the modelling effort associated with generating BIM 
models at different LODs. The authors have shown the need for an increased modelling time 
ranging from doubling the modelling effort to eleven folding it, to detail models further to reach 
a higher LOD. Additionally, van Berlo and Bomhof (2014) has analysed 35 building models 
(where each comprises multiple building elements) taking into account different ratios between 
volume, triangles, space areas, and the number of properties, in an attempt to find a standard or 
relationship between the different LODs. However, the authors did not find any standard or 
pattern of increasing the complexity across the LODs. The main reason for not detecting any 
standard for increasing the complexity is because of the inconsistencies and different 
interpretations of the LOD specifications (Gigante-Barrera et al., 2018). More specifically, 
using the LOD concept for describing the maturity of the overall building model versus the 
individual elements. Van Berlo and Bomhof (2014) performed their experiments on the overall 
building models rather than the individual elements. In this regard, the LOD specifications 
provided by the AIA (AIA, 2008), BIMForum (BIMForum, 2019), and Trimble (Trimble, 
2013) describe the geometric and semantic information of the individual elements rather than 
the overall building model. On a wider scale, Wong and Ellul (2016) analysed the geometry of 
3D city models for fit-for-purpose by looking into the ratios between the number of buildings, 
geographic area, geometrical details, and disk size. 

3.  Methodology 

The hypothesis in this paper is that the geometric complexity of the individual elements can be 
represented by multiple features, forming the basis for a metric allowing to formally assess the 
geometric complexity of a given model. Through analysing the changes of the extracted features 
across the LOGs, the detailing pattern can be recognised, which in turn provides the means for 
the LOG classification of building elements. 
As depicted in Figure 1, the proposed approach consists of two steps. First, a LOG dataset is 
modelled according to the most common LOD specifications. The dataset generation took into 
account modelling the different kinds of building elements as well as additional cases for 
including openings and reinforcement. Afterwards, multiple geometry processing algorithms 
are performed to extract the most prominent features representing the shape complexity of each 
building element. The result is a dataset of geometric features for diverse building elements on 
the LOGs 200 - 400. The second step describes the process of predicting the LOG of a new 
element. The geometric features of the new element are extracted in a similar way to the dataset 
generation, and then the individual features are compared for similarity to the features available 
in the dataset to predict the new element’s LOG. The complete framework is discussed in detail 
in the next subsections. 
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Figure 1: The proposed framework for LOG prediction 

3.1 Modelling per the LOD Specifications 

In this study, the BIMForum’s LOD specification (BIMForum, 2019) and Trimble’s Project 
Progression Planning (Trimble, 2013) were comprehensively reviewed and followed during 
modelling different families on multiple LODs. We followed the combination of multiple 
specifications because although the BIMForum’s definitions are descriptive for many building 
elements, they are in many cases, vague in describing the progression of the geometric detailing. 
Despite the fact that the specification is prepared in a way that visualizes the newly added parts 
in every LOD, the graphical illustrations for many elements are inconsistent and ambiguous. 
For example, when modelling a stair, information regarding the riser count and height should 
be available starting from LOD 300 (per the text description). However, the graphical 
illustration at LOD 200 already includes them.  

Based on the LOD specifications, LOG 100 (conceptual model), is limited to a generic 
representation of the building, meaning no shape information or geometric representation. At 
LOG 200 (approximate geometry), elements are represented by generic placeholders, depicting 
the overall area reserved by their volume. At LOG 300 (precise geometry), the elements’ main 
shape is refined, showing the fundamental detailing required for describing the element type. 
Next, at LOG 350 (construction documentation), any parts that are necessary for depicting the 
connections with other elements, that are attached or nearby, are additionally modelled. 
Modelling these parts, like supports and connections, is crucial for the coordination with 
different domain experts. Finally, at LOG 400, elements are fully detailed, providing the 
accuracy required for fabrication, assembly, and installation. LOG 500 represents the field 
verified model state, which means in terms of design and detailing, it is the same as LOG 400. 
The modelling process followed to generate the dataset was focused on the LOGs 200 - 400. In 
order to have confidence in how to model the families, we have modelled first most of the 
families existing in the specifications, taking guidance from the text description as well as the 
visual illustrations. Afterwards, we have expanded the dataset size by making use of the 
available BIM objects libraries1, where the families were downloaded and adjusted to match 
the different LOGs. Figure 2 shows a window on multiple LOGs from the modelled dataset. In 
total, the modelled dataset included 216 objects (54 families at four LODs). Figure 3 shows an 
example of an elevator, stairs, brick wall, and wall frame on multiple LODs. 

                                                
1 https://www.bimobject.com/ | https://www.nationalbimlibrary.com/ | https://market.bimsmith.com/ | 
https://www.revitcity.com/ | http://www.familit.com/ | https://www.arcat.com/ 
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            LOG 200          LOG 300        LOG 350           LOG 400         

Figure 2: Dataset sample: window at LOGs 200 - 400 

               
      LOG 200         LOG 300       LOG 350          LOG 400                       LOG 400                                       

 
      LOG 350                        LOG 400                       LOG 400                LOG 400 

Figure 3: Dataset sample: selected models at different LOGs 

3.2 Analysis and Extraction of LOG Features 

Typically, shapes having more numerous or smaller features can be viewed as more detailed. 
The challenge in identifying the LOG through analysing geometric features lies in deducing a 
standard pattern that describes the individual LOGs. The simplest geometric metrics can be 
based on the total number of vertices, faces, and edges. However, an increased number of these 
features does not necessarily mean an increased detailing or higher LOG. For example, a 
window at LOG 200 (rectangular shape) consists of 30 vertices, 16 faces, and 78 edges, while 
a cylindrical column or heating tank at LOG 200 is formed by 2358 vertices, 4268 faces, and 
13244 edges. Thus, the sole consideration of vertices, faces and edges does not provide a 
suitable metric. To measure the geometric detailing (i.e. LOG) of elements, the applicable 
features need to be capable of representing the geometric detailing of elements taking into 
account the overall shape. 
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In the proposed approach, we combine the extracted results of multiple geometric features to 
observe various aspects of the shape detailing. In total, we investigated the effect of detailing 
across the LOGs through four main aspects, resulting in 14 geometric features, as follows: 

1. Basic Geometric Features: The increase of vertices, faces, and edges. Here, the ratio 
of vertices to faces provided an additional indicator for the shape complexity (this ratio 
indicates the required points for capturing the shape details). In more detail, a shape 
with just rectangular parts always has a ratio of 2, adding more complex parts, like 
screws or reinforcement, substantially reduces the ratio. 

2. Edges Length: Count and length of edges can provide a strong description of the shape 
complexity. Numerous short edges reflect more detailing and additional complex parts. 
In this regard, we measured the length of 50%, 62.5%, and 75% of edges, and compared 
it to the total edges’ length. Similarly, the mean edge length is also calculated and 
compared. 

3. Sharp Edges: Sharp edges represent the most prominent surface characteristics of a 
geometric shape. Therefore, sharp edges are extracted and counted by measuring the 
change in curvature as well as counting the number of surface patches bounded by 
those edges. 

4. Diameter-based Segmentation: In this process, the shape is segmented into smaller 
meaningful pieces based on the change in diameter (Shapira, Shamir and Cohen-Or, 
2008). This segmentation provides additional insights into the complexity of the parts 
comprising building elements on each LOG. Accordingly, we count the segments, 
measure their area, and evaluate their shape (flat surfaces, cubic, or cylindrical). In this 
aspect, the segments with similar shapes are grouped, and the ratio of the count and area 
of each shape to the overall segments can characterize the overall shape (differentiating 
a window from a tube system). 

The discussed geometric features above were extracted for the complete dataset presented in 
Section 3.1. Additionally, multiple ratios were calculated to capture different positive or 
negative correlations among the features, including average area per surface patch and segment, 
as well as average vertices per face, patch, and segment. Finally, the extracted features were 
normalized to make the features correspond to the elements’ geometric complexity regardless 
of their total area or total edges length. 

After the extraction of features, their change across the LOGs was analysed. Figure 4 shows 
three features for three different elements, wall, column, and a stair. Those three different 
elements are selected to show the difference in their pattern throughout the LOGs. Interestingly, 
we have noticed relatively similar patterns among rectangular shapes (e.g. walls, doors, 
windows), cylindrical shapes (e.g. columns, heating tanks, tube systems), and complex shapes 
(e.g. stairs, escalators, elevators).  In the same context, we observed that in case the count of 
the cylindrical segments is low and represents more than ~50% of the overall area, then the 
overall shape has a high probability of having a cylindrical overall shape (a pipe as an example). 

   
Figure 4: Three geometric features of three building elements on different LOGs 
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Additionally, rectangular and complex shapes at LOG 350 and 400, are composed of a high 
number of cylindrical segments while representing less than ~40% of the overall area. When 
reinforcement is modelled, then the number of cylindrical segments is relatively high (~50 – 
80%), while their aggregated area is less than ~40% of the overall area.  

4. Prediction of LOG 

The analysis of the extracted features (presented in the previous section) showed multiple 
patterns that are present in the dataset. Predicting the LOG of a new building element is a 
classification problem, i.e. detecting which class (LOG) an observation (the set of extracted 
features) belongs to.  The simplest way to classify new observations is to consecutively try to 
split the dataset observations (based on feature values) in a way that groups similar observations 
as much as possible. This is exactly what a decision tree (Breiman, 2001) performs while 
following a certain route yielding a specific result. However, as decision trees are based on a 
greedy model, meaning it tries to find the most optimal decision at each step and does not 
consider the global optimum, we decided to build a random forest model (Breiman, 2001). A 
random forest consists of numerous decision trees that operate as an ensemble; each decision 
tree selects features randomly and predicts a class; the class that receives the highest number of 
votes becomes the final prediction.  

In order to develop the random forest model, the modelled elements presented in Section 3.1 
were randomly split into training and test datasets with a ratio of 80% (172 elements) and 20% 
(44 elements) respectively. The resultant model is composed out of 22 trees, where the max 
depth of each is four. Figure 5 shows one decision tree of the developed random forest using 
the training dataset. In this tree, the average area of surface patches is the first metric splitting 
the dataset to LOG 200 and 400. The Gini Impurity represents the likelihood of classifying a 
new instance incorrectly (Raileanu and Stoffel, 2004). Then, the metrics of the average vertices 
per faces, as well as the average area of surface patches, are used to split the dataset further. 
Going deeper in the right branch, the tree is completely confident about predicting LOG 300 
for two samples while 94% confident of LOG 200 of 32 samples. On the other hand, the left 
branch has lower confidence at the first level, but it increases in the next levels. It is important 
to emphasize here that this is one decision tree of the complete forest. The other trees randomly 
employ a different set of geometric metrices to reach a final decision.  

 
Figure 5: Random forest model: showing the selected features of one decision tree 
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The evaluation of the performance of the developed random forest model for predicting the 
LOG was conducted on a completely new set of elements (test dataset - 44 elements). The 
performance metrics is described as precision, recall, and F-Score, as presented in Table 1. 
Precision describes the model performance in positive predictions while considering false 
positives. Recall incorporates false negatives instead of false positives, and F1-score provides 
a balance between precision and recall. Table 1 shows the confusion metrics, depicting the 
difference between the actual and predicted LOG. In total, 35 out of 44 elements were predicted 
correctly. Additionally, investigating the incorrect predictions further, we can notice that the 
classes were confused with the its close neighbours, e.g. LOG 200 with 300. This is mainly 
because, in this specific case, the number of changes modelled to detail the model further from 
LOG 200 to 300 are not necessarily increasing the shape complexity enough to be 
differentiated. Moreover, this approach heavily relies on the dataset size (finding similar 
observations). Therefore, increasing the dataset size would substantially improve the model 
performance.  

Table 1: Performance metrics, precision, recall, F1-score, and accuracy for each LOG. On the right 
side, the prediction confusion metrics depicts the ratio between the actual and predicted LOGs. 

LOG Precision Recall F1-score 

 

200 0.90 0.82 0.86 

300 0.80 0.86 0.83 

350 0.67 0.80 0.73 

400 0.86 0.67 0.75 

Accuracy    

Macro Avg. 0.81 0.79 0.79 

Weighted Avg. 0.81 0.80 0.80 

5. Conclusions and Future Research 

Building models consist of numerous and diverse kinds of information to fulfil multiple use-
cases, including fire-safety regulations, structural and energy analysis, as well as pedestrian 
simulations. Hence, practitioners need a common ground to communicate the content of their 
requirements and deliverables across the design phases. The LOD concept brings multiple 
benefits for describing and managing the expected information in the individual design phases. 
The geometric representation of building elements is crucial for the collaboration among 
domain experts as it forms the basis for integrating the partial models and carrying out the 
different kinds of simulations. However, the currently available tools are only capable of 
checking the completeness of semantic information; validating the conformance of the 
modelled geometry to the required LOG is currently manual and prone to multiple 
interpretations. 

This paper has proposed a framework for predicting the LOG of building elements. The 
prediction is based on a formal metric of a LOG dataset that includes 216 elements. The 
elements were modelled according to the most common LOD specifications. The metric is 
formed out of four main aspects, basic geometric details, edges length, sharp edges, and 
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diameter-based segmentation. Finally, a random forest model was developed and evaluated, 
showing the ability to predict the LOG of 44 new building elements. As a next step, additional 
building elements should be modelled to improve prediction accuracy. Additionally, the state-
of-the-art acritical neural networks will be evaluated for extracting geometric features and 
predicting the LOG. 
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