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Abstract

In ensemble forecasting, multiple numerical simulations with slightly perturbed initial conditions

are run to infer the range of possible future weather conditions. These ensemble weather forecasts

are a common way to assess the predictability of weather simulation models afflicted with uncertain-

ties due to measurement inaccuracies or approximation errors in physical models. With increasing

computational power and higher model resolutions, it is progressively possible for weather centers

to simulate atmospheric processes on a much smaller scale. Although numerical simulations out-

put physical quantities on several vertical atmospheric layers, daily operations in weather forecasting

still focus on the (manual) 2D analysis of weather charts for single height levels. To the best of our

knowledge, forecasters lack the tools to objectively identify features in 3D and, instead, rely on es-

tablished 2D detection methods. Hence, meteorologists actively look for novel techniques to examine

features in terms of their 3D structure, their temporal evolution, and their relationship to other at-

mospheric processes. Furthermore, visualization techniques are required to assess the uncertainty of

feature occurrence and structure in ensemble weather forecasts. In this thesis, we present techniques

to identify 3D atmospheric features in ensemble simulations and introduce visualization techniques

to depict their spatial coherence and variation. We closely collaborate with domain experts, such as

forecasters from the European Weather Centre for Medium-Range Forecasts, to design appropriate

detection and visualization techniques. We also demonstrate the benefit of our methods by applying

our detection methods to real-world case scenarios. With this, we facilitate the full visual analysis of

atmospheric features in 3D, which has not been possible before.

In particular, we propose detection and visualization techniques for two atmospheric features

deemed important for weather forecasting. The first detection method deals with jet-stream core

lines, which are the lines of maximum wind speed and considered the driving force for significant

global and local weather events. Here, we present a robust 3D detection algorithm to extract these

lines from volumetric wind fields. Although closely related to ridge detection, it avoids both extensive

blurring and the computation of consistently oriented eigenvectors. Instead, our algorithm exploits

the local wind direction to construct a consistent local frame-of-reference, which is used to identify

the locations of wind maxima. The second detection method is concerned with atmospheric fronts.

They separate air masses of different characteristics, such as temperature, and play a vital role in

weather forecasting as they are associated with severe weather events. However, no automated

method has yet been introduced to automatically identify fronts in 3D. Instead, forecasters still rely
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on 2D approaches to detect fronts on 2D weather maps. In this work, a visualization tool is proposed

to extract fronts in 3D, filter them by frontal characteristics, such as the strength of temperature and

moisture gradients, and map the uncertainty of feature occurrence to opacity. Fronts are not only a

single feature but rather a zone of high thermal gradients between air masses (frontal zone). Thus, a

method to visualize frontal zones and to analyze the statistics of physical quantities within this zone

is further introduced.

The extraction of jet stream core lines in a weather ensemble prediction yields line features of

vastly different topology. Typically, these lines are disconnected, vary in orientation and length, and

are not spatially aligned in 3D space. Unfortunately, the simultaneous display of such line features

with so-called spaghetti plots yields cluttered images and fails to communicate the actual major and

minor trends in the ensemble data. In this thesis, different strategies to cluster line sets based on

their similarity and present methods to extract line representatives from each cluster are employed.

For instance, clustering is applied to the input fields, which the lines have been extracted from, or

directly operates on the line geometry. We also introduce an implicit line representation, called vector-

to-closest-point volume, which is independent of the orientation and location of line features in 3D

space. In addition to that, we derive “mean” representations from visitation maps, which denote the

frequency of feature occurrences, and from central tendency fields, which describe points most central

in between line sets.

If thousands of line features have to be explored for the first time, a pre-selection of features or

line clustering is not always possible. Instead, users often map line characteristics to transparency

to accentuate features-of-interest, while fading out lines deemed unimportant. Unfortunately, trans-

parency rendering of large line sets requires the alpha-blending of multiple transparent layers in cor-

rect visibility order, which is a computationally expensive task. In our work, we present a comprehen-

sive study of different GPU and CPU rendering techniques to render large line sets with transparency.

We compare all rendering techniques in terms of their run-time performance, memory consumption,

and image quality. Based on the results of this study, we finally discuss the suitability of algorithms

wrt. the complexity of line sets and concerning different transparency settings.
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Zusammenfassung

Die Ensembleprognose beinhaltet das Rechnen mehrerer Simulationsläufe mit leicht veränderten

Anfangsbedingungen, um die Menge aller möglichen Wetterbedingungen in der Zukunft zu berech-

nen. Diese Ensembles von Wettervorhersagen werden gebraucht, um die Vorhersagbarkeit von Wet-

tersimulationsmodellen aufgrund der zugrundeliegenden Unsicherheiten in Messungen und Approx-

imationsfehlern in physikalischen Modellen abzuschätzen. Mit immer steigender Rechenleistung der

Computer und höheren Modellauflösungen ist es zunehmend möglich, atmosphärische Merkmale

auf einer viel kleineren Skala zu simulieren. Obwohl die numerischen Simulationen physikalische

Größen für mehrere atmosphärische Höhenlagen berechnen, benutzt die operationelle Vorhersage

hauptsächlich 2D Analysemethoden, um Wetterkarten für einzelne Höhenlagen zu untersuchen. Im

Speziellen fehlen den Meteorologen Werkzeuge, um einzelne Merkmale in 3D zu detektieren, was zur

Folge hat, dass in der Wettervorhersage auf etablierte 2D Detektionsmethoden zurückgegriffen wer-

den muss. Daher sind Meteorologen an neuen Techniken interessiert, um die Merkmale in Hinblick

auf ihrer 3D Struktur, ihrer zeitlichen Entwicklung und ihrer Beziehung zu anderen atmosphärischen

Prozessen zu untersuchen. Außerdem werden Visualisierungstechniken benötigt, um die Unsicher-

heit über das Auftreten von Merkmalen und ihrer Struktur in Ensembleprognosen abzuschätzen. In

dieser Doktorarbeit präsentieren wir Techniken, um atmosphärische Merkmale von Ensemblesimu-

lationen in 3D zu detektieren, und stellen Visualisierungsmethoden vor, um die räumliche Kohärenz

und Variation von Merkmalen darzustellen. Wir arbeiten dabei eng mit Fachexperten, z.B. mit Wet-

tervorhersagern am Europäischen Wetterdienst für mittelfristige Wettervorhersagen, zusammen, um

geeignete Methoden und Visualisierungen zu entwerfen. Zudem wird der Nutzen unserer Methoden

dargestellt, indem wir die Detektionsalgorithmen auf echte Wetterszenarien anwenden. Dadurch ist

zum ersten Mal eine neue 3D Analyse von atmosphärischen Merkmalen möglich.

Wir schlagen Konzepte zur Detektion und Visualisierung von zwei für wichtig erachtete Merkmale

vor. Zunächst werden die Kernlinien des Jetstreams identifiziert, wobei die Kernlinien das Windmax-

imum in einem Jetstream sowohl in der horizontalen, als auch in der vertikalen Richtung repräsen-

tieren. Die Windmaxima-Linien von Jetstreams sind die antreibende Kraft von globalen und lokalen

Wetterprozessen und werden mit heftigen Wetterereignissen assoziiert. Wir präsentieren einen ro-

busten Detektionsalgorithmus, um diese Kernlinien aus volumetrischen Windfeldern zu extrahieren.

Obwohl dieser Algorithmus eng verwandt mit “Ridge Detection” ist, vermeidet er sowohl das aus-

giebige Verwischen der Daten als auch die Berechnung von konsistent orientierten Eigenvektoren.

Stattdessen wird die lokale Windrichtung ausgenutzt, um Windmaxima in wohlbestimmten lokalen
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Bezugssystemen zu identifizieren. Zudem ermöglicht unser Tool die Analyse der Linien und deren

Zusammenhang mit anderen atmosphärischen Prozessen. Die zweite Detektionsmethode behandelt

atmosphärische Fronten. Fronten trennen Luftmassen mit unterschiedlichen Eigenschaften, wie z.B.

Temperatur, und spielen eine essenzielle Rolle in Wetterprognosen, da sie mit heftigen Wetterereignis-

sen in Verbindung stehen. Nichtsdestotrotz werden Fronten von Meteorologen lediglich auf 2D Wet-

terkarten detektiert. Nach unserem Wissenstand existieren bis zum heutigen Zeitpunkt keine Metho-

den, um Fronten in 3D zu erkennen. Wir präsentieren ein Visualisierungswerkzeug, um 3D Fronten

zu extrahieren und sie auf Basis ihrer Charakteristiken, wie z.B. die Stärke der thermischen Gra-

dienten, zu filtern. Die Visualisierung von Unsicherheiten beim Filtern der Fronten wird mithilfe

von Transparenz realisiert. Zudem sind Fronten nicht nur harte Grenzen, sondern Übergangszonen,

welche durch hohe Unterschiede zwischen zwei Luftmassen gekennzeichnet sind. Wir präsentieren

daher eine Methode, um die Übergangszonen darzustellen und um Statistiken von physikalischen

Merkmalen innerhalb der Zone zu analysieren.

Die Extraktion von Windmaxima von Jetstreams in Ensembleprognosen liefert Linien von stark un-

terschiedlicher Topologie. Typischerweise sind die Linien unterbrochen, variieren in Bezug auf die

Orientierung und Länge, und befinden sich nicht in gleicher räumlicher Lage in 3D. Unglücklicher-

weise liefert das gleichzeitige Darstellen von Linien mit so genannten Spaghetti Plots stark überladene

Bilder und ist somit nicht geeignet, um lokale und globale Trends aufzuzeigen. In dieser Doktorar-

beit benutzen wir verschiedene Strategien, um eine Menge an Linien basierend auf ihrer Ähnlichkeit

zu gruppieren, und wir extrahieren bestmögliche repräsentative Linien für jede Gruppe. Das Grup-

pieren erfolgt entweder auf den Eingabefeldern, welche zur Detektion verwendet werden, oder direkt

auf der Liniengeometrie. Wir stellen zudem eine implizite Repräsentation von Linien vor, die unab-

hängig von der Orientierung und räumlichen Lage der Linien ist. Zudem berechnen wir künstliche

Linien-Repräsentationen auf Basis von“ Visitation Maps”, welche die Häufigkeit des Auftretens eines

Merkmals an einem Ort anzeigen, und von Zentralitäts-Feldern, welche die zentrale Tendenz eines

Raumpunktes innerhalb des Liniendatensatzes angeben.

Werden tausende von Linien zum ersten Mal exploriert, ist eine Vorauswahl an Linien oder eine

Gruppierung der Daten eventuell nicht möglich. Daher wird oftmals Transparenz eingesetzt, um in-

teressante Merkmale hervorzuheben und andere weniger wichtige Merkmale visuell auszublenden.

Das Darstellen von großen Liniendatensätzen mit Transparenz benötigt jedoch das korrekte Alpha-

Blending von zahlreichen transparenten Ebenen pro Pixel in korrekter Sichtbarkeitsordnung, was

einen hohen Rechenaufwand darstellt. Wir präsentieren eine umfassende Studie zu verschiedenen

GPU- und CPU-Rendering Techniken, welche sich hauptsächlich auf das Darstellen von großen Lin-

iendatensätzen mit Transparenz fokussiert. Es werden die Techniken in Bezug auf ihre Laufzeitleis-

tung, Speicherverbrauch und Bildqualität verglichen. Anhand der Ergebnisse diskutieren wir, welche

Methodiken in Bezug auf die Datengröße und Transparenzeinstellung verwendet werden sollen.
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1
Introduction

Weather represents the chaotic physical processes generated by a complex and chaotic fluid system,

called the atmosphere [Stu17]. The chaos in the atmosphere emanates from various interactions

between a myriad of physical processes. For instance, differences in temperature (caused by solar ra-

diation) cause pressure differences, which create strong winds. Weather forecasting is a daily practice

at weather centers to predict the day-to-day evolution of the atmosphere and inherent weather pat-

terns, and to estimate the likelihood of severe weather events, such as thunderstorms. Due to highly

powerful computers at computation centers, numerical weather prediction (NWP) models are used to

generate hourly weather forecasts. NWP makes use of mathematical models to (deterministically) pre-

dict the state of the atmosphere based on observed (and precomputed) weather conditions [WH06].

A NWP model is a computer simulation that takes into account a particular set of dynamic equations

and initial physical parameterizations to generate deterministic weather forecasts. As NWP depends

on initial weather conditions, it is an initial-value problem, which means that the initial atmospheric

conditions need to be set a-priori to conduct the numerical simulation. The initial weather conditions

are, in major part, based on a set of observations. Such observations are comprised of measurements

from radiometers on satellites, radiosonde data, and flight level data from aircrafts [Stu17]. Unfor-

tunately, observations are innately uncertain and can only provide an estimate of the atmospheric

state. Although data assimilation schemes exist which reduce the uncertainty in observations by cor-

recting systematic errors in measurements, a certain amount of uncertainty in the initial conditions

still remains. Edward Lorenz discovered that atmospheric motions are inherently unpredictable due

to the uncertainty in initial conditions. He encountered that the computation of atmospheric motion

equations is highly sensitive to initial conditions, which means that small perturbations in initial con-

ditions may lead to the amplification of errors in deterministic weather forecasts. This implies that

there is a limit to the predictability of weather. Up to this point in time, it is assumed that the limit in

predictability is in order of approximately two weeks [WH06].
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1 INTRODUCTION

In recent years, the increasing computational power of computers and improvements in measure-

ments and data assimilation fostered a better understanding of atmospheric processes and enabled

NWP models to simulate physical processes on a much finer scale. However, the uncertainty in models

remains due to the initial-value problem in NWP and, thus, the simulated processes in medium- and

long-term forecasts with slightly varying initial conditions can highly differ. Therefore, the assess-

ment of variation and coherence, as well as a deep understanding of atmospheric processes is a key

challenge in atmospheric science to further improve numerical weather models and daily forecasts in

the future.

1.1 Feature Inference and Visualization in Numerical Weather
Ensembles

Given the underlying uncertainty in NWP models and their sensitivity to initial conditions, ensemble

forecasting is a common tool at weather forecast centers to reveal the dependency of weather forecasts

on different atmospheric conditions. Here, forecast centers repeatedly run multiple simulations of

the atmosphere, but with slightly perturbed initial conditions for each simulation run. This yields an

ensemble of forecasts of the future atmospheric state for a certain time step. The ensemble is used

to analyze the spatial and temporal evolution of possible significant weather events and indicates the

likelihood of (significant) weather events. Among those weather events are the occurrence of local

moving air currents with high wind speeds (jet-streams) or the zone of sudden changes in air mass

characteristics (fronts). For instance, jet-streams and fronts can be sketched as 3D structures which

evolve over time and are situated at different height levels of the atmosphere. As many definitions for

the same features exist in meteorology, forecasters are interested in a reliable and objective location

scheme to identify the 3D structure of features. This detection scheme can be used to document

the interplay of these features with surrounding atmospheric processes and to assess the temporal

evolution of certain weather events triggered by previous events.

With increasing complexity in ensemble simulations, however, trend inference becomes notoriously

difficult. Forecasters commonly attempt to reduce the complexity of weather simulations by both

restricting the analysis on single height levels and conducting a manual analysis of weather events

on 2D charts. Typically, they plot several simulation outcomes along an atlas of images or display

features simultaneously in a single plot, such as a spaghetti plot, to infer trends in weather forecasts.

However, atmospheric features can vastly differ in location, shape, and orientation either along the

vertical axis or in the entire ensemble, which makes it difficult to analyze features at all height levels

and forecast runs at the same time. In addition to that, the 2D analysis of single height levels does

not facilitate the analysis of the vertical evolution of features. This is an important aspect in weather

forecasting as meteorologists still do not completely understand how the vertical shape structure or

2



1.2 FEATURE SIMILARITY AND CLUSTERING

evolution could have an impact on surrounding weather events at different height levels. Although

NWP models simulate atmospheric processes on several height levels, forecasters at weather centers

rely on established 2D detection and analysis methods. Consequently, they are still actively looking

for methods to properly extract significant 3D features from ensemble simulations. Furthermore, they

want to infer the coherence and variation of features in ensembles to convey minor and major trends

in the weather ensemble forecast.

1.2 Feature Similarity and Clustering

Another challenge in ensemble analysis is the assessment of coherence and variation of extracted

features. For instance, wind maxima in jet-streams can be extracted as 3D line features. Their occur-

rence is further restricted via filtering to specific characteristics, such as a minimum wind speed of 40

ms−1. These filtered lines can consist of many small disconnected line segments of arbitrary topology

and orientation. Since errors in NWP models are amplified over time, the location and orientation of

features can highly vary for medium-range weather forecasts, that is simulation runs for 3 to 10 days

after the initial simulation time. The likelihood of occurrence of features, as well as the detection of

possible interruptions in shape and orientation of features, thus depends on the amount of agreement

across all ensemble forecasts.

Furthermore, atmospheric features are detected based on multiple physical quantities. These quan-

tities are represented by volumetric scalar fields produced by NWP models. Hereby, feature extraction

is based either on the unprocessed raw scalar fields or new derived fields, such as gradients of wind

speeds. Unfortunately, in an ensemble of scalar fields, the identified 3D features can vastly differ

from member to member due to the aforementioned uncertainty in simulations. To overcome the

uncertainty, forecasters thus use a simpler approach. They average the scalar fields over the entire

ensemble and extract the features on the computed mean scalar fields. In ensembles of high varia-

tions, however, taking the mean is not appropriate, since smaller (local) features and outliers can be

completely removed after averaging. Furthermore, averaged scalar fields may suggest long, continu-

ous features with no interruptions, although some ensemble members indicate multiple disconnected

features. And, the location of features can be influenced by averaging which causes the detection

algorithm to identify features at locations slightly shifted from their “original” position.

To avoid data aggregation, meteorologists cluster the scalar fields before feature extraction to divide

the field ensembles into groups of similar field characteristics. This facilitates a cluster-based analysis

of ensembles, which is conducted as an operational routine at the European Centre for Medium-

Range Weather Forecasts (ECMWF) [FC11] in 2D and proofed to be an important tool to understand

the predictability of atmospheric processes. However, the quality of clustering highly depends on the
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variation in the input fields and on the used similarity metrics between ensemble members. With high-

dimensional scalar fields of high variation, clustering often fails to reveal disjoint groups of similar

characteristics and, thus, does not provide satisfying results. As 3D features can also vary in shape and

orientation, it is also not clear how to best represent the similarity of vastly different features. Hence,

clustering of shape ensembles requires the definition and usage of appropriate similarity metrics be-

tween ensemble of shapes. Furthermore, forecasters actively look for automated methods to infer

major and minor feature trends from an ensemble of high varying simulation runs with appropriate

clustering methods, and to indicate outliers and statistical properties in the shape ensemble.

In operational routines at weather centers, forecasters make use of spaghetti plots to plot all ex-

tracted features simultaneously for a given time step and actively search for feature clusters in the

plot. Finally, they manually deduce a mean or median representation from each cluster and consider

this the most likely feature for the predicted time step. Spaghetti plots, however, suffer from cluttered

visual results, especially in 3D, and hamper the interpretation of features for multiple ensemble mem-

bers, also in the context of identifying possible interruptions between single features. The deduction

of mean features is therefore highly aggravated by overlapping features in local cluster groups. To

improve this feature deduction, approaches are required to automatically extract best feature repre-

sentatives or artificial features from cluster groups.

1.3 Comparative Ensemble Visualization with Transparency

Another problem arises when a myriad of features is extracted. The high number of features is either

due to multiple occurrences in the ensemble data or due to thousands of ensemble members available

for a certain day. For such a scenario, the existence of groups with similar feature characteristics is not

known beforehand and clustering may not be applicable to spot groups in the data. The simultaneous

display of features in 3D, however, suffers from high occlusion effects and cluttered visual plots, which

makes the interpretation of large feature sets impossible. Therefore, interactive visual exploration

tools are required to properly examine features-of-interest. Especially in visualization, the need for

efficient techniques to render and explore large line sets in 3D is still an active prominent research

field. Here, major applications range from the analysis of particle paths in flow fields, or optimal

transport of moving vehicles, to exploring neural connections in brains. Prior work [GRT13, LGP14,

OLK∗14, BGG19] has shown that rendering large line sets with transparency is a highly effective tool

to reveal occluded features hidden by multiple line sets and to infer important structures in highly

cluttered line sets. In terms of exploration, users typically select transfer functions to map data values

along the features to transparency and color. This is useful to interactively accent important structures

during the exploration, while retaining the overall contextual information about surrounding line

features deemed less important.
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Transparency rendering of large feature sets, unfortunately, is computationally expensive. After

all objects have been projected onto the viewport grid, the correct per-pixel color and opacity of

all parts of the objects falling into the same pixel has to be computed. In terms of transparency,

algorithms for alpha-blending have to be performed to blend transparent objects in correct visibility

order. To enforce the correct order, all transparent layers falling into the same pixel are sorted along

the view direction wrt. the distance (depth) to the viewer, either in front-to-back (ascending) or

back-to-front (descending) order. The pixel position and order of the transparent parts of objects

can be determined in two ways: a) objects are projected and rasterized onto the viewport pixel grid

(object-order) and all parts of the objects falling into the same pixel are sorted in a second pass, or

b) rays are shot from the pixel centers into the scene (image-order), where the rays along their path

intersect with the objects, which implicitly defines the visibility order. As the visibility order of objects

to the camera is view-dependent, it has to be recomputed for each frame during rendering, making it

a severe performance bottleneck in visualization. Another problem is the high memory consumption,

as thousands of transparent layers have to be stored and sorted per pixel for high viewport resolutions.

Hence, researchers in visualization constantly look for novel ways to efficiently render large line sets

with transparency. With transparency rendering, researchers intend to keep the image quality high

while reducing the costs for computation and memory requirements.

1.4 Contributions

In close collaboration with meteorologists and operational forecasters from ECMWF, several contri-

butions are presented that attempt to handle all previously mentioned research questions. Features,

such as atmospheric fronts and jet-stream core lines, exert a major impact on surrounding weather

events. Yet, the meteorologists identify these features on 2D height levels only and forecasters lack

the knowledge about how the 3D shape of these features is related to changes in nearby atmospheric

processes. In this thesis, two detection methods are proposed to extract 3D features from scalar fields.

The first is a robust method to extract jet-stream core lines in 3D using a consistent local frame-of-

reference, which is orthogonal to the local wind field, to compute points of maximum wind speed

gradients (c.f. [KHS∗18]). The second approach extends an existing 2D automated detection method

of atmospheric fronts to 3D and improves its filtering framework to better identify and visualize the

borders and zone of high thermal gradients (c.f [KHS∗19]). To indicate major and minor trends in an

ensemble of vastly different line features, three frameworks to cluster jet-stream core lines are sug-

gested. While one framework clusters on the derived scalar fields used for detection, the remaining

two either cluster directly on the extracted feature geometry or operate on an implicit representation

of lines independent of the features’ topology and orientation. Alternatively to clustering, proxy fields

are generated to retrieve “artificial” line features from a line set (see [KW19a]). Regarding the visu-
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alization of transparency, an extensive comparative study of different rendering techniques that are

able to render transparent line sets, is conducted. The algorithms are compared in terms of run-time

performance, memory consumption, and image quality. (cf. [KNM∗20]). In particular, the specific

contributions of this thesis are detailed in the following list:

• In [KHS∗18], a robust 3D detection algorithm is proposed to detect and visualize jet-stream core

lines in 3D for the first time. The algorithm works differently from the original ridge detection

algorithm, where maximum lines are identified by computing the first derivative along the local

frame-of-reference based on the eigenvectors of the 3D Hessian. This involves the computation

of second derivatives prone to noise in the data, which requires extensive blurring beforehand.

In contrast to ridge detection [EGM∗94, Lin98, PS08], extensive blurring of the input fields

is avoided and core lines are directly extracted from the wind fields. The algorithm exploits

the assumption that maximum lines are located at narrow angles to adjacent wind directions

and neglects the vertical wind component as the vertical extent of the atmosphere is much

smaller than the horizontal extent. Therefore, wind maxima are identified in a vertical plane

perpendicular to the local wind field.

• In [KHS∗19], the 2D objective front detection method by Hewson [Hew98] is extended to 3D,

which provides the very first automated identification and visualization of atmospheric weather

fronts in form of 3D frontal surfaces. It further proposes a framework to fuzzy filter weather

fronts by mapping height-dependent thermal gradients to transparency. Furthermore, the zone

of high thermal gradients in the vicinity of frontal surfaces is visualized, while its characteristics

and statistics are determined and visualized using traced “normal curves” and statistical plots.

• All methods have been integrated into the open-source visualization tool “Met.3D”, developed

by Rautenhaus et al. [RKSW15, Rau20]. This software is highly optimized for meteorological

applications and combines several established visualization techniques to interactively depict

numerical weather data both in 2D and 3D. In this thesis, Met.3D was used to analyze how jet-

stream core lines are related to local streamlines extracted from the wind fields and how they

affect surrounding atmospheric conditions. Regarding weather fronts, a combined visualization

is proposed to analyze the relationship between the vertical structure of frontal surfaces and

surrounding atmospheric processes, such as nearby precipitation. The benefit of the proposed

visual analysis of atmospheric features is demonstrated by means of real-world case studies.

• Regarding ensembles of jet-stream core lines, it is discussed in [KW19a] how clustering can

be used to identify trends in a set of highly complex line features. Two different clustering

approaches are discussed wrt. their potential to convey characteristic trends in weather fore-

cast ensembles. The first approach clusters on derived scalar fields which are used for feature

detection. Since these fields are volumetric and high-dimensional, a dimensionality reduction
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method, such as principal component analysis, is utilized to preprocess the fields. Regions not

containing any feature are removed from the data to further reduce the complexity of the in-

put data. The second approach either directly clusters on line geometry using a line-specific

similarity metric or computes a topology-invariant representation of line features based on a

vector-to-closest-point field. All clustering approaches are compared to ridge lines extracted

from proxy fields which are computed based on the line features in 3D space. In particular, two

proxy fields are generated from an ensemble of lines: a) density fields indicating the frequency

of feature occurrence and b) centrality fields accenting regions most central to all line features.

Finally, the advantages and drawbacks of the method are discussed by means of real-world case

scenarios, where all results are compared to features extracted from the best estimate of the

atmosphere.

• For transparency rendering, a comparison study of exact and approximate object- and image-

order rendering techniques for large transparent line sets is provided in [KNM∗20]. The study

is comprised of an in-detail discussion of rendering techniques with respect to several impor-

tant aspects in scientific visualization. Among those aspects are real-time performance, to

infer the level of interactivity, and the algorithm-specific memory consumption based on re-

quired model-specific acceleration structures during preprocessing and rendering. In addition

to that, the image quality of approximate techniques is further analyzed based on different

transparency and color settings, and their frame-to-frame coherency is examined during anima-

tion. Among all object-order techniques, which make use of GPU rasterization, Per-Pixel Linked

List (LL) [YHGT10], Multi-Layer Alpha Blending (MLAB) [SV14], and Moment-Based Order-

Independent Transparency (MBOIT) [MKKP18] are considered. For image-order techniques,

based on ray tracing, voxel-based line ray tracing [KRW18], CPU-based ray tracing using the

General Tubes method [HWU∗19] and Embree’s built-in Bezier curves [WWB∗14], and a GPU-

based implementation using NVIDIA’s RTX ray tracing API [NVI18] are discussed. Finally, the

study provides a summary of the strengths and weaknesses of each rendering technique, so that

readers gain an understanding of when to use a certain technique for a given transparency set-

ting and data size. The implementations and data sets used in this work are publicly available

in [KN20, MK20].
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1.5 Outline

The remainder of this thesis is structured as follows. In Chapter 2, prior work in the context of the

research task related to this thesis is discussed. Among those topics are jet-stream core line detection,

the objective identification of fronts, cluster-based analysis of shape ensembles, and transparency

rendering. The fundamentals of all methods are explained in Chapter 3 to provide the readers with a

basic understanding of the theory required and used in all published papers. All published papers and

the individual contributions of the authors are summarized in Chapter 4. The findings of all papers

and an outlook to future work is provided in Chapter 5. All published papers associated with the

research topics of this thesis are appended at the end of this work in Chapter 7.

1.6 List of Publications

All the methods and visualization techniques proposed in this thesis have been originally published

in the following peer-reviewed conference papers and journal articles:

• M. KERN, T. HEWSON, F. SADLO, R. WESTERMANN, AND M. RAUTENHAUS:

“Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow”,

IEEE Transactions on Visualization and Computer Graphics, 24(1):893–902. 5, 2018

doi:10.1109/TVCG.2017.2743989

• M.KERN, T. HEWSON, A. SCHÄFLER, R. WESTERMANN, AND M. RAUTENHAUS:

“Interactive 3D Visual Analysis of Atmospheric Fronts“,

IEEE Transactions on Visualization and Computer Graphics, 25(1):767-776, 2019.

doi:10.1109/TVCG.2018.2864806

• M. KERN AND R. WESTERMANN:

“Clustering Ensembles of 3D Jet-Stream Core Lines“,

In Vision, Modeling and Visualization (2019), Schulz H.-J., Teschner M., Wimmer M., (Eds.), The Euro-

graphics Association.

doi:10.2312/vmv.20191321

• M. KERN, C. NEUHAUSER, T. MAACK, H. MENGJIAO, W. USHER, AND R. WESTERMANN:

“A Comparison of Rendering Techniques for 3D Line Sets with Transparency“,

IEEE Transactions on Visualization and Computer Graphics (2020).

doi:10.1109/TVCG.2020.2975795
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2
Related Work

This chapter discusses prior work that is concerned with feature detection and ensemble visualiza-

tion, and that is closely related to the work in this thesis. The ideas for our research projects, i.e.,

atmospheric feature detection or cluster analysis, were further governed by publications in both the

visualization and meteorological community.

2.1 Jet-Stream Core Lines

The extraction of jet-stream core lines — lines with maximum wind speed along the horizontal and

vertical dimension — is very similar to the extraction of extremum lines in scientific visualization. In

flow visualization, for instance, ridge detection is a prominent mathematical framework to identify

extremum lines in scalar fields. In meteorology, prior work has dealt with the definition of jet-stream

characteristics and the identification of jet-stream core lines in 2D.

2.1.1 Line Features in Visualization

In scientific visualization, 3D, 4D scalar, or vector fields are often mapped to geometric primitives,

such as lines or surfaces. These visual mappings reduce the dimension of the data while increasing

information inference. In particular, lines can be extracted from vector fields to visually depict the

chaotic and turbulent behavior in simulated flow fields. In contrast to 2D manifolds, lines do not suffer

from self-occlusion effects and are thus features to effectively describe the motion of flow. Among the

line features are lines of maximum or minimum values (extremum lines), ridge lines, vortex core lines,

and separation or attachment lines. Extremum lines, for instance, represent the locations where the

underlying scalar field, such as wind magnitude, is locally maximal or minimal. Ridge lines are a

special case of extremum lines and are discussed in Sect. 3.2.1. Attachment and separation lines are
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lines along which the 3D flow separates or attaches from or to a solid surface. These features are

important concerning the aerodynamical design of an aircraft [Rot00].

Vortex core lines are a prominent line feature in flow visualization and an important component

in a turbulent flow. In 3D turbulent vector fields, they can be imagined as the centers (straight or

curved axis) of swirling motion around which mass-less particles are orbiting. Although vortex core

lines have been well studied, there is still no general unique definition to automatically detect those.

There are several variants of definitions and algorithms to identify vortex core lines. A widely used

definition is taken from Sujudi and Haimes [SH95] who define vortex core lines as the loci where the

vector field is parallel to one real eigenvector of the vector field’s Jacobian, while the remaining pair

of eigenvectors needs to be complex.

Peikert and Roth [PR99] provided a mathematical framework to identify variants of line features

with the “Parallel Vectors” operator. They introduced the operator “‖” as v ‖ w for two n-dimensional

vector fields v and w. Solutions S for the operator ‖ are the set of all locations x where two vectors

have the same direction: S = {x : v(x) = 0} ∪ {x : ∃λ, w(x) = λv(x)}. For instance, they used the

operator to reformulate Sujudi and Haimes’s vortex core line definition and identified vortex core

lines as zero curvature loci where the velocity field v is parallel to the velocity acceleration, with

v ‖ (∇v) · v. For the latter, they proofed that this is equivalent to the definition of Sujudi and Haimes.

In terms of the vector parallelism operator, another widely used vortex core line definition is given

by Levy et al. [LDS90]. Here, one component of the vorticity vector is required to be parallel to the

local velocity vector whilst the remaining two vorticity vectors are perpendicular to it. The Parallel

Vectors operator can also be used to identify separation and attachment lines [KHL99] or to define

bifurcation lines, which are situated at the crossing line of two 2D manifolds of streamlines, where

one manifold represents the streamlines converging to the intersection line, and the other represents

streamlines diverging from it [Rot00, MSE13].

Roth [Rot00] provided an overview of several algorithms that compute features with the Parallel

Vectors operator. First, all lines, where the parallelism of the vectors and its derivative holds, are found

at each cell and connected to lines. If these lines intersect with a cell twice, they can be connected to

the actual line feature. If there are more intersections, heuristics are applied to connect those lines.

Oster et al. [ORT18a, ORT18b] extended this approach to detect vortex lines in 3-dimensional tensor

fields, also called Eigenvector trajectories. They formalized the “Parallel Eigenvector Operator” in

a similar way to the “Parallel Vectors Operator” for tensor fields. Post et al. [PVH∗03] and recently

Günther and Theisel [GT18] provided an overview of existing state-of-the-art techniques to detect

line features in flow visualization, including vortex core lines or separation and attachments lines in

steady and unsteady vector fields.
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Ridge Detection Ridges and valleys, sometimes also called “creases” or mountains, are prominent

line features in scalar fields. For a 2D height field, ridges or valleys are the loci along a line where the

slope — that is the magnitude of the height field derivative — is locally minimal compared to points

having the same elevation [PR99]. More general for n-dimensional scalar fields, ridges (valleys) are

locations where the scalar value at a local point is locally maximal (minimal) along n-1 dimensional

orthogonal axes that define a cross-section cutting through the point. The first mathematical formu-

lation of ridges (and valleys) in the context of surface topography dates back to early work by de

Saint-Vernant and Breton [dSV52, Bre54].

In computer vision and image analysis, ridge detection has been evolved to an established technique

and is a widely used tool to characterize and automatically identify the inner structure of objects in

2D images, complementary to edges of objects. Usually, the intensity of images is interpreted as 2D

height fields, where ridges are the maxima of image intensities. The first general formulation of

ridges for images was given by Haralick [Har83]. He proposed to fit a polynomial surface based on

the pixel-neighborhood and compute the directional derivatives of this surface analytically to obtain

ridge lines. Later, Eberly [EGM∗94] reformulated the approach on 2D images and used directional

derivatives along the eigenvectors of the Hessian of pixel intensities. Lindberg [Lin98] described

ridges for images similar to Eberly, with the focus on the analysis and automated selection of an ap-

propriate image scale-space. The image-scale space here represents the set of images parameterized

by the size of smoothing kernels. Smoothing is typically applied to images as a pre-processing step as

the computation of second derivatives and eigenvectors is error-prone to high fluctuations in scalar

fields and may lead to very small-scale line features. Pizer et al. [PBC∗94] looked for medial axes of

2D objects in images. They defined the medial axis as the ridge in topographical watersheds. This

follows the definition of Blum and Nagel [BN78], where the medial axis is a symmetry axis dividing

an object into two symmetrical parts. The impact of image-scale space on ridge detection and the

existence of connector curves, which connect disjoint line segments of ridges, was further studied

by Damon. [Dam98, Dam99]. Majer [Maj00] provided an overview of different feature detection

algorithms and investigated the behavior of ridge line detection in different image-scale spaces. To

improve the robustness of ridge line detection, Lopez-Molina et al. [LMdUB∗15] proposed to oper-

ate directly on smoothing kernel functions and approximate the derivatives of anisotropic Gaussian

kernels to detect ridge lines in images.

In flow visualization, ridge detection was successfully applied to detect extremum line and surface

features, e.g., to identify vortex core lines [SKA99, SWH05, Sah09] or flow separation [SLM05]. It was

further used by Sahner et al. [SWTH07] to visualize vorticity and strain, or by Sadlo et al. [SP07, SP09]

to display separation regions of different flow in unsteady vector fields. An efficient approach to

compute and filter d-dimensional ridges from n-dimensional fields was introduced by Peikert and

Sadlo [PS08]. They have shown that ridge lines are implicitly given by the parallelism between the
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gradient vector and the eigenvectors of the Hessian matrix.

Recently Bader et al. [BSB∗20] extracted bands (extremum lines) of potential vorticity scalar fields

with a 2-pass predictor-corrector algorithm. First, their approach starts with stepping into the gradi-

ent direction of the vorticity and afterward corrects the position by identifying the exact maximum

(minimum) within a cross-section perpendicular to the gradient.

2.1.2 Jet-Stream Core Lines in Meteorology

The analysis of jet-stream core lines in meteorology dates back to the 50s and 60s. In 1957, Endlich

and McLean [EM57] conducted fifty flights to design an empirical model of the jet-stream core lines.

During their flights, they empirically measured the average wind and temperature fields near the

areas of maximum wind speed and documented the results. One decade later, researchers described

jet-streams and their major characteristics and provided a concept to detect jet-streams based on wind

fields, i.e., as described in the books by Reiter [Rei63] and Palmen and Newton [PN69]. In particular,

they introduced the concept of the “layer of maximum wind” (LMW), an approach to detect and

analyze the jet-stream axis along which the wind speed is highest at a given altitude [Wor92]. The

LMW method played a key role in weather forecasting in the United States [SD05] and is still used to

produce significant weather charts (SIGWX) for daily flight operations.

Jet-stream events: In the context of climatology, several automated extraction methods have been

developed to detect events of jet-stream occurrences wrt. large-scale weather analyses. Some authors

focus on the identification of core lines, while others identify regions of major characteristics of jet-

streams, like areas with wind speed above a defined threshold (usually above 20 ms−1).

Koch et al. [KWD06] examined layers between 100 and 400 hPa and vertically averaged the wind

speeds between these pressure levels. Here, all horizontal grid points where the averaged wind speed

exceeds a user-defined threshold, such as 30 ms−1, are marked to identify the jet-stream locations.

Archer and Caldeira [AC08] extended this approach and incorporate mass to compute a mass-flux

weighted vertical average of wind speed, pressure, and latitude for a more robust identification of

jet-streams. Martius [Mar14] and Limbach et al. [LSW12] also used a height-dependent threshold

for wind speed while Limbach used a graph-based and connected component approach to detect

and track the spatio-temporal evolution of jet-stream areas in 3D. Barton and Ellis [BE09] and Pena-

Ortiz et al. [POGR∗13] assumed a vertical (eastward or westward) motion of jet-streams around 300

hPa and 100 – 400 hPa, respectively. Their method computes and marks for each longitudinal band

the exact single latitude location of the maximum wind speed. Pena-Ortiz et al., in particular, used

latitude-altitude cross-sections to locate 3D wind maxima for different pressure levels. Gallego et

al. [GRGH∗05] focused on the Southern Hemisphere and also assumed a vertical jet propagation. They

defined the jet-stream to be the closed geostrophic streamline of maximum wind velocity averaged
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in the meridional direction. The geostrophic wind, in this context, is the theoretical wind direction

that results from the balance between pressure and the Coriolis force without taking into account

(surface) friction.

Layer-of-Maximum-Wind: Strong and Davis [SD05, SD07, SD08] analyzed jet-streams using the

notion of LMW. They assumed a zonal orientation of jet-streams and identified the location of maxi-

mum wind speeds at each single pressure level either for each latitude or along each meridian using

finite differences in zonal direction. However, the line geometry was not created or used in their

analysis. Manney et al. [MHD∗11, MHD∗14] assumed a zonal orientation and constructed latitude-

altitude cross-sections to locate wind speed maxima across the zonal direction for pressure levels

between 100 and 400 hPa. They also did not use the line geometry but just cataloged the locations

of the jets for climatology analysis.

Rikus [Rik15] used an image-based approach to identify jet-streams. He proposed to apply min-

imum and maximum filters to the wind magnitudes of each latitude-pressure cross-section and to

locate the maximum points where the difference between minimum and maximum images exceeded

a certain threshold. Molnos et al. [MMP∗17] used Rikus’ method to calibrate their graph-based ap-

proach to detect continuous closed jet-streams. They interpreted the horizontal domain as a connected

graph, where each neighboring grid point is connected via an undirected edge. Each edge contains

several weights determined by wind speed, the angle of the wind to the edge normal, and the current

location in latitude. Based on edge weights, Dijkstra’s algorithm is used to compute the shortest path

along the Northern Hemisphere and the line geometry is generated, based on this path, to finally

obtain the jet-stream core lines.

Berry et al. [BTH07] used wind shear to detect jet-stream core lines from 2D wind fields on the

isosurface along the set of points with a constant 2-PV (potential vortictity) units. Here, the total wind

speed gradient is projected onto the wind normal direction and compute the wind shear. The core

line is then defined as the zero-isocontour of this wind shear. Additionally, their algorithm requires all

jet core line candidate points to be maximal and to exceed a certain wind speed threshold. As these

criteria do not hold for all altitudes — wind speeds may increase or decrease in upper atmospheric

levels and extrema get less well-defined — Spennsberger et al. [SSL17] extended this approach and

introduced a new filter criterion. The product between the wind shear and wind shear gradient is

computed along the normal direction. Afterward, all candidate points are identified where the wind

shear gradient exceeds a certain negative threshold. Consequently, the wind maxima are well-defined,

which allows to emphasize long line features.

Many of the aforementioned algorithms to detect jet-stream core lines are not Galilean invariant,

only operate on specific height levels in 2D, and assume that jet-streams are always oriented in zonal

direction. However, on a smaller scale, jet-streams and their core lines can be interrupted and oriented
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in both zonal or meridional direction. In this thesis, we refrain from using any of these simplified

assumptions and instead focus on the extraction of wind maxima lines in wind vector fields. We

further regard all vertical pressure levels and provide an algorithm to identify 3D jet-stream core

lines. This algorithm and the visualization of core line characteristics are detailed in [KHS∗18].

2.2 Atmospheric Weather Fronts

Our work is inspired by several methods that have been published to automatically detect 2D front

features in meteorology. Since there is no unique and common definition of fronts, an overview is

provided to summarize all existent definitions of fronts. Eventually, prior work concerned with the

automated front detection and the analysis of weather fronts is discussed in the following.

2.2.1 Definition of Atmospheric Fronts and Frontal Zones

Although fronts have thoroughly been studied for almost a century, there is still no agreement on

a single unique definition of fronts. The “classical” definition considers fronts to be the horizontal

boundary between two distinct air masses [Stu17]. In particular, a front separates air masses that

have similar characteristics in terms of temperature, moisture, and stability [TS19b]. This traditional

notion dates back to “Bergen school” published by Bjerknes and Solberg in 1922 [BS22].

Fronts: The American Meteorological Society (AMS) defines fronts as “the interface of or transition

zone between air masses of different density” [Ame18]. The density of air depends on the parameters,

such as temperature, moisture, and pressure. AMS emphasizes that in most cases the front almost

always “separates air masses of different temperature”. The World Meteorlogical Organization (WMO)

proposes that fronts are the “interface or transition zone between air masses of different densities

(pressure, temperature, humidity). 1) Line of intersection of the surface separating two air

masses with another surface or with the ground.” [Wor92]. Hewson [Hew98] describes the 3D

boundary of a front as “thin layer, or non-rigid slab-like region, in three-dimensional space, within

which there are [...] large horizontal gradients in the thermal characteristics.”

Frontal Zone: In meteorology, fronts are not always assumed to be a simple line or surface feature.

Instead, they are defined as the transition zone of high thermal gradients, which is the zone where

the thermal characteristics change the most. This zone is called frontal zone. According to WMO, a

frontal zone is the “atmospheric transition layer separating two air masses in which the properties

are intermediate between those of the air masses.” [Wor92]. AMS states that a frontal zone is simply

the “transition zone”, without any further explanation. Martin [Mar06] discovered that their length is
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significantly greater than their breadth and thus provided a better understanding of the frontal zone

structure. In general, the frontal zone can be regarded as the transition zone between the warm and

cold-side boundaries of a front at all vertical levels, as sketched by [Hew98]. Prior work has also

encountered that discontinuities of other parameters, such as wind, mainly occur at the warm-side

boundary (see [Hew98, Stu17]). Hence, the “actual” front locations are commonly identified at the

warm-side boundaries of the frontal zone. Fronts are further classified into two categories: warm

fronts which bring warm air along with their movement into the wind direction, or cold fronts which

bring cold air. Moreover, fronts are distinguished by their location on the globe. For instance, polar

fronts are situated near the poles and tropical fronts are located near the equator. Researchers also

actively look for fronts on small scales (mesoscale, around 5 to 500km) and larger scales (synoptic,

in the order of 1000km) for weather forecasting and climatology. For further explanations, we refer

to publications like [SB15, Stu17].

One popular schematic of fronts and their location is given by the “Norwegian” model from the

Bergen school in 1920 [BS22] which shows the typical model of fronts around mid-latitude cyclones.

The model is still used in operational forecasting and synoptic meteorology. The “Norwegian” model

was later extended by the “Shapiro-Keyser” model [SK90]. The Shapiro-Keyser model uses a different

definition of the structure of “occlusion processes”, which are the merging processes of warm and

cold fronts. An overview of models and concepts of fronts is given by Schultz and Vaughan [SV11].

Alternatively, researchers also considered vorticity maxima to identify frontal features or used the total

derivative of thermal horizontal gradients as an indicator for the emergence of fronts (“frontogenesis”,

see [SD95, SB15]).

2.2.2 Objective Front Detection

Tracking and detection of features is important for operational weather forecasting, for example, as

emphasized by Hewson [Hew98] and Schultz and Blumen [SB15]. However, no clear definition of

fronts has been found, yet, mainly because fronts are identified in regions of different thermal charac-

teristics. For instance, prior research has demonstrated that forecasters frequently recognize different

front features from the same data set based on their experience, as seen in work by Mass [Mas91] and

Sanders [SD95]. Schemm et al. [SRS15] compared front detection schemes based on either thermal

gradients or wind discontinuities and demonstrated how the results differ when applied to the same

data set. Recently, Thomas and Schultz [TS19b, TS19a] made a comparison study of different front

definitions. They investigated all methods and thermal quantities used in the context of objective

front detection, also in relation to global climatology, and discussed their advantages and drawbacks.

They concluded that there is no best method to identify fronts.

The first formulation of a parameter to identify fronts dates back to 1936. Petterssen [Pet36] first

introduced the term frontogenesis, which is the formation process of fronts over time, to facilitate
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frontal analysis. He incorporated not only thermal quantities but also wind fields to identify regions

of frontal zones. The frontogenesis is described as the Lagrangian rate of change of the horizontal

gradient magnitude. With this definition, one can use thresholds to relate the change of magnitude

to the wind fields and to manually identify potential frontal regions. Later, Renard and Clark were

the first who introduced the objective detection of 2D atmospheric fronts [RC65] based on thermal

quantities. They introduced the “notion” of the Thermal Front Parameter (TFP), which is the direc-

tional derivative of thermal gradient magnitude along the unit direction of the thermal gradient. An

in detail discussion about TFP is given in Sect. 3.3. TFP was mainly used to detect zones at the warm

or cold air boundaries of the frontal zone.

Tim Hewson [Hew98] further extended that approach and used the TFP as a filter to distinguish

between the cold and warm air boundaries. His method automatically detects the boundaries of a

frontal zone by using the third (directional) derivative of the thermal gradient. Fronts are also fil-

tered by the magnitude of the thermal gradient, also known as frontal strength. Besides, Hewson

sketched the general 3D structure of fronts for multiple altitudes (pressure levels) and demonstrated

the evolution of the detected fronts for distinct pressure levels. However, he proposed not to detect

the full 3D structure at once but to extract all fronts from multiple altitudes separately. To estimate

the 3D structure, the resulting set of fronts is first mapped to a different color per altitude and then

displayed at once, similar to a spaghetti plot, on a 2D weather chart. He also pointed out that com-

puting the third derivative is highly prone to noisy data. Hence, he suggested averaging the second

derivative at a local grid point. His work was further improved in Hewson and Titley work [HT10],

which is still operationally run at the ECMWF to produce products for weather forecasting. Jenkner

et al. [JSS∗09] also made use of the TFP but only regarded the gradient magnitude maximum where

T F P = 0. They also used smoothing to produce stable results and filtered by the frontal strength.

In contrast to Hewson et al., they additionally removed stationary (= non-moving) fronts over time.

Simmonds et al. [SKTB11] defined fronts by detecting temporal wind shifts in the data. They as-

sumed that fronts are oriented zonal and identified fronts at locations where the meridional wind

velocity is altered about 2, 4, or 6 ms−1. Hope et al. [HKP∗14] also compared 6 different methods to

detect fronts, including self-organizing maps (SOMs). A SOM is a type of an artificial neural network

which produces a low-dimensional representation (often a 2D map) of the input space using neurons

associated with weights. Neurons are shifted so that the neurons corresponding to similar types are

positioned close together, and vice versa.

In terms of climatology, several authors evaluated the automated front detection on research ques-

tions in climatology ([Kas03, BRJ11, PGM∗14, SNM∗16]). Most recently, Thomas and Schultz [TS19b]

evaluated different objective front detection schemes and different thermal quantities. They used the

approaches proposed by Hewson, Jenkner, and Petterson’s frontogenesis parameter and applied them

to temperature and equivalent potential temperature. Finally, they compared the results in the context
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of interpretation for climatology.

Related to frontal zone detection in scientific visualization, Kniss et al. [KHGR02] ran a case study

to identify frontal zones from multi-variate volumetric data. They regarded multiple physical quan-

tities, like temperature or humidity, and mapped those quantities to color and opacity using multi-

dimensional transfer functions. After this mapping, the values were rendered in 3D by using classical

direct volume rendering. While domain experts could manually identify frontal zones with their

method, they did not propose an automated detection of such zones.

2.2.3 Extremal Surface Features in Visualization

The detection of line features from 2D scalar fields is well-known in visualization. In the context

of fronts, this would relate to extremum lines along which the local thermal gradient or the second

derivative of a thermal quantity is maximal. Note that extremum line features are similar to ridge

detection, which was already discussed in Sect. 2.1.1 and is further explained in Sect. 3.2.1.

In general, the extraction of surface type features in flow visualization is a common tool to identify

chaotic and turbulent 3D structures from flow fields. Here, visualization techniques help to reduce

the dimensional complexity of spatio-temporal scalar or vector fields and facilitates the 3D analysis

of turbulent (non-)steady flow fields. Among those features are the traces of curves, which emanate

from constantly seeded particles released into the flow from a given curve line. All particles seeded

from this curve are tracked and sequentially connected over time to form a surface. Among these

surfaces are stream, streak, smoke, or time surfaces. An overview of the extraction of such features

is given by Edmunds et al. [ELC∗12].

Related to 3D front features, our work is similar to the extraction of 3D ridge surfaces from scalar

fields. For ridge (valley) surfaces the definition of ridges is more relaxed and only one orthogonal axis

has to contain a local maximum (minimum) in a 3D scalar field. Furst et al. introduced the “marching

cores”algorithm [FPE96] to find 2D ridge surfaces (creases) in a 4D space, where the 4th dimension

is scale space. Furst and Pizer extended their approach with “marching ridges” [FP01] to extract one

or two-dimensional ridges from high-dimensional data. They assumed that ridges only intersect a cell

twice and orientation of eigenvectors is always given. They also made use of principal component

analysis (PCA) to estimate the local orientation of the eigenvectors. Ridges are found by tracing

sign changes of the directional derivative, which is characterized, here, by the product between an

eigenvector and the scalar field gradient. In visualization, ridge surface detection has been applied

to specific 3D volumetric data. Kindlmann et al. [KTW07, KESW09] extracted ridge surfaces to find

skeletal structures in data from diffusion tensor Magnetic Resonance Imaging (MRI). They used the

classical “marching cubes” algorithm [LC87] to extract surfaces. The directional derivative field is

considered to be the scalar field for ridge detection. Their approach can then trace eigenvectors along
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cell edges and can impose an eigenvector orientation at each cell. Sadlo and Peikert [SP07] also

used “marching cubes” on an adaptive grid to identify ridge surfaces in unsteady vector fields. Their

ridges define regions that separate flow areas of different characteristics. To define the orientation

of eigenvectors, they used the definition from “marching ridges”. Sahner et al. [SWTH07] made use

of ridge detection to extract 1D and 2D vortex and strain skeletons. In contrast to classical ridge

detection, they used a watershed-based definition for feature extraction. Schultz et al. [STS10] also

operated on diffusion tensor MRI data and took into account the non-orientability of eigenvector

systems, especially in cases where the Hessian matrix degenerates, that is lines where two eigenvectors

are equal. They used the Hessian degeneracy to define boundaries of ridge surfaces and presented an

algorithm to find intersection points of ridges and their boundaries. Finally, normals were estimated

to identify 2D ridges. A more recent overview of the detection and efficient rendering of extremal

surfaces in 3D fields is given by Kindlmann et al. [KCH∗18].

In computer graphics and visualization, ridge detection has been used as a tool to derive specific

extremal surface features. For instance, Süssmuth and Greiner [SG07] used ridge surface detection to

reconstruct meshes from noisy point cloud scans. They extracted ridges from a precomputed density

function of the points, which was generated by applying a smoothing kernel to the point cloud. Ferstl

et al. [FBTW10] identified separating streak surfaces in time-varying flow fields with the help of

ridge detection. They applied ridge line detection to finite-time Lyapunov exponent (FTLE) fields and

considered the identified ridge lines to be the seeding curves for the streak surface generation.

In the meteorological community, to the best of our knowledge, there has not been proposed any

automated detection scheme that identified front features for all vertical pressure levels in 3D. Regard-

ing the prior work from flow visualization, ridge surface detection is one option to identify maxima

lines from first- or second-order thermal gradient fields. However, ridge surface detection would re-

quire the computation of third- or fourth-order derivatives of a thermal quantity, for example, with

finite differences. This would accumulate approximation errors and would yield cluttered features

without the use of extensive blurring.

In this thesis, we adapt the algorithm of Hewson [Hew98] to identify 3D frontal surfaces and pro-

pose a visualization tool to plot the characteristics of the front along its surface and its corresponding

frontal zone. For front detection, we focus on thermal quantities that best represent changes both

in temperature and magnitude. We also propose to smooth the data beforehand using a Gaussian

smoothing kernel with weights adapted to the distance of grid points per latitude. An in-detail dis-

cussion of our algorithm is provided in [KHS∗19].
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2.3 Clustering-Based Ensemble Visualization

The cluster-based analysis of ensembles of shape is closely related to ensemble visualization, a branch

of the more general field of uncertainty visualization. As already explained in Chapter 1, uncertainty

in the data occurs due to approximate simulation models with erroneous initial conditions. The un-

certainty of the model is covered by computing an ensemble of simulation runs with slightly perturbed

initial conditions. Several surveys exist that list the most important techniques in ensemble visualiza-

tion, up to this point in time. For this, compare the surveys by MacEachren et al. [MRH∗05], Bonneau

et al [BHJ∗14], and Potter et al. [PRJ12]. Another overview of ensemble and multi-dimensional vi-

sual data analysis is given by Love et al. [LPK05], where appropriate statistical distribution and shape

descriptors for scalar-valued ensembles are discussed. Alternatively, Kehrer and Hauser [KH13] pro-

posed different visualization techniques for multi-variate, spatio-temporal varying data.

2.3.1 Ensemble Visualization

Prior work from the last years has proposed methods to infer major and minor trends in ensembles

of spatio-temporal varying ensembles of scalar and vector-valued fields. For instance, in terms of

closed isoline ensembles, Whitaker et al. [WMK13] suggested replacing spaghetti plots, which of-

ten hamper trend inference due to occlusion effects, with contour box plots to visually emphasize

confidence regions in the data. Mizargar et al. [MWK14] extended contour box plots to arbitrary

curves in 2D and 3D. They measured the depth (centrality) of a single curve shape within an ensem-

ble of shapes to determine band depths in the data. Demir et al. [DJW16] introduced translation and

rotation-invariant closest point representations to visualize the central tendency of multi-dimensional

ensemble of shapes in 3D. Similar to our work, the median of the closest point volumes is computed to

produce a mean representation of the shape ensemble. Bruckner and Möller [BM10b] proposed the

computation of signed distance functions to analyze different iso-contours of the same scalar field.

In some prior work, Gaussian mixture models (GMM) or mixtures of probability density functions

were used to visualize time-varying data and its evolution in distribution. To name a few, Liu et al.

[LLBP12] represented 3D volumes with per-voxel distributions using GMMs and made use of a Monte-

Carlo approach to render volumes with GMMs. Jarema et al. [JDKW15] proposed lobular glyphs based

on the GMMs of vector-valued ensemble data. Dutta et al. [DS15] performed feature classification

and tracking based on modeling of mixture Gaussian distributions. Wang et al. [WLW∗17] computed

the probability density function of values and their occurrence probability using Spatial GMMs. Demir

et al. [DDW14] suggested transforming 3D data points into a linearized vector representation to vi-

sualize the points’ distributions with bar charts. Pfaffelmoser et al. [PRW11] extended the approach

of Pöthkow and Hege [PH11] to visualize probabilistic 3D isosurfaces with volume ray casting. Here,

they assumed a Gaussian distribution, accounted for homogeneous and anisotropic correlations, and
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determined the probability of isosurface crossing using a stochastic distance function. The geomet-

rical and positional uncertainty of an isosurface is computed by measuring the distance to the mean

isosurface in standard deviation units (normal curves). Pöthkow and Hege [PH13] and Athawale

et al. [ASE16] allowed non-Gaussian distributions in ensemble data and used location-wise kernel

density estimators of non-parametric distributions to measure the data spread in surface and vector-

valued fields features while incorporating correlations in the data with principal component analysis.

Hazarika et al., see [HBS18] and very recently in [HDSC19], presented a copula-based framework for

large multivariate data sets, where the domain is partitioned and statistical quantities are computed

over the partitions.

Furthermore, there has been more work on the visualization of statistical summaries of the data,

such as from Love et al. [LPK05] who used parametric distribution models or distance metrics (here

Kullback-Leibler divergence) to visualize multi-variate data. A summary of different plots to visualize

statistical data and their uncertainty is provided by Potter et al. [PKRJ10]. Hoellt et al. [HMZ∗14]

introduced a visual analysis system that explores ensemble forecasts to predict the surface of an ocean.

Here, statistics are computed to visualize the spatio-temporal uncertainty and probability of ocean

surfaces in 3D.

2.3.2 Cluster-Based Visualization of Shape Ensembles

The simultaneous display of ensemble of shapes, especially for a myriad of lines and surfaces, increases

the visual complexity in 3D plots due to occlusion effects of several complex surfaces. This hampers

the exploration of ensembles wrt., for instance, local feature inference. Clustering is one approach to

reduce the complexity of such shape ensemble plots. Here, the features are first divided into groups

of similar characteristics. Afterward, visual mappings can be applied or statistics can be computed to

further analyze every single group or line set. In statistics, clustering is a well-known effective tool to

detect groups of samples with similar characteristics in a data set. The similarity between different

samples depends on the underlying similarity metric, such as the Euclidean or Mahalanobis distance.

An introduction to clustering is provided by books like in Everitt et al. [ELL09].

In terms of shape ensembles, Bruckner and Möller [BM10a] used density-based clustering to iden-

tify similar volumetric time sequences in physically-based ensemble simulations. Thomas and Natara-

jan [TN14] computed shape descriptors of isosurface contours and measured the similarity between

these descriptors to cluster the data. Oeltze et al. [OLK∗14] compared k-Means, hierarchical, and spec-

tral clustering to cluster streamlines and chose the best representative streamline of a cluster based on

the shortest distance to all other cluster members. Zhang et al. [ZHQL16] and Moberts et al. [MVv05]

provided overviews of suitable similarity metrics to measure the distance between the geometry of

line curves. Clustering using the Hausdorff metric, or mean vertex-wise closest point distance, was ap-
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plied in prior work to group streamlines [RT12] in flow-fields and fiber-bundles [BBP∗05] in diffusion

tensor imaging.

Beham et al. [BHGK14] used hierarchical clustering to group similar geometric shapes. Reh et

al. [RGK∗13] clustered similar pores in industrial X-ray computed tomography data into mean objects

(Mobjects) and then visualized the per-voxel probability of belonging to a Mobject using transfer func-

tions. Hummel et al. [HOGJ13] proposed minimum spanning trees to compare the parcel transport

in flow ensembles for trend inference. Clustering was further used by Carr et al. [CDD06] to group

iso-contours in scalar fields.

Ferstl et al. [FKRW16, FBW16] proposed to visualize ensembles of closed isocontours and stream-

lines with variability plots. To group similar shape ensembles, they made use of principal component

analysis and clustering and estimated confidence regions with signed distance functions or multivari-

ate normal distributions. In [FKRW17], different time steps of the same ensemble were clustered with

hierarchical clustering to convey the temporal change of clusters in ensembles. Demir et al. [DKW16]

rendered silhouettes of an ensemble of isosurfaces and used clustering to show members of simi-

lar contours. Recently, Favelier et al. [FFST19] visualized the spatial variability of critical points in

ensembles based on statistics on their occurrence.

2.3.3 Cluster-Based Analysis in Meteorology

A general overview of clustering techniques and applications in meteorology is given by Wilks [Wil11],

while Nocke et al. [NSB04] discuss some visualization techniques for clustered climate data. Oper-

ational clustering is employed in weather forecasting at the ECMWF, as described in [FC11]. In

particular, three different time windows for a static domain are used to cluster an ensemble of scalar

fields of geopotential height. The results are visualized in matrix plots, which are comprised of fore-

cast maps of all cluster representatives. In meteorology, cluster-based analysis of ensembles has been

successfully employed to improve the understanding of various aspects in terms of atmospheric pre-

dictability. For instance, Frame et al. [FAGM11] clustered jet wind profiles using k-means clustering,

and compared the clusters to pre-identified weather-regimes to observe the climatological probability

of eddy-driven jet events over the North Atlantic. Strehl and Ghosh [SG02] applied different clustering

techniques to one single ensemble and combined the results to one single cluster result. Bordoloi et

al. [BKS04] proposed realization- and distribution-based hierarchical clustering to reduce the amount

of information to be visualized. More Recently, Kumpf et al. [KTB∗18] used multiple k-Means clus-

tering on ensemble fields with slightly varying clustering domains and analyzed the robustness of

clustering results.

In this thesis, we present a framework to cluster ensembles of jet-stream core lines. Clustering

is either applied directly to the extracted core line features or applied to the derived scalar fields
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used to identify core lines. We also propose methods to extract best representatives of core lines

by computing proxy fields derived from the ensemble of extracted core line features. An in-detail

discussion of clustering and the extraction of best representatives is given in [KW19a].

2.4 Rendering with Transparency

Techniques to render data sets with transparency have been well studied in the visualization commu-

nity for the last decades. Some surveys (cf. [MCTB11, Wym16]) exist that deal with the performance

and image quality of rasterization-based transparency rendering techniques. Transparency rendering,

in general, represents the approach to render multiple transparent layers onto the viewport pixel grid

in correct visibility order. Here, the transparent layer (or a fraction of the object’s geometry), which

is projected and rasterized onto a pixel of the viewport, is called a fragment.

Vasilakis et al. [VVP20] recently discussed different algorithms that work on multiple fragments

per pixel to employ rendering techniques, such as order-independent transparency. However, they

mainly focused on rather simple scenes in the context of real-time graphics effects for games. The

scenes consist of a small number of transparent layers, with homogeneous colors and a few spatially

extended objects, which makes the depth complexity (= the number of transparent layers in a scene)

rather low. In our work, however, we deal with data that combines thousands of transparent line sets

with high depth complexity. Hence, it is difficult to assess the suitability of the surveyed algorithms

in [MCTB11, Wym16, VVP20] for our complex line sets with thousands of transparent layers and

varying colors. To the best of our knowledge, no comparison study has been done yet to infer the

suitability of transparency rendering techniques wrt. rendering of large line sets with transparency.

Among the many algorithms that exist to correctly render transparent line sets, we list the prior

work which is closely related to the comparison study in this thesis. In the following, we classify the

algorithms into object- and image-order techniques.

2.4.1 Object-Order Techniques

Object-order approaches mainly work on objects projected onto the viewport pixel grid and the frag-

ments produced by rasterization. All fragments that fall into the same pixel have to be sorted in correct

visibility order and must be finally blended to obtain the final color. One of the very basic algorithms

was introduced by Everitt [Eve01]. He proposes Depth Peeling, where two depth-buffers are used to

successively render the sequential depth layers of a transparent object. Depth in this context means

the distance of a layer to the viewer. While the first depth-buffer keeps track of the closest objects

in a scene, the second depth-buffer stores the information about the closest fragments from the last

iteration. The second depth-buffer is particularly used to cut off fragments from all previous depth
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layers. While this algorithm is exact, rendering thousands of layers is highly time-consuming and,

thus, does not guarantee results in real-time. In earlier work, Carpenter [Car84] introduced the A-

Buffer. It is comprised of data structures to store an unordered set of fragments and to determine the

amount of area that a fragment is covering (pixel coverage). The fragments falling into the same pixel

are sorted by depth and averaged based on the coverage mask. An extension of the A-Buffer and a

very popular technique nowadays are per-pixel linked lists (LL), introduced by Yang et al. [YHGT10].

Here, fragments of arbitrary amount are gathered in a buffer on the GPU where fragments falling into

the same pixel are connected via linked lists while the pointer to the first fragment of a pixel is stored

in a second buffer. After all fragments have been gathered, they are sorted and blended in correct

order. With LL, however, the fragment buffer can easily exceed video memory bounds, as the number

of fragments is not limited. This makes LL not suitable to render many transparent layers at high

viewport resolutions.

To overcome this issue, researchers suggested algorithms that operate on bounded memory only

and focus on a fixed number of fragments per pixel. One exemplary work is the k-Buffer, proposed

by [BCL∗07], where only the k fragments closest to the camera are stored and blended per pixel. Here,

fragments are merged heuristically if there are more than k transparent layers per pixel. Similar to

the k-Buffer, Salvi et al. [SML11] introduced Adaptive Transparency which also assumes bounded

memory and takes into account k fragments per pixel. Salvi et al. created a compressed visibility

representation by pre-computing the transmittance function per pixel during fragment merging while

keeping the error of compression low. Their algorithm keeps track of the correct order of fragments

by inserting them based on their depth in a list, which sorts fragments in back-to-front order. An

extension of this approach is called Hybrid Transparency, proposed by Maule et al. [MCTB13] where

the set of fragments for a pixel is split into a core and tail part. For a total of n pixel fragments, a

subset of k nearest fragments is sorted and blended in the core while the n− k remaining fragments

in the tail are blended and merged heuristically. Core and tail are finally merged with the background

color. During our experiments, we discovered that this approach has severe problems with scenes

comprised of thousands of transparent layers. In our study, we propose a solution where a scene

is divided into depth buckets and the merge heuristic is adapted to better handle large line sets.

Salvi and Vaidyanathan [SV14] proposed Multi Layer Alpha Blending (MLAB) where only a very few

fragments are handled per pixel. Here, k nodes (combined fragments) are sorted in a blending array

comprised of color, depth, and transmittance along a view. If the blending array is fully occupied with

k nodes, they merge incoming fragments that are close in terms of distance and transmittance.

Fourier opacity mapping was introduced by Jansen and Bavoil [JB10]where the light transmittance

in participating media is approximated by a low-frequency distribution, here a Fourier series, depen-

dent on the depth. This was used to efficiently compute shadows, however, colors were ignored.

Recently, Rojo et al. [BGG19] adapted Fourier opacity mapping for importance-based transparency
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rendering and also considered colored fragments in their Fourier approximation. Münstermann intro-

duced Moment-Based Order-Independent Transparency [MKKP18], where the per-pixel transmittance

is approximated by power moments. They also used a logarithmic scale for the light absorbance to

enable additive compositing of fragments and thus to enforce order-independence implicitly.

Some work dealt with rendering transparent layers using multiple samples per pixel, for instance, to

create a smoothed, anti-aliased rendering result. For instance, Stochastic Transparency [ESSL10] is a

multi-pass approach using random sub-pixel patterns and the fragment’s opacity to compute weights

based on their estimated pixel coverage. Consequently, fragments are rendered and blended based

on their final alpha-to-coverage. McGuire and Bavoil [MB13] proposed Weighted-Blended Order-

Independent Transparency and focused on an improved alpha-compositing of fragments. For the

alpha-compositing, they computed weights based on pixel coverage and the distance to the viewer.

Other methods are Stochastic Layer Alpha Blending (Wyman [Wym16]) and Phenomenological Trans-

parency (McGuire and Mara [MM17]). Wyman proposed to insert fragments based on a coverage

mask and the probability that a fragment is visible based on this mask. McGuire and Mara included

the approximation of physical processes to obtain realistic effects of transparent objects. However,

these techniques do not scale well performance-wise with an increasing depth complexity and are,

thus, not suitable for large line sets.

Alternatively, particle-based approaches, such as [SK12], and voxel-based rendering techniques,

as proposed in [CNLE09, LK10], have been introduced to render opaque and transparent geometry.

However, these methods are not suitable for highly space-filling line sets as they effectively increase

the number of render-able primitives and require modifications to account for fine-detailed geometry

and sharp outlines. Hence, we did not consider them further in our evaluation study.

2.4.2 Image-Order Techniques

In contrast to rasterization-based techniques, image-order approaches operate on the viewport’s pixel-

grid and traverse translucent media along the rays from the viewer’s pixel grid into the scene through

the pixel centers. This is called ray casting or ray tracing. Recent developments and advances in

GPU hardware have shown that ray tracing has become a serious alternative to rasterization in terms

of real-time rendering, especially in scenes with multiple triangulated models. In the last decade, a

lot of improvements have been achieved in this field, for instance, with enhanced space partitioning

schemes, traversal algorithms, or efficient boundary volume hierarchies, such as [WIK∗06, WMS06,

WJA∗17] for CPU, and [AL09, LGS∗09, LK10, PBD∗10] for GPU. Wald et al. [WKJ∗15] further used ray-

tracing in combination with tree-based search structures to efficiently locate particles and ray-particle

intersections. Recently, Kanzler et al. [KRW18] proposed a voxel-based GPU rendering technique,

called voxel ray casting, to render large 3D line sets with global illumination effects and transparency.

They approximated line sets with voxel-based representations of compressed size and used voxel
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ray tracing to efficiently render line sets. For voxelization, line-voxel intersections are quantized at

the voxel faces and discrete locations of these intersections are computed to enable high traversal

efficiency. The voxelized line models also serve as acceleration structures to visualize line sets with

global illumination effects, such as ambient occlusion.

Instead of using voxel-based approximations, line sets can be modeled as analytical or polygonal

tubes. Acceleration structures such as kD-trees or bounding volume hierarchies can be additionally

used to efficiently determine locations of ray-tube intersections. In this context, OSPRay [WJA∗17]

and OptiX [PBD∗10] have been introduced for CPU and GPU, respectively, and are prominent tools to

perform ray tracing. OSPRay builds upon Intel’s Embree ray tracing kernel functions [WWB∗14],

which has integrated support to render lines with fixed radii or Bézier curve primitives. Han et

al. [HWU∗19] extended OSPRay and supported the rendering of general tube primitives with vary-

ing radii, bifurcations, and transparency. Very recently, NVIDIA introduced the RTX ray tracing

API [NVI18] based on OptiX to conduct hardware-accelerated ray tracing on the most recent graph-

ics cards. In particular, RTX hardware supports ray tracing applications with hardware-accelerated

ray-triangle intersection tests and intelligent shader re-scheduling of individual compute branches

for rays of varying computational workload. Optix and RTX also provide an interface to implement

custom intersection shaders for arbitrary geometry which can be used to intersect rays with analytical

tubes. In our work, we compare the three major variants of image-order techniques, including voxel

ray casting, CPU ray tracing (using Embree and OSPRay), and RTX ray tracing.

In [KNM∗20], several object- and image-order techniques to render line sets of varying sizes with

different transparency and color settings are evaluated. The size of our line sets ranges from 10000

lines to 400 K highly dense trajectories. Each technique and its results are compared wrt. perfor-

mance, memory consumption, and image quality, and their frame-to-frame coherency is analyzed. In

addition to that, two improvements for LL and MLAB are provided. The former technique is enhanced

with an improved fragment sorting strategy, such as with shell sort and quick sort. The latter divides

the scene into depth buckets and performs MLAB on these buckets separately to enhance the final

image quality.

25





3
Fundamentals and Methods

In this chapter, we briefly discuss the theory and basics of the concepts and techniques either used

in our published papers or closely related to our proposed techniques. Among those are feature

detection algorithms, the definition of normal curves, dimensionality reduction, clustering, and alpha

compositing. First, we discuss the meteorological data and its characteristics used within the context

of our research projects.

3.1 Numerical Weather Data

For feature detection and visualization of weather ensemble data, we make use of NWP data from

the ensemble prediction component (ENS) of the Integrated Forecast System (IFS) [LP08]. It pro-

vides an unperturbed control forecast and 50 ensemble members perturbed in the initial state of the

simulation. For jet-stream core line and weather front detection, we retrieved NWP weather ensem-

ble data from the Meteorological Archival and Retrieval System (MARS) for an area over the North

Atlantic and Western Europe on the Northern Hemisphere. Our NWP data is defined on a so-called

hybrid-sigma model levels, where the vertical levels are determined by a hybrid sigma-pressure coor-

dinate system (introduced by Simmons et al. [SB81, SS83]). We preferred hybrid-sigma model levels

over regular pressure levels for feature detection for the following reasons. In real-world cases, for

instance, pressure levels do not follow the terrain’s surface, especially over mountains, but, instead,

can intersect with the terrain, such as with mountains (cf. orange dotted line in Fig. 3.1). They thus

require the incorporation of additional boundary conditions during the simulation of near-surface

physical processes. Hybrid sigma-pressure model levels, in contrast, avoid the boundary conditions

and allow the definition and simulation of physical fields, such as temperature or wind, along smooth

terrain-following levels. Furthermore, studies have shown that an increased vertical resolution at

the lowest boundary of the atmosphere, referred to as atmospheric boundary layer, is helpful to bet-
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Figure 3.1: Sketch of the hybrid sigma-pressure levels and regular pressure levels in NWP data used
by the ECMWF models. The vertical axis represents the altitude, here represented by pressure in hPa.
The green section represents the surface topography. Dark green bold lines depict the altitude of all N
sigma-pressure levels σi . Regular pressure levels are depicted by purple dotted lines. Here, the mismatch
between sigma-pressure levels and pressure levels can be observed. While the former levels mainly follow
the terrain at vertical layers close to the surface, pressure levels remain at the same altitude and intersect
with the terrain (compare red dotted line at 700 hPa).

ter capture atmospheric processes important for (seasonal) forecasts of processes, such as winds or

sea-flux influenced by the surface terrain or sea (see [Tei99]).

The horizontal resolution of the NWP data is regular in longitude and latitude, which means that

adjacent grid points are equidistant. In our work, the horizontal distance of the data is 1.0◦, which is

approximately 111km. Regarding the vertical resolution, the data has a fixed number of vertical layers

K defined on the terrain-following sigma coordinates. Sigma coordinates are defined through a set

of coefficients and surface pressure at a certain longitude-latitude grid point. They also consider the

exponential decrease of pressure with increasing distance to the Earth’s surface. Hence, the distances

between adjacent vertical layers increase exponentially with height and are thus non-uniform. As the

irregularity in the vertical dimension needs to be considered in our detection schemes, for instance,

in terms of derivative computations, we will briefly sketch the theory behind hybrid sigma-pressure

grids in the following. Hereby, we mainly follow the work of Ritchie et al. [RTS∗94] and of Untch and

Hortal [UH04].

At each horizontal grid point, let k be the current vertical layer. Further assume that we know the

current surface pressure ps at the surface grid point below the layer k. Let ak and bk be predefined
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3.1 NUMERICAL WEATHER DATA

constant coefficients, also called hybrid coefficients. Then, the actual pressure pk at level k is defined

as pk = ak + bk · ps. This means that the influence of the surface pressure is high near the lower

bound of the atmosphere, with the strongest influence at the surface (given bk = 1 and ak = 0).

For upper vertical levels, the influence of ps, represented by bk, decreases with height for the upper

atmospheric layers and becomes zero at the top of the atmosphere. The coefficient ak exerts more

influence on sigma levels at upper atmospheric heights. This implies that at altitudes where bk = 0,

i.e., for vertical levels at P ≥ 200hPa, the sigma levels rather resemble flat constant pressure levels.

The shape of terrain-following hybrid sigma-pressure levels is depicted in Fig. 3.1.

In our work, we also compared results from our clustering and proxy geometry approaches to the

best estimates of the atmosphere produced by the ERA5 re-analysis method(see [HBB∗19]). ERA5

data is provided in high-resolution pressure levels, with a regular grid in the horizontal while using

constant pressure levels for the vertical dimension.
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3 FUNDAMENTALS AND METHODS

Figure 3.2: Visualization of the polar jet-stream over North America. The colored streamlines indicate
the motion of airflow around the Northern Hemisphere. Color encodes the wind magnitude (blue is the
lowest, red is highest wind speed). This figure was adapted from [Sch20], where the visualization was
created by NASA’s Scientific Visualization Studio. The Blue Marble data is courtesy of Reto Stockli (NASA).

3.2 Detection of Jet-Stream Core Lines

Jet-streams are meandering air currents of high wind speeds moving from west to east [Stu17] over

the entire globe. Their high wind speeds range from 25 to 100 ms−1. The WMO defines jet-streams

as “flat tubular, quasi horizontal, current of air generally near the tropopause” [Wor92]. The

tropopause is the lower atmospheric layer located at altitudes ranging from 9 km at the poles to

17 km at the equator [Wor92]. Two common strong jet-stream systems are the polar jets, near 50◦

to 60◦ latitude, and subtropical jets near 30◦ latitude [Stu17]. An example of a polar jet system is

indicated in Fig. 3.2.

The axis of a jet-stream is located “along a line of maximum speed and which is characterized by

great speeds and strong vertical and horizontal wind shear” [Wor92]. Its core line is determined as

the “line along which the wind speeds are maximum both in the vertical and horizontal” [Wor92].

In our work, we want to follow the official WMO definition and in [KHS∗18] present an automated

detection algorithm to identify the lines along which the wind speed is maximal both in the horizontal

and vertical direction. This algorithm is closely related to the “classical” ridge detection algorithm,

which can be employed to identify extremum lines from scalar fields. Hence, ridge detection can

be applied to wind magnitude fields to obtain jet-stream core lines. In the following, we discuss the

fundamentals of ridge detection and explain the basics of our jet-stream core line detection algorithm.

3.2.1 Ridge Detection

The detection of extremum lines has been well studied in visualization. In computer vision, ridge de-

tection is an established and effective tool to detect the interior or symmetrical axes of closed object

boundaries [PBC∗94], and is employed in flow visualization to identify extremum and vortex core

lines [PS08]. A widely used approach in computer vision and flow visualization is to interpret images
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3.2 DETECTION OF JET-STREAM CORE LINES

and volumetric data as height fields. The extremum lines are represented by the ridges of the corre-

sponding height field. In terms of topographic ridges, this represents all loci where the slope of the

surface is locally minimal compared to surrounding points on the same elevation level [PR99]. Haral-

ick formalized ridges as the loci along the path in the direction of the largest second directional deriva-

tive [Har83]. The definition of k-dimensional height ridges was reformulated by Eberly [EGM∗94]

and Lindeberg [Lin98], and later extended by an alternative formulation, the parallel vectors [PR99].

In principle, ridge detection makes use of the first derivative and the Hessian matrix of a scalar field,

where a height ridge can be regarded as a local maximum with relaxed criteria. For instance, height

ridges are located where the scalar field is maximal in at least one direction. For extremum lines in

wind fields, we are concretely looking for 1D ridge lines in 3D scalar fields, where the scalars at each

grid point denote the local wind magnitude.

Let σ : R3 → R be the function of our scalar field mapping a 3D position ~p = (x , y, z), defined on

a Cartesian grid, to the corresponding wind magnitude σ(~p). Furthermore, let ∇ = ( ∂∂ x , ∂∂ y , ∂∂ z ) be

the vector of the first-order derivatives of a function into the orthogonal directions ~x , ~y , and ~z. The

3× 3 Hessian matrix of the scalar field is defined as H := ∇∇Tσ, with its eigenvectors ~ξi and their

corresponding eigenvalues λi = ∇2
ξi
σ. Note that the eigenvectors form an orthonormal basis as the

Hessian H is symmetric. The directional derivative of a function σ into the direction of ~s is described

as

∇sσ = (~s · ∇)σ = sx
∂ σ

∂ x
+ sy

∂ σ

∂ y
+ sz

∂ σ

∂ z
, (3.1)

where ~s is a unit vector. Following the definition of Eberly [EGM∗94], the eigenvectors ξi of the Hes-

sian H are sorted by the corresponding eigenvalues in ascending order, with λ1 ≤ λ2 ≤ λ3. Moreover,

Eberly defines that ridge lines, extracted from a 3D scalar field, are located within the local-frame

spanned by the two eigenvectors ~ξ1, ~ξ2 corresponding to the two smallest eigenvalues. The scalar

field is derived into the direction of ~ξ1 and ~ξ2 and height ridges are thus defined at all points ~p where

the following two equations hold:

∇ξ1
σ(~p) = ∇ξ2

σ(~p) = 0 (3.2)

λ1, λ2 < 0. (3.3)

In the notion of parallel vectors [PR99], height ridges are equivalently defined as the loci where

the first derivative of the scalar field is parallel to the eigenvector ~ξ3, which implies that ∇σ(~p) || ~ξ3

and eq. 3.3 are fulfilled. Here, ξ3 is considered to be parallel to the tangent of a ridge line. The

remaining two eigenvectors ~ξ1, ~ξ2 are assumed to be orthogonal to the height ridge and span a 2D

local ( ~ξ1, ~ξ2)-plane perpendicular to the ridge line tangent. Within this plane, the gradient of the
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scalar field must be maximal in both eigenvector directions (see Eq. 3.2). In practice, however, points

satisfying Eq. 3.2 and Eq. 3.3 do not exist. Angles between ~ξ3 and the scalar field gradient are often

larger than 25 degrees. For this reason, Peikert and Roth [PS08] proposed to relax Eq. 3.2 and allow

that ridge lines can deviate from ~ξ3 at a maximum angle of 40◦.

Although ridge detection is a powerful tool to identify maximum lines, the required computations

of the first and second derivatives are, however, sensitive to noise in the data. In addition to that, the

eigenvectors of the Hessian at degenerated points can be inconsistently oriented, especially at grid

points where two eigenvalues of H are equal (as described by Peikert and Sadlo [PS08]). Related

to the inconsistency in orientation, it was observed that the identification of ridges lacks robustness

and may lead to false-positive or false-negative disconnections of lines (cf. Fig. 2 in [KHS∗18]).

Concerning the sensitivity to noise, Lindeberg [Lin98] discussed ridge detection applied to different

image-scale spaces, which are generated by the convolution of Gaussian smoothing kernels. However,

smoothing must be selected carefully to retain features-of-interest on the desired image-scale while

obtaining meaningful results. In contrast to ridge detection applied to scalar fields, we propose a

slightly different approach and exploit the local wind directions, which is explained in the following.

3.2.2 Maximum Lines from Wind Fields

We propose an alternative approach to detect jet-stream core lines from 3D wind fields by exploiting

the local wind directions. In a jet-stream core, we regard the local air parcel momentum at each

grid point and assume that maximum lines (height ridges) are defined at loci where the local flow

momentum is higher than the flow momentum in the vicinity of the wind maximum. This follows

the notion of the jet-stream axis having a zero horizontal and vertical shear [BTH07]. Here, filter

criteria are further applied to eliminate minima, saddle points, and light wind conditions. Regarding

the zero shear, a core line can be imagined as the line passing through the point of maximal wind

magnitude in a local frame-of-reference perpendicular to the 3D wind direction. A schematic of this

is given in Fig. 3.3(b). Since the vertical extent of the atmosphere (e.g. 10 km) is much smaller than

the horizontal extent (e.g. 1000 km), the vertical component of wind is negligible. Hence, the local

frame-of-reference is always vertical (parallel to the vertical z-axis) while the line features are quasi-

horizontal. In theory, the momentum p at a grid point is defined as p = ρ~v, where ρ represent the

air density and ~V ∈ R3 is the velocity. Since we assume that the density ρ is locally constant, the

momentum of flow is maximal if the wind speed |~V | resolved into the local wind direction is maximal

within this normal plane.

In [KHS∗18], we propose to build a local frame-of-reference to obtain the candidate points for

the final jet-stream core lines. In contrast to ridge detection, where the local frame is constructed as

(ξ1,ξ2)-plane normal to the ridge line tangent, we construct a normal plane which is orthogonal to the

local wind direction, and due to the weak vertical wind component, parallel to the z-axis. In contrast
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Figure 3.3: (a) The depiction of a wind vector field and the local coordinate system that is used to
construct the normal plane (similar to Fig. 3 in [KHS∗18]). Vector ~s represents the direction of flow and
is tangential to the streamline (green arrow), ~n is the vector normal to ~s (purple arrow). (b) A schematic
of the spanned normal plane intersecting with the jet-stream core line (red) in 3D (image was adapted
from Fig. 3 in [KHS∗18]). The bright orange colors represent the velocities resolved into the direction ~s
within the plane. The dotted lines denote the zero lines of the derivatives along the z-axis (orange) and
along the ~n-axis (blue). The jet-stream core line is defined where both zero-derivative lines intersect.

to ridge detection, which is applied to scalar fields, our algorithm directly uses the wind vector field

to obtain jet-stream core lines. Our algorithm is similar to the objective identification of objective

fronts [Hew98] and the detection of 2D jet cores [BTH07]. Assume that the NWP data is located

in a Cartesian longitude-latitude-pressure grid with terrain-following vertical levels, where a point

~p = (x , y, z) is the position in this coordinate system; ~x and ~y represent the axes along longitude

and latitude, respectively. The vertical axis ~z is defined by the hybrid-sigma pressure coordinates.

The 3D wind vector output of the NWP model is defined as ~V = (u, v,ω). The horizontal wind

components u and v represent the winds in meridional (eastward in ~x) and zonal (northward in

~y) direction, respectively. The units are in meters per second (ms−1). The vertical component ω is

defined in Pascal per second (Pa s−1) and follows the z-axis. When converted to ms−1, the velocity of

ω, however, is significantly smaller than the horizontal wind components with velocities in the order

of 103. Consequently, ω is not regarded in our detection algorithm (with ω= 0).

In our work, we focus explicitly on the horizontal wind components (~V ∈ R2) at each grid point of

our 3D wind field. Let the velocity be ~V = (u, v), where ~n is the vector normal to ~V . Since we regard

the momentum into the local wind direction at a grid point ~p, let ~s ∈ R2 be a unit vector parallel

to local wind direction (cf. Fig. 3.3(a). At each grid point, ~s is equivalent to ~V , which means that

Vs = |~V | is the local wind magnitude. For all other surrounding grid points in the horizontal and

vertical vicinity of a grid point, the wind magnitudes are resolved into the direction of ~s, which means
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that Vs = ~V ·~s. Therefore, our local frame-of-reference is finally defined as (~n, ~z)-plane spanned by the

vectors ~n and ~z. A depiction of this frame is provided in Fig. 3.3(b). In contrast to ridge detection, our

plane is always consistently defined by the wind directions and does not suffer from the inconsistent

orientation of vectors spanning the frame-of-reference, as already mentioned with the orientation of

eigenvectors in Sect. 3.2.1. All points considered to be potential candidates for jet-stream core lines

are defined by the following equation:

∇nVs =
∂

∂ z
Vs = 0. (3.4)

The computation of the directional derivative ∇nVs and ∂
∂ z Vs for a non-uniform vertical coordinate

system is described in Sect. 3.2.3. To finally obtain all jet-stream core lines, we compute the Hessian

matrix and its eigenvalues to identify the loci of all maxima points. Let ∇N = ( ∂∂ n , ∂∂ z ) be the vector

of the partial derivatives of the resolved wind speed Vs within the (~n-~z)-plane. The Hessian matrix

HN ∈ R2×2 in the (~n-~z)-plane is defined as

HN =∇N (∇N )T Vs =









∂ 2Vs

∂ n2

∂ 2Vs

∂ n∂ z

∂ 2Vs

∂ z∂ n
∂ 2Vs

∂ z2









=







∇2
nVs ∇n

∂

∂ z
Vs

∂

∂ z
∇nVs

∂ 2

∂ z2
Vs






(3.5)

Note that the mixed partial derivatives ∇n
∂

∂ z
Vs and

∂

∂ z
∇nVs are equal, which implies that HN is

symmetric and the eigenvalues are real. A grid point is thus considered to be a wind maximum if

both eigenvalues λ1 and λ2 are negative. For a 2×2 matrix, we can use the second partial derivative

test, according to [TF98], by computing the determinant of HN :

D = det(HN ) = (∇2
nVs) (

∂ 2

∂ z2
Vs)− (∇n

∂

∂ z
Vs)

2. (3.6)

All points ~p are considered to be a local maximum if D > 0 and ∇2
nVs < 0. After the identification of

all jet-stream core line candidates, we filter the lines utilizing further wind field characteristics. Based

on discussions with meteorologists, we identify core lines with wind speeds of at least 40ms−1 as they

consider such lines to be related to significant weather events. Furthermore, maximum lines are not

required to be tangential to the streamlines of a wind field, which was also discovered in works by

Berry et al. [BTH07] and is closely related to the problem of ridge detection in [PS08]. Hence, we

also filter lines where the angle between the line tangent and the local wind vector is at most 40◦. For

more details, we refer to our published paper [KHS∗18]. In the next section, we will briefly explain

how to compute the partial derivatives in NWP models.
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3.2.3 Computation of Directional Partial Derivatives

According to eq. 3.1, the directional derivative along the normal wind direction ~n is

∇nVs = (~n · ∇)Vs = nx
∂ Vs

∂ x
+ ny

∂ Vs

∂ y
. (3.7)

On a discrete grid, central differences are used to compute the approximate derivatives along the

x- and y-axis. Given that the function Vs is only sampled at the x-coordinate, while the y- and z-

coordinate are remained constant, the partial derivative of Vs into direction ~x is defined as follows:

∂ Vs(x)
∂ x

=
Vs(x + hx)− Vs(x − hx)

2 hx
, (3.8)

where hx is the distance between two grid points in longitude direction. The central differences for

the y-axis with grid point distance hy are computed equivalently. In the NWP data, Vs is defined in

ms−1, while the horizontal grid points are given in ◦ along the sphere. To obtain consistent derivatives,

we convert ◦ to kilometers (km) and wind speeds to kms−1. Assuming a global perfect sphere, the

distance between two latitude points is approximately hy = 1.112 · 102 km per ◦ on the entire globe.

However, the distance between two longitude points hx is equivalent to hy but constantly decreases

towards the poles, with hx = 0 at the pole. A simple approximation is to scale hx with the cosine of

the current latitude: hx = hy · cos(y).

Vertical derivatives constitute a different scenario. As we explained in Sect. 3.1, vertical layers are

unevenly spaced in the ~z-direction, which implies that the distances hz ∈ R between two grid points

in the vertical are non-uniform. For a given layer k, it holds that hk+1
z 6= hk−1

z , where hk+1
z and hk−1

z

are the distances to the next (upper) layer k+1 and previous (lower) layer k−1. Following the paper

of Sundqvist and Veronis [SV70], we can obtain the finite differences on non-uniform intervals using

the Taylor expansion. Let V k
s be the resolved wind velocity at layer k. Then the equations T1 and T2

are defined as follows:

T1 ≡ V k+1
s = V k

s + hk+1
z ·

∂ V k
s

∂ z
+
(hk+1

z )2

2
·
∂ 2V k

s

∂ 2z
+ ... . (3.9)

T2 ≡ V k−1
s = V k

s − hk−1
z ·

∂ V k
s

∂ z
+
(hk−1

z )2

2
·
∂ 2V k

s

∂ 2z
− ... . (3.10)

The central differences to approximate the 1st order derivative is defined as:

T1 − T2 ≡ V k+1
s − V k−1

s = (hk+1
z + hk−1

z )
∂ V k

s

∂ z
+
�(hk+1

z )2 − (hk−1
z )2

2

�

∂ 2V k
s

∂ 2z
+ ... (3.11)
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=⇒
∂ V k

s

∂ z
=

V k+1
s − V k−1

s

hk+1
z + hk−1

z
+ ε. (3.12)

ε=
�(hk+1

z + hk−1
z ) (hk+1

z − hk−1
z )

2 (hk+1
z + hk−1

z )

�

∂ 2V k
s

∂ 2z
+ ...=

�(hk+1
z − hk−1

z )

2

�

∂ 2V k
s

∂ 2z
+ ... . (3.13)

The numerical truncation error ε is O(hk+1
z − hk−1

z ), which means the error reduces with smaller

distances between grid points. To achieve consistent derivatives in the vertical, coinciding with the

velocities in km s−1 and with hk
z ≤ 1, we converted the pressure coordinates to height levels in km.

Note that for hk+1
z = hk−1

z = hz , the term for ∂
2Vs
∂ z2 vanishes and the truncation error becomes O(h2

z ),

which is equivalent to the error in classical central differences on regular grids.

The numerical truncation error for non-uniform grids is further reduced by eliminating
∂ 2Vs

∂ z2
. This

can be achieved by substituting Eq. 3.9 and Eq. 3.10 with (hk−1
z )2 and (hk+1

z )2, respectively, and

subtracting the equations from each other:

(hk−1
z )2 · T1 − (hk+1

z )2 · T2 ≡ (hk−1
z )2 V k+1

s − (hk+1
z )2 V k−1

s =

= [(hk−1
z )2 − (hk+1

z )2]V k
s +
[(hk+1

z )2 (hk−1
z )2] (hk+1

z + hk−1
z )

6

∂ 3V k
s

∂ z3
+ ...

(3.14)

=⇒
∂ V k

s

∂ z
=
(hk−1

z )2V k+1
s − (hk+1

z )2V k−1
s − [(hk−1

z )2 − (hk+1
z )2]V k

s

hk+1
z hk−1

z (hk+1
z + hk−1

z )
+ ε, (3.15)

ε=
[(hk+1

z )2 (hk−1
z )2 (hk+1

z + hk−1
z )]

6 hk+1
z hk−1

z (hk+1
z + hk−1

z )

∂ 3V k
s

∂ z3
+ ... =

hk+1
z hk−1

z

6

∂ 3V k
s

∂ z3
+ ... (3.16)

Based on Eq. 3.16, the truncation error ε is thus O(hk+1
z hk−1

z ). For hk
z < 1 km, this achieves an overall

better approximation for the vertical gradients, in particular for layers towards the lower atmosphere.

Hence, eq. 3.12 should be preferred for layers with ∆z > 1 km or, when computed in different units,

like meters.
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Figure 3.4: Schematic of the structure of atmospheric fronts in 3D. Thick arrows indicate the direction of
flow for cool air (blue) and warm air (red). The left image shows a sketch of a cold front where cool air
suppresses warm air. The moist warm air quickly rises and induces cloud formation due to condensation.
This causes heavy precipitation near the frontal surface. The right image depicts a warm front. The warm
moist air slowly ascends and suppresses cooler air. Here, moderate cloud formation and precipitation is
caused by the warm front.

3.3 Detection of Atmospheric Weather Fronts

Atmospheric fronts are the boundary layers that separate two air masses of different characteristics.

Fronts are notorious for causing extreme weather events, such as heavy rain, near the border of

cold and warm air, and are usually associated with abrupt changes in local weather conditions. For

instance, compare the scenario of a cold front in Fig. 3.4 where cool air quickly moves towards warm

air. Here, the dry cold air mass suppresses the warm moist air, as cold air has a much higher density

than warm air. Consequently, the warm air rapidly ascends and is cooled down on its way to higher

altitudes, which promotes the formation of convection cells near the boundary of the two air masses.

The cooling of moist warm air leads to the condensation of water, which leads to cloud formation and

supports the genesis of significant weather events, such as thunderstorms with lightning and hail. A

sketch of the two major front types, which either advect cold air towards warm air (cold front) or vice

versa (warm front) is depicted in Fig. 3.4.

As discussed in Sect. 2.2.1, several definitions and approaches exist to define fronts. The first formal-

ization and objective identification of atmospheric fronts from numerical weather data was proposed

by Renard and Clark [RC65]. They used the term “numerical fronts”, based on the extraction from

numerical weather data, and followed the notion that fronts are the loci at the warm-air boundary

along which the thermal gradients are high. Moreover, they explained that fronts are the disconti-

nuities in first-order thermal and moisture derivatives. Regarding numerical weather data, they aim

at detecting all loci along which the magnitude of the gradient of the first-order derivative changes

most rapidly. In their work, they introduced a “frontal parameter” locator to enable the automated

detection of atmospheric fronts on 2D numerical weather data. As this locator is used in several prior

publications, we refer to this locator as the “thermal front parameter” (TFP) in the following. The
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Figure 3.5: (a) Illustration of the along-front derivatives of a thermal quantity τ (adapted version of
Fig. 3 in [KHS∗19]). Note that the frontal surface (front) is located where the third thermal derivative
is zero and the second thermal derivative is negative. (b) Depiction of a frontal surface in 3D elongated
along the vertical (adapted version of Fig. 2 in [KHS∗19]). The frontal zone (region of large thermal
gradients) is highlighted in orange. It is located at the horizontal plane that intersects both with the
surface at the cold-air boundary (blue) and the frontal surface situated at the warm-air side (red).

TFP of a thermal or moisture quantity τ, also referred to as thermal parameter, is defined as

[L] T F Pτ = −∇H |∇Hτ| · ~g = −∇H |∇Hτ| ·
∇Hτ

|∇Hτ|
= 0, (3.17)

where ~g is a unit vector pointing into the direction of the thermal gradient ∇θ and ∇H = (
∂
∂ x , ∂∂ y )

is the horizontal gradient in grid space. Based on the TFP, the separation of air masses is defined by

looking into the direction of the gradient of the thermal parameter and locating the extremal point of

its second derivative. In [RC65], those areas were identified where the TFP close to zero and where

the magnitude of ∇H exceeds a certain minimum threshold.

A schematic of a simplified 1D thermal quantity, its gradients, and the location of fronts and the

frontal zone is given in Fig. 3.5(a). Here, the function graphs of τ, the absolute first-order gradient

Gτ = |∇H | ≈
�

�

∂ τ
∂ x

�

�, and the curvature Cτ =
∂ 2τ
∂ x2 are plotted below. In this example, the quantity

τ is linearly increasing along the direction of its gradient represented by the ~x-direction. The black

isolines denote the quantized values of τ. The area of high gradients is represented by closely-aligned

isolines and represents the frontal zone. According to the definition of Renard and Clark, the front

(or frontal surface) is then located at the warm-air boundary of the frontal zone, marked as the black

thick line on the right of the frontal zone. Comparing the function graphs, this location corresponds to

the extremal points in the curvature which describes the most rapid increase or decrease in gradient
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magnitude. The warm-air boundary is, hence, marked by the location where the curvature is minimal.

To identify such locations, the derivative of the curvature ∂ 3τ
∂ x3 must be zero and Cτ must be negative.

This definition is used in the approach by Hewson et al. [Hew98], which is further explained in

Sect. 3.3.2. The first problem, however, in front detection is the choice of an appropriate thermal

parameter from which the fronts are identified.

3.3.1 Thermal Quantity

As already indicated in Sec. 2.2.1, many front detection algorithms exist which make use of different

thermal quantities. Since we follow the notion of Hewson [Hew98] and the official definition of the

WMO, our objective is to automatically identify fronts at points where (sharp) discontinuities appear

in both temperature and moisture. A simple and obvious approach would be to use temperature T

for the front identification. However, T quickly changes in areas of complex topology, like mountain

ranges, as described by Thomas and Schultz [TS19b]. For instance, the air cools down ascending

a mountain and heats up descending due to expansion and compression. This would lead to sharp

gradients near the mountain ridges and to a false classification of fronts. In contrast to this, potential

temperature (θ) — the temperature of an air parcel brought to a reference surface pressure level — is

conserved during air-lifting and air-sinking, and does not introduce gradients over complex topogra-

phy. Furthermore, it better captures moisture effects on air density. Another advantage of θ is that the

dynamics and kinematics of fronts are historically defined by means of potential temperature (e.g.,

compare [SS56, Eli62]). Thomas and Schultz concluded that the gradient of θ can be directly asso-

ciated with the lift of moist air which is related to cloud formation and precipitation. It is, therefore,

an important variable to diagnose fronts (cf. the section “choice of quantity” in [TS19b]).

A drawback of θ is that it is not conserved during moist adiabatic processes, which represent the

processes in the atmosphere related to air containing water. For instance, an effect such as conden-

sation (due to air parcel lifting) or evaporation (due to air parcel dropping) occurs, when moist air

ascends or descends, and causes θ to increase or decrease, respectively (see [Stu17]). Hence, prior

work, such as [Hew98] favored the use of thermal quantities that are conserved during moist adia-

batic processes and better capture temperature and moisture (humidity). The main two alternatives

here are equivalent potential temperature (θe) and wet-bulb potential temperature (θw) which are

defined based on pressure, temperature, and moisture. These quantities are useful as they tend to

produce gradients higher than those of θ in regions with high moisture gradients [TS19b] and may

lead to a better front detection.

To shed light on the suitability of different thermal quantities, Hewson [Hew98] compared the

results of a front detection using either θ or θw, and showed that the detected fronts from both

quantities matched manually diagnosed fronts. Based on this, he concluded that both can be used in

the analysis and recommended using θw as it better traces air masses of different temperature and
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moisture characteristics due to conservation during moist processes. Moreover, he argued that θw

is more frequently used by forecasters than θ in the Met Office to identify surface fronts in model

predictions. However, Thomas and Schultz [TS19b] recently argued that θe and θw are not always

conserved during moist processes and claim that both quantities do not necessarily constitute the

best quantity to trace different air masses. According to them, moist processes are often accompanied

by stronger vertical velocities, whereas fronts are mainly identified on a quasi-horizontal plane and

neglect this relationship. Therefore, it is not clear whether incorporating moist processes is beneficial

to automated front detection. Based on their extensive study with different quantities and methods,

they concluded that θ or θw / θe have different advantages or disadvantages and should be used

depending on the type of areas. For instance, they recommended the usage of θw in areas of high

moisture (tropics, subtropics), but θ should be used to identify fronts at lower atmospheric levels.

Since we focus on areas over the North Atlantic between Europe and the United States of America

in our analyses and adapt the methods by Hewson [Hew98], we decided to use θw to identify fronts in

our work. Note that wind is not regarded in our detection methods, as wind-based detection methods,

such as [SKTB11], cannot be used to identify fronts near cloud or precipitation bands, as these bands

are rather associated with high thermal gradients. Therefore, Hewson et al. argued that wind is not

suitable to automatically identify atmospheric fronts [Hew98, TS19b].

3.3.2 Objective 2D Front Detection

Regarding Eq. 3.18, ridge surface detection applied to the Gτ field can be used to obtain the location

of fronts. However, this would require the computation of its Hessian matrix, which is comprised

of third- and fourth-order derivatives of τ. Unfortunately, its computational accuracy suffers from

the approximation error induced by finite differences. Hence, we refrain from using ridge surface

detection and mainly follow the notion of the objective front detection, proposed by Hewson and

Titley [Hew98, HT10]. They defined fronts at the warm-air boundary of the thermal gradients and

identify locations where the third-order thermal derivative is zero. Their front locator [L] is defined

as the first-order derivative of the horizontal thermal curvature Cτ =∇H |∇Hτ| in the direction of the

thermal curvature:

[L]
∂ (Cτ)s
∂ s

= 0, with ŝ = ±
Cτ
|Cτ|

, (3.18)

where ŝ is the 5-five point mean unit axis of the thermal curvature for a local grid point. The 5-point

mean axis is the average direction of Cτ and computed by taking into account the Cτ directions at

the adjacent two grid points in both ~x- and ~y-direction. Hewson proposed this mean axis because

the computation of second derivatives is prone to noise in the data. This makes the detection scheme

based on [L] highly sensitive to variation in the data and may produce very fine-scale cluttered small

fronts. Hence, the mean axis ~s can be used to compute the locations of fronts in a more simple
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approach. First, all gradients ∇Hτ are resolved into the direction of ~s: Gsτ = (∇Hτ) · ~s. Next, the

divergence along the direction ~s is computed with:

Dτ =

�

�

�

�

∂ Gsτ
∂ x

+
∂ Gsτ
∂ y

�

�

�

�

. (3.19)

The front locations are obtained by setting Dτ = 0. Hewson showed that this “along-vector diver-

gence” in the gradient vector field can be used to obtain the front locations. Furthermore, it is more

numerically stable as it avoids the computation of third-order derivatives. An in-detail discussion of

vector divergence and shear is provided in the appendix of [Hew98]. As fronts are defined on the

warm-air boundary, the fronts are located in regions with negative Cτ. The candidate points for fronts

are thus filtered by the TFP (based on eq. 3.17):

[M1] T F Pτ = − Cτ ·
∇Hτ

|∇Hτ|
> K1, (3.20)

where K1 is a user-defined threshold in units of Kelvin (K) per 100 km2 (∼ 0.3 in [Hew98]).

Forecasters intend to detect fronts in regions of significant thermal gradients. For this, Hewson

proposed to measure the strength of a front by following the direction of the horizontal thermal

gradient within the frontal zone at the current pressure level, which is referred to as the baroclinic

zone. He estimated the next point traced along thermal gradient by a single-step integration scheme

which uses the direction of Cτ and the grid length (the distance between two adjacent points) of the

NWP data. Hence, he identified fronts using the following filter equation:

S∼ABZ
τ = |∇Hτ|

(∼ABZ) = |∇Hτ|+κ|Cτ|

[M2] S∼ABZ
τ > K2,

(3.21)

where S∼ABZ
τ denotes the frontal strength in the adjacent baroclinic zone (ABZ), κ is a fraction of the

grid point distance, and K2 is a user-defined threshold in units of K per 100km. Hewson proposed to

set κ= 1p
2

to achieve best results, while K2 was set to values between 0.95 and 1.3.

Sometimes, streams of moist and warm air occur near extratropical cyclones. These streams

are characterized by fast ascending air, which causes heavy precipitation when moved over cooler

air [Stu17]. As they are associated with high moisture gradients in θw, but are not considered as

fronts by forecasters, Hewson and Titley [HT10] proposed to filter out those points by measuring the

strength of θ in the adjacent baroclinic zone:

S∼ABZ
θ = |∇Hθ |

(∼ABZ) = |∇Hθ |+κ|Cθ |

[M3] S∼ABZ
θ > K3,

(3.22)
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where K3 is a user defined threshold in units of K per 100km. The locators L and the filter criteria

[M1], [M2], and [M3] are used to obtain the final front features.

Fronts are further categorized into “warm fronts”, where warm air is advected towards areas of

colder air, and “cold fronts”, which bring cold air and suppress warm air masses (cf. schematics in

Fig. 3.4). According to Hewson [Hew98], this can be defined by tracking the geostrophic thermal

advection. Geostrophic in this context denotes the direction of winds under the assumption that the

Coriolis force and the pressure gradient force are in balance. The geostrophic thermal advection (AGτ)

is defined as

AGτ = −V · ∇Hτ, (3.23)

where V is the geostrophic wind velocity. All points with AGτ > 0 are considered to be warm fronts,

whereas negative points with AGτ < 0 represent cold fronts.

3.3.3 Extension of Front Detection to 3D

To extend this approach to the third dimension, one can assume that the vertical component of the

thermal gradients needs to be taken into account, as well. As already discussed in Sec. 2.2.1, the

official definitions of fronts, however, only consider the horizontal thermal gradients. By looking at

thermal gradient profiles and vertical cross-sections of thermal quantities, it can be presumed that

fronts are also associated with vertical gradients. However, as the vertical extent of the atmosphere

is much smaller than the horizontal extent of the Earth’s surface, the strong vertical gradients are

much greater than strong horizontal gradients, i.e., 10 K/100 m versus 10 K/100 km. Regarding

the definition of along-thermal-gradient fronts in eq. 3.18, including a strong vertical component

would cause the thermal gradient direction to point more into the direction of the vertical axis, which

would yield quasi-horizontal frontal surfaces. This is a contradiction to the official definition, as

fronts separate two air masses in the horizontal dimension and would be considered to be the vertical

boundary between these air masses. Strong vertical thermal gradients also occur in anticyclonic

weather systems — fair weather usually accompanied by a high-pressure system — which inherits

large-scale subsidence (descending air) [Stu17, WH06], also called anticyclonic inversion. This is

considered to be the “opposite” of frontal processes, and thus not declared to be a front by forecasters.

In our work, we make use of the detection and filtering equations proposed by Hewson (explained in

Sect. 3.3.2) and improve the filtering to obtain 3D fronts across all vertical levels. A schematic of a

3D front is depicted in Fig. 3.5(b).

Feature Candidates: Due to the aforementioned mismatch between horizontal and vertical thermal

gradients, we decided to only take into account the horizontal gradients in our 3D detection method.

At each grid point in our 3D volume, we compute the locator quantity [L] (cf. eq 3.18) and retrieve
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the zero-isosurfaces using either ray casting or the “Marching Cubes” algorithm [LC87]. The locations

at the zero-isosurfaces are regarded as the candidates for the final fronts.

Fuzzy Filtering: To obtain the candidates located at the warm-side boundary, we make use of the

TFP (c.f. eq 3.17 and eq. 3.20) and check whether the negated TFP is positive. We also determine the

frontal strength to filter out weak front features. Similar to Hewson, we compute [M2] in Eq. 3.21

and [M3] in Eq. 3.22 at each candidate location. Unfortunately, the filter criterion [M2] and [M3]

estimate the along-front magnitude of the thermal gradient by regarding just one single integration

step. This does not represent the full distribution of thermal gradients well along the front, since the

breadth of the zone can be larger than one grid point. Furthermore, the definition of a single filter

threshold for K2 and K3 to binary filter front candidates across all vertical levels is not possible as

thermal gradients greatly vary with height, with the strongest thermal gradients occurring near the

surface. Hence, we replace the hard filter thresholds K2 and K3 and, instead, offer a flexible framework

to “softly” filter the frontal strength criteria. This means that fronts are filtered by manually defining

an interval of possible values for Sτ and Sθ . For each parameter Sτ and Sθ , users can define a transfer

function that maps a range of frontal strength values to opacity. With this, they can interactively

explore how the strength is related to frontal surfaces along the vertical axis and can adjust the

transfer function until the most meaningful features can be extracted. For further details of this

filtering process, we refer to the paper in [KHS∗19]. In the next section, we describe how to define

the frontal strength by using the concept of normal curves traced along the thermal gradient.

3.3.4 Computation of Frontal Strength with Normal Curves

We consider the frontal strength to be the absolute change of τ along the shortest path from the warm-

air to the cold-air boundary through the frontal zone. As fronts are quasi-orthogonal to the thermal

gradient, a simple approach would be to traverse the frontal zone along the surface normal until the

cold-air boundary is hit. However, a direct line along the surface normal of a frontal surface does not

guarantee the shortest path through the typical type of frontal zones. In particular, Hewson mentioned

that it has been observed that most atmospheric fronts are curved (cf. type 3 fronts in [Hew98]).

Hence, fronts are characterized by non-uniform changes in thermal gradients and by undulations

in the shape of frontal surfaces and their frontal zone. The shape of a typical front is sketched in

Fig. 3.6(a). Hence, we improve Eq. 3.21 and Eq. 3.22 and make use of so called “normal curves” to

estimate the strength of the frontal zones.

Normal curves are trajectories traced through the underlying scalar field along the gradient of the

scalar field, which implies that they are always locally tangential to the direction of the corresponding

scalar gradient (cf. blue curves in Fig. 3.6(a)). For example, Pfaffelmoser et al. [PRW11] used normal
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Figure 3.6: (a) This schematic shows a horizontal cross-section of a thermal gradient field and its cor-
responding 2D frontal surface. Blue lines represent the normal curves traced from the frontal surface to
the cold-air boundary. Purple arrows indicate the frontal surface normal at the starting point of a nor-
mal curve. (b) Close-up view of the frontal zone in (a). It depicts the traversal of a single normal curve
through the frontal zone using the Euler integration scheme. The red point indicates the start position of
the curve at the frontal surface, while the blue point is the intersection point of the curve with the cold-air
boundary.

curves to measure the spatial distance of two isosurfaces in a stochastic distance field, and Rauten-

haus et al. [RKSW15] made use of normal curves to visualize the distribution of quantities within

isosurfaces. As the frontal surfaces are retrieved by computing directional derivatives along the ther-

mal gradient, we mainly follow the notion that the orientation of frontal surfaces and its counter-part

at the cold-air boundary is always quasi-orthogonal to the thermal gradient. Consequently, we make

use of the normal curve in the |Gτ| field to facilitate the shortest path traversal through frontal zones.

As sketched in Fig. 3.5(b), the frontal zone is associated with the frontal surface at a fixed vertical

level and lies in the horizontal plane of high thermal gradients. It is constrained by the cold-air and

warm-air boundaries at the corresponding vertical level. Starting from a point on the frontal surface,

the normal curve is horizontally traced through the Gτ scalar field until the cold-air boundary is hit.

Based on this, let τ(~x) : R2 → R be the thermal field in the horizontal, and let the normal curve

Nτ(t) : R → R2 be the curve function within the frontal zone. Nτ(t) is parameterized by a scalar

t ∈ R, defined for the interval [0, tN ], and follows the direction of the first-order horizontal thermal

gradient ∇Hτ. Note that the z-value (height) of the normal curve is always equivalent to the z-value

of the start position on the frontal surface, and is omitted in the following definitions. Further assume

that the function gτ(~x) :=∇Hτ(~x) : R2→ R2 denotes the vector field of all horizontal gradients.
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Nτ(t) is thus defined by the following ordinary differential equation (ODE):

δNτ
δt
(t) = gτ(Nτ(t)) , Nτ(0) = ~x0

⇐⇒ Nτ(t) = ~x0 +

∫ t

0

gτ(Nτ(s)) ds
(3.24)

where ~x0 ∈ R2 is a start position of the normal curve located on the frontal surface, and tN is the final

value of t at the intersection point between the normal curve and the cold-air boundary. The ODE

can be solved by using the Euler method and the Riemann sum:

Nτ(t)≈ ~x0 +
n−1
∑

i=0

gτ(Nτ(t i))∆t , with∆t =
tn

n
, 0≤ n≤ N , (3.25)

where t0 is the start position of the normal curve with Nτ(t0) = ~x0. A visual schematic of the normal

curve traversal can be observed in Fig. 3.6(b). Next, the length of the normal curve needs to be

computed to obtain the frontal strength. This length is equivalent to the arc length of the normal

curve. Let LNτ be the arc length of the normal curve defined on the interval t ∈ [0, tN ], which is

computed as follows:

LNτ =

∫ tN

0

�

�

�

�

�

�

�

�

Nτ(t)
δt

�

�

�

�

�

�

�

�

dt =

∫ tN

0

�

�

�

�gτ(Nτ(~x))
�

�

�

�dt ≈
N−1
∑

i=0

�

�

�

�gτ(Nτ(t i))
�

�

�

�∆t , (3.26)

where || . || is the Euclidean distance. With Nτ(0) = ~x0 and Nτ(tN ) = ~xN , the final equation for the

frontal strength Sτ is given by the following equation:

[M2] Sτ =
|τ( ~xN )−τ( ~x0)|

LNτ

(3.27)

[M3] is similar to Eq. 3.27 with the thermal parameter τ= θ and the user-defined threshold K3:

[M3] Sθ =
|θ (Nθ (tN ))− θ (Nθ (0))|

LNθ

(3.28)

Regarding the selection of filter criteria for Sτ and Sθ , for instance via transfer functions, we refer to

our paper [KHS∗19].
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3.3.5 Data Smoothing

As mentioned in Sect. 3.3.2, high-resolution NWP data facilitates the detection of fine-scale features

but also inherits fine-scale variations of thermal gradients, which hampers the detection of smooth

features. As forecasters desire to detect smooth frontal surfaces at synoptic scale, averaging of thermal

quantities prior to the detection is a common method to facilitate a proper detection of smooth fronts.

For instance, Jenkner et al. [JSS∗09] explicitly use a 2D smoothing kernel to average the thermal

quantity at a grid point. In their work, the new quantity τ at a 2D grid point (x , y) is averaged as

follows:

τ(x ,y) =
1
2
τ′(x ,y) +

1
8
(τ′(x+1,y) +τ

′
(x−1,y) +τ

′
(x ,y+1) +τ

′
(x ,y−1)), (3.29)

where τ′ is the unsmoothed thermal quantity. This approach assumes that the distances between grid

points in the horizontal are uniform across the entire globe, which is not true as the distances between

points in meridional direction decrease towards the poles.

To take into account the non-uniform distances per latitude, we consider all points within a user-

defined geometric distance from the current grid point and apply a 2D Gaussian smoothing kernel to

compute the averaged values. This smoothing approach does not depend on the resolution of the grid

and is related to the length scales of the detected frontal features, which possess a length of 100 km

to 1000 km. Hence, the 2D Gaussian kernel uses a standard deviation σ = σx = σy = 100km for

both horizontal axes x and y .

τ(x ,y) =
∑

xN

∑

yN

G(xN , yN )τ
′
(xN ,yN )

, with

G(xN , yN ) =
1
p

2π
exp

�

−
(xN − x)2 + (yN − y)2

2σ2

�

.
(3.30)

xN and yN denote the grid points within the user-defined geometrical distance while xN − x is the

distance between x and xN in the meridional direction; the distance in zonal direction y is computed

equivalently. For further details, we refer to our published paper [KHS∗19].
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Figure 3.7: The left image depicts a spaghetti plot of jet-stream core lines detected in wind ensemble data
for September 28, 2016, from initial simulation time on September 25, 2016. The core lines are rendered
as 3D tubes and colored by their altitude in pressure (hPa) (cf. inset on the right). The other two images
display jet-stream core lines extracted from the wind field in ensemble member 15 (middle) and member
44 (right).

3.4 Clustering Ensembles of Line Features

Identifying subsets of 3D features with similar characteristics, where each subset of highest within-

group similarity is referred to as a cluster, is a challenging task for weather ensemble data. Regarding

jet-stream core lines, for instance, medium-range forecasts for at least the next three days already

produce highly different wind fields for each ensemble member. Hence, the line features extracted

from these fields can vastly differ wrt. certain line characteristics from member to member. Among

those characteristics are the number of vertices representing the line, their location in space and

time, their orientation, and their topology. A depiction of a real ensemble of jet-stream core lines

is depicted in Fig. 3.7. Simple metrics, such as Euclidean distance, are not appropriate to compare

vastly different line sets. Therefore, the definition of similarity between ensembles of complex line

sets needs to be defined to facilitate clustering. It is also possible to cluster directly on the scalar

fields, which are used to identify line features. Alternatively, clustering can be applied to an implicit

line representation, which is independent of the orientation and location of line sets. Nevertheless,

all these variants of clustering strategies involve the identification of similar subsets in a very high-

dimensional data set. In this case, clusters cannot be easily determined as many data elements — the

data entries (vertices, proxy fields) characterizing a line — per ensemble member can be correlated,

which means that no clear distinction between ensemble members can be made. In the following, we

discuss the basics of clustering, similarity metrics of line sets, dimensionality reduction techniques,

and alternative representations for line sets.
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3.4.1 Clustering Approaches

Clustering is an effective tool in data mining to identify clusters of similar characteristics in multi-

dimensional data. Based on a distance or similarity metric, data observations are assigned to the

cluster closest wrt. their features. Observations here describe the group of features contained in one

single ensemble member. The assignments can be conducted in binary form, where each observation

is assigned to only one cluster, or in a soft manner, where observations belong to all clusters with a

certain probability. In this thesis, we briefly discuss two well-known variants of binary clustering that

were also used in one of our papers [KW19a]. For a more detailed explanation of clustering, we refer

to the book “Cluster Analysis” by Everitt [ELL09].

K-Means

K-Means is a prominent clustering algorithm and, due to its simplicity and low computational costs,

it is often used in data analysis to cluster multi-dimensional data. The term “k-Means” was first

introduced by MacQueen [Mac67], while the idea dates back to Steinhaus [Ste56]. The most used

variant of k-Means is the one from Lloyd [Llo82]which was formalized in 1957 and published decades

later, while the equivalent approach was published earlier by Forgy [For65]. k-Means aims to minimize

the Euclidean distance between two observations, formalized by the following cost function:

argmin
C

K
∑

i=1

∑

x∈Ci

||x −µi||, (3.31)

where || · || denotes the Euclidean distance or L2-Norm between two vectors, µi is the vector rep-

resenting the center (mean) of the i-th cluster Ci , and K is the user-defined number of clusters to

be identified. Regarding Lloyd’s algorithm, an initial set of K cluster centers is selected, where the

cluster center µi represents a randomly chosen observation. The remaining observations are assigned

to the closest initial cluster centers. After the initialization, the cluster centers are recomputed by

averaging the observations belonging to a cluster, and all observations are re-assigned to the cluster

with the cluster center closest to them. These steps are repeated until the optimization converges to

a minimum.

Finding an optimal solution with k-Means, however, is an NP-hard problem, as it usually runs into a

local but not global minimum. Hence, k-Means suffers from slow convergence and has to be conducted

multiple times to achieve the results considered most optimal. To increase the convergence speed,

different variants have been proposed to chose an improved initial configuration of cluster centers.

For instance, “k-Means++” [AV07] uses a probabilistic approach to enforce keeping initial cluster

centers at a maximum distance to each other. For more detail on alternative approaches, such as

k-Medians, and additional initialization of k-Means, we refer to [ELL09].
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Agglomerative Hierarchical Clustering

Instead of assigning observations to a fixed number of clusters, a hierarchy of a cluster series can be

produced from the data set. The hierarchy runs from a single cluster comprised of all N observations to

N clusters containing only one single observation [ELL09]. In this context, the pair-wise similarities

(proximities, distances) between observations are stored in a symmetric matrix S with entries si j

denoting the similarity between data element i and j. In agglomerative methods, the hierarchy of

clusters is built in a bottom-up fashion, where most similar individual clusters, starting from the

individual observations at the beginning, are sequentially merged to a new cluster until one global

cluster is attained in the last step. This results in a binary tree of clusters, where each node represents

the similarity of its underlying two clusters (children). Note that the root node combines the last two

clusters with maximal dissimilarity between those two. The final number of clusters can be obtained

by cutting the tree at a certain similarity or tree level.

Various merge heuristics, also called linkage methods, exist to define which two clusters need to

be fused at each iteration step. Among those is single linkage clustering, also called nearest neighbor

clustering, where clusters with the smallest pair-wise distances are combined. The similarity matrix

S is updated by removing the distances for the merged clusters and inserting the new cluster where

the new similarity at the parent node represents the minimum distance between the merged clusters.

The counterpart of single linkage is complete linkage, where the farthest cluster-to-cluster distances

are computed and used for fusion and similarity updates. In our work, we make use of Ward’s [Jr.63]

method for cluster merges to minimize the increase of the within-cluster variance with each onward

fusion step. To achieve this, the pair-wise squared Euclidean distances between two observations are

computed and stored in S. Afterwards, the measure for the distances between a cluster Ck and the

fusion (l tm) of two other clusters Cl and Cm is computed by the Lance-Williams formula:

sk(l tm) = αl slk + αm smk + β slm + γ |slk − smk|, with (3.32)

αl =
nl + nk

nl + nm + nk
, αm =

nm + nk

nl + nm + nk
, β =

−nk

nl + nm + nk
, γ= 0, (3.33)

where ni is the number of elements contained in cluster Ci . Here, the cluster Cl and Cm with minimal

distance sk(l tm) to cluster Ck is preferred during agglomeration.

3.4.2 Comparison of Line Topology

For an ensemble of shapes, the next step is to define the (dis-)similarity of line sets between two

ensemble members. Corouge et al. [CGG04] introduced different types of similarity metrics for line

sets that are spatially close to each other, such as with fibers in muscle diffusion tensor Magnetic
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Figure 3.8: Sketch of two different sets of lines (L and K), their line vertices (circles with black contours),
and their minimal vertex-wise distances (arrows). Left image: L and K are quasi-parallel to each other.
Right image: L and K intersect and exhibit a completely different orientation. The vertex-wise distances
define the similarity between to line sets. The green arrow depicts the minimal vertex-wise Euclidean
distance, while the red arrow represents the corresponding Hausdorff distance.

Resonance Imaging (MRI). A simple approach to measure the similarity between those fibers (or

lines), here denoted as L and K for two arbitrary lines, is to compute the minimal distance between

the pair-wise distances of the 3D line points pl and pk

DL2
(L, K) = min

pl∈L,pk∈K
d(pl , pk), (3.34)

where the distance between two points is defined as the Euclidean distance

d(pl , pk) = ||pl − pk||. (3.35)

While this is easy to compute, the downside of this metric is that the distance between non-spatially

aligned line sets is non-uniform in terms of point-wise distances, and the minimum distance is thus

not representative. For example, the scenario in Fig. 3.8(b) depicts the pair-wise minimal distances

between the vertices of two cutting lines K and L. Both lines are spatially distant to each other in

most parts, however, DL2
computes the minimal distance at the line overlap and falsely suggests that

K and L are as similar to each other as in Fig. 3.8(a). In contrast to DL2
, Corouge et al. proposed

to compute the average of the minimal pair-wise closest distances between two lines sets, which is

called the mean closest-point distance (MCPD):

DM (L, K) =mean(dmin(L, K), dmin(K , L)),

dmin(L, K) =meanpl∈L min
pk∈K

d(pl , pk)
(3.36)
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While MCPD better estimates the point-wise similarity of arbitrary line sets, its computation is most

expensive for a large set of lines. A more efficient alternative to MCPD is the Hausdorff Distance (HD),

named after the mathematician Felix Hausdorff, which was first introduced in the book “Grundzüge

der Mengenlehre” [Hau14]. With HD, two different sets of points are considered similar if the longest

of all point-wise minimal distances is small. HD DH(L, K) is thus defined as:

DH(L, K) =max{dm(L, K), dm(K , L)}

dm(L, K) =max
pl∈L

min
pk∈K

d(pl , pk)
(3.37)

A sketch of DH between two line sets is shown in Fig. 3.8 (compare red arrows).

Ensemble comparison

MCPD and HD can be used to determine the similarity of the lines of one ensemble member to the lines

of any other ensemble member. However, a metric has to be defined to measure the (dis-)similarity

of two ensemble members based on the used distance metrics. In the following, let Ω be a set of

ensemble members with ensemble members n, m ∈ Ω, and let L̂n and L̂m be the set of lines of the

corresponding ensemble members. Furthermore, DX (L, K) denotes an arbitrary metric representing

the distance between two single lines L and K , where X ∈ {H, M} for HD and MCPD, respectively. Two

ensemble members are compared in terms of line similarity by computing the average of all minimal

line-pair-wise distances DX . The member-wise similarity Dω(L̂m, L̂n) between ensemble member m

and n is defined as follows:

de(L, L̂i) =min
�

DX (L , K) , for K ∈ L̂i

	

Dmn := Dω(L̂m, L̂n) =mean
§

max
L′m∈ L̂m

�

de(L
′
m, L̂n)

	

, max
L′n∈ L̂n

�

de(L
′
n, L̂m)

	

ª

.
(3.38)

Dω = dmn = dnm denotes the distance of lines in ensemble member m to the lines in ensemble member

n and can be used in clustering to set up a symmetric distance matrix comprised of all member-wise

dissimilarities to facilitate hierarchical clustering of ensembles of shapes. For further details, we refer

to the corresponding published paper in [KW19a].

3.4.3 Implicit Line Representation

The downside of the direct line-to-line comparison is that lines can highly vary in topology, location,

and orientation. Metrics such as HD and MCPD fail to compare lines in scenarios where lines partly

coincide and mainly diverge from each other. Locations where the line sets of all ensemble members

mostly coincide, independent of the orientation and location of a line, cannot be reflected by simply
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considering similarities based on the point-wise distances of lines. Hence, a more implicit represen-

tation of lines is required to better indicate at which grid points the ensemble members concerning

their line sets are most similar. In the following, assume that the domain of our ensemble members

is discretized into a regular voxel grid in the horizontal and vertical. The resolution of this grid is

chosen according to the smallest distance between two adjacent horizontal and vertical grid points.

Density Volumes

One approach is to compute a visitation map, proposed by Bürger et al. [BFMW12], where at each

grid point the number of lines crossing the voxel boundaries for all ensemble members is counted.

The number of line crossings represents the amount of local density at a voxel. Since the lines are

defined by discrete points (vertices) in the data domain, the connection line between the endpoints

of a line segment may pass several voxels. Hence, the lines need to be rasterized onto the pre-

defined voxel grid. This can be accomplished, for instance, by computing the intersection points of

the line segments with the boundaries of the voxels, which is computationally expensive. To overcome

costly intersection tests for each line, a more efficient GPU implementation can be used. Bürger et

al. [BFMW12] assumed that each line vertex is a spherical particle with a fixed diameter and baked this

particle into the voxel grid using the rasterization on the GPU. The fixed diameter is represented by a

splat-kernel, in our work with a size of 4 voxels, to effectively rasterize lines. Furthermore, rendering

with splat-kernel also facilitates the generation of smooth density distributions. The final densities

are normalized in a final second pass after all lines have been rasterized to produce a normalized

density volume. With this, regions of high density can be visualized, such as with ray casting, to

indicate locations of high similarity across the entire ensemble. A sketch of an ensemble of lines and

the corresponding densities at each grid point is given in Fig. 3.9(a).

Vector-To-Closest Point Volumes

Another alternative is the generation of vector-to-closest point (VCP) volumes [AMT∗12]. Here, at

each grid point, the direction and distance to the line feature closest to the voxel center are computed

for all ensemble members. Let vcp(~x)i be the vector to the closest line feature in ensemble member

i at grid point ~x . The VCP volume is comprised of a set of VCPs for all N ensemble members, with

VCP(~x) =
�

vcp1(~x), vcp2(~x), ... , vcpN (~x)
	

. A schematic of VCPs for an ensemble of lines is given

in Fig. 3.9(b). The advantage of VCPs is that they enable users to reconstruct the locations of either

individual or all line sets by computing the minimal distance to the closest feature in all ensemble

members:

dmin(~x) =min
�

||vcpi(~x)||, vcpi(~x) ∈ V C P(~x)
	

. (3.39)
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Density Centrality(a) (b)

Figure 3.9: (a) Sketch of a density volume (visitation map) from an ensemble of lines (similar to Fig.
6 in [KW19a]). The bright orange colors represent the numbers of line crossings at each voxel, which
reflects the density. (b) Depiction of the vectors that point to the line features closest to a voxel center
(dotted arrows) in an ensemble of 3 line sets (blue, dark blue, and purple lines). The central tendency
is related to the distribution of these vectors, where color denotes the level of centrality (red = lowest,
orange = medium, green = highest).

Furthermore, VCPs can be clustered by directly comparing the vector differences of all member-wise

vcpi(~x). That is, the more similar the vectors and their distances to the closest line feature are at

a voxel, the more similar the ensemble members can be considered. A problem with clustering on

VCP volumes is that dmin(~x) is high for voxels that never cross any lines in all ensemble members,

or whose distances to the nearest feature are high for the entire feature ensemble. To overcome this,

one can reduce the number of grid points considered during clustering by removing grid points where

the minimal distance of the vectors to the closest feature exceeds a user-defined distance threshold

δ: dmin(~x)> δ.

Central Tendency

VCP volumes are also useful to estimate the central tendency of location, which denotes the location

of points that lie in between the line features in all ensemble members. Centrality was introduced by

Demir et al. [DJW16] to obtain the most central locations of an ensemble of closed isosurfaces. To

determine most central points, the mean vector ~µ of the VCP(~x) set needs to exhibit the least vector

length. It is computed as follows:

~µ(~x) =
1
N

N
∑

i=1

vcpi(~x). (3.40)
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A point is also considered to be central if the maximum distance dmax(~x) to the farthest close-by

feature in all ensemble members is low. Furthermore, another factor f is introduced, which represents

the percentage of ensemble members, which have a small distance ||vcpi(~x)|| to the next closest

features. With this, the centrality ψ(~x) of a voxel is computed as

ψ(~x) =max
�

1− dmax(~x),
Æ

f · (1− ||~µ(~x)||)
	

. (3.41)

Note that the values dmax(~x) and ~µ(~x) lie in the range [0,1], as they have been normalized before-

hand. A sketch of the centrality per voxel is provided in Fig. 3.9(b)). Consequently, ridge detection

can be used to identify locations of high centrality or high frequency of feature occurrence to retrieve

artificial “mean” representation of line ensembles. For further discussion of the advantages and dis-

advantages of implicit line representations and ridge lines in proxy fields, we refer to our published

paper in [KW19a].

3.4.4 Dimensionality Reduction

Clustering on NWP ensemble weather data or implicit line representations, such as VCP volumes, is

challenging, as the number of data elements per ensemble member is much higher than the number

of ensembles. For instance, assume that the data matrix X ∈ RN×D needs to be clustered where N

represents the ensemble members (in our experiments 51) characterized by D data elements, also

referred to as features, in the volumetric data. In our experiments, D represents the number of voxels

of the used scalar fields, i.e., wind fields of size D ≈ 131×66×70 (longitude× latitude× hybrid levels),

or the number of voxels in the precomputed voxel representations of line sets. For high-dimensional

data with D� N a clear distinction of individual ensemble members is challenging because multiple

data elements can be interrelated. Here, the notion of dimensionality reduction is to transform X to a

new matrix X ′ ∈ RN×C using a very low-dimensional set of data elements C � D, so that most of the

data’s variance is retained. The transformation creates a new subset of data elements that are (ideally)

uncorrelated and ordered so that the first variables contain the highest variation in the original data.

Hence, dimensionality reduction helps to separate ensemble members of different characteristics by

using only a small subset of transformed data elements. Different variants of methods exist to reduce

the dimension of high-dimensional data using a linear or non-linear transformation. In the following,

we present the two most commonly known and used reduction methods.

Principal Component Analysis

In principal component analysis (PCA), the idea is to find the major axes of variance, named principal

components (PCs), in high-dimensional data sets. In the following, we briefly discuss PCA while
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following the in-detail explanations from the book of Jolliffee [Jol11]. For this, the variance of the D

data elements and their covariances with all other D− 1 data elements needs to be compared. Since

variance is measured by computing the squared deviation of data elements from their mean, every

row in the data point matrix X with entries x i j needs to be zero-centered around its column-wise

mean µ, which yields the new zero-centered matrix X :

X = X − κµT , where

µ= (µ0,µ1, ...,µD) ∈ RD×1 , µ j =
1
N

N
∑

i=1

x i j , and

κ ∈ RN×1 , κi = 1 for i = 1, ..., n.

(3.42)

Given matrix X , the covariance matrix Σ ∈ RD×D can be computed with

Σ=
1

N − 1
X

T
X . (3.43)

To find the set of PCs, we can use eigendecomposition to obtain the normalized eigenvectors ξ j and

their corresponding eigenvalues λ j . The normalized eigenvectors of the covariance matrix form an

orthonormal basis, where each ξ j ∈ RD×1 represents an orthogonal axis fitted to the data. Given

that each λ j represents the variance of the linear combination of data elements, we can use the

eigenvectors with the largest eigenvalues (variance) to transform X to a new score matrix X ′:

X ′ = X E , x ′i j = x i · ξ j . (3.44)

where E ∈ RD×C is a matrix containing the C largest eigenvectors in each column, with C ≤ D. This

equation describes a linear transformation of X so that the data is aligned with the eigenvector basis.

Note that the original data matrix can be obtained by:

X = κµT + X ′ET . (3.45)

PCA can also be achieved by conducting a singular value decomposition (SVD) on the zero-centered

matrix X . SVD is often preferred for very high-dimensional data as it is computationally faster. Here,

X can be factorized as follows:

X = UΛW T , (3.46)

where U ∈ RN×N is comprised of left singular vectors, Λ ∈ RN×D is a diagonal matrix containing the

singular values σi along its diagonal entries Λii , and W ∈ RD×D contains the right singular vectors.

Since the singular values of Λ are the square roots of the eigenvalues of the covariance matrix X , it

follows that the eigenvalues are defined by λi = σ2
i . Hence, the full score matrix X ′ can be computed
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as follows:

X ′ = XW = UΛW T W = UΛ. (3.47)

A truncated version of a score matrix X ′C ∈ R
N×C can be obtained by just keeping the C columns with

the largest singular values in the reduced ΛC ∈ RC×C matrix:

X ′ = UCΛC = XWC , (3.48)

where UC ∈ RN×C . The value C is determined by computing the amount of explained variance for

each linear combination of the data elements. Assume that the matrices E (with the eigenvectors),

U , and ΣC (with the singular values σi) are sorted by the eigenvalues λi in descending order: λ0 ≥
λ1 ≥ ...≥ λC . The explained variance can be computed as follows:

exVari =
λi

n
∑

j=1
λ j

(3.49)

C is determined by finding the lowest index C where the sum of all variances explains at least p-

percentage of the total variance:
C
∑

i=1

exVari ≥ p (3.50)

t-Distributed Stochastic Neighbor Embedding

Maaten and Hinton introduced t-Distributed Stochastic Neighbor Embedding (t-SNE), an adapted ver-

sion of Stochastic Neighbor Embedding (SNE) [HR03], to visualize high-dimensional data. In t-SNE

the data is projected to low dimension (e.g., to 2D or 3D) to produce nice visual results of complex

data while the local similarity between data elements is still retained visually after the projection. In

contrast to SNE, Maaten and Hinton use a symmetric version of SNE by minimizing a single Kullback-

Leibler divergence between joint probability distributions in high- and low-dimension. Additionally,

they make use of a t-Student distribution instead of a Gaussian to obtain the similarities of two data el-

ements in low-dimension. In the following, we briefly summarize the findings of the paper by Maaten

and Hinton [MH08].

In SNE, the Euclidean distances between data elements are transformed into conditional proba-

bilities which represent the similarity between pairs of data elements. Assume that each local point

x i the neighborhood to all other points is defined relative to the Gaussian probability distribution σi

which is centered at x i . The similarity of element x i to x j is described as the probability that x i would
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choose x j as its neighbor with

p j|i =
ex p(−||x i − x j||2/2σ2

i )
∑

k 6=i exp(−||x i − xk||2/2σ2
i )

. (3.51)

The probability q j|i for the low-dimensional counterpart is computed similarly (see [MH08]). The

major objective of t-SNE is to minimize the distance between the high- (Pi) and low-resolution prob-

ability distribution (Q i), which can be expressed via the Kullback-Leibler divergence K L(Pi||Q i). The

cost function C for the minimization problem is defined as:

C =
∑

i

K L(Pi||Q i) =
∑

i

∑

j

p j|i log
p j|i

q j|i
(3.52)

To estimate the variance σi of the Gaussian centered at point x i , a fixed perplexity for the probability

distribution Pi is used:

Perp(Pi) = 2H(Pi) , H(Pi) = −
∑

j

p j|i log2 p j|i , (3.53)

where H(Pi) is the Shannon entropy. The perplexity can be used to smoothly estimate the number

of preferred neighbors, with values between 5 and 50. With t-SNE, Maaten and Horton proposed to

use a symmetric SNE to improve the optimization of the cost function C . The symmetric probabilities

pi j = p ji and qi j = qi j for points x i and x j for high- and low-dimensional space are defined as:

pi j =
p j|i + pi| j

2n
, qi j =

exp(−||yi − y j||2)
∑

k 6=i exp(−||yk − yl ||2)
(3.54)

The following cost function which describes the Kullback-Leibler divergence between Pi and Q i is

minimized:

C =
∑

i

K L(Pi||Q i) =
∑

i

∑

j

pi j log
pi j

qi j
. (3.55)

The final projection results are performed by choosing an initial location of points in low-dimensional

space and sequentially minimizing C until convergence. A drawback of this method is that the results

depend on the initial set of point locations and the used perplexity, which makes it difficult to control

the outcome of t-SNE projections of different data sets.

We used both PCA and t-SNE in our work to improve the results for jet-stream core line clus-

tering based on scalar fields and line geometry. For further details on the selected parameters for

PCA (explained variance) and t-SNE (perplexity) within this context, we refer to our published pa-

per [KW19a].
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3.5 The Visualization Tool “Met.3D”

In this thesis, we make use of the open-source visualization “Met.3D”, developed by Marc Rautenhaus

et al. [RKSW15, RGSW15]. It was originally designed to provide tools to visually analyze ensem-

ble data during aircraft-based field campaigns, but over time has become a powerful visualization

tool with increasing capabilities. Within the trans-regional collaborative research project Waves-To-

Weather, Met.3D has become an integral part of common visual analysis tools, is actively developed,

and used in ongoing research projects. In particular, Met.3D provides interactive two- and three-

dimensional visualization tools to facilitate the 3D visual analysis of numerical weather prediction

data and other atmospheric model data sets. It makes use of state-of-the-art techniques in computer

graphics, such as alpha compositing, direct volume rendering, volume ray casting, streamline and

pathline computation, particle tracing, and clipping planes to visualize data along horizontal or ver-

tical 2D planes. It also uses a multi-window layout to facilitate the analysis of several atmospheric

processes and ensemble data in parallel. The front-end (GUI) and back-end (data request and pro-

cessing) are completely separated, which means that an interactive rendering of the data is possible

while additional data can be retrieved in the background. Once the data is retrieved, it is cached in

memory to avoid re-computations of data and multiple hard drive accesses. It also provides a flexible

modular framework to process and filter ensemble data or single scalar fields. The filters are repre-

sented by separate modules, where each module performs a particular computational task. With this,

the filters can be combined in multiple ways to implement a sequence of data filtering techniques. For

instance, ensemble data can be aggregated to the mean, or smoothing of scalar fields can be combined

with threshold filtering to focus on certain atmospheric features.

Within the project of this thesis, we have integrated the detection of jet-stream core lines, the

extraction of 3D atmospheric weather fronts, and the clustering of jet-stream core lines into the tool

Met.3D. All gradient, filtering, and smoothing algorithms have been implemented as modular filter

techniques. We have also entirely integrated our visualization techniques into Met.3D. Therefore,

the screenshots and renderings, which are shown in our published paper [KHS∗18, KHS∗19, KW19a],

were completely rendered with Met.3D.
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Figure 3.10: 3D rendering of 10000 dense streamlines randomly seeded on the inside of an aneurysm.
Color encodes the amount of vorticity of the underlying flow field at each streamline vertex (beige= lowest,
red = highest vorticity). The left image depicts lines rendered fully opaque. The right image shows lines
rendered with transparency, where vorticity is mapped to opacity. Here, it can be seen that lines of high
vorticity in the interior of the aneurysm, which are hidden by other lines in the opaque rendering, can be
revealed by fading out low-vorticity lines with transparency.

3.6 Rendering Line Sets with Transparency

In flow visualization, line features, such as streamlines, are extracted to describe the motion of flow

in flow fields. The lines are commonly rendered as opaque 3D (analytic) tubes with a fixed radius.

At each line vertex, certain attributes are stored, such as line curvature, vorticity, or velocity. These

attributes are mapped to color and displayed on the tube geometry. For a myriad of line sets, how-

ever, rendering the entire line data set fully opaque fails to communicate trends in the data, because

opaque rendering suffers from multiple occlusion effects and hampers the visual analysis of features-

of-interest available in the data. Instead, transparency rendering is used during the visual exploration

of large line data sets. For instance, users typically map line characteristics to transparency with

user-defined transfer functions to accentuate features-of-interest in large line sets, while fading out

lines deemed less important. This procedure improves the visual exploration of specific line features

while keeping the overall flow context in their surrounding. Unfortunately, transparency rendering

is highly computationally expensive, as all transparent lines need to be blended in correct visibility

order. Therefore, researchers look for rendering techniques to display large 3D line sets with millions

of transparent layers most realistically and efficiently. In the following, we briefly discuss the theory

of alpha-compositing and discuss the two major variants of transparency rendering algorithms.

3.6.1 Alpha Compositing

In computer graphics, Porter and Duff [PD84] introduced the well-known equation to formalize the

overlay of two transparent layers, also termed alpha blending or alpha compositing. Alpha (α) in
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Figure 3.11: The resulting colors produced by blending transparent planar pentagons (colored in red,
green, and blue) in different orders. The blending order is indicated by the arrow plotted below the
images. Comparing the kite-like shape, where all three pentagons overlap, it can be observed that all
three scenarios yield a different color after alpha blending.

this context denotes the opacity of a material, or more specifically, the amount of light that is not

transmitted through the layer. The more opacity a layer possesses, the less light (color) can be seen

from objects concealed by this layer in the direction of reflected light towards the viewer. Based on

the functionality of monitors, color in computer graphics is commonly defined in the additive color

space RGB, where light is classified into red, green, and blue light. In RGB space, the addition of all

of the three light components yields the final color seen on the screen. In the following, the color

for a pixel i is defined as Ci = (ri , gi , bi ,αi), where the first three components represent the three

light components, and αi is the corresponding opacity. Porter and Duff defined alpha compositing

for rasterization in RGB-space, where the geometry of an object is projected and rasterized onto a

2D pixel grid on the screen, also called fragment or pixel candidate. Every transparent fragment that

falls into a pixel after rasterization has to be blended with all other transparent fragments falling into

the same pixel in correct visibility order.

Alpha compositing in RGB-space in correct order is vital as this operation is not commutative,

which means that blending different colors in arbitrary order produces different transparent colors, as

illustrated in Fig. 3.11. Let P and N designate two different fragments falling into the same pixel, with

the corresponding colors Cp and Cn and opacities αp and αn. Furthermore, assume that fragments

are sorted in back-to-front order, hence the distance zn of the next closest fragment to the viewer is

less than the distance zp of the previous fragment. The blending equation to obtain the final color Co

and opacity αo after compositing the transparent fragments p and n is defined as follows:

Co =
Cnαn + (1−αn)Cpαp

αn + (1−αn)αp
. (3.56)

This equation is also known as the OVER operator [PD84] A convenient way is to store the color

of a fragment pre-multiplied with its opacity. Let ci = Ciαi be the pre-multiplied color component
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ci = (r · αi , g · αi , b · αi) for a fragment i with color components red, green, and blue. Then, the

blending equation can be written as:

[OVER]

co = cn + (1−αn) cp

αo = αn + (1−αn)αp

(3.57)

Equivalently, an explicit expression for the recursive OVER operator is, cf. Münstermann [MKKP18]:

Co =
n−1
∑

i=1

cl ·
n−1
∏

k=i

(1−αk), with zk < zl , (3.58)

where Ti =
∏n−1

k=i (1−αk) denotes the transmittance of fragment i, which is the complement to opacity.

The counterpart of the OVER operator is the UNDER operator, where fragments are blended in

front-to-back order going from the closest to the farthest fragment. Assume that the colors are pre-

multiplied with alpha and the fragment n is blended under the previously blended fragment r with

opacities αn and αr , respectively. The blending equation for front-to-back blending is then defined

as:

[UNDER]

cr = cr +αr cn

αr = (1−αn)αr

(3.59)

A detailed explanation of this formula and its derivation is provided by Bavoil and Myers [BM08]. In

the following, we assume that the lines are either represented by triangle meshes denoting line tubes

with a fixed radius or represented by analytic tubes defined at each line segment.

Order-Independent Transparency

A simple approach to render transparent objects is to sort the triangle meshes of all displayed objects

in either front-to-back or back-to-front order and to make use of the corresponding blending equations

to obtain the final colors per pixel. However, triangle meshes cannot be simply ordered by the distance

to the viewer (depth) as they exhibit different spatial extents and orientations and can also overlap.

Therefore, a variety of rendering techniques has been proposed within the last two decades to

solve the problem of a correct visibility order for objects of arbitrary shapes. Within this context,

order independent transparency (OIT) deals with the design of algorithms that strive to correctly

blend transparent objects which are processed in arbitrary order, so that the objects’ geometry in the

scene does not need to be sorted beforehand. OIT is mainly linked to object-order techniques which
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View Direction View Direction

Figure 3.12: A simplified sketch of two rendering techniques obtaining the final per-pixel color on a pixel
grid (viewport) with fixed resolution. Left: Depiction of object-order rendering, where the geometry of the
objects is projected and rasterized onto the pixel grid. Right: Image-order rendering, where a ray is shot
from a pixel center into the scene. The color of the pixel is defined by computing the intersection point of
the ray with an object and obtaining the object’s color value at that point.

operate on triangles projected onto the viewport pixel grid (cf. Fig. 3.12(a)). A first option is to

render the scene layer-by-layer with Depth Peeling (DP) [Eve01], where at each iteration the closest

fragments are rendered and blended with the current color buffer, while their depth values are stored

in a second depth buffer. The second buffer is used in the next iteration to peel away the previous

closest fragments and to blend the next layer of fragments with the color buffer. The rendering time

of DP, however, is heavily increasing with the complexity of line sets. Thus, DP should not be used to

interactively explore large line sets.

Many other variants of object-order techniques are comprised of two phases. In the first part, all

fragments falling into the pixel grid are gathered in a local or global buffer, which stores the distance

of a fragment to the viewer (depth), its color, and its opacity or transmittance. In the second part, all

gathered fragments belonging to the same pixel are sorted by depth and finally blended using either

the OVER or UNDER operator, depending on the type of order. Regarding the gathering procedure,

different approaches exist to store and sort fragments for each pixel. For instance, a global buffer is

used, which theoretically is supposed to be large enough to hold all fragments generated during a

render pass for a given viewport size. However, this is not always possible in practice as the amount

of video memory on the GPU is limited, which poses a serious problem in scenes with thousands of

triangles producing millions of fragments. Alternatively, some techniques only store a fixed number

of fragments in a local per-pixel array and merge new fragments into this array heuristically. This

approach supports rendering on hardware with low video memory. A detailed list of different OIT
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techniques was already given in 2.4. Further detailed evaluation of the performance of OIT algorithms

wrt. line rendering with transparency is provided in our evaluation paper [KNM∗20].

3.6.2 Ray Tracing

Another class of rendering techniques is called ray tracing. With ray tracing, rays are shot into the

scene from the pixel centers of the image pixel grid (cf. schematic in Fig. 3.12(b)). While the scene

is traversed along the ray, all possible intersection points with any object in the scene are computed.

Usually, this requires testing millions of rays against thousands of objects, which is highly compu-

tationally expensive and ineffective, as a major part of the objects’ geometry is missed by a single

ray. Hence, acceleration structures are used to improve the performance of ray traversals through the

scene. Among those acceleration structures are boundary-volume-hierarchies (BVH). Here, a simple

boundary volume (BV), such as a sphere or an axis-aligned bounding box, is defined for each part of

the tube geometry. The BVH is constructed by sequentially merging the nearest two boundary vol-

umes in a bottom-up fashion until the root node of the hierarchy contains all BVs and geometries.

BVs are useful to quickly test whether a ray can hit a triangle of an object within this volume. The

constructed BVH can be employed to quickly obtain all triangles that can intersect with a ray, which

facilitates a fast computation of all intersection points. Since the rays start at the pixel centers, which

are closest to the viewer, the front-to-back order of all intersection points is implicitly determined by

the BVH traversal. Thus, the UNDER operator can be used in this case to conduct alpha blending.

Another alternative is to use a voxel representation of line sets. Here, lines are rasterized into a

3D grid with a fixed voxel resolution in Euclidean space. Each voxel locally stores all line segments

that intersect with it. The voxelization of lines is conducted in a preprocessing step and used as

(acceleration) data structure during ray tracing. For instance, voxels that do not intersect with any

lines are marked empty and can be skipped during ray traversal. On the other hand, when a ray hits a

non-empty voxel, all line segments intersecting with this voxel are retrieved and the ray is analytically

intersected with the tube of a line segment to finally render the corresponding line tubes. An in-detail

discussion of such algorithms is also provided in our comparison study [KNM∗20].

In the next chapter, we will provide the summaries, author contributions, and copyrights of all four

appended publications associated with this thesis and we will then conclude this thesis in Chapter 5

with a discussion of our results and an outlook for potential future work.
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Summary of Papers

4.1 Robust Detection and Visualization of Jet-Stream Core Lines in
Atmospheric Flow

Summary

Although jet-streams, meandering air currents of high wind speed, and their core lines (maxima lines

of wind speed) have been well studied for decades in meteorology, there is still no automated method

to identify these line features. To the best of our knowledge, forecasters manually analyze 2D charts

to retrieve core lines, which are defined as height ridges of wind speed. However, tools are missing to

identify and analyze core lines in 3D. In this paper, we present a robust detection method to identify

3D jet-stream core lines in atmospheric dynamics. Our method exploits the wind direction to define a

local, well-defined frame-of-reference and identifies core lines within this frame. In contrast to ridge

detection, our method is more stable and avoids the computation of the Hessian and its eigenvectors.

In close collaboration with meteorologists, we have conducted a meteorological analysis of the jet-

stream core lines and surrounding atmospheric processes through real-world case scenarios, for the

first time. As this analysis was not possible before, we also show the benefit of our detection method

to forecasting and research. Full publication is provided in Sec. 7.1.

Author Contribution

The first author was responsible for the implementation of the detection algorithm and visualization

techniques. In collaboration with Prof. Dr. Filip Sadlo, the comparison of the detection algorithm

with “classical” ridge detection was discussed and compared. Dr. Marc Rautenhaus and Tim Hewson

conducted the meteorological analysis using the detection algorithm and were responsible for the case

studies. In discussions with Prof. Dr. Rüdiger Westermann and Dr. Marc Rautenhaus, we designed
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the visualization techniques used to depict the 3D line features in combination with other atmospheric

processes.

Copyright: 2017 IEEE, Reprint. Used in this thesis with permissions from Tim Hewson, Filip Sadlo,

Rüdiger Westermann, and Marc Rautenhaus. IEEE Transactions on Visualization and Computer

Graphics, January 2018.
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4.2 Interactive 3D Visual Analysis of Atmospheric Fronts

Summary

Atmospheric fronts are boundaries between two air masses of different characteristics, such as tem-

perature or moisture. They are fundamental features in meteorology as they are associated with

abrupt weather changes and severe weather events, like thunderstorms or heavy precipitation. Al-

though fronts are conceived as 3D surfaces in meteorological concepts, existing objective methods

only focused on the detection and visualization of fronts in 2D. In this paper, we extend an exist-

ing 2D detection method to 3D and propose a visualization technique to analyze the 3D structure of

fronts, as well as the relation between fronts and related atmospheric processes. For the detection

method, we use wet-bulb potential temperature as the primary thermal quantity to identify both high

temperature and moisture gradients. As thermal gradients vary with height, we allow the users to

softly filter fronts by mapping their characteristics, such as frontal strength, to opacity via transfer

functions. We further introduce normal curves to visualize the transition zone of high thermal gra-

dients between two air masses (frontal zone). To conduct a statistical analysis of single fronts and

their associated frontal zone, we estimate the volume of the frontal zone in 3D by identifying grid

boxes intersecting with normal curves traced from a selected front. We also demonstrate the benefit

of our method by means of an idealized water planet simulation and two-real world case scenarios.

Full publication is provided in Sec. 7.2.

Author Contribution

The major contribution of the first author is the implementation of front detection and soft filtering

of front features, the computation of frontal zone volumes, and the implementation of visualization

techniques to depict frontal surfaces and frontal zones. Tim Hewson, Andreas Schäfler, and Dr. Marc

Rautenhaus were mainly responsible for the case studies and domain expert feedback. Visualization

techniques and the improvement of the front detection schemes were designed in close collaboration

with Prof. Dr. Rüdiger Westermann and Dr. Marc Rautenhaus.

Copyright: 2018 IEEE, Reprint. Used in this thesis with permissions from Tim Hewson, Andreas

Schäfler, Rüdiger Westermann, and Marc Rautenhaus. IEEE Transactions on Visualization and Com-

puter Graphics, January 2019.

67



4 SUMMARY OF PAPERS

4.3 Clustering Ensembles of 3D Jet-Stream Core Lines

Summary

Jet-stream core lines, identified in wind fields, can vastly differ in topology and orientation and can

possess single or multiple interruptions. Especially in ensembles of wind fields, these structures can

highly differ in major parts between ensemble members and thus show high variation. In this paper,

we examine different clustering approaches to infer trends in an ensemble of jet-stream core lines.

Three major clustering strategies are proposed: (a) we cluster on the scalar fields, which are used to

identify core lines, (b) we cluster on the 3D line sets using the Hausdorff distance, (c) we compute a

line-implicit representation of core lines and cluster on this representation. After clustering, we obtain

and visualize the best representative line feature in a cluster. Furthermore, we compute two proxy

fields to describe the amount of density at a point or the central tendency in the data. The density is

represented by a 3D visitation map, which is the frequency of feature occurrences at a point, while the

central tendency is computed by the ensemble of vector-to-closest-points. Ridge detection is applied

to the proxy fields to obtain “artificial” representatives of an ensemble of core lines. We compare the

clustering and artificial representatives to core lines extracted from re-analysis data and discuss the

potential of our techniques in terms of trend inference. Full publication is provided in Sec. 7.3.

Author Contribution

The first author was mainly responsible for the implementation of clustering frameworks for jet-stream

core lines, the generation of proxy fields and implicit line representations, ridge line extraction in

proxy fields, and the evaluation of these techniques. Discussions with Prof. Dr. Rüdiger Westermann

led to the final design of the clustering frameworks and visualization techniques.

Copyright: ©2019 The Eurographics Association, Reprint. Published in Vision, Modeling and Visu-

alization, 2019. Used in this thesis with permission from Rüdiger Westermann and kind permission

from the Eurographics Association.
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4.4 A Comparison of Rendering Techniques for 3D Line Sets with
Transparency

Summary

Transparency rendering is a common technique to explore large sets of particle trajectories in flow

fields. Based on the line properties or the attributes assigned with the trajectory curves, transparency

is used to reveal features-of-interest while fading out all other remaining trajectories. To create a

proper visualization of transparent lines, transparency rendering requires the correct alpha composit-

ing of myriads of transparent layers which have to be sorted before alpha blending in correct visibility

order. However, sorting and blending for thousands of layers per pixel is highly computationally ex-

pensive and becomes increasingly difficult. In this paper, we present an extensive comparison study

of transparency rendering techniques for transparent 3D line sets on the GPU or CPU. We examine

different variants of line rendering algorithms that either accurately compute or approximate the

blending equation. All techniques are compared concerning their run-time performance, memory

consumption, and image quality. It is also analyzed how the complexity of line sets along with differ-

ent transparency and color mappings affect the performance and quality of the rendering techniques.

We also propose a better sorting algorithm to quickly retrieve the correct visibility order of fragments

on the GPU with Per-Pixel Fragment Lists and divide the scene into buckets to enhance the quality of

Multi-Layer Alpha Blending. In the end, we provide an in-detail discussion of all algorithms to assist

the users in choosing the appropriate rendering technique for different transparency settings. Full

publication is provided in Sec. 7.4.

Author Contribution

The first author was responsible for the entire comparison study of all techniques. This includes all

performance tests, the analysis of memory consumption, and the assessment of image quality followed

by a user study. Christoph Neuhauser designed a software, called PixelSyncOIT, to implement and

compare all object-order techniques and voxel ray casting presented in the paper. In discussions with

the first author, he designed an improved version of Multi-Layer-Alpha Blending with bucket sorting.

Torben Maack implemented GPU ray tracing of transparent line sets using the RTX API via Vulkan

on the latest NVIDIA RTX graphics cards. Mengjiao Han and Will Usher helped to implement CPU

ray tracing, and, in particular, Mengjiao Han conducted performance tests on the CPU. Together with

Prof. Dr. Rüdiger Westermann, the major content of this paper was created.

Copyright: 2020 IEEE, Reprint. Used in this thesis with permissions from Christoph Neuhauser, Tor-

ben Maack, Han Mengjiao, Will Usher, and Rüdiger Westermann. IEEE Transactions on Visualization

and Computer Graphics, February 2020.
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5.1 Future Work

The visual analysis of atmospheric features can further be improved in the future by taking into ac-

count both the spatial and temporal evolution of atmospheric features in ensemble weather forecasts.

For instance, our detection methods could be extended to a more probabilistic approach, where the

probability at a local point indicates the likelihood of feature occurrence in an ensemble data or fore-

cast series. Optical flow techniques could also be used to track individual sets of features and to convey

possible split and merge events of features over time. In addition to that, existing or new formulas

for the genesis and dissolution of atmospheric features could be incorporated into the automated de-

tection process. We have also encountered that feature characteristics can greatly vary with height.

For instance, features near the surface tend to have stronger characteristics than those in the upper

atmosphere. Here, it would be interesting to investigate whether the filter criteria could be modified

to automatically adapt to the altitude or location of a feature. Regarding atmospheric fronts, we have

encountered that frontal surfaces suffered from multiple interruptions due to vanishing horizontal

gradients. This is mainly because only the 2D horizontal thermal gradients are considered during the

detection of frontal surfaces. It could be investigated in the future whether the vertical component of

thermal gradients or additional parameters could be used to improve this detection scheme.

Concerning the clustering of ensembles of jet-stream core lines, it was not always possible with

binary clustering to assign lines to specific disjoint groups. Therefore, the binary classification of

groups in ensembles of lines could be replaced by fuzzy clustering, where each ensemble member

is assigned with a probability that it belongs to a certain group. This probability could be used to

visualize the uncertainty in an ensemble of shapes. Furthermore, there is room for improvement for

the comparison of line sets with vastly different topology. As the Hausdorff metric and mean-closest

point distance do not always best represent the (dis-)similarity of line sets, the design of a better
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similarity metric or an alternative (implicit) representation of line sets is desirable to improve line

clustering.

In terms of transparency rendering, we have encountered during the user study that the comparison

of image quality between the result of approximate techniques and ground truth renderings is not

trivial. Image quality metrics, such as peak-signal-to-noise ratio or the structured similarity index

have often failed to communicate whether the quality is sufficient to interpret large line sets, while

avoiding any misinterpretations of the data. In the future, it will be interesting to conduct further

user-studies to investigate within the context of scientific visualization, how the visual perception of

large line sets is affected by rendering artifacts produced by approximate rendering techniques.

Within the last years, the application of neural networks (deep learning) has greatly emerged for

nearly every different research area. Regarding the definition of fronts, for instance, meteorologists

have not yet agreed on the question of which physical quantities should be used to objectively identify

fronts. Neural networks could help to automatically identify features from a set of several physical

quantities. 2D weather charts from weather centers could be used here to provide the networks with

information about manually identified atmospheric features during their training process. Given that

neural networks can identify these features, this procedure could support forecasters to better under-

stand how quantities are related to atmospheric events and may help the meteorological community

to improve existing feature definitions in the future. Neural networks have also successfully been

trained to deliver a score that measures the similarity between two images wrt. visual perception,

such as with the Learned Perceptual Image Patch Similarity (LPIPS) [ZIE∗18]. Hence, networks could

also be employed to estimate the similarity of different line or surface features extracted from numer-

ical weather data. However, the similarity of line features needs to be defined, for instance, by experts

to inform the networks during training which pairs of line sets are considered to be (dis-)similar based

on their topology and orientation.

In terms of clustering, existing dimensionality reduction and clustering techniques fail to commu-

nicate trends in thousands of numerical weather ensembles, either due to the massive dimensionality

and noise in the data or due to high computational costs. Hence, autoencoding strategies, such as

(conditional) variational autoencoder [KW19b, SLY15], could be employed to infer a low-dimensional

representation from high-dimensional ensemble data. Variational autoencoders learn to reproduce

their original input while inferring a statistical distribution encoded in a low-dimensional mapping.

The statistical distributions are often expressed as Gaussian distribution with mean and standard devi-

ation. Thus, the learned distributions could be used to describe the uncertainty of feature occurrence

in the data.
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5.2 Conclusion

In this thesis, we have proposed detection methods and visualization techniques to automatically ex-

tract and visualize 3D atmospheric features and their characteristics in numerical weather data. This

facilitates a novel 3D visual analysis of atmospheric processes, which has not been possible before-

hand in meteorology, as meteorologists relied on classical 2D approaches operating on single height

levels. Concerning feature detection, we have proposed a robust 3D detection method to identify

jet-stream core lines from volumetric wind fields [KHS∗18]. Our method is similar to ridge detection

but exploits the local wind direction to define a consistent frame-of-reference. With this, we have

demonstrated that our method is numerically stable and does not require any specific image-scale

space to properly identify core line features. We also employ color and tube-thickness mapping to

depict the distribution of atmospheric quantities along the displayed line features. In [KHS∗19], we

have also introduced a novel full 3D detection and interactive visualization technique to examine 3D

atmospheric fronts. Based upon the classical 2D objective front detection [Hew98], we retrieve all

loci of the 3D frontal surface at each vertical level and render its geometry with Marching Cubes or

isosurface ray casting. We further make use of normal curves to depict the frontal zone and employ

color-mapping to display physical quantities along the frontal surface or normal curves. Single front

features can also be selected to collect statistical information of atmospheric quantities within the

associated frontal zone. Since the characteristics of fronts vary with height levels, our framework

allows users to softly filter front features by mapping the used filter criteria to transparency.

To demonstrate the benefit of our detection methods, we have conducted several meteorological

analyses of real-world case scenarios and have shown that both our 3D depiction and analysis of

atmospheric features provide forecasters with new insights into the relationship between different

physical processes. Our visualization methods are not only useful for forecasting and meteorological

analyses but can also be used to automatically produce improved significant weather charts (SIGWX)

used worldwide for commercial aviation purposes. In summary, we are confident that our novel 3D

visualization methodologies for the depiction and analysis of atmospheric features can help to improve

the understanding of atmospheric processes and their interrelationship at all height levels.

We have also investigated the suitability of clustering to convey trends in an ensemble of vastly

different jet-stream core lines [KW19a]. In particular, three different clustering strategies have been

introduced which operate on either a) derived scalar fields, b) line geometry, or c) vector-to-closest

point volumes. Comparing the clustering results with trends contained in reanalysis data, we have

shown that our proposed strategies have the potential to reveal trends in an ensemble of line features.

Moreover, we have proposed methods to retrieve the frequency of feature occurrence via visitation

maps and obtain the central tendency in the ensemble data from vector-to-closest-point volumes.

Ridge detection can be used on these proxy fields to obtain artificial representations of a specific set

73



5 FINAL DISCUSSION

of jet-stream core lines. Our experiments have shown that these representations can also compete

with clustering methods in terms of trend inference. However, no clear recommendation for any

clustering technique or proxy geometry can be made as the results highly depend on the complexity

of the line sets. Nevertheless, we have found that a line-implicit representation is the most promising

technique to cluster vastly different line geometry as it can operate on line sets independent of their

topology and orientation.

Decoupled from specific atmospheric features, we have also conducted an exhaustive study of ren-

dering techniques to display large line sets with transparency [KNM∗20]. In this study, we have

compared different CPU and GPU algorithms wrt. run-time performance, memory consumption, and

image quality. The examined algorithms make use of either rasterization (object-order) or ray tracing

(image-order) and precisely or approximately compute the alpha-blending equation for thousands of

transparent layers with color. Based on our comparison study, we have proposed an improved sort-

ing strategy for Per-Pixel Linked Lists and an enhanced version Multi-Layer-Alpha-Blending (MLAB)

by dividing the scene into depth buckets. Furthermore, we have presented an algorithm to render

transparent line sets on the latest RTX graphics cards using the provided RTX rendering API.

The major findings of our study are that approximate rasterization-based approaches can attain

rendering results of acceptable image quality in real-time, while keeping the memory consumption

low. On the other hand, image-based approaches provide high-quality renderings, but come at the

expense of huge memory requirements and rather low run-time performance. Nevertheless, we have

encountered that transparency itself hampers the visual perception of spatial relationships between

multiple line sets. As already shown by Kanzler et al. [KRW18], global illumination (GI) effects,

such as ambient occlusion and self-shadowing, help to improve the visual perception of lines. As GI

effects cannot be easily integrated into object-order techniques, image-order approaches should be

preferred in this context. If GI effects are not desired, we suggest using MLABDB for scenes with a

moderate depth complexity and can recommend Moment-Based Order-Independent Transparency for

highly large line sets depicted with multiple colors and transparency settings. Regarding approximate

techniques for object- and image-order rendering techniques, we have also conducted an informal

user-study to evaluate whether their image quality is acceptable wrt. scientific visualization. While

approximate rendering techniques produce errors in the final image, users have stated that they are

still able to locate features-of-interest and have concluded that the visual perception of line sets,

despite approximation errors, is retained. We also see potential in the usage of hardware-accelerated

ray tracing with NVIDIA RTX graphics cards, as all transparent lines sets, used in our comparison,

can be rendered in real-time on the GPU. This makes the design of GPU-based ray tracing exciting for

future scientific visualization projects.
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Robust Detection and Visualization of
Jet-stream Core Lines in Atmospheric Flow

Michael Kern, Tim Hewson, Filip Sadlo, Rüdiger Westermann, and Marc Rautenhaus

(a) (b) (c)

Fig. 1. (a) Jet-stream core lines extracted from a 3D wind field with our method, colored by flight level (hft). To the best of our knowledge,
these features are still created manually by domain experts in operational weather forecasting and provided via 2D maps, as shown in
the inset. (b) Normal plane perpendicular to the wind vector, used by our method as a local coordinate frame to extract jet cores. Color
shows wind speed (ms−1). (c) 3D ”spaghetti plot” visualization of an ensemble of jet-stream cores (color shows wind speed as in (b))
enables an improved analysis of their spatial structure, forecast uncertainty, and relation to further atmospheric features including, e.g.,
mean-sea level pressure (MSLP; black contour lines, red regions indicate where pressure is below 1000 hPa).

Abstract— Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological
research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been
proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not
possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the
best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we –a team
of visualization scientists and meteorologists– propose a method that exploits directional information in the wind field to extract core
lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted
3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method’s benefits for weather
forecasting and meteorological research.

Index Terms—Meteorology, weather forecast, jet-stream, feature detection

1 INTRODUCTION

The improvement of weather forecasts and climate change projections
depends heavily on documenting and understanding complex three-
dimensional structures in the atmosphere. A key component of those
structures is the jet-stream. Jet-streams are regions of high wind speed,
typically encountered near to the top of our principal weather sys-
tems, at altitudes of about 8-16km. As well as determining the general
weather type –such as blocking and storm tracks– they also exert a
strong dynamical influence on severe weather events, such as extreme
windstorms [2]. Jet-streams are also related to clear-air turbulence
(CAT), important for daily aviation operations. In this respect, jet-
stream core lines –lines of maximum wind speed– are operationally
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depicted as fundamental atmospheric structures on significant weather
(SIGWX) charts used by pilots [53]. Even though a concise definition
of jet-streams has long been provided by the World Meteorological
Organization (WMO) [54], jet-stream core lines in operational weather
forecast settings are, similar to other atmospheric features including
fronts, still identified manually. This process is time-consuming, re-
quires expertise, and does not allow for a full analysis of the 3D geom-
etry of the jet-stream core lines and how this relates to features of the
surrounding atmosphere.

In this article, we approach the still unsolved question of how jet-
stream core lines can be objectively identified from three-dimensional
numerical weather prediction (NWP) data in an automated, robust
manner, and visualized in a way that can benefit a subsequent in-depth
meteorological analysis of the model atmosphere.

1.1 Problem Description
A jet-stream is officially defined by the WMO as a “flat tubular, quasi-
horizontal, current of air generally near the tropopause, whose axis is
along a line of maximum speed and which is characterized by great
speeds and strong vertical and horizontal wind shears” [54]. Its core
line is defined as the “line along which the wind speeds are maximum
both in the vertical and in the horizontal” [54]. Yet in spite of the
pivotal role that jet-streams and their core lines play, as a driving
force in atmospheric dynamics, we are unaware of any objective three-
dimensional identification methodology built on this definition that can
be applied in a practical way to meteorological analysis.
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Such automated detection and visualization of jet-stream core lines
is much needed because of the following:

• Using a single 3D visualization, with a fly-through capability, it
would provide a greatly increased capacity to understand the key
relationships and dependencies between multiple atmospheric
processes and the jet.

• It would provide a new way of understanding and critically assess-
ing the uncertainty inherent in ensemble forecasts, and notably
occasions when there is insufficient spread, that results in ’fore-
cast busts’ around the world. Jet-stream behavior is implicated in
studies of these forecast failures.

• Automated core-line extraction is much needed to assist with the
generation of SIGWX charts for aviation; currently the manual
procedure relies heavily on representation of a single jet level.

A specific unsolved issue in meteorology that can benefit from
automated jet-stream core detection and for which we discuss the
application of our method is the modulation of the jet-stream by other
atmospheric processes and the influence of such modulation on the
predictability of downstream weather. Specific examples for such
processes include extreme convection over the United States [41], and
Warm Conveyor Belts (WCBs, airstreams in extratropical cyclones that
lift warm and moist air from near the surface to the upper troposphere;
e.g., [7]) over the north Atlantic, which can both modulate the jet-stream
and cause large uncertainties in predictions for European weather.

1.2 Contribution
The jet-stream core line definition provided by the WMO relates to the
definition of three-dimensional height ridges encountered in different
contexts in flow visualization [48], [46], [43]. Yet, while a number
of studies in meteorology have proposed methods to detect –mainly
two-dimensional– jet-stream features (cf. Sect. 2), to the best of our
knowledge no ridge detection method has been applied to the automated
extraction of 3D jet-stream core lines.

In this work, we propose a robust 3D detection method for jet-
stream core lines in NWP data that directly reflects the official WMO
definition and that relates to height ridge computation. By exploiting
the fact that jet-stream core lines are at very narrow angles to the wind
direction and the fact that the vertical wind component is negligible
compared to the horizontal in large-scale atmospheric flow, we can
determine the core lines as wind speed maxima in vertical planes
perpendicular to the horizontal wind direction. Thus, in contrast to
“classical” ridge detection algorithms, which determine maxima in
vertical planes spanned by the eigenvectors of the 3D Hessian matrix,
our approach does not suffer from spurious variations due to noise, and
it can be enforced explicitly that the planes are consistently oriented. As
a consequence, the jet cores extracted by our method are more robust,
i.e., less disjointed and cluttered. Furthermore, our method does not
require excessive blurring of the underlying field and can work on the
original data. Fig. 2 demonstrates the differences in the extracted jet
cores using both methods.

We integrate our new detection method into the interactive 3D me-
teorological ensemble visualization tool “Met.3D” [38], facilitating
combination of the detected features with further atmospheric visu-
alizations, and propose a number of visualizations of the core lines
that help with the analysis of NWP data to investigate the motivating
meteorological research questions. In particular, we visualize

• 3D jet-stream core lines in combination with 3D depictions of
atmospheric processes including clouds,

• 3D spaghetti plots of jet-stream core lines extracted from ensem-
ble weather forecasts to depict forecast uncertainty with respect
to the jets,

• the relation of the core lines to local streamlines and surrounding
atmospheric conditions (such as cloud water content or surface
pressure),

• an automated SIGWX jet-stream product.

We apply the proposed techniques to analysis of NWP data from
the European Centre for Medium-Range Weather Forecasts (ECMWF),
demonstrating insight that can be gained regarding the posed meteoro-
logical research questions.

2 RELATED WORK

Our work relates to research connected to jet-streams and their detection
in the atmospheric sciences, and to the extraction of line features in
flow visualization. Concerning the latter, ridge detection is of particular
importance.

2.1 Jet-stream Detection
Major references for jet-streams and their characteristics, including
previous research and a description of manual analysis methods, date
back to the books by Reiter [39] and Palmen and Newton [34]. Here, the
jet-stream axis on a 2D chart was introduced as the “line of maximum
wind speed”. The “layer of maximum wind” (LMW) was introduced
as a method to analyze the 3D jet-stream axis (=core). The LMW
was operationally used for weather forecasting in the U.S. (cf. [49])
and is also utilized today in operational production of SIGWX charts
(Sect. 5.1).

Automatic extraction of jet-streams has been mainly investigated in
the past 15 years, primarily to compile climatologies. Some authors
try to identify core lines, others simply use speed thresholds. Often
the classification of a model grid point as belonging to a jet-stream has
been considered sufficient. Also, studies commonly look first for the
maximum wind in the vertical, as in the LMW concept.

Koch et al. [20] counted events for each horizontal grid point where
the average wind speed between 100 and 400 hPa exceeds a threshold,
whilst Archer and Caldeira [1] used mass-flux weighted averages to
determine jet-stream events per horizontal grid point. Similar height-
dependent thresholding on wind speed was used by Limbach et al. [23]
and Martius [31]. Meanwhile Schiemann et al. [45], Pena-Ortiz et
al. [36] and Barton and Ellis [3] compute jet-stream core events in
various ways, but with the common assumption that jets must propagate
west to east. Also for the purpose of a climatology, Gallego et al. [12]
defined a criterion based on a geostrophic streamline of maximum
average velocity to get jet-like streamlines circumventing the southern
hemisphere.

Strong and Davis [49–51] used a notion similar to the LMW. The
core is detected on their LMW equivalent by computing wind speed
maxima via finite differencing in the y-direction only. However line
geometry was not used. Manney et al. [29,30] constructed a climatology
of jet-stream cores by cataloging wind speed maxima on longitudinal
cross-sections (no detected line geometry). More recently, Molnos et
al. [32] introduced a network-based scheme using shortest paths to
detect jet-stream core as a continuous, globe-circumventing line. The
method is calibrated using an image-based jet analysis technique by
Rikus [40], and used to compute frequencies of jet-core occurrence.
Recently, Spensberger et al [47] adapted a 2D criterion by Berry et
al. [4] to 2D wind fields on a “dynamical tropopause”, an isosurface of
2 PV (potential vorticity) units.

Most of the above methods are not Galilean invariant. They mostly
depend on assuming a priori that the jet-stream exhibits certain charac-
teristics; for example that it is westerly. In contrast, the methodology
in this paper, which follows on principally from techniques described
in Berry et al (2007), is Galilean invariant, and will identify jet-streams
equally in all directions and at all atmospheric levels.

2.2 Line Features in Fluid Dynamics / Flow Visualization
Feature extraction is an important tool and an active branch of research
in flow visualization. A particular reason for its importance is the com-
parably high dimensionality of vector fields—they add the difficulty
of three-dimensional range visualization to the already difficult repre-
sentation of three spatial and one temporal dimensions of their domain.
The fact that flow fields, which are a primary source for vector fields,
tend to exhibit turbulence and chaotic advection further complicates
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their analysis, necessitating effective visualization approaches with as
few parameters as possible.

Line-type features are particularly useful for this purpose due to sev-
eral reasons: they are able to give a concise picture of flow fields, do not
suffer from occlusion, and there are many variants that are conceptually
free of parameters. A widely used and very successful line feature
in flows is the vortex core lines. As no general definition of a vortex
has been found so far, there exist also several competing definitions
for vortex core lines. A vortex core line can be seen as the (possibly
bent) axis of vortical fluid motion, representing the set of points around
which massless particles in the flow swirl. A widely used definition
for vortex core lines is that by Sujudi and Haimes [52]. Peikert and
Roth [35] presented a mathematical framework, the parallel vectors
operator, in which Sujudi and Haimes’ definition can be formulated as
the loci where the real eigenvector of the Jacobian of the vector field is
parallel to the flow vector, with the additional requirement of the other
two eigenvalues being complex. An other prominent vortex core line
definition is that by Levy et al. [22], which, in this framework, requires
the vorticity vector to be parallel to velocity. The parallel vectors oper-
ator, representing line-type features in general as the locations where
two (derived) vector fields are parallel or anti-parallel, can also be used
for defining separation lines and attachment lines [18], and the related
bifurcation lines [27, 42].

In scalar fields, a prominent line-type feature is that of ridges and
valleys. Ridges and valleys can be interpreted as generalized local
extrema. Local extrema in n-dimensional scalar fields can be defined
as points which exhibit a respective extremum in n orthogonal profile
sections cutting through that point. If we relax this condition by one
dimension, i.e., taking the set of points at which only n−1 orthogonal
profile sections exhibit a local maximum (minimum), we obtain ridge
(valley) lines. In early work in the context of surface topography, ridges
and valleys were first mathematically described and idealized [5, 8].
Ridge extraction (we imply here also valleys, since valleys can be
obtained by extracting ridges from the negated field) is widely applied
in image analysis and computer vision, with a digital image treated as a
scalar field. Ridges serve as characteristic structures in these domains,
complementary to edges, within the boundaries of objects [14, 24, 28].
For ridge surfaces, i.e., where only one profile section has to exhibit
a local maximum, Furst and Pizer [11] presented an approach for
their extraction from 3D scalar fields, by tracing them through the
volume. Ridge surfaces were applied to volumetric data by Kindlmann
et al. [19] to visualize diffusion tensor MRI data. In the context of
flow visualization, ridges have become a common tool to indicate and
extract, e.g., vortex core lines [48], flow separation [46], by Sahner
et al. [44] to visualize vorticity and strain, and by Sadlo et al. [43] to
display separating regions of different flow behavior in unsteady vector
fields. Peikert et al. [35] described an efficient and alternative way
to compute and filter height ridges with an implicit formulation with
respect to the eigenvectors of the Hessian.

2.3 Ridge Detection
A widely used formulation for ridges is that of height ridges by means
of the gradient and the Hessian of a scalar field. Let s(~x) be the 3D
scalar field where we want to extract ridge lines from. Height ridge lines
according to Eberly [10] are defined by the parallel vectors operator as
the loci where

∇s(~x) ‖ ~ε3 , (1)

i.e., where the major eigenvector~ε3 of the Hessian ∇∇s(~x) and the gra-
dient of the scalar field are (anti-)parallel, with the additional condition
that the two other eigenvalues need to be negative:

λ1 < 0, and λ2 < 0 , (2)

with λ1 ≤ λ2 ≤ λ3, and~εi being the eigenvector for eigenvalue λi.
In this formulation,~ε3 is considered parallel to the ridge line tangent,

and~ε1 and~ε2 perpendicular to it (note that the eigenvectors form an
orthonormal system because the Hessian is symmetric). That is, we
can consider ~ε1 and ~ε2 being normal vectors to the ridge line. One
difficulty with this assumption is that it is typically never exactly met

(a) (b)

(c) (d)

Fig. 2. 3D visualizations of maxima lines extracted from a 3D wind
field. Shown are extracted lines via (a) the “classical” 3D ridge detection
algorithm (yellow polylines) and (b) via our proposed method (green),
restricted to regions with a wind speed of at least 40 ms−1 (enclosed by
the dark-greyish isosurface). (c) Two maxima depicted by the contour
lines of windspeed (color shows windspeed in ms−1) in a vertical section
are not properly detected by ridge detection. (d) Our method robustly
extracts jet cores even where ridge detection fails.

in practice. The angle α between the (anti-)parallel vectors ∇s(~x) and
~ε3, and the feature tangent is, for well-defined ridges, commonly larger
than 25 degrees. Peikert and Roth [35] use α as a quality criterion
for extracted ridge lines, and filter their regions by imposing an upper
threshold on this value, i.e., rejecting ridge line parts where this angle
exceeds the threshold. It is not uncommon that the threshold needs
to be set above 45 degrees to obtain useful results in practical data,
which means that the eigenvectors may switch role regarding their
“orthogonality” to the line feature tangent. An involved difficulty is
that the gradient and the Hessian need to be estimated from the data,
suffer from amplification of noise, and that obtaining smooth and at
the same time interpolation-consistent derivatives is a difficult and
often, as in the case of trilinear interpolation, impossible undertaking.
All in all, although useful and widely employed, height ridges by
means of eigenvectors of the Hessian tend to suffer with respect to
robustness, false positives, and false negatives (disruptions)—often
impeding effective visualization (compare Fig. 2). A main reason for
these issues is the instability of the eigenvectors of the Hessian with
respect to the aimed ridge line feature.

In this work, we present, for the special case of scalar fields derived
from vector fields, as is the case for jet-stream cores, an approach that
avoids the computation of the Hessian except for masking purposes.
Instead, we derive the required two normal directions across the ridge
line from the vector field itself—and although these are, in general,
also not strictly perpendicular to the resulting feature line, they are as
continuous as the vector field—leading to superior results.

3 DETECTION METHOD

3.1 Definition and Assumptions

Based on the WMO definition, we define and interpret jet cores as
follows: A jet core is a core of fluid having higher momentum than its
surroundings. By examining the plane perpendicular to the momentum
vector at every point in space, one can ascertain whether each point
belongs to a jet core. In large-scale meteorology, momentum in the
vertical plane is negligible. Therefore, jet cores lie in an approximately
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Fig. 3. (a) Sketch of the normal plane at a jet core intersection point.
On the normal plane, colored contours of wind speed Vs (low speeds
are yellow, high speeds red) are shown. The cyan (red) dotted line
shows where the vertical (horizontal) derivative along the plane is zero.
The jet core crosses the plane at the intersection of these zero lines.
(b) Illustration of the local coordinate system in the 2D wind vector field
used to construct the normal plane. ~s is the unit vector tangential to the
current streamline, ~n is normal to it.

horizontal plane, and, thus, the normal planes are always vertical. If
within its normal plane a point is a local maximum in resolved mo-
mentum then it belongs to a jet core. The connection of all maxima
points form the jet core lines. In an NWP model, the momentum p per
grid point is defined as p = ρ~v, where ρ denotes the density and~v the
velocity (or wind vector), both changing over time. Since we assume
that the density ρ of the air is locally constant the resolved momentum
at each grid point is maximal if the wind speed |~v| is maximal within
its normal plane. Fig. 3 illustrates the definition.

In our mathematical definition of jet cores we are employing the
notion of following lines along which there is both zero horizontal and
vertical shear. On a jet axis there is zero shear vorticity (as in [4]).
And similarly in the vertical there is zero (speed) shear in parallel
components. Additional masking is applied to further eliminate all wind
speed minima and light wind conditions in general (also following [4]).

3.2 Data

We use NWP data from the ensemble prediction component (ENS)
of the ECMWF Integrated Forecast System (IFS) (e.g., [21]), which
comprises 50 perturbed members and an unperturbed control forecast.
Data are available on a regular longitude–latitude grid in the horizontal,
whilst in the vertical terrain-following hybrid sigma-pressure coordi-
nates are used [37]. In this work, we use ECMWF ENS forecasts
initialized at 00:00 UTC, 22 and 25 September 2016.

The output 3D wind vector ~v = (u,v,ω), defined at grid points in
longitude–latitude–pressure space, is composed of the horizontal wind-
components u (eastward wind) and v (northward wind) defined in
meters per second (ms−1), and ω (vertical wind) defined in Pascals
per second (Pa s−1). ω can be approximately converted to ms−1,
however, its order of magnitude is significantly smaller than that of
the horizontal wind: O(0.05 ms−1) compared to O(50 ms−1). The
vertical wind component thus has a negligible impact on both direction
and magnitude of the 3D wind vector, we can hence ignore ω for jet
core detection.

3.3 Mathematical Framework

Based on the official WMO definition and our understanding of jet cores
in atmospheric flow, we elaborated a framework to mathematically
define jet core lines in NWP model data. With these equations, we
are able to robustly compute candidate points for jet cores and extract
three-dimensional curve lines representing the jet-stream cores from a
volumetric, gridded wind vector field.

Our method is built upon the notion of maxima ridges in 3D wind
fields, i.e., we are aiming for the detection of local maxima points along
a local coordinate frame (the normal plane) perpendicular to the current

velocity vector. In principal, we have done so by following “classi-
cal” ridge extraction techniques. However, we found that computing
eigenvectors in real-world 3D data sets tends to be unstable, resulting
in jet cores that are commonly disjointed and cluttered (see Fig. 2 for a
comparison). To avoid this, we introduce an alternative approach that,
under the assumptions we make, can extract jet cores well aligned with
those analyzed in operational weather forecasting, yet in a far more
stable way.

Our method employs a fixed local frame-of-reference (Fig. 3) to
locate our candidate points for the final jet core lines. As such it builds
on the approach adopted by [15] to identify atmospheric front lines
objectively, and [4] who identify 2D trough axes and 2D jet cores.
Consider a local coordinate system (~s,~n) at a grid point X , where~s is
parallel to the local 2D (horizontal) wind vector ~V = (u,v), and ~n is
normal to it. Then, the horizontal wind vector at each grid point can be
split into two constituent components: ~V = (u,v)≡ (Vs,Vn) where Vs
is the wind speed along the vector~s and Vn is the wind speed along~n.
The magnitude V of the wind vector at X is V = |~V | = Vs, since ~V is
parallel to~s and Vn is locally zero.

For each grid point surrounding X , let Vs be the magnitude of the
local wind vector resolved into direction ~s. The jet-stream core co-
locates with lines along which Vs is maximal within the local two-
dimensional normal planes spanned by ~n and~z. This is given if the
derivatives in the horizontal and vertical direction are both locally zero:

∂Vs

∂n
= 0 (3)

∂Vs

∂ z
= 0 (4)

These equations denote three-dimensional contorted isosurfaces (of
zero shear vorticity), where the quasi-vertical isosurface is described
by Eq. 3 and the quasi-horizontal sheet is described by Eq. 4. The set
of all extremum points in 3D-space, which are considered the potential
candidate points for the jet cores, is defined by the intersection of
these two isosurfaces. Connections of these candidate points resemble
polylines in 3D-space. We are interested in regions of high wind speeds,
usually above about 40 ms−1; therefore, core lines detected in light
wind conditions need to be removed. We hence add an inequality mask
(Eq. 5) to Eqs. 3 and 4 to focus on high wind speeds (this also helps to
circumvent noise). For a given threshold α (in ms−1) each candidate
point has to satisfy:

Vs > α (5)

From all extremum points that are candidates for the jet cores we
need to filter out all those that are a local minimum or a saddle point.
The type of the extremum point within the ~n-~z-plane (local “normal
plane”) can be determined by the local Hessian matrix and the sign of
its corresponding eigenvalues. The Hessian matrix HN within the local
normal plane coordinate frame is defined as follows:

HN =




∂ 2Vs

∂n2
∂ 2Vs

∂n∂ z
∂ 2Vs

∂ z∂n
∂ 2Vs

∂ z2


 (6)

Given the Hessian matrix HN , a line point is said to be a local (con-
vex/elliptic) maximum if the sign of both eigenvalues is negative.
Hence, an additional mask is applied to all line points to extract only
those where the following inequalities hold:

λ0 < 0,λ1 < 0 (7)

The computed eigenvalues λi are real since the Hessian matrix HN is
symmetric.

The major difference to ridge extraction techniques working directly
on the 3D wind field is that our technique works in a fixed reference
frame. Thus, we avoid working in the eigenvector-frame for both the
computation of first and second order derivatives, and we can thereby
avoid oscillations –due to oscillating eigenvectors– in the frame of
reference for the first derivatives. This makes the technique significantly
more robust for jet core extraction. Indeed this local coordinate-based
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mechanism for noise removal aligns closely with the mechanism used
in [15] to eliminate third-derivative noise during front detection (see
his Figure 6).

3.4 Feature Extraction
We now describe the numerical computations involved to extract jet
cores from 3D gridded wind fields.

3.4.1 Raw Features
We call the set of candidate points that satisfy Eqs. 3 and 4 “raw
features” that potentially belong to a jet core. To extract raw features,
we first compute the directional (horizontal) and vertical derivatives in
3D-space at every grid point X : First, the local coordinate frame (~s,~n)
is derived at X by using the unit vector parallel to the local horizontal
wind vector and computing the orthogonal normal vector. Second, the
local wind vectors at surrounding grid points are projected onto~s.

To solve Eq. 3, the directional derivative into direction~n, we apply
the chain rule to obtain

∂Vs

∂n
= (~n ·~∇)Vs = nx

∂Vs

∂x
+ny

∂Vs

∂y
. (8)

The partial derivatives are computed using finite differences, taking
care of the geometric distance between two grid points in x and y-
direction. As Vs is defined in ms−1 and the horizontal grid is defined
in longitude–latitude space, we need to ensure consistency in the used
distance metric. While the distance between two latitudinal points is
constant over the globe at approximately 111 km per °, the longitudinal
distance decreases towards the poles. Assuming a spherical globe, it
can be computed by scaling the equatorial distance (111 km per °) by
the cosine of the latitude.

The vertical derivative (Eq. 4) is computed via finite differences at
each grid point X at level k into the direction of~z, by using the resolved
wind vectors of the surrounding levels. Here, the vertical position
of each grid point defined in pressure space needs to be converted to
geometric height (in m) first.

3.4.2 Zero-Isosurface Crossing Extraction
A naive approach to compute the intersection of two isosurfaces im-
plicitly defined in a 3D scalar field on a discrete voxel grid uses the
Marching Cubes algorithm [26]. The triangle geometry of both isosur-
faces is extracted, and per-voxel triangle intersection tests compute the
intersection lines. Such an approach, however, would be very inefficient
since we do not require the entire isosurface geometries but only the
geometry of the raw line features.

We hence use the Marching Faces algorithm proposed by Ljung
and Ynnerman [25] to implicitly extract intersection lines between
two isosurfaces from two co-located scalar fields. Marching Faces
traverses each voxel of a 3D grid and computes the intersection points
of isosurface crossings at each voxel face, by computing crossings of
the isolines of each isosurface at a face. Isolines are approximated by
linear interpolation along the face edges (similar to Marching Squares),
the crossing of two isolines is computed analytically.

Ljung and Ynnerman’s approach first identifies all intersection points
per voxel face in parallel, then joins points sharing a common voxel
face to create a polyline. We have modified this approach and in our
method directly trace the polylines through the grid. We traverse the
grid along subsequent voxels and combine points that share a common
face; tracing is stopped if a voxel does not contain a suitable intersection
point or a looped curve is detected.

3.5 Filtering
After raw features have been extracted, the resulting lines are filtered
to obtain features that represent local maxima in wind speed. First,
all candidate points of too low wind speed are removed by applying
Eq. 5 to each raw feature vertex. Results from two different windspeed
thresholds are shown in Fig. 4a (40 ms −1) and b (10 ms −1). A
smaller threshold increases the number of jet core lines as well as their
length. For the application cases in this work, the domain experts were

interested in jet cores with a velocity of at least 40 ms−1; we use this
threshold throughout this paper.

(a)

(b) (c)

Fig. 4. 2D visualization of jet-stream core lines. (a) Core lines exceeding
40 ms−1, filtered according to a minimum length of 500 km and a maxi-
mum angle of 55°. Tube thickness maps to the magnitude of the wind
(thick lines indicate high wind speed), color maps to pressure elevation
(colorbar in hPa, lower pressure corresponds to higher height). (b) Same
as (a) but with length and angle filters disabled. (c) Same as (a) but with
the wind speed threshold reduced to 10 ms−1 (length and angle filters
enabled).

3.5.1 Hessian Computation
To determine which raw feature points belong to a local maximum,
i.e., where Vs is locally maximal in the ~n-~z-plane, we compute the
Hessian matrix and its eigenvalues (Eq. 6) at each line vertex. Since
the raw feature points are points in 3D-space and not located on the
grid points, we compute the entries of HN as follows: Second partial
derivatives with respect to Vs are computed per grid point and are each
stored in a separate grid. The second derivatives at a given line vertex
are then obtained by tri-linear interpolation using the 8 grid points
surrounding the vertex. As the Hessian matrix is approximated on a
finite grid and its eigenvalues tend to oscillate, points can be falsely
rejected (or accepted). Thus, we introduce a threshold β to soften the
criterion in Eq. 7: λi < β , where β is a small positive value. Short line
disconnections due to false rejections are in our method counteracted by
a curve-following algorithm which keeps track of the eigenvalues along
a core line. Falsely rejected points that are enclosed by two accepted
points are subsequently corrected.

3.5.2 Geometric Length
Aviation centers are generally interested in jet-stream cores that at
least extend over a certain distance; these cores are expected to have
more influence on surrounding atmospheric conditions than short jet
cores. We compute the geometric length of each core line in kilometers
and remove lines whose length is below a user-specified threshold.
Fig. 4a and b shows the effect of this filter; as expected, more short jet
cores are detected when the length filter is omitted. For the remaining
figures in this paper, we set this threshold to 500 km; shorter jet cores
often resulted from small maxima regions and did not contribute to the
analysis.

3.5.3 Angle Criterion
Numerical inaccuracies, in particular in regions in which the wind
speed differences are small or the local maximum is ill-defined, can
lead to misclassification of raw feature points, i.e., saddle or minima
points are falsely detected as local maxima. These misclassified points
can lie between two close jet cores and can be relocated to the same
voxel. In such a case, our line tracing algorithm from Sec. 3.4.2 may
combine the ends of two distinct lines so that the resulting jet cores
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Fig. 5. Core lines rendered in 3D (colored by wind speed in ms−1).
Shadows cast to the ground and vertical drop-lines (labeled by pressure
in hPa) significantly improve spatial perception of the view. Black surface
contour lines and red highlighted regions show MSLP as in Fig. 1, aiding
the analysis of the relation of the jet cores to surface weather systems.

can exhibit unphysical “bending”. To filter such cases, we determine
horizontal angle between each two core line segments and vertical
pressure differences at the core line end segments, and apply filters to
remove lines that exceed a user-defined angle or pressure difference
threshold. Choosing high angle thresholds can result in more sharply
bent core lines (especially in saddle point regions), as illustrated in
Fig. 4c. For this work, we found thresholds of 55◦ and 10 hPa for angle
and pressure, respectively, to yield good results in our examples.

3.6 Performance
Ljung and Ynnerman [25] showed the complexity of computing the
intersection between two isosurfaces to be O(

√
N), where N is the

number of triangles in the isosurfaces (which in turn depends on grid
dimensions and the characteristic of the considered scalar fields). Our
subsequent filtering of the core line candidates is of order O(M) (M
being the number of intersection points, i.e., vertices of the jet cores),
yielding a total detection complexity of O(

√
N +M).

We have measured the performance of a CPU implementation of our
detection algorithm in Met.3D [38] on a desktop computer equipped
with an Intel Core i7 3770 processor with 4.0 GHz×4 cores, 32 GB
RAM and an NVIDIA Geforce GTX 970. For an ENS forecast with
a grid spacing of 1◦ in both latitude and longitude and a grid size of
131×66×70 cells, the isosurface intersection step took less than 300 ms
for each single member of the 51 ensemble members. Core line filtering
was performed on average in about 140 ms per member. A larger grid
with a horizontal grid spacing of 0.15◦ and 268×669×72 cells required
about 5 s for the isosurface intersection and 1.3 s for filtering.

4 VISUALIZATION TECHNIQUES

We have designed a number of visualization techniques to facilitate
improved visual analysis of the detected 3D jet-stream cores in both
2D and 3D space. Our techniques support domain experts in their
analysis and provide answers to important questions concerning jet
cores: specifically their 3D shape, the strength of the wind along them,
their orientation in relation to the wind direction, and their elevation.

4.1 Jet Core Rendering
Core line geometry is rendered in 2D and 3D as tubes. Fig. 4 shows
how arrow glyphs placed at the end of each jet core line indicate their
orientation; core line parameters can be encoded via tube thickness and
color. This facilitates the simultaneous visualization of, (e.g.) wind
speed and pressure elevation or flight level. For example, in Fig. 4,
wind speed is mapped to tube thickness and pressure to color; the core
lines are mainly located at pressure elevations between 200 and 300 hPa.
Thin lines represent cores of weak wind speeds and likely small impact,
whereas thick lines depict cores of potentially high impact.

Fig. 5 shows a 3D visualization, displaying the full 3D structure of
the core lines. Notably, this 3D structure cannot be communicated via
standard SIGWX charts. Since spatial perception in 3D renderings is

crucial to meteorological analyses (cf. [38]), we render tube shadows
cast by a directional light source from above onto the surface to show
the horizontal location of the core lines. Based on feedback from
domain experts in our author team, we additionally provide drop-lines
to further improve spatial perception in the vertical. The drop-lines are
vertical axes connecting the core line with the surface, placed at the
endpoints of each core line. They are augmented by text-labeled tick
marks at user-defined pressure levels to display quantitative elevation
information (Fig. 5).

4.2 Jet Cores in Atmospheric Flow

(a) (b)

(c)

Fig. 6. Visualization of a jet-stream core line (green) and a horizontal sec-
tion of the wind speed field (color in ms−1), (a) in combination with wind
barbs, (b) with additional blue-colored streamlines, seeded along the
core line at a fixed interval, and (c) all jet core lines and their streamlines,
with MSLP as in Fig. 5, over the North Atlantic. Such displays can help
scientists to analyze the jet core orientation relative to the flow direction.
In some locations the angle between the two is small, indicating that
little lateral movement of the core is expected in the near future (e.g.,
east of Newfoundland), whereas in others the angle is large, suggesting
jet core movement (e.g., near to and south-west of Ireland, where a
trough and jet cores on its forward and rearward flanks are all moving
east-northeast).

Jet-streams follow the large-scale, moving wave patterns in the
atmosphere. Newton and Omoto [33] showed that due to energy con-
siderations in a moving wave system, the jet-stream core line must
meander across the flow’s streamlines; the jet-stream wave can only
move if there is a wind component normal to the core (cf. Fig. 11
in [33]), and indeed moves with a speed approximately equal to the
jet-core-normal wind component. Equivalently, only in a stationary
wave in which the jet core has a uniform speed is the core line expected
to be everywhere tangential to the streamlines. To shed light on the
strength of the meandering in real-world forecasts, and hence on the
expected advection of a core with the wind, we provide options to
visualize the cores in the surrounding flow field. The core lines can
be embedded into visualizations using standard wind barbs (Fig. 6a)
to provide map-based displays similar to those typically used in oper-
ational settings. Additionally, streamlines (started at intervals along
the core) can highlight the deviation between the core and local flow
direction (Fig. 6b and c).

Visualization of jet cores along with further atmospheric fields (Fig. 5
and Fig. 6b) provides entirely new possibilities to examine the relation
of the cores to weather events of interest. For example, 2D surface
fields including mean-sea-level pressure can be displayed as line and
filled contours (Fig. 6b), whilst 3D fields including cloud water content
can be visualized as 3D isosurfaces (Sect. 5.2). In such examples one
can examine jet cores and their connection to cyclones and anticyclones,
or the relationship of jet cores to extreme weather (such as heavy rain
and strong surface winds).
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4.3 Ensemble Uncertainty
The visualization techniques presented above show just a single forecast.
In operational forecasting, ensembles of forecasts are in widespread
use (e.g., [13]) and need to be analyzed to investigate the uncertainty
represented by the forecasts. In particular, experts need to examine the
variability and coherence of predicted weather conditions and, thus,
with respect to our work, the spread of detected jet cores across all
ensemble members.

Fig. 7. 3D jet-stream core lines detected from the wind fields of 51
ensemble members of an ECMWF ENS forecast. Line color shows wind
speed (ms−1), MSLP is rendered as in Fig. 5.

To support such analyses, we provide ”spaghetti plots”, a simulta-
neous display of multiple members in a single image. Fig. 7 shows an
example of a 3D spaghetti plot, including the core lines of all ensemble
members of the considered forecast. The wider the jet cores are spread
over the map, the more the forecast can be considered uncertain.

5 RESULTS

To demonstrate the value of our method, we discuss two applications.
The first application demonstrates the automatic generation of jet-
streams for a SIGWX product. The second case considers a real-world
ensemble forecast from the recent North Atlantic Waveguide and Down-
stream Impact Experiment (NAWDEX, [9]), an atmospheric research
field campaign involving one of the authors. The analysis of ensemble
behavior during the campaign cases is a major focus of the –at the time
of writing ongoing– data analysis activities of the campaign.

5.1 Significant Weather Charts
Jet cores are marked as one component on official medium and high
level SIGWX (significant weather) charts prepared for aviation pur-
poses by meteorologists, following regulations of the International Civil
Aviation Organization [17]. In practice, forecasters at the UK Met Of-
fice, one of the two world area forecast centers (WAFCs), perform this
manually, broadly as follows (pers. comm., P. McGarry and D. Naylor):

1. Examine 2D fields of forecast maximum wind (in a vertical sense)
depicted as isotachs (lines of constant wind speed) and vectors,
supplemented by gridded wind data for various levels.

2. Draw jet core lines that broadly follow the speed maxima, but
with a secondary consideration that the wind flags on the output
chart, that by convention have to be shown parallel to the core
line, do not depart too much from also being wind-parallel. Only
include cores lines where wind speed exceeds 80 knots.

3. According to regulations in [17], add supplementary jet-related
information, and also adjust to ensure correct prioritisation when
depicting multiple hazards, and intelligibility for users - for ex-
ample jet cores at two different levels cannot be overlaid.

Fig. 8 shows a comparison of an operationally issued SIGWX chart
and jet-stream core lines detected by our approach; a second example
is contained in Fig. 1. Having examined a number of cases we would
describe the agreement between the SIGWX and our plots as very good.
The main reasons for any discrepancies are as follows:

(a)

(b)

Fig. 8. Comparison of jet-stream core lines (a) manually identified by
forecasters on operational significant weather charts, shown as thick
solid arrows, with FLxxx notation alongside wind flags denoting flight
level (xxx in hft), and (b) automatically detected by our method, colored
by flight level (hft). Charts are valid at 00:00 UTC 25 September 2016;
core lines in (a) are based on various forecast models available to the
forecasters, those in (b) are based on the control analysis of the ECMWF
ensemble forecast.

• “Artistic licence” by the SIGWX chart analyst, who has to com-
bine multiple features intelligibly, with prioritisation, on their
chart, abiding also by some official rules regarding overlaps.

• Differences in interpretation of available data between analysts
(i.e., two forecasters given the same data would not produce the
same chart).

In Fig. 8, the area south of Nova Scotia (black arrow in Fig. 8b) is
interesting. Whilst our automated method picks out distinct jet cores
at multiple levels (Fig. 8b), the manual method simplifies, showing
just one jet core at 36000 ft (FL360), with a deep region of turbulence
(FL180 to FL460, within the dashed line) probably added to cater for the
multiple jets (Fig. 8a). Perhaps using our products the jet could be have
been consigned to a more appropriate, lower level, and the turbulence
region made more confined. Indeed we received the following general
comment: “more information over the shape of the jets and potentially
where they overlap could allow for more intelligent route planning
to avoid turbulence/increase efficiencies” (pers. comm., S. Ramsdale,
Chief Forecaster at the UK Met Office).

Thus our new 3D jet products can be used as helpful first guess fields
to be rationalised by the SIGWX analysts. Overlapping jets, which are
important and relatively frequent (see Sect. 5.2 below), are missing on
the “wind maximum” field used in step 1 above, but with our method
would be very visible.
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ALL 06:00 UTC 25 Sept 2016 ALL 06:00 UTC 26 Sept 2016 ALL 12:00 UTC 27 Sept 2016

M46 06:00 UTC 25 Sept 2016 M46 06:00 UTC 26 Sept 2016 M46 12:00 UTC 27 Sept 2016

M13 06:00 UTC 25 Sept 2016 M13 06:00 UTC 26 Sept 2016 M13 12:00 UTC 27 Sept 2016

Fig. 9. Top row: “Spaghetti” representation of jet-stream core lines detected from the ECMWF ensemble forecast from 00:00 UTC 22 September
2016, valid at the indicated times. Jet-stream core lines are colored by wind speed (ms−1), contours and red shading show sea level pressure (red
shading indicates pressure below 1000 hPa). Middle and bottom rows: Temporal development (same time steps) in two selected members (M46
and M13). Jet-stream core lines are colored by pressure elevation (hPa). In M13, a strong cyclone develops that on 27 September hits Norway.
Annotation on central panels relates to jet types; PJ for polar Jet, STJ for sub-tropical jet, LLJ for low-level jet (used also on Fig. 10).

5.2 Tropical Cyclone “Karl”

We consider a real-world case from the NAWDEX campaign that repre-
sents applications in both weather forecasting and atmospheric research
into physical processes. The extratropical transition of Tropical Cy-
clone Karl occurred in late September 2016. The system was success-
fully observed in multiple research flights, but had posed significant
difficulties for forecasting due to associated high uncertainty.

We focus on the ECMWF ensemble starting from 00:00 UTC
22 September 2016, and specifically on the behavior of Karl as it
became an extra-tropical feature in those forecasts. The ensemble
included very different outcomes. These outcomes are analyzed in
relation to detected jet-stream cores. We show how identifying the 3D
cores facilitates investigation of jet behavior in a way not possible with
classical wind speed analysis at single levels.

The top row in Fig. 9 shows a spaghetti representation of jet cores
in the ensemble, on 3 different days, with the ensemble mean surface
pressure field (MSLP). Spread increases quite dramatically with time (in
surface weather too, not shown). However the salient features remain
clear, most notably the eastward migration of a strong jet (darker reds
on core lines) into the mid Atlantic. Karl is visible on the first frame, in
the MSLP field due south of Newfoundland, but then moves northeast
beneath the jet(s), to potentially interact with them.

We illustrate two very different ways in which that jet interaction
could have played out, using two ensemble members denoted M13 and
M46. Plan view time series of jet cores and surface pressure for each
are depicted in Fig. 9. Greens denote jet core altitude, darker being
higher (pressure level in hPa on scale). We can see three types of jet, a
polar jet (PJ) at high levels, a subtropical jet (STJ) attributable in part to
outflow from Karl, at very high levels (commensurate with tropical air),
and in one case also a low level jet (LLJ) close to Karl’s center. Each
jet may have more than one core. The behavior of the STJ relative to
the PJ seems to play a pivotal role in determining subsequent evolution.
Animation shows that the STJ in Fig. 9 (M46 06:00 UTC 26 Sept 2016)
propagates rapidly forward away from Karl, turns anticyclonically, and
reinforces the upper trough east of Iberia. Fig. 10a is a 3D view for
6h later – note how the high altitude STJ towers above other features,
but is moving on, leaving the PJ behind. Conversely in Fig. 10b, 6h

after Fig. 9 (M13 06:00 UTC 26 Sept 2016), the three STJ branches
do not propagate forwards, and indeed the westernmost STJ branch
moves north to become vertically aligned with the two PJ branches, as
can be seen in the shadows, and indeed on Fig. 10c where the added
section shows wind speed. This vertical stacking is commensurate
with a “tropopause wall” developing, which in energetic terms is very
conducive to rapid cyclogenesis should a surface low, in this case Karl,
happen to move poleward of the (stacked) jet cores.

In the M46 case Karl died, as can be inferred from Fig. 9, in part
because the jet configuration did not help its development. However
in the M13 case Karl crossed the cores and developed very rapidly,
becoming a sub-970 hPa low center with extreme surface winds near
Norway (cf. Fig. 9). Fig. 10d shows a rendering of the jet cores, cloud
field and MSLP, 24 h after Fig. 10b and c. The STJ migrated east as
the development ensued, the PJ is still very strong, with it’s left exit
area near the low, assisting cyclogenesis. We also see a new mid level
jet (MLJ) connecting up to the STJ (showing also that our code can
identify altitude changes in jet level well). In addition there are two
new LLJ cores at low levels. The lower one of these begins around
800 hPa, with hints of greater strength at its eastern end, reminiscent of
the sting jet (SJ) phenomena implicated in many damaging European
windstorms [6, 16], though further analysis would be needed to prove
this connection.

We have seen that jet behavior is pivotal in this example, notably for
the STJ. Further related research can focus on the role moist processes
(for example) play in dictating jet behavior, which in turn feeds back
on synoptic evolution. Other aspects that this case usefully reveals,
also worthy of further study, are the mid level jet on Fig. 10d, and
its upward connection, and the trough extension effect of the STJ in
Fig. 10a. Thus 3D jet identification can highlight in a particularly
compact and illuminating way new aspects of atmospheric structure
that can be missed by classical 2D analysis methods.

Furthermore, regarding forecasting applications, domain expert
S. Ramsdale (UK Met Office, pers. comm.) comments: “your ap-
proach...could be easily extended to show interactions between up-
per/surface level features in terms of perhaps vertical velocity around
the cores, showing their penetration depth for development, allowing
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(a) M46 (b) M13

(c) M13 (d) M13

Fig. 10. Application of the proposed visualizations to the analysis of the extra-tropical transition of Tropical Cyclone Karl. Jet-stream core lines
detected in the ECMWF ensemble forecast from 00:00 UTC 22 September 2016, valid 12:00 UTC 26 September 2016. Core lines are colored by
wind speed (ms−1), contours show sea level pressure (red shading indicates pressure below 1000 hPa): (a) 3D view for member 46, (b) 3D view for
member 13, (c) The same as (b) but with an added vertical section colored by wind speed, (d) 3D structure of member 13 off the coast of Norway,
valid 12:00 UTC 27 September 2016. White isosurface encloses cloud cover fraction larger than 0.55. Inset, for same time, extracted from lower right
panel of Fig 9. Yellow dots (at sea level) added to aid registration.

for again more objective assessments of how differences in shape/speed
may lead to differences in evolution”. In addition he highlights the util-
ity, for forecasting purposes, of real-time comparison of observations
(e.g. winds from aircraft) with our jet cores.

For future research, one other area to highlight in which application
of our method will be of interest is ’forecast failures’. Rodwell et
al. [41] found that these often stem from modulation of downstream
flow, and notably upper level jets, by mishandled convective outbreaks
over North America. Our new tools will highlight the upscale effects
of such convective errors in revealing ways, with spaghetti jet plots for
example (see Fig. 9) likely to yield key insights in a fraction of the time
it would ordinarily take to examine all ensemble members.

6 CONCLUSION

We have proposed a robust detection method for identifying jet-stream
core lines in atmospheric flow, and have presented visualization tech-
niques that facilitate analysis of 3D jet-stream behavior in a way not
possible with classical meteorological wind speed analysis at single
vertical levels. Our method is to some extent similar to 3D height ridge
detection but exploits wind direction information to achieve increased
stability and greater agreement with classical manual detection methods.
We have developed our methodology within a team of visualization
and atmospheric scientists, have demonstrated how the method behaves
when fed with realistic wind fields from numerical weather forecasts,
and have proposed 2D and 3D visualization techniques.

Detection and visualization has been incorporated into the open-
source meteorological 3D ensemble visualization tool “Met.3D” to
facilitate combination of the new jet features with visualization of other
important meteorological phenomena, and in order to promulgate the
general methodology into the meteorological community. We have
demonstrated how our method supports analysis that relies on core line
geometry, including investigation of core line relationship to stream-
lines and investigation of jet core uncertainty inherent in ensemble
weather prediction.

Two case studies have highlighted the value of our method for me-
teorological applications. We examined the automatic identification

of jet-stream core lines for global SIGWX charts used worldwide in
aviation, and we examined closely the 3D jet-stream behavior during a
specific weather case involving the extratropical transition of Tropical
Cyclone Karl.

In conclusion, we are confident that our method will facilitate many
new and valuable studies in atmospheric research, and that it will bring
important benefits to operational weather forecasting. In our case study
we have already identified interesting 3D jet-stream structures that are
very relevant for whether or not extreme and damaging weather will
develop at the surface. We are confident this will stimulate further
meteorological research that addresses societal needs. Above all, we
have achieved for the first time a compact, smooth, continuous 3D
depiction of one of the most fundamental atmospheric features –the jet
stream– that plays a pivotal role in determining world weather, and that
even achieves frequent references in the media.
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[23] S. Limbach, E. Schömer, and H. Wernli. Detection, tracking and event
localization of jet stream features in 4-D atmospheric data. Geosci. Model
Dev., 5(2):457–470, Apr. 2012.

[24] T. Lindeberg. Edge detection and ridge detection with automatic scale
selection. 30(2):117–156, 1998.

[25] P. Ljung and A. Ynnerman. Extraction of intersection curves from iso-
surfaces on co-located 3D grids. In The Annual SIGRAD Conference.
Special Theme - Real-Time Simulations. Conference Proceedings from
SIGRAD2003, number 10, pp. 23–28. Linköping University Electronic
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Interactive 3D Visual Analysis of Atmospheric Fronts

Michael Kern, Tim Hewson, Andreas Schäfler, Rüdiger Westermann, and Marc Rautenhaus

(a) (b) (c)

Fig. 1. Cyclone “Vladiana”, 00:00 UTC 23 September 2016. (a) Objectively identified fronts at 1 km above ground from ECMWF
operations, using the algorithm described in [15]. (b) 3D fronts identified and visualized with our method, color denotes frontal strength
(K km−1). (c) 3D fronts combined with further meteorological fields and features. Front color denotes pressure (hPa). Overlain are
jet-stream core lines detected and visualized with the approach by Kern et al. [19], colored by wind speed (m s−1). Surface contours
show mean sea level pressure. Blue surface color shows precipitation (m h−1). Wind barbs show surface wind.

Abstract— Atmospheric fronts play a central role in meteorology, as the boundaries between different air masses and as fundamental
features of extra-tropical cyclones. They appear in numerous conceptual model depictions of extra-tropical weather systems. Con-
ceptually, fronts are three-dimensional surfaces in space possessing an innate structural complexity, yet in meteorology, both manual
and objective identification and depiction have historically focused on the structure in two dimensions. In this work, we –a team of
visualization scientists and meteorologists– propose a novel visualization approach to analyze the three-dimensional structure of
atmospheric fronts and related physical and dynamical processes. We build upon existing approaches to objectively identify fronts as
lines in two dimensions and extend these to obtain frontal surfaces in three dimensions, using the magnitude of temperature change
along the gradient of a moist potential temperature field as the primary identifying factor. We introduce the use of normal curves in
the temperature gradient field to visualize a frontal zone (i.e., the transitional zone between the air masses) and the distribution of
atmospheric variables in such zones. To enable for the first time a statistical analysis of frontal zones, we present a new approach to
obtain the volume enclosed by a zone, by classifying grid boxes that intersect with normal curves emanating from a selected front.
We introduce our method by means of an idealized numerical simulation and demonstrate its use with two real-world cases using
numerical weather prediction data.

Index Terms—Meteorology, Atmospheric Fronts, Feature Detection

1 INTRODUCTION

In meteorology, fronts separate atmospheric air masses of different
characteristics (e.g., warm and humid versus cold and dry; see, e.g.,
[56]). Indeed, fronts are among the most important features used in
weather forecasting due to the associated weather activity, ranging
from temperature changes to severe weather. They are most commonly
denoted by manually-analyzed 2D line segments on weather maps.
Ordinarily such lines represent fronts at the surface; an automatically
generated example is provided in Fig. 1a. Conceptually, however,
fronts are surfaces in 3D space, yet only very occasionally can one
see fronts at upper levels marked on a standard chart. This is in spite
of regular references to the importance of the vertical structure for
surface weather [2, 6, 22, 24]. Identifying fronts and judging their 3D
temporal evolution can thus be crucial for weather forecasting; however,
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analysts currently lack the tools and the time to investigate this in detail.
Frontal structures have also been extensively studied in atmospheric
research, mainly using manual analysis of 2D sections of related fields
(including temperature, humidity, wind; e.g., [11, 12, 22, 23, 29, 48]),
with a recent focal point being complex spatio-temporal structures and
related processes (e.g., [32, 49]).

The subject of the present work is the objective detection and vi-
sualization of 3D frontal structures from numerical simulation output.
The primary goals are facilitating further research to improve under-
standing of fronts and related weather systems, as well as application
within forecasting. A number of studies have investigated the auto-
mated detection of 2D frontal lines from numerical simulation output,
for weather forecasting, for creating climatologies, and for other appli-
cations (e.g., [3, 14, 15, 17]). However, to our knowledge, no previous
method exists that can detect and visualize the full 3D structure of
fronts, and facilitate a rapid analysis of vertical structure, frontal zone
properties, and related atmospheric processes, such as vertical motion,
moisture transport and precipitation (cf. Locatelli et al. [22]). Such an
approach will be beneficial because:

• Using static 2D horizontal and vertical maps and sections, as now,
is clearly a sub-optimal way to picture and analyze 3D reality.
Hewson [14] pointed out the rich complexity in vertical structures
in fronts, whilst Mulqueen and Schultz [32] referenced commonly
occurring “double front systems”. Such aspects are contrary to
the widely accepted “Norwegian” conceptual model [4]. 3D vi-
sualization opens the door to investigate these inconsistencies, in
so far as “reality” is represented within state-of-the-art numerical
models. This is also in the spirit of Schultz and Vaughan’s recom-
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mendation [49] that traditional conceptual models be revisited.

• In operational weather forecasting, accounting for the full 3D
structure of fronts, using manually constructed 2D charts, is too
time consuming. Typically, the most a forecaster can achieve in
the available time is analysis of one or two cross sections. We
would thus like to pave the way for increased operational use
of 3D front visualization. For example, 3D visualization can
enable a forecaster to rapidly check whether a rainband relates to
particularly steep or even over-turning front topography aloft.

In this article, we –a team of visualization scientists and meteorol-
ogists– propose an approach to visualize and analyze frontal structures
in 3D. We contribute:

• An adaptation and extension of the 2D objective front detection
method of Hewson [14] to provide the first ever visualizations
of continuous 3D frontal surfaces and associated meteorological
features within real-world cyclones.

• A detection scheme to identify, determine and visualize character-
istics of the frontal zone associated with a frontal surface based
on tracing “normal curves”.

• An interactive selection scheme to isolate an “interesting” front
from a complex and potentially cluttered depiction of a large
region and to determine statistical information about that frontal
surface, its associated frontal zone, and related processes.

• Various visualizations that relate the frontal structure to associated
atmospheric processes (e.g., vertical motion, moisture transport
and precipitation).

We demonstrate how our method facilitates, for example, the analy-
sis of the vertical “extent” of a front and distinction between low-level
and upper-level fronts; the horizontal breadth of a frontal zone and
strength of, e.g., temperature and humidity gradients; the slope of a
frontal surface, undulations on it, and their influence on vertical mo-
tion; distribution of physical parameters within a frontal zone; and the
relative locations of front, jet stream, and surface pressure distribution.

Our work has been partly motivated by ongoing analysis of mid-
latitude cyclones and associated frontal systems observed during the
atmospheric science field campaign “NAWDEX” [45], in which two of
the authors were involved. This research on predictability of weather
investigates how different physical processes can influence cyclone evo-
lution. Fronts are an integral part of the NAWDEX cases and indeed of
other cyclones, and rapid analysis of their 3D characteristics is required
to gain improved understanding and improve future predictions.

2 BASICS AND RELATED WORK

We first introduce a definition of atmospheric fronts and review related
work on objective detection methods from the atmospheric sciences.
The present article adds to the literature on visualization in meteorology,
a comprehensive overview of which was recently presented in the
survey by Rautenhaus et al. [36]. In other areas of visualization, surface-
type features are of importance as well, and briefly reviewed below.

2.1 Definition of Atmospheric Fronts
The “traditional” notion of a front as the horizontal boundary between
two air masses, i.e., volumes of air with nearly coherent characteris-
tics (e.g., [56]), dates back to the “Bergen school”, about 100 years
ago (e.g., [4]). The glossary of the American Meteorological Society
(AMS) defines a front as “the interface or transition zone between two
air masses of different density”, stressing that a front almost “invariably
separates air masses of different temperature” but noting that many
other features may distinguish a front, including a change in wind direc-
tion or a moisture discontinuity [1]. Hewson [14] describes this inter-
face as a “thin layer, or non-rigid slab-like region, in three-dimensional
space, within which there are [...] large horizontal gradients in the
thermal characteristics”. Fig. 2 illustrates the concept.
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Fig. 2. (a) Illustration of a frontal surface and associated volumetric
frontal zone separating warm and cold air masses in a 3D temperature
field τ. The frontal surface (front) is located on the warm-air side of
the frontal zone. (b) Components of a typical extratropical cyclone in
the Northern Hemisphere, highlighting the pivotal role of cold and warm
fronts. (Adapted from [56]. Copyright 2017 R. Stull, CC-NC-SA 4.0
license.)

Important in this respect is that only the horizontal thermal gradient
is considered. Although fronts commonly slope (Fig. 2a), and so
also have a vertical thermal gradient associated, a more extreme class
of vertical gradients also occurs in the atmosphere and for this the
meteorological cause is the “opposite” of frontal processes. Such
gradients are due to large-scale subsidence (commensurate with settled
weather) and are known as anticyclonic inversions. Clearly one must
avoid misidentifying these as fronts. Typical values for an anticyclone-
related vertical gradient are orders of magnitude greater than they are
for a strong horizontal frontal gradient (e.g., 10 K / 100 m versus
10 K / 100 km, respectively). Meanwhile Milionis and Davies [31]
showed that inversion frequency and average inversion strength (for
a UK site) are both greater in anticyclonic than in cyclonic (frontal)
conditions. These two points further emphasize the need to focus on
just horizontal rather than 3D gradients when identifying fronts.

In Fig. 2a, where the vertical scaling is greatly amplified relative to
the horizontal, edges of the 3D frontal region are marked in brown. In
the 2D definition, intersection of the this region with pseudo-horizontal
surfaces is denoted by a “frontal zone” (or “transition zone” in the
AMS definition). According to Martin [27], the length of the frontal
zone is significantly greater than its breadth. Note that in this paper,
we will denote the full 3D frontal layer as the frontal zone. The warm
side of the frontal zone on a level is the “front”; atmospheric dynamics
dictate that this is where discontinuities in other parameters, such as the
wind field, should typically lie (e.g., [14, 56]). Some authors have also
considered vorticity maxima as an identifying feature, or recommended
using “frontogenesis” (usually the total derivative with respect to time
of the magnitude of the horizontal temperature gradient) to define
frontal regions (e.g., [42, 50]).

A number of different types of fronts are distinguished (cf. [50, 56]);
In the present paper, we consider synoptic-scale phenomena in extra-
tropical cyclones (vs. mesoscale phenomena). Fig. 2b is a snapshot
of the the location of fronts in a typical mid-latitude cyclone, approx-
imately following the “Norwegian” model dating back to the Bergen
school around 1920 [4]. The model still nowadays finds application
in synoptic meteorology and operational forecasting. It was extended
by the “Shapiro-Keyser” conceptual model [52], which differs in the
structure of the “occlusion process”, the “merging” of warm and cold
fronts. An overview of the literature about fronts and related conceptual
models is provided by, e.g., Schultz and Vaughan [49].

2.2 Objective Fronts

In operational meteorology, identification and tracking of fronts are cru-
cial, as emphasized, e.g., by Hewson [14] and Schultz and Blumen [50].
As noted in Sect. 1, 2D surface fronts are usually manually analyzed
by weather forecasters. Such analyses are commonly based on many
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different parameters and inherently subjective; research has shown
that different forecasters frequently recognize different fronts from the
same data (e.g., [28, 43]). In this respect, Schultz and Blumen [50]
pointed out that “part of the dilemma with frontal analysis is that the
characteristics of fronts used for analysis are not clearly defined.”

Hence, a number of studies have investigated the objective iden-
tification of frontal lines, dating back to a paper by Renard and
Clarke [39] in the 1960s. Analogous to manual analysis, research
focussed on two dimensions, and included application to forecasting
(e.g., [14,15]) and to compute climatologies of the occurrence of fronts
(e.g., [3, 17, 47, 53]). A review of objective identification works up to
the late 1990s is contained in Hewson [14]; more recent studies have
also included investigation of specific processes related to the identified
fronts (e.g., [16–18, 35, 46]). The method by Hewson and Titley [15] is
operationally run at the European Centre for Medium-Range Weather
Forecasts (ECMWF) to produce products including the one shown in
Fig. 1a.

Common to most published methods is the identification of a front
based on a thermal parameter τ that is representative of the considered
air masses. A common choice is a moist potential temperature such as
wet-bulb potential temperature θw or equivalent potential temperature
θe, both essentially conserved under moist adiabatic ascent and hence
essentially invariant to vertical motion in front vicinity. Details on
these quantities can be found in meteorology textbooks (e.g., [56]).
The frontal definitions referenced in Sect. 2.1 are directly applied to
τ; the objective identification methods seek to find regions where
the magnitude Mτ = |∇hτ| of the horizontal gradient of τ is large
(the frontal zone) and subsequently the warm side of this zone, i.e.,
essentially parts of ridge lines in the first derivative of Mτ (cf. [14]).
Some studies, however, employ simpler criteria. The method proposed
in this article is based on the method by Hewson [14, 15], which can be
considered representative of the current state of the art in meteorology.

2.3 Extremal Structures in Visualization

The existing 2D objective front detection methods extract line-type
features; the method we propose generates surface-type features in
3D space. The extraction and visualization of line-type and surface-
type features is also an essential tool and ongoing research branch in
flow visualization. The importance of such originates from the high-
dimensional nature of spatio-temporal varying flow fields –volumetric
scalar and vector fields over time– and the difficulty to visually repre-
sent their inherent chaotic and turbulent structures in 3D. This requires
effective visualization techniques to reduce the complexity of flow
fields and leverage 3D analysis.

Related to the frontal features we extract are local extrema in n-
dimensional scalar fields, i.e., 2D ridge (valley) lines and 3D ridge
surfaces [5, 7]. 2D ridge (valley) lines are widely used in computer
vision and image analysis to depict characteristic structures that exhibit
a local maximum (minimum) along the transverse direction [13,21,26].
For ridge surfaces, this direction is derived locally from the full 3D
tensor describing the field’s variation in the surrounding. Furst and
Pizer [10] proposed a technique, called Marching Ridges, to obtain
ridge surfaces from three-dimensional scalar fields, by tracing their
transverse direction through the volume. Kindlmann et al. [20] applied
ridge surfaces to visualize diffusion tensor MRI data. In flow visual-
ization, ridges serve as an indicator and approach to determine and
extract vortex core lines [55], flow separations [51], or to visualize
vorticity and strain [41]. Sadlo et al. [40] used ridge detection to reveal
separating regions of different flow behavior in unsteady vector fields.
Peikert et al. [33] proposed a method to compute ridge lines and ridge
surfaces from n-dimensional scalar fields without the explicit computa-
tion of eigenvectors from the Hessian matrix. In our scenario, where
the horizontal gradient magnitude is orders of magnitudes smaller than
the 3D gradients, ridge surface extraction does not produce meaningful
structures. Even in 2D, where in our case classical ridge line detec-
tion requires a fourth-order derivative, highly fuzzy and disconnected
structures can occur.

3 DESIGN OBJECTIVES AND METHOD OVERVIEW

We propose a 3D visualization approach that enables meteorologists
to explore, for the first time, the structure of atmospheric fronts which
are fundamentally 3D features, and to examine frontal characteristics
and related atmospheric processes. Our design, motivated the lack of
such an approach, e.g., in the ongoing NAWDEX analyses (cf. Sect. 1),
targets the following: (a) Analysis of the full 3D spatial structure of
frontal surfaces (to judge, e.g., spatial coherence and steepness of the
surface topography) in the context of the atmospheric environment (i.e.,
integration of the front display with existing meteorological visual-
izations). (b) Analysis of atmospheric quantities at the front location
and in its vicinity (e.g., vertical motion, humidity). (c) Analysis of
the frontal zone associated with a frontal surface, including its spatial
structure and distribution of atmospheric quantities in the zone, to focus
in on regions where the physical processes that drive adverse weather
are concentrated. (d) Joint analysis of frontal structures with related
processes and features (e.g., jet-streams, precipitation).

To achieve these goals, we show how one can depict, in 3D, frontal
surfaces and frontal zones color-coded to represent various important
atmospheric quantities and related properties. Due to known skepticism
in the meteorological community regarding 3D visualization (cf. the
discussion in Rautenhaus et al. [36]), consideration of spatial percep-
tion and interactivity was deemed important. To facilitate combined
visualization with further atmospheric features, we have integrated our
approach into the state-of-the-art open-source meteorological visual-
ization tool “Met.3D” [30, 38]; by providing our method in an existing
tool we also ease promulgation into the meteorological community.

The proposed detection method for 3D front surfaces (Sect. 4) fol-
lows the 2D approach by Hewson [14] and uses an arbitrary thermal
parameter τ (cf. Sect. 2.2) selected by the user to compute feature
candidate surfaces representing potential fronts. The candidates are fil-
tered according to a number of criteria to obtain the final front surfaces.
Since, to filter candidate features, the existing 2D methods discussed
in Sect. 2.2 use “hard” threshold values selected based on the specific
data investigated, we propose interactive adjustment of these criteria
by the user to facilitate investigation of the effect of changing, e.g.,
the minimum strength of the thermal gradient. For visualization of the
frontal zones associated with the surfaces (Sect. 5), “normal curves” are
used to simultaneously display horizontal breadth of the zones, struc-
ture of the thermal gradient, and the distribution of any NWP quantity
of interest. To remove clutter from a complex scene, a front feature
of interest can be selected and displayed in isolation. Frontal-zone
distributions of an NWP quantity of interest can be displayed for any
selected front by means of a histogram. Finally, the depiction can
be combined with visualizations of further features of interest, e.g.,
jet-stream core lines [19].

4 DETECTION AND VISUALIZATION OF FRONT SURFACES

This section describes the extraction, filtering, and visualization of 3D
front surfaces. We introduce our method with data from a numerical
simulation of an atmosphere on an “aquaplanet”, a flat planet covered
only by water. Details of the simulation are described by Schäfer and
Voigt [44], it develops a series of cyclones that exhibit an idealized
structure. One of these is selected to introduce our method with rela-
tively “smooth” data before investigating real-world cases in Sect. 6.
The aquaplanet simulation is available on a regular latitude–longitude
grid with a grid spacing of 0.5° (approximately 50 km) in both hor-
izontal dimensions; in the vertical 35 levels of constant pressure are
available. Fig. 4a shows a horizontal map of θw of the selected region
on the 925 hPa pressure surface, illustrating the clear separation of cold
air masses in the north and warm air masses in the south.

At its core, our approach closely follows the method proposed for 2D
front lines by Hewson [14]. His paper provides a thorough discussion
of the mathematics involved; here, we provide a brief overview of the
fundamental aspects and in particular discuss its extension to 3D.

4.1 Objective Detection of 2D Feature Candidates
Hewson’s [14] 2D method is based on detecting the “boundaries” of
regions of strong gradient magnitude in a thermal parameter τ , in
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Fig. 3. Simplified 1D illustration of front detection based on a thermal
parameter τ. (a) Schematic contour lines of τ, increasing to the right,
with an increased thermal gradient in the middle. (b) Profiles of τ (black)
and its derivatives (color) along a straight line through the field. The
front, i.e., the warm air side of the region of increased thermal gradient,
is detected as a minimum in the curvature (blue) of the thermal field.

his paper taken to be the wet bulb potential temperature θw. Fig. 3
illustrates the approach by assuming a simple 1D thermal gradient and
a straight front geometry. In the example, τ increases linearly from
left to right, the frontal line is located at the warm boundary of the
frontal zone (i.e., the zone of high gradient magnitude of τ) shown in
the middle. In this case, detection of the front location is a simple 1D
problem. The frontal zone is bounded by the positions at which the
thermal gradient magnitude, in this case Mτ = |∂τ/∂x|, changes most
rapidly. That is, the extremal points in the gradient of Mτ , or where the
third derivative of τ equals zero. In the example, the warm air side of
the frontal zone, i.e., the front, is represented by the extremal point at
which the thermal curvature ∂ 2τ/∂x2 is minimal.

In the general 2D case, fronts are curved and possess an along-front
thermal gradient [14]. For this case, Hewson [14] formulates the “front
locating equation” [L] as

Lτ ≡ ∂ (|∇h|∇hτ||)s

∂ s
= 0, with ŝ =± ∇h|∇hτ|

|∇h|∇hτ|| (1)

where ∇h denotes the horizontal gradient and ŝ represents a unit axis
(i.e., possessing only an orientation instead of a direction as a unit vector
would) oriented along the gradient of the thermal gradient magnitude
Mτ = |∇hτ|. That is, essentially the ridge lines in the 2D height field
represented by |∇hMτ | are sought. While classical ridge line detection
[8] requires even a fourth-order derivative on τ and evaluation of the
Hessian matrix, a simpler computational scheme was suggested by
Hewson [14]. In short, his scheme derives a five-point mean axis ŝ
from the horizontal grid points surrounding a considered grid point,
then evaluates the locating equation [L] by means of computing the
“along-vector divergence” of ∇hMτ . Hewson [14] shows that the vector
field ∇hMτ possesses zero divergence along the frontal line; the notion
of “along-vector divergence” is introduced for numerical stability, here
simply all vectors at grid points employed for computation of the
divergence are resolved into the direction of ŝ. Due to space limitations,
we refer to Hewson [14] for a thorough description. In our approach,
we follow the Hewson scheme to achieve consistency with 2D products
that are operationally produced at ECMWF (cf. Fig. 1). Fig. 4a shows
2D feature candidates obtained for the idealized aquaplanet case.

4.2 Extension to 3D
The critical question that arises when raising the approach to three
dimensions is whether vertical contributions to the gradient need to
be considered. The meteorological definitions reviewed in Sect. 2
clearly only consider the horizontal gradient of τ . As discussed there
this is primarily to avoid mis-representation of non-frontal features as
fronts. Inspection of a vertical section through a frontal zone (Fig. 5a)
may suggest that the locating equation [L] should be evaluated in the
direction of a three-dimensional axis ŝ. Note, however, that in all de-
pictions the vertical scale is massively exaggerated, with horizontal

gradient magnitudes ∇hMτ being approximately three orders of magni-
tude smaller than 3D gradients (Fig. 5b and c), which would again result
in significantly different (often non-frontal) features being detected if
a 3D gradient were used. We hence use only horizontal derivatives in
the computation of our frontal features. A problem we encountered
with this approach, however, is that some frontal surfaces may exhibit
“holes” that appear in cases of locally reduced horizontal gradients of
Mτ (an example is arrowed in Fig. 5). In the case shown, the defini-
tion of a front as a horizontal boundary between two air masses is not
fulfilled. However, intuition may suggest that nevertheless a frontal
surface should be drawn in this case; an issue that may require fur-
ther investigations and possible re-assessments of the employed frontal
definitions in the future.

Our approach to detect 3D candidates is hence: (a) At each grid
point of the data, the locating equation [L] is evaluated as proposed
by Hewson [14] to obtain a 3D scalar field of [L]. (b) 3D contouring
methods (ray-casting, e.g., [9], or Marching Cubes [25]) are used to
obtain raw candidate features that subsequently need to be filtered to
obtain the desired frontal features. Fig. 4b shows the candidate surface
features thus obtained.

4.3 Filtering of 3D Feature Candidates
The obtained candidate features need to be filtered to obtain those that
actually represent frontal surfaces. Hewson [14] filters 2D candidates
by means of two distinguishing characteristics: the curvature of the
thermal parameter field, and the magnitude of the thermal gradient in
the vicinity of the candidate feature as a measure of the frontal strength.

To obtain features at the warm-air side boundary of the frontal zone,
all candidate features at the cold-side boundary are removed by keeping
only the set of candidate vertices at which the curvature is negative.
For this purpose, Renard and Clarke [39] introduced the “thermal front
parameter” (TFP) as a negated curvature:

T FPτ ≡−∇h|∇hτ| · ∇hτ
|∇hτ| > K1 (2)

where K1 is a user-defined threshold; it is required to be at least zero to
obtain features on the warm air side of the frontal zone (cf. the blue line
in Fig. 3 and note the negation). Hewson [14] sets K1 to a small positive
value to eliminate spurious features (criterion [M1] in his paper).

To require detected fronts to represent a minimum specified strength
in terms of thermal gradient, Hewson [14] uses an additional filter
criterion that estimates frontal strength by approximating the local
magnitude of the gradient of τ on the cold side of the considered
candidate feature point. Candidates are eliminated if they do not fulfill

Sτ ≡ |∇hτ|> K2 (3)

where K2 again is a user-defined threshold (criterion [M2] in [14]). In
the approach by Hewson [14], values K1 and K2 are found specific to
the employed NWP data and vertical levels. Candidate features are
filtered “hard”, i.e., all candidate points that do not meet the specified
criteria are eliminated entirely. Fig. 4c illustrates the 2D case.

For detection of 3D frontal features, these filter criteria pose several
disadvantages. First, estimation of frontal strength based on thermal
gradient magnitude near the candidate feature is not necessarily repre-
sentative of the gradient inside the frontal zone. Second, replacing a
“hard” by a “soft” filtering, i.e., not discarding candidates completely
but mapping the criterion to opacity, can help to smoothly “fade”, e.g.,
regions of strong frontal strength to regions of weak strength, thus keep-
ing additional information in the visualization. Third, suitable values
of K1 and K2 may depend on the data or the specific structure in which
the user is interested. In an interactive application as envisaged in our
work, interactive adjustment is hence required. Fourth, filtering can
be improved by considering further characteristics of the frontal zone.
For instance, Hewson and Titley [15] suggested to eliminate fronts
resulting primarily from moisture and not temperature gradients by
adding a frontal strength criterion based on (dry) potential temperature.

Our approach improves upon all mentioned aspects. Contrary to
estimating the strength of a front by evaluating Eq. 3 only by local
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(a) (b) (f)

K1 and K2 same as in (e)

(c)

K1 = 0.48 K/(100 km)2 ; K2 = 1 K/100 km

(d)

K1 = 0.48 K/(100 km)2 ; K2 = 1 K/100 km

(e)

K1 = 0.22 – 0.48 K/(100 km)2 ; K2 = 0.8 – 1.26 K/100 km

(g)

K1 = 0.048 – 0.07 K/(100 km)2; K2 = same as in (e)

(h)

K1 = same as in (e); K2 = 0.2 – 0.5 K/100 km

(i)

K1 = same as in (e); K2 = 1.7 – 2.5 K/100 km

Fig. 4. 2D and 3D objective detection and filtering of front surface features (idealized aquaplanet dataset). Note non-sequential order of images.
(a) Horizontal section at 925 hPa, showing θw (K, color), geopotential height (black contours), and 2D feature candidates (following [14], yellow
lines). Gaussian smoothing with a distance of 100 km has been applied to θw. Inset compares detected features candidates if no smoothing is
applied. (b) 3D feature candidates for the same case. (c) “Hard” filtering with the listed thresholds for K1 and K2 applied to the feature candidates in
(a). Inset compares the unsmoothed field as in (a). (d) “Hard” filtering applied to the 3D feature candidates in (b). Black contours shows surface
pressure. (e) As (d) but with “soft” filtered features. The listed range of K1 and K2 has been linearly mapped to opacity [0−1]. (f) The same as (e) but
with decreased smoothing of θw (25 km compared to 100 km in (e)). Note the increased number of small-scale features. (g-i) Same as (e) but with
different settings of the filter values K1 and K2 to demonstrate the sensitivity of detected front surfaces on these values. Detected features become
larger for relaxed (g,h) filter values; more restrictive values allow focus on the stronger parts of a front (i).

(a)

≈ 1000 km

≈ 10 km

cold front

warm front (b) (c)

Fig. 5. Considering vertical contributions of derivatives to identify the boundaries of the zone of high thermal gradient leads to undesired features.
Shown are vertical sections of (a) θw (K, color as in Fig. 4a), green contours show thermal gradient Mτ = |∇hτ|, regions of large Mτ are shaded in
black. Black contours denote Lτ = 0, i.e., sections through the feature candidates. Note the apparent “hole” in the warm front (arrow), where the Lτ
contour moves upward. (b) Magnitude of horizontal-only gradient |∇h|Mτ || (K m−2, color), blue contours show Mτ . The feature candidates in (a) are
essentially ridges in |∇h|Mτ ||. In the region of the “hole” |∇h|Mτ || is weak. (c) When using the full 3D gradient |∇|Mτ ||, the “hole” is “filled”, however,
fundamentally different features are detected. E.g., the cold front (cf. (a)) vanishes. Note the much stronger gradient magnitude compared to (b).

approximation, we define as an estimate of frontal strength the average
thermal gradient along a curved path through the frontal zone from the
warm to the cold-air side. Here, we apply the concept of “normal curves”
to traverse the frontal zone. Normal curves are traced through a scalar
field following its gradient direction. They were used by Paffelmoser
et al. [34] to measure the spatial distance between two isosurfaces,
Rautenhaus et al. [38] used them to visualize the interior structure of
isosurfaces. Fig. 6a illustrates the approach. A “straight line normal”
can not always represent a path across the breadth of the frontal zone,
particularly if a front is highly curved as is often the case when it is
particularly active. A normal curve, on the other hand, runs everywhere
parallel to the thermal gradient that we are interested in averaging
across the zone. Again, only horizontal gradients are considered as
by definition (cf. Sect. 2.1) the horizontal breadth of the zone is the
quantity of interest, so all normal curves lie fully within “horizontal”
planes (that is planes that accord with the vertical axis definition). Eq. 3
then becomes

Sτ |frontal zone ≡
∫

NC
|∇hτ|ds > K2 (4)

Traversal is stopped upon hitting the “cold-side” boundary, where

Lτ = 0 (Lτ is always negative within the frontal zone; cf. Fig. 3).

To construct the frontal surface visualizations, we implemented
two rendering approaches. A ray-casting-based approach performs all
filtering computations including normal curve integration on the GPU
upon hitting a candidate surface (i.e., where Lτ = 0); filtering, color-
and opacity-mapping is performed per-pixel. A polygonal approach
extracts surface mesh geometry using Marching Cubes, and performs
filtering, color- and opacity-mapping per vertex. Rendering employs
order-independent transparency. The approaches differ in particular
with respect to performance. While the ray-casting approach requires
more rendering time (for the cases considered here up to a few seconds
on an NVidia Geforce GTX 970), the polygonal approach requires pre-
processing time on the order of 10 seconds but subsequently facilitates
adjustment of filtering criteria at interactive framerates.

Fig. 4d and e illustrates the difference of “hard” versus “soft” filter-
ing for 3D frontal surfaces. “Soft” filtering is implemented with transfer
functions that map K1 and K2 to opacity. This facilitates an interactive,
user-guided filtering process (for polygonal rendering); the mapping
of Ki to opacity can be quickly adjusted, and thus the sensitivity of the
detected surfaces on, e.g., frontal strength, estimated. Fig. 4g-i shows
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Fig. 6. Normal curves are used for multiple aspects of our approach.
Shown is a schematic region of high thermal gradient (orange colors),
with a frontal surface detected on its warm air side (thick black line).
(a) Normal curves (dashed arrow) cast from the frontal surface through
the frontal zone are used to obtain curve-integrated quantities including
frontal strength. (b) For depiction of the frontal zone, normal curves are
rendered as tubes. (c) A candidate grid cell belongs to the frontal zone
associated with a selected frontal surface (cf. Fig. 8) if a “backward”
normal curve started from the cell center intersects with the selected
frontal surface (green cells and curves). Cells with curves intersecting
with none or a different surface are discarded (red cells and curves).

examples of how the detected surfaces change when the transfer func-
tions are changed. Hewson [14], specific to the data used in his study,
suggests values for K1 = 0.3 K/(100 km)2 and K2 = 1.35 K/100 km;
in Fig. 4, values are of similar order but vary as noted.

4.4 Data Smoothing
Increasing horizontal resolution of NWP models (cf. [36]) has in recent
years enabled the models to resolve increasingly smaller details of the
atmosphere. While this for many application is a valuable property, for
the detection of synoptic-scale fronts removal of small-scale gradients
and variability in the data is desirable to obtain smooth features that
represent the large-scale features well. Jenkner et al. [17], as well as
others, used a simple smoothing filter assuming equally distributed grid
points in terms of geometric distance. To account for grid points in a
regular latitude–longitude grid to be closer together near the poles, we
instead use a 2D Gaussian kernel to smooth, under consideration of all
surrounding grid points, with a user-defined geometric distance. This
approach removes sensitivity of our method to the grid resolution of
the underlying data; instead, sensitivity to the smoothing distance is
present. Fig. 4e and f illustrates the sensitivity of detected 3D features
to changing the standard deviation of the kernel smoothing the θw field
(Fig. 4a and b for 2D); as expected larger smoothing distances eliminate
small-scale features. Typical length scales for the fronts of interest in
this study are on the order of 100 to 1000 km (cf. Sect. 2.1 and Fig. 2),
smoothing should be performed accordingly. For the cases presented
in this paper, we selected a standard deviation of 100 km. Note that
smoothing affects the settings of the filtering parameters K1 and K2,
since with increased smoothing the thermal gradients are weakened.

4.5 Visualization of Front Surfaces and Related Processes
The detected frontal surfaces are rendered in Met.3D [38] and can be
combined with existing displays of the system, e.g., horizontal maps
and vertical cross-sections. Properties of the front and surrounding
atmosphere (e.g., frontal strength and atmospheric variables interpo-
lated to the frontal position) can be color-mapped onto the surfaces (cf.
the tasks in Sect. 3). Fig. 7 provides examples. Note the use of shad-
ows and movable vertical axes (Fig. 7a) to improve spatial perception,
and combination with movable 2D sections through the atmosphere
(Fig. 7c; cf. [38] for these functions). Color scales use the perceptional
linear HCL color space [54] to conform with common visualization
functionality in Met.3D (e.g., cf. the case study in [37]). Fronts are
classified as cold or warm fronts, depending on whether the local wind
advects temperature change towards cold or warm air, following Hew-
son [14]: Aτ = −V ·∇hτ , where V denotes horizontal wind; Fig. 8a
shows an example. Furthermore, our approach facilitates computation
and display of the frontal slope, important to study, e.g., relationships

between surface topography and precipitation (cf. [22]). Combination
with visualizations of further atmospheric features including air parcel
trajectories [37] and jet-stream core lines [19] is also readily available.
The latter will be demonstrated in the Sect. 6.

5 ANALYSIS OF FRONTAL ZONES AND INDIVIDUAL FRONTS

In addition to visualization of frontal surfaces, another unique feature
of our approach is the interactive visual analysis of frontal zones asso-
ciated with a frontal surface. The proposed techniques enable users to
analyze the horizontal breadth of a frontal zone, as well as the distribu-
tion of atmospheric variables within (cf. task (c) in Sect. 3). To reduce
clutter and to facilitate examination of an individual feature of interest,
single front features can be selected and isolated.

5.1 Normal-Curve-Based Visualization
As described in Sect. 4.3, we evaluate frontal strength at a frontal
surface point by integrating along a ‘ “normal curve” in the thermal
gradient field. It is straightforward to use this approach to obtain further
frontal-zone-averaged quantities, e.g., humidity. Values obtained can
be color-mapped onto the frontal surface to display properties of the
zone associated with the surface. Also, curve length can be used to
provide color-coding of the zone’s horizontal breadth.

Normal curves also offer a way to directly depict the frontal zone
and the structure of its gradient field. Fig. 6b illustrates the concept,
showing a set of curves that start on the frontal surface as 3D tubes.
We follow Rautenhaus et al. [38] to generate seed points by computing
the intersections between rays parallel to the coordinate axes and the
frontal surface (see [38, Sect. 4.4] for details). For our application,
an additional check is required to account for the filter criteria (cf.
Sect. 4.3); potential seed points at which the identified front surface has
been made transparent by the filtering transfer functions are eliminated.
The density of displayed curves can be controlled by the user (cf. [38]).

Fig. 7b and c shows an example. The normal curves act as an indi-
cator of the breadth of the frontal zone. Simultaneously, the structure
of the thermal gradient field inside the zone is conveyed by the shape
of the curves (cf. [38, Sect. 3.4]). Rendering the normal curves as 3D
tubes also facilitates color-coding of scalar measures including gradient
magnitude itself (cf. Fig. 7b and c) or arbitrary atmospheric quantities.

5.2 Selection of Individual Fronts
The simultaneous visualization of all front/frontal zone features de-
tected in a scene can result in cluttered displays. We hence propose
a mechanism to select and isolate a single front feature of interest for
inspection – see Fig. 8. Picking is realized by casting a ray from the
virtual camera into the scene through the selected pixel, and computing
the first intersection of that ray with a computed frontal surface. At the
intersection point, we determine the eight surrounding grid points (i.e.,
a “root” grid cell) in the 3D data grid, extract the local geometry of
the picked surface using Marching Cubes on the front locator Lτ , and
compute the front type (cold or warm, cf. Sect. 4.5). From the root cell,
region-growing is used to iteratively identify all grid cells and front
geometry that belong to the picked surface. To add a neighboring cell
or surface triangle, we require adjacent triangles to form a watertight
mesh and to belong to the same front type. Also, filtering criteria have
to be observed; parts of the surface that are transparent in the rendered
representation of the front are discarded. The approach is continued
until no further cells need to be evaluated.

5.3 Statistical Properties of a Frontal Zone
To query statistical properties of a frontal zone (e.g., the distribution of
an atmospheric parameter within the zone), a volumetric representation
of the zone is required (i.e., a list of all grid cells that are part of the
zone). The geometric representation of a selected frontal surface ob-
tained in Sect. 5.2 can be used to approximately determine the volume
that is enclosed by the corresponding frontal zone. Fig. 6c illustrates
the approach: First, all grid cells intersected by the frontal surface are
determined (blue cells in Fig. 6c). Next, a bounding box enclosing
these cells is generated, which subsequently is enlarged to ensure that
surrounding grid cells that may belong to the frontal zone are included.
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(a)
ascending air
descending air (b) (c)

cold side
of frontal zone

warm side

Fig. 7. Visualization of front parameters and frontal zone. (a) Vertical velocity in (Pa s−1) as an example of an atmospheric quantity color-mapped
onto the frontal surface. Note the ascending motion in particular along the left part of the front (negative values indicate ascent). (b) Normal curves
rendered as tubes to visualize the frontal zone. Curves are color-coded with the magnitude of the thermal gradient. Black contour lines represent
surface pressure. (c) Vertical section showing θw (K, color), thermal gradient (black contour lines) and the zero-isocontours (yellow) of the locator
field, which bound potential frontal zones. Note how the normal curves extend horizontally from the frontal surface throughout the frontal zone;
integration is stopped upon hitting the locator “contour” on the cold side of the zone.

(a)

user selects

(b) (c) (d)

ascending air
descending

air

Fig. 8. Interactive selection of a front enables the user to visualize and analyze features of that particular front on its own. (a) The fronts are colored
by their classification as cold (blue) and warm (red) front. The user selects the warm front, which (b) appears isolated. (c) Frontal zone detection (cf.
Fig. 6c) identifies the displayed volume as the frontal zone of the selected warm front. (d) Distribution of atmospheric quantities in the frontal zone
can be displayed by means of a histogram. The example shows vertical wind velocity ω (Pa s−1).

Enlargement is done via a user-defined distance large enough to cover
the scales of interest (cf. Fig. 2, for the study at hand features of sizes
of order 100 km to 1000 km are of interest, a value we found suitable
for the cases investigated here is 300 km). For each grid cell in the
bounding box, we evaluate Lτ (Eq. 1) and keep those within the ther-
mal gradient zone (Lτ < 0) and those that intersect with the cold-side
boundary (Lτ = 0) as potential candidates. Since candidate cells in the
bounding box can also belong to a different front feature in the vicinity
of the selected front, correspondence of the candidate cell with the
frontal zone associated with the selected surface needs to be confirmed.
Here, “backward” normal curves prove useful. As shown in Fig. 6c, a
normal curve is traversed from the center of each candidate grid cell
into the direction of the warm-side air (i.e., towards the frontal surface).
If the normal curve intersects the frontal surface, the candidate grid
cell belongs to the frontal zone of interest. Curves not intersecting the
frontal surface are terminated as soon as they leave the bounding box.

Fig. 8c shows the volume thus identified for the selected warm front
in Fig. 8b. It is now straightforward to compute, e.g., histograms of
data values within the frontal zone. Fig. 8d shows an example: A
distribution of vertical velocity has been queried, revealing prevailing
upward motion (i.e., negative velocities) in the frontal zone.

6 RESULTS: CASE STUDY AND USER FEEDBACK

To demonstrate the value of our method, this section discusses first
investigations of the 3D frontal structure of two mid-latitude cyclones
that occurred during the 2016 North Atlantic Waveguide and Down-
stream Impact Experiment (NAWDEX, [45]), an atmospheric research
field campaign in which two of the authors were involved. The analysis
of the 3D structure of the observed cyclones is a major focus of the
–at the time of writing ongoing– data analysis activities of NAWDEX
(cf. [45]). Here, we consider the systems “Vladiana” and “Walpurga”
that both crossed the North Atlantic in late September 2016. We use
analysis data (i.e., the initial conditions of subsequent forecasts and
thus the “best estimate” of the atmospheric situation at the considered
time) obtained from ECMWF; all figures are produced from data on a
regular latitude–longitude grid with a grid spacing of 0.5°, using 137
terrain-following model levels in the vertical. Gaussian smoothing has
been applied to θw with a horizontal standard deviation of 100 km.

6.1 Cyclone “Vladiana”

Cyclone Vladiana preceded the extratropical transition of Tropical
Cyclone “Karl”, aspects of which were described by Kern et al. [19].
Our focus is on 00:00 UTC 23 September 2016, a time at which, after
rapid intensification, Vladiana had evolved to maturity. Our initial
objective is to compare its structure with idealized conceptual models
and to investigate structural details of the fronts. Next, we show how
the visualized 3D fronts facilitate investigation of the cyclone structure
in a way not possible with classical front analysis at single levels.

Fig. 1 shows the operational objectively detected 2D fronts from
ECMWF (Fig. 1a) and the 3D fronts from our method; Fig. 9a shows
the detected 3D fronts classified as cold and warm fronts. As expected,
the cold and warm 3D fronts show good agreement with the ECMWF
surface fronts, but 3D visualization adds valuable insight into vertical
extent and structure. The warm front appears as a downstream tilted,
curved feature (red colors) on the eastern flank of the cyclone that
separates northeastward moving warm air southwest of the front from
westward moving cold air to its north. The westernmost part of this
frontal surface is classified as a cold front, due to northerly winds on
the rear side of the cyclone bringing cold air southward. At the cyclone
center the lateral position of the meeting point of cold and warm fronts
varies only slightly in the vertical, suggesting little tilt with height in the
cyclone’s frontal signature, which is probably symptomatic of a mature
cyclone. Such aspects cannot be seen on a 2D front chart. Almost
perpendicular to the warm front, the main cold front (blue colored)
extends southwestward towards the US east coast. Several small red
areas (detected warm front character) within the large cold front appear
when the predominately southwesterly flow that crosses the frontal
surface at small angles locally advects warm air in the direction of the
cold air. When near the earth’s surface these signify frontal waves or
anti-waves [14] – note the orange spots on Fig. 1a. When higher up
they denote upper-level-only equivalents of these [2]. In both cases a
change in surface weather can be associated.

Fig. 1b and c and Fig. 9b and c show selected key meteorological
parameters color-mapped onto the detected fronts, providing insight
into atmospheric processes along the frontal features that could not be
inferred from the existing 2D approaches. Pressure elevation (Fig. 1c)
at a glance shows that the cold front as well as the northern part of the
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(a) (b) (c)

Fig. 9. Fronts of cyclone “Vladiana”, at 00:00 UTC 23 September 2016. (a) Cold (blue) and warm (red) fronts. (b) Vertical wind velocity at the frontal
surface (hPa s−1, negative values denote ascent). Note stronger ascent near the triple point (arrow). Red lines show jet-stream core lines detected
as in Kern et al. [19]. (c) Wet bulb potential temperature θw (K). Note almost constant values on each frontal surface.

(a)

cold front
warm

front
(b)

cold front

warm
front

overturning (c)

Fig. 10. Details of the fronts of “Vladiana”, at 00:00 UTC 23 September 2016. (a) Vertical section through cold and warm front, showing θw (K, color),
the θw gradient (black shading), contours of potential temperature (grey) and wind speed (green) and jet-stream core lines as in Fig. 9b. Blue ground
surface shading shows precipitation (m h−1). The arrow points to the warm sector. Note the jet-stream above the cold front. (b) Color mapping
of frontal slope (ratio vertical to horizontal). Note the larger slopes for the cold front than for the warm front. The cold front even exhibits some
overturning (lilac). (c) Looking southwestwards; “frontal fracture” between cold and warm front extends through much of the troposphere (arrow).

warm front are deep features that extend into the upper troposphere
(above 400 hPa). The southern part of the warm front, however, appears
vertically shallow at lower levels. Air masses tend to be displaced
vertically in the vicinity of the frontal zones, as the fronts themselves
propagate. Often vertical velocity magnitude reflects frontal slope [22].
Indeed here we generally see higher vertical velocities where there
are steeper slopes, such as near the triple point (Fig. 9b). The ascent
adiabatically cools the air until saturation is reached and clouds and
precipitation form. Vertical velocities are also an atmospheric response
to broadscale dynamical forcing; for example the “left exit” and “right
entrance” regions beneath upper level jets commonly have large upward
motion associated. By adding jet cores to such plots the interplay
between features can be demonstrated in new ways (Fig. 9b). The
conservation of wet bulb potential temperature θw is confirmed by
almost constant values on the various frontal surfaces, shown in Fig. 9c.
The different colors on the different fronts show that the warm airmass
associated with each has a different intrinsic θw.

Fig. 10a shows a front-crossing vertical section of θw, along with
the detected cold and warm fronts. Vladiana’s warm sector (arrowed)
appears clearly as an air mass with increased θw. Atmospheric dynam-
ics tend to mean that zones of strong horizontal temperature gradients
are accompanied by vertically increasing wind speeds, leading to high
level jet streams (cf. [19]). The depiction in Fig. 10a shows jet cores
above the cold front (cf. [52]).

The Norwegian conceptual model [4] describes the slope of typical
cold fronts to be steeper (about 1 km vertical rise over a horizontal
distance of 100 km) than that of typical warm fronts (1 km over 300 km).
This idealized picture is generally reflected in Fig. 10b. However, we
observe a large variability in frontal slope in particular in the cold front,
where overturning is present locally. This may relate to local instability
causing enhanced convective precipitation (cf. [22]). An investigation
of vertical instability along frontal structures is one of the scientific
aims of NAWDEX; future work will employ our method to improve
interpretation of campaign observations in this regard.

Our 3D visualizations provide an effective means for comparison of
cyclone types with conceptual models and associated cyclone charac-
teristics. For example, the Norwegian and Shapiro-Keyser conceptual

models differ with respect to the occlusion process, i.e., the merging of
cold and warm fronts (cf. [49]). The Norwegian model describes the
cold front to “catch up” with the warm front; a “triple point” is formed
with an elevated occluded front extending to the cyclone center. In
contrast, Shapiro and Keyser [52] describe a “frontal fracture” with the
cold front being detached and almost perpendicular to a strong warm
front north of it. Fig. 10c indicates very clearly a detachment, through
depth, of the cold and warm fronts, which seems to suggests a Norwe-
gian cyclone. However, care is needed in interpretation as at the base
of an occlusion warm air has conceptually similar characteristics to the
ubiquitous anticyclonic inversions, which we have tried to eliminate
from our analysis. This may be an area for future work.

To gain further insight into the characteristics of the cold front, it is
selected and the frontal zone is visualized using normal curves (Fig. 11a
and b). Fig. 11b shows vertical velocity mapped to normal curves. As
expected from Fig. 9b, ascent is represented close to the frontal surface.
Our depiction shows how far this ascent extends horizontally into the
frontal zone; on the back side descent is present, whilst closer to the
cyclone center (left side of the figure), descent is stronger and closer to
the frontal surface. The different breadths of the regions of ascent may
relate to different breadths of rainbands. Frontal zone statistics become
useful to obtain an estimate of the θw distribution within. As visible in
Fig. 11c, θw values are smaller than the values mapped onto the front
in Fig. 9c, as expected from the front definition.

6.2 Cyclone “Walpurga”

Cyclone Walpurga, the fifth system in September 2016 observed during
NAWDEX, had reached southern Scandinavia at 12:00 UTC 29 Septem-
ber 2016. Its long cold front extended from southern Sweden over Den-
mark, northwestern France to the Azores. Fig. 12 shows the operational
2D fronts product from ECMWF, along with our 3D visualization. We
consider an interesting feature that immediately is visible to the user in
the 3D depiction: In the southernmost part of the front, the ECMWF
detection shows a secondary cold front upstream of the cold front,
seemingly detached and independent from the latter. The 3D depiction,
however, shows that both fronts are actually connected at upper levels
in the east and belong to the same structure. The primary front appears
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(a) (b) (c)

Fig. 11. The main cold front of “Vladiana” is investigated. (a) Selection of the cold front isolates the feature. (b) Normal curves colored by vertical
velocity show ascending air close to the frontal surface (cf. Fig. 9b); at the rear side of the frontal zone descending air prevails. (c) Distribution of θw
in the frontal zone. As expected, the values depicted on the frontal surface in Fig. 9c are on the warm side of the distribution.

to be very shallow (mostly below 900 hPa) whereas the trailing front is
a deep feature vertically extending into the mid troposphere. This may
be a case of a “double front” system as recently discussed by Mulqueen
and Schultz [32]. While Mulqueen and Schultz only considered 2D
surface maps, our method provides a means for a thorough systematic
investigation of multiple-front cyclones. Only a full 3D perspective
can clarify whether double fronts observed at the surface are individual
frontal systems or interconnected.

6.3 Domain Expert Feedback
Domain experts, active in weather forecasting and meteorological re-
search, were provided with some static 3D front images from this paper,
and were asked to provide feedback; about 20 replied, from Europe
and North America. In regard to potential use as a research tool the
response overall was very positive (one said “this is really amazing!”).
For real-time forecasting applications the response was also positive,
though a few were concerned about speed of operation and usabil-
ity. Meteorological training and media outlets were also mentioned as
potential application areas.

Many indicated that tailored 3D front products could assist with
aviation forecasting, specifically for major hazards like icing and “em-
bedded convection”, that usually occur within frontal cloud. Also cited
were turbulence prediction, the “sting jet” extreme wind phenomena
and snowbands. In research and forecasting many were interested in
frontal slope, and 3D front characterization (ana- and kata-, frontoge-

(a)

(b)

Fig. 12. Fronts of cyclone “Walpurga”, at 12:00 UTC 29 September 2016.
(a) ECMWF 2D objective surface fronts product. Note the seemingly
detached front indicated by the arrow. (b) 3D fronts identified and visu-
alized with our method, color denotes pressure elevation (hPa). Note
how the two fronts that are seemingly independent in the 2D image are
actually connected at upper levels.

netic or frontolytic, over-running and split), all of which can now be
highlighted. Replies from research referred also to combining the 3D
fronts with other variables and visualizations, such as front-normal
winds, microphysical quantities, trajectories and vertical profiles. Inter-
estingly, reactions to some plots varied markedly; one found Fig. 12
illuminating whilst another found it confusing. Evidently familiariza-
tion will be important.

7 DISCUSSION AND CONCLUSION

We have proposed a full 3D identification and visualization methodol-
ogy for investigating atmospheric frontal structures, which are intrin-
sically 3D. Such analysis was not possible before, using classical 2D
techniques. Our techniques include depiction of 3D frontal surfaces,
depiction of frontal zones by means of normal curves, color-mapping
of atmospheric quantities onto displayed features, and combination
with further atmospheric fields and features. Frontal features of interest
can be isolated interactively, and information about the distribution of
atmospheric quantities within a frontal structure can be queried.

We briefly discuss our results. Our technique builds upon an estab-
lished 2D method [14,15] that has been run in operational environments
for years, thereby achieving consistency with existing products. At the
same time this might be considered a limitation, as somewhat differ-
ent views exist within the meteorological community regarding how
fronts should be defined (e.g., [42, 49]). Nonetheless, our portrayed
structures do make physical sense, they do conform, to a large degree,
with conventional ideas, and they do provide, in addition, many new
insights. Two real-world cases from the 2016 NAWDEX atmospheric
field campaign have highlighted the value of our method for meteoro-
logical analysis and shown in one case (Walpurga) a structural feature
not previously documented. With respect to lessons learned during the
design stage, we note that in particular the use of transparency for “soft”
filtering was much appreciated by the domain experts in the author
team (after discovering the strong sensitivity of “hard” filtered fronts
to thresholds). Also, the isolated depiction of individual fronts proved
very beneficial to reduce cluttering and to permit focus.

In conclusion, we are confident that our method will facilitate many
new and valuable studies in atmospheric research, and that it will also
benefit operational forecasting, particularly for adverse weather which
often relates to fronts. Newly identified frontal characteristics will
be subject to further investigations in the context of NAWDEX and
beyond. This will include evaluation of traditional ideas by comparison
of conceptual models and observations to the multiple 3D structures
identified by our approach. We are confident this will stimulate further
meteorological research to help reconcile different views on fronts, and
to improve representation of frontal processes in numerical models.
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A Comparison of Rendering Techniques
for 3D Line Sets with Transparency

Michael Kern, Christoph Neuhauser, Torben Maack, Mengjiao Han, Will Usher, Rüdiger Westermann

Abstract—This paper presents a comprehensive study of rendering techniques for 3D line sets with transparency. The rendering of
transparent lines is widely used for visualizing trajectories of tracer particles in flow fields. Transparency is then used to fade out lines
deemed unimportant, based on, for instance, geometric properties or attributes defined along with them. Accurate blending of
transparent lines requires rendering the lines in back-to-front or front-to-back order, yet enforcing this order for space-filling 3D line sets
with extremely high-depth complexity becomes challenging. In this paper, we study CPU and GPU rendering techniques for transparent
3D line sets. We compare accurate and approximate techniques using optimized implementations and several benchmark data sets.
We discuss the effects of data size and transparency on quality, performance, and memory consumption. Based on our study, we
propose two improvements to per-pixel fragment lists and multi-layer alpha blending. The first improves the rendering speed via an
improved GPU sorting operation, and the second improves rendering quality via transparency-based bucketing.

Index Terms—Scientific visualization, line rendering, order-independent transparency.

F

1 INTRODUCTION

In many visualization tasks, the need to efficiently dis-
play sets of 3D lines is paramount. Applications range
from the visualization of pathways of particle tracers in
flow fields or over moving vehicles for smart transportation
and urban planning, to exploring neural connections in
the brain or relations encoded in large graphs and net-
work structures. Prior work such as [3], [12], [19], [27]
has shown that transparency, when used carefully to avoid
overblurring, can be used effectively to relieve occlusions
and to accent important structures while maintaining less
important context information. It is particularly useful for
exploratory visualization tasks, where users interactively
select the strength of transparency and the mapping of data
values to transparency.

Rendering transparency, however, introduces a perfor-
mance penalty. When using transparency, the per-pixel color
and opacity contributions need to be blended in correct
visibility order, i.e., by using α-blending (where α represents
a point’s opacity) in either front-to-back or back-to-front
order. Rendering techniques can be distinguished as to
whether they compute the visibility order exactly or approx-
imately, and how this order is established. Especially for line
sets, which have a significantly higher depth complexity
than surface or point models, maintaining the visibility
order during rendering can become a severe performance
bottleneck.

In this study, we evaluate exact and approximate object-
and image-order transparency rendering techniques, with
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intending to analyze the performance of such techniques
when used to render line sets with an extremely high
depth complexity. Our evaluation includes an in-depth eval-
uation of model-specific acceleration schemes. We further
demonstrate the use of approximate transparency rendering
techniques for surface and point models with high depth
complexity, though refrain from a detailed performance
evaluation on these cases. The latter would require consider-
ing specific acceleration structures for such surface or point
models, which is beyond the scope of a single paper.

Object-order techniques make use of GPU rasterization.
We consider Depth Peeling (DP) [10] and Per-Pixel Linked
Lists (LL) [43], both of which can render transparency ac-
curately at the cost of computing or memory. Other object-
order techniques use (stochastic) transmittance approxima-
tions, where transmittance refers to the multiplicative ac-
cumulation of per-fragment transparencies. Of the many
different variants of approximate techniques, we selected
Multi-Layer Alpha Blending (MLAB) [32] and the most re-
cent Moment-Based Blending Technique (MBOIT) [25] (see
Fig. 1 for example images). Both approximate techniques
use only small and constant additional buffer resources.

We also evaluate four image-order techniques based on
ray-tracing. We consider the Generalized Tubes method [13]
as well as Embree’s built-in Bezier curve primitives [40]
implemented in Intel’s OSPRay CPU ray-tracing framework
(OSP) [38], a GPU ray-tracer using NVIDIA’s RTX ray-
tracing interface [26] through the Vulkan API (RTX), and
voxel-based GPU line ray-tracing (VRC) [15]. All techniques
utilize dedicated data structures to facilitate efficient ray
traversal as well as empty space skipping and thus provide
effective means to evaluate the capabilities of image-order
line rendering.

OSP, RTX, VRC, DP, and LL, despite their algorithmic
differences, are all accurate methods and yield the same
rendering result. Performance-wise, on the other hand, these
techniques differ substantially, and for large data sets some
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(a) (b)

(c)

(a) PSNR = 33.41, SSIM = 0.907 (b) PSNR = 31.98, SSIM = 0.901

(d)

(c) PSNR = 34.42, SSIM = 0.913 (d) PSNR = 31.10, SSIM = 0.842

Fig. 1: Strengths and weaknesses of transparent line rendering techniques. For each pair, the left image shows the ground
truth (GT). Right images show (a) approximate blending using MLABDB, (b) opacity over-estimation of MBOIT, (c) reverse
blending order of MLABDB, (d) blur effect of MBOIT. Speed-ups to GT rendering technique: (a) 7, (b) 2, (c) 3.5, (d) 4.5.

of them even turn out to be impractical. The main goal of our
evaluation study is to shed light on the differences between
these techniques and to provide guidelines for selecting a
suitable rendering technique for a given application.

Contribution
We provide a qualitative and quantitative comparison of
techniques for rendering 3D line sets with transparency.
For our evaluation, we have systematically selected a set
of techniques that we believe are representative for the
different principal approaches that are available today. Even
though our evaluation study has been performed solely
on 3D line sets, the results are also applicable to other
application scenarios where transparency is used to reveal
otherwise hidden structures.

Through our study, users and practitioners can gain
an understanding of the principal implications of using a
certain technique and become aware of their major strengths
and limitations with respect to quality, memory require-
ments, and performance. Since we use a range of different
sized data sets with vastly different internal structures, our
evaluation hints to specific data-dependencies of certain
rendering concepts. We tried to individually select a trans-
parency setting for each data set that reveals important
features in a meaningful way. Thus, we consider our results
representative of typical use cases of transparent line ren-
dering. For each technique, we also analyze the pre-process
that is required to build the data representations needed for
rendering and perform a thorough evaluation of rendering
performance.

Moreover, we have modified LL to improve scalability
with the number of fragments, and MLAB to make it less
dependent on the order of fragments per pixel. For LL, we
developed GPU-friendly variants of shell-sort and priority-
queues through the min-heap data structure, resulting in
a performance increase of a factor of 2-3. Our implemen-
tation of MLAB uses a discrete set of depth intervals and
can considerably reduce the number of incorrectly merged
fragments.

We have made our implementations publicly avail-
able [17], the test environment using NVIDIA’s RTX [20],
all data sets [16], and all benchmark results for image
quality and performance evaluation. We have also included
additional descriptions of how to use the implementations
and apply them to other data sets.

2 RELATED WORK

Prior work [22], [42] has compared some of the many dif-
ferent rendering techniques for transparent geometry. These
evaluations, however, have mainly focused on the use of
techniques for real-time graphics effects in scenes comprised
of a few spatially extended and homogeneous transparent
objects with rather low depth complexity. Thus, the suitabil-
ity of techniques for visualization tasks as outlined in our
work is difficult to infer from available evaluations. To the
best of our knowledge, an evaluation and comparison of
techniques for rendering large 3D line sets, including ray-
based approaches and scenes with extremely high depth
complexity and high-frequency transmittance functions, has
not been performed.

2.1 Object-order techniques

Several approaches have been proposed to blend the frag-
ments falling into the same pixel in correct visibility order
without having to resort to an explicit sorting of geometry.
Everitt et al. [10] presented depth peeling, which renders for
each pixel in the i-th rendering pass the i-th closest surface
point using a second depth buffer test against the values
from the previous pass. In early work by Carpenter [6], the
A-buffer was introduced as a data structure that stores the
unordered set of fragments falling into each pixel. These
fragments are then sorted explicitly based on the stored
depth information. Yang et al. [43] used per-pixel linked
lists to store a variable number of fragments per pixel on
the GPU, after which they are sorted to blend the fragments
in correct order. Contrary to the linked lists, the k-Buffer [4]
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stores only the k nearest fragments, and merges fragments
heuristically if more than k fall into the same pixel.

In scenarios where the k-Buffer is not applicable, frag-
ments have to be blended heuristically. Adaptive Trans-
parency [31] operates on k fragments and aims to store
an approximation of the transmittance function per pixel.
Alpha blending is then performed in a second pass us-
ing this approximation. Maule et al. [21] proposed Hybrid
Transparency, which aggregates fragments using a k-Buffer
and merges them heuristically with respect to depth and
opacity. Even though this approach is order-independent,
it is not able to cope with scenes containing many layers.
Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique that uses a fixed number of per-pixel transmit-
tance layers to approximate the transmittance along a view
ray. When all layers are occupied and the current fragment
creates a new layer, the two most appropriate adjacent layers
are merged in turn. Stochastic Transparency [9] uses weights
to blend or discard fragments based on opacity. Weighted-
Blended Order-Independent Transparency [23] proposed to
use weights based on occlusion and distance to the camera
to merge fragments.

Recently, Münstermann et al. [25] introduced Moment-
Based Order-Independent Transparency (MBOIT). Rojo et
al. [3] demonstrated the embedding of importance-based
transparency control into MBOIT. MBOIT approximates the
transmittance function pixel-wise by power moments or
trigonometric moments, and applies logarithmic scaling
to the absorbance to enforce order-independency and fa-
cilitate additive compositing. Moment-Based transparency
builds upon Fourier opacity mapping [14], which represents
transmittance as a low-frequency distribution dependant on
depth, and approximates these distributions using trigono-
metric moments, i.e., Fourier coefficients.

Another category of techniques render transparent lay-
ers using multiple samples per pixel, for example, Stochastic
Layered Alpha Blending [42] and Phenomenological Trans-
parency [24]. The latter technique also incorporates physical
processes to create realistic effects of translucent phenom-
ena. However, these techniques significantly increase the
number of generated fragments, which is problematic in
scenarios where the depth complexity is extremely high. As
such, we do not consider them in our study.

We do also not consider particle-based [30] and voxel-
based [8], [18] rendering techniques for transparent ge-
ometry. Especially when used to render space-filling line
sets, these techniques significantly increase the number of
rendered primitives or the resolution of the used voxel grid
and require substantial modifications to render geometric
shapes with fine geometric details and sharp outlines.

2.2 Image-order techniques

Image-order techniques for rendering line primitives make
use of ray-tracing. Advances in hardware and software
technology have shown the potential of ray-tracing as an
alternative to rasterization, especially for high-resolution
models with many inherent occlusions. Developments in
this field include advanced space partitioning and traversal
schemes [35], [37], [41], and optimized GPU implementa-
tions [1], [18], [29], to name just a few. Wald et al. [39]

proposed the use of ray-tracing in combination with a tree-
based search structure for particle locations to efficiently
find those particles a ray has to be intersected with. Kanzler
et al. [15] built upon voxel ray-tracing and proposed a GPU
rendering technique for large 3D line sets with transparency.
They use an approximate voxel model for 3D lines, using
quantization of line-voxel intersection points to a discrete
set of locations on voxel faces. Ray-tracing is then performed
using the regular grid as an acceleration structure.

Ray-tracing of line sets can be performed on analytic
or polygonal tube models by using common acceleration
structures like kD-trees or bounding volume hierarchies
to accelerated ray-object intersections. CPU and GPU ray-
tracing frameworks like OSPRay [38] and OptiX [29] can
be used for this purpose. OSPRay builds on Intel’s Em-
bree ray tracing kernels [40] and has built-in support for
rendering fixed-radius opaque streamlines and Bézier curve
primitives. Han et al. [13] further extended OSPRay with a
module for rendering Generalized Tube Primitives, support-
ing varying radii, bifurcations, and transparency. NVIDIA’s
RTX ray-tracing through the OptiX interface [26] uses RT
cores on current GPUs to perform hardware-accelerated ray-
primitive intersection tests. OptiX also provides an interface
to implement custom shaders, which, in our current sce-
nario, can also be used to analytically intersect rays with
tubes.

3 LINE RENDERING

We classify line rendering algorithms into two major groups:
object-order and image-order. Object-order techniques use
rasterization of geometric primitives to let the GPU com-
pute the fragments falling into each pixel in an arbitrary
order. Although the order is first given by the order in
which rendering calls are issued for each primitive, this
order is not given when processing each fragment in the
fragment shader stage. For transparency, these techniques
use either fragment merge heuristics or 2-pass approaches
to ensure (correct) transmittance and visibility. In contrast,
image-order techniques use ray-tracing to find the surface
points seen through the pixels. The correct visibility order
of the points along a ray is established by using a space-
partitioning scheme to traverse a ray in front-to-back order
through space.

3.1 Object-Order
Object-order techniques can be classified into accurate and
approximate techniques. Accurate techniques guarantee the
exact visibility order of rendered fragments. Approximate
techniques violate this order by blending a fragment’s color
over a color that already contains the color of a fragment
that is closer to the camera. Although approximate tech-
niques typically have bounded memory and rendering con-
straints, accurate approaches come with either unbounded
rasterization load or unbounded memory requirements.

Depth Peeling
Depth Peeling (DP) [10] generates pixel-accurate renderings
of transparent geometry by rendering the scene multiple
times and using the depth buffer to achieve ordered blend-
ing, each transparent layer at a time. DP utilizes the depth
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buffer hardware test to successively obtain the next closest
layer and performs standard front-to-back blending into the
current framebuffer.

A unique property of DP is that it does not require any
additional memory besides a second depth buffer. On the
other hand, DP needs to “peel” layers, i.e., render the scene
as many times as the depth complexity of the scene. In
our application scenario, where the scenes are comprised
of many thousands of thin and often space-filling objects,
a huge number of rendering passes typically has to be
performed. As indicated in Fig. 2, terminating the blend
passes after a fixed number of times is dangerous, because
deep layers with high opacity can contribute significantly to
the final pixel color.

Due to the high rendering cost of DP, its performance
is typically about 1-2 orders of magnitude below that of all
other alternatives we consider. Therefore, we decided to use
DP solely for generating ground truth images of transparent
lines, against which the results of other techniques are
compared.

Fig. 2: Intermediate results of depth peeling for layers 1, 10,
and 50 of a semi-transparent line set. Note that even at layer
50 notable differences appear in the final result.

Per-Pixel Linked Lists

While DP has bounded memory constraints and unbounded
rasterization load, Per-Pixel Linked Lists (LL) [43] come
with bounded rasterization load yet unbounded memory
requirements. LL renders the scene only once, and stores all
generated fragments in linked lists over all pixels. Then, for
every pixel, a pixel shader is invoked which traverses the list
and stores all fragments belonging to that pixel in a GPU
buffer resource. The fragments are then sorted wrt. their
depth. Finally, the fragments are blended in sorted order to
produce the final pixel color. Besides the global fragment
buffer, LL requires a head buffer that stores, for every pixel,
the offsets to the first fragment in the linked list, and an
atomic counter that tracks the number of inserted fragments
to enable concurrent gathering of new fragments into the
fragment buffer. LL assumes that the GPU buffer resource
is large enough to store all rendered fragments; otherwise,
it fails to correctly render the scene. To reduce the memory
requirements, one commonly stores fragment colors in 32-
bit unsigned integers, with 8 bits per color and α channel.

Even if the available GPU memory is large enough,
which is often the case on high-end GPUs, sorting the many
hundreds or even thousands of fragments per pixel can
become a performance bottleneck. Although simple sorting
algorithms such as bubble sort or insertion sort are suitable
for small numbers of fragments, they do not scale well
to large numbers of fragments. To address this limitation,
we have incorporated alternative sorting algorithms that
achieve better scalability and can be implemented on top of

GPU-friendly data structures, i.e., GPU versions of shell-sort
and priority-queue through the min-heap data structure.

Shell-sort [33] is an in-place sorting algorithm based
on insertion-sort. It is specifically designed to achieve im-
proved sorting performance for large arrays by exchanging
elements that are far apart from each other. Shell-sort subdi-
vides the array into k subarrays by sorting each k-th element
of the array via insertion sort. k in this context defines the
offset between elements and is hence called the gap. The gap
is iteratively decremented in l iterations using a pre-defined
sequence (k1, k2, ..., kl) of l numbers. The ai-th element is
then sorted in the i-th iteration. Note that kl is always 1
since every element needs to be sorted in the last iteration. In
our work, we used l = 4 and a gap sequence of (24, 9, 4, 1)
(based on Table 1 in [7]) to efficiently order elements with
an average depth complexity of 124 elements per node.

Priority-queues are implemented with the min-heap data
structure. A min-heap is a full binary tree where each node
contains a key defining the priority (or order) of the element.
For each parent node, the key of its children is either
equal or smaller than its own key. Heap data structures
are commonly implemented as binary trees. In our case,
the depth value of each fragment represents the key. That
is, after each insert operation, the root node is the currently
closest element in the min-heap.

Upon insertion of all fragments in the heap, the next
closest fragment is iteratively obtained by removing the root
node from the heap until the heap is empty. Root removal is
implemented by setting the element with the least priority
as the new root and sinking it down until it is correctly
sorted. This process takes O(log n) time for a heap with
n elements. Since the root has to be obtained n times, the
total time complexity is O(n · (log n)), which is faster than
the depth complexity of the previously mentioned sorting
algorithms.

Both sorting algorithms have been embedded into LL to
improve its performance. Fig. 3 shows performance graphs
for renderings of the aneurysm data set from many differ-
ent views. As can be seen, shell-sort and priority-queues
significantly improve the sorting performance by a factor of
2 to 3 on average and keep the sorting time almost constant
over all frames. Due to the slightly better performance of
priority-queues for other data sets, we decided to use this
version of LL in our evaluations.

Fig. 3: Rendering times for a flight around the ANEURYSM
data set using LL and different sorting algorithms.

Multi-Layer Alpha Blending
Multi-Layer Alpha Blending (MLAB) [32] is a single-pass
technique. It belongs to the class of transparency rendering
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techniques that are bounded in both memory consump-
tion and rendering load. This class of techniques does not
perform exact visibility sorting of fragments but strives to
approximate the transmittance and color. MLAB does this
by heuristically merging fragments into a small number of
layers, a so-called blending array, that are finally merged
into the pixel color.

The blending array consists of k buffers, into which
incoming fragments are merged. Each of the k buffers stores
the blended colors and transmittances of the fragments
merged into it, as well as a depth value. Each fragment is
placed into a corresponding buffer based on its depth. When
all layers are occupied and the current fragment creates
a new layer, the two most appropriate adjacent layers are
merged in turn.

We chose MLAB because of its simplicity, performance,
and low memory consumption. On the other hand, it is clear
that with only k layers—eight by default in our current
implementation—MLAB is not always able to accurately
reconstruct the colors and transmittances for scenes with
high depth complexity. In particular, the quality of MLAB
is highly dependent on the order in which fragments are
generated, as the outcome of the heuristic merge operation
depends highly on this order. Some of the inaccuracies
shown in Fig. 1 are due to this dependency.

Additionally, MLAB is not frame-to-frame-coherent if
the order in which fragments are rendered to the inter-
mediate buffers is not guaranteed over time, resulting in
flickering artifacts during animation. We prevent this error
by explicitly enabling order-preserving pixel synchroniza-
tion (see [11]) so that fragments are processed in the order
primitives were issued. Note that with pixel synchronization
enabled, we did not experience any loss or increase in
performance.

Multi Layer Alpha Blending with Depth Bucketing
To make MLAB less dependent on the order in which frag-
ments are generated, we propose a variant that considers a
discrete set of depth intervals. We call this approach MLAB
with depth bucketing (MLABDB). The general idea underly-
ing MLABDB is to discretize the scene into k disjoint buckets
that perform MLAB independently for the corresponding
depth interval. Each fragment is thus assigned to a bucket
by means of its depth value and merged heuristically into
the local corresponding color and transmittance buffer. Since
the buckets are already sorted wrt. depth, blending can
finally be performed by blending the buckets’ values in
front-to-back order.

However, only discretizing the scene into buckets of
equal intervals produced images with less quality and vis-
ible artifacts. MLAB itself is not order-independent and
yields different results per pixel depending on the order of
fragments for each bucket and pixel, resulting in artifacts.
To avoid these artifacts, in MLABDB we segment the scene
into two buckets and set the boundaries of the buckets
heuristically with respect to opacity (compare Fig. 4).

MLABDB requires two rendering passes to obtain the
final color. In the first pass, the boundaries of the two
buckets are determined. For each gathered fragment, the
first fragment with opacity α greater or equal a user-defined
threshold τα is maintained. The depth value zmin of this

1

0

Front Bucket Back Bucket Discarded

Fig. 4: Fragments with opacity, ordered by depth. MLABDB
searches for the first fragment with α ≥ τα to obtain depth
boundary zmin of the front bucket. Back bucket bounds are
zmin and zo, with zo the depth of the first opaque fragment.
Fragments with z > zo are discarded.

fragment represents the upper depth boundary for the first
bucket, called front bucket. Since fragments behind opaque
lines should not be merged the first opaque fragment with
α ≥ τo is preserved. Its depth values zo and zmin define
the upper and lower boundary of the second bucket, called
the back bucket. In the second pass, all incoming fragments
are assigned to the corresponding bucket by using their
depths, and heuristic merges are performed independently
for each bucket. Fragments with a depth value greater than
zo are discarded. For the front bucket, we found that n = 1
or n = 2 layers were suitable to gather the fragments
and avoid order-dependent problems of MLAB, under the
assumptions that all fragments of low opacity contribute
equally to the image. The back bucket uses a blending array
with four or five layers. As demonstrated in Fig. 1c and
further evaluated in Sec. 4, MLABDB can, in many cases,
considerably improve the quality of MLAB (compare Fig. 5).
On the other hand, since it requires more operations, it is
slightly less efficient than MLAB. Note that thresholds need
to be set carefully, as visual artifacts can occur as seen in
Fig. 11(a) and discussed in Sec. 4.5.

Fig. 5: Difference between MLAB (left) and our modified
variant MLABDB (right). MLAB reveals interior lines er-
roneously due to wrong blending order. MLABDB renders
correctly in this scenario.

Moment-Based Order Independent Transparency
Moment-Based Order Independent Transparency (MBOIT)
[25] is another variant of transparency rendering techniques
with bounded memory and rendering constraints. It builds
upon either power moments or trigonometric moments
to approximate the transmittance function per pixel in a
stochastic way. Power moments are used in statistics to
reconstruct or approximate functions such as the mean and
standard deviation of arbitrarily sampled random distribu-
tions. In addition, MBOIT operates on the logarithm of the
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transmittances per fragment to enable order-independent
additive blending. The transmittance of the n-th fragment
at depth zf and opacity αf is given by

T (zf ) =
n−1∏

l=0

(1− αl), zl < zf (1)

The absorbance can then be defined in the logarithmic
domain as

A(zf ) = − lnT (zf ) =
n−1∑

l=0

−ln(1− αl) (2)

The absorbance can be interpreted as a cumulative distribu-
tion function of the transmittance at each layer, given that
for all l translucent fragments it holds that zl < zf . The
distribution can be described as

Z :=
n−1∑

l=0

−ln(1− αl) · δzl , (3)

where δzl is the Dirac-δ function. Using a power mo-
ments generating function b: [−1, 1] → Rm+1, b(z) =
(1, z, z2, z3, · · · , bm)T , for m power moments the transmit-
tance is given by

b := Ez(b) =
n−1∑

l=0

−ln(1− αl) · b(zl). (4)

MBOIT requires two passes to compute the final color. In
the first pass, the m power moments are computed that are
required to reconstruct the transmittance function. The first
pass requires storing m floating point values per pixel, we
use four in our experiments. In the second rendering pass,
the transmittance of each fragment is reconstructed using
the pre-computed power moments via

T (zf , b) = exp(−A(zf , b)). (5)

The real absorbance of the fragment is estimated by com-
puting its lower and upper bounds and interpolating in-
between these bounds with an interpolating factor β = 0.1.
This factor was determined by testing multiple values and
settling for the one giving the best results. As the quality
of reconstruction further degrades with large depth value
ranges, the depth values are transformed to logarithmic
scale [25]. The final color can then be computed using the
total absorbance, stored in the first power moment b0, and
the reconstructed transmittance T (zf , b) (cf. eq. 2 in [25]).

Münstermann et al. [25] pointed out that this is problem-
atic for scenes with intersecting geometry and large depth
ranges, and this turns out to be especially problematic in the
situation where many changes in the transparencies along
one single view ray occur (see discussion in Sec. 4.5).

3.2 Image-Order
Image-order techniques guarantee exact visibility order of
the surface points along the view rays. They utilize a search
structure to efficiently find the objects that need to be tested.
Therefore, they often come with increased, yet per-frame
constant memory requirements. On the other hand, they
have unbounded rendering constraints, since the number of
ray-object intersection tests depends on the view direction.

Voxel-Based Ray-Casting
VRC is an image-order line rendering technique. It builds
upon the voxelization of a line set into a regular voxel grid
and performs ray-casting in this grid with analytical ray-
tube intersections to correctly blend all intersection points.
For discretizing the lines into the voxel grid (i.e., curve vox-
elization), each line is subdivided into a set of line segments
by clipping the line at the voxel boundaries (see Fig. 6).
To obtain a compact representation of these segments, their
endpoints are quantized based on a uniform subdivision of
the voxel faces (i.e., line discretization).

Fig. 6: The original curve (red dotted line) is discretized
into a voxel grid of 1, 4, and 16 voxels, respectively, from
left to right. Per voxel lines are clipped against the voxel
faces and linearly connected. The blue curve represents the
approximated original curve at the given grid resolution.

For every pixel, a ray is cast through the voxel grid, go-
ing from voxel face to voxel face using a digital differential
analyzer algorithm. Whenever a voxel is hit, it is determined
how many lines are stored in that voxel. If a voxel is empty,
it is skipped; otherwise, the ray is intersected against the
tubes corresponding to each line. If multiple intersections
with the tubes are found, they are computed and then
sorted in place in the correct visibility order. Since tubes can
overlap into adjacent voxels, neighboring voxels also need
to be taken into account for intersection testing.

A potential weakness of VRC is the approximation
quality. Curve voxelization and line quantization introduce
an approximation error, which increases with decreasing
grid resolution and coarser discretization of voxel faces.
Conversely, higher grid resolutions and finer discretizations
yield better approximations, but can significantly increase
the memory required to store the voxel representation.

OSPRay CPU Ray Tracing
OSPRay is used to evaluate the performance of CPU ray-
tracing for transparent line rendering. Within OSPRay, there
are three options for representing line primitives. OSPRay’s
built-in streamlines represent the lines as a combination
of analytic cylinder and sphere primitives, suitable for
rendering opaque streamlines with a constant radius. For
smoother higher-order curves or transparency, OSPRay can
also use Embree’s built-in Bézier curve primitive directly.
Finally, the Generalized Tube Primitive module [13] extends
OSPRay’s original streamline approach to support varying
radii, bifurcations, and correct transparency. The General-
ized Tubes module represents the streamlines as a combina-
tion of spheres, cylinders and cone stumps, and employs
a constructive solid geometry intersection test to ensure
correct transparency. Although this CSG-based intersection
comes at some cost, it is required to avoid showing interior
surfaces from intersections with the constituent primitives.
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To render the primitives, we use OSPRay’s built-in scientific
visualization renderer, which supports illumination effects
such as shadows and ambient occlusion.

It is of course also possible to tessellate the tube prim-
itives and render them in OSPRay as a triangle mesh. In
our testing, we found that when using a very low-quality
tessellation, the triangle mesh outperformed the General-
ized Tubes for transparent geometry, due to the removal
of the CSG traversal. However, even with a low-quality
tessellation, the memory consumed by the triangle mesh
is of concern, moreover, tessellating to a level of detail
that matches the quality of the Generalized Tubes or Bézier
curves will require significantly more primitives, impacting
performance. For small- to medium- sized data sets, trian-
gulation may be a reasonable approach.

RTX Ray Tracing
RTX is used to evaluate the performance of GPU ray-
tracing for line rendering. On the RTX architecture, ded-
icated hardware, the RT cores, are used to accelerate the
traversal of bounding volume hierarchies—utilizing axis-
aligned bounding boxes—and the execution of ray-triangle
intersection tests.

As the maximum recursion depth on current RTX hard-
ware (32) is too low for data sets with high depth complex-
ity, we opted for an iterative approach. We also note that a
recursive approach is likely to be far more expensive than
an iterative one. Our first approach used any hit shaders
to accumulate fragments along the rays. However, this can
provide only an approximate result, as any hit shaders are
not guaranteed to be run in a strict front-to-back order. Thus,
we did not pursue this approach further.

Instead, in our experiments we utilize a closest hit shader
in combination with a loop in the ray generation shader that
blends the fragments returned by it in front-to-back order
(cf. Fig. 7). Intersection sorting is thus done entirely by the
acceleration structure traversal unit.

The closest hit shader also returns its hit distance along
the ray, so that the ray generation shader can start the
next ray right after the last hit using a very small offset
to avoid intersecting the same primitive again. The loop is
terminated by either a sentinel value returned from the miss
shader, run when no primitive is hit, or a zero transmittance
value. Although iterative next-hit traversals could, in theory,
fail to find all intersection hits (see Wald et al. [36]), we have
not experienced this problem in our experiments.

The RTX framework can also trace against custom ge-
ometry using an intersection shader, which we utilize to
perform analytic intersection tests against the tube represen-
tations for each line. A ray is first intersected with an infinite
tube, and the intersection points are then clipped against
the two planes delimiting the tube segment. To correctly
interpolate the vertex attributes in the closest hit shader,
both planes are intersected with a line parallel to the tube
and through the clipped point. The position of the clipped
point on this line segment is then mapped to [0; 1] and used
as interpolation factor in the closest hit shader.

Interestingly, the analytic ray intersection tests are about
a factor of two slower than ray-triangle intersection tests,
even though the lower primitive count leads to a signifi-
cantly smaller memory footprint. The high performance for

Ray Generation

Shader

Blending

Hit

TraceRay()

Dispatch
Rays()

d

Fig. 7: Illustration of iterative ray-casting using the RTX
framework. Blue-colored paths represent line primitives of
the data set. At each frame, the ray generation shader
is called once and is responsible for iteratively blending
over all fragments and issuing new rays (TraceRay()) at
intersection point ti (green arrows). During ray traversal,
the intersection point with primitive closest to the viewer is
computed. On each hit, color and opacity of line is obtained
and sent back to the ray generation shader (orange arrows).

triangles is likely attributable to the hardware acceleration
of triangle intersection testing on the RTX hardware, and
do not consider analytical tests in the remainder of the
evaluation for RTX.

4 EVALUATION

We evaluate and compare all selected line rendering tech-
niques regarding memory consumption, performance, and
quality. All GPU techniques were run on a standard desktop
PC with Intel Xeon processor, 32 GB RAM, and an NVIDIA
Geforce TITAN RTX with 24 GB VRAM. CPU ray-tracing
was performed on a system with 2 Intel Xeon E5-2640
CPUs at 2.4 GHz and 3.4 GHz boost frequency with 40
CPU threads in total. We used the Vulkan SDK 1.1.129
with the extension VK NV ray tracing to implement RTX
ray tracing and conducted the performance tests using the
NVIDIA driver 441.87. Both CPU and GPU architectures
come at roughly the same price, making the comparison fair
in terms of financial investment. Furthermore, all perfor-
mance measurements (using data sets that fit into memory)
were carried out on an NVIDIA Geforce RTX 2060 SUPER
with 8 GB VRAM and a single Intel i7-5930K CPU with
12 threads. The performance scale-down compared to the
measurements in Sec. 4.4 was roughly a factor of 1.6 – 3
and 2, respectively. All images were rendered at a viewport
resolution of 1920×1080 for performance and 1280×720 for
image quality. When statistics are given for flights around a
data set, the camera parameters were set so that most of the
viewport is covered by that data set and the entire viewport
is covered in zoom-in scenarios. Ground truth images are
generated via DP, yet we do not consider DP any further
due to the limitations discussed in the introduction.

4.1 Data Sets

Our experiments were performed on data sets with vastly
different numbers of lines and line density. For each data set,
we selected meaningful transparency assignments, e.g., by
mapping physical parameters along the lines or geometric
line curvature to transparency. The following data sets were
used:

• ANEURYSM: 9,200 randomly seeded streamlines in
the interior of an aneurysm [5], and advected up to
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Fig. 8: Data sets used in our experiments. Top: Opaque line rendering. Bottom: Transparent line rendering. From left
to right: ANEURYSM, CONVECTION, TURBULENCE, and CLOUDS. Transparency greatly aids the ability to visualize
important features in the data.

the vascular wall. Vorticity in the flow field from
which the lines were extracted is mapped to line
transparency.

• CONVECTION: 100,000 short streamlines that were
uniformly seeded in a Rayleigh-Bernard convec-
tion between a heated bottom wall and a cold top
wall [28]. Transparency is assigned according to line
curvature.

• TURBULENCE: 80,000 long streamlines generated
in a forced turbulence field of resolution 10243 [2].
Transparency is proportional to the maximum λ2
vortex measure along a line.

• CLOUDS: 400,000 seeded streamlines in a cloud-
resolving boundary layer simulation (UCLA-LES, see
[34]) using a large eddy simulation (LES). Streamline
integration was conducted on a voxel grid with
resolution 384×384×130. The magnitude of vorticity
along each streamline is mapped to transparency.

Fig. 8 shows all data sets, rendered via opaque and
transparent lines. Most data sets are very dense, yet by
mapping the selected parameters linearly to transparency,
important interior structures can be revealed. Table 1 gives
further information on the number of line segments that
need to be rendered as tubes, the memory that is required by
the initial line representation, and the memory requirements
of the internal data representation used by each technique,
as explained in the next subsection.

4.2 Data Preparation and Model Representation
All rasterization-based line rendering techniques and RTX
render the tubes as triangle meshes. Therefore, each con-
nected sequence of lines first needs to be converted into
a set of triangulated tubes that are stitched together to
form a closed mesh. This pre-process is performed on the
GPU. The meshes are stored in a triangle and shared vertex
representation with normal buffer, where each index and
vector component is represented by a 32-bit value. In an
additional attribute buffer, 16-bit per-vertex attribute values
are stored. During rendering, these values are mapped to
transparency and color. To construct the tubes, for every
vertex shared by two lines, the average of the lines’ tangent
vectors is computed. At the first and last vertex, respectively,
the average is just the tangent of the first and last line

segment. Three vertices are generated and placed uniformly
on a circle around the vertex in the plane orthogonal to the
average tangent and containing this vertex. The three ver-
tices from the line start and end points are then connected to
form a closed set of tubes. We use the same circle radius for
all tubes. The vectors from the initial vertex to the new ones
are used as per-vertex normals. From our experiments, we
found that three vertices along a circle radius are sufficient
to achieve good results from each view direction.

The resulting buffers are used directly as input for
LL, MLAB, MBOIT, and RTX. It is worth noting that all
rasterization-based techniques can also generate the poly-
gon models on the fly during rendering in a geometry
shader, or use a pixel shader that takes the line informa-
tion as input and analytically tests for intersections with
the corresponding tube. However, since rendering the pre-
computed geometry is up to a factor of 2 faster, we do not
consider on the fly generation in our evaluation.

RTX requires another pre-process to build an AABB hier-
archy from the given polygon model. For triangle geometry,
the RTX framework supports only a few position formats,
and raw data must be converted if it does not already
match. For custom geometry, the API requires conservative
estimates of the AABB of each primitive. Construction of the
AABB hierarchy is performed on the GPU via the API. RTX
then generates a tree structure, that is traversed by every
ray until reaching the leaf nodes where ray-triangle tests are
performed.

Since VRC cannot handle polygon models but tests ana-
lytically against the tubes during ray-casting, a voxel-based
renderable line representation is first built and uploaded to
the GPU. For ANEURYSM and CONVECTION, we used
an optimized voxel grid resolution of 113×110×128 (x,y,z-
dimension) and 128×8×128, respectively, and a quantiza-
tion level of 16. For TURBULENCE and CLOUDS, we
increased the resolutions to 2563 and 5123, respectively, and
used a quantization level of 32. Grid resolutions were chosen
to reduce the probability that lines fall onto each other and
become indistinguishable.

OSP constructs a bounding volume hierarchy using Em-
bree [40]. From the input line data, we build the Generalized
Tubes geometry, which consists of a set of analytic spheres,
cylinders, and cone stumps, the union of which forms the
tube. These primitives are passed to Embree as a user
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TABLE 1: Data statistics and memory requirements. Num-
ber of line segments in millions (LS), line model size in
MB (LM), size of renderable representation in GB (primitive
buffers, acceleration structures), and build times in seconds
for rasterization-based techniques, OSP, RTX, and VRC.

Data Set LS LM Render. Repr. (GB) Build Times (s)

ANEURYSM 2.3 34 0.39 0.38 2.04 0.05 0.8 0.2 0.6 3.6

CONVECTION 9.9 151 1.67 1.62 5.27 0.04 3.2 0.3 2.8 11.1

TURBULENCE 17.5 267 3.01 3.01 9.38 0.50 7.7 1.1 5.1 23.6

CLOUDS 39.6 610 4.63 6.12 14.5 0.89 13.5 4.5 9.5 42.1

geometry, over which it will construct a BVH. As with
RTX, the user geometry must provide a conservative bounds
estimate to the BVH builder. In our evaluation, we found
that Embree’s Bézier curves provided better performance
for transparent tubes, and in this case, we switch to use
Embree’s Round Bézier curves, available through OSPRay’s
“curves” geometry type. Embree then builds a BVH over the
curve primitives as before. The curve primitive is built into
Embree, and additional optimizations to the BVH quality
may be applied during the build, that are not available for
user geometry such as our Generalized Tubes. During ren-
dering, Embree traverses packets of rays in SIMD through
the BVH until reaching a leaf node, where intersection tests
are performed with Generalized Tubes or Bézier curves.

For all data sets and rendering techniques, Table 1 lists
the number of line segments to be rendered (LS), the mem-
ory requirement to render all line models (LM), the memory
requirement of the used renderable representations (primi-
tive buffers and acceleration structure) on the GPU or CPU,
and the time required to build these representations. Table 1
indicates that VRC performs better than rasterization-based
approaches regarding memory requirement. In general, the
polygon model requires much more memory than the voxel
grid used by VRC, in some cases more than 10 times. The
build times, on the other hand, are about a factor of 4 faster
compared to VRC. We attribute this difference in build times
to the fact that building the voxel representation requires far
more arithmetic and memory scan operations for clipping
lines at voxel boundaries, counting how many line segments
fall into a voxel, and computing indices into per-voxel
memory containers. Rasterization-based approaches, on the
other hand, require only simple index arithmetic once the
number of lines and the vertices per line is known.

We find that RTX consumes significantly more memory
than the other alternatives, partly because of the larger
number of triangles that is finally stored in the BVH ac-
celeration structure. In addition to that, space-partitioning
schemes for dense line sets become increasingly inefficient
and run into the problem of either clipping lines at the
boundaries, thus duplicating vertex information, or using
overlaps, which significantly increases the number of re-
gions to be tested. OSP achieves the best performance for
building the acceleration structures since it considers only
the initial line segments and comes with a highly optimized
multi-threaded BVH build routine provided by Embree.

4.3 Per-Frame Memory Requirements
To analyze the additional memory consumption of each
technique during rendering, we render the models along
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Fig. 9: Memory consumption (in addition to internal
model representation) of techniques for different views of
ANEURYSM and TURBULENCE.

pre-recorded paths around them, including two zoom-ins.
For ANEURYSM and TURBULENCE, the graphs in Fig. 9
show the memory requirements per frame (not including
the internal model representation) by each technique.

OSP, RTX, and VRC do not require any additional mem-
ory beyond the internal renderable model representation.
MLABDB and MBOIT require an additional per-pixel buffer
with k=5 or k=4 layers, respectively. MBOIT stores four
32-bit floating point power moments in these layers. The
memory consumption of this buffer is negligible compared
to that of the renderable representation. LL, on the other
hand, needs to keep a buffer with as many entries as the
maximum number of fragments that can be generated for
any of the possible views. Due to performance issues, this
buffer is usually allocated once in a pre-process, using a
prescribed maximum number of fragments. The memory
consumption of LL can exceed the available GPU memory,
especially when rendering at higher viewport resolutions.

In general, if the data set is too large to fit into avail-
able GPU memory (4 – 8 GB VRAM on recent commodity
graphics cards) rendering the entire line set per frame is not
possible anymore. Here, object-order techniques can simply
split up line sets into chunks and render those separately
at each frame. VRC can split the voxel-based representation
into chunks and proceed the same way. RTX can generate
chunks of the data and creates an AABB hierarchy for each
chunk individually. This requires the traversal of several
AABBs at the same time which can lead to a drop in
performance. For LL, memory requirements can be reduced
by using screen-space partitioning, so that only subsets of
fragment lists have to be stored per pixel at once.

4.4 Rendering Performance
Each data set was rendered three times along the pre-
recorded flight paths, each time with different transparency
settings and zoom levels. In this way, the dependencies
between performance and the amount of transparency can
be analyzed. We investigate the rendering of opaque lines,
semi-transparent lines with an assignment of transparency
that gives meaningful results, and lines with constant low
transparency (e.g. below 0.15). Even though the latter set-
ting, in general, does not produce meaningful results but
mostly blurs out directional information, it is used to
demonstrate how either technique behaves in this worst-
case scenario. Performance measures are given in Fig. 10.

The rendering times of MLABDB and MBOIT are almost
constant for different transparency settings since both tech-
niques always render the entire data set and cannot exploit
early-out strategies to skip fragments that are occluded by
opaque ones. Rendering performance is mainly affected by
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Fig. 10: Rendering performance of all techniques using opaque lines (first row), transparent lines with opaque features of
interest (middle row), and highly transparent lines (last row). The 1st, 2nd, 3rd, and 4th columns are for ANEURYSM,
CONVECTION, TURBULENCE, and CLOUDS, respectively. For OSP, the line is dotted if rendering time exceeds 1500ms.

the number of lines to be rendered and limited by the
polygon throughput of the GPU. Over time, depending
on the orientation of lines, different amounts of fragments
are generated, which results in slightly varying rendering
times along the flight paths. In contrast, the performance
of LL is highly dependent on the number of generated
fragments. Although LL renders the entire line set once,
similar to MLABDB and MBOIT, the generated fragments
need to be stored and sorted. Thus, MLABDB and MBOIT
render significantly faster than LL, especially for larger data
sets. Over time, LL shows performance variations similar to
those of MLABDB and MBOIT.

Since image-order techniques can effectively employ
early-ray termination, their performance depends strongly
on the transparency setting. When highly opaque lines are
rendered (see first column in Fig. 10), the performance of
RTX, OSP, and VRC is similar or even faster than that of the
rasterization-based techniques. The performance of OSP is
usually below that of RTX and VRC, as the CPU does not
provide any hardware acceleration for ray tracing.

For opaque lines, CONVECTION seems to be an outlier
regarding the relative performance differences between OSP
and the other techniques. OSP uses Embree’s BVH builder,
yet since a user geometry is used, Embree is not able to
split the geometry to reduce the amount of overlap between
BVH nodes. Densely overlapping data sets with long line
segments will result in a poorer quality BVH, with more
overlap between the nodes. However, RTX uses a trian-
gulated representation and can still perform these spatial
splits. For the CONVECTION, since the rolls are laid out in
a flat sheet, OSP ends up traversing and intersecting a large
amount of the BVH and most of the primitives in aggregate
over the image. In the remaining data sets, the higher
amount of occlusion helps reduce the amount of traversal
needed. Especially on TURBULENCE and CLOUDS, even
though there are a large number of lines, OSP only sees the
box exterior for opaque lines and traverses very little of the

data. Data sets with transparent lines do not benefit from
the higher level of occlusion, and a large amount of the data
must be traversed.

With increasing transparency, OSP falls behind the
other techniques – rendering required more than 2000ms
and 6000-10000ms to complete for TURBULENCE and
CLOUDS, respectively – as the renderer must now tra-
verse much further into the data. Consequently, more tree-
traversal operations and intersections tests need to be com-
puted. Although the same holds for RTX, its rendering
times can compete with the performance of approximate
techniques for line sets up to 100K, potentially due to the
hardware acceleration provided for ray traversal and trian-
gle intersection. The worst-case scenario for OSP and RTX
is the highly transparent case, where the majority of view
rays have to be traversed until they leave the domain, due
to the level of transparency. Thus, the performance drops
significantly for large data sets.

It is interesting to note that LL, in many scenarios, can
render very efficiently due to the GPU’s capability to sort the
fragments for many pixels in parallel. The more transpar-
ent the fragments are, and the less effectively image-order
techniques can exploit early-ray termination, the better the
relative performance of LL becomes.

The evaluation shows that, in particular for larger data
sets, VRC renders slower than the approximate techniques.
This performance difference is mainly due to the traversal
of the voxel grid, which is not supported by an acceleration
structure to enable empty space skipping, and sorting of
multiple ray-tube intersections in the same voxel. The rel-
ative performance of VRC, on the other hand, is not much
affected by increasing transparency. Although, in this case,
many more intersection tests need to be performed, GPU-
based voxel traversal can be performed very efficiently and
does not impact performance as severely as BVH traversal.
VRC outperforms LL by about a factor of 4 and higher for
large line sets such as TURBULENCE (cf. last column in
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Fig. 10). Again, for ANEURYSM and CONVECTION with
many empty regions that need to be traversed on the finest
voxel level, the relative performance of VRC compared to
the rasterization-based approaches decreases. For CLOUDS,
traversing large voxel grids (5123) greatly reduces VRC’s
performance and leads to rendering times similar to LL
when looking from a diagonal angle into the line set.

4.5 Image Quality

LL, VRC, OSP, and RTX simulate the effect of transparency
accurately. VRC introduces errors due to the voxelization
and quantization of lines into a regular voxel grid; however,
the visibility order of lines in the grid is handled correctly.
In the worst-case, multiple lines can fall on top of each other
in the grid, resulting in an incorrect blending order. In our
experiments, we did not perceive visual artifacts caused by
this effect.

Inaccuracies in MLAB are caused by lines that are not
rendered in correct visibility order, and that are merged
heuristically using a limited number of transmittance layers.
For scenes with high depth complexity, and even when
low transparency is used, the accumulation of errors leads
to visible artifacts. Most prominent are errors caused by
incorrect merging of fragments with high opacity, i.e., when
two such fragments are merged in the wrong order into the
same transmittance layer (Fig. 1(c) and Fig. 5). If lines are
by chance rendered in the correct visibility order, or few
opaque fragments are blended into different transmittance
layers, MLAB can nevertheless generate accurate results
(see Fig. 1(a) for an example). The view-dependent nature
of MLAB, i.e., errors can suddenly appear or disappear
depending on whether the rendering order matches the
current visibility order, makes it less time coherent.

MLABDB can avoid the order-induced artifacts intro-
duced by single MLAB when rendering opaque or nearly
opaque lines. However, as mentioned in Sec. 3.1, threshold-
ing has to be done carefully. In Fig. 11(a), bucketing leads to
hard cuts in color, revealing the depth segmentation of the
line set. This artifact occurs primarily when using transfer
functions with sudden opacity changes, which conflicts
with MLABDB’s assumption of many transparent layers
occluding opaque ones. Even though these artifacts can be
avoided by manually adapting the threshold for the front
bucket according to the selected transfer function, this kind
of user intervention is not practical in general.

MBOIT replaces the transmittance function along a line
of sight by a low-frequency approximation. Thus, two major
types of artifacts can occur: First, as shown in Fig. 1(b) and
Fig. 11(b), the accumulated opacity of multiple transpar-
ent lines is either highly overestimated or underestimated.
These over- and under-estimations can lead to misinterpre-
tations of the visualization, as translucent or opaque lines
can appear prominent or be missing in the final image.
These errors are due to sudden changes in opacity when
mapping the importance of features with step-functions,
meaning that MBOIT cannot accurately handle hard transi-
tions in the mapped opacity. Second, since a low-frequency
approximation is used, MBOIT tends to smooth out the
transmittance distribution across the pixel image. As shown
in Fig. 1(d) and in Fig. 11(b), sharp edges between lines with

higher opacity are not preserved. This effect, in particular,
can hamper a more detailed analysis of the directional
structure of important lines, and it tends to smooth out the
directional information in important regions.

DP

(a)

MLABDB

DP

(b)

(a) PSNR = 31.15, SSIM = 0.841

MBOIT

(b) PSNR = 29.80, SSIM = 0.82

Fig. 11: (a) Ground truth (left) and MLABDB (right).
MLABDB can produce hard visual “cuts” due to depth
segmentation. (b) Ground truth (left) and MBOIT (right).
MBOIT tends to blur out features and underestimate opac-
ity, erroneously revealing interior lines.

4.6 Quantitative Assessment

To further quantify the error that is introduced by the
different line rendering techniques, all data sets are rendered
along the pre-recorded flight paths using the transparency
settings described before. Lines are illuminated by a head-
light and colored via Blinn-Phong shading. For each image,
the Peak-Signal-To-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) [44] are computed between the ground
truth rendering using DP, and MLABDB, MBOIT, and VRC,
respectively. We do not consider LL, RTX, and OSP, since
they correctly simulate transparency. For each setting, the
accuracy measurements are plotted as line graphs over time.
Renderings using semi-transparent settings are shown in
Fig. 12, all other settings are shown in Fig. A.1. An in-detail
discussion and all results are provided in Appendix A.

4.7 Visual Quality vs. Per-Pixel Error

Interestingly, when looking at images where the SSIM and
PSNR values show a lower quality of VRC and higher
quality of MBOIT and MLABDB, these differences are not
reflected in the visual quality of the results. Since trans-
parency is handled correctly by VRC, even the close-up
views appear similar to the ground truth, and even visi-
ble artifacts introduced by the alternative methods do not
manifest.

In this section, we analyze in further detail the rela-
tions between visual image quality and per-pixel error. For
each data set, we analyze two views: one view where all
techniques come visually close to the ground truth while
producing only a small number of pixel-wise errors (case
A), and one that reveals typical artifacts of MBOIT and
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Fig. 12: Error metrics of all techniques using transparent lines with opaque features of interest. The 1st, 2nd, 3rd, and 4th
columns are for ANEURYSM, CONVECTION, TURBULENCE, and CLOUDS, respectively. The First row shows SSIM for
each technique, the second shows PSNR. A higher value is better.

MLABDB using a most meaningful transparency settings
with sharp transitions and alternating high transparency
and opacity (case B).

Besides an image-to-image comparison, the analysis is
additionally supported by visualizations of the absolute
per-pixel differences to the ground truth. These plots are
grayscale images with black regions highlighting large color
differences. Significant differences in images are marked by
colored rectangles and supported by close-up views. Image
comparisons of all cases (Fig. A.x) are given in Appendix A.

Fig. A.2 depicts a scenario where the viewer is looking
through the entire ANEURYSM data set with alternating
opaque lines (red-colored) and transparent lines (orange-
ocher). For case A (cf. Fig. A.2(a), corresponding to frame
5 of the first column in Fig. 12), we observe that all
techniques are close to the ground truth image with the
best image produced by MLABDB. MBOIT overestimates
the transparency of few transparent fragments occluding
opaque lines highlighted by per-pixel error plots (cf. black
regions in Fig. A.2(a) (MBOIT)). VRC produces high pixel
errors in regions close to the viewer since line inaccuracies
affect larger areas of pixels. However, the quality of VRC
becomes better with larger distance to the camera, leading
to results indistinguishable from the ground truth. Wrt. case
B (cf. Fig. A.2(b)), the quality of both MBOIT and MLABDB
is worse than VRC. MBOIT struggles to approximate sharp
transitions in transparency leading to high over- and under-
estimations, whereas MLABDB is not able to correctly merge
opaque fragments. Bucketing is impossible here, leading to
visual artifacts. However, VRC remains stable and, besides
line inaccuracies, is very close to the ground truth.

Another example is given in Fig. A.3 when looking from
a diagonal angle into the entire CONVECTION line set, with
the number of transparent lines increasing with the distance
to the viewer. For case A (cf. Fig. A.3(a)), all techniques are
visually close to the ground truth with MLABDB working
best. Here, MBOIT exhibits small errors in transmittance
approximation, as many opaque lines are occluded by
transparent ones. These errors propagate towards the back-
ground as the number of fragments increases with distance,
leading to further image quality degradation. With opaque
lines more present in this case, VRC produces a number

of wrong line silhouettes due to curve discretization, em-
phasized in per-pixel error plots along the line edges. For
case B, the quality of both MLABDB and MBOIT decreases
with larger distance (cf. Fig. A.3(b)). In particular, MLABDB
produces more per-pixel color inconsistencies, depicted by
high noise in error plots, toward the background as more
and more fragments are merged incorrectly. On the other
hand, MBOIT has difficulty coping with sharp transitions
between transparent and opaque fragments. Interestingly,
the image quality of VRC is independent of the viewer’s
distance or angle, and line inaccuracies do not accumulate
with increasing distance.

Fig. A.4 demonstrates the differences of image quality for
zoom-out and close-up views. Here, case A (cf. Fig. A.4(a))
represents a zoom-out view that corresponds to frame eight
of the third column in Fig. 12. All techniques are able
to properly render TURBULENCE and are visually indis-
tinguishable from the ground truth, although MLABDB
shows some weaknesses in rendering transparent regions
due to incorrect fragment merges. However, these pixel
errors hardly affect the overall quality of the image. Wrt.
VRC, line inaccuracies are not present here since lines are
highly transparent and line edges are not emphasized. Case
B (cf. Fig. A.4(b)) shows the impact of zoom-ins on the
quality of all techniques. MLABDB properly renders opaque
lines (red-colored tubes), but incorrectly merges fragments
in regions with a large number of highly transparent lines,
leading to a wrong colored region (orange instead of ocher)
after blending. MBOIT is able to approximate transmittance
in transparent regions but fails to display sharp opaque lines
where opaque and transparent lines are close by, leading to
blurred outline structures in the final image. Per-pixel error
plots for VRC reveal some line inaccuracies but demonstrate
that, overall, a good image quality is achieved by VRC even
for this large data set.

The last example demonstrates the impact of large, dense
line data with many layers per pixel (> 10000 at maximum),
using high transparency in Fig. A.5(a) and semi-transparent
opacity settings in Fig. 13 and Fig. A.5(b). In the first
scenario, all techniques are able to properly render the data
set. However, MLABDB produces a few wrongly colored
features due to false fragment merging. MBOIT works prop-
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VRC

PSNR = 30.27, SSIM = 0.750

Fig. 13: From left to right: CLOUDS rendered with DP, MBOIT, MLABDB, VRC. Images show renderings using sharp
transitions between low and high transparency. Blue and yellow rectangles highlight differences between techniques;
close-up views are shown below each image.

erly for this case, and produces few over- or underestima-
tions. VRC, on the other hand, tends to underestimate the
actual transmittance as some lines fall into the same cell
(disadvantage of VRC explained in Sec. 3.2). Weaknesses of
all techniques are even more pronounced in the second sce-
nario; for example, there are more wrongly colored features
produced by MLABDB. Due to its line approximation, VRC
also struggles to fully reconstruct the actual transmittance.
MBOIT works best for CLOUDS, as there are only a few
overestimates of the actual transmittance.

Since MLABDB and MBOIT do not depend on any
primitive type, we also investigated the image quality of our
proposed approximate techniques when rendering transpar-
ent triangle surfaces and point cloud data. The visualization
of these types of data with transparency can, similar to
line sets, lead to complex rendering scenarios with many
transparent layers and multiple occlusions. However, for
those data types, MLABDB and MBOIT showed similar
characteristics as for line sets during rendering (see Ap-
pendix B).

In summary, although all techniques show weaknesses
some weaknesses in some cases resulting in pixel-errors,
they are able to render transparent data sets with high depth
complexity at high image quality. Moreover, OSP, RTX, and
VRC are temporally stable for all transparency settings and
data sets. VRC, despite line inaccuracies, comes very close
to the ground truth.

5 DISCUSSION

In the following sections, we discuss the major characteris-
tics of all rendering techniques, as given in Tab. 2 and also
present the outcome of an informal user study to shed light
on the perception of the errors that are introduced by object-
order approximate techniques.

5.1 Object-Order
Equipped with dedicated GPU-friendly sorting algorithms
and data structures, LL shows good rendering performance
for all but the largest data sets. LL was never slower than a
factor of 4-5 compared to approximate techniques for small
data sets. For dense data sets with high depth complexity
of more than a thousand layers, however, the required GPU
buffers can easily exceed available GPU memory, especially
for resolutions above 1080p.

Approximate rasterization-based techniques are very
fast, work with rendering constraints, and support render-
ing on hardware with bounded memory. Rendering con-
straints for MLABDB and MBOIT involve, for each pixel,
the maximum number of fragments stored or model param-
eters to approximate the transmittance function. These con-
straints implicitly keep the memory consumption constant
over time.

MLABDB and MBOIT provide good quality in many
real-world scenarios, particularly in scenes where features
of interest are rendered opaque and remaining lines are
mapped to high transparency. Introduced artifacts are often
subtle and local, yet in some views they can cause artifacts
that even give a wrong understanding of the line structures.
Approximate techniques also fail to maintain time coher-
ence, as their per-pixel rendering outcome is dependent on
the transmittance function along each pixel. These errors are
especially frequent if high-frequency transfer functions for
transparency are used, which can lead to distracting render-
ing artifacts. Although approximation errors can be reduced
by, i.e., increasing the number of nodes of MLABDB’s blend-
ing arrays (in example to more than 15 layers) or the number
of power moments, such settings considerably reduce ren-
dering performance and increase memory consumption.

Informal User Study

In a simple user study, users were asked to give their
assessment of the quality differences between MLABDB and
MBOIT, to further shed light on the perceptional differences
between these approximate variants. We recruited 24 par-
ticipants, comprised of 19 computer science students and 5
computer science PhD students, all having a background in
computer graphics. The participants were selected to have
no color vision deficiency. The students were exposed to the
application of line rendering for the first time. None of them
knew the visualized vector fields and line sets beforehand.
The study was performed using the desktop PC described
above. We showed the users the tool and let them work with
a data set not included in the study. Then, we performed two
different experiments:

• To each user, we showed a sequence of eight tri-sets
of renderings: the ground truth image first, and then
the same view rendered with MLABDB and MBOIT
(showing their typical artifacts) side by side.
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TABLE 2: Comparison table of all techniques wrt. type of order, render accuracy, performance, render constraints (RenderC),
support of bound memory (BoundM), temporal coherency (Temp), changes in color along each pixel (ChColor), dense
(large) data sets (Dense), semi-transparent transparency settings (STrans), and support of global illumination (GI) effects.
Symbols + and – represent high or low performance/quality, respectively (two repeating symbols indicate very high / very
low performances). / represents ratings for opaque / semi-transparent (left) and highly transparent lines (right).

Technique Order Accuracy Perform. RenderC BoundM Temp ChColor Dense STrans GI

DP Object Exact – – 8 4 4 + + – – + + 8

LL Object Exact +/– 8 8 4 + + – – + + 8

MLABDB Object Approx. + + 4 4 8 – – + 8

MBOIT Object Approx. + + 4 4 8 –/+ + – 8

VRC Image Approx. +/– 4 4 4 + + – + + 4

OSP Image Exact. +/– – 8 8 4 + + – – +/– 4

RTX Image Exact + +/– 8 8 4 + + +/– + + 4

• Each user carried out three interactive sessions with
two data sets, one minute each. First, the same data
set was visualized, starting with MLABDB and then
using MBOIT; then the experiment was repeated in
reverse order using a different data set.

Users were then asked to rate the visual quality of the
still images and the animations. For both experiments, users
could select either MBOIT or MLABDB as the best, or
“undecided”. We had three renderings where 70% of the
users selected MBOIT, three renderings where 63% selected
for MLAB, and two renderings where 65% of the users were
undecided. In addition to the comparison of MBOIT and
MLABDB, we asked the users to rate the image quality
of still images as “no difference” (good) to the ground
truth, “acceptable” (acc), or “non-acceptable” (non-acc). For
MBOIT, 41% rated it as good, 46% as acceptable, and 13%
as non-acceptable. For MLABDB, 44% rated it as good, 32%
as acc, and 24% as non-acc. To assess the image quality
over time for each technique, we asked users in a second
experiment to rate the quality of the videos similar to image
quality. For MBOIT, 62% rated it as good quality, 35% as
acceptable quality, and 3% as non-acc. For MLABDB, 45%
of users rated it as good, 47% as acc, and 8% as non-acc.

About why they scored the renderings as good, accept-
able, or non-acceptable, users mentioned that wrong color
outputs and rendering order artifacts (line features falsely
hidden) were the most disturbing, as well as the hard
and abrupt changes produced by MLABDB or suddenly
disappearing features (referred to as “popping” or “flick-
ering”) produced by MBOIT during an animation. Some
users argued that sometimes even a wrong impression was
suggested by both techniques in still images (see Fig. 1 and
Fig. 11). In animations, most users did not consider these
effects as negative, due to the possibility to interact with the
data and, thus, reveal missing information.

To conclude, MLABDB can be recommended for non-
dense data or a small number of different colors per pixel
while using semi-transparent transparency settings. MBOIT
can be suggested for large and dense data with a high
variation of color per pixel and transparency settings with
smooth transitions. Also, both techniques can be applied
to triangular meshes or point cloud data (cf. Fig. B.1 and
Fig. B.2, Appendix B) since rasterization-based approaches
operate on any input geometry.

5.2 Image-Order

Image-order techniques should be preferred when rather
opaque structures are rendered since they can effectively
employ early ray termination. If transparency is used too
aggressively, the time required to traverse the acceleration
structures can increase significantly. The run-time perfor-
mance varies strongly depending on the selected view and
does not scale well with an increasing number of transpar-
ent layers.

In general, RTX performs better than OSP for all trans-
parency settings, but OSP required less memory for acceler-
ation structures and less time than RTX to complete builds.
Surprisingly, our RTX solution was able to achieve real-
time rendering performance for all line data sets, including
CLOUDS for semi-transparent settings. For opaque and
semi-transparent settings, its rendering times were superior
to VRC and OSP. In comparison to OSP, best rendering-times
were achieved with VRC and RTX throughout all trans-
parency settings. VRC’s performance was slightly superior
to RTX for large data sets rendered with high transparency.
Results produced by VRC are hardly distinguishable from
the ground truth, especially in scenes where the camera is
far from the data set, or the entire data set is seen at once
through the current viewport (zoomed-out views).

In terms of memory consumption, VRC is recommended
if memory is limited due to rendering constraints, which
includes the finite size of the voxel grid, a constant line
quantization level, and a fixed number of lines covered per
cell. Although OSP is generally limited by the amount of
RAM, RTX requires more than twice as much VRAM as
the memory size of the model’s renderable representation
to build acceleration structures and usually requires 3 times
more memory to render the models. Both OSP and RTX
currently support only 32-bit integer values to address
primitives on the hardware. As such, large data sets must be
chunked beforehand into 4GB or less to be rendered using
these methods.

6 CONCLUSION AND OUTLOOK

In this work, we have discussed and analyzed different ren-
dering techniques for large 3D line sets with transparency
wrt. memory consumption, performance, and quality. The
major findings of our study are that a) approximate tech-
niques can give acceptable quality at high speed and low
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memory consumption in many use cases, and b) ray-based
approaches offer high quality and often at speeds similar
to approximate techniques, besides the most extreme cases
with overall low transparency. On the other hand, these
techniques can require huge memory resources and consid-
erable pre-processing time.

However, regardless of the technique used, transparent
line renderings likely fail to communicate spatial relations
when large numbers of transparent lines are rendered. In
these cases, global illumination effects such as soft shadows
and ambient occlusion can help to significantly improve
the user’s perception [15]. Such effects can be integrated
in a straightforward way into image-order approaches by
tracing secondary rays. The integration into object-order
approaches is more difficult, and can be achieved only with
substantial algorithmic changes, and changes to the data
structures used. If high-quality rendering for large line sets
is desired, we believe that image-order approaches should
be favored over object-order approaches.

With the current power of RTX GPU hardware, it will
be interesting in the future to combine both transparency
rendering and global illumination effects to enhance the
visual perception of complex data. Further user studies
have to be conducted to shed light on the question of
whether transparency rendering of large, dense line data
sets is beneficial to the user’s perception, or hampers inter-
pretation of trends in the data, and how this may interact
with global illumination effects. In terms of interpretation
of dense line sets, it would also be interesting to compare
transparency rendering techniques with approaches that
heuristically filter line sets and render features-of-interest
completely opaque.
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to the cloud simulation data which is provided by DKRZ
and MPI-M. We thank Tony Saad and Josh McConnell at
the University of Utah CCMSC for the Uintah simulation.
The Richtmyer-Meskhov data is courtesy of Lawrence Liv-
ermore National Laboratory.

This evaluation study has been done within the subpro-
ject ”Visualization of coherence and variation in meteorolog-
ical dynamics“ of the Transregional Collaborative Research
Center SFB/TRR 165 ”Waves to Weather“ funded by the
German Research Foundation (DFG).

REFERENCES

[1] T. Aila and S. Laine, “Understanding the efficiency of ray traversal
on gpus,” in Proc. High-Performance Graphics, 2009, pp. 145–149.

[2] H. Aluie, G. Eyink, E. Vishniac, K. Kanov, R. Burns, C. Mene-
veau1, A. Szalay, and S. Chen, “Forced mhd turbulence data set,”
turbulence.pha.jhu.edu/docs/README-MHD.pdf, 2013, [On-
line; accessed 21-March-2019].

[3] I. Baeza Rojo, M. Gross, and T. Guenther, “Fourier opacity opti-
mization for scalable exploration,” IEEE Transactions on Visualiza-
tion and Computer Graphics, pp. 1–1, 2019.

[4] L. Bavoil, S. P. Callahan, A. Lefohn, J. a. L. D. Comba, and C. T.
Silva, “Multi-fragment effects on the gpu using the k-buffer,” in
Proceedings of the 2007 Symposium on Interactive 3D Graphics and
Games, ser. I3D ’07. New York, NY, USA: ACM, 2007, pp. 97–104.

[5] G. Byrne, F. Mut, and J. Cebral, “Quantifying the large-scale
hemodynamics of intracranial aneurysms,” American Journal of
Neuroradiology, vol. 35, no. 2, pp. 333–338, 2014.

[6] L. Carpenter, “The a -buffer, an antialiased hidden surface
method,” SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 103–108,
Jan. 1984.

[7] M. Ciura, “Best increments for the average case of shellsort,” in
Proceedings of the 13th International Symposium on Fundamentals of
Computation Theory, ser. FCT ’01. London, UK, UK: Springer-
Verlag, 2001, pp. 106–117.

[8] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,”
in Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games, ser. I3D ’09. New York, NY, USA: ACM, 2009, pp. 15–22.

[9] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke, “Stochastic
transparency,” in Proceedings of the 2010 ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, ser. I3D ’10. New
York, NY, USA: ACM, 2010, pp. 157–164.

[10] C. Everitt, “Interactive order-independent transparency,” NVIDIA
Corporation, vol. 2, 10 2001.

[11] S. Grajewski, “Fragment shader interlock,” www.khronos.org/
registry/OpenGL/extensions/ARB/ARB fragment shader
interlock.txt, 2015, [Online; accessed 07-December-2019].
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