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Abstract

The increase in the energy consumption as a result of growing computational performance is a major chal-
lenge to reach Exascale levels of computing due to the cooling costs of High Performance Computing
(HPC) systems. Unfortunately, developers focus on improving the performance of existing algorithms, and
neglect potential improvements to energy-efficiency due to the lack of platform knowledge. To overcome
these challenges, we propose a dynamic autotuning approach constituting design-time and runtime stages
by combining methods from the embedded systems and HPC domains to optimize the energy consumption.
The approach targets applications that exhibit changing characteristics, known as application dynamism
between individual iterations of the time loop as well as within a single time loop.

We leverage the inter-loop and intra-loop dynamism using two tuning plugins, which use a search strategy
to create a search space of different configurations of tuning knobs. To analyze the inter-loop dynamism,
we propose features to cluster loops with similar characteristics using the DBSCAN and spectral clustering
methods. To prevent the search space from exploding and to save tuning time and cost, we optimize the
search space using a probability distribution based on a Gaussian kernel to test a large number of configura-
tions in a single application run. Our proposed approach stores the best configuration for each instance of a
code region based on its unique computational characteristics in a tuning model.

In the runtime tuning stage, we use the tuning model to dynamically switch the system configuration for
different code regions. To predict the behaviour of unseen loops during production runs, we implemented
predictors based on a second-order Markov chain, one-bit and two-bit dynamic branch prediction schemes.
While the proposed method supports an automatic approach, we also enable the specification of domain
knowledge to improve the tuning results. We evaluated our methodology using three real-world applications
and one proxy application, and achieved up to 20% improvement in both energy-efficiency and performance.
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1
Introduction

High Performance Computing (HPC) systems are designed to achieve peak performance to enable scien-
tific and industrial advancements. Even as the advancements in semiconductor technology have increased
the number of transistors on a die, Moore’s law has hit the power wall [1]. With growing computational
performance, there is typically also an increase in a system’s energy consumption, which in turn is a major
driver for the Total Cost of Ownership (TCO) of HPC systems. With Dennard scaling coming to an end,
power density is now becoming a problem as more transistors are crammed together on a single die, thus
reducing the effectiveness of cooling capabilities, resulting in power-bound exascale HPC systems. This is
a cause for concern because HPC centers now face the challenge of operating the hardware with the power
or energy consumption being a prominent contributor to the TCO [2]. Hence, it is likely that users will be
forced to optimize their software with respect to energy-efficiency.

Table 1.1 shows the top four systems in the June 2020 Top500 list. The top ranked system Fugaku, which
is located at the RIKEN Center for Computational Science, Japan, has a maximum performance of 415.5
PFlop/s and consumes 28.3 MW of power, which is more than the power budget set by the US Department
of Energy for Exascale machines. The future of supercomputing is in developing Exascale systems. To scale
the current systems to reach the Exascale level, we would require more than 50 MW of power. Thus, the
challenges related to power and energy consumption are a roadblock in achieving this milestone. Therefore,
advances in all areas ranging from the hardware technology to the operating mechanisms such as cooling
are required to optimize the overall energy consumption of current and future HPC systems.

1.1 Motivation and Problem Specification

HPC applications typically exhibit changing characteristics, known as application dynamism in different
regions of the program. The program execution may jump between compute, memory, and I/O-bound
code regions due to changes in the workload at runtime. Examples of dynamism can be found in many
current HPC applications, including weather forecasting, molecular dynamics and adaptive mesh-refinement
applications. Figure 1.1 illustrates the trend of the execution time across the individual time steps of the main
progress loop, known as phases of INDEED [3], a sheet-metal forming simulation application. INDEED
is a highly dynamic application that performs an adaptive mesh refinement when different tools come in
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Table 1.1: Power consumption and RMax (maximum LINPACK performance achieved) for the top four
supercomputers in the Top500 list as of June 2020.

Rank System Location Cores RMax
(PFlop/s)

Power
(MW)

1 Fugaku
RIKEN Center for Computational Science,

7,299,072 415.5 28.3
Japan

2 Summit
DOE/SC/Oak Ridge National Laboratory,

2,414,592 148.6 10.1
United States

3 Sierra
DOE/NNSA/LLNL,

1,572,480 94.6 7.44
United States

4 Sunway TaihuLight
National Supercomputing Center/Wuxi,

10,649,600 93.0 15.4
China

contact with the workpiece. The first spike in the graph occurs when the tool makes initial contact with the
workpiece, and subsequent spikes are produced when the tool comes in contact with more refined regions.
The simulation adapts the time step to keep the problem tractable while refining the mesh.

Such varying characteristics between individual simulation loops of HPC applications offer the potential to
perform tuning to improve the energy-efficiency by leveraging their dynamic behaviour. Individual phases
can be grouped by characterizing the behaviour using metrics, or features, and different optimal configu-
rations can be selected for each group of phases. However, detecting this dynamism manually is a time-
consuming and painstaking task that demands severe programming effort and domain-level expertise.

Figure 1.1: Variation of the execution time across the phases of INDEED. The variation arises from an
adaptive mesh refinement performed when the number of contact points between the tools and
the workpiece increases.

Another challenge is that developers focus on improving algorithms with regards to accuracy and perfor-
mance while neglecting possible improvements to energy-efficiency [4] due to the lack of platform and
hardware knowledge required to exploit application dynamism. Several power optimization techniques
such as clock gating, clock modulation and power gating have already been implemented in today’s proces-
sors by hardware vendors. Modern processor architectures also provide the possibility to adjust the clock

2



1.2 Solution: A Tools-Aided Approach to Optimize the Energy-Efficiency

frequency of the CPU at runtime using Dynamic Voltage Frequency Scaling (DVFS) to improve the energy-
efficiency [5]. During the execution of HPC codes, the cores are not always busy, for example, when the
program execution moves from a compute-bound to a memory-bound code region. During this time, the
presence of memory requests between the last-level cache and the RAM indicates that the frequency can be
safely throttled down and the voltage reduced without affecting the execution time.

For earlier Intel processor architectures such as Nehalem-EP and Westmere-EP, the frequency of the uncore
components such as the L3 cache and the interconnect was fixed. For the Sandy Bridge-EP and Ivy Bridge-
EP architectures, a common frequency was set for the core and uncore parts. Intel has introduced a new
feature called Uncore Frequency Scaling (UFS) starting from the Haswell processors, which allows the
setting of separate frequencies for the core and the uncore domains independently [6]. Previous research [5]
has also shown that changing the uncore frequency can significantly impact the energy consumption.

Manually setting these tuning knobs, or the so-called tuning parameters for different program regions is
difficult as it requires application domain knowledge. One solution is to use an automatic optimization
approach called autotuning, which automatically generates a search space of possible combinations of tuning
parameters, and evaluates them using experiments to identify the best system configuration [7], which is the
set of the best settings of the tuning parameters.

Most existing tools leverage the hardware features by relying on static tuning [8], where a single frequency
is set for the entire application run based on the current workload, with the goal of finding a single optimal
configuration. Such a coarse-grained approach has the drawback that it produces a suboptimal solution
since it fails the take advantage of the tuning potential of individual program regions. Hence, our goal is to
implement a more fine-grained approach, which selects the best configuration for each instance of a code
region based on its unique computational characteristics.

1.2 Solution: A Tools-Aided Approach to Optimize the Energy-
Efficiency

The process of determining the best system configuration can be done by using a brute-force strategy, known
as an exhaustive search. The exhaustive search strategy walks the full search space and explores all the
combinations of the tuning knobs. While this may result in the optimal system configuration, it is not
practical to run HPC applications for hours or even days to find the perfect solution. Thus, a key aspect in
autotuning is the trade-off between quality of the results and the effort spent in searching for the best solution.
An alternative method is to use a random search strategy, which selects valid points in the search space
randomly. Both the random and exhaustive search strategies are good for autotuning when the structure
of the objective function [9] and the application behavior in response to the changing configurations are
unknown.

To automate the tuning process and free the user from learning the intrinsics of autotuning, we present a
tools-aided approach by combining several pre-existing tools with novel runtime tuning techniques to guide
the optimal tuning of the HPC stack constituting the hardware, the runtime system, and the application-level
tuning parameters. The work done in this thesis is an extension of the READEX (Runtime Exploitation of
Application Dynamism for Energy-efficient eXascale computing) [4] methodology, which aimed to auto-
mate the process of determining the best system configurations for different program regions by developing
a tools-aided methodology for dynamic autotuning. READEX combines technologies from two ends of the
computing spectrum: system scenario methodology from the embedded world and autotuning from the HPC
domain.
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READEX is a two-staged approach consisting of Design-Time Analysis (DTA), and Runtime Applica-
tion Tuning (RAT), with Score-P [10] as the common instrumentation and measurement infrastructure. At
design-time, different instances of the program regions, known as runtime situations (rts’s) are detected dur-
ing the iterations of the main progress loop, or phases. Optimized system configurations are then determined
for the phases as well as the rts’s, based on the type of dynamism that is exhibited by the application. The
variation in the application behaviour and characteristics may arise between individual phases or within a
single phase. Rts’s with the best system configurations are grouped into scenarios, and encapsulated in a
tuning model. At runtime, the tuning model is used to guide the dynamic switching of system configura-
tions. To improve the automatic tuning results, application experts may also specify domain knowledge
in the form of annotations to define the application structure, characteristics and the Application Tuning
Parameters (ATPs).

The tuning methodology begins with a series of pre-analysis steps to determine if tuning the application
potentially results in energy savings. First, the scorep-autofilter tool filters out all fine-granular regions that
generate measurement overhead. Then, the readex-dyn-detect tool determines significant regions, which are
a subset of all instrumented regions that are coarse-granular enough for dynamic switching of the tuning
parameters. It also determines if the characteristics of the application vary between different phases due to
the change in the control flow, or within a single phase due to the changing characteristics between individual
rts’s that are called in that phase. The findings of readex-dyn-detect are stored in a configuration file that is
used during DTA.

Design-Time Analysis (DTA) is performed by the Periscope Tuning Framework (PTF), which was developed
at the Technische Universität München, Germany, and is a distributed framework based on an extensible and
modular architecture implemented using a hierarchy of analysis agents. PTF invokes tuning plugins to tune
different aspects of HPC applications. The intraphase tuning plugin is used to exploit intra-phase dynamism,
while the novel interphase plugin is called when inter-phase dynamism is detected for an application. Both
plugins find the best settings of the hardware tuning parameters (CPU and uncore frequency), and system
software tuning parameters (number of OpenMP threads) for different objectives such as energy consump-
tion, execution time, Energy Delay Product (EDP), Energy Delay Product Squared (ED2P), TCO, and also
their normalized versions. The intraphase tuning plugin additionally supports the tuning of ATPs. It first
determines their optimal settings, and then tunes the hardware and system software tuning parameters using
a user-defined search strategy. Finally, it determines a single best system configuration for all the phases of
the application, and rts-best configurations for individual rts’s of the significant regions.

While the intraphase plugin determines optimal configurations for the phase and the rts’s, it completely
disregards the variations between individual phases. The selection of a single configuration for all the phases
could potentially result in suboptimal performance and/or energy-efficiency. This drawback is overcome by
the interphase tuning plugin, which exploits the dynamism between individual phases by characterizing their
behavior. It clusters phases with similar characteristics using DBSCAN [11] and spectral clustering [12]
using features such as compute intensity, L2 cache misses and conditional branch instructions. The main
motivation driving clustering is that the selected clustering features are capable of depicting the change in
the control flow, the amount of work done due to the execution of different algorithms between phases, and
the shift from a compute-intensive phase to a memory- or IO-intensive phase.

The interphase plugin first uses a random search strategy to evaluate the effect of a randomly selected
system configuration from a uniform probability distribution on a single phase in each experiment. During
an experiment, the plugin requests for PAPI [13] hardware performance counters and computes features to
cluster phases with similar behaviour. To improve the confidence in the tuning result, the plugin performs
a targeted or selective tuning of the tuning parameters by probabilistically selecting a system configuration
based on the Gaussian distribution. The Gaussian distribution is constructed using the concept of attractor
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configurations, which result in a lower energy consumption, and repeller configurations, which result in a
higher energy consumption. The idea is to evaluate the next phase with a system configuration that is far
from a repeller. The interphase tuning plugin ultimately determines the optimal configurations for different
clusters of phases as well as rts-specific best configurations for the rts’s in each cluster. Thus, the plugin
effectively exploits both intra-phase and inter-phase dynamism.

At the end of DTA, rts’s that have similar best configurations are grouped into a scenario using a classifier,
and a best configuration for each scenario [14] is determined by the selector. This knowledge is encap-
sulated in a tuning model, which is used by the READEX Runtime Library (RRL) that was developed in
the READEX project to dynamically switch between different system configurations for the phase and the
rts’s during production runs. When RRL encounters an unknown rts that was not seen during DTA, it either
switches to the default system configuration provided by the batch system, or performs calibration of the rts
using Q-learning [15, 16] if the calibration module is set. If the application exhibits inter-phase dynamism,
a runtime cluster prediction library automatically predicts the cluster number of the unseen phases during
production runs. The library provides three lightweight predictors, of which, one is based on a second-order
Markov chain, and the other two are inspired by one-bit and two-bit dynamic branch predictors. Thus,
the cluster prediction library prevents the setting of the default system configuration for an unseen phase,
effectively resulting in better dynamic savings.

1.3 Contributions
Our work is an extension of the READEX methodology, with the aim to enable users to leverage inter-phase
dynamism, i.e., changing characteristics due to the execution of different algorithms between individual
phases to tune the energy-efficiency. The key contributions presented in this thesis are:

• Extension of the Score-P Online Access interface for call-path profiling: The performance data
measured by Score-P is stored as call-tree profiles that can be accessed using measurement retrieval
requests from PTF via the Online Access (OA) interface. The current version of the OA interface of
Score-P transfers the objective values and the hardware counters from Score-P to PTF in the form of
a flat profile, where the measurements for individual program regions are aggregated regardless of the
call-path. Our work extends the OA interface to support the transfer of performance data in the form
of call-path profiles, where each rts is stored in a separate node representing one call-path. This is
replicated in PTF, thus preserving the parent-child relationship between the calling function and the
callee.

• Tuning plugins to leverage application dynamism: Our work presents two novel tuning plugins
that perform both DVFS and UFS to leverage intra-phase dynamism and inter-phase dynamism re-
spectively. The intraphase tuning plugin exploits the intra-phase dynamism arising from the variation
in the characteristics such as the compute intensity and execution time across different program re-
gions executed within a single phase. It determines a single best configuration for the phase, and
rts-specific best configurations for the rts’s of the program regions. However, the intraphase plugin
disregards the dynamism due to the variation in the execution time between individual phases. The
main contribution of our work is the development of a tuning strategy for applications that exhibit
inter-phase dynamism using the interphase tuning plugin to determine best configurations for groups
of similarly behaving phases, and rts-specific best configurations for individual rts’s.

Thus, the interphase plugin determines optimal configurations for different executions of the same
region depending on the execution context, e.g., interpolation on different grid levels, as well as the
data dependent variation, e.g., due to grid refinement resulting in the variation of characteristics of a
region over time.
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• A set of metrics to characterize the phase behaviour: Hardware counters are used to monitor
events at the CPU level, and provide detailed insights on the effect of the application execution on
the performance of the caches and the main memory. The temporal behaviour of the phases due to
the dependence on the type of algorithm that is currently executing can be characterized using PAPI
hardware performance counters. In this thesis, we discuss a set of counters that may be used as
features to characterize the application using the low-level API for native PAPI events.

• Search space optimization: Our approach executes the application, in the worst case, two times
during DTA. Moreover, the two tuning plugins limit these runs to a representative set of progress
loop iterations instead of the entire application run, thus saving precious tuning time. The interphase
plugin can select the best configuration for each cluster of phases immediately after clustering in the
first run. However, this could potentially result in a suboptimal solution. Hence, we perform search
space optimization using a probabilistic random search strategy that uses a Gaussian distribution to
select configurations that are closer to the optimum configuration. We also ensure that a previously
evaluated configuration is never repeated for a particular cluster, thus increasing the confidence in the
tuning result.

• A runtime cluster prediction library: Since DTA evaluates and clusters only a representative subset
of the application phases, we implemented a runtime prediction library to predict the cluster ids of all
the phases that were not seen during DTA. The prediction library implements three types of predictors:
a second-order Markov chain based predictor, a one-bit dynamic branch based predictor, and a two-bit
dynamic branch based predictor. The application is first prepared for runtime tuning by linking the
cluster prediction library. During production runs, the library is initialized at the beginning of the
first phase, and collects the PAPI hardware performance counters that were used for clustering during
DTA. The cluster predictors then predict the cluster id for the upcoming phase using the features
derived from the measured PAPI counters.

We highlight multiple advantages of our methodology. First, we reduce overheads by pre-computing best
solutions at design time and simply switching between the configurations at runtime. This reduces the
runtime overhead as expensive runtime search techniques are not applied. Second, our approach can be used
with minimal user involvement. The pre-analysis steps filter overly fine-granular regions and identify the
dynamism automatically. Tuning can be performed immediately by invoking the intraphase or interphase
plugin for an application using automatic compiler instrumentation. The user can additionally improve
the overhead due to compiler instrumentation by manually instrumenting the significant program regions.
Finally, our work aims to enable developers to achieve significant improvements in the energy-efficiency of
HPC applications on extreme-scale systems using an (semi-)automatic autotuning framework that can scale
to extreme node counts.

1.4 Structure of the Dissertation

This dissertation proposes software methods in the form of tuning plugins to leverage the hardware innova-
tions of DVFS and UFS to optimize the energy consumption on newer architectures. The remainder of the
dissertation is structured as follows:

Chapter 2 describes the related work in power and energy management. It presents the state-of-the-art
hardware mechanisms for power management, such as clock gating, power gating, Dynamic Duty
Cycle Modulation (DCCM), DVFS, UFS, and power-aware hardware. It then surveys the relevant
research works that employ software methods to leverage the hardware innovations for power man-
agement, including power-aware job scheduling and combined power-capping techniques.
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Chapter 3 introduces the fundamental concepts of our work using a high-level description of the key
concepts and definitions that will be referred to in the dissertation. It also gives a background of the
existing tools and APIs, such as the Periscope Tuning Framework (PTF), Score-P and PAPI that are
the backbone of our methodology. Additionally, it describes the layers of the HPC stack, namely the
hardware, system-software and application tuning parameters that our methodology exploits.

Chapter 4 outlines the general overview of the architecture of the existing READEX tool suite, and de-
scribes how it leverages two existing tools, namely PTF and Score-P to perform autotuning. It high-
lights the interactions between the major components of the methodology, and describes the exten-
sions to PTF by presenting the workflow of the intraphase and interphase tuning plugins. Finally, it
outlines the workflow of the RRL to perform dynamic tuning during production runs.

Chapter 5 presents our proposed methodology that exploits the inter-phase dynamism in an application to
determine the optimal system configurations. It describes the reasoning behind the features that were
selected to cluster the application phases using DBSCAN and spectral clustering. It then describes
how the interphase tuning plugin selects a targeted set of configurations using a Gaussian probability
distribution to determine optimal configurations. Finally, it provides the relevant theoretical concepts
and the implementation of the different cluster prediction schemes that are used to predict the phase
behaviour at runtime.

Chapter 6 illustrates how our proposed methodology is integrated in the overall tuning methodology. It
also describes the domain knowledge that can be specified by the application expert to enhance the
tuning process. Finally, it describes the tuning model generation that stores the information of the best
configurations determined by the interphase and intraphase tuning plugins in a JSON file.

Chapter 7 presents four different scientific applications, namely 128.GAPgeofem, sam(oa)2, INDEED
and miniMD that were used to evaluate our tuning methodology. Of these, INDEED, sam(oa)2

and 128.GAPgeofem are highly dynamic complex real-world applications, while miniMD is a proxy
benchmark from the Mantevo benchmark suite. This chapter illustrates the clusters that were obtained
for the applications after performing DBSCAN and spectral clustering during DTA, and presents the
maximum theoretical static and dynamic energy savings computed using the interphase plugin. It
also compares the runtime savings achieved using the cluster predictors, and outlines the overheads
incurred as a result of runtime switching.

Chapter 8 concludes our work by summarizing the contributions, the challenges encountered, and the
lessons learned. Finally, it outlines promising opportunities for future improvements.
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Related Work

Reducing the energy consumption for Exascale computing has become an important research topic in two
main areas in recent years: hardware and architectural support at the circuit and logic level for power- and
thermal-aware hardware design, and power-aware software development to leverage the hardware support
for the entire software stack [17]. Modern-day hardware designs implement different power management
techniques, such as clock gating, clock modulation or Dynamic Duty Cycle Modulation (DDCM), power
gating, Dynamic Voltage Frequency Scaling (DVFS), and specialized coprocessors [18] to support the re-
duction of energy consumption. Software techniques such as Dynamic Concurrency Throttling (DCT),
thread/concurrency packing [19], combined with OS-level control are employed to leverage the available
hardware innovations.

The energy consumption E is the integral of the instantaneous power consumption of the execution over the
execution time T

E =
∫ T

0
P(t)dt (2.1)

According to Weste and Harris [20], the power consumption in CMOS circuits comes from two components:
dynamic dissipation and static dissipation, and is represented as:

Ptotal = αCV 2
DD f + ISCVDD︸ ︷︷ ︸
Pdynamic

+(Ileak + Icont) ˙VDD︸ ︷︷ ︸
Pstatic

(2.2)

Dynamic dissipation includes the switching power, αCV 2
DD f , resulting from switching of the load, and the

short-circuit power. Dynamic power dissipation occurs when the transistors inside a CMOS circuit are
switched, allowing internal capacitances to charge/discharge and short-circuit currents to move through the
circuit. α , the activity factor is the probability that the circuit node transitions from 0 to 1, which is when
the circuit actually consumes power. Pdynamic is dominated by the switching power, which is the power
consumed while the chip is doing useful work.

Static dissipation occurs due to leakage power due to subthreshold, gate, and junction leakage as well as
contention currents (Icont). Pstatic is dominated by the leakage power, IleakVDD. Unlike dynamic power, static
power depends on the fabrication technology used rather than the switching frequency [21]. This means
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that the more transistors that are crammed inside a single die, the higher the leakage power. Thus. Pstatic is
present even if no switching is performed.
From Equation 2.2, we can see that the source voltage VDD, and the switching frequency f determine the
amount of dynamic power. Thus, Pdynamic is expected to be smaller during processor idle periods. Modern
power-saving techniques target different parts of Equation 2.2 to save either dynamic or static power.
Section 2.1 presents hardware techniques and mechanisms that can be used to reduce the energy consump-
tion of the whole system. Section 2.2 describes in detail the state-of-the-art software techniques including
energy/power-aware methods for heterogeneous systems that leverage the hardware and the underlying ar-
chitectural design for improving power and energy-efficiency. Section 2.2.6 classifies existing works in
terms of the control method employed to tune the energy-efficiency or power consumption.

2.1 Hardware Mechanisms for Power Management
Power saving may be considered in terms of active, standby, and sleep modes. The ACPI (Advanced Con-
figuration and Power Interface) standard [22], which is a platform independent interface for configuration
and power monitoring and management, defines five main states that are supported by current processors:
global states (G-states) [23], system sleep states (S-states), processor power states (C-states), processor
performance states (P-states), and throttling states (T-states).
From a high-level perspective, global system state G0 is the working state, while G1 is the inactive or sleep
state, and G2 is the shutdown state. During the active state G0, the CPU faces varying levels of utilization,
which translates to different C-states. C-states typically range from C0 to C6, with additional vendor-specific
states where only C0 is the working state and the higher C-states correspond to deeper and deeper idle states
in which no instructions are executed. This means that deeper C-states are low-power modes that can be
used when the CPU is idle in order to obtain higher power savings. However, deeper C-states need an
external signal, e.g., an interrupt, to return to a working state, and have a higher latency to return to C0,
which creates considerable overhead. At C0, multiple P-states associated with an operating frequency and a
voltage exist. The number of P-states are dependent on the processor model [23]. P0 operates at the highest
operating frequency, and successive higher P-states represent lower clock frequencies, resulting in lower
power consumption [22]. T-states are used to perform on-demand clock modulation, which refers to the
fraction of time that a system is in an active state, and involves omitting duty cycles.
The following sections describe the hardware mechanisms available for power management. Each of these
hardware mechanisms affects different system and processor states.

2.1.1 Clock Gating

Clock gating enables power consumption by disabling the clock in the idle parts of the circuit, or parts
that maintain a steady state and do not need to be refreshed [17]. This is done by ANDing a clock signal
with an enable signal in order to turn off the clock to idle blocks. For example, when no floating point
instructions are being issued, the enable signal is active, and thus, the clock for the floating point unit can
be turned off. Clock gating affects the dynamic power Pdynamic [20] by influencing the activity factor α

in Equation 2.2, since α becomes 0 when the circuit can be turned off. In clock gating, only the clock is
disabled while keeping the power supply on, so that the unit retains its state. Since the clock network has a
high capacitance, clock gating saves significant power.
Clock gating can be performed at the hardware level at a finer granularity by disabling parts of the functional
blocks, and at the software level by disabling entire functional blocks [17]. Clock gating affects the shallow
C-states by stopping the processing of instructions [24].
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2.1.2 Power Gating

Power gating affects the S-state and deep C-states [24] by reducing the static current during sleep mode by
turning off the power supply to sleeping blocks. When a logical block is active, the transistors are switched
on, thereby connecting to the voltage supply. During power gating, the power supply is disconnected to
the sleeping logical block. Power gating is a more aggressive approach than clock gating, and achieves
a better power reduction by reducing both dynamic and static power, since a functional block is discon-
nected, thereby powering off all its components. Power gating can also be used in combination with clock
gating [17].

Power gating requires a number of hardware design decisions: keeping a minimal delay to the circuit during
active operation, keeping the leakage low during sleep mode, ensuring that the block is turned off for longer
intervals since the transition between active and sleep modes takes time and energy, saving the state of the
registers into memory before power gating since the data is erased when the block switched off, and finally,
reloading the registers from memory upon power-up [20]. The main concern of power gating is the overhead
incurred in time and energy when blocks are powered on and off. Therefore, it is crucial to determine when
to use power gating, and whether the overhead is worth it. These decisions are made using a set of strategies
known as Dynamic Power Management (DPM) [21, 25].

Dev et al. [26, 27] performed power gating for GPUs, and concluded that it improves overall power-
efficiency in GPUs by reducing both dynamic and leakage power in the logic. They also concluded that
power gating can be used to boost the frequencies of the active control units to improve the performance
under a given power budget.

2.1.3 Dynamic Duty Cycle Modulation (DDCM)

Clock modulation, or Dynamic Duty Cycle Modulation (DDCM) forces a part of the total number of CPU
clock cycles, or duty cycles to be idle, and involves the T-states. By gating a fraction of the clock cycles to a
core, the frequency of each core can be adjusted nearly instantaneously, and requires less time as compared
to other techniques, such as DVFS [28] (see Section 2.1.4). The advantage of DDCM is that different duty
cycles can be set for individual clock domains. Gating the duty cycles prevents the clock signal from driving
the processor chip for that time period. For example, a T-state with a duty cycle of 75% makes the CPU run
at the same clock frequency at the same voltage, but forces the CPU to be idle 25% of the time [22].

Clock modulation was initially intended to prevent processors from overheating [29], but today, power
management can also be performed in addition to thermal control. DDCM saves power more effectively for
imbalanced applications because the hardware can provide more power to the critical thread [28]. However,
it is recommended to use the P-states in modern x86 systems than T-states or even C-states since it is more
beneficial in terms of overall system performance and time, as it takes less time to move from C0 to deeper
C-states or between different P-states than it does to force down the processor duty cycle [22]. T-states could
instead be used as a last line of defense against critical thermal conditions by using a catastrophic shutdown
detector to immediately halt the processor execution when the core temperature reaches the temperature
limit while the system is in the highest-power P-state. The modulation is stopped once the temperatures
return to non-critical levels.

2.1.4 Dynamic Voltage Frequency Scaling (DVFS)

Dynamic Voltage Frequency Scaling (DVFS) is the most commonly used power saving technique at the
processor level. Intel introduced the Integrated Voltage Regulator (IVR) in the Haswell processor, which
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allows individual cores to have their own voltage-frequency domains. This allows the setting of per-core
P-states [30]. Most systems have time-varying performance requirements when computation is interspersed
with communication. DVFS can be used to set the processor clock frequency to the minimum sufficient value
so as to prevent performance degradation, and reduce the supply voltage to the minimum value sufficient
to operate at the set frequency, thereby saving large amounts of energy. The controller determines the
supply voltage and clock frequency using the information from the system about the workload and the die
temperature [20].

DVFS affects both dynamic power and static power due to its effect on the supply voltage VDD. However,
since it has a cubic effect on the dynamic power, the effect on the static power is generally ignored. In DVFS,
the CPU is not shut down like in power gating, and thus power savings are not as drastic. Since performance
has a linear relationship with the frequency [20], using a higher supply voltage or frequency setting causes
an increase in the performance at the cost of high power consumption, while a lower voltage-frequency
setting reduces the dynamic power consumption usually at the cost of a longer application runtime [18].
Therefore, using DVFS to save power is not trivial, and must be must by performed when periods of lower
processor performance is acceptable, such as in memory-bound or IO-bound code regions [31].

Currently, DVFS is supported on various processors provided by different manufacturers. Intel offers Speed-
Step in its processors, and AMD offers Cool ‘n’ Quiet and PowerNow! [17] in its CPUs and PowerTune for
its GPUs.

2.1.5 Uncore Frequency Scaling (UFS)

The uncore components of a processor are not present in the core, but are essential for core performance. The
core contains the execution units, L1 and L2 caches, and branch prediction logic, while the uncore consists
of the Last-Level Cache (LLC), memory controllers, on-chip interconnect, and power control logic [32].

Earlier Intel processor architectures like Nehalem and Westmere had a fixed uncore frequency [5]. However,
this was inefficient in terms of the power consumption at low system utilizations because the L3 cache
was run at a higher voltage-frequency setting than necessary [30]. The next generations, Sandy Bridge
and Ivy Bridge saw a improvement in the power-efficiency at low system utilizations since the cores and
the uncore were combined into a single voltage-frequency domain, and shared the same frequency for both
components. Intel introduced the Uncore Frequency Scaling (UFS) in newer processor architectures starting
from Haswell, which supports separate core and uncore frequency domains and provides improved power-
and energy-efficiency by allowing users to manipulate core and uncore frequencies independently.

During active periods of workload execution, most of the power dissipation comes from the cores, and
smaller amounts from the uncore. When the cores are idle or in deep sleep state, most of the power dis-
sipation comes from the uncore. Previous research has shown that changing the uncore frequency has
a significant impact on memory bandwidth and cache-line transfer rates, and can be reduced to save en-
ergy [5, 6, 33, 32] by setting the P-states. Hence, UFS has now becomes a topic of significant interest for
research in developing methods for improving the energy- and power-efficiency in HPC.

2.1.6 Power-Aware Hardware

Specific processor architectures allow using soft power capping, for example, by running the system at a
lower power with a trade-off for performance, setting a Thermal Design Power (TDP) limit by specifying
the amount of power that the CPU can consume, or specifying a time window and a maximum average
power using RAPL in the Intel Sandy Bridge processors.
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According to Jin et al. [31], the energy to move data between the cache and the memory increases proportion-
ally to the bandwidth and the transport distance. Hence, both hardware and software cache reconfiguration
techniques, such as turning off cache banks that are not in use when executing applications that are not data-
intensive, as well as data locality have been proposed. Since memories have a much lower power density
than logic, it is better to use a larger memory than a faster processor [20], and hence today’s chips have
memories comprising more than half of the entire area.

Another recommendation is to use special-purpose functional units like accelerators, such as GPUs and
coprocessors that offload compute-intensive tasks from the processor for graphics and networking applica-
tions. The use of hybrid systems (CPU + accelerator) enables both power and performance improvements
at runtime, since the offloading of computations can be pre-conditioned based on the constraints [19]. A
high-level design technique called Multi-Vdd [21] can be used to divide the system into several voltage
domains consisting of different components, such as a CPU or an accelerator, where each component has its
own individual voltage supply and clock.

Additionally, the use of efficient parallel computing architectures including low-power microprocessors,
such as ARM processors used in smart phones and tablets, FPGAs and heterogeneous systems may be
employed in order to save energy [31]. Another way to reduce the power consumption is to operate more
cores simultaneously by reducing the supply voltage to slightly above the threshold voltage, called Near-
Threshold Voltage (NTV) under a given power budget at the cost of performance [31].

In addition to hardware methods that can support power management, we can opt for a co-designed hard-
ware and software effort by simultaneously developing the hardware, execution model, OS/runtime, and
applications using a joint team of computer architects, system software experts, compiler developers, and
application experts [34]. One such joint effort is the Runnemede architecture, which is built for energy-
efficiency [34] for extreme-scale computing. However, it has limited compatibility with previous operating
systems and applications. The architecture uses NTV circuits, and provides support for clock and power gat-
ing in processors, memory modules and networks to minimize power dissipation. Runnemede’s processor
chip includes a large number of relatively simple, single-issue, in-order cores that are organized into hierar-
chical groups, and divided into Execution Engines and Control Engines to allow separate optimizations of
the hardware.

2.2 Software Methods for Power Management

Hardware innovations provide a rich set of techniques, as described in Section 2.1, which enables parallel
computing software, including system software and applications to exploit and efficiently manage the energy
utilization. Power saving can be achieved at the system level, node level or core level. In addition to
exposing hardware features to manage the CPU power consumption, the ACPI provides Operating System
directed Power Management (OSPM) [22]. OSPM enables the OS to manage the power by defining states
of consumption, and modify the resource behavior depending on the state it is in by lowering the speed of
operation when no jobs are executing in a certain time interval.

Setting the tuning parameters manually for different program regions is difficult as it requires application
domain knowledge. A solution is to use an automatic optimization approach called autotuning to auto-
matically generate a search space of possible combinations of tuning parameters, and evaluate them using
experiments [7]. Autotuning techniques explore the search space using different search strategies, such as
exhaustive, random and heuristic-based, which are described briefly in Section 6.2.

Autotuning can be performed at compile time, which selects a static-best configuration at design-time in an
offline tuning phase, at runtime using online techniques, or a hybrid of runtime execution of a model that
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is computed at design-time [7]. Autotuning techniques optimize different objectives, such as the execution
time, energy consumption, Energy Delay Product (EDP), Energy Delay Product Squared (ED2P), and the
Total Cost of Ownership (TCO) depending on the end goal. While many techniques optimize one objective
at a time, some methods also perform multi-objective tuning.

Some software techniques select the best configuration using analytical models or predictive models to pre-
dict the performance or power/energy metrics for a specific tuning objective using the data obtained in a
pre-analysis step, and are described in Section 2.2.3.4. In recent years, a close connection has developed
between machine learning and high performance computing, since machine learning algorithms have been
employed to perform autotuning for both energy and performance. Section 2.2.3.5 presents these techniques,
which learn a correlation between different performance metrics and the tuning parameters or tuning objec-
tives, and predict the optimum configuration for the application.

Software methods also include the following:

• Compiler-based power control using code generation tools that perform code transformations to gen-
erate optimized code using compiler optimizations. These optimizations include changing the In-
structions Per Cycle (IPC), the sequence of instructions, levels of parallelism [7], or loop-level code
optimization using the loop unroll factor [18]. Tiwari et al. [35] tune cache tiling factors, loop un-
rolling factors, and the clock frequency for minimizing the performance, energy, EDP and ED2P.
Their proposed autotuner first performs an offline search using Active Harmony [36], a code genera-
tion framework to obtain new code variants for different settings of the tuning parameters, and at the
same time monitors the power consumption to avoid performance degradation.

• Dynamic Concurrency Throttling (DCT), where the number of active cores are reduced by restricting
the number of OpenMP threads for multi-threaded applications, and in effect, forcing some of the
cores into an idle mode due to the reduction in the active concurrency [19, 18].

• Enabling the effective use of transistors by using special instructions, such as SIMD vector instructions
for the x86 architecture or the AES (Advanced Encryption Standard) instructions for encryption and
decryption [17].

• Using virtualization to reduce power consumption by using a smaller number of more powerful, less
power-hungry physical servers to host multiple virtual servers [37].

The following sections present a survey of the state-of-the-art software techniques, such as power-aware job
scheduling (Section 2.2.1), DVFS (Section 2.2.3), UFS (Section 2.2.4) as well as power-aware optimizations
for heterogeneous systems (Section 2.2.2) that leverage the hardware mechanisms described in Section 2.1
to improve the energy-efficiency and/or power consumption of parallel applications.

2.2.1 Power-Aware Job Scheduling

HPC systems execute multiple jobs simultaneously using the job scheduler, which distributes waiting jobs
to available compute nodes. Previously, job schedulers distributed jobs with the aim of improving the
performance and maximizing the overall system utilization. However, this is a suboptimal solution for
today’s supercomputing systems, since saving energy is also a target. Hence, the job scheduler can be
used to monitor and control the energy consumed by tracking the energy usage in real time and predicting
power requirements, since it has a global view of the system, including the available compute resources,
job start and end times, and the performance requirements of waiting jobs [31]. Power management can be
divided into fine-grained (DVFS) and coarse-grained strategies. Power-aware allocation is a coarse-grained
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technique in which the job scheduler allocates sufficient compute nodes to queued jobs based on the power
status of the overall system and the power requirement of the job [38].

SLURM (Simple Linux Utility for Resource Management) is an open-source resource and job management
system that is used in many HPC systems around the world, and uses the Power Adaptive Scheduling (PAS)
algorithm [39] to perform resource monitoring and job scheduling. When a job is submitted, the scheduler
predicts the power consumption of the cluster if the job were hypothetically executed by summing up the
maximum power consumption of the requested resources. If it is higher than the allowed power budget,
the algorithm checks if DVFS is allowed for the job, and then calculates the power consumption of the
job with DVFS. If this value lies under the power threshold or power cap, the job will be scheduled for
execution, otherwise the job remains in the queue to prevent violations of the power constraint. In cases
where resources remain idle, some nodes are turned off, and the available power is redistributed by the
scheduler in order to start jobs faster. In the Extended Power Adaptive Scheduling algorithm [40], SLURM
has plugins for ARM and Intel architectures dedicated to gathering resource usage information per node for
an executing job. The plugin is dynamically updated with the CPU and memory utilization of all tasks on
each node to enable the scheduler to make more accurate estimates.

A power-aware job scheduler designed for IBM BG/P [41] uses a variant of the First-Come-First-Serve
(FCFS) allocation by first creating a scheduling window consisting of an optimal combination of jobs that
can achieve the maximum system utilization, and at the same time, consume less power than the power
budget. This selection guarantees both fairness by selecting jobs based the system’s original scheduling
policy, as well as the power budget requirements. The scheduling algorithm then uses a 0-1 Knapsack model
to schedule a subset of jobs into the set of available nodes in the system while maximizing the number of
nodes allocated such that their aggregated power consumption is under the power budget.

Auweter et al. [42] developed an accurate prediction model for different application workloads for the
LoadLeveler scheduler, and was used on the SuperMUC system at LRZ (Leibniz-Rechenzentrum) to per-
form energy-aware scheduling. The LoadLeveler provides the users with an energy tag to uniquely identify
similar jobs based on the executable and the input parameters. When a new job with an unknown energy tag
is run, the LoadLeveler first uses the default frequency and collects hardware performance metrics as well
as the execution time, power consumption, and energy consumption of the job. The next time that a job with
the same energy tag is submitted, the Loadleveler uses a multiple linear regression model to approximate the
power consumption. It then performs DVFS by selecting an appropriate CPU frequency for the application
execution by optimizing the trade-off between the energy savings and the execution time.

Conductor [43] performs intelligent power-distribution to nodes and cores at runtime to improve perfor-
mance. It perform node-level power capping while trying to cut down slack times by using a power/time
Pareto-curve to select the best configuration for individual MPI ranks. During the first time step, Conductor
assigns an equal amount of power to each MPI process to achieve an optimal application performance for a
given RAPL-enforced power-bound. Next, Conductor uses DCT to select the optimum threads. and assigns
a thread and frequency configuration for each MPI process in order to explore the search space. It then mon-
itors the application execution during every time step to predict the behavior of upcoming tasks. Conductor
finally performs adaptive power balancing by reducing the power consumption of the non-critical parts of
the application, and uses the excess power to speed up the critical path.

Although future supercomputers will have more compute nodes, the cost of operating these systems will
restrict the power that can be supplied [31], resulting in the limitation on the number of cores that can
run at peak performance simultaneously. However, most supercomputers don’t fully utilize the maximum
allocated power allocated on each compute node. Therefore, hardware overprovisioning was proposed by
Patki et al. [44] for power-constrained systems, and was shown to improve overall system throughput, and
decrease the average turnaround time. A hardware overprovisioned system allocates less power per node
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and provisions more nodes, thus enabling it to operate under the same power budget. The benefit is that
capping the package (CPU) and memory power below peak power results in all of the power being used,
and thus enables the system to operate all nodes simultaneously [45]. The drawback is that at lower power
bounds, the most efficient processors are efficient, and at higher power bounds, the least efficient processors
are efficient. As only a few nodes run at peak power, jobs must be carefully scheduled so as to reach the
optimal performance for the execution [46].

Gholkar et al. [46] also argue that a naive approach of enforcing a power constraint for a job by dividing
the power budget uniformly across all the processors suffers from performance variation between identical
processors. They proposed a two-level variation-aware machine-wide solution consisting of PTune and
PPartition for managing power on a hardware overprovisioned machine, and tested their approach on an Ivy
Bridge cluster. PPartition partitions a machine’s power budget across parallel jobs running on the system
such that the power budget is never exceeded. PTune determines the optimal number of processors for a
job by eliminating the less power-efficient processors, and distributes the job’s power budget across them.
This aims to maximize the job’s performance under the power budget. PTune uses an offline model to
characterize the performance by maximizing the number of retired Instructions Per Second (IPS). It uses
RAPL via the msr-safe kernel module to collect power and performance profiles of MPI applications. Once
a job is dispatched by the scheduler, PPartition calculates its power budget. If there is not enough power, it
steals power from previously scheduled jobs, or only schedules this job once sufficient power is available.

Sarood et al. [45] profiled the strong scaling of an application under different power caps to optimize the
number of nodes and the power distribution between CPU and memory subsystems in order to minimize
the execution time. Instead of profiling the entire search space of different node configurations, CPU power
levels and memory power levels, the proposed method optimizes the search space by estimating the per-
formance using curve fitting or interpolation. Their approach uses RAPL to obtain power readings for
each power plane via Machine Specifics Registers (MSRs) to perform power capping for overprovisioned
systems. Their experiments were run on Sandy Bridge servers.

Imes et al. [47] present CoPPer, a feedback controller that performs software-defined power capping as
a replacement for software-managed DVFS control. It is designed to be system, application and power
capping implementation independent, and performs power-aware job allocation while meeting performance
targets. CoPPer uses an adaptive feedback control using a soft performance goal, performance feedback, and
the minimum and maximum power caps of the system to perform power capping. After each time window,
an adaptation function uses the application performance to return the new power cap that should be applied
to the system to prevent over-allocation of power when applications cannot achieve an additional speedup.
The evaluation was done using RAPL to perform power capping. The authors conclude that the overhead
from power capping is lower than the overhead from DVFS, and coarse-grained socket-level power capping
provides better runtime benefits over fine-grained DVFS.

Job scheduling techniques for reducing the power consumption may also be applied when application Ser-
vice Level Agreements (SLAs) for VMs have to be fulfilled. The job scheduling policy must consider
many factors, such as consolidating workloads, preserving the QoS of the tasks as agreed on the SLA, and
the virtualization overheads incurred during VM creation, checkpointing and migration [37]. The method
proposed by Berral et al. [37], introduces such a job scheduling strategy that decides the best location for ex-
ecuting a new job depending on the resources it requires in order to fulfill its SLA. The method periodically
calculates whether to move jobs using the information derived from the system, including job execution and
node status. When new VMs have to be created, the strategy decides the optimal combination of the hosts
or the physical machines to start up or shut down. The strategy takes into consideration the heterogeneity
of the machines in the cluster, the hardware and software requirements of the VM, the amount of resources
as well as the energy consumption. Using the above constraints as input, the scheduling policy ranks each
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machine using a dynamic score, and solves a dynamic optimization problem using a hill-climbing algorithm
to assign each VM to the best machine.

2.2.2 Power Management for Heterogeneous Systems

As described in Section 2.1.6, power-aware methods are becoming more important for heterogeneous sys-
tems consisting of accelerators such as GPUs, especially as HPC is increasingly being used for machine
learning and AI algorithms. Heterogeneous systems face a high degree of variability in the power consump-
tion due to the presence of processing elements of different architectures [48], and a major challenge for
these platforms is a standard energy measurement and monitoring interface [17].

The research by Tsuzuku et al. [48] leverages the iterative behavior exhibited by scientific applications to
perform power capping for nodes with accelerators. The method uses a hybrid static/dynamic model to relate
the clock speeds with the power consumption and the execution time in order to determine the initial fre-
quency of the GPUs and CPUs at the beginning of the application run. The power and energy consumption
are monitored during the application execution for all GPU and CPU clock combinations. Finally, the best
clock combination that does not exceed the power limit is selected, while minimizing the energy consump-
tion. In the dynamic tuning stage, the GPU frequency is adjusted based on the monitored real-time power
consumption at application runtime. GPU clock speeds are reduced if the power consumption reaches or
exceeds the power limit, or increased if it is under. This method is most useful when an application displays
different access patterns.

The ANTAREX project [49] uses a Domain Specific Language (DSL) approach to distribute code between
multi-core CPUs and accelerators by specifying adaptivity strategies, parallelization and mapping in the
application at design-time. The technique introduces an extra compilation step to translate the DSL into
the intended programming language. At runtime, the ANTAREX power manager estimates the energy
consumption using an offline linear model [50] that correlates the capacitance with the IPC. The goal of
ANTAREX is to optimize the performance under a power constraint by using the priorities for each core
and the resource usage of the application to solve an optimization problem and select a set of frequencies for
each core. The power manager enforces node-level power capping using msr-safe to change the P-state of
each core independently. This approach is specialized for ARM-based multi-cores and accelerators, while
our approach targets all conventional HPC systems that support DVFS.

2.2.3 DVFS

DVFS for parallel applications can be applied at coarser granularity by setting a single optimum frequency
for the entire application run or for specific workloads, and at finer granularities by setting different fre-
quencies for different application phases. Previous works in phase detection and prediction have multiple
definitions for the phase. One definition for program phase is that a phase is a period of execution with a sta-
ble behavior [51, 52]. The alternate definition defines a phase as a single iteration of the time loop [53, 54].
Phase identification methods can identify phases at fine- or coarse-granularity. For coarse-grained identifi-
cation, hardware performance counters are used to dynamically identify and predict workload changes, and
are described in detail in Section 2.2.3.3.

Most fine-grained phase classification methods divide the application’s execution into non-overlapping,
fixed size execution intervals using the number of executed instructions. The phases of the profiled ap-
plication are then identified as compute-, memory- or IO-intensive using the similarity in the behaviour
during individual execution intervals. The characterization of the application execution into similar regions
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depends on the target application [55]. According to the first definition of a phase, a correctly identified
phase would have very small variations between any two execution intervals in that phase. DVFS is then
performed by applying a different CPU frequency for each phase [31].

Section 2.2.3.1 presents both reactive phase identification techniques that predict phases at a coarser granu-
larity, i.e., sampling, and predictive phase identification techniques for predicting phases at a finer-granularity.
These techniques may not use DVFS specifically. However, the phase identification methods could be con-
sidered as a starting point for power-saving techniques. Section 2.2.3.2 presents methods that characterize
the application execution into phases, and then also perform DVFS after phase prediction.

2.2.3.1 Phase identification techniques

Sembrant et al. [56] developed ScarPhase, an online phase detection library that collects hardware perfor-
mance counters using perf events to generate the so-called sparse frequency vectors. The frequency vectors
are constructed using perf events that either count the occurrences of certain events, such as the number
of instructions executed, or perform sampling by periodically triggering interrupts after a given number of
occurrences of the event and then recording the CPU state. The library uses Intel’s Precise Event Based
Sampling to sample conditional branch instructions and determine the current phase of an application at
runtime with less than 2% runtime overhead.

Nagpurkar et al. [57] also developed an online phase detection mechanism using a similarity model to
transform execution profile elements into a sequence of similarity values using conditional branches. The
similarly values represent the degree of similarity between profile elements. If the similarity is sufficiently
high, the model marks the current execution as belonging to a certain phase, or in transition between phases.
The framework identifies phase boundaries by correlating a period of repetition with the time of the latest
dynamic branch. The drawback of this mechanism is that it assumes that different iterations of a loop and
recursive executions of a method belong to the same phase even if they have varying branch behavior.

The work by Kim et al. [58] identifies and predicts program phases using a phase tracking hardware to
exploit phase behavior in order to perform dynamic optimizations by adaptively reconfiguring the microar-
chitecture, such as the cache size. Dynamic optimization systems track phase changes by sampling the
performance counters or by code instrumentation. The phase tracking hardware tracks functions and loops
in the program using a stack of the path from the root node to a dynamic code region. A phase history
table is used to track the change of phase signatures between dynamic code regions. A change in the phase
signature is detected using Clocks Per Instruction (CPI), and then assigned a phase ID.

Padmanabha et al. [52] demonstrated that heterogeneous systems can gain energy-efficiency by using a pre-
dictive scheduling or switching mechanism that dynamically guides program execution to the most energy-
efficient core, without causing a performance degradation. Their work involves identifying phases at a finer
granularity and mapping them to customized hardware. They developed a predictive controller to predict an
oncoming phase change at a granularity of hundreds of instructions, and accordingly migrate a thread using
this information. They argued that their predictive approach is more energy-efficient that existing reactive
controllers, which distinguish coarse-grained phase changes by sampling and assume that the performance
will remain stable until the following sampling phase. Their predictive scheduler reduces the energy con-
sumption of an out-of-order processor by 15% with negligible overheads on a tightly coupled heterogeneous
system.

Gonzalez et al. [59] developed a fine-grained phase identification technique using hardware counters that
are read only when MPI communication (collective or point-to-point) takes place so as to characterize the
behavior of a single computation or CPU burst that takes place between communications. The technique
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uses completed instructions and IPC to perform a cluster analysis on the computation bursts. The goal of
this technique is to use IPC to detect application regions with different computational complexities, as well
as regions with the same complexity but different performance. The clustering is done using DBSCAN, a
density-based clustering algorithm in combination with a variant of agglomerative hierarchical clustering.

2.2.3.2 Detection and characterization of application behaviour for DVFS

Zhang et al. [60] present PIFA, an intelligent Phase Identification and Frequency Adjustment framework
for energy-efficient and time-sensitive mobile computing by combining offline analysis and online analy-
sis. Their main motivation is that a single frequency setting for different application phases may not be
energy-efficient enough. The offline analysis profiles an app to collect the resource utilization, and performs
cluster analysis using K-Means to identify the major phases, which are representative of the major energy
consumption patterns exhibited by the app. Then, a phase classifier is trained to dynamically identify phases
during the online analysis using resource usage information collected from the CPUs, GPUs and memory.
At runtime, PIFA schedules an app to execute on an idle CPU core whenever possible, and uses the phase
classifier to identify phases and perform DVFS.

Sherwood et al. [61] developed SimPoint to find simulation points in a program by clustering the code profile
of the full execution, and then picking a point from each cluster as representative of the program execution.
The advantage of this approach is that the entire analysis is independent of the architectural parameters, and
uses only the code execution characteristics for clustering. It captures information about the changes in the
program behavior over time using a Basic Block Vector (BBV), which represents a code section with a single
entry and exit. The similarity between different intervals is determined using the frequency of execution of
the basic blocks by tracking the program counter of every committed branch and the number of instructions
executed between the current branch and the last branch. If the distance between two basic block vectors
is small, they are similar. The tool uses random linear projection to reduce the dimensionality of the input
data, and clusters similar intervals into phases using K-Means. The drawback of this method is that K-
Means requires the number of clusters, k as input, so the tool performs clustering for all possible values of
k and selects the best result. The authors extended SimPoint with an online phase prediction architecture
using a Run Length Encoded (RLE) Markov predictor [51] to perform DVFS to achieve energy savings for
a relative reduction in performance.

The Runtime Energy Saving Technology (REST) [62] modifies the core frequencies by performing DVFS
at runtime without prior knowledge of the application on two different Xeon architectures. The proposed
method characterizes the phases of an application workload into compute-bound or memory-bound states
by implementing an interrupt-based sampling of hardware performance counters to determine the state of
the processor and chip-level memory activity. The data from the profiles is interpreted by different kinds of
decision makers to determine the frequency whenever there is a shift in the workload. The aim is to lower the
frequency during a memory phase and raise it during a compute phase. Frequency switching is performed
using different decision-makers. The naive decision-maker always changes frequencies when necessary by
accepting the profiling data to be true. A second decision maker determines a change in the frequency during
workload changes by verifying the profile data using a history table of past profile data. Another decision
maker studies past workload changes and predicts future changes by using a Markov-based predictor. While
this approach is promising, it is coarse-grained, and does not take into account similarities in the behavior
of code regions.

Isci et al. [55] perform online phase predictions using a Global Phase History Table predictor, which is in-
spired by a branch predictor technique to switch frequencies using DVFS. The predictor characterizes appli-
cation behavior using the metrics memory bus transactions/micro-op and micro-ops/cycle. The application
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is divided into coarse-grained phases by setting interrupts after each interval of millions of instructions to
prevent any observable overheads. The phase predictor is invoked at each interrupt, and observes the patterns
from previous samples to determine the behaviour of the next phase. The prediction is mapped to a DVFS
setting, which is then applied to the processor for the next interval using the Intel SpeedStep technology.

Booth et al. [63] propose a Hidden Markov Model framework to detect application phases to apply DVFS,
which the authors call Phase-based Voltage and Frequency Scaling (PVFS) to save power for NoCs. Unlike
Markov chains that contain only observable states that can visibly be seen or measured, Hidden Markov
chains contain hidden states that influence the probability of transitioning from one state to another. The
Hidden Markov Models are constructed using hardware counters such as IPC taken at specific code loca-
tions, for example, at individual iterations of the time loop. The hidden states are the phases that represent
specific power and performance characteristics, such as {high power, low performance}, for which a static
DVFS setting is generated. The advantage of this method is that since the Hidden Markov Model is con-
structed using hardware counters, it can be applied to any heterogeneous many-core system. The limitation
is that it statically sets a single frequency for the phases.

Acun et al. [54] propose a fine-grained runtime approach to leverage application dynamism using Charm++
by considering function to function variations within the applications to optimize the energy-efficiency using
DVFS. The approach runs only a subset of the total iterations of the application time loop. First, the runtime
collects the execution time and the energy consumption for each instance of a region in the application under
different frequency settings. Then, optimal frequency is calculated and applied for each instance to either
minimize the energy or minimize the performance degradation. The implementation was tested on Haswell
processors using the cpufreq kernel module to switch the core frequency. While this approach is similar to
our proposed approach, it neglects potential similarities between the individual iterations of the time loop,
which our work focuses on.

Intel’s open-source Global Extensible Open Power Manager (GEOPM) [64] is a collaborated community
effort to develop a tree-based, runtime framework that provides energy management for power-constrained
systems. The framework is plugin-based, and supports offline and online analysis. The offline analysis first
performs a training run of the application to characterize it, and then collects the energy and performance
data to determine the optimal core frequency for individual program regions. At runtime, it collects hardware
performance counters from the instrumented application, estimates the power consumption and dynamically
identifies and reallocates power to the nodes on the critical path. The goal of GEOPM is to adjust the power
caps for the nodes individually instead of performing a uniform power capping. The drawback of this
method is that it only switches the core frequency, and ignore similarities between individual phases.

Schöne et al. [65] developed a method to integrate performance analysis with energy-efficiency optimiza-
tions by using the profile data of instrumented applications on Intel Sandy Bridge, Westmere and Ivy Bridge
systems. They perform region-based DVFS to switch the frequency, and DCT to change the number of
threads. First, application profile data is collected along with PAPI hardware performance counters to mea-
sure the L3 cache miss rate. The profile data is used in a post-mortem step to define the adaptations that
have to be made whenever a particular region is entered. For example, the frequency is lowered when the
L3 cache miss rate is over a certain threshold, and increased to the reference frequency when the miss rate
is below the threshold. The major drawback of this method is that it assumes that regions exhibit a similar
behavior across runs for different input data, which is not necessarily true, as described in Section 8.1.

Hotta et al. [66] implemented PowerWatch, a profiler to measure and collect the power information of each
node in a cluster while performing DVFS for individual program regions of an application. The program is
divided into several communication- and compute-intensive regions by manually instrumenting the code at
appropriate locations. The instrumented code is then executed to collect the profile data for the execution
time and power consumption for each region at every frequency setting. Finally, best clock frequency
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settings are determined by taking the switching overhead into account in order to optimize the EDP and
Power Delay Product (PDP). The settings are then applied to individual regions during production runs. The
drawback of this method is that the code regions are manually instrumented, while our proposed method
also works with automatic compiler instrumentation.

2.2.3.3 Using workload characterization

HPC systems run multiple applications at the same time, where each application can have different resource
requirements, and also exhibit variations in the workload at runtime. Hence, it is important for systems
running applications with varying workloads to select the voltage-frequency setting dynamically in order to
adapt to the workloads [67].

Basireddy [67] developed a runtime manager that identifies changing workloads on the processor and maps
a workload to an appropriate DVFS setting using cpufrequtils at runtime. First, the approach selects a
resource combination that meets the application performance requirements using a performance prediction
model using the metric Memory Reads Per Instruction. At runtime, it monitors the application workload
and collects performance data via hardware performance metrics. It then classifies the workload into classes
(compute-intensive, memory-intensive, or mixed) using K-Means. The optimal frequency setting is selected
either periodically for each core or for the whole system depending on the underlying architecture in order to
minimize the overall system energy consumption while maximizing performance. The proposed technique
was concluded as a significant improvement over Linux’s conservative, ondemand and performance power
governors on Odroid-XU3 with ARM’s big.LITTLE heterogeneous architecture as well as Intel Xeon E5-
2630V2 and Xeon Phi 7120P cores. The drawback of this approach is that the voltage-frequency setting is
static for the entire application run.

Chetsa et al. [68] propose an automatic workload detection and characterization methodology to perform dy-
namic system reconfiguration by using DVFS without the involvement of the user. The method introduces
the concept of Execution Vectors (EV) that store sensor values, including hardware performance coun-
ters, network bytes sent/received and disk read/write counts and label workloads into compute-intensive,
memory-intensive, mixed or I/O types. Changes in consecutive workloads are detected when the distance
between their EVs exceeds a threshold, and are used to label recurring phases. DVFS is then performed
by switching the frequency depending on the workload type. For example, the disks are sent to sleep and
the frequency is scaled up for compute-intensive workloads, and the frequency is scaled down for memory-
intensive workloads. The authors extended their work with modeling techniques [69] to understand the
runtime behaviour due to changing workloads on other HPC systems. Their prediction model uses the of-
fline data from the hardware counters on the reference platform to perform an online matching of the data
on the target platform in order to estimate the energy consumption of the application.

2.2.3.4 Using analytical models

The AutoTune project [8] extended Periscope [70], an automatic performance analysis tool with autotun-
ing support for tuning the performance and energy-efficiency of HPC applications using tuning plugins.
The parallelism capping plugin improves the energy consumption of OpenMP applications by withdrawing
compute resources whenever they are not utilized efficiently, and uses EDP as the objective function to de-
termine the optimal number of threads for each OpenMP parallel region. The DVFS plugin [71] can tune
different objectives, such as the energy consumption, TCO, and EDP by generating models to predict the
energy consumption, execution time and power at different CPU frequencies using the performance data
on a certain platform. The plugin uses PAPI hardware counters to collect performance measurements, and
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the enopt library [72] to sample the energy measurements via RAPL every 10 seconds. The plugin also
performs a search space reduction using the selected frequency by evaluating the next lower and higher
frequency values. This is a static tuning approach where a single CPU frequency is set for a region during
the entire program run. In our approach, both core and uncore frequencies can be configured dynamically
for different instances of the program regions.

Springer et al. [73] propose a method that explores the energy-time trade-off by developing a model-based
algorithm that selects the number of nodes and the CPU frequency to perform dynamic switching for compu-
tation and memory phases. The application is first divided into compute- and memory-intensive phases, and
then performance models for both execution time and energy consumption are created. The performance is
then predicted using estimates that are generated by repeatedly executing the program for a few iterations
and performing regressions until a satisfactory configuration is found. The method was tested on an AMD
Athlon-64 cluster using sysfs to switch the frequency.

Green Queue [74] uses an application’s characteristics as inputs to a power-performance model to perform
DVFS in order to minimize the energy consumption of program regions. The framework first uses static
properties from binary instrumentation, and runtime behavior from traces to determine whether the applica-
tion is load-balanced across MPI ranks. It then performs phase characterization, where each phase is said to
be a contiguous execution of code whose optimal frequency is approximately homogeneous. Two strategies
were implemented for selecting the clock frequency depending on whether the application is load-balanced
or not. If the workload is balanced, DVFS is used to switch the CPU frequency for different phases of
the time loop. For unbalanced loads, the CPU frequency is varied for individual process ranks. Once the
optimum frequency is selected for the minimum energy consumption, neighboring phases with the same
frequency are merged. At runtime, the optimal configurations are read from a file and applied to different
application regions.

Elangovan et al. [75] propose DVFS to select different frequencies for different memory channels to se-
lectively lower the frequency of the main memory and reduce the energy consumption while keeping the
performance degradation within tolerable limits. The algorithm first reads all the hardware counters, and
uses a performance model to calculate the execution time as well as the power consumption of certain parts
of the program at all the possible voltage and frequency levels. It then chooses a state for the next code
region that maximizes energy savings while maintaining the performance. Since the complexity of the algo-
rithm increases exponentially with the number of memory channels, the authors propose various frequency
selection strategies, including an exhaustive search in which all the frequencies are considered, a rule-based
search where only three frequency levels are considered at a time, and a ganged search by slaving all the
memory channels together.

Hsu et al. [76] implemented a power-aware algorithm for an adaptive runtime system that is based on CPU
utilization on laptops. The algorithm lowers the CPU voltage and frequency setting when the CPU utiliza-
tion is low to conserve energy, and vice-versa when the utilization exceeds the threshold. The aim of this
approach is that it is both application- and input-independent, so it does not require any profiling information
a priori. Therefore, it implicitly gathers information by monitoring the level of off-chip accesses during each
interval, and uses hardware performance counters like the MIPS (Millions of Instructions Per Second) rate
to model the execution time to make scheduling decisions. When the off-chip accesses are high, the cpufreq
module is used to lower the CPU frequency setting without affecting the performance. The drawback of this
approach is that it is too coarse-grained due the default measurement interval of 1 second.

Rauber et al. [77] developed an application-specific and an application-independent analytical model to
select the optimal number of threads, and minimize the energy consumption and EDP by controlling the CPU
frequency using DVFS. They used RAPL to obtain power measurements on Haswell processors. PPEP [78]
is a software tool that models the power consumption by reading the hardware performance counters of the
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cores at regular intervals and predicts the program execution at different voltage-frequency states for AMD
processors. The tool uses a regression model that takes nine hardware performance counters as inputs,
and uses the metric Cycles Per Instruction (CPI) to estimate the chip dynamic power at different voltage-
frequency states.

PuPPET (Power Performance PETri net) [38] is a modeling tool that implements a combined power-aware
job allocation and DVFS strategy. The tool allows users to analyze power-performance trade-offs by model-
ing the dynamic execution of a parallel job using an approximation of the energy consumption via petri-nets.
It implements a power-aware job allocation strategy by estimating the power requirement for the job at the
head of the queue. If its power requirement is less than the power cap, it is allocated resources. Otherwise,
either less power-hungry jobs are executed, or DVFS is implemented by running the processors at a low
power state to respect the power cap. The tool was evaluated on Mira, an IBM Blue Gene/Q machine.

2.2.3.5 Using machine learning

Vazquez et al. [79] use application dynamism to apply machine learning to reduce the overhead of design
space exploration while finding the best configuration of the total size, associativity, and line size for the
L1 instruction and data caches. First, Principal Component Analysis (PCA) is used to perform the feature
reduction of the execution statistics of the application’s time loop. Then, the execution statistics are taken
as input by Artificial Neural Networks (ANNs), and a best cache configuration for each unique time loop is
predicted. The predicted configurations are stored and retrieval later when the loop is executed again. This
method has the advantage that it can be applied to any type of computing system with configurable hardware
components. The methodology achieves an average energy degradation of less than 5% using the predicted
configuration.

Cochran et al. [80] present a two-step dynamic energy management technique that trains a multinomial
logistic regression model at design-time using a set of performance counters, per-core temperatures, current
DVFS setting and thread count as inputs to minimize the EDP and ED2P. It finds the optimal configuration
of the threads and the DVFS setting for multi-threaded applications based on the workload characteristics.
At runtime, the model calculates a priori the probability of each candidate operating point being optimal
for the objective function, and selects the output with the highest probability. The authors also present
Pack & Cap [81], which again uses a multinomial logistic regression classifier to predict the optimal DVFS
and thread packing settings. However, it tries to maximize the performance within a power budget. The
classifier is trained offline for each workload to estimate the probability of a combination of frequency
setting and thread packing yielding the optimal workload performance within a power constraint. The
proposed approach uses the cpufreq governor to perform frequency switching.

Ozer et a. [82] optimize the energy consumption of the HPC systems at the Leibnitz-Rechenzentrum (LRZ)
using machine learning techniques to perform DVFS. They use historical data generated from GEOPM to
train different regression models to predict the optimum frequency settings for the next timestamp given
the information from the previous timestamps. A supervised learning approach such as a random forest is
trained offline a priori using the trace history of an application as input to predict the future values of the
CPU power and the number of retired instructions. The approach also uses linear regression to make runtime
predictions of the optimal frequency settings for different program regions.

Hajiamini et al. [83] propose a Markov-based DVFS method to predict core utilizations and CPU frequency
settings based on the execution times between application time intervals. The DVFS setting is modeled as
a Hidden Markov Model (HMM), which predicts the next state based on some hidden states/variables that
influence the probability of the selection using the Viterbi algorithm. This method uses core utilizations and
execution times as the states of the HMM. The probabilities for transitioning from one state to another are
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obtained by profiling the core utilizations. The algorithm uses K-means to partition core utilization values
and the execution time into clusters representing a range of core utilizations (low, medium or high), and
execution times. Thus, lower frequency settings are applied to clusters with shorter execution times, since
they represent an underutilized core.

Benedict et al. [84] propose an energy prediction mechanism using a bagging tree-based Random Forest
Modeling (RFM) approach for OpenMP applications. RFM is a tree-based modeling technique that is used
to reduce the variance of an estimated predictor by using an ensemble learning method. The mechanism finds
the optimal problem size, code variant as well as the best frequency for different code regions to optimize
the energy consumption while maintaining the performance of the code. The optimizer first submits a list of
proposed energy optimal configurations to the RFM-based energy predictor, which splits them into training
and testing datasets. The predictor then creates a regression model using various metrics like the energy
consumption, execution time, cache misses, and total number of instructions that are collected during the
execution of the configurations in the training dataset. Using the collected metrics, the RFM predicts the
energy consumption of the test dataset. The technique uses RAPL to obtain the energy values.

Reinforcement learning is becoming an increasingly popular technique for autotuning HPC applications
that have large complex problem spaces. In reinforcement learning, an agent must learn a certain behav-
ior by a continuous process of trial-and-error interactions with a dynamic environment through punishments
and rewards [85]. Reinforcement-learning problems may either use the strategy of finding a behaviour in the
search space that performs well in a certain environment, or use statistical techniques and dynamic program-
ming to assess the incentive of taking certain actions. The Q-learning approach is a dynamic programming
technique in which the agent observes its current state, issues an action and then observes the resulting new
state. A penalty is issued to the agent based on the value of the state transition. The agent finally learns the
best state by trying all actions in all states to minimize long-term penalties [25].

Gocht et al. [16] used Q-learning to select the best CPU and uncore frequency settings for different instances
of program regions, i.e., call-paths of instrumented functions. First, the initial energy is measured when a
region is entered for the first time. The algorithm then searches for new states that decrease the normalized
energy consumption. If a new state results in a higher normalized energy consumption, the algorithm returns
to the previous state that generated a positive reward. Although the proposed method is region-based, it does
not take into account the similarities between the regions in different time loops, and assumes that there is
no dynamism between individual iterations of the time loop.

Shen et al. [25] present a system-level dynamic power management method using Q-learning for peripheral
devices. The method uses a two-level control model that optimizes the power-performance trade-off so that
it operates the system at a relatively constant performance or power to minimize the energy dissipation.
The state space for the algorithm is the set of available power modes. The Q-learning algorithm performs
CPU power management by controlling the DVFS settings when the compute and memory intensity vary
for different workloads. First, the power manager learns the pattern of the workload by keeping the device
active during the idle period. When the workload changes, the power manager learns again and puts the
device to sleep during long idle periods. This method sets a single optimal DVFS setting for a specific input
using the cpufreq driver using the Intel Enhanced SpeedStep technology.

2.2.3.6 Intertask DVFS for applications with load imbalance

Some DVFS techniques are specialized for MPI applications that exhibit load imbalance. These schemes
optimize the energy consumed during a slack period by identifying the load imbalance in the application
caused due to blocking MPI communication [31]. Then, they selectively switch the clock frequency to
ensure that the critical path of the execution is never slowed down [86].

23



2 Related Work

Rountree et al. [86] propose a runtime DVFS system called Adagio that reduces the CPU frequency during
communication phases using the sysfs interface. The technique first creates tasks, which are defined as a
period of computation between two MPI calls. To predict the upcoming communication calls, a unique
signature is created for each task based on the hash of the task that was previously found to succeed the
current task. Adagio performs an online monitoring of PAPI hardware performance counters to estimate
how fast a task would run if it ran at the fastest frequency. After a task completes, Adagio collects the
execution time and determines the frequency schedule for the next execution of that task. The selected
ideal frequency is defined as the lowest CPU frequency at which a given task can be run without incurring
any slack or slowdown. The disadvantage of this method is that similar communication patterns between
HPC applications are not considered during predictions, thereby causing a performance penalty. Moreover,
Adagio is applicable only to single-threaded programs.

Lim et al. [87] present an adaptive technique for performing DVFS in communication phases by automat-
ically detecting and identifying communication regions by monitoring MPI calls without any user involve-
ment. The system comprises a training system and a frequency shifting system. The training system consists
of a region-finding algorithm, which works by maintaining begin and end flags for each MPI call. When
the begin flag is encountered for an MPI call, a new region begins, and hardware performance counters are
collected. Using the metric micro-operations/second as an indicator of CPU load, a frequency is selected for
regions with low micro-operations to minimize the EDP. When the end flag is encountered, the frequency is
reset. The experiments were conducted on an AMD Athlon-64 cluster using the sysfs interface for shifting
the frequency. The drawback of this work is that since the frequency switching is done on the fly, it needs
coarse-granular MPI regions to measure the hardware counters.

Freeh et al. [88] propose a framework to perform DVFS for MPI programs dynamically. The framework
identifies phases of compute- and memory-intensive regions in an application using the idle periods caused
when the CPU waits for memory or IO. Phase boundaries are identified when there is a change in the memory
pressure, represented using the metric operations/miss. In each experiment, a heuristic executes a new phase
using a slower frequency than the one used for the previous phase. If the energy-time trade-off for the
new phase is better than the current solution, it is accepted. Otherwise, the algorithm recursively executes
the phase with the next lower frequency until the new trade-off is worse than the current, or when all the
frequencies are tested. The drawback of this method is that it is not applicable for dynamic applications
since it assumes that HPC applications have predictive phases.

2.2.4 UFS

André et al. [89] developed a daemon to automatically switch the uncore frequency and at the same time
limit the performance degradation. The daemon uses the ratio of the FLOPs and the memory bandwidth
to compute the arithmetic intensity and characterize the application into compute- and communication-
intensive regions. The daemon determines how the switching decision impacts the FLOPS and memory
bandwidth, and reduces the uncore frequency if the FLOPS drop when compared to the previous iteration,
but the memory bandwidth remains stable. The approach used LIKWID to read the counters provided by
RAPL and set the uncore frequency. The experiments showed that decreasing the uncore frequency has a
negative impact on the latency and bandwidth of the L3 cache and main memory, and no impact on the L1
and L2 caches. The authors also evaluated the potential of UFS for energy savings, and recommend limiting
the performance slowdown during UFS to up to 10% in order to reduce the overall energy consumption of
the socket and main memory.

Gholkar et al. [90] propose Uncore Power Scavenger (UPSCavenger), a lightweight library to dynamically
detect phase changes and automatically set the best uncore frequency for individual phases at runtime to save

24



2.2 Software Methods for Power Management

power while limiting the performance degradation. UPSCavenger detects phase changes by periodically
measuring the IPC and socket power using RAPL for DRAM power measurement at every invocation of the
phase. The uncore frequency is then switched to the highest value during a phase transition using the msr-
safe kernel module. A transition from a compute-intensive phase to a memory-intensive phase is identified
as a rise in the DRAM power and a reduction in the IPC. The authors observe that UFS results in reduced
power for cache-bound applications, performance degradation for memory-bound applications, and reduced
package power for CPU-bound applications.
Both the above methods perform sampling to obtain measurements for the DRAM power. The drawback of
both techniques is that they are too coarse-grained due to the large size of the sampling interval.
Gupta et al. [32] demonstrate the efficacy of UFS for heterogeneous workloads on an experimental, hetero-
geneous multi-core platform consisting of both high performing and low performing cores using a set of
real-world applications that are typically run on client devices. The workloads are classified as intermittent,
sustained, or multi-threaded. For intermittent workloads, heavy processing is performed on client devices in
short bursts, thus generating high IPC counts during activities such as web-browsing. Sustained workloads
have sustained levels of higher IPC counts, and are marked by longer periods of activity, such as gaming and
video editing. Multi-threaded workloads use multiple threads to increase the parallelism for activities such
as media decoding and rendering. Each workload is first evaluated on big cores, and then on the small cores,
during which metrics for the application performance, IPC and LLC accesses are collected. The metrics are
then used to model both the core and the uncore power.

2.2.5 Clock Modulation

Bhalachandra et al. [28] used a model to inspect the local system state for variables like the time spent in
collectives to slow down non-critical threads without impacting the performance. Since a thread performing
more work runs at a higher duty cycle than the ones doing less work, the model chooses the lowest clock rate
for the fastest threads so that they reach the collective without causing any delay. The model also increases
the clock rate for slow threads to prevent them from being last to the collective. For generic loads with
imbalance, it was observed that clock modulation saved significant power and energy with minimal impact
on performance.
Schöne et al. [24] performed a detailed study of software controlled clock modulation for different pro-
cessor generations, and concluded that it is a good optimization technique for synchronization calls like
MPI_Barrier. They developed optimization models for the performance and energy consumption for the
Haswell-EP architecture, and measured the influence of clock modulation on the power consumption and
application performance. They also compared clock modulation with DVFS, and observed that for the
Sandy Bridge and Ivy Bridge architectures, the processor uses DVFS instead of clock modulation when the
clock modulation setting is not high enough, or is the same for all the cores. They also report that clock
modulation was used in addition to DVFS only when the clock modulation setting is lower than the lowest
supported frequency. The authors suggest using clock modulation when synchronization calls have a low
runtime, and DVFS for longer running synchronization steps.
Cicotti et al. [91] developed EfficientSpeed, a library that utilizes both clock modulation and DVFS by
providing customizable energy optimization policies to improve the energy-efficiency while preserving per-
formance. The library allows programmers to indicate loops within their application that are good candidates
for energy optimizations. The library first runs the instrumented application using the default settings to ob-
tain baselines for the specified loops. It then adjusts the CPU speed to minimize a user-specified objective,
such as performance, power, energy or EDP. For each compute phase, the speed of the core is selected based
on the selected policy, and performance metrics are collected to adjust the speed for the phase when it is run
again.

25



2 Related Work

2.2.6 Classification of Software Techniques

We now categorize existing power and energy optimization software techniques from Section 2.2 that lever-
age the hardware methods from Section 2.1 on the basis of the tuning methodology employed. We distin-
guish existing works in terms of their search strategy for search space exploration, the time when tuning is
actually performed, the granularity of hardware control that was employed, and finally, the granularity of
application control that was exploited by the tuning parameters. The classification is presented in Table 2.1,
and defined below:

1. Search space exploration strategy: For large search spaces, autotuning techniques may use search
strategies to execute a subset of the total iterations or use historical data to train runtime models.
Search algorithms may be either model-free or model-based [7]. Model-free algorithms consist of
global and local search strategies, and do not use models to navigate the search space to determine
optimal settings. Global search strategies like genetic search and evolutionary algorithms find the
global best configuration at the expense of a long search time. Local search algorithms like hill-
climbing do not perform a detailed exploration, and instead move from a current configuration to a
nearby improving configuration within its neighborhood, which is defined by the user or the algorithm.
They terminate when they reach a time bound or when no better configuration is found for the current
configuration. However, they only find the local minima.

Model-based algorithms are used to avoid the cost of walking through the entire search space. Instead,
they use analytical or predictive models for predicting performance or power metrics. Analytical
models usually use statistical models to draw the relationship between different variables. Predictive
models may various machine learning models such as supervised learning algorithms that understand
and learn patterns in the data, and make predictions during the application run.

2. Time of tuning: This category refers to when the tuning is actual performed: offline or online. In
offline tuning, usually statistical or performance models are computed when the relationship between
the tuning parameters and the tuning objective is known [92]. It can also be performed by generating
profiles or traces for the application execution, which are used post-mortem to perform performance
or power analysis and tuning. Tuning adjustments are then made between successive application
executions [35]. Offline tuning strategies may also use previously tuned code regions to perform a
lookup to obtain the optimal configurations. When a previously executed optimal configuration is
unavailable, a prediction model is used to find and store the optimal setting offline for future use [93].
In online tuning, the actual tuning is deferred to application runtime, where machine learning is used
to create predictive models using the metrics collected during application runtime or from a model
derived from an offline step.

3. Granularity of hardware control: Power control mechanisms can tune hardware tuning knobs at
different granularities, for example, per-core, per-node, or the whole system. At coarser granular-
ity, power capping and power management techniques for parallel applications can be applied at the
node or socket-level, and at finer granularity at the core-level. For example, some power-aware job
allocation strategies may perform system-level power capping thus enabling coarse-grained control.
RAPL provides socket-level power capping capabilities while DVFS allows for a finer-grained per-
core frequency control for the Haswell architecture. We categorize previous works into system-level,
node-level, socket-level, and core-level power control techniques based on the granularity of the hard-
ware that is exploited.

4. Granularity of application control for tuning parameter switching: Optimal power/energy reduc-
tion configurations for parallel applications can be applied at coarse or fine application granularity,
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Table 2.1: Categorization of previous works on power-aware and energy optimization techniques into (a)
Model-free and model-based search space exploration strategy, (b) Offline and online tuning (c)
System-, node-, socket- and core-level hardware control, (d) Application/workload static tuning
and dynamic tuning of applications.

Level Category Previous works

Search space exploration strategy

Model-free

[41], [43], [37], [60], [61], [51],
[63], [54], [64], [65], [66], [68],
[71], [74], [75], [83], [16], [25],
[86], [87], [88], [89], [90], [35], [91]

Model-based

[42], [46], [45], [47], [48], [49],
[50], -[55], [67], [69], [71], [73],
[75], [76], [77], [78], [80], [82],
[84], [90], [28], [24], [38]

Time of tuning

Offline tuning

[39], [42], [49], [50], [60], [61],
[63], [54], [64], [65], [66], [68],
[71], [73], [74], [74], [74], [75],
[77], [78], [82], [83], [87], [90],
[24], [35], [38], [91]

Online tuning

[40], [43], [47], [48], [60], [51],
[55], [64], [67], [69], [76], [80],
[16], [25], [84], [86], [88], [89],
[90], [28]

Granularity of hardware control

System-level
[46], [45], [47], [37], [67], [68],
[69], [25], [39], [41], [42]

Node-level [43], [48], [71], [73], [80], [88]

Socket-level [47], [89]

Core-level

[43], [49], [50], [60], [61], [51],
[55], [63], [54], [65], [66], [67],
[71], [71], [74], [75], [76], [77],
[78], [82], [83], [16], [86], [87],
[90], [28], [24], [91], [38], [35], [64]

Granularity of application control
for tuning parameter switching

Application/workload static
[39], [41], [42], [46], [45], [37],
[63], [67], [68], [69], [73], [77],
[78], [80], [25], [84], [90], [35], [38]

Dynamic

[43], [47], [48], [49], [50], [60],
[61], [51], -[55], [54], [64], [65],
[66], [71], [74], [74], [75], [76],
[82], [83], [16], [86], [87], [88],
[89], [90], [28], [24], [91]
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as described in Sections 2.2.3.2, 2.2.3.6, and 2.2.3.3. For example, while performing DVFS, some
methods statically set a single optimum static configuration for the entire application, or in some cases
for specific workloads at a coarse-grained level. Application-static configurations are configured at
the start of the application run, and are not changed for entire application run. While this technique
may result in energy savings, it does not consider the inherent dynamism in HPC applications, and
assumes that most applications have predictable phase behavior. As our proposed method describes in
Chapter 7, there are many applications that require an analysis of the similarities between individual
iterations of the time loop.

At finer granularities, tuning strategies may set different frequencies for different application phases
characterized by the level of compute-, memory- or IO-intensity, or occasionally even for individual
time loop iterations or instances of program regions. Such dynamic tuning techniques select optimum
configurations for different code regions of the application.

2.3 Summary

In this chapter, we presented the state-of-the-art in power management and power-aware optimization meth-
ods. Currently, approaches such as hardware overprovisioning, power-aware job allocation, power gating,
clock modulation, clock gating, power capping, DVFS, and UFS are used to reduce the energy and power
consumption on HPC systems. We also presented software methods that leverage architectural innovations
in power and energy management. While our work aims to tune the energy efficiency, other objectives such
as execution time, EDP, ED2P and TCO can also be tuned.

Power saving may be considered in terms of active, standby, and sleep modes. The ACPI standard defines
five main states that are supported by current processors: global states (G-states), system sleep states (S-
states), processor power states (C-states), processor performance states (P-states), and throttling states (T-
states). From previous works, we can conclude that many techniques use DVFS for optimizing both energy
and power consumption. This may be due to the fact that changing the P-states has a low latency than other
states like deep C-states and T-states.

We also note that the definition of a phase varies across across previous works dealing with phase identifi-
cation and application characterization. While some define a phase as a period of program execution with a
stable behaviour, others, including our approach interpret it as a single iteration of the time loop.

Our proposed approach includes methods from a wide range of research areas, such as DVFS, UFS and
DCT, application dynamism exploitation using domain-knowledge specification, phase characterization us-
ing clustering, multi-step autotuning using a probabilistic search strategy, and runtime prediction of phase
behavior. The approaches that were presented in this chapter implement one or more of the above methods.
However, we are not aware of existing research that covers all these areas collectively, and at the same time
has the potential to scale to future Exaflop machines.
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Background

This chapter presents the fundamental concepts of our work by introducing a formal description of the
concepts and definitions that will be referred to in the following chapters 1. In Section 3.1, we present the
concepts of our methodology, and introduce inter-phase dynamism, which is central to our work. We also
describe how the base concepts are applied to define the tuning potential metric to quantify the potential
improvement that can be achieved through tuning in Section 3.1.3. Finally, we define the tuning model in
Section 3.1.3.1, which is the outcome of the Design-Time Analysis (DTA) stage (see Section 6.2), and is
used for runtime tuning.

In Section 3.2, we describe two existing software tools that our work leverages, namely the Periscope Tun-
ing Framework (PTF) and the Score-P instrumentation and measurement infrastructure. Additionally, we
provide a short introduction to the PAPI framework that we use to collect hardware performance metrics. In
addition to a high-level description of the tool infrastructures, we distinguish and describe the tuning param-
eters of the HPC stack, namely hardware, system software and the application tuning parameters that are
used in our autotuning methodology in Section 3.3. Understanding these concepts is necessary to understand
the contributions of this thesis.

3.1 Concepts and Formalism

This section introduces the core concepts that will be referred to throughout the remainder of this thesis.

3.1.1 System Structure

3.1.1.1 Regions

A region is an arbitrary code in the application, and includes functions, parallel OpenMP regions, and MPI
operations. The set of all instrumented regions in the program is denoted by Rinstr, and comprises all the

1This section contains definitions from [53]
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program regions that are instrumented and thus visible to the tuning system at application runtime. However,
Rinstr could potentially contain a large number of fine-granular regions, so we reduce the set of regions to
the set of significant regions Rsig ⊆ Rinstr by selecting regions r ∈ Rinstr that cover a significant part of the
execution time. This means that significant regions are suitable targets for dynamic switching of the tuning
parameters. We shall henceforth use R instead of Rsig to denote the set of significant regions.

A phase region is a program region that defines the phases of an execution, and is typically the main time-
stepping loop of a simulation. Thus, all significant regions should be nested within this region. We assume
that there is only one phase region defined in the application.

3.1.1.2 Identifiers

An identifier is an element that contains information to identify the current execution or predict the charac-
teristics of the consequent execution.

The set of identifiers IDr ⊆ ID for a region r ∈ R consists of the region name, region call-path, and region
parameters. The region call-path is the sequence of region instances from the root node to the called region.
Additionally, the user can provide region parameters for application regions to characterize their behaviour,
phase identifiers for the phase region to group phases with similar characteristics, and input identifiers for
the application input to differentiate different performance and energy characteristics.

3.1.1.3 Runtime situations

A runtime situation, or an rts is an instance of a significant region, and is denoted by rrts ∈ R during an
execution. An rts can be identified using the region name and the call-path.

3.1.1.4 Phase

In Figure 1.1, we see that the runtimes of different iterations of the time loop of INDEED are not uniform
throughout the application run, and thus create application dynamism. To leverage this dynamism, we
introduce the concept of a phase to characterize the application on account of changing computational
characteristics of the rts’s across individual iterations due to changing workload distribution.

A phase ph ∈ PH is an instance of a phase region and thus an rts at the phase level. It is a single execution
of the phase region, or an iteration of the time loop. The phases are executed collectively by all of the
processes of an MPI application, and thus, all the processes go through the same sequence of phases during
the application execution.

3.1.2 System Tuning

3.1.2.1 Tuning parameters

A tuning parameter tp ∈ TP is a tuning knob or a parameter of the HPC stack, e.g. CPU frequency, number
of OpenMP threads, accelerator offloading switch, application-level parameters, etc. We focus on the tuning
parameters that can be switched at runtime, and also have the potential to influence the energy consumption
of an application running on an extreme-scale system. We describe the parameters that were used in our
proposed methodology in Section 3.3.
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3.1.2.2 System configurations

A system configuration cfg∈CFG describes the set of tuning parameters and their associated values. System
configurations are switched during the execution of the rts at application runtime whenever the monitoring
library enters and exits a significant region.

3.1.2.3 Objective function

The objective function is a tuning aspect that determines the best system configuration, and maps an rts and
a system configuration onto a real number, and is defined as o : RT S×CFG−→ R. The objective of tuning
is to minimize or maximize a given objective function, for example, execution time, energy consumption,
or EDP by varying the system configuration.

3.1.3 Tuning Potential and Dynamism

Tuning dynamism exists in an application if two rts’s in the application execution exhibit varying computa-
tional characteristics such that different optimal configurations can be applied for the respective rts’s, thus
making it beneficial to perform tuning. At runtime, the configurations for the respective rts’s are switched
to improve the objective function.

The presence of application intra-phase dynamism indicates changing characteristics of significant regions
within a single phase due to the execution of different algorithms within the phase. This essentially means
that the rts’s of different significant regions will have different best configurations. Inter-phase dynamism
results from changes in the execution characteristics between different phases of the application due to the
change in the control flow while the simulation is progressing through the sequence of phases. The variations
in the application characteristics are computed using dynamism metrics, as described in Section 6.1.4.

To successfully apply the above formalism, we need to first estimate the benefit of dynamically tuning
an application by determining its tuning potential. Since we know that tuning-relevant dynamism exists,
the tuning potential quantifies the improvement in the objective function compared to a static system-wide
default configuration selected by the batch system at application runtime. The tuning potential of the whole
application is the sum of the tuning potential of the individual rts’s.

The tuning potential cannot be determined theoretically, and can only be estimated through measurements
by leveraging the varying characteristics of different regions and taking the switching overhead into account.

3.1.3.1 Tuning model

A tuning model is produced as a result of Design-Time Analysis (DTA). It captures the knowledge about the
optimum system configurations for individual rts’s in the presence of application intra-phase dynamism as
well as for phases in the presence of inter-phase dynamism.

In order to reduce the number of configurations in the tuning model, multiple rts’s are grouped into a scenario
using a classifier if they have the same best-found configuration or if they have the same set of values for
the identifiers.

A selector of a scenario returns the single best configuration with respect to the chosen objective. Selectors
can either simply return a single best configuration determined at design-time, or use a cost function as
described in Section 6.2.3 to choose from a set of configurations when rts’s with different best configurations
resulting for different input sets are merged together.
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3.2 Tools

Section 3.2.1 describes Score-P, a common instrumentation and measurement infrastructure for DTA and
Runtime Application Tuning (RAT). Section 3.2.2 presents the Periscope Tuning Framework, which forms
the basis of our work, and was extended using tuning plugins for intra-phase and inter-phase dynamism.
Section 3.2.3 introduces PAPI, a low-level API to collect hardware performance counters.

3.2.1 Score-P

Score-P [10] is a joint project driven by leading application performance tools experts, and funded by the
German Ministry for Research and Education (BMBF) and the U.S. Department of Energy (DoE). It pro-
vides an advanced instrumentation and runtime measurement infrastructure that allows the analysis of the
behavior of high performance codes and the detection of performance problems and bottlenecks, and pro-
vides information on potential improvements. Through its flexible design, Score-P offers different strategies
for application instrumentation, e.g., compiler-based and manual instrumentation. The process of perfor-
mance analysis in Score-P begins with the instrumentation of the original application by preparing it for
the collection of the performance properties. This is done by recompiling the application using the Score-P
instrumentation prefix in the original compile and link commands through which performance properties
are collected at program runtime. Score-P also provides macros to annotate specific parts of the code that
that might be potentially interesting for tuning. We describe this process in detail in Section 6.1.3.

In the traditional approach, the application has to be instrumented for each analysis tool separately, since
every tool has its own instrumentation system. To overcome this challenge, Score-P offers a common
Opari2 instrumenter for OpenMP programs that serves as the basis for many HPC analysis and tuning tools
like PTF, CUBE, Scalasca, Vampir and TAU. The runtime measurement infrastructure of Score-P supports
various means of data processing and storage, including summarization and storage as profiles in the CUBE4
format in cubex files and used by CUBE, TAU and Scalasca, trace data generation through the Open Trace
Format 2 (OTF2) used by Vampir and Scalasca, and an Online Access (OA) interface for direct performance
analysis and autotuning at runtime used by PTF. The framework supports a wide range of parallelization
paradigms including MPI, OpenMP and CUDA, advanced measurement techniques such as phase, dynamic
region and parameter-based profiling, sampling through interrupts as an alternative to direct instrumentation,
and recording hardware performance counters via PAPI [13] and perf.

The current design of Score-P returns performance metrics for individual programs using region-based pro-
filing via the OA interface. We extended the profiling component and the Online Access interface of Score-P
to send performance metrics for rts’s using call-path profiling, as described in Section 6.2.

3.2.2 Periscope Tuning Framework

The Periscope Tuning Framework (PTF) is an extension to Periscope, previously a performance and anal-
ysis tool with automatic tuning capabilities. It is a tuning framework that was developed in the Autotune
project [8] at the Technische Universität München.

For a tool to effectively and efficiently perform autotuning on modern HPC systems with hundreds of NUMA
nodes running highly parallel applications, it should enable fast data aggregation and reduced data analysis
time. This is satisfied in PTF using a frontend and a tree-like hierarchical structure of backend components
called analysis agents. The framework includes several tuning plugins that can be used to tune individual
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Figure 3.1: Components of PTF and their interaction with Score-P [94].

aspects of HPC applications, such as the selection of optimal compiler flags, or perform parallelism capping
for an application. The plugins investigate different configurations of the tuning parameters using search
strategies in order to select the best variant. Figure 3.1 [94] depicts a high-level view of the architecture
of PTF consisting of the frontend, the tuning plugins, the experiment execution engine and a hierarchy of
analysis agents.

PTF performs an iterative online automatic analysis and tuning that requires little to no user intervention.
The frontend executes a tuning plugin to tune an application for a given objective, and applies an online
search by evaluating experiments with different configurations within a single program run. Each experi-
ment is an individual execution of the phase region in which performance properties are requested from the
analysis agents. The PTF analysis agents connect to the application via monitors that can send measurement
requests and receive measurement results to and from Score-P via the OA interface. Performance properties
include any measurable metric that can be obtained via profiling or a hardware performance measurement
tool like PAPI [13], and include execution time, energy consumption, cache misses, branch mispredictions,
load imbalances, and MPI-specific profiling data. The performance properties received via the OA interface
are finally propagated through the agent hierarchy to the frontend.

Our methodology is based on a two-step approach consisting of DTA and RAT. PTF is used to perform
DTA, during which it uses Score-P to request performance measurements. This is discussed in detail in
Section 6.2. The current design of PTF only performs static tuning of application code regions, and has no
support for dynamic tuning of the rts’s. We extend this design using novel plugins to leverage the intra-phase
and inter-phase dynamism, as described in Sections 6.2.1 and 6.2.2 respectively.

3.2.3 PAPI

The Performance Application Programming Interface (PAPI) [95] provides tool designers and application
engineers a standard API to access hardware performance counters for CPUs, GPUs, chip memory and
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I/O independent of the machine and operating system. Hardware counters allow users to examine the rela-
tionships between system software performance and hardware events, analyze the bottlenecks in hardware
architectures, as well as optimize and scale HPC codes [13]. PAPI is written in C, and provides a standard
interface for a number of toolkits that perform profiling, tracing and sampling for HPC applications, such as
HPCToolkit, Scalasca, Score-P, TAU, and Vampir [96]. Third-party tools only require the application to be
linked to the PAPI library, and handle a single hook to PAPI to access all the hardware performance counters.
PAPI also provides fine-grained power management support by providing power and energy measurement
counters.

PAPI provides over 100 preset events, which include common CPU predefined events that can be accessed
using the simple high-level API, as well as native events comprising all the available events for a specific
platform. The fully programmable, low-level API provides a fine-grained measurement and control of both
preset and native events from either C or Fortran programs. The high-level API has the advantage of easy
use and less setup due to the automatic detection of the components, while the low-level PAPI provides
complete control of the entire set of events using event sets.

3.3 Tuning Parameters

To exploit the dynamicity available inside the application and use it to minimize the energy consumption,
we distinguish between three different levels of the HPC stack, i.e., hardware parameters, system software
parameters, and application-level parameters, and exploit them using the following two approaches:

1. Code-agnostic approach: This includes hardware and system software tuning parameters that are
independent of the application, and are described in Sections 3.3.1 and 3.3.2. Thus, no intrinsics of
the application code, such as the operations performed or the algorithms used are necessary to exploit
these tuning parameters. Simple profiling techniques can be used to detect and define hints to exploit
the dynamicity in the application, e.g., defining that different rts’s can be identified via different call-
paths is sufficient in this approach.

2. Code-aware approach: This includes automatic exploration using the additional knowledge of the
application from the developer, specified as domain knowledge specification. Application-level tuning
parameters described in Section 3.3.3 allow the developer to provide hints in order to find areas in the
application code where dynamicity can be exploited.

The tuning parameters that are relevant to our proposed methodology are summarized in Table 3.1, and are
described in more detail in the next sections. It should be emphasized that all of the parameters in Table 3.1
have an impact on the energy-efficiency, and can be tuned at runtime, which is a vital property for dynamic
autotuning.

3.3.1 Hardware Tuning Parameters

The most relevant hardware tuning parameters that we exploited are processor-related parameters due to the
fact that the processor has the highest power dissipation in the system. We used the processor core frequency
and the uncore frequency hardware tuning parameters to perform tuning.
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3.3.1.1 Processor core frequency

We perform DVFS as a means to reduce the energy consumption by switching the frequency of the CPU
cores. DVFS can be implemented through various means, e.g., soft control by changing the governor,
which is available on Linux-based systems as a pluggable infrastructure, and enables the control of CPU
frequency settings using defined policies such as performance, powersave, or ondemand, or full control over
the frequency settings using the userspace governor to allow arbitrary applications to select the P-state.

Our approach leverages the new feature implemented since the Intel Haswell processor family that P-states
can be selected independently for individual cores as opposed to full sockets as was seen in previous proces-
sor lines. Moreover, the Haswell processor also introduces a switching window for changing the frequency,
where a switching request is given to the processor in a certain time window, at the end of which the fre-
quency is changed. Switching requests that are received after the time window has closed will be executed
after the next window is closed, thus causing a delay of up to 500 µs [5].

3.3.1.2 Processor uncore frequency

Haswell allows socket-level granularity to set the uncore frequency using Uncore Frequency Scaling (UFS)
to control the transfers to and from memory (communication between processor caches and the DRAM)
independently of the CPU core frequencies. The uncore frequency can be switched using the userspace gov-
ernor by setting machine specific registers (MSRs) using the x86_adapt [65] library that allows controlled
unprivileged access to MSRs.

3.3.2 System Software Tuning Parameters

The OpenMP standard offers users a means to implement thread-level parallelism through preprocessor
statements or pragmas, such as a parallel for, which are translated by the compiler into thread-parallel
code, and results in the iterations of a loop getting distributed among the threads. We use the API provided
by the OpenMP standard to perform DCT to control the behaviour of the OpenMP runtime library by influ-
encing the number of threads used by a parallel region. Typically, each logical core runs a single OpenMP
thread, or multiple software threads if it supports simultaneous multi-threading (SMT), and is enforced using
the environment variable OMP_NUM_THREADS.

By reducing the number of OpenMP threads, we can save the energy consumption, since each hardware
thread keeps its own state and can request different C-states, known as thread C-states [30]. Hence, when
each thread requests a deeper C-state, the core C-state changes, thus reducing the C-state of unused processor
cores from the active C0 state into any of the power-saving C-states C1–C6. Thread and core C-states are
identical for cores without SMT support. However, when SMT is enabled, all the threads on a core must
request a lower thread C-state to effectively reduce the core C-state.

3.3.3 Application Tuning Parameters

In addition to hardware and system tuning parameters, we exploit Application Tuning Parameters (ATPs)
that provide a certain degree of tuning potential using specifications in parts of the code itself that could
be used as tuning parameters, e.g., when different implementations of the same algorithm are available,
and each has its own impact on performance and energy [97]. ATPs may include the selection between
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Table 3.1: Overview of the hardware, system software and application tuning parameters

Level Tuning Aspect Tuning Parameter Granularity

Hardware
Parameters

Frequency control
Processor core frequency (DVFS) Core
Processor uncore frequency (UFS) Socket

System
Software
Parameters

OpenMP threading Dynamic Concurrency Throttling (DCT) Process/core

Application
Tuning
Parameters

Code-paths
Domain decomposition Application
Direct and iterative solvers Application
Preconditioner Application

different decomposition algorithms, preconditioners or blocking factors, and are problem-specific. Thus,
they can only be handled generically through the definition of variables and their values that are passed to
the tuning environment. Since the hardware and software tuning parameters are more interesting for inter-
phase dynamism tuning, which is the core of our work, we shall only provide a brief description of the ATPs
in Section 6.2.1.2.

3.4 Summary

In this chapter, we presented the formalism used in our proposed approach. We also introduced the core
concepts of application dynamism, including intra-phase dynamism arising due to varying characteristics
of the significant regions within a single phase, and inter-phase dynamism arising from different execution
characteristics between individual phases. We also described how these concepts can be applied to define
the tuning potential, which is central to the overall methodology. The result of DTA is the tuning model,
which contains groups of rts’s with their identifiers, classified into scenarios, and a selector that returns a
best configuration for each scenario. By presenting a formal mathematical description of the concepts, we
aim to minimize the ambiguity in their definitions.

As a starting point to our methodology, we introduced the Periscope Tuning Framework, a distributed online
autotuning framework, which is used to implement the core of our autotuning methodology, and Score-P, a
performance measurement infrastructure used by PTF to collect performance metrics. The current design of
PTF provides a flexible plugin-based tuning framework, which performs static tuning of program regions.
We extended this framework to tune intra-phase and inter-phase application dynamism by leveraging the
variance in the characteristics of the application. Moreover, the original design has no concept of rts’s, which
we introduce for the first time to perform dynamic autotuning. PTF requests performance measurements for
the execution time, the objective value and hardware performance counters via the Online Access interface
of Score-P. We extended the Score-P OA interface with features to transfer the measurements of call-path
based profiling for the rts’s to PTF.

We distinguish the tuning parameters between three different levels of the HPC stack, i.e., hardware param-
eters, system software parameters, and application-level parameters. The parameters that we have identified
as being relevant include the processor core and uncore frequencies as hardware tuning parameters, the num-
ber of OpenMP threads as a software tuning parameter, and the domain decomposition, preconditioner and
types of solvers as the application tuning parameters. The characteristic of all of these tuning parameters is
that they can be influenced at runtime.
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The foundation for our work is the READEX [4] (Runtime Exploitation of Application Dynamism for
Energy-efficient Exascale computing) project, which was funded by the European Union Horizon2020 re-
search and innovation programme under grant agreement number 671657. The READEX project was a
collaboration between seven partners from academia, HPC resource providers, and the industry, namely
Technische Universität Dresden (TUD), Technische Universität München (TUM), Norwegian University
of Science and Technology (NTNU), IT4Innovations National Supercomputing Center (IT4I), Irish Centre
for High-End Computing (ICHEC), Intel Corporation, and Gesellschaft für numerische Simulation mbH
(GNS) with the aim to develop a tools-aided methodology to achieve improvements in the energy-efficiency
of dynamic current and future Exascale applications while reducing the effort for tuning.

We first present a general overview of the READEX tool suite in Section 4.1, and describe how it leverages
two existing software tools, namely the Periscope Tuning Framework (PTF) and the Score-P infrastructure.
We then describe the extensions to the existing PTF framework to leverage application dynamism and per-
form automatic dynamic tuning at design-time using two novel tuning plugins, namely the intraphase and
the interphase plugins. We also describe in brief the workflow of the READEX Runtime Library (RRL),
which is linked to the target application to perform dynamic tuning during application production runs, and
how Score-P will serve as a common infrastructure for PTF and RRL by providing instrumentation and
measurement capabilities during design-time and runtime tuning.

We follow the high-level description of the workflow with an introduction to the architecture of the READEX
methodology, depicting the dependence of different components, including the data-flow between PTF,
Score-P and RRL in Section 4.2.

4.1 Overview of the Tuning Workflow

The READEX methodology is based on the system scenario based methodology [98] from the embedded
systems domain for energy-efficiency tuning. The system scenario methodology is based on application
profiling and code inspection to identify different rts’s that have different costs associated with them, e.g.,
for execution time, or energy consumption. Rts’s with similar multi-dimensional system costs, i.e., objective
functions are grouped together into scenarios. Optimized configurations are generated for each scenario
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based on a trade-off between the costs using a Pareto-optimal front. At runtime, the upcoming scenarios are
predicted, and configurations are switched for different scenarios if the cost of switching is less than what is
saved by switching to the new configuration. Hence, the premise is that the cost of running the application
by predicting upcoming scenarios and switching to their best configurations is always less than running the
application without switching.

Similarly, the READEX methodology is split into two phases: the Design-Time Analysis (DTA) that is
performed during application development, and Runtime Application Tuning (RAT) that is performed during
production runs. The end goal is to produce a tuning model as a result of DTA, and use it to perform dynamic
switching of the tuning parameters at application runtime to gain energy savings. Thus, READEX brings
the system scenario methodology from the embedded world to the HPC domain, and combines the best
technologies from opposite ends of the computing spectrum into a tool suite that will contribute towards
realizing Exascale performance. Figure 4.1 illustrates the overall workflow of the proposed methodology.

Before performing DTA, the application undergoes some pre-analysis and preparatory steps. In the first
step, the HPC application is instrumented using Score-P either by inserting annotations, which are probe
functions around different regions that are of interest to tuning using Score-P macros, or by simply letting
the compiler perform automatic instrumentation. The only essential manual annotation required is that of
the phase region, since this is central to our tuning methodology. Any other annotations are considered
domain knowledge that help generate a better tuning model using hints to determine optimal configurations
for the rts’s. However, the drawback of automatic compiler instrumentation with Score-P is that it causes a
high overhead due to the instrumentation of frequently executed fine-granular program regions. To reduce
the impact of such fine-granular regions, a tool called scorep-autofilter is used to automatically generate a
filter file containing the names of the regions that should be omitted from Score-P instrumentation. The tool
filters out all the regions in the application whose execution time is less than a certain threshold.

The next step is to automatically identify and characterize the dynamism in the application behaviour. Our
tuning methodology only considers applications with significant dynamism since it is based on tuning hard-
ware, system and application-level tuning parameters depending on the dynamism exhibited by different
applications regions. A tool called readex-dyn-detect is used to analyze the application to determine if there
is tuning potential that can be exploited by the methodology. This process is two-fold. First, the tool de-
tects coarse-granular application regions, or significant regions that are worth tuning by selecting only those
regions whose exclusive execution time is significant, or above a certain threshold. This is critical because
selecting significant regions that are not too fine-granular overcomes the cost of switching. Next, the tool
examines the presence of intra-phase and inter-phase application dynamism, and quantifies the tuning poten-
tial w.r.t. variations in two metrics: execution time and compute intensity for the instances of the significant
regions. The threshold for the amount of variation can be user-specified, as described in Section 6.1.4. If no
tuning potential is detected, the tuning process is simply aborted since there is no real benefit of dynamic
tuning.

readex-dyn-detect exports the tuning potential summary, the list of significant regions, the intra-phase and
inter-phase dynamism information per significant region to a general configuration file in the xml format.
The configuration file is created from a template, and allows the user to specify the tuning objective, tuning
parameters, energy metrics to measure, and the search strategy to use to generate the search space among
other information.

After the pre-analysis steps, PTF performs DTA. It reads the configuration file and stores the context infor-
mation for the significant regions by running a single phase of the target application. It then initializes the
interphase plugin if the application has inter-phase dynamism, or the intraphase plugin in the presence of
only intra-phase dynamism.
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Figure 4.1: A high-level workflow of the autotuning methodology. Pre-analysis steps are colored in orange,
Design-Time Analysis (DTA) steps are colored in blue, and the Runtime Application Tuning
(RAT) steps are colored in pink.
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The tuning plugins run experiments that can evaluate three tuning parameters: CPU frequency, uncore
frequency and the number of OpenMP threads within a single program run, where each experiment is a
an execution of a single phase. Both plugins first read the ranges (minimum, maximum and the step size)
of the tuning parameters, and the objective to tune the application for. The plugins then create a search
space to walk the multi-dimensional space of system configurations in one or more tuning steps using a
search algorithm to determine which system configuration to evaluate in each experiment. The two plugins
however perform different tuning steps, and differ in the way they determine the optimum configurations.

The interphase plugin executes the first tuning step with a user-specified number of phases using the de-
fault setting of the tuning parameters, and then uses a random search strategy with a uniform probability
distribution to generate the search space in the second tuning step. The search strategy randomly picks a
configuration in each experiment to see its effect on the application execution, and requests for PAPI hard-
ware performance metrics via Score-P. At the end of the tuning step, it clusters phases that have similar
characteristics based on normalized cluster features, namely compute intensity, conditional branch instruc-
tions and L2 cache misses, which are derived from the collected PAPI metrics. The clustering is performed
by first using a density-based clustering algorithm called DBSCAN, and then a graph-based algorithm called
spectral clustering.

In the third tuning step, the plugin uses the random strategy with a probability model based on a Gaussian
distribution to select configurations for each phase in a cluster from a search space of configurations that
were not executed in the previous tuning step. This step ascertains that a sufficient number of tuning pa-
rameters are tested for a cluster of phases before selecting the optimum configurations. Thus, the interphase
plugin leverages both inter-phase and intra-phase dynamism by determining different cluster-best configu-
rations for clusters of phases, and individual rts-best configurations for rts’s within the clusters. Finally, a
verification step is performed to ensure that the theoretical computed savings match actual savings incurred
after the switching overhead.

The intraphase tuning plugin executes the first tuning step using the default settings for the tuning param-
eters, similar to the interphase plugin. It then tunes ATPs using a user-specified search algorithm, e.g.,
exhaustive or individual search strategy to select the best configuration. The ATPs are implemented via the
ATP library that provides functions to specify a set of potential values using constraints, which define valid
multi-dimensional points, along with a default value. The Omega Calculator [99] is used to solve the system
of constraints specified for a given ATP domain. The third tuning step fixes the optimal configuration for
the ATPs obtained in the previous tuning step, and then explores the system-level tuning parameters using
the selected search strategy. It finally performs a verification step, similar to the interphase plugin, and
computes the savings.

The best configurations for individual rts’s at the end of both plugins, as well as the cluster-best configu-
rations at the end of the interphase plugin are then stored in a tuning model. For the interphase plugin,
additional information about each cluster, such as the phases in that cluster, and the ranges of the features
used for clustering are also stored in the tuning model. When the number of rts’s that have different best
configurations is large, frequently switching between the configurations would result in a corresponding
switching overhead w.r.t. both time and energy. Hence, a classifier groups the rts’s with similar or identical
best found configurations into scenarios using a similarity score that is determined by computing the close-
ness of system configurations. The tuning model generation was implemented by NTNU, and is described
in Section 6.2.3. The tuning model guides the RAT stage to perform dynamic runtime switching of the
configurations using the READEX Runtime Library (RRL), implemented by TUD (see Section 6.3).

During production runs, the RRL determines the upcoming scenario based on the current rts by monitoring
the application execution, and applies the corresponding optimal configurations for individual rts’s and
phases using the knowledge in the tuning model. If inter-phase dynamism was detected during application
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pre-analysis, the best configurations for the unevaluated phases are unknown at runtime, since the interphase
tuning plugin evaluates only a representative subset of phases during DTA. To avoid setting default system
configurations for the unseen phases, the application is linked with the runtime cluster prediction library,
which predicts the cluster number of an unseen phase during production runs. To perform runtime cluster
prediction, we implemented three cluster predictors: Markov chain predictor, one-bit and two-bit cluster
predictors that are based on the respective namesake branch predictors.

RAT also distinguishes seen rts’s that were encountered during DTA, and are stored in the tuning model,
and unknown or unseen rts’s. For unseen rts’s, a calibration mechanism is used to find the optimal system
configuration based on machine learning algorithms using Q-Learning [16]. When RRL encounters an
unknown rts, the algorithm first starts at a certain core and uncore frequency, and then selects a different
configuration from the next direct neighbors using a probability. It then measures the energy consumption,
and calculates the so-called Q-Value. The algorithm chooses the next configuration based on the Q-Value,
and selects it if the cost is smaller than the previous value. We do not discuss the calibration mechanism
in more detail, since this work was implemented by TUD, and is not directly related to our extensions or
inter-phase tuning.

4.2 Architecture of the Tuning Framework
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Figure 4.2: The architecture of the READEX methodology, depicting the interaction between PTF, Score-P
and RRL. The arrows represent the data flow between the components. Pre-analysis steps are
colored in orange, DTA steps are colored in blue, and the RAT steps are colored in pink.

Figure 4.2 illustrates the overall architecture, which depicts the major components that were developed as
part of the READEX methodology, and presents the interaction between PTF, Score-P and RRL. The arrows
in the figure represent the data flow between the components. The pre-analysis steps consisting of coarse-
granular region filtering using scorep-autofilter and tuning potential analysis using readex-dyn-detect are
highlighted in orange to maintain consistency with the high-level workflow in Figure 4.1. The DTA stage
performed by PTF is colored in blue, and the RAT stage performed by RRL is colored in pink. We also
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present the cluster prediction library, which is linked to the application during production runs. To perform
ATP tuning for intra-phase analysis, the application is linked with the ATP library, which uses an ATP
specification file containing the list of ATPs and the constraints for each parameter.

The DTA Management module controls the overall execution of DTA, and interacts with other PTF compo-
nents to execute the workflow presented in Figure 4.1. It executes tuning plugins using a state machine to
call different stages of the plugin workflow, and incrementally collects information about rts’s and invokes
methods for storing the data in the RTS database. The tuning plugins determine the best system configuration
for a specific tuning aspect, such as the execution time, energy consumption, or compiler flags. The plugins
walk the search space using different search strategies, and use analysis strategies to collect performance
measurements during each experiment, which are stored in the Performance Database. The Experiments
Engine automatically executes individual experiments to evaluate the effect of system configurations on the
application execution, and communicates with the RRL via the OA interface to start and stop the application
execution. At the end of DTA, the DTA Management module triggers the Scenario Identification module to
generate the tuning model by grouping rts’s into scenarios and using a selector to pick the best configuration.

To simplify the architecture of RAT, we merged all the components that were not directly extended in our
work and pertain solely to the workflow of the RRL at runtime into the Runtime Management module.
The Tuning Model Manager (TMM) is used during DTA as well as RAT, and was implemented by TUD
and NTNU. At design-time, it saves configurations for individual rts’s, and simply returns the configuration
that PTF requests. During RAT, the TMM reads the tuning model created during DTA to detect significant
regions at application runtime. If inter-phase dynamism was detected during DTA, the cluster prediction
library queries the tuning model data from the TMM, and predicts the cluster number. The Runtime Man-
agement module then uses the information about an upcoming scenario to send the configuration settings to
the Parameter Controller, which switches the tuning parameters via Parameter Control Plugins (PCPs).

4.3 Summary

In this chapter, we introduced the READEX methodology, which forms the foundation of our work. We
presented an overview of the entire tuning workflow, consisting of application pre-analysis steps, followed
by DTA, tuning model generation, and finally, RAT. We also illustrated the interactions between the major
components of our tuning methodology in an architecture diagram.

In our work, we extended the OA interface of Score-P to enable access to the profile measurements for
individual rts’s from PTF. We created an RTS database in PTF to store the information of the executed rts’s
received from Score-P via the OA interface. We also extended the DTA Management module to trigger
experiments for rts-based tuning. We developed two new plugins to perform inter-phase and intra-phase
analysis respectively, and introduced a new analysis strategy to request metrics for inter-phase analysis.
We extended the tuning model generation to store the phase and cluster related information for inter-phase
tuning, and implemented runtime cluster prediction via the new cluster prediction library.
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Phases play an important role in the tuning methodology as they dramatically reduce the tuning time by
enabling the analysis of multiple experiments in a single tuning step without the need for restarting the
application. Additionally, phases capture application dynamism, and thus, define the temporal dimension
for the inter-phase analysis. Most scientific benchmarks usually execute the same set of instructions by re-
peatedly calling the same program regions in each iteration. However, complex production-level real-world
applications are highly dynamic, and exhibit varying behaviour between different iterations. Executing all
the phases with a fixed configuration might result in a suboptimal behaviour and incur an additional expen-
diture of energy. Tuning for inter-phase dynamism is essential for applications that show variations in the
behaviour of individual phases. Therefore, we employ various clustering concepts to target phases that ex-
hibit similar behaviour. This ensures that we can select multiple optimal configurations, i.e., for each cluster
of phases as well as individual rts’s that are called within the phases of the clusters.

One challenge to this effect is that performing an exhaustive search by walking the search space of the cross-
product of all the tuning parameters is simply impractical due to time constraints. Instead, increasing the
priority of certain configurations that could potentially result in a higher energy-efficiency enables us to test
a higher number of better performing configurations while satisfying the time constraint. Thus, we optimize
the search space using the concept of targeted tuning by selecting configurations using a search strategy
based on a Gaussian probability distribution. To satisfy the constraint that we do not spend much time in
selecting optimal configurations during autotuning, we ensure that only a subset of the entire set of phases
is actually run during DTA. These phases are considered to be representative of the application behaviour,
and thus enable the selection of near-optimal configurations.

During production runs, the entire application is executed, and a runtime prediction mechanism dynamically
predicts the cluster id of all the phases that were not seen during DTA. The RAT stage of the tuning workflow
uses the cluster prediction library, which provides three kinds of predictors, of which two are based on the
one-bit and two-bit dynamic branch prediction schemes, and the other is based on a second-order Markov
chain.

In this chapter, we highlight the important concepts of our work with a detailed description of the extensions
to the interphase tuning plugin. We describe different features that can be used to characterize the similarities
between phases, and also present the reasoning behind their selection in Section 5.1. These features are used
to perform DBSCAN and spectral clustering. We describe how the interphase tuning plugin uses a targeted
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set of configurations using a Gaussian distribution to select optimal configurations in Section 5.2. We
present the extensions to the dynamic tuning component at runtime using a novel cluster prediction library
that predicts the characteristics of unseen phases using different cluster predictors in Section 5.3.

5.1 Exploiting the Characteristic Behavior of Phases

The interphase tuning plugin selects a representative subset of the progress loop iterations to evaluate during
DTA. The plugin executes each phase with a different configuration to evaluate its effect on the behaviour of
the phase as well as the tuning objective in order to ultimately select the optimal configuration. The process
of selecting the system configurations can be done by using a brute-force strategy or an exhaustive search,
which walks the full search space and explores all the combinations of the tuning parameters. While this
may result in the optimal system configuration, it is not practical as HPC applications tend to run for a long
time, resulting in large tuning costs. Instead, we first use a random search strategy with a uniform probability
distribution to select a configuration from a search space of equally likely tuning parameter combinations to
test in each experiment. This prevents the search space from exploding.

Each phase is then executed with a randomly selected configuration, and measurements are collected for the
objective values as well as hardware performance counters, which are used to characterize the phases and
perform clustering. We use PAPI [13] events to collect the hardware counters. Selecting the right metrics is
an important first step, since this influences the clustering and ultimately, the selection of optimal configu-
rations. The aim of this step is to use the hardware metrics to group phases with similar characteristics so
that a single best configuration can be selected for a cluster.

Selection of metrics

Hardware performance counters help in detecting patterns in an application. For example, AVX instructions
expose ALU saturation, or the amount of work done. Thus, codes that have a high compute intensity have
the possibility of reusing data in the cache, and hence have fewer Last Level Cache misses (LLC) [100].
Compute intensity can therefore be a good metric to determine the dynamicity in order to perform DVFS.
The general formula for the compute intensity of an application is defined as:

Compute_Intensity :=
[Work_Done]

[Bytes_Transferred]
(5.1)

where, [Work_Done] is the total amount of computation performed, and the [Bytes_Transferred] metric
measures the amount of data moved between the CPU and memory.

A metric that is representative of the work done is the number of retired instructions. However, this is
unreliable because it even counts the instructions generated due to the parallelization overhead due to spin-
waiting loops that don’t do actual work [101]. Hence, it is more effective to count the "useful" instructions
that perform actual work by defining [Work_done] as the total number of floating-point operations, denoted
by FLOPs. Thus, Equation 5.1 may be redefined as the ratio of FLOPS to the LLC misses.

Compute_Intensity :=
[FLOPs]

[LLC_Misses]
(5.2)

Unfortunately, the Intel Haswell architecture does not provide events to measure the FLOPs. However, it
allows to count all the AVX instructions including data movement and calculations via the AVX vectorization
extension using the AVX_INSTS.ALL (Event 0xC6, Umask 0x07) event, which captures all AVX instructions.
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Table 5.1: Hardware metrics selected as features for clustering, and their equivalent PAPI/perf events.

Metric PAPI Event

AVX instructions perf_raw::r04C6
L3 cache misses PAPI_L3_TCM
L2 cache misses L2_LINES_IN.ANY
Conditional branch instructions PAPI_BR_CN

We further refine the measurements to count only the calculations involving floating-point operations using
the perf event perf_raw::r04C6 (Umask 0x04) to represent the actual work done. Thus, we define compute
intensity as the ratio of AVX calculation instructions to the L3 cache misses, as shown below:

Compute_Intensity=
#AVX_INSTS.CALC
#L3_Cache_Misses

(5.3)

This means that an algorithm that experiences a large number of LLC misses due to a high memory band-
width results in memory-boundedness where the memory may impede performance.

Compute intensity is however not the best metric to determine the right UFS setting, since the L1 and L2
caches are part of the core domain whereas the L3 cache is part of the uncore domain. In situations when the
data or instructions are not present in the L1 and L2 caches, including on-demand and prefetching misses,
or when the cache line is invalidated, the CPU loads the cache lines into the L2 cache by reading the data
from the main memory. L2 cache misses have a direct effect on the uncore dynamic power consumption,
since they cause activity on the ring interconnect and in the L3 cache [102] due to data movement. This
means that if all the data were in L2, no performance trade-off is imposed as opposed to an increase in the
CPU cycles while reading the data from the main memory. We count the cache lines that are requested and
written back to the L2 cache, i.e., the traffic entering the L2 cache, using the PAPI event L2_LINES_IN.ANY
in order to perform UFS.

The third metric chosen was the number of conditional branch instructions, which represents a change in
the control flow within a phase, and indicates if a compute-intensive region is followed by a memory- or
IO-intensive region. Conditional branch instructions expose the inherent data-dependency of the application
phases, since they require that the conditional code is set and available so that the branch can be executed.
They typically incur some pipeline latency, which causes performance penalty due to the stalls in the branch
execution. We count the conditional branch instructions using the PAPI event PAPI_BR_CN.

Table 5.1 summarizes the features that were selected for characterizing the phases, and their equivalent
PAPI/perf events. The listed events are then used to compute the features for clustering, as described in
Section 5.1.1. It should be noted that events differ between microarchitectures and across different vendors.
Since we do not intend to optimize the tuning framework across all processor architectures, we limit our
cluster analysis to the Intel Haswell architecture.

5.1.1 Clustering

Clustering is an unsupervised machine learning technique that groups objects together using their attributes
(or features) based on their relationships with other objects, e.g., using pairwise distance or similarity [103].
Unlike classification, which is a supervised learning technique that labels objects with pre-identified cat-
egories, clustering does not require assumptions about the categories of objects. Clustering involves the
following concepts:
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1. Input space: The input space consists of the raw information about the objects, and comprises the
associated attributes.

2. Feature space: The feature space consists of the features derived from the attributes of the objects.
When there are more dimensions, only the relevant subset of the input attributes are included in the
feature space.

3. Similarity space: The similarity space consists of the transformation that translates the features of two
objects into a pairwise similarity relationship.

4. Output space: The output space is the representation of the cluster membership of the objects into one
of k clusters.

The metrics in Table 5.1, i.e., compute intensity, conditional branch instructions and L2 cache misses capture
the characteristics of phases, and are used as features for clustering. The mapping of phases into clusters en-
ables the plugin to select a different best configuration for each cluster. A challenge in clustering techniques
is finding the right number of clusters for a dataset, since there can be several solutions depending on the
granularity of the problem. Hence, we used two clustering algorithms, DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) [11] and spectral clustering [12] to cluster phases. First, DBSCAN is
performed, since it does not require the number of clusters or make any assumptions about the shape of the
clusters a priori, and is robust against noise or measurement outliers. However, it does not consider potential
associations or similarities among the outlier points, which spectral clustering models very well.

The plugin first normalizes the features using the min-max method. Feature normalization ensures that there
is no bias while using features with different data ranges for clustering, and that all features have a similar
weight. Without normalization, features with larger values are given more importance, thus degrading the
clustering. The min-max method is a range normalization method that scales the numeric range of a feature
to a [0,1] range, as shown in the following formula:

∀xi ∈ X , x
′
i =

xi−min(X)

max(X)−min(X)

The plugin then uses the normalized features to perform DBSCAN (see Section 5.1.1.1) to group points that
are close to each other into high-density regions, and then spectral clustering to determine the associations
between unclustered points, as described in Section 5.1.1.2.

5.1.1.1 DBSCAN

DBSCAN is a well-known density-based clustering algorithm that groups points that are close together,
resulting in high density regions, and marks points lying in low-density regions as noise. It can detect clusters
of arbitrary shapes. The algorithm does not require the number of clusters to be specified beforehand, and
needs only two parameters to cluster the data points:

1. minPts: minPts refers to the minimum number of points that must lie in the neighborhood of a point
to define a cluster. The minimum number of points in a cluster is usually defined using minPts ≥
#features+1 [104].

2. eps: eps is the threshold, or the maximum distance between any two points in order for them to
be considered as belonging in the same neighborhood. There are a number of distance metrics, for
example, Euclidean distance, Manhattan distance and Minkowski distance that can be used to compute
eps. This ensures that ∀p ∈ D, the distance between any pair of points is less than or equal to eps.
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DBSCAN clusters points based on three aspects:

1. The eps neighborhood: The eps neighborhood of a point p, denoted by Neps(p), is defined as Neps(p)=
{q∈D|dist(p,q)≤ eps} [11], where D is the set of all data points and dist(p,q) is the distance function
between points p and q. A point p is defined as a core point if it has at least a minimum of minPts
number of points within its eps neighborhood.

2. Density reachability: Point p is density reachable from q if:

• p ∈ Neps(q), meaning p is in the eps neighborhood of q.

• ¯Neps(q)≥ minPts, meaning q is a core point (see the definition of core point above).

• There is a chain of points p1, p2, . . . , pn where p1 = p and pn = q such that pi+1 is directly
density reachable from pi.

A point p is defined as a border point if it is directly density reachable from a core point q and its eps
neighborhood has fewer than minPts, as defined by |Neps(p)| < minPts. Finally, a point p is a noise
point if it is neither a core point nor a border point, which means that it does not belong to any cluster.

3. Density connectedness; A point p is density connected to a point q if there is a point o such that both
p and q are density reachable from o.

Implementation

The algorithm of DBSCAN is presented in pseudocode in Algorithms 1 and 2. For our applications, the
parameter minPts was chosen to be 4, which means that a cluster has a minimum of four data points.
DBSCAN first starts with an arbitrary unvisited point p, and retrieves all points that are density reachable
from p. To determine all the points reachable from p, the eps neighborhood of p is computed. The estimation
of eps is not trivial for arbitrary datasets, since this parameter influences the dispersion of a cluster, and
hence, must be performed with care.

Figure 5.1: Automatic detection of eps for DBSCAN. eps is the average 3-NN distance of the elbow point
colored in red.

In our implementation, eps is automatically determined using the elbow method [105]. The plugin first com-
putes the average k-NN (k-Nearest Neighbor) distances for all the data points. As we use three-dimensional
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Algorithm 1. DBSCAN(D, eps, minPts)

Input : D: Set of all points
eps: Maximum distance
minPts: Minimum number of points to form a cluster

Output: A clustering of all points in D

1 Initialize initial cluster id C = 1
2 foreach unvisited point p ∈ D do
3 Mark p as Visited
4 N = getNeighbors(p, eps), where dist(p, p′)≤ eps
5 if N ≥ minPts then
6 ExpandCluster(p, N, C, eps, minPts)
7 C←C+1
8 else
9 Label p as NOISE

10 end
11 end

Algorithm 2. ExpandCluster(p, N, C, eps, minPts)

Input : p: A visited point in D
N: Neighbors of p
C: Cluster id to assign for point p
eps: Maximum distance
minPts: Minimum number of points to form a cluster

1 Add p to cluster C
2 foreach point q ∈ N do
3 if q is unvisited then
4 Mark q as visited
5 N’ = getNeighbors(q, eps), where dist(q,q′)≤ eps
6 if N′ ≥ minPts then
7 N = N

⋃
N′

8 end
9 end

10 if q does not belong to any cluster then
11 Add q to cluster C
12 end
13 end

data points in our methodology, we use the Euclidean distance as the distance metric because it is easily
defined for 3D points. We then compute the average 3-NN distances under the condition that the minPts
parameter is 4, thus ensuring that point p has a minimum of three other points in its neighborhood. The dis-
tances are then arranged in the ascending order, and the curve is plotted, as illustrated in Figure 5.1. Since
noise points lie further away from the clusters, they have higher 3-NN distances. Thus, the aim is to detect
the elbow, or a sharp change in the curve of the average 3-NN distances. It occurs at the point that has the
maximum distance to the line formed by the points with the minimum and the maximum 3-NN distance,
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i.e., the first and the last points on the curve. eps is computed as the average 3-NN distance of the elbow
point [106], which is colored in red in Figure 5.1. It represents a change in density distribution, indicating
that only those points whose average 3-NN distances are lower than eps will be clustered.

If the current point p does not have at least minPts in its eps neighborhood, it is marked as noise. If p is a
core point, i.e., it has the specified number of minPts in its eps neighborhood, a new cluster is started. Each
point in its eps neighborhood is then marked as visited, and their eps neighborhoods are added to p’s eps
neighborhood, as outlined in Algorithm 2. Finally, all the visited points are added into the same cluster. If p
is a border point, no points are density reachable from p, and hence, the next visited point results in a new
cluster or becomes a noise point [11]. This process repeats until all the points are marked as visited. After
the algorithm successfully terminates, the variable cluster_num stores the assigned cluster number for each
data point.

5.1.1.2 Spectral Clustering

In the first clustering step, DBSCAN ignores the similarities between the noise points. Although these points
don’t belong to the clusters obtained as a result of DBSCAN, they could by analyzed to discover associations
between them to enhance the tuning result using spectral clustering, which does not make assumptions on
the shape of the clusters. It works in the similarity space instead of the original feature space, and relies on
the eigen-structure of a similarity matrix derived from pairwise distances to partition similar points into the
same cluster [107].

There are several ways of modeling the neighborhood relationships between data points:

• ε-neighborhood graph: In the ε-neighborhood graph [107], all points whose pairwise distances are
smaller than ε are connected together. The value of ε should be chosen such that the resulting graph
is safely connected. However, this is not easy, since this may result in too large or too small clus-
ters. Moreover, we already use a similar mechanism in DBSCAN to automatically determine the eps
neighborhood of a point.

• k-Nearest Neighbor graph: In a k-Nearest Neighbor graph, a point i is connected to another point j if
j belongs to i’s k-Nearest Neighbors.

• Fully connected graph: In a fully connected graph, all points having a similarity above some threshold
determined using a similarity measure are connected with each other. We use this method to model
the similarities between the noise points.

Spectral clustering requires two inputs:

• The similarity matrix, and

• The number of clusters

The key aspect here is to find a similarity measure that is derived from the cluster features to capture the
closeness of a pair of points [103]. A similarity measure s ∈ [0,1] between two points i and j is symmetric,
i.e., s(i, j) = s( j, i), and has a self-similarity value of 1, i.e., s(i, i) = 1, indicating that a point i is similar to
itself. The goal is to divide the set of points into disjoint subsets with high intra-cluster similarity and low
inter-cluster similarity [108].

There are several unnormalized and normalized spectral clustering algorithms available for different types
of problems. Unnormalized spectral clustering algorithms use the unnormalized Laplacian matrix, while the
normalized spectral clustering algorithms use the normalized graph Laplacian matrix to perform clustering.
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We use the well-known Ng, Jordan, Weiss normalized spectral clustering algorithm [12] to cluster the set of
points N = {1,2, . . . ,n} into k clusters.
Similarities between individual points can be specified using either a similarity matrix that stores 1 in the
(i, j)th entry if points i and j are similar, indicating that there is an edge connecting i and j, or an affinity
matrix that specifies that two vertices are connected if the similarity s(i, j) between the corresponding data
points is larger than a certain threshold. The similarity matrix is typically used when the relationships
between data points are defined using an ε neighborhood or k-NN graph. An affinity matrix is typically used
to construct a fully connected graph of a data set, and consists of the set of weights or affinities assigned for
the edges between points i and j. It is defined as:

Ai j = wi j, ∀i, j ∈ N (5.4)

The weights wi j can be computed in many ways. However, for points that lie in the Euclidean space, the
simplest and most commonly used method is the Gaussian similarity function [12]. The original Ng, Jordan,
Weiss algorithm used the following similarity function:

wi j = e(
−d2

i j
2σ2 ) (5.5)

where di j denotes the Euclidean distance between points i and j, and σ is the connectivity or scaling param-
eter, and controls the width of the neighborhood [107]. σ determines how the affinity Ai j falls off with the
distance between i and j [12]. The parameter σ may be specified manually using several preset values or
automatically.
The Ng, Jordan, Weiss algorithm proposed an automatic way to determine σ by running the algorithm
repeatedly for a manually specified range of values, and then selecting the one whose result was the closest
to the true clustering of the points. However, this significantly increases the computation time, and poses
a big challenge to our autotuning approach of determining best configurations online in as few restarts as
possible. Moreover, a single value of σ may not work well for all the data [109]. Therefore, we use the
Gaussian similarity function based on "local-scale" [110], which is a self-adaptive parameter, where σi is
the kth nearest neighbor distance of i, and σ j is the kth nearest neighborhood distance of j, as shown below:

wi j = e
(
−d2

i j
σiσ j

)
(5.6)

This means that the k-NN distances model the local neighborhood relationships between the data points
by setting a threshold on the neighborhood. We selected the value of k as 3, so that σ refers to the 3-NN
distance, similar to the DBSCAN algorithm. Ideally, wi j should be 1 or very close to 1 if points i and j
are in the same cluster, and close to 0 if the points are in different clusters. Additionally, we set wii = 0 to
ensure that there are no self-loops. Computing an affinity matrix that represents the distribution structure is
important, since spectral clustering treats the points in the dataset as the vertices of a weighted undirected
graph, and the similarity between two vertices as the weights of the edges. Thus, the algorithm essentially
converts a clustering problem into a graph partitioning problem, where connected graph components are
interpreted as clusters [111], such that the edges within a group have high weights, and the edges between
different groups have low weights [107].

Implementation

The spectral clustering algorithm was implemented in MATLAB R2019a, and is presented in pseudocode in
Algorithms 3 and 4. The algorithm first generates the affinity matrix A using the steps listed in Algorithm 3.
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First, it normalizes the features of the noise points in N generated by the DBSCAN algorithm, and computes
σi and σ j using the 3-NN Euclidean distances between each pair of points. It then computes the similarity
s(i, j) between each pair of points i and j by computing the weight wi j as defined in Equation 5.6. Using the
affinity matrix, the algorithm computes the diagonal matrix D containing the sum of each row in its diagonal
elements, and constructs the normalized graph Laplacian matrix L = D−1/2AD−1/2. It uses the k largest
eigenvectors λ1,λ2, . . . ,λk corresponding to the k largest eigenvalues to construct the matrix X .

Spectral clustering algorithms use K-means as the final step to extract the clusters from the original data
points. When K-means is used directly to cluster phases whose natural clustering does not correspond to
convex regions, it results in unsatisfactory clustering [12]. Instead, eigenvectors of a Laplacian matrix are
used to transform the low-dimensional points into a mapping that can be used by K-means. Typically, for an
unnormalized graph Laplacian matrix, the first k eigenvectors would indicate the number of clusters that will
be formed, and would hold the information about the k clusters. This is not true for the normalized graph
Laplacian matrix used in the Ng, Jordan, Weiss algorithm due to the presence of vertices/nodes that have
a low degree, and result in small-valued eigenvectors [107]. Hence, the rows of X are normalized to have
unit length to produce matrix Y , thus transforming the low-dimensional data representation into a spectral
mapping, or spectral embedding in a k-dimensional space.

Algorithm 3. ComputeAffinityMatrix(N)

Input : N: The set of noise points 1,2, . . . ,n
Output: A: The affinity matrix

1 Normalize the features of the noise points in N generated by the DBSCAN algorithm
2 Compute the σ for each point using the 3-NN Euclidean distances
3 Compute the similarity s(i, j) by computing the weight between each pair of points (i, j) using

Equation 5.6, where the parameter σ is the 3-NN distance from the current point

Algorithm 4. SpectralClustering(N)

Input : N: The set of noise points 1,2, . . . ,n
Output: A clustering of all points in N

1 Form the affinity matrix A ∈ Rnxn, where Ai j is defined in Equation 5.4
2 Compute the diagonal matrix D, where Dii is the sum of the elements in A’s ith row
3 Construct the normalized graph Laplacian matrix L = D−1/2AD−1/2

4 Find the k largest eigenvectors λ1,λ2, . . . ,λk of L, and form the matrix X = λ1λ2 . . .λk ∈ Rnxk

containing the eigenvectors as columns
5 Form the matrix Y by normalizing X’s rows to have unit length (Yij = Xij/(ΣjX2

ij)
1/2)

6 Treat each row of Y as a point in Rk, and cluster them into k clusters via K-means

K-means treats each row in Y as a point in the k-dimensional space Rk [109], and randomly chooses k initial
centroids. It repeatedly assigns each point to the cluster with the closest mean, and calculates the new mean
for the clusters until convergence, when all the points are finally clustered into k clusters. This way, we
overcome the drawback of the simple K-means algorithm that assumes the data distribution to be spherical.

We shall demonstrate the clustering algorithm using a toy example in Figure 5.2. The figure illustrates 150
points that lie in the X-Y plane in the interval [0,1]. The points can be grouped into three natural clusters.
First, the affinity matrix is computed using the 3-NN distances of the points, and is illustrated in Figure 5.3.

As we can see, the affinity matrix is block-diagonal, and contains three blocks, indicating that our example
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Figure 5.2: Clusters detected for a toy example consisting of 150 points in the [0,1] X-Y plane using spectral
clustering.

Figure 5.3: Affinity matrix for the toy example computed using the similarity function in Equation 5.6.

has three well-separated clusters, and already gives a general idea of how many clusters can be generated.
We then compute the normalized graph Laplacian matrix.

K-means requires the number of clusters k as input for clustering. It should be noted that k here is differ-
ent from the value of k in the k-NN distance calculation while computing σ in Equation 5.6. The value
of k can be provided a priori by the application expert if the application characteristics are already known.
Unfortunately, this information is not always available. Thus, we compute k automatically by computing
the eigenvalues and eigenvectors of the normalized graph Laplacian, and arranging the eigenvalues in de-
scending order, as illustrated in Figure 5.4. We then use the MATLAB function findchangepts() to find
points where the mean of the points on the curve changes significantly. These differences or changes in the
eigenvalues are called eigengaps.

The algorithm uses the concept of matrix perturbation theory, which states that the optimum number of
clusters k is the one that maximizes the eigengap, and therefore selects the first point that produces the largest
eigengap between the eigenvalues. In Figure 5.5, the points on the graph represent the top 20 eigenvalues
for our toy example, where the X-axis represents the number of eigenvalues, and the Y-axis represents
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the eigenvalues for the normalized graph Laplacian matrix. We see that there are small and insignificant
changes between the first three eigenvalues, and a large eigengap between the third and fourth eigenvalues
of the normalized graph Laplacian L, as shown by a red line. Thus, k is selected as 3, indicating that K-
means clusters the points into three clusters. The column matrix X = λ1λ2 . . .λk is then formed from the
three largest eigenvectors corresponding to the highest eigenvalues.

Figure 5.4: Eigenvalues computed for the graph
Laplacian matrix for the toy example.

Figure 5.5: A zoomed-in view of the top 20 eigen-
values for the toy example.

Sometimes, DBSCAN may not return a large number of noise points for spectral clustering to be effective.
As mentioned earlier, our primary condition for clustering is the presence of at least four points in a cluster
in order to proceed to the next steps of the tuning workflow. This is crucial because tuning clusters that
have only a few phases will result in a high switching overhead due to switching between every few phases.
Therefore, if spectral clustering results in clusters with fewer than four points, the interphase plugin simply
discards these clusters, and labels the data points as noise.

5.2 Targeted Search
Since we execute only a representative set of the application phases to perform clustering in the previous
step, we would have effectively evaluated only a subset of the system configurations. At this point, we
can already select near-optimal configurations for the clusters. However, we must do so with relatively low
confidence due to the absence of other configurations for comparison.

To overcome this problem, we implemented a targeted tuning step that restarts the application and tests
each phase in a cluster with a configuration that has never been executed for any phase in that cluster. A
configuration is selected for each phase using a random search strategy based on a normal distribution.
This is premised on the idea that certain configurations may be attractors or repellers. Attractors are those
configurations that result in a lower normalized energy consumption than a certain threshold, while repellers
result in higher normalized energy consumption for a phase in a particular cluster. We define the energy
threshold as the average of the maximum and minimum normalized energy consumption values among all
the phases in a particular cluster. It is computed as:

Ẽ =
Emax +Emin

2
(5.7)

We redefine attractor configurations as those that result in a normalized energy consumption lower than Ẽ,
and repellers as those resulting in a higher normalized energy consumption than Ẽ. A configuration may
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be an attractor for one phase, while being a repeller for another phase. This is due to the fact that a cluster
consists of different phases with similar characteristics, such as the computational intensity, but different
phase execution times.

For every cluster, the plugin assigns a weight for each configuration of tuning parameters from the cross-
product of all the tuning parameters based on its closeness to an attractor or a repeller. A configuration is
a set consisting of one combination of the values of the tuning parameters, as described in Section 3.1.2.2,
and is represented as cfgi = {tp1, tp2, . . . , tpn}. For the sake of brevity and understanding, we shall represent
a configuration simply as x.

For each cluster ci ∈C, where i = 1,2, . . . ,n, we define the weight for each configuration x as a function of
the influence of the attractors and repellers using:

W (x) =∑
i∈A

fattractori +∑
i∈R

frepelleri
(5.8)

where A is the set of all attractors and R is the set of all repellers evaluated for the phases of cluster ci.
Functions fattractor and frepeller characterize the influence of an attractive or repelling configuration on the
selection of the next combination of tuning parameters. They have the following constraints:

• fattractor and frepeller should be functions of the normalized energy and the distance to an attractor or
repeller configuration.

• The curve of the function fattractor for the attractors must gradually increase as we get closer to an
attractor configuration, and gradually decrease as we move away from this configuration.

• The curve of the function frepeller for the repellers must strongly decrease as we get closer to a repeller
configuration, and gradually increase as we move away from this configuration.

Thus, the influence of the attractors as well as repellers towards a configuration x can be modeled as the
sum of individual functions of the difference in their energy consumption and the energy threshold, and the
distance between x and an attractor or a repeller xi. Equation 5.8 can be expanded as:

W (x) =∑
i∈A

(Ẽ−Ei) fa(dist(x,xi))+∑
i∈R

(Ei− Ẽ) fr(dist(x,xi)) (5.9)

The first part of the expanded fattractor represents the difference between the energy threshold and the nor-
malized energy for an attractor configuration. For frepeller, the first part represents the difference between
the normalized energy for a repeller configuration and the energy threshold. The position of Ei is changed
for frepeller to keep the difference positive. The second part of fattractor and frepeller is defined by functions fa

and fr respectively, and are functions of the Euclidean distances between a configuration x and an attractor
or repeller configuration xi. Using fa and fr, we want to increase the possibility of picking a configuration
around an attractor, and decrease it when the distance between the configuration and the attractor increases.
Conversely, we want to decrease the chances of picking a configuration close to a repeller.

The behaviour of fa and fr is synonymous with the Gaussian bell curve. A Gaussian function, or a Gaussian,

forms a symmetric bell shape, and is of the form 1√
2πσ2 e−

(x−µ)2

2σ2 . The parameter 1√
2πσ2 controls the maximum

height of the curve, i.e., its peak. µ is the mean, and indicates the position of the center of the peak, and σ

is the standard deviation, and controls the width or spread of the bell curve. Smaller values for σ result in
sharper or taller peaks, while larger values result in smoother and wider curves. We set the value of σ to
2. If we replace (x− µ)2 with the squared Euclidean distance dist(x,xi)

2, the resulting function becomes
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1√
2πσ2 e−

dist(x,xi)
2

2σ2 , which represents the Gaussian as a function of the distance between any configuration x
and an attractor or repeller configuration xi. The Euclidean distance between configurations x and xi is the
same as computing the distance between two points in an n-dimensional space. In our case, n is the number
of tuning parameters, which is three. Thus, the distance can be computed as:

dist(x,xi) =
√

(tp1,x− tp1,xi
)2 +(tp2,x− tp2,xi

)2 +(tp3,x− tp3,xi
)2 (5.10)

Thus, fa is defined as:

fa ≡ G(dist(x,xi)) =
1√

2πσ2
e−

dist(x,xi)
2

2σ2 (5.11)

fr is defined as:
fr ≡ G(0)−G(dist(x,xi))≡−G(dist(x,xi)) (5.12)

We can observe that the Gaussian in Equation 5.11 is essentially the same Gaussian similarity function that
we used in spectral clustering in Equation 5.6. In Equation 5.11, we use the additional parameter 1√

2πσ2 to
control the height of the peaks. Thus, a Gaussian is defined for each data point, i.e., an attractor or repeller,
and summed up over the set of all attractors A and repellers R to compute the function W (x).

Implementation

Algorithms 5 and 6 list the aforementioned steps to perform targeted tuning of the application. First, the
plugin computes the cross-product of the entire search space of tuning parameters. Then, for every cluster
identified using DBSCAN and spectral clustering, it computes the energy threshold Ẽ using Equation 5.7.
It identifies the attractors as the configurations for which the normalized energy is less than Ẽ, and repellers
as the ones whose normalized energy is greater than Ẽ. The algorithm determines the weight W (x) for
every configuration x by computing the sum of fattractor and frepeller for all the attractors and repellers using
Equation 5.9.

In order to select the next configuration for a phase in a cluster, we first compute the overall probability mass
function (pmf) for every possible configuration in the search space using the following formula:

P(X = x) =
W (x)

∑
x∈CFG

W (x)
(5.13)

It is defined as the probability of selecting a certain configuration x for a phase of a cluster ci from the set of
all configurations CFG. The probabilities are all positive, i.e., P(x) >= 0, and sum up to 1. The resulting
probabilities for all the configurations are then stored for every phase in the cluster.

Finally, for each phase in the cluster, the plugin randomly selects a configuration to evaluate in an experiment
under the following conditions:

1. No phase will be executed with a configuration that was previously executed for any phase in the
cluster either in this tuning step or in the previous step.

2. A configuration should be chosen randomly based on the probability mass function.

3. The chosen configuration should be either close to the attractors or far from the repellers.

4. If a previously executed configuration is randomly selected, it is discarded and another configuration
is selected.
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Algorithm 5. ComputeDiscreteProbability(x, A, R, C)

Input : x: A configuration from the cross-product of the tuning parameters
A: The set of all attractors
R: The set of all repellers
C: The set of all clusters

Output: The probability of selecting configuration x for a phase in a cluster

1 Compute the cross-product of the tuning parameters
2 Compute the energy threshold Ẽ using the normalized energy consumption using Equation 5.7
3 Identify the attractors and repellers
4 foreach ci ∈C do
5 foreach configuration x ∈ CFG do
6 ComputeWeightForConfiguration(x, A, R, Ẽ)
7 end
8 Compute the overall probability mass function
9 foreach configuration x ∈ CFGci do

10 Set the probability P(X = x) to 0, as shown in Equation 5.14
11 end
12 Compute and store the final probability P(X = x) for all the phases of cluster ci

13 end

Algorithm 6. ComputeWeightForConfiguration(x, A, R, Ẽ)

Input : x: A configuration from the cross-product of the tuning parameters
A: The set of all attractors
R: The set of all repellers
Ẽ: The energy threshold

Output: The weight for configuration x

1 foreach a ∈ A do
2 Evaluate the function fattractora using Equations 5.9 and 5.11
3 end
4 foreach r ∈ R do
5 Evaluate the function frepellerr using Equations 5.9 and 5.12
6 end
7 Determine the weight W (x) for x by computing the sum of fattractor and frepeller for all the attractors

and repellers

To satisfy the first condition, we set the probability of configuration x to 0 if it was previously evaluated for
cluster ci, as shown below:

p(X = x,x ∈ CFGci) = 0 (5.14)

By doing so, we ensure that configurations that were already executed for the phases of a cluster will never
be picked for evaluation again. Hence, previously executed configurations now become valleys. We then
determine the final probabilities for all the configurations in the search space by automatically updating the
probabilities for the neighboring configurations to preserve the total sum of individual probabilities as 1.

To satisfy the second and third conditions, we create a hash of each configuration and an integer value asso-
ciated with it. Then, we use the Mersenne twister random number engine in conjunction with a true random
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number generator using the C++ random_device class to randomly select a hash value. The configuration
corresponding to the value is then selected for evaluation. To satisfy the fourth condition, we first select
a configuration in each experiment using the random number generator. The plugin then verifies that this
configuration has never been selected for any other phase in the current cluster. If the configuration has
already been selected, the random number generator repeatedly picks a configuration until it finds one that
has never been picked.

We demonstrate the selective tuning step for the toy example presented in Figure 5.2. After performing
clustering, we obtain three clusters. Let us assume that the phases in cluster ci were evaluated with nine
unique configurations, out of which five are attractors and four are repellers. The attractors and repellers are
listed below in the form {CPU_freq, uncore_freq}:

Attractors Repellers
a1 ={1.6, 1.6} r1 ={1.4, 1.7}
a2 ={2.1, 1.2} r2 ={1.4, 2.4}
a3 ={2.4, 2.3} r3 ={1.8, 3.0}
a4 ={2.1, 2.6} r4 ={1.9, 2.9}
a5 ={2.1, 2.8}

We can then compute the individual Gaussians for the attractors and repellers using Equations 5.11 and 5.12
respectively, and determine the weight for each configuration in the search space, using Equation 5.9. Fig-
ure 5.6 presents a 3D surface-contour plot illustrating the overall weights W (x) in Equation 5.8 by computing
fa over the set of attractors, and fr over the set of repellers. The X-axis represents the uncore frequency and
the Y-axis represents the CPU frequency in GHz. We can see three prominent peaks for the attractors a2, a3
and a4 since they are the strongest attractors, in the sense that they result in the lowest normalized energy
consumption. The peak for a4 is very close to a3, so we see one big peak in the figure. Similarly, the
repellers sit in the valleys, and we can see two prominent valleys, representing r1 and r2. Thus, we can say
that r1 and r2 result in the highest normalized energy consumption.

Figure 5.6: The overall weights for the attractors and repellers determined using Equation 5.9.

If we look at the weights for the repellers, they are negative because the function fr in Equation 5.12 for
the repellers results in a curve on the negative Y-axis. Hence, we translate W (x) to the positive Y-axis by
shifting the curve up by a constant. The final result for Equation 5.9 is illustrated in Figure 5.7. The attractor
configurations lie on the dark blue hills, and the repeller configurations lie in the dark red valleys.
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Figure 5.7: The final overall weights for the attractors and repellers obtained after translating the values of
fr to the positive Y-axis. The attractor configurations lie in the blue regions while the repeller
configurations lie in the red regions.

Figure 5.8: The discrete probability mass function obtained for all the configurations of the tuning parame-
ters.

We then compute the discrete pmf for all the phases of the cluster ci, as illustrated in Figure 5.8. As we
can see, the pmf retains the shape of the Gaussian function, and the discrete distribution behaves similarly
around an attractor or repeller. Thus, all attractors lie on the peaks and all repellers lie in the valleys of the
distribution. The configurations in the neighborhood of the attractors also have a high probability, while the
configurations surrounding the repellers have a low probability of being selected. We then set the probabili-
ties for the attractors and repellers to 0 to satisfy the condition that no phase in the cluster will be evaluated
with a previously executed configuration, and plot the discrete pmf in Figure 5.9. The figure displays the
final probabilities computed for all configurations for a cluster ci on the Z-axis.

For a better understanding, we also present a 3D surface-contour plot for the final probabilities in Fig-
ure 5.10. It should, however, be noted that P(X = x) is a discrete pmf, and hence, the connecting lines
in the surface plot do not indicate continuity. The color of the surface varies according to the heights (or
probabilities). Attractor configurations have higher probabilities, and are colored in blue. Repeller configu-
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Figure 5.9: The discrete probability mass function obtained under the condition that no phase in the cluster
will be evaluated with a previously executed configuration.

rations have much lower probabilities, and are colored in red. If we compare Figures 5.7 and 5.10, we see
that in Figure 5.10, the blue surfaces surrounding the attractors have expanded, and the red areas around the
repellers have receded to maintain the overall sum of the individual probabilities as 1 in response to setting
the probabilities of previously executed configurations to 0.

Figure 5.10: The discrete pmf illustrated as a surface-contour plot for better understanding. The lines be-
tween the points do not indicate continuity.

During this tuning step, the plugin evaluates the phase using the selected configuration, and requests for
the objective value and the hardware performance metrics in each experiment to compute the cluster-best
configurations, as well as the rts-specific best configurations for individual rts’s of each cluster.
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5.3 Dynamic Prediction of Phase Behavior

During DTA, we cluster only a subset of all the application phases, and consider them to be representative of
the application behaviour. During production runs, the phases that were already clustered during DTA will
be executed with the cluster-best configurations. To apply the appropriate configurations for the remaining
phases, we created a library to predict the cluster ids of all the phases that were not executed during DTA.
The cluster prediction library is written in C++, and is implemented as a Singleton class. A Fortran or
C/C++ application is first linked with the cluster prediction library, and the phase region is annotated with
a Score-P phase identifier, as described in Section 6.3. The annotation invokes the library, which calls the
predict_cluster() method to perform runtime cluster prediction for the current phase.

If the current phase was not evaluated during DTA, i.e., it is an unseen phase, the library predicts the cluster
id of the phase using one of the following three prediction mechanisms:

• Markov chain based predictor

• One-bit cluster predictor based on the 1-bit dynamic branch predictor

• Two-bit cluster predictor based on the 2-bit dynamic branch predictor

The one-bit cluster predictor works similar to the one-bit dynamic branch prediction scheme that predicts
that the current branch will be taken if it was taken previously. Similarly, the cluster prediction function
assigns the current phase to the cluster of the previous phase until the cluster is mispredicted. The two-bit
predictor works similar to the two-bit dynamic branch prediction scheme that predicts that the current branch
will be taken until it is mispredicted twice in row. Using a similar concept, the cluster prediction function
assigns the current phase to the cluster of the previous phase until the cluster is mispredicted twice in a row.
The predicted cluster number is returned by the library to the Tuning Model Manager (TMM), which returns
the corresponding cluster-best configuration from the tuning model.

Implementation

Algorithm 7 presents the proposed steps performed when the function predict_cluster() is called. When the
first phase is executed during production runs, the predict_cluster() is called for the first time, the cluster
prediction library is initialized, and an instance of the cluster prediction class is created. The library requests
for the cluster information from the TMM, which reads the tuning model generated at the end of DTA. Then,
a number of variables are initialized, namely, max_dta_phases, which is set to the number of phases executed
during DTA, and current_phase, which is a static variable representing the iteration number of the current
phase. The PAPI library is then initialized, an event set containing the list of PAPI hardware performance
counters from Table 5.1 is created, and measurement collection for the performance counters is started for
the phase.

The predict_cluster() function then calls the predict() method to check if the current phase belongs to the
subset of phases executed during DTA using the cluster information returned by the TMM. If the phase was
evaluated during DTA, the function simply returns the corresponding cluster number to the RRL. The Run-
time Management module requests for the corresponding cluster-best configuration for the current phase,
and the configuration is switched dynamically. For the rts’s of the significant regions called inside the cur-
rent phase, the configurations are dynamically switched to the rts-specific best configurations for the current
cluster.

Starting from the second phase, the call to predict_cluster() method determines whether the cluster pre-
diction library is initialized by checking if the is_initialized flag is set. Then, performance counter values
for the previous phase are read and aggregated for all the threads and across all the processes, and used

60



5.3 Dynamic Prediction of Phase Behavior

Algorithm 7. predict_cluster()

Output: The cluster id for the current phase

1 if !is_initialized then
2 Initialize the cluster prediction library and create an instance
3 Request for cluster information from the TMM
4 Set max_dta_phases to the number of phases executed during DTA
5 Set current_phase to the current phase’s iteration number
6 Initialize the PAPI library
7 Create the event set containing the PAPI hardware performance counters to collect for each phase
8 Start the PAPI counters
9 else

10 if current_phase 6= 1 then
11 Read PAPI counters for the previous phase
12 Aggregate PAPI counters for all threads and processes
13 Compute cluster features
14 end

// If current phase is seen during DTA
15 if current_phase ≤ max_dta_phases then
16 Look up the cluster_num for the current phase from the cluster information
17 return cluster_num
18 end

// If current phase is an unseen phase
19 if current_phase > max_dta_phases + 1 then
20 if cluster features 6∈ ranges of predicted cluster then
21 Correct the mispredicted cluster_num of the previous phase
22 else if cluster features 6∈ ranges of any known cluster then
23 Correct the cluster_num of the previous phase to noise
24 end
25 end
26 if current_phase > max_dta_phases then
27 Call the predict() function to predict the cluster id of the current phase using a predictor

based on either:

• Second-order Markov chain

• 1-bit branch prediction scheme, or

• 2-bit branch prediction scheme

28 return cluster_num
29 end
30 end
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to compute the cluster features for the previous phase. The values of the PAPI counters measured during
RAT differ slightly from the values returned by Score-P to PTF during DTA. Hence, the prediction library
computes the percentage change and adjusts this difference. The predict() method uses these features to
perform prediction only if the phase was not seen during DTA. Otherwise, the library simply returns the
cluster number of the current phase to the RRL.

For all the unseen phases, an additional step is performed to determine if there was a misprediction of the
cluster for the previous phase. The collected PAPI counters are compared against the ranges of the cluster
features of the predicted cluster to determine if there was a misprediction. If the values of the features fall
within the ranges for the predicted cluster, no action is taken. If the values fall within the ranges of another
cluster, the cluster number of the previous phase is corrected. If the values of the cluster features are not in
the ranges of any known cluster, the phase is assigned as a noise point.

The following sections describe the three predictors that are used to predict the cluster ids for the unseen
phases during production runs. Section 5.3.1 presents the Markov chain predictor, and Section 5.3.2 presents
the one-bit and two-bit cluster predictors.

5.3.1 Markov Chain Predictor

Markov chains are one of the well-known and prominent tools that are used to solve complex real-world
problems. Markov chains are used in multiple areas, such as predicting the prices of shares, describing
weather patterns, predicting the energy consumption, and purchasing patterns [112]. Markov chains are
named after the Russian mathematician Andrei Markov, who introduced the concept as a mathematical
system defined by the Markov property, which states that given the entire past or history of the occurred
events [113], the occurrence of the next event only depends on the current state, but not on the sequence of
preceding states [114]. A Markov chain is a stochastic mathematical system, and constitutes a collection
of random variables that transition from one state to another according to certain probabilistic rules, while
satisfying the Markov property. The term Markov chain is typically used for discrete finite state space, such
as discrete time. The discrete time Markov chain has a domain of a discrete set of states. Here, the system is
at a certain state at each step, and the state changes randomly between different steps [115], which may be
time steps or any other discrete measurements, such as integers or natural numbers. For continuous time, the
term Markov process is used. However, many previous works use these terms interchangeably. Since both
Markov chains and Markov processes capture the probability of moving to the next state based solely on the
current state in the system independently of all the other past states, they are characterized as "memoryless".

A discrete time Markov chain is a sequence of random variables X1,X2,X3, . . . ,Xn, where each random
variable can take one of the states from the set of all m states constituting the state space S = x1,x2,x3, . . . ,xm.
It can be defined using the probabilistic formula:

P(Xn = xn | X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1) = P(Xn = xn | Xn−1 = xn−1), x1,x2, . . . ,xn ∈ S (5.15)

Hence, the probability of predicting the state Xn only depends on the probability of Xn−1 that precedes it.
This satisfies the rule of conditional independence, which means that only the knowledge of the current state
is necessary to determine the probability of the next state. Since the future state depends solely on a single
previous state, this type of Markov chain is defined as a first-order Markov chain.

The conditional probability of the system that is in state xn at time step tn can be represented using a transi-
tion matrix consisting of probabilities derived from transitions, i.e., changes from one state to another. First,
a transition frequency matrix is generated by storing the frequency of transitions from a state in row i of the

62



5.3 Dynamic Prediction of Phase Behavior

matrix to a state in column j of the matrix, and is represented as Ni j. Thus, a random state selected from
the matrix has a higher likelihood that it is picked if its transitional frequency is higher relative to the other
states. The transition matrix is then generated using:

Pi j =
Ni j

m

∑
s=1

Nis

, i, j = 1,2, . . . ,m (5.16)

where Ni j is the number of transitions from state i to state j, and
m

∑
s=1

Nis is the total number of transitions

from state i in a row of the matrix to all the states in the columns of the matrix. Equation 5.16 essentially
converts the transition frequencies into probabilities, as represented below:

P =

Next state
1 2 . . . m



C
ur

re
nt

st
at

e 1 P11 P12 · · · P1m

2 P21 P22 · · · P2m
...

...
...

. . .
...

m Pm1 Pm2 · · · Pmm

(5.17)

If the Markov chain has m possible states, the transition matrix will be an mxm square matrix, such that an
entry Pi j is the probability of transitioning from state i to state j. Additionally, each element of the matrix is
non-negative, i.e., 0 ≤ Pi j ≤ 1. The transition matrix is a stochastic matrix, where the sum of the elements

in each row must add up to exactly 1, i.e.,
m

∑
j=1

Pi j = 1, i = 1,2, . . . ,m. Thus, each row in the transition matrix

represents a probability distribution for state i in a row of the matrix. If we model the system in our previous
example in Figure 5.2 using a Markov chain, we obtain 3 possible states, representing the three clusters
detected during DTA. Hence, the transition matrix would be a 3x3 matrix.

Sometimes, the next state depends not only on the current state, but also on a previous state, for example
when there are patterns while predicting a series. As opposed to first-order Markov chains, where a future
state is dependent only on the current state, higher-order Markov chains define that the next state or event
depends on a sequence of preceding states. This might be more advantageous in performing predictions
as compared to the more restrictive first-order Markov chains. Thus, we can employ more memory by
using a second-order Markov model to predict the cluster ids of the current phase during production runs.
Second-order Markov chain models can be represented using a lag-1 autoregressive (AR(1)) model in cases
where the autocorrelation of the original process is high [116], or via conditional transitional probabilities
of different states. In our implementation, we represent the second-order Markov chain using transitional
probabilities.

In a second-order Markov chain, the probability of the next state or event depends on the two immediately
preceding states. Thus, the probabilities in the transition matrix for a second-order Markov chain require
three subscripts, and are defined as:

Pxn−2xn−1xn = P(Xn = xn | Xn−1 = xn−1,Xn−2 = xn−2), x1,x2, . . . ,xn ∈ S (5.18)

To derive a second-order Markov chain, the transition frequency matrix is first generated by storing the
frequency of transitions from the combination of states i and j at time steps n−2 and n−1 respectively in a
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row of the matrix to state k in the column of the matrix, which is represented as Ni jk. Thus, if we randomly
sample from the matrix at time step n, there is a higher likelihood that state k is picked if the value of its
transitional frequency is higher relative to the other states. The transition matrix is then generated from the
transition frequencies as:

Pi jk =
Ni jk

m

∑
s=1

Ni js

, i, j,k = 1,2, . . . ,m (5.19)

where Ni jk is the number of transitions to state k given that the system state at time n−2 was i, and at n−1

was j.
m

∑
s=1

Ni js is the total number of transitions from row i j of the matrix to all the states in the columns of

the matrix. The second-order transition matrix is represented below:

P =

Next state
1 2 . . . m



11 P111 P112 · · · P11m

12 P121 P122 · · · P12m

1m P1m1 P1m2 · · · P1mm

21 P211 P212 · · · P21m

22 P221 P222 · · · P22m

2m P2m1 P2m2 · · · P2mm
...

...
...

. . .
...

mm Pmm1 Pmm2 · · · Pmmm

(5.20)

A state i is called absorbing if it is impossible to leave this state, and is caused when Piii = 1 and Pii j =
0, ∀ j ∈ m, i 6= j, meaning that all the other elements in the row are 0 [114].

In general, the probabilities for a p-order Markov chain can be estimated as:

P(Xn = xn | Xn−1 = xn−1,Xn−2 = xn−2, . . . ,Xn−p = xn−p), x1,x2, . . . ,xn ∈ S (5.21)

If we have m states, the transition matrix for a p-order Markov chain is defined by mpxm transition prob-
abilities from each of the mp possible preceding states to the m possible subsequent states. Thus, if we
have 3 states, a second-order Markov chain would have a transition matrix of the size 9x3, and a total of
27 transitions. It should also be noted that a general problem with higher-order Markov chains is that the
number of elements in the matrix rises steeply, thereby limiting their use.

The long-term behavior of a Markov chain can be described using the transition matrix, and an initial
probability distribution, represented as a probability vector that describes the initial or starting probability
of the states. A probability vector is a row vector of size 1xmk whose entries are non-negative and sum
up to 1 [114]. The row vector of state probabilities at time t = n+ 1 can be described using the matrix
multiplication of the initial probability vector Xn and the transition probability matrix P as shown below:

Xn+1 = XnP (5.22)
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For a first-order Markov chain, it can be represented as:

Xn+1 = [ P1(n) P2(n) · · · Pm(n) ]




P11 P12 · · · P1m

P21 P22 · · · P2m
...

...
. . .

...
Pm1 Pm2 · · · Pmm

where P1(n),P2(n), . . . ,Pm(n) represent the probabilities of states 1,2 . . . ,m at time n.

Summarizing the aforementioned definitions, we define a second-order Markov chain using the following
parameters:

• Set of states S : This consists of a finite set of all the values that a state could possibly take. The state
space can represent anything from letters, numbers, or weather conditions.

• Set of transitions and the associated transition probabilities: A transition refers to the change of the
system from xn−2xn−1 to another state xn at time step n, or staying in the same state between different
time steps. The probability associated with this state transition is called transition probability, and is
defined by Equation 5.19.

• Initial probability vector: The initial probability vector is a row matrix describing the initial probabil-
ity distribution for the set of all states of the Markov chain.

The algorithm of the proposed Markov chain predictor is described in the following six steps. To demon-
strate the algorithm, we refer to the example in Figure 5.2. Let us assume that only 60% of the total points
were selected for clustering using spectral clustering during DTA. To predict the clusters of the remain-
ing points at runtime, we construct a Markov chain to represent the system of known cluster ids using the
following steps:

1. Step 1: Define the states
In this step, the algorithm counts the number of clusters returned from the TMM, and computes the
number of states in the set S. If some phases were identified as noise during DTA, the total number
of states m is set to num_clusters + 1, since the Markov chain must model the system inclusive of the
noise state. If no noise points were detected during DTA, the number of states is set to num_clusters.

In our toy example, the number of clusters that were detected using spectral clustering is three. Thus,
we have a state space of three states, S = 1,2,3, representing the three cluster ids. If a phase lies in
cluster 1, the system is in state 1, and so on. A new point in the X-Y space may belong to any one of
the three clusters.

2. Step 2: Construct the transition frequency matrix
In this step, the algorithm constructs the transition frequency matrix of size m2xm by counting the
frequency or the number of transitions from xix j to xk. To compute this value, the algorithm iterates
over the set of phases, and stores the number of transitions from two consecutive cluster ids to the
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next cluster id, as shown below:

Transition frequency matrix =

Next state
1 2 3

C
ur

re
nt

st
at

e

11 3 1 5
12 5 3 2
13 5 5 3
21 5 4 5
22 5 0 1
23 1 3 4
31 1 4 3
32 4 3 5
33 3 4 1

3. Step 3: Construct the transition matrix
The transition probabilities are computed from the transition frequency matrix using Equation 5.19.
We normalize the rows of the transition frequency matrix by dividing each matrix element by the sum
of the transition frequencies in its row to obtain the transition matrix, as shown below:

Transition probability matrix P =

Next state
1 2 3

C
ur

re
nt

st
at

e

11 0.3333 0.1111 0.5556
12 0.5000 0.3000 0.2000
13 0.3846 0.3846 0.2308
21 0.3571 0.2857 0.3571
22 0.8333 0 0.1667
23 0.1250 0.3750 0.5000
31 0.1250 0.5000 0.3750
32 0.3333 0.2500 0.4167
33 0.3750 0.5000 0.1250

4. Step 4: Predict the cluster id of the current phase
Let us assume that the sequence of the clusters detected during DTA is 1,2,1,3, . . . ,1,3,1 for our
example, where the last two known states are xn−2 = 3 and xn−1 = 1. The initial probability vector is[
0 0 0 0 0 0 1 0 0

]
, since P31 = 1.

The probability distribution for the cluster ids is derived by multiplying the initial probability vector
with the transition probability matrix, and results in the vector

[
0.1250 0.5000 0.3750

]
. Thus, the

probability that the cluster id for the current phase is 2, given that the two immediately preceding
states are 1 and 3 respectively, is 0.5, and is defined as P(2|13). It is represented by the element P312
of the probability matrix.

We then use the Mersenne twister random number engine in conjunction with a true random number
generator using the C++ random_device class, similar to Section 6.2.2.3 to randomly pick the next
state based on the transition probabilities computed in the previous step. The cluster prediction library
returns the predicted cluster number to the RRL, which switches to the corresponding cluster-best
configuration for the phase.
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5.3 Dynamic Prediction of Phase Behavior

The transition matrix above can also be represented in the form of a weighted, directed graph, or a
state transition diagram as shown in Figure 5.11. The vertices are the states of the Markov chain, and
the edges define the conditional probabilities of going to a state k at time n from the other states. An
edge between two vertices exists only if the transition probability Pi jk between the vertices is greater
than zero. Thus, each edge defines the conditional probability P(Xn = k|Xn−1 = j,Xn−2 = i), which is
the probability of event k taking place given that j occurred at time step n−1 and i occurred at time
step n−2.

1 1

1 2

2 1

2 2

P(1|11) = 0.33

1 3

3 1

3 3

3 2
2 3

Figure 5.11: State transition diagram of a second-order Markov chain.

To construct the state transition diagram, we first express the Markov chain in the form of a first-order
Markov chain [117], such that the state space becomes S = {11,12,13,21,22,23,31,32,33}. An
edge from vertex i j to jk represents the conditional probability P(k| ji), defined by the element Pi jk in
the probability matrix. For example, the probability that the cluster number for the current phase is
2 after the occurrence of 1 at t = n− 1 and 3 at t = n− 2 is defined by the edge from 31 to 12, and
represented as P(2|13) = 0.5.

5. Step 5: Correct mispredictions
Initially, the predictor sets the total number states to num_clusters if no phase was assigned as noise
during DTA. To correct mispredictions, the predictor reassigns the predicted cluster of the previous
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phase if its cluster features fall within the ranges of another cluster. If the ranges of the features don’t
lie within the ranges of any known cluster, the cluster id of the previous phase is marked as noise.
If this is the first noise point in the system, a new state is created to represent noise points, and the
number of states is updated to num_clusters+1.

6. Step 6: Update the transition matrix
After correcting the mispredicted cluster of the previous phase, the transition frequency matrix and
the resulting transition matrix are updated to reflect the newest edge between two states. The cluster
number for the current phase is then randomly selected based on the new transitional probabilities,
and returned to RRL, which switches the configuration. Steps 2-6 are then repeated for the remaining
phases.

5.3.2 Predictors Based on Dynamic Branch Predictors

Dynamic branch prediction schemes were initially developed to overcome the limitations imposed by control
hazards resulting from instruction-level parallelism using pipelined and superscalar instructions. They arise
when the CPU cannot determine which instruction to execute next. The one-bit and two-bit cluster predictors
are based on the dynamic one-bit and two-bit branch strategies that utilize the execution history of the
executed conditional branch instructions in a program. The recent history of branches can be represented
using one or two history bits that define whether the conditional branch was taken or not taken, and are
stored in the branch history table.

Branch prediction schemes predict the result of a branch instruction using the behaviour of the branches at
runtime so that the processor can speculatively fetch (or prefetch) the instruction, and speculatively execute
the instruction. Speculative execution can involve eager execution or predictive execution. In eager execu-
tion, both paths of the conditional branch are executed. In predictive execution, the path of the conditional
branch is predicted, and the next instructions are executed along the predicted path until the actual result
is known. If a branch misprediction occurs, the instructions are flushed, and the processor re-fetches the
instruction, and the branch history table is updated.

One-bit Predictor

The one-bit predictor is based on the simplest dynamic branch prediction scheme, which stores a single
bit in the branch history table, indicating whether the branch was recently taken or not. If the bit is set,
i.e., the value is 1, the branch is predicted as taken, and if it is not set, i.e., the value is 0, the branch is
predicted as not taken. In the case of a misprediction, the bit state is reversed. Similarly, for each phase that
was not evaluated during DTA, the one-bit cluster predictor assigns the current phase to the cluster of the
previous phase until it is determined that the previous phase’s cluster was mispredicted. The misprediction
is confirmed at the beginning of the next phase after comparing the PAPI counters for the previous phase
with the ranges of the clusters in the tuning model.

The states of a one-bit predictor are shown in Figure 5.12. A single bit is used to represent two states, taken
(bit set, i.e., value is 1) and not taken (bit not set, i.e., value is 0). This predictor does not work well with
loops because it always mispredicts twice, i.e., for the first and the last iterations. For the first iteration, it
always predicts not taken, and for the last iteration, it always predicts taken when in reality, the loop exits.

The overall prediction accuracy of a one-bit branch predictor is not very high. Consider the example in
Figure 5.13. We want to predict the sequence T T T N T T T N T T T N, shown in the second column
using a one-bit counter, with the initial state set to not taken, represented as N. The predictor returns the
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not 
taken

0

taken
1

Predict
not taken

Predict 
taken

taken

not taken

Figure 5.12: State diagram of one-bit dynamic branch prediction.

same state until it is mispredicted, for example, in the first row. It is then updated to the actual outcome
shown in the second column. This new value is successively returned until it is mispredicted again. We get
six mispredictions, with 50% of the branches being correctly predicted, as shown in the third column.

Prediction Outcome Mispredicted?

N T Y

T T N

T T N

T N Y

N T Y

T T N

T T N

T N Y

N T Y

T T N

T T N

T N Y

Initial state: N

Figure 5.13: Example of a one-bit dynamic
branch predictor to predict the se-
quence of branches T T T N T T T
N T T T N.

Prediction Outcome Mispredicted?

1 2 Y

2 1 Y

1 1 N

1 1 N

1 3 Y

3 1 Y

1 2 Y

2 2 N

2 3 Y

3 2 Y

2 3 Y

3 3 N

Initial sequence: … 2 1 3 1 Initial state: 1

Figure 5.14: Analogous example of a one-bit
cluster predictor applied to predict
the sequence of clusters 2 1 1 1 3
1 2 2 3 2 3 3.

An analogous example in Figure 5.14 presents the output of the one-bit cluster predictor to predict the se-
quence of the clusters 2 1 1 1 3 1 2 2 3 2 3 3 for a group of unseen phases during RAT. The initial
sequence ...2 1 3 1 refers to the sequence of clusters detected during DTA for the last four phases. Here,
the initial state starts with 1. since it is the cluster id of the last seen phase during DTA. The predictor
predicts the same cluster id until it is mispredicted, for example, in the first row. It is then updated to the
actual outcome 2, as shown in the second column. This value is returned until it is mispredicted again. We
get eight mispredictions, as shown in the third column, with 33.33% of the clusters being correctly predicted.
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Two-bit Predictor

A two-bit dynamic branch prediction scheme uses two bits to represent four states, of which two correspond
to taken (values 11 and 10), and the other two correspond to not taken (values 00 and 01). The states of a
two-bit predictor are shown in Figure 5.15, where if the initial state is not taken with the value 00, the next
prediction would again be not taken. If the actual outcome is also not taken, it remains in the same state.
If the outcome is taken, the state transitions into the second not taken state with the value 01. The next
prediction would then naturally be not taken. If it is the correct prediction, the state transitions back into
the 00 state, and if it is a misprediction, the state transitions into the taken state, 11.

The advantage of this approach is that two mispredictions should occur successively before the prediction is
corrected. This predictor is more accurate than the one-bit branch predictor, and works well when branches
predominantly take one state. Thus, a few atypical branches that result in a temporary change in the direction
will not influence the prediction. It does however mispredict thrice for loops because it always mispredicts
the first and the second iterations as not taken, when they are in fact taken, and the last iteration as taken
when the loop actually exits.

The two-bit cluster predictor works on a similar technique: it predicts the value of the cluster id of the last
phase known to DTA until misprediction occurs twice in a row. The cluster id is then corrected to the right
value, which is predicted again for the next phases until two successive mispredictions occur.

Predict
taken

11

taken

not taken

taken

Predict
taken

10

Predict 
not taken

01

taken

not taken

taken

Predict
not taken

00

not taken

not taken

Figure 5.15: State diagram of two-bit dynamic branch prediction.

The overall prediction accuracy of a two-bit branch predictor is higher than the one-bit predictor. Consider
the example in Figure 5.16 that shows the predictions and the outcomes for the same sequence T T T N
T T T N T T T N as before. With the initial state set to not taken, represented as N, the predictor first
returns not taken until it is mispredicted twice successively in the second row. It is then corrected to the
actual outcome taken, as shown in the second column. This new value is predicted until it is successively
mispredicted twice. We get a total of five mispredictions, as shown in the third column, and a branch
prediction accuracy of 58.3%.

Figure 5.17 presents the output of the two-bit cluster predictor to predict the same sequence of clusters 2 1
1 1 3 1 2 2 3 2 3 3 as before. Here, the initial state starts with 1, since it is the cluster id of the last phase
of DTA, similar to the one-bit technique. The predictor predicts the same value until it is mispredicted twice
successively, as shown in the eighth row. It is then updated to the actual outcome 2. This value is returned
until it is again mispredicted twice in a row. We get seven mispredictions, as shown in the third column,
with a prediction accuracy of 41.7%.
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Prediction Outcome Mispredicted?

N T Y

N T Y

T T N

T N Y

T T N

T T N

T T N

T N Y

T T N

T T N

T T N

T N Y

Initial state: N

Figure 5.16: Example of a two-bit dynamic
branch predictor to predict the se-
quence of branches T T T N T T T
N T T T N.

Prediction Outcome Mispredicted?

1 2 Y

1 1 N

1 1 N

1 1 N

1 3 Y

1 1 N

1 2 Y

1 2 Y

2 3 Y

2 2 N

2 3 Y

2 3 Y

Initial sequence: … 2 1 3 1 Initial state: 1

Figure 5.17: Analogous example of a two-bit
cluster predictor applied to predict
the sequence of clusters 2 1 1 1 3
1 2 2 3 2 3 3.

5.4 Summary

In this chapter, we presented the core of our work and the extensions to the READEX tuning methodology
for inter-phase tuning. In order to characterize the behaviour of phases for clustering, we presented differ-
ent metrics, namely AVX calculation instructions, LLC misses, conditional branch instructions, L2 cache
misses, and their equivalent PAPI/perf performance counters. We also argued for our reasoning behind the
selection of these metrics. Compute intensity exposes the ALU saturation, or the amount of work done, and
is calculated as the ratio of AVX calculation instructions to the L3 cache misses. This is useful primarily
to determine the DVFS setting. To determine the UFS setting, we use the L2 cache misses, since they rep-
resent increased activity on the ring interconnect and the L3 cache, both of which are part of the uncore.
The conditional branch instructions represent a change in the control flow, indicating if a compute-intensive
region is followed by a memory-intensive region in the program.

We described the main concepts of clustering, and the implementation of DBSCAN and spectral cluster-
ing to group similarly behaving phases. DBSCAN requires two inputs, namely eps and minPts. eps is
determined automatically using the elbow method using the average 3-NN distances between each pair of
points. Spectral clustering also requires two inputs, namely the similarity matrix and the number of clusters.
The number of clusters is computed automatically using the top k eigenvectors corresponding to the top
k eigenvalues. Both algorithms cluster the phases using normalized features computed using the min-max
normalization method. The unclustered phases are regarded as noise points.

To evaluate as many configurations as possible, we developed a targeted tuning step that is based on attractor
and repeller configurations, depending on whether they result in an decrease or increase in the normalized
energy consumption. A weight is assigned to every configuration in the search space based on the Gaussian
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distribution, which is a function of the distance of the configuration to an attractor or a repeller. The proba-
bility of selecting a configuration increases as we get closer to an attractor, and decreases as we get closer to
a repeller. A configuration for each phase in a cluster is selected at random based on the discrete pmf under
the condition that the configuration has never been selected before for that cluster.

To save tuning time, only a representative subset of the entire set of application phases are run and clustered
during DTA. To predict the cluster number of unseen phases at runtime during RAT, we implemented a
cluster prediction library. We developed three cluster predictors, namely one-bit and two-bit predictors
inspired by the respective one-bit and two-bit dynamic branch predictors, and a second-order Markov chain
based predictor. For each unseen phase, the one-bit predictor predicts the previous cluster number until
it is mispredicted, and the two-bit predictor predicts the previous cluster number until it is mispredicted
twice successively. The Markov chain predictor computes the transition probability between states xi at
time step n− 1 and x j at time step n− 2 to state xk at time step n. Then, it predicts the cluster number for
the current phase using a random selection based on the transition probability matrix. The cluster predictors
return the predicted cluster id to the RRL, which switches the configuration of the phase and the rts’s to the
corresponding cluster-best and rts-best configurations.
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6
Integration into the Tuning Framework

This chapter details the integration of our core work and concepts presented in Chapter 5 for inter-phase
tuning into the overall READEX framework.

The tuning methodology comprises the DTA and RAT. As described in Section 4.1, PTF performs DTA,
and the RRL performs RAT using Score-P as the common instrumentation and measurement infrastructure.
Before DTA starts, a series of preparatory steps are performed by two tools, scorep-autofilter and readex-
dyn-detect. Section 6.1 presents scorep-autofilter, which filters fine-granular program regions, followed by
Section 6.1.4, which describes the steps performed by readex-dyn-detect to identify the significant regions
and compute the tuning potential to determine if the tuning effort will potentially result in savings. This
chapter also presents the interaction between the intraphase and interphase tuning plugins and the existing
READEX modules. Sections 6.2.1 and 6.2.2 respectively describe the four tuning steps performed by the
intraphase and the interphase plugins at design-time to determine the best configurations for the phase and
the rts’s.

In addition to the intraphase and interphase tuning plugins, this chapter describes in Section 6.1.2 the do-
main knowledge that can be specified by the application expert to enhance the tuning process by annotating
special regions or functions to expose application dynamism. Domain knowledge also enables the specifi-
cation of ATPs, as well as phase, region and input identifiers. The phase and region identifiers distinguish
rts’s with special characteristics.

At the end of the intraphase plugin, a single best configuration for the phase, and best configurations for the
rts’s are selected. At the end of the interphase plugin, a best configuration for each cluster of phases as well
as rts-specific best configurations for the rts’s of each cluster are determined. Sections 6.2.1.4 and 6.2.2.4
define the static savings for the phase and the rts’s and the dynamic savings for the rts’s for the intraphase
and interphase tuning plugins respectively.

Section 6.2.3 describes the last step of DTA, i.e., the tuning model generation to store the best configurations
for inter-phase and intra-phase tuning. Section 6.3 presents the interactions that take place between the
components of the RRL and the cluster prediction library during cluster prediction for an unseen phase.
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6.1 Pre-analysis

The pre-analysis step consists of a series of preparatory steps, including application instrumentation, over-
head analysis, region filtering, significant region detection, and tuning potential analysis.

6.1.1 Automatic Reduction of Instrumentation Overhead

In the first step, the application is instrumented with Score-P. Instrumentation enables the measurement of
performance metrics for various program regions by inserting hooks at the entry and exit points of the re-
gions. Score-P can perform automatic or manual instrumentation for various region types, for example, for
all application functions, user-annotated code regions, MPI library calls, and OpenMP parallel regions. For
a user that does not have a thorough knowledge of the application code, automatic instrumentation may be
preferable with practically no code modification. However, this approach may lead to high overhead due
to the instrumentation of frequently executed fine-granular regions, meaning that the execution time per
instance is quite low, and thus has an undesirable impact on measurement. Moreover, recording the mea-
surements for such fine-granular regions requires significant space, and analysis takes longer with relatively
little to no improvement in quality. For example, in C++ applications, every call to the Standard Template
Library (STL) is instrumented, causing a high overhead due to the enter and exit hooks being called hundreds
or thousands of times for these functions.

To reduce this overhead, Score-P can be configured with a list of regions that should be omitted from mea-
surement. This, however, does not mean that the regions won’t be instrumented, but rather that the region
enter and exit hooks will be present, but no measurements will be taken. If users have a good knowledge of
the application, they may be able to manually create a filter file containing the regions to omit from being
measured. The tool scorep-autofilter provides an easier and automatic way to do this, and frees the user from
manually determining the regions to insert into the filter file. To use the tool, the application is first instru-
mented using Score-P, which records measurements for each program region. Although Score-P provides
both tracing and profiling features, we only use the profiling option in our methodology. Score-P writes
the profile data in the CUBE4 format into a cubex file containing a tree of nodes, where each node repre-
sents an rts’s unique call-path, and profiling data for each call-path, such as the number of visits, execution
time or hardware events. scorep-autofilter is then invoked by using the command scorep-autofilter -t
<threshold> profile.cubex to first read the profile stored in profile.cubex, and generate a list of frequently
executed fine-granular regions.

The granularity of a region is defined as the average execution time of its instances:

granularityreg =
treg
incl

instances_excl
(6.1)

where tregion
incl is the inclusive execution time for the exclusive instances of region reg without counting the

instances of nested regions. The tool then filters out all the regions whose granularity is lower than the
threshold value in seconds, specified using the -t parameter, and adds the names of the functions to the
Score-P filter file. The filter file can be specified via the environment variable SCOREP_FILTERING_FILE at
runtime, or via the --instrument-filter flag at compile-time. Score-P filter files have a begin and an end
section, followed by the region names that should be excluded from event recording, as shown below:

74



6.1 Pre-analysis

SCOREP_REGION_NAMES_BEGIN
EXCLUDE
add*
binvcrhs*
binvrhs*
copy_x_face*
copy_y_face*
. . .
SCOREP_REGION_NAMES_END

After this step, only the unfiltered regions are candidates for significant region selection in the next step.

6.1.2 Domain Knowledge Specification

The READEX methodology developed the domain knowledge specification interface in order to enhance
the tuning process by enabling the application expert to provide user-level specifications to expose domain-
level knowledge. The domain knowledge allows the identification of new system scenarios through the
information characterizing application dynamism and the additional parameters used for tuning. Domain
knowledge may include the following three aspects:

1. Specification of application structure using phase and user region annotations

2. Specification of application characteristics using phase and region identifiers

3. Specification of Application Tuning Parameters (ATPs)

Each of these aspects of the domain knowledge specification is integrated into the DTA workflow at dif-
ferent stages. In addition to the automatic compiler-based instrumentation, instrumentation can be done
manually. Manual instrumentation augments automatic instrumentation by enabling the use of region or
phase annotations, which can improve the results of tuning by recording additional user-defined metrics.
Immediately following the filtering using scorep-autofilter, the application expert specifies the application
structure, which includes annotating the phase region and additional program regions that should be con-
sidered for tuning. For our approach, it is mandatory that the phase region be instrumented. All other
annotations are purely to refine the tuning model by differentiating more rts’s. The process of specifying the
application structure is described in more detail in Section 6.1.3.

The presence of application dynamism is then detected with the help of a tool called readex-dyn-detect.
The tuning process is either stopped in case of no available dynamism, or the application expert may iden-
tify additional application characteristics using region identifiers (see Section 6.1.4), phase identifiers (see
Section 6.3), and input identifiers (see Section 6.2.1) to support DTA in generating a more sophisticated
tuning model. As mentioned in Section 3.3.3, the tuning methodology also targets ATPs by enabling users
to specify parts of the code that can used as tuning parameters, where different implementations of the same
algorithm have varying impact on performance and energy. Section 6.2.1.2 describes the ATP specification
in more detail.

We shall describe the domain knowledge specification with the help of a single use-case, the MG (MultiGrid)
benchmark from the NAS parallel benchmark suite [118], as shown in Listing 6.1. MG uses a V-cycle
algorithm to solve a discrete Poisson equation on a 3D grid. After performing an initial residual calculation,
each iteration of the time loop of MG executes an entire V-cycle of iterative relaxation and smoothing steps
starting from the finest grid, or the highest grid level. First, the result on the current grid level k is projected to
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the next coarser grid level k−1 until the coarsest level is reached, and an approximate solution is computed.
The result is then interpolated from the coarser grid levels to the finer grid until the finest grid, where the
residual is calculated and a smoother is applied to correct the result. Several V-cycles are executed to solve
the equation.

6.1.3 Detection of Significant Regions

After performing the filtering step, the remaining regions are coarse-granular enough to be candidates for
tuning. The second step of pre-analysis uses the tool readex-dyn-detect to determine the set of significant
regions Rsig for which DTA will determine best configurations that the RRL will dynamically switch during
production runs. Significant regions must be:

1. Coarse enough so that the switching overhead is negligible.

2. Non-nested so that the effect of dynamic tuning is predictable.

3. Coarse-granular enough so as to constitute a major portion of the overall execution time.

Our tuning approach targets applications that have a phase region, or the central progress loop that iteratively
performs some computation. Although this loop can be implemented by a standard loop construct of the
programming language, automatic detection of the phase region is difficult without analyzing the application
source code. Thus, application experts can help provide this information. Score-P offers an Online Access
phase region annotation to enable external tools like PTF to configure Score-P dynamically when a phase is
started. The phase region and user regions are defined using Score-P macros to enclose arbitrary code, and
thus can be handled by the tool suite like any other program region.

First, the region handles are defined using the macro SCOREP_USER_REGION_DEFINE in line 3 of Listing 6.1.
Then, the start and end of the phase region are enclosed in the macros SCOREP_USER_OA_PHASE_BEGIN and
SCOREP_USER_OA_PHASE_END to annotate the body of the iteration loop of MG as the phase region, as shown
in lines 7 and 11. The third parameter in the region and phase definitions is "0", which is Score-P specific,
and refers to a region without any specific type. The start and end of the phase region warrant a barrier
synchronization of all the MPI processes.

After annotating the phase region, the application is run again. The user then invokes readex-dyn-detect
using the command readex-dyn-detect -t <granularity_threshold> -p <phase_region_name> pro-
file.cubex, and specifies a threshold for the minimum granularity of the execution time for a region to be
considered significant. The significant region detection algorithm then constructs the transitive closure of
the call graph of the application using an adjacency matrix, and selects the leaf node of each candidate re-
gion if its execution time is more than the summed up exclusive times of its parents. Otherwise, it selects the
parents because they cover more of the execution time, ultimately ending with a list of significant regions.

6.1.4 Analyze Tuning Potential

After detecting the application’s significant regions, readex-dyn-detect computes the tuning potential by
quantifying the application dynamism using the variation in the execution time and compute intensity to
detect intra- and inter-phase dynamism. Variation in the execution time between instances of significant
regions in an application during its execution is an indication of different resource requirements. The com-
putational intensity models the behaviour of an application based on the load imposed by it on the CPU and
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Listing 6.1: Domain knowledge specification for the application structure (phase region and user region),
and application characteristics (region identifier) for the MG benchmark.

1 #include "scorep/SCOREP_User.inc"
2 ...
3 SCOREP_USER_REGION_DEFINE(R1)
4

5 do it = 1, max_iter
6 ! Phase region begins
7 SCOREP_USER_OA_PHASE_BEGIN(R1,"VCycle",0)
8 ! Execute a V-Cycle
9 call mg3P(...)

10 ...
11 SCOREP_USER_OA_PHASE_END(R1)
12 ! Phase region ends
13 enddo
14 ...
15

16 subroutine mg3P(...)
17 do k = max_level, min_level+1
18 ! Restrict residual from the fine grid to the coarser grid
19 call rprj3(...)
20 enddo
21

22 ! Compute an approximate solution on the coarsest grid
23 call psinv(...)
24 do k = min_level+1, max_level-1
25 ! Interpolate the result from coarser to finer grid
26 call interpolate(... , k)
27 ! Compute the residual for grid level k
28 call resid(...)
29 ! Apply the smoother to correct the error
30 call psinv(...)
31 enddo
32 ...
33 end subroutine mg3P
34

35 ! Interpolate to grid level k
36 subroutine interpolate(... , k)
37 SCOREP_USER_REGION_DEFINE(R2)
38 SCOREP_USER_PARAMETER_DEFINE(intParam)
39 ! User region begins
40 SCOREP_USER_REGION_BEGIN(R2,"interp",0)
41 ! Region identifier for grid level k
42 SCOREP_USER_PARAMETER_INT64(intParam,"level",k)
43 ...
44 SCOREP_USER_REGION_END(R2)
45 ! User region ends
46 end subroutine interpolate
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6 Integration into the Tuning Framework

Listing 6.2: Exported environment variables to enable dynamism detection using readex-dyn-detect

export SCOREP_PROFILING_FORMAT=cube_tuple
export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_L3_TCM

the memory, and is calculated using the following formula, which is analogous to the operational intensity
used in the roofline model [119].

Compute Intensity =
Total number of instructions executed

Total number of L3 cache misses
(6.2)

The more common definition of compute intensity is based on the floating-point instructions. As these
cannot be counted on Intel Haswell, we use the above definition instead. However, it should be noted that
this measure of transferred data is very coarse since it does not count all the writes to memory, for example
during hardware prefetching.
Computational intensity can directly dictate the effect of the hardware tuning parameters: core frequency
and uncore frequency. When the application has a low compute intensity, it may indicate that a memory-
intensive region is being executed due to increased L3 cache misses, and would therefore benefit from a
higher uncore frequency setting. On the other hand, for a high compute intensity value, it would be desirable
to increase the frequency of the CPU cores.
To identify the dynamism, statistical information is requested from Score-P via the cube-tuple profiling
format by exporting the environment variable SCOREP_PROFILING_FORMAT, as shown in line 1 of Listing 6.2.
This extended cube format provides the number of samples, minimum, maximum, average, and deviation of
the metrics for the program regions. Additionally, PAPI metrics, as shown in line 2 are requested to derive
the compute intensity.
The dynamism detected by readex-dyn-detect can be divided into intra-phase dynamism and inter-phase
dynamism. The tool analyzes the variation in the time for each significant region by computing the deviation
deviationreg

r relative to its mean execution time in percentage in Equation 6.3, and relative to the mean
execution time of the phase, defined by deviationreg

p in Equation 6.4. It also computes the variation in the
minimum and maximum execution times for the phase region in Equation 6.5.

deviationreg
r =

dev_treg
incl

mean_treg
incl
∗100 (6.3)

deviationreg
p =

dev_treg
incl

mean_t phase
incl

∗100 (6.4)

deviationphase
p =

dev_t phase
incl

mean_t phase
incl

∗100 (6.5)

The tool reports intra-phase dynamism if:
• The region’s time variations deviationreg

r and deviationreg
p are larger than a threshold vt , and the mini-

mal weight of the execution time of a significant region with respect to the phase region according to
Equation 6.6 is larger than a threshold vw.

weight =
treg
incl

t phase
incl

∗100 (6.6)
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• The compute intensity varies across the significant regions, and is larger than a threshold vi.

The tool reports inter-phase dynamism if:

• The variation deviationphase
p in the minimum and maximum execution time for the phase region is

larger than a threshold vt .

Thus, intra-phase dynamism arises from the variations in the execution time and compute intensity between
rts’s of significant regions when each rts exhibits different characteristics, resulting in the selection of differ-
ent optimum configurations. Inter-phase dynamism arises from variations in the execution time between in-
dividual phases of the phase region, thus requiring different configurations for individual phases. Listing 6.3
presents an example of the summary of significant regions and the dynamism identified by readex-dyn-detect
for MG.

The printed output for MG can be divided into three parts. First, lines 3 to 6 list the names of the significant
regions detected by readex-dyn-detect. Lines 10 to 19 show the profile output for the detected significant
regions and the phase region. The columns under the Significant region information section present the
minimum and maximum execution times, the time deviation in percentage w.r.t. the mean execution time,
the absolute value of compute intensity, and the execution time relative to the phase time respectively for
each significant region.

The Phase information section prints the statistics for the phase region, and shows the minimum, maximum
and mean execution time, the deviation in the execution w.r.t. the mean execution time, as well as the
variation between the minimum and maximum execution times w.r.t. the mean execution time of the phase.
Finally, the tool prints the summary of the dynamism analysis by indicating the presence of inter-phase
dynamism due to variation in the execution time of the phases, and the presence of intra-phase dynamism
for the significant regions due to the variation in the execution time and compute intensity.

After analyzing the tuning potential, the tool outputs the list of significant regions along with the dynamism
information into a configuration file in the xml format. The user can then manually annotate the significant
regions, which are usually program regions, including subroutines, loops, and structured blocks. Alter-
natively, the application expert might identify additional regions by combining several calls to different
fine-granular functions, or identify certain parts of an algorithm that would otherwise not be a target of tun-
ing because they are not represented by a standard region type, but may have interesting characteristics or
tuning potential. Listing 6.1 shows the definition for a user region for the subroutine interpolate in lines 40
and 44, where the start and end of the user region are marked with the macros SCOREP_USER_REGION_BEGIN
and SCOREP_USER_REGION_END. The configuration file is then forwarded to PTF, where it is deserialized, and
used for DTA.

In addition to the region id and the call-path, which are sent to PTF from Score-P by default, the application
expert may specify additional region and phase identifiers to distinguish rts’s with special characteristics.
These identifiers are specified using Score-P user parameter macros for parameter-based profiling, and can
be of type integer or string, which are defined using SCOREP_USER_PARAMETER_INT64(handle,name,value)
and SCOREP_USER_PARAMETER_STRING(handle,name,value) respectively to associate the parameter name
with the value.

In Listing 6.1, the size of the grid processed in the call to interpolate(. . . , k) gets bigger when going from
the minimum grid level (coarsest) to the maximum (finest). At a certain grid level, the computation switches
from being compute-bound to memory-bound. Without region identifiers, the call-path of interpolate(. . . ,
k) is simply /VCycle/mg3P/interp, for which DTA picks one best configuration. We could, however en-
hance the tuning model by enabling DTA to determine special system configurations for compute- and
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Listing 6.3: Summary of the application pre-analysis for MG. Significant intra-phase dynamism due to
variation in the execution time and compute intensity was found.

1 ...
2 Significant regions are:
3 interp
4 psinv
5 resid
6 rprj3
7

8 Significant region information
9 ==============================

10 Region name Min(t) Max(t) Time Time Dev.(%Reg) Ops/L3miss Weight(%Phase)
11 rprj3 0.003 0.028 3.433 18.0 171 17
12 psinv 0.003 0.048 5.263 151.6 145 26
13 interp 0.002 0.022 2.573 129.7 62 13
14 resid 0.003 0.054 5.366 152.3 87 26
15

16 Phase information
17 =================
18 Min Max Mean Time Dev.(% Phase) Dyn.(% Phase)
19 0.283916 0.299874 0.291602 20.4121 1.62227 5.47265
20

21 threshold time variation (percent of mean region time): 10.000000
22 threshold compute intensity deviation (#ops/L3 miss): 10.000000
23 threshold region importance (percent of phase exec. time): 10.000000
24

25 SUMMARY:
26 ========
27 No inter-phase dynamism
28

29 Intra-phase dynamism due to time variation(%) of the following important
30 significant regions
31 rprj3
32 psinv
33 interp
34 resid
35 Intra-phase dynamism due to variation in the compute intensity of the following
36 important significant regions
37 rprj3
38 psinv
39 interp
40 resid
41 Writing into the configuration file...

memory-bound rts’s by specifying a region identifier for the grid level inside the interpolate region. First,
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the identifier is defined in line 38, and then associated with the value of the grid level in line 42. Thus,
the region interpolate would now have multiple rts’s representing different grid levels, for example, /VCy-
cle/mg3P/interp/level=2, /VCycle/mg3P/interp/level=3,. . . .

We can use a similar strategy to specify phase identifiers. Phase identifiers identify phases with different
characteristics or behavior, and can be used in the tuning model to distinguish rts’s based on the variation
in the phase behavior. Phases that have similar characteristics can be grouped together into a single cluster
using phase identifiers, such as the degree of sparsity of the matrix or the arithmetic intensity of the phase
region. This enables the prediction or selection of different best configurations for different clusters of
phases instead of picking a single static-best configuration for all the phases. Phase identifiers are provided
in the same way as region identifiers via Score-P user parameters, but are placed immediately after the
SCOREP_USER_OA_PHASE_BEGIN macro, and hence are attached to the phase region. Section 6.3 presents
phase identifiers in more detail. Phase identifiers have a high impact in selecting the best configurations,
and are typically provided by the application expert.

6.2 Design-Time Analysis

The output of readex-dyn-detect is stored in a configuration file, which consists of tags through which the
user can provide specifications for:

1. Tuning parameters: The intraphase and interphase tuning plugins support three tuning parameters,
namely CPU frequency, uncore frequency and the number of OpenMP threads. The settings for the
tuning parameters are specified via the ranges (minimum, maximum, step size, and default value) in
MHz for the CPU frequency and uncore frequency, and the lower bound and the step size for OpenMP
threads.

2. Objective function: Tuning objectives functions include energy, execution time, CPU energy, EDP,
ED2P, and TCO. TCO determines the overall costs of a job as the sum of the energy costs plus the
execution time dependent fraction of the HPC system costs, i.e., hardware and software investment
as well as maintenance costs and personnel. Each of these objectives also has a normalized version
to tune applications that have varying amounts of computation in the phase region, but no varying
characteristics, indicating that the changing amounts of work is of the same kind. The objective
values are normalized by a metric characterizing the computational load, such as the number of AVX
instructions. Multiple objectives functions may also be specified in the configuration file. However,
the application is tuned only w.r.t. the first objective, and measurements are collected for the rest.

3. Energy metrics: These include the energy plugin name and the associated metric names. The energy
plugin provides energy measurements to Score-P, which transfers them to PTF via the OA interface.

4. Search algorithm: The search algorithm can be either exhaustive, random or individual search strategy.
Each of these search algorithms generates the search space differently. The exhaustive search creates
the cross-product of all the selected tuning parameters. The advantage is that every combination of
the tuning parameters can be explored. However, the search space may explode due to the number of
possible configurations. The alternatives are the individual and random search strategies. Individual
search explores the tuning parameters individually by assuming independence. First, it finds the best
setting for the first tuning parameter, sets this value, and then tunes the next tuning parameter until
the best settings for all the parameters are determined. The user can also specify the number of best
values of the already evaluated tuning parameter to keep for the next search step using the keep tag [8].
The random strategy explores a set number of configurations using the samples tag by selecting a
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Table 6.1: Identifiers for the significant regions and rts’s during DTA.

Name Description Identifiers

Regions (user regions and The phase region and all significant Region id, region name, file
phase region) regions found at design-time name, line number

Runtime situations Rts’s of the significant regions, Region name, call-path, user
including user parameters found at parameter name and value (if
design-time user parameters are defined)

configuration randomly from the search space using either a uniform probability distribution or a user-
specified distribution. It should be noted that the interphase plugin only uses the random strategy to
tune the application, and is described in Section 6.2.2.

DTA is then performed by PTF, which consists of a frontend and a hierarchy of analysis agents, in con-
junction with Score-P. PTF was extended with two new tuning plugins, i.e., the intraphase plugin and the
interphase plugin to perform intra-phase and inter-phase tuning respectively. The plugins perform DVFS,
UFS and DCT to determine the best configurations for the rts’s of the significant regions. The interphase
plugin goes beyond the intraphase plugin by leveraging the similarities in the characteristics of phases at
application runtime.

To perform DTA, the frontend first executes a single phase and requests the region and rts definitions from
Score-P. To enable call-path profiling measurements, we extended the OA interface of Score-P on the moni-
toring side to transfer profiling data for the rts’s. Thus, at every phase enter event, Score-P collects profiling
data for the phase and the rts’s of the instrumented regions that are called within the phase. At the end of
the iteration, i.e., phase exit event, three types of data: flat profile data for regions, call-path profile data for
rts’s, and the requested metrics are transferred from Score-P to PTF over the OA interface. The flat profile
data consists of aggregated measurements and counters for the requested metrics for a significant region
whose identifiers are the region name, region id, file in which it is called, and the file line number of the
region call site. The call-path data for the rts’s consists of the measurements and counters for the requested
metrics for individual rts’s of the significant regions, and are identified using the calling region name, region
id, scorep id, parent scorep id, and user parameter name and value if user parameters are defined. The region
id, scorep id and parent scorep ids are the handles that Score-P generates for the regions and the rts’s during
the application execution. Table 6.1 summarizes the identifiers generated for the significant regions and the
rts’s during DTA.

After storing the region information, the frontend marks the rts’s of significant regions as valid rts’s. Only
these rts’s will then be tuned by the plugins. Partial Calling Context Trees (CCT) 1 are generated at each
analysis agent for the MPI processes controlled by it. The partial trees are then gathered in the PTF frontend
to create the complete tree that is representative of the application structure as seen by Score-P. We created
a new RTS Database to store the rts’s received from the OA interface. The phase region represents the root
node of the CCT, and its children represent the call sites of the significant regions, i.e., rts’s of the significant
regions. Each rts is linked to the calling region using the identifiers region id and region name. The user
parameter (represented as parameter_name=value) defined for a region is represented using a new rts. Thus,
in case of the example in Listing 6.1, a separate node representing an rts of interpolate is created for each
grid level.

1A context-sensitive version of a call graph
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The frontend then calls the interphase plugin if inter-phase dynamism was detected, or the intraphase plugin
otherwise. Both plugins perform four tuning steps, in which they request measurements and/or perform
tuning actions. The following steps describe the general sequence of actions performed by the two tuning
plugins.

1. Initialization: First, the plugins read the ranges (minimum, maximum and the step size) of the tuning
parameters, the search algorithm, and the objective to tune the application for, from the configuration
file. If no search strategy is specified, the intraphase plugin uses the individual search. The interphase
plugin only uses the random strategy. If no objective is specified, the default objective function is set
to energy, which is the energy consumption of the entire node. The intraphase plugin additionally
reads the input identifiers from the input specification file as described in Section 6.2.1, and the ATPs
from the ATP specification file as described in Section 6.2.1.2.

2. Experiment creation: The plugins use the search algorithm to create the search space, and then cre-
ate individual experiments to test the effects of the system configuration on the application execution,
where each experiment is the execution of a single phase. PTF configures an analysis strategy only for
the valid rts’s, which is executed by the analysis agents after performing the experiments. Every anal-
ysis strategy processes different measurements. For example, the interphase plugin requests for the
InterphaseProps strategy that processes both PAPI hardware metrics and the requested objectives.

3. Experiment execution: In each experiment, PTF sends two types of requests to Score-P via the OA
interface:

• Tuning request: PTF generates tuning requests for each rts and the phase to configure the tuning
parameters in order to measure the effect of the new configuration on the tuning objective. The
tuning request is read by the OA interface in Score-P, and sent to the RRL, which applies the
new configuration.

The rts tuning request consists of four inputs: the region id where the new configuration should
be applied, the list of additional user parameters, the list of tuning parameters and their values,
and the ranks for which the configuration should be applied. Listing 6.4 shows an rts tuning
request sent from PTF for the interpolate region with a user-defined parameter for the grid level
for the MG code example in Listing 6.1. The request encodes a switch of the current core
frequency to 2.0 GHz, the uncore frequency to 2.5 GHz, and the number of threads to 1 for the
rts whose call-path is /VCycle/mg3P/interp/level=3. The route to this rts is determined by the
rts call stack, which consists of four elements, starting from the phase region VCycle, whose
Score-P region id is 39, followed by mg3P, whose region id is 30, interp with region id 35, and
finally the user parameter with region id 36.

Listing 6.4: Rts tuning request sent from PTF to Score-P.

RTSTUNINGREQUESTS((39,INTPARAMS=(),UINTPARAMS=(),STRINGPARAMS=()),(30,INTPARAMS= c
(),UINTPARAMS=(),STRINGPARAMS=()),(35,INTPARAMS=(),UINTPARAMS=(),STRINGPARAMS=()), c
(36,INTPARAMS=(”level”=3),UINTPARAMS=(),STRINGPARAMS=()))= c
("NUMTHREADS"=1,"CPU_FREQ"=2000,"UNCORE_FREQ"=2500)

↪→

↪→

↪→

• Measurement requests: The plugin sends measurement requests to the analysis agents for sev-
eral global metrics, such as execution time, PAPI counters or energy consumption. Listing 6.5
shows an example of a measurement request sent from PTF to Score-P through the OA interface.
The request triggers Score-P to collect node energy, defined as x86_energy/BLADE/E from the
x86_energy_sync_plugin [120]:
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Listing 6.5: Measurement request sent from PTF to Score-P.

REQUEST[0] GLOBAL METRIC PLUGIN "x86_energy_sync_plugin" "x86_energy/BLADE/E"

The OA interface of Score-P parses the metric request, and returns the measurements to PTF
after executing the tuning request. Each analysis agent stores the measurements returned by
Score-P for those MPI processes controlled by it. The measurements for the phase and the
objective values for the rts’s are then stored in the Performance Database, and accessed in the
form of properties by the analysis strategies to evaluate the objective functions. The objective
value is then propagated to the tuning plugin. The Performance Database also supports generic
energy counters for core and node energy to enable easier porting to other systems.

If energy is selected as the objective, Score-P returns the consumed energy via a designated
single process on each node, since energy is a global metric. The plugins then compute the node
energy consumption by aggregating the values returned by the designated processes across all
the nodes for an MPI application.

4. Process results: When there are no more experiments left to be executed, the plugins determine the
best setting of the tuning parameters for the selected objective, and compute the savings incurred as a
result of DTA.

Both plugins perform steps 1-4 in the first tuning step. At the end of a tuning step, PTF restarts the applica-
tion, and repeats steps 2-4 during each subsequent tuning step. Sections 6.2.1 and 6.2.2 describe each tuning
step performed by the intraphase plugin and interphase plugin respectively in more detail.

6.2.1 Tuning Intra-Phase Dynamism

PTF tunes the intra-phase dynamism by executing the intraphase plugin when there are no changes in the
dynamic characteristics across the sequence of phases. The intraphase plugin executes four tuning steps:
default execution, ATP tuning, system parameters tuning, and verification, as illustrated in Figure 6.1. First,
the plugin executes a single phase of the application using the default settings of the tuning parameters. Next,
it determines the optimal configuration of the ATPs, and then the optimal configurations of the system-level
tuning parameters for the phase and the rts’s. Finally, the plugin checks the variations in the tuning results,
and computes the energy savings. The tuning steps are described in detail in Sections 6.2.1.1- 6.2.1.4.

The plugin implements novel features, such as tuning model merging for different input sets, and tuning
of ATPs. The plugin not only tunes the application for a single input, but also learns from running the
application for different inputs. We characterize variations in application executions for different input sets
via domain knowledge specification for input identifiers, which leads to the identification of more rts’s with
different characteristics. Input identifiers may be simple, such as the grid size of the application domain
and the number of processors, or complex, like the number of contact points in metal forming simulations
like INDEED. The domain knowledge specification interface allows the application expert to provide input
identifiers in an accompanying input specification file in the form of key-value pairs, as shown in Listing 6.6.

The input identifier specification files are read by both PTF during DTA and RRL during runtime tun-
ing. PTF reads the specification file called IID SPEC via the command line option using the flag --input-
desc="IID SPEC", and RRL interprets them via an environment variable, as described in Section 6.3.
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Figure 6.1: The workflow of the intraphase tuning plugin, consisting of four tuning steps: default execution,
ATP tuning, system parameters tuning, and verification. The plugin merges the tuning models
for new inputs, and generates the final application tuning model at the end of DTA.
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Listing 6.6: Input identifier specification file IID SPEC.

identifier name : <value>
ContactPoints : <simple, complex>
ProblemSize : <256 256 256>

It is not necessary to pass the same input identifier specification file to both PTF and RRL. If input identifiers
from one input file are missing in an other input file, the missing identifiers are handled in DTA with a default
value. In the MG benchmark in Listing 6.1, when the grid level switches from a coarser grid to a finer grid,
the compute intensity characteristics might change from compute-bound to memory-bound. The grid level
at which this switch occurs depends, for example, on the grid (or problem) size given in the input file. Thus,
the user parameter for the grid level k for the region interpolate is not sufficient to improve the tuning model
for different input sizes. In addition to the size of the finest grid, the number of processes is also important.
The more processes are used, the better the data distribute over the caches and the earlier, in terms of grid
level, the application switches between memory- and compute-bound.

6.2.1.1 Tuning step 1: Default execution

In the first step, the intraphase plugin executes a single phase of the application to determine the objective
value for the default execution, i.e., default settings of the tuning parameters as provided by the batch system,
and the default values for the ATPs, specified in the ATP specification file. This stage is run as part of the
first steps in which PTF gathers the program’s region and rts information in the first phase of the application.
The measurements for the default execution are required to evaluate the improvement in the objective value,
and are used later to compare the results in the last tuning step. Finally, the objective values are stored in the
RTS Database for the phase and the rts’s of the significant regions.

6.2.1.2 Tuning step 2: ATP tuning

The intraphase plugin also tunes ATPs to choose between different decomposition algorithms, precondi-
tioners or solvers. The aim of using ATPs is to exploit the possibility to switch between the different imple-
mentations or, in a more general sense, the ability to choose between code-level alternatives at runtime. To
enable ATP tuning, the application developer needs to pass the details about the tuning parameters on to the
tuning system by annotating the source code at specific locations. Listing 6.7 illustrates how the ATP library
API functions can be used for two dummy functions foo and bar to declare control variables from the code
as ATPs. In lines 4 and 24, ATP_PARAM_DECLARE is used to declare the parameter names, namely solver and
mesh, their types, default values and the domain. Then, ATP_PARAM_ADD_VALUES in lines 6 and 26 provide
the possible values the parameter can take. During the experiments in DTA and RAT, ATP values have to
be assigned to the corresponding control variable. The ATP_PARAM_GET function in lines 7 and 27 makes the
mapping between the declared ATP and the corresponding control variable. The ATP_EXPLORATION_DECLARE
macro in line 18 holds a list of search methods to apply on the domain.

An application source code may contain several ATPs, ideally independent from each other, thus enabling
independent tuning. In practice, this is not always the case as the values of a parameter may depend on
those of another one. Thus, the application developer may indicate the dependence by expressing them
mathematically in the form of logical constraints to group dependent ATPs into domains in order to create
valid configurations of the tuples of parameters. Line 28 declares a constraint between the ATPs solver and
mesh.
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Listing 6.7: Domain knowledge specification for ATP exploration using the ATP library.

1 void foo(){
2 int atp_cv;
3 ...
4 ATP_PARAM_DECLARE("solver", RANGE, 1, "DOM1");
5 int32_t solver_values[2] = {1,5};
6 ATP_ADD_VALUES("solver", solver_values, 2, "DOM1");
7 ATP_PARAM_GET("solver", &atp_cv, "DOM1");
8

9 switch (atp_cv){
10 case 1:
11 // choose solver 1
12 break;
13 case 2:
14 // choose solver 2
15 break;
16 }
17 int32_t hint_array = {GENETIC, RANDOM};
18 ATP_EXPLORATION_DECLARE(hint_array, "DOM1");
19 }
20

21 void bar(){
22 int atp_ms;
23 ...
24 ATP_PARAM_DECLARE("mesh", RANGE, 40, "DOM1");
25 int32_t mesh_values[2] = {0,80};
26 ATP_ADD_VALUES("mesh", mesh_values, 2, "DOM1");
27 ATP_PARAM_GET("mesh", &atp_ms, "DOM1");
28 ATP_CONSTRAINT_DECLARE("const1", "(solver = 1 && 0 <= mesh <= 40) || (solver = 2

&& 40 <= mesh <= 80)", "DOM1");↪→

29 if((atp_ms > 1) && (atp_ms <= 40)){
30 // choose mesh size 1
31 }
32 if((atp_ms > 40) && (atp_ms <= 80)){
33 // choose mesh size 2
34 }
35 }

If ATPs are specified in the application, the intraphase plugin tunes them first, since these typically select
algorithmic alternatives, and the selection is independent of the more fine-grained tuning provided by system
parameters. If there is no ATP specification, the tuning plugin directly performs the third tuning step,
described in Section 6.2.1.3.

The ATP tuning step involves two components: the ATP server and the ATP library. In the first application
phase, the ATP library, which was implemented by Intel generates an ATP configuration file in the JSON
format that specifies the ATPs with their domains and their constraints. The intraphase tuning plugin reads
the ATPs from the ATP description file and starts the ATP server to request for the valid points for each ATP.
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The generation of a list of valid points for the parameters requires the resolution of the constraints held
between parameters, and is solved using a third party constraint solver software called the Omega Calcula-
tor [99]. The Omega Calculator is an affine functions constraint solver, and generates the valid values for
each ATP for the recorded constraints by filtering out the values that do not satisfy the constraints. The
Omega Calculator software is composed of the Omega Library, which constitutes the core of the solver, as
well as a text interpreter to query the library. One big advantage of using the Omega Calculator is the small
computational time needed to solve affine function based constraints, which makes it fit for use to solve the
constraints at runtime [97].

The plugin then generates the search space of ATPs using either the exhaustive or individual search strategy.
This may be set by the user in the configuration file before starting PTF. The search space can consist of a
single or multiple ATP domains. The exhaustive strategy for ATPs explores all valid points of the ATPs by
creating a search space with the cross-product of the points. In each experiment, the ATP library receives
the valid ATP settings, and assigns the values to the control variable. The individual strategy for ATPs tunes
the domains individually. It starts with the first domain and evaluates all valid points for this domain, and
fixes the best point for this domain. It then explores the next ATP domain until all the domains are handled.
Finally, at the end of the first tuning step, we obtain an optimal configuration for the ATPs.

6.2.1.3 Tuning step 3: System parameters tuning

The third tuning step explores the system software tuning parameters, and determines an optimal system
configuration. In this step, the optimal configuration for the ATPs obtained in the previous tuning step
is applied. The search strategy for this tuning step is specified in the configuration file. If no strategy is
specified, the individual search algorithm is selected by default. The plugin generates the search space
based on the ranges of the tuning parameters it reads during initialization, and explores a single system
configuration in an experiment.

During each experiment, the plugin sends rts tuning requests for the phases to set the system configuration
for the entire phase, causing all the rts’s to be executed with the same configuration. The plugin then sends
measurement requests for the performance counters as well as the objective functions for the phase and the
rts’s. Individual measurements are then collected at the analysis agents, which compute the node energy for
each rts. The measurements are serialized as properties and sent to the frontend, where they are deserialized.

At the end of this tuning step, the objective values for all the tested system configurations are evaluated
to determine the static-best system configuration. Afterwards, the tuning results for individual rts’s are
evaluated to compute the optimum rts-best configurations. The combination of the best static configuration
and the rts-specific best configurations is finally encapsulated in the tuning model.

6.2.1.4 Tuning step 4: Verification

The verification step is the last tuning step, and evaluates the tuning success. It uses the objective values
obtained in the first tuning step for the default execution as the basis for the evaluation to determine if the
best configurations that were selected for the phase and the rts’s are valid. It configures the RRL with the best
configurations, and performs experiments to evaluate the stability of the results. During the experiments,
the plugin sends tuning requests for the phase to switch to the phase-best configuration, as well as for the
individual rts’s to switch to rts-best configurations. Thus, the RRL performs dynamic switching by switching
to the static-best configuration at the start of the phase when the phase enter event is called, and to the rts-
best configurations when the region enter event is called. If an rts of an insignificant region is encountered,
the RRL sets the system configuration to the default setting.
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The experiments are repeated three times to check for any variation in the results due to hardware variations
or phase differences. Finally, the plugin outputs the theoretical savings characterizing the tuning result as
the improvement due to static and dynamic tuning. It determines the savings for the rts’s and for the whole
phase using the following three definitions:

1. Static savings for the rts’s: The total improvement in the objective value when the rts’s are executed
with the static-best configuration compared to the objective value for the default setting of the tuning
parameters.

Sstatic
RTS =

∑
rts∈RT S

(objdefault
rts −objstatic

rts )

∑
rts∈RT S

objdefault
rts

∗ 100 (6.7)

2. Dynamic savings for the rts’s: The total improvement in the objective value for the individual rts-
specific best configurations compared to the objective value for the static-best configuration, i.e., best
settings for the phase.

Sdynamic
RTS =

∑
rts∈RT S

(objstatic
rts −objopt

rts )

∑
rts∈RT S

objstatic
rts

∗ 100 (6.8)

3. Static savings for the whole phase: The total improvement in the objective value for the static-best
configuration of the phase over the objective value for the default setting of the tuning parameters.

Sstatic
RTS =

(objdefault
phase −objopt

phase)

objdefault
phase

∗ 100 (6.9)

where,

objdefault
phase = objective value of the phase under the default configuration

objopt
phase = objective value of the phase under the static-best configuration

objdefault
rts = objective value of the rts under the default configuration

objstatic
rts = objective value of the rts under the static-best configuration

objopt
rts = objective value of the rts under the rts-specific optimal configuration

After the execution of the plugin, the tuning model is generated (see Section 6.2.3). The entire tuning
process, i.e., the four tuning steps is repeated if further inputs are provided in the input specification file.
Individual tuning models are created for each application input, and finally merged together to create the
final application tuning model.

6.2.2 Tuning Inter-Phase Dynamism

PTF performs inter-phase dynamism tuning by executing the interphase plugin when there are changes in
the dynamic characteristics across the sequence of phases. The interphase plugin executes four tuning steps:
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default execution, cluster analysis, selective tuning and verification, as illustrated in Figure 6.2. First, the
plugin executes a subset of the overall phases of the application using the default settings of the tuning
parameters. Next, it executes experiments using randomly picked configurations of the tuning parameters
for the selected phases, and clusters similarly behaving phases into clusters. To improve the tuning results,
it performs a selective tuning step by evaluating configurations using a probabilistic random search based
on previous good configurations. It then selects cluster-best phase configurations and rts-specific best con-
figurations. Finally, the plugin checks for tuning success by executing the phases with their cluster-best
configurations and the rts’s with the individual rts-specific best configurations to verify whether the actual
energy savings are close to the computed theoretical savings while taking into account the switching over-
head. The tuning steps are described in detail in Sections 6.2.2.1- 6.2.2.4.

The plugin not only determines optimal configurations for different rts’s of the code regions depending on
the execution context by exploiting intra-phase dynamism, it also determines different best configurations
for variations in the characteristics of the phases over time. The novel features of the interphase plugin
are the exploitation of phase behavior to cluster similarly behaving phases into groups that have the same
optimal cluster-best configuration, search space optimization using a probabilistic random search to improve
the confidence of the tuning, and finally, verification of the theoretical savings with the actual savings.

To identify phases with different characteristics or behavior, phase identifiers are specified using domain
knowledge, and are used in the tuning model to distinguish rts’s based on the variation in the phase be-
havior. Phases that have similar characteristics can be grouped together into a single cluster using phase
identifiers, as described in Section 5.1. This enables the selection of different configurations for rts’s in
different clusters. Thus, the interphase plugin takes into account these dynamic characteristics to determine
the optimal settings, as opposed to the intraphase plugin, which ignores similarities in phase behavior, and
exploits only the variations among the rts’s of the significant regions.

Phase identifiers are provided in the same way as region identifiers via Score-P user parameters that are
attached to the phase region, and are described in Section 6.3. Phase identifiers should be chosen carefully
as they decide which phases are similar, and thus, have a high impact in selecting the cluster-best configura-
tions. Typically, these should be provided by the application expert who knows how the application behaves
when certain aspects in the code are modified.

6.2.2.1 Tuning Step 1 : Default Tuning

In the first tuning step, the interphase plugin reads the number of samples from the configuration file. The
number of samples determines the number of experiments that will be executed, where each experiment
evaluates a single phase of the application. Each experiment measures the objective value for the default
configuration of the tuning parameters provided by the batch system. In each experiment, the plugin sends
an rts tuning request for the phase, and issues measurement requests for the objective values as well as
hardware performance counters for the phase and the rts’s. The measurements for the individual rts’s are
then stored in the RTS Database.

It should be noted that at the beginning of the PTF run, a single phase of the application is first executed
to collect the significant region information. Sometimes, not all the significant regions are encountered in
the first phase, resulting in incomplete static information for the missing regions. Hence, we extended the
frontend to store additional significant regions encountered during subsequent phases in the RTS Database.
Once the new region information is stored in the RTS Database, subsequent experiments can then issue
measurement requests for the rts’s of the newly encountered significant region. The measurements in the
RTS Database collected for this tuning step are used to compute the energy savings in the final tuning step.
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Figure 6.2: The workflow of the interphase tuning plugin, consisting of four tuning steps: default execution,
cluster analysis, selective tuning, and verification. The plugin generates the application tuning
model at the end of the tuning steps.
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6.2.2.2 Tuning Step 2 : Cluster Analysis

At the start of the second tuning step, the plugin restarts the application, and creates the same number
of experiments as in the previous tuning step. The plugin sends rts tuning requests for the phase to test the
effect of a randomly selected configuration on the application execution. It also sends measurement requests
for the objective values for the phase and the rts’s. Additionally, the plugin collects hardware performance
counters that are used to characterize the phases and perform clustering. Section 5.1 describes in detail
the PAPI [13] events that were used to collect the hardware counters. The counters are then converted into
features that are used for clustering by DBSCAN and spectral clustering, as described in Sections 5.1.1.1
and 5.1.1.2 respectively.

6.2.2.3 Tuning Step 3 : Selective Tuning

The previous tuning step evaluates only a subset of the entire search space of tuning parameters. This means
that in the best-case scenario, each phase in a cluster is executed with a different configuration of tuning
parameters. In the worst-case, all the phases in the cluster are executed with the same configuration. This
makes it difficult to select the best configuration for the cluster with a high confidence due to the absence of
other configurations for comparison.

To overcome this problem, we implemented a new tuning step that evaluates each phase in a cluster with a
configuration that has never been executed for any phase in that cluster by randomly picking a configuration
based on the Gaussian distribution. The idea is that the chances of picking a configuration near a good
configuration that results in a lower normalized consumption are higher than picking a configuration near a
worse configuration that results in a higher normalized energy.

In this tuning step, the plugin restarts the application and then optimizes the search space, as described in
Section 5.2 using Algorithms 5 and 6. The plugin then requests for the objective value and the performance
counters in each experiment similar to the previous tuning steps. After executing all the experiments, the
plugin computes the cluster-best configuration, as well as rts-specific best configurations for each rts called
in the phases of the cluster. This way, the plugin not only tunes the inter-phase dynamism, but also the
intra-phase dynamism arising from changes in the behaviour of the rts’s. The best configurations are chosen
such that the normalized objective value, for example, Energy

#AVX instructions is minimized. This allows the plugin
to tune phases with different amounts of work but of the same kind, such as more iterations of an iterative
solver so that the energy per instruction is minimized.

6.2.2.4 Tuning Step 4 : Verification

Similar to the intraphase plugin, the interphase plugin performs the verification step as the last tuning step
to evaluate the tuning success. It uses the objective values for the phase and the rts’s obtained during the
first tuning step as the basis for the evaluation to determine if the optimum configurations are valid. In
each experiment, the plugin sends rts tuning requests to the RRL to switch to the corresponding cluster-best
configuration at the start of a new phase when the phase enter event is called. Similarly, the configurations
for the rts’s are switched to the rts-specific best configurations for the current cluster when the region enter
event is called.

If a phase was marked as a noise point in the cluster analysis step, it is not present in any cluster, and is thus
executed using the default system configuration. Similarly, if an rts of an insignificant region, i.e., an invalid
rts is encountered, it is run with the default setting. The runtime system thus performs dynamic tuning by
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enforcing the static phase configuration for the phase, and switching system configurations for individual
rts’s. The plugin sends measurement requests after switching the configurations to measure the effect of
inter-phase tuning and verify whether the theoretical savings match the true savings by taking into account
the switching overhead.

During production runs, phases belonging to different clusters must be identified by their cluster id by the
RRL in order to switch to the right configuration during a phase enter event. Therefore, the plugin performs
an additional step during DTA to add the phase identifier, i.e., the cluster id into the CCT once all the
experiments are completed. The cluster id represents the phase identifier, since it distinguishes phases by
establishing their membership in different clusters. To enable the selection of the right configuration at
runtime, the plugin clones the CCT by creating new child nodes representing different cluster ids under the
phase node, and then cloning all the children of the phase node.

Figure 6.3a shows the initial CCT of the rts’s of a toy application containing significant regions bar and baz.
The call-path of the phase region is represented as /PhaseRegion. If the cluster analysis step detected two
clusters, the plugin creates two new nodes under the phase node, and clones all the child nodes of the phase
region, as illustrated in Figure 6.3b. After this step, the cluster id represents all the phases belonging to a
particular cluster. Thus, the call-path for a phase belonging to cluster 1 is /PhaseRegion/Cluster=1, and the
call-path to the rts of bar called from this phase is /PhaseRegion/Cluster=1/bar.

Phase
Region

foo bar

baz

(a) Before cloning.

Cluster=1

foo bar foo bar

Phase
Region

Cluster=2

bazbaz

(b) After cloning.

Figure 6.3: Calling Context Tree (CCT) for a toy application consisting of two significant regions, bar and
baz.

The plugin then stores the tuning results, including the objective values, and the number of instances of a
region executed in a run for each node. The cluster-best configuration is stored in the cluster node for the
group of phases belonging to it. Additionally, each cluster node stores the phase identifier data, such as
the cluster id, the phases belonging to that cluster, and the ranges of the features, i.e., the maximum and
minimum value for the cluster. Storing all the information in a single node has the advantage of reducing the
memory overhead because a single cluster node can be used to represent the tuning result for all the phases
belonging to it. The child rts nodes store the rts-specific best configurations.

Finally, the plugin outputs the theoretical savings characterizing the tuning result as the reduction in the
normalized energy consumption due to static and dynamic tuning using the following four definitions [121]:

1. Static savings for the whole phase: The improvement in the normalized objective value for the
static-best configuration for the phase compared to the normalized objective value for the default
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configuration, accumulated over all the clusters.
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∗ 100 (6.10)

2. Static savings for the rts’s: The improvement in the normalized objective value for the rts’s for
the static-best setting for the cluster compared to the normalized objective value for the rts’s for the
default configuration, accumulated over all the clusters.
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3. Dynamic savings for the rts’s (w.r.t. static-best configuration): The improvement in the normalized
objective value for rts-specific best configuration over the normalized objective value for rts’s for the
static-best (cluster-best) configuration for the cluster, accumulated over all the clusters.
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4. Dynamic savings for the rts’s (w.r.t. default configuration): The improvement in the normalized
objective value for rts-specific best configuration over the normalized objective value for the default
configuration accumulated over all the clusters.
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where,

objdefault
phase,cluster = objective value of the phase for the default configuration for a cluster

objopt
phase,cluster = objective value of the phase for the cluster-best configuration

ob jde f ault
rts,cluster = objective value of the rts for the default configuration for a cluster

objstatic
rts,cluster = objective value of the rts for the cluster-best configuration

objopt
rts,cluster = objective value of the rts for the rts-specific optimal configuration for a cluster
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6.2.3 Generating the Application Tuning Model

After the execution of the intraphase or the interphase plugin, the frontend initiates the process of tuning
model generation, which was implemented by NTNU to store the knowledge from the RTS database. The
tuning model helps guide the RRL in dynamic configuration switching for the phase and the rts’s during
production runs. The tuning model encapsulates the knowledge from DTA about the best found system
configurations via scenarios, classifiers, and selectors. The classifier groups rts’s with similar or identical
best configurations into scenarios using a similarity score that is computed by aggregating the closeness of
system configurations for a particular objective. Clustering is used to reduce the size of the tuning model by
limiting the number of scenarios, and thus reduce the associated runtime overhead. A selector then returns
the best configuration for each scenario for the specified objective.

The tuning model stores slightly different information for intra-phase and inter-phase tuning. Intra-phase
tuning using the intraphase tuning plugin not only tunes the application for a single input, but also tunes
ATPs and learns from running the application for different inputs. Rts’s with different characteristics in dif-
ferent application runs are distinguished with the help of input identifiers, such as the grid size, as described
in Section 6.2.1. For each input provided in the input specification file, the entire tuning process, i.e., the
four tuning steps in the intraphase plugin is repeated, and individual tuning models are created for each
application input. A tuning model merger [122] deserializes the individual tuning models and extracts all
tuning information, such as rts’s and their best configurations as well as the corresponding input identifiers.
It filters out all duplicated rts’s, and produces a new final set of scenarios by clustering rts’s with similar
configurations, and then serializes the merged tuning model information into a single application tuning
model in the JSON format.

The clustering mechanism clusters rts-best configurations using hierarchical clustering, and performs three
steps [14]: dendrogram generation, cluster generation, and scenario creation. The first step generates a
dendrogram, i.e., a tree expressing the similarity of rts’s based on the distances between their system config-
urations. To perform clustering, the algorithm first treats every rts as a cluster with a single element, i.e., the
rts itself. It uses the Lance-Williams algorithm to recursively compute the inter-cluster distance to merge the
closest clusters, and then recompute the distance of the newly created cluster to all other clusters and merge
the next closest clusters until all clusters are merged into a single cluster. The cluster generation uses the
dendrogram to create a clustering of the rts’s by performing a tree cut by partitioning the tree’s nodes into
disjoint subsets such that it minimizes the dispersion of data within clusters, while maximizing the disper-
sion between the clusters. It should be noted that the clusters of rts’s here do not refer to the cluster analysis
results of the inter-phase tuning. The third step groups the clusters into scenarios, and creates a selector that
returns an optimal system configuration for the scenario. This system configuration is then used for all rts’s
in the cluster at runtime.

For inter-phase tuning, the tuning model generation clusters rts’s with identical configurations into scenarios
with unique ids. First, it iterates over the phases as well as the rts’s from the RTS Database, and creates a new
scenario for each cluster-best and rts-best configuration. If another scenario with an identical configuration
exists, the two scenarios are merged. Additionally, the tuning model stores information about the clusters
generated during DTA, including the cluster ids, the phases belonging to the corresponding clusters, the
cluster features and their ranges that were used for clustering by requesting the information from the RTS
Database. This additional information is then used by the RRL during production runs to identify the cluster
id of an executing phase.
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6.3 Runtime Application Tuning

Runtime Application Tuning (RAT), controlled by the Runtime Management module, starts by initializing
the application and the underlying system software, including the measurement infrastructure and the RRL.
The Runtime Management module instantiates the TMM at the beginning of the application execution. The
TMM reads and deserializes the tuning model generated at the end DTA, and stores the information as hash
maps for efficient look up at runtime. The Runtime Management module was implemented by TUD, and
the TMM was implemented by TUD and NTNU.

When an enter region event is called from Score-P during the application run, the Runtime Management
module maintains the current call stack and collects additional identifiers, such as the input parameters,
phase identifiers or hints/domain knowledge provided by the application expert in the form of user param-
eters. It constructs the full call-path for every rts using the total set of context elements, i.e., input, phase,
and significant region information. The TMM then checks if this region is found in the tuning model, and
if found, marks the region as significant. If the region is not found, it is marked as an unknown region. For
each significant region, the RTS Management module sends the complete call-path together with the addi-
tional identifiers to the TMM, and requests the best configuration. The TMM returns a configuration, which
is stored in a hash map using the call-path and the additional identifier information as the key. Subsequent
calls to an rts simply involve a lookup of the scenario id for the rts in the hash map.

The returned configuration is passed to the Parameter Controller, which sets the configuration through ded-
icated Parameter Control Plugins (PCPs) for each tuning parameter. PCPs are also used during DTA in the
system parameters tuning and verification tuning steps of the intraphase plugin, and in the cluster analysis
and verification tuning steps of the interphase plugin. The PCPs for DVFS and UFS support x86_adapt [65],
msr-safe, LIKWID and sysfs. The Parameter Controller maintains a configuration stack that stores the
configurations returned by the TMM in one of the following two modes using the environment variable
SCOREP_RRL_CHECK_IF_RESET:

• reset: In the reset mode, every configuration of the tuning parameters is pushed onto the configura-
tion stack. When the region exit event is called, the current configuration is unset by popping it from
the stack, and the previous configuration from the top of the stack is set. The reset mode is enabled
by default.

• no_reset: In the no_reset mode, only the default configuration and the current configuration of the
tuning parameters will be saved on the stack. Each configuration stays active until a new configuration
is set, which overwrites the current configuration in the stack.

If input identifiers were specified for intra-phase tuning, the name of the input identifiers specification file is
exported for RRL using the environment variable SCOREP_SUBSTRATE_RRL_INPUT_IDENTIFIER_SPEC_FILE.
If the environment variable is not set, the tuning stops with an error message. The RRL also uses the ATP
library during RAT to set the best configuration of the ATPs for the current input identifier fromthe merged
tuning model upon encountering a valid rts. The ATP library assigns the ATP value to the control variable
defined in the application source code. In case no configuration is available for the current input set, the
default parameter settings are assigned, both for the ATPs and the other tuning parameters.

For inter-phase tuning, RRL uses the cluster id returned by the cluster prediction library, which is linked
to the application. The cluster number of a phase is used as a phase identifier to express the combination
of the cluster features that were used to group the phases based on their similarities during DTA. For run-
time tuning, the cluster id is added to C/C++ and Fortran applications as the phase identifier by defining
it as a user parameter. This way, the cluster number is added to the call-paths of the rts’s when they are
called from the phase. Phase identifiers are annotated using a Score-P user parameter by first declaring
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Listing 6.8: Score-P phase identifier specification for runtime cluster prediction using the cluster prediction
library for Fortran applications.

1 #include "scorep/SCOREP_User.inc"
2 ...
3 SCOREP_USER_REGION_DEFINE(R1)
4 SCOREP_USER_PARAMETER_DEFINE(param)
5 ...
6 do it = 1, max_iter
7 ! Phase region begins
8 SCOREP_USER_OA_PHASE_BEGIN(R1,"PhaseRegion",0)
9 SCOREP_USER_PARAMETER_INT64(param, "Cluster", predict_cluster())

10 ...
11 SCOREP_USER_OA_PHASE_END(R1)
12 end do

a unique handle using a SCOREP_USER_PARAMETER_DEFINE(handle) macro, and then the defining the user
parameter via SCOREP_USER_PARAMETER_INT64(handle, "Cluster", predict cluster()). For Fortran
applications, the definition requires the Score-P handle as the first argument, followed by the name and the
value of the user parameter. Listing 6.8 presents the phase identifier specification for Fortran applications.

For C/C++ applications, the header file cluster_predictor.h is included in the file containing the phase
region. The phase identifier is defined directly using SCOREP_USER_PARAMETER_INT64("Cluster", predict
cluster()) that requires only the parameter name and the value, as shown in Listing 6.9. The user parameter
definition for both C/C++ and Fortran applications immediately follows the OA phase region annotation.
Both application types are then linked to the cluster prediction library by adding the linker flags in the
Makefile. The user parameter definition sets the parameter name to Cluster, and calls the cluster prediction
library by invoking the predict_cluster() function. The cluster prediction library predicts and returns the
cluster number of the current phase, which is then set as the value of the user parameter Cluster.

Listing 6.9: Score-P phase identifier specification for runtime cluster prediction using the cluster prediction
library for C/C++ applications.

1 #include <scorep/SCOREP_User.h>
2 #include <cluster_predictor.h>
3 ...
4 SCOREP_USER_REGION_DEFINE(R1)
5 ...
6 for (it = 1; it < max_iter; it++) {
7 // Phase region begins
8 SCOREP_USER_OA_PHASE_BEGIN(R1,"PhaseRegion",0)
9 SCOREP_USER_PARAMETER_INT64("Cluster", predict_cluster())

10 ...
11 SCOREP_USER_OA_PHASE_END(R1)
12 }

The predict_cluster() method calls the cluster prediction library, which is implemented as a Singleton class
so that only a single instance can ever exist. Section 5.3 describes the library in detail. When the application
enters the phase region, i.e., it enters the main progress loop, the enter phase event handler is executed. When
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the first phase is executed, the instance of the cluster prediction class is created, and the is_initialized flag is
set. The library requests for the ranges of the cluster features, and also the set of all phases belonging to the
clusters from the TMM. It initializes the PAPI library once at the beginning of the first phase. It then creates
an event set using the PAPI low-level API to request the performance counters for the AVX calculation
instructions, L3 cache misses, the conditional branch instructions, and L2 cache misses for every phase.

For each phase, the predict_cluster() function calls the predict() method. If the phase was evaluated during
DTA, the method simply returns the corresponding cluster number, which sets the value of the user pa-
rameter. The Runtime Management module requests the PCPs to switch to the corresponding cluster-best
configuration for the current phase. For rts’s of the significant regions called inside the current phase, the
configuration switching is handled as usual by RRL by looking up the configuration for the current rts using
its call-path and additional region identifiers. If the current phase is not found in the cluster information, the
predict() method assumes that the current phase was designated as a noise point during DTA, and the PCPs
switch to the default configuration for the phase and all the rts’s called inside it.

For the phases that were not seen during DTA, the predict() method predicts the cluster number of the current
phase based on one of the three cluster predictors, detailed in Sections 5.3.1 and 5.3.2. The configuration
for the phase as well as the rts’s are switched dynamically by the PCPs based on the cluster id returned by
the predict_cluster() method. An additional step then corrects possible mispredictions of the cluster number
for the previous phase. First, the PAPI counters for the previous phase are converted into features, and
compared against the ranges of the cluster features of the predicted cluster. If the features fall within the
ranges of another cluster, the cluster number of the previous phase is corrected, so that future predictions can
use the updated cluster information. If the values of the cluster features are not in the ranges of any known
cluster, the phase is assigned as a noise point, and the PCPs switch to the system default configuration for
the current phase and all the rts’s.

6.3.1 Calibration

RAT distinguishes between seen and unseen rts’s of the significant regions. Unseen rts’s might occur for
several reasons, for example, when the significant region is already known, but the application is run with
different parameters or inputs during RAT, or when a significant region that was never encountered during
DTA is encountered during RAT. For unseen rts’s, RAT can be configured to perform calibration, which was
implemented by TUD, and trains an Artificial Neural Network (ANN) to predict optimal configurations at
runtime.

For intra-phase tuning, RAT performs calibration for the unseen rts’s if the calibration module is enabled.
For inter-phase tuning, RAT can take one of two approaches: perform either runtime cluster prediction for
the unseen phases, or calibration for the unseen rts’s. In the first approach, the application is linked with the
cluster prediction library and the calibration is turned off, during which RAT invokes the cluster prediction
function to perform runtime prediction of the cluster ids for unseen phases, as described in Section 5.3. Dur-
ing this process, if an unseen rts of a significant region is encountered, the PCPs switch to the default system
configuration for the rts since it is not found in the tuning model. In the second approach, the application is
linked to the cluster prediction library and calibration is turned on. First, the cluster predictor predicts the
cluster id for the current phase, and the PCPs switch to the corresponding cluster-best configuration. Then,
if an unseen rts of a significant region is encountered during the current phase, the calibration mechanism is
invoked. The calibration module selects an optimal configuration for the rts, which is applied each time this
rts is encountered, regardless of the cluster id of the executing phase. This is ineffective, since calibration
ignores the similarities between the phases, and selects a single optimal configuration for the rts across all
the clusters.
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During calibration, the objective values for all the significant regions are collected, and then filtered out for
regions whose execution time is less than 100 ms. Calibration then creates a state matrix of the product of
the tuning parameters, for example, of size {core frequencies x uncore frequencies}, where a state is a pair
of core and uncore frequencies. When RRL encounters an unknown rts, the algorithm first starts at a certain
state, and starts measuring the energy consumption. It computes the Q-value for each configuration when a
change to a new frequency is requested. Every change to a different frequency is considered as an action,
and is performed by selecting the next configuration from the direct neighbors of the current configuration
based on the Q-Value and the learning rate. An action is taken if the cost/Q-value is smaller than the previous
value. If the cost is the lowest for a certain state, it is selected as the optimal configuration. The algorithm
finally terminates when the program has finished executing.

6.4 Summary

In this chapter, we presented the integration of our work into the two stages of the tuning methodology,
namely DTA and RAT. We also defined the interactions between different components of the architecture
during the two stages. First, pre-analysis steps are performed using two automatic tools, namely scorep-
autofilter and readex-dyn-detect to prepare the application for tuning. To reduce the measurement overhead
of executing many fine-granular program regions, scorep-autofilter measures the granularity of program
regions and generates a Score-P filter file containing the list of frequently executed regions with a very
short execution time per instance. Score-P then omits the instrumentation for these regions, thus reducing
the instrumentation overhead. From the remaining program regions, readex-dyn-detect selects significant
regions that are worth tuning by performing a dynamism analysis w.r.t. variations in the execution time for
individual rts’s and between phases, and in the compute intensity between significant regions. Dynamic
tuning is aborted if insufficient tuning potential is found, and regular static tuning is applied instead.

We also present application experts with the opportunity to specify domain knowledge for defining param-
eters in the form of identifiers for the input, phase and user regions to expose the dynamic behaviour of the
application. The identifiers allow to distinguish different system scenarios and improve the tuning results.
Moreover, the domain knowledge specification also exposes ATPs such as preconditioners or domain de-
composition methods to the tuning process. For a fine-grained analysis and tuning, significant regions are
instrumented by inserting probe functions around the relevant code regions.

DTA is performed by PTF using two plugins, namely intraphase plugin for intra-phase tuning, and in-
terphase plugin for inter-phase tuning. PTF reads the configuration file, and calls a tuning plugin, which
performs one or more tuning steps in which experiments are executed to measure the effect of the system
configuration on the objective. Both plugins perform DVFS, UFS and DCT using four tuning steps. How-
ever, they use different approaches for DTA. The intraphase tuning plugin finds the best system configura-
tion for the rts’s while ignoring the characteristic behaviour of the application phases. For each application
input, it executes the phase with the default system configuration, tunes the ATPs, followed by the hardware
and software tuning parameters, and finally, verifies the tuning success. The interphase tuning plugin first
executes the phases with the default system configuration, and then executes experiments to evaluate system
configurations using a random strategy. It clusters similarly behaving phases, and then evaluates more con-
figurations using a selective tuning step based on the Gaussian distribution. Finally, it measures the tuning
success. The two plugins restart the application at the end of each tuning step.

After all the tuning steps are completed, PTF generates the application tuning model, which stores the best
configurations in the form of scenarios, classifiers, and selectors. Rts’s with identical configurations are
grouped into scenarios using a classifier, and a selector returns the best configuration for each scenario. For
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intra-phase tuning, individual tuning models are generated for each application input, and then merged to
form the application tuning model. For inter-phase tuning, the tuning model stores the cluster information,
such as the phases belonging to each cluster and the ranges of the cluster features, as well as cluster-best
configurations and rts-specific best configurations.

The tuning model is read and deserialized at runtime to enable scenario detection and configuration switch-
ing during production runs for RAT. For intra-phase tuning, the RRL requests the Parameter Controller to
set the PCPs to the static-best configuration for the phase at the phase enter event, and to the rts-best con-
figuration at the region enter event. For inter-phase tuning, the Parameter Controller sets the PCPs for a
phase to the corresponding cluster-best configuration while switching to the rts-best configurations for the
rts’s within the phase. Additionally, the cluster prediction library predicts the cluster id for all phases that
were not seen during DTA.

In addition to the workflow of DTA and RAT, we provided a brief description of the calibration mechanism
that is invoked for unseen rts’s of significant regions. For both intra-phase and inter-phase tuning, calibration
is performed if the calibration module is enabled. One major difference is that calibration for inter-phase
tuning does not take into consideration the similarities in the characteristics between different phases, and
can only predict a single common rts-best configuration for an unseen rts for all clusters. Calibration is
performed by training an ANN using Q-learning that determines if a new configuration should be selected
for an unseen rts based on the Q-value determined for the configuration.
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Evaluation

In this chapter, we evaluate our tuning methodology, starting from application instrumentation, fine-granular
region filtering, dynamism detection, significant region detection, DTA, tuning model generation, and fi-
nally, RAT. We focus on applications that exhibit inter-phase dynamism, and tune them using the inter-
phase tuning plugin. Thus, we tune three real-world applications, namely 128.GAPgeofem from the SPEC
MPI2007 benchmark suite, sam(oa)2 from the Chair of Scientific Computing at the Technische Universität
München, INDEED, a production application, and miniMD, a proxy benchmark from the Mantevo project.

Our methodology selects the best configuration for each cluster of phases, and for every individual rts within
each cluster. We present the static savings for the phase as well as the rts’s, and the dynamic savings for the
rts’s w.r.t. the cluster-best and the system default configurations. The best configurations for the clusters and
the rts’s are encapsulated in the tuning model, which guides the runtime tuning.

At runtime, each application is first linked with the runtime cluster prediction library. The RRL then reads
the tuning model and dynamically switches system configurations for the phases and the rts’s. We present
the improvements in the job energy consumption as well as the CPU energy for each application, and
compare the savings for the three cluster predictors. We also perform an overhead analysis to determine
the performance loss due to the switching overhead at runtime.

We first describe the platform and system architecture that was used to perform the evaluation in Section 7.1,
followed by a description of the four benchmarks in Section 7.2. Section 7.3 presents the pre-analysis steps,
followed by the results of cluster analysis by DBSCAN and spectral clustering for the four applications. It
also compares the dynamic energy savings w.r.t. the job energy and CPU energy, as well as the performance
overhead of the three cluster predictors.

7.1 Platform Description

To test our tuning methodology, we used Technische Universität Dresden’s (TUD) Top500 cluster Taurus
located at Dresden in Germany. Taurus offers heterogeneous compute resources, namely 1456 Intel Haswell
nodes, each with 64, 128 or 256 GB of RAM per node, 32 Intel Broadwell nodes, each with 64 GB of
RAM per node, 6 large SMP nodes with 2 TB RAM, and 44 Intel Sandy Bridge CPUs with NVidia K20x
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GPUs. We evaluated our approach on the Haswell partition of Taurus. The Haswell partition consists of
1456 compute nodes based on the Intel Haswell-EP architecture. Each node consists of two 12-core Xeon
E5-2680 v3 sockets with Hyper-Threading and TurboBoost disabled. We ran our experiments on nodes
with 64 GB of RAM per node. The core frequency of each CPU core ranges from 1.2 GHz to 2.5 GHz,
while the uncore frequency of the two sockets ranges from 1.2 GHz to 3.0 GHz. Each node runs with a
default CPU frequency of 2.5 GHz and an uncore frequency of 3 GHz. The CPU and uncore frequencies are
switched using the low-level x86_adapt library, which is a Linux kernel module that enables logging and
setting/resetting system parameters stored in MSR or PCI registers of x86 processors [65].

7.2 Benchmark Specification

In this section, we present an overview of the three real-world applications and one proxy benchmark that
were used to test our approach. We used the following applications for our evaluation:

1. 128.GAPgeofem: 128.GAPgeofem is a Finite-Element Method (FEM) code to measure the transient
thermal conduction, and is part of the SPEC MPI2007 benchmark suite. It is written in a mixture of
C and Fortran, and runs 235 iterations of the simulation loop.

2. INDEED: INDEED is a sheet metal forming simulation software, and performs adaptive mesh refine-
ment. It is written in Fortran, and runs 154 iterations of the simulation loop.

3. sam(oa)2: sam(oa)2 is an adaptive mesh refinement framework for flows in porous media and tsunami
simulations. It is written in Fortran, and runs 1141 iterations of the time loop.

4. miniMD: miniMD is a parallel Molecular Dynamics (MD) code in the Mantevo project at Sandia
National Laboratories, USA. It is written in C++, and runs 100 iterations of the simulation loop.

Table 7.1: Summary of the benchmarks used for evaluation.
Application Parallelism Language Iterations Type
128.GAPgeofem MPI C, Fortran 235 Real-world
INDEED OpenMP Fortran 154 Real-world
sam(oa)2 MPI+OpenMP Fortran 1141 Real-world
miniMD MPI+OpenMP C++ 100 Proxy

Table 7.1 presents an overview of the four applications. 128.GAPgeofem, sam(oa)2 and miniMD are MPI
applications, while INDEED is an OpenMP application. All the applications were compiled using the
Intel/2018 compiler and Intel MPI version 2018.1.163, and instrumented with Score-P version 4.0. The
MPI applications were evaluated on a single node as well as multiple nodes, while INDEED was evaluated
on a single node using 12 OpenMP threads.

7.3 Exploitation of Inter-Phase Dynamism

We first introduce an overview of the common steps that were performed for all the applications before
starting the inter-phase analysis. We then present individual application-specific details and the results of
clustering and the energy savings in the respective sections.

First, the applications were compiled by adding the Score-P instrumentation wrapper scorep --online-
access --user to the Makefile of all the applications. The --online-access flag turns on the communi-
cation between Score-P and PTF via the OA interface, and the --user flag enables user instrumentation.
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The applications were then run normally, at the end of which, Score-P generated a profile in the cubex for-
mat. To reduce the instrumentation overhead, we used scorep-autofilter to create a filter file to suppress the
measurements for fine-granular instrumented regions with execution time under 10 ms.

In the next step, we used readex-dyn-detect to detect and analyze the dynamism of the applications. The
readex-dyn-detect tool requires a single phase region, which is a repetitive, single-entry and exit region,
typically the body of the main progress loop. To identify the phase region in each application, we first used
CUBE to visualize the flat profile and detect the body of the simulation loop using the metric Number of
Visits, which specifies how many times a region was called during the application run.

We then manually annotated the phase region of the applications, and exported the environment variables
SCOREP_PROFILING_FORMAT and SCOREP_METRIC_PAPI as described in Listing 6.2 to obtain a tupled profile,
which was used as input by readex-dyn-detect. We ran readex-dyn-detect using a granularity threshold
of 100 ms to define the minimal mean execution time for regions to be considered significant for tuning.
Additionally, for the detection of intra-phase dynamism, we set the minimum standard deviation of the
compute intensity of the significant regions to 10%, and of the execution time of the rts’s to 10%. For
inter-phase dynamism, we set the minimum standard variation of the phase time in percentage of the mean
phase time to 10%. The tool then identified the significant regions and the dynamism, and generated a
configuration file containing this information.

In the next step of DTA, we specified the following attributes in the configuration file:

1. Tuning parameters: The interphase tuning plugin supports three tuning parameters: core frequency,
uncore frequency and the number of OpenMP threads. In our work, we only used the core and uncore
frequencies for tuning due to a bug in the Score-P OA interface, which reinitializes the entire metric
subsystem at the beginning of a new phase. This causes problems in measuring PAPI counters because
the spawned OpenMP threads exit after running their parallel sections before the metric subsystem is
reinitialized, thus causing the failure of the initialization of the PAPI library from the second phase.

We specified the ranges (minimum, maximum and the step size) for the core frequency in MHz as
{1200, 2500, 100} and for the uncore frequency in MHz as {1200, 3000, 100}.

2. Objectives: Since our work primarily focuses on optimizing the energy-efficiency, we specified nor-
malized energy as our tuning objective. Additionally, we also enabled the measurement of the execu-
tion time.

3. Energy plugin: We used the x86_energy_sync_plugin [120] to collect the energy measurements. This
is a Score-P power and energy event plugin counter, and supports reading msr registers directly or
through the x86_adapt library on Taurus. The plugin is a strictly synchronous plugin, and returns the
energy consumption via one responsible process per node. The x86_energy_sync_plugin uses Intel’s
RAPL interface to return energy measurements for the following RAPL domains [123]:

PKG Whole CPU package
PP0 Processor cores
PP1 Uncore devices
DRAM Memory controller

For our evaluation, we requested the energy consumption of the whole package.

We compared the theoretical savings obtained during DTA, and the runtime dynamic savings with the
switching overhead, w.r.t. three parameters: job energy, CPU energy, and execution time. To obtain the
measurements for job energy and execution time, we used the SLURM Resource and Job Management Sys-
tem tool sacct [39], which allows per-job energy accounting with power profiling capabilities, and enables
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users to query post-mortem data for previously executed jobs. The values of job energy and time were ob-
tained using the --format "ConsumedEnergyRaw,CPUTimeRAW" command. The CPU energy was measured
using measure-rapl, a runtime tool that was developed in the READEX project, and uses the x86_adapt
library to measure the CPU energy via RAPL.

The values of job energy, CPU energy and execution time for the three cluster predictors were compared
against the untuned instrumented version for each application. The runtime savings obtained are the result
of the averaged measurements for two consecutive runs of the applications on the same node(s) for the single
and multi-node experiments.

To exploit the inter-phase dynamism, the interphase tuning plugin first performs DBSCAN to cluster points
that are close to each other. Then, the plugin analyzes the noise points, i.e., points that were not clustered
during DBSCAN to determine associations between them using spectral clustering. It computes the nor-
malized graph Laplacian matrix, and determines the eigengap using the eigenvalues to define the number of
clusters for K-means. The interphase plugin then assigns the noise points to new clusters, and proceeds to
the selective tuning step.

The following sections describe in detail the evaluation of DTA and RAT for 128.GAPgeofem (Section 7.3.1),
sam(oa)2 (Section 7.3.2), INDEED (Section 7.3.3) and miniMD (Section 7.3.4).

7.3.1 128.GAPgeofem

128.GAPgeofem [124] is a parallel Finite-Element Method (FEM) code from the SPEC MPI2007 bench-
mark suite. The SPEC MPI2007 benchmark suite is an industry-standard HPC benchmark suite that contains
18 MPI compute-intensive applications. The medium data set scales well up to 128 ranks, and the large data
set scales up to 2048 ranks. 128.GAPgeofem provides both medium and large input datasets, and is written
in C and Fortran. It is based on the GeoFEM (Geophysical Finite Element Methods) [125] software. Ge-
oFEM was developed as part of a Japanese five-year project called ‘Earth Simulator project’, which forecasts
various earth phenomena through the simulation of a virtual earth placed in a supercomputer by modeling
solid earth phenomena such as the convection between the mantle and core, plate tectonics, seismic wave
propagation and other phenomena.

GeoFEM includes parallel finite element codes for linear and non-linear solid mechanics and thermal fluid
simulations, a parallel iterative linear solver library, a grid partitioning subsystem, a parallel visualization
subsystem, and utilities for parallel I/O. It also allows other users to plug-in their own FEM codes to the
GeoFEM platform.

GAPgeofem simulates transient thermal conductions with gap radiation, which refers to the radiative heat
transfer that occurs between closely adjacent surfaces with heterogeneous material properties. The bench-
mark uses a backward Euler implicit time-marching scheme, a parallel CG (conjugate gradient) iterative
solver, and the SSOR (symmetric successive over-relaxation) preconditioner. GAPgeofem generates three
executables during the build: GAPmetis, GAPpart, and GAPgeofem, where the first two executables parti-
tion the input mesh to the number of cores in the target system, and then the third executable, GAPgeofem
performs the actual FE simulation. The source files for the first step are written in C, and in Fortran for the
second and third steps.

GAPgeofem uses point-to-point non-blocking MPI communications for exchanging domain boundary in-
formation, and collective MPI calls for calculating dot-products and global minimum and maximum val-
ues [126]. For our experiments, we used the medium size input dataset, which executes 235 iterations of the
simulation loop, and represents an FE mesh of a section of the earth with 2 million degrees of freedom.
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7.3.1.1 Evaluation of Design-Time Analysis

The phase region for 128.GAPgeofem was determined using a combination of source code inspection and
visualization of the cubex file using CUBE, and then annotated to perform DTA. Table 7.2 presents the result
of the significant region analysis and dynamism detection by readex-dyn-detect.

Table 7.2: Significant regions identified by readex-dyn-detect for 128.GAPgeofem.

Significant region Rts call-path
Intra-phase dynamism

Compute
intensity

Execution
time

geofem_solver_cg_11
/PhaseRegion/geofem_solver_11/
geofem_solver_cg_11

4 4

mat_ass_thermal_main_361
/PhaseRegion/mat_ass_thermal/
mat_ass_thermal_main_361

4 8

This shows that most of the computation time in the FEM procedure is spent in two processes: assem-
bling the coefficient matrix, defined in the region mat_ass_thermal_main_361, and solving the linear equa-
tions, defined in the region geofem_solver_cg_11. Column 1 indicates the significant regions returned by
readex-dyn-detect, column 2 represents the instance of the significant region, i.e., its rts, which can be
identified by its call-path. Columns 3 and 4 indicate whether the dynamism detected by readex-dyn-detect
was due to the variation in the compute intensity or the execution time of the rts’s. As we can see, both ge-
ofem_solver_cg_11 and mat_ass_thermal_main_361 show variations in the execution time, while the matrix
assembly (mat_ass_thermal_main_361) only shows variations in the compute intensity.

For both single node and multi-node runs, we set the number of samples, i.e., the number experiments or
iterations of the simulation loop to run during a tuning step to 80. This means that we performed cluster
analysis for these 80 points during DTA.

Single node

For single node experiments, we ran 128.GAPgeofem on a single compute node on Taurus using 24 MPI
processes on 24 cores.

Cluster analysis

In Figure 7.1, the points on the graph represent the 16 eigenvalues for the 16 noise points obtained as a
result of DBSCAN on 128.GAPgeofem. The X-axis represents the number of eigenvalues, and the Y-axis
represents the eigenvalues for the normalized graph Laplacian matrix. We can see that there are small
changes between the first two eigenvalues, and a large eigengap between the second and third eigenvalues,
as shown by a red line. Thus, the value k, representing the input for the number of clusters for K-means at
the end of spectral clustering was selected as 2.

Figure 7.2 illustrates the final clustering consisting of six clusters obtained after performing DBSCAN and
spectral clustering for 128.GAPgeofem. Clusters 1-4 result from DBSCAN, while clusters 5 and 6 result
from spectral clustering. We can see that the individual clusters have marked demarcation majorly w.r.t. the
difference in the number of normalized L2 cache misses. The best configuration of the CPU and uncore
frequencies for each cluster is illustrated by the {CPU_freq, uncore_freq} setting. Cluster 5, which lies in
an area of low branch instructions has the highest setting for both core and uncore frequencies. It can also
be observed that all the clusters except cluster 5 have a lower value of the CPU frequency setting.
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Figure 7.1: Eigenvalues computed for the graph Laplacian matrix of 128.GAPgeofem for a single node run.

Figure 7.2: Single node results of the cluster analysis (DBSCAN followed by spectral clustering) performed
on 80 phases of 128.GAPgeofem. Six clusters are produced, and the best configuration for each
cluster is depicted in the form {CPU_freq, uncore_freq}.

Best rts-specific configurations

Table 7.3 lists the rts-specific best configurations for the rts’s of 128.GAPgeofem for each cluster. The
rts’s are identified by their call-paths, and the best configurations are specified by the {CPU_freq, un-
core_freq} settings. As we can see, the cluster-best configurations for the phases depicted in Figure 7.2
are also the best configurations for the rts’s of geofem_solver_cg_11. This means that the intra-phase dy-
namism does not have an effect on the selection of the rts-best configurations. The best settings for the rts’s
of mat_ass_thermal_main_361 indicate a high CPU frequency and low uncore frequency for all clusters
except for cluster 6.
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Table 7.3: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of 128.GAPgeofem for a single node run.

Rts Clusters

1 2 3 4 5 6

/PhaseRegion/geofem_solver_11/
geofem_solver_cg_11

{1.2, 1.6} {1.4, 2.0} {1.2, 2.1} {1.7, 1.8} {2.3, 2.3} {1.4, 3.0}

/PhaseRegion/mat_ass_thermal/
mat_ass_thermal_main_361

{2.5, 1.7} {2.4, 1.2} {2.5, 1.2} {2.5, 1.7} {2.3, 1.7} {2.5, 2.5}

Multiple nodes

For multi-node experiments, we ran the application on two compute nodes on Taurus using 48 MPI processes
on 48 cores.

Cluster analysis

In Figure 7.3, the points on the graph represent the 21 eigenvalues for the 21 noise points obtained as a
result of DBSCAN on 128.GAPgeofem. The X-axis represents the number of eigenvalues, and the Y-axis
represents the eigenvalues for the normalized graph Laplacian matrix. We can see that there are small
changes between the first two eigenvalues, and a large eigengap between the second and third eigenvalues,
as shown by a red line. Thus, the value k was selected as 2.

Figure 7.3: Eigenvalues computed for the graph Laplacian matrix for 128.GAPgeofem for a multi-node run.

Figure 7.4 illustrates the final clustering consisting of seven clusters obtained after performing DBSCAN
and spectral clustering for 128.GAPgeofem. Clusters 1-5 result from DBSCAN, while clusters 6 and 7 result
from spectral clustering. Although the clusters have a dispersion based on the level of L2 cache misses, they
consist of fewer points than in the case of the single node run. The best configuration of the CPU and uncore
frequencies for each cluster is defined by the {CPU_freq, uncore_freq} setting. As with the case of the
single node run, it can be observed that all the clusters have a relatively low value of the CPU frequency.
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Figure 7.4: Multi-node results of the cluster analysis (DBSCAN followed by spectral clustering) performed
on 80 phases of 128.GAPgeofem. Seven clusters are produced, and the best configuration for
each cluster is depicted in the form {CPU_freq, uncore_freq}.

Best rts-specific configurations

Table 7.4 lists the rts-specific best configurations for the rts’s of 128.GAPgeofem for each cluster. The rts’s
are identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
settings. Except for clusters 4 and 7, the rts-specific best configurations for geofem_solver_cg_11 are the
same as the cluster-best configurations for the phases depicted in Figure 7.4. This shows that the intra-phase
dynamism does have an effect in multi-node runs. Moreover, the CPU frequency setting for all the clusters
is in a low-medium range, with a medium-high setting for the uncore frequency. The best settings for the
rts’s of mat_ass_thermal_main_361 indicate a medium-high range for the CPU frequency and low uncore
frequency for all the clusters.

Table 7.4: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of 128.GAPgeofem for a multi-node run.

Rts Clusters

1 2 3 4 5 6 7

/PhaseRegion/geofem_solver_11/
geofem_solver_cg_11

{1.6, 2.8} {1.3, 2.0} {1.4, 2.1} {1.3, 3.0} {1.3, 1.8} {1.9, 2.0} {1.3, 1.6}

/PhaseRegion/mat_ass_thermal/
mat_ass_thermal_main_361

{2.0, 1.4} {2.5, 1.8} {1.9, 1.2} {2.5, 1.7} {2.4, 1.3} {2.3, 1.7} {1.8, 2.0}

Theoretical Savings

Table 7.5 presents the theoretical energy savings in percentages computed by the interphase tuning plugin
when the phases are executed with their corresponding cluster-best configurations, and the rts’s with the
rts-specific best configurations. The savings computed by the plugin are theoretical, in that they represent
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(a) Single node run. (b) Multi-node run.

Figure 7.5: The trend in the energy consumption across the phases of 128.GAPgeofem.

the theoretical maximum savings that could be obtained if the 80 phases that were seen during DTA are
executed again with their best configurations. These values make no assumptions about the actual switching
overhead that is incurred during production runs.

Column 1 presents the run type (single node or multi-node), column 2 presents the static savings for the
phase, which arise from aggregating the improvement in the normalized energy across all the clusters when
the phase is run with its cluster-best configuration. Static savings for the rts’s (column 3) arise from ag-
gregating the improvement in the normalized energy across all the clusters when the rts’s are run with the
static cluster-best configuration. Dynamic savings for the rts’s (columns 4 and 5) arise from aggregating the
improvement in the normalized energy across all the clusters when the rts’s are run with the rts-specific best
configurations from Table 7.3.

We observe high static savings of 38.39% for the single node run and 22.9% for multi-node run. Static
savings for the rts’s, however, are not that high, and account to 3.45% and 4.53% for the single-node and
multi-node run respectively. We can also observe high dynamic savings for the rts’s w.r.t. the cluster-best
(static-best) configuration as well as the default system configuration.

Table 7.5: Energy savings (static savings for the phase and the rts’s, and dynamic savings for the rts’s w.r.t.
static-best and default configurations respectively), computed using the interphase plugin for
128.GAPgeofem.

Run
configuration

Static savings
for phase

(%)

Static savings
for rts’s

(%)

Dynamic savings for rts’s
w.r.t. static-best config.

(%)

Dynamic savings for rts’s
w.r.t. default config.

(%)

Single node 38.39 3.45 16.23 19.12
Multi-node 22.90 4.53 12.69 16.65

7.3.1.2 Evaluation of Runtime Application Tuning

During production runs, the RRL reads the tuning model containing the best found configurations for the
phase and the rts’s. Figure 7.5 illustrates the trend in the energy consumption for the untuned version on a
single node and multiple compute nodes for the 80 DTA phases. The X-axis represents the phase number,
and the Y-axis represents the node energy consumed in Joules.

Table 7.6 shows the runtime savings obtained for the job energy (column 2), CPU energy (column 3) and
the execution time (column 4) for 128.GAPgeofem for the three cluster predictors: Markov chain, one-bit
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and two-bit cluster predictors. As we can see, the three predictors result in job and CPU energy savings of
over 5% for the single node run, with the two-bit cluster predictor resulting in the highest runtime savings.
It also produced the least performance (time-to-solution) degradation of only 0.39%, as indicated by the red
arrow.

We see that all three predictors perform much better for multi-node runs, with the two-bit predictor resulting
in the highest job and CPU energy savings of 10.64% and 13.56% respectively, followed by the Markov
chain predictor, which results in CPU energy savings of 11.18%. While the Markov chain predictor comes
second to the two-bit cluster predictor in terms of the energy savings, it produces the least performance
degradation of 3.73%, as indicated by the red arrow.

Table 7.6: Runtime savings obtained for 128.GAPgeofem over the untuned version using Markov chain,
one-bit and two-bit runtime cluster predictors.

Run
configuration

Job energy (%) CPU energy (%) Execution time (%)

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Single node 6.06

Þ

5.71

Þ

6.5

Þ

6.03

Þ

6.51

Þ

6.68

Þ

-1.37 Þ -0.58 Þ -0.39 Þ

Multi-node 8.34

Þ

5.63

Þ

10.64
Þ

11.18

Þ

8.74

Þ

13.56

Þ

-3.73 Þ -9.7 Þ -5.22 Þ

7.3.2 sam(oa)2

sam(oa)2 [127], which stands for Space-filling Curves and Adaptive Meshes for Oceanic And Other Appli-
cations and developed at the Technische Universität München performs the simulation of a tsunami wave
propagation, and a two-phase porous media flow. It can also be used on all finite-element-type or finite-
volume-type applications that are based on matrix-free, element-oriented formulations. The simulation of a
tsunami wave propagation uses the Sierpinski space-filling curve traversal for its adaptive triangular meshes,
and is performed by solving a system of time-dependent Partial Differential Equations (PDEs) [128], called
shallow water equations (SWE). SWEs describe the behaviour of fluids of a certain depth over time, based
on some initial condition with the assumption that the effect of flow in the vertical direction can be neglected,
thus generating a two-dimensional domain.

sam(oa)2 uses ASAGI (a pArallel Server for Adaptive GeoInformation) [129], an open-source library to
read geographical data from NetCDF input files in the form of a Cartesian grid for parallel simulations
with adaptive mesh refinement. ASAGI distributes the geographic datasets over all compute nodes only on-
demand, so that only a portion of the dataset is stored on each node. The inputs for the simulation include
the initial conditions, such as changes in the ocean floor caused by an earthquake, conditions of the uneven
ocean floor, i.e., elevation of the sea floor and bathymetry data, as well as the height and velocity [130].

The simulation first sets an initial state and then refines the grid incrementally until the user-defined refine-
ment level is reached. Next, it applies a displacement to the bathymetry data and the water height to create
the initial tsunami wave, and finally, the time stepping phase executes the simulation on the generated grid,
combined with adaptive mesh refinement in each iteration. The simulation domain, which is the ocean, is
discretized with a Cartesian grid, and the unknowns of the PDE are placed at various grid elements (grid
cells, vertices or edges), and are solved by computing the values at each grid element [131]. The compu-
tation of new cell states involves the exchange of boundary cell layers between neighboring processes, and
the computation of fluxes between cells is done using Augmented Riemann solvers [128].
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For our experiments, we used the hybrid MPI+OpenMP version of sam(oa)2, and compiled it for MPI, while
disabling OpenMP. The experiments used the 2D bathymetry input dataset from GEBCO [132] generated
for the Tohoku tsunami in 2011 near the east coast of Japan. We also set the maximum refinement level
to 20. Figure 7.6 illustrates the sequence of grid refinements performed for a refinement depth of 20 as
the simulation progresses through the tsunami time steps executed using 24 MPI processes after initially
performing the earthquake displacement time steps.

Figure 7.6: The grid refinement procedure in sam(oa)2 as the simulation progresses through the tsunami
time steps.

7.3.2.1 Evaluation of Design-Time Analysis

The phase region for sam(oa)2 was determined using a combination of the domain knowledge from the
application expert and inspection of the cubex file using CUBE. The application first performs small time
steps that include a displacement to simulate the earthquake, and then performs the regular tsunami time
steps after the earthquake is over. We annotated the second loop, i.e., the one that performs the tsunami time
steps as the phase region.

Table 7.7 presents the result of the significant region analysis and dynamism detection by readex-dyn-detect
for sam(oa)2. The region traverse_section performs an Euler time stepping, and its rts’s exhibit intra-phase
dynamism w.r.t. variations in both compute intensity and the execution time, while the region traverse_grids
performs an adaptive time stepping, and exhibits intra-phase dynamism due to the variations in only the
compute intensity. This is because the size of the adaptive time step changes as the calculation proceeds
in order to control the errors and ensure stability properties so that a constant simulation execution time is
maintained.

Table 7.7: Significant regions identified by readex-dyn-detect for sam(oa)2.

Significant region Rts call-path
Intra-phase dynamism

Compute
intensity

Execution
time

swe_euler_timestep.traverse_section
/PhaseRegion/eulertraverse/
eulertraversewrapper/eulertraversesection

4 4

swe_adapt.traverse_grids
/PhaseRegion/traverseinplace/
traverseoutofplace/traversegrids

4 8

Single node

For single node experiments, we ran the application on a single compute node on Taurus using 24 MPI
processes on 24 cores. We set the number of samples, i.e., the number iterations to run during a tuning step
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to 120. This means that we performed cluster analysis for these 120 points during DTA.

Cluster analysis

In Figure 7.7, the points on the graph represent the 10 eigenvalues for the 10 noise points obtained as a result
of DBSCAN on sam(oa)2. The X-axis represents the number of eigenvalues, and the Y-axis represents the
eigenvalues for the normalized graph Laplacian matrix. We can see that there are small changes between
the first two eigenvalues, and a large eigengap between the second and third eigenvalues, as shown by a red
line. Thus, the value k, representing the input for the number of clusters for K-means at the end of spectral
clustering was selected as 2.

Figure 7.7: Eigenvalues computed for the graph Laplacian matrix for sam(oa)2 for a single node run.

Figure 7.8 illustrates the final clustering consisting of four clusters obtained after performing DBSCAN and
spectral clustering for sam(oa)2. Clusters 1 and 2 result from DBSCAN, while clusters 3 and 4 result from
spectral clustering. We can see that the majority of the points lie in cluster 1, since the points lie close to each
other. The best configuration of the CPU and uncore frequencies for each cluster is defined as {CPU_freq,
uncore_freq}. Cluster 2, which has a high value of normalized compute intensity has a high setting for the
CPU frequency, and a low setting for the uncore frequency. Conversely, cluster 3 has a low setting for the
CPU frequency since it is identified by low levels of compute intensity. For cluster 4, a combination of high
CPU frequency and medium-high uncore frequency is optimal, since it lies in a region of medium levels of
both compute intensity and L2 cache misses.

Best rts-specific configurations

Table 7.8 lists the rts-specific best configurations for the rts’s of sam(oa)2 for each cluster. The rts’s are
identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
settings. As we can see, the cluster-best configurations for the phases depicted in Figure 7.8 are not nec-
essarily the best configurations for the rts’s of the significant regions. The best configuration for the rts’s
of swe_euler_timestep.traverse_section for all the clusters has a high setting for the CPU frequency, and
a low setting for the uncore frequency, except in cluster 4. Thus, we can say that this region is compute-
bound. A similar behavior is seen for the rts’s of the region swe_adapt.traverse_grids for clusters 1 and 2,
while clusters 3 and 4 have a lower setting of the CPU frequency and a slightly higher value of the uncore
frequency.
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7.3 Exploitation of Inter-Phase Dynamism

Figure 7.8: Single node results of the cluster analysis (DBSCAN followed by spectral clustering) performed
on 120 phases of sam(oa)2. Four clusters are produced, and the best configuration for each
cluster is depicted in the form {CPU_freq, uncore_freq} .

Table 7.8: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of sam(oa)2 for a single node run.

Rts Clusters

1 2 3 4

/PhaseRegion/eulertraverse/
eulertraversewrapper/eulertraversesection

{2.3, 1.8} {2.5, 1.8} {2.2, 1.3} {2.3, 2.5}

/PhaseRegion/traverseinplace/
traverseoutofplace/traversegrids

{2.4, 1.2} {2.5, 1.8} {1.5, 1.6} {1.9, 2.1}

Multiple nodes

For multi-node experiments, we ran the application on a two compute nodes on Taurus using 48 MPI pro-
cesses on 48 cores. We set the number of samples to 110 to see the effect of changing the number of sample
points on the clustering, and ultimately, the selection of best configurations.

Cluster analysis

In Figure 7.9, the points on the graph represent the 7 eigenvalues for the 7 noise points obtained as a result
of DBSCAN on sam(oa)2. The X-axis represents the number of eigenvalues, and the Y-axis represents the
eigenvalues for the normalized graph Laplacian matrix. The large eigengap between the first and the second
eigenvalues defines the value k as 1.

Figure 7.10 illustrates the final clustering consisting of three clusters obtained after performing DBSCAN
and spectral clustering for sam(oa)2. Clusters 1 and 2 result from DBSCAN, while cluster 3 results from
spectral clustering. There are three noise points colored in red, which were not clustered by both DBSCAN
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Figure 7.9: Eigenvalues computed for the graph Laplacian matrix for sam(oa)2 for a multi-node run.

and spectral clustering. The clusters are separated by the number of normalized conditional branch instruc-
tions and L2 cache misses. The best configuration of the CPU and uncore frequencies for each cluster is
illustrated by the {CPU_freq, uncore_freq} setting. The best configuration for cluster 1 is a high setting
for the CPU frequency and a low uncore frequency resulting from the low number of L2 cache misses and
conditional branch instructions. Clusters 2 and 3 have a medium-high setting for both core and uncore
frequencies, corresponding to the rise in L2 cache misses and conditional branch instructions.

Figure 7.10: Multi-node results of the cluster analysis (DBSCAN followed by spectral clustering) per-
formed on 110 phases of sam(oa)2. Three clusters are produced, and the best configuration
for each cluster is depicted in the form {CPU_freq, uncore_freq}.

Best rts-specific configurations

Table 7.9 lists the rts-specific best configurations for the rts’s of sam(oa)2 for each cluster. The rts’s are
identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
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settings. The best configurations for the rts’s follow a similar trend as the single node run, with a high
setting for the CPU frequency. The adaptive traversal region, however shifts from being compute-bound to
memory-bound in cluster 3, resulting in a higher setting for the uncore frequency.

Table 7.9: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of sam(oa)2 for a multi-node run.

Rts Clusters

1 2 3

/PhaseRegion/eulertraverse/eulertraversewrapper/eulertraversesection {2.5, 1.5} {2.2, 2.3} {2.4, 1.2}

/PhaseRegion/traverseinplace/traverseoutofplace/traversegrids {2.5, 2.9} {2.2, 2.3} {1.6, 2.5}

Theoretical Savings

Table 7.10 presents the theoretical energy savings in percentages computed by the interphase tuning plugin
for 120 phases for the single node run, and 110 phases for the multi-node run. Column 1 presents the run
type (single node or multi-node), column 2 presents the static savings for the phase, column 3 represents the
static savings for the rts’s, and columns 4 and 5 represent the dynamic savings for the rts’s.

We observe high static savings of 24% for the single node run and 33% for the multi-node run respectively.
Static and dynamic savings for the rts’s, however, are not that high for the single node run. On the other
hand, the static and dynamic savings (w.r.t. the default configuration) show a dramatic increase for the rts’s
at 25.67% and 28.82% respectively for the multi-node run.

Table 7.10: Energy savings (static savings for the phase and the rts’s, and dynamic savings for the rts’s w.r.t.
static-best and default configurations respectively), computed using the interphase plugin for
sam(oa)2.

Run
configuration

Static savings
for phase

(%)

Static savings
for rts’s

(%)

Dynamic savings for rts’s
w.r.t. static-best config.

(%)

Dynamic savings for rts’s
w.r.t. default config.

(%)

Single node 24.06 5.3 4.17 9.25
Multi-node 33.16 25.67 4.24 28.82

7.3.2.2 Evaluation of Runtime Application Tuning

Figure 7.11 illustrates the trend in the energy consumption for the untuned version of sam(oa)2 for the
phases of DTA on a single node and multiple compute nodes. The X-axis represents the phase number,
and the Y-axis represents the node energy consumed in Joules. We can see that the variations in the energy
consumption are more drastic for the multi-node run as compared to the single-node run.

Table 7.11 shows the dynamic runtime savings obtained for the job energy (column 2), CPU energy (column
3) and the execution time (column 4) for sam(oa)2 for the three cluster predictors: Markov chain, one-bit
and two-bit cluster predictors.

As we can see, the three predictors result in significant savings for the job and CPU energy as well as the
execution time in the range 16.9%-19.14% across single and multi-node runs. The improvement in the
performance can also be attributed to switching to a higher uncore frequency during MPI communications.
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(a) Single node run. (b) Multi-node run.

Figure 7.11: The trend in the energy consumption across the phases of sam(oa)2.

Table 7.11: Runtime savings obtained for sam(oa)2 over the untuned version using Markov chain, one-bit
and two-bit runtime cluster predictors.

Run
configuration

Job energy (%) CPU energy (%) Execution time (%)

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Single node 17

Þ

16.9

Þ

17.1
Þ

17.32

Þ

17.07

Þ

17.25

Þ

17.2

Þ

17.4

Þ

17.73

Þ

Multi-node 18.31

Þ

18.14

Þ

18.61
Þ

18.4

Þ

18.15

Þ

18.6

Þ

18.85

Þ

18.81

Þ

19.14

Þ

The two-bit cluster predictor produced the highest savings in all three parameters for both single node
and multi-node experiments. The Markov chain predictor follows closely, and even gaining slightly more
savings of 17.32% for the CPU energy for the single node run.

7.3.3 INDEED

INDEED [3] is a finite element software with an implicit time integration, and is developed by GNS
(Gesellschaft für Numerische Simulation mbH). INDEED offers high-precision calculation models for the
simulation of forming processes, such as modeling of large plastic deformations, and determining stress
distribution during sheet metal forming processes.

The simulation involves a stationary workpiece and a number of tools with different geometries that move
towards this workpiece [133]. When there is a contact between the tool and the workpiece, the software
performs an adaptive mesh refinement, where the number of finite element nodes that it uses increases
between time steps, which means that the computational cost also increases with the rising number of
elements. When the tools come in contact with the workpiece for the first time, a lot of computational
work is done to deal with this by refining the mesh. In order to keep the problem tractable, INDEED then
reduces the time step, thereby reducing the computational cost.

The simulation code in INDEED has more than 2000 subroutines, of which less than half will actually be
used in any given run. The invocation of a specific routine depends on the design of the input data set,
which involves selecting various mathematical and engineering properties. These include different types
of elements (membranes, shells, volume elements), types of contact (rigid/deformable and deformable/de-
formable), types of material (mild steel, high strength steel, aluminum, . . . ), friction models, types of tool
control (path control, force control, rotation, bending, . . . ), types of operations (punching of holes, trimming,
. . . ), and surface and volume load among other properties.
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The simulation in INDEED consists of three loops: time loop, contact loop and equilibrium loop. At the
start of the time loop, which is the outermost loop, the algorithm checks if there is a new tool, configures
the initial settings and performs an iteration procedure for each time step in order to produce an equilibrium
of simulated forces. Then, it starts the contact loop upon the contact of the tool with the workpiece. Each
iteration of the contact loop executes the innermost loop, which is the equilibrium loop, which solves a
system of equations until equilibrium is achieved. The contact loop is executed until there is no more
change in the contact points. Depending on what happens mechanically in the simulated process at the
current time step, it may take a larger or a smaller number of iterations to reach equilibrium. As a result of
the implicit time integration, the computational cost is relatively high. On the other hand, it provides a high
degree of accuracy of the numerical solutions.
INDEED offers an MPI and an OpenMP version, but our work is concentrated on the OpenMP version
because it is more important from the perspective of the users.

7.3.3.1 Evaluation of Design-Time Analysis

We used 12 OpenMP threads to run INDEED with the input data set for a steel sheet on a single compute
node of Taurus. The steel benchmark runs for a total of 154 iterations of the time loop, and results in a long
execution time per phase. We turned off Score-P instrumentation for the threads because of the bug in the
Score-P OA interface, as mentioned earlier.
Table 7.12 presents the result of the significant region analysis and dynamism detection by readex-dyn-
detect. As we can see, five significant regions were detected for INDEED. The region restou has two rts’s
that can be identified by their different call-paths. However, they exhibit intra-phase dynamism due to
variation in only the compute intensity. Of the other significant regions, only write_var and beltop show
variations in the execution time.

Table 7.12: Significant regions identified by readex-dyn-detect for INDEED.

Significant region Rts call-path
Intra-phase dynamism

Compute
intensity

Execution
time

write_var /PhaseRegion/cps04/write_eval_data/write_var 4 4

restou
/PhaseRegion/restou 4 8

/PhaseRegion/rezvor/wrdump/restou 4 8

lines3 /PhaseRegion/cps02/itsteu/lines3 4 8

beltop /PhaseRegion/vsorel1/vsorelf/beltop 4 4

crit04 /PhaseRegion/cps01/geocr4/crit04 4 8

The annotation of the phase region in INDEED is slightly more complicated than the other applications since
there are three loops, i.e., time loop, contact loop and equilibrium loop that have varying levels of dynamism.
The user may annotate any of these loops as the phase region. We used a combination of application expert
knowledge and visualization of the cubex file using CUBE to identify the phase region. We observed that
the time loop, i.e., the outermost loop and the equilibrium loop exhibited the most inter-phase dynamism.
Although annotating the equilibrium loop as the phase region is a valid choice, we used the time loop as the
phase region for our experiments due to its longer running time per phase.
To perform DTA, we set the number of samples, i.e., the number experiments or iterations of the simulation
loop to 110. This means that we performed cluster analysis for these 110 points during DTA.
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Cluster analysis

In Figure 7.12, the points on the graph represent the 12 eigenvalues for the 12 noise points obtained as a
result of DBSCAN on INDEED. The X-axis represents the number of eigenvalues, and the Y-axis represents
the eigenvalues for the normalized graph Laplacian matrix. We can see that there is a large eigengap between
the second and third eigenvalues, as shown by a red line. Thus, the value of k was selected as 2.

Figure 7.12: Eigenvalues computed for the graph Laplacian matrix for INDEED for a single node run.

Figure 7.13 illustrates the final clustering consisting of five clusters obtained after performing DBSCAN and
spectral clustering for INDEED. Clusters 1-3 result from DBSCAN, while clusters 4 and 5 result from spec-
tral clustering. The clusters have a marked distinction between them due to the variation in the normalized
L2 cache misses. The exception is cluster 5, which has a much lower range of the L2 cache misses, and a
higher degree of variation in the compute intensity.

The best configuration of the CPU and uncore frequencies for each cluster is illustrated by the {CPU_freq,
uncore_freq} setting. We see that for clusters that lie in a region of low normalized L2 cache misses, a lower
setting of the uncore frequency is recommended. A higher amount of traffic entering the L2 cache results
in a higher setting of the uncore frequency, as indicated by clusters 1, 2 and 4. This means that a higher
uncore frequency is beneficial when the data is outside the L2 cache because accesses can happen much
faster. It is also clear that INDEED benefits from a high setting for the CPU frequency due to the adaptive
mesh refinement.

Best rts-specific configurations

Table 7.13 lists the rts-specific best configurations for the rts’s of INDEED for each cluster. The rts’s are
identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
settings. We can see that the rts’s of restou have the same optimal configurations across all the clusters. This
means that the intra-phase variations in the compute intensity for this region had no effect on the selection
of the optimal configuration. The rts’s of the region write_var are not called in the phases of clusters 4 and
5, so no optimal configuration exists for these clusters. It can also be observed that the best configuration for
the cluster is not necessarily the best configuration for the rts’s, and that all the rts’s with the exception of
/PhaseRegion/cps02/itsteu/lines3 have a medium-high setting for the CPU frequency in the range of 1.9-2.5
GHz for all the clusters.
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Figure 7.13: Single node results of the cluster analysis (DBSCAN followed by spectral clustering) per-
formed on 110 phases of INDEED. Five clusters are produced, and the best configuration for
each cluster is depicted in the form {CPU_freq, uncore_freq}.

Table 7.13: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of INDEED for a single node run.

Rts Clusters

1 2 3 4 5

/PhaseRegion/cps04/write_eval_data/write_var {2.5, 2.6} {2.3, 2.4} {1.9, 1.4} - -

/PhaseRegion/restou {2.5, 1.5} {2.4, 1.8} {2.5, 1.2} {1.9, 2.2} {2.5, 2.0}

/PhaseRegion/rezvor/wrdump/restou {2.5, 1.5} {2.4, 1.8} {2.5, 1.2} {1.9, 2.2} {2.5, 2.0}

/PhaseRegion/cps02/itsteu/lines3 {1.7, 2.5} {2.1, 2.4} {2.2, 1.9} {1.9, 1.2} {2.2, 1.9}

/PhaseRegion/vsorel1/vsorelf/beltop {2.5, 1.5} {2.3, 1.3} {2.5, 1.2} {2.2, 2.2} {2.5, 2.0}

/PhaseRegion/cps01/geocr4/crit04 {2.1, 2.8} {2.3, 2.4} {2.3, 2.0} {1.9, 1.2} {2.5, 2.0}

Theoretical Savings

Table 7.14 presents the theoretical energy savings in percentages computed by the interphase tuning plugin
for the phase and rts’s of INDEED. Column 1 presents the run type (single node), column 2 presents the
static savings for the phase, column 3 represents the static savings for the rts’s, and columns 4 and 5 present
the dynamic savings for the rts’s.

We observe maximum savings of 15.02% for the phase. The static savings for the rts’s amount to 7.16%,
while the dynamic savings w.r.t. the static-best configuration is 4.06%, and default configuration is 10.93%.
Since all the clusters of the phases of INDEED benefit from a high setting for the CPU frequency, we can
infer that the static savings for the phase are majorly influenced by the uncore frequency switching. Thus,
high CPU frequency values combined with uncore frequency switching can theoretically produce good
savings for the phases and the rts’s.
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Table 7.14: Energy savings (static savings for the phase and the rts’s, and dynamic savings for the rts’s w.r.t.
static-best and default configurations respectively), computed using the interphase plugin for
INDEED.

Run
configuration

Static savings
for phase

(%)

Static savings
for rts’s

(%)

Dynamic savings for rts’s
w.r.t. static-best config.

(%)

Dynamic savings for rts’s
w.r.t. default config.

(%)

Single node 15.02 7.16 4.06 10.93

Figure 7.14: The trend in the energy consumption across the phases of INDEED.

7.3.3.2 Evaluation of Runtime Application Tuning

During production runs, the RRL reads the tuning model containing the best found configurations for the
phase and the rts’s. Figure 7.14 illustrates the trend in the energy consumption for the 110 phases of DTA
for the untuned version on a single compute node of Taurus. The X-axis represents the phase number, and
the Y-axis represents the node energy consumed in Joules. As we can see, the variations in the energy
consumption across the initial 30-40 phases are drastic as a result of the adaptive mesh refinement.

Table 7.15 shows the dynamic runtime savings obtained for the job energy (column 2), CPU energy (column
3) and the execution time (column 4) for INDEED for the Markov chain, one-bit and two-bit cluster predic-
tors. As we can see, the Markov chain predictor outperforms the one-bit and the two-bit cluster predictors in
all the three parameters: job energy with 6.4% savings, CPU energy with 6.4% savings, and time-to-solution
with 7.7% savings. The one-bit predictor also seems to do very well for the three aspects. Moreover, all
three predictors improve the time-to-solution for the single node run.

From the above plots and figures, it is evident that it is always advisable to choose the highest possible CPU
frequency. The optimal choice of the other tuning parameters, such as the uncore frequency and the number
of OpenMP threads depends on the objective function. For example, varying the number of OpenMP threads
results in a lower runtime, but does not have much impact on the energy savings. Since we were unable to
optimize this tuning parameter, we cannot make further inferences.
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Table 7.15: Runtime savings obtained for INDEED over the untuned version using Markov chain, one-bit
and two-bit runtime cluster predictors.

Run
configuration

Job energy (%) CPU energy (%) Execution time (%)

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Single node 6.4

Þ

6.1

Þ

5.44

Þ

6.4

Þ

6.04

Þ

5.54

Þ

7.7
Þ

7.3

Þ

7.04

Þ

7.3.4 miniMD

miniMD is a lightweight, parallel Molecular Dynamics (MD) micro-benchmark in the Mantevo benchmark
suite maintained by Sandia National Laboratories. The code is written in C++, and performs parallel molec-
ular dynamics simulation of a Lennard-Jones or an Embedded Atom Model (EAM) system, and is a weakly
scaling benchmark [134]. The benchmark simulates the behavior of atoms, and describes the interaction
between two uncharged molecules or atoms under the influence of different forces. miniMD uses spatial
decomposition MD, where the 3D simulation space consisting of atoms is divided into cells of dimensions
equal to the sum of the cutoff distance and a margin, and subsets of cells are owned by individual proces-
sors [135].

In each iteration of the time loop, short-range force calculations are performed for all pairs of atoms that are
within the cutoff distance using a pre-computed list of near neighbors for each atom. This is done to avoid
evaluating the distance between all pairs of atoms. The two most time consuming portions of the code are
the force computation and the creation of the neighbor list for each atom. New forces are then calculated
by considering the current neighbor list for each atom. Finally, inter-node communication is performed
between the nodes to exchange the position and force information for the atoms near the boundaries.

During the simulation, the atoms may move from one node to another in a process known as atom exchange.
The force acting on one atom may depend on another atom existing on another node, thus resulting in
the need to cross node boundaries. miniMD uses MPI calls to perform the atom exchange by sending the
positions of the dependent atoms from each node to its neighboring nodes before the force computation, and
receiving some force contribution from the neighboring nodes after the force computation [136].

The benchmark takes in an input file, which enables users to specify the type of potential (Lennard-Jones or
EAM), problem size, number of time steps, size of each time step, temperature, atom density, and particle
interaction cutoff distance. We used the Lennard-Jones potential and set the reneighboring of atoms to be
performed once every 10 iterations for a total of 100 time steps (or phases) for both single and multi-node
experiments for miniMD.

7.3.4.1 Evaluation of Design-Time Analysis

Table 7.16 presents the result of the significant region analysis and dynamism detection by readex-dyn-detect
tool. To instrument miniMD, we first identified the for-loop in the Integrate::run() function in integrate.cpp
as the phase region. The for-loop takes the number of time steps from the input file, and calls three functions,
namely borders(), build() and compute() that readex-dyn-detect returns as significant regions. As we can see,
the region borders() has no dynamism w.r.t. either compute intensity or execution time. However, readex-
dyn-detect returns it as a significant region since the granularity of this region is greater than the minimum
threshold of 100 ms. Another interesting observation is that none of the regions have variations in the
execution time.
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Table 7.16: Significant regions identified by readex-dyn-detect for miniMD.

Significant region Rts call-path
Intra-phase dynamism

Compute
intensity

Execution
time

build /PhaseRegion/NEIGHBOR_BUILD 4 8

compute /PhaseRegion/FORCELJ_COMP_HALF 4 8

borders /PhaseRegion/COMM_BORDERS 8 8

We also observe that once every 10 phases, regions build() and borders() are called due to the reneighboring
process. Consequently, during these phases, the compute() region contributes little to the energy consump-
tion and the execution time. This is the source of inter-phase dynamism in miniMD. This periodicity in
the dynamism is associated to one of the input parameters for miniMD - reneighboring atoms once every N
steps/iterations.

To perform inter-phase analysis, we set the number of samples to 80 for both single node and multi-node
experiments. This means that we performed cluster analysis for these 80 points during DTA.

Single node

For single node experiments, we ran the application on a single compute node on Taurus using 4 MPI
processes on 24 cores. We configured miniMD with a problem size of 90x90x90 to simulate 2,916,000
atoms with a uniform density of 0.8442.

Cluster analysis

In Figure 7.15, the points on the graph represent the 10 eigenvalues for the 10 noise points obtained as a
result of DBSCAN on miniMD. The X-axis represents the number of eigenvalues, and the Y-axis represents
the eigenvalues for the normalized graph Laplacian matrix.

Figure 7.15: Eigenvalues computed for the graph Laplacian matrix for miniMD for a single node run.

We can see that there is one large eigengap between points 2 and 3 as shown by a red line, with essentially
no gap between the first two points. Thus, the value k, representing the input for the number of clusters

122



7.3 Exploitation of Inter-Phase Dynamism

Figure 7.16: Single node results of the cluster analysis (DBSCAN followed by spectral clustering) per-
formed on 80 phases of miniMD. Nine clusters are produced, and the best configuration for
each cluster is depicted in the form {CPU_freq, uncore_freq}.

for K-means at the end of spectral clustering was selected as 2. After spectral clustering, it was observed
that one of the clusters had fewer points than the minimum number of points, i.e., 4. Thus, this cluster was
rejected by the plugin, and the points were marked as noise.

Figure 7.16 illustrates the final clustering consisting of nine clusters obtained after performing DBSCAN
and spectral clustering for miniMD. Clusters 1-8 result from DBSCAN, while cluster 9 results from spectral
clustering. We can see that the individual clusters are marked by varying levels of the normalized compute
intensity, with cluster 1 having the highest values.

The best configuration of the CPU and uncore frequencies for each cluster is illustrated by the {CPU_freq,
uncore_freq} setting. The best configurations for all the clusters have a medium-high setting for the CPU
frequency, and a transition from low to higher values of the uncore frequency as we move from high compute
intensity regions to low compute intensity regions. Cluster 9, which lies in an area of high L2 cache misses
has the highest setting of the uncore frequency. Clusters 1-8 generally benefit from a high CPU frequency
setting and a low uncore frequency setting.

Best rts-specific configurations

Table 7.17 lists the rts-specific best configurations for the rts’s of miniMD for each cluster. The rts’s are
identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
settings. As we can see, only the region compute() is called in all the phases, and has a high setting for
the core frequency and low setting for the uncore frequency (except in cluster 6). On the other hand,
the regions build() and borders() are called only in cluster 9, since this cluster contains every tenth phase
of the simulation loop. The core frequency setting for both regions is high, while the uncore frequency
is understandably low for build() since it only builds the neighbor list. The high setting for the uncore
frequency for borders() is due to the inter-node communication that is performed between the nodes to
exchange the position and force information. This could indicate that it is more memory-bound.

123



7 Evaluation

Table 7.17: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of miniMD for a single node run.

Cluster
Rts’s

/PhaseRegion/
FORCELJ_COMP_HALF

/PhaseRegion/
BUILD

/PhaseRegion/
COMM_BORDERS

1 {2.1, 1.5} - -

2 {2.3, 1.4} - -

3 {2.3, 1.7} - -

4 {2.5, 1.7} - -

5 {2.5, 1.3} - -

6 {1.9, 2.9} - -

7 {2.2, 1.4} - -

8 {2.2, 2.0} - -

9 {2.4, 2.2} {2.2, 1.4} {2.3, 2.4}

Multiple nodes

For multi-node experiments, we ran the application on a two compute nodes on Taurus using 48 MPI pro-
cesses on 48 cores. We configured miniMD with a problem size of 160x160x160 to simulate 16,384,000
atoms with a uniform density of 0.8442.

Cluster analysis

In Figure 7.17, the points on the graph represent the 12 eigenvalues for the 12 noise points obtained as a
result of DBSCAN on miniMD. The X-axis represents the number of eigenvalues, and the Y-axis represents
the eigenvalues for the normalized graph Laplacian matrix. We can see that there is a large eigengap between
the second and third eigenvalues, as shown by a red line. Thus, the value k was selected as 2.

Figure 7.18 illustrates the final clustering consisting of seven clusters obtained after performing DBSCAN
and spectral clustering for miniMD. Clusters 1-5 result from DBSCAN, while clusters 6 and 7 result from
spectral clustering. Like in the case of the single node run, the clusters have varying degrees of normalized
compute intensity. In addition, they also now display different levels of conditional branch instructions. We
also observe that cluster 5 is larger than the other clusters since more points lie in close proximity to each
other. There is, however, an outlier cluster, namely cluster 7, which consists of points lying close to clusters
5 and 1. This is due to the fact that these points were marked as noise by DBSCAN, and eventually clustered
by spectral clustering into a single cluster because they were more similar to each other than the points from
cluster 6.

The best configuration of the CPU and uncore frequencies for each cluster is illustrated by the {CPU_freq,
uncore_freq} setting. As with the case of the single node run, it can be observed that all the clusters have
a relatively high value for the best CPU frequency setting. The best configurations for clusters 1-5 and 7
are similar to the single node result, with a medium-high setting for the CPU frequency and a low-medium
setting for the uncore frequency. We also observed that varying the problem size for the multi-node config-
uration produced similar results.
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7.3 Exploitation of Inter-Phase Dynamism

Figure 7.17: Eigenvalues computed for the graph Laplacian matrix for miniMD for a multi-node run.

Figure 7.18: Multi-node results of the cluster analysis (DBSCAN followed by spectral clustering) per-
formed on 80 phases of miniMD. Seven clusters are produced, and the best configuration
for each cluster is depicted in the form {CPU_freq, uncore_freq}.

Best rts-specific configurations

Table 7.18 lists the rts-specific best configurations for the rts’s of miniMD for each cluster. The rts’s are
identified by their call-paths, and the best configurations are specified by the {CPU_freq, uncore_freq}
settings. The rts-specific best configurations for the region compute() for all the clusters except cluster 6
have a medium-high setting for the core frequency, and a low setting for the uncore frequency. For cluster
6, the best configuration is a low setting for the CPU frequency and a low-medium setting for the uncore
frequency. This is because the phases of this cluster perform reneighboring by calling the functions build()
and borders(). The best configuration for borders() is marked by a high setting for the uncore frequency,
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similar to the single node run.

Table 7.18: Rts-specific cluster-best configurations of the tuning parameters {CPU_freq, uncore_freq} for
the rts’s of the significant regions of miniMD for a multi-node run.

Cluster
Rts’s

/PhaseRegion/
FORCELJ_COMP_HALF

/PhaseRegion/
BUILD

/PhaseRegion/
COMM_BORDERS

1 {2.2, 1.4} - -

2 {1.9, 2.0} - -

3 {2.5, 1.4} - -

4 {2.3, 1.4} - -

5 {2.2, 1.7} - -

6 {1.6, 1.9} {1.9, 1.6} {1.3, 2.9}

7 {2.4, 2.1} - -

Theoretical Savings

Table 7.19 presents the theoretical energy savings in percentages computed by the interphase tuning plugin
for the phase and the rts’s of miniMD. Column 1 presents the run type (single node or multi-node), column
2 presents the static savings for the phase, column 3 represents the static savings for the rts’s, and columns
4 and 5 present the dynamic savings for the rts’s.

We observe maximum savings for the phase at 10.19% for the multi-node run. As expected, the dynamic
savings for the rts’s w.r.t. the static cluster-best configuration amounts to a maximum of 2.53% for the multi-
node run, while the single node run shows very little savings. This is because of the execution of the function
compute() for most of the application run, which does not give rise to much intra-phase dynamism. Thus,
the rts’s could potentially be run with the cluster-best configurations without much effect on the normalized
energy consumption.

Table 7.19: Energy savings (static savings for the phase and the rts’s, and dynamic savings for the rts’s w.r.t
static-best and default configurations respectively), computed using the interphase plugin for
miniMD.

Run
configuration

Static savings
for phase

(%)

Static savings
for rts’s

(%)

Dynamic savings for rts’s
w.r.t. static-best config.

(%)

Dynamic savings for rts’s
w.r.t. default config.

(%)

Single node 7.96 7.8 0.14 7.93
Multi-node 10.19 5.95 2.53 8.34

7.3.4.2 Evaluation of Runtime Application Tuning

During production runs, the RRL reads the tuning model containing the best found configurations producing
the lowest normalized energy consumption for the phase and the rts’s. Figure 7.19 illustrates the trend in the
energy consumption for the 80 phases of DTA for the untuned version on a single node and multiple compute
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7.3 Exploitation of Inter-Phase Dynamism

(a) Single node run. (b) Multi-node run.

Figure 7.19: The trend in the energy consumption across the phases of miniMD.

nodes. The X-axis represents the phase number, and the Y-axis represents the node energy consumed in
Joules. As we can see, the trend in the energy consumption for both runs show a similar effect where the
tenth phase has a sharp increase in the energy as an effect of the reneighboring procedure. We can also see
that the energy consumption for the multi-node run shows more variations between the phases as compared
to the single node run.

Table 7.20 shows the runtime savings obtained for the job energy (column 2), CPU energy (column 3) and
the execution time (column 4) for miniMD for the Markov chain, one-bit and two-bit cluster predictors. As
we can see, the three predictors perform poorly in improving the CPU energy for the single-node run. The
two-bit predictor outperforms the Markov chain and one-bit predictor for all the test cases for the single
node run. Moreover, all predictors improve the time-to-solution for the single node run, with the two-bit
predictor reducing the execution time by 12.7%. For multi-node runs, all three predictors perform nearly

Table 7.20: Runtime savings obtained for miniMD over the untuned version using Markov chain, one-bit
and two-bit runtime cluster predictors.

Run
configuration

Job energy (%) CPU energy (%) Execution time (%)

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Markov
chain

One
bit

Two
bit

Single node 3.0

Þ

3.45

Þ

6.6

Þ

0.21

Þ

0.33

Þ

0.8

Þ

4.2

Þ

4.2

Þ

12.7

Þ

Multi-node 4.39

Þ

4.46

Þ

4.41

Þ

8.03

Þ

8.08

Þ

8.34

Þ

-11.69 Þ -11.69 Þ -11.04 Þ
the same in reducing the job energy, CPU energy and the execution time, and result in much higher CPU
energy savings than the single node run. On the contrary to the single node results, the predictors degrade
the performance for multi-nodes by increasing the time-to-solution by nearly 11.7%.

The reason for low job energy savings for both single node and multi-node runs is because the cluster ids
change every 10 phases, meaning that after every 10 phases, a new cluster is formed. Hence, during RAT, an
unseen phase will always belong to a new cluster that was not identified during DTA. Thus, the predictors
will always mark the unseen phase as noise. Hence, we can conclude that the cluster predictors perform
poorly for applications like miniMD, where a new cluster is formed after every n phases.
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Summary and Outlook

Energy-efficiency optimization still remains one of the major hurdles in reaching Exascale levels of com-
puting. Current systems require more than 50 MW of power to reach the Exascale level, which is more
than the power budget allocated for HPC systems. One of the biggest challenges in this area is the focus of
application programmers in improving the performance of HPC applications while neglecting possible im-
provements in the energy/power consumption. Moreover, the lack of platform knowledge among developers
even as hardware vendors have implemented multiple power saving features in modern processors, such as
clock gating, power gating, clock modulation, DVFS and UFS, proves to be another challenge.

A key point is that pure hardware-based solutions cannot address the dynamism that applications exhibit.
Thus, a software tuning approach that can free the users from learning the intrinsics of the application
behaviour can be implemented with the help of autotuning. Autotuning enables to automatically walk a
search space of tuning knobs, or the so-called tuning parameters using a search strategy to optimize a specific
tuning objective. So far, existing tools generally rely on static tuning, where a single frequency is set for the
entire application run. However, this approach has the drawback of being too coarse-grained by aiming for
a "one solution fits all" approach, since most HPC applications typically exhibit changing characteristics.
These changes, known as application dynamism in different regions of the program, cause the program
execution to jump between compute-, memory-, and I/O-bound code regions. Thus, a more fine-grained
approach where a different setting of the tuning parameters is applied to each program region to exploit the
dynamic behavior of the application overcomes the static tuning approach.

To automate the tuning process, we presented a tools-aided approach by combining several pre-existing tools
with novel runtime tuning tools to guide the optimal tuning of the hardware (core frequency and uncore fre-
quency), the system software (number of OpenMP threads), and the application-level tuning parameters. As
a foundation for our work, we introduced the formalism, including the definitions of the terms used in the
rest of the thesis, and the tools (PTF, Score-P) and APIs (PAPI) that form the basis for our work. The work
done in this thesis is an extension of the EU-funded Horizon2020 project READEX, which combined tech-
nologies from two ends of the spectrum by applying the system scenario methodology from the embedded
systems domain to the HPC world to automate the process of determining the best settings of the tuning
parameters, called system configurations.

We identified that the definition of a phase varies across previous works. Some define it as a period of
execution with a stable behavior, which may contain multiple regions and iterations of the time loop. We
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define a phase as one iteration of the simulation loop that calls different program regions within a single
run. Our work is also different from other related work, as we not only determine optimal configurations
for different code regions when they exhibit varying behaviour (intra-phase dynamism), but even determine
different best configurations for different executions of the same region, called runtime situations (rts’s)
depending on the execution context, e.g., the relaxation operation on a certain grid level. Beyond that,
we also identify the data dependent variation in the characteristics of the phase over time, e.g., due to grid
refinement, and compute best configurations for groups of similarly behaving phases. Such dynamic changes
between the individual phases are called inter-phase dynamism.

Our work is based on a two-stage approach consisting of Design-Time Analysis (DTA), in which fine-
granular application regions are first filtered out using scorep-autofilter to reduce the overhead of instru-
mentation. Then, readex-dyn-detect identifies the regions that are worth tuning, and determines the tuning
potential of the application. We quantify the application dynamism w.r.t. two metrics: compute intensity
and execution time. A configuration file contains the significant regions, the tuning parameters, the energy
measurement plugin, and the tuning objective, and is used by PTF to perform DTA. We presented the in-
traphase and interphase tuning plugins that exploit the intra-phase and inter-phase dynamism respectively.
The intraphase tuning plugin exploits the application layer of the HPC stack by tuning the ATPs, such as dif-
ferent decomposition algorithms, preconditioners or blocking factors. It then determines a single static-best
configuration for all the phases, and individual rts-best configurations.

To exploit the inter-phase dynamism, we presented a set of metrics to characterize the phase behaviour.
These metrics, known as features are PAPI hardware performance counters that are used to monitor events
at the CPU level, and provide detailed insights on the application execution. The interphase tuning plugin
uses these features to group phases with similar characteristics using DBSCAN to first group phases that are
close to each other, and result in dense clusters. Then, the noise points from DBSCAN are analyzed by the
spectral clustering algorithm to determine further associations or similarities using eigengaps to perform a
graph cut. We emphasize that we set a hard limit on the minimum number of points in a cluster, and hence
discard any clusters containing fewer points than the threshold.

While the interphase tuning plugin can potentially select the best configurations for the clusters at an early
stage, we argue for the need for an additional tuning step to improve the confidence in the tuning result.
Hence, we perform search space optimization using a targeted search of the tuning parameters by selecting
a configuration to evaluate using a probabilistic random search strategy based on a Gaussian distribution.
This is premised on the idea that certain configurations are better suited to reduce the normalized energy
consumption of a cluster of phases, and thus, are more attractive for evaluation. The random strategy picks
a configuration from a discrete probability distribution that is generated from the summation of individ-
ual Gaussian bell curves of the attractor and repeller configurations. The Gaussians are functions of the
normalized energy consumption, and the distance between a configuration and an attractor or a repeller.

The best configurations for the phases and the rts’s determined by the intraphase and the interphase tuning
plugins are encapsulated in the tuning model. The tuning model guides the second stage of our approach,
called Runtime Application Tuning (RAT). During RAT, the READEX Runtime Library (RRL) reads the
tuning model, and dynamically switches the system configuration for the phase and the rts’s. For inter-phase
tuning, the tuning model additionally contains the ranges of the cluster features and the phases belonging
to each cluster. The application is first linked with the runtime cluster prediction library, which uses three
different cluster predictors based on a second-order Markov chain, one-bit and two-bit dynamic branch
prediction schemes to identify the phase behavior at runtime by predicting the cluster id of an unseen phase.

We highlight that our approach can be used with minimal user involvement. The pre-analysis steps automat-
ically filter overly fine-granular regions, and identify the dynamism. The tuning strategy results in a tuning
model with automatic compiler instrumentation. We manually instrument different significant regions only
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to reduce the instrumentation overhead, a general problem for all instrumentation-based tools. Furthermore,
our approach executes the application, in the worst case, two times during DTA. Moreover, these runs can
be limited to a representative set of progress loop iterations instead of the entire application run.

We compared the theoretical energy savings computed during DTA with runtime savings while taking into
account the switching overhead. We focused on three dynamic complex real-world applications, 128.GAP-
geofem, sam(oa)2 and INDEED, and one proxy benchmark, miniMD from the Mantevo project instead of
benchmarks that usually call the same regions and exhibit the same behavior in each iteration. Maximum
overall improvements of 18.61% for the job energy, 18.6% for CPU energy, and nearly 20% for performance
were observed for sam(oa)2 for multi-node runs, with the two-bit cluster predictor performing the best, fol-
lowed by the second-order Markov chain predictor. The least savings were observed for the single node
run of miniMD, with an improvement of less than 1% for the CPU energy for all three predictors. This is
because a new cluster is formed every tenth phase due to the reneighbouring of the atoms. Since the ranges
of the cluster features for the new cluster are not known to the predictors, they always predict the wrong
cluster for an unseen phase. Moreover, the worst performance degradation was seen for the multi-node run
of miniMD.

We can conclude that although dynamic tuning results in the improvement of energy-efficiency, in most
cases, it degrades the performance. This can be attributed to two root causes: the instrumentation overhead
from Score-P, and the switching overhead from dynamically switching the CPU and uncore frequencies
by the RRL. We trade-off execution time for energy improvement, which typically results in higher exe-
cution times. On the other hand, our methodology reduces overheads by pre-computing best solutions at
design-time and simply switching between the configurations at runtime. This reduces runtime overhead
as expensive runtime search techniques are not applied. Moreover, our methodology is capable of tuning
dynamic HPC applications, and shows the potential to scale to future Exascale systems.

8.1 Future Work

This thesis presented one of the several ways of optimizing the energy-efficiency of dynamic HPC appli-
cations by identifying the characteristic behaviour of different phases, and clustering them based on their
behaviour. It also described a targeted or selective tuning step that increases the probability of randomly
selecting potentially good configurations to evaluate. While these methods already provide valuable in-
sights and result in energy savings, there are a number of promising opportunities for improvements. In this
section, we outline four different research directions for future improvements.

Tuning multiple objectives using a Pareto set: Our work focused on tuning the energy consumption at
the cost of increased execution time. This preference for one objective over others has traditionally
been formulated as a single objective minimization problem in autotuning frameworks. However,
the optimization of one objective may cause adverse consequences on the others. As we observed
for most of our test applications, the improvement in the energy-efficiency typically degrades the
performance or time-to-solution. On the other hand, increasing the speed of the processor to shorten
the time-to-solution may lead to an increase in the chip temperatures, thereby increasing the risk
of chip failures [137]. Thus, the goal of multi-objective optimization to find a set of solutions that
improves two or more objective functions, and makes an acceptable trade-off between these objective
functions instead of a single best solution [138].

A decision vector x1 is said to be Pareto dominant over another vector x2 if x1 ≤ x2, meaning that
x1 is better or equal in all objectives than x2 [139]. Since we do not want one solution dominating
the others, the autotuning problem can be formulated as a multi-objective optimization, which results
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in a set of non-dominated solutions called a Pareto-optimal set, in which each solution is a trade-off
among different conflicting objectives. The set of objective values corresponding to the Pareto set is
referred to as the Pareto-optimal front.

Existing evolutionary and stochastic algorithms, as well as simplex-based methods such as the Nelder-
Mead algorithm are popular multi-objective optimization methods. The Nelder-Mead algorithm is a
downhill simplex method that approximates the local gradient of an underlying objective, and defines
simplex transformations to help it move towards a local minimum value.

Specifying input identifiers for inter-phase tuning: Currently, the interphase tuning plugin tunes the
application for a specific application input. However, we observe that the cluster analysis is highly
dependent on the application input, such as the grid refinement level, the dimensions and properties
of a sheet metal, including the material type. In Figure 1.1, INDEED was executed using the input
set for a steel sheet of thickness 0.75 mm. A change in the material type completely changes the be-
haviour, and generates a different set of cluster-best and rts-specific best configurations. For example,
Figure 8.1 illustrates the trend in the execution time across the phases of INDEED when executed
using the input set for an aluminum alloy sheet of thickness 1.03 mm.

Figure 8.1: Variation of the execution time across the phases of INDEED when executed using an input set
for an aluminum alloy sheet.

The above example indicates that the tuning results must be identified by specifying domain knowl-
edge for the input identifiers, similar to the intraphase tuning plugin. The tuning model generation
will then produce individual tuning models for each input, and merge the tuning models to generate
the final application tuning model containing the cluster information for different input identifiers.

Runtime cluster prediction using neural networks:

The prediction of the behaviour of an unseen phase at runtime is a challenging task, since the require-
ments for runtime prediction are fixed. First, the predictor must be computationally cheap. Second,
the predictions must be performed online at the beginning of a phase. Finally, predictions must be
performed using the knowledge obtained from a small number of data points. In our work, identifying
the behaviour of an unseen phase at runtime was performed by three simple cluster predictors.

The use of neural networks could potentially make the predictions more accurate. Among the neural
networks are Recurrent Neural Networks (RNN) whose predictions are influenced by the historical
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knowledge. The aim of an RNN is to make use of sequential, non-linear outcomes to predict the
present by using the memory about the information that has been computed so far. The memory of an
RNN is considered as a hidden state, and the current outcome is calculated using the previous hidden
state and the current input. An RNN repeatedly applies a transformation function to a series of inputs,
and produces a series of output vectors as probabilities for each output. Thus, the previously computed
outputs that are far away from the current time step do not contribute to the current prediction [140].

The advantage of RNNs is that they have a high prediction accuracy and efficiency in learning new
patterns in the data. However, they work well only for larger input sizes. Thus, a possible solution
would be to make the second-order Markov chain as the primary cluster predictor that runs in the
foreground, and train an RNN in the background once a minimum number of phases have finished
executing. After training the model, the output vector can be uploaded for the current run, and used
to perform the prediction.

Comparing tuning results on newer Intel processors:

In our evaluation, we focused on optimizing the energy-efficiency for the Intel Haswell architecture.
A future direction could be a comparison of the energy savings on newer Intel processors to leverage
the new architectural implementations. First, from the five available C-states on Haswell processors,
only four remain, i.e., C0, C1, and C6 on Skylake-SP processors. Second, the support for 512-bit
wide vector operations were introduced in Skylake-SP, besides Xeon Phi [141].

Additionally, starting from the Broadwell architecture, the operating system can assign the control
of the P-states to the processor and its internal power control unit to make autonomous decisions to
switch the core frequency and uncore frequency based on internally collected execution statistics using
Hardware Power Management (HWPM). HWPM is a new power saving technique that can be used to
configure two operating modes: the native mode, based on enhanced Intel SpeedStep technology, and
assigns the control of the P-states to the operating system, or HWPM, in which the power management
is taken over by the processor [142]. While the Broadwell processors act autonomously, Skylake
processors use a collaborative interface-based switching with the OS via interrupts [141], where the
OS can define minimal, efficient and maximal frequencies for an execution.
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