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A B S T R A C T

Automatic building extraction from optical imagery remains a challenge due to, for example, the complexity of
building shapes. Semantic segmentation is an efficient approach for this task. The latest development in deep
convolutional neural networks (DCNNs) has made accurate pixel-level classification tasks possible. Yet one
central issue remains: the precise delineation of boundaries. Deep architectures generally fail to produce fine-
grained segmentation with accurate boundaries due to their progressive down-sampling. Hence, we introduce a
generic framework to overcome the issue, integrating the graph convolutional network (GCN) and deep struc-
tured feature embedding (DSFE) into an end-to-end workflow. Furthermore, instead of using a classic graph
convolutional neural network, we propose a gated graph convolutional network, which enables the refinement
of weak and coarse semantic predictions to generate sharp borders and fine-grained pixel-level classification.
Taking the semantic segmentation of building footprints as a practical example, we compared different feature
embedding architectures and graph neural networks. Our proposed framework with the new GCN architecture
outperforms state-of-the-art approaches. Although our main task in this work is building footprint extraction, the
proposed method can be generally applied to other binary or multi-label segmentation tasks.

1. Introduction

Building footprint generation is an active topic in remote sensing
field. Recently, it has received considerable attention due to its huge
potential in autonomous driving, virtual reality, urban planning, en-
vironmental, and demographic applications. Manual extraction of
buildings from optical images is time consuming and difficult in large-
scale practice. In contrast, semantic segmentation is a comparatively
inexpensive and time-saving technique for extracting building foot-
prints. It aims to classify each pixel with a corresponding class. Various
semi-automatic and automatic methods (Ok, 2013; Xu et al., 2018;
Bittner et al., 2018; Chen et al., 2019) have been developed to improve
segmentation accuracy within this method; traditionally, feature ex-
traction and classification are its two main steps. The extraction of such
hand-crafted features usually require a strong domain-specific knowl-
edge.

In recent years, the use of deep learning has garnered great success
in semantic segmentation. In particular, deep convolutional neural

networks (DCNNs) have shown promising results, due to their high
capacity for data learning. DCNNs (Zhu et al., 2017) have instigated
compelling advancement over traditional semantic segmentation
methods. However, exploiting DCNN for semantic segmentation tasks
still raises significant challenges. The convolution layer of a DCNN is a
weights sharing architecture, and it has both shift invariant and spatial
invariant characteristics. While the invariance is clearly desirable for
high-level vision tasks, it may hamper low-level tasks such as pose es-
timation and semantic segmentation, where precise localization is re-
quired rather than abstraction of spatial details. For instance, the coarse
segmentation output such as non-sharp boundaries and blob-like shapes
is caused by convolution filters with large receptive fields and pooling
layers in DCNN. Moreover, DCNN fails to fine local details without the
consideration of the interactions between pixels.

To overcome these issues, the probabilistic graph models, such as
the conditional random field (CRF) (Chen et al., 2017) and Markov
random field (MRF) (Liu et al., 2015), have been introduced to connect
with DCNNs at the final layer. To use CRF for semantic segmentation,
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the main concept is to transform the problem of pixel-wise classification
into a problem of probabilistic inference, which assumes similar pixels
should have the same labels. This substantially improves the predic-
tions of the pixel-wise labels to generate precise borders and exhaustive
segmentation. In Chen et al. (2017), instead of using CRF as the post-
processing step, the authors propose an end-to-end architecture that
combines the FCN with a fully connected CRF. However, these frame-
works have not sufficiently extracted the features from the images.
Different level features have different properties for semantic segmen-
tation. Since low-level characteristics are rich with spatial details but
lack semantic information and high-level characteristics are conversely,
they are naturally complementary. Another issue with CRF is that in-
formation propagation is not sufficient.

In this work, we propose a generic framework for semantic seg-
mentation, which integrates deep structured feature embedding and the
graph convolutional network. In order to extract more comprehensive
and representative features, we exploit deep structured feature em-
bedding techniques to enhance the feature fusion by incorporating
multi-level characteristics. Furthermore, we propose a new graph con-
volutional network, the gated graph convolutional network (GCN).
GCN can aggregate the information from neighbor nodes (short range),
which allows the model to learn about local structures. A recurrent
neural network (RNN) with gated recurrent units (GRUs) has proven
successful to model the long-term dependencies in sequential data.
Hence, we adopt RNN with GRUs for long-range information propa-
gation. The proposed network integrates the two architectures together,
thus taking into account both local and global contextual dependencies.
It is useful for semantic segmentation tasks. As a consequence, DSFE-
GGCN is a trainable end-to-end framework. We show that joint learning
of deep structured feature embedding and GGCN parameters results in
considerable performance gains.

Contributions
The contributions of this work are summarized as follows:

• A generic framework for semantic segmentation is proposed, which
integrates the deep structured feature embedding and a graph con-
volutional neural network into an end-to-end workflow.

• We propose a novel network architecture, called a “gated graph
convolutional neural network,” which combines the RNN with GRUs
for long distance information propagation and the GCN for short
distance information propagation.

• An effective four-step preprocessing approach is proposed for data
augmentation, especially for medium-resolution satellite imagery.

• The performance of different DCNNs and the proposed framework is
analyzed through a systematic investigation. Our framework with
GGCN surpasses the state-of-the-art approaches to building footprint
extraction.

2. Related work

2.1. Semantic segmentation with DCNNs

The fully convolutional network (FCN) was first proposed in Long
et al. (2015) for the task of semantic segmentation, in which convolu-
tional layers take the place of fully connected layers. FCN makes the
training more efficient and the input size of inference arbitrary. A more
memory-efficient approach that used an alternative decoder variant,
SegNet, was proposed in Badrinarayanan et al. (2015). The stored in-
dices of the max-pooling step in the downsampling path is used by the
decoder for the operation of upsampling. Another variant of the en-
coder-decoder architecture is U-Net (Ronneberger et al., 2015). The
long skip connections in the network enables the recovery of the
downsample-induced information lost in the encoder.

One key issue for fully convolutional neural networks is that the
spatial resolution is significantly downsampled, which is caused by the
operations, such as strided convolutional layers or pooling layers. In

order to overcome the poor localization property, (Zheng et al., 2015)
proposed another approach to improve the spatial resolution, using a
probabilistic graph model CRF to achieve fine-grained boundaries. In-
stead of using CRF as a post-processing step, DeepLab-CRF (Chen et al.,
2017) introduces a fully connected CRF layer, which leads to an end-to-
end trainable network.

2.2. Graph model

A graph model is a probabilistic model that encodes a distribution
based on a graph-based representation. The Markov random field
(MRF) is one classic graph model, which uses an undirected graph to
describe the joint probability distribution of random variables. It has
been applied to many tasks of image processing, including image co-
registration, image segmentation, and image super-resolution. MRF
takes into account the relationships of the neighbours to infer the
maximal possibility of the pixel’s label. The conditional random field
(CRF) is an extension of MRF, which models the conditional probability
distribution instead of the joint probability distribution. CRF as a dis-
criminative model shows a better performance when the samples are
limited. The combination of DCNNs and the graph model CRF (Zheng
et al., 2015; Chen et al., 2017) can produce high-resolution prediction
for better segmentation.

Recent work (Bruna et al., 2013) has extended DCNNs to topologies
that differ from the low-dimensional grid structure. Due to significant
computational drawbacks, it is impractical for real-world use. Henaff
et al. (2015) and Defferrard et al. (2016) further improve GCN to suc-
cessfully overcome this issue. The grid-like data can be interpreted as a
special type of graph data, where the node is on the grid and the
number of neighbours is fixed. In this work, we propose a gated graph
convolutional network, which is a trainable inference systems based on
GCN and RNN with GRUs.

2.3. Building footprint extraction

Building footprint generation is currently exciting a great deal of
interest, and is an active field of research in the fields of remote sensing,
photogrammetry and computer vision. The established building foot-
print maps are used in many important applications to analyze the
process of urbanization, such as urban growth and sustainable urban
development.

In Yuan (2018), the authors propose a multi-stage ConvNet with an
upsampling operation of bilinear interpolation. The trained model
achieves a superior performance on very-high-resolution aerial ima-
gery. Recently, an end-to-end trainable active contour model (ACM)
was developed for building instance extraction (Marcos et al., 2018),
which learns ACM parameterizations using a DCNN. In Huang et al.
(2019), a residual refinement network was proposed to extract the
building footprint using aerial images and LiDAR point clouds. In Shi
et al. (2018), the authors exploit the improved conditional Wasserstein
generative adversarial network to generate the building footprint au-
tomatically. Recent work (Wang et al., 2017) has shown that most of
the tasks, such as building segmentation, building height estimation,
and building contour extraction, are still difficult for modern con-
volutional networks. In this work, we show a significant performance
improvement in building footprint extraction by using our proposed
novel framework.

3. Methodology

The details of the DSFE-GGCN framework are introduced in this
section. The workflow of the proposed method is shown in Fig. 1. An
image can be generalized as a graph, whose nodes are on the two-di-
mensional grid. Each pixel represents a node. The embedding vectors
can be computed initially from node inputs, e.g., node type embed-
dings, and then propagated on the graph to aggregate information from
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the local neighborhood.

3.1. Deep structured feature embedding

Deep embedding methods typically map images into an embedding
space, where their distances preserve the relative similarity. In general,
the representations of the data can be learned by graph embedding

techniques (Yan et al., 2007), which take into account the relationships
of the data. In addition, data from different sources, such as images,
point clouds, and social media data, can be transformed into feature
space, which can be further used for segmentation or other tasks. In this
study, the data source is only imagery. Hence, we exploit a more effi-
cient approach for feature embedding that uses DCNNs as feature ex-
tractor.

Fig. 1. An illustration of the proposed DSFE-GGCN framework. The initial hidden representation of the corresponding node is taken from the feature vectors in the
DSFE step. For a certain time step t, the messages from the neighbourhoods of the node are aggregated by using GCN. After that, the hidden state of the next time step

+t 1 is updated by gated recurrent units, which use the hidden state hi
t and the message +ai

t 1 at time step t as input. After final timestep +t n, a negative log-
likelihood loss function is computed and the whole DSFE-GGCN model is updated using back-propagation.

Fig. 2. Illustration of preprocessing step.

Fig. 3. (a) Before coregistration; (b) After coregistration.
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However, the resolution of the later layers in the neural network is
extremely downsampled, a phenomenon that is caused by strided
convolution, max-polling, or other operations. Several methods have
been introduced to decipher precise information from the downsampled
feature maps. One common approach is to utilize interpolation tech-
niques (Badrinarayanan et al., 2015), which is both computationally
cheap and memory-saving. An alternative is deconvolution, in which
recorded indices of the polling operation are used to retrieve

information from the feature maps (Noh et al., 2015). Recently, long
skip connections between the contracting and expanding paths were
introduced to retrieve detailed spatial information from the high-level
feature layers (Ronneberger et al., 2015). In combination with Den-
seNet block (Huang et al., 2017), FC-DenseNets was proposed in Jégou
et al. (2017), where the upsampling path was composed of deconvo-
lution, unpooling, and long skip connections. Consequently, all the
feature maps from deconvolution, unpooling, or skip-connections are
exploited for the computation in the upsampling path of the dense
blocks. Moreover, recent work (Akilan et al., 2017) shows that multiple
DCNN features extracted from different networks can be com-
plementary, and could be fused to improve segmentation accuracy.
However, the method for fusing multiple features is still an open pro-
blem that needs systematic investigation.

As mentioned above, low-level features yield better representation
of localization and high-level features can give more comprehensive
semantics. Therefore, in this work, we concatenate different level fea-
tures progressively in order to propagate information about localiza-
tion, semantics, and other properties through graph convolutional
neural networks.

3.2. Gated graph convolutional neural network

An undirected and connected graphsG V E= ( , ) consists of a set of
nodes V and edges E . The unnormalized graph Laplacian matrix L is
defined as:

=L D A, (1)

where A is the adjacency matrix representing the topology ofG , and D
is the degree matrix, which is calculated by =D Aii j ij. The properties
of the graph Laplacian L are symmetric, positive, and semi-defined;
therefore the eigenvalue decomposition can be expressed as:

Fig. 4. Visualized comparison of the pre-
dicted results using different DCNNs. The
predicted label is red, which overlays the
optical image. (a) FCN-32s; (b) FCN-16s; (c)
ResNet-DUC; (d) E-Net; (e) SegNet; (f) U-
Net; (g) FCN-8s; (h) CWGAN-GP; (i) FC-
DenseNet; (j) Ground truth. (For inter-
pretation of the references to colour in this
figure legend, the reader is referred to the
web version of this article.)

Table 1
Comparison of different deep convolutional neural networks on the test data-
sets.

Methods OA F1 IoU

FCN-32s 0.7318 0.2697 0.1559
FCN-16s 0.7698 0.3993 0.2494

ResNet-DUC 0.7945 0.4542 0.2930
E-Net 0.8243 0.5427 0.3724

SegNet 0.8261 0.5558 0.3848
U-Net 0.8412 0.6043 0.4329

FCN-8s 0.8472 0.6222 0.4513
CWGAN-GP 0.8483 0.6268 0.4562
FC-DenseNet 0.8551 0.6328 0.4628

Table 2
Quantitative comparison of different deep neural networks on Planetscope’s
datasets.

Methods OA F1 IoU

DSFE(U-Net)-GCN 0.8396 0.6258 0.4544
DSFE(FCN-8s)-GCN 0.8594 0.6320 0.4611

DSFE(FC-DenseNet)-GCN 0.8640 0.6677 0.5012
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=L ,T (2)

where = …( , , , )n1 2 are the orthonormal eigenvectors, known as
the graph Fourier modes, and = …diag( , , , )n1 2 are the eigenvalues
of L, which is a non-negative diagonal matrix. Assuming a signal f on
the graph nodes V , its graph Fourier transform can be formulated as

=f fT . If g is a filter, the convolution of f and g is written as

= =g f g f g f(( ) ( )) ,T T T (3)

where g is the spectral representation of the filter. Rather than com-
puting the Fourier transform g, the filter coefficients can be para-
meterized as = =g k

r
k k0 , ask shown in Henaff et al. (2015). With the

polynomial parametrization of the filter, the spectral filter is exactly
localized in space. Moreover, the learning complexity is O r( ), the filter
support size, and the same complexity as classical DCNNs.

In order to avoid explicit multiplication in the spectral domain, al-
ternatively, the spectral representation g of the filter g can be ap-
proximated by a Chebyshev polynomial expansion g ( ), which is for-
mulated as:

=
=

g T( ) ( ),
k

r

k k
0 (4)

where T ( )k is the Chebyshev polynomials. The graph convolution can
be defined as:

=
=

Tg f L f( ) ,
k

r

k k
0 (5)

where =L L I2/ ·max , and max is the maximal eigenvector. In Kipf
and Welling (2016), the authors further simplify the Chebyshev fra-
mework, setting =r 1 and assuming 2max , allowing them to re-
define a single convolutional layer as simply:

=H D AD WH( ),i
r

r i
r1/2 1/2 1 (6)

where H is the hidden layer. By taking into account the self-connec-
tions, the original adjacency matrix of the graph G is transformed to

= +A A I, where I is the identity matrix. W is the trainable weight
matrix and the new degree matrix D can be calculated by =D Aii j ij.
The function (·)r denotes a nonlinear activation function. This sim-
plified form improves computational performance on larger graphs and

Fig. 5. Visualized comparison of the predicted results using different DCNNs in DSFE with GCN. The yellow bounding box highlights the key region for comparison.
(a) DSFE (U-Net)-GCN; (b) DSFE (FCN-8s)-GCN; (c) DSFE (FC-DenseNet)-GCN; (d) Ground truth. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 3
Comparison of different networks on the Planetscope dataset.

Methods OA F1 IoU

FC-DenseNet (Jégou et al., 2017) 0.8551 0.6328 0.4628
DSFE-CRF (Chen et al., 2017) 0.8592 0.6415 0.4757

DSFE-GCN (Kipf and Welling, 2016) 0.8640 0.6677 0.5012
DSFE-GraphSAGE (Hamilton et al., 2017) 0.8719 0.6726 0.5067

DSFE-GGNN (Li et al., 2016) 0.8787 0.6778 0.5123
DSFE-GGCN 0.8881 0.6899 0.5251
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predictive performance on small training sets.

3.2.1. Propagation model
The propagation process can be formulated as:

M V= ja h( ),i
t

j
t

i
1 (7)

F=h h a( , ),i
t

i
t

i
t1 (8)

where ai
t is the message layer at time step t, which represents the

messages propagated from its neighboursVi to the node i. The message
layer ai

t at time step t serves as input to update the hidden layer with
function F . Our proposed method is to use GCN as the message func-
tion, which makes it easy for the propagation model to learn to pro-
pagate the node embeddings for node i to all nodes reachable from i. We
adopt gating techniques to surpass GCN performance, because its own
memory can be maintained and the valuable information from neigh-
bours can be gathered with its aid.

The unrolled propagation model at timestep t can be written as:

=a D AD Wh( ),i
t

r i
t1/2 1/2 1 (9)

= +r W h U a( ),i
t

s r i
t

r i
t1 (10)

= +z W h U a( ),i
t

s z i
t

z i
t1 (11)

= +h W r h Uatanh( ( ) ),i
t

i
t

i
t

i
t1 (12)

= +h z h z h(1 ) ,i
t

i
t

i
t

i
t

i
t1 (13)

where r and z are the reset and update gates, and W W U U, , ,r z r z are
learnable weights for different gates. The function r is the ReLU
function, s is the logistic sigmoid function, and is interior product.
The initial hidden representation of the corresponding node is taken
from the feature vectors of the DSFE step. For a certain time step t, the
messages from the neighbourhoods of the node are aggregated by using
GCN. After that, the hidden state of next time step +t 1 is updated by
gated recurrent units, which use the hidden state hi

t and the message
+ai

t 1 at time step t as input. With the help of the reset gate and the
update gate in GRU (Cho et al., 2014), the node can maintain its own
memory and extract useful information from incoming messages. Along
with the increase of the time step, it is capable of capturing the long

Fig. 6. Visualized comparison of the predicted results using different networks. (a) FCN-32; (b) FCN-16s; (c) ResNet-DUC; (d) E-Net; (e) SegNet; (f) U-Net; (g) FCN-8s;
(h) CWGAN-GP; (i) FC-DenseNet; (j) DSFE-CRF; (k) DSFE-GCN; (l) DSFE-GraphSAGE; (m) DSFE-GGNN; (n) DSFE-GGCN; (o) Ground truth; (p) Optical image.
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range dependencies, which has been difficult to model in vanilla GCN.

3.2.2. Prediction model
The node classification is defined as:

= +p hsoftmax( ),i
t n (14)

Since we have transferred the binary semantic segmentation problem to
the multi-label pixel labeling task, a softmax with negative log-like-
lihood loss function is used to predict the probability of each node.

4. Experiments

4.1. Datasets

In this work, we use Planetscope satellite imagery (PlanetScope,
2019) with three channels (R, G, B) at a 3 m spatial resolution. The
imagery is acquired by Doves, which can provide complete coverage of
Earth once a day. The study sites cover four cities: (1) Munich, Ger-
many; (2) Rome, Italy; (3) Paris, France; and (4) Zurich, Switzerland.

The corresponding building footprint layer is downloaded from Open-
StreetMap (OSM) (Openstreetmap, 2019). The images are cropped with
a patch size of ×64 64. The overlap of each patch has 19 pixels in one
direction. At the end, 48,000 sample patches are generated. The
training data has 80% of the patches and the testing data has 20% of the
patches. The training and testing data is spatially separated.

4.2. Preprocessing

The datasets utilized in this work consist of Planetscope satellite
imagery and OSM building footprints as ground truth. However, since
data sources for OSM are different from satellite imagery, there are
likely inconsistencies between OSM building footprints and satellite
imagery. Therefore, we need to carry out preprocessing steps to limit
the inconsistencies before the experiments, which include band nor-
malization, coregistration, refinement, and a truncated signed distance
map (TSDM) (see Fig. 2).

In the next section, we will mainly focus on the coregistration and
TSDM steps.

Fig. 7. Visualized comparison of the predicted results using different networks. (a) FCN-32; (b) FCN-16s; (c) ResNet-DUC; (d) E-Net; (e) SegNet; (f) U-Net; (g) FCN-8s;
(h) CWGAN-GP; (i) FC-DenseNet; (j) DSFE-CRF; (k) DSFE-GCN; (l) DSFE-GraphSAGE; (m) DSFE-GGNN; (n) DSFE-GGCN; (o) Ground truth; (p) Optical image.
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4.2.1. Coregistration
One inconsistency is misalignments between OSM building foot-

prints and satellite imagery, which is caused by different projections
and accuracy levels from data sources. Fig. 3 (a) shows an example of
and OSM building footprint overlaid with the corresponding satellite
imagery. There are noticeable misalignments between the building
footprint and the satellite imagery. These misalignments lead to in-
accurate training samples, which need to be corrected.

The coregistration process includes several steps: (1) The satellite
imagery is transformed from RGB to gray scale; (2) The Gaussian gra-
dient of grayscale imagery is calculated; (3) The cross correlation be-
tween the gradient magnitude of the grayscale image and building
footprints is computed; (4) The pixel with the maximum cross corre-
lation is found and the offset in both row and column direction can be
derived. Fig. 3 (b) shows the result after coregistration.

Fig. 8. Visualized comparison of the predicted results from the ISPRS Potsdam dataset using different networks. (a) FCN-32; (b) FCN-16s; (c) ResNet-DUC; (d) E-Net;
(e) SegNet; (f) U-Net; (g) FCN-8s; (h) CWGAN-GP; (i) FC-DenseNet; (j) DSFE-CRF; (k) DSFE-GCN; (l) DSFE-GGCN; (m) Ground truth; (n) Optical image.
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4.2.2. Truncated signed distance map
In order to incorporate both semantic information about class labels

and geometric properties in the training of the network, the distances of
pixels to boundaries of buildings are extracted as output representa-
tions. In our experiment, the value of the signed-distance function
(SDF) is determined by the distance between the pixel and its nearest
point on the boundary. Positive values imply that the pixels are within
the buildings and negative values indicate the outside of buildings.

Then we truncate the distance at a given threshold to incorporate

only the pixels closest to the border. In this case, the problem in our
research is a multi-label segmentation task, which enhances the result
of prediction by the detailed signed distance map. The truncated signed
distance function can be expressed as:

=D d Tx x( ) ·min(min ( ) , ),d d
x X (15)

where d xmin ( )
x X

denotes the euclidean distance d x( ) between the pixel

Fig. 8. (continued)

Y. Shi, et al. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020) 184–197

192



and its nearest point on the boundary of the building. The term d is a
sign function with the implication of inside or outside of objects; Td is
the truncated threshold.

4.3. Experimental setup

We use 11 classes for the truncated signed distance map, which is in
[0, 10] and the truncated threshold is set to 5. For all networks, a sto-
chastic gradient descent (SGD) is used and the learning rate is set to
10 4. The negative log likelihood loss (NLLLoss) is adopted as the loss
function. The proposed framework is implemented using Pytorch.
Experiments are run on a NVIDIA Tesla P100 16 GB GPU. Several se-
mantic segmentation methods, which include FCN-32s, SegNet, FCN-
16s, U-Net, FCN-8s, ResNet-DUC, CWGAN-GP, FC-DenseNet, GCN,
GraphSAGE, and GGNN, are chosen as the algorithms of comparison.

4.4. Numerical results

The three metrics in the following experiments selected to evaluate
the results are: overall accuracy (OA), F1 scores, and the Intersection
over Union (IoU) scores. The experiments are carried out in following
way. First, as a baseline, we assess the capability of different deep
convolutional neural networks for building footprint extraction. Then,
we choose different DCNNs for deep structured feature embedding and
combine it with GCN (Kipf and Welling, 2016) to decide which DCNN is
the best feature extractor for our proposed framework. At the end, we
use the best feature extractor for DSFE and compare the proposed fra-
mework to different graph models.

4.4.1. Baseline with different DCNNs
In this section, the performance of the state-of-the-art DCNNs for

building footprint generation are firstly investigated, which indicates
the capability of each DCNN for feature extraction and precise locali-
zation. The visual camparison is shown in Fig. 4 and the quantitative
result is summarized in Table 1.

FCN-32s and FCN-16s exhibit poor performance, since the feature
map of later layers have only high-level semantics with poor localiza-
tion. ResNet-DUC can achieve better result than the previous two be-
cause of hybrid dilated convolution and dense upsampling convolution.
However, it is limited due to the lack of skip connections. Max-pooling
indices are reused in SegNet during the decoding process, which can
reduce the parameter number of network leading to efficient training.
However, as it only use indices of max-pooling to decoder, some local
details cannot be recovered, e.g., small buildings will be neglected.
FCN-8s and U-Net outperform previous networks due to the

concatenation of low-level features. Compared to the other CNN
models, cwGAN-gp shows promising results for building footprint
generation. The enhancement of performance is motivated by the
min–max competition between the discriminator and the generator of
the GAN.

FC-DenseNet outperforms all other semantic segmentation neural
networks in numerical accuracy and visual results. On one hand,
DenseNet block concatenates different features learned by convolution
layers, which can boost the input diversity of subsequent layers and
promote better efficiency of the training. On the other hand, the de-
tailed spatial information can be propagated by shortcut connections
between the convolution and deconvolution paths, which enhances the
recovery of fine-grained segmentation from the deconvolution path.

4.4.2. Proposed framework with different DSFE
In order to choose the best feature extractor for our task, three re-

presentative DCNNs have been adopted in the proposed framework
with the graph convolutional network. The statistical result is shown in
Table 2.

From Table 2 we can see that different DCNNs exhibit different
capabilities for feature embedding. It is clear that FC-DenseNet, as a
feature extractor in DSFE with GCN, produces the best result. This is
due to the superiority of FC-DenseNet, which extends the DenseNet
architecture to a U-Net-like network for semantic segmentation. In the
DenseNet block, through feature reuse, there are shorter connections
between layers close to the input and those close to the output, which
force the intermediate layers to learn discriminative features. More-
over, DenseNet combines features by iteratively concatenating them,
which contributes to improved information and gradient propagation in
the networks.

As can be seen in Fig. 5, DSFE (FC-DenseNet)-GCN gives the best
result, which implies that FC-DenseNet is a powerful tool for extracting
different levels of features.

4.4.3. Proposed framework with different graph models
In this section, we choose FC-DenseNet as the feature extractor in

DSFE with different graph models. The results are summarized in
Table 3.

The results show that DSFE-GGCN has the best performance for our
task. The IoU increases 6.2% compared to the best result of DCNN.
Fig. 6 shows a visual comparison of all the networks used in Section 4.
We marked the key region with a yellow bounding box. The close-up
figures for the key regions are shown in Fig. 7.

Fig. 8. (continued)
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5. Discussion

5.1. Additional dataset

We validate our proposed method with experiments on the ISPRS
2D Semantic Labeling Contest dataset, which covers the city of Potsdam

and comprises 38 tiles of aerial imagery (ISPRS, 2019). In order to
maintain the consistency, images with 3 spectral bands (red, green,
blue) are used in this experiment without a digital surface model
(DSM). Each aerial image is depicted with ×6000 6000 pixels at a
spatial resolution of 5 cm. The corresponding ground truth is also
provided for results evaluation, which includes six classes: Impervious

Fig. 9. Visualized comparison of the predicted results on the ROI of ISPRS Potsdam dataset using different networks. (a) FCN-32; (b) FCN-16s; (c) ResNet-DUC; (d) E-
Net; (e) SegNet; (f) U-Net; (g) FCN-8s; (h) CWGAN-GP; (i) FC-DenseNet; (j) DSFE-CRF; (k) DSFE-GCN; (l) DSFE-GGCN; (m) Ground truth; (n) Optical image.
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surfaces, Building, Low vegetation, Trees, Cars, and Clutter/back-
ground. For our detailed experiments, we split those 38 tiles into a
training subset (tile numbers 2–10 to 6–15) and a test subset (tile
numbers 7–07 to 7–13). The building class is regarded as a building and
other five classes are considered non-buildings. We cut 16,000 patches
of ×256 256 pixels from the training subset and 3573 patches from the
test subset. As mentioned in the previous section, the data augmenta-
tion step TSDM is used for the medium-resolution images and the
ground truth is well coregistrated with the optical image. Therefore,
there is no data preprocessing step for the ISPRS dataset. The optical

image is fed directly into the networks.

5.2. Experimental setup

The SGD optimizer is adopted and the initial learning rate is set to
be 10e-4, which is reduced by a factor of ten when the validation loss is
saturated. Once the learning rate is reduced below 10e-8, the training
stops. The number of epochs is in the range (120, 160) for all the
networks. The size of the training batch is 4.

Fig. 9. (continued)
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5.3. Experimental results

The metrics OA, F1 scores, and IoU scores are used to evaluate the
results. Fig. 8 shows the visualized comparison of the predicted results
the ISPRS Potsdam dataset, using different networks.

FCN-8s provides a significantly higher percentage of buildings de-
tected compared to FCN-16s and FCN-32s, by combining predictions
from not only the final layer but also coarse layers, allowing more in-
formation to be preserved. The boundaries of buildings detected from
U-Net are sharper than for SegNet or E-Net. However, unlike in the
medium-resolution case, the completeness of the result obtained by
SegNet or E-Net is better than for U-Net, which indicates that the spatial
information propagation is more effectively undertaken by recording
the pooling indices than by concatenating the low-level features when
the resolution is high enough, i.e., when comprehensive spatial in-
formation exists. The finer details are captured by the proposed fra-
mework with different graph models such as CRFasRNN, GCN, and
GGCN rather than CNN-only methods, which confirms the effectiveness
of the graph model in modelling the interaction among pixels and
spatial information propagation. Compared to CRFasRNN and GCN, the
proposed GGCN method gives a better result. A close-up view of the key
region is shown in Fig. 9. It can be seen that the DSFE-GGCN shows a
better result with respect to both completeness and sharpness for
building extraction compared to other methods.

Table 4 summarizes the results of using different deep convolutional
neural networks and the proposed framework on the ISPRS dataset. As
can be seen the proposed DSFE-GGCN/DSFE-GCN framework con-
tributes a significant improvement over the DCNNs. Moreover, com-
pared to DSFE-GCN, DSFE-GGCN can effectively propagate the

information in the short- and long-range, which leads to better results.

6. Conclusion

In this work, we develop a novel framework for semantic segmen-
tation that combines the deep structured feature embedding and a
graph convolutional network. Specifically, we propose using a gated
graph convolutional network to improve the information propagation
by using RNN with GCN. Our proposed framework outperforms the
state-of-the-art methods for building footprint extraction. Although we
have used building footprint extraction as the practical application, the
proposed method can be generally applied to other binary or multi-
label segmentation tasks, such as road extraction, settlement layer ex-
traction, or semantic segmentation of very high resolution data in
general. In addition, the proposed GCN network can work directly with
unstructured data, such as point clouds and social media text messages.
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