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Abstract— Extrinsic calibration of a sensor mounting position
on a vehicle is essential for a truthful mapping of the sensor
data with respect to the vehicle. However, extrinsic calibration
is usually cumbersome due to complex measurement setups or
requirements on the environment, e.g., locally planar surfaces.
We propose to use mutual detections of sensors mounted
on different vehicles for calibrating their mounting positions.
To maximize the accuracy of the detected vehicle poses, our
developed method uses CAD models of the involved vehicles.
Based on the accuracy of each detected vehicle pose, we further
derive a formulation to estimate the calibration accuracy. The
benefits of our methods are demonstrated using Monte Carlo
simulations and real-world experiments with two BMW test
vehicles.

I. INTRODUCTION

The development of autonomous driving functions relies
on precise environment perception for which lidars play
an essential role due to their measurement accuracy. A
correct interpretation of lidar data in turn requires an accurate
calibration of the sensor mounting position. However, ex-
trinsic calibration is a tedious process, which often involves
complex setups.

A. Related Work

While intrinsic calibration provides sensor-specific trans-
formation parameters, e.g., the distance offset and angular
orientation of single laser beams for a lidar [1], extrinsic
calibration tries to obtain the true position of the sensor
with respect to a reference object. Therein, the extrinsic cal-
ibration can be further subdivided into a relative calibration
between sensors and an absolute calibration with respect to
the vehicle platform as aimed in our case.

The absolute calibration of a lidar relies on a repetitive
detection of a specific target object or of the static environ-
ment at different relative poses. In [3], a target is manually
positioned on the ground at a fixed lateral and longitudinal
distance from the vehicle, which is taken as the reference to
align sensor data relatively to the vehicle. To overcome errors
from manual measurements, [4] detects a pole as a target
over multiple sensor frames and exploits navigation data
from IMU and differential GPS. Instead of using a target,
some approaches make assumptions on the environment to
align subsequent sensor frames. Such an approach is shown
in [5], which maximizes the local planarity of surfaces in
the environment to obtain relative transforms between sensor
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Fig. 1. Schematic depiction of the calibration setup, where lidar points
corresponding to the roof racks are removed in the bottom illustration for
clarity.

frames. Similarly, [6] uses a crispness criterion to increase
the quality of superposed lidar frames.

Approaches regarding the relative calibration of multiple
lidars consider an overlapping field of view among the
sensors. In [7], a sensor setup with multiple lidars and
cameras was calibrated using a sphere target, where the cost
function to be minimized includes the distances between
pairs of sphere centers estimated by lidars. An approach
based on matching geometric features of the environment
in lidar data has been presented in [8]. Therein, a cost
function comprising pairwise point, line, and plane feature
correspondences between sensors is optimized for sensor
data alignment.

The simultaneous computation of two unknown spatial
relationships in a circle of spatial relationships is also re-
ferred to as the hand-eye calibration problem [9]. Different
approaches have been proposed to optimize for the un-
known spatial relationships [10], [11] by determining first the
rotation and then the translation parameters consecutively.
Since rotational errors propagate into higher translational
errors, a method to solve the parameters simultaneously has
been shown by [12]. The underlying idea incorporates the
uncertainty of the known spatial relationships but assumes
that their uncertainties are negligible for all but one of them.
However, the uncertainties of the known spatial relationships
are similar to each other in our concept, which is why we



introduce a more generic cost function for the hand-eye
calibration problem.

B. Contributions

This paper proposes a new approach to obtain the extrin-
sic calibration of lidars mounted on vehicles. By mutually
matching CAD models to sensor point clouds, we obtain
highly accurate vehicle poses relative to the sensors. With
these relative pose pairs, we estimate the mounting positions
of the sensors by closing a circle of transforms between each
vehicle pair. We further derive the possible accuracy that
we could achieve with our calibration method based on the
registered pose errors. The main advantages of our approach
are as follows:

« Since vehicles use each other as targets, no further tar-

gets or assumptions about the environment are required.

o Sensor data can be recorded at any place as long as the

vehicles are not occluded.

o Concurrent calibration of the lidars on all vehicles.

o Recalibration is possible retrospectively for cooperative

test drives with several test vehicles.

o Scalability — the more vehicles involved, the better the

calibration.
We demonstrate the accuracy of our approach using Monte
Carlo simulations as well as real-world experiments recorded
with test vehicles.

The remainder of the paper is organized as follows:
Section II gives an outline of our multi-vehicle extrinsic cal-
ibration approach. We derive its accuracy in section III. Our
calibration concept is evaluated in section IV on simulated
and real sensor data. We finish with conclusions in section
V.

II. PROPOSED APPROACH FOR EXTRINSIC CALIBRATION

Our approach requires the CAD model of each vehicle and
coarse global localization information. We further assume
that the intrinsic calibration parameters [1] have negligible
errors. In subsequent derivations, we consider N vehicles,
each equipped with a single sensor.

A. Homogeneous Transforms

Let the rigid transformation of a point p € R3 to p’ € R3
be given by p’ = Rp + t, where R € R3*3 represents an
orthonormal rotation matrix with det(R) =1 and ¢t € R3 is
a translation vector. The homogeneous transform 7' relates
the homogeneous coordinates [p, 1] and [p’, 1]7 linearly by
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Thus, the homogeneous transforms T',,,,; ; to represent the
i-th sensor mounting position with respect to the i-th vehicle
coordinate system as well as the transforms T'f; ;; to
describe the pose of the i-th detected vehicle with respect
to the j-th sensor coordinate system are given by
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and
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where the components are defined as (with indices dropped
for clarity)
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to simplify expressions in later derivations. Fig. 2 visualizes

the transformation parameters with respect to the coordinate
systems of sensor S and vehicle V' .

B. Registration of Object Poses

In our previous work [13], we have shown an offline
tracking approach using CAD models. To determine the
relative pose of the detected vehicle with respect to the
sensor, we match a precise 3D point set C sampled from the
CAD model to the sensor point cloud S using point cloud
registration algorithms (like ICP [14], [15]). To handle out-
liers in matching correspondences, point cloud registration is
further augmented with robust criterion functions as shown
in [16].

We reuse the registration method of our previous work to
obtain the transforms T'f; ;; and T p;; ;;. As initial trans-
formation, we use global localization data from differential
GPS. Low-cost localization methods would also be sufficient
if corresponding techniques for finding an appropriate initial
transformation are realized [17, pp. 21-23].

C. Calibration Cost Function

The cost function for the calibration is derived by applying
the transforms for sensor mounting positions and mutually
registered poses of each vehicle pair, which closes a circle
of transforms as shown in Fig. 3. Since one should not have
moved after completing all transformations, we introduce the
errors

eij = Tnt.i T it ji Tonnej Tritij [0,0,0, 07, (5)

which correspond to the consecutive application of the trans-
forms on the origin vector. To simultaneously compute the
mounting positions, we propose to minimize the errors from
N;; relative pose pairs between each pair of vehicles ¢ and
7 (out of N vehicles) by solving

N—1 N Nij
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with z = [h] 1, s Pomney]? and additional index !

to denote the relative pose pair. By including the error
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Fig. 2. Transformation parameters for mounting position and registered vehicle pose.

Fig. 3. Transformation relations between vehicles and their sensors.

expressions e;; and e;; from (5) obtained from two different
permutations of transforms in our cost function, we treat
the errors of both measured transforms T'f; ;; and T ¢y 4
equivalently for the symmetric calibration problem.

D. Nonlinear Least Squares Optimization

The nonlinear least squares problem in (6) is solved by
the 1sgnonlin function in Matlab using the Levenberg—
Marquardt algorithm [18], which is an extension to the
Gauss—Newton algorithm. As input to the optimization, each
entry in e;;; and e;;; (except for the constant fourth entry)
from (6) is considered individually such that each relative
pose pair in (6) provides 6 equations to the nonlinear least
squares problem. To increase the robustness with respect to
the convergence into local minima, we repetitively perform
the optimization task with randomly initialized calibration
parameters. Other global optimization strategies might be
possible as well, which is not the scope of this work.

III. ESTIMATION OF CALIBRATION ACCURACY

We derive an accuracy measure for our calibration ap-
proach based on the point cloud registration accuracy and

the solution of nonlinear least squares problems using the
Gauss—Newton algorithm. We assume that the converged
Levenberg—Marquardt solution is locally close to a Gauss—
Newton solution, which makes our accuracy measure trans-
ferable to the Levenberg—Marquardt algorithm, while the
Gauss-Newton algorithm is easier to analyze. To this end, we
first introduce the Jacobian matrix A, and residual vector by,
at iteration step k as
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for whichi=1,..,.N—-1,1<j < N,andl =1,...,N;;.
We further recall the Gauss—Newton algorithm [19, pp. 396—
399], which can be reformulated to

Zk4+1 = 2k + (AgAk)_lAzbk. ©)]

The optimization problem is solved by evaluating (9) itera-
tively. By assuming an optimal convergence of the algorithm,
we estimate the accuracy of our calibration approach by
quantifying how the optimum reacts to small changes in
the data. Since errors from single data points have a small
contribution and lead to small deviations in the vicinity of
the optimum, we utilize the first-order approximation to the
nonlinear error propagation [20]. This means, we use the
local sensitivity of z* with respect to the registered object
poses cij; = [h?it’ij, h?imi]lT to propagate the errors in
ciji, yielding

= _iNi 0z* = 0z \ 7 (10)
= : . 8Cijl it aciﬂ




for uncorrelated relative pose pairs c;;;, where ECW

E [(ciji — €ij1)(ciji — €:51)T | represents the covariance ma-
trix of ¢;;; and X« the covariance matrix of the calibration
parameters.

IV. EVALUATION

To validate our approach, we first evaluate the calibration
performance using simulation results and later using real
sensor data from two test vehicles each equipped with a
Hesai Pandar laser scanner mounted on a roof rack. As
a rotating sensor with 40 vertical channels, it provides a
vertical resolution of 0.33° and 1° depending on the elevation
angle and a horizontal resolution of 0.2° (at a rotation rate
of 10Hz). The localization data are recorded using an RTK-
supported differential GPS system from OxTS. As in [13],
both vehicles are BMW 740Li, for which the CAD model is
scanned from 5 sides with a resolution of 2c¢m to generate
the model point cloud C.

A. Results from Monte Carlo Simulations

Our Monte Carlo simulations are based on our real sensor
setup and consider the real-world constraint that the vehicle
poses mainly vary in 2D. To compare the results with those
of real sensor data, we evaluate them for N = 2 vehicles,
whereby more vehicles would obviously provide even more
accurate results. The relative position of both test vehicles
are parameterized according to the description in Fig. 4. Tab.
I shows the distributions from which we randomly draw
the relative pose parameters for the simulation. Therein,
U(a,b) defines a uniform distribution with bounds a and
b, N'(u,02) denotes a normal distribution with mean sz and
variance o2, and wy, w, represent the translation and rotation
errors, which are individually added to the relative pose
parameters to account for object registration errors. The low
level of assumed registration errors are reasonable since for
real sensor data, multiple sensor data frames taken at the
same position can be averaged to reduce statistical noise (cf.
section IV-B).

TABLE I
PARAMETER SELECTION FOR MONTE CARLO SIMULATIONS.

Parameter Variable  Distribution
Longitudinal distance Az U(—15m, 15m)
Lateral distance Ay U(—15m, 15m)
Vertical distance Az U(—0.2m,0.2m)
Pitch difference A6 U(—2°,2°)

Roll difference A¢ U(—2°,2°)

Yaw difference A U(—180°,180°)
Additional translation error w N(0,02 = (0.02m)?)
Additional orientation error wy N(0,02 = (0.2°)2)

We further initiate the calibration parameters randomly
inside the parameter bounds such that i, Ginit ~
U(—180°,180°), Oinit ~ U(—90°,90°), and translations
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Fig. 4. Parameters for Monte Carlo simulations.

Tinits Yinits Zinit ~ U(—1m,1m). The optimization is
restarted with a resampled set of parameters if the solution
vector lies outside the parameter bounds.

To compare between different simulation configurations,
we introduce two commonly used joint error metrics (see
[7]1), which combines the single translation and rotation
errors:

€t = \/(xmnt - x:rmt)z + (ymnt - y:@nt)27

. 1 (11D
arccos((tr(RmntRmnt) - 1)/2)3

Cr

where the variables with * denote the estimated values from
the optimization in (6). While e; accounts for the Euclidean
translation error, e, corresponds to the scalar rotation error
around a single rotation axis defined by a 3D vector (aka
axis-angle representation). Note that z,,,+ is not considered
in e; since the relative pose pairs mainly include variations
in the 2D space. This leads to a low observability of z,,,¢
in a calibration setup with N = 2 vehicles and, thus, causes
a high volatility in the 2}, ,-estimation.

1) Accuracy of Calibration Approach: We first evaluate
the absolute calibration errors based on our Monte Carlo
simulation setup. To this end, we perform 1000 simulations,
each with a set of 50 random relative pose pairs. Fig. 5 shows
the boxplots of the absolute calibration errors accumulated
over both sensors. While the median errors are at a low level,
the worst cases are still limited at about 0.2° for rotation and
25mm for translation errors. In addition, a more accurate
estimation of ,,,; compared to 6,,,; and @,,,;+ can be
observed, which might be a result of mainly varying relative
pose pairs in 2D.

Besides the absolute errors, we also show the empirical
noise (computed as standard deviation over all simulations)
of all calibration parameters in Tab. II. As mentioned before,
Oemp,z tends to be volatile due to its low observability. With
the presented simulation setup, empirical standard deviations
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Absolute translation and rotation errors from Monte Carlo

of rotation estimations below 0.1° and of Z,n- Ymnt-
estimations below lcm are achieved.

TABLE I
EMPIRICAL CALIBRATION NOISE FROM MONTE CARLO SIMULATION.

Oypemp T0,emp Op,emp Oz,emp Oy,emp Oz,emp
Vehicle 1 0.039° 0.053° 0.054° 531mm 5.56mm 172 mm
Vehicle 2 0.039° 0.054° 0.055° 557mm 542mm 172 mm

2) Influence of Number of Relative Pose Pairs: In our
previous experiment, we used 50 random relative pose pairs
for each simulation to compute the calibration parameters.
Since the number of relative pose pairs is constrained for
the evaluation with real sensor data, we also show the
dependency of the calibration accuracy on this parameter. In
Fig. 6, the boxplots for three configurations with 20, 50, and
100 random relative pose pairs are presented. The median
and the maximum absolute errors both decrease with a higher
number of data pairs. This confirms our intuition that the
more relative pose pairs are available, the more accurate the
calibration can be performed.

3) Validation of Accuracy Estimation Model: We validate
our accuracy model in (10) with the same set of simulations
as evaluated in section IV-A.1. Since all 1000 simulations
are performed with different sets of relative pose pairs, we
would also obtain 1000 different estimated accuracy models.
Thus, we cannot simply compute the empirical covariance
matrix of the solution vector z* over all simulations and
compare it with the estimated accuracy models. Instead, we
normalize the calibration errors with the estimated standard
deviation to make them comparable.

Let the standard normal distribution be given by A/(0,1)
[21, pp. 172-181]. Each element 2}, in each sample z* can
be transformed to the standard normal distribution using

/

zl, = (#% — Wv)/0v est- Therein, v represents a calibration

variable out of {¢;,0;,¢;,x,,y,,2;} for each vehicle j,
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Fig. 6. Influence of number of relative pose pairs on joint error metrics.
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Fig. 7. Comparison of errors from Monte Carlo simulation normalized
with true mean value p, and estimated standard deviation o, es¢ to the
standard normal distribution.

[ty the true mean value, and o, .5 the estimated standard
deviation, which is computed as the square root of the
diagonal elements in 3, (see (10)). The probability density
obtained from the normalized values must fit to that from
the standard normal distribution if the estimated standard
deviations are correct.

Fig. 7 shows the probability densities of the simulation
results considering the calibration parameters from all sim-
ulations individually. Since the results of the Monte Carlo
simulation fits very well to the standard normal distribution,
the applicability of the accuracy model is confirmed by
simulations.

B. Results with Real-World Data

Experimental evaluation was performed by a dataset with
80 different relative pose pairs, each consisting of about 100
lidar frames in a row. From each lidar frame, we obtain the
vehicle poses as described in section II-B. To increase the
robustness against outliers from erroneous registration, we
applied RANSAC [22] on the registered poses hy;; ;. We
further averaged the registered object poses over all n lidar



frames belonging to the same relative pose to reduce the
influence of registration noise.

Taking the average of random variables benefits from the
reduction of the corresponding noise. The mean X of n
observations of a scalar normally distributed random variable
X ~ N(p,0?) has a normal distribution [21, p. 233]:
X ~ N(u,0?/n). However, for calibration with real sensor
data, we further have to include a bias noise term to account
for unknown intrinsic calibration errors. While random errors
decrease by averaging over a high number of samples, the
bias error remains unaffected. Thus, we compute the scalar
noise of the registered pose parameters by combining the
random and bias noise [23, pp. 15-18]:

2 _ 2 2
av,avg - Uv/n + av,lﬂ

(12)
where o, is the standard deviation computed from the
registered pose variable v (out of {¢;,0;,¢;,x;,y;,z;} for
each vehicle j), and o, to account for the bias error. As
proposed in [23, pp. 15-18], a bias error can be assumed as
uniformly distributed from U(—b,,b,) with corresponding
standard deviation o, = b,/ V3. In our computations we
use b, = 0.2° for rotation and b, = 2cm for translation
parameters, which is a reasonable choice for common lidars.

1) Calibration using Subsets of Relative Pose Pairs: The
validation of calibration with real sensor data is a challenging
task, since commonly, no ground truth is available. Thus,
we perform a repeatability analysis, where we separate our
dataset into 5 subsets (each with 16 relative pose pairs) to
evaluate the calibration statistics. The corresponding em-
pirical calibration noise are listed in Tab. III. Compared
to the results of the Monte Carlo simulation in Tab. II,
higher standard errors can be observed in general. This
can be attributed to the fact that less relative pose pairs
were available leading to a smaller number of subsets and
a smaller number of relative pose pairs in each subset for
calibration. Despite this limitation we achieve angle standard
errors around 0.1°, except for the roll angle of vehicle 1,
and standard errors of the z- and y-positions between 5 and
11mm.

TABLE III
EMPIRICAL CALIBRATION NOISE FROM REAL-WORLD EXPERIMENTS
COMPUTED FROM 5 SUBSETS OF RELATIVE POSE PAIRS.

Oypemp O0,emp O¢p,emp Oxz,emp Oy,emp Ozemp

Vehicle 1
Vehicle 2

0.051°
0.096 °©

0.103 °
0.108 ©

0.305°
0.127°

6.72mm 10.6 mm 623 mm
546 mm 7.15mm 617 mm

Analogously to section IV-A.3, we compare the probability
density of the normalized errors to that of the standard
normal distribution in Fig. 8. Except for the outlier on the
left side of the plot, the probabilty density of the normalized
errors matches approximately that of the standard normal
distribution. Thus, we assume that the use of our accuracy
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Fig. 8. Comparison of errors from real-world experiments normalized with
empirical mean value fty,emp and estimated standard deviation oy est tO
the standard normal distribution.

model as well as the choice of our bias error parameters are
justified.

2) Calibration Error Estimation with Accuracy Model: To
determine the final calibration parameters, we exploit all 80
relative pose pairs at once for the optimization, for which we
expect the highest calibration accuracy. Since no empirical
noise is available, we estimate the performance using our
accuracy model leading to the estimated calibration noise
presented in Tab. IV. The results show that our calibration
framework provides accurate calibration parameters for the
absolute mounting position of a lidar with respect to the
vehicle.

TABLE IV
ESTIMATED CALIBRATION NOISE FROM REAL-WORLD EXPERIMENTS.

O ,est 00,est O¢ est Oz,est Ty, est Oz,est
Vehicle 1 0.032° 0.043° 0.046° 4.00mm 4.17mm 222 mm
Vehicle 2 0.032° 0.045° 0.045° 4.07mm 4.10mm 221 mm

V. CONCLUSIONS

This paper proposes an extrinsic calibration method for
automotive lidars by using mutually detected vehicle poses.
To this end, we match sensor data to CAD models to obtain
precise vehicle poses. In addition, we provide an accuracy
model to estimate the precision of our calibration method.
Both Monte Carlo simulations and real-world experiments
demonstrate the benefits of our calibration approach and the
accuracy model.

Our proposed methods allow developers to recalibrate
sensor mounting positions simultaneously for multiple ve-
hicles. This is particularly beneficial for test vehicles since
mounting positions can change frequently and are more
prone to slight slips. In the future, we would like to integrate
a further transform into the cost function, which is obtained
by matching the sensor points originating from the static



environment. This would make z,,,: observable even if the
calibration setup only includes two vehicles.
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