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Abstract

This cumulative thesis presents several novel numerical methods and parallel tech-
niques relating to Smoothed Particle Hydrodynamics (SPH). More specifically, a
new multi-resolution parallel framework for SPH, a Lagrangian Inertial Centroidal
Voronoi Particle (LICVP) method for dynamic load balancing of particle-based method
and a consistent multi-phase SPH formulation for parallel unstructured isotropic
mesh generation are proposed.

A new multi-resolution parallel framework is proposed for the large-scale sim-
ulations with SPH. In contrast to the classical tree-based SPH solver, several novel
algorithms are developed and integrated into the unified framework. By developing
an adaptive rebalancing criterion and a monitoring system, the Centroidal Voronoi
Particle (CVP) partitioning method is integrated, which guarantees the convergence
to target partitioning with a good load balancing and an optimized communica-
tion volume. In order to construct ghost buffer particles in remote processors, a
localized table-based hierarchical data structure is developed in cooperation with a
tailored parallel fast neighbor search (PFNS) algorithm. Comparing to tree-based
methods, the proposed data structure features lower querying cost and can be built
with higher efficiency. Moreover, to overcome the bottleneck of graph construction
time, the concept of “diffused graph” is proposed to improve the performance of
the graph-based communication strategy developed in [1]. With the above algo-
rithms integrated, the framework achieves a two-level parallelism, where an inter-
node coarse-grained parallelization is handled by Message Passing Interface (MPI)
[2] and Threading Building Blocks (TBB) [3] is employed for the fine-grained paral-
lelization inside each node. A wide range of gas dynamics benchmarks is investi-
gated to demonstrate the capability of the framework and its unique characteristics.
Intensive performance tests show that a scalable performance is achieved.

To address the additional target encountered in dynamic load balancing and to
extend the original CVP method [4] as a rebalancer, a LICVP method is developed.
Two key concepts are proposed in LICVP. First, a background velocity is introduced
to transport Voronoi particles according to the local fluid field, which facilitates data
reuse and lower data redistribution cost. Second, in order to handle problems with
skew-aligned computational load and large void space, an inertial-based partition-
ing strategy is proposed. An inertial matrix is utilized to characterize the load dis-
tribution and to confine the motion of Voronoi particles dynamically adapting to
the physical simulation. Intensive numerical tests in fluid dynamics reveal that the
underlying LICVP method improves the incremental property remarkably without
sacrificing other objectives, i.e. the inter-processor communication is optimized si-
multaneously, and the repartitioning procedure is highly efficient.

A consistent parallel unstructured mesh generator based on a multi-phase SPH
method is developed. This work extends the original SPH-based mesh generator
[5] to a parallel context and to three dimensional mesh generation. To characterize
the target function for both partitioning the geometry and distributing the mesh-
vertexes, a unified density function is defined. By employing the same set of con-
sistent governing equations, the proposed method achieves the targets of domain
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decomposition, communication volume optimization and high-quality unstructured
mesh generation simultaneously. The target of communication reduction is achieved
by introducing a surface tension model between distinct partitioning sub-domains,
which are characterized by colored SPH particles. While the communication vol-
ume being optimized on the sub-domain interface, the target of mesh generation
is calculate in the meantime for regions inside the sub-domain following the same
fluid relaxation analogy. Once the target of domain decomposition is achieved, the
surface-tension force is removed gradually. Consequently, the mesh quality near the
interface area is improved. Since a steady state has already been achieved, the local
mesh-quality optimization brings minor effect to the compact shape of sub-domains.
The governing equations are solved by a multi-phase SPH formulation implemented
in the parallel framework developed in this work. A set of benchmarks consisting
various scales and complexities is tested. Results show that all the optimization tar-
gets are achieved consistently within the proposed method.
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Chapter 1

Introduction

In this thesis, my research during the four years (09.2015 − 09.2019) in the Chair of
Aerodynamics and Fluid Mechanics (AER) at the Technical University of Munich
(TUM) is presented. During this period, I have been working on novel numerical
methods and the HPC for SPH.

The thesis is arranged as following: In Chapter 1, the motivation of the the-
sis is first introduced. Then a general overview of the scientific backgrounds is
presented. Lastly, the objectives of the entire thesis are summarized. In Chap-
ter 2, several numerical methods are introduced: 1) A Godunov SPH formulation
for compressible gas dynamics is first reviewed. 2) Popular sequential and paral-
lel unstructured mesh generation methods are discussed and a novel SPH-based
isotropic/anisotropic mesh generation method is introduced. 3) Lastly, the level-set
function is briefed. In Chapter 3, several essential technical aspects, i.e. domain
decomposition method, PFNS and communication strategy, and recent progress in
HPC for particle-based methods are discussed. Chapter 4 summarizes the main ac-
complishments achieved in the current thesis. Lastly, concluding remarks and future
work are presented in Chapter 5. The e-prints of the publication accomplished in the
current thesis are attached in Appendix A.

1.1 Motivation

The research in this thesis is mainly supported by the China Scholarship Council
(CSC). Originally, the research topic is “Unified Multi-resolution Modeling for Both
Solid and Fluid Dynamics with Smoothed Particle Hydrodynamics”. The long-term
goal is to develop an innovative and high-performance numerical modeling frame-
work using advanced SPH method that tackles multi-physics problems involving
both fluid and solid dynamics. Typical examples range from the modeling of as-
teroid impact processes [6], stellar collision and collapse problems in computational
astrophysics [7] to the modeling of Laser Beam Melting (LBM) in additive manu-
facturing (AM) technology [8]. The numerical modeling of these problems is highly
challenging due to the intrinsic complexity of the underlying physics. The embed-
ded numerical solvers need to capture the dynamic response and mechanical be-
havior of the system/material subjecting to a wide range of extreme phenomena, e.g.
shock waves, melting, vaporization, radiation, Marangoni convection and etc. These
topics are beyond the realm of traditional computational fluid dynamics and com-
putational solid mechanics. Interdisciplinary knowledges are required in order to
develop a generalized modeling technique. Besides the numerical solver, advanced
discretization technique, e.g. mesh generation and mesh adaptation technique, is
required too to create an accurate and efficient discretized representation of the ge-
ometry/domain being simulated. This is particularly critical and also difficult for
problems featuring complex interfaces and large variation of spatial scales. Lastly,
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to overcome the bottleneck of computational time and memory consumption, all the
aforementioned algorithms and solvers are in tremendous need for massive paral-
lelization. Comparing to numerical improvements that can better characterize the
underlying physics, it is equally challenging and imperative nowadays to develop
parallel codes that can achieve a scalable performance in clusters featuring tens of
thousands of cores.

The above description gives a grand picture of the general motivation of this
thesis, which can be further classified into three finer-grained tasks, i.e. 1) gener-
alized SPH formulation for multi-material and multi-physics modeling involving
both fluids and solids, 2) novel parallel mesh generation and adaptation method,
and 3) scalable multi-resolution parallel framework for SPH. The first task is par-
tially addressed by Dr. Chi Zhang, who is one of the team members in AER. He
has recently graduated with thesis titled as “Smoothed particle hydrodynamics for
fluid and solid dynamics”. For more details, I refer to his featured publication [9].
The main focus of this work then resides in the last two tasks. In the following two
sections, an overview of the scientific background relating to the objectives of the
current thesis is presented.

1.2 An overview on SPH and its applications

In 1977, SPH was first introduced independently by Lucy [10] and Gingold and Mon-
aghan [11]. Due to the simplicity in coupling with a gravitational solver, SPH first
gained its success in computational astrophysics [12][13][14]. Unlike the mesh-based
methods, SPH, as a mesh-free method, employs a set of arbitrarily distributed par-
ticles to discretize the computational domain. By introducing a smoothing kernel
function, any field value and its derivatives of particle i can be expressed by a sum-
mation over its neighboring particles enclosed in the cutoff range. Hence, the nu-
merical solution to the governing equations can be calculated on the particles. To
advance the system in time, particles are updated in a Lagrangian fashion follow-
ing the local structures of the material, thus the Galilean invariance is ensured. The
Lagrangian property is the most important advantage of SPH, which allows it to fol-
low the nature development of the underlying physics. As a result, it is particularly
suitable for simulating problems evolving large deformations and complex interface
motions, e.g. dambreaks [15] and oil flow in a gearbox [16]. Moreover, since no
mass transfer is calculated between particles, the constraint of sharp interface condi-
tion can be easily achieved by assigning particles of same phase with a unique color
function. Consequently, when applied to multi-phase simulations, an explicit front-
tracking method is no longer needed and the necessary of handling the triple-point
issue is eliminated too. Another advantage of SPH is that the coupling with other
physics or solvers is generally easy, since forces and source terms can be directly
imposed on individual particles.

Due to the aforementioned advantages, SPH has been applied to many research
topics and demonstrated successful in resolving a wide variety of complex phe-
nomena. E.g. star formation [12][14], magnetohydrodynamics (MHD) [17], free-
surface flows [18][19][20], multi-phase flows [21][22], solid mechanics [23][9], and
fluid structure interaction (FSI) [24][25][26]. These are the “hospot” for SPH since
1977. Moreover, evidents show that an increasing amount of commercial softwares,
e.g. Altair nanoFluidX, PreonLab, SPH-flow, dive solutions and etc., have been de-
veloped since 2010, which all feature SPH as their primary/sole numerical solver.
Most use cases of these softwares fall into the above fields, excluding computational
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astrophysics, which implies that a stronger industrial relevance has been established
and it is competitive enough against mesh-based CAE softwares in those fields.

Other than in the “traditional” area of strength, recently there has been some
worth-noticing novel applications that further extend the capability of SPH. In [27],
SPH is used to study the Fused Deposition Modeling (FDM) 3D printing process of
fiber-reinforced polymers. To characterize the fiber suspension, a tensor-based mi-
crostructure constitutive model is developed. Moreover, SPH is also used to model
the SLM process in AM. In [8], a multi-phase SPH formulation is developed incor-
porating a variety of physical phenomena, e.g. thermal conduction, melting, re-
solidification, convection and thermocapillarity effect. In addition, the influence of
the recoil pressure induced by evaporating atoms from the melt pool surface is in-
cluded too. These two applications demonstrate that SPH has huge potentials in
handling multi-physics phenomena involving both fluid and solid.

Another type of application that has been exploit recently is to solve a mathemat-
ical problem by finding the solution to a set of governing equations based on a phys-
ical analogy. First, a SPH-based partitioning method is proposed in [28]. The method
is motivated by the observation that an optimum partitioning has high analogy to
the relaxation of a multi-phase fluid to steady state. Then a set of physics-motivated
model equations are developed to characterize the underlying mesh topology, and
are solved by a multi-phase SPH method. The main advantage of this method is that
all the optimization objectives are achieved implicitly during the particle relaxation
procedure. Later, a SPH-based isotropic unstructured mesh generation method is
developed [5] and further extended to the anisotropic mesh generation [29], follow-
ing similar methodology. In contrast to the partitioning method, the target field for
mesh generation is discretized on a background Cartesian mesh and defined con-
sidering geometry information and user-defined inputs to characterize the target
feature-size distribution inside the mesh generation region. To describe the geom-
etry for mesh generation, the level-set method is employed. The main advantage
comparing to classical mesh generation method is that this method is well-suitable
for massive parallelization and no explicit triangulation/tetrahedralization is re-
quired to obtain a quality-guaranteed mesh. More details regarding this method
will be elaborated in Chapter 2.

1.3 High-performance computing for SPH

Despite the aforementioned advantages and developments in SPH, one of the main
drawbacks of this method is the high computational cost. Due to the smoothing
kernel, the number of operations used for solving the governing equations per par-
ticle per step is significantly higher than other standard grid based methods. There-
fore, more computational time is generally expected for SPH simulations. On the
other hand, the pair-wised interaction pattern in SPH is well-suitable for the newer-
generation HPC units, e.g. the graphics processing unit (GPU). From various re-
searches [30][31][32], it is observed that when parallelized in GPU, a speedup of one
to two orders of magnitude can be achieved comparing to running on a single CPU
card. For industrial applications, the concept of HPC is basically the trademark for
the latest SPH-based commercial CFD softwares, i.e. all of them are either acceler-
ated by GPU or intensively optimized for multi-core CPUs running on small DSM
clusters or in the “cloud”. Considering the advantage in handling large deforma-
tions, these commercial codes can reduce the “turnaround time” from days to hours
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comparing to the grid-based counterparts in the area of water management [33] and
oil-bath lubrication systems [34][16].

Although high-performance is achieved for the codes reviewed above, they are
limited by a constant-resolution constraint. The efficiency in nearest neighbor search
(NNS) is accomplished with a single-level cell linked list (CLL), which becomes in-
efficient if multiple resolutions are presented in the domain. To support variable
resolution, normally a tree data structure is required. The tree-based SPH solver
is well-established in computational astrophysics community and shares the same
data structure with a N-body solver for gravity force calculation [12]. To perform
NNS, a tree-walk operation is required to traverse neighboring cells and to find
the neighboring particles within the cutoff range. The tree-walk is computation-
ally more expensive comparing to the NNS in CLL. Moreover, the maintenance of
the tree is cumbersome in a parallel environment. More details on the NNS and
tree-based data structure is arranged in Chapter 3 and Chapter 4.

Another challenge in the HPC for SPH is to properly distribute the computa-
tional load to a set of computational nodes, where each node has separate physical
memory space and calculation units and cables are used to connect all the node into
a network, i.e. the cluster. The structure of the cluster may be homogeneous, where
each node shares the same computational power. Then the total computational load
needs to be divided into equal pieces. However, in clusters featuring heterogeneous
configurations, e.g. the CPU-GPU hybrid cluster, scheduling of the load is more
challenging since each cluster may be different and the resources received may be
different too. Consequently the optimal scheduling of the load in each simulation
should be adjusted accordingly. Once the load is divided and distributed, inter-
node data communication can not be avoided, since particles inside each node may
require information from neighboring nodes to complete the kernel support. There-
fore, in each timestep, a subset of particle information, e.g. position, mass, velocity
and etc., needs to be communicated to neighboring sub-domains. Based on different
partitioning of the computational load, the resulting total amount of communica-
tion, referred as communication volume, may be different too, which implies differ-
ent computational overhead. Hence, the optimization of communication volume is
another critical issue in parallel computing. To address the issue of load scheduling
and communication-volume optimization, a proper partitioning/domain decompo-
sition method is required. Classical partitioning method can be concluded as the
geometry-based and graph-based method, which is introduced in detail in Chapter
3.

1.4 Objectives

Based on the motivation section and the general overview of the scientific back-
grounds, I summarize the objectives of the present work as following.

The first objective of the present work is to develop a new multi-resolution par-
allel framework for SPH combining several algorithms recently developed in AER.
The framework should be able to achieve the two-level parallelism by utilizing both
multi-threading and MPI techniques. The primary target is to achieve a scalable per-
formance in sate-of-the-art clusters with adaptive resolution. The work is presented
in paper I

• Ji, Z., Fu, L., Hu, X.Y. and Adams, N.A., 2019. A new multi-resolution parallel
framework for SPH. Computer Methods in Applied Mechanics and Engineering,
346, pp.1156-1178,
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which is available in Appendix A.1.
The recently proposed physics-motivated domain decomposition method, i.e.

the CVP method [4], previously is only validated in static partitioning problems. The
performance of CVP as a load rebalancer needs to be assessed. Several issues should
be investigated, e.g. whether the locality property is preserved and the communi-
cation volume is optimized after each rebalancing, and is the incremental property
achieved for the load balancer. Moreover, the issue of skew-aligned load distribution
appeared in particle-based simulations, e.g. the tsunami simulation in free-surface
flows, may cause severe deterioration of the parallel performance. The second ob-
jective of this work is to extend the original CVP to the context of dynamic load
balancing and to address the additional targets encountered in rebalancing the sys-
tem. This work is presented in paper II

• Ji, Z., Fu, L., Hu, X.Y. and Adams, N.A., 2019. A Lagrangian Inertial Centroidal
Voronoi Particle method for dynamic load balancing in particle-based simula-
tions. Computer Physics Communications, 239, pp.53-63,

which is attached in Appendix A.2.
The last objective of the present work is to develop a parallel unstructured mesh

generation method based on a consistent SPH-based formulation. The target is to
achieve 1) domain decomposition of the mesh generation region and 2) an optimized
adaptive unstructured mesh simultaneously. This work also intends to extend the
original SPH-based mesh generator proposed in [5] to three-dimensional meshes.
The new parallel mesh generator is presented in

• Ji, Z., Fu, L., Hu, X. and Adams, N., 2020. A consistent parallel isotropic unstruc-
tured mesh generation method based on multi-phase SPH. Computer Methods
in Applied Mechanics and Engineering, 363, p.112881,

and detailed in Appendix A.3.
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Chapter 2

Numerical methods

In this chapter, numerical methods used in this thesis are reviewed. The governing
equations and numerical concepts regarding SPH with adaptive smoothing length
are presented in Section 2.1. In Section 2.2, both the serial and parallel unstructured
mesh generation methods are reviewed. The SPH-based isotropic and anisotropic
mesh generator are introduced too. The level-set method is introduced in Section
2.3 for geometry definition.

2.1 SPH with adaptive smoothing-length

In SPH, since the domain is discretized with particles carrying specific mass and par-
ticles are advanced in a Lagrangian fashion, the solution naturally follows the local
flow structures. In compressible gas dynamics, benefiting from this characteristics,
particle smoothing-length [14] adapts to the flow density, i.e. in high-compression
regions smaller smoothing-length is obtained. Therefore, the resolution is auto-
matically adaptive, which is an attractive feature for simulating gas dynamics. Re-
cently in [35], results demonstrate that with an appropriate initial particle setup, SPH
achieves competitive performance comparing to some of the high-order shock cap-
turing schemes, such as WENO5. In incompressible/weakly-compressible hydrody-
namics, the possibilities to incorporate adaptive-resolution have been explored in-
tensively in recent years [36][37][38][39], and significant advances have been made.
By allowing the resolution to be locally adaptive, more complex industrial applica-
tions involving large scale differences and velocity/pressure gradients, e.g. simulat-
ing the oil bath lubrication systems [16], water management problems in automotive
industry, and etc., can be handled in the future.

In the current section, a Godunov SPH scheme designed for compressible gas
dynamics is reviewed briefly. For more technical details, I refer to [40][41][42].

2.1.1 Governing equations

The Euler equation of an idea inviscid gas can be expressed as the conservation of
mass, momentum and energy [12]

dρ

dt
= −ρ 5 ·v, (2.1)

dv
dt

= −1
ρ
(5p), (2.2)

de
dt

= − p
ρ
5 ·v, (2.3)
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where ρ is the density, p the pressure, e the specific thermal energy, v the velocity
vector.

In addition to the above equations, the positions of particles (r) are updated in a
Lagrangian way following

dr
dt

= v. (2.4)

To close the system, an equation of state (EOS) is required. For idea gas, the EOS
is

p = (γ − 1)ρe, (2.5)

where γ is the adiabatic index.

2.1.2 The smoothing kernel

The governing equations are solved on discrete SPH particles. By cooperating with
a smoothing function W, any field quantity φ at coordinate r can be calculated by

φ̄(r) =
∫

φ(r′)W(r − r′, h)dr′. (2.6)

where r′ is the coordinate of an integration point, and dr′ is a differential volume
element.

Similarly, the gradient of φ can be calculated through a convolution integral over
the cutoff range of the kernel function W as

5 φ̄(r) =
∫

5φ(r′)W(r − r′, h)dr′. (2.7)

The radially symmetric smoothing function (kernel) W should reduce to a delta
function, i.e.

lim
h→0

W(r − r′, h) = δ(r − r′), (2.8)

in the limit of a vanishing smoothing-length h. Moreover, to reproduce a constant
field, the partition of unity property, i.e.

∫
W(r − r′, h)dr′ = 1, is required.

The choice of the smoothing kernel is not exclusive. On the contrary, various
types have been developed in the literature. Among all the choices, the Wendland
kernels [43] and B-splines [44] are mostly employed, and a comprehensive study on
the performance of different kernel functions can be found here [45].

2.1.3 Numerical discretization

By calculating the summation of the weights over all the neighboring particles j, the
discrete form of Eq. 2.6 with respect to particle i can be written as

φ̄(ri) = ∑
j

φ(rj)W(r − rj, h)Vj, (2.9)

where V is the particle volume [46].
Regarding the discretized gradient calculation, by integrating by parts and as-

suming a compact kernel support, i.e. the cutoff region of particle i is entirely inside
the computational domain, Eq. 2.7 can be approximated as

5 φ̄(r) = −
∫

φ(r′)5 W(r − r′, h)dr′. (2.10)
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A direct discretization can be expressed as

5 φ̄(r) = −∑
j

φ(rj)5 W(r − rj, h)Vj. (2.11)

However, this operator is not conservative if applied to the pair-wised particle inter-
action. For more gradient operators developed, I refer to [47] for a comprehensive
overview.

In this thesis, the Godunov SPH scheme is implemented following [40][41][42].
Instead of directly solving the continuity equation, the density is calculated via

summation by
ρi = ∑

j
mjW(ri − rj, hi). (2.12)

As mentioned before, the change of particle density will affect the particle “size”,
i.e. smoothing length h. In order to ensure a smoothed transition of h, an iterative
approach is employed following [17].

The discretized momentum and energy equation for GSPH are

dvi

dt
= −∑

j
mj p∗ij

(
1
ρ2

i
∇Wij(hi) +

1
ρ2

j
∇Wij(hj)

)
, (2.13)

dei

dt
= −∑

j
mj p∗ij

(
v∗

ij − v∗
i

)
·
(

1
ρ2

i
∇Wij(hi) +

1
ρ2

j
∇Wij(hj)

)
, (2.14)

where, v∗
i represents the time centered velocity for particle i. The starred quantity

p∗ij and v∗
ij are the intermediate states computed by solving an one-dimensional Rie-

mann problem.
The main advantage of employing a Riemann solver is that numerical dissipa-

tion is introduced implicitly and no parameter tunning is required comparing to the
traditional artificial viscosity based SPH schemes. The Riemann problem is solved at
the imaginary interface (see S∗

ij in Fig. 2.2) on the connecting vector of the interacting
particle pair. The interface position is calculated considering the smoothing length
of particle i and j

S∗
ij =

hi

hi + hj
rij. (2.15)

The input of the Riemann solver, i.e. left and right state, is defined as{
Ur = (pr, ur, ρr),
Ul = (pl , ul , ρl).

(2.16)

To solve the Riemann problem, various options are available. Practically, to avoid
the expensive calculation raised by solving the exact Riemann solver, non-iterative
approximate Riemann solvers can be employed. Fig. 2.1 illustrates a simplified
Riemann fan with two intermediate states. In general, the choice of approximate
Riemann solvers, e.g. the local Lax-Friedrichs solver [48], the ROE solver [49], the
HLLC solver [50], the Ducowicz solver [51] and etc., may affect the performance of
the result to different extent. I refer to [42] for a detailed study.

Different approaches can be applied to achieve different accuracies of the input
states. With piece-wise constant assumption, i.e. particle i being the right state and
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FIGURE 2.1: Sketch of the simplified Riemann fan with two intermediate states.

particle j the left state, the 1st-order reconstruction can be achieved
Ur = (pi, vi · eij, ρi),

Ul = (pj, vj · eij, ρj),

(2.17)

where eij =
ri−rj
|ri−rj| .

To achieve higher-order accuracy, a number of methods, e.g. the Monotonic Up-
wind Scheme for Conservation Laws (MUSCL) scheme [52] and the Weighted Essen-
tially Non-Oscillatory (WENO) scheme [53], can be employed. By assuming piece-
wise linear reconstruction, second-order accuracy can be achieved at the interface in
smooth regions, i.e. 

Ur = Ui + (
∂U
∂s

)i[s∗i,j + Cs,i
δt
2
− si],

Ul = Uj + (
∂U
∂s

)j[s∗i,j − Cs,j
δt
2
− sj],

(2.18)

where Cs,i is the sound speed of particle i, si the distance between particle i and in-
terface s∗i,j and δt the timestep size. To enforce the monotonicity near discontinuities,
the harmonic gradient averaging based limiter proposed by Van Leer [54] can be
applied. For detailed explanation I refer to Ref. [40]. Fig. 2.2 gives a sketch of the
piecewise-linear reconstruction of primitive variables U along the connecting vector
of particle i and j.

2.1.4 Time integration

To update the system, the gradients of primitive variables U, i.e.
∂U
∂s

, are first cal-
culated for reconstructing the inputs of the Riemann problem. Then, the RHS of Eq.
2.13 and Eq. 2.14 are calculated.

The time centered velocity v∗
i is obtained with acceleration dvi

dt

v∗
i (t +

δt
2
) = vi(t) +

δt
2

dvi

dt
. (2.19)

The position, velocity and energy are updated respectively following

xi(t + δt) = xi(t) + δtv∗
i , (2.20)
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FIGURE 2.2: Sketch of the piecewise-linear reconstruction of primitive variable U along
the connecting vector of particle i and j.

vi(t + δt) = vi(t) + δt
dvi

dt
, (2.21)

ei(t + δt) = ei(t) + δt
dei

dt
. (2.22)

Once the new particle position is calculated, the new density and smoothing
length are updated iteratively using the Newton-Raphson method to ensure an ap-
proximately similar number of neighbors for all particles

ρi(t + δt), hi(t + δt) = R(ρi(t), hi(t)), (2.23)

where R(ρ, h) denotes the function to calculate density and smoothing-length. For
detailed algorithm, I refer to [17][14].

The timestep-size δt is calculated considering the Courant condition to ensure
the numerical stability of simulation

δt = CCFL min
i
{hi/Ci}, (2.24)

where CCFL is the CFL constant.

2.2 Unstructured mesh generation

The problem of mesh generation is defined as decomposing the interior of a physi-
cal domain Ω into a mesh M of simple and “well-shaped” elements such as boxes or
simplices with a bounded aspect ratio [55]. The elements comprising a mesh should
cover the entirety of the domain without overlapping. Mesh generation is a key step
for numerical methods, e.g. the Finite Element method (FEM), Boundary Element
method (BEM), Finite Volume method (FVM) and etc., to find a proper approxi-
mating solutions of the underlying partial differential equations (PDE). The topic of
mesh generation was brought into attention in the late 1970s, due to the increasing
demands from the areas of computational mechanics and computational fluid dy-
namics. At that time the process of constructing a mesh can take orders of magnitude
more hours than perform and analyze the solution on the mesh [56]. Four decades
later, according to the NASA CFD vision 2030 study [57], quality-guaranteed mesh
generation and adaptation is still a recurring bottleneck in CFD and more efforts are
needed.
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Quality-guaranteed and high-performance mesh generation is a highly inter-
disciplinary topic, which involves computational geometry, data structures, applies
mathematics and parallel computing. New challenges has raised recently due to the
rapidly growing capabilities and capacities of modern supercomputers. Develop-
ing parallel mesh generation codes is essential to achieve an acceptable turnaround
time in complex industrial applications involving complex geometry boundaries
and adaptive mesh topologies. To fully exploit the computational horsepower and
to reduce the communication overhead in the distributed memory systems, the par-
allel mesh generator needs to resolve various difficulties, e.g. the data dependency,
the load balancing and the irregular behavior of the mesh refinement [58].

Regarding to serial unstructured (triangular and tetrahedral) mesh generation,
tremendous advancements have been made recently [59]. The most well-established
ones can be classified into five categories: (1) advancing front methods (AFT) [60][61];
(2) Octree refinement-based methods [62][63]; (3) Delaunay refinement-based meth-
ods [64][65]; (4) Delaunay variational-based methods [66][67]; and (5) particle-based
methods [5][68][69]. More details can be found in the following Section 2.2.1.

Additional constraints arise when the mesh is generated in parallel in a dis-
tributed memory system. As described from a review in 2006 [70]:

The challenges in parallel mesh generation methods are: to maintain sta-
bility of the parallel mesher (i.e., retain the quality of finite elements gen-
erated by state-of-the-art sequential codes) and at the same time achieve
100% code re-use (i.e., leverage the continuously evolving and fully func-
tional off-the-shelf sequential meshers) without substantial deterioration
of the scalability of the parallel mesher.

Therefore, a consistent formulation of the mesh generator is required to achieve the
additional goals in a parallel environment. A key factor in improving the perfor-
mance of the parallelized mesh generation method is to seek a balance between gen-
erating a mesh in each subdomain and the inter-domain boundaries. Depending on
the data synchronization strategy, the parallel mesh generation can be categorized
into tightly-coupled, partially-coupled and decoupled approaches [70].

Recently, a SPH-based unstructured mesh generator [5] has been developed, and
then further extended to the adaptive anisotropic mesh generation in [29]. The key
idea is to analogize the optimization of mesh-vertices distribution to the Lagrangian
particle relaxation procedure guided by a target density field. The relative dis-
crepancy of particle density and target density is characterized as pseudo pressure,
which is calculated by a tailored EOS. The pressure gradient results in pair-wise par-
ticle interaction force and drives particles towards target density distribution while
maintaining a regularized and isotropic distribution [71]. Similar procedure is ap-
plied to the anisotropic mesh generation by employing an anisotropic SPH (ASPH)
formulation.

One of the main appealing features is that the SPH-based mesh generation method
is inherently suitable for the large-scale parallel computing. Since the pair-wise par-
ticle interaction is completely localized, it fulfills the fine-grained parallelism natu-
rally. With a proper domain decomposition method, the coarse-grained parallelism
can be achieved efficiently. As shown in multiple researches [72][73][74], scalable
performances are exhibited for SPH solvers on large number of nodes. Moreover,
SPH is well-known for being easy to program and maintain using modern parallel
techniques, e.g. MPI [2], OpenMP [75] and CUDA [76], which facilitates the main-
tainability of the underlying mesh generator.
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Another advantage over other mesh generation methods is that the mesh-generation
and mesh-optimization targets are achieved implicitly without relying on an explicit
mesh. By modeling the motions of particles with a set of physics-motivated govern-
ing equations and interpolating particle values using an isotropic smoothing kernel
function, the system converges to an optimized solution once all pair-wised parti-
cle forces vanish. The triangulation/tetrahedralization is only needed once after the
convergence error is below a predefined threshold [77].

In the reset if this section, a set of well-established serial mesh generation meth-
ods is reviewed in Sub-section 2.2.1. The development of parallel mesh generators
is introduced in Sub-section 2.2.2. The SPH-based isotropic and anisotropic unstruc-
tured mesh generation method are presented in Sub-section 2.2.3.

2.2.1 Serial methods

• The advancing front method generates a mesh starting from the domain boundary
and advances towards the “inside” of the geometry. In each iteration, elements
are created based on the positions of existing meshes until a new layer is con-
structed. The free surfaces/edges of the newly created meshes are referred as
the “front”, which marches forward until the closure of the mesh-generation
region [60]. A sequence of increasing dimension has to be followed in or-
der to mesh all the features, i.e. the boundaries of the geometries need to be
meshed first before meshing the interior. This method generates extremely
high-quality meshes close to the boundaries, and both high-quality isotropic
and anisotropic elements can be placed easily. This feature makes it particu-
larly suitable for computational aerodynamics, where the flow structure near
the geometry boundary is often of high interest. However, in regions where
the front collides, the quality of elements obtained by AFT deteriorate signifi-
cantly. The problems of choosing the optimal faces to advance, finding the best
preexisting vertices as the candidate and detecting illegal intersections in the
front are long-lasting issues of AFT [56].

• Octree refinement-based method starts to generate the elements with cubes overlay-
ing the mesh-generation region as a background mesh. With a sizing func-
tion, the cubes are subdivided recursively until an octree data structure is con-
structed [78]. The resolution of the background mesh should be small enough
comparing to the size of the features in order to describe the geometry with ad-
equate accuracy. Moreover, the resolution jump between two adjacent octants
should below a limit to satisfy the balance constraint [56]. For leaf octants that
intersect with the geometry boundary, the vertices of the cubes are adjusted
to recover the geometry and the intersections are then triangulated. Different
techniques can be applied to generate the final volumetric mesh subsequently.
The main advantage of this approach is the high efficiency and the simplicity
of applying parallelization. It is also easy to adapt to a target feature-size func-
tion. The method is widely used for fast geometric searching [79] and image
discretization in bioinformatics [80]. On the other hand, the Octree refinement-
based method also suffers from several drawbacks, e.g. the worst elements are
more likely to appear near the boundaries of the geometry, and the mesh qual-
ity is influenced by the directions of the background mesh.
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• Delaunay refinement-based method is by far the most popular mesh generation method.
It starts generating a mesh from a Delaunay triangulation and refines the ex-
isting mesh by adding new vertices recursively into the domain while main-
taining the Delaunay property of the new elements, i.e. the circumcircle of the
element encloses no vertices other than the vertices of the element. The refine-
ment terminates until a prescribed criterion is achieved [64]. A valid mesh can
always be constructed by this approach with mathematical guarantees. Since
one of the key steps of this method is to insert new vertices into the domain
for refinement, the choice of where to put the new vertices is critical to the re-
sulting mesh quality, and various algorithms have been developed to achieve
both guaranteed quality and target sizing function [81][82][83][84][85][86]. Un-
like AFT, this method produces high-quality meshes in the interior of the do-
main, whereas, for most variants, the worst elements are concentrated near the
boundary.

• Delaunay variational-based method can be treated as a standalone mesh generator or
combined with other mesh generation methods, e.g. the Delaunay refinement-
based method, as a mesh-quality optimizer. This method relies on a prede-
fined target sizing function [66][87] or a target density function [59] and a cus-
tomized cost function based upon the target function. The mesh generation
procedure is performed by seeking a global minimum on the cost function us-
ing different numerical approaches, e.g. constructing the Centroidal Voronoi
Tessellation (CVT) [59]. By relating the cost function definition with the dis-
tortion of the mesh shape and the discrepancy to the desired mesh size, the
target of high-quality mesh generation is achieved once a global optimal so-
lution is obtained. It is essentially different from the classical optimization
methods, i.e. geometric optimization, topology optimization and vertex inser-
tion or deletion, due to the global optimization process. The main advantage
of this method is that significant less slivers are produced comparing to previ-
ous approaches, and in some researches, even sliver-free meshes are generated
[66][88]. Moreover, it is less sensitive to the initial mesh configuration. Besides
the aforementioned advantages, one of the major issue is the performance, ow-
ing to the iterative nature of the method, which is significantly slower than
the state-of-the-art refinement-based methods, and the parallelization is non-
trivial [89][90].

• Particle-based method shares high similarities with the Delaunay variational-based
method, where the same cost function is required and the mesh generation is
also characterized by the cost-minimization process. As demonstrated in vari-
ous studies [29][5][68][91], high quality meshes can be obtained with particle-
based method. Despite the similarities, one fundamental difference comparing
to Delaunay variational-based method is whether the connectivity information
is required during the optimization procedure. For particle-based methods,
pair-wise forces are defined between interacting particles to relax the system
towards the target distribution. Therefore, the mesh quality is improved im-
plicitly without constructing a Delaunay tessellation for each optimization it-
eration. Moreover, since the interaction is constrained locally within a short
cutoff radius, only local information is required for each particle. Benefiting
from aforementioned unique features, the particle-based method can be easily
extended to parallel systems and achieve scalable performance [71]. Moreover,
in my recent preprint [77], significant improvement in terms of performance
is achieved by the proposed feature-aware SPH formulation, which makes
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the underlying methodology more competitive to other mesh-generation ap-
proaches.

2.2.2 Parallel methods

Comparing to serial mesh generators, additional constraints need to be overcome in
order to achieve high performance in parallel environments. First, on the node level,
the parallel algorithm is able to achieve a well-balanced load distribution and an op-
timized communication volume; Second, the locality of the data is maintained inside
each node to ensure a high concurrency; Last, the resulting mesh quality should
be consistent when the underlying serial mesher is extended to the parallel envi-
ronment, and the existing code is reused as much as possible [70][61]. In order to
achieve these additional targets, tremendous efforts have been done in the past two
decades. A detailed survey can be found here [70].

In the early stage of developing parallel meshers, a direct coarse-grained strategy
is employed. The domain is first partitioned, either continuously or discretely, into a
set of sub-domains. Then each sub-domain is meshed separately into sub-meshes by
applying different sequential mesh-generation kernels. However, merely computing
all the sub-meshes does not necessarily accomplish the goal of meshing the entire
domain. The interfaces of sub-domains remain an issue if the mesh vertices are
not properly synchronized. In order to ensure a consistent mesh in the sub-domain
boundaries, additional communications are required during the mesh generation.
This overhead due to data communication is critical if the number of nodes become
significant. The choice of data synchronization strategy characterizes the parallel
mesh generation into tightly-coupled, partially-coupled and decoupled approaches
[70].

• Tightly-coupled method is the most straightforward implementation, where MPI or
multi-threading technique is applied directly to parallelize existing sequential
mesh generators in a brute-force manner. The mesh is generated in the inte-
rior and on the interface of each individual sub-problem simultaneously. This
method can be employed both in shared-memory and distributed-memory
systems. The advantage of this method is that the mesh quality is consistent
with its original sequential mesher and the result does not depend on a prop-
erly defined domain decomposition. However, in order to achieve the con-
sistency, a significant amount of communication overhead and irregular com-
munication patterns is introduced. Meanwhile, the parallelization needs to
basically rewrite the code, thus this method features zero code reuse. Success-
ful examples of this method is the Parallel Optimistic Delaunay Mesh (PODM)
[92] and Parallel Advancing Front Technique for shared memory computers
(PAFTSM) [93].

• Decoupled method, on the contrary to the tightly-coupled method, first partition the
domain into continuous sub-domains and the interfaces of the sub-domains
are meshed prior to generating the volumetric mesh. During the rest of the
mesh generation, the meshes of the interfaces remained intact, therefore the
data communication is completely eliminated and the meshing of sub-domains
is decoupled from the system. Inside each sub-domain, different sequential
meshers can be employed with only trivial modifications. This method fea-
tures low communication overhead and high code reuse, whereas the resulting
mesh quality is sensitive to the initial decomposition of the domain. Popular
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methods are the Parallel Projective Delaunay Meshing (P2DM) method [94]
and the Parallel Delaunay Domain Decoupling (PD3) method [95].

• Partially-coupled method, e.g. Parallel Octree AFT (POAFT) method [93] and Paral-
lel Constrained Delaunay Meshing method (PCDM) [96], finds a compromise
between communication reduction/code reuse and stability/consistency com-
paring to the previous two methods. Instead of completely decoupling each
sub-domains, limited communications are allowed in this method to facilitate
the mesh quality near the interface, while in the interior regions of the sub-
domain, the meshes are generated separately using existing sequential mesh
generators. Therefore, the amount of communication is reduced comparing to
tightly coupled ones and the codes are more stable in terms of achieving high-
quality meshes. However, this method relies on single-pattern message that
communicates between neighboring sub-domains, which is difficult to control
the resulting mesh quality and a unified solution in three dimension is yet to
come [70].

The single-level coarse-grained parallelism generally struggles in finding a bal-
ance between controlling the amount of communication on the sub-mesh interfaces
and maintaining a consistent output of mesh quality. More recently, since the rapid
development of modern manycore architectures, e.g. GPUs, the coarse-grained model
is no longer suitable to these hardwares [97]. To exploit the computational horse-
power of the newly-emerged high-performance architectures, developing fine-grained
parallel mesh generation method is of high demand. Comparing to previous-generation
architectures, the manycore machines normally feature a significant increasing num-
ber of cores per node and a decreased memory/clock rate per core. Therefore, the
fine-grained model needs to achieve a high degree of concurrency and maintain high
data locality for lower memory access penalties [98]. This is currently still a new
topic, I refer to [99][98] for some of the recent developments.

Despite the efforts in developing fine-grained parallel mesh generators, some re-
searches extend the original single-level parallel algorithm with a hierarchical par-
allel model, where different parallel meshers are overlaid to achieve a better bal-
ance and performance in distributed memory systems. Recently a hybrid two-level
Locality-Aware Parallel Delaunay imaging-to-mesh conversion algorithm (LAPD)
is developed in [100]. A partially coupled scheme is employed operating at the
coarse level, and a tightly coupled method PODM is utilized to optimize mesh qual-
ity within each sub-domain. The inter-node communication only happens at the
coarse level and high-concurrency is maintained by the tightly coupled approach.
More recently, a nested master-worker communication model is proposed in [101]
to overlap the communication and computation and to further exploit the two-level
parallelism on DSM.

2.2.3 SPH-based mesh generation method

The SPH-based isotropic/anisotropic unstructured mesh generation methods are
briefly reviewed together in the section. For detailed methodology and results, I
refer to [5][29]. In both researches, only two-dimensional tests are validated. Later
the isotropic mesh generator is extended and validated in three-dimensional volu-
metric and surface meshes [71][77].
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Target feature-size function

As introduced in previous sections, the variation-based mesh generation method
relies on a target density/feature-size function to optimize the mesh-vertices distri-
bution and the mesh quality. In practice, the target function needs to be defined
based on specific problems, which can be geometrical information, local flow details
or arbitrary user-defined inputs. In [5], the effects of distance to the geometry sur-
face φ, the minimum distance from the geometry singularities ψ and the diffused
curvature field in the domain κ are considered,{

ht = f (φ, ψ, κ),
ρt = g(φ, ψ, κ),

(2.25)

where ρt is referred as target density function and ht is the target feature-size func-
tion. ρt can be obtained from ht following ρt =

1
hNd

, where Nd is the spatial dimen-
sion. The three characteristic fields contributing to the feature-size function are cal-
culated by solving three modeling equations, utilizing a multi-resolution Cartesian
background mesh [5].

For anisotropic meshes, the target function is further characterized by a Rieman-
nian metric tensor M(r), which describes the distortion of the space. M is a sym-
metric, positive-defined Nd × Nd matrix. In [29], the anisotropy is defined by intro-
ducing a two-dimensional local coordinate system which is based on the normal and
tangential direction of the level-set iso-contours. Consequently, ht along each axis i
and ρt are modified as {

hi,t = f (φ, ψ, κ, n),
ρt = g(φ, ψ, κ, n),

(2.26)

where i = 1, 2 denotes tangential and normal direction respectively, n is the nor-
mal direction of the iso-contour. Moreover, the relationship between ρt and hi,t is
reformulated as

ρt =


1

h1,t
1D,

1
h1,th2,t

2D.
(2.27)

The total number of mesh vertices can be calculated based on ρt. First, the total
mass inside the geometry and on the geometry surfaces is obtained by a volume
integral over Ω

Mv =
∫

Ω
ρt 4 dv, (2.28)

where

4 =

{
1, if inside the geometry,
0, otherwise,

(2.29)

and a surface integral over ∂Ω

Ms =
∫

∂Ω
ρtds. (2.30)

Then by assuming each particle carries unit mass, the total number of volumetric-
mesh vertices and surface-mesh vertices can be obtained.
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Governing equations

The mesh quality and mesh-vertex distribution are optimized when the approxi-
mation error between the particle discretization and the given target function ρt is
minimized. According to [66], the Lp norm between the gradient of ρt(r) (5ρt(r))
and its interpolation (5ρ̃t(r)) can be employed to characterize the error since the
mesh quality can strongly affect the gradient error. An optimal mesh is obtained
when the following criterion is satisfied

• L(r) =
∫

Ω ‖ 5 ρ̃t(r)−5ρt(r)‖Lp dr is minimum,

where L(r) is the loss function. The optimization of L(r) can be solved based on a
fluid relaxation analogy.

First, by introducing an EOS
p = f (ρ), (2.31)

where p is the pressure, the target density is linked to a physical pressure. Then the
gradient of pressure results in inter-particle forces. The system achieves an equilib-
rium states when all the particle forces vanish. One can assume

p = P0

( ρ

ρt

)K
, (2.32)

where P0 is a constant pressure and K is a user-defined parameter. When the equi-
librium is obtained, ρ

ρt
becomes a constant, i.e. the target of minimizing L(r) is

achieved.
The particles are updated following a Lagrangian form of governing equations

for isothermal compressible flows

dρ

dt
= −ρ 5 ·v, (2.33)

dv
dt

= −Fp + Fv, (2.34)

dr
dt

= v, (2.35)

where Fp and Fv denote the pressure force and the viscous force respectively. The
viscous force is introduced to ensure an adequate amount of dissipation of the sys-
tem.

Numerical discretization

The target information is calculated and stored in a multi-resolution Cartesian back-
ground mesh. For each SPH particle i, ρt,i can be interpolated from the background
mesh with its position ri. The ht,i is calculated following

ht = τ
( 1

ρt

)1/Nd
, (2.36)

where τ is a scaling factor depending on the kernel function.
The pressure force is discretized in a symmetric form as

Fp,i = ∑
j

mj

( p0

ρ2
t,i
+

p0

ρ2
t,j

)
5 Wij. (2.37)
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The viscous force is calculated following

Fv,i = ∑
j

mj
2ηiηj

ηi + ηj

( 1
ρ2

t,i
+

1
ρ2

t,j

)
vij 5 Wij · eij, (2.38)

where vij = vi − vj, eij =
rij

|rij|
, and η = ρν is the dynamic viscosity. ν is given as

ν ∼ 0.1rc|v|, (2.39)

where rc is the cut-off radius of particle interaction range, assuming that the local
Reynolds number is on the order of O(10). Meanwhile, a simplified friction model
is utilized to set an effectively infinite friction coefficient and to damp particle kinetic
energy to zero after each time-step.

The system is marched forward in time by a simplified kick-drift-kick scheme
[28]

ṽn+ 1
2
= vn +

1
2

an∆t, (2.40)

vn+ 1
2
= ṽn+ 1

2
+

1
2

ãn+ 1
2
∆t, (2.41)

rn+1 = rn + vn+ 1
2
∆t. (2.42)

The time-step size is calculated by the CFL criterion, the viscous criterion, and
the force criterion respectively [5],

∆t = min
(

0.25
√

rc

|a| ,
1
40

rc

|v| , 0.125
r2

c
ν

)
, (2.43)

where the artificial speed of sound is assumed as cs ∼ 40|v|max.
In anisotropic SPH (ASPH), an additional linear coordinate transformation is re-

quired to map the physical space to the normalized position space for kernel calcu-
lation. The coordinate transformation is calculated by a tensor G, and the mapping
function is defined as η = Gr at position r. In the local coordinate frame, Gk is diag-
onal with elements equivalent to the inverse length-scale along the corresponding
cardinal direction, i.e.

Gk =


1
h1

0

0
1
h2

.

 (2.44)

The transformation matrix Tr→k
r and Tk→r

r are defined to characterize the rotational
relationship between Gk and Gr,

Tr→k
r =

(
cos θ sin θ
− sin θ cos θ

)
, Tk→r

r =

(
cos θ − sin θ
sin θ cos θ

)
, (2.45)

where the superscript r and k denote the real-physical frame and the local coordinate
frame respectively, θ is the angle between two frames. Consequently, the transfor-
mation can be expressed as

Gr = Tk→r
r GkTr→k

r . (2.46)

The smoothing kernel at position r in ASPH is then calculated following the
transformation

W(η) = W(Gr). (2.47)
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The spatial gradient of the kernel function can be evaluated as

5 W(η) =
∂W(Gr)

∂r
=

∂W
∂η

∂η

∂r
= G

η

η

∂W
∂η

. (2.48)

Geometry recovery

The particle evolution strategy follows an order of increasing dimension to mesh
all the features, i.e. particles sitting on geometry surfaces (denoted as surface parti-
cles) are first evolved until an equilibrium state; then the interior particles (denoted
as positive phase particles) are solved accordingly. Particles representing geometri-
cal singularities (denoted as singularity particles) remain their positions during the
simulation. Moreover, in anisotropic mesh generation, a fourth type of particle is de-
fined and referred as ghost surface particles, which are generated only on geometry
surfaces and provide support for positive phase particles as boundary condition.

Since particles are updated in a Lagrangian fashion, the preservation of geometry
is not guaranteed if surface particles are always updated following the direction of
velocity. In order to ensure the geometry recovery, the contribution from positive
phase particles are excluded and only the tangential component of the interaction
forces from other surface/singularity particles are considered

F∗,i = F∗,i − (N(ri) · F∗,i)N(ri), (2.49)

where N(ri) is the unit normal vector on the surface. In each iteration, the updated
position of surface particles is projected back onto the surface to further enforce the
constraint

ri = ri − φiN(ri), (2.50)

where φ is the signed distance to the surface.

Post-processing

The main difference between the particle-based mesh generation method and the
Delaunay variation-based method is that the optimization procedure doesn’t rely
on an explicit triangulation of the mesh vertices, i.e. triangulation is only a post-
processing step. For isotropic mesh generation, a local Voronoi diagram is first con-
structed for each particle in parallel and the nearest neighbors are found to form a
global graph. Then intersecting edges are removed to construct the final mesh. For
anisotropic mesh generation, an additional step of coordinate system transformation
is required. I refer to [5][29] for more details.

2.3 The level-set method

The level-set method is first proposed in 1988 [102]. It is one of the most popular
interface capturing methods, and has achieved a broad success in various areas, e.g.
fluid mechanics, image processing, material science, and shape optimization [103].
By embedding the interface Γ in a signed-distance function φ(r) as a zero contour,
the geometry is characterized implicitly. Consequently, it is easy to describe complex
geometries as a level-set function.



2.3. The level-set method 21

2.3.1 The level-set function

In level-set method, the interface Γ is characterized by the φ = 0 contour of the
signed-distance function φ(r), i.e.

Γ = {r ∈ Rd|φ(r, t) = 0}, (2.51)

where d is the spatial dimension and t is the time. With Γ, the domain Ω is parti-
tioned into the positive region Ω+ = {r ∈ Rd|φ(r, t) > 0} and the negative region
Ω− = {r ∈ Rd|φ(r, t) < 0}.

2.3.2 Geometry information calculation

Based on the level-set function, the geometric information on the interface, e.g. nor-
mal direction and curvature, can be calculated. Assuming the level-set function is
defined in a uniform Cartesian grid, the normal direction of the interface can be
calculated by

n =
5φ

| 5 φ| . (2.52)

5φ can be approximated using a finite difference method, e.g. the derivative
( ∂φ

∂x

)
i

at point i can be computed by

(∂φ

∂x
)

i =
φi+1 − φi−1

24x
, (2.53)

where 4x is the spatial resolution.
The mean curvature κ can be computed by

κ = 5 ·
( 5φ

| 5 φ|
)
, (2.54)

and the discretized version is

κ =
φxx + φyy + φzz

(φ2
x + φ2

y + φ2
z + ε)1/2 −

φ2
xφxx + φ2

yφyy + φ2
z φzz + 2(φxφyφxy + φxφzφxz + φyφzφyz)

(φ2
x + φ2

y + φ2
z + ε)3/2 ,

(2.55)
where ε is a small number to avoid division by zero [104].

2.3.3 Geometry definition for mesh generation

For the SPH-based mesh generation method introduced in Section 2.2.3 and Ap-
pendix A.3, the level-set function is used for the geometry definition. A multi-
resolution Cartesian background grid is used to discretize the level-set function. In
order to ensure the interpolation accuracy, the resolution of the background grid is
chosen to be 1.5 to 2 time finner than the minimum feature-size of the mesh.

As described before, in level-set method the interface is defined implicitly by
a zero contour in the signed-distance function. For complex geometries, multiple
sharp edges and singularity points may exist, which cannot be resolved by a single
level-set function. Therefore, in order to characterize the under-resolved features,
additional inputs are required to incorporate with the level-set function. For singu-
larity points, the positions can be directly imported, see Fig. 2.3 (a) for a 2D example.
Sharp edges can be described by piecewise-linear B-splines. Fig. 2.3 (a) is an exam-
ple of 3D cube, where multiple sharp edges and singularity points are presented.
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Moreover, to better distinguish the geometry information defined by explicit in-
puts and the level-set function, a cell-tag system can be utilized, where a specific tag
is assigned to each cell according to the type of feature that intersects with the cell
or contains the cell. In Fig. 2.3, each tag is represented by a different color. For more
information, I refer to the recent publication and preprint [71][77].

FIGURE 2.3: Cell tags incorporating with the level-set function for the geometry defini-
tion of (a) a 2D Zalesak’s disk and (b) a 3D cube.
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Large-scale parallel computing

In this chapter, technical details and challenges regarding the large-scale parallel
computing for SPH and particle-based methods are presented. Three fundamental
components, i.e. domain decomposition and dynamic load balancing, data commu-
nication and the PFNS, are discussed.

3.1 Domain decomposition and dynamic load balancing

The topics of domain decomposition and dynamic load balancing are key compo-
nents in modern scientific computing. Due to the ever increasing demand for simu-
lating larger systems and the adaptive nature of the underlying physical problems,
various discretization techniques, e.g. unstructured or adaptive structured mesh, are
employed to achieve better balance between computational accuracy and efficiency.
However, this results in a unequal distribution of the computational load. The issue
of equally assigning the load to each computer node becomes a scientific problem.
Moreover, in heterogeneous clusters, the computational capacity is also not uniform
for all the nodes. The domain decomposition method needs to be aware of the in-
frastructure and should be able to adjust the load-balance criterion accordingly. This
issue becomes more critical for some of the latest clusters that feature both GPU and
CPU architectures, where task-based load balancing is required to better harness all
the available computational resources. The key functionality of the domain decom-
position method is to accomplish approximately equal-sized partitioning diagram
with minimum neighbor communication patterns [28].

Comparing to static partitioning, achieving dynamic load balancing of the sys-
tem is equally important for problems involving large variations of mesh topology
or particle configuration [105], where computational load needs to be reassigned
equally to all the processors periodically. In each repartitioning, the same targets
need to be accomplished as in the static domain decomposition, i.e. load balance, lo-
cality, minimizing inter-processor communication. In addition, the amount of data
migration needs to be controlled too to achieve lower overhead due to the rebal-
ancing procedure. In order to resolve the additional constraint, it is critical for the
repartitioning algorithm to achieve a higher incremental property, i.e. minimizing
partitioning modifications subject to small topology changes [106]. I refer to [107]
and [105] for a comprehensive review regarding recent development of repartition-
ing approaches.

3.1.1 Target description

For a given computational domain Ω and a point set V, the domain can be dis-
cretized by connecting the point set to construct a mesh (mesh-based methods) or
directly applying physical attributes to each point (particle-based methods). Each
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element in the discretized domain can be treated as a computational unit. Combin-
ing all computational unit forms a partitioning of the domain, which can be char-
acterized as a graph G = (V, E), where E denotes the communication relationship
between computational units.

In parallel simulation, V is divided into n disjoint subsets denoted as V1, V2,...,
Vn respectively, and each subset is associated with one MPI task. The mathematical
definition of the targets in domain decomposition is [28]:

• V1 ∪ V2... ∪ Vn = V and Vi ∩ Vj = ∅ with i 6= j;

• |Vi| ≈ d |V|
n

e, i = 1, 2, ..., n;

• ∑i<j Eij is minimum, where Eij = {{u, v} ∈ E|u ∈ Vi ∧ v ∈ Vj}.

Note that only equal mass partitioning is considered in this definition.
As described before, the incremental property is the additional target for dy-

namic load balancing. The target can be written as

• E = 1
n ∑n

i |Vt+
i − Vt−

i | is minimum,

where t− and t+ denote before and after the system is rebalanced at time t.

3.1.2 Geometry-based and graph-based methods

Classical domain decomposition method can be roughly categorized as the geometry-
based and graph-based method [108].

• Geometry-based method uses the physical coordinates of mesh vertices/particles
as input and partitions the domain according to the geometrical adjacency of
the coordinates with a specific encoding. The Recursive Coordinate Bisection
(RCB) method [109] partitions the domain recursively with planes orthogo-
nal to the coordinate axes until the number of sub-regions equals the number
of processors. Later the method is extend to the Recursive Inertial Bisection
(RIB) method [110], where the principle inertia axises are used to define the
cutting planes. RIB improves the performance when the computational load
is skew-aligned. The main advantage of the two methods is the high effi-
ciency and simplicity. Another popular geometry-based method uses Space
Filling Curves (SFC) [111][108] to map higher-dimension grid into an one-
dimensional ordered sequence. The mapping function is designed following
a specific order that improves the data locality. Then the one-dimensional se-
quence is partitioned into desired number of pieces to achieve the goal of do-
main decomposition. The major disadvantage of the geometry-based method
is that the target of minimizing communication volume cannot be achieved
without sacrificing the load balance. Despite the disadvantage, the method is
widely used in methods where explicit connectivity information is not avail-
able.

• Graph-based method partitions the domain based on both the mesh elements and
the connectivity information. The targets of load balancing and communica-
tion optimization can be achieved by Recursive Spectral Bisection (RSB) [112]
or a multilevel graph partitioning strategy [113]. Later the concept of Hyper-
graph partitioning is introduced [114] to resolve the issue where the optimiza-
tion objective function is not always adequate [28]. For the dynamic load bal-
ancing, the graph-based diffusive partitioners are developed to improve the
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incremental property [115][116]. The advantage of graph-based method over
geometry-based method is obvious, i.e. all the targets in domain decompo-
sition are handled more consistently. The main drawbacks are that strictly-
connected partitions cannot be guaranteed in principle [116] and it is compu-
tationally much more expensive than the geometry-based method.

3.1.3 The CVP method

Recently, in addition to the above mentioned methods, the CVP [4] method is pro-
posed by combining the concepts of CVT [117] and Voronoi Particle dynamics (VP).
As a geometry-based method, CVP optimizes the communication volume implicitly
due to the construction of CVT, which guarantees high-level compactness of parti-
tioning sub-domains. Although the communication optimization cannot be proved
explicitly, various researches [116][4][28] have demonstrated a direct relation be-
tween communication minimization and compactness of the sub-domain.

Moreover, with the VP method, the target of error-controlled load balancing can
be achieved, which is difficult for CVT with a small number of Voronoi generators
[4]. With an arbitrary density field ρvp(r) representing the computational load dis-
tribution, the total mass mvp, i.e. computational load, in the computational domain
Ω can be calculated by mvp =

∫
Ω ρvpdσ. For equal-sized partitioning problem, the

target mass of Voronoi cell i can be obtained by mvp
tg,i =

mvp

k , where k is the number of
partitioning sub-domains. The difference between mvp

i and mvp
tg,i can be defined as a

pressure, i.e.

pvp
i =

mvp
i

mvp
tg,i

= k

∫
Ωi

ρvpdσ∫
Ω ρvpdσ

. (3.1)

Then by calculating the forces due to the pressure difference of adjacent cells, the
Voronoi particles can be modeled by a fluid relaxation procedure using a Lagrangian
governing equation

dvvp
i

dt
= −

∫
Ωi

5pvpdσ∫
Ωi

ρvpdσ
= −

∫
∂Ωi

pvpdS

mvp
i

, (3.2)

where vvp denotes the velocity vector and ∂Ωi the surface of Voronoi cell i. When an
equilibrium state is achieved, the target of load balancing is achieved since all forces
vanish.

To combine the construction of CVT and the evolution of VP, a two-step time
integration scheme is employed. In each iteration substep the Voronoi particles are
first moved according to the VP method by

rvp,∗
i = rvp,n

i + α
1
2

avp,n
i τ2

1 , (3.3)

and then updated following CVT construction using the Lloyd method [118][119]

rvp,n+1
i = rvp,∗

i + (1 − α)τ2(z
vp,n
i − rvp,∗

i ), (3.4)

where τ1 and τ2 are pseudo timestep sizes and zvp
i is the center of mass of Voronoi

cell i. The relaxation parameter α is set as 0.8.
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3.1.4 The SPH-based domain decomposition method

A SPH-based domain-decomposition method [28] has been developed too following
the same fluid-relaxation methodology as the CVP. A set of colored SPH particles are
introduced and each represents a subset of the total computational units. The num-
ber of colors equals to the total number of sub-domains. The target of load balancing
can be achieved by controlling the total mass, i.e. computational load, within each
color. The same governing equation (Eq. 3.2) is discretized using SPH to evolve the
particle system to a steady state. Moreover, to optimize the communication volume,
an inter-domain surface-tension force is introduced

Fs,i = −∑
j

βmj

( p0

ρ2
i
+

p0

ρ2
j

)∂W(rij, hij)

∂rij
eij, (3.5)

where β is a coefficient characterizing the strength of surface-tension effect. β is
defined as

β =

{
0, if Ci = Cj,
3, overwise,

(3.6)

where Ck is the color function for particle k. Due to the surface tension force, par-
ticles carrying different colors are separated and form a sharp interface. Moreover,
particles carrying the same color tend to concentrate and the interface of neighboring
sub-domains is regularized towards a convex and compact shape. As a consequence,
the communication volume is optimized.

When an equilibrium state is achieved, the resulting partitioning diagram fea-
tures highly regularized shapes of sub-domains and each sub-domain encloses ap-
proximately the same computational load represented by SPH particles. With a
smoothing kernel, the colors of each computational element in the target mesh can
be calculated, i.e. the domain decomposition is finished. For more details, I refer to
[28].

3.2 Parallel fast neighbor searching

(a) (b)

level 0

level 1
level 2

0

2

1

3

5

4

FIGURE 3.1: (a) Illustration of the nested hierarchical data structure with three levels of
refinement. (b) Sketch of a communication graph, and the result of applying the edge
coloring algorithm.
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In SPH, the field quantities and their derivatives are approximated by integrat-
ing the contributions from neighboring particles within a certain cutoff range of the
current particle. Since the particles generally feature irregular distributions, it is dif-
ficult to find the neighboring candidates efficiently. A direct search over all particles
(N) results in a computational cost on the order of O(N2), which is inapplicable in
large-scale parallel computing. More applicable approach is to utilize a background
grid that overlays the computational domain, and to register particles inside the cells
according to the physical coordinates. Then the neighbors can be found by a search
over only neighboring cells, which is easy to obtain from a grid.

Popular data structures for NNS are the CLL [120], the Verlet list (VL) [121] and
the hierarchical tree data structure [122]. The CLL divides the domain recursively
with uniform cells of size equal to the particle cutoff range. Since the grid is uniform,
it is easy to map particles into the corresponding cells. By traversing the closest adja-
cent cells, the neighboring particles can be located easily. Unlike the the CLL, where
neighbors are calculated on-the-fly, the VL stores the neighbors explicitly for each
particle. Then the cost for NNS is cheaper comparing to CLL if the information is
required multiple times during one timestep. Moreover, one can also inflate the cut-
off by a “skin distance” to enclose more potential neighbors [121]. Consequently, the
construction of VL can be avoided every timestep. However, the performance of VL
highly depends on the construction method [123] and the demand from numerical
solvers [124]. The advantage of using CLL or VL is that they can be built in O(N)
and queried in O(1), whereas the handling of adaptive particle resolution is difficult.
For simulations involving variable particle scales, e.g. cosmological simulations in
computational astrophysics [125][126], the tree-based structures are mostly adopted,
which can be built in O(NlogN) and queried in O(logN). The drawback of this data
structure is that the tree needs to be maintained dynamically if the topology changes.
The efficiency drops heavily when the system features large variations of the com-
putational load, which is typically the case in SPH. Moreover, to find the neighbors,
a tree-walk is required on-the-fly, which is less efficient comparing to CLL and VL.

3.2.1 The multi-level nested hierarchical data structure

In [28], a nested hierarchical data structure is proposed based on the idea of CLL,
where multiple layers of CLL with different grid sizes are built to characterize par-
ticles into different levels. The scale ratio S between two consecutive levels is fixed.
The number of levels is defined as

Nlevel = logS

(
rc,max

rc,min

)
+ 1, (3.7)

where rc,max and rc,min are the maximum and minimum scale of SPH particles. In
level l, identical to the procedure in CLL, the domain is recursively divided in each
dimension with cell size rc,l = rc,min × Slmax−l , where lmax is the finest level. For
two consecutive level l and l + 1, the inheritance can be easily calculated. E.g. the

cell(J, l + 1) is defined as the child of cell
(
b J

S
c, l
)

, where J = (j1, j2, j3) is the index

of the cell.
A particle with cutoff rc,i is mapped into level l if

rc,i ∈
( rc,max

Sl+1 ,
rc,max

Sl

]
. (3.8)
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Then on level l, the particle can be mapped to cell

Ji =
[ ri

rc,l

]
, (3.9)

where ri is the position of particle i.
Fig. 3.1 (a) shows the data structure in two-dimension with three levels of refine-

ment.

3.2.2 The tag system for PFNS

For NNS within a single level, the same operations as the CLL are performed. To
enable the cross-level PFNS, a tag system consisting of several identifiers is con-
structed [28][1] to mark the status of each cell. The operations can be concluded into
two phases. In phase 1, by performing a top-to-bottom and a bottom-to-top traversal
of the data structure, the cells that can influence and can be influenced by particles
inside the sub-domain are marked. Then the tag systems between two neighbor-
ing sub-domains are compared. Cells in remote that can influence the current sub-
domain are registered as ghost cells. All the particles registered in the ghost cells are
sent to the target sub-domain during communication. In phase 2, a bottom-to-top
traverse of the data structure is performed to register particle address pointers from
finer levels to coarser levels. Since all the potential missing candidates are mapped
to the corresponding level with the above operations, one only need to traverse ad-
jacent cells in the current level to find all the neighbors, thus any cross-level search
is unnecessary. The traversal of the data structure can be carried out concurrently
and in parallel.

3.3 Data communication

In large-scale parallel computing involving sparse data communication pattern, the
communication strategy is critical to the parallel efficiency [127][1]. In this section,
the graph-based communication strategy and communication frequency optimiza-
tion for multi-resolution particle-based methods developed in [1] is introduced.

3.3.1 Graph-based communication strategy

Due to limited wave propagation speed in weakly-compressible and compressible
fluids, particles only interact with limited amount of neighbors in each timestep. In
parallel environment, this characterizes a sparse data communication topology. Ac-
cording to [1], the communication topology can be defined by an undirected simple
graph Gcm = (Vcm, Ecm), where Vcm, Ecm denote vertex and edge respectively. Fig. 3.1
(b) shows the sketch of a communication graph. In this graph, each vertex represents
a sub-domain, and each edge connects a pair of interacting sub-domains.

To construct the communication graph, the same data structure as introduced in
Section 3.2.1 is utilized. According to the SPH particles that reside inside the cell,
each cell is assigned with a color-list. Then by performing an “upward projection
evaluation" operation in the data structure, the communication topology can be ob-
tained by comparing the overlapping information between each colored region.
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3.3.2 Communication frequency optimization

Although the communication topology is built, the problems of potential data rac-
ing condition and communication deadlock are still not resolved if an optimized
communication sequence is not provided. One solution is to allocate additional
buffer memory space to temporarily store the data coming from neighboring sub-
domains, and merge the collected data afterwards. However, this approach creates
additional overhead of memory consumption and operations. Another means is to
define a sequential execution order of communication which avoids the data traf-
fic and improves the efficiency. In [1][128], the edge-coloring method is used for
the communication frequency optimization. As illustrated in Fig. 3.1 (b), the edge-
coring algorithm colors all edges and ensure that no edges sharing the same vertex
possess identical color [129]. The communication frequency can then be explicitly
characterized by the number of colors. In each communication sub-iteration, only
the communication pair possessing the same color is involved. Consequently, the
conflicts of data racing condition is eliminated.
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Chapter 4

Summaries of publications

In this chapter, the selected publications and main accomplishments during my PhD
stage are briefly summarized. The current state-of-the-arts regarding each topic are
presented too in each section. For more details, I refer to Appendix A.1, A.2 and A.3
respectively.

4.1 A new multi-resolution parallel framework for SPH

Z. Ji, L. Fu, X. Y. Hu and N.A. Adams (2019)

4.1.1 State of the art

The development for parallel SPH code that supports adaptive smoothing-length
originated from researchers in computational astrophysics. Due to the Lagrangian
nature of SPH, it is particularly suitable for cosmological simulations where particles
can follow the gravitational growth of the structure and the resolution is increased
automatically in the central regions of galactic halos [12]. In addition, SPH also
satisfies Galilean invariance and conserves mass inherently.

The most popular implementation of SPH in computational astrophysics utilizes
the tree data structure, where the domain is divided recursively into a hierarchi-
cal representation so that all leaves are either empty or contain a small number of
particles. A tree-walk operation is performed to find neighboring particles that fall
into the cutoff radius. In 1989, the TreeSPH code is developed [125], and it is suc-
cessfully applied to various cosmological simulations. Later, the GADGET-2 [12]
code is developed based on the main structure of TreeSPH and with massive par-
allelization capability. In GADGET-2, the domain decomposition is handled based
on the Peano–Hilbert curve. A collective hypercube communication strategy is de-
veloped to hide communication latency. The code is paralleled by both MPI and
OpenMP techniques. It is by far perhaps the most well-established SPH code in
computational astrophysics due to ability to scale in a large number of nodes. Other
high-performance codes, e.g. Phantom [130], SPHYNX [131], Gasoline/Gasoline2
[126][132] and etc., have also been published in the past decade. Similar structures
and algorithms are employed in terms of constructing the parallel environment.
More recently, due to the wide application of GPU, there also exist some efforts to
extend the tree-based SPH method to GPU with CUDA [133].

Besides the astrophysics community, several other open-source frameworks for
different particle-based methods exist too. DualSPHysics [134], designed for free-
surface flows in hydrodynamics, is parallelized with OpenMP and CUDA (the pub-
licly available version). LAMMPS [73], maintained and distributed by Sandia Na-
tional Laboratories and Temple University, is specialized in Molecular Dynamics
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(MD) and Dissipative Particle Dynamics (DPD) simulations. Various parallel tech-
niques, e.g. MPI, OpenMP and CUDA are available in the code. For codes that
can handle both particle and particle-mesh methods, POOMA [135], PPM [128] and
most recently OpenFPM [74] are available with scalable parallel performance. How-
ever, the aforementioned codes mainly deal with particles of constant size, and the
support for variable resolution is either limited or yet to come.

4.1.2 Summary of the publication

In paper I [72], a new multi-resolution parallel framework for SPH is developed, em-
ploying several algorithms from previous work [4][1][28]. The objective is to seek a
succinct and unified solution to address some of the existing challenges in the paral-
lel computing of SPH, i.e. domain decomposition, communication optimization and
PFNS.

The CVP method [4] is adopted as the domain decomposition method. Com-
paring to classical geometry-based domain decomposition method, CVP is able to
achieve the targets of load balancing while optimize the communication volume
simultaneously. Comparing to graph-based method, the parallelization of CVP is
straightforward, which is critical for a large number of computational nodes. In
[4], CVP is only validated as a static load balancer. In paper I [72], an adaptive
criterion and a monitoring system is developed to further integrate CVP as a re-
balancer. The adaptive criterion utilizes a time-weighting strategy to dynamically
calculate the computational load of each SPH particle. The resulting partitioning
features better load-balancing characteristics. Moreover, the proposed monitoring
system considers the load imbalance due to the change from both computational
and communicational time. Thus the imbalance of the system is captured more ac-
curately. Numerical experiments show that with the proposed algorithm, the target
of dynamic load balancing is achieved.

A localized hierarchical CLL-based data structure is developed for the PFNS.
Other than using the tree-based data structure, the multi-level CLL-based data struc-
ture developed in [1] is tailored into the current framework to achieve higher con-
currency and to reduce the cost due to dynamic maintenance. Comparing to the tree
data structure, which can be built in O(NlogN) and queried in O(logN), the single-
level CLL can be built in O(N) and queried in O(1). By extending to a hierarchical
representation combining with an inter-level mapping of particle pointers, the data
structure can be built and updated concurrently, which is well-suited for multi-core
CPU and GPU. In paper I [72], the data structure is further modified to incorporate
with the framework. First, the data structure is built with only sub-domain informa-
tion to eliminate the memory bottleneck. Moreover, a safeguard skin area is created
to avoid the construction of local data structure every time-step. The performance of
PFNS using the local data structure is improved additionally by reducing the num-
ber of tag comparison between two neighboring sub-domains.

An optimized communication strategy based on the concept of diffused graph is
proposed. Previously in [1] the graph-based communication strategy is developed
to handle the sparse data communication among neighboring nodes [127][136]. The
graph is originally constructed relying on a global master-slave approach. However,
the graph construction does not scale with the partitioning number. Therefore, the
runtime contributing to graph construction becomes increasingly significant when
the number of partitions grows. In paper I [72], to overcome the serialization bot-
tleneck of graph-construction, the concept of “diffused graph” is proposed. A dif-
fusing distance to the cut-off range of each color is introduced to tune the “density”
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of the communication matrix. Consequently, each sub-domain can anticipate po-
tential neighbors within a certain time period in the future due to the limited wave
propagation speed constraint. The graph construction at every time-step is avoided.
Numerical experiments demonstrate that the time contribution due to graph con-
struction is no longer an issue.

Lastly, the scalability of the framework is measured for both uniform and non-
uniform particle distributions. In both cases, the code exhibits good scalability for
strong and weak scaling. The weak scaling reveals that the code scales well up to at
least 3584 cores. For strong scaling, a good scaling number is achieved for maximum
7168 cores tested.

4.1.3 Individual contributions of the candidate

This article [72] was published in the international peer-reviewed journal Computer
methods in applied mechanics and engineering. My contribution to this work was the
development of the method and the code. I have performed numerical validations,
analyzed the results, part of the performance tests, and wrote the manuscript.
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4.2 A Lagrangian Inertial Centroidal Voronoi Particle method
for dynamic load balancing in particle-based simulations

Z. Ji, L. Fu, X. Y. Hu and N.A. Adams (2019)

4.2.1 State of the art

In simulations featuring large computation-load variation and high anisotropic load
distribution in space, e.g. the dambreak problem [137], tsunami simulation [138],
and the rotating disk problem in astrophysics [14], significant communication over-
head and load imbalance may be introduced to deteriorate the performance of the
underlying numerical solver. The issue of load rebalancing becomes critical in the
aforementioned scenarios. Comparing to static partitioning, rebalancing needs to
meet the same targets, e.g. load balance, locality, optimization for inter-processor
communication, but also is subject to further constrains. The key aspect for rebal-
ancing schemes is to minimize partitioning modifications subject to small topology
changes, i.e. the incremental property, and to optimize the inter-processor commu-
nication at smallest cost [106] [28].

To achieve better incremental property, the load balancer should be aware of load
variation in time for the underlying system, instead of taking the load distribution
as a new target before every rebalancing. I.e. the repartitioning of the system should
be based on the existing partition to achieve lower data redistribution cost [139]. To
cure the issue of skew-aligned load distribution, the rebalancer should be able to
characterize the anisotropy and dynamically adapt the load-balancing strategy.

Previously, a CVP domain decomposition method [4] has been developed to
combine the concepts of CVT and VP. Later, CVP is adopted in paper I [72] as the
load balancer for the new multi-resolution parallel framework [72]. An adaptive
rebalancing criterion and monitoring system has been proposed to assess the imbal-
ance during simulation and to reassign equivalent load among all processors. Nu-
merical experiments demonstrate that highly compact sub-domains are calculated
by CVP and the target of load balancing is achieved with the adaptive rebalancing
criterion. Although the CVP method inherently features load balance and commu-
nication reduction, there is no explicit treatment in the previous work to handle the
additional difficulties encountered in dynamic partitioning.

4.2.2 Summary of the publication

In paper II [140], a Lagrangian Inertial CVP (LICVP) method is developed to ex-
tend the CVP method and to improve the performance of particle-based methods in
dynamic partitioning problems.

First, a three-step time integration scheme is proposed by introducing a back-
ground velocity ṽvp

i to transport Voronoi particles according to local flow details.
Originally in CVP, Voronoi particles remain static between two consecutive rebal-
ancing steps, which is unsynchronized with the underlying particle system. Since
particles are updated in a Lagrangian fashion, a significant amount of particles may
travel in and out of the original Voronoi cell. Consequently, the load variation is not
taken into account in the repartitioning of the system. In paper II [140], by intro-
ducing ṽvp

i , the positions of Voronoi particles are updated following the evolution of
the dynamic system and geometry variation of local sub-domains. When the rebal-
ancing subroutine is triggered, the updated Voronoi particle positions are utilized
as input for the new partitioning result. Consequently, the incremental property is
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preserved. Numerical experiments demonstrate that with the proposed background
velocity, the incremental property is improved remarkably comparing to original
CVP.

Second, an Inertial CVP is proposed to handle problems featuring skew-aligned
computational load and large void regions. By introducing the inertial matrix, the
load distribution is characterized by the direction of principle inertia. Based on
the load distribution, the motion of the Voronoi particles is constraint on directions
where the load distribution is not dominant. The choice of constraint is calculated by
a splitting operator Cp. In order to account for the temporal variation, an adaptive
filter is proposed to select optimal constraint dynamically according to the develop-
ment of the underlying particle system. Numerical experiment of a dambreak case
demonstrates that with the proposed Inertial CVP method, a speedup of about 6x is
achieved comparing to original CVP.

4.2.3 Individual contributions of the candidate

This article [140] was published in the international peer-reviewed journal Computer
physics communications. My contribution to this work was the development of the
method and the code. I have performed numerical validations, analyzed the results,
and wrote the manuscript.
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4.3 A consistent parallel isotropic unstructured mesh gener-
ation method based on multi-phase SPH

Z. Ji, L. Fu, X. Y. Hu and N.A. Adams (2020)

4.3.1 State of the art

Due to the rapidly growing capabilities and capacities of modern supercomputers,
numerical methods become more viable for simulating systems consisting up to ∼
1011 degrees of freedom. However, the development of parallel mesh generation
method is generally lagging behind comparing to the numerical solver that relies
on the generated mesh. The topic of developing scalable, stable and high-quality
parallel mesh generation methods is still relatively new. Comparing to sequential
mesh generator, additional targets arise when the mesh is generated in a distributed
memory system. In the previous Section 2.2, a detailed review on the recent progress
in unstructured mesh generation method is presented.

To fully harness the computational power of modern DSM architectures, the par-
allel mesh generator should achieve 1) high concurrency and good data locality in
local shared memory system and 2) well-balanced load distribution and low com-
munication cost with remote nodes. Moreover, the choice of domain decomposition
should not affect the final mesh quality, which requires the consistency of the un-
derlying method. In this sense, an algorithm that features both coarse-grained and
fine-grained parallelism is preferable. Recently, several researches have been pub-
lished following this direction [100][101] to explore a two-level parallelism.

Comparing to classical mesh generation methods, i.e. AFT, Octree refinement-
based method, Delaunay refinement-based method and Delaunay variational-based
method, particle-based method naturally satisfies the two-level parallelism, thus
making it well-suitable for parallel mesh generation. However, to the best of my
knowledge, the topic of parallel particle-based mesh generator in a DSM has not yet
been explored.

4.3.2 Summary of the publication

In paper III [71], a consistent parallel mesh generation method with a multi-phase
SPH formulation is proposed. With the proposed method, the objectives of parti-
tioning the domain, optimizing communication volume and improving mesh qual-
ity are achieved consistently by solving the same set of physics-motivated governing
equations.

To combine the objectives of both domain decomposition and mesh generation,
a unified target density function ρt = Φ(r) is first introduced, which characterizes
the target feature-size of mesh element and provides the distribution of the compu-
tational load in the meantime. The target density function can be any smooth scalar
field considering various geometrical features and user-defined inputs. By integral
over the mesh-generation region, the total mass for mesh generation is obtained and
consequently the number of mesh-vertices can be derived. Moreover, with the same
integration, the total computational load is obtained too. As a consequence, the tar-
get for each sub-domain can be calculated provided the number of MPI tasks.

The key idea of paper III [71] is to merge a parallelization strategy into a set
of physics motivated governing equations to relax Lagrangian particles following
the target function. A color function is assigned to SPH particles and each color pos-
sesses an equal amount of particles, which is obtained from the target computational
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load of the corresponding sub-domain. The load-balancing condition is inherently
ensured. To handle the additional target of optimizing communication volume, a
surface tension model is introduced in addition to the previous work [5]. The mesh
generation procedure can be characterized into two stages. During the first stage, the
mesh quality is improved in the interior region of each sub-domain. In the mean-
time, due to the presence of surface tension force, a sharp-interface constraint is pre-
served, i.e. the communication volume is optimized. Once a steady state is achieved,
the second stage starts. The mesh quality near the interface region is optimized by
gradually alleviating the surface tension force.

The physics-motivated equations are solved by a multi-phase SPH formulation.
The original mesh generator is extended to generating three-dimensional tetrahedral
meshes. To better define 3D geometry with sharp edges and to enhance the geometry
recovery, piecewise-linear B-splines are supported. The CVP method is utilized to
improve the locality property of initial particle seeding.

Numerical results from intensive tests consisting various scales and complexi-
ties demonstrate that the calculated sub-domains feature compact shape and high-
quality mesh is generated. The communication overhead caused by the optimiza-
tion of mesh quality near the interface is limited even in cases with complex ge-
ometry and large spacial adaptivity. Meanwhile, with the proposed parallel mesh
generation method, high quality triangle/tetrahedron mesh can be generated with-
out the need of constructing Delaunay Triangulation/Tetrahedralization explicitly.
Since only local information are required during the simulation and the same set of
governing equations are solved for all the particles, the proposed method features
high consistency and code reusability. Benefiting from the scalable parallel environ-
ment designed previously in [72], the mesh generation procedure is able to exploit
both fine-grained and coarse-grained parallelization.

4.3.3 Individual contributions of the candidate

This article [71] was published in the international peer-reviewed journal Computer
methods in applied mechanics and engineering. My contribution to this work was the
development of the method and the code. I have performed numerical validations,
analyzed the results, the performance tests, and wrote the manuscript.
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Chapter 5

Conclusions and outlooks

5.1 Conclusions

SPH, initially as an alternative to the grid-based method, has shown tremendous
potentials in the past decade, with significant amount of improvements been made
in both numerics and physical capabilities. Greater acceptance of SPH in the general
CFD community has been achieved and increasing number of industrial appear-
ances has demonstrated its uniquenesss as a powerfull tool for resolving modern
CFD and multi-physics problems. However, the non-negligible higher computa-
tional costs comparing to grid-based methods and the lack of efficient algorithms
handling adaptive resolution are still issues hinding its acceptance by broader audi-
ence.

In this work, several novel numerical methods and algorithms are developed
regarding SPH and its HPC. A new and scalable multi-resolution parallel frame-
work for large-scale SPH simulations is develoed to go beyond the limitation of
constant resolution in modern clusters with DSM system. The main advantage of
the newly developed framework lies in its simplicity and being able to achieve high
concurrency in modern multi-core architectures. To improve the incremental prop-
erty and the performance in problems featuring huge anisotropic load distribution,
a Lagrangian Inertial CVP method is proposed to improve the original CVP method
in the context of dynamic load balancing. Lastly, a novel consistent parallel mesh
generation method is developed to achieve the target of domain decomposition and
high-quality mesh generation simultaneously, which is, to the best of the author’s
knowledge, the first of its kind.

The parallel framework employs several novel methods developed recently in
AER. The CVP method [4] is integrated as the domain decomposition method. The
CLL-based multi-resolution data structure is tailored for the PFNS, and the graph-
based communication strategy is used to characterize the communication matrix
and to optimize the communication frequency. The main contribution of paper I
[72] is that a set of techniques are proposed to incorporate various functionalities
into the framework and to overcome the bottlenecks of efficiency and memory si-
multaneously. More specifically: (1) An adaptive rebalancing criterion and monitor-
ing system is proposed to integrate the CVP partitioning method as a rebalancer.
A set of numerical experiments show that the target of dynamic load balance is
achieved with the proposed rebalancing strategy; (2) A localized nested hierarchi-
cal data structure is developed to eliminate the bottleneck of memory overhead. The
PFNS strategy in [1] is tailored and extended to current data structure. The effi-
ciency is increased further due to the local tree construction. (3) A diffused graph is
proposed to improve the efficiency of the graph-based communication strategy. The
graph-based communication strategy is employed to handle both the construction
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of ghost buffer particle and particle migration. Numerical tests and runtime analy-
ses demonstrate that negligible time is required for graph construction comparing
to total runtime. (4) A set of performance tests are performed for both uniform and
non-uniform particle distributions, and in both cases, scalable performance is ob-
served.

The Lagrangian Inertial CVP method improves the performance of the original
CVP method in terms of dynamic load balancing. The primary objectives of LICVP
are to improve the incremental property and to gain the capability of handling prob-
lems involving skew-aligned load distribution and large void regions. Two concepts
are introduced in this part of the current thesis: (1) By defining a background veloc-
ity, Voronoi particles are able to track the motion of local sub-domains and character-
ize the topological variation of the system with better accuracy. Rebalancing upon
the updated Voronoi-particle positions improves the incremental property remark-
ably. (2) The performance of simulations with extremely anisotropic computation-
load distribution is improved utilizing the proposed Inertial CVP method. Due to
a splitting operator, the Voronoi-particle motion is insensitive of the load variation
along directions of minimum interest. As a consequence, the incremental property
is enhanced and convergence is improved. Additionally, an adaptive filter is pro-
posed, which allows the dynamic selection of partitioning strategy according to the
evolution of load distribution. The selection procedure guarantees a relative balance
between data-redistribution and inter-processor communication cost in extreme sit-
uations.

The SPH-based parallel mesh generation method addresses the issue of partition-
ing the domain, optimizing communication volume, generating an optimized adap-
tive unstructured mesh in parallel. All the targets are accomplished within the same
set of consistent formulations. The main contribution can be summarized as: (1) A
unified target density function is defined to characterize the targets of both domain
decomposition and mesh generation. The target density function can be any smooth
scalar field considering various geometrical features and user-defined inputs. By
utilizing a background Cartesian mesh and level-set function, the total number of
mesh vertices and target mass for each sub-domain can be determined a priori; (2) A
parallelization strategy is developed and a set of physics motivated governing equa-
tions is proposed to achieve all the underlying targets consistently. A surface tension
model is introduced to previous particle-based mesh generator [5] to handle the ad-
ditional target of optimizing the communication volume in a parallel environment.
During the domain decomposition stage, the mesh quality is improved simultane-
ously in the interior region of each sub-domain. Once a steady state is achieved,
the mesh quality near the interface region is optimized by gradually alleviating the
surface tension force. (3) A multi-phase SPH formulation is utilized to solve the
governing equations. The previously-developed mesh generator [5] is extended to
higher dimensions and parallelized with both MPI and TBB technique. Numerical
results demonstrate that the resulting sub-domains feature compact and regularized
shape, and high-quality mesh is generated. The communication overhead caused
by the optimization of mesh quality near the interface is limited even in cases with
complex geometry and large spacial adaptivity; (4) With the proposed parallel mesh
generation method, high quality triangle/tetrahedron mesh can be generated with-
out the need of constructing Delaunay Triangulation/Tetrahedralization explicitly.
Since only local information are required during the simulation and the same set of
governing equations are solved for all the particles, the proposed method features
high consistency and code reusability. Benefiting from the scalable parallel environ-
ment designed in paper I [72], the mesh generation procedure is able to exploit both
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fine-grained and coarse-grained parallelization.

5.2 Outlooks

Although the parallel framework developed in this work achieves a scalable perfor-
mance, the code itself is not intensively optimized for speed. Several optimization
techniques can be applied to improve the performance, e.g. adaptive time-stepping
schemes, using structure of arrays (SOA), stream-based parallelism, and etc. In
term of the CLL-based multi-resolution data structure, currently a direct grid map-
ping function is applied to calculate the hash value of each key. This approach is
highly efficient, whereas would create a memory bottleneck if most of the domain
is filled with void, where a giant list needs to be stored physically. This issue can
be mitigated by using spatial hashing, which can represent infinite domains with
sufficiently low memory consumptions. Last but not least, extending the current
framework with GPU capability will bring a significant leap in performance. The
implementation is relatively easy comparing to tree data structures, since most of
the algorithms are designed in a way that high concurrency can be achieved. In
addition to the performance improvements, more particle-based methods, e.g. In-
compressible SPH, SPH for solid mechanics, Molecular Dynamics and Dissipative
Particle Dynamics, can be included in future to extend the capability of the current
framework.

Regarding to the mesh generation method developed in this work, from a per-
formance point of view, the current form is still considerably more expensive than
the state-of-the-art Delaunay-based methods, despite all the unique characteristics
and advantages. Future development can be concluded as following: (1) the formu-
lation presented is consistent and can be extended to the parallel anisotropic mesh
generation with a rotating tensor; (2) as mentioned in the above paragraph, the pro-
posed mesh generator can be parallelized in GPU, which will result in a speedup
of 10X to 100X; (3) more studies on initial particle seeding strategies will be carried
out (this issue is studied in my latest preprint [77]); (4) it is also possible to couple
the proposed method with other existing meshers or point cloud generators which
feature high performance in terms of generating an initial particle distribution, e.g.
the Advancing Front Point Generation Method [141].
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Abstract

In this paper we present a new multi-resolution parallel framework, which is designed for large-scale SPH simulations of
fluid dynamics. An adaptive rebalancing criterion and monitoring system is developed to integrate the CVP partitioning method
as rebalancer to achieve dynamic load balancing of the system. A localized nested hierarchical data structure is developed in
cooperation with a tailored parallel fast-neighbor-search algorithm to handle problems with arbitrarily adaptive smoothing-length
and to construct ghost buffer particles in remote processors. The concept of “diffused graph” is proposed in this paper to improve
the performance of the graph-based communication strategy. By utilizing the hybrid parallel model, the framework is able to exploit
the full parallel potential of current state-of-the-art clusters based on Distributed Shared Memory (DSM) architectures. A range
of gas dynamics benchmarks are investigated to demonstrate the capability of the framework and its unique characteristics. The
performance is assessed in detail through intensive numerical experiments at various scales.
c⃝ 2018 Elsevier B.V. All rights reserved.

Keywords: Smoothed Particle Hydrodynamics; Compressible fluid dynamics; Centroidal Voronoi Particle method; High-performance parallel
computing; Fast neighbor search; Edge coloring

1. Introduction

As a Lagrangian method, Smoothed Particle Hydrodynamics (SPH) [1,2] ensures Galilean invariance and
conserves mass, momentum and energy inherently. It has been explored and demonstrated for a wide range of
applications. Moreover, since SPH solves fluid-dynamics equations on discretized particles carrying specific mass, the
space resolution can be adapted which is particularly interesting for compressible fluid dynamics [3]. Due to simple
coupling with a gravitational solver, SPH is a preferred approach in computational astrophysics [4,3,5]. Other effects,
such as radiation fields and magnetic fields, can also be included and help to explore the formation and evolution
of galaxies [6]. For incompressible or weakly compressible hydrodynamics, recently there has been an increasing
interest to employ multi-resolution SPH to locally resolve fluid details of interest in a more efficient way [7–9].

Several open-source frameworks exist for the large-scale parallel simulation of particle-based methods. Dual-
SPHysics [10] is a high performance code developed mainly for free-surface flow phenomena in weakly-compressible
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fluid dynamics. The publicly available code is parallelized with OpenMP [11] and CUDA [12] aimed at shared-
memory platforms or single-GPU systems. In Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD)
simulations, LAMMPS [13] is a well-established and massively optimized code. LAMMPS features parallelism
in both shared-memory and distributed-memory systems using various parallel techniques, e.g. Message Passing
Interface (MPI) [14], OpenMP and CUDA. Regarding frameworks for particle and particle-mesh method in distributed
memory systems, both POOMA [15] and PPM [16] have been developed and established with scalable parallel
performance. More recently, as the successor to the PPM Library, OpenFPM [17] provides higher-level abstractions for
simulations using particles only and hybrid particle-mesh, and is optimized intensively to achieve high-performance
in modern architectures.

Some preliminary work has been published to tackle the difficulties encountered in extending codes with
adaptive-resolution capability, e.g. neighbor lists for adaptive resolution [18], and variable resolution algorithms for
particle-based simulations [19,8]. However, the support for fully parallelized adaptive-resolution in DSM systems is
generally still limited in the aforementioned codes. To deal with adaptive-smoothing-length SPH in high-performance
parallel computing, a versatile and flexible framework is required to handle a set of common issues, e.g. domain
decomposition, adaptive data structure, parallel fast neighbor search, data communication, etc. A state-of-the-art code
with adaptive-resolution capability is the tree-based SPH solver GADGET-2 [4]. GADGET-2 provides a hierarchical
representation of particles using the tree method. The domain decomposition is handled based on the Peano–Hilbert
curve. A collective hypercube communication strategy is developed to hide communication latency. In the past
decades, this method has become increasingly popular for SPH as well as particle-based N-body methods.

In this paper, we follow an alternative approach by introducing a new multi-resolution parallel framework
employing several algorithms from previous work [20–22]. The objective is to seek a succinct yet unified solution
to address the existing challenges. In order to integrate the aforementioned algorithms as a consistent and efficient
system, several new techniques are developed in this paper to overcome the difficulties encountered and to optimize
the parallel performance.

The Centroidal Voronoi Particle (CVP) method [20] is adopted in our framework instead of a conventional domain
decomposition method, such as graph- and geometry-based approaches [23,24]. First, due to the construction of
Centroidal Voronoi Tessellation (CVT) [25], the partitioning results in convex, strictly-connected subdomains of small
aspect-ratio, which facilitate communication reduction. Second, with a tailored equation of state, both equal- and
nonequal-sized partitioning can be achieved straightforwardly with controlled load-balance error by appropriately
assigning the target mass for each subdomain. The load balance of each sub-domain is then achieved iteratively
by solving a physics-driven Voronoi Particle dynamics (VP). The targets of both load balance and communication
reduction are achieved simultaneously by a two-step time integration scheme to incorporate both CVT and VP.
Moreover, since only the physical coordinate of the mesh-element is required as input of the CVP method, it is a
mesh-element-independent method and can be implemented easily. In our previous work, the CVP method is only
applied in static partitioning problems. However, in dynamic systems involving large deformations, the computational
load in each subdomain can vary rapidly, therefore, the imbalance of the system will deteriorate the parallel efficiency
significantly. In this paper, we propose an adaptive criterion and monitoring system to employ the CVP method as a
rebalancer. The adaptive criterion utilizes a time-weighting strategy to dynamically calculate the computational load
of each SPH particle. The resulting partitioning features better load-balancing characteristics. Moreover, the proposed
monitoring system considers the load imbalance due to the change from both computation and communication
consumption. Thus the imbalance of the system is captured more accurately.

One of the computationally most expensive components of the SPH method is to find all stencils, i.e. pairwise
interacting particles, within the cut-off radius of each discretization particle. We recently have developed a parallel
fast-neighbor-search strategy, which allows to find the pairwise interaction partners with arbitrary smoothing-length
precisely and efficiently both on local and remote processors [21]. A table-based multi-level nested hierarchical data
structure is tailored to facilitate fast neighbor search. The neighboring particles on remote processors are identified
by simply comparing the tag system constructed on the data structure between two neighboring subdomains. In our
previous work, the parallel fast-neighbor-search strategy requires that each subdomain saves the data structure of
the entire computational domain. The memory requirement quickly becomes a bottleneck when the number of MPI
tasks increases. In this paper, we propose a localized hierarchical data structure, where only required information is
stored for each subdomain, and the maintenance of the data structure is entirely localized. Therefore, the bottleneck
of memory requirement is resolved, and the data management is simplified as well. Moreover, a safeguard skin area is
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created to avoid the construction of each local data structure every time-step. The parallel fast-neighbor-search strategy
for the local data structure is slightly modified. The cost for tag comparison between two neighboring subdomains is
reduced by considering only cells in the overlap region.

Another issue that affects the performance of large-scale simulations is to handle sparse data communication among
neighboring nodes [26–28]. According to previous work [29,30,16], the communication network can be characterized
by a simple undirected graph, and the edge coloring algorithm can be utilized to reduce the communication latency. In
this paper, the communication graph for a multi-level data structure is constructed following [21]. When we apply the
communication strategy to the framework, the same issue arises as in the data structure construction. Since a global
master–slave approach is required [21], the graph construction procedure does not scale with the partitioning number.
Therefore, the runtime due to graph construction at every time-step becomes increasingly significant when the number
of partitions grows. To reduce the time consumption of graph construction and overcome the serialization bottleneck,
we propose a concept of “diffused graph”. The “density” of the communication matrix is tuned by introducing a
diffusing distance to the cut-off range of each color. By applying this concept, each subdomain can anticipate potential
neighbors within a certain time period in the future. Consequently, the graph construction at every time-step can
be avoided. Numerical experiments demonstrate that the time contribution due to graph construction is no longer
an issue. Nevertheless, in this paper, the graph-based communication strategy is also applied to optimize particle
migration frequency. A similar master–slave strategy is proposed to construct a migration graph in order to achieve
high performance.

The current framework is designed to be independent of the specific SPH solver. We demonstrate its application
to compressible fluid dynamics, where the resolution varies significantly following the evolution of flow field. A well
established Godunov SPH method is implemented, and several benchmarks in gas dynamics are investigated.

The remainder of the paper is organized as follows. (i) In Section 2, we first briefly review some newly developed
methods including the CVP method, the parallel fast-neighbor-search and communication strategy for particle-based
methods with adaptive smoothing-length. (ii) The main contribution in this paper is presented in Section 3. Several
new techniques are elaborated and the overall framework is presented. (iii) Four typical categories of compressible
gas dynamics simulations are given in Section 4 to verify the accuracy of the framework and show the dynamic
property of the CVP method and the communication strategy. (iv) In Section 5, we carry out a parameter study of
the dynamic load balancing strategy and demonstrate the performance of the framework via numerical experiments
involving various scales. (v) Concluding remarks are given in the last section.

2. Brief review of the CVP method, parallel fast-neighbor-search and graph-based communication strategy

Before moving on to the detailed description of the framework, in this section we first give an overview of three
employed algorithms, i.e. the CVP method [20], the parallel fast-neighbor-search and the graph-based communication
strategy [21,22].

2.1. Centroidal Voronoi Particle (CVP) partitioning method

By combining two concepts, i.e. CVT [25] and Voronoi Particle dynamics (VP), CVP is able to achieve high-level
compactness of partitioning subdomains and error-controlled load balance simultaneously [20].

With the CVP method, an equilibrium state is calculated iteratively to achieve the aforementioned targets. A
two-step time integration scheme is developed to combine these two methods and to achieve better convergence.
To compute the CVT diagram [31–33] efficiently, the well-established Lloyd method [34,35] is employed. Voronoi
Particle dynamics is then applied to relax the particles towards achieving load balance. The governing equation in
Lagrangian form is

dvi

dt
= −

∫
Ωi

▽φdσ∫
Ωi

ρdσ
= −

∫
∂Ωi

φdS
L i

, (1)

where v denotes the velocity vector, φ a force potential, ρ the density, L i the mass of Voronoi particle i and ∂Ωi the
Voronoi cell surface. The force potential of a Voronoi particle is defined as

φi =
L i

L tg,i
, (2)
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Fig. 1. Data structure: (a). Illustration of the multi-resolution based nested hierarchical data structure comprising three levels; (b). Sketch of a
communication graph, and the result of applying the edge coloring algorithm.

where L tg,i is the target mass defined by users with respect to various purposes. For equal-sized partitioning, one can
set L tg,i =

∫
Ω ρdσ

k , where k equals to the number of partitioning subdomains. The potential at the surface between
two neighboring cells is computed with second-order approximation. Note that all variables in Eqs. (1) and (2) are
non-dimensional.

The CVP method can be parallelized with the Threading Building Blocks (TBB) [36] and MPI techniques. For
more details, the reader is referred to [20].

2.2. Data structure and parallel fast neighbor search (FNS)

A multi-resolution based nested hierarchical data structure [21] is employed in this framework (see Fig. 1(a)). The
number of levels can be dynamically defined according to the fluid field information, e.g. multiple levels may be
created with respect to the increasing resolution jumps, and vice versa. The number of levels is defined as

Nlevel = logS

(
rc,max

rc,min

)
+ 1, (3)

where S represents the scale ratio between two levels, rc,max and rc,min are the maximum and minimum scale of SPH
particles. At each level, the computational domain is divided recursively with equal-sized cells, and cell linked list
(CLL) is built to mark mapped particles. The cell( j, l + 1), where j is the index of the cell and l + 1 denotes the level
index, is defined as the child of cell

(
⌊

j
S ⌋, l

)
.

The parallel fast-neighbor-search algorithm in [21] is adopted. This algorithm utilizes the above data structure. A
tag system consisting of several identifiers is constructed within this data structure to facilitate the neighbor search.
There are two phases dealing with the neighbor search: (1) construct buffer particles from neighboring subdomains
to fill the stencil missing in the local subdomain; (2) build a hierarchical CLL for neighbor search. To construct ghost
buffer particles, the data structure is traversed twice, i.e. a “downward prediction evaluation” as well as an ”upward
projection evaluation”, to define the region that may affect and be affected by particles in the current subdomain. The
tag systems between two neighboring subdomains are compared to construct the ghost buffer particle list. For the
second phase, the algorithm is repeated with a single ”upward projection evaluation”, which registers particle address
pointers from finer levels to coarser levels. To find real neighbors, one only needs to compare particle information
within the current level, thus any cross-level calculation is unnecessary.
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2.3. Communication strategy

The communication topology in the SPH method can be defined as a sparse graph [21]. We construct an undirected
simple graph G0 = (V, E), where V, E denote vertex and edge respectively, to characterize the sparse data
communication relationship, see Fig. 1(b). Each vertex represents a CPU node, and each edge connects a pair of
interacting neighbors. The communication frequency is optimized via utilizing the edge coloring method [30,16] to
color all edges so that no edges sharing the same vertex possess identical color [37]. The communication frequency can
be explicitly characterized by the number of colors. After applying the edge coloring algorithm, the communication
processes are initiated whose number equals the color number, and in each communication sub-iteration only one
edge color is involved to avoid conflicts. In the current paper, the edge coloring method is computed utilizing the
Boost Graph Library [38].

3. The parallel framework

In this section, details regarding to the proposed technique are presented accordingly. An overview of the entire
framework is provided at the end of this section.

3.1. Dynamic load balancing

The computational load distribution in the CVP method is characterized as a density function ρ(x). Each SPH
particle, which is referred as interaction particle in the CVP method, is assigned with the physical property of mass
proportional to its computational cost. Based on the density field, a certain number of Voronoi particles, identical
to the partitioning number, is generated in the computational domain. The mass L i for each Voronoi particle can be
computed by

L i =

∫
Ωi

ρ(x)dσ =

Ni −1∑
j=0

l j , (4)

where Ωi denotes the region corresponding to Voronoi particle i , Ni the number of interaction particles included in
the Voronoi cell i and dσ the volume differential. l j is the computational load of specific interaction particle j .

In Eq. (4), the definition of l j can be specified by users with respect to different concerns, which will basically
result in different CVP diagrams and performance. Moreover, the computational effort, i.e. l j , of each interaction
particle can vary dynamically during the simulation, which may cause load imbalance and therefore decrease parallel
performance.

In order to achieve load balance of the system, an accurate evaluation of l j is important. Assuming that a system
is comprised of M computationally intensive subroutines, l j can be calculated considering the contribution from each
subroutine,

l j =

M∑
k=0

ϵkl j,k, (5)

where l j,k =
l j,k∑N
j=0l j,k

is the normalized computational load of SPH particle j with respect to subroutine k. N is the

total number of SPH particles. The weight ϵk should always sum to 1, i.e.
∑M

k=0ϵk = 1.
With the SPH method, the major part of the runtime is contributed mainly by two subroutines, i.e. the neighbor

search (NS) and the calculation of inter-particle forces (CF). We calculate l j from:

l j = ϵl j,N S + (1 − ϵ)l j,C F , (6)

To assess the computational load due to NS, we set l j,N S equal to the number of distance calculations in nearest
neighbor search for each particle. In this scenario, l j,N S may change during the simulation according to the variation
of particle scale. Moreover, we set l j,C F = 1. Since an iterative algorithm is utilized in this paper for the calculation
of smoothing-length, and the actual number of inter-particle interactions is approximately the same for each particle,
we assume the runtime contributing to CF is equal for each particle.
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To combine the aforementioned two components, we calculate the weight ϵ by an adaptive approach,

ϵ =
∆tN S

∆tN S + ∆tC F
, (7)

where ∆t{·} denotes the net runtime elapsed for corresponding subroutines since last load-balance estimate. Upon
substituting Eqs. (6) and (7) into Eq. (4), the total mass L i in subdomain i is obtained. The imbalance error due to
computational load change (EL ,i ) can be evaluated straightforwardly by comparing the relative difference between L i

and the target mass L tg,i at the same instance, i.e. EL ,i =
L i −L tg,i

L tg,i
. In practice, the calculation of L tg,i requires global

collection among all processors, and extra time is required. Since the total computational load remains approximately
the same during a shot time span, we can replace L tg,i with the initial mass L0,i after each repartitioning.

For a dynamic system, the change of communication volume can also cause severe imbalance [39]. With the SPH
method, besides the computational load defined in each region Ωi , the communication load changes as well owing to
the deformation of Ωi and the variation of particle scale in the fringe of Ωi during the simulation. Thus we further
propose another criterion to eliminate the performance deterioration caused by communication imbalance. We define
the number of ghost buffer particles in each subdomain to represent the communication load (denoted as Lci ). The
imbalance error is characterized as ELc,i =

Lci −Lc0,i
Lc0,i

, where Lc0,i is the initial value after each repartitioning.
By combining both imbalance indicators, we define an imbalance monitoring tag as

R =

{
1 if ELc,max > eLc,max or EL ,max > eL ,max

0 if else, (8)

ELc,max = max(ELc,0, . . . , ELc,n−1), (9)

EL ,max = max(EL ,0, . . . , EL ,n−1), (10)

where eLc,max and eL ,max are user defined error tolerance respectively. n is the total number of Voronoi particles. The
CVP method is triggered for R = 1. In actual simulations, imbalance monitoring is performed every 10 to 20 physical
timesteps in order to save time. The performance of the dynamic load balancing strategy is discussed in Section 5.1.

3.2. Local data structure and tag system

The main memory consumption of the data structure is the hierarchical cell-linked list and the tag system. The
cell-linked list is constructed at each level with size equal to the total cell number on that level. In each cell, a dynamic
container of “pointer” type is utilized to construct the registered particle list. The tag system consists of several arrays
of “char” type with the same size of the total cell number in the tree. For large-scale simulation involving thousands
of CPU nodes, the memory requirement will become a bottleneck if each subdomain stores all tree information.

To cope with the memory limitation we develop a local hierarchical data structure (referred as “local tree” for
simplicity) that only retains local data for physical evolution within the next few timesteps, Fig. 2(a), (b). With the
new data structure, the bottleneck encountered from memory requirement is eliminated.

The local tree can be built with minimal effort compared with the total simulation time. It is constructed from the
coarsest level and bounded by a box that confines all the particles within this CPU node and buffer particles from
remote processors. The tree is built from the coarsest to finest level as described in Section 2.2. Moreover, due to the
locality property gained from the domain decomposition strategy, the local tree can be extended with a safeguard skin
wrapped around the perimeter, thus the construction procedure can be executed every few timesteps. The length of the
time interval is defined by the size of the safeguard skin and the physical wave propagation speed. Fig. 2(b) illustrates
the local tree with a safeguard skin for subdomain 8 in Fig. 2(a). The blue area with cell labeled “1” means that this
cell is registered with SPH particles, and the others are cells without particles. In this figure, besides the top and right
edge that are defined as global domain boundary, the left and bottom edges are both extended one cell further away to
avoid local tree reconstruction at every physical timestep.

Furthermore, the efficiency of the neighbor-search algorithm can be further increased as the amount of tag
comparisons is greatly reduced due to the local tree construction. In Fig. 2(c), a sketch of local projection and
prediction operation for NS is illustrated. The “Influence area” of each subdomain is identified locally through these
operations. In [21], the “influence area” is denoted as cells with tag Q j,l = 1, where j is the cell index at level l.
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Fig. 2. Data structure: (a) A domain that is partitioned by 12 subdomains, the black lines are the boundaries of each local tree. (b) Local tree with a
safe area for subdomain 8 in sub-figure (a) above; (c) Local projection and prediction operation for NS. (d) Illustration of tag comparison between
two neighboring subdomains.

Assuming subdomain A interacts with subdomain B, one can find the ghost buffer particles in B by comparing Q j,l

from A (area with red color in Fig. 2(d)) with the “leaf area”, which corresponds to cells with tag Pj,l = 1, in
subdomain B (area with blue color in Fig. 2(d)). The particles registered in the overlap region of “leaf” and “influence
area”, i.e. cells with tag Q j,l = 1 and Pj,l = 1, are defined as ghost buffer particles of A registered in B. Fig. 2(d)
illustrates the “overlap area” between A and B. It is observed that the tag comparison operation is bounded within
the intersecting region between neighboring subdomains, denoted as the ”tag comparison area”. Due to the local tree
construction, the range of ”tag comparison area” can be calculated straightforwardly by comparing the start and end
cell index of each subdomain. Consequently, for constructing ghost buffer particles, only the traverse within the “tag
comparison area” is required, and the number of tag comparison is significantly reduced.

3.3. Diffused graph

The graph-based communication strategy is highly efficient since the communication is scheduled by solving
the edge coloring problem. In real simulation, the communication topology may change according to the variation
of the particle scale, and previous algorithms require to construct G0 at each timestep. As described above, the
graph-construction procedure requires collecting information from Slave nodes, and often the number of edges added
is several times larger than the vertex number, which becomes time consuming for a large number of partitioning
subdomains.

However, due to the limited wave propagation speed and the locality feature through the CVP method, the
communication topology remains bounded within certain number of timesteps. Based on this observation, we propose
a diffused graph that can reduce the graph-construction frequency to achieve better performance.
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Fig. 3. Graph based communication strategy: (a). The color map used for constructing graph. A domain of size 1 × 1 is partitioned with 6 MPI
tasks (filled with different colors), and the red color is the area where neighboring subdomains overlap; (b). Illustration of constructing diffused
graph in a simplified case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The strategy is to diffuse the interaction area of each colored cell to anticipate potential neighboring subdomains
that are not current neighbors. Similarly as with the strategy elaborated in Section 3.2, an “upward projection
evaluation” operation is performed in the tree to map the color list from children cell to father cell. The cut-off
range of each color is relaxed by

hc,d
i = hc

i + hd , (11)

where hc
i denotes the cut-off range of color i , hc,d

i the diffused cut-off range of color i , and hd the diffused distance.
Note that Eq. (11) is similar to the concept of “skin distance” defined in constructing the Verlet list [40]. Finally, the
tree is traversed again to find each potentially interacting subdomains, i.e. edge connecting corresponding vertices,
using the relaxed cut-off radius hc,d

i . In Fig. 3 (a), a sketch of the color map containing 6 MPI tasks is illustrated. Each
subdomain pair, which mutually interacts within the cut-off range hc, is defined as a communication edge. Fig. 3(b)
illustrates the procedure of constructing a diffused graph. The shaded area is the relaxed cut-off range of subdomain
0, i.e. hc,d

0 , which is one cell larger than hc
0. Initially, the subdomain 0 does not consider subdomain 2 as a neighbor.

However, after relaxation, subdomain 2 is within hc,d
0 , and counts as communication neighbor of subdomain 0.

By the diffused graph strategy the communication graph remains intact throughout several iterations. However,
the communication matrix becomes denser, i.e. more edges are added to the graph. In our framework, we diffuse the
interaction area by one more cell further in each direction, i.e. △d = △l , and △l is the cell size at level l where the
color is currently located. Consequently, the graph is constructed every 10 timesteps. Performance will be discussed
in most detail in Section 5.

3.4. Particle migration

For dynamic load balancing, relocation or migration of SPH particles normally is required after each CVP
partitioning to achieve the rebalance of the system. In our framework, the graph-based communication strategy is
not only utilized for constructing ghost buffer particles from neighboring subdomains, but also applied to optimize
the particle-migration frequency after every rebalancing of the system. It is worth noticing that the particle-migration
topology is not necessarily the same with the communication topology, thus G0 cannot be employed directly to handle
the particle migration between subdomains. Similarly with G0, we characterize the migration topology by introducing
a migration graph G1 = (V, E).

G1 can be constructed straightforwardly with a Master/Slave communication strategy. After CVP partitioning,
every subdomain may possess SPH particles with colors distinct from current subdomain. Such particles are registered
as migrating particles. All colors in each subdomain are registered in a color list and the “Master” node collects all
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the color lists from corresponding “Slave” nodes. The migration graph G1 is then constructed in the “Master” node.
Moreover, the migration sequence can be optimized by the edge coloring method as well to avoid bandwidth conflicts.

3.5. SPH solver

In this paper, we mainly focus on applications in compressible gas dynamics. Other approaches, such as
incompressible [41] or weakly-compressible SPH [42,43], can be paralleled analogously with the current framework.
In this section, we mainly discuss a Godunov SPH solver following Ref. [44–46].

The density is calculated via summation by

ρi =

∑
j

m j W (
⏐⏐ri − r j

⏐⏐ , hi ), (12)

where ρ denotes density, m particle mass, W the kernel function,
⏐⏐ri − r j

⏐⏐ the distance between particle i and j and
h the smoothing length. The Gaussian kernel is adopted for all test cases in Sections 4 and 5.

Unlike in Ref. [44] and [46], where hi is calculated from a three step process, we calculate hi from an iterative
approach following [47]. A safeguard factor η is defined to set hnominal,i = ηhi before calculating density, then particle
i is mapped to the tree using hnominal,i . Since in resolved flow regions hi remains approximately constant, η can be
adapted according to the variation of the smoothing length from the previous iteration step (n-1) following

ηn
= max(η0, θhn/hn−1), (13)

where n is the timestep index, η0 = 1.03 and θ = 1.2 are user defined constants. hi is iterated using the Newton–
Raphson method [47].

The discretized governing equation in Lagrangian form for GSPH is

dvi

dt
= −

∑
j

m j p∗

i j

(
1

(ρi )2 ∇Wi j (hi ) +
1

(ρ j )2 ∇Wi j (h j )
)

, (14)

dei

dt
= −

∑
j

m j p∗

i j

(
v∗

i j − v∗

i

)
·

(
1

(ρi )2 ∇Wi j (hi ) +
1

(ρ j )2 ∇Wi j (h j )
)

, (15)

where ei is the specific internal energy per unit mass for particle i . For ideal gas, the equation of state is defined as

p = (γ − 1)ρe, (16)

where γ denotes the ratio of specific heats. The v∗

i = vi +
δt
2

dvi
dt represents the time centered velocity for particle i .

The starred quantity p∗

i j and v∗

i j are the intermediate states computed by solving a Riemann problem.
In GSPH, the intermediate state is determined by solving one-dimensional Riemann problems at the imaginary

interface along the line joining the pair-wise particles. We employ approximate non-iterative Riemann solvers for
better efficiency. Ref. [46] introduces various Riemann solvers for the Lagrangian framework, and the results are
compared in detail with different benchmarks. In this paper, two approximate Riemann solvers, the LLF and the
Ducowicz solver, are implemented, and the results are demonstrated in Section 4. As input of the Riemann solver
the right and left states are approximately reconstructed. Following [44], we use piecewise-linear reconstruction of
primitive variables to achieve second-order accuracy in smooth regions. Furthermore, to enforce the monotonicity
near discontinuities, the harmonic gradient averaging based limiter proposed by Van Leer [48] is applied.

3.6. Overview of the framework

A detailed flowchart of the developed framework is attached in the Appendix to summarize all the algorithms
elaborated before. All the components integrated in this framework are rendered with different colors in order to
have a better perspective of the work flow. Since each component can be packed as independent module and offers
specific functionality, the framework is highly flexible for developing new algorithms and simple to extend to other
particle-based methods as well. Furthermore, in order to achieve high level maintainability and better performance,
the code is written in C++ using several open source libraries, e.g. BOOST [49], Voro++ [50] and TBB [36].
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Fig. 4. Sod problem: (a) Density and (b) Pressure distribution at 0.2 s. “Exact” denotes the theoretical solution, and “2nd” represents the second
order reconstruction.

4. Numerical validation

In this section, a set of validation benchmarks is considered to verify accuracy and performance of the framework.
Since the basic numerical algorithms are well-established, we test all the cases at high resolution to demonstrate
convergence. The dynamic property of the CVP method and the graph-based communication strategy is discussed.
All cases in this section and in Section 5 are simulated on the facilities provided by Leibniz-Rechenzentrum (LRZ).

4.1. 1D and 2D shock wave problems

The first four cases involve shock waves and verify the accuracy of the solver and the capability of the current
framework to handle problems with arbitrary resolution jumps.

One-dimensional shock tube problems are well-suited for verifying the shock-capturing capability of the solver.
Two typical cases, i.e. the Sod problem [51] and the Lax problem [52], are simulated here (γ = 1.4).

The initial condition for the Sod problem is

(ρ, u, p) =

{
(1, 0, 1) if − 0.5 ⩽ x < 0
(0.125, 0, 0.1) if 0 ⩽ x < 0.5.

(17)

Simulation time is 0.2 s. A total number of 9000 particles is used. The results are shown in Fig. 4. Both results agree
well with the theoretical solution. Slight oscillations can be observed near the contact discontinuity when using the
Ducowicz solver. The combination of the LLF solver and second order reconstruction produces a slight overshoot at
the expansion wave.

The initial condition for the Lax problem is

(ρ, u, p) =

{
(0.445, 0.698, 3.528) if − 0.5 ⩽ x < 0
(0.5, 0, 0.5710) if 0 ⩽ x < 0.5.

(18)

Simulation time is 0.14 s. 8000 particles with equal mass are used in this simulation. Fig. 5 gives the density and
pressure distribution of the result at 0.14 s. Both results fit well with the “Exact” solution. It is also observed that using
second order reconstruction results in less dispassion while generating more oscillations at the contact discontinuity.

Second, two types of two-dimensional circular blast wave problems, i.e. blast wave problem EP1 and EP2 [53], are
simulated to validate our framework in high dimensions (γ = 1.4).

The initial condition for blast wave problem EP1 is

(ρ, u, v, p)(r, 0) =

{
(1.0, 0, 0, 1.0) if ∥r∥ ⩽ 0.5
(0.125, 0, 0, 0.1) otherwise. (19)
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Fig. 5. Lax problem: (a) Density and (b) Pressure distribution at 0.14 s. “Exact” denotes the theoretical solution, and “2nd” represents the second
order reconstruction.

Fig. 6. Circular blast wave problem EP1: (a) Density and (b) Pressure results at t = 0.2 s. The black line denotes reference solution, and red dot
is the result calculated using LLF solver and second order reconstruction. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Circular blast wave problem EP2: (a) Density and (b) Pressure results at t = 0.2 s. The black line denotes reference solution. The green/red
dot is the result calculated using LLF solver and first/second order reconstruction. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Simulation time is 0.2 s. A total number of 5 873 447 particles are simulated. LLF solver plus second order
reconstruction is employed and the result is illustrated in Fig. 6 comparing with reference solution. The overall result
is satisfactory even though a slight oscillation appears at the front of the expansion wave.

The initial condition for blast wave problem EP2 is

(ρ, u, v, p)(r, 0) =

{
(1.0, 0, 0, 2.0) if ∥r∥ ⩽ 0.5
(1.0, 0, 0, 1.0) otherwise. (20)

Simulation time is 0.2 s. The model uses 5 768 974 SPH particles. We calculate the problem using the LLF solver
with both first and second order reconstruction (Fig. 7). The cloud plots in Fig. 7 give a comparison of both results.
The first order reconstruction exhibits more dissipation and less oscillation comparing with high order reconstruction.
The same conclusion can be drawn from the density and pressure curves at the bottom of Fig. 7.

4.2. The 2D Noh problem

The 2D Noh problem [54] is considered (γ = 5/3). This is a challenging case to test shock-capturing algorithms,
where a uniform inwards radial inflow generates an infinitely strong shock wave moving outwards at a constant
speed. The computational domain is a cylinder with radius r = 1, and the initial condition is described as
(ρ, u, v, p) = (1, −x/r, −y/r, 10−6). The simulation time is 0.6 s. The initial particle distribution is generated using
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Fig. 8. The 2D Noh problem: (a) Density cloud from simulation result and (b) Density distribution (green dot) comparing with theoretical solution
(black line). Numerical result is calculated using LLF solver plus first order reconstruction.

n concentric circles initialized from the center following Ref. [55]. The total number of particles is 19 226 200. This
case is also utilized to study the dynamical characteristics of the CVP method and the graph based communication
strategy. A total number of 112 MPI tasks each containing 1 TBB thread are launched. The total runtime is 79 427 s
(2 × 10−7 second/timestep/particle).

As demonstrated in Fig. 8, an exactly cylindrical shock is generated and the position is recovered accurately. The
shock strength agrees with theoretical solution well, and a slight wall heating (with minimum value of 15.6) appears
at the center.

The evolution of the load balance error, Fig. 9(c), indicates that the system is repartitioned 11 times during
the entire simulation with current threshold (10%), and the imbalance due to computational load change is more
pronounced than communication error. Both ELc,max and EL ,max decrease to zero after each repartitioning and keep
climbing towards the threshold until the CVP method is triggered again. High locality is observed in Fig. 9(a)(b) as
the converging flow moving towards the center, and the partitioning topology remains highly analogous. Benefiting
from the CVP method, the communication topology is approximately constant. The total number of edges in the
communication graph is around 300 (Fig. 9(d)), which is approximately three times the number of MPI tasks.
Moreover, after applying edge coloring, the communication frequency is reduced to 9, which is much smaller than the
edge number.

4.3. Rayleigh–Taylor instability

We consider the inviscid Rayleigh–Taylor instability case proposed in Ref. [56]. The initial condition is

(ρ, u, v, p) =

⎧⎪⎪⎨⎪⎪⎩
(2, 0, 0, 1) if y < 0
(2, 0, −0.025c cos(8πx), 1 + 2y) if 0 ≤ y < 1/2
(1, 0, −0.025c cos(8πx), y + 3/2) if 1/2 ≤ y < 1
(1, 0, 0, 2.5) if 1 ≤ y,

(21)

where c =

√
γ

p
ρ

(with γ = 5/3) is the sound speed. The computational domain is [0, 1]× [−0.05, 1.05] and the mesh
is generated on lattice vertices. Reflective boundary conditions are used on the left and right, and primitive variables
are prescribed on the upper (1 ≤ y) and bottom (y < 0). The Ducowicz solver and second order reconstruction are
adopted. Equal-mass particles are used, and the total number of particles is 5 453 394. 112 MPI tasks each containing
1 TBB thread are initialized. The total runtime is 42 213 s (2.9 × 10−7 second/timestep/particle).

As illustrated in Fig. 10 (top row), the main structures of the instability are well captured from the simulation
results at four instants. The bottom row in Fig. 10 shows the distribution of the subdomains. The partitioning topology
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Fig. 9. The 2D Noh problem: (a) CVP partitioning result at t = 0 s, each color represents one subdomain. (b) Evolution of the CVP partitioning
at t = 0.6 s. (c) History of load balance error versus time. (d) History of graph parameters versus time.

Fig. 10. RT instability problem: Density field (top row) and subdomain distribution (bottom row) at t = 0.5 s, 1.0 s, 1.5 s, 2.0 s.
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Fig. 11. RT instability problem: (a) History of graph parameters versus time. (b) History of load balance error versus time. (c) Maximum, average
and minimum percentage of migrated particles among all subdomains after partitioning. (d) CVP diagram at t = 0 s.

remains homogeneous where the flow field shows no strong variation. In the shear regions the topology exhibits larger
variations, since the deformation of the subdomains is more pronounced. The total number of communication edges
during the simulation is between 310 and 320, and the communication frequency is reduced to 9 or 10 after applying
edge coloring method (see Fig. 11(a)). The computational domain is repartitioned 6 times with the maximum error
set as 10%. Unlike the 2D Noh problem, ELc,max grows much faster than EL ,max after each repartitioning. Moreover,
we calculate the percentage of migrated particles after each CVP partitioning, and show the result in Fig. 11(c). The
averaged fraction of migrated particles after second repartition is approximately 15%, indicating that the locality
property is well maintained using the current partitioning method.

5. Performance and discussions

In this section, the performance of our framework is discussed. First, the dynamic load balancing strategy proposed
in Section 2.2 is assessed with respect to load balance in each subdomain. Then the scalability is calculated with two
scaled-size problems in three dimension. Last, we measure the runtime of each module in our framework to validate
the optimization strategies presented before.
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Fig. 12. Distribution of each subdomain with different parameters: (a) Partition with l j = l j,C F . (b) Partition with li = l j,N S . (c) Partition with
ϵ0 = 0.5 in Eq. (6). (d) Partition with ϵ0 = 0.1 in Eq. (6).

Fig. 13. Measure of elapse time of different subroutines with different criterion: (a) Partition with l j = l j,C F . (b) Partition with l j = l j,N S .
(c) Partition with ϵ0 = 0.5 in Eq. (6). (d) Partition with ϵ0 = 0.1 in Eq. (6).

5.1. Dynamic load balancing strategy

We use the Rayleigh–Taylor instability to test the performance of the dynamic partitioning strategy. Since there is
an initial resolution jump at y = 0.5, and the computational load for each particle may be different for both fluids, the
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test case is well suited for our purpose. The case description is the same as Section 4.3 except that the particle number
is altered to 134 888. We partition the domain into 12 subdomains, i.e. 12 MPI tasks, and each task has 1 TBB thread.
We measure the runtime of all “non-communication-related” subroutines, e.g. simulation, fast neighbor search, and
etc., to evaluate the load balance.

Four numerical experiments are set up to verify the performance. In the first two experiments, we set l j = l j,C F

and l j = l j,N S respectively to account for only one hot spot of the code. In the last two tests, we employ Eq. (6) to
calculate the computational load for each particle. Two initial values, i.e. ϵ0 = 0.5 and 0.1, are set for the adaptive
weight ϵ for the sake of comparison. Different diagrams are obtained with respect to different parameters (see Fig. 12).
It is observed that the results from test 1 and 2 differ significantly, and Voronoi cells are more condensed towards the
bottom of the domain in Fig. 12(b). The result of test 3 and 4, Fig. 12(c) and (d), however, exhibit an intermediate
subdomain distribution.

The runtime measurement, plotted in Fig. 13, presents more comprehensive statistics to evaluate the performance.
For test 1, the time fractions contributing to force and density calculations are approximately well-balanced, since
by the employed density evaluation the neighbor number for each particle does not vary much among neighboring
particles [5]. However, the time fraction of pairwise distance calculation is unbalanced since the computational load
is not considered. For test 2, the time fraction for the pairwise distance calculation is balanced, but the others are
not. The last two tests, Fig. 13(c) and (d), present overall much better results by merging both factors. The fraction
for each subroutine is not equal among all subdomains, but the total runtime is optimized and global load balance is
achieved. Moreover, only marginal differences can be observed upon comparing Fig. 13(c) and (d), indicating that the
adaptation strategy can dynamically optimize the load balance without being sensitive to the initial value.

As mentioned before, different solvers or test cases may require different criteria. For the current formulation,
Eq. (6) is desirable for achieving dynamic load balance. The extra effort to calculate the imbalance error is trivial, as
the error is checked every 10–20 iterations.

5.2. Scalability

Two 3D Rayleigh–Taylor instability tests are considered in this section to evaluate the scalability of the framework.
Weak scaling S, strong scaling s and efficiency e are calculated from

S(Nproc) =
t(1)

t(Nproc)
·

N (Nproc)
N (1)

, (22)

s(Nproc) =
t(1)

t(Nproc)
, (23)

e(Nproc) =
S(Nproc)

Nproc
or

s(Nproc)
Nproc

, (24)

where N (Nproc) and t(Nproc) are problem size and runtime on Nproc nodes, and N (1) and t(1) are problem size and
runtime on 1 node.

Both uniform and non-uniform particle distribution are tested to evaluate the scalability of the framework. For
uniform particle distribution, particles are assigned with constant scale so that particle mass is different; For non-
uniform particle distribution, we initialize particles with constant mass to vary particle scale.

We test the weak scaling with increased domain size to ensure that each MPI task possesses the same number of
particles. Two scales, 1M particles and 4M particles per MPI task, are considered to evaluate the performance. Within
each MPI task, 7 and 14 TBB threads are initialized respectively for each scale.

The CVP partitioning results for both tests with particle scale 4M/MPI are shown in Fig. 14. The Voronoi cells
for both tests feature high-level compact shape. Whereas the partitioning diagrams are significantly different between
uniform and non-uniform particle distribution. Weak scaling and efficiency are calculated and plotted in Fig. 15.
The maximum number of cores utilized for particle scale 1M/MPI and 4M/MPI are 1792 and 3584 respectively.
Our framework exhibits good scalability for both cases. Meanwhile, very similar performances are achieved between
the uniform and non-uniform particle distribution, which demonstrates that current framework can handle adaptive
resolution efficiently. Moreover, when the number of particles in each MPI task increases, the parallel efficiency raises
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Fig. 14. CVP partitioning result for the uniform (top row) and non-uniform (bottom row) particle distribution with different (32, 64, 128, 256)
partitions with scale 4M/MPI.

Fig. 15. (a) Weak scaling and (b) Efficiency for uniform and non-uniform particle distributions with scale 1M/MPI and 4M/MPI.

accordingly. An efficiency of 79.5% and 83.7% are achieved for test 1 and test 2 with particle number 4M/MPI when
3584 threads are utilized.

The strong scaling is tested with 6 scales, i.e. 16, 32, 64, 128, 256, 512 million particles. The strong scaling and
efficiency for both uniform and non-uniform particle distributions are plotted in Fig. 16. The maximum number of
cores utilized is 7168. For all the tests, each MPI task is initialized hosting 7 TBB threads. The results for each scale
are calculated from different stating point due to the memory-allocation limitation. Similarly with the weak scaling
test, the framework exhibits good scaling for both uniform and non-uniform particle distribution. Due to the limited
resources available currently, only three points are tested for the scale of 512M particles. However, the efficiency
remains high after increasing the number of cores four times (103% and 97% for uniform and non-uniform particle
distributions respectively), and no remarkable decrease is observed.
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Fig. 16. (a) Strong scaling and (b) Efficiency for uniform particle distribution in different scales. (c) Strong scaling and (d) Efficiency for non-
uniform particle distribution in different scales.

5.3. Runtime analysis

The elapsed time of main subroutines in our framework are measured and listed in Table 1 for non-uniform particle
distribution with particle number 1M/MPI in weak scaling test. Several observations can be made from this table:
(1) The majority of time are dedicated to particle evolution, and the fraction decreases as the number of threads
increases. (2) The graph construction takes negligible time (less than 1% of total runtime) owing to the optimization
strategy of the diffused graph. (3) The parallel fast neighbor search is highly efficient (less than 0.5% of total runtime).
Moreover, due to the local tree construction, the runtime is almost invariant with increasing number of partitions.
(4) The time for the CVP partition as well as the particle migration are negligible. (5) The time consumption of
communication between neighboring subdomains ranges from 8.03% to 15.25% as the MPI task number varies from
8 to 256.

The measured runtime (second per particle per iteration) for fixed-scale (128M) non-uniform particle distribution
is listed in Table 2. The same setup with the strong scaling test is used . The simulation time decreases significantly as
the number of CPU cores increases. The total runtime for evolving one particle one timestep is on the order of 10−7

second using 3584 CPU cores.
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Table 1
Measurement of elapsed time for scaled-size (1M/MPI) non-uniform problem.

Thread number Graph construction CVP partition Graph based communication Particle migration Simulation Fast neighbor
search

56 0.07 1.06 8.03 0.48 90.37 0.43
112 0.11 1.21 10.28 0.35 88.05 0.39
224 0.13 1.39 13.21 0.50 84.77 0.42
448 0.16 2.79 12.33 0.69 84.03 0.43
896 0.23 2.91 15.25 0.65 80.96 0.43

1792 0.35 3.18 14.74 0.97 80.76 0.42

Table 2
Measurement of wall-clock time for fixed-scale (128M) non-uniform problem.

Thread number 112 224 448 896 1792 3584

Wall-clock time (10−7 s/particle/timestep) 31.1 15.0 7.98 4.28 2.38 1.53

6. Conclusion

In this paper we propose a new parallel framework designed for the SPH method with adaptive smoothing-length.
Several new algorithms from our previous work are employed. A set of techniques are proposed to incorporate various
functionalities into the framework and to overcome the bottlenecks of efficiency and memory simultaneously. The
main contributions are summarized as follows:

1. The framework is able to handle problems with arbitrarily adaptive smoothing-length.

2. An adaptive rebalancing criterion and monitoring system is proposed to integrate the CVP partitioning method
as a rebalancer. A set of numerical experiments show that the target of dynamic load balance is achieved with the
proposed rebalancing strategy.

3. A localized nested hierarchical data structure is developed to eliminate the bottleneck of memory overhead. The
parallel fast-neighbor-search strategy in [21] is tailored and extended to current data structure. The efficiency is
increased further due to the local tree construction.

4. A diffused graph is proposed to improve the efficiency of the graph-based communication strategy. The graph-
based communication strategy is employed to handle both the construction of ghost buffer particle and particle
migration. Numerical tests and runtime analyses demonstrate that negligible time is required for graph construction
comparing to total runtime.

5. The scalability of the framework is measured for both uniform and non-uniform particle distributions. The weak
scaling reveals that the code scales well up to at least 3584 cores. Good efficiency is achieved for strong scaling tests
at various scales.

Although the scalability of the current framework is demonstrated with the performance tests shown above, there
are still several places where the code needs to be explored and improved in the future in terms of performance,
e.g. adaptive time-stepping schemes, vectorization, task scheduling, pipeline parallelism, and etc. Meanwhile, more
particle-based methods, e.g. Incompressible SPH, Molecular Dynamics and Dissipative Particle Dynamics, will be
included in future versions to extend the capability of current framework. Moreover, we are also working on improving
the portability and work flow in order to facilitate the users for better experience. The code will be available in the
future for academic usage once the package is fully tested.
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Appendix. Flowchart of multi-resolution parallel framework

Fig. 17. Flowchart of multi-resolution parallel framework.
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a b s t r a c t

In this paper we develop a Lagrangian Inertial Centroidal Voronoi Particle (LICVP) method to extend the
original CVP method (Fu et al., 2017) to dynamic load balancing in particle-based simulations. Two new
concepts are proposed to address the additional problems encountered in repartitioning the system. First,
a background velocity is introduced to transport Voronoi particles according to the local fluid field, which
facilitates data reuse and lower data redistribution cost during rebalancing. Second, in order to handle
problems with skew-aligned computational load and large void space, we develop an inertial-based par-
titioning strategy, where the inertial matrix is utilized to characterize the load distribution, and to confine
the motion of Voronoi particles dynamically adapting to the physical simulation. Intensive numerical
tests in fluid dynamics simulations reveal that the underlying LICVP method improves the incremental
property remarkably without sacrifices on other objectives, i.e. the inter-processor communication is
optimized simultaneously, and the repartitioning procedure is highly efficient.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Large scale parallel computing is essential for a wide range of
scientific applications. The objective of the domain decomposition
method is to facilitate the algorithms to harness computational
resources more efficiently [1]. In Computational Fluid Dynamics
(CFD), the configuration of discretization-elements (mesh or par-
ticle) may evolve in time [2], which requires partitioning algo-
rithms to reassign computational load to processors periodically,
i.e., achieve dynamic load balance. Compared to static partitioning,
rebalancing needs to meet the same targets, e.g. load balance,
locality, optimization for inter-processor communication, but also
is subject to further constrains. The key aspect for rebalancing
schemes is to minimize partitioningmodifications subject to small
topology changes, i.e. the so-called incremental property, and to
optimize the inter-processor communication at smallest cost [3,4].
The reader may refer to [5] and [2] for a comprehensive review
regarding recent developments of repartitioning approaches.

For particle simulations, the discretization-elements, e.g. SPH
particles, move according to the corresponding dynamic system,
which may cause deformation and relocation of computational
sub-domains. To achieve the incremental property it is crucial to
maximize the data reuse during rebalancing process, namely, the
rebalancer should be aware of the details of the underlying system,

∗ Corresponding author.
E-mail addresses: zhe.ji@tum.de (Z. Ji), lin.fu@tum.de (L. Fu),

xiangyu.hu@tum.de (X.Y. Hu), nikolaus.adams@tum.de (N.A. Adams).

and repartition the system incorporating the existing partition
to achieve lower data redistribution cost [6]. An algorithm with
better incremental property features less migration percentage
during each rebalancing. Another problem encountered in particle
simulation is that in some cases, e.g. the dambreak problem [7],
tsunami simulation [8], and the rotating disk problem in astro-
physics [9], the computational load distributes anisotropically in
the computational domain, and the configuration of discretization-
elements varies rapidly. The skew alignment and rapid change
of computational load may result in void space which requires
zero computing resources. Such a scenario is more problematic
for partitioning algorithms with respect to satisfying all constrains
simultaneously [3,10].

In our previous paper [11], a CVP domain decomposition meth-
od based on physical analogy has been developed. The load balance
target is achieved by solving a Voronoi Particle (VP) evolution
model equation. Centroidal Voronoi Tessellation (CVT) is utilized
for communication reduction by optimizing the compactness of
partitioning sub-domains [10]. The CVP method is verified by var-
ious static partitioning tests, independently of the mesh-element
type. Later, we have integrated the CVP method as dynamic parti-
tioner and develop a new multi-resolution parallel framework for
the SPH method [12]. An adaptive rebalancing criterion and mon-
itoring system has been proposed to assess the imbalance during
simulation and reassign equivalent load among all the processors.

Although the CVP method inherently features load balance and
communication reduction, there is no explicit treatment in our
previous work regarding to the handling of the aforementioned

https://doi.org/10.1016/j.cpc.2019.01.011
0010-4655/© 2019 Elsevier B.V. All rights reserved.
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additional difficulties that will be encountered in dynamic parti-
tioning. The objective of the current paper is to extend the CVP
method and improve the performance of particle-based methods
in the dynamic partitioning problems. Two concepts are proposed
in this paper: a Lagrangian background velocity and an inertial-
based partitioning strategy. The newly developed method is called
Lagrangian Inertial CVP (LICVP)method. In the following two para-
graphs the basic idea of LICVP method is introduced.

With the CVP method each Voronoi particle possesses physi-
cal properties either integrated from meshes enclosed within its
Voronoi cell region or calculated from neighboring cells. Generally
speaking, the CVPmethod can be viewed as a coarse-grainedmodel
of underlying mesh elements. Based on this observation we can
introduce a background velocity to advect partitioning generators,
i.e. Voronoi particles, between two consecutive rebalancing steps.
If the background velocity is given properly, the positions of the
Voronoi particles will be updated following the evolution of the
dynamic system and geometry variation, e.g. mass center, of local
sub-domains. When the rebalancing subroutine is triggered, the
updated positions of Voronoi particle are utilized as input and
initial condition for the new partitioning result. Since the equilib-
rium is calculated globally, the target of load balance and commu-
nication reduction is guaranteed by the CVP method. Moreover,
since the new partitioning diagram is calculated in awareness of
the original partitioning, data reuse is improved, i.e. incremental
property can be achieved.

To handle problemswith skew-aligned computational load and
large void space, we propose another extension of the CVPmethod.
The idea is to constrain the motion of Voronoi particles according
to the load distribution in space during the rebalancing procedure.
Similarly with the Recursive Inertial Bisection (RIB) method [13],
we choose the inertia matrix to characterize the load distribution,
such that the skewness of the computational load can be obtained
accordingly. A splitting operator is proposed to take the trajectory
of Voronoi particles as the input and outputs the resultant vector
subject to a certain type of constraint. Moreover, an adaptive filter
is proposed, which selects a proper constraint dynamically adapt-
ing to the development of the underlying particle system. The filter
ensures restoration of the original CVP method when the com-
putational load is distributed homogeneously. With this method
Voronoi particles are insensitive of the load variation along the
confined direction, thus the convergence and incremental property
are improved. We refer the new method as Inertial CVP.

In this paper, we focus on a specific version of particle-based
method, the Smoothed Particle Hydrodynamics method. The val-
idation of our new algorithm is performed with the code we
have developed previously [12]. The remainder of this paper is
arranged as follows. In Section 2 the CVP method and imbalance
monitoring strategy for dynamic load balancing is briefly reviewed.
The concept and model equations of the Lagrangian Inertial CVP
method are introduced in Section 3. Numerical algorithms and
boundary conditions are elaborated in Section 4. Section 5 gives
five numerical tests to verify our method.

2. Brief review of the CVP method

We briefly review the model equations of the CVP method and
the imbalance monitoring strategy from previous work [11,12].

2.1. Model equations

The key concept of the CVP method is to combine CVT [14] and
Voronoi Particle dynamics (VP) to achieve high-level compactness
of partitioning sub-domains and error-controlled load balance
simultaneously. The equilibrium is calculated iteratively utilizing a

two-step time integration scheme. The CVT diagram is constructed
employing the Lloyd method [15,16]. The model equation for VP is

avp
i =

dvvp
i

dt
= −

∫
Ωi

▽pdσ∫
Ωi

ρdσ
= −

∫
∂Ωi

pdS

mvp
i

, (1)

where avp denotes the acceleration, vvp the velocity vector, p the
pressure, ρ the density, Ωi the region corresponding to Voronoi
particle i and ∂Ωi the Voronoi cell surface. The pressure of the
Voronoi particle is defined as

pvp
i =

mvp
i

mvp
tg,i

, (2)

wheremvp
tg,i is the target mass. The pressure at the surface between

two neighboring cells is computed by second-order approximation
pvp
ij = (pvp

i + pvp
j )/2. The scale hvp

i for Voronoi particle i is defined
as the average distances from all neighboring particles.

In each iteration substep the Voronoi particles first are moved
according to the VP method by

xvp,∗
i = xvp,n

i + α
1
2
avp,n
i τ 2

1 , (3)

and then updated following CVT construction as

xvp,n+1
i = xvp,∗

i + (1 − α)τ2(z
vp,n
i − xvp,∗

i ), (4)

where τ1 and τ2 are pseudo timestep sizes. The relaxation param-
eter α is set as 0.8.

2.2. Imbalance monitoring strategy

To facilitate dynamic load balancing in the current framework,
we develop an imbalancemonitoring system. Two criteria are con-
structed to indicate the imbalance of a computation: (1) imbalance
caused by the load change of SPH particles in Ωi, defined as mvp

i ;
(2) imbalance due to the change of communication, i.e. the number
of ghost buffer particles constructed in Ωi, defined asmcvp

i .
The computational load for each SPH particle lspj,i is estimated by

considering two key operations, the neighbor search (NS) and the
calculation of inter-particle forces (CF ),

lspj,i = ϵl
sp
j,i,NS + (1 − ϵ)l

sp
j,i,CF , (5)

where l
sp
{·}

denotes the normalized computational load. The adap-
tive weight ϵ is obtained by

ϵ =
∆tNS

∆tNS + ∆tCF
, (6)

where ∆t{·} denotes the net runtime elapsed for different subrou-
tines since the last load-balance estimate. The total computational-
load for Ωi is calculated by

mvp
i =

∫
Ωi

ρ(x)dσ =

Ni−1∑
j=0

lspj,i, (7)

where Ni is the number of SPH particles included in the Voronoi
cell i.

To combine the two criteria, an imbalance monitoring tag R is
defined in Eq. (8). The CVP method is triggered when R = 1.

R =

{
1 if Emcvp,max > emcvp,max or Emvp,max > emvp,max

0 if else,
(8)

Emcvp,max = max(Emcvp,0, . . . , Emcvp,k−1), (9)

Emvp,max = max(Emvp,0, . . . , Emvp,k−1), (10)
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Fig. 1. (a) Demonstration of three-step time integration scheme. (b) Demonstration of the operator Cp(A) if partitioning on the plane ⊥ N.

where Emcvp,i =
mcvp

i − mcvp
0,i

mcvp
0,i

and Emvp,i =
mvp

i − mvp
0,i

mvp
0,i

, with i =

0, . . . , k− 1 are local errors in each sub-domain.mcvp
0,i andmvp

0,i are
initial values set after each partitioning. emcvp,max and emvp,max are
user defined error tolerance respectively. In current framework,we
set emcvp,max = emvp,max = 0.1.

3. Lagrangian inertial CVP (LICVP) method

In this section, the detailed formulation of the LICVP method is
developed. First, a three-step time integration scheme is proposed
by introducing a background velocity for advecting Voronoi parti-
cles. The Inertial CVP is described in Section 3.2. A splitting operator
and an adaptive filter is defined to optimize and select partitioning
strategy dynamically.

3.1. Background velocity for Voronoi particles

We first define two phases in dynamic load balancing using the
CVP method, illustrated in Fig. 1(a). The first is the partitioning
phase and the second is the load imbalance monitoring phase. In
the first phase, the partitioning subroutine is triggered. The initial
position of Voronoi particle i at time t , denoted as xvp,t,0

i , is evolved
using a two-step integration scheme given by Eq. (3) and (4). The
partition operation is terminated when equilibrium is achieved
after n pseudo time-steps. The final position of Voronoi particle i is
xvp,t,n
i , and the computational domain is repartitioned accordingly.

In the second phase, the imbalancemonitoring system is launched.
The imbalance errors Emcvp,i and Emvp,i are examined during the
computation. The error accumulates until the threshold is reached,
i.e. R = 1, then phase 1 is activated again. The final position of
Voronoi particle i in phase 2 is marked as xvp,t+∆t,0

i .
For phase I, we develop a two-step time integration scheme to

achieve both load balance and communication reduction targets.
To increase the data reuse in rebalancing, we propose a third step
to advect Voronoi particles in phase II (see Fig. 1(a)). The third time
integration step can be defined as

xvp,t+∆t,0
i = xvp,t,n

i + ṽvp
i · ∆t, (11)

where ∆t is the timestep size identical to the underlined dynamic
system, e.g. the SPH flow model. ṽvp

i is a background velocity for
Voronoi particle i, which can be given arbitrarily. However, to pre-
serve the incremental property, we suggest that ṽvp

i is correlated
to the motion of Ωi.

Several options for calculating ṽvp
i can be considered. The first

is to simply set the background velocity of Voronoi particle i as
identical to the mean fluid velocity within the current subdomain.

ṽvp
i =

∑Ni−1
j=0 vspj,i
Ni

, (12)

where vspj,i is the velocity of SPH particle j in subdomain Ωi.
Another option is to consider the influence of computational

load distribution. The mass center of Ωi is given as

zvp
i =

∫
Ωi

ρ(x)xdσ∫
Ωi

ρ(x)dσ
=

∑Ni−1
j=0 lspj,ix

sp
j,i

mvp
i

, (13)

where dσ denotes the volume differential, and xspj,i the coordinates
of specific SPH particle j in Ωi. Then ṽvp

i can be defined by the time
differential of mass center,

ṽvp
i =

dzvp
i

dt
=

∑Ni−1
j=0 lspj,iv

sp
j,i

mvp
i

. (14)

In practice, instead of updating the Voronoi particles according
to the velocity of the mass center of every timestep, we simply
set the mass center as the position of Voronoi particles before
repartitioning.

We consider the aforementioned two choices in this paper. The
performance and detailed comparison will be given in Section 5.

3.2. Inertial CVP

In order to constrain the motion of a Voronoi particle, we
define a splitting operator, which operates on the time-integration
scheme in phase I. We can rewrite Eq. (3) and (4) as

xvp,n+1
i = xvp,n

i + ∆xpi , (15)

and

∆xpi = Cp(∆xi), (16)

where ∆xpi is the resulting displacement. The splitting operator Cp

functions via manipulating ∆x, where ∆xi = α
1
2
avp,n
i △ τ 2

1 + (1−

α) △ τ2(z
vp,n
i − xvp,∗

i ).
For a general input vector A and a given direction of constraint,

Cp returns a resultant vector defined as

Cp(A) =

⎧⎪⎨⎪⎩
A∥,whereA∥ ∥ N if constrained along N
A⊥,whereA⊥ ⊥ N if constrained on the plane ⊥ N
A if no constraint,

(17)
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Fig. 2. Sketch of (a) symmetric and (b) periodic boundary conditions. The orange particles indicate the boundary Voronoi particles; the gray particle is themirrored particles
constructed to enforce symmetric boundary condition; the solid green particles are neighbors of the current (orange) Voronoi particle in a periodic box, and the translucent
particles are mapped neighbor particles . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

whereA∥ andA⊥ denote the vector parallel and perpendicular toN,
respectively. N is the input that defines the direction of constraint.
As illustrated in Fig. 1(b), the particle motion is constrained on
a plane where N denotes its normal direction. In this case, Cp(A)
returns A⊥ that is the projection of A into the plane.

To calculate N, we need to characterize the computational load
distribution. In the RIBmethod [13], the inertiamatrix is utilized to
calculate the principle inertia axis [3]. Inspired by the RIB method,
we can find the direction of constraint by the same means.

The global mass center of simulation is calculated by

Z =

∫
Ω

ρ(x)xdσ∫
Ω

ρ(x)dσ
=

∑N−1
i=0 mvp

i zvp
i∑N−1

i=0 mvp
i

. (18)

Then the inertial matrix is obtained as

J =

n−1∑
k=0

lspk (xspk − Z)(xspk − Z)T , (19)

where n denotes the total number of SPH particles simulated. The
eigenvalue λ (Eq. (20)) and eigenvector ξ (Eq. (21)) of J indicate the
value and direction of principle inertia, respectively. The eigenval-
ues are sorted by increasing eigenvector.

λ = {λ1, λ2, λ3}, (20)

ξ = {ξλ1 , ξλ2 , ξλ3}. (21)

The direction of the constraint can be calculated accordingly.
We propose an inertial-based adaptive filter defined as

N =

⎧⎨⎩
ξλ1 if λ3 > λmax, i.e. constrained along N
ξλ3 if λ1 < λmin, and λ2 > λmin − λ1,

i.e. constrained on the plane ⊥ N,

(22)

whereλi =
λi∑2
i=0 λi

.λmax andλmin are user defined thresholds. The

selection procedure is to compare the normalized eigenvalueswith
predefined thresholds, and determine an appropriate strategy. The
filter is adaptive as well, which allows for dynamic optimization
of the partitioning strategy via choosing different constraints. For
instance, if λ3 > λmax, the load along the first principle inertial axis,
i.e. ξλ1 , is considerably larger than the combination of the other two
axis. Thus, the degrees of freedom in ξλ2 and ξλ2 are confined, and
only motion along ξλ1 is allowed. During the computation, if the
other condition is satisfied, the strategywill be altered accordingly.

If both conditions are not satisfied, the original CVP method is
restored.

3.3. Intermediate conclusions

In Sections 3.1 and 3.2, we propose two extensions of CVP
method. Both algorithms are mutually independent and compati-
ble since they function at different phases of the computation, thus
they can be integrated into a single framework. The objective of the
LICVPmethod is to optimize the incremental property in rebalanc-
ing without violating the other constraints in static partitioning.
In general, the Lagrangian property improves the data reuse when
SPH particles move following the fluid field, while the Inertial CVP
guarantees that partitioning is aware of the global load distribution
and insensitive of the load variation along directions of minimum
interest. LICVP methods can restore to original CVP method under
certain conditions, and the implementation requires trivial mod-
ification. Moreover, The additional cost due to the extension is
minimum since updating Voronoi particles is localizedwithin sub-
domains and the global inertial matrix is only updated once the
repartitioning is triggered.

4. Numerical algorithms

4.1. Partitioning boundary conditions

Symmetric and periodic boundary conditions can be applied on
the partitioning domain, see Fig. 2. The ghost particle method is
employed to enforce both boundary conditions.

Ghost particles for symmetric boundary conditions (SBC) are
constructed following [11]. SBC is employed when the computa-
tional domain is symmetric itself or is defined as open boundary.

Periodic boundary conditions (PBC) are enforced in a similar
way. In the first step, Voronoi particles that have neighbors on the
other side of the periodic boundary are identified, and marked as
boundary particles. In the second step, all boundary particles are
mapped by adding/subtracting the domain length in the periodic
direction, and the Voronoi diagram is constructed again includ-
ing ghost particles. All physical variables of the ghost particles
are identical to the mapped boundary particles. When the back-
ground velocity is introduced, PBC is enforced for phase II as well,
which facilitates Voronoi particles for better tracing the local sub-
domains. The benefit of PBC is twofold: (1) SPH particles that are
transported across the boundary during simulation cost no extra
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Fig. 3. Steady advection test: the partitioning result of fluid with horizontal (upper row) and diagonal (bottom row) velocity at four instants. SPH particles are rendered
with sub-domain index, and octahedra are positions of Voronoi particles.

Fig. 4. Steady advection test: time history of averaged particle migration. (a) Fluid with horizontal velocity, (b) fluid with diagonal velocity.

inter-processor data relocation; (2) the rebalancing is calculated
allowing Voronoi particles to move across the boundary, thus data
reuse is better satisfied.

4.2. Flowchart

The detailed algorithm for LICVP method is summarized in Al-
gorithm 1. For simplicity, we only list the flowchart for one simula-
tion timestep. Other correlative algorithms, e.g. CVP method, data
structure, communication strategy, etc., are not elaborated here.
One can refer to our previous work [11,12,17] for a comprehensive
overview.

5. Numerical validation

In this section, five test cases are considered to validate the
proposed LICVP method. The underlying Lagrangian property of
LICVP method is demonstrated via case 1, case 2 and case 3, where
the Inertial CVP method degenerates to the original CVP method.
The feasibility and performance of Inertial CVP method are then
discussed in cases 4 and 5. Case 3 is tested on the mpp2 cluster
provided by Leibniz-Rechenzentrum (LRZ), which is constructed
by 28-way Haswell-EP nodes with Infiniband FDR14 interconnect.
The other cases are carried out all on the sameworkstationwith 12
Intel(R) Xeon(R) CPU E5-2630 v2 cores (64Gmemory and 2.6 GHz)
and Scientific Linux system (Release 6.8).

Algorithm 1 Flowchart of LICVP method for one timestep
1: if current timestep count is divisible by 20 then ▷ the imbalance monitoring

system is activated every 20 timesteps
2: calculate imbalance error Emcvp,i (Eq. (9)) and Emvp,i (Eq. (10));
3: Check whether repartitioning is required, i.e. R = 1 (Eq. (8));
4: if R = 1 then ▷ the system will be rebalanced
5: calculate the inertial matrix J (Eq. (19)), and find its eigenvalue and

eigenvector (Eq. (20) and (21));
6: calculate direction of constraint, i.e. N (Eq. (22)):
7: while the partitioning error is not converged do
8: construct Voronoi diagram and solve the model equation Eq. (2);
9: calculate the resulting displacement∆xpi according to Eq. (16) and Eq.

(17);
10: update Voronoi particles;
11: check partitioning error;
12: end while
13: migrate SPH particles to target processor according to the newpartition-

ing result;
14: end if
15: update data structure and construct ghost buffer particles;
16: solve SPH governing equations;
17: calculate the background velocity ṽvp

i for transporting Voronoi particles
using Eq. (12) or (14);

18: update the position of Voronoi particles according to Eq. (11);
19: end if

Before moving to the results, we first define two measure-
ments to assess the incremental property and optimization for
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Fig. 5. 2D Keplerian disk problem: comparison between non-moving Voronoi particles (upper row), moving Voronoi particles with velocity of mass center (middle row) and
mean fluid velocity (bottom row). Four snapshots are illustrated, i.e. t = 20, 21, 22 and 23. SPH particles corresponding to different sub-domains are assigned with distinct
colors, and the octahedrons denote the Voronoi particles.

Fig. 6. 2D Keplerian disk problem: The time history of averaged communication load percentage using non-moving Voronoi particles (a), moving Voronoi particles with
velocity of mass center (b) and mean fluid velocity (c). The time history of averaged migration percentage using non-moving Voronoi particles (d), moving Voronoi particles
with velocity of mass center (e) and mean fluid velocity (f).
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Fig. 7. 2D KH instability: the density field (upper row) and partitioning diagram (bottom row) with respect to four instants.

Fig. 8. 2D KH instability: (a) The time history of averaged communication load percentage. (b) The time history of averaged particle migration percentage. (c) Runtime of
CVP method and particle migration during simulation. (d) Time history of graph parameters.

communication reduction, i.e. averaged communication load (Sc)
and averaged particle migration (Sm). Sc and Sm are defined as

Sc =

∑N−1
i=0

Nghost
i

Ni

N
, (23)

Sm =

∑N−1
i=0

Nmigrated
i

Ni

N
, (24)

where Nghost
i and Nmigrated

i denote the number of ghost buffer parti-
cles constructed and thenumber ofmigratedparticles respectively.
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Fig. 9. 3D Keplerian disk problem: the disk is initialized on x–o–y plane. Partitioning result (a)(b). Time history of partitioning error (c) and energy (d).

5.1. Case 1

In the first case, we consider a steady advection test. We ini-
tialize a 2D periodic box of unit length. The fluid is assigned with
constant density (ρ = 1000), and advected with uniform bulk ve-
locity. Aweakly compressible SPH solver is employed following [7].
The number of particles simulated is 10 000, and 12 MPI tasks are
launched. The partitioning domain is setwith equal size of the fluid
field and PBC is enforced in both directions.

Since the fluid is advected with constant velocity, the relative
position of SPH particles remains identical in entire simulation.
With the background velocity, the topology of Voronoi particles
should be invariant as well, consequently, after rebalancing, we
should obtain the same partitioning diagram every time, and inter-
processor particle migration is zero, i.e. data reuse is maximized.

Two bulk velocities, i.e. horizontal ({u, v} = {1, 0}) and diag-
onal ({u, v} = {1, 1}) velocity, are studied. It is noticed that all
the computational load for SPH particle is the same, and the mean
velocity of the fluid coincides with the velocity of mass center.
We rebalance the simulation every 100 timesteps. The partitioning
results at four instants are illustrated in Fig. 3. As anticipated,
the topology of the partitioning diagram remains unaltered, and
repeats every timeunit. The averaged particlemigration (see Fig. 4)
is zero during entire simulation, except for a small oscillation at the
beginning of the second case.

5.2. Case 2

Weconsider a 2D cold Keplerian disk problem. It is a typical case
in astrophysics, where gas orbits a central point mass subjecting to
the equilibriumof gravity, centrifugal force andpressure force [18].

We initialize a uniform density disk following [19]. A compressible
SPH solver proposed by [20] is employed, where artificial viscosity
and conductivity are switched off. To stabilize the flow, a damping
term is added to the radial component of particle acceleration [19].
A total number of 47 500 particles are simulatedwith 12MPI tasks.

Since the flow is shearing, different orbiting velocitieswill cause
the deformation of sub-domains and an increase of communi-
cation load. The proposed two background velocities are chosen
to compare with simulation without setting background velocity,
i.e. ṽvp

i = 0. The snapshot with regard to three situations at four
instants are illustrated in Fig. 5. The top row gives the result of
ṽvp
i = 0. It is observed that the positions of Voronoi particles

remain approximately constant after rebalancing and the topology
of partitioning result is exactly the same. Conversely, if the Voronoi
particles are advected with the background velocity, both results
exhibit shifted partitioning sub-domains according to the local
flow, and slight topology alteration in a long run. The discrep-
ancy of the result is due to the essential difference between the
original CVP and the proposed Lagrangian CVP. In Lagrangian CVP,
Voronoi particles are advected according to the main feature of
the flow structure to keep track of the existing partitioning sub-
domains. If sub-domain Ωi deforms between each repartitioning,
the corresponding Voronoi particle i will be advected according
to the averaged velocity or mass center of Ωi. In this case, as
demonstrated in Fig. 5 Voronoi Particles orbit the central point.
Conversely, in the original CVP method Voronoi Particles are not
updated. Since the resolution in this case is uniform, the resultant
partitioning diagram remains almost invariant.

Statistics comparison is manifested in Fig. 6. All three cases
demonstrate that after rebalancing, the communication load
decreases instantly, and recovers the same value. Moreover, Sc
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Fig. 10. 3D Keplerian disk problem: the disk is initialized on plane with angle π/4 to x–o–y plane. Initial condition and Voronoi particle distribution (a). Partitioning result
(b). Time history of partitioning error (c) and energy (d).

exhibits a slightly larger value when the Voronoi particles are not
updated compared to the other two situations. The Sm for the first
case shows that a portion of 39% to 48% particles are being mi-
grated after each rebalancing. This number drops to approximately
15% for the other two cases. It can be concluded that with the
background velocity, the incremental property of CVP method is
improved. The results from two underlying background velocities
exhibit slight differences with respect to performance.

5.3. Case 3

We consider a 2D Kelvin–Helmholtz(KH) instability problem
following [20]. A Godunov SPH with second order reconstruction
solver is employed [12,21]. PBC is enforced at the boarder of par-
titioning domain. Eq. (12) is utilized to calculate the background
velocity. 6 290 560 SPH particles are simulated on 112 processors.
Each processor has 1 TBB thread.

The 2DKH instability problem combines two features from Case
1 and Case 2, where in the smooth region the flow velocity varies
slowly, while in regions with strong gradients the flow is domi-
nated by shear stress. The main objective is to test whether the
underlying incremental and locality property can still be preserved
in a more complex environment. Fig. 7 presents the simulation
result aswell as the partitioning diagramat four instants. The topo-
logical layout of sub-domains in smooth region manifests superior
similarity, and sub-domains are transported with the local flow. In
regions with discontinuity, due to the development of instability,

the partitioning result exhibits topological alteration in a long run.
In the simulation duration, i.e. 1.4 s, the system is repartitioned
11 times, and Sc drops immediately after each rebalancing (see
Fig. 8(a)). The averaged data migration drops from 40% at the
beginning to approximately 25% after 0.5 s (see Fig. 8 (b)), which
is consistent with the result obtained in Case 2 using background
velocity. The runtime for CVP method as well as data migration
(illustrated in Fig. 8(c)) is negligible compared to the total simu-
lation time (60559s). The graph parameter, which is introduced in
Ref. [12] and characterizes the sparse communication relationship,
demonstrates that the total number of communication relation is
bounded and is about three times larger than the MPI task number
(see Fig. 8(d)). The communication finishes within 10 sub-steps
during the entire simulation.

5.4. Case 4

The 3D Keplerian disk problem is employed to demonstrate the
feasibility of proposed Inertial CVPmethod.We use the same setup
in case 2, and extend the height of the disk to 0.1 in the z direction
with identical particle pitch. The dynamic evolution of this case
gives the same conclusions as in case 2, thus we only focus on
the initial partitioning. Two configurations are calculated, where
the disk is initialized on x–o–y plane and plane with angle π/4
to x–o–y plane respectively. The calculation is carried out with
12 MPI tasks. The Voronoi particles are initialized on disk plane
with constant angular separation and a random radius ranging
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Fig. 11. 2D dam-break: snapshots of simulation result at four instants using (a) original CVPmethod with background velocity, (b) Inertial CVP with adaptive filter switched
off and (c) Inertial CVP with adaptive filter.

between the outer circle and the inner circle. We set λmax = 0.9
and λmin = 0.1 in this case.

The results for both cases are plotted in Figs. 9 and 10 respec-
tively. It can be observed that Inertial CVP method captures the
load distribution successfully in both cases, where the motion of
Voronoi particles is constrained on the disk plane. The partitioning
results feature convex, well-shaped sub-domains identical to the
original CVPmethod. The partitioning error converges rapidly. The
energy descends monotonically as well, which essentially opti-
mizes the communication volume.

5.5. Case 5

Finally, we consider the 2D dambreak case following the setup
from [7]. Initially, a liquid column is placed at the corner of the
sink, and collapses due to the existence of gravity. The evolution
of flow consists of violent wave-breaking and splashing event,
which is crucial in free-surface flow modeling. Meanwhile, the
dynamic characteristic of this case deteriorates the performance of
repartitioner aswell, as the computational load varies dramatically
in space and rebalancing becomes expansive. Three means are
employed here for a comprehensive assessment of the perfor-
mance: (1) original CVP method with background velocity; (2)
proposed LICVP method with adaptive filter switched off, i.e. only
one constraint is applied throughout the simulation, and here only
partitioning along the largest principle inertial axis is allowed; (3)
proposed LICVP method with adaptive filter, and we set λmax =

0.81 and λmin = 0.19. The background velocity is calculated by Eq.
(14). The number of particles simulated is 8208, and 12 MPI tasks
are launched.

Fig. 11(a)–(c) manifests the simulation result at four instants
regarding tests 1, 2 and 3 respectively. Tests 1 and 3 exhibit similar
partitioning results at t = 0.1, when the water column is not
strongly affected by gravity. Whereas test 2 features sub-domains
of slim-shaped rectangular, since only one dof (degree of freedom)
is unconstrained. Following the propagation ofwave front, the load

distribution of the system varies accordingly and the load along
horizontal axis becomes dominant. At t = 2, the partitioning
strategy in test 3 is altered, and constraint is applied along N,
i.e. identical to test 2. The partitioning strategy remains the same
afterwards. It is observed that, the incremental property is best
preserved in test 2, where the topology of sub-domains is identical
during entire simulation. The incremental property for test 1 is the
worst, as the topological layout of sub-domains varies constantly.
Test 3 generally achieves an intermediate performance, since the
partitioning strategy is dynamically shifted at t = 2.

The communication load is compared in Fig. 12(a). Sc for test
2 is the largest before t = 2, while tests 1 and 3 have similar
communication volumes during this period. The slim-shaped sub-
domains cannot guarantee optimization of communication reduc-
tion compared to the compact sub-domains presented in tests 1
and 3. After t = 2, tests 2 and 3 exhibit generally the same level
of communication load, whereas test 1 achieves lower Sc during
t = 4 to t = 6 and surpasses tests 2 and 3 afterwards. Although
test 1 achieves roughly equivalent performance in optimizing com-
munication load after t = 2, the number of communication sub-
steps, i.e. edge color, is higher and the system is rebalanced more
frequently (see Fig. 12(c)). Regarding incremental property, the
same conclusion can be drawn as mentioned in the last paragraph
by comparing the averaged data migration (see Fig. 12(b)). The
benefit from switching partitioning strategy in test 3 is remarkable,
which avoids the violent stage encountered with original CVP
method. The runtime comparison is illustrated in Fig. 12(d)). Test
1 is the most time consuming, and with the proposed Inertial CVP
method, a speedup of about a factor 6 is achieved.

6. Conclusions

In this paper, a Lagrangian Inertial CVP method is developed by
merging the concepts of a background velocity and the Inertial CVP
method. The proposed LICVPmethod is employed as the rebalancer
of a multi-resolution parallel framework for the SPH method. The
main accomplishment can be summarized as follows:
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Fig. 12. 2D dam-break: comparison of original CVP method with background velocity, Inertial CVP with adaptive filter switched off and on. (a) Time history of averaged
communication load, i.e. proportion of ghost buffer particles versus local registered particles. (b) Time history of averaged migrated particles, i.e. proportion of migrated
particles versus local registeredparticles. (c) Timehistory of edge color number. (d) Runtime regardingdomaindecomposition subroutine, i.e. CVPmethod anddatamigration.

1. By defining a background velocity, Voronoi particles are able
to track the motion of local sub-domains and characterize the
topological variation of the system more precisely. Rebalancing
upon the updated Voronoi-particle positions improves the incre-
mental property remarkably. Moreover, since the equilibrium is
calculated globally, the inter-processor communication is reduced
implicitly.

2. The performance of simulations with extremely anisotropic
computation-load distribution is improved utilizing the proposed
Inertial CVP method. Due to the splitting operator, the Voronoi-
particle motion is insensitive of the load variation along the di-
rections of minimum interest, which enhances the incremental
property, and improves the convergence as well. Additionally, the
adaptive filter allows a dynamic selection of partitioning strategy
according to the evolution of load distribution. The selection pro-
cedure guarantees a relative balance between data-redistribution
and inter-processor communication cost in extreme situations.
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Abstract

In this paper, we propose a consistent parallel unstructured mesh generator based on a multi-phase SPH method. A set
of physics-motivated modeling equations are developed to achieve the targets of domain decomposition, communication
volume optimization and high-quality unstructured mesh generation simultaneously. A unified density field is defined as
the target function for both partitioning the geometry and distributing the mesh-vertexes. A multi-phase Smoothing Particle
Hydrodynamics (SPH) method is employed to solve the governing equations. All the optimization targets are achieved implicitly
and consistently by the particle relaxation procedure without constructing triangulation/tetrahedralization explicitly. The target of
communication reduction is achieved by introducing a surface tension model between distinct partitioning sub-domains, which
are characterized by colored SPH particles. The resulting partitioning diagram features physically localized sub-domains and
optimized interface communication. The target of optimizing the mesh quality is achieved by introducing a tailored equation-
of-state (EOS) and a smooth isotropic kernel function. The mesh quality near the interface of neighboring sub-domains is
improved by gradually removing the surface-tension force once a steady state is achieved. The proposed method is developed
basing on a new parallel environment for multi-resolution SPH to exploit both coarse- and fine-grained parallelism. A set of
benchmarks are conducted to verify that all the optimization targets are achieved consistently within the current framework.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Parallel mesh generator; High performance computing; Smoothing particle hydrodynamics; Domain decomposition

1. Introduction

The topic of parallel mesh generation is critical for capturing complex physical phenomena in various areas,
e.g. Finite Element Analysis (FEA) [1], Computational Fluid Dynamics (CFD) [2] and image discretization in
bioinformatics [3]. Developing scalable, stable and high-quality parallel mesh generation methods is important
in reducing simulation cost and achieving high-accuracy for the underlying numerical methods. Recently, new
challenges have raised for parallel mesh generation methods due to the rapidly growing capabilities and capacities
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of modern supercomputers. To fully exploit the potential of distributed memory system, the parallel mesh generator
needs to resolve various difficulties, e.g. the data dependency, the load balancing and the irregular behavior of the
mesh refinement [4]. According to the NASA CFD vision 2030 study [5], mesh generation is still a significant
bottleneck in CFD and more research is needed.

Sequential unstructured mesh generation methods can be roughly categorized as advancing front methods
(AFT) [6,7], Delaunay refinement-based methods [8,9], Delaunay variational-based methods [10,11], Particle-based
methods [12–14], etc. The advancing front method generates the mesh from the geometry boundary and inserts
layers of vertices representing the front iteratively towards the interior of the domain [6]. The Delaunay refinement-
based method starts from a coarse representation of the geometry and improves the mesh quality by gradually
inserting new Steiner points into the domain until a prescribed criterion is achieved [8]. As for Delaunay variational-
based method and particle-based method, either an energy function [10,15] or a target mesh-size function [12,16] is
defined. Different numerical approaches are then applied to minimize the energy or interpolation error in order to
optimize the mesh quality. Despite the similarities shared by both methods, one fundamental difference is whether
the connectivity information is required during the optimization procedure. For particle-based mesh generation
methods [12,13,17], pair-wise forces are defined between interacting particles to relax the system towards the target
distribution. Therefore, the mesh quality is improved implicitly without constructing a Delaunay tessellation for
each optimization iteration. Moreover, since the interaction is constrained locally within a short cutoff radius, only
local information is required for each particle. Benefiting from aforementioned unique features, the particle-based
method can be easily extended to parallel systems and achieve scalable performance.

Comparing to sequential mesh generator, additional targets arise when the mesh is generated in a distributed
memory system. Ideally, a parallel mesh generation method should retain the mesh quality generated by the state-
of-the-art sequential code and achieve fully code reuse without significantly deteriorating the scalability of the
code [18]. Therefore, in order to accomplish the additional goals in a parallel environment, a consistent formulation
is required to maintain the quality of the mesh in a parallel environment.

In the past decades, tremendous efforts have been done to develop parallel unstructured mesh generation
methods [19]. Initially, most of the developed schemes follow a coarse-grained parallel strategy [20]. A Domain
Decomposition (DD) step is first used to partition the geometry into either continuous sub-domains or discrete
simply-connected sub-meshes [21,22]. Different sequential mesh-generation kernels are applied to mesh each sub-
problem and optimize the interface between sub-domains/sub-meshes respectively. The main effort to increase the
parallel efficiency relies on the amount of communication required on the sub-problem interfaces [23]. Depending
on the data synchronization strategy, the parallel mesh generations can be categorized into tightly-coupled,
partially-coupled and decoupled approaches [19]. Tightly-coupled methods, e.g. Parallel Optimistic Delaunay Mesh
(PODM) [24] and Parallel Advancing Front Technique for shared memory computers (PAFTSM ) [21], optimize the
mesh in the interior and on the interface of each individual sub-problem simultaneously. While stability and quality
of the resulting mesh are guaranteed, the parallel implementation induces a significant amount of communication
overhead and features low code reuse. For decoupled approaches, e.g. Parallel Projective Delaunay Meshing (P2DM)
method [25] and Parallel Delaunay Domain Decoupling (PD3) method [22], the geometry first is decomposed into
continuous sub-domains and each sub-domain is meshed separately. This approach achieves high code reuse, but
the mesh quality depends on a proper domain decomposition method. The partially coupled strategy, e.g. Parallel
Octree AFT (POAFT) method [21] and Parallel Constrained Delaunay Meshing method (PCDM) [26], find a balance
between the aforementioned two approaches. The meshing procedure is separated into two phases by defining an
interior region and interface region. The amount of communication is significantly reduced comparing to tightly
coupled ones and the codes are more stable in terms of achieving high-quality meshes.

The coarse-grained mesh generators generally feature irregular communication patterns and lack data locality due
to the excessive remote data access [27]. Recently with the fast development of manycore processors, e.g. Graphic
Processing Unit (GPU), the coarse-grained schemes are no longer suitable for the newly-emerged architectures [28].
Several fine-grained parallel models are exploited to achieve higher concurrency and data locality in shared-memory
systems [20,29]. In [20], the data dependency and concurrency are ensured by constructing a graph and utilizing
a fine-grained edge-coloring algorithm respectively. Apart from fine-grained parallel models, a hybrid two-level
Locality-Aware Parallel Delaunay imaging-to-mesh conversion algorithm (LAPD) is developed in [27]. A partially
coupled scheme is employed operating at the coarse level, and a tightly coupled method PODM is utilized to
optimize mesh quality within each sub-domain. The inter-node communication only happens at the coarse level
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and high-concurrency is maintained by the tightly coupled approach. More recently, a nested master–worker
communication model is proposed in [30] to overlap the communication and computation and to further exploit
the two-level parallelism on manycore distributed memory system.

To conclude, in order to utilize the full potential of the state-of-the-art clusters, the parallel mesh generation
method should be able to achieve the following characteristics: (1) well-balanced load, optimized communication
volume, high scalability in the node level; (2) high concurrency and data locality property in the thread level within
each node; (3) easy to be extended in a parallel environment, i.e. high code reusability.

According to the above discussions, the particle-based mesh generation method is suitable as a candidate
of large-scale parallel-mesh generator. Since the mesh generation procedure is accomplished implicitly without
operating on a mesh and the pair-wise interaction only relies on its local information, it fulfills the fine-grained
parallelism naturally. With a proper domain decomposition method and dynamic load balancing strategy, e.g. the
Centroidal Voronoi Particle (CVP) method [31], scalable performance can be achieved with a large number of
computational nodes. Moreover, due to the Lagrangian nature of the particle-based method it is particularly
suitable and easy to program for modern parallel environment consisting of shared-memory or distributed-
memory systems utilizing various parallel techniques, e.g. Message Passing Interface (MPI) [32], OpenMP [33]
and CUDA [34]. A number of well-established codes has been developed for different particle methods on
different architectures, e.g DualSPHysics [35] for free-surface weakly-compressible flows using Smoothed Particle
Hydrodynamics (SPH), LAMMPS [36] for Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD)
simulations, OpenFPM [37] for hybrid particle-mesh simulations, etc. To the best of our knowledge, the topic of
parallel particle-based mesh generator in a distributed memory system has not yet been explored.

In this paper, a consistent particle-based parallel unstructured mesh generation method is developed. Unlike
other parallel approaches, which rely on a domain decomposition step first before generating the mesh, the
proposed method merges both steps into a single phase. The targets of improving mesh quality, optimizing
communication volume and domain decomposition are achieved consistently within one set of physics-motivated
modeling equations. By defining a unified target function and introducing a surface-tension model in the governing
equation, the newly-developed SPH-based isotropic unstructured mesh generation method [12] is extended to a
parallel multi-resolution environment [38,39]. The parallel framework employs both MPI and Thread Building
Blocks (TBB) [40] techniques, therefore the mesh-generation procedure is able to exploit the parallelism with both
coarse- and fine-grained abstractions.

The rest of the paper is arranged as follows: In Section 2, we first introduce the mathematical description of our
targets. The main idea and the physics-motivated modeling equations are then elaborated. The detailed numerical
methods, e.g. the geometry definition, the discretization of the modeling equations, the parallel environment, and
etc., are presented in Section 3. In Section 4, various validation tests are carried out to demonstrate the performance
of the proposed method.

2. Physics motivated models

2.1. Target definition

We first introduce the mathematical definition of the targets in both the domain decomposition and the mesh
generation. Given a target function Φ(x) defined in domain Ω , a point set V is initialized to partition the domain
into elements. Each element in the resulting tessellation can be treated as a computational unit. We can characterize
the partition as a graph G = (V, E), where E denotes the communication relationship between computational units.

In parallel simulation, V is divided into n disjoint subsets denoted as V1, V2, . . . , Vn respectively, and each subset
is associated with one MPI task. An optimal partitioning should have the following properties [41]:

• V1 ∪ V2... ∪ Vn = V and Vi ∩ V j = ∅ with i ̸= j ;

• |Vi | ≈ ⌈
|V |

n
⌉, i = 1, 2, . . . , n;

•
∑

i< j Ei j is minimum, where Ei j = {{u, v} ∈ E |u ∈ Vi ∧ v ∈ V j }.

Note that in this paper only equal mass partitioning is considered.
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Regarding to mesh generation, there exists several approaches to characterize the approximation error between
the discretized mesh element and the given target function. According to [10], the L p norm between the gradient
of Φ(x), ▽Φ̃(x), and its interpolation is defined to characterize the error since the mesh quality can strongly affect
the gradient error. In this paper, we define an optimal mesh quality by

• L(x) =
∫
Ω ∥ ▽ Φ̃(x) − ▽Φ(x)∥L p dx is minimum.

2.2. Main concept

According to the definition in Section 2.1, we propose that the target function Φ(x) can be used for both the
domain decomposition and mesh generation. The total number of mesh vertices can be calculated basing on Φ(x),
considering that the total mass is known and that each particle has unit mass. The target mass of each sub-domain
for load balancing can be determined straightforwardly. A color function can be defined for each particle, where
within the same sub-domain particles share the same color.

To achieve the objective of domain decomposition and communication optimization, a surface tension force
can be applied between particles with distinct colors to preserve the sharp interface condition between neighboring
sub-domains [41]. Consequently, particles of the same color tend to concentrate. Sub-domains are optimized towards
convex and compact shape due to the existence of surface tension force. According to [41], the steady-state multi-
phase fluid has high similarity to the balanced partitioning diagram, and the objectives of domain decomposition
and communication can be achieved implicitly.

During the partitioning stage, the mesh quality can be optimized simultaneously. By introducing a tailored
equation-of-state (EOS), the relative error of particle density and target density is characterized as pseudo pressure.
The error gradient results in pair-wise particle interaction force and drives particles towards target density
distribution while maintaining a regularized and isotropic distribution [12]. Once a steady state has been achieved,
the particles in the inner region of each sub-domain are optimized, and the target of minimizing L(x) is achieved
implicitly.

Last, the mesh quality near the interface region of neighboring sub-domains can be optimized by gradually
alleviating the surface tension force. Since an equilibrium state already has been achieved, the optimization of
mesh quality near interface region will only result in local redistribution of mesh vertices, i.e. limited overhead of
the communication volume.

2.3. Target function

We first refer the target function as “target density” function or “density” function to relate with fluid dynamics

ρt = Φ(x) (1)

Since the target density function determines the size of mesh elements, we can further define the target feature-size
function (ht ) based on ρt through a mapping function,

ht = Q(ρt ). (2)

The target density function can be defined considering different characteristic fields. In general we can write{
ρt = Φ1(a1, a2, . . . , an),
ht = Φ2(a1, a2, . . . , an), (3)

where a1, a2, . . . , an are the contributing factors that characterize the mesh-vertex distribution. In [12], the authors
suggest to calculate the target function considering the level-set function φ, the diffused curvature κ and the
minimum distance function ψ taking into account the effect of geometry singularities. Moreover, the target function
can also be an arbitrary user-defined function to facilitate capturing details with various objectives.

Based on the target density function, the total mass for generating a volume mesh can be calculated by [14]

Mv =

∫
Ω

ρt △ dv, (4)
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where

△ =

{
1, if inside the geometry,
0, otherwise. (5)

The total mass for generating a surface mesh can be calculated similarly by integrating the target density function
over the geometry surface

Ms =

∫
∂Ω

ρt ds. (6)

In order to characterize the target information for domain decomposition, we define the total computational load
(Mt ), i.e. total mass, as

Mt = Mv + Ms . (7)

Then the target mass for each sub-domain can be derived by

Mproci = ωi,t Mt , (8)

where i = {1, 2, . . . , Nproc}. ωi,t is the fraction of the target mass for sub-domain i compared with the total mass,

and
∑Nproc

i ωi,t = 1. For equal mass partitioning, ωi,t =
Mt

Nproc
.

2.4. Model equations

The Lagrangian form of governing equations for isothermal multi-phase compressible flows is [41]

dρ
dt

= −ρ ▽ ·v, (9)

dv
dt

= −Fp + Fv + Fs, (10)

dx
dt

= v, (11)

where ρ is the density, v the velocity vector, x the position. Fp, Fv and Fs denote the pressure force, the viscous
force and the surface tension force respectively.

To close the system, an equation of state (EOS) is required:

p = f (ρ), (12)

where p denotes the fluid pressure. In the current paper, since the particles are treated as pseudo fluid and the
objective is to minimize the interpolation error, the equation of state can be set as

p = P0

( ρ
ρt

)γ
, (13)

where P0 is a constant pressure and γ is a user-defined parameter. This EOS drives particles to relax to the
target distribution. Once an equilibrium state has been reached, pressure becomes constant, and consequently the
interpolation error is minimized, i.e.

ρ

ρt
is approximately constant.

The model equations can be discretized and solved by the Smoothed Particle Hydrodynamics method. The
discretized form is presented in Section 3.3.

3. Numerical algorithms

The main numerical algorithms and implementation details are elaborated in this section.
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Fig. 1. Tag system developed for characterizing the geometry and facilitating the mesh generating process.

3.1. Geometry definition

First, we use the level-set method [42] to represent the geometry surface using a zero level-set following [12].

Γ = {(x, y)|φ(x, y, t) = 0}. (14)

The level-set field is discretized on a Cartesian background mesh. The mesh-generation region is defined as the
positive phase, i.e. Γ+ = {(x, y)|φ(x, y, t) > 0}. For detailed description of defining the level-set function on the
background mesh, one can refer to [12] and [14].

For complex geometries, there may exist multiple sharp edges and singularity points, which cannot be resolved by
a single level-set function. This information should be considered too in order to preserve the accuracy and to recover
the geometry. Following [12], the singularity points are directly converted to singularity particles and are fixed
during the simulation. Moreover, in this paper, we discretize sharp edges, i.e. feature-curves, with piecewise-linear
B-splines. Each segment of the curves is then mapped onto the background grid and all the cells containing feature-
curves are characterized as cut-cells. It is also possible to extend to higher order curves, e.g. NURBS curves [43], to
improve the accuracy, and will be included in our future work for industrial applications. In addition, the resolution
of background mesh used in the current paper is always 1.5 to 2 times higher than the minimum target-feature size.
Therefore, the geometry surfaces are always well-resolved compared to the particle size and can be better recovered.

3.2. Target information calculation

The target information defined in Section 2.1 is calculated utilizing the same Cartesian background mesh. A
tag system is defined to characterize the positive/negative phase, feature curve, feature surface and singularity
respectively. Each cell Ci is assigned with a unique integer and five categories are defined accordingly, i.e. positive
cell (C+), negative cell (C−), feature-surface cell (Cs), feature-curve cell (Cc) and singularity cell (Csi ) (see Fig. 1).
Moreover, according to the level-set function, the volume fraction of the positive phase inside each cell can be
determined explicitly.

To calculate the target information, the integration can be performed efficiently by looking for corresponding cells
based on the tag system. In this paper, the total mass for volume mesh Mv is calculated using the divide-and-conquer
method [44] for Sv = {Ci |Ci ∈ (C+ ∪Cs ∪Cc ∪Csi )}. The total mass for surface mesh Ms is calculated separately
considering the surface integral on the feature surface and the line integration on the feature curve. The surface
integration is calculated for Ss = {Ci |Ci ∈ (Cs ∪ Cc ∪ Csi )} and the line integration Sc = {Ci |Ci ∈ (Cc ∪ Csi )}.
The same divide-and-conquer method can be applied for the integration. To describe the feature surface explicitly,
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the Marching Cube method [45] is used for surface reconstruction. Once the total mass for mesh generation Mt is
determined, the target mass for partitioning can be calculated straightforwardly applying Eq. (8).

In order to determine the total number of SPH particles, we assume that each particle possesses unit mass

mi = 1. (15)

Since the SPH method inherently conserves mass and there is no mass transfer between particles, the density of
each particle will evolve during the relaxation procedure and eventually conforms to the target density field. The
target density ρt,i for particle i is interpolated from the Cartesian background mesh at particle position ri . The
target feature-size is calculated following

ht,i = τ
( mi

ρt,i

)1/d
, (16)

where τ is a scaling factor depending on the kernel function and d denotes the spacial dimensionality.

3.3. SPH discretization

With standard SPH method, the density of a particle can be calculated using direct summation over all the
neighboring j particles

ρi =

∑
j

m j W (ri j , hi ), (17)

where W (ri j , hi ) is the kernel function, hi the smoothing length of particle i , ri j = ri − r j the connecting vector
between particle i and j .

Following [12], the pressure force can be discretized in a symmetric form as

Fp,i =

∑
j

m j

( p0

ρ2
t,i

+
p0

ρ2
t, j

)∂W (ri j , hi j )
∂ri j

ei j , (18)

where hi j =
hi + h j

2
,
∂W (ri j , hi j )

∂ri j
is the derivative of kernel function, and ei j =

ri j
ri j

is the unit vector pointing

from particle i to j .
Note that the density term in the original discretized form disappears by assuming γ = 2 in Eq. (13) (see [12]),

i.e.

p = p0
ρ2

ρ2
t
. (19)

Therefore the density summation term defined in Eq. (17) is no longer necessary.
The viscous force is calculated following

Fv,i =

∑
j

m j
2ηiη j

ηi + η j

( 1
ρ2

i
+

1
ρ2

j

)∂W (ri j , hi j )
∂ri j

vi j

ri j
, (20)

where vi j = vi − v j , and η = ρν is the dynamic viscosity. In this paper, we use

ν ∼ 0.1rc|v|, (21)

where rc is the cut-off radius of particle interaction range, assuming that the local Reynolds number is on the order
of O(10). Moreover, by setting

ρ = ρt , (22)

the viscous force model can be further simplified. Meanwhile, as suggested in [12], a simplified friction model
is utilized to set an effectively infinite friction coefficient and to damp particle kinetic energy to zero after each
time-step.

As discussed in Sections 1 and 2, the targets of maintaining compact and physically-connected sub-domains are
handled by introducing a surface tension model between particles belonging to distinct sub-domains, i.e. particles
carrying different colors. Ideally, the surface tension force can be modeled by the continuum surface force (CSF)
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method [46] or the continuum surface stress (CSS) method [47], where a finite transitional band is used to
characterize the interface. Within the transitional band the surface-tension force is approximated as a continuous
force. However, to avoid the direct calculation of curvature a simplified surface tension model is utilized in this paper.
Similarly with [41], the acceleration contributed by the interface force can be approximated by an inter-particle
repulsive pressure force,

Fs,i = −

∑
j

β(t)m j

( p0

ρ2
t,i

+
p0

ρ2
t, j

)∂W (ri j , hi j )
∂ri j

ei j , (23)

where β(t) is a time-dependent coefficient to characterize the strength of surface-tension effect

β(t) =

{
0, if Ci = C j ,

σ (t), overwise, (24)

where Ck is the color function for particle k. Note that the simplified surface-tension model has high similarity with
the discretized pressure force formulation, Eq. (18). With the coefficient σ (t) > 0, particles of different colors near
the interface region of neighboring sub-domains are separated by a repulsive force. Moreover, in high-curvature
regions particles are expected to concentrate more, consequently resulting in a larger repulsive force to regularize
the interface shape.

To incorporate with the mesh generation procedure, the surface tension force is removed once the target of
domain-decomposition is achieved. In order to maintain numerical stability, β(t) is reduced gradually. In this paper,
we use a linear function to ramp down the strength of surface tension effect between the time interval [t0, t1]

β(t) =

⎧⎨⎩
3 , if t ≤ t0,

3(1 −
t0−t
t0−t1

) , if t0 < t ≤ t1,
0 , if t1 < t,

(25)

where t0 is the time when the initial partitioning is converged, and an initial constant of 3 is set for β following
the suggestion in [41]. t1 can be obtained by adding a fraction of t0, i.e. t1 = (1 + ϑ)t0. In this paper, we set
ϑ ∈ [0.1, 0.2].

The convergence of partitioning is achieved when the particle system is fully relaxed and an equilibrium state
is maintained. We measure the topology variation of the system for a certain amount of iterations, e.g. 50. If the
topology remains static for the predefined interval, we assume the partitioning procedure terminates and set t = t0.
In order to measure the topology variation, the sampling procedure introduced in [41] can be carried out.

3.4. Time integration

Following [41] and [12], a simplified time-integration scheme is employed as

ṽn+
1
2

= vn +
1
2

an∆t, (26)

vn+
1
2

= ṽn+
1
2

+
1
2

ãn+
1
2
∆t, (27)

rn+1 = rn + vn+
1
2
∆t. (28)

The acceleration an is first calculated from the pressure force Fp and the surface tension force Fs and is used to
update the mid-point velocity ṽn+

1
2
. Then the viscous force Fv is calculated to obtain the mid-point acceleration

ãn+
1
2

utilizing the predicted velocity ṽn+
1
2
. At last the particle position is updated by a full timestep according to

the modified velocity vn+
1
2
.

The time-step size of the simulation is calculated with respect to the physical model to maintain numerical
stability. In this paper, the time-step size is determined by the CFL criterion, the viscous criterion, and the body
force criterion respectively [12],

∆t = min
(

0.25
√

rc

|a|
,

1
40

rc

|v|
, 0.125

r2
c

ν

)
, (29)

where the artificial speed of sound is assumed as cs ∼ 40|v|max .
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3.5. Singularity, feature curve and feature surface

Four types of particles, i.e. singularity particle, feature-curve particle, feature-surface particle and normal particle,
are defined to characterize the features of underlying geometry specifically. Singularity particles are employed to
represent geometrical singularities such as sharp corners. The position is not updated once a particle is marked
as singularity particle. Feature-curve particles and feature-surface particles are used to represent sharp edges and
surface of the geometry respectively. Particles that are inside the mesh-generation region, i.e. the positive phase,
are referred as normal particles.

The particle type is identified using the background mesh. As mentioned in Section 3.2, all the geometry surfaces,
singularity points and sharp edges are explicitly marked with cut cells. When a particle crosses feature boundaries, it
is characterized according to the type of the cell it lies in and then mapped to the feature according the geometrical
information. Therefore, the issue of crossing boundaries can be avoided.

The feature-curve particles are used to provide repulsive force for surface and normal particles to prevent
penetration. During the triangulation/tetrahedralization process, they are also utilized to generate 1D line mesh.
For the force calculation, only the same type of particles or singularity particles are considered within the cut-off
radius. The pair-wise interaction force is projected to the tangential direction of the curve T(ri ) at position ri

F∗,i = (F∗,i · T(ri ))T(ri ). (30)

After updating position, the particles are projected back to the feature curve at the closest point to preserve the
geometry.

Similarly, the feature-surface particles are used as the boundary conditions of normal particles and are also
used to generate surface mesh. The contribution from normal particles are excluded in the force calculation of the
feature-surface particles. The normal component of the interaction force is ignored

F∗,i = F∗,i − (N(ri ) · F∗,i )N(ri ), (31)

where N(ri ) is the unit normal vector on the surface. To constrain the particle motion on the surface, the updated
position is projected back onto the surface by

ri = ri − φi N(ri ). (32)

The detailed equations regarding the calculation of N(ri ) can be found in [12].

3.6. Triangulation and tetrahedralization

In the proposed method, since the mesh quality is optimized implicitly without connectivity information, the
2D triangulation or 3D tetrahedralization is only performed for post-processing to visualize mesh elements and
calculate mesh quality. For 2D triangulation, the mesh is constructed similarly with [12] utilizing a local Voronoi
tessellation. At the sub-domain boundaries, the ghost buffer particles from neighboring processors are utilized to
generate the Voronoi diagram. A pair-wise synchronization is then performed to remove duplicated elements. Since
the resulting particle distribution is sufficiently isotropic and the number of neighbors is always bounded, a unique
mesh can be obtained using the information from ghost particles. For 3D tetrahedralization, the open-source code
TetGen [48] is used. The flip operations included in TetGen (2–3 flip, 3–2 flip and 4–4 flip) are performed to
improve the connectivity.

The runtime of the triangulation/tetrahedralization procedure is not considered in this paper, since it is only a
post-processing step. The runtime can be neglected compared to the total runtime for all the cases tested in Section 4.
However, when the scale increases significantly, the serial code TetGen may become a bottleneck. In this scenario,
the post-processing step can be accelerated utilizing modern parallelization techniques. There are several existing
methods that can be employed directly in this regard [49,50] and will be considered in the future.

3.7. Mesh quality criterion

For isotropic triangular meshes, the mesh quality is quantified by G = 2
√

3 S
P H and the angle θ , where S is

the triangle area, P the half-perimeter and H the length of the longest edge. θmax , Gavg and Gmin/θmin are the
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maximum, average and minimum values respectively. θ#
min is the averaged value of the minimum angle in each

triangle. θ<30 is the number of triangle that contains angle smaller than 30◦. The distribution of angles is provided
too to check the regularity.

For isotropic tetrahedral mesh, the mesh quality is quantified by the dihedral angle θ and radius ratio γ = 3 rin
rcirc

respectively, where rin is the inradius and rcirc the circumradius of a tetrahedron. θmax , γavg and γmin/θmin are the
maximum, average and minimum values respectively. θ#

min is the averaged value of the minimum dihedral angle in
each tetrahedron. To evaluate the distribution, diagrams of dihedral angle and radius ratio are provided. The number
of slivers are measured by counting the number of tetrahedra with different smallest dihedral angles, i.e. 10◦, 20◦,
30◦ and 40◦.

3.8. Parallel environment for multi-resolution SPH

The proposed method is implemented in a newly developed parallel environment for multi-resolution SPH [38],
which is designed for large-scale simulations with arbitrarily adaptive smoothing-length.

The code utilizes a localized nested hierarchical data structure and a parallel fast-neighbor-search algorithm
for an efficient construction of ghost buffer particles in remote processors. With a tailored multi-level cell-linked-
list, neighboring particles on remote processors can be identified by simply comparing the tag system constructed
on the data structure between two neighboring subdomains [39]. A localized hierarchical data structure is further
developed in [38] to eliminate the memory bottleneck and simplify the data management. The cost of parallel
fast-neighbor-searching is reduced as well.

An undirected graph is used to characterize the sparse data communication relationship between neighbor-
ing subdomains. The communication frequency is optimized by the edge-coloring algorithm [39]. For each
communication substep, only efficient nonblocking point-to-point communication is involved. The graph-based
communication strategy is further improved in [38] by introducing a concept of “defused graph” to anticipate
potential communicating neighbors within a certain time period in the future. Consequently, the reconstruction of
the communication graph every-timestep is avoided.

The framework is parallelized with both MPI and TBB. By testing a standard compressible gas dynamics
solver, the framework exhibits scalable performance on current state-of-the-art computer clusters for both uniform
and adaptive particle distributions. The weak scaling reveals that the code scales well up to at least 3584 cores.
Good efficiency is achieved for strong scaling tests (scales up to 7168 cores) at various scales. For more detailed
description of the framework, the readers are referred to [38,39,51].

3.9. Initial particle sampling

The initial particle sampling can be proceeded in two steps. First, the domain is roughly divided into a desired
number of subdomains. Then SPH particles are sampled randomly into each subdomain. In [41], the geometry based
close packing technique is utilized for the first step. For regular geometries, this method can generate satisfying
results. However, for complex geometries and large variations of the density field, this method fails to partition the
geometry into balanced subdomains. In this paper, the Centroidal Voronoi Particle (CVP) method [31] is employed.
The CVP has been originally developed as a mesh-type-independent domain decomposition method. The main
contribution is to merge the concepts of Centroidal Voronoi Tessellation (CVT) and Voronoi Particle dynamics
(VP). The CVT is introduced to achieve a high-level compactness of the partitioning subdomains, while the Voronoi
Particle dynamics is incorporated by solving physics-motivated governing equations to relax the particle system
towards the target partition with good load balance. Later, the CVP has been extended to generate optimal initial
conditions for particle-based methods [52]. The CVP is able to handle complex geometries and large jump of the
density function.

The CVP is easy to implement and to be parallelized [31,38]. First, a set of Voronoi generators are initialized
according to the number of MPI tasks desired. Then the generators are randomly placed in the positive phase,
i.e. Γ+ = {(x, y)|φ(x, y, t) > 0}. Since the target mass of each subdomain is already known according to Eq. (8),
then the information can be used to solve the governing equations of CVP on the background mesh until an
equilibrium state is achieved. The boundary conditions of CVP is enforced following [52]. Since the number of
Voronoi generators is negligible comparing to total number of SPH particles and the CVP only need to be performed
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once, the cost for generating a good initial seeding is trivial. After the final positions of the Voronoi generators
are obtained, the SPH particles are initialized randomly within the Voronoi cell. For complex geometries, it is
recommended to place SPH particles randomly inside a sphere, whose diameter is the minimum distance to its
nearest Voronoi generator, to achieve better compactness of the resulting subdomains.

3.10. Overview

A detailed flowchart of the proposed mesh generation method is summarized in Algorithm 1. All the equations
are organized in the same order as implemented in the code. It is worth noticing that the equations share highly
similarities with standard multi-phase SPH method [53], and the solver can be easily modified from an existing SPH
code. Therefore, the infrastructures of the original code developed in [38] can be used directly as an independent
module. The processes of constructing localized data structure (Line 5 and 8), parallel fast neighbor searching (Line
9), establishing communication topology and data communication (Line 5 and 8) remain intact. One major difference
comparing to a SPH solver is that, in the current method, particle migrations between neighboring domains are not
necessary due to the surface tension model introduced. The aforementioned modules are not expanded and elaborated
in detail in Algorithm 1, and more information can be found in [38,39] respectively. For preprocessing, an additional
background mesh needs to be constructed and the level-set function has to be solved in order to obtain the target
information (Line 1–3).

Algorithm 1 Flowchart of the parallel mesh generation method
1: Initialize the background Cartesian mesh;
2: Initialize the level-set function (Eq. (14)) and target density function (Eq. (3)) basing on the background mesh;
3: Calculate the target information for mesh generation (Eq. (7)) and domain decomposition (Eq. (8));
4: Initial particle sampling; ▷ See Section 3.9 for detailed description
5: Initialize the parallel environment; ▷ e.g. construct local data structure, build communication topology, allocate resources, and etc.
6: while t < tend do
7: Define particle target density (ρt ), scale (ht , see Eq. (16)) as well as other information at rn

i ;
8: Refresh data structure and communication topology; ▷ See [38] for detailed description
9: Construct ghost buffer particles, and find neighboring particles to construct neighbor list;

10: Reset particle velocity and forces;
11: Calculate pressure force Fp (Eq. (18));
12: Calculate surface-tension coefficient (Eq. (24) and accumulate surface-tension force Fs (Eq. (23));
13: Map Fp and Fs for feature-curve and feature-surface particles (Eqs. (30) and (31));
14: Set physical time-step size (Eq. (29)) and update the mid-point velocity ṽn+

1
2

(Eq. (26));
15: Accumulate viscous force (Eq. (22));
16: Set physical time-step size (Eq. (29)) and update predicted velocity vn+

1
2

(Eq. (27));
17: Update particle position (Eq. (28));
18: Find particles that are close to the geometry features utilizing the tag system (defined in Section 3.2). Map the new

singularity/feature-curve/feature-surface particles into corresponding singularity/feature curve/feature surface (Section 3.5);
19: if Do post-processing then
20: Generate the corresponding mesh and calculate mesh quality;
21: end if
22: end while

4. Numerical validation

In this section, a set of two- and three-dimensional test cases are presented to validate the performance of our
method. All cases in this section are simulated on the facilities provided by Leibniz-Rechenzentrum (LRZ). For all
the test cases below, we define the communication volume as Neg/Net , where Neg is the number of elements that
contain vertices of different colors and Net is the total number of elements generated.

4.1. Circle

We first consider a 2D circle with adaptive resolution. The domain is [0, 100]× [0, 100], and the circle is defined
as

Γ = {(x, y)|43 −

√
(x − 50)2

+ (y − 50)2
= 0}. (33)
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Table 1
Mesh quality of the circle case.

Gavg Gmin θmax θmin θ#
min θ<30 Np Ntr i

a

circle_6mpi 0.91 0.53 110.7 28.2 52.0 11 4,289 7,977
circle_12mpi 0.93 0.55 109.1 29.9 53.9 2 13,129 25,111

a Np denotes the total number of particles and Ntr i the total number of triangles.

The target feature-size function is given as ht = hmin +
tanh( 2.5φ

43 )
tanh(2.5) (hmax − hmin), where hmax and hmin are the

maximum and minimum mesh size. Two resolutions are simulated with different number of MPI tasks. For the
first case (referred as circle 6mpi), we set hmax = 3.125 and hmin = 0.391, and 6 MPI tasks are launched. For
the second case (referred as circle 12mpi), we set hmax = 1.95 and hmin = 0.195, and 12 MPI tasks are launched.
The simulation results for circle 6mpi are illustrated in Figs. 2 and 3. Figs. 4 and 5 are results of case circle 12mpi
respectively. The measurement of mesh quality for both cases are shown in Table 1.

From the simulation results, it can be observed that before the ramping-down of surface tension force, all sub-
domains feature convex and connected shape, and a sharp interface is maintained between neighboring sub-domains
(see Figs. 2(c) and 4(c)). After removing the surface-tension force, the sharp-interface condition is gradually relaxed
and the mesh vertices near the interface regions are regularized to an isotropic distribution (see Figs. 2(d) and
4(d)). The final meshes still feature convex shape of sub-domains (see Figs. 2(b) and 4(b)), and the increase of
communication volume after removing the surface tension force is negligible (see Figs. 2(f) and 4(f)).

High quality meshes are generated for both cases and for both in the regions near geometry boundaries and in
the far field (see Figs. 2(a)(e) and 4(a)(e)). The convergence history of mesh quality and runtime information are
also provided in Figs. 3 and 5. Both cases feature proper convergence. Also it can be observed that the overall
mesh quality has a rapid increase during the ramping-down of the surface-tension force stage, which starts at
approximately 4000 iterations for circle 12mpi and 40,000 for circle 12mpi. This phenomenon is consistent with
the expectation since the repulsive force between sub-domains introduces irregularities at the interface regions.

4.2. Square

Second, we consider a 2D square case with constant resolution using larger scale and larger amount of MPI
tasks (referred as square 56mpi). The size of the square is 95 × 95. The total number of mesh vertices is 1,772,894
and 56 MPI tasks are launched. Within each MPI tasks 14 TBB threads are initialized for higher concurrency. The
target feature-size is set with a constant value ht = 0.0714. For the initial condition, we first initialize 56 Voronoi
generators and sample the generators uniformly into the background mesh in positive region. The SPH particles are
then randomly sampled inside each Voronoi cell. The simulation results are presented in Figs. 6 and 7 and mesh
quality statistics are given in Table 2.

The resulting partitioning diagram (see Fig. 6(a)(b)) features compact and convex shape of sub-domains, which
has high similarities with the partitioning results using the CVP method [31] and a graph-based partitioning method
in [54]. Similarly with the first case, the sharp-interface condition is preserved before removing the surface tension
force (see Fig. 6(d)). After optimizing the mesh quality near the interface, small disturbance is introduced at the
inter-domain boundaries (see Fig. 6(d)), and the amount of communication overhead is limited too (see Fig. 6(e)).
It is worth mentioning that the optimization of communication with the presence of surface tension force does not
always lead to the monotonic decrease of communication volume, which depends on the initial condition particle
seeding and the distribution of the target function.

High-quality meshes are obtained from the calculation. Over 80% of angles range from 55◦ to 65◦ (see Fig. 7(a)).
The convergence history of mesh quality measurements presented in Fig. 7(b) and (c) demonstrate the good
convergence of our method.

4.3. Bunny

The Stanford Bunny model [55] is considered. A constant target feature-size of ht = 1.5 is defined and the
total number of particles is 240,370. 20 MPI tasks are allocated and each contains 14 TBB threads. Similarly
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Fig. 2. circle_6mpi: (a) Generated mesh after 20,000 iterations. (b) Particle distribution after 20,000 iterations. Particles are plotted with
colors of each sub-domain and radius identical to the target feature-size. Particle distribution (c) before removing surface tension force and
(d) after relaxation (zoom-in view of the box region in (b)). (e) Zoomed-in view of the final mesh after 20,000 iterations. (f) History of
communication volume. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

with previous case, 20 Voronoi generators are sampled uniformly inside the geometry. Particles are then initialized
randomly inside a sphere, whose diameter is the minimum distance to its nearest neighbor. The initial seeding of
SPH particles are illustrated in Fig. 8(a), where particles are rendered with sub-domain colors.
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Fig. 3. circle_6mpi: (a) Histogram of the angle distribution. (b) Convergence history of θmax , θmin and θ#
min . (c) Convergence history of

Gavg and Gmin . (d) History of runtime.

Table 2
Mesh quality of the square case.

Gavg Gmin θmax θmin θ#
min θ<30 Np Ntr i

square_56mpi 0.96 0.58 105.3 35.5 56.9 0 1,772,894 3,541,674

The particle distribution and the generated mesh are illustrated in Fig. 8(c)–(e) at two different camera positions.
A cross-section view is presented as Fig. 8(b) to show the inter-domain boundaries. All the results demonstrate that
the compact and connected sub-domains are maintained, even at the connecting region of the ears. The features
and details of the model are well-captured and mesh vertices are distributed homogeneously inside the geometry.
The history of communication volume as shown in Fig. 9(f) exhibits a slight increase after the ramping-down of
the surface-tension force (after 75,000 iterations), however the overall overhead is approximately 0.4%.

Good mesh quality is obtained and the statistics are presented in Fig. 9 and Table 3 respectively. The histories
of mesh quality demonstrate that the simulation converges properly.
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Fig. 4. circle_12mpi: (a) Generated mesh after 200,000 iterations. (b) Particle distribution after 200,000 iterations. Particles are plotted with
colors of each sub-domain and radius identical to the target feature-size. Particle distribution (c) before removing surface tension force and
(d) after relaxation (zoom-in view of the box region in (b)). (e) Zoomed-in view of the final mesh after 200,000 iterations. (f) History of
communication volume. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

4.4. Cube

We consider a cube of size [95 × 95]. This is a simple geometry but contains both singularities and feature
curves. A constant target feature-size of ht = 0.78 is defined and the total number of particles is 1,888,113. 24
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Fig. 5. circle_12mpi: (a) Histogram of the angle distribution. (b) Convergence history of θmax , θmin and θ#
min . (c) Convergence history of

Gavg and Gmin . (d) History of runtime.

Table 3
Mesh quality of the Stanford bunny case.

θmin/θmax γmin/γavg θ#
min θ<10 θ<20 θ<30 θ<40 Np Ntet

bunny _20mpi 15.3/154.8 0.24/0.92 56.6 0 2 127 8636 240,370 1,366,196

MPI tasks are allocated and each contains 14 TBB threads. Similarly with the bunny case, 24 Voronoi generators
are sampled uniformly inside the geometry. The initial particle seeding is shown in Fig. 11(a).

The simulation result after 217,500 iterations is illustrated in Fig. 10 presented by particles rendered with
sub-domain colors (see Fig. 10(a)(c)(e)) and tetrahedra (see Fig. 10(b)(d)(f)). Again overall compact and convex sub-
domains are maintained with small disturbance at the interface (see Fig. 10(c) for a zoom-in view and Fig. 10(e) for
a clipped view). The overhead of communication volume after relaxation of surface tension force is approximately
1%.

Regarding to mesh quality, statistics and history curves are presented in Table 4 and Fig. 11. According to
the Dihedral angle histogram in Fig. 11(c), most of the angles concentrate at approximately 60◦ (∼60%) and 90◦

(∼25.5%), which is highly close to the dihedral angles of a Body-Centered-Cubic (BCC) tetrahedron and features
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Fig. 6. square_56mpi: (a) Generated mesh after 80,000 iterations. (b) Zoomed-in view of the box region in (a) after 80,000 iterations.
Particles are plotted with colors of each sub-domain. Particle distribution (c) before removing surface tension force and (d) after relaxation
(zoom-in view of the box region in (a)). (e) History of communication volume. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. square_56mpi: (a) Histogram of the angle distribution. (b) Convergence history of θmax , θmin and θ#
min . (c) Convergence history of

Gavg and Gmin . (d) History of runtime.

Table 4
Mesh quality of the cube case.

θmin/θmax γmin/γavg θ#
min θ<10 θ<20 θ<30 θ<40 Np Ntet

cube _24mpi 21.5/147.3 0.27/0.94 58.8 0 0 187 7796 1,888,113 11,127,061

minimum mean square error [56]. From the zoom-in view (see Fig. 10(d)) and clipped view of the generated mesh
(see Fig. 10(f)), the BCC distribution of mesh vertices can be observed. For the radius ratio diagram (see Fig. 11(d)),
about 83% of all tetrahedra falls into the range between 0.94 to 1.13.

4.5. Spur gear

Lastly we consider a realistic geometry of spur gear developed for gear lubrication tests [57]. Multiple
singularities and sharp edges are presented in the model. The size of computational domain is [86.4×17.6×86.4].
The minimum and maximum target feature-size is 0.4 and 1.6 respectively. The target density field is calculated
considering singularities, feature curve, curvature and distance to the geometry surface similar with [12]. The
total number of particles calculated is 358,836. 6 MPI tasks are allocated and each contains 14 TBB threads. 6
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Fig. 8. bunny_20mpi: (a) Initial particle distribution. Particles are plotted with sub-domain colors. (b) Cross-section view of the particle
distribution after 100,000 iteration. Front view of resulting mesh after 100,000 iteration plotted with (c) particles and (d) surfaces with
edges. Back view of resulting mesh after 100,000 iteration plotted with (e) particles and (f) surfaces with edges. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. (a) Histogram of the dihedral angle distribution. (b) Histogram of the radius ratio distribution. (c) Convergence history of number of
tetrahedra with minimum dihedral angle smaller than 10◦, 20◦, 30◦ and 40◦. (d) History of runtime. (e) Tetrahedra with minimum dihedral
angle smaller than 30◦. (f) History of communication volume.
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Fig. 10. Simulation result after 217,500 iterations plotted with (a) particles and (b) surfaces with edges. (c) Zoomed-in view of (a).
(d) Zoomed-in view of (b). Simulation result with clipping after 217,500 iterations plotted with (e) particles and (f) surfaces with edges.
Particles are rendered by sub-domain colors. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)



22 Z. Ji, L. Fu, X. Hu et al. / Computer Methods in Applied Mechanics and Engineering 363 (2020) 112881

Fig. 11. (a) Initial seeding of particles. (b) History of communication volume. (c) Histogram of the dihedral angle distribution. (d) Histogram
of the radius ratio distribution. (e) Convergence history of number of tetrahedra with minimum dihedral angle smaller than 10◦, 20◦, 30◦

and 40◦. (f) History of runtime.
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Table 5
Mesh quality of the spur gear case.

θmin/θmax γmin/γavg θ#
min θ<10 θ<20 θ<30 θ<40 Np Ntet

Spur_gear _6mpi 6.84/168.7 0.14/0.90 54.8 1 162 4244 73411 358,836 1,847,416

Voronoi generators are uniformly distributed in the geometry and particles are initially randomly sampled within
each Voronoi cell. The initial condition is shown in Fig. 13(a).

The generated results after 250,000 iterations are illustrated in Fig. 12(a) and (b) with particle and mesh
representation, and clipped views (see Fig. 12(c) and (d)) are presented too. The resulting partitioning sub-domains
feature convex and compact shape. The sharp-interface condition is maintained before the relaxation of surface-
tension force (see Fig. 12(e)). While some disturbances are observed at the geometry corners after the system is
fully relaxed (see Fig. 12(a) and (f)), the communication overhead is around 0.15% (see 13(b)).

The histories of θ<10, θ<20, θ<30 and θ<40 (Fig. 13(e)) show good convergence of the simulation. The number of
slivers is ignorable, i.e. 1 tetrahedron has dihedral angle smaller than 10◦, comparing to total number of elements
generated (1,847,416). The histograms of dihedral angle (13(c)) and radius ratio (13(d)) exhibit good mesh quality
too (see Table 5).

5. Conclusions

In this paper, we have developed a consistent parallel mesh generation method with a multi-phase SPH
formulation and particle relaxation strategy. The objectives of partitioning the domain, optimizing communication
volume and improving mesh quality are achieved consistently by solving the same set of physics-motivated
governing equations. The main contributions of the paper are:

(1) A unified target density function is defined to characterize the targets of both the domain decomposition and the
mesh generation. The target density function can be any smooth scalar field considering various geometrical
features and user-defined inputs. By utilizing a background Cartesian mesh and level-set function, the total
number of mesh vertices and target mass for each sub-domain can be determined a priori;

(2) A parallelization strategy is developed and a set of physics motivated governing equations are proposed to
achieve all underlying targets consistently. A surface tension model is introduced to the previous particle-
based mesh generator [12] to handle the additional target of optimizing the communication volume in a
parallel environment. During the domain decomposition stage, the mesh quality is improved simultaneously
in the interior region of each sub-domain. Once a steady state is achieved, the mesh quality near the interface
region is optimized by gradually alleviating the surface tension force.

(3) A multi-phase SPH formulation is utilized to solve the governing equations. The previously-developed mesh
generator [12] is extended to higher dimensions and parallelized with both MPI and TBB technique.
Numerical results demonstrate that the resulting sub-domains feature compact and regularized shape, and
high-quality mesh is generated simultaneously. The communication overhead caused by the optimization of
mesh quality near the interface is limited even in cases with complex geometry and large spacial adaptivity;

(4) With the proposed parallel mesh generation method, high quality triangle/tetrahedron mesh can be generated
without the need of constructing Delaunay Triangulation/Tetrahedralization explicitly. Since only local
information are required during the simulation and the same set of governing equations are solved for all the
particles, the proposed method features high consistency and code reusability. Benefiting from the scalable
parallel environment designed previously in [38], the mesh generation procedure is able to exploit both
fine-grained and coarse-grained parallelization.

Given all the above-mentioned advantages, the current particle-based method is still considerably more expensive
than the state-of-the-art Delaunay-based methods. In the future, we are looking forward to extend the proposed
algorithm to GPU-based architectures to achieve higher concurrency and performance. Although SPH is a CPU
intensive method, it is particularly suitable for the parallelization on manycore processors and can achieve very
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Fig. 12. Simulation result after 250,000 iterations plotted with (a) particles and (b) surfaces with edges. (c) Clipped view of (a). (d) Clipped
view of (b). Particle distribution (c) before removing surface tension force and (d) after fully relaxed. Particles are rendered by sub-domain
colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

high performance. After extended to GPU architecture, a speedup of one to two orders of magnitude normally can
be achieved.

Moreover, more studies on initial particle seeding strategies will be carried out. It would be interesting to see
that the proposed method is coupled with other existing meshers or point cloud generators which feature high
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Fig. 13. (a) Initial seeding of particles. (b) History of communication volume. (c) Histogram of the dihedral angle distribution. (d) Histogram
of the radius ratio distribution. (e) Convergence history of number of tetrahedra with minimum dihedral angle smaller than 10◦, 20◦, 30◦

and 40◦. (f) History of runtime.
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performance in terms of generating an initial particle distribution, e.g. the Advancing Front Point Generation
Method [58]. Namely, the existing mesher is executed first to generate the initial particle position following the target
density function and then the proposed method is employed to optimize the particle distribution for better mesh
quality. Consequently, the runtime required for our method to achieve convergence will be reduced significantly.
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