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Abstract. Elastic foundation models offer a computationally efficient way for 

the qualitative analysis of the railway track system. However, the inertial charac-

teristics of the foundation are neglected while modelling the railway track system 

using those models. This paper investigates the effect of incorporating the mass 

of the foundation on the behavior of the elastic foundation models under the dy-

namic train loading. The railway track system is idealized as an infinite Euler-

Bernoulli beam resting on a continuous two-layer system with top and bottom 

layer denoting the ballast and subgrade, respectively. The ballast layer is mod-

elled using inertial elastic shear elements and the subgrade by inertial viscoelastic 

elements. A time-domain deflection analysis of the proposed model is carried out 

for the various ranges of train speeds. It is found that the incorporation of the 

inertial characteristics of the sub-structural system may lead to significant under-

estimation in the critical velocity values (by up to 85%). Further, the deflection 

magnitudes and the critical velocity of the system is found to be highly sensitive 

to the stiffness of the substructure. Higher deflection and lower critical velocity 

values are observed in the case of soft subgrade as compared to those in the stiff 

subgrade. Finally, the incorporation of the shear parameter associated with the 

ballast significantly decreases the deflection magnitudes.  

 

Keywords: Elastic foundation models, Foundation mass, Dynamic load, railway 

track, analytical model 

1 Introduction 

Performance of the railway track structure under the dynamic train loading is a safety 

concern and needs to be taken into account while modeling the railway track systems 

(Esveld 2001). The elastic foundation models offer a computationally efficient way for 

the qualitative analysis of the railway track system under the effects of moving train 

loads (Chen and Huang 2000; Chen et al. 2001; Mallik et al. 2006; Basu and Rao 2013; 

Froio et al. 2018). Among those models, one of the most simplistic and commonly used 

models is the beam resting on Winkler foundation, also termed as the ‘one-parameter’ 

model. Various studies have been carried out to study the response of the one-parameter 

model when subjected to the various type of loading conditions. Timoshenko (1926) 

was among the first to analyze the response of a typical beam resting on Winkler type 
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elastic foundation and subjected to harmonic moving load. Later, Kenney (1954) stud-

ied the response of a beam on Winkler foundation subjected to a concentrated load 

moving at a constant velocity. However, it is a well known fact that the Winkler model, 

although easy to use, does not capture the shear characteristics, inherent damping, and 

inertia-related effects associated with the foundation system.  

 

In order to represent the railway track system more realistically, many researchers (e.g., 

Sun 2001) have incorporated the damping characteristics associated with the ground in 

the Winkler model. To further generalize the model, in several studies the interaction 

between the viscoelastic spring elements is introduced in the form of the Pasternak 

shear elements. For instance, Kargarnovin and Younesian (2004), Younesian and Kar-

garnovin (2009), and Basu and Rao (2013) idealized the track as a infinite beam resting 

on a viscoelastic foundation model comprising of springs with shear interactions. How-

ever, in all of the above-mentioned Winkler based elastic foundation models the inertial 

effects related to the substructure are either absent or incorporated by increasing the 

mass per unit length of the rail beam (Chen and Huang 2000; Chen et al. 2001).  

In this paper the effect of incorporating the inertia of the foundation on the behavior of 

the elastic foundation models under the dynamic train loading is investigated. The rail-

way track system is idealized as an infinite Euler- Bernoulli beam resting on a contin-

uous two-layer system with top and bottom layer denoting the ballast and subgrade, 

respectively. The ballast layer is modelled using inertial elastic shear elements and the 

subgrade by inertial viscoelastic elements. A time-domain deflection analysis of the 

proposed model is carried out for the various ranges of train speeds. 

2 Analysis 

The model used to idealize the railway formation is presented in Fig. 1. The rail beam 

is modeled as an infinite Euler-Bernoulli beam overlying the sub-structure. The sub-

structure is idealized as a continuous two-layer system with top and bottom layer de-

noting the ballast and subgrade, respectively. The ballast layer is modelled using iner-

tial elastic shear elements and the  

subgrade by inertial elastic elements. Further, the rail beam is subjected to point load 

of magnitude 𝑃𝑤ℎ𝑒𝑒𝑙  moving with a constant velocity 𝑣. The differential equation of 

motion of the rail beam under the above-described idealizations is given by 

where 𝑤(𝑥, 𝑡) is the transverse deflection of the beam (m), 𝑥 is the space coordinate 

measured along the length of the beam (m), 𝑡 denotes time (s), 𝐸𝑅 is Young’s modulus 

of beam material (𝑁/𝑚2), 𝐼𝑅 is the moment of inertia of the beam cross-section about 

 
𝐸𝑅𝐼𝑅

𝜕4𝑤

𝜕𝑥4
+ 𝑞(𝑥, 𝑡) + 𝜌𝑅

𝜕2𝑤

𝜕𝑡2
+ 𝑐𝑅

𝜕𝑤

𝜕𝑡
= 𝑝(𝑥, 𝑡) (1) 
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its neutral axis (m4), 𝑞(𝑥, 𝑡) is the reaction from ballast on the beam (in N/m), 𝜌𝑅 is the 

mass per unit length of the beam (kg/m), and  𝑐𝑅 denotes the coefficient of viscous 

damping per unit beam length (𝑁 − 𝑠/𝑚2). It may be noted that in the considered model 

the overall damping associated with the ballast and subgrade is incorporated via 𝑐𝑅. 

This method of incorporating the sub-structural damping is widely used in various an-

alytical studies (e.g. Esveld 2001; Sun 2001; Mallik et al. 2006;  Basu and Rao 2013) 

wherein the viscous damping associated with the substructure is considered equivalent 

to the viscous damping of the beam. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of the proposed model 

 

Further, 𝑝(𝑥, 𝑡) denotes general time-varying distributed vertical load (N/m) acting 

on the sleeper beam and for the moving load case, 𝑝(𝑥, 𝑡) = 𝑃𝑤ℎ𝑒𝑒𝑙𝛿(𝑥 − 𝑣𝑡), where 𝛿 

is the Dirac’s delta function. Now, defining 𝑓(𝜔) as the Fourier transform of the func-

tion 𝑓(𝑡) such that  

where 𝜔 is the angular frequency and 𝜄 denotes √−1. 

On taking Fourier transform of Eq. (1) using Eq. (2) and assuming that 𝑤(𝑥, 𝑡) and 

its time derivatives vanish at 𝑡 = ±∞, the rail beam deflection equation is obtained in 

frequency domain as 

where 𝑤̂(𝑥, 𝜔) and 𝑞̂(𝑥, 𝜔) denote the Fourier transforms of 𝑤(𝑥, 𝑡) and 𝑞(𝑥, 𝑡), re-

spectively. 

 
𝑓(𝜔) =  ∫ 𝑓(𝑡)𝑒−𝜄𝜔𝑡𝑑𝑡

∞

−∞

 (2) 

 
 𝑓(𝑡)  =

1

2𝜋
∫ 𝑓(𝜔)𝑒𝜄𝜔𝑡𝑑𝜔

∞

−∞

 (3) 

 𝐸𝑅  𝐼𝑅𝑤̂
′′′′(𝑥, 𝜔) + 𝑞̂(𝑥, 𝜔) − 𝜌𝑅𝜔

2𝑤̂(𝑥, 𝜔) + 𝜄𝑐𝑅𝜔𝑤̂(𝑥, 𝜔)

= (𝑃𝑤ℎ𝑒𝑒𝑙/𝑣)𝑒
−𝑖𝜔(

𝑥
𝑣
)
 

(4) 

𝑣
𝑃𝑤ℎ𝑒𝑒𝑙

𝑥

Subgrade

Rail Beam
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The reaction from the ballast on the rail beam i.e., 𝑞(𝑥, 𝑡) depends on the mechanics 

of ballast and subgrade. Fig. 2(a) shows an infinitesimal element of the substruture at 

the location 𝑥. In this figure, 𝑤(𝑥, 𝑡) and 𝑤1(𝑥, 𝑡) respectively denote the deflection of 

the rail beam/ballast layer element and subgrade. Let, (𝜌𝐵 ,  𝐵) and (𝜌𝑆,  𝑆) denote the 

mass per unit beam length and the stiffness of ballast and subgrade layers respectively. 

Further, Fig. 2(b) shows the free body diagram of the ballast layer element. Here, 𝑁𝑥 

denotes the shear force acting on the ballast layer element and is given by 

 
𝑁𝑥 =  1 (𝜕𝑤/𝜕𝑥) (5) 

where  1 is the shear parameter associated with the ballast layer (𝑁). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Forces on the sub-structural elements 

Using the above equation the vertical force equilibrium equation of the ballast element 

can be written as 

 
𝜌𝐵

𝜕2𝑤

𝜕𝑡2
+  𝐵(𝑤 − 𝑤1) −  1

𝜕2𝑤

𝜕𝑥2
= 𝑞(𝑥, 𝑡) (6) 

Similarly, the free body diagram of the subgrade layer element is shown in Fig. 2(c). 

The vertical force equilibrium equation for this case is given by 

 
𝜌𝑆
𝜕2𝑤1

𝜕𝑡2
−  𝐵(𝑤 − 𝑤1) +  𝑆𝑤1 = 0 (7) 

On taking the Fourier transform of Eqs. (6) and (7) using Eq. (2) we obtain 

 
−𝜌𝐵𝜔

2𝑤̂ +  𝐵(𝑤̂ − 𝑤̂1) −  1
𝜕2𝑤̂

𝜕𝑥2
= 𝑞̂ (8) 

 
−𝜌𝑆𝜔

2𝑤̂1 −  𝐵(𝑤̂ − 𝑤̂1) +  𝑆𝑤̂1 = 0 (9) 

On solving Eqs. (7) and (8), the expression for 𝑞̂(𝑥, 𝜔) is given by 

𝜌𝑆𝑤 1(𝑥, 𝑡)  𝑥

 𝑆𝑤1(𝑥, 𝑡) 𝑥

 𝐵 𝑤 𝑥, 𝑡 − 𝑤1 𝑥, 𝑡  𝑥

𝑁𝑥

𝜌𝐵𝑤 (𝑥, 𝑡) 𝑥

 𝐵 𝑤 𝑥, 𝑡 − 𝑤1 𝑥, 𝑡  𝑥

𝑞(𝑥, 𝑡) 𝑥

𝑞(𝑥, 𝑡) 𝑥

 𝐵

𝑤(𝑥, 𝑡)

𝑤1(𝑥, 𝑡)
 𝑆

𝑁𝑥 +
𝜕𝑁𝑥
𝜕𝑥

 𝑥

𝜌𝐵

𝜌𝑆

(a) (c)(b)
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𝑞̂ = − 1

𝜕2𝑤̂

𝜕𝑥2
+ (−𝜌𝐵𝜔

2  +
 𝐵(−𝜌𝑆𝜔

2 +  𝑆)

(−𝜌𝑆𝜔
2 +  𝐵 +  𝑆)

) 𝑤̂ (10) 

  

Further, using the above equation we can define the frequency dependent equivalent 

modulus for the considered rail-track model as 

 
 (𝜔) = (−𝜌𝐵𝜔

2  +
 𝐵(−𝜌𝑆𝜔

2 +  𝑆)

(−𝜌𝑆𝜔
2 +  𝐵 +  𝑆)

) (11) 

Further, on substituting 𝑞̂(𝑥, 𝜔) from Eq. (10) in Eq. (4) we obtain 

 
𝐸𝑅  𝐼𝑅

𝜕4𝑤̂

𝜕𝑥4
−  1

𝜕2𝑤̂

𝜕𝑥2
+  (𝜔)𝑤̂ − 𝜌𝑅𝜔

2𝑤̂(𝑥, 𝜔) + 𝜄𝑐𝑅𝜔𝑤̂(𝑥, 𝜔)

= (𝑃𝑤ℎ𝑒𝑒𝑙/𝑣)𝑒
−𝑖𝜔(

𝑥
𝑣
)
 

(12) 

On solving Eq. (12) 𝑤̂(𝑥, 𝜔) is obtained as 

 𝑤̂(𝑥, 𝜔)

= (
𝑃𝑤ℎ𝑒𝑒𝑙𝑣

3

𝐸𝑅𝐼𝑅𝜔
4 −  1𝜔

2𝑣2 +  (𝜔)𝑣4 − 𝜌𝑅𝜔
2𝑣4 + 𝜄𝑐𝑅𝜔𝑣

4
) 𝑒−𝑖𝜔(

𝑥
𝑣
)
 

(13) 

Now, the rail beam deflection in time domain can be evaluated using Eq. (3) as follows 

 
𝑤(𝑥, 𝑡) =

1

2𝜋
∫ 𝑤̂(𝑥, 𝜔)𝑒𝜄𝜔𝑡𝑑𝜔

∞

−∞

 (14) 

Now, while evaluating the above integral 𝑤(𝑥, 𝜔) may encounter singularities at 

certain 𝜔 values. As shown by Kausel and Roësset 1992, to circumvent those singular-

ities a complex frequency component ‘𝜄𝜔𝐼’ has been introduced in the above equation 

where 𝜔𝐼  is a small, positive number. Finally, the above integral is evaluated by using 

inbuilt INTEGRAL function of MATLAB which is based on a global adaptive quadra-

ture numerical integration scheme. 

3 Results and Discussion 

The rail-beam deflection response of the proposed model evaluated using the above-

formulation is presented in this section.  The various parameters used in this study are 

adopted from the previous studies (Esveld 2001; Dimitrovová and Varandas 2009; 

Costa et al. 2015) and tabulated in Table 1. It may be mentioned here that the results 

are evaluated at two different values of stiffness,  𝑆1  and  𝑆2 , which corresponds to the 

soft and stiff subgrade, respectively. Furthermore, to present the results in non-dimen-

sional form, following additional parameters are considered: (a) critical velocity, 𝑣𝑐𝑟 =

 ((√4𝐸𝑅𝐼𝑅 𝑠𝑡𝑎𝑡𝑖𝑐 +  1) /𝜌𝑅)

1

2
; (b) coefficient of critical viscous damping, 𝑐𝑐𝑟 =

 (2 𝑠𝑡𝑎𝑡𝑖𝑐𝜌𝑅)
1

2; (d) velocity ratio, 𝛼 = 𝑣/𝑣𝑐𝑟 ; (e) and damping ratio, 𝜁 = 𝑐/𝑐𝑐𝑟 . Here, 

 

𝑤(𝑥, 𝑡) =  (
1

2𝜋
∫ 𝑤̂(𝑥, (𝜔 − 𝜄𝜔𝐼))𝑒

𝜄𝜔𝑡𝑑𝜔

∞

−∞

)𝑒𝜔𝐼𝑡 
           

(15) 
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 𝑠𝑡𝑎𝑡𝑖𝑐 denotes the equivalent stiffness of the substructure at 𝜔 = 0 (see Eq. (11)), i.e., 

 𝑠𝑡𝑎𝑡𝑖𝑐 =  (𝜔 = 0) =  𝐵 𝑆/( 𝐵 +  𝑆).    
 

Table 1. Track Parameters (Esveld 2001; Dimitrovová and Varandas 2009; Costa et al. 2015) 

Parameters Values Parameters Values 

Axle Load, 𝟐𝑷𝑊 2.5 × 105 N 
Mass of subgrade per unit 

beam length, 𝝆𝑆 
1900 kg/m 

Mass of rail beam per 

unit length, 𝝆𝑹 
60 kg/m 

Shear modulus of ballast, 

𝑮𝑩 
62.5 MPa 

Modulus of Elasticity of 

rail beam, 𝑬𝑅 
210 GPa Height of ballast layer, 𝑯𝑩 0.30 m 

Moment of Inertia of rail 

beam, 𝑰𝑹 
3055 𝑐𝑚4 

Mass of ballast per unit 

beam length, 𝝆𝐵 
510 kg/m 

Stiffness (Soft Sub-

grade), 𝒌𝑺𝟏 
0.427 MPa Ballast Stiffness, 𝒌𝑩 13 MPa 

Stiffness (Stiff Sub-

grade), 𝒌𝑺𝟐 
20 MPa Damping Ratio, 𝜻 0.05 

 

Now, to highlight the effect of incorporating the inertial characteristics on sub-struc-

tural stiffness of the rail track model, the variation of frequency-dependent equivalent 

stiffness is studied. Figs. 3(a) and 3(b) show the variation of the ratio (real part) of  (𝜔) 
and  𝑠𝑡𝑎𝑡𝑖𝑐 for the soft and stiff subgrades, respectively. It may be observed that the 

frequency dependent equivalent stiffness varies significantly from the overall static 

stiffness and therefore it is essential to consider the sub-structural dynamics while ana-

lyzing the railway track system.  

In Figs. 4 and 5 the rail beam deflection responses for the proposed model are com-

pared with the conventional Winkler model comprising of an infinite beam overlying 

viscoelastic spring layer (Mallik et al. 2006; Basu and Rao 2013). The response of the 

Winkler model is evaluated by choosing mass per unit length of the rail beam (𝜌𝑊) and 

the spring stiffness ( 𝑊) according to the following two cases: (a) 𝜌𝑊 = 𝜌𝑅 + 𝜌𝐵 + 𝜌𝑆 

and  𝑊 =  𝑠𝑡𝑎𝑡𝑖𝑐; (b) 𝜌𝑊 = 𝜌𝑅 and  𝑊 =  𝑠𝑡𝑎𝑡𝑖𝑐 . These two cases are henceforth re-

ferred to as Winkler model I and Winkler model II respectively. Further, the deflection 

response of the rail beam is presented in the form of deflection amplification factor 𝛺𝐷 

which is defined as the ratio of the absolute maximum dynamic rail-beam deflection at 

a particular load velocity 𝑣 and the absolute maximum value of deflection for the static 

case, i.e.,  

 𝛺𝐷(𝑣)  = |𝑚𝑎𝑥(𝑤(𝑥, 𝑡))|/|𝑚𝑎𝑥(𝑤𝑠𝑡𝑎𝑡𝑖𝑐(𝑥))| 
where 𝑤𝑠𝑡𝑎𝑡𝑖𝑐(𝑥) denotes the static rail beam deflection (which is same for all the 

three cases, i.e., proposed model, Winkler model I, and Winkler model II) 

Fig. 4 shows the variation of  𝛺𝐷with 𝑣 for the proposed model and the considered 

cases of Winkler model. It may be noted that the rail beam response shown in this figure 

is evaluated by ignoring the shear properties associated with the ballast layer (i.e., 

 1 =0) and the damping ratio (𝜁) has been chosen as 0.05. Further, parts (a) and (b) of  
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Fig. 3. Variation of frequency-dependent equivalent stiffness (real part) with loading frequency 

for (a) soft subgrade ( 𝑆 =  𝑆1) (b) stiff subgrade ( 𝑆 =  𝑆2)  

 

Fig. 4.  Deflection amplification curves for the cases of  (a) soft subgrade ( 𝑆 =  𝑆1) (b) stiff 

subgrade ( 𝑆 =  𝑆2)  

the figure show the deflection amplification curves for the cases of soft and stiff sub-

grades, respectively. It may be observed from Fig. 4(a) that for all the considered cases 

𝛺𝐷 increases with 𝛼, attains a maximum value, and then decreases. The value of 𝛼 at 

which the maximum amplification is attained is termed as critical velocity ratio (𝛼𝑐𝑟) 

of the considered model. It may be seen that in the case of Winkler model II, 𝛼𝑐𝑟  is 

equal to 1, for which, 𝑣 = 𝑣𝑐𝑟 . However, in the cases of proposed and Winkler model I 

𝛼𝑐𝑟  is much smaller than 1. Moreover, the rail beam deflection magnitudes are signifi-

cantly higher (up to 140%) especially at low velocities (say 𝛼 < 0.3). This shows that 

ignoring the mass of the substructure may lead to significant underestimation in both 

the critical velocity values and rail beam deflections. It may be further observed that in 

the case of soft subgrade the deflection amplification curves for the proposed model 

coincides with Winkler model I. This may be explained by the fact that the stiffness 

value of the soft subgrade is much smaller than that of the ballast stiffness value ( 𝑆 ≪
 𝐵). Consequently, the ballast-spring-element acts as a rigid connection between the 
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ballast and subgrade mass elements (see Fig. 2(a)) and therefore the deflection ampli-

fication curve is similar to the case of Winkler model I where ballast and subgrade mass 

elements are lumped together with the mass of the beam.  

 

 

Fig. 5. Deflection amplification curves for the cases of  (a) soft subgrade ( 𝑆 =  𝑆1) (b) stiff 

subgrade ( 𝑆 =  𝑆2) 

In contrast to this when the stiffness of the ballast and subgrade are of comparable 

magnitude the deflection amplification curve for the proposed model differ from those 

of the Winkler models I and II (see Fig. 4(b)). Further, on comparing Figs. 4(a) and 

4(b) it is found that the deflection magnitudes of the proposed model are much lower 

(by up to 600%) in the case of stiff subgrades as compared to those in the soft subgrades. 

In addition to this, two peaks are observed in the deflection amplification curve (at 

𝛼 =0.196 and 0.385) of the proposed model with the maximum deflection occurring at 

0.385 (= 𝛼𝑐𝑟). On the other hand, the respective deflection amplification curves for the 

Winkler models I and II do not show much variation with the subgrade stiffness.  

Next, the railway track response is evaluated by incorporating the shear parameter 

 1 associated with the ballast in the considered cases of railway track models (proposed 

model, Winkler model I, and Winkler model II). The resulting deflection amplification 

curves for the cases of soft and stiff subgrades are shown in Figs. 5(a) and 5(b), respec-

tively. A comparison of Figs. 4 and 5 shows that the incorporation of the shear param-

eter leads to (a) change in shape of the deflection amplification curve of the proposed 

model, especially, when the subgrade is soft and (b) significant decrease in the deflec-

tion magnitudes (by up to 65% and 47% in the case of soft and stiff subgrades, respec-

tively). On the other hand, the deflection amplification curves for the Winkler models 

do not reflect much variation both in the deflection magnitude and shape. This, there-

fore implies that it is essential to take into account the shear as well as inertial charac-

teristics associated with the ballast while modelling the railway track system and the 

proposed model is well suited for this purpose. Finally, in the case of proposed model 

the critical velocities are observed at 𝛼𝑐𝑟 =0.148 and 0.348 for soft and stiff subgrades, 

respectively. 
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4 Summary and Conclusions 

The effect of incorporating the inertia of the foundation on the behavior of the elastic 

foundation models is studied. The railway track system is idealized as an infinite Euler-

Bernoulli beam resting on a continuous two-layer system with top and bottom layer 

denoting the ballast and subgrade, respectively. The ballast layer is modelled using in-

ertial elastic shear elements and the subgrade by inertial viscoelastic elements. It is 

found that the incorporation of the inertial characteristics of the sub-structural system 

may lead to significant underestimation in the critical velocity values (by up to 85%). 

Further, the deflection magnitudes and the critical velocity of the system is shown to 

be highly sensitive to the stiffness of the substructure. Higher deflection and lower crit-

ical velocity values are observed in the case of soft subgrade as compared to those in 

the stiff subgrade. Finally, the incorporation of the shear parameter associated with the 

ballast significantly decreases the deflection magnitudes (by up to 65% and 47% in the 

case of soft and stiff subgrades, respectively). However, only a slight change is seen in 

the critical velocity of the system. 
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