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Abstract— In this paper we address the problem of optimal
co-design of control and quantization policies for a physically-
interconnected system, where each subsystem has a local
quantizer. The controllers are assumed to communicate with
delay and cooperate in minimizing global quadratic cost. We
show that for quantizers that act on the estimation error of the
estimator conditioned on common information between con-
trollers, separation holds. In other words, both quantizers can
be optimally designed by minimizing a distortion function that
is control-independent. Finally, for general class of quantizers
we provide structural properties of the optimal control policy.

I. INTRODUCTION

For many systems, due to the distributed nature, a com-
munication is necessary between individual subsystems (e.g.
transport industry, robotics etc). Therefore, complete state
information is not necessarily instantly accessible to each
individual subsystem, but rather with certain delay. Ad-
ditionally, in the case of data-rate limited communication
links, the information is transmitted with a finite number
of bits. The latter two aspects introduce constraints on the
admissible control actions each subsystem is able to apply,
herein referred to as ”information constraints”.
In general, the design of optimal control laws for distributed
systems with communication delays is a difficult problem
(see e.g. [18]). Depending on how fast the decision makers
(DMs) communicate with each other, the optimal control
policy might be linear or nonlinear, even in settings de-
scribing linear systems with a quadratic cost function [1].
A lot of attention has been on the design of optimal control
laws for fixed information structures that have the property
of being partially nested [2]. Some of them include first
explicit solutions to linear Quadratic Gaussian team problems
e.g. [4], [15] under the assumption that information between
DMs is communicated at the exact speed at which it travels
through the plant. Furthermore, in [16] the extension is made
to the case where the information between DMs propagates
faster then it travels through the plant, with application to
distributed control of a vehicle platoon. Although previously
mentioned results provide insight into the structure of opti-
mal control policy, they do not consider network channels
with constraints induced by finite bit-rate.
In the realm of feedback control under data-rate constraints,
an excellent survey can be found in [11]. Most works
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on control over channels with finite bit-rate have analyzed
stability aspect, while optimality has been less explored. It is
well-known [12] that feedback control, state estimation and
quantization can not be fully separated in general even for
the linear quadratic regulator problem. An exception is the
case of the full state being available at the quantizer, with
certain conditions in [13] which also imply the optimality of
the certainty equivalent control laws, for channels with finite
bit-rate. Finally, in [14] an extension is provided to the case
where quantizer has access to noisy sensor measurements. In
general, the optimal co-design of quantizer and controller is
difficult because of the presence of the dual effect which
makes this networked control problem with two decision
makers hard i.e. one cannot get the simplifications that are
obtainable for classical single-agent linear quadratic (LQ)
problem [8]. Although previous results give important insight
into co-design of control and quantization for optimal control
problems, they all address single-loop systems. The optimal
control design for a distributed control system with delayed
information sharing, and bit-rate constraints is a largely open
problem.
In this paper we derive the optimal control policy for a
physically interconnected system, where each subsystem has
a local quantizer and neighboring controllers communicate
with a maximum delay of one step. We prove that if the
local quantizers belong to certain class, i.e. if they quantize
the estimation error of state estimator conditioned a common
information between controllers, they can be designed inde-
pendently of the control inputs of both loops.
The remainder of the paper is outlined as follows. We
start with problem setup in section II. The structure of
optimal policy for an interconnected system given arbitrary
local quantization policies is derived based on information
decomposition in section III . Furthermore, the class of quan-
tizers is characterized which is proven to result in control-
independent design of optimal coding. Finally conclusions
are given in section IV.

Notation: In this paper, for matrices Ci of appropriate
dimensions the matrix D = blkdiag(C1,C2, . . . ,Cn) is the
block-diagonal matrix such that Dii = Ci and Di j = 0 for
i 6= j. Given a matrix A, [A]i j denotes its element with
position (i, j). For a time-varying vector x(k) we denote
by xk1 vector xk1

>
= [x>(0), . . . ,x>(k1)], where k1 > 0. We

denote by σ(x,y) the σ−field generated by random variables
x,y. For a vector y ∈ Rp, ‖y‖Ω := y>Ωy where Ω ∈ Rp×p.



II. PROBLEM SETTING

In this section we define the problem addressed here i.e.
we explain individual blocks illustrated in Figure 1. Due
to the difficulty of the defined problem for the case of
arbitrary number of decision makers, we initiate the analysis
and demonstrate the result on a system composed of two
physically-coupled subsystems. The solution for the arbitrary
number of interconnected loops is outside of the scope of this
paper.

A. Interconnected Plant

Consider a dynamical system composed of two physically-
coupled linear time-invariant (LTI) subsystems, denoted in
the Figure 1 as P1 and P2. The dynamics of two subsytems
is given by first order stochastic difference equations

x1(k+1) = A11x1(k)+A12x2(k)+B11u1(k)+w1(k),

x2(k+1) = A21x1(k)+A22x2(k)+B22u2(k)+w2(k), (1)

where A11 ∈ Rn1×n1 , A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈
Rn2×n2 , B11 ∈ Rn1×m1 , B22 ∈ Rn2×m2 . Variables x1(k) ∈
Rn1 ,x2(k)∈Rn2 are states of subsystems 1 and 2 respectively
and u1(k) ∈ Rm1 ,u2(k) ∈ Rm2 are the respective control
signals. The noise process wi(k) ∈ Rni , i = 1,2 is zero-
mean i.i.d. Gaussian noise with covariance matrix Σwi i.e.
wi(k) ∼ N (0,Σwi). Similary, for the initial state it holds
xi(0) ∼N (0,Σxi). Moreover, xi(0) and wi(k) are assumed
to be pair-wise independent at each time instant k and for
every i. Equations (1) are written as

x(k+1) = Ax(k)+Bu(k)+w(k) (2)

where the stacked vectors are x(k) = (x>1 (k),x
>
2 (k))

> ∈ Rn,
w(k) = (w>1 (k),w

>
2 (k))

> ∈Rn, u(k) = (u>1 (k),u
>
2 (k))

> ∈Rm,
n = n1 +n2 and m = m1 +m2. Additionally, we define Σw =
blkdiag(Σw1 ,Σw2) and Σx = blkdiag(Σx1 ,Σx2).

B. Admissible quantization (encoding) policies

Each subsystem i = 1,2 has a local quantizer Ei (herein
often referred to as encoder) that has access to state xi. Fur-
thermore, we assume all the encoders to know the parameters
of the plant in (2) i.e. matrices A,B,Σw,Σx. Formally, the
following class of encoder mappings is admissible

ri(k) = Ei(k,xk
i ,r

k−1
1 ,rk−1

2 ,uk−1
1 ,uk−1

2 ) (3)

i.e. each encoder has access to local measurement history,
local encoding history, one-step delayed encoding history of
the other encoder and a one-step delayed history of control
inputs u1,u2. The map Ei has as a codomain a discrete set
of symbols whose cardinality is determined by a bit-rate
of the channels from encoders to the respective controllers.
Furthermore Ei are allowed to be time-varying.

Remark 1: The equation (3) implies that there is a bi-
directional communication channel between encoders E1,E2
i.e. encoder E1 has access to the output of encoder E2 and
vice-versa, however with one-step delay.
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Fig. 1. Control and communication system: P1, P2 represent linear plants
with physical coupling, E1, E2 represent local quantizers and C1, C2 are
respective controllers that communicate with potential delay

C. Admissible control policies

Between encoder Ei and the corresponding local controller
Ci we assume a discrete, error-free and memoryless commu-
nication channel. Therefore, each controller Ci, at time in-
stant k, has direct access to a local encoder output history rk

i .
Additionally, controllers of two loops communicate between
themselves with a delay. Let d12,d21 denote respectively
communication delay from controller C1 to controller C2 and
vice-versa. We consider that d12,d21 ∈ {0,1} i.e. controllers
communicate with a constant and known delay, with a
maximum value of one step. The admissible control policies
γi(k), i = 1,2 at time instant k are then measurable functions
of the available information I i

k to each controller Ci i.e.

ui(k) = γi(k,I i
k ) (4)

where I i
k , k = 0, . . . ,T −1, is defined as

I i
k = {I i

k−1,ri(k),u(k−1)}
⋃
{r j(k−d ji)}, k > 0, (5)

where j denotes the other subsystem and I i
0 = {ri

0}. In other
words, the information set of each controller i is updated at
time instant k by the current output from encoder Ei and the
d ji-step delayed information from the encoder j.

Remark 2: In practice, the validity of the assumption that
the controllers communicate with a maximum delay of one
sampling interval depends on the communication technology
and sampling rates. In case of wired communication between
subsystems, communication delay is typically low and can
be assumed within the range of one sampling interval for:
systems with low and high sampling rates. Wireless com-
munication typically induces larger delays, but technology
developments such as 5G aim to reduce this delay.



D. Problem statement

The objective is to minimize the following global control
cost

JC = E

[
T−1

∑
k=0

[
x(k)
u(k)

]> [Q 0
0 R

][
x(k)
u(k)

]
+ x(T )>QT x(T )

]
(6)

where matrix R is assumed to be positive-definite matrix,
while Q and QT are assumed to be semi-definite positive.
We also assume controllability of pair (A,B) as well as
detectability of (Q

1
2 ,A). Ultimately, the optimization problem

is formally written with respect to admissible control and
encoding policies as

min
γ

T−1
i ,E T−1

i ,i=1,2
JC (7)

s.t. (2), (3), (4).

Note that the posed problem has four decision makers,
namely C1,E1,C2 and E2.

III. ROLE OF INFORMATION STRUCTURE

We first compute the solution of the addressed problem
under the assumption of infinite bit rate which will motivate
the approach for the originally posed problem. To this end,
the information available to each controller Ci is obtained
from (5) by replacing ri(k) with xi(k) and the constraint in
(3) is ignored. Therefore the only decision makers in the
problem are controllers C1,C2. In other words, the measured
value of state xi at subsystem i, is directly sent (without being
encoded) to a local controller Ci.
The solution to this problem under the assumption that d12 =
1,d21 = 1 i.e. controllers communicate at the exact speed at
which information propagates through the plant (2) is given
in [3]. We first slightly generalize their result to accomodate
any case where di j ≤ 1. For convenience, recalling (1), A and
B are partitioned as

A =
[
A1|A2

]
, B =

[
B1|B2

]
.

where A1 ∈Rn×n1 , A2 ∈Rn×n2 , B1 ∈Rn×m1 and B2 ∈Rn×m2 .
Similarly, referring to (6), matrix R is partitioned as

R =

[
R11 R12
R21 R22

]
where R11 ∈Rm1×m1 , R12 ∈Rm1×m2 , R21 ∈Rm2×m1 , and R22 ∈
Rm2×m2 . To this end we give the following Theorem.

Theorem 1: The control law that minimizes (6) under
constraints (1),(4) and given that ri(k) = xi(k),∀i = 1,2 is

u(k) = K(k)ω(k)+
[

K1L(k)ω1(k)
K2L(k)ω2(k)

]
(8)

where ω(k),ω1(k),ω2(k) represent mutually ortoghonal
components of state x(k) computed by

ω(k) = Ax(k−1)+Bu(k−1)+
[
(1−d12)w1(k−1)
(1−d21)w2(k−1)

]
ω1(k) = d12w1(k−1)
ω2(k) = d21w2(k−1)

and the controller gains are computed as

K(k) = (R+B>S(k+1)B)−1B>S(k+1)A (9)

K1L(k) = (R11 +B>1 S(k+1)B1)
−1B>1 S(k+1)A1

K2L(k) = (R22 +B>2 S(k+1)B2)
−1B>2 S(k+1)A2

S(k) = Q+A>S(k+1)A−A>S(k+1)BK(k)

where S(N) = Q.
Proof:

1) Estimator based on common information: There
are four possible delay combinations for (d12,d21) i.e.
(d12,d21) ∈ {(0,0),(1,0),(0,1),(1,1)} and each of them
induces a different information structure. From (5) one can
write explicitly information sets available at controllers C1
and C2 at time k, respectively as

I 1
k =

{
xk

1,x
k−d21
2 ,uk−1

1 ,uk−1
2

}
(10)

I 2
k =

{
xk

2,x
k−d12
1 ,uk−1

1 ,uk−1
2

}
The common information history between two decision mak-
ers C1,C2 is then written as

I c
k =

{
xk−d12

1 ,xk−d21
2 ,uk−1

1 ,uk−1
2

}
(11)

Based on the common information an estimator of global
state x(k), from equation (2) is defined as

ω(k) := E{x(k)|I c
k } (12)

= Ax(k−1)+Bu(k−1)+
[
(1−d12)w1(k−1)
(1−d21)w2(k−1)

]
The errors in estimating states x1(k),x2(k) by latter estima-
tors are given by[

ω1(k)
ω2(k)

]
:= x(k)−ω(k) =

[
d12w1(k−1)
d21w2(k−1)

]
Due to the independency of w1(k− 1),w2(k− 1) and the
assumption that they are zero-mean Gaussian, they are mu-
tually orthogonal. Additionally it holds

E
[

ω(k)>
[

ω1(k)
ω2(k)

]]
=

E
[
(Ax(k−1)+Bu(k−1))>

[
d12w1(k−1)
d21w2(k−1)

]]
+E

[[
(1−d12)w1(k−1)
(1−d21)w2(k−1)

]> [d12w1(k−1)
d21w2(k−1)

]]
= 0.

The first term on the right side of the equality sign is zero
due to the fact that noise terms w1(k− 1),w2(k− 1) are
zero-mean Gaussian variables that are independent from
u(k − 1),x(k − 1). The second term is zero since inside
the expectation the corresponding elements of two factors
form a convex combination. Therefore as a conclusion
ω(k),ω1(k),ω2(k) are mutually orthogonal.



2) Optimal Control Policy: Since the following condi-
tions: d12 ≤ 1,d21 ≤ 1 are satisfied, the information structure
(I 1

k ,I
2

k ) and system (2) are partially nested [5] i.e. it holds
I 1

k−1 ⊂I 2
k and I 2

k−1 ⊂I 1
k . Due to the quadratic form of

cost function in (6) this implies that optimal control policies
are linear in the respective information [2] i.e. the optimal
control inputs u1(k),u2(k) are

u1(k) = f1(k,x
k−d21
2 ,xk−1

1 ,x1(k))

u2(k) = f2(k,x
k−d12
1 ,xk−1

2 ,x2(k))

where f1(k), f2(k) represent linear functions in respective
arguments. To this end we write

u1(k) = K11(k)x
k−d12
1 +K12(k)x

k−d21
2 +d12K1L(k)x1(k)

u2(k) = K21(k)x
k−d12
1 +K22(k)x

k−d21
2 +d21K2L(k)x2(k)

where K11 ∈ Rm1×(k−d12+1)n1 ,K12 ∈ Rm1×(k−d21+1),K21 ∈
Rm2×(k−d12+1)n1 ,K22 ∈ Rm2×n2(k−d21+1),K1L ∈ Rm1×n1 ,K2L ∈
Rm2×n2 represent the control gains. Notice that in the ex-
pressions for the optimal control law policies above, the
terms multiplying K11(k),K12(k),K21(k),K22(k) represent the
common measurement history of the two controllers (11),
whose dimension is increasing in time. Correspondingly, this
means that the dimensions of K11,K12,K21,K22 increase in
time. However, as control strategies u1,u2 are linear, and the
information structure is partially nested, the computation of

uc(k) :=

[
K11(k)x

k−d12
1 +K12(k)x

k−d21
2

K21(k)x
k−d12
1 +K22(k)x

k−d21
2

]
(13)

can be done by considering sufficient statistics for it [6]

uc(k) = KS(k)E[x(k)|I c
k ]

where the gain KS ∈Rm×n has fixed dimension and estimator
ω(k) = E[x(k)|I c

k ] is based on the common state and input
history as introduced in (12). So we can write

u(k) = KS(k)ω(k)+
[

d12K1L 0
0 d21K2L

](
ω(k)+

[
ω1(k)
ω2(k)

])
(14)

Grouping the terms proportional to ω(k) we get (8), where

K(k) = KS(k)+
[

d12K1L 0
0 d21K2L

]
The computation of optimal gains K(k),K1L(k),K2L(k) can
be done similarly to [3] by decomposing the Bellman equa-
tion, on the basis of the introduced structure of the optimal
control law (14). It is omitted for the sake of brevity.

Remark 3: Theorem 1 is derived using the fact that delays
d12, d21 satisfy d12≤ 1,d21≤ 1 which implies optimal control
inputs u1,u2 to be linear in the associated information. It can
be easily verified that in the case of communication delays
larger than one step, the system (1) and information structure
(10) are not partially nested. This means that optimal control
policies might be nonlinear in case of more than one-step
delay.

A. Main Result

We now derive the main result of the paper. According
to the assumptions on the information structure in (5) con-
trollers C1 and C2 have access to the following information

I c1(k) = {rk
1,r

k−d21
2 ,uk−1

1 ,uk−1
2 } (15)

I c2(k) = {rk
2,r

k−d12
1 ,uk−1

1 ,uk−1
2 }

From (3) the encoder information sets I e1(k),I e2(k) are

I ei(k) := {xk
i ,r

k−1
1 ,rk−1

2 ,uk−1
1 ,uk−1

2 }, ∀i = 1,2 (16)

Notice that unlike the controllers, the encoders E1,E2 have
access to the values of locally measured variables i.e. xk

1,x
k
2

respectively. Additionally, we define

I e(k) = I e1(k)∩I e2(k) = {rk−1
1 ,rk−1

2 ,uk−1
1 ,uk−1

2 } (17)

i.e. common history between encoders E1 and E2 that ex-
cludes directly measured signal histories xk

1, xk
2 . Note that

it holds I e(k) ⊂ I c1(k)∩I c2(k) since d12, d21 ∈ {0,1}
i.e. both encoders know the subset of common information
between controllers C1 and C2.

Remark 4: Information sets I e1(k),I e2(k), defined in
(16), imply that the encoders have access to a one-step
delayed information from both subsystems. More precisely,
they exchange their outputs r1,r2 with a one-step delay and
locally, at time k, compute u1(k−1),u2(k−1). This compu-
tation is possible since u1(k−1),u2(k−1) are functions of
I c1(k−1),I c2(k−1) respectively and I ci(k−1)⊂I e j(k)
for any tuple (i, j) ∈ {(1,1),(1,2),(2,1),(2,2)}. Such com-
putation is important as it reduces the communication load
and increases applicability of the scheme in Figure 1.
Before providing the structure of controllers that minimize
(6) subject to dynamics in (1) and subject to bit-rate con-
straints in (3) as well as information constraints (4), we
introduce some notation, motivated by the Theorem 1. We
define the estimate of global state x(k) based on the set
I e(k) (which can be computed at both quantizers)

ω(k) = E[x(k)|I e(k)] (18)

At the side of controller C1, after receiving r1(k) and possibly
r2(k) a conditional estimate x̂1(k) is defined

x̂1(k) = E[x1(k)|I c1(k)] (19)

Similary, for controller C2 we define

x̂2(k) = E[x2(k)|I c2(k)] (20)

We note that it holds

ω(k+1) = E[x(k+1)|I e(k+1)]

= E[Ax(k)+Bu(k)+w(k)|rk
1,r

k
2,u

k
1,u

k
2]

= AE[x(k)|rk
1,r

k
2,u

k
1,u

k
2]+Bu(k)

= Ax̂(k)+Bu(k) (21)

where the last line is due to the fact that x1(k),x2(k) are
influenced respectively by u1(k),u2(k), with one-step delay.
The difficulty of the problem addressed here is two-fold:



• Due to communication delay between loops there is
unsymmetry in the information available to C1 and C2

• Each subsystem could possess the dual effect [7] where
controller has the role of reducing the estimation error in
future, which in general, might not allow for separated
design of control and coding

To address the first point, notice that estimates
ω(k), x̂1(k), x̂2(k) correspond to information decomposition
into common information history between C1 and C2
(defined by set Ie(k)) and only locally available information
(I c1(k),I c2(k)). For the second point, we restrict ourselves
to study the class of encoders E1,E2 that instead of encoding
directly locally measured states x1,x2, respectively, they
subtract the effects of both controls u1(k),u2(k), before
encoding. In particular for encoder outputs r1(k),r2(k) we
assume the following

ri(k) = Ei(xi(k)−E[xi(k)|I e(k)]) ∀i = 1,2 (22)

In other words, we consider the class of encoders E1(·),E2(·),
each of which is applied on the most recent error of estimator
of local state, conditioned on the information set I e(k).
As proven later, this class of encoders will enable separated
design of optimal control u(k) and optimal encoding policies
E1(·),E2(·). To this end, we introduce the definition of ab-
sence of dual effect in a distributed setting as such effect has
typically been defined for a single-loop two agents’ system
(controller and encoder) [7], [8]. Indeed, each subsytems’
state can be written as

xi(k) =
[
φi1,k φi2,k

][x1(0)
x2(0)

]
+

k−1

∑
l=0

[
φi1,k−l−1 φi2,k−l−1

][B11u1(l)+w1(l)
B22u2(l)+w2(l)

]
, ∀i = 1,2

where

φ(k) := Ak =

[
φ11,k φ12,k
φ21,k φ22,k

]
(23)

i.e. φ11,k,φ12,k,φ21,k,φ22,k represent the partitions of matrix
Ak according to the subsystems 1,2 i.e. according to vector
[x1(k)>x>2 (k)]

>. Notice that state x1(k) depends not only on
the local control history of uk−1

1 , but also on history of control
input uk−1

2 and similarly for state x2. This is to be considered
for adapted notion of absence of dual effect in Definition 1.
Finally, we define input-free states for subystems i = 1,2 as

x̄i(k) = xi(k)−
k−1

∑
l=0

φi1,k−l−1B11u1(l)+φi2,k−l−1B22u2(l)

The corresponding encoder outputs are then denoted as

r̄i(k) = Ei(x̄i(k)−E[x̄i(k)|r̄k−1
1 , r̄k−1

2 ]), ∀i = 1,2 (24)

Denoting by e1(k) = x1(k)− x̂1(k),e2(k) = x2(k)− x̂2(k) the
estimation errors at the controller sides, and by ē1(k) =
x̄1(k)−E[x̄1(k)|r̄k

1, r̄
k−d21
2 ], ē2(k) = x̄2(k)−E[x̄2(k)|r̄k

2, r̄
k−d12
1 ]

the estimation errors of the input-free system, we adapt the
definition of [13] as follows.

Definition 1 (Absence of dual effect): For the system (2)
and information structure in (15) the control has no dual
effect if for subsystems 1,2 it holds

E[e1(k)e1(k)>|I c1(k)] = E[ē1(k)ē1(k)>|r̄k
1, r̄

k−d21
2 ]

E[e2(k)e2(k)>|I c2(k)] = E[ē2(k)ē2(k)>|r̄k
2, r̄

k−d12
1 ]

Basically, if there is no dual effect then variances of the
estimation errors (from controller sides) are independent of
control inputs from both subsystems. We next give a lemma
that gives a sufficient condition for the absence of dual effect
according to Definition 1.

Remark 5: Intuitively, according to Definition 1 controls
u1,u2 do not affect the inputs e1,e2 to the respective encoders
E1,E2, as e1,e2 correspond to input-free variables ē1, ē2.
This leads to the behaviour of encoders E1,E2 which is not
influenced by control policies. This is the main mechanism
which will enable separated design of optimal encoding
policies as provided in Theorem 2.

Lemma 1: If following conditions are satisfied

I)σ(r̄k
1, r̄

k−d21
2 )⊂ σ(I c1(k))

II)σ(r̄k−d12
1 , r̄k

2)⊂ σ(I c2(k))

III)E[x̄1(k)|r̄k
1, r̄

k−d21
2 ] = E[x̄1(k)|I c1(k), r̄k

1, r̄
k−d21
2 ]

IV )E[x̄2(k)|r̄k
2, r̄

k−d12
1 ] = E[x̄2(k)|I c2(k), r̄k

2, r̄
k−d12
1 ]

then there is no dual effect.
Proof: We start from the definition of estimation error

e1(k) at the side of controller C1 i.e.

e1(k) = x1(k)−E[x1(k)|I c1(k)]

= x̄1(k)+
k−1

∑
i=0

φ11,k−i−1B11u1(i)+φ12,k−i−1B22u2(i)

−E[x̄1(k)|I c1(k)]

−
k−1

∑
i=0

E[φ11,k−i−1B11u1(i)+φ12,k−i−1B22u2(i)|I c1(k)]

= x̄1(k)−E[x̄1(k)|I c1(k)]

where the last equality is due to the fact that set I c1(k) as
defined in (15) contains input histories uk−1

1 ,uk−1
2 . Finally,

assuming conditions I and III we have

e1(k) = x̄1(k)−E[x̄1(k)|Ic1(k), r̄k
1, r̄

k−d21
2 ]

= x̄1(k)−E[x̄1(k)|r̄k
1, r̄

k−d21
2 ] = ē1(k).

The proof for the subsystem 2 is analogous.
Given that Lemma 1 provides a sufficient condition for the
absence of dual effect in setting considered here, we now
prove that class of encoders in (22) satisfies that condition.

Proposition 1: For the class of quantizers in (22), the
state dynamics (2) and information constraints (3), (4) the
following conditions are satisfied

r̄k
1 = rk

1

r̄k
2 = rk

2

x̄1(k)→ r̄k
1, r̄

k−d21
2 → uk−1

1 ,uk−1
2

x̄2(k)→ r̄k
2, r̄

k−d12
1 → uk−1

1 ,uk−1
2



where r̄1(k), r̄2(k) are defined in (24). Therefore the condi-
tions in Lemma 1 hold and there is no dual effect.

Proof: First, it is easy to see that assumed conditions
are sufficient for Lemma 1 to hold. Indeed, due to the first
two conditions, the nestedness of σ -algebras as in I), II)
is guaranteed. The equality of expectations in III), IV) is
straightforward from the definition of the Markov chains
[10]. Now we prove those conditions, similarly to [13], based
on the principle of induction.
First, it holds r̄1(0) = r1(0), r̄2(0) = r2(0) since x̄1(0) =
x1(0), x̄2(0) = x2(0). Since u1(0) and u2(0) are functions
of r1(0),r2(0), when conditioned on r1(0),r2(0) they are
independent of x̄1(0), x̄2(0),w1(0),w2(0). Therefore it holds
x̄1(0), x̄2(0),w1(0),w2(0) → r1(0),r2(0) → u1(0),u2(0). As
x̄1(1) =A11x̄1(0)+A12x̄2(0)+w1(0), and x̄2(1) =A21x̄1(0)+
A22x̄2(0) + w2(0) this implies x̄1(1) → r1(0),r2(0) →
u1(0),u2(0) and x̄2(1)→ r1(0),r2(0)→ u1(0),u2(0). Thus

r1(1) = E1(x1(1)−E[x1(1)|I e(1)])
= E1(x̄1(1)+B11u1(0)−E[x̄1(1)+B11u1(0))|I e(1)])
= E1(x̄1(1)−E[x̄1(1)|r1(0),r2(0),u1(0),u2(0)]
= E1(x̄1(1)−E[x̄1(1)|r̄1(0), r̄2(0)] = r̄1(1)

Similary, it holds r̄2(1) = r2(1). Due to r1(1) =
r̄1(1),r2(1) = r̄2(1), both r1(1),r2(1) are independent
of u1(0),u2(0), which with last two chains proven
implies x̄1(1) → r1

1,r
1−d21
2 → u1(0),u2(0) and

x̄2(1) → r1
2,r

1−d12
1 → u1(0),u2(0), as d12,d21 ∈ {0,1}.

We next prove the induction step.
Assume that rt

1 = r̄t
1,r

t
2 = r̄t

2 and that x̄1(k) →
rk

1,r
k−d21
2 → uk−1

1 ,uk−1
2 , x̄2(k) → rk

2,r
k−d12
1 → uk−1

1 ,uk−1
2 ,

for 1 ≤ k ≤ t. It holds that x̄1(t), x̄2(t),w1(t),w2(t) →
rt

1,r
t
2,u

t−1
1 ,ut−1

2 → u1(t),u2(t) because when conditioned
on rt

1,r
t
2,u

t−1
1 ,ut−1

2 the control inputs u1(t),u2(t) do not
depend on x̄1(t), x̄2(t),w1(t),w2(t). Since w1(t),w2(t)
are independent of rt

1,r
t
2,u

t−1
1 ,ut−1

2 and x̄1(t), x̄2(t) are
input free and satisfy induction assumption, we have that
x̄1(t),w1(t), x̄2(t),w2(t)→ rt

1,r
t
2→ ut−1

1 ,ut−1
2 . Therefore, the

last two chains imply x̄1(t),w1(t), x̄2(t),w2(t) → rt
1,r

t
2 →

ut
1,u

t
2. Since x̄1(t + 1) = A11x̄1(t) + A12x̄2(t) + w1(t),

and x̄2(t + 1) = A21x̄1(t) + A22x̄2(t) + w2(t) this
implies x̄1(t + 1), x̄2(t + 1) → rt

1,r
t
2 → ut

1,u
t
2. Therefore

r1(t + 1) = r̄1(t + 1),r2(t + 1) = r̄2(t + 1). Now it holds
x̄1(t +1)→ rt+1

1 ,rt−d21
2 → ut

1,u
t
2 since r1(t +1) = r̄1(t +1) is

independent of ut
1,u

t
2 and d21 ∈ {0,1}. The same conclusion

is made for subsystem 2. This concludes the proof.
Before stating the main result on the structural properties of
optimal control inputs uT−1

1 ,uT−1
2 we define the following

ωi(k) = E[a>i e(k−1)+wi(k−1)|I ci(k)] ∀i = 1,2

δ̂
i(k) = E[a>3−ie(k−1)+w3−i(k−1)|I ci(k)] ∀i = 1,2

(25)

where a>1 = [A11 A12],a>2 = [A21 A22]. The gain K(k) com-
puted by (9) is partitioned as follows

K =

[
K11 K12
K21 K22

]

where K11 ∈ Rm1×n1 ,K12 ∈ Rm1×n2 ,K21 ∈ Rm2×n1 ,K22 ∈
Rm2×n2 .

Theorem 2: For an arbitrary sequences of quantizers
E T−1

1 ,E T−1
2 defined by (3), the control inputs uT−1

1 ,uT−1
2

minimizing cost in (6), given constraints on state dynamics
in (2) and information constraints in (4) are given by

u(k) = K(k)ω(k)+
[

K11(k)ω1(k)+K12(k)δ̂ 1(k)
K22(k)ω2(k)+K21(k)δ̂ 2(k)

]
(26)

where ω1(k),ω2(k), δ̂ 1(k), δ̂ 2(k) are defined in (25).
Moreover, for the class of encoders in (22), the
global smallest cost over all encoder-controller 4-tuples
(γT−1

1 ,γT−1
2 ,E T−1

1 ,E T−1
2 ) decomposes as

min
γ

T−1
1 ,γT−1

2 ,E T−1
1 ,E T−1

2

JC =tr(S(0)Σx)+
T−1

∑
k=0

tr(S(k+1)Σw)

(27)
+ min

E T−1
1 ,E T−1

2

D

where D = D(ēT−1
1 , ēT−1

2 ) is a control-independent distortion
function defined as

D =
T−1

∑
k=0

E‖D(k)‖
Ωk

(28)

and

D(k) =
[

K11(k)ē1(k)+K12(k)(ē2(k)+ω2(k)− δ̂ 1(k))
K21(k)(ē1(k)+ω1(k)− δ̂ 2(k))+K22(k)e2(k)

]
.

Proof: We start by analyzing the relationship between
the controllers’ estimates x̂1(k), x̂2(k) defined in (19), (20)
and estimate ω(k) of global state x(k) produced at encoders’
sides and defined by (18). Indeed it holds

x̂(k) : =
[

x̂1(k)
x̂2(k)

]
=

[
E[x1(k)|I c1(k)]
E[x2(k)|I c2(k)]

]
=

[
E[a>1 x(k−1)+B1u1(k−1)+w1(k−1)|I c1(k)]
E[a>2 x(k−1)+B2u2(k−1)+w2(k−1)|I c2(k)]

]
From the definition of e1(k− 1),e2(k− 1) and the fact that
I c2(k−1)⊂I c1(k),I c1(k−1)⊂I c2(k) we get

x̂(k) = Ax̂(k−1)+Bu(k−1)+
[

ω1(k)
ω2(k)

]
= ω(k)+

[
ω1(k)
ω2(k)

]
where the last equality is due to (21). To this end we write

x(k) = x̂(k)+ e(k) = ω(k)+(x(k)− x̂(k))+
[

ω1(k)
ω2(k)

]
= ω(k)+Ae(k−1)+w(k−1) (29)

Now we state lemma to help derive the main result.
Lemma 2 ( [9]): The cost in (6) can be written as

JC =
T−1

∑
k=0

E
[
(u(k)−K(k)x(k))>Ω(k)(u(k)−K(k)x(k))

]
+ x(0)>S(0)x(0)+

T−1

∑
k=0

tr(S(k+1)Σw)



given that w(k) is zero-mean and independent from
(x(k),u(k)). The matrices K(k),S(k) are defined in Theorem
1 and Ω(k) = R+B>S(k+1)B.
Extracting the part that is dependent on control inputs taking
into account (29) we write

Ju :=
T−1

∑
k=0

E‖u(k)−K(k)x(k)| |Ωk

=
T−1

∑
k=0

E‖u(k)−K(k)ω(k)−K(k)(Ae(k−1)+w(k−1))‖
Ωk

Minimizing the last cost with respect to u1,u2 conditioned
on I c1 ,I c2 respectively, taking into account that ω(k) is
conditioned on I e(k) ⊂ I c1(k)∩I c2(k) we get (26). For
the class of encoders (22), components of control law in (26)
proportional to ω1(k),ω2(k), δ̂1(k), δ̂2(k) are only dependent
on e(k− 1) which is equal to ē(k− 1) as the Proposition 1
holds. Therefore, the distortion produced by (26) in Ju is

D(eT−1
1 ,eT−1

2 ) = D(ēT−1
1 , ēT−1

2 ) =

T−1

∑
k=0

E
∥∥∥∥[K11(k)ē1(k)+K12(k)(ē2(k)+ω2(k)− δ̂ 1(k))

K21(k)(ē1(k)+ω1(k)− δ̂ 2(k))+K22(k)ē2(k)

]∥∥∥∥
Ωk

since there is no dual effect and this together with Lemma
2 proves (28) and concludes the proof.
As it is implied by Theorem 2, the computation of optimal
control inputs u1,u2 requires knowledge of control gain K(k)
defined in (9) that is computed based on global system
matrices A,B,Q,R. However, as such computation can be
done offline, the control law in (26) is still of distributed
nature. The offline computation is particularly important for
in-network [17] implementation of derived optimal control
law where control functionalities are pushed as close as pos-
sible to the controlled process exploiting the computational
power of active network components - even if limited.

Remark 6: Theorem 2 indicates that optimal quantizers
E1,E2 have to minimize a rather complicated distortion
function D. Similar to the case of single-loop quantized
system in [14], in order to derive recursive and easily im-
plementable estimate ω(k) additional assumptions need to be
introduced such as Gaussianity of predicted densites of states
x1(k),x2(k) conditioned on information set I e(k). However,
while resulting in more efficient control implementation such
assumption would yield suboptimal solution to the problem
addressed. The analysis of this subproblem and performance
of suboptimal controller is outside of the scope of this paper.

Remark 7: The optimal control law in Theorem 2 is
a superposition of two components. The first component
is proportional to the estimator ω(k) of the global state
x(k), conditioned on the common information between two
controllers, and thus is computed by both controllers. This
common information is not the full information available to
C1, C2 as each controller, at time instant k, also receives
output from local encoder and potentially, output from the
other encoder. Thus, second component represents local cor-
rections that are applied to compensate for the discrepancy of
ω(k) and actual state x(k), due to the process noise w(k−1),

as well as estimation errors e1(k−1),e2(k−1) which affect
both systems due to physical coupling.

IV. CONCLUSIONS
In this paper a distributed quantized LQG control problem

is addressed, under the assumption that individual controllers
communicate with a maximum delay of one step. For a class
of quantizers, that encode the estimation errors of local state
estimators conditioned on the common information between
controllers, a separation is established. The optimal encoders
are shown to be those that minimize certain distortion
function, that is control-independent and depends on the
estimation error for the input-free system.
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