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Abstract
We study the Fourier transform windowed by a bump function. We transfer Jackson’s
classical results on the convergence of the Fourier series of a periodic function to win-
dowed series of a not necessarily periodic function. Numerical experiments illustrate
the obtained theoretical results.
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1 Introduction

The theory of Fourier series plays an essential role in numerous applications of contem-
porary mathematics. It allows us to represent a periodic function in terms of complex
exponentials. Indeed, any square integrable function f : R → C of period 2π has a
norm-convergent Fourier series such that (see e.g. [1, Prop. 4.2.3.])

f (x) =
∞∑

k=−∞
f̂ (k)eikx almost everywhere,

where the Fourier coefficients are defined according to

f̂ (k) := 1

2π

∫ π

−π

f (x)e−ikx dx, k ∈ Z.
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Fig. 1 Effect of the periodization: If ψ(−λ+) �= ψ(λ−), then the 2λ-periodic extension produces jump
discontinuities at ±λ. Consequently, the order of the Fourier coefficients isO(1/|k|) (Color figure online)

By the classical results of Jackson in 1930, see [14], the decay rate of the Fourier
coefficients and therefore the convergence speed of the Fourier series depend on the
regularity of the function. If f has a jump discontinuity, then the order of magnitude
of the coefficients is O(1/|k|), as |k| → ∞. Moreover, if f is a smooth function of
period 2π , say f ∈ Cs+1(R) for some s ≥ 1, then the order improves toO(1/|k|s+1).

In the present paper we focus on the reconstruction of a not necessarily periodic
function with respect to a finite interval (−λ, λ). For this purpose let us think of a
smooth, non-periodic real function ψ : R → R, which we want to represent by a
Fourier series in (−λ, λ). Therefore, we will examine its 2λ-periodic extension, see
Fig. 1. Whenever ψ(−λ+) �= ψ(λ−), the periodization has a jump discontinuity at
λ, and thus the Fourier coefficients are O(1/|k|). An easy way to eliminate these dis-
continuities at the boundary, is to multiply the original function by a smooth window,
compactly supported in [−λ, λ]. The resulting periodization has no jumps. Conse-
quently, one expects faster convergence of the windowed Fourier sums.

The concept of windowed Fourier atoms has been introduced by Gabor in 1946, see
[8]. According to [17, Chap. 4.2], for (x, ξ) ∈ R

2 and a symmetric window function
g : R → R, satisfying ‖g‖L2(R) = 1, these atoms are given by

gx,ξ (y) := eiξ yg(y − x), y ∈ R.

The resulting short-time Fourier transform (STFT) of ψ ∈ L2(R) is defined as

STFT(ψ)(x, ξ) := 〈ψ, gx,ξ 〉L2(R) =
∫ ∞

−∞
ψ(y)g(y − x)e−iξ y dy. (1.1)

It can be understood as the Fourier transform on the real line of the windowed function
ψ · g(• − x). If g is localized in a neighborhood of x , then the same applies to the
windowed function. Hence, the spectrum of the STFT is connected to the windowed
interval. In particular, Gabor investigated Gaussian windows with respect to the uncer-
tainty principle, see [4, Chap. 3.1]. In many engineering applications, windows are
discussed in terms of data weighting and spectral leakage. Depending on the type
of signal, numerous windows have been developed, see e.g. [13, Chap. IV]. More
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recently, in [19] a smooth C∞-bump window has been suggested for the analysis of
gravitational waves. It is an essential property of this window, that it is equal to 1 in a
closed subinterval of its support (plateau). Although the Fourier coefficients of such
windows may exceed spectral convergence (faster than any fixed polynomial rate),
it is their compact support which limits the order to be at most root exponential and
the actual convergence rate depends on the growth of the window’s derivatives, see
e.g. [23]. For example, in [3] a smooth bump is designed such that the order of the
windowed Fourier coefficients is root-exponential (at least for the saw wave func-
tion), wheres in [24] we find a non-compactly supported window, for which we obtain
true exponential decay. We note that Boyd and Tanner focus on an optimal choice of
window parameters in order to obtain the best possible approximation results.

We investigate the convergence speed of Fourier series windowed by compactly
supported bump functions with a plateau. The properties of these bump windows
will allow an effortless transfer of Jackson’s classical results on the convergence of
the Fourier series for smooth functions. The main new contributions of this paper
can be found in Theorems 3.3 and 4.6, respectively. In the first one we show that
pointwise multiplication (in the time domain) by a windowwith plateau yields smaller
reconstruction errors in the interior of the plateau, compared to those windows without
plateau. We complement this result by a lower error bound for the Hann window, a
member of the set of cosα functions. In Theorem 4.6 we connect the decay rate of
windowed Fourier coefficients to a new bound for the variation ofwindowed functions,
which is based on the combination of two main ingredients: the Leibniz product rule
and a bound for intermediate derivatives due to Ore.

1.1 Outline

We start by recalling basic properties of the Fourier series for functions of bounded
variation in Sect. 2. Afterwards, in Sect. 3 we present the windowed transform, see
Proposition 3.2, and estimate the reconstruction errors in Theorem 3.3. In Sect. 4 we
introduce the Cs-bumps and transfer the results of Chap. 3 to this class. As a special
candidate ofC1-bumps,we consider theTukeywindow inSect. 4.1. Finally,we present
numerical experiments in Sect. 5, that underline our theoretical results and illustrate
the benefits of bump windows.

2 Functions of Bounded Variation and Their Fourier Series

2.1 Functions of BoundedVariation

We denote by BVloc the set of functions f : R → R, which are locally of bounded
variation, that is of bounded variation on every finite interval. In particular, we assume
that such functions are normalized for any x in the interior of the interval of definition,
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see [1, Sect. 0.6], by

f (x) = 1

2

(
f (x+) + f (x−)

)
= 1

2

(
lim
t→0+ f (x + t) + lim

t→0+ f (x − t)

)
.

We recall that a function of bounded variation is bounded, has at most a countable set
of jump discontinuities, and that the pointwise evaluation is well-defined.

2.2 The Classical Fourier Representation

Any 2π -periodic function f ∈ BVloc has a pointwise converging Fourier series, see
[1, Prop. 4.1.5.]. Let us transfer this representation to an arbitrary interval of length
2λ:

Lemma 2.1 (Fourier series of the periodization)
Suppose that ψ ∈ BVloc as well as λ > 0 and t ∈ R. Then,

ψ(x) =
∑

k∈Z
cψ(k)eik

π
λ
x , x ∈ (t − λ, t + λ),

where the coefficients cψ(k) are given by

cψ(k) := 1

2λ

∫ t+λ

t−λ

ψ(x)e−ik π
λ
x dx, k ∈ Z.

For the proof of Lemma 2.1 and our subsequent analysis, we will use a translation,
a scaling and a periodization operator. For the center t ∈ R and a scaling factor a > 0,
we introduce:

Tt : BVloc → BVloc, (Ttψ)(x) := ψ(x + t),

Sa : BVloc → BVloc, (Saψ)(x) := ψ(ax).

For the period half length λ > 0, we set

Pλ : BVloc → BVloc,

(Pλψ)(x) :=
{

ψ(x), if x ∈ (−λ, λ),

1
2

(
ψ(−λ+) + ψ(λ−)

)
, if x = λ.

Proof Consider the 2π -periodic function f = PπSλ/πTtψ . Then, it follows from
Lemma A.1 that f ∈ BVloc and therefore

f (x) =
∞∑

k=−∞
f̂ (k)eikx , x ∈ R.
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The Fourier coefficients of f are given by

f̂ (k) = 1

2π

∫ π

−π

f (x)e−ikx dx = 1

2π

∫ π

−π

(
Sλ/πTtψ

)
(x)e−ikx dx

= 1

2λ

∫ t+λ

t−λ

ψ(x)e−ik π
λ
(x−t) dx .

Consequently, for all x ∈ (t − λ, t + λ) we obtain

ψ(x) = (
T−tSπ/λ f

)
(x) =

∑

k∈Z
cψ(k)eik

π
λ
x .


�

2.3 The Classical Result of Jackson

In general, even if ψ is a smooth function, the periodic extension f = PπSλ/πTtψ ∈
BVloc has jump discontinuities at ±π . Let V ( f ) < ∞ denote the total variation of f .
Then, by [7, Chap. 2.3.6],

|k · cψ(k)| = |k · f̂ (k)| ≤ 1

2π
V ( f ), for all k ∈ Z.

Hence, the coefficients are O(1/|k|). Moreover, the rate of the coefficients transfers
to an estimate for the reconstruction errors. For an arbitrary function f ∈ BVloc of
period 2π let us introduce the partial Fourier sum

Sn f (x) :=
n∑

k=−n

f̂ (k)eikx , n ≥ 1, x ∈ R.

Our analysis relies on the following classical result by Jackson on the convergence of
the Fourier sum, see [14, Chap. II.3, Theorem IV]:

Proposition 2.2 If f : R → R is a function of period 2π , which has a sth derivative
with limited variation, s ≥ 1, and if V is the total variation of f (s) over a period,
then, for n > 0,

| f (x) − Sn f (x)| ≤ 2V

sπns
, x ∈ R. (2.1)

3 TheWindowed Transform

There seems to be no general definition of a window function, but most authors tend
to think of a real function w �= 0, vanishing outside a given interval. In relation to the
STFT in (1.1), additional properties, such as a smooth cut-off or complex values, may
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be required, see e.g. [10, Sect. 3] and [15, Sect. 2]. Whenever speaking about windows
in this paper, we assume the following:

Definition 3.1 Let λ > 0. We say that a function w ∈ BVloc is a window function on
the interval (−λ, λ), if the following properties are satisfied:

(1) 0 ≤ w(x) ≤ 1, for x ∈ (−λ, λ),

(2) w(x) = 0, for x ∈ R\(−λ, λ).
(3.1)

In particular, we obtain the rectangular window, if w(x) = 1 for all x ∈ (−λ, λ),
and for simplicity we just write w ≡ 1 in this case. For ψ ∈ BVloc and a window w

on (−λ, λ) we introduce the windowed periodization

ψw := PπSλ/π [w · Ttψ] . (3.2)

Note that ψw is 2π -periodic, and by Lemma A.1 we obtain ψw ∈ BVloc.

3.1 TheWindowed Representation

According to the classical Fourier series of the periodization presented in Lemma 2.1,
the windowed series allows an alternative representation with potentially faster con-
vergence.

Proposition 3.2 (Windowed Fourier series) Let ψ ∈ BVloc and λ > 0 and t ∈ R. If
w ∈ BVloc is a window on (−λ, λ), then,

ψ(x)w(x − t) =
∑

k∈Z
cw
ψ(k)eik

π
λ
x , x ∈ (t − λ, t + λ),

where the coefficients cw
ψ(k) are given by

cw
ψ(k) := 1

2λ

∫ t+λ

t−λ

ψ(x)w(x − t)e−ik π
λ
x dx, k ∈ Z.

The statement in the last Proposition follows as in Lemma 2.1, for the Fourier series
of the 2π -periodic windowed shape ψw ∈ BVloc.

Suppose that ψw ∈ Cs(R), s ≥ 1, and that ψ(s)
w has bounded variation. Then, as it

follows from [14, Chap. II.3, Corollary I],

|cw
ψ(k)| = |ψ̂w(k)| ≤ V (ψ

(s)
w )

π |k|s+1 , k �= 0, (3.3)

and thus the decay rate of the windowed coefficients cw
ψ improves to O (

1/|k|s+1
)
.
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3.2 An Error Estimate for the Representations

For n ≥ 1 and x ∈ R let

Rw
n ψ(x) :=

n∑

k=−n

cw
ψ(k)eik

π
λ
x and Rnψ(x) := Rw≡1

n ψ(x) =
n∑

k=−n

cψ(k)eik
π
λ
x .

Note that Rw
n ψ = T−tSπ/λ(Snψw). We now transfer Jackson’s classical result in

Proposition 2.2 to an estimate for the windowed reconstruction errors in terms of the
Lipschitz constant of ψ

(s)
w . In order not to overload the notation unnecessarily, for the

main results in this paper we always assume that λ = π and t = 0, that is, both the
function ψ and ψw are 2π -periodic and centered at the origin. However, all results
could also be formulated for an arbitrary choice of λ > 0 and t ∈ R by performing an
appropriate scaling and translation.

Theorem 3.3 (Reconstruction, windowed series, λ = π and t = 0) Suppose that
ψw ∈ Cs+1(R), s ≥ 1 and let Ls > 0 denote the Lipschitz constant of ψ

(s)
w over

[−π, π ]. Moreover, let 0 < ρ < π . Then, for n ≥ 1 the error of the reconstruction
Rw
n ψ in the interval [−ρ, ρ] is given by

∣∣∣∣∣ sup
x∈[−ρ,ρ]

∣∣ψ(x) − Rw
n ψ(x)

∣∣ − K∞(ψ,w, ρ)

∣∣∣∣∣ ≤ 4Ls

sns
, (3.4)

where the non-negative constant K∞(ψ,w, ρ) ≥ 0 is given by

K∞(ψ,w, ρ) = sup
x∈[−ρ,ρ]

(
|ψ(x)| · (

1 − w(x)
))

.

Proof Let V < ∞ denote the total variation of ψ
(s)
w over a period. In particular,

V =
∫ π

−π

|ψ(s+1)
w (x)| dx ≤ 2πLs .

Hence, for all x ∈ R the classical Jackson result in Proposition 2.2 yields

An(x) := |ψw(x) − Rw
n ψw(x)| = |ψw(x) − Snψw(x)| ≤ 4Ls

sns
.

Moreover, for all x ∈ [−ρ, ρ]we have 0 ≤ w(x) ≤ 1 and thus, by the reverse triangle
inequality, we obtain

∣∣ψ(x) − Rw
n ψ(x)

∣∣
{≤
≥

} ∣∣∣∣|ψ(x)| · (
1 − w(x)

) {+
−

}
An(x)

∣∣∣∣ , x ∈ [−ρ, ρ]. (3.5)

Taking the supremum proves (3.4). 
�
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Note that for w ≡ 1 we obtain the convergence of the plain reconstruction Rnψ ,
where K∞(ψ,w, ρ) = 0. Theorem 3.3 allows a calculation of the L2-error:

Corollary 3.4 The L2-error of the reconstruction is given by

∣∣∣
∥∥ψ − Rw

n ψ
∥∥2
L2([−ρ,ρ]) − K2(ψ,w, ρ)

∣∣∣ ≤ 16ρLs

sns
K∞(ψ,w, ρ) + 32ρL2

s

s2n2s
, (3.6)

where the non-negative constant K2(ψ,w, ρ) ≥ 0 is given by

K2(ψ,w, ρ) =
∫ ρ

−ρ

|ψ(x)|2(1 − w(x)
)2 dx .

In particular, K2(ψ,w, ρ) = 0, if and only if K∞(ψ,w, ρ) = 0.

Proof For p ∈ {1, 2} we introduce Np,n,ρ := ∥∥ψw − Rw
n ψ

∥∥
L p([−ρ,ρ]). Then, it fol-

lows from (3.5) that for all x ∈ [−ρ, ρ]:

∣∣ψ(x) − Rw
n ψ(x)

∣∣2
{≤
≥

} ∣∣∣∣|ψ(x)| · (
1 − w(x)

) {+
−

}
An(x)

∣∣∣∣
2

,

and therefore, integration yields

∥∥ψ − Rw
n ψ

∥∥2
L2([−ρ,ρ])

{≤
≥

}
K2(ψ,w, ρ)

{+
−

}
2K∞(ψ,w, ρ)N1,n,ρ + N 2

2,n,ρ .

Consequently, (3.6) follows from

N1,n,ρ ≤ √
2ρ · N2,n,ρ ≤ 2ρ ·

(
sup

x∈[−ρ,ρ]
An(x)

)
≤ 8ρLs

sns
.


�
In addition to the assumptions in Theorem 3.3, let us assume that w(x) = 1 for all

x ∈ [−ρ, ρ]. Then, it follows that K∞(ψ,w, ρ) = 0 and therefore K2(ψ,w, ρ) =
0. Hence, the reconstruction errors converge to 0 as n → ∞. This motivates the
investigation of bump windows.

4 BumpWindows

We now introduce Cs-bump windows by singling out two additional properties: On
the one hand, bump windows fall off smoothly at the boundary of their support, on
the other hand, to receive a faithful windowed shape of the original function, bump
windows have to equal 1 in a closed subinterval of their support. The plots in Fig. 2
show the typical shape and the action of a bump.



Journal of Fourier Analysis and Applications (2020) 26 :65 Page 9 of 28 65

−λ λ x

hannλ(x)

1

−λ λ x
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Fig. 2 Different bump windows (left) and their action on the function ψ(x) = x (right). The Hann window,
see Definition 4.2, can be viewed as a degenerate C1-bump. For 0 < α < 1, the Tukey window, see
Definition 4.3, is a non-degenerate C1-bump. Generally, the Cs -bump wρ,λ in Definition 4.1 (bottom) is
s-times, but not (s + 1)-times continuously differentiable (Color figure online)
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Definition 4.1 Let λ > 0 and 0 ≤ ρ < λ. For some s ≥ 1 we say that the function
wρ,λ ∈ Cs

c (R) is a Cs-bump, if the following properties are satisfied:

(1) 0 ≤ wρ,λ(x) ≤ 1, for x ∈ (−λ, λ),

(2) wρ,λ(x) = 0, for x ∈ R\(−λ, λ),

(3) wρ,λ(x) = 1, for x ∈ [−ρ, ρ].

If ρ = 0, we say that the bump is degenerate. Moreover, whenever wρ,λ ∈ C∞
c (R),

we say that wρ,λ is a smooth bump.

We note that smooth bump windows have previously been used for data analysis
of gravitational waves, see [5, Eq. (3.35)] and [19, Sect. 2, Eq. (7)]. Moreover, bump
functions occur when working with partitions of unity, e.g. in the theory of manifolds,
see [16, Lemma 2.22] and [25, Sect. 13.1], and further, with a view to numerical
applications, for so-called partition of unity methods, which are used for solving
partial differential equations, see [11, Sect. 4.1.2]. An example for a smooth bump is
given by the even function

wρ,λ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if 0 ≤ |x | ≤ ρ,
1

exp
(

1
λ−|x | + 1

ρ−|x |
)

+ 1
, if ρ < |x | < λ,

0, if |x | ≥ λ.

(4.1)

As we see in the right plots of Fig. 2, the product of a non-degenerate bump wρ,λ and
ψ produces a (smooth) windowed shape, matching with ψ in [−ρ, ρ] and tending to
0 at the boundaries of (−λ, λ). In particular, we obtain excellent reconstructions using
the smooth bump given by (4.1) in our numerical experiments.

Although in this paperwe only consider compactly supportedwindows,we note that
also other types have been studied extensively in the past. By abandoning the compact
support, smooth windows can potentially be used for the pointwise reconstruction
of exponential accuracy, wheres windows with compact support can at most obtain
root exponential accuracy, see also Sect. 4.2. An example for windows not having
compact support is given by the class of exponential functions, which are of the form
exp(−cx2m), where c > 0 is a positive real constant andm ≥ 1 is a positive integer.We
note that the choice of c and m control the decay of the window and from a numerical
point of view, due to machine tolerance, it can be argued that a computer treats it
as being compact, see [24, Sect. 2]. For other examples of non-compactly supported
windows we refer to the work of Boyd in [2] and subsequent papers, who pioneered
the concept of adaptive filters.

4.1 The Hann- and the TukeyWindow

The class of bump windows includes the famous Hann window, which can be defined
as follows, see [17, Sect. 4.2.2]:
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Definition 4.2 Let λ > 0. For all x ∈ R the Hann window is given by

hannλ(x) = cos2
( π

2λ
x
)

· 1[0,λ](|x |) = 1

2

[
1 + cos

(π

λ
x
)]

· 1[0,λ](|x |).

In the sense of Definition 4.1 the Hann window is a degenerate C1-bump. In par-
ticular, for 0 < ρ′ < λ it follows from Theorem 3.3 and Corollary 3.4, that the
reconstruction errors for a function ψ �= 0 on the interval [t − ρ′, t + ρ′] are bounded
from below by positive constants K∞(ψ,w, ρ′), K2(ψ,w, ρ′) > 0. This fact can also
be observed in our numerical experiments, see Sects. 5.1 and 5.2. We note that the
Hann window is a famous representative of windows specially used in signal process-
ing.

As it turns out, theHannwindowarises as a special candidate of amore general class,
the Tukey windows, see [26], often called cosine-tapered windows. These windows
can be imagined as a cosine lobe convolved with a rectangular window:

Definition 4.3 The Tukey window with parameter α ∈ (0, 1] is given by

tukeyα,λ(x) := 1[0,(1−α)λ)(|x |) + 1

2

[
1 − cos

(
π |x |
αλ

− π

α

)]
· 1[(1−α)λ,λ](|x |).

The Tukey window is a C1-bump wρ,λ with ρ = (1 − α)λ. In particular,

tukey1,λ = hannλ = w0,λ,

and for 0 < α < 1 the Tukey window is not degenerate. We note that the sum of
phase-shifted Hann windows creates a Tukey window:

Lemma 4.4 Let τ > 0 and m ≥ 0. Then, for α = 1/(m + 1) and λ = (m + 1)τ ,

m∑

k=−m

hannτ (• − kτ) = tukeyα,λ .

Proof For all x ∈ R we introduce the function

Hτ,m(x) :=
m∑

k=−m

hannτ (x − kτ).

Obviously, Hτ,m is an even function. Thus, for all x ∈ R we obtain

Hτ,m(x) =
m∑

k=0

hannτ (|x | − kτ) = 1

2

m∑

k=0

[
1 + cos

(π

τ
(|x | − kτ)

)]
· 1[−τ,τ ](|x | − kτ)

= 1

2

m∑

k=0

[
1 + cos

(π

τ
(|x | − kτ)

)]
·
(
1[(k−1)τ,kτ)(|x |) + 1[kτ,(k+1)τ )(|x |)

)
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= 1

2

m∑

k=0

[
1 + cos

(π

τ
(|x | − kτ)

)]
· 1[(k−1)τ,kτ)(|x |)

+ 1

2

m+1∑

k=1

[
1 + cos

(π

τ
(|x | − (k − 1)τ )

)]
· 1[(k−1)τ,kτ)(|x |)

= 1[0,mτ)(|x |) + 1

2

[
1 − cos

(π

τ
(|x | − (m + 1)τ )

)]
· 1[mτ,(m+1)τ )(|x |)

+ 1

2

m∑

k=1

(
cos

(π

τ
(|x | − kτ)

)
+ cos

(π

τ
(|x | − kτ) + π

))
· 1[(k−1)τ,kτ)(|x |)

= 1[0,mτ)(|x |) + 1

2

[
1 − cos

(π

τ
(|x | − (m + 1)τ )

)]
· 1[mτ,(m+1)τ )(|x |).


�

4.2 The Representation for BumpWindows

The windowed Fourier series in Proposition 3.2 applies to bump functions and yields
the following representation in the restricted interval [t − ρ, t + ρ]:
Corollary 4.5 (Fourier series windowed by a bump function) Suppose that ψ ∈
Cs+1(R), s ≥ 1, as well as λ > 0 and 0 ≤ ρ < λ and t ∈ R. If wρ,λ ∈ Cs+1

c (R) is a
Cs+1-bump on (−λ, λ), satisfying the three conditions in Definition 4.1, then,

ψ(x) =
∑

k∈Z
cw
ψ(k)eik

π
λ
x , x ∈ [t − ρ, t + ρ],

where the coefficients cw
ψ(k) are given by

cw
ψ(k) = 1

2λ

∫ t+λ

t−λ

ψ(x)wρ,λ(x − t)e−ik π
λ
x dx, k ∈ Z.

In particular, if Ls > 0 denotes the Lipschitz constant of ψ(s)
w over [−π, π ], then,

|cw
ψ(k)| ≤ V (ψ

(s)
w )

π |k|s+1 ≤ 2Ls

|k|s+1 , k �= 0. (4.2)

We note that for w = hannλ the representation in Corollary 4.5 shrinks to a point-
wise representation at x = t . Furthermore, the bound in (4.2) depends on the choice
of the bumpwρ,λ, and for ρ ≈ λ the windowed transform does not lead to an improve-
ment of the decay for low frequencies k, because in this case the action of the bump is
comparable to a truncation of ψ , such that the Lipschitz constant Ls dominates. We
will illustrate this fact with numerical experiments in Sect. 5.2.

Moreover, we note that for a smooth bump wρ,λ ∈ C∞
c (R) the coefficients cw

ψ(k)
do not decay exponentially fast, since the window is compactly supported and thus not
analytic, see [22]. Nevertheless, the coefficients of a smooth bump have an exponential
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rate of fractional order and the actual rate can be classified by analyzing their so-called
Gevrey regularity, see [23, Eq. (2.4)].

4.3 A Bound for the Lipschitz Constant

We now investigate the Lipschitz constant Ls in Corollary 4.5. Using the work of Ore
in [20], we crucially use an estimate on the higher order derivatives of the product of
two functions, which is developed in Sect. 4.4.

For a function f : R → R, that is (s+1)-times differentiable, s ≥ 1, with a (s+1)th
derivative bounded on a finite interval (a, b), let us introduce the non-negative constant

Cs, f = sup
x∈(a,b)

| f (x)| + (b − a)s+1

(s + 1)! sup
x∈(a,b)

| f (s+1)(x)| ≥ 0. (4.3)

Theorem 4.6 (Bound for the Lipschitz constant, λ = π and t = 0) Let 0 ≤ ρ < π

and suppose that ψ ∈ Cs+1(R) and wρ,π ∈ Cs+1
c (R) for some s ≥ 1. Assume the

existence of two non-negative constants Mψ, Mψs+1 ≥ 0, such that

|ψ(x)| ≤ Mψ and |ψ(s+1)(x)| ≤ Mψs+1 for all x ∈ (−π, π).

Then, the Lipschitz constant Ls in Corollary 4.5 is bounded by

Ls ≤ Mψs+1 + Mψ‖w(s+1)
ρ,π ‖∞ + Cs,ψCs,w

(2π)s+1 · Ks,

where the non-negative constants Cs,ψ ,Cs,w ≥ 0 are given by

Cs,ψ = Mψ + (2π)s+1

(s + 1)! Mψs+1 and Cs,w = 1 + (2π)s+1

(s + 1)! ‖w
(s+1)
ρ,π ‖∞,

and the constant Ks > 0 is given by

Ks = 22s+1 · s2 · (3s)!
(2s + 1)! . (4.4)

Proof According to Proposition 4.8 in the next section, we use the bound for the
(s + 1)th derivative of the product f g for f = wρ,π and g = ψ . This results in

Ls = sup
x∈(−π,π)

∣∣∣∣∣
ds+1

dxs+1

(
wρ,π (x)ψ(x)

)∣∣∣∣∣ ≤ Mψs+1 + Mψ‖w(s+1)
ρ,π ‖∞ + Cs,ψCs,w

(2π)s+1 · Ks .

Moreover, for the formula of the constant Ks in (4.4) we refer to Lemma 4.10. 
�
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Remark 4.7 Stirling’s formula yields the following approximation of Ks :

Ks = 2s

2s + 1

22s · s · (3s)!
(2s)! ∼ 4s · s · √

6πs · (3s)3se−3s

√
4πs · (2s)2se−2s

= s ·
√
3

2

(
27s

e

)s

.

The sign ∼ means that the ratio of the quantities tends to 1 as s → ∞.

In [12, Lemma 3.2], Gottlieb and Tadmor present a bound for the largest maximum
norm of a windowed Dirichlet kernel (regularization kernel) and its first s derivatives.
This bound is used to derive an error estimate for the reconstruction of a function
by a discretization of the convolution integral with an appropriate trapezoidal sum,
cf. [12, Proposition 4.1]. Instead of working with the largest maximum norm of the
first s derivatives, we are now presenting a new bound for the (s + 1)th derivative
of a product of two functions. We therefore combine the Leibniz product rule with
individual bounds for intermediate derivatives, and to the best of our knowledge, this
is the first time that an explicit bound has been revealed this way.

4.4 Estimating Higher Order Derivatives of a Product

If f is (s+1)-times differentiable, and if its (s+1)th derivative is bounded on a finite
interval (a, b), then, it follows from [20, Theorem 2] that all intermediate derivatives
are bounded. In particular, for all i = 1, . . . , s and all x ∈ (a, b),

| f (i)(x)| ≤ K (i, s) · Cs, f

(b − a)i
, (4.5)

where the combinatorial constant K (i, s) > 0 is defined according to

K (i, s) = 2i · s2(s2 − 12) · · · (s2 − (i − 1)2)

1 · 3 · 5 · · · (2i − 1)
, i ∈ {1, . . . , s}. (4.6)

We now use the general Leibniz rule to lift this result to an explicit bound for the
(s + 1)th derivative of the product of two functions.

Proposition 4.8 Let s ≥ 1 and f , g : R → R, both (s + 1)-times differentiable in a
finite interval (a, b). Assume the existence of four non-negative constants

M f , Mg, M fs+1 , Mgs+1 ≥ 0,

such that for all x ∈ (a, b):

| f (x)| ≤ M f , |g(x)| ≤ Mg and | f (s+1)(x)| ≤ M fs+1, |g(s+1)(x)| ≤ Mgs+1 .

Then, for all x ∈ (a, b) we have

|( f g)(s+1)(x)| ≤ M f Mgs+1 + M fs+1Mg + Cs, f Cs,g

(b − a)s+1 · Ks,
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where the constants Cs, f ,Cs,g ≥ 0 are defined according to (4.3) and the constant
Ks > 0, which only depends on s, is given by

Ks =
s∑

k=1

(
s + 1

k

)
K (s + 1 − k, s) · K (k, s). (4.7)

Proof By the general Leibniz rule the (s + 1)th derivative of f g is given by

( f g)(s+1) =
s+1∑

k=0

(
s + 1

k

)
f (s+1−k) · g(k).

We therefore obtain the following estimate for all x ∈ (a, b):

|( f g)(s+1)(x)| ≤
s+1∑

k=0

(
s + 1

k

)
| f (s+1−k)(x)| · |g(k)(x)|

≤ M f Mgs+1 + M fs+1Mg +
s∑

k=1

(
s + 1

k

)
| f (s+1−k)(x)| · |g(k)(x)|.

Using (4.5) for 1 ≤ k ≤ s, we conclude that

| f (s+1−k)(x)| ≤ K (s + 1 − k, s) · Cs, f

(b − a)s+1−k
,

|g(k)(x)| ≤ K (k, s) · Cs,g

(b − a)k
,

and thus

|( f g)(s+1)(x)| ≤ M f Mgs+1 + M fs+1Mg + Cs, f Cs,g

(b − a)s+1 · Ks .


�
Remark 4.9 The bound

| f (i)(x)| ≤ K (i, s) · M f

(b − a)i
, x ∈ (a, b),

for a polynomial f of degree s is due to Markoff and it is known that the equality sign
is attained for the Chebyshev polynomials, see [18].

4.5 The Combinatorial Constant

Next, we will investigate the combinatorial constant Ks and derive formula (4.4)
presented in Theorem 4.6.
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Lemma 4.10 Let s ≥ 1. The combinatorial constant Ks > 0 in (4.7) satisfies

Ks = 22s+1 · s2 · (3s)!
(2s + 1)! . (4.8)

Proof We start by rewriting the constant K (i, s) that has been defined in (4.6). Let
i ∈ {1, . . . , s}. For the numerator we obtain

2i · s2 · (s2 − 12) · · · (s2 − (i − 1)2) = 2i · s

s + i
· (s + i)!
(s − i)! .

For the denominator we have

1 · 3 · 5 · · · (2i − 1) = (2i − 1)!
2i−1 · (i − 1)! = (2i)!

2i · i ! .

Hence, we can rewrite K (i, s) as

K (i, s) = 2i · s

s + i
· (s + i)!
(s − i)!

2i · i !
(2i)! = s

s + i
· 22i · i ! ·

(
s + i

2i

)
,

and the summands that define the number Ks in (4.7) can be expressed as

(
s + 1

k

)
K (s + 1 − k, s) · K (k, s)

= 22s · (s + 1)! · (2s)2 · (s + k − 1)! · (2s − k)!
(2k)! · (s − k)! · (2s − 2k + 2)! · (k − 1)! .

Therefore we conclude that

Ks = 22s · (s + 1)! ·
s−1∑

k=0

(s + k)! · (2s − k − 1)! · (2s)2

(2k + 2)! · (s − k − 1)! · (2s − 2k)! · k! (4.9)

= 22s · (s + 1)! ·
s−1∑

k=0

[(
2s − k

k

)
2s

2s − k
·
(
s + k + 1

s − k − 1

)
2s

s + k + 1

]
.

Finally, let us introduce

κ j (2s) =
(
2s − j

j

)
2s

2s − j
for j = 0, 1, . . . , s − 1.

Recognizing our constant Ks as a Vandermonde-type convolution and using the rep-
resentation in [9, Eq. (4)] we write

Ks = 22s · (s + 1)! ·
s−1∑

k=0

κk(2s) · κs−k−1(2s) = 22s · (s + 1)! · κs−1(4s)
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= 22s · (s + 1)! ·
(
3s + 1

s − 1

)
4s

3s + 1
= 22s+1 · s2 · (3s)!

(2s + 1)! .


�

In Appendix B we derive an upper bound for Ks based on binomial coefficients.

5 Numerical Results

According to our results in Theorem 3.3 andCorollary 4.5we present numerical exper-
iments for three different functions. We investigate reconstructions with the smooth
bump wρ,λ given by (4.1), compared to those with the Hann window in Definition 4.2
and the Tukey window in Definition 4.3. Besides the reconstructions we also present
the decay of the coefficients and the reconstruction errors.

In Sect. 5.1 we start with the saw wave function to demonstrate the superiority
of the windowed transform with a smooth bump for a function having a high jump
discontinuity. Afterwards, the experiments in Sect. 5.2 deal with a parabola function.
The symmetric periodic extension has no discontinuities, and therefore the parabola
is a good candidate to illustrate the limitations of bump windows. Last, in Sect. 5.3
we work with a rapidly decreasing function. As we will see in this example, for low
frequencies all coefficients (plain, tukey, bump) have a rapid initial decrease, implying
excellent reconstructions.

Remark 5.1 In the following experiments, the dependency of the windows on the
parameters λ, ρ and α are always assumed implicitly and therefore we write

hann = hannλ, tukey = tukeyα,λ, bump = wρ,λ.

For the numerical computation of the (windowed) coefficients we used the fast
Fourier transform (FFT), see Appendix C.

5.1 SawWave Function

In the first example we consider the function

ψ(x) = x,
[
λ = π, ρ = 0.9π, t = 0

]
.

The corresponding periodic extension Pλψ results in a saw wave function.

We note that cψ(k) and channψ (k) can be evaluated analytically and are given by

cψ(k) = i · (−1)k

k
, k ∈ Z\{0}, channψ (k) = −i · (−1)k

2k(k2 − 1)
, k ∈ Z\{−1, 0, 1}
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and cψ(0) = channψ (0) = 0, channψ (−1) = −channψ (1) = 3i/8. Moreover, since ψ is a
real function, we conclude that

cw
ψ(−k) = cw

ψ(k), k ∈ Z.

The upper left hand side of Fig. 3 shows |cψ(k)|2 = 1/k2, as well as |cw
ψ(k)|2 for

both windows (hann and bump). We observe that the windowed coefficients have
a faster asymptotic decay than the plain Fourier coefficients. The coefficients and
the reconstruction errors for the bump (green) show the best asymptotic decay. As
we observe in the upper right plot of Fig. 3, the bump-windowed coefficients show
exponential initial decay. In particular, we recognize a trembling for these coefficients,
while the other (plain and hann) have a smooth decay. We provide an explanation of
this phenomenon in Appendix D. The reconstructions R10ψ and Rw

10ψ are visualized
in Fig. 4. For the bump we recognize a good convergence to the original function
ψ in [−ρ, ρ] (dotted lines), and the typical overshoots of the Fourier sum at the
discontinuity (Gibbs phenomenon, see e.g. [23, Sect. 3]) are dampened. As expected,
the reconstruction with the Hann window is accurate only in a small neighborhood of
the center t = 0, and according to Theorem 3.3 and Corollary 3.4 the reconstruction
errors converge to K∞(ψ,w, ρ), K2(ψ,w, ρ) > 0. For the saw wave these constants
can be calculated analytically in terms of λ and ρ, and their values are given by
K∞ ≈ 8.91 and K2 ≈ 2.76. We have marked these values with red crosses. In fact
we observe a perfect match.

Remark 5.2 As we have discussed in Sect. 4.2, the coefficients of the bump do not fall
exponentially fast for all k, since the bump is not analytic. However, in [3] the author
presents a smooth bump that is based on the erf-function, such that the Fourier coef-
ficients for the saw wave fall exponentially fast (the exponential is of the square root
of k). This is achieved by an optimization of the corresponding window parameters.
In view of the bump used here, this relates to an optimal choice of ρ.

5.2 Parabola

We consider the symmetric function

ψ(x) = x2,
[
λ = 1, ρ1 = 0.25, ρ2 = 0.8, t = 0

]
.

Note that

cψ(k) = 2 · (−1)k

k2π2 , k ∈ Z\{0}, channψ (k) = (−1)k(1 − 3k2)

k2(k2 − 1)2π2 , k ∈ Z\{−1, 0, 1},

as well as

cψ(0) = 1

3
, channψ (0) = 1

6
− 1

π2 , channψ (−1) = channψ (1) = 1

12
− 7

8π2 .
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Fig. 3 Decay of the coefficients (above) and reconstruction errors (below) for the saw wave. The plain
coefficients (orange) have order O(1/|k|), while the coefficients for the bump (green) show exponential
decay (upper right side). For the Hann window the errors converge to constant values larger than 1 (red
crosses) (Color figure online)
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Fig. 4 Plot of the reconstructions R10ψ and Rw
10ψ for the saw wave function. For x ∈ [−ρ, ρ] (dotted

lines) the bump-windowed reconstruction (green) matches well with the original function and the typical
overshoots (Gibbs phenomenon) of the Fourier sum (orange) are dampened. The reconstruction with the
Hann window (blue) is accurate only in a small neighborhood of 0 (Color figure online)
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Fig. 5 Decay of the representation coefficients for the parabola with ρ1 = 0.25 (left) and ρ2 = 0.8 (right).
Again, the coefficients for the bump show a fast asymptotic decay (Color figure online)

The plots in Fig. 5 show the decay of the coefficients. Especially for low frequencies,
the coefficients for the Hann window show the fastest decay. Nevertheless, we observe
once more that the bump coefficients and errors have the best asymptotics, see Fig. 6.
As with the saw wave, the constants K∞(ψ,w, ρ) and K2(ψ,w, ρ) can be calculated
analytically and are given by

K∞ ≈
{
9.1 · 10−3, if ρ = 0.25,

0.58, if ρ = 0.8,
and K2 ≈

{
4.7 · 10−6, if ρ = 0.25,

0.075, if ρ = 0.8.

We have marked these values with red crosses and verify the predicted convergence of
the errors. The reconstructions R50(ψ) and Rw

50(ψ) are visualized in Fig. 7. For the first
choice ρ1 = 0.25 (left) the bump-windowed series approximates the original func-
tion only in the small interval [−ρ1, ρ1] = [−0.25, 0.25]. We note that the periodic
extension of the parabola has no discontinuities and therefore the plain reconstruction
gives a good approximation, even with few coefficients.

For a bad choice of the parameter ρ, the reconstruction with the bump gets worse.
According to Theorem 4.6, the Lipschitz constant Ls is getting large as ρ → λ,
implying a slow decay for low frequencies, which can particularly be observed for the
choice ρ2 = 0.8. This value leads to a high derivative of the smooth bump w0.8,1 in
the interval (0.8, 1). For low frequencies, the coefficients and the errors for the bump
show a slow decay (right plots in Figs. 5, 6) and are even worse than for the plain
Fourier series.

5.3 A Function of Rapid Decrease

We also applied the transforms to

ψ(x) =
(
8x3 − 24x2 + 12x + 4

)
e−(x−1)2/2,

[
λ = 2π, ρ = 5.9, t = 1

]
.
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Fig. 6 Reconstruction errors for the parabola with ρ1 = 0.25 (left) and ρ2 = 0.8 (right). For the second
choice the smooth bump has a high derivative in the interval (0.8, 1), implying a large Lipschitz constant
Ls . Consequently, for low frequencies the errors are worse than for the plain coefficients (Color figure
online)

We note that ψ(x + 1) is the product of the Hermite polynomial H3(x) = 8x3 − 12x
times a Gaussian, i.e. a rescaled Hermite function. For the center we chose t = 1.
In contrast to the previous examples, we now work with the Tukey window for α =
1−ρ/λ, see Definition 4.3. We recall that this window is a non-degenerate C1-bump.
The 2λ-periodic extension ofψ produces discontinuities with very small jumps, which
can only be resolved with high frequencies. Consequently, for low frequencies all
coefficients are almost the same and fall off rapidly, see Fig. 8. Nevertheless, the plain
coefficients are O(1/|k|), while the coefficients for the smooth bump again show
the best asymptotic decay. For the reconstructions we used R10ψ and Rw

10ψ . As we
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Fig. 7 Reconstructions of the parabola. For ρ2 = 0.8 (right) the bump-windowed shape (green) has a
high derivative in (0.8, 1), implying a slow decay of the windowed coefficients. For ρ1 = 0.25 (left) the
coefficients fall off much faster, but the reconstruction is faithful only in a small interval, comparable to the
Hann window (Color figure online)
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Fig. 8 Coefficients (left) and reconstructions R10ψ and Rw
10ψ (right) for the rescaled Hermite function.

All coefficients show a rapid decrease for low frequencies and thus we obtain excellent reconstructions for
all series (Color figure online)

observe in the right plot of Fig. 8, the rapid decrease of the coefficients yields excellent
reconstructions and no differences can be determined to the original function.
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Appendix A: Periodization

Lemma A.1 For λ > 0 and ψ ∈ BVloc we have Pλψ ∈ BVloc.

Proof For a function f : [a, b] → R and a partition P of some finite interval [a, b]
we denote by V ( f , P) the variation of f with respect to P , and by V ( f ) the total
variation of f on [a, b]. Now, for ψ ∈ BVloc and λ > 0 consider f := Pλψ . It
remains to show that V ( f |[−λ,λ]) is a finite number. Therefore, let

P = {−λ = x0, x1, . . . , xk−1, xk = λ}

be a partition of [−λ, λ]. Then,

V ( f , P) =
k∑

i=1

| f (xi ) − f (xi−1)|

≤
k∑

i=1

|ψ(xi ) − ψ(xi−1)| + |ψ(−λ) − f (−λ)| + | f (λ) − ψ(λ)|

= V (ψ, P) + |ψ(−λ) − f (−λ)| + | f (λ) − ψ(λ)|.

Thus, taking the supremum among such partitions, we conclude that

V ( f |[−λ,λ]) = V (ψ |[−λ,λ]) + |ψ(−λ) − f (−λ)| + | f (λ) − ψ(λ)| < ∞.


�

Appendix B: Upper Bound for Ks

Recall the representation of the combinatorial constant Ks in (4.8). We want to find
an estimate for the following sum, cf. Eq. (4.9):

s−1∑

k=0

(s + k)! · (2s − k − 1)!
(2k + 2)! · (s − k − 1)! · (2s − 2k)! · k! = Ks

22s · (s + 1)! · (2s)2 .

For the summand we calculate

(s + k)! · (2s − k − 1)!
(2k + 2)! · (s − k − 1)! · (2s − 2k)! · k!

= (s + k)! · (2s − k − 1)!
s! · k! · (s − k − 1)! · s! · s! · s!

(2s + 2)! ·
(
2s + 2

2k + 2

)
.

(B.1)
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Recall Vandermonde’s theorem, see e.g. [21, Eq. (2.43)]:

m∑

k=0

(a)k

k!
(b)m−k

(m − k)! = (a + b)m
m! , a, b ∈ C, m ≥ 0.

In particular, for m = s − 1 and a = b = s + 1, s ≥ 1, we obtain

s−1∑

k=0

(s + k)! · (2s − k − 1)!
s! · k! · (s − k − 1)! · s! =

(
3s

s − 1

)
. (B.2)

Hence, since

(
2s + 2

2s − 2k

)
≤

(
2s + 2

s

)
for 0 ≤ k ≤ s − 1, s ≥ 2,

by (B.1) and (B.2) we conclude that

s−1∑

k=0

(s + k)! · (2s − k − 1)!
(2k + 2)! · (s − k − 1)! · (2s − 2k)! · k! ≤ s! · s!

(2s + 2)!
(
2s + 2

s

)(
3s

s − 1

)

= (3s)!
s! · (2s + 2)! · 2s

s + 2
.

This proves that

Ks ≤ 22s+1 · s2 · (3s)!
(2s + 1)! · 2s

s + 2
, s ≥ 2.

Consequently, the true value of Ks is overestimated by the factor 2s/(s + 2).

Appendix C: Computing Fourier Integrals Using the FFT

In Sect. 5 we presented numerical results for reconstructions based on windowed
Fourier coefficients andwindowed series, respectively. For the computation of Fourier-
type integrals, such as

I (k)(ψ) :=
∫ t+λ

t−λ

ψ(x)w(x − t)e−iξ π
λ
x dx, ξ = k

M
, k ∈ Z, M ∈ N, (C.1)

we used the fast Fourier transform (FFT). Let v = (v1, . . . , vd) ∈ C
d and

v̂l :=
d∑

j=1

v j e
−2π i ·( j−1)(l−1)/d , l ∈ {1, . . . , d}. (C.2)
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For the computation of the integral I (k)(ψ) let us consider the composite trapezoidal
rule on a uniform grid. Let N ∈ N be a power of 2, as well asm ∈ N, m ≤ N − 1 and

x j := t − λ + 
 · j, 
 := 2λ

m
, j ∈ {0, 1, . . . ,m}.

The trapezoidal rule with grid {x j } j∈{0,1,...,m} yields the following approximation:

I (k)(ψ) ≈ e−i k
M · π

λ
t ei

k
M π


(
ψ(t + λ)w(λ)

2
e−2π i k

M − ψ(t − λ)w(−λ)

2
. . .

+
m∑

j=1

ψ(x j−1)w(x j−1 − t)e−2π i k
Mm ( j−1)

)
.

Consequently, if k = mn for some n ∈ {0, 1, . . . , N − 1}, as well as M = N and
v j := ψ(x j−1)w(x j−1 − t) for j = 1, . . . ,m, v j := 0 for j = m + 1, . . . , N , then,

I (k)(ψ) ≈ e−i mn
N · π

λ
t ei

mn
N π


⎛

⎝r1e
−2π i mn

N − r2 +
N∑

j=1

v j e
−2π i( j−1)n/N

⎞

⎠

= e−i mn
N · π

λ
t ei

mn
N π


(
r1e

−2π i mn
N − r2 + v̂n+1

)
,

where the constants r1, r2 ∈ R are given by

r1 = ψ(t + λ)w(λ)

2
and r2 = ψ(t − λ)w(−λ)

2
.

In particular, the vector v̂ can be calculated with the FFT. For sufficiently large values
of m and N we get

1

2λ

∫ t+λ

t−λ

ψ(x)w(x − t)e−iξ π
λ
x dx ≈ e−iξ π

λ
t eiξπ

m

(
r1e

−2π iξ − r2 + v̂n+1

)
.

Recall that the window w is compactly supported. Provided that both the functions
ψ and w are smooth on (t − λ, t + λ), the trapezoidal rule gives accurate results.
The actual rates of convergence are based on the Euler–Maclaurin formula and can
be found e.g. in [6, Chap. 2.9]. In particular, the difference between the exact Fourier
coefficients and their discrete approximation using the trapezoidal rule is known to be
spectrally small, see [12, Eq. (1.5)].
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Appendix D: Oscillations of the Coefficients

We focus once more on the windowed coefficients cw
ψ . In the plot at the upper left hand

side of Fig. 3 the green line falls in a trembling way. To explain this phenomenon, we
extend the domain of the Fourier coefficients. For a 2π -periodic function f ∈ BVloc
and ξ ∈ R consider the number

f̂ (ξ) := 1

2π

∫ π

−π

f (x)e−iξ x dx .

This means, that we calculate the Fourier coefficients not only for integer values, but
for all real numbers ξ . For example, the extended Fourier coefficients of the function
f ≡ 1 are given by

1̂(ξ) := 1

2π

∫ π

−π

e−iξ x dx = sin(πξ)

πξ
= sinc(ξ).

In particular, if k is an integer, we obtain the simple Fourier coefficients and

|̂1(k)| =
{
1, if k = 0,

0, else.

As we see in the left plot of Fig. 9, for k �= 0 the simple Fourier coefficients of f ≡ 1
correspond to the zeros of ξ �→ | sinc(ξ)|. For the saw wave in Sect. 5.1 we can do
the same calculation. Here we obtain

x̂(ξ) := 1

2π

∫ π

−π

xe−iξ x dx = i · (πξ cos(πξ) − sin(πξ))

πξ2
.

Therefore, if k �= 0 is an integer, we conclude that

|̂x(k)| = 1

k
.

Thus, the coefficients of the saw wave function have a smooth decay, as we see at
the right hand side of Fig. 9 (orange line). We computed the extended (windowed)
coefficients for ξ ∈ [1, 10] and ξ ∈ [390, 400] for the saw wave. The result can be
found in Fig. 10. By extending the domain of the Fourier coefficients, we observe that
the trembling also occurs for the other coefficients (plain and hann).
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1 2 3 4 5

1 |̂1(ξ)|

1 2 3 4 5

1

|x̂(ξ)|
1/ξ

Fig. 9 Absolute values of the Fourier coefficients (bullets) for f (x) = 1 (left) and f (x) = x (right). The
extension of the domain of the Fourier coefficients leads to a non-trivial function in ξ , but the restriction to
integer values might result in a smooth decay (orange line) (Color figure online)

100 101

100

10−3

10−6

Extended coefficients (saw wave)

|cψ(ξ)|2
|cbump

ψ (ξ)|2
|channψ (ξ)|2
1/ξ2

O(1/ξ6)

390 395 40010−17

10−16

Detail (higher frequencies)

Fig. 10 Due to the extension of the domain of the coefficients, we are able to resolve the pattern (cf. upper
left plot in Fig. 3). We recall that the bump-windowed coefficients (green) have a fast asymptotic decay.
The left plot only shows low frequencies ξ , and in the right plot we observe that the bump coefficients fall
below the Hann coefficients (Color figure online)
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