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Abstract

Background Investigating the mechanical properties of biological and biocompatible hydrogels is important in tissue engineering
and biofabrication. Atomic force microscopy (AFM) and compression testing are routinely used to determine mechanical
properties of tissue and tissue constructs. However, these techniques are slow and require mechanical contact with the sample,
rendering in situ measurements difficult.

Objective We therefore aim at a fast and contactless method for determining the mechanical properties of biological hydrogels
and investigate if an optical method, like Laser-Doppler vibrometry (LDV), can accomplish this task.

Methods LDV is a fast contactless method for mechanical analysis. Nonetheless, LDV setups operating in the visible range of the
optical spectrum are difficult to use for transparent materials, such as biological hydrogels, because LDV relies on reflected or
back-scattered light from the sample. We therefore use a near-infrared (NIR) scanning LDV to determine the vibration spectra of
cylindrical gelatin discs of different gelatin concentration and compare the results to AFM data and unconfined compression
testing.

Results We show that the gelatin test structures can be analyzed, using a NIR LDV, and the Young’s moduli can be deduced from
the resonance frequencies of the first normal (0,1) mode of these structures. As expected, the frequency of this mode increases
with the square root of the Young’s modulus and the damping constant increases exponentially with gelatin concentration, which
underpins the validity of our approach.

Conclusions Our results demonstrate that NIR wavelengths are suitable for a fast, contactless vibrational analysis of transparent
hydrogel structures.

Keywords LDV - Mechanical properties - Biomaterials - Atomic force microscopy (AFM) - Compression testing

Introduction

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11340-020-00626-0) contains supplementary

material. which is available to authorized users. Transparent elastic gels, such as biological and biocompatible

hydrogels have a wide range of applications, from food tech-
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[17] as well as many other cellular processes, such as neuron
growth or vascular tube formation by endothelial cells, can be
stimulated and guided by ECM elasticity [18-21]. In order to
design and construct functional tissue substitutes, knowledge
and control of the elastic parameters of these hydrogels are
therefore essential, and methods to characterize the mechani-
cal properties of tissue-engineered structures with high spatial
resolution are a prerequisite for this task. Furthermore, for
direct fabrication of living, cell-laden structures, with 3D-
printing technologies, such as extrusion-based 3D-printing,
the printed hydrogels have to be sufficiently stiff to sustain
3D structures and, at the same time, their viscosity during
extrusion has to be low enough to keep shear forces on cells
at a minimum to guarantee cell survival and viability [22].
Therefore, the hydrogels used for such applications have to
undergo a rapid transition from low viscosity during the print-
ing process (e.g. extrusion), to sufficiently high stiffness to
form mechanically stable structures. To initiate and control
this transition, temperature gradients, chemical or photochem-
ical crosslinking or shear thinning are used [3, 5, 23, 24], and
technologies which allow to monitor this transition can help to
optimize printing parameters and are required for quality con-
trol [25, 26]. Currently, indentation type atomic force micros-
copy (IT-AFM) is used as a standard method for spatially
resolved characterization of the biomechanical properties of
biological samples, such as cells, ECM, hydrogels and tissue
sections with high spatial resolution [8, 21, 27-30]. However,
IT-AFM is comparatively slow, it relies on mechanical contact
between an indenter (typically a pyramidal tip) and the bio-
logical sample and is not readily integrated into biofabrication
or other fabrication processes.

Laser-Doppler vibrometry (LDV) is widely used to inves-
tigate mechanical vibrations in structural analysis [31, 32],
where it provides detailed insights into the behavior of
engineered and natural structures subjected to dynamic forces,
and provides access to material properties like elasticity and
viscosity [33—39]. LDV is a fast contactless optical technolo-
gy, which can acquire data from a distance at high temporal
and spatial resolution and can readily be integrated into fabri-
cation processes. A scanning setup allows for two-
dimensional measurements, providing access to the shape of
the vibrational modes [36, 40]. Nevertheless, because LDV
relies on the optical Doppler effect, it requires that a sufficient
amount of light is reflected or scattered back from the inves-
tigated object. For this reason, structures made of transparent,
low refractive index materials, such as biological or biocom-
patible hydrogels, have been difficult to investigate by LDV.
In previous studies, reflective markers, i.e. reflective particles
or metal foils [41-43], were embedded in or placed on top of
these materials to enhance the intensity of the reflected signal.
However, for many applications, such as biofabrication or
food technology, placing particles in or on top of the
hydrogels is not feasible. Furthermore, the additional mass
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of these reflective markers can falsify the results [44, 45],
and fine-meshed 2D-scanning of a vibrating surface is impos-
sible if a discrete number of markers is used.

In the present study, we have therefore investigated wheth-
er the capabilities of LDV, which work well for reflective
materials, can be extended to transparent materials, like
hydrogels without using additional reflective markers. We
have established a procedure, which allows distinguishing
the elasticities of transparent hydrogels, using a near-infrared
(NIR) scanning LDV. As test samples, we used 3 mm thick
gelatin hydrogel discs with a diameter of 9.7 mm. Samples of
different gelatin concentrations were attached to the rim of a
cylindrical sample holder and dynamically excited with a
piezo actuator. To validate and quantify our results, we have
compared the LDV data to the elastic parameters of the same
hydrogels determined by IT-AFM and unconfined compres-
sion testing, which are two well-established methods for the
characterization of the elastic parameters of biological sam-
ples [8, 21, 46-51].

Experimental Procedure
Optical Transmission Measurement

The measurement of the optical transmission was done using a
high-sensitivity thermophile sensor (PS10, Coherent Inc.,
Santa Clara, CA, USA). A 0.20 g/ml gelatin hydrogel was
directly cast into a sample holder, as described in section 2.4
and positioned over the sensor’s opening. The LDV was po-
sitioned perpendicular to the sample surface as shown in Fig. 3
and the IR laser was turned on. At least a hundred data points
were recorded from in total 12 different samples of varying
thickness. Using the mean value for each sample, the absorp-
tion coefficient « for each of the 0.20 g/ml gelatin samples
was derived by fitting Lambert-Beer’s law (Eq. 1) to the data:

I = Ioeﬂxd (1)

where, / is the intensity measured after passing the sample, 7,
the intensity without a sample (here 8.92 mW), and d is the
thickness of the sample.

Production of Sample Holder

The custom made sample holder structures were made with a
fused deposition modeling 3D-printer (Ultimaker 2+,
Ultimaker, Geldermalsen, Netherlands) using a polylactide
filament with a diameter of 2.85 mm. CAD files of the sample
holder were sliced for the 3D-printer with a layer height of
0.1 mm and a 0.4 mm nozzle diameter, using the Cura slicing
software (Ultimaker, Geldermalsen, Netherlands). 100% infill
was chosen to obtain solid structures and thereby minimize
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undesired resonances and dynamics in the low-frequency
range, as much as possible.

Hydrogel Preparation

Gelatin hydrogels with different gelatin concentrations were
made by mixing deionized water and crystallized gelatin pow-
der (4308.1, Carl Roth GmbH & Co. KG, Karlsruhe,
Germany). To dissolve the gelatin, the mixture was placed
on a heated magnetic stirrer at 55 °C. After 8 min, the gelatin
was completely dissolved and a clear, honey-like solution was
obtained. To prevent evaporation during sample preparation
and storage, the beakers were sealed with Parafilm (IDL
GmbH & Co. KG, Nidderau, Germany). The solution was
then stored at 37 °C until needed for sample preparation, as
described below and shown in Fig. 2.

Sample Preparation

Hydrogels were cast directly into the round cavity of the sam-
ple holder, which was placed upside down on a piece of
Parafilm and held in place with standard adhesive tape.
222 ul of the 37 °C warm gelatin solution were pipetted
through the lateral openings of the sample holder (see
Fig. 2), until the 3 mm high edge of the sample holder and
thus the desired sample thickness of 3 mm was reached. After
five minutes at room temperature (22.3 °C), the samples were
carefully transferred into a refrigerator and cooled for 5 min at
4 °C. Before LDV measurements, the Parafilm was removed,
and the sample holder was mounted on a piezoelectric actuator
in upright position, (P844.10, Physik Instrumente, Karlsruhe,
Germany), where the sample was allowed to rest for 6 min to
equilibrate and adapt to room temperature. To minimize pos-
sible sources of error, the same sample holder was used for all
hydrogels investigated.

LDV Measurements / Experimental Setup

For the LDV measurements, a PSV-500 scanning vibrometer
equipped with a NIR laser (A = 1550 nm), a PSV-A-410 close-
up unit and a PSV-A-CL-200-Xtra micro scan lens (Polytec
GmbH, Waldbronn, Germany) was used. The green pilot laser
was focused onto the rim of the sample holder and 20 mea-
surement points were defined in a circular arrangement in the
user interface. On the surface of the gelatin sample itself in
total 31 measurement points were defined. As focus value, the
values of the sample holder were assigned, because it turned
out to be more difficult and error-prone to focus directly onto
the transparent hydrogel surface. For excitation of the pre-
loaded piezo with a periodic chirp sweep from 0 to 2.5 kHz
(sweep rate of 640 ms), the built-in signal generator of the
LDV, together with a HiFi-amplifier (AV-235IS, electronic
Toys Trading GmbH, Braunschweig, Germany) were used.

The obtained frequency resolution of the measurements was
1.56 Hz.

LDV Data Analysis

The transmissibility was calculated by normalizing the data of
the central measurement point on the hydrogel with respect to
the mean value of all the data acquired on the rim of the
sample holder. Analysis of resonance frequencies and full
width at half maximum (FWHM) was done using MATLAB
(The Mathworks Inc., Natick, Massachusetts, USA) and the
findpeaks function. The damping constant y and the damping
ratio ¢ were derived from the full width at half maximum of
the transmissibility squared AfrwzT°) using the following
equations:

7= 7r‘AfFWHM(Tz) (2)
and

_ Y _ AfFWHM(Tz)
¢= 277'f0‘1 B 2fo,l (3)

where T is the transmissibility and f,_; the resonance frequen-
cy (in Hz) of the (0,1) mode.

AFM Measurements

IT-AFM measurements were carried out with a NanoWizard I
AFM (JPK Instruments, Berlin, Germany), with a maximum
lateral scan range of 100 x 100 umz, and a vertical range of
15 um. The setup was positioned on a granite slab suspended
with bungee cords inside a soundproof box to reduce external
noise. For the IT-AFM measurements, silicon nitride cantile-
vers (MLCT Cantilever E, Bruker, Mannheim, Germany)
with a nominal spring constant of 0.1 N/m and pyramidal tips
with a nominal radius of 20 nm were used. The tip velocity
during the indentation experiments was always 12 pm/s. For
every cantilever, the actual spring constant was determined
individually using the thermal noise method [52]. The spring
constant calibration procedure was repeated three times, and
the arithmetic average of the three values was used for data
analysis. IT-AFM measurements were performed in
phosphate-buffered saline at pH 7.4. On a 5 x5 um? area,
10 x 10 force-indentation curves, consisting of 3330 data
points each, were recorded. On every hydrogel, five force
maps were acquired at different positions of the hydrogel
surface.

AFM Data Analysis

The Young’s modulus £ was extracted from the indentation
part of the force curves by fitting the modified Hertz model for
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a pyramidal indenter [53], which gives the force (¥) as a func-
tion of the indentation depth (d):

E  tan(a)

Fld) =13

d* (4)

The Poisson’s ratio v was set to 0.5 for incompressible
materials [54]; « is the half opening angle to an edge of the
tip, which was 17.5° for the used tips. All force curves were
analyzed from the contact point up to an indentation depth of
1 pm, using the JPK Data Processing software (Version
6.1.42, JPK Instruments AG, Berlin, Germany). The
Young’s modulus values of all force-indentation curves were
summarized in a stiffness distribution (histogram). To locate
the maxima of these histograms, a Gaussian distribution was
fitted to each histogram using the Igor Pro software (Version
6.3.4.0, WaveMetrics, Oregon, USA).

Unconfined Compression Testing

For unconfined compression testing, a mechanical test system
(MACH-1 v500cs, MAO00O3, Biomomentum Inc., Laval,
Canada) with a multiaxial load cell (70 N, MA235,
Biomomentum Inc., Laval, Canada) and a flat indenter (diam-
eter: 12.5 mm, MA262, Biomomentum Inc., Laval, Canada)
was used. Cylindrical gelatin samples with a mean height of
6.18 mm and a diameter of 7.7 mm were prepared using a 3D-
printed mold. The height was evaluated for each sample man-
ually with a digital caliper ruler. The total compression length
/ was set to 927 pm, corresponding to a maximum strain of
15%. The compression velocity was 139 pm/s, corresponding
to a strain-rate of 2.3%/s. For each gelatin concentration, five
samples were tested. The error bars in Fig. 5 represent stan-
dard deviations.

Data Analysis Unconfined Compression Testing

The Young’s modulus £ was extracted from the slope of the
linear part of the stress-strain-curves (10—15% strain) obtained
by unconfined compression testing, using £ = %Ah,
where AF/Al is the slope of the force compression curve, /4
is the sample height and A is the surface area (see also

Supplementary Fig. 3).

Analytical Model for Modal Analysis of a Vibrating
Disk

To analytically extract Young’s modulus values from the ex-
perimentally determined eigenfrequencies of the (0,1) mode
and compare them to IT-AFM and confined compression test-
ing, we used a linear elastic model of a clamped vibrating disc
[55, 56]. For a thin disc the frequency of the (0,1) mode is
given by:

SEM

B D 1.015 -7
pr— —, —_— th P m— 5
f0,1 . 4 on y W1 50,1 - (5)

where r is the radius of the disc, in our case 4.85 mm, D

= #’iz) is the plate bending stiffness, p4 = ph, the area den-
sity of the disc (see Supplementary Material for the concen-
tration dependent mass densities p) and / the disc thickness,
here 3 mm. In this equation c is a geometrical correction fac-
tor, which is 1 in the case of thin discs (#/2 » 10). In our case,
where 7/h = 1.6, ¢ becomes 0.59 [57]. Because Eq. 5 describes
a vibrating disc without energy dissipation, we used

LDV

f0,1 = 2142 (6)

to derive fy, | from the first eigenfrequencies determined by
LDV (157") [58].

Finite Element Method Analysis

To numerically extract the Young’s modulus values from the
LDV resonance frequencies, we applied the finite element
method, using COMSOL Multiphysics software (version
4.3b, COMSOL AB, Stockholm, Sweden) and a three-
dimensional solid mechanics model for calculating the

eigenfrequenies ﬁM

. The meshing method was set to
physics-controlled using the element size “finer”. In the
FEM, the mass density and Young’s modulus were set to 1
and the Poisson’s ratio to 0.499. The Young’s modulus of the

gelatin used in the experiments was then evaluated from

2
E= (@éL) P (7)
0.1

where the (un-damped) resonance frequency f, ; was again
derived from the LDV data using Eq. 6, and the experimen-
tally determined gelatin densities (see Supplementary Table 2)
were used for p.

Results

Determining the Absorption Coefficient of Gelatin
Hydrogels at the LDV Wavelength

To investigate whether the mechanical properties of transpar-
ent hydrogels can, in fact, be determined without additional
reflective coatings or markers with a NIR laser, we first con-
firmed that the detected signal indeed originates from the hy-
drogel surface pointing towards the LDV and is not reflected
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from the backside of the hydrogel or other reflective or par-
tially reflective surfaces behind the gel. We therefore deter-
mined the absorption coefficient of a 0.20 g/ml gelatin hydro-
gel at the laser wavelength of A = 1550 nm, by measuring the
transmitted intensity of the LDV laser as a function of gelatin
thickness (see methods section for details). As expected, the
transmitted laser intensity decreases exponentially between
I mm and 6 mm gelatin thickness, following Lambert-
Beer’s law and yielding an absorption coefficient of o=
1.012/mm (see Fig. 1). We subsequently chose a sample
thickness of 3 mm for all further investigations, because this
thickness leads to a more than 400-fold reduction in light
intensity for laser light which might be reflected from the
backside or from behind the hydrogel sample, and which has
to pass through the 3 mm sample twice, thereby ensuring that
in our vibrational analysis of the samples, the detected LDV
signal originates mainly from the proximal hydrogel surface.
At the same time, this sample thickness provides sufficient
mechanical stability to ensure stable measurement conditions
and allows for reliable detection of the eigenmodes of the
oscillating samples (see below).

Integrating the Hydrogel Samples in the LDV Setup

For dynamic excitation, 3 mm thick gelatin discs (diameter
9.7 mm) were suspended inside a cylindrical sample holder.
To ensure good mechanical contact between the hydrogel and
the sample holder rim and obtain a smooth hydrogel surface
which reflects as much light as possible back to the LDV
detector, the liquid gelatin solution was cast directly into the
sample holder, and then mounted on a piezoelectric actuator
(see Fig. 2, and methods section for details of the sample
preparation). The LDV was positioned approximately 0.2 m
above the sample and manually focused onto the rim of the

1

sample holder, with the help of a green pilot laser (A=
520 nm). Because the liquid gelatin had been cast directly into
the sample holder, the rim of the sample holder was always
coplanar with the hydrogel surface, and focusing the laser on
the sample holder rim was thus sufficient to define the mea-
surement plane on the hydrogel surface.

Measuring Hydrogels with the LDV

After defining 20 measurement points on the sample holder
and 31 measurement points on the hydrogel surface (see Fig. 2
and Fig. 3), the piezo actuator was dynamically excited by
sweeping a periodic chirp signal from 0 to 2.5 kHz, as
depicted schematically in Fig. 3. We then used the NIR scan-
ning laser (A = 1550 nm), to determine amplitude, phase and
deflection shape of the resulting oscillations of the hydrogel
and sample holder (see methods section for details).

Figure 4a shows the velocity amplitude of an oscillating
0.20 g/ml gelatin hydrogel at the central position of the sample
(blue line) together with the velocity amplitude of the sample
holder (orange line) as a function of the excitation frequency.
At a frequency of 223 Hz, the first resonance can be observed,
followed by peaks at 544 Hz, 952 Hz, and 1311 Hz. The first
resonance of the sample holder appears at 1117 Hz. Scanning
the sample in 2D revealed that the first resonance peak at
223 Hz corresponds to the first fundamental mode, i.e. the
(0,1) mode of the gelatin disc (see Supplementary Fig. 1 and
Supplementary video). The resonances at 544 Hz and 952 Hz
correspond to modes with zero displacement in the center of
the disc (0,2 and 1,1) as revealed by 2D scanning of the sam-
ple (see Supplementary Fig. 1b-d). They should therefore not
appear in the frequency response in Fig. 4.a. Nevertheless,
these peaks are present, probably because the setup was not

Fig. 1 Absorption of the LDV- 10 F—= T T T T T T
laser in gelatin. Optical . S
transmjssiqn of 0.20 g/ml gelatin DY
samples with varying thickness E A SRR
(blue dots) in a semi-logarithmic = g
representation, together with an = 0 Ter .
exponential fit (black dotted line), g 10°F Sae E
yielding an absorption coefficient o : poe
a=1.012 1/mm. Without gelatin e: 1S
sample (0 mm), the laser intensity :‘wf RS N
was 8.92 mW. Error bars . re
represent standard deviation. B ! S o
S10°F S -
HON
< A NG
= ~a
>
~
s ~
2L a
10 I i 1 I i 1 i a7
0 1 2 3 4 5 6 7

Sample Thickness (mm)




1072

Exp Mech (2020) 60:1067-1078

Fig. 2 Preparation and mounting of the gelatin sample on the piezo actuator. a, The sample holder (blue) is fixed upside down on Parafilm (white)
and held in place with adhesive tape (yellow). b, Liquid gelatin is pipetted into the cavity of the sample holder until a gelatin level of 3 mm is reached. ¢,
After gelation of the sample, the sample holder is screwed directly onto the stack piezo (grey), and the Parafilm is removed. d, A visible pilot laser (green)
is focused on the rim of the sample holder and measurement (red dots) and reference points (white dots) are defined on the gelatin sample and the sample

holder rim.

perfectly axisymmetric and the measurement point was not
perfectly in the center of the sample.

Vibrational Analysis of Hydrogel Samples

For the further analysis of hydrogels with different gelatin
concentrations, we focused solely on the first fundamental
mode and divided the velocity amplitude of the gel by the
velocity amplitude determined at the sample holder rim, to
obtain the transmissibility of the sample, which is depicted
in Fig. 4b for gels with seven different gelatin concentrations.
Again, all spectra were recorded at the central position of the
respective gelatin disc. The 0.10 g/ml gelatin gel (yellow line)
exhibits its first resonance at 144 Hz, with a maximum trans-
missibility of 23.73 and a width of the resonance curve of
10 Hz (full width at half maximum). With increasing gelatin
concentration (steps of 0.05 g/ml, from 0.10 g/mlup to 0.40 g/
ml), the first resonance moves to higher frequencies, reaching
486 Hz for the 0.40 g/ml gelatin gel (see Supplementary
Table 1 for the exact values at all gelatin concentrations). At
the same time, the transmissibility of the (0,1) mode

SEM

decreases, and the width of the resonance curve relative to
the peak height increases with increasing gelatin concentra-
tion, pointing to increased internal energy dissipation at higher
gelatin concentrations and frequencies. Fig. 4c summarizes

the results of Fig. 4b, and displays the frequencies éﬁv of

the first fundamental mode (0,1) for all seven gelatin
hydrogels (blue dots, left axis), together with the damping
ratio ¢ (insert in Fig. 4c, see methods section for details of
the calculation). Both the eigenfrequency of the (0,1) mode
and the damping ratio increase with gelatin concentration,
indicating that elastic modulus and viscous damping increase
with increasing gelatin concentrations. In addition to the
damping ratio, we also extracted the damping constant y from
the data, which is proportional to the viscosity of the gel and
grows exponentially with gelatin concentration, as reported in
the literature (Supplementary Fig. 2, see methods section for
details or the calculation) [59-61].

To directly correlate the eigenfrequencies of the (0,1)
mode to the elastic moduli of the gelatin gels, we deter-
mined the Young’s moduli of all seven gels using IT-
AFM (orange dots in Fig. 4c, right axis). The Young’s
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Fig. 3 Measuring hydrogels
with the LDV. Schematic
representation of the experimental
setup, with the scanning LDV
above the gelatin sample, which is
fixed inside the cylindrical sample
holder and excited with a
sinusoidal chirp signal (0—

2.5 kHz) generated by the control
unit and amplified by a HiFi
amplifier (not shown).

Scanning LDV
(1550 nm)

Sample holder||=<

|
|~

Piezo stack

Control unit

Periodic chirp
0-2.5kHz

V

moduli span a range from 2.06 kPa for the 0.10 g/ml
gelatin gel up to 33.95 kPa for 0.40 g/ml gelatin. Within
error limits, the Young’s moduli show an almost linear
increase with the gelatin concentration, which is in accor-
dance with the literature [62, 63]. Here we excluded the
last data point at 0.40 g/ml from the linear fit, because its
Young’s modulus is lower than that at 0.35 g/ml. At
0.40 g/ml gelatin, we occasionally observed air bubbles
in the hydrogel. We therefore assume that we accidentally
carried out the AFM measurements in the vicinity or on
top of an air bubble. In Fig. 4d, the eigenfrequencies of
the (0,1) mode are plotted vs. the square root of the
Young’s modulus determined by IT-AFM for the different
gelatin concentrations. As indicated by the linear fit
(dashed line in Fig. 4d), the eigenfrequency of the first
fundamental (0,1) mode increases approximately linearly
with the square root of the Young’s moduli, which is in
agreement with linear elastic theory for the vibration of a
homogeneous disc structure [56], indicating that it might
even be possible to extract the Young’s modulus values
directly from the LDV data, with a modal analysis.

To investigate if a modal analysis can indeed be used
to extract the Young’s moduli directly from the LDV

data, we used an analytical elastic model of a clamped
vibrating disc [55, 57], as well as FEM analysis (see sec-
tions 2.11 and 2.12 for details). Using the thin disc ap-
proximation of the analytical model (c=1 in Eq. 5), we
obtain a reasonable agreement between the Young’s mod-
uli derived from LDV resonance frequencies (blue data
points in Fig. 5) and the IT-AFM results (orange data
points in Fig. 5). Only the 0.40 g/ml AFM value had to
be excluded, for the same reason given above. However,
when we use the correction factor for a “thick” disc with
9.8 mm diameter and 3 mm thickness (c=0.59, yellow
data points in Fig. 5), the LDV derived results increase
almost threefold and no longer agree with the AFM data.
Using FEM analysis to derive Young’s moduli from the
LDV data (green data points in Fig. 5) renders compara-
ble values, which are again approximately three times
higher than the IT-AFM values.

However, IT-AFM deforms the gelatin hydrogels only
locally at the sample surface (in our case the indentation
depth was approx. 800 nm), while upon dynamic excita-
tion, for example of the (0,1) mode, the entire hydrogel
disc undergoes periodic deformation. For polymer based
hydrogels, such as gelatin, it is well known that due to the
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holder at 223 Hz and 1117 Hz, respectively. b, Transmissibility of samples with gelatin concentrations from 0.10-0.40 g/ml at the central position of the
samples. The velocity amplitude was determined at the central position of each sample, and normalized with respect to the mean velocity amplitude of the
sample holder rim, which was simultaneously determined, in order to obtain the transmissibility. The frequency of the (0,1) mode is clearly visible for all
gelatin concentrations. ¢, Resonance frequencies (blue dots, right axis), Young’s modulus values determined by IT-AFM (orange dots, left axis), and
damping ratio of the (0,1) mode of the hydrogels (insert) vs. the gelatin concentration d, Eigenfrequencies of the (0,1) mode of the gelatin discs vs. the

Young’s modulus values. For IT-AFM standard deviations are given.

non-linear entropic elasticity of the individual polymers,
the material responds to strain in a highly non-linear way,
leading to a strain-dependent Young’s modulus and strain
stiffening [64], i.e. the Young’s modulus increases with
increasing strain. In addition to IT-AFM we therefore also
carried out unconfined compression tests, where the entire
gelatin samples were compressed up to 15% (see section
2.9). These tests revealed the expected non-linear force-
response of gelatin to strain, where the Young’s modulus
increases with strain, before it reaches a plateau at ~10-
15%, strain (see Supplementary Fig. 3). As can be seen in
Fig. 5 (purple data points), the results of these uncon-
strained compression tests agree much better with the
“thick” disc analytical model (c=0.59) and with the
FEM results (green data points), indicating that the
(global) unconfined compression of entire hydrogel sam-
ples represents the deformations experienced by the

SEM

samples during dynamic excitation much better, than the
(local) ~800 nm indentation of the pyramidal AFM tip.

Discussion

One major problem in the vibrational analysis of transparent
hydrogels by LDV is the low reflectivity of the hydrogel sur-
face. For the gelatin hydrogels, with a refractive index of water
at the laser wavelength (1550 nm) of ny,o = 1.318, and an
incremental refractive index of gelatin a,; = 0.18, the total re-
fractive index is only 1.35 for the 0.10 g/ml gelatin hydrogel
and 1.39 for the 0.40 g/ml gelatin gel [65-67]. As a conse-
quence, only about 2.2% (for 0.10 g/ml) to 2.7% (for 0.40 g/
ml) of the incoming laser intensity is reflected back from the
air-hydrogel interface at normal incidence (see Supplementary
Table 3 for details of the calculation of refractive index and
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reflectivity). Nevertheless, because of the frequency modula-
tion detection technique used by the LDV interferometer, this
signal is still high enough to permit LDV measurements at a
sufficient signal to noise ratio, provided that even less laser-
light from behind the transparent samples reached the LDV
detector. However, for fully transparent gels, the intensity of
laser light which is reflected from the backside of the hydrogel
would be nearly identical to the intensity reflected from the
front side, and light which is reflected by other possibly more
reflective surfaces behind the hydrogel can potentially have a
much higher intensity than the measurement signal from the
front side of the gel. For this reason, we chose the laser wave-
length A = 1550 nm for our investigation. At this wavelength,
the absorption coefficient of water is about 3 orders of mag-
nitude larger than in the visible range [65, 68], and therefore,
unlike in the visible range, the intensity of light which is
reflected or scattered back from the backside or surfaces be-
hind the hydrogel, and which could potentially disturb the
measurement, is sufficiently reduced. As already mentioned,
with an absorption coefficient of the 0.20 g/ml gelatin hydro-
gel of 1.012/mm at A=1550 nm (see Fig. 1), for the 3 mm
thick gelatin samples investigated in our study, the intensity of
laser light which passes through the gel twice before it reaches
the detector of the LDV, is reduced more than 400-fold, en-
suring that the measured signal originates mainly from the
front side of the hydrogel surface. Although the gelatin gels
have been thoroughly homogenized, back-scattering by mo-
lecular structures inside the hydrogel cannot be ruled out en-
tirely. However, the refractive index increment at the air hy-
drogel interface is significantly larger than any refractive in-
dex increments expected inside the hydrogels [65, 69] (see

Concentration Gelatin (g/ml)

also SI for the concentration-dependent refractive index of
gelatin hydrogels). In addition, the measurement spot of the
LDV is focused on the front side of the gel. This reduces
possible background signals from out of focus areas even
further, and for future applications, one might even envision
using a confocal LDV setup to minimize background signals
[70], as long as the focal depth is large enough to allow de-
tection of the entire oscillation amplitude.

In the vibrational analysis of the 0.20 g/ml gelatin hydrogel
(Fig. 4a), we can clearly distinguish the three fundamental
modes (0,1), (1,1), and (1,2) of the gelatin disc (see
Supplementary Fig. 1), which confirms the validity of our
approach and shows that it is possible to conduct vibrational
analysis on transparent hydrogel structures with an LDV, pro-
vided that a NIR laser is used. We also find the expected
square root dependence of the frequency of the first funda-
mental mode on the Young’s modulus of the hydrogel
(Fig. 4d) [55, 56]. Furthermore, in agreement with previous
studies on gelatin viscosity [52—54], the damping constant
increases exponentially with gelatin concentration (see
Supplementary Fig. 2). Finally, a modal analysis with appro-
priate analytical modelling as well as FEM analysis, rendered
even reasonable quantitative agreement between the LDV re-
sults and the bulk elastic modulus, as determined by uncon-
fined compression testing. Taken together, these findings un-
derpin the validity of the approach and demonstrate that, for
the chosen geometry, it is possible to determine elastic mate-
rial parameters of the hydrogel. It has to be pointed out, how-
ever, that our approach strongly depends on the geometry of
the chosen setup, and that we were not able to determine the
elastic modulus of the gels by measuring the transfer functions
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of gels placed directly on top of a vibrating solid support. It
should also be pointed out that pre-strain stiffening of the
hydrogel is only one possible explanation for the discrepancy
between IT-AFM data and unconfined compression testing.
An investigation of the strain dependence of the Young’s
modulus of gelatin hydrogels, especially for small deforma-
tions, as well as a systematic comparison between IT-AFM
and unconstrained compression testing is still missing and
should be carried out in future studies. Nevertheless, for pro-
duction and quality control in a manufacturing process and
many other applications, the detection of changes of the ma-
terial properties, which have to reach a certain set-point, e.g.
during gelation or the discovery of deviations from a desired
set-point, is more important than the direct quantification of
elastic parameters. Once the system has been properly set up,
tested, and calibrated, a similar approach to the one shown
here should therefore also be applicable to other geometries
and setups, and the good agreement between LDV derived
Young’s moduli and the unconfined compression data indi-
cates that, with more sophisticated numerical modeling, even
complex geometries might be analyzed with LDV in the
future.

Conclusion

In summary, our results clearly show the feasibility of the
mechanical characterization of transparent hydrogel structures
using LDV. With the chosen setup and geometry, we cannot
only detect changes in the vibrational behavior of the investi-
gated structures caused by changes in the material parameters,
but we can also correlate the observed changes in the vibration
spectra to the Young’s modulus of the hydrogel. We envision
a broad range of possible applications, from adhesives to food
technology to the rapidly developing field of biofabrication,
where this approach might be used in the manufacturing of
cell-laden 3D hydrogel structures, as well as for monitoring
the maturation of 3D tissue constructs in situ. In the future, this
approach might be further improved by new LDV setups with
even longer wavelengths, as well as by using confocal mea-
surement geometries.
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