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Abstract

The people around the world use more and more software in their daily lives, as such the
boundary between digital and human is about to vanish. A natural observation is that the
interest of many type of actors (e.g., nation state actors, state sponsored actors, etc.) rises
exponentially as this software success story unfolds. As digital data is the new oil of the
economy, these actors are driven by many incentives to get to this data. As such, comparable
efforts are undertaken to reach the point in which private devices are no longer private but rather
controlled and owned by others, in many cases without the user knowledge. This is achieved
by performing an attack which uses a certain system weakness such as a program code-based
vulnerability. As such, it is important to have a deep understanding of code reuse attacks
(CRAs) as these are often used by these actors to reach their above-mentioned goals. Thus,
this thesis provides tools and techniques to mitigate these problems by offering approaches to
address CRAs along two main lines of research based on static and dynamic code analysis.

In the first part of this thesis, we present a static symbolic execution based framework
INTDETECT, which can detect integer overflows in C source code programs, as integer overflows
often lead to memory corruptions, and even to CRAs. INTDETECT can reliably detect integer
overflows and does not suffer from false negatives for the tested programs. We integrate it in the
Eclipse IDE which is a well-established and widely used Integrated Development Environment
(IDE). Next, we extend the static C source code analysis framework on which INTDETECT relies
by implementing an integer overflow detection and repair generation tool, called INTREPAIR,
on top of it. INTREPAIR generates C source code repairs that help a programmer to automat-
ically repair a previously detected integer overflow. INTREPAIR can efficiently remove a fault,
automatically validate a repair and does not introduce unwanted program behavior. Further,
we extend our static source code analysis framework in order to not only detect and repair
integer overflows, but also to detect and repair buffer overflows which are in most cases one
of the main prerequisites for performing CRAs. For this purpose, we provide a tool, called
BUFFREPAIR, which automatically generates buffer overflow repairs, does not suffer from false
negatives, and can also validate a repair.

In the second part of this thesis, we focus on the detection of dynamic memory corruptions,
which most commonly lead to (or are a prerequisite for) CRAs. We are motivated to take
this path due to the intrinsic limitations of static analysis techniques used in the first part
of this thesis. More precisely, we develop a compiler-based sanitizer tool, called CASTSAN,
which detects object type confusions during runtime and which is completely integrated into a
well-established compiler framework (i.e., Clang/LLVM). CASTSAN is a fully functional object
type confusion detection tool that is based on a novel and efficient technique for detection of
only polymorphic C++ object type confusions. Thus, if consistently used it can considerably
reduce the likelihood of CRAs.

Next, we design a static compiler based tool, named LLVM-CFI, which can assess state-
of-the-art static CFI defenses. The intuition behind this decision is twofold: First, due to the
fact that currently memory corruptions cannot fully be eradicated from programs, we would
like to provide a runtime defense to harden a program. Second, we would like to design and
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implement a novel CFI-based technique, which will be introduced in the next parts of this
thesis, for protecting indirect program control flow transfers. In order to effectively address
this task, we first need to learn how effective the existing state-of-the-art CFI defenses are
and which level of security they offer. Thus, we develop LLVM-CFI, a novel framework for
assessing static CFI policies w.r.t. calltarget set reduction after a certain CFI defense was
applied. Further, by using LLVM-CFI, we gain important knowledge which helps us to prepare
the next design decisions for the tools presented later in this thesis. Further, we design and
implement a compiler-based tool, called ρFEM, which is based on the results from the second
part of this thesis. ρFEM protects program CFG backward-edges stemming from indirect
and direct forward-edge program control flow transfers. ρFEM is based on a novel technique
for protecting program CFG backward-edges relying on a fine-grained CFI policy, which
provides an optimal set of return targets for each protected callee. In this way, the likelihood
of successfully performing CRAs exploiting backward edges is greatly reduced. At the same
time, a solution serving as a competitive alternative for shadow stacks is provided. In contrast
to shadow stack techniques, except Intel Control Flow Enforcement (CET) which is based on
hardware support or Return Address Defender (RAD) which uses page permissions, ρFEM
does not rely on entropy and information hiding. Thus, the corresponding protection disclosing
attack vectors which are relevant for shadow-stack techniques do not apply for ρFEM.

Finally, in the last part of this thesis, we develop a framework called τCFI for protecting
legacy program binaries with novel CFI policies designed by taking into account the lessons
we learned and summarized in previous chapters. These lessons have helped us to design and
implement a tool which can effectively protect forward and backward program CFG edges in
stripped program binaries as this type of information is usually not required in production-ready
binaries. Note that most of the semantic information has vanished through the compilation
process. In this way, CRAs which rely on corrupting forward and/or backward CFG edges due
to indirect control flow transfer violations are mitigated by greatly reducing the likelihood of
successfully performing such an attack when hardening the program binary with τCFI.
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Zusammenfassung

Menschen auf der ganzen Welt nutzen zunehmend mehr Software in ihrem alltäglichen
Leben, was dazu führt, dass die Grenze zwischen der digitalen und realen Welt zunehmend ver-
schwindet. Während Software stetig populärer wird, steigt auch exponentiell das Interesse von
verschiedenen Akteuren (z.B. staatliche Angreifer, staatlich gesponserte Angreifer, etc.). Dig-
itale Daten werden heutzutage oft als das neue Gold betitelt. Aus diesem Grund unternehmen
Angreifer zum Teil große Anstrengungen, um private Geräte ohne das Wissen der Benutzer
zu kapern, um an wertvolle Daten zu gelangen. Deshalb ist es wichtig, ein tiefgreifendes Ver-
standnis von Code-Wiederverwendungs-Angriffen (CWA) zu haben. Denn diese stellen einen
Hauptangriff Vektor dar, der von diesen Akteuren verwendet wird, um ihre Ziele zu erreichen.
Diese Dissertation bietet daher Lösungen und Ansätze zur Minderung von Problemen dieser
Art, indem CWAs mit zwei verschiedenen Forschungsansätze adressiert werden.

Im ersten Teil dieser Dissertation präsentieren wir ein statisches symbolisches Ausführungs-
framework, in welchem wir zuerst ein Ganzzahl Überlauferkennungswerkzeug namens INT-
DETECT entwerfen und implementieren. Anschließend wird dieses in der Eclipse Entwick-
lungsumgebung integriert. INTDETECT kann Ganzzahlüberläufe in C Quellcode-Programmen
erkennen, die oftmals zu einer Speicher-Korruption oder sogar zu einer CWA führen können.
Des Weiteren kann INTDETECT Ganzzahl-Fehler zuverlässig erkennen ohne dabei Falschmel-
dungen zu melden. Wir integrieren dieses Werkzeug in die etablierte und weit verbreitete
Eclipse Entwicklungsumgebung. Als nächstes erweitern wir unser statisches C Quellcode-
Analyse-Framework, das wir bereits oben erwähnt haben, durch die Integration eines Ganzzahl-
Überlauferkennungs- und Reparatur-Werkzeugs namens INTREPAIR. INTREPAIR kann Quellcode-
Reparaturen automatisch durchführen, die einem Programmierer helfen den Ganzzahl-Überlauf
zu korrigieren. INTREPAIR kann einen Fehler effizient entfernen, überprüft automatisch gener-
ierte Reparaturvorschläge und führt kein unerwünschtes Programmverhalten ein. Außerdem
erweitern wir unser statisches C Quellcode-Analyse-Framework, sodass dieses Pufferüber-
läufe, welche in vielen Situationen eine Hauptvoraussetzung fur CWAs sind, erkennen und
reparieren kann. Hierfür stellen wir ein Werkzeug namens BUFFREPAIR zur Verfügung. BUF-
FREPAIR erzeugt automatisch Pufferüberlauf Reparaturen, und kann einen vorher generierten
Quellcode-Reparatur-Vorschlag validieren.

Im zweiten Teil dieser Dissertation präsentieren wir einen dynamischen Ansatz zur Erken-
nung von Speicher Verfälschungen, die oft zu CWAs führen können oder sogar eine Voraus-
setzung für diese sind. Unsere Motivation hierfür ergibt sich aus den Einschränkungen der
statischen Analysetechniken wie im ersten Teil dieser Dissertation herausgearbeitet. Wir en-
twickeln ein Compiler basiertes Erkennungswerkzeug namens CASTSAN, das während der
Programmlaufzeit polymorphe C++ Objekttyp-Konflikte erkennt. CASTSAN wird anschließend
in einem etablierten Compiler-Framework (d.h. Clang/LLVM) integriert. CASTSAN ist ein voll
funktionsfähiges Objekttyp-Verwirrung Detektion-Werkzeug, das auf einer neuen und effizien-
ten Technik zu Erkennung von polymorphen Objekttyp-Verwirrungen basiert. Bei konsequenter
Verwendung von CASTSAN kann die Wahrscheinlichkeit von CWAs erheblich reduziert werden.

vii



Als Nächstes entwickeln wir ein statisches Compiler-basiertes Werkzeug namens LLVM-CFI,
das statische Kontrollfluss Integritäts (CFI) Regeln bewerten und untereinander vergleichen
kann. Die Wahl dieses Ansatzes ist zweifach motiviert. Erstens Speicherkorruptionen in
Programmen können nicht vollständig verhindert werden, deshalb um Programme zu härten
wollen wir eine Laufzeitverteidigung bereitstellen. Zweitens wollen wir eine neuartige CFI
basierte Technik entwerfen und implementieren, die in den nächsten Teilen dieser Disserta-
tion vorgestellt wird. Diese neue CFI Technik soll Schutz gegen nicht erlaubten indirekten
Programmsteuerung-Fluss-Übertragungen bieten. Um diese Aufgabe effektiv zu bewältigen,
finden wir zunächst heraus, wie effektiv die bestehenden CFI-Abwehrmechanismen sind
und welches Sicherheitsniveau diese bieten. Hieraus motiviert entwickeln wir LLVM-CFI,
ein neuartiges Framework zur Bewertung statischer CFI-Schutzregeln. Durch die Verwen-
dung von LLVM-CFI erhalten wir wichtige Erkenntnisse, die uns bei der Vorbereitung der
nächsten Werkzeug-Entwurfsentscheidungen helfen sollen. Außerdem entwickeln und imple-
mentieren wir ein Compiler-basiertes Werkzeug namens ρFEM, das auf den Erkenntnissen
basiert, die wir im zweiten Teil dieser Dissertation gewonnen haben. ρFEM schützt Programm-
Kontrolfluss-Graphen (PKG)-Rückwärtskanten, die von indirekten und direkten Vorwärts-
Kanten-Programmsteuerungsfluss-Übertragungen stammen. ρFEM basiert auf einer neuartigen
Technik zum Schutz von Programm- PKG-Rückwärtskanten die auf präzisen CFI-Regeln
basieren. Die CFI Technik ermöglicht für jede geschützte und aufgerufene Programm-Funktion
eine optimale Anzahl von Rückkehrzielen. So wird die Wahrscheinlichkeit der erfolgre-
ichen Durchführung von CWAs, die auf Rückwärts-Transferkanten basieren, stark reduziert.
Gleichzeitig bieten wir eine Lösung, die eine wettbewerbsfähige Alternative für Shadow-Stack-
basierte Ansätze darstellt. Im Gegensatz zu Shadow-Stack-Ansätzen, die nicht auf Intel Control
Flow Enforcement (CET) und Return Address Defender (RAD) basieren, ist ρFEM nicht auf
die Adressraum-Entropie und das Verstecken von Information angewiesen. Somit sind die
entsprechenden Angriffsvektoren nicht relevant.

Des Weiteren entwickeln wir im letzten Teil dieser Dissertation ein Framework namens
τCFI, um Legacy-Programme, in denen z.B. der Quellcode nicht verfügbar ist, zu schützen.
τCFI basiert auf den neuen CFI-Regeln die wir aus den Erkenntnissen des zweiten Teils
dieser Dissertation entwickeln. Diese helfen uns, ein Software-Werkzeug zu entwerfen und zu
implementieren, das Vorwärts- und Rückwärts-Programm-Kontrollfluss-Kanten im Programm-
Binärdateien wirksam schützen kann. Auf diese Weise werden CWAs, die auf der Korruption
von rückwärtigen Kontrollfluss-Kanten basieren stark eingeschränkt, was die Wahrschein-
lichkeit von erfolgreichen Angriffen deutlich reduziert, wenn τCFI zum Einsatz kommt.
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Chapter 1
Introduction

What is the overall view? Protecting software programs against control-flow hijacking attacks
(e.g., ROP, DOP, COOP) is a basic requirement needed in order to have a secure system since
these types of attacks are more and more prevalent. This situation is confirmed by the increasing
number of CRAs reported by Mitre’s CWE [177]. Nowadays users use many programs from
multiple vendors for different purposes. Some of these vendors take security seriously. But
all are driven by cost and time to market criteria.

A CRA represents an exploit which is performed by reusing existing code from a vulnerable
application or other system components such as shared libraries. Typical attack vectors are
represented by memory safety issues due to: buffer overflows, integer overflows, NULL pointer
dereferences, use after free, use of uninitialized memory, double frees, object type confusions,
see Payer [220], for more details. In this thesis we differentiate between control flow graph
(CFG) violating attacks and non CFG violating attacks (e.g., data-only-attacks). Note that,
in most cases, the attacker needs to trigger undefined behavior in order to perform such an
attack. Thus, this thesis focuses on providing tools for protecting user-space applications
against control-flow hijacking attacks which are based on a memory corruptions. Further for
data-only CRAs, we advise the reader to consult, for example, Ispoglou et al. [121].

However, there are multiple ways to protect programs against control-flow hijacking attacks.
Important to note is that such an attack represents a user capability which can be performed:
(1) completely manually, (2) partially manually, or (3) fully automatically (if a tool support is
available). The user usually triggers undefined behavior to build his attacks. As such, in most
cases these types of attacks are manually built and thus represent a user capability since these
highly depend on the skills and knowledge of the attacker in order to craft such an attack.

Modern operating systems, compilers and binary hardening tools provide many techniques
for protecting software against control-flow hijacking attacks. Two main OS based approaches
(e.g., DEP [164] and ASLR [219] are used to protect programs. Data execution prevention
(DEP) forbids jumping into and executing data, and address space layout randomization (ASLR)
helps to randomize the code and data sections inside a program during loading. Further, these
two approaches do not solve the problem of protecting against these attacks as these were shown
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to be easily by-passable by attackers. DEP can be bypassed by changing the bit of the page table
which indicates if that particular page is executable or not. ASLR is bypassable through infor-
mation leaks which help the attacker to learn about the layout of the program which he wants
to attack. Thus, their security primitives are weak in the face of modern and advanced attacks.

Further, as these OS based defenses were shown to be of questionable utility researchers are
continuously proposing new OS based defenses which use hardware support and comprise of
stronger primitives which should lower the likelihood of a successful attack. As a result, the
OS based applications try to focus on imposing stricter runtime policies. Also, live monitoring
of applications is another line of research which relies on heuristics and a previously computed
CFG in order to detect malicious program execution streams but with less success as recent
research has demonstrated, see Schuster et al. [239]. Finally, there is no clear separation
between techniques which can be used only for the OS kernel space and, as such, these are
applied to user space as well.

What is the problem? User space based protection. As the problem of protecting against
control-flow hijacking attacks is a multi-layer problem, one has to rely on multiple components
in order to tackle this problem. By multi-layer we mean, in this context, that the user space
protection against control-flow violating attacks can be addressed in multiple ways. The main
approaches are as follows: (1) preventing memory corruptions through runtime checking and
software testing, (2) hardening binaries against control-flow violations when source code is
unavailable, (3) providing hard to bypass fine-grained runtime primitives, and (4) hardware
based monitoring of malicious program execution streams. Note that this list is not exhaustive
and other attack mitigation lines of defense exist having their advantages and disadvantages.
One of the most notable approaches is (4) live monitoring of execution streams which is
based on the interplay between user space and kernel space, found recently application in the
Windows OS 10 (i.e., CFGuard [167]).

What are the existing solutions? Live monitoring of program execution approaches, such as
kBouncer [216], ROPecker [44], and ROPGuard [83] validate the execution of a program by
monitoring branch transfers based on keeping track of so called from and to address pair and
in certain time intervals these jumps are compared against a precomputed program CFG. While
some simple CRAs can be detected by using these primitives this type of approach can easily
be fooled and is of questionable usage when more advanced CRAs are performed, see Schuster
et al. [239].

What are the limitations of the solution? Unfortunately, the heuristics on which these types
of systems are based can only keep track of limited amount of from-to address pairs in hardware
which was not specifically designed for this purpose but rather for program debugging. Further,
this type of defenses assume that the previously computed CFG is sufficient for assessing if
an execution trace is malicious or not.

This assumption does not hold since these CFG are not as precise as these should be in
order to catch malicious behavior. Further, it is well known that alias analysis of pointers is
undecidable as demonstrated by Ramalingam [229]. As such, computing a precise CFG which
would allow for precise analysis is unfeasible. Further, advanced CRAs (e.g., COOP) exploit
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exactly pointer based indirect transfers for which construction a CFG is very difficult, and in
practice rather program primitives are used to reconstruct metadata, which can be used to check
these indirect transfers such as the program class hierarchy.

Further, recent CRAs explicitly target this main intrinsic limitation which makes the program
monitoring approaches by filtering benign from malicious program executions very difficult.
As such, we can see many lines of research to address this problem.

No one shot solution. In general, the main problem is that the machine instruction set
architectures (ISA) are designed without security in mind but rather are mostly optimized for
low runtime overhead. Further, the main research in the last decades went into runtime overhead
reduction and thus we are confronted nowadays with intrinsic ISA limitations which could
potentially be eradicated by coming up with secure by design ISAs. Until then we address CRAs
from multiple dimensions and pursue the cat and mouse game which have not seen its peeks yet.

What is our insight? In this thesis, we focus on how to reduce the likelihood of a successful
CRA in cases: (1) source code is under development, (2) is fully available, or (3) the source
code is no longer available (e.g., legacy applications). As such, we first look at how can tools
help programmers spot bugs early on in the development cycle and how to reliable repair
them. For this purpose, in a first step, we come up with tools which can help a programmer
to find and repair software bugs which can lead to CRAs in an automated fashion. Equipped
with this knowledge, we propose runtime based tools which can use program data that is only
available during runtime in order to detect other types of memory corruptions that can lead to
CRAs. As a consequence of the intrinsic limitations of these types of tools we propose new
control flow integrity (CFI) policies which can be enforced during program compile time and
to legacy binaries. With the knowledge gained, we answer the question on how the likelihood
of successful exploitation can be reduced and build a framework which can be used to assess
the protection level of different static state-of-the-art CFI defenses during compile time.

Improving user space based protection. As techniques for protecting software against attacks
become more and more prevalent, attackers also adapt and provide new methods to perform
CRAs. A relatively new approach is based on advanced attack (e.g., COOP [238]), which uses
only available instructions and do not violate the caller-callee function calling convention. To
accomplish this, advanced attacks define a new set of gadgets and rely on hard to determine
(before runtime of) forward-edge transfer violations. A gadget is a set of machine code in-
structions which usually terminate in an indirect transfer instruction (e.g., ret, jump, call,
etc.). This set of gadgets allow powerful attacks which despite what the literature proposes
are not Turing complete (see Dullien et al. [76] for more details) and can infect a system, for
example, with malware. Despite this major threat posed by this type of attacks there are only
a few countermeasures which can combat advanced attacks [59, 268] at the source code and
binary level in user space.

Thus, in this thesis, we see the mitigation of advanced attacks as a multi-layer problem which
we believe it needs to be tackled with a corresponding multi-step approach. As mentioned
before, reasoning about alias analysis is undecidable, we focus on recuperating program meta-
data during compile time (virtual tale hierarchy) and from program binary (function parameter
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types) to: (1) use the program virtual table hierarchy for checking of runtime object type
confusions (CASTSAN), (2) use the program virtual table hierarchy for imposing return target
sets for callees (ρFEM), (3) assess different static state-of-the-art CFI defenses (LLVM-CFI),
and (4) impose function signature for constraining forward and backward edge transfers (τCFI).
In order to recuperate the whole program virtual hierarchy we use the compiler to collect all
relevant virtual table metadata and transport it to make it available during program link time.
Further, in order to build function signatures for forward and backward edge dispatches we
use the x86-64 bit function calling convention and the width of the used registers. Next, we
perform a liveness and reaching analysis in order to find matching pairs.

Further, we employ static symbolic execution and build a fully integrated framework into
an IDE for detection and repair of integer overflow and buffer overflows. Our framework
constructs for each analyzed program a CFG and then for a previously extracted path the path
constraints are translated to satisfiability modulo theories (SMT) constraints and solved with
the help of a SMT solver. In this way integer overflows and buffer overflows can be detected
and automated repairs are suggested for the user.

Finally, we provide a multi-step approach of tackling advanced CRAs by helping to remove
memory corruptions which are likely to lead to CRAs during program development or during
runtime and provide tools for hardening the source code and binary code against advanced
CRAs as well a framework for assessing state of the art static CFI defenses.
Kernel space based protection. Even though we did not provide kernel space mitigation
against advanced CRAs, we note that our techniques developed for protecting user space
application can also be adapted to protect the kernel space. Note that similar approaches as
ours have been adapted with success in the past to protect kernel space applications as well.

1.1 Research Questions
This thesis presents several approaches to combating advanced CRAs in the user space. This
consists in a three steps approach to address this problem, namely: (1) detecting and repairing
memory corruptions which can lead to advanced attacks as well as runtime detection of memory
corruptions which can be exploited in order to perform attacks, (2) hardening of program’s
source code and machine code with novel fine-grained CFI policies, and (3) assessing static
CFI defenses with the goal to determine which is more effective w.r.t. protecting against these
types of attacks. To address and mitigate this problems, we address several research questions
(RQs) and formulate them as following.

• Static source code analysis for automated memory corruption localization and
repair generation.

– RQ1: How to efficiently locate integer overflows which potentially lead to CRAs in
C source code based programs without false negatives and potential false positives?
Within RQ1, we need to research on how to design a novel technique which can
be used to effectively and reliably detect integer overflows in C source code without
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1.1 Research Questions

false positives. Previous research did not address the problem of static integer over-
flow detection with the help of static symbolic execution from a programmer usable
tool which can be integrated in a ready to use, well integrated and widely used IDE.

– RQ2: How to automatically generate and validate integer overflows repairs in C
source code based programs which potentially lead to CRAs? After we researched
in RQ1 how to effectively detect integer overflows now within RQ2, we need to
devise a new methodology to automatically generate integer overflow repairs which
are validated automatically, can remove the previously detected fault, and does not
introduce unwanted program behavior. Previous research did not address the integer
overflow repair generation from the angles presented above, and thus we think that
in this way we can provide more useful repairs.

– RQ3: How to automatically generate and validate buffer overflows, which can
potentially lead to CRAs with the help of C source code based program repairs?
After presenting a technique for generating integer overflows repairs RQ2 the goal
of RQ3 is to come up with a new technique which can be used to detect and repair
buffer overflows in C source code programs without false negatives but potentially
false positives and which can be easily integrated in the previous mentioned RQ1
framework. Previous research did not address repair correctness, and generation of
buffer overflow repairs at non-in-place locations, and thus we think that by focusing
on these repair characteristics we can improve the state-of-the-art.

• Dynamic source and machine code based analysis and instrumentation for runtime
memory corruption detection, CRAs mitigation, and static CFI policies assessment.

– RQ4: How to more effectively detect object type confusions in source code pro-
grams which can potentially be used to perform CRAs? The goal of RQ4 is to
devise a new technique for detecting runtime based object type confusions which
can be used to perform CRAs. Previous research has looked at runtime library
based support for detection of object type confusions. In this research we focus on
a purely static technique with no need of object type tracking during runtime, and
thus we improve w.r.t. runtime efficiency the state-of-the-art.

– RQ5: How to assess state-of-the-art static CFI defenses and provide the set of
legitimate calltargets for each callsite which are still accessible even after a static
state-of-the-art CFI policy was applied? Next, in order to design an effective CFI-
based technique for protecting program CFG backward-edges against CRA based
exploits in RQ6 and RQ7, we focus within RQ5 to come up with a framework
which can be used to assess such kind of static CFI based defenses that are widely
used and for which there is currently no reliable way to assess them w.r.t. how effec-
tive this can protect against certain types of CRAs. Previous work w.r.t. providing a
tool for automated static CFI policy assessment is not publicly available at the time
of writing this thesis, as such we would like to provide the first tool of this kind in
order to better assess static CFI policies against each other.
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– RQ6: How to protect CFG backward edges from program control flow bending
which can be used for performing CRAs in the presence of a deployed defense? In
RQ6 we focus on securing program control flow graph edges during runtime under
the assumption that an exploitable memory corruption exists and which was not
previously detected and removed from the vulnerable program. Previous work has
mostly relied on the presence of a shadow stack technique for protecting backward
edges. Since these techniques can be bypassed we want in this research to provide
a competitive alternative which does not have the limitations of shadow stacks and
thus improve state-of-the-art w.r.t. protection of runtime backward edge dispatches.

– RQ7: How to protect CFG forward and backward edges in program binaries which
are usually corrupted during a CRAs? In RQ7 we focus on protecting CFG forward
and backward in binary programs based on the lessons learned in RQ5. Further, we
assume that source code is not available (i.e., legacy code, closed source libraries,
etc.). Previous work has assumed that shadow stack techniques are efficient w.r.t.
backward edge protection and function signatures can be used to protect forward
edges, and thus in this research we want to improve state-of-the-art by proposing
a novel technique for protecting forward edges. This technique is more precise then
similar state of the art solutions. Yet another another technique will be introduced
for protecting backward edges, this technique does, for example, not suffer from
the intrinsic limitations of shadow stack techniques.

1.2 Contributions

What are our contributions? In this thesis, we provide answers to the above mentioned
research questions. In the following, we briefly list the contributions made while researching
for the answers to the previously mentioned research questions. Note that the following con-
tributions are listed for completeness reasons at the beginning of the appropriate chapters too.

• Static source code analysis for automated memory corruption localization and
repair generation.

– We design a novel source code repair generation technique for integer overflows
in C programs.

– We implement INTREPAIR, a prototype of our novel integer overflow repairing
technique, for C source code programs. INTREPAIR can automatically repair integer
overflows across multiple integer precisions.

– We show the effectiveness of INTREPAIR’s w.r.t. code repairing and that the repairs
induce a low runtime overhead by running INTREPAIR on 2,052 C programs con-
tained in the currently largest open-source test suite for C/C++ source code (NSA’s
Juliet) and with 50 synthesized programs which range up to 20 KLOC.
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– We demonstrate that INTREPAIR is superior to manually generated repairs and also
more time-effective than repairing the same programs manually by using INTREPAIR

within a user-based controlled experiment.

– We provide precise symbolic modeling of C related semantics needed for integer
overflow detection.

– We design and implement an integer overflow checker, called INTDETECT, as an
Eclipse IDE plug-in based on our static execution engine, and automated testing
based on automatically generated jUnit test cases and Eclipse projects.

– We present an experimental evaluation of INTDETECT on the currently largest open
source C/C++ test case CWE_190_Integer_Overflow contained in the Juliet test
suite.

– We provide an algorithm for generation of in-place and non-in-place buffer overflow
quick fixes.

– We present a novel approach, called BUFFREPAIR, for automated buffer overflow
fault repair generation based on program input saturation.

– We implement a semi-automated patch insertion based tool for visualizing source
code files based on differential views (old code and patched source code).

– We implement within BUFFREPAIR an approach for automated checking of program
behavior preserving after a patch was applied to a source code based program.

• Dynamic source and machine code based analysis and instrumentation for runtime
memory corruption detection, CRAs mitigation and static CFI policies assessment.

– We design a novel fine-grained backward-edge protection technique without relying
on information hiding.

– We implement our technique based on the Clang/LLVM compiler framework inside
a prototype called ρFEM.

– We show that ρFEM has a low runtime overhead of 2.72% in geomean for the
Google’s Chrome Web browser and of less than 1% in geomean for the SPEC
CPU2017 benchmarks.

– We develop a novel technique for detecting C++ object type confusions during
runtime, which is based on the linear projection of virtual table hierarchies.

– We implement our technique in a prototype, called CASTSAN, which is based on
the Clang/LLVM compiler framework and the Gold plug-in.

– We demonstrate that CASTSAN is more efficient than other state-of-the-art tools by
running CASTSAN on the same benchmarks.

– We show that static CFI attacker models are powerful and drastically lower the bar
for performing CRAs against state-of-the-art defenses.
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– We implement LLVM-CFI, a novel framework usable for generating low-effort
CRAs and for empirically assessing CFI defenses against each other, using constraint-
driven static analysis of aggregated program meta-data obtained during program
compilation.

– We compare existing static state-of-the-art CFI defenses against each other, and
show their strengths and weaknesses by employing LLVM-CFI’s CFI defense con-
straints. We compute the legitimate target sets and demonstrate that these allow
further reasoning about possible attacks.

– We present a NodeJS-based case study with the goal of highlighting how LLVM-CFI
can be used to craft CRAs against a state-of-the-art defense.

– We introduce four new CFI defense assessing metrics that are more effective and
precise than existing metrics. We also show the significance of one of our metrics
by putting it to work in our evaluation.

– We present τCFI, a new CFI system that improves the state-of-the-art CFI with more
precise forward-edge identification by using type information reverse-engineered
from stripped x86-64 binaries.

– We implement τCFI as a binary instrumentation framework to enforce a fine-grained
forward-edge and backward-edge protection.

– We show that τCFI is more precise and effective than other state-of-the-art tech-
niques.

1.3 Thesis Outline
The rest of this thesis is organised as follows:

In Chapter 2, we present the required background knowledge needed in order to understand
the rest of this thesis. More specifically, we introduce background information about CRAs
and how this can be mitigated. Further, we introduce the control flow integrity technique for
protecting indirect control flow transfers. We present information about object type confusions
and needed data in order to understand how program backward edges can be protected. Also,
we introduce knowledge about integer overflows and buffer overflows and present general
information about these topics. Finally, we give an overview about forward and backward CFG
edge transfers in program binaries and present advantages and disadvantages of shadow stack
based techniques.

In Chapter 3, we discuss related work concerning the detection of object type confusions and
protection of program backward edges using compiler based instrumentation. Then we discuss
about automated CRA gadget discovery and existing metrics used to assess the efficiency of
CRA protection techniques. Further, we present related work about integer overflow and buffer
overflow detection and automated repair generation as well as how advanced CRAs can be
mitigated.
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1.3 Thesis Outline

In Chapter 4, we present INTDETECT, a tool usable for detection of integer overflows in C
source code based programs across multiple integer precisions.

In Chapter 5, we present INTREPAIR which can detect and generate automated repairs which
can completely remove the previously detected integer overflow.

In Chapter 6, we present, BUFFREPAIR, a tool usable for automated detection and repair
generation of buffer overflows in C source code based programs.

In Chapter 7, we present CASTSAN, a compiler based tool used for detection of object type
confusions during runtime. This tool can detect object type confusions which potentially can
lead to CRAs.

In Chapter 8, we present LLVM-CFI, a compiler based tool which can be used to model and
assess state-of-the-art static CFI defenses and provides the possibility to pinpoint legitimate
calltagerts still available after a CFI policy was applied and which through control flow bending
for example can still be reached and used within a CRA.

In Chapter 9, we present ρFEM, a compiler based tool which can be used to protect backward
edges by inferring a minimal set of legitimate callee return targets.

In Chapter 10, we present τCFI, a tool used for program binary analysis and instrumentation
with the goal to protect forward and backward edges of the program CFG which are the result
of program indirect control flow transfers.

Finally, in Chapter 11, we conclude this thesis, present potential future work avenues, and
at the end of this Chapter we provide final remarks.
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Chapter 2
Background

In this Chapter, we present required knowledge in order to better understand the rest of
this thesis. More precisely, in Section 2.1, we present background knowledge about code
reuse attacks (CRAs), and in Section 2.2, we introduce the concept of integer overflows
detection, while in Section 2.3, we highlight some essential information about integer overflow
repairing. In Section 2.4, we introduce information on how buffer overflows are repaired
in general, and in Section 2.5, we present important concepts about object type confusions,
while in Section 2.6, we introduce basic knowledge about CFI and how these protection
techniques can be best assessed. In Section 2.7, we give an overview of program CFG
backward-edges, and in Section 2.8, we describe notions about type information recovery
from program binaries. Finally, note that parts of this chapter have already been published by
Muntean et al. [195, 196, 197, 198, 199, 200, 201].

2.1 Code Reuse Attacks

In this Section, we present the difference between code reuse attacks and advanced code reuse
attacks and introduce some mitigation techniques.

2.1.1 Simple Code Reuse Attacks

Code-reuse attacks (CRAs) are of two main types: (1) program control-flow violating attacks
(i.e., ROP, DOP, COOP, JOP, etc.) and (2) program control flow not violating attacks (i.e.,
data-only-attacks, see Ispoglou et al. [121]). While historically (1) were encountered before
(2) both types of attacks use machine code instructions in order to craft malicious behavior.
These machine code instructions are called gadgets and by chaining them together in a so called
gadget chain an attack can be performed. These gadgets are used to perform computations
which are not Turing complete (see Dullien [76] for more details) despite the fact that the
current existing research community propagates the knowledge as being Turing complete. Note
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that neither real Turing completeness nor the shorthand for write and compute anywhere in
the address space is required for exploitation.

Further, a gadget chain can have from a few gadgets (i.e., 2-3) to hundreds or even thousands
of gadgets. The number of gadgets depends on the attack success definition (i.e., consider the
attack success determined by the successful execution of a gadget chain containing N gadgets).
Note that each existing attack presented in the academic community defines its own set of
gadgets. Further, each gadget set is essentially w.r.t. the number of used instructions a superset
or a subset of another attack gadget set. Most commonly, these attacks use program indirection
due to the fact that program indirection is hard to be statically determined and difficult to
enforce dynamically. Yet another reason is that alias analysis in binary programs is undecidable,
see Ramaligam [229] for more details.

In this thesis, we focus on (1) program control flow violating attacks (i.e., non-data-only
attacks). Non-data-only attacks are violating the control flow of the program and stem most
of the time from a stack or a heap-based memory corruption (i.e., integer or buffer overflow,
dangling pointer, type confusion, etc.). These types of attacks are used to mount disastrous
attacks which remain stealth most of the time to program-monitoring tools (i.e., anti virus tools).
This is due to the fact that the monitoring tools cannot differentiate between benign or malicious
program execution which is based on the attacker’s intended logic which is performed through
chaining of gadgets together.

2.1.2 Advanced Code Reuse Attacks

These (1) attacks can be further classified into non-advanced code reuse attacks (i.e., historically
before advanced CRAs) and advanced code reuse attacks. These following characterizations
are based on what these attacks particularly violate and how these attacks can be effectively
mitigated.

Non-advanced code reuse attacks can be detected by enforcing the caller/callee calling
convention while advanced code reuse attacks do not violate this calling convention (see
COOP attack [238]). Also, some non-advanced code reuse attacks can be mitigated my using
coarse-grained CFI-based policies while advanced code reuse attacks can only be mitigated
by using fine-grained CFI-based policies. Some of the non-advanced code reuse attacks could
be mitigated by ASLR and/or DEP while advanced code reuse attacks bypass these protection
mechanisms. Both types of attacks can be mitigated by employing a CFG approximation-
based CFI policy while the C++ program-based attacks can also be mitigated by employing
object-oriented program concepts based on CFI-based policies. All non-advanced code reuse
attacks and some advanced code reuse attacks (i.e., in the COOP attack the stack-base pointer
(BP) moves up and down) which corrupt the stack and can be mitigated by monitoring the
stack behavior during runtime and comparing it with the normal (expected) program behavior,
particularly when parameters are passed to functions indirectly.

More precisely, advanced CRAs are more difficult to defend against than CRAs and have
appeared from a timeline perspective after CRAs. The exact time when advanced CRAs were
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introduced is not clear so for this reason, we used a simple characterization in this thesis in
order to separate them.

2.1.3 Code Reuse Attacks Prerequisites

In order to perform a code reuse attack, usually a memory corruption is needed (i.e., buffer
overflow, object type confusion, integer overflow, etc.). Note that there are CRAs which rely
on a memory corruption which is not necessarily caused by a bug.

Next, the attacker needs a binary layout leakage in order to know where the data and the code
sections are located in the vulnerable program. Further, he may want to know where the system
Libc is in order to be able to call exploitable functions. The attacker may also want to deactivate
Data Execution Prevention (DEP) and/or Address Space Layout Randomization (ASLR). Next,
the attacker needs to put his payload on the system where the vulnerable application runs.
Further, the attacker will exploit the memory corruption and run the program/logic contained
in the payload. This way, the attacker calls code reuse gadgets one by one in order to perform
his malicious Turing-complete computations such as installing malware or preparing the stage
for an advanced persistent threat APT.

2.1.4 Mitigation of Code Reuse Attacks

Code Reuse Attacks such as ROP and its manifestations (i.e., RILC, JIT-ROP, COP, COOP,
JOP, Stiching Numbers [189]) can be mitigated with binary rewriting (user space application
and OS kernel), source code recompilation or runtime monitoring approaches such as (1) fine-
grained CFI with hardware support PathArmor [266], (2) by using coarse-grained CFI such as
CCFIR [289], (3) coarse-grained CFI based on binary loader CFCI [291], (4) fine-grained code
randomization STIR [275] and O-CFI [187], (5) cryptography with hardware support-based
CCFI [160], (6) based on the ROP stack pivoting, PBlocker [227], (7) canary based as Dyna-
Guard [223], (8) checking vTable integrity for protecting against COOP based on CFI for source
code auch as SafeDispatch [124], VTV [261] LLVM and GCC compiler based vor vTable
protection and binary rewriting such as vfGuard [226], vTint [287] and [59] (9) with runtime
hardware support-based on a combination of LBR, PMU and BTS registers CFIGuard [284], and
(10) with code recompilation (e.g., reassemble disassembly [269], superset disassembly [17], or
probabilistic disassembly [170]) with CFI and/or randomization enforcement against JIT-ROP,
MCFI [210], RockJIT [211] and PiCFI [212] and any combination of the above.

2.2 Integer Overflows

In this Section, we present required background knowledge in order to better understand the
rest of this thesis.
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2.2.1 Integer Overflows
Integer overflow is a known cause of memory corruption and a widely known type of vulnera-
bility [272]. It often leads to stack or heap overflow and thus is usually exploited indirectly (as
opposed to buffer overflows which are exploited directly). More specifically, integer overflows
occur at runtime, when the result of an integer expression exceeds the maximum allowed value
(e.g., 232−1).

1 int64_t data = 0LL;
2 //Potential flaw: use random value
3 data = (int64_t)RAND64();
4 if(data > 0){
5 /* Potential flaw: if (data*2)>
6 LLONG_MAX, this will overflow */
7 int64_t result = data * 2;
8 printLongLongLine(result);}

Figure 2.1: Integer overflow shaded gray at line seven.

Figure 2.1 depicts an integer overflow memory corruption at line number 7, which could
manifest because there is no proper check in place for verifying the range of admissible values
for data. This integer overflow (and potential underflow) error can be avoided by checking the
value of data to see if it is less than or equal to LLONG_MAX_VAL

2 = 4.611.686.018.427.387.903
and greater than or equal to −LLONG_MAX_VAL

2 .

2.2.1.1 Characteristics of Integer Overflows

Integer overflows can be classified as malicious or benign. Essentially, an integer overflow man-
ifests itself when the program receives a user-supplied input and subsequently the input value
is used in an arithmetic operation to trigger an integer overflow. Thus, a smaller-than-expected
value is supplied to the memory allocation function and as a result a smaller-than-expected
memory will be allocated. Note that a smaller-than-expected value can be supplied to the
memory allocation function and this might not always be an issue as it is possible that the
allocation is properly sized, but a subsequent integer overflow results in a buffer underflow.
Deciding between the types of integer overflow related problems is rather difficult and a lot
of research has been devoted in the last years to this type of classification [255]. The general
desire in the research community is to categorize different hard-to-find integer overflows w.r.t.
how exploitable these are in contrast to just finding and repairing them.

2.2.1.2 Integer Overflow Related Problems

There are several integer overflow related problems that we will next list and briefly describe.
CWE-191, integer underflow (wrap or wrap-around) [175], is the result of multiplying two
values with each other and the result is less than the minimum admissible integer value due
to the fact that the product subtracts one value from another. CWE-192: integer coercion
error [174], manifests during bad type casting and the extension or truncation of primitive
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data types. CWE-193: off-by-one error [179], manifests during product calculation/usage; an
incorrect maximum/minimum value is used which is one more, or one less than the correct
value. CWE-194: unexpected sign extension [181], appears when an operation performed
on a number can cause it to be sign-extended when it is transformed into a larger data type.
CWE-195: signed to unsigned conversion error [180], manifests when a signed primitive that
is used inside a cast to an unsigned primitive can produce an unexpected result if the value of
the signed primitive cannot be represented using an unsigned primitive. CWE-196: unsigned
to signed conversion error [182], manifests when an unsigned is used inside a cast to a signed
primitive, which can produce an unexpected value if the result of the unsigned primitive cannot
be represented using a signed primitive. CWE-19:, numeric truncation error [178], manifests
when a primitive is casted to a primitive of a smaller size and data is lost in the conversion.
CWE-680: integer overflow to buffer overflow [176], appears when an integer overflow occurs
that causes less memory to be allocated than expected, which can lead to a buffer overflow.

2.2.2 Detecting Integer Overflows

  

path 
coverage

branch 
coverage 

error and branch 
coverage

context 
coverage

Code Coverage
(path set)

P
at

h
 G

u
id

an
ce

(B
F

S
, D

F
S

, R
P

S
, 

R
S

S
, C

O
S

, e
tc

.)

P
at

h
 P

ru
n

in
g

(a
.F

uz
zi

ng
, 

b.
In

te
rp

ol
at

io
n)

 

P
ar

al
le

l E
xe

cu
ti

o
n

(m
ul

ti-
co

re
 m

ac
hi

ne
s)

 

soundness

State Coverage
(constraint set)

*unsat 
constraints of 

unsat branches

* + constraints of 
undetected errors

constraints for live 
variables

all path constraints

b)
 le

ss
 m

er
ge

 c
on

st
ra

in
ts

, m
or

e 
m

er
gi

ng
 p

os
., 

le
ss

 p
at

hs
 &

 c
on

st
ra

in
ts

hi
gh

er
 p

at
h 

co
ve

ra
ge

a)
 m

or
e 

in
te

re
st

in
g 

po
in

ts
 a

nd
 m

or
e 

de
ep

er
 p

oi
nt

s,
 le

ss
 p

at
h 

co
ve

ra
ge

m
or

e 
co

re
s,

 m
or

e 
th

re
ad

s,
 

m
or

e 
pa

th
 &

 s
ta

te
 c

ov
er

ag
e

le
ss

 c
or

es
, l

es
s 

th
re

ad
s,

 
le

ss
 p

at
h 

&
 s

ta
te

 c
ov

er
ag

e

le
ss

 in
fo

rm
ed

 (
bl

in
d)

 s
ea

rc
h 

he
ur

is
tic

, l
es

s 
pa

th
 c

ov
er

ag
e

m
or

e 
in

fo
rm

ed
 s

ea
rc

h 
he

ur
is

tic
, m

or
e 

pa
th

s 
vi

si
te

d

1.
S

ta
ti

c,
 2

.C
o

n
co

lic
 

sy
m

b
o

lic
 e

xe
cu

ti
o

n
 

an
d

 3
.S

ta
ti

c 
an

al
ys

is

1.
m

or
e 

pa
th

 c
ov

er
ag

e,
 m

or
e 

no
n-

in
te

re
st

in
g 

pa
th

s 
&

 s
ta

te
s

2.
le

ss
 p

at
h 

co
ve

ra
ge

, m
or

e 
in

te
re

st
in

g 
pa

th
s 

&
 s

ta
te

s
3.

le
ss

 p
at

h 
co

ve
ra

ge
, l

es
s 

in
te

re
st

in
g 

pa
th

s 
&

 s
ta

te
s

include
attains

Legend

Figure 2.2: Program path and state coverage vs. static and dynamic analysis techniques.

Figure 2.2 depicts the code coverage (i.e., program path coverage) and state coverage (i.e.,
symbolic variable coverage) w.r.t. the most used analysis techniques to address the detection of
integer overflow bugs. As far as we know, there is no technique which can be used for solving
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the problem of integer overflow detection. Several techniques have emerged over time with
more or less applicability depending on the concrete scenario in which they are applied. We do
not intend to review the advantages and disadvantages of these techniques w.r.t. to each other,
but rather briefly stress why we decided to use static symbolic execution for the generation of
our code repairs and briefly highlight its advantages. Consequently, there are several techniques
which can be used to detect and repair integer overflow with more or less success. These
techniques will be briefly compared against each other w.r.t. to program path coverage and state
coverage. We decided to use these dimensions, depicted in Figure 2.2, as they make the most
sense for our goals mentioned in Section 5.1. In order to reach these goals, we want to achieve
high path coverage and state coverage. The generated source code repairs should be sound w.r.t.
the fact that these should not change program behavior and the fault should be correctly re-
moved after the repair was applied. For this reason, we opted for static symbolic analysis which
achieves higher path coverage than concolic or purely static analysis techniques by visiting pro-
gram paths in a depth-first search (DFS) fashion. Our static analysis technique benefits from the
possibility of parallel execution which can be effectively used to speed up the analysis. Not only
does this allow more paths to be visited, but also more states can be analyzed simultaneously as
opposite to single-threaded scenarios which are more limited. For this purpose, we currently use
a DFS strategy of path traversal. This strategy helps us perform a more informed search space
traversal than the one performed without this technique. We plan to implement other techniques
in the future. We currently perform path pruning by merging paths based on dead variables and
checking satisfiability of paths at branch nodes. This helps drastically reduce uninteresting paths
as well as reducing search locations. Additionally, we only check interesting program locations
(e.g., assignments) in the source code for integer overflow bugs, thus further reducing the possi-
ble search space. Finally, techniques such as fuzzing and interpolation have high priority targets
on our future work agenda and we think that these can be implemented into our tool as well.

2.2.2.1 Symbolic Execution Based Input Validation

Symbolic execution-based techniques can be used to achieve all of the guarantees mentioned
above. Furthermore, the repairs are cheap to construct and to insert. On one hand, symbolic
execution-based techniques can achieve more guarantees than other repair generation tech-
niques. On the other hand, these techniques are based on computationally intensive analysis
strategies which if not applied in a suited manner, may not scale well (or at all) with large
programs. We believe that repair tools should be used early by programmers during develop-
ment, since the level of software complexity is low and gets higher as the number of code lines
increases. Finally, we believe the following. First, manually-written source code repairs should
be avoided and only used in easy-to-address situations. Second, compilers should not be used
for repairing integer overflows since the number of guarantees which they can offer is low.
Finally, specialized tools which provide more guarantees should be used for repair generation.
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2.2.3 Avoiding Integer Overflows

It is important to avoid integer-overflow-based memory corruptions since these are insidious,
costly and exploitable [73]. The exploitability of integer-overflow-based memory corruptions
is a well understood topic and, for this reason, not very difficult to be performed by a skilled
attacker, for programs written in C/C++ since these programing languages are notoriously prone
to integer overflow bugs. Code containing such a memory corruption induces a large attack
surface which can even be exploited through the network by attackers. Thus, the attackers may
perform CRAs which may result in serious consequences for all systems running that particular
source code version. Open source code can be studied by attackers and new integer overflow
bugs can be detected with relatively low effort and even without tool support. Zero-day integer
overflow bugs in open source software have disastrous consequences since these are easily
exploitable and huge gains can be achieved by the attackers. Finally, integer overflow based
vulnerabilities are traded online, and attackers can buy integer-overflow-based vulnerabilities
for a fraction of the potential damage or the achievable attacker benefit. As a matter of fact,
we believe that for these reasons and others not mentioned here for brevity, software should
be kept as clean as possible from integer overflow bugs.

2.3 Mitigating Integer Overflows

Before presenting the technical details of our approach, we highlight the necessary background
information required to better understand the rest of this thesis.

2.3.1 Symbolic Execution Engine

INTREPAIR uses a symbolic execution approach for fault detection and repair generation. A
symbolic execution engine [196, 200] constructs a control flow graph (CFG) for each analyzed
program and extracts execution paths. Constraints along the execution path are encoded into
SMT equations, using the SMT-LIB format SMT-LIB [15]. The translation of CFG nodes into
SMT is performed by a translator algorithm, which extends the program’s abstract syntax tree
(AST) visitor class, according to the visitor pattern [84]. This is usually based on a bottom-up
traversal of each program statement located on the currently analyzed program execution path.

In our work, we use the Codan static symbolic execution engine [196, 113, 114]. In Codan,
single static assignment (SSA) variables are created for C expressions, which are associated with
no variables in the analyzed program. Before creating a new variable, the interpreter checks
whether there is already a symbolic variable. Further, for all SMT formulas created for a partic-
ular program statement, one symbolic variable is created for each of the variables contained in
the original program statement. Next, a single path is extracted from the previously computed
CFG and traversed. In Codan: (1) loops can be traversed a configurable number of times, (2) the
analysis can be customized to look, for example, for the first N faults located on the currently
analyzed program path, and (3) Codan performs path-caching and backtracking traversal, which
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avoids traversing the whole program path from the beginning and collecting all constraints
again. Codan uses the Z3 [68] solver as its backend in order to solve SMT constraints.

2.3.2 Program Input Validation

First, there are several techniques which can be used to repair integer overflow based memory
corruptions. Most of these techniques are based on program input validation. Of all these
techniques, manual fixing is the most tedious and provides fewer guarantees than the other
techniques. Next, we present some possible research paths and compare them against each
other in order to answer the question stated above.

2.3.2.1 Manual Input Validation

Manually written input validation checks for repairing integer overflows have the following
properties. First, they are prone to error and take much time to be inserted in large code bases.
Second, they cannot guarantee that the integer overflow bug was really removed for tricky code
locations (i.e., multi-dependent control-flow-based source code locations). Finally, they are
inapplicable across multiple integer precisions, and cannot guarantee that the intended behavior
of the program is preserved.

However, there are multiple real-life documented use cases where an integer overflow bug was
repaired after a cascading array of repairs was applied one after the other. We dub this type of
trail of repairs as try-and-error repairs. The main disadvantage of such repairs is that they give
the impression to the tool user that the bug was removed, when in reality the bug was not fixed.

2.3.2.2 Compiler-based Input Validation

Compiler-based input validation checks are cheap, fast to insert but can be optimized away
by some compilers. When using the GCC compiler, some input validation checks are use-
less because they might be optimized/removed during compilation since the C++ standard
N4296 [120] specifies that integer, arithmetic and signed overflows are considered undefined
behavior, thus implementation specific. Furthermore, the GCC developers believe that the
programmers should detect the overflow before it happens rather than using the overflowed
result to check the existence of the overflow during runtime (see detailed discussion [139, 87]).
First, this is impossible in some situations since the search space for program inputs that trigger
an integer overflow is infinite. Second, as a consequence of compiler implementation specifics,
some checking conditions may be removed totally when the program is compiled with GCC
in combination with specific optimization options. On one hand, compiler-based repairs do
not guarantee that the repair really removed the bug, are not applicable across multiple integer
precisions and do not guarantee that unwanted behavior is introduced. On the other hand,
compiler-based runtime checks have access to more specific information than static tools. Thus,
in some scenarios, they can provide considerable benefits w.r.t. bug prevention. Finally, we
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believe that stand-alone compilers should not be used for repairing integer overflows during
compile time. In contrast, specialized tools which can provide more guarantees should be used.

2.3.2.3 Symbolic-execution-based Input Validation

Symbolic-execution-based techniques can be used to achieve all of the desired repair guarantees
mentioned above. Furthermore, the repairs are cheap to construct and to insert. On one hand,
symbolic execution-based techniques can achieve more guarantees than other repair generation
techniques. On the other hand, these techniques are based on computationally intensive
analysis strategies which, if not applied in a suited manner, may not scale well (or at all) with
large programs. We believe that repair tools should be used early on by programmers during
development, since the level of software complexity is low and it gets higher as the number of
code lines increases. Thus, we believe the following. First, manually written source code repairs
should be avoided and only used in easy-to-address situations, Second, compilers should not be
used for repairing integer overflows since the number of guarantees which these can offer is low.
Finally, specialized tools which provide more guarantees should be used for repair generation.

2.4 Buffer Overflows

2.4.1 History

Buffer overflows were first partially understood and documented by Anderson [4] which de-
scribes that by exploiting a buffer overflow, new code can be injected by an attacker and this
way, the attacker could gain control over the machine. By 1988, the first documented buffer
overflow was used by the Morris worm in order to propagate itself over the Internet [192]. In
1995, this buffer overflow was rediscovered and the findings were published by providing more
details. Later in 1996, Elias Levy (know as Aleph One) published a step-by-step introduction to
exploiting buffer overflow vulnerabilities [214]. Further, in 2001, the Code Red worm exploited
a buffer overflow in Microsoft’s Internet Information Services [157] and in 2003, the SQL
Slammer worm compromised millions of Microsoft’s SQL Server 2000 machines. Lately,
in 2003 buffer overflows in Xbox video games were exploited to bypass the license-based
software protection. Similar exploits were published for PlayStation 2 as well. Finally, the cat
an mouse game between attackers and defenders continues as C/C++ programming languages
are some of the most prominent choices for developing software systems and are nowadays
the dominating programming languages for developing OSs.

2.4.2 Description

A buffer overflow occurs when data written to a buffer also corrupts data values in memory
adjacent to the destination of the buffer due to insufficient bounds checking. More precisely,
this appears when copying data from a larger buffer to smaller one without previously checking
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data size and available space. During an exploit, this data that is being copied is most likely
a program which can then be executed by the attacker to perform malicious computations.

2.4.3 Exploitation
Stack-based buffer overflows are used by the attacker to manipulate the program in several
ways as follows. First, by overwriting a local variable that is located near the vulnerable buffer
on the stack in order to change the behavior of the program. Second, by overwriting the return
address in a stack frame. Third, by overwriting a function pointer or exception handler which
is afterwards executed. Finally, by overwriting a local variable or pointer of a different stack
frame which will be used by the function which owns that frame later.

Heap-based buffer overflows appear on the program heap. These vulnerabilities are ex-
ploitable in a different way than stack-based buffer overflows. During a heap-based buffer over-
flow, program data is corrupted in order to cause the application to overwrite internal structures
such as linked list pointers. For example, the dynamic memory allocation linkage of malloc
is overwritten and the resulting pointers are used to overwrite a program function pointer.

2.4.4 Protection
Static program analysis (source code, machine code or intermediate representation) can be used
to check for the presence of buffer overflows. These techniques have their limitations which
are dependent on the complexity of the analyzed program and the runtime which has to be
simulated. Next, dynamic and hybrid approaches alleviate some of the limitations of the static
techniques but still can not guarantee that all buffer overflow are detected.

The buffer overflows are most common in C/C++ programming languages and as such, other
programming languages which are strongly typed such as Java and Python are recommended,
which can help prevent buffer overflows [215]. Other programming languages (e.g., Ada, Eiffel,
Lisp, Smalltalk, OCaml, etc.) provide runtime checking or even compile-time checking. These
approaches can be used to detect or prevent buffer overflows. Often times security is traded
for performance when deciding which programming language and compiler flags to use.

Safe libraries are yet another way to mitigate against buffer overflows. Safe libraries provide
alternatives for string manipulation functions such as gets, fscanf, fscanf which should
be avoided. The available safe libraries perform bounds checking on the data that is being
manipulated.

Systems which check if the stack was altered after the called function returns are Libsafe
[136], StackGuard [58], and ProPolice [116]. For example, Microsoft’s Data Execution Pre-
vention (DEP) explicitly protects the pointer to the Structured Exception Handler (SEH) from
being overwritten. Other protection techniques such as the shadow stack implementations
available in the Clang and GCC compiler can also protect against buffer overflows, since the
data and pointers are split between the two stacks.

Pointer-based protection such as PointGuard [57] is a compiler-based protection which can
be used to protect pointers and addresses which are used by an attacker. Pointers are XOR-
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encoded before and after usage. The idea behind this approach is that the attacker theoretically
does not know what the value will be used to encode and decode the pointer and in this way
he cannot predict where it will point to in case he overwrites it with a new value.

Data Execution Prevention (DEP) is used to prevent the execution of code on the stack or on
the heap. This way, injected code cannot randomly be executed. An attacker may need first to
deactivate DEP. Further, DEP does not protect against return-to-libc attacks or any other attack
which does not rely on the execution of the attacker code.

Address Space Layout Randomization (ASLR) is a security feature which involves arranging
randomly program data areas in a process address space. This technique makes buffer-overflow-
based exploits more difficult but not impossible since during an exploit the attacker needs to
know the layout of the vulnerable program. The layout can eventually be disclosed by a data
layout leakage, which may help the attacker disclose the binary layout.

Fuzzing [230] is another promising technique for detecting buffer overflows. This technique
is based on providing a considerable amount of program inputs with the goal to trigger buffer
overflows during runtime. Further, software testing based on programmer-provided test cases
can also be successfully used to detect buffer overflows.

2.5 C++ Object Type Confusion

Before presenting the technical details of our approach, we review necessary background
information.

2.5.1 C++ Type Casting

Object type casting in C++ allows an object to be cast to another object, such that the program
can use different features of the class hierarchy. Seen from a different angle, object typecasting
is a C++ language feature, which augments object-oriented concepts such as inheritance and
polymorphism. Inheritance facilitates that one class contained inside the program class hierar-
chy inherits (gets access) to the functionality of another class that is located above in the class
hierarchy. Object casting is different, as it allows for objects to be used in a more general way
(i.e., using objects and their siblings, as if they were located higher in the class hierarchy). C++
provides static, dynamic, reinterpret and const casts. Note that reinterpret_cast
can lead to bad casting, when misused and is unchecked by design, as it allows the programmer
to freely handle memory. In this thesis, we focus on static_cast and dynamic_cast (see
N4618 [119] working draft), because the misuse of these can result in bad object casting,
which can further lead to undefined behavior. This can potentially be exploited to perform, for
example, local or remote code reuse attacks on the software.

The terminology used in this thesis is aligned to the one used by colleagues [107], in order
to provide terminology traceability as follows. First, runtime type refers to the type of the
constructor used to create the object. Second, source type is the type of the pointer that is
converted. Finally, target type is the type of the pointer after the type conversion.
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An upcast is always permitted if the target type is an ancestor of the source type. These types
of casts can be statically verified as safe, as the object source type is always known. Thus, if the
source type is a descendant of the target type, the runtime type also has to be a descendant and
the cast is legal. On the other hand, a downcast cannot be verified during compile time. This ver-
ification is hard to achieve, since the compiler cannot know the runtime type of an object, due to
intricate data flows (for example, inter-procedural data flows). While it can be assumed that the
runtime type is a descendant of the source type, the order of descent is unknown. As only casts
from a lower to a higher (or same) order are allowed, a runtime check is required to check this.

2.5.2 C/C++ Legal and Illegal Object Type Casts

A type cast in C/C++ is legal only when the destination type is an ancestor of the runtime type
of the cast object. This is always true if the destination type is an ancestor of the source type
(upcast). In contrast, if the destination type is a descendant of the source type (downcast), the
cast could only be legal if the object has been upcast beforehand.

W

Y Z

X

do
w

nc
as

t upcast

virtual x()

virtual x()

virtual x()

virtual x()

(a) Class hierarchy with four classes.

/* downcast */
X *x = new W();

Y *y = static_cast<Y>(x);

/* first upcast*/

Z *z = new Z();

X *x = static_cast<X>(z);

/* second upcast */

Y *y = new W();

X *x = static_cast<X>(y);

(b) Downcast and upcast cast in C++.

Figure 2.3: C++ based object type down-casting and up-casting examples.

Figure 2.3 depicts object upcast and downcast operations with respect to a given class hierar-
chy. The graph of Figure 2.3(a) is a simple class hierarchy. The boxes are classes, and the arrows
depict inheritance. The code of Figure 2.3(b) shows how upcast and downcast look in C++. The
upcast and downcast arrows besides the graph visualize the same casts that are coded in C++ in
Figure 2.3(a). To verify the cast, the runtime type of the object is needed. Unfortunately, the ex-
act runtime type of an object is not necessarily known to the compiler for each cast, as explained
in Section 2.5.1. While the source type is known to the compiler for each cast, it can only be
used to detect very specific cases of illegal casts (e.g., casts between types that are not related
in any way, which means they are not in a descendant-ancestor relationship). All upcasts can be
statically verified as safe because the destination type is an ancestor of the runtime type. If the
destination type is not an ancestor of the runtime type, then the compiler should throw an error.
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2.5.3 Virtual Table Inheritance Trees

In order to encode object subtype checks with range checks over the virtual pointers values,
we need to be able to validate that the runtime type of an object inherits from the destination
type of the casted object. In order to achieve this, we need the class hierarchy of the protected
program during runtime. Next, the virtual pointer (vptr) of an object can be used as identifier,
and its value as an ordering number inside the vtable inheritance tree. By ordering we mean
the exact location of the object type in the pre-order traversal of the primitive virtual table
tree derived from the class hierarchy. The value of the vptr represents the vtable address of
its runtime type. This therefore represents the position of the vtable of the runtime type of the
object in memory. The position is decided by the compiler during compilation, which places
all vtables in memory. Therefore, in order to manipulate the value of the vptr, the virtual tables
(vtables) of all object types have to be placed in a certain order in memory. Since we need to
control the values of virtual pointers in the produced program binary, we need explicit control
over the locations and layout of the virtual tables in memory.

By default the Clang compiler does not impose a specific order on the virtual tables in
memory. This means that there could exist memory gaps between the start addresses of the
vtables, which can lead to an unwanted situation, namely that the vtable ranges are not tight.
First, these gaps could introduce imprecision (too many addresses could be allowed) for the
forward edge target sets, and thus the layout of the vtables has to be modified. Second, due
to these gaps and the fact that the table layout is not ordered w.r.t. the class hierarchy, object
cast checks cannot use these ranges since the resulting ranges (intervals) contain memory gaps.

In order to overcome these limitations, we use an algorithm for interleaving the vtables of a
program in memory without gaps. The vtable interleaving algorithm repositions the vtables in
memory with the goal to provide a minimal set of target addresses for each object dispatch on
virtual functions (i.e., forward edge). More specifically, the vtables of polymorphic types are
reordered with the help of a pre-order traversal of the class hierarchy graph with no memory
gaps between them. This way if the vptr of an object is corrupted by an attacker with the
purpose for example to call a function of a class that does not respect the static type at the
virtual call location, then it can be detected during runtime. This ensures that only legitimate
virtual functions (the ones which respect the per object class hierarchy) are allowed at any
particular object cast location.

Figure 2.4 depicts a C++ class hierarchy containing only virtual functions (a) and the cor-
responding primitive vtables inheritance trees in (b) and (c). Figure 2.4, the class hierarchy and
virtual inheritance trees are represented as UML class hierarchies containing classes and their
inherited functions. The arrows depict inheritance, similar to UML class hierarchy inheritance.
Figure 2.4(a) contains the following elements: (1) a box (node) represents a polymorphic class,
a box contains its class name (first row, i.e., X) and its inherited virtual functions (following
rows, i.e., virtual x()), and (2) the inheritance relationship between two classes is depicted
by arrows. An arrow pointing from one class to another signifies that the lower located class
inherits from the class located in the upper part. Figure 2.4(b) and Figure 2.4(c) depict two
virtual table inheritance trees, derived from the class hierarchy depicted in Figure 2.4(a), which
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W
virtual x()

Y
virtual x()

Z
virtual x()
virtual a()

X
virtual x()

A
virtual a()

(a)

W
virtual x()

Y
virtual x()

Z
virtual x()

X
virtual x()

(b)

Z

virtual a()

A
virtual a()

(c)

Figure 2.4: Class hierarchy containing virtual functions (a) and the corresponding vtable
inheritance trees (b) and (c).

were obtained by performing a pre-order traversal starting at the two roots, X and A. These two
trees result, because a polymorphic class (i.e., Z) has two ancestors (i.e., X and A). A box in
a tree is a virtual class having its type depicted in the first row. Further, if a polymorphic class
inherits from multiple polymorphic classes, then this relationship will be represented by two or
more boxes in multiple trees (i.e., Z has a box in the tree of Figure 2.4(b) for its inheritance from
X and a box in the tree of Figure 2.4(c) for its inheritance from A). Each box contains virtual
functions that are inherited within the tree (i.e., the box of Z in Figure 2.4(b) only contains the
function virtual x(), while the box of Z in Figure 2.4(c) only contains the function virtual
a()). Similar to Figure 2.4(a), an arrow depicts the inheritance between vtables.

Finally, note that a base class hierarchy can contain more primitive virtual inheritance trees.
Thus, we need to be able to split complex class hierarchies into simple trees because under
the hood, the C++ Itanium ABI splits objects into primitive objects, and vtables into primitive
vtables in such a way that the primitive objects/virtual tables form trees. This helps decouple
a complex directed acyclic graph (DAG) hierarchy into multiple simple trees.

2.5.4 Type Casting in Practice

The C++ language provides dynamic_cast, which can guarantee the correctness of type cast-
ings, under certain cases. Specifically, dynamic_cast can only be applied to polymorphic
types, and only when RTTI information was emitted. Unfortunately, it is seldom used due
to its inefficiency. For example, [142] showed that dynamic_cast is 90 times slower than
static_cast on average. This slowdown can be traced to the recursive traversal and linear
time checks performed by dynamic_cast(). Further, this renders this type of check ineffective
mostly for large programs like for example Mozilla Firefox. Therefore, its confirmed security
advantage is avoided or even forbidden in for example the Google Chrome project. Because
of this, all currently legal and illegal object casts available bad cast detection tools replace the
RTTI information with their own metadata, in order to optimize the type comparison which
is needed to check legitimate casts.
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For this reason, large software project such as Chrome use a workaround based on a function
such as isType() which returns the true allocated type of the object. As a result, this technique
successfully decouples an dynamic_cast into an explicit type check followed by a static_-
cast which drastically reduces the runtime check cost. Note that dynamic_cast is based on
a very general algorithm that can account for various complex corner cases of multiple and
virtual inheritance, while isType() is a very simple exact type comparison, that only works
in the specific cases the programmer used it. Further, this approach is still error-prone since
it falls under the error-prone manual modifications paradigm which is affected by (1) incorrect
marked object type identity flag or (2) the absence due to human factors of the isType() check.
Finally, even with custom RTTI information bad-casting errors still are prevalent.

2.5.5 Object Type Confusion Example in Google’s V8

1type* type::cast(Object* object) { SLOW_ASSERT(object->Is##type());
2 return reinterpret_cast<type*>(object);}
3bool IsCompatibleReceiver(LookupIterator* lookup, Handle<Map> receiver_map) {
4 DCHECK(lookup->state()==LookupIterator::ACCESSOR);
5 Isolate* isolate = lookup->isolate();
6 Handle<Object> accessors=lookup->GetAccessors();
7 if (accessors->IsExecutableAccessorInfo()) {
8 Handle<ExecutableAccessorInfo> info =
9 Handle<ExecutableAccessorInfo>::cast(accessors);

10 if (info->getter() != NULL &&
11!ExecutableAccessorInfo::IsCompatibleReceiverMap(isolate, info, receiver_map)){
12 return false;
13 }
14} else if (accessors->IsAccessorPair()) {
15 return true;}}

Figure 2.5: The IsCompatibleReceiver() function contained in Google V8 engine.
This source code is used in Google Chrome before v. 48.0.2564.82. It does
not ensure receiver compatibility before performing a cast of an unspecified
variable, which allows remote attackers to cause a denial of service or possibly
have another unknown impact via crafted JavaScript code (see source code
differential view [95]). The ## symbol represents a macro.

Figure 2.5 depicts the bug fix of CVE-2016-1612 [47] which manifests due to a bad cast at
line number 11. The gray shaded lines represent all code lines that are relevant for this type con-
fusion. This object type confusion can be circumvented by first performing a receiver compati-
bility check before performing a cast of an unspecified variable as depicted at line numbers 8-9.
The goal of this check is to check if the state of the lookup object is a lookup iterator ACCESSOR.
Without this check, the reinterpret_cast at line number 2 would allow remote attackers to
cause a denial of service or possibly have another unknown impact via crafted JavaScript code.
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A reinterpret_cast is particularly dangerous because it forces the reinterpretation of mem-
ory area into a different type which most commonly breaks underlying type assumptions. As
such, it is recommended that it is used with care and guarded by runtime checks (e.g., asserts).
Finally, it is recommended (as in [107]) that reinterpret_cast should be avoided and either
dynamic_cast should be used, or a pair of an isType() runtime check and static_cast.

2.5.6 Security Implications of Object Type Confusion
The application behavior becomes undefined after an incorrect bad static_cast is performed.
In order to understand what the consequences of bad-casting are we need to understand the
internals of the compilers which implement this feature. Bad typecasts allow an attacker to
corrupt memory in a targeted manner. If a bad-casting occurs near to a virtual pointer the
attacker can control the input to member variables or it can overwrite the virtual pointer and
hijack the program execution.

Figure 2.4 depicts a C++ class hierarchy containing only virtual functions (a) and the corre-
sponding primitive vtables inheritance trees in (b) and (c). In Figure 2.4, the class hierarchy and
virtual inheritance trees are represented as UML class hierarchies containing classes and their
inherited functions. The arrows depict inheritance, similar to UML class hierarchy inheritance.
Figure 2.4(a) contains the following elements: (1) a box (node) represents a polymorphic class,
a box contains its class name (first row, i.e., X) and its inherited virtual functions (following
rows, i.e., virtual x()), and (2) the inheritance relationship between two classes is depicted
by arrows. An arrow pointing from one class to another signifies that the lower located class
inherits from the class located in the upper part. Figure 2.4(b) and Figure 2.4(c) depict two
virtual table inheritance trees, derived from the class hierarchy depicted in Figure 2.4(a), which
were obtained by performing a pre-order traversal starting at the two roots, X and A. These two
trees result, because a polymorphic class (i.e., Z) has two ancestors (i.e., X and A). A box in
a tree is a virtual class having its type depicted in the first row. Further, if a polymorphic class
inherits from multiple polymorphic classes, then this relationship will be represented by two or
more boxes in multiple trees (i.e., Z has a box in the tree of Figure 2.4(b) for its inheritance from
X and a box in the tree of Figure 2.4(c) for its inheritance from A). Each box contains virtual
functions that are inherited within the tree (i.e., the box of Z in Figure 2.4(b) only contains the
function virtual x(), while the box of Z in Figure 2.4(c) only contains the function virtual
a()). Similar to Figure 2.4 the control flow of the program such as in the advanced COOP [238]
code reuse attack. This shows that COOP attacks do not necessarily require a buffer overflow
memory corruption upfront. Furthermore, non-control-data attacks are possible too [142].

The C++ standard mandates that the program behavior is undefined after a bad typecast. In
practice, bad typecasts allow an attacker to corrupt memory in a targeted manner. These memory
corruptions can allow an attacker to modify control-flow relevant state such as function pointers
or vtable pointers. This leads to a wide array of attacks such as ROP, JOP and some more ad-
vanced code-reuse attacks such as COOP [238], that defeat many state-of-the-art CFI defenses.

The exploitability of bad-casting depends on the possibility of performing out-of-bound
memory access or manipulate memory semantics. Furthermore, this is dependent on the object
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layout as specified by the used C++ application binary interface (ABI). Depending on the used
ABI the security implications for the same bad casting bug can be different. Finally, as the
treat posed by bad-casting errors is alarming, the awareness of this error should be raised to
avoid future security breaches. For example, CVE-2016-1612 [47] where a bad-cast in Google
V8 engine used by Chrome running on Mac, Windows, Linux and Android could be exploited.
This vulnerability allows remote attackers to cause a denial-of-service or possibly have another
unknown impact via crafted JavaScript code. The fix of this vulnerability was rewarded with
3k in cash by Google [47].

2.5.7 Object Type Confusion Defenses

There are several recent lines of research aiming to protect against bad typecasting. Haller et
al. [107] point out that we can broadly split object type confusion defenses into two categories:
(1) techniques based on an embedded vtable pointer in the casted object, and (2) techniques
leveraging disjoint metadata. Embedded vtable pointers which can be used only for polymor-
phic casts have the advantage that the runtime cast checks based on these can be performed
relatively fast. Compared to that, metadata approaches where the type of the object has to be
tracked during runtime can reach higher coverage while being fundamentally slower.

Checker Poly Non-poly No blacklist Tracking Threads
UBSan [99] X X
Clang CFI [149] X X X
CaVer [142] X X X X limited
TypeSan [107] X X X X X
HexType [125] X X X X X
CastSan [201] X X X

Table 2.1: High-level features overview of object type confusion checking tools.

Table 2.1 depicts the high level feature overview of CASTSAN and other comparable tools.
CASTSAN covers all casts between classes that are covered by the IVT tool. This includes all
polymorphic classes which do not inherit from classes of the std namespace. Classes that do
not have a vtable can not be checked w.r.t. object casts. As CASTSAN does not rely on runtime
object tracking but does solely need the virtual function pointer of the object to perform its
check, CASTSAN can check any casts that are performed within threads that are not the main
thread of the program and does not need a blacklist. Also, other sanitizers like HexType depend
on objects to be allocated by a trackable allocator to be able to insert metadata of objects on
construction. Because CASTSAN does not need additional metadata, it can check object casts
regardless of allocation method. Therefore, no further limitation has to be noted for checking
casts between polymorphic classes. The coverage was tested using the benchmark suites of
ShrinkWrap, TypeSan and IVT. Using these benchmarks, there was no case that CASTSAN

could not correctly handle. When compiling the Chrome 33 source code using CASTSAN, 30757
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(it contains in total 50994 object casts) typecasts are instrumented in total. Non-polymorphic
classes on the other hand can not be checked due to the absence of a vtables.

UBSan [99] and Clang-CFI (cast checker) [149] are both based on vtables. UBSan in-
struments static casts in order to effectively turn them into dynamic casts and it requires
manual blacklisting in order to avoid false negatives due to non-polymorphic classes. The type
checking mechanism of UBSan is inherently slow and for this reason, UBSan is intended as
a testing tool rather than always on solution due to its high overhead. UBSan can not support
non-polymorphic classes.

CaVer [142], HexType [125] and TypeSan [107] are based on disjoint metadata. CaVer
supports non-polymorphic classes by relying on disjoint metadata and without blacklisting.
CaVer has high performance overhead due to inefficient metadata tracking and slow checks
even doubling the runtime overhead. CaVer cannot rely on vtables and for this reason, it has
to track all live objects during runtime. Due to its inefficient underlying implementation, it
can not handle stack objects shared between threads even with perfectly implemented synchro-
nization. CaVer has a reduced object allocation coverage in practice which leads to limited
type-confusion detection coverage compared to TypeSan. TypeSan is yet another tool which
is based on disjoint metadata that reduces the runtime overhead of checking object typecasts
and which can detect errors which are hard to reproduce during testing. TypeSan is based on
object tracking which supports all types of classes with no blacklisting required.

Clang-CFI cast checker achieves a lower performance overhead compared to other state-of-
the-art tools by optimizing its use of type metadata [52] to encode relationships between class
object types based on class hierarchy relationships. Specifically, Clang-CFI embeds a bitmap
for each class A, encoding the valid starting offsets for all vtables for objects of type A (or any
of its subtypes). To reduce the size of these bitmaps, Clang-CFI relies on several optimizations:
(1) all vtables for class A start at some base offset Base, and (2) all vtables for class A are
aligned by some power of 2 (e.g., 1,024.0). Runtime checks in Clang-CFI consist of a range
check and a bit lookups in the appropriate bitmap. In some cases Clang-CFI can optimize away
the bit lookup, or even the range check. Clang-CFI can not support non-polymorphic object
casts since it uses vtable pointers to perform lookups in the bitmaps.

In this thesis, we present CASTSAN, a generic solution for object type confusion detection
during runtime based on efficient representation of class hierarchies and fast range-based checks.
CASTSAN does not require blacklisting and supports all polymorphic object types. Furthermore,
it does provides better typecasting results as the above presented tools w.r.t. performance.

2.5.8 Ordered vs. Unordered Virtual Tables

In this Section, we briefly describe the differences between in-memory ordered and unordered
vtables and how these can be used to detect object type confusions during runtime.

Figure 2.6(a), Figure 2.6(b), and Figure 2.6(c) highlight the case in which an illegal object
cast would not be detected if the vtables are not ordered (see blue shaded code in line number
eight), while Figure 2.6(d), Figure 2.6(e), and Figure 2.6(f) show how a legal (see green shaded
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Figure 2.6: Illegal and legal object casts vs. ordered and unordered virtual tables.

code in line number four) and an illegal (see red shaded code in line number eight) object cast
can be correctly identified by using the object vptr in case the vtables are ordered in memory.

Note that the main difference between the vtables’ layouts depicted in Figure 2.6(b) and
Figure 2.6(d) is that the vtable layout entries depicted in Figure 2.6(d) are not arranged in
pre-order traversal, while the vtable entries shown in Figure 2.6(d) are arranged in pre-order
traversal. Further, note that, (1) green shaded code indicates that the legal downcast was
correctly detected (program execution continues), (2) blue highlighted code means that the
illegal downcast was not detected (program execution continues), (3) red shaded code means that
the illegal downcast was correctly detected (program execution stops or an error log is printed).

Next, we will present the contents of the six sub-figures depicted in Figure 2.6. Figure 2.6(b)
depicts the unordered vtable, while Figure 2.6(e) depicts the ordered vtable. Figure 2.6(b) and
Figure 2.6(e) represent how the vtables’ addresses of the hierarchies are appearing in memory.
Both vtables are ordered by their vtable addresses; Figure 2.6(e) shows the vtable addresses
are ordered and used by CASTSAN. Figure 2.6(b) depicts the vtable addresses unordered as they
are present in vanilla LLVM. The vtable address ordering depicted in Figure 2.6(e) corresponds
to the hierarchy depicted in Figure 2.6(d).

The vtable hierarchy trees depicted in Figure 2.6(a) and Figure 2.6(d) contain in the attached
black dotted frames the sub-lists of allowed types, while in Figure 2.6(b) and in Figure 2.6(e) we
can observe in the orange dotted frames the allowed types ranges for legal object casting before
and after the pre-order traversal, respectively. Note that the differences between Figure 2.6(a)
and Figure 2.6(d) are represented by the ranges, which are depicted in the orange shaded boxes
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attached on the right side of each black shaded box. Further, Figure 2.6(a) and Figure 2.6(d)
depict the same virtual inheritance tree with different vtable address values. In Figure 2.6(d),
the vtable addresses are ordered by the interleaving algorithm as used by CASTSAN, while in
Figure 2.6(a) they are not. Both trees contain: (1) the classes and their functions, (2) their
vtable address (top right of the box), and (3) in addition to that, their sub-list (black dotted
frame). These contain all inheriting types and the vtable range from the first element of the
sub-list to the last element of the sub-list (orange dotted frame).

The code listings depicted in Figure 2.6(c) and Figure 2.6(f) depict the same C++ object type
casts, with the vptr of the constructed object depicted in the comments for each case. Both
these code listings first depict a legal cast, followed by an illegal object cast.

On one hand, Figure 2.6(c) shows the vptr value as it would be present in the unordered
case of Figure 2.6(b) and Figure 2.6(a). The object x, that is constructed at line number seven
with the constructor of Z (runtime type) has a vptr of value 0x18 in the unordered case. x
is referenced by a pointer of type X (source type) and at line number eight it is cast to Y
(destination type). This is an illegal object cast, as Z does not inherit from Y . The vptr of x is
in the range of Y built from the unordered vtable layout of Figure 2.6(b). A range check would,
therefore, falsely conclude that the cast is legal.

On the other hand, Figure 2.6(f) depicts the same objects as constructed after ordering
according to Figure 2.6(e) and Figure 2.6(d). At line number three, the object x is instantiated
having (runtime) type W . The object, therefore, has a vptr with value 0x10 according to
Figure 2.6(d). The object is referenced by a pointer of type X (source type) and at line number
four, the object x is cast to Y (destination type). This cast is a legal object cast, as the vptr 0x10
has a value between the vtable address of Y 0x08 and the address value of the last member of
the sub-list of Y 0x10. Note that this memory range is depicted in Figure 2.6(e). Further, in
line number seven, the object x is newly allocated with the constructor of Z. Next, the object is
cast to Y at line number eight. As x’s vptr is 0x18, which is the vtable address of Z, it can be
observed that the cast is illegal. The reason is that the vptr value 0x18 is larger than the largest
value of the sub-list of Y , which is the vtable address of W , 0x10. Thus, in this way the object
type confusion located at line number eight can be correctly detected.

Finally, note that the range checks, which we will use in our implementation, are precise,
when the vtables of all program hierarchies are ordered with no gaps in memory according to,
for example, their pre-order traversal. In case this is not guaranteed, then the range checks could
generate false positives as well as false negatives (see the blue shaded code in Figure 2.6(c)).

2.6 Code Reuse Attack Primitives and Mitigation

In this section, we highlight the necessary background information in order to better understand
the rest of this thesis.
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2.6.1 Code Reuse Attack Primitives

In order to better understand code reuse attacks (CRAs), we describe what happens during a
CRA at the source code and binary level.

Forward-edge-based code reuse attacks exploit the forward-edges of CFGs. First, at the
source code level by performing calls through either function pointers (e.g., single level of
indirection) or virtual calls (e.g., double level of indirection). For example, these calls may
use an array of function pointers that is accessed by a pointer to a virtual table (vtable) plus an
index. Second, at the binary level, jump, and call instructions are used to redirect the program
control flow to a different address than the one intended in the original program CFG.

Backward-edge-based code reuse attacks violate CFG backward edges. First, at the source
code level, the function will not return to the next source code line from where the function was
first called. Second, in the program binary, the address located on the stack is modified such
that the function’s ret instruction will return to a different address than the one next to the
instruction from where the function was initially called (mostly through a call instruction).

Finally, these two types of primitives (forward and backward edges) are used to link gad-
gets, in order to form a gadget chain with the goal of performing Turing-complete malicious
computations.

Backward/forward-edge based code reuse attacks violate both forward and backward edges
inside a program, in order to perform the intended malicious behavior. Note that most CRAs
either use forward or backward edges when performing the malicious computations.

Gadget Types. Each code reuse attack has its own set of gadgets. Interestingly, the gadgets
have a runtime behavior similar to the original program instructions and are mainly subsets
or supersets of existing gadget sets. Currently, the smallest gadget w.r.t. the number of machine
instructions has two instructions (i.e., two consecutive push and pop instructions, equivalent
to a return). In addition, the largest gadget comprises a whole virtual function (i.e., Counterfeit
Object Oriented Programming (COOP) [238]). Note that while for a certain type of attack a
whole virtual function could represent one gadget, for other CRAs this function may contain
many gadgets. From here, we observe the afore mentioned subset relationships. These rela-
tionships are dependent on the notion of gadget length which varies and is constrained by the
gadget set used and the goals of the attacker.

Gadget Availability means that a certain gadget is present in a certain program or library
and is not constrained by any protection technique. Note that a gadget can be available for a
certain attack and not for other types of attacks. This is due to the fact that certain protection
techniques are too coarse grained w.r.t. certain attacks.

Gadget Usability means that a gadget is useful within certain CRA types. Note that each
CRA has its own set of gadgets. In this case, we assume that while a gadget is available (i.e.,
protected or not) it can be usable or not usable by a certain type of CRA. This property indicates
if a gadget belongs to the set of gadgets of the current CRA type.

Gadget Linkability is based on the concept of availability and usability of a certain gadget.
In case that a gadget is available and usable, linkability describes how easy or difficult it is
for an attacker to use this gadget at a certain position inside a gadget chain. In this case, the
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difficulty is directly proportional to: (1) number of operations which have to be performed in
order to link a gadget to another and (2) for example, in case a function primitive (i.e., int
mprotect(void *addr, size_t len, int prot);) is not accessible, linkability describes
how difficult it is to get to this primitive and make it usable during the attack.

2.6.2 Control Flow Integrity

Control-Flow Integrity (CFI) is a state-of-the-art technique used successfully along other tech-
niques to protect forward and backward edges against program control flow violations. CFI
is used to mitigate CRAs by, for example, pre-pending an indirect callsite with runtime checks
that make sure only legal calltargets are allowed by an as precisely as possible computed control
flow graph (CFG) [1].

Protection Schemes. Alias analysis in binary programs is undecidable [229]. For this reason,
when protecting CFG forward-edges, defenders focus on using other program primitives to
enforce a precise CFG during runtime. These primitives are most commonly represented by
the program’s: class hierarchy [106], virtual table layouts [226], quasi-class hierarchies [218],
binary function types [268] (callsite/calltarget parameter count matching), etc. They are used
to enforce a CFG which is as close as possible to the original CFG being best described by
the program control-flow execution. Note that state-of-the-art CFI solutions use either static
or dynamic information for determining legal calltargets.

Static Information. CFI solutions that use static information allow callsites to target: (1) all
function entry points e.g., [290], map callsite types to target function types by creating a mask
which enforces that the number of provided parameters (up to six) has to be higher than the
number of consumed parameters e.g., [268], (2) a quasi-class hierarchy (no root node(s) and
the edges are not oriented) can be recuperated from the binary and enforced e.g., [218], (3) all
virtual tables that can be recuperated and enforced e.g., [226], only certain virtual table entries
are allowed e.g., [286] based on a precise function type mapping, and (4) sub-class hierarchies
are enforced e.g., [261, 106, 24].

Dynamic Information. The goal of CFI solutions which use dynamic information is to re-
fine their runtime analysis by leveraging program information which is only available during
program execution. In particular, PiCFI [212] restricts the set of calltargets to functions which
have their address computed during runtime. Context-sensitive solutions with different levels
of context precision rely on hardware features such as the Last Branch Register (LBR) [266]
to track a limited range (i.e., 16 up to 32 address pairs) of so-called from and to addresses
pairs during runtime. They then compare them against a precomputed program CFG. Finally,
note that Intel Processor Trace (PT) [89] can be used to build a longer history of address pairs
compared to other approaches.
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2.7 Program Callee Primitives and Mitigation

Before presenting the technical details of our approach, we highlight the necessary background
information required to better under- stand the rest of this thesis. In Section 2.7.1, we present
program indirection and relate it to C/C++ programs, and in Section 2.7.2, we describe several
types of program callsites, while in Section 2.7.3 we discuss program control flow graph edges.
Finally, in Section 2.7.4, we present several basic concepts related to virtual tables hierarchies.

2.7.1 Indirect Control Flow Transfers

Program indirection is represented by any program control flow transfer which is performed for
example with the help of a pointer, other types of level of indirection (trampolines) or trough
registers. Basically speaking, program indirection is represented by the control flow graph
(CFG) edges which can not statically determined due to input dependency, complex control flow,
etc. While static edges are fixed edges inside the CFG, dynamic edges are not present or hard
to be determined due to program indirection. These type of edges exist due to object dispatches
(forward edges), pointers accessing different fields of data structures, function returns (backward
edges), etc. In the context of control flow integrity (CFI), researchers are categorizing program
indirection into forward and backward CFG edges as these type of edges are usually used
to link gadgets together. Further, code reuse attacks violate forward and/or backward edges
since it is currently very difficult to protect these control flow transfers due to the fact that alias
analysis in program binaries is undecidable [229]. Finally, other useful program metadata (i.e.,
class hierarchies, virtual tale hierarchy) is not available, not usable (for C only programs which
have not class hierarchies), hard to be statically or dynamically determined with high precision.

2.7.2 Program Callsite Types

We divide callsites into three distinct type: direct, virtual or indirect callsites. A direct callsite
has a single fixed callee, a virtual callsite uses the C++ virtual dispatch mechanism, and lastly
an indirect callsite, which most commonly uses a function pointer for an indirect call. These
three types are all handled slightly differently:

• D: Direct callsites. This is the easiest case, which is handled as explained in Section 10.3.

• V: Virtual callsites. In this case, we use class hierarchy information to infer a range of
IDs, which includes the IDs of all function implementations, which can be called by this
callsite. The callsite then gets assigned two NOPs carrying the range data. This case is
explained in detail in Section 10.3.

• I: Indirect callsites. For indirect callsites, we use a function signature matching tech-
nique, which is explain in more detail in Section 10.3.
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D∩ I

D∩V

I∩V

D∩ I∩V

Figure 2.7: Types of callsites for a particular callee.

Figure 2.7 depicts the fact that even though a particular callsite has only a single type at a
time, a particular callee might have multiple callsites and therefore can be called using more
than one of these types. Nevertheless, we want to briefly highlight the other callsite types which
can be used to call a particular callee.

• D∩ I: Direct and Indirect Callsites Intersected. There are callees which can be called
by both direct and indirect callsites.

• D∩V : Direct and Virtual Callsites Intersected. There are callees which can be called
by both direct and virtual callsites.

• I∩V : Indirect and Virtual Callsites Intersected. There are callees which can be called
by both indirect and virtual callsites.

• D∩ I∩V : Direct, Indirect and Virtual Callsites Intersected. There are callees which
can be called by direct, indirect and virtual callsites.

2.7.3 Control Flow Backward Edges

Return edges in assembly code are represented by function return instructions (ret instruction)
and are used to return the control flow of the program to the address after the callsite which
originally called the function. Depending on the instruction set architecture (ISA) (i.e., x86,
x86-64, ARM, SPARC, etc.) the format of the return instruction can vary (i.e., ret), with
no parameter on the right hand side. Note that for the herein mentioned return edge details
the format of the corresponding instruction is irrelevant. However, the pre-conditions and
post-conditions needed for normal program execution are of importance. These are determined
by the used calling convention and can slightly vary depending on the used architecture binary
interface (ABI) (e.g., Itanium ABI [122], Microsoft ABI [101], ARM ABI [9], etc.).
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On one hand, the number of used and not used registers varies for each calling conventions,
the stack usage and whether the stack is cleaned after or before a function returns. On the other
hand, they usually do not vary w.r.t to the fact that each callee needs to return program control
flow execution to the next address after the callsite.

Code reuse attacks inject different return addresses to violate the normal program control
flow. This is achieved by manipulating the return addresses stored on the stack. These addresses
will be used later by a return instruction to change the control flow of the program. Code reuse
attacks use sequences of instructions located before a return instruction for their malicious
intents. The instructions are used to prepare information for the next steps (gadgets) present
in the code reuse gadget chain. Since an unprotected backward edge can target any address in
the program the sequence can start at an arbitrary point (address) in a function. This results in a
violation of the original CFG. By detecting such violation, it allows a backward edge protection
tool to mitigate a CRA.

2.7.4 Virtual Table Hierarchy

(C,0)

– C, P, GP –

C::f()

P::g()

(P,0)

– P, GP –

GP::f()

P::g()

(GP,0)

– GP –

GP::f()

GP::g()

Figure 2.8: Virtual tables of a single C++ class hierarchy.

Figure 2.8 depicts three class-relevant terms required to better understand the remainder of
the thesis. More specifically, Figure 2.8 depicts a single most derived type C with a parent P
and grand-parent GP. An arrow indicates a class inheritance relation. With regard to a specific
virtual callsite (which is used to call a virtual function contained in this class hierarchy), we
introduce the following definitions.

Precise class. The precise class of a callsite is the least-derived type of which the object used at
the callsite can be. Usually, the precise class is the static type of the variable used for the virtual
call. However, depending on the compiler implementation, a stricter type can be inferred (see
the Clang/LLVM [50] compiler framework for more implementation details). In our example,
we assume that we have a virtual callsite which uses a variable of static type C. This static type
is called the precise class of the callsite.

Base class. We define the base class as the class which provides the function implementation
which is called when an object of precise type is used, i.e., the object has a dynamic type of
precise class. Therefore, the vtable entry used for the object dispatch is located in the vtable of
precise class and per definition points to a function of base class. It follows that if the precise
class itself implements (or overrides) the function used at the callsite, then the precise class
and the base class of the callsite are the same.
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Figure 2.8 depicts in blue shaded color the vtable entries used, in case the object at the
callsite is of precise type (C). If the callsite dispatches function f(), then the base class for this
callsite is C, since C overrides function f(). If instead the callsite dispatches function g(), then
the base class for this callsite is P, because class C does not override function g() and instead
uses the implementation provided by class P.

Root class. The root class is defined as the class first introducing the function (i.e., the least de-
rived class declaring the function). Note that this class might declare this function as abstract
and not provide any implementation for it. In Figure 2.8, GP, depicted with red font color, is
the root class of both functions f() and g().

2.7.5 Shadow Stack Techniques

Shadow stack techniques can be used similarly to stack canaries, in order to protect against
backward-edge program control flow violations, see Dang’s [62] PhD thesis for more details.
These techniques consist of complementing the program with additional code, which is able to
check if the caller/callee calling convention is respected during runtime. This technique relies
on building a second stack for each function stack located in the program. Runtime checks
ensure that each function return address –that was put in the shadow stack before entering the
called function– is popped from the stack before leaving the called function or before the stack
frame was cleaned up by the program. Essentially, a shadow stack technique keeps track of
all addresses that are pushed and popped on the stack and checks that the push-pop address
pairs match. This way, the caller/callee calling convention is enforced. In addition, the program
stack is not corrupted (polluted) by the attacker with fake addresses that are usually used to
chain code reuse gadgets, as for example in return oriented programming (ROP) attacks.

While these techniques are effective in theory, they have received less acceptance. Only
SafeStack [49] is in production, but was recently bypassed [94]. Further, their practicability
and efficiency is questionable due to the fact that they rely on information hiding. We next list
some of their limitations.

Hiding the Shadow Stack. The shadow stacks inside a program are typically hidden from
the usual program execution through one level (ideally more) of indirection (i.e., trampolines,
segment register). These levels of indirection should guarantee that the attacker is not able to
find the shadow stacks. This ensures that the attacker cannot write into them (these reside in
writable memory). However, it is not yet demonstrated, that one level of indirection is sufficient
to ensure that the shadow stack cannot be found (through information leaks) by a motivated and
resourceful attacker. Since shadow stack implementations put the shadow stacks in writable
memory, if they are found, they could be overwritten by the addresses that the attacker wants
to use in their attack.

Binary Size Blow-up. Shadow stack-based techniques provide a separate shadow stack for
each function, that is either instrumented inside the protected program or inside a library loaded
along with the protected program. Due to the fact that the number of these additional shadow
stacks can be high, the size of the program binary can grow rapidly. Some techniques consid-
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erably increase the size of the binary. Well-implemented (lazily allocated) shadow stacks will
at most double the amount of memory used for stacks (this 2x factor is the same regardless of
multi-threading, see [63] for more details). In addition, stacks tend to be very small compared
to the heap. Therefore, these techniques might not be suitable for all types of program memory
restrictive applications, such as certain embedded devices. Shadow stack techniques, which
are, for example, based on hardware features such as Intel’s CET (no known implementation
at the time of writing this thesis) and compiler support, have negligible program binary size
increase after hardening the executable.

Not returning calls. The C++ programing language, for which most of the shadow stack tech-
niques were designed, provides some function calls, that do not return or respect the caller-callee
function calling convention. These functions are: longjump, tail calls, etc. For these types
of calls, the shadow stack techniques cannot be used, since these types of function calls do not re-
turn to the address next to the calling function. Finally, all tools enforcing shadow stack policies:
(1) do not handle these types of calls due to complexity reasons, and (2) because these types
of calls do not violate the caller-callee function calling convention, as these do not return at all.

Runtime overhead. As each function’s return address has to be pushed, compared with the
stack top value and popped from the shadow stack, the runtime overhead varies drastically from
one shadow stack technique to another. Depending on the count of operations (instructions)
which need to be performed (1-3), the shadow techniques have high performance overheads
(around 10% see [63]), making them infeasible for deployment in production software. For
these reasons, researchers are looking for approaches to do these operations with a minimal
number of steps, such that the overhead is as low as possible and no memory leak is favored
by these operations.

Limited Support for External Calls. Most C/C++ programs rely on third-party libraries and
thus functions residing in these external libraries can be performed. For this reason, this type
of external call needs to be protected as well. Most of the binary and compiler-based tools
do not protect these shared libraries for a number of reasons: (1) binary-based tools usually
cannot deal with functions having their address not taken, (2) binary-based tools often fail
to analyze large binaries due to their complexity, and (3) the compiler-based tools opt to not
recompile shared libraries due to increased analysis complexity, thus backward edges (also
forward edges) remain unprotected. Note that BinCFI [290] (binary tool) could have easily
added a shadow stack to these libraries, but omitted it, due to the resulting overhead. In other
words, the backward edges contained in shared libraries are not protected and thus, the attack
surface remains considerably high and the protection added to the program does not help much
when all the needed gadgets reside in a shared library.

Emulated Shadow Stacks. Tools which approximate perfect shadow stack (i.e., do not contain
all caller-callee address pairs) techniques (e.g., [266]) achieve only a coarse-grained precision
w.r.t. the return addresses, which can be checked. On one hand, these techniques are optimized
for performance. On the other hand, some of the return edges remain unprotected due to their
imprecision. Furthermore, the checks of harvested addresses are slow due to: (1) the high
volume of data flowing through the CPU, (2) the need to collect and analyze this data, and (3)
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the relative low speed of the continuous reads. As such, these techniques are mostly blind to
attacks which use backward edges [239]. Therefore, other techniques which emulate a shadow
stack more fine-grained or have the same precision as a perfect shadow stack implementation
(shared library support is not supposed) are needed.

2.8 Type Inference in Program Binaries
In this Section, we provide the needed technical background to set the stage for the remainder
of this thesis.

2.8.1 Exploiting C++ Object Dispatches
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1 class nsMultiplexInputStream final
2 :public nsIMultiplexInputStream //A0
3 ,public nsISeekableStream //A1
4 ,public nsIIPCSerializableInputStream //A2
5 ,public nsICloneableInputStream{ //A3
6 nsTArray<nsCOMPtr<nsIInputStream>> mStreams;
7 NS_IMETHODIMP nsMultiplexInputStream::Close(){
8 MutexAutoLock lock(mLock);
9 mStatus = NS_BASE_STREAM_CLOSED;

10 //set NS_OK flag
11 nsresult rv = NS_OK;
12 //get array length
13 uint32_t len = mStreams.Length();
14 //array-based main loop gadget (ML-G)
15 for (uint32_t i = 0; i<len; ++i){
16 //(0)hijacked object dispatch
17 nsresult rv2=mStreams[i]->Close();
18 if (NS_FAILED(rv2)) {
19 rv = rv2;
20 }
21 }
22 return rv;
23 }

Figure 2.9: COOP main loop gadget (ML-G) operation with the associated C++ code.

Figure 2.9 depicts a C++ code example (left) and how a COOP main-loop gadget (right) (i.e.,
based either on ML-G (main-loop), REC-G (recursive) or UNR-G (unrolled) COOP gadgets,
see [59] for more details) is used to sequentially call COOP gadgets by iterating through a loop
(REC-G excluded) controlled by the attacker.

First, the object dispatch (see line 17 depicted in Figure 2.9) is exploited by the attacker in
order to call different functions in the whole program by iterating on an array of fake objects
previously inserted in the array through, for example, a buffer overflow. Second, in order to
achieve this, the attacker previously exploits an existing program memory corruption (e.g.,
buffer overflow), which is further used to corrupt an object dispatch, ¶, by inserting fake objects
into the array and by changing the number of initial loop iterations. Next, she invokes gadgets ¶
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and ¸ up to M , through the calls, · and ¹ up to N , contained in the loop. As it can be observed
in Figure 2.9, the attacker can invoke from the same callsite legitimate functions (in total N )
residing in the virtual table (vTable) inheritance path (i.e., at the time of writing this thesis this
type of information is particularly hard to recuperate from program binaries) for this particular
callsite, indicated with green color vTable entries. However, a real COOP attack invokes
illegitimate vTable entries residing in the entire initial program class hierarchy (or the extended
one) with little or no relationship to the initial callsite, indicated with red-color vTable entries.
Third, this way different addresses contained in the program (1) (vTable) hierarchy (contains
only virtual members), (2) class hierarchy (contains both virtual and non-virtual members)
and (or) the whole program address space can be called. For example, the attacker can call
any entry in the: (1) class hierarchy of the whole program, (2) class hierarchy containing only
legitimate targets for this callsite, (3) virtual table hierarchy of the whole program, (4) virtual
table hierarchy containing only legitimate targets for this callsite, (5) virtual table hierarchy and
class hierarchy containing only legitimate targets for this callsite, and (6) virtual table hierarchy
and class hierarchy of the whole program. Finally, because there are no intrinsic language
semantics—such as object cast checks—in the C++ programming language for object dispatches,
the loop gadget indicated in Figure 2.9 can be used without constraint to call any possible entry
in the whole program. Thus, making any program address the start of a potential usable gadget.

2.8.2 Type-Inference on Executables

Recovering variable types from executable programs is generally considered difficult for two
main reasons. First, the quality of the disassembly can vary considerably from one used
underlying binary analysis framework to another and w.r.t. the compiler flags which were used
to compile the binary. Note that production binaries can be more or less stripped (i.e., RTTI
or other debugging symbols may or may not be available etc.) from useful information, which
can be used during a type-recovering analysis. τCFI is based on DynInst and the quality of the
executable disassembly is sufficient for our needs. In contrast to other approaches, the register
width-based type recuperation of τCFI is based on a relatively simple analysis compared to
other tools and provides similar results. For a more comprehensive review on the capabilities
of DynInst and other tools, we advise the reader to review Andriesse et al. [5]. Second, if the
type inference analysis requires alias analysis, it is well known that alias analysis in binaries
is undecidable [229] in theory and intractable in practice [202]. Further, there are several
highly promising tools such as: Rewards [147], BAP [28], SmartDec [81], and Divine [14].
These tools try more or less successfully to recover (or infer) type information from binary
programs with different goals. Typical goals are: (1) full program reconstruction (i.e., binary
to code conversion, reversing, etc.), (2) checking for buffer overflows, and (3) checking for
integer overflows and other types of memory corruptions. For a comprehensive review of type
inference recovering tools in the context of binaries, we suggest consulting Caballero et al. [33].
Finally, it is interesting to note that the code from only a few of the tools mentioned in the
previous review are actually available as open source.
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2.8.3 Security Implications of Program Indirect Transfers

Indirect Forward-Edge Transfer. Illegal forward-edge indirect calls may result from a virtual
pointer (vPointer) corruption. A vPointer corruption is not a vulnerability but rather a capa-
bility, which can be the result of a spatial or temporal memory corruption triggered by: (1)
bad-casting [142] of C++ objects, (2) buffer overflow in a buffer adjacent to a C++ object, or
(3) a use-after-free condition [238]. A vPointer corruption can be exploited in several ways. A
manipulated vPointer can be exploited to make it point to any existing or added program virtual
table entry or to a fake virtual table added by the attacker. For example, an attacker can use the
corruption to hijack the control flow of the program and start a COOP attack [238]. vPointer
corruptions are a real security threat that can be exploited in many ways as for example if there
is a memory corruption (e.g., buffer overflow, use-after-free condition), which is adjacent in
memory to the C++ object. Consequently, each memory corruption, which can be used to reach
the memory layout of an object (e.g., object type confusion) can be potentially used to change
the program control flow.

Indirect Backward-Edge Transfers. Program backward edges (i.e., jump, ret, etc.) can be
corrupted to assemble gadget chains such as follows. (1) No CFI protection technique was
applied: in this case, the binary is not protected by any CFI policy. Obviously, the attacker can
then hijack backward edges to jump virtually anywhere in the binary in order to chain gadgets
together. (2) Coarse-grained CFI protected scenarios: In this scenario, if the attacker is aware
of what addresses are protected, the attacker may deviate the application flow to legitimate lo-
cations in order to link gadgets together. (3) Fine-grained CFI protection scenarios: in this case,
the legitimate target set is stricter than in (2). But, assuming that the attacker knows which ad-
dresses are protected and which are not, she may be able to call legitimate targets through control
flow bending. (4) Fully precise CFI protected scenarios (i.e., SafeStack [135] based): in this sce-
nario, the legitimate target set is stricter than in (3). Even though we have a one-to-one mapping
between calltargets and legitimate return sites, the attacker could use this one-to-one mapping
to assemble gadget chains if at the legitimate calltarget return site there is a useful gadget [36].

Interestingly to notice in this context is that through: (1) memory layout analysis (through
highly configurable compiler tool chains) of source-code-based locations which are highly
prone to memory corruptions such as declarations and uses of buffers, integers or pointer
deallocations one can obtain the internal machine code layout representation; (2) analysis
of a code corruption which is adjacent (based on (1)) to a C++ object based on application
class hierarchy, the virtual table hierarchy and each location in source code where an object is
declared and used (e.g., modern compiler tool chains can spill out this information for free), one
can derive an analysis which can determine—up to a certain extent—if a memory corruption
can influence (e.g., is adjacent to) a C++ object.

Finally, tools based on these two concepts (i.e., (1) and (2)) can be used by attackers, e.g.,
to find new vulnerabilities, and by defenders to harden the source code only at the places which
are most exposed to such vulnerabilities (i.e., targeted security hardening).
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2.8.4 Shadow Stack Techniques

In this Section, we present details on how shadow stack techniques can by bypassed in general
and why we need an alternative solution for protecting backward edges.

Shadow stack techniques are based on the assumption that these are hard to be found by an
attacker and that these have to remain writable during runtime as addresses are pushed and
popped during runtime. According to Goktas et al. [94] there are at least four attack vectors
(namely; neglected pointers, thread spraying, allocation oracles, and guessing oracles) which
can be used independently to bypass a shadow stack implementation. More broadly, these attack
vectors show that all entropy based hiding techniques can be bypassed by a motivated attacker.

Simulated shadow stacks. The original CFI implementation of Abadi et al. [1] protects
backward edges by simulating a shadow stack i.e., without building new shadow stacks. Abadi
et al. present two approaches: (1) based on pre-fetching (i.e., using prefetchnta instruction)
a label into a register before entering/calling a function and comparing with this label before
leaving the function, and (2) based on hardware registers (segment register gs:[0h]) in which
the return address of a function is loaded before entering/calling a function and comparing it
before leaving the function with the address where the function returns. More specifically, each
program function can return to only an address which was previously loaded into an register
by using hardware segments.

The segment register gs always points to the memory segment that holds the shadow call
stack and which has been created to be isolated and disjoint from other accessible memory
segments. On Windows, gs is unused in application code; therefore, without limitation, CFI
verification can statically preclude its use outside this instrumentation code. As shown in
the figure, the instrumentation code maintains (in memory location gs:[0h]) an offset into
this segment that always points to the top of the stack. The use of the protected shadow call
stack implies that each return goes to the correct destination, so no ID-checks are required
on returns in this instrumentation code. Approach (1) is in our opinion not affected by these
attack vectors but in case the attacker knows the register in which the label was stored he can
rewrite the a different label. Approach (2) is affected by the attack vectors presented above
since the segments on which it relies, where the return address is stored (see bottom part of
Fig. 7 in [1]) can be found and overwritten by an attacker and also the return address in the
stack can be overwritten by the attacker and as such he may return were ever he wants. To this
end, this proprietary implementation is not open source and (1) relies on a special instruction
(e.g., prefetchnta only for 32-bit available) and (2) relies on hardware segment registers (i.e.,
gs:[0h]) which are not available on all architectures. Further, the overhead of these techniques
is on average more than 15% when protecting both backward and forward edges.

As response compiler based solutions (i.e., Clang’s SafeStack [49] and in GCC’s shadow
stack implementation [86]) where proposed in the last years. These techniques do not rely on
exotic instructions, program segments, and hardware registers. These approaches provide a
second writable shadow stack for each program stack. In essence these techniques work by
pushing the return address of each function into a secondary writable shadow stack before
entering/calling a function and popping this address before leaving the function. In case these
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addresses match, then program execution is continued else program execution is terminated.
The accesses to the shadow stacks are made trough pointers and the main assumption is here
that the shadow stack are hard to find.

Real shadow stacks. The Clang’s SafeStack and GCC’s shadow stack implementation relies
on splitting each program stack in two stacks on which addresses are pushed and popped before
entering a function and before leaving it, respectively. It turns out that neglected pointers, thread
spraying and allocation oracles techniques can be all independently used to locate the shadow
stacks. These work under the assumption that there is a memory corruption, the attacker has
read/write primitives and that heap and module data is disclosed. As such, the shadow stack
can be located and overwritten by the attacker which may return to any address in the program
he desires.

Shadow stacks downsides. In terms of security, shadow stack protection is stronger than
the approach of reversing forward edges when assuming that the shadow stack’s integrity is
protected. However, shadow stack’s integrity has to be protected by a separate mechanism.
Randomization is not a good idea here, as shown by Goktas et al. [94]. Software-based
fault isolation would guarantee its integrity, but that comes with additional overhead. The
shadow stack’s implementation has a higher overhead than the approach of reversing forward
edges. This would be a different situation with hardware supported shadow stacks however.
The shadow stack has trouble of being compatible with common software practices such as
longjumps or setjumps, exceptions, continuations, etc. that perform unconventional control
flows. It takes extra effort to make it work at least.

However, our motivation is to provide a new technique for protecting backward edges in
program binaries which does not rely on information hiding or any special instructions and is
not affected by arbitrary writes since the labels are in write protected code located. Thus, our
approach is not affected by the four attack vectors [94]. Our approach enforces N addresses
per return site while a shadow stack enforces one address per return site.

2.8.5 Polymorphism in C++ Programs

Polymorphism along with inheritance and encapsulation are the most used modern object-
oriented concepts in C++. In C++, polymorphism allows accessing different types of objects
through a common base class. A pointer of the type of the base object can be used to point to
object(s) which are derived from the base class. In C++, there are several types of polymorphism:
(a) compile-time (or static, usually is implemented with templates), (b) runtime (dynamic, is
implemented with inheritance and virtual functions), (c) ad-hoc (e.g., if the range of actual types
that can be used is finite and the combinations must be individually specified prior to use), and
(d) parametric (e.g., if code is written without mention of any specific type and thus can be used
transparently with any number of new types). The first two are implemented through early and
late binding, respectively. In C++, overloading concepts fall under the category of c) and virtual
functions, templates or parametric classes fall under the category of pure polymorphism. How-
ever, C++ provides polymorphism through: (i) virtual functions, (ii) function name overloading,
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and (iii) operator overloading. In this thesis, we are concerned with dynamic polymorphism,
based on virtual functions (see ISO/IEC N3690 [129]), because it can be exploited to call: (x)
illegitimate virtual table entries (not) contained in the class hierarchy by potentially varying the
number of parameters and types, (y) legitimate virtual table entries (not) contained in the class
hierarchy by potentially varying the number of parameters and types, and (z) fake virtual tables
entries not contained in the class hierarchy by potentially varying the number of parameters and
types. By legitimate and illegitimate virtual table entries we mean those virtual table entries
which for a single indirect callsite lie in the virtual table hierarchy. More precisely, a virtual
table entry is legitimate for a callsite if from the callsite to the virtual table containing the entry
there is an inheritance path (see [106]). Virtual functions have several uses and issues associ-
ated, but for the scope of this thesis we will look at the indirect callsites which are exploited
by calling illegitimate virtual table entries (i.e., functions) with varying number and type of
parameters, see (x) above). More precisely, (1) load-time enforcement: as calling each indirect
callsite (i.e., callee) requires a fixed number of parameters which are passed each time the caller
is calling, we enforce a fine-grained CFI policy by statically determining the number and types
of all function parameter that belong to an indirect callsite, and (2) runtime verification: as
differentiating during runtime legitimate from illegitimate indirect caller/callee pairs requires
parameter type and parameter number, we insert before each indirect callsite a check used for
determining during runtime if the caller matches with the callee based on certain CFI policies.

2.8.6 Real COOP Attack Example

The bug CVE-2014-3176 was exploited by Crane et al. [59] in order to perform a COOP attack,
on the Google Chromium Web browser. The details of this attack are highly complex involving
not properly handled interaction of browser extensions between the IPC, the sync API, and
Google V8 engine and for this reason we briefly present a better documented COOP exploit
which is in principle similar with this attack.

Figure 2.10 depicts1 a Turing complete COOP attack [238] which was used to attack the
Mozilla Firefox web browser. Essentially, by exploiting an existing buffer overflow bug the
attacker was able to call into existing virtual table entries by having a main loop gadget at his
disposal. Next we present the steps needed in order to perform this attack.

First, the attacker uses the C++ class nsMultiplexInputStream (see Figure 2.10) which
contains a main loop gadget (ML-G) inside the nsMultiplexInputStream::Close(void)
function in order to perform indirect calls by dispatching calls on the fake objects contained
in the array. The objects contained in the array during normal execution are of nsInputStream
type and each of the objects will call the Close(void) function in order to close each of the
previously opened streams.

1The class inheritance hierarchy of the classes involved in the COOP attack against the Firefox browser. Red
letters indicate forbidden virtual table entries and green letters indicate allowed virtual table entries for the
given indirect callsite contained in the main loop gadget.
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A0::close(void)

nsMultiplexInputStream {B0, A1, A2, A3}
A0::close(void)

nsInputStream {A0}

 nsSeekableStream {A1}
A1::f_B1(int p1, float p2)

nsIPCSerializableInputStream {A2}

nsCloneableInputStream {A3}

X0::f_X0(int p);
xpcAccessibleGeneric {X0}

...

...

(inherits > than 
10 classes)

nsInputStream {A0}

A0::close(void)

ClassName 
functionName(parameters)

A1::f_B1(int p1, float p2)
X0::f_X0(int p);

{A0}

{A1}

2.further class inheritance

3.indirect call to vTable entry

4.class

5.legitimate vTable entry

6.illegitimate vTable entry

7.legitimate inherited vTable

1.class inheritance

8.illegitimate inherited vTable

Legend

Figure 2.10: Class hierarchy of classes used in the COOP attack.

Second, for performing the COOP attack, the attacker crafts a C++ program containing an
array buffer holding six fake objects. These fake objects can call inside (and outside) the initial
class and virtual table hierarchies with no constraints. During the attack a buffer is created
in order to hold the fake objects. The crafted buffer will be used instead of the real code in
order to call different functions available in the program code. For example, the attacker calls
a function contained in the class xpcAccessibleGeneric which is not in the class hierar-
chy or virtual table hierarchy of the initially intended type of objects used inside the array.
Moreover, the header file of this class (xpcAccessibleGeneric) is not included in the class
nsMultiplexInputStream.

Third, in total, six fake objects are used to call into functions residing in unrelated class
hierarchies with varying number of parameters and return types. The final goal of this attack is
to prepare the program memory such that a Unix shell can be opened at the end of this attack.

Lastly, this example illustrates why detecting vPointer corruptions is not trivial for real-world
applications. As depicted in Figure 2.10, the class nsInputStream has 11 classes which inherit
directly or indirectly from this class. The classes nsSeekableStream, nsIPCSerializable-
InputStream and nsCloneableInputStream provide additional inherited virtual tables which
represent illegitimate calltargets for the initial nsInputStream objects and legitimate calltar-
gets for the six fake objects which were added during the attack. Furthermore, declaration and
usage of the objects can be widely spread out in the source code. This makes detection of the
object types (i.e., base class), range of virtual tables (i.e., longest virtual table inheritance path
for a particular callsite) and parameter types of the virtual table entries (i.e., functions) in which
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it is allowed to call a trivial task for source code applications, but a hard task when one wants
to apply similar security policies (e.g., which rely on parameter types of virtual table entries)
to binary executables.

2.8.7 Mitigation of Forward-Edge Based Attacks

Binary based tools. TypeArmor [268] has around 3% runtime overhead and enforces a
CFI-policy based on runtime checking of caller-callee pairs which relies on runtime function
parameter count matching. Compared to TYPESHIELD, this tool does not use function param-
eter types and assumes that a backward-edge protection is in place. VCI [78] and Marx [218]
are both based on approximated program class hierarchies: (1) do not recover the root class of
the hierarchy, and (2) the edges between the classes are not oriented. Thus, both tools enforce
for each callsite the same virtual table entry (i.e., index based) contained in one recovered class
hierarchy denoted by father-child relationships between the recovered vtables. Finally, both
tools use up to six heuristics and simplifying assumptions in order to make the problem of
program class hierarchy reconstruction tractable.

Source-code-based tools. To the best of our knowledge, only the Clang-CFI [149] and IFC-
C/VTV [261] (up to 8.7% performance overhead) compiler based tools are deployed in practice
and can be used to check legitimate from illegitimate indirect forward-edge calls during runtime
by checking if virtual object pointers comply with the program class hierarchy inheritance
relationships. Furthermore, ShrinkWrap [106] is a GCC compiler based tool which further
reduces the legitimate virtual table ranges for a given indirect callsite (i.e., object dispatch)
through precise analysis of the program class hierarchy and virtual table hierarchy. Evaluation
results show similar performance overhead results as the previous mentioned tools but with
more precision with respect to legitimate virtual table entries (calltargets) per callsite. We
noticed by analyzing the previous research results that the overhead incurred by these security
checks can be very high due to the fact that for each callsite many range checks have to be
performed during runtime. Therefore, in our opinion, despite its security benefit these types
of checks are most likely not applicable to software where performance is key.

Other types of tools. Other highly promising source-code-based tools (albeit also not deployed
in practice) which can overcome some of the drawbacks of the previously described tools are as
follows. Bounov et al. [24] presented a tool (≈1% runtime overhead) for indirect forward-edge
callsite checking based on virtual table layout interleaving. The tool has better performance
than VTV and better precision with respect to allowed virtual tables per indirect callsite. Its
precision (selecting legitimate virtual tables for each callsite) compared to ShrinkWrap is
lower since it does not consider virtual table inheritance paths. vTrust [286] (average runtime
overhead 2.2%) enforces two layers of defense (virtual function type enforcement and virtual
table pointer sanitization) against virtual table corruption, injection and reuse.
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2.8.8 Mitigation of Backward-Edge Based Attacks
According to one of the currently most comprehensive surveys by Burow et al. [32] assessing
backward edge protection techniques and runtime overhead comparisons, tools can be dis-
tinguished into providing low, medium, and high levels of protection w.r.t. backward-edges.
Further, this survey provides runtime overhead comparisons. classifies the backward-edge
protection techniques in binary-based, source-code-based, and other types (i.e., with HW
support, etc.).
Binary based tools. Burow et al. provide the following insights w.r.t. binary-based tools. The
original CFI implementation from Abadi et al. [1] as well as MoCFI [156], kBouncer [216],
CCFIR [289], bin-CFI [290], Reins [276], O-CFI [187], PathArmor [266], LockDown [221]
mostly suffer from imprecision (high number of reused labels); have low runtime efficiency;
and some of the tools do not support shared libraries.
Source-code-based tools. SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
piCFI [212] relatively high precision w.r.t. enforced address return set, and all do not support
shared libraries (except MCFI), have high coverage (almost all backward edges are protected).
Other types of tools. ROPecker [44], HW-asst. CFI [66], CFIGuard [284] are mostly relying
on HW features which were not specifically built for protecting backward edges and for this
reason the tools are not runtime effective and their precision is rather low and mostly not
effective against state-of-the-art code reuse attacks.
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Chapter 3
Related Work

In this Chapter, we present related work with respect to detection of integer overflows in Section
3.1, and in Section 3.2, we present tools usable for integer overflow classification and repair
generation, while in Section 3.3, we present related work to buffer overflow repair generation.
In Section 3.4, we introduce some techniques for detection of object type confusions and in
Section 3.5, we talk about static and dynamic gadget discovery as well as existing metrics for
assessing CFI defenses. In Section 3.6, we highlight some of the tools usable for program
CFG backward-edge runtime protection. Further, in Section 3.7, we describe how backward
and forward edges based attacks can be mitigated as well as mitigation of advanced and not
advance CRAs. Finally, note that parts of this Chapter have already been published by Muntean
et al. [195, 196, 197, 198, 199, 200, 201].

3.1 Detecting Integer Overflows
Integer-related problems detecting research focuses primarily on integer overflow vulnerabil-
ities, either employing dynamic or static code approaches [54] which run on binary or source
code. The static approaches are mostly based on an analysis framework and added run-time
checks at certain interesting points in code (e.g., assignments, x := expr.) located on satisfiable
program paths.

3.1.1 Static Analysis Tools
The static analysis tool UQBTng [280] decompiles the binary files and then uses model check-
ing based on CBMC [53] to detect integer overflows. IntScope [272] first transforms the
analyzed binaries into an intermediary representation (IR) and based on symbolic execution
and taint analysis it checks for integer overflows. These two approaches operate on binary files
and cannot figure out the original variables data types since they get lost during the compilation
process, whereas our approach can use the original variables data types from source code.
ARCHERR [45] can examine million of lines of source code but can not deal with string
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operations and has on average 35% of false positives, whereas our approach has a lower false
positives rate. Microsoft’s PREfast [166] is used during source code compile time and relies
on source code annotations which is integrated in the Microsoft VS IDE and are provided in
advance. Our approach does not require costly annotations. On the other hand, we think that
the annotations represent an useful source of information which is typically not available during
static analysis. Microsoft’s PreFix [193] is based on the Z3 [166] solver, runs on large legacy
C/C++ source code repositories in order to find a wide range of problems related to integers
and uses a ranking mechanism to filter out false positives. It is based on a ranking mechanism
used to filter out false positives and suffers from imprecision because it does not use the already
available annotations contained in the source code as the authors acknowledge. INTDETECT

compared to PreFix focuses integer related problems. It is based on a ranking mechanism
used to filter out false positives and suffers from imprecision because of not using the already
available annotations contained in the source code as the authors acknowledge. INTDETECT

compared to PreFix focuses on only one type of integer related problems (integer overflows)
by using C function models whereas the PreFix tool does not use function models. Ceesay and
colleagues [38] added type qualifiers to detect integer overflow problems. Their approach relies
on expensive system extensions which are linked into the compiler and are used to check the
code for integer errors. Their approach requires user annotation whereas our approach does not
require annotations. Ashcraft et al. [10] and Sarkar et al. [235] used bounds checking and taint
analysis to see if untrusted values are used in trusted sinks. These two approaches are based
on insensitive information flow whereas our approach is context sensitive.

3.1.2 Dynamic Analysis Tools

The dynamic analysis tools are used to detect integer related problems: RICH [29], BRICK [42],
SmartFuzz [188], SAGE [93] and IOC [73]. RICH [29] instruments programs to detect safe
and unsafe operations based on well-known sub-typing theory. BRICK [42] detects integer
overflows in compiled executables using a modified Valgrind [203] version. Its accuracy and
efficiency depend on the test input used to exercise the instrumentation. It is either slow (50×
slowdown) or has many false positives. SmartFuzz [188] is also based on Valgrind, but it
uses dynamic test generation techniques to generate inputs, leading to good test coverage.
SAGE [93] uses dynamic test generation, but it targets fewer integer problems than SmartFuzz.
IOC [73] is an integer overflow and underflow problems detection tool integrated with the
Clang compiler. Compared with INTDETECT, these tools can neither exercise all bugs due to
dynamically generated test cases nor full path coverage can be achieved.

3.2 Repairing Integer Overflows

There is a large body of research work focusing on integer overflow detection: ARCHER [45],
UQBTng [280], PREfast [56], Rich [27], SAGE [93], CBMC [53], IntScope[272], Brick [42],
IntFinder [41], SmartFuzz [188], PREfix [193], IntPatch [288], IOC [73], IntFlow [225],
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SoupInt [270], SIFT [154], TAP [249], Diode [248], Indio [292], Zhang et al. [285], and
IntEQ [255]. In contrast, only few approaches focus explicitly on integer overflow repairs:
CIntFix [43], SoupInt [154], CodePhage [247], TAP [249], and SIFT [154]. Out of these
approaches, only TAP [249] (technical report) and SIFT [154] first explicitly detect the integer
overflow and then repair it. The other tools—which do not first confirm the bug existence—
mostly blindly change the code in all error-prone locations in the hope to avoid integer related
problems. For example: (1) CIntFix [43] utilizes integers of infinite size with two’s complement
encoding in place of original bounded integers, and (2) AIC/CIT/RAO [54] relies on three code
transformations: add integer cast (AIC), replace arithmetic operator (RAO), and change integer
type (CIT) to change the program in order to avoid integer overflows. However, in most cases
these tools are triggering high runtime overhead and have a considerable likelihood of changing
program behavior.

TAP [249] first detect the integer overflow and than propose a repair for it. TAP is similar to
INTREPAIR w.r.t. the fact that both tools first detect an integer overflow and next they generate
a code repair which removes the integer overflow. TAP utilizes the integer overflow discovery
algorithm from DIODE [248]. Another improvement of INTREPAIR over TAP is that a validation
mechanism is provided by INTREPAIR to check if the integer overflow is indeed removed from
the program.

SIFT [154] first detects the integer overflow (bug detection is based on Diode [248]) and
then generates an input filter to eliminate the bug at the binary level. Sift is a static input filter
generation tool, which inserts input filters in the program binary for which the source code was
previously manually annotated with source code annotations. While currently the only sound in-
teger overflow repair tool, Sift relies on tedious user source code annotations that are not always
available for a source code program or require a considerable and tedious annotation overhead.
Upper bound source code annotations for loops are needed when the analyzed expression de-
pends on a number of values that is not finite. Further, not all types of integer overflow relevant
sites are supported (i.e., only memory allocations and block memory copy sites). For some types
of applications (i.e., web servers etc.) with no available input format specification (i.e., no image
or video files) Sift cannot be applied. Sift relies on tedious user source code annotations and can-
not guarantee that no unwanted program behavior is introduced since the filters may remove only
the integer overflows which these cover. Sift does not support multi-precision integer overflow
repairs, and annotated stub standard C library functions need to be provided upfront for functions
that influence the computed symbolic condition (if not provided, the filter will not be generated).

In the above-mentioned approaches, fault localization is performed before patch generation.
In contrast, we combine fault localization and patch generation, and as a result, we obtain
the capability of generating precise patches which remove the bug for various program inputs
(bug detection is not program input independent) and at the exact location where the bug was
detected upfront. For this purpose, we use SMT solving for bug localization. However, unlike
INTREPAIR, SMT solving is not used for repair synthesis by TAP or Sift. As such, their bug
removal process is bound to a limited number of test inputs to confirm that the bug was removed
after the repair was inserted, which does not guarantee that the bug was really removed for all
possible program inputs.
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ARCHERR [45] ESORICS’04 X X X X X X X X X
UQBTng [280] 22C3’05 X X X X X X X
PREfast [166] MSR-TR’10 X X X X X X X X
Rich [29] NDSS’07 X X X X X X X X X X X X
SAGE [93] NDSS’08 X X X X X X X X X X
IntScope [272] NDSS’09 X X X X X X X
Brick [42] ARES’09 X X X X X X X X X
IntFinder [41] ICICS’09 X X X X X X X X
SmartFuzz [188] Usenix Sec.’09 X X X X X X X X X X X
PREfix [193] MSR-TR’09 X X X X X X X X
IntPatch [288] ESORICS’10 X X X X X X X X
IOC [73] ICSE’12 X X X X X X X X X X X
IntFlow [225] ACSAC’14 X X X X X X X X X X X
SoupInt [270] DIMVA’14 X X X X X X X
SIFT [154] ACM SN’14 X X X X X X X X
TAP [249] MIT-TR’14 X X X X X X X X X X X
Diode [248] ACM SN’15 X X X X X
Indio [292] RAID’14 X X X X X X X
Zhang et al. [285] SNPD’16 X X X X X
IntEQ [255] ICSE’16 X X X X X X X X X X X X
CIntFix [43] COMPSAC’16 X X X X X X X X X X

INTREPAIR [197] - X X X X X X X X X

Table 3.1: Integer overflow detection and repair features. Entries are arranged by year.

Table 3.1 summarizes a string of tools used for integer overflow detection and repair, and
the underlying techniques on which these tools are based. In Table 3.1 the Xsymbol means
addressed and the abbreviations have the following meaning: static symbolic detection (s.
s. d.), dynamic symbolic detection (d. s. d), and ¬ logical not. We deliberately excluded
from Table 3.1 commercial static symbolic execution tools (e.g., CodeSonar; see [245] for more
details), which scale to programs having millions LOC and which can efficiently detect integer
overflows, since their internals are mostly unknown. Further, we have added a single tool based
on bounded model checking (BMC), namely CBMC [53], which can be used to check pointer
safety, array bounds, and user-provided assertions. While BMC can be used in principle to
detect integer overflows, we consider this line of research orthogonal to our research.

Further, it is interesting to note that most of the tools presented in Table 3.1 are either only
used for integer overflow detection or if they are used for code repair then they do not consider
detecting first the integer overflow, and none of the integer overflow repair tools are complete
for analysis trade-off reasons. Finally, integer overflow has threatened software programs for
decades, and many efforts have been made to address this problem. Next we will present the
most representative work.

3.2.1 Detecting Integer Overflows

Library Support. Safe integer libraries such as SafeInt [169] and IntegerLib [240] are widely
used during runtime. These approaches impose on the programmers that they rewrite existing
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code to use safe integer operations. INTREPAIR in contrast detects and repairs integer overflows
without any assistance from developers to rewrite code.

Runtime Checks. RICH [27], IOC [73], IntPatch [288], RA [222] and IntTracker [254] utilize
program instrumentation to insert security checks around integer arithmetic operations of
interests in order to detect integer overflows during runtime. One major drawback of this
approach is that these tools insert runtime checks conservatively such that they often incur a
high runtime overhead. In contrast, INTREPAIR inserts checks only when it previously found
an integer overflow. It therefore imposes a lower performance overhead.

Static Integer Overflow Detection. KINT [273] utilizes taint analysis and integer range
analysis to generate test cases which can trigger integer overflows in Linux kernel. It requires
optionally procedure specifications from the programmer to characterize parameter value
ranges and reports many false positives. SIFT [154] uses a sound static program analysis to
collect constraints from program entries to integer arithmetic operations which can flow into
memory allocation operations and block copy operations, to generate input filters which can
decline inputs that may trigger overflow errors. Similarly, DIODE [248] relies on targeted site
identification and goal-directed conditional branch enforcement to discover integer overflows.
Note that KINT [273], SIFT [154] and DIODE [248] can only handle integer overflows which
can influence memory allocations or block copy operations, i.e., IO2BO, whereas INTREPAIR

can deal with all types of integer overflows.

Dynamic Integer Overflow Detection Taking a different approach, fuzzing-based software
testing and concolic testing are two widely used dynamic techniques to detection integer
overflows. Random fuzzing [92] is widely used by researchers to expose program errors, not
only integer overflows. Due to the fact that the new inputs it generates often fail certain sanity
checks, random fuzzing is relatively ineffective. Directed fuzzing such as BuzzFuzz [85] and
TaintScope [271] first uses dynamic taint tracking to identify input bytes that can influence
values at critical program sites such as memory allocation sites and system calls, and then
mutates these particular bytes so as to expose errors which reside deeply inside programs. Since
the size of fuzzed input is reduced, directed fuzzing is much more effective than random fuzzing.

Concolic Testing. [46, 158, 241] is a newer alternative than random and directed fuzzing. These
tools execute programs both concretely and symbolically on a seed input until an interesting
program expression is reached. Although successful in many scenarios [34], concolic testing
faces several challenges [228, 35]. Specifically, the resulted constraint systems for deeper
program paths get very complex and thus beyond the capabilities of current SMT solvers. Smart-
Fuzz [188] is a concolic testing tool which can detect integer overflows, non-value-preserving
width conversions, and potentially dangerous signed/unsigned conversions. However, it is
limited by deep program paths and blocking checks. Dowser [108] is a fuzzer that combines
taint tracking, program analysis, and symbolic execution to find buffer overflows. Note that
compared to INTREPAIR, these dynamic techniques need a set of seed inputs and may suffer
from a heavy runtime overhead.
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3.2.2 Classifying Integer Overflow

As discussed in RICH [27], SIFT [154] and IntEQ [255], integer overflow might be introduced
into the programs intendedly by programmers in order to accomplish benign purposes, such
as hashing computation and random number generation. These benign integer overflows are
not harmful and it is not needed to fix them.

IntFlow [225] first utilizes static data flow analysis to find safe integer arithmetic operations
which originates from trusted sources such as constants and configuration files, or which finally
propagates into security-unrelated program sites such as debug information printing, and then
inserts security checks for those integer arithmetic operations besides these safe ones to gain
runtime protection. IntFlow could exclude the reports for benign integer overflows to some
extent. However, there still exists a lot of benign integer overflows which are along the paths
from untrusted sources to security-related program sites.

A further improvement is made by IntEQ [255], which uses equivalence checking across
multiple precisions to recognize benign integer overflows from harmful ones. IntEQ deter-
mines whether an integer overflow is benign by comparing the effects of an overflowed integer
arithmetic operation in the actual world with limited precision and the same operation in the
ideal world with sufficient precision to evade the integer overflow. However, IntEQ still fails
to recognize 20% benign integer overflows according to its experiments.

Hence, it is not easy to identify all the benign integer overflows automatically since benign
integer overflows are essentially the programmers’ intentions and it is difficult to formalize
and infer what programmers intend to do. INTREPAIR tries to mitigate this problem by letting
programmers make the final decisions. When an integer overflow is detected by INTREPAIR,
whether to further repair it or not is determined by programmers. If needed, a proper overflow
repair pattern is selected and patched automatically.

3.2.3 Repairing Integer Overflows

SoupInt [270] is an off-line system that can diagnose whether an exploit is caused by an integer
overflow and generate emergency patches at proper locations to fix it. Note that SoupInt works
for binary code whereas INTREPAIR works for source code.

CIntFix [43] utilizes integers of infinite size with two’s complement encoding in place of orig-
inal bounded integers to provide runtime protection for C source code functions. The analysis
performed by CIntFix is syntax-directed and rule-based, which avoids sophisticated and impre-
cise analysis. However, its analysis cannot scale to large programs and CIntFix can miss to repair
some integer overflows as well. From the total of 2052 programs in the same test suite, CIntFix
could repair only 1938, whereas INTREPAIR could fix all of them. Also, the source code expan-
sion is above 25%, which is almost 25 times more than that of INTREPAIR. The runtime on the
repaired programs is 16%, whereas INTREPAIR’s slowdown on the same programs is about 1%.

CodePhage [247] is an automatic patching tool, transferring the patch for an integer overflow
from donor applications to recipient applications based on the assumption that applications
of the same type may have the similar behavior under the same input file. The following
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sentence is completely messed up: Given the same input file, if there is no integer overflow
for donor applications whereas it happens for recipient applications, there should have a patch
in donor applications which can fix the integer overflow that occurs in recipient applications.
CodePhage does such transferring. INTREPAIR differs in that its code repair technique enable
it to automatically generate repairs in the absence of donor applications.

AIC/CIT/RAO [54] is a static source code analysis tool built as an Eclipse plug-in which pro-
vides several code transformations to avoid integer errors. Three types of code transformations
are provided: add integer cast (AIC), replace arithmetic operator (RAO), and change integer
type (CIT). Based on these three safe code transformations, this tool can protect against integer
overflow without the need to detect the integer overflow first. However, these three transfor-
mations cannot be applied to all unsafe situations and a fraction of the variable declarations
are also modified since in some situations, the preconditions which have to be checked are far
more complex than what AIC/CIT/RAO can cover. In this situation, no transformations are
applied. The tool has a runtime overhead of the hardened programs for each of the three types
of transformations which is over 30% (see Figure 3 in [54]) compared with the original program.
This is not acceptable in real software. In contrast, INTREPAIR first detects integer overflows
using static symbolic analysis and then it generates a repair which can protect against the integer
overflow with a much lower runtime overhead than the three above presented transformations.

DirectFix [161] is a static test-case-based analysis tool used for generating simple repairs at
the expression level (i.e., other tools operate at the statement level) which does not target specif-
ically integer overflow repairs. This tool relies on test cases in order to locate the bug. The intu-
ition behind this tool is to propose simplistic repairs which generate less regressions compared to
other tools such as SemFix [205]. The repairs of DirectFix are up to 56% identical to the ground
truth repairs contained in the SIR testsuite [72] and target operators in existing expressions.
Compared to IntRepair which first locates the bug and then proposes complex repairs which can
have multiple lines of code, DirectFix does not validate the repair. Further, the authors claim that
as the repairs are more minimalistic, they should generate less regressions as other tools. We do
not agree with the hypothesis from DirectFix that ...simple repairs are likely to be less hazardous.
general simplistic repairs always lead to less regressions. Further, in case the bug cannot be
removed by introducing the repair at the expression level or there is no expression which can
be mutated by DirectFix, then this tool cannot fix the bug. In contrast, INTREPAIR detects the
bug at the statement level and encloses the statement with a repair which can eliminate the bug.

3.3 Repairing Buffer Overflows

3.3.1 Generating Buffer Overflow Repairs

Source code patches for repairing buffer overflow bug can be generated in different ways [109],
from free form bug reports [148], [277], [3], from statically defined patch patterns [132],
[105], from test suite using SMT solver [69], [205], from test suite and genetic program-
ming [141], [278], by replacing the unsafe libc [250], [236], functions with safe functions, [58].

53



3 Related Work

Hafiz et al. [244] addressed buffer overflows quick fixing by replacing unsafe library func-
tions with safe alternatives. Cowan et al. [60] have used static analysis for generating code
patches based on four approaches in which the buffer overflow vulnerabilities can be defended.
Jacobs [123] has proposed to use buffer overflow refactoring patterns as an extension for
the C language called SMART C. In recent years, many quick fix generation tools for buffer
overflows have been proposed: AutoPaG [146], SafeStack [40], DYBOC [246], TIED [12],
LibsafePlus [12], LibsafeXP [145], HeapShield [79].

To the best of our knowledge, the AutoPAG [146] tool is most similar to our approach from
the backward visiting of program statements perspective. BUFFREPAIR can not be compared
with AutoPAG from the point of view of computation time and quick fix quality at this stage of
development since AutoPAG has several limitations which we will briefly list. Our algorithm
stops the search after encountering the first non-in-place bug fix location, whereas AutoPAG
tries to detect all possible non-in-place bug fix location by running a repeated inefficient data
flow analysis (no program execution paths used). AutoPAG is unaware of program execution
paths and uses a rudimentary backward information flow propagation approach based on the
sequential ordering of program statements. The analysis (no SMT solver used) is repeated until
there are no visited variables in the previously constructed set of tainted variables. This set can
contain all program variables and can generate a significant overhead as already mentioned
by the authors of AutoPAG.

3.4 Detecting C++ Object Type Confusions

3.4.1 Virtual Table Pointer-based Tools

Clang-CFI [51, 52] (C++ object type cast checking tool) is similar to CASTSAN in that it uses
no runtime library and all cast check detection metadata is computed during compile time.
However, there are no publicly available evaluation results of Clang-CFI, and therefore we
evaluated Clang-CFI in Section 10.4 independently. Clang-CFI relies on bitsets in order to
model the class hierarchy of a program. Clang-CFI uses these bitsets to encode the valid virtual
table start addresses for each class. Compared to CASTSAN, Clang-CFI has a higher runtime
overhead, as the bit-set checking technique on which it relies apparently is less efficient than
our virtual table based technique.

3.4.2 C++ Object Type Runtime Tracking

All currently available polymorphic and non-polymorphic object type confusion detection tools
(except Clang-CFI) rely on dynamic checks (i.e., LLVM’s Compiler-RT is mostly used) for
several key reasons, as follows. First, the object type has to be tracked during runtime. Second,
this is due to the limited precision of static analysis techniques, which cannot recuperate the
object type or a set of possible types before program runtime, Third, the object type confusions
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manifest only during runtime. Finally, object type confusions are hard to replicate statically
(i.e., compile time or through symbolic execution, without running the program).

However, the most significant reason is the fact that the types of casted objects, referenced by
pointers, may be program input dependent and thus only precisely obtainable during runtime.
On one hand, in the best case, the allocation of the object being cast can be tracked during
compile time (e.g., if the runtime path from allocation to cast is linear). On the other hand,
in the worst case, the object type cannot be approximated (e.g., the object was given via a
void-pointer from an external function previously).

3.4.3 Compiler-based Tools

UBsan [99], CaVer [142], TypeSan [107], and HexType [125] are compiler-based tools that
perform object type confusion detection at runtime for C++ based programs. Since HexType is
the successor of TypeSan, the tools are very similar to each other from a technical perspective.
These two tools and CaVer rely on a runtime metadata service and can reach a high coverage
while imposing a considerable performance overhead. CASTSAN on the other hand uses meta-
data that is statically created at compile time and can therefore apply very performant checks at
runtime. CASTSAN can protect against polymorphic casts by using vtable hierarchy based ranges
and without using a black list. Thus, the assumption made by [107] w.r.t. the fact that polymor-
phic casts can be checked without relying on RTTI information can be confirmed. Further, CAST-
SAN does not rely on slow runtime metadata structures as HexType does. Furthermore, the eval-
uation Chapter shows that CASTSAN has less overhead than HexType, which in turn is more effi-
cient than CaVer, UBSan and TypeSan. Compared to TypeSan, CASTSAN partially shares the in-
strumentation layer, which is unavoidable, but it uses completely different metadata without stor-
ing data at runtime. More precisely, CASTSAN uses the vtables of polymorphic classes. These ta-
bles that need to be in memory at runtime anyways already provide a view on the class hierarchy.
That is enough for CASTSAN to perform runtime checks without relying on further metadata as
maintained by HexType. HexType on the other hand reaches a higher coverage, as it can check
non-polymorphic objects as well. CASTSAN is more runtime-efficient than CaVer and HexType,
which both require a red-black tree to be traversed (only for the slow path) during each check.

3.4.4 Binary-based Tools

Most distant to our work is the work of Dewey et al. [71] were able to recuperate vtables from
program binaries and detect object type confusions indirectly by checking the bounds of a
virtual function call. This was achieved by enforcing a policy to check if the vptr lies inside
some legitimate bounds. As suggested by the authors, their analysis is imprecise because for
example—as also demonstrated by Prakash et al. [226]—determining the end of a vtable in
binaries without RTTI information is not trivial. Thus, false positives and false negatives are
raised and as such, this type of tool is in the best case usable before system deployment.
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3.4.5 IVT vs. TypeSan

In contrast to what TypeSan’s authors claim w.r.t. to the fact that IVT [24] (an extension of
SafeDispatch [124]) can achieve similar goals as TypeSan by protecting virtual function calls,
we strongly disagree with this claim, since first, IVT does not check specifically for illegal casts
at the right location (i.e., object dispatch checks for ensuring the forward-edge integrity are
inserted at object dispatches to virtual functions only), and second, the standard IVT implemen-
tation does not detect specific type cast violations, but only a potential consequence of it. Thus,
it can be confirmed after analyzing the IVT code that no particular up-cast or down-cast relation
is checked during an object dispatch on a virtual function. Further, IVT cannot detect any partic-
ular type of illegal cast and it was not intended as such. On the other hand, it can be confirmed,
as mentioned by TypeSan’s authors, that IVT can not protect against non-polymorphic illegal
object casts at all, as confirmed by the authors of IVT. First, as illegal casted C++ objects do not
necessarily require to be later on used for object dispatches, in this thesis we strongly disagree
with the claim stated by TypeSan’s authors that IVTs solution can only detect type confusion if
the object is subjected to a virtual call, since the illegal cast is not detected, but a consequence
of this which does not necessarily need to manifest for any given C++ program. Second, the un-
defined behavior—can lead to an exploitable vulnerability—which results after an illegal object
cast, can manifest freely until the casted object is used and checked by IVT in a virtual function
object dispatch. Finally, we agree with TypeSan’s authors which correctly observe that virtual
dispatch protection schemes [286, 106] do not prevent the misuse of type confusion in general.

3.4.6 CastSan vs. IVT

IVT [24] is a compiler-based (Clang/LLVM) tool which protects forward edges (object dis-
patches) during runtime by checking that these point into a legitimate class sub-hierarchy. IVT
is not intended to detect object type confusions but it can combat a consequence of object type
confusions (i.e., hijacking virtual dispatch to execute arbitrary code). IVT can detect sibling and
non-sibling (located on the same branch) polymorphic object type confusions in theory only
if there is an object dispatch in the code which uses this casted object. Thus, the cast can be de-
tected but not at the right location in the code and only if on the casted object an object dispatch
is performed later after the cast was performed. Note that IVT cannot detect object type confu-
sions at all if no object dispatch happened after the object was cast since IVT adds checks just be-
fore each object dispatch. The vtable ranges computed by IVT are similar to the ranges used by
CASTSAN, but these are built for a different purpose and used in a different place in code (i.e., ob-
ject dispatch) and thus with a lower precision than CASTSAN. CASTSAN uses more precise class
hierarchy sub-trees when determining the minimal allowed range for each checked object dis-
patch than IVT. Finally, the vtable range concept of IVT is reused by CASTSAN to detect object
type confusions with higher precision and more effectiveness than IVT could theoretically do.
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3.5 Assessing Control Flow Integrity Defenses

3.5.1 Defense Assessment Metrics

AIR [290], fAIR [261], and AIA [91] metrics have limitations (see Carlini et al. [36]) and
are currently the available CFI defense assessment metrics which can be used to compare the
protection level offered by state-of-the-art CFI defenses w.r.t. only forward-edge transfers.
These metrics provide average values which shed limited insight into the real offered protection
level and thus cannot be reliably used to compare CFI-based defenses. Most recently, ConFIRM
[283] also attempted to evaluate CFI, especially the compatibility, applicability, and relevance
of CFI protections with a set of microbenchmarking suites. In contrast, is not a benchmark
suite but rather a framework for modeling CFI defenses and comparing them against each
other w.r.t. protection level these offer. Burow et al. [32] propose two metrics: (1) a qualitative
metric based on the underlying analysis provided by each of the assessed techniques, and (2)
a quantitative metric that is the product of the number of equivalence classes (EC) and the
inverse of the size of the largest class (LC). In contrast, we propose , a CFI defense assessment
framework and CT R, a new CFI defense assessment metric based on absolute forward-edge
reduction set analysis, without averaging the results. CT R provides precise measurements and
facilitates comprehensive CFI defense comparison.

3.5.2 Static Gadget Discovery

Wollgast et al. [281] present a static multi-architecture gadget detection tool based on the
analysis of the intermediate language (IL) of VEX, which is part of the Valgrind [265] pro-
graming debugging framework. The tool can find a series of CFI-resistant gadgets. Compared
to LLVM-CFI, both tools leave the gadget chain building as a manual effort. In contrast, when
using LLVM-CFI, it is possible to define a specific CFI-defense policy and search for available
gadgets while the tool of Wollgast et al. specifies CFI resistant gadgets by defining their
boundaries (start and end instructions). These have to conform to some constraints and respect
the normal program control flow of the program in order to be considered CFI resistant. These
types of gadgets are more thoroughly described by Goktas et al. [104], and Schuster et al. [239].

RopDefender [67], ROPgadget [233], and Ropper [237] are non-academic gadget detection
tools for program binaries. These tools are used to search inside program binaries with the
goal to find consecutive machine code instructions, which are similar to a previously specified
set of rules that define a valid gadget. While performing a fast search, these tools however
cannot detect defense-aware gadgets, since these tools do not model the defense applied to the
program binary. As such, these tools cannot determine which gadgets are usable after a certain
defense was applied.
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3.5.3 Dynamic Gadget Discovery

Newton [267] is a runtime binary analysis tool which relies on taint analysis to help significantly
simplify the detection of code reuse gadgets defined as callsite and legal calltarget pairs. At
first, quite effectively as demonstrated by the authors of Newton, this tool can model part of
the byte memory dependencies in a given program. Newton is able to model a series of code
reuse defenses by not focusing on a specific attack at a time. Finally, Newton is able to craft
attacks in the face of several arbitrary memory write constraints.

Conti et al. [55] introduce StackDefiler, a set of stack corruption attacks that leverage runtime
object allocation information in order to bypass fine-grained CFI defenses. Based on the fact
that Indirect Function-Call Checks (IFCC) [261] (also valid for VTV) spills critical pointers
onto the stack, the authors show how CRAs can be built even in presence of a fine-grained CFI
defense. Compared to LLVM-CFI which is based on control flow bending to legitimate targets,
the authors of StackDefiler show an alternative approach for crafting CRAs. More specifically,
Conti et al. show that information disclosure poses a severe threat. They also show that shadow
stacks which are not protected through memory isolation are an easy target for the attacker.

Argument Corruptible Indirect Call Site (ACICS) [80] gadgets are detected during runtime
by the ADT tool, in a similar way as Newton’s detects gadgets. Note that the ACICS gadgets are
more constrained then those of Newton. For example, only attacks where the function pointer
and arguments are corruptible on the heap or in global memory are taken into consideration.
As Newton does not impose so many constraints on the gadgets, it can find depending on the
analyzed program more sophisticated attacks where the attack elements can be corrupted in
many more complex and indirect ways. Similar to LLVM-CFI, the ADT tool is able to craft
an attack in the face of IFCC’s CFI defense policy by finding pairs of indirect callsites that
match to certain functions which can be corrupted during runtime. In contrast, LLVM-CFI, is
not program input dependent as it is not a runtime tool. Therefore, it can find all corruptible
indirect callsite and function pairs under a certain modeled CFI policy.

3.5.4 Existing Metrics vs. Our Metrics

AIR [290], fAIR [261], and AIA [90] are the only available metrics which can be used to assess
the protection level offered by a CFI-based policy w.r.t. only forward-edge transfers. These
metrics provide average values which shed limited insight into the real offered protection level.
Further, these metrics can not be used to compare tools against each other since they provide
average values.

In contrast, in this thesis we provide new metrics (see Appendix) for assessing not only
the absolute forward-edge reduction set, but also the backward-edge target set reduction, the
runtime damping of each CFI policy as well as the gadget availability set after a program was
hardened with a CFI policy.

Additionally, two other relevant metrics are proposed by Burow et al. [32] as follows: (1)
qualitative metric, based on the underlying analysis provide by each of the assessed techniques,

58



C
ha

pt
er

3

3.6 Protecting Backward Edges

and (2) quantitative metric, the product of the number of equivalence classes (EC) and the
inverse of the size of the largest class (LC).

Finally, we note that the existing forward-edge CFI metrics are mostly used without spec-
ifying the total number of callsites contained in the hardened program and relating this to the
total number of callsites which are protected.

3.6 Protecting Backward Edges

According to Burow et al. [32], backward-edge CFI-based protection approaches can be classi-
fied according to their level of protection as follows: low, medium and high level of protection
of the backward edge. Further, Burow et al. classify the backward-edge protection tools into
binary-based, source-code-based and other types of tools (e.g., with hardware (HW) support,
runtime-based).

3.6.1 Source Code based Tools

Clang’s SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209], CF-Restrictor [224],
KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210], and CFL [19] have
relatively high callee target set precision (except Clang’s SafeStack which has a one-to-one
target set mapping precision) w.r.t. enforced address return set for each callee. These tools
have in general a high coverage, i.e., almost all backward edges are protected.

CIFXX [23] is a source code tool used to protect forward-edges only by instrumenting the
program with CFI checks before object dispatches. The OTI policy used by CFIXX guarantees,
that polymorphic objects have the correct type associated with them at run time. As such,
the dynamic dispatch is per object basis protected. As such, CFIXX imposes a one-to-one
mapping between legal callsites and calltargets. Compared to ρFEM, CFIXX does not protect
backward edges, but its forward edge policy, in our opinion, could be successfully used to
protect backward edges by enforcing the caller/callee function calling convention.

CFL [20] is a compiler-based tool built upon the GCC compiler used for protecting backward
edges, only by instrumenting the source code (only for 32-bit) of a compiled program. CFL uses
a statically pre-computed program control flow graph (CFG). Thus, this technique (as it can be
observed) relies on the precision of the computed CFG. By the so called locking and unlocking
operations between each indirect control flow transfer and legitimate backward edge return
targets (addresses), the CFL’s technique is enforced. This results in a 1 to N relation. CFL does
not provide any numbers w.r.t. how many backward edge targets are allowed on average for
each function return (backward edge). CFL can protect against code reuse attacks for statically
linked 32-bit binaries which violate the statically precomputed CFG. CFL provides three modes
of operation: (1) just alignment, (2) single-bit CFL, and (3) full CFL, which each have different
performance overheads. The authors claim that the control flow of the program can not deviate
more than once. The underlying technique enforces control flow integrity (CFI) by assigning
different values (k = 0 unlocked, k = 1 indirect jmp or call, k is greater then 1 return from a
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non-indirect-callable function, k is less then 0 return from an indirectly-callable function) to k.
By setting the value of k to certain values (see above value ranges), different indirect control flow
transfers are allowed or forbidden. The overhead of full CFL for certain SPEC CPU2006 pro-
grams (see Figure 4 in [20]) ranges from 1% to 16% and from 1% to more than 20% for SPEC
CPU2000 programs. This makes CFL not applicable to scenarios where performance is key. Fi-
nally, no average or geomeans runtime overhead values are provided and no evaluation on a real
software system was performed by its authors, making real-world usage of CFL questionable.

piCFI [212] is a compiler-based solution which lazily builds a CFG on the fly during program
execution. Indirect edges are added in the CFG before indirect branches need those edges.
piCFI disallows adding edges, which are not present in the statically computed all input CFG
(this CFG serves as an upper bound for the runtime constructed CFG). piCFI activates a func-
tion return address when the function is called. In such a situation, the function is allowed to
return only to the activated address. As the CFG in which return addresses are stored increases
monotonically (because addresses are not deactivated), this reduces the security (since more and
more addresses become available over time to return to) and performance as well. Compared
to piCFI, the return target set of backward edges of ρFEM does not change during runtime and
thus the performance and security do not vary during runtime. Further, no cleanup operations
(garbage collection or address deactivation) are needed when using ρFEM.

PittyPat [74] introduces a fine-grained path-sensitive CFI approach for protecting both
forward and backward edges. It uses the processor trace (PT) CPU feature to ensure that a
program satisfies a stronger, path-sensitive variation of CFI. Additionally, two Clang/LLVM
instrumentation passes are used to build precise points-to target sets and to insert checks, which
try to determine if the indirect transfer is legitimate. PittyPat generates a smaller points-to
target set then piCFI for forward edges only. The size of PittyPat’s points-to target set is larger
then ρFEM’s calltargets set, which is obtained through a virtual table sub-hierarchy analysis.
For example, PittyPat allows up to 218 targets per callsite for the SPEC CPU2006 403.gcc
program (see Figure 3(a) in [74] for more details), whereas the return target set of ρFEM is
much smaller, as it is directly proportional to the enforced forward-edge sub-hierarchy and thus
much smaller than 218 entries. This is because ρFEM’s return target set is direct proportional
to: (1) the depth of the class hierarchy for a certain object type, and (2) the number of entries
(i.e., number of parameters, their types, return type etc.) used to compute function signatures.

3.6.2 Binary-based Tools

The original CFI implementation from Abadi et al. [1], MoCFI [156], kBouncer [216], CC-
FIR [289], bin-CFI [290], O-CFI [187], PathArmor [266], and LockDown [221] mostly suffer
from imprecision (high number of reused labels), have low runtime efficiency, and do not
support shared libraries at all. ρFEM is similar to Abadi’s et al. CFI [1] approach w.r.t. the fact,
that we also use IDs in order to check to which calltarget return sites it is allowed to return. Com-
pared to the original CFI implementation, ρFEM does not rely on hardware support (i.e., GS reg-
ister) or code segments. Further, our approach is applicable for both 32-bit and 64-bit systems.
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Marx [218] is a binary-based tool used for protecting only forward edges resulting from
C++ object dispatches. It reconstructs a quasi-class hierarchy from the binary and it enforces
only certain virtual table ranges to be legal for each previously detected callsite. Compared
to ρFEM, this tool does not have the goal to protect backward edges. Further, the size of the
forward edge mappings are larger than the sizes of ρFEM’s mappings, due to a less precise
analysis compared to a source-code-based tool which is true in general when comparing source
code and machine code analysis tools against each other.

TypeArmor [268] is a binary-based tool used to protect indirect forward-edge control flow
transfers resulting from only object dispatches. TypeArmor imposes a CFI policy on legal indi-
rect transfers between callsites, which provides up to six parameters and calltargets, which are
allowed to consume up to the number of parameters a compatible callsite provides. Compared
to ρFEM, TypeArmor does not provide protection for backward edges and its forward edge
mapping precision is lower than the one offered by ρFEM, for the same reasons mentioned
above for the Marx tool.

3.6.3 Other Types of Tools
ROPecker [44], HW-asst. CFI [66], and CFIGuard [284] are mostly relying on HW features
which were not specifically built for protecting backward edges and are not runtime effective.
Further, their precision is rather low and most of them have a questionable effectiveness against
state-of-the-art CRAs.

HAFIX [65] is a HW and compiler-assisted approach usable for protecting backward edges
by introducing three new instructions CFIBR, CFIDEL, and CFIRET for monitoring during run-
time when entering a certain function and determining which is the active label set where this
function can return to. Finally, HAFIX was bypassed in the work presented by Theodorides et
al. [259] and for this reason, we present in Section 9.4.2 the five available bypassing techniques
and assess them w.r.t. ρFEM.

Intel CET [118] is the first hardware feature specifically designed to assist with the protec-
tion of the integrity of backward edges by for example, helping to implement a more efficient
shadow stack. It introduces the ENDBRANCH instruction to the ISA to mark the legal target
for an indirect branch or jump. The ENDBRANCH instruction can be used to develop compiler
and/or OS-based attack mitigation solutions. Compared to ρFEM, Intel CET’s new HW feature
has the potential to outperform check-based tools w.r.t. security and performance; however,
real-world implementations and experimental results are not yet available as open source.

Windows CFGuard [167] (as of 2017 removed from Windows beta) is a protection mech-
anism, which is based on the interplay of a user space agent and operating system (OS) kernel
space support. This feature was deployed in Windows 8.1 and Windows 10 and can only
protect forward edges. As a consequence, Microsoft has recently released return flow guard
(RFG) [282] in Windows 10 Redstone in order to protect the return edges as well. RFG saves
each function return address to fs:[rsp] at the entry of each function, and compares it with the
return address on stack before returning. As CFGuard, RFG requires compiler (i.e., Microsoft
Visual Studio) and OS support. Each hardened program is instrumented with the help of the
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compiler. The compiler instruments the program file by reserving a certain number of instruc-
tion spaces in the form of NOP (no operation) instructions. These NOP operation will be replaced,
on an operating system, which supports this feature, during runtime of the binary, by RFG
instructions, which will be used to check function return addresses. In case the OS does not sup-
port the RFG functions, the NOP instructions will not interfere with the normal execution flow
of the hardened program. Important to note is the main difference between RFG and GS (Buffer
Security Check) is that in the case of GS, the stack cookie can be obtained using an information
leak or by brute-force. In contrast, RFG drastically increases the difficulty of retrieving the stack
cookie, by writing each cookie to the Thread Control Stack (TCS). We point out that the TCS
is out of attacker reach. Unfortunately, no efficiency or runtime performance measurements
are currently available thus, it is hard to reason herein how effective this OS feature is.

PathArmor [266] emulates a shadow stack by validating the Intel Last Branch Record (LBR).
This technique is based on a buffer with limited size, which can hold up to 32 from and
to addresses pairs. By validating these addresses and comparing these addresses against a
previously computed control flow graph (CFG), PathArmor can, in some situations, detect if
the caller-callee function calling convention was violated. Unfortunately, due to the fact that
addresses pairs arrive into the LBR buffer at a pace considerably higher than the rate of which
these address pairs can be extracted and checked against the CFG, this tool has limited control
flow violation detection rate.

Intel Processor Trace (Intel PT) [117] is a new hardware feature introduced by Intel with
the fifth generation of the Intel Core processors (Broadwell architecture). This feature helps
provide execution and branch tracing information by being able to monitor the five types of
control flow, affecting instructions (called Change of Flow Instruction (CoFI)) specified by
Intel. In contrast to the Intel Last Branch Record (LBR), the size of the output buffer when
Intel PT is used is no longer limited by special registers. The output can be stored in main
memory. In case the output is repeatedly and timely emptied, traces of arbitrary length can be
generated thus the limitations of the LBR register are avoided. Intel PT is a very promising
hardware feature which was already used to protect backward edges in GRIFFIN [89], which
has 9.5% runtime overhead on average for the combination policy, and PT-CFI [102], which
has in average a runtime overhead above 20%. Finally, we believe that this feature could be
further used in the future to design other, more efficient backward edge protection techniques,
which could be based for example on OS and compiler interplay.

3.6.4 Backward Edge Attack Mitigation

According to the currently most comprehensive survey by Burow et al. [32] on CFI-based tools,
which assesses backward-edge protection tools, there are tools offering low, medium and high-
level backward edge protection. Further, this survey classifies the backward edge protection
tools as binary-based, source-code-based or other types (i.e., with HW support, etc.) as follows.

Binary-based tools. Original CFI implementation from Abadi et. al. [1], MoCFI [156],
kBouncer [216], CCFIR [289], bin-CFI [290], O-CFI [187], PathArmor [266], and Lock-
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Down [221] mostly suffer from imprecision (high number of reused labels), have low runtime
efficiency, and do not support shared libraries at all.
Source code based tools. SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
and piCFI [212] have relatively high precision w.r.t. enforced address return set. None of them
support shared libraries (except MCFI). Further, these techniques have high backward edge
protection coverage, since almost all backward edge transfers can be protected.

Other types of tools ROPecker [44], hardware (HW)-assisted CFI [66], and CFIGuard [284]
mostly rely on HW features which were not specifically built for protecting backward edges.
Thus, these tools are not runtime effective. Their precision is rather low and they are mostly
ineffective against state-of-the-art code reuse attacks.

3.7 Protecting Against Code Reuse Attacks
In this Section, we briefly review related work by focusing on binary-based tools.

3.7.1 Mitigation of Simple Code Reuse Attacks
In the last couple of years researchers have provided many versions of new Code Reuse Attacks
(CRAs). These new attacks were possible since DEP [164] and ASLR [219] were successfully
bypassed mostly based on Return Oriented Programming (ROP) [31, 133, 242] on one hand,
and due to the discovery of new exploitable hardware and software primitives on the other.

ROP started to present itself in the last couple of years in many faceted ways such as: Jump-
oriented Programming (JOP) [20, 39, 64] which uses jumps in order to divert the control flow
to the next gadget and Call Oriented Programming (COP) [37] which uses calls in order to
chain gadgets together. CRAs have many manifestations and it is out of scope of this work to
list them all.

First, CRAs can be mitigated in general in the following ways: (i) binary instrumentation,
(ii) source code recompilation and (iii) runtime application monitoring. Second, there is a
plethora of tools and techniques which try to enforce CFI-based primitives in executables,
source code and during runtime. Thus, we briefly present the solution landscape together
with the approaches and the techniques on which these are based: (a) fine-grained CFI with
hardware support, PathArmor [266], (b) coarse-grained CFI used for binary instrumentation,
CCFIR [289], (c) coarse-grained CFI based on binary loader, CFCI [291] (d) fine-grained code
randomization, O-CFI [187], (e) cryptography with hardware support, CCFI [160], (f) ROP
stack pivoting, PBlocker [227], (g) canary-based protection, DynaGuard [223], (h) runtime and
hardware support-based on a combination of LBR, PMU and BTS registers CFIGuard [284],
and (i) source code recompilation with CFI and/or randomization enforcement against JIT-ROP
attacks, MCFI [210], RockJIT [211] and PiCFI [212]. The following tools address vTable
protection through binary instrumentation, but fail to mitigate against COOP: vfGuard [226],
and vTint [287].
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The above list is not exhaustive and new protection techniques can be obtained by combin-
ing available techniques or by using newly available hardware features or software exploits.
However, notice that none of the above mentioned techniques and tools can be used to mitigate
COOP attacks.

3.7.2 Mitigation of Advanced Code Reuse Attacks

Recursive-COOP [59], COOP [238], Subversive-C [143] and the attack of Lan et al. [137]
are forward-edge-based CRAs which cannot be addressed with: (i) shadow stacks techniques
and hardware-based approaches such as Intel CET [118] (i.e., since advanced COOP do not
violate the caller/callee convention), (ii) coarse-grained Control-Flow Integrity (CFI) [1, 2]
techniques, and (iii) OS-based approaches such as Windows Control Flow Guard [167] since
the precomputed CFG does not contain edges for indirect callsites which are explicitly exploited
during the COOP attack.

Binary based Forward Edge Protection. TypeArmor [268] is a binary instrumentation tool
that can protect against COOP. TypeArmor uses a fine-grained CFI-policy-based on caller/callee
(but only indirect callsites) matching, which checks during runtime if the number of provided
and needed parameters match. TYPESHIELD is related to TypeArmor [268], since we also
enforce strong binary-level invariants on the number of function parameters. Further, TYPE-
SHIELD also aims for exclusive protection against advanced exploitation techniques, which
can bypass fine-grained CFI schemes and vTable protections at the binary level. However,
TYPESHIELD offers a better restriction of calltargets to callsites, since we not only restrict
based on the number of parameters, but also on the width of their types. This results in much
smaller buckets that in turn can only target a smaller subset of all address-taken functions.
However, we rely for that on the variety of parameter types and when there is none, we will
degrade into a parameter count policy.

We are aware that there is still a long research path to go until binary-based techniques can
recuperate program based semantic information from executable with the same precision as
compiler-based tools. This path could even be endless since compilers are optimized for speed
and are designed to remove as much as possible semantic information from an executable in
order to make the program run as fast as possible. In this light, TYPESHIELD is another attempt
to recuperate just the needed semantic information (types and number of function parameters
from indirect callsites) in order to be able to enforce a precise and with low overhead primitive
against COOP attacks.

VCI [78] is a binary-based tool (7.9%) based on DynInst which can protect forward edge
indirect control flow violations based on reconstructing a quasi program class hierarchy (i.e.,
no class root node and the edges are not directed). The authors claim that VCI is 10 times more
precise w.r.t. reducing the calltarget set per callsite. In contrast to TYPESHIELD VCI can not
protect backward-edge violations and we arguably due to the conservative analysis the VCI
could skip some corner situations allowing not legitimate calltargets.
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Marx [218] is most similar to VCI and as VCI this tool reconstructs the same type of quasi
program class hierarchy. No runtime efficiency numbers were provided in the thesis. The
authors claim that Marx can recuperate a class hierarchy which is more precise than that of
IDAPro. The thesis is geared towards first providing a tool which can be used by analyst in
order to reverse engineer a binary. The precision of the calltarget set reduction per callsite
should be similar to those of VCI but no comparison was compared in the thesis. Compared
to TYPESHIELD Marx can not protect against backward-edge violations and arguably has in
common with VCI several limitations.

VTPin [234] is a runtime-based tool (≈5%) used for protecting against VTable hijacking,
via use-after-free vulnerabilities. VTPin pins all the freed VTable pointers on a safe VTable
under VTPin’s control. For each object deallocation, VTPin deallocates all space allocated,
but preserves and updates the VTable pointer with the address of the safe VTable. As a con-
sequence, a dangling pointer can invoke a method provided by VTPin’s safe object. TPin needs
to keep track of metadata in order to detect runtime dangling pointer violations. The tool can
not protect against the COOP attack since the COOP attack does not rely on dangling pointers.
In contrast with TYPESHIELD, this tool cannot protect against backward-edges violations.

In this thesis, rather than claiming that the invariants offered by TYPESHIELD are sufficient
to mitigate all versions of the COOP (as [268] does) attack we conservatively claim that TYPE-
SHIELD further raises the bar w.r.t. what is possible when defending against COOP attacks
on the binary level.

Source Code Based Techniques. Indirect callsite targets are checked based on vTable integrity.
Different types of CFI policies are used such as in the following tools: SafeDispatch [124],
IFCC/VTV [261] LLVM and GCC compiler. Additionally, the Redactor++ [59] uses random-
ization vTrust [286] checks calltarget function signatures, CPI [135] uses a memory safety
technique in order to protect against the COOP attack.

There are several source code based tools which can successfully protect against the COOP
attack. Such tools are: ShrinkWrap [106], IFCC/VTV [261], SafeDispatch [124], vTrust [286],
Readactor++ [59], CPI [135] and the tool presented by VTI [24]. These tools profit from high
precision since they have access to the full semantic context of the program trhough the scope
of the compiler on which they are based. Because of this, these tools mostly target other types
of security problems other than the ones binary-based tools address. For example, some of the
last advancements in compiler-based protection against code reuse attacks address mainly per-
formance issues. Currently, most of the above presented tools are only forward edge enforcers
of fine-grained CFI policies with an overhead from 1% up to 15% (see [32] for more details).

Runtime Based Techniques. Several promising runtime-based defenses against advanced
CRAs exist but currently none of them can successfully protect against the COOP attack.

IntelCET [118] is based on ENDBRANCH, a new CPU instruction which can be used to enforce
an efficient shadow stack mechanism. The shadow stack can be used to check during program
execution if caller/return pairs match. Since the COOP attack reuses whole functions as gadgets
and does not violate the caller/return convention than the new feature provided by intel is
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useless in the face of this attack. Nevertheless, other highly notorious CRAs may not be
possible after this feature will be implemented main stream in OSs and compilers.

Windows Control Flow Guard [167] is based on a user-space and kernel-space components
which by working closely together can enforce an efficient, fine-grained CFI policy-based on
a precomputed CFG. These new feature available in Windows 10 can considerably raise the
bar for future attacks but in our opinion advanced CRAs such as COOP are still possible due
the typical characteristics of COOP.

PathArmor [266] is yet another tool which is based on a precomputed CFG and on the LBR
register which can give a string of 16 up to 32 pairs of from/to addressed of different types of
indirect instructions such as call, ret, and jump. Because of the sporadic query of the LBR reg-
ister (only during invocation of certain function calls) and because of the sheer amount of data
which passes through the LBR register this approach has in our opinion a fair potential to catch
different types of CRAs but we think that against COOP this tool can be used only with limited
success. First, because of the fact that the precomputed CFG does not contain edges for all pos-
sible indirect callsites which are accessed during runtime. Second, the LBR buffer can be easily
fooled by interleaving legitimate with illegitimate indirect callsites during the COOP attack.

3.7.3 Mitigation of Forward Edge based Attacks

Binary-based tools. τCFI is closely related to TypeArmor w.r.t. the forward edge analysis.
TypeArmor [268] (≈3% runtime overhead in geomean) enforces a CFI policy based on the
parameter count policy. Compared to τCFI, TypeArmor does not use function parameter types
and assumes a backward-edge protection is in place. VCI [78] and Marx [218] are both based
on approximated program (quasi) class hierarchies; they (1) do not recover the root class of
the hierarchy, and (2) the edges between the classes are not oriented; thus both tools enforce
for each callsite the same virtual table entry (i.e., index based) contained in one recovered class
hierarchy represented by father-child relationships between the recovered vtables. Finally, both
tools use up to six heuristics and simplifying assumptions in order to make the problem of
program class hierarchy reconstruction tractable. Compared to these tools, τCFI tries not to
reconstruct a high-level metadata data structure (class hierarchy), but rather performs analysis
on the usage of provided and consumed parameters at the callsites and calltargets.

Source code based tools. To the best of our knowledge, only the Clang-CFI [149] and IFC-
C/VTV [261] (up to 8.7% performance overhead) compiler based tools are deployed in practice
and can be used to check legitimate from illegitimate indirect forward-edge calls during runtime
by checking if virtual object pointers comply with the program class hierarchy inheritance
relationships. Furthermore, ShrinkWrap [106] is a GCC-compiler-based tool which further
reduces the legitimate virtual table ranges for a given indirect callsite (i.e., object dispatch)
through precise analysis of the program class hierarchy and virtual table hierarchy. Evaluation
results show similar performance overhead results as the previous mentioned tools but with
more precision with respect to legitimate virtual table entries (calltargets) per callsite. We
noticed by analyzing the previous research results that the overhead incurred by these security
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checks can be very high due to the fact that for each callsite many range checks have to be
performed during runtime. Therefore, in our opinion, despite its security benefit, these types
of checks are most likely not applicable to software where performance is key.

Other types of tools. Other highly promising source code based tools (albeit also not deployed
in practice) which can overcome some of the drawbacks of the previously described tools are as
follows. Bounov et al. [24] presented a tool (≈1% runtime overhead) for indirect forward-edge
callsite checking based on virtual table layout interleaving. The tool has better performance
than VTV and better precision with respect to allowed virtual tables per indirect callsite. Its
precision (selecting legitimate virtual tables for each callsite) compared to ShrinkWrap is
lower since it does not consider virtual table inheritance paths. vTrust [286] (average runtime
overhead 2.2%) enforces two layers of defense (virtual function type enforcement and virtual
table pointer sanitization) against virtual table corruption, injection and reuse.

3.7.4 Mitigation of Backward Edge based Attacks

Backward-edge-based code reuse attacks exploit the indirection provided by the return in-
structions of a function. Usually each modern compiler builds caller/callee pairs by adhering
to the so called caller-callee calling convention. This calling convention basically specifies
that for each indirect call the return address of the function which returns after it was called
lies at the next address of the call instruction. This calling convention is violated by all ROP
attacks and also by more recent advanced code reuse attacks. Intel CET [118] is a promising
technology from Intel in which the X86 instruction set is updated with new instructions (i.e.,
END_BRANCH) instruction which should facilitate an efficient implementation of shadow stack
implementations. Currently, this technology is not available and it is not foreseeable when these
features will be available in mass production. According to a comprehensive survey by Burow
et al. [32], tools that provide backward-edge protection offer low, medium, and high levels of
protection w.r.t. backward edges. Further, this survey provides runtime overhead comparisons,
classifies the backward-edge protection techniques into binary-based, source code based, and
other types (e.g., with HW support, etc.). Due to page restriction, we review only binary tools.

Binary based Backward Edge Protection. The original CFI implementation of Abadi et al. [1],
MoCFI [156], kBouncer [216], CCFIR [289], bin-CFI [290], O-CFI [187], PathArmor [266],
LockDown [221] mostly suffer from imprecision (high number of reused labels), have low
runtime efficiency, and most of them protect either forward edges or backward edges assuming a
perfect shadow stack implementation is in place. In contrast, τCFI makes no assumptions about
the presence of a backward-edge protection. Further, τCFI provides a technique for protecting
forward edges and does not rely on a shadow stack approach for protecting backward edges.

The CFI-based implementation of Abadi et al. [2] is the first binary-based implementation
of a shadow stack. While at first glance promising, this implementation suffers from high
performance overhead of around 21% due to the fact that the inserted checks before each
function return instruction are not runtime efficient. Further, this tool has high imprecision
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due to the fact that labels are reused and in this way not legitimate return addresses become
legitimate, thus these could be exploited by a skilled attacker.
Compiler-based Techniques. SafeStack [49], Hypersafe [274], CF-Locking [19], MIP [209],
CF-Restrictor [224], KCoFi [61], RockJIT [211], CCFI [160], Kernel CFI [90], MCFI [210],
piCFI [212] relatively high precision w.r.t. enforced address return set, and all do not support
shared libraries (except MCFI), have high coverage (almost all backward edges are protected).

LLVM SafeStack [135] is a compiler-based approach in which for each function stack a
shadows stack copy is build with the help of the Clang compiler. These additional stacks are
hidden by at least one level of indirection from the attacker such that she can not interfere with it.
This approach is effective but suffers from a big binary blow-up which is not acceptable in any
usage scenario. Currently, it was demonstrated that this implementation can be bypassed [94].
Other types of Techniques. ROPecker [44], HW-asst. CFI [66], CFIGuard [284] are mostly
relying on HW features which were not specifically built for protecting backward edges and
for this reason the tools are not runtime effective and their precision is rather low and mostly
ineffective against state-of-the-art code reuse attacks.

Windows CFGuard [167] is a technology by Microsoft deployed into Windows 8.1 and
Windows 10. This technology allows to protect backward-edges by checking in a shadow
stack like fashion for backward-edge violations. The implementation is based on an interplay
between user space and kernel space thus there is high potential that this implementation is
highly efficient even though no official evaluation results are available.

PathArmor [266] is a runtime-based tool based on a Linux loadable module which can
emulate shadow stack checks by using the LBR register, which stores callsite and target address
pairs. The capacity of the LBR register is limited to 32 address pairs which can be stored.
The tools suffers from high runtime overhead and is imprecise since the address pairs can not
be analyzed at the same speed as they arrive in this register. For this reason, some pairs are
skipped and thus the attacker has the chance to mount and attack.
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Chapter 4
IntDetect: Static Detection of Integer Overflow
Based Memory Corruptions

In this Chapter, which belongs to the first part of this thesis, we present a framework, inside
which we first designed, implemented and, integrated an integer overflow detection tool, called
INTDETECT into our static source code analysis engine. INTDETECT is capable of efficiently
detecting integer overflows in C source code programs by employing static symbolic execution.
With this approach, we answer RQ1 by providing a tool which can reliably detect integer
overflows, does not suffer from false negatives, and is integrated in a well established and
widely used IDE (i.e., Eclipse IDE). Finally, note that parts of this Chapter have already been
published by Muntean et al. [200].

4.1 Introduction

What is the overall view? In the 2011 top 25 most dangerous software errors [186] MITRE
classifies integer overflows as one of the main sources for different types of software vulnera-
bilities. Integer overflow errors are responsible for a series of vulnerabilities in OpenSSH [183]
and Firefox [185], for example, which allow attackers to execute arbitrary code (CRA). In
reality, software failures can materialize, for example, during the crash of the Ariane 5 flight
501 in 1996 due to an attempt to cast a floating point value to a 16-bit integer value which
resulted in a truncation error.

Integer numerical errors in software applications are costly, hard to detect—there are several
types of integer overflows and some of them are inserted into code intentionally and others
unintentionally—and exploitable. According to Brumley et al. [29] state that there are four
types of integer related problems. First, integer overflows occur at run-time when the result
of an integer expression exceeds the maximum value for its respective type. Second, integer
underflow appear at run-time when the output of an integer expression is less than the minimum
value that the assignee can hold, thus wrapping to the maximum integer for the type. Third,
integer signedness occur when a signed integer is interpreted as unsigned, or vice-versa. Fourth,
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integer truncations appear when an integer with smaller width—number of bits—has to hold
an integer with larger width. Finally, there are intentional and unintentional uses of integer
overflows and illegal uses of operations such as shifts which can lead to integer related errors.
What is the problem? Integer related problems are typically exploited indirectly, contrary to
e.g., buffer overflows which can be exploited directly or indirectly. Typical indirect integer bug
exploitations are as follows. First, Denial of Service (DoS) attacks where the exploit causes
infinite loops or excessive memory allocation. Second, arbitrary code can be executed when an
integer vulnerability results in insufficient memory allocation which afterwards can be exploited
by buffer overflows, heap overflows and overwrite attacks. Third, an upper bound sanitization
check can be bypassed when unexpected negative integer values are used. Fourth, a logic error,
where a reference counter in the NetBSD OS (CVE-2002-1490) [184] was manipulated by
an attacker that resulted in the premature freeing of an object from memory. Finally, array
index attacks are caused by a vulnerable integer value which can be used as array index so that
attackers can precisely overwrite arbitrary bytes in memory.
What are the existing solutions? These types of integer related problems can be addressed with
code analysis techniques (e.g., static and dynamic code analysis) UQBTng [280], IntScope [272]
formal modeling of C semantics, Extended Static Checking (ESC)—usage of code annotations,
Satisfiable Modulo Theories (SMT) solver, test cases to trigger the bug, compiler integration
(Clang), formal modeling of integer typing rules, dynamic analysis RICH [29], BRICK [42],
SmartFuzz [188], SAGE [93] and IOC [73]. RICH [29] instruments programs to detect safe
and unsafe operations based on well-known sub-typing theory. BRICK [42] detects integer
overflows in compiled executables using a modified Valgrind [203] version.

What are the limitations of the solution? None of the exiting tools care can systemat-
ically analyze the program and therefore do not achieve a sufficiently high patch coverage and
all other static analysis tools suffer from false negatives, whereas INTDETECT can only have
false positives but no false negatives. To the best of our knowledge INTDETECT is most similar
to PreFix. INTDETECT compared to PreFix focuses only one one type of integer related problem
(i.e., integer overflows) by using C function models whereas PreFix does not use function
models. Furthermore, the dynamic analysis approaches compared with INTDETECT can neither
exercise all bugs due to dynamically generated test cases, nor can full path coverage be achieved.
For example, Ceesay et al. [38] added type qualifiers to detect integer overflow problems. Their
approach relies on expensive system extensions, which are linked into the compiler and are
used to check the code for integer errors. Their approach requires user annotation whereas
our approach does not require annotations. On one hand, typically dynamic analysis have low
overhead ≈5%, low true positives and false negatives rate, reduced path coverage, etc. On the
other hand, side static analysis offers environment models, bit precision, low number of false
positives, high path coverage, etc.

What is our insight? In this Chapter, we address integer overflow vulnerabilities detection
through precise symbolic "modeling" of C language semantics which are responsible for integer
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overflows and C function models. Concretely, we extended the C statement processing compo-
nent of our engine and carefully remodeled each external (C standard library and any other used
API) used function through usage of symbolic function models. Thus, providing a precise mod-
eling of C language semantics is the key to a high false positives and low false negatives rate.

What are our contributions? In summary, in this Chapter, we make the following con-
tributions:

• We provide precise symbolic modeling of C related semantics needed for integer overflow
detection, in Section 4.3.

• We design and implement an integer overflow checker (called INTDETECT) as an Eclipse
IDE plug-in based on our static execution engine in Figure 4.3 and automated testing
based on automatically generated jUnit test cases and Eclipse projects in Section 4.4.2
and in Section 4.4.3.

• We present an experimental evaluation of our approach based on the open source C/C++
test case CWE_190_Integer_Overflow [207], in Section 4.4.

4.2 Threat Model

Defensive Assumptions. We align our threat model (e.g., STRIDE [165]) to the general
integer overflow threat model. We assume that ALSR [219] and DEP [164] are in-place and
correctly functioning. We assume that the code is not compiled with any integer overflow
bounds checking. Lastly, we assume that the defender has access to the source code of the
application and potentially knows how to repair the integer overflow.
Attacker Capabilities. We assume a skilled attacker with sufficient resources and time to
exploit the integer overflow. Further the attacker can use the integer overflow to escalate
privileges or to manipulate the program counter according to his desires. The attacker is
equipped with the necessary tooling to find the integer overflow in the program binary and to
experiment with the code in an live interactive debugging session. Next, we don not exclude
the possibility that the attacker has access to the source code of the application. Lastly, the
attacker is aware of the existence of other vulnerabilities (e.g., buffer overflow) which might be
triggered through the previously found integer overflow. This requirement is not mandatory
but a nice to have as opposed to buffer overflows, integer overflows are exploited indirectly
through integer overflow to buffer overflow (i.e., IO2BO) vulnerabilities.

4.3 Design and Implementation
Figure 4.1 depicts the design of our engine on which INTDETECT is based. The starting point
for the design of INTDETECT is the multi-threaded symbolic execution engine with backtracking
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Figure 4.1: Main engine Java classes. These are also presented in more detail by Ibing [115].

support presented by Ibing et al. in [110], which can, analyze multi-threaded C programs,
too. The engine is used to perform inter-procedural analysis and is implemented according to
the tree-based interpreter pattern [217]. The engine implementation is multi-threaded, which
means that control flow graphs and syntax trees are shared between worker threads. INTDETECT

relies on a SMT solver as logic back-end and translates C code into SMT-Lib [16] logic equa-
tions in the logic of Arrays, Uninterpreted Functions, Non-linear Integer and Real Arithmetic
(AUFNIRA). Figure 4.1 contains the main classes of our engine and the interface IChecker,
which makes the plug-in usable from CDT’s code analysis framework [138]. Several workers
concurrently explore different parts of a program’s execution tree. Each worker has an Inter-
preter together with a memory system model to store and retrieve symbolic variables (whose
values are logic SMT-Lib equations). The translation of Control Flow Graph (CFG) nodes into
SMT-Lib syntax is performed by the StatementProcessor (which extends CDT’s abstract
syntax tree visitor class) according to the visitor pattern [84]. The BranchValidator detects
unsatisfiable branches in a program path with the help of the SMTSolver. WorkPool is used
as synchronization object between the workers and the WorkPoolManager.

We briefly present the main classes of our engine denoted with capital letters. For a more
detailed description see [115]. WorkPoolManager implements the interface IChecker, which
is present in the Codan API. The WorkPoolManager starts workers and reports found errors
through the Codan interface to the Eclipse marker framework. ProgramStructureFacade pro-
vides access to control flow graphs. WorkPool is used as synchronization object (synchronized
methods) which is used to track the number of active workers and to exchange split paths. Each
worker has a forward and a backward (backtracking) mode which passes references to control
flow graph nodes for entry (forward mode) or backtracking to the Interpreter. The Interpreter
follows the tree-based interpreter pattern, see Parr et al. [217] for more details. SMT syntax
is generated by the StatementProcessor (which implements CDT’s ASTVisitor) by bottom-up
traversal of Abstract Syntax Tree (AST) sub-trees (visitor pattern), which are referenced by CFG
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nodes. Symbolic variables are stored in and retrieved from MemSystem. The interpreter further
offers an interface to BranchValidator and to the checker classes. SMTSolver wraps the inter-
face to the Z3 [68] external solver. BranchValidator is triggered when entering a branch node
and generates a SMT-Lib query for the path constraint. For an unsatisfiable branch it throws an
exception which is caught further on by the worker. The Environment provides symbolic models
of standard library functions. StatementProcessor extends the ASTVisitor class contained
in the Codan API. In this class, each statement contained on an execution path is visited in order
to create our symbolic variables and the SMT constraint system which is attached to each sym-
bolic variable. Among the leave methods—which visit each statement AST in bottom-up order—
contained in the StatementProcessor we extended the functionality of the IASTDeclaration,
IASTDeclSpecifier and IASTDeclarator methods. BoundsChecker, a buffer overflow
checker which triggers on memory access with (symbolic) pointers, forms bounds violation
satisfiability queries and reports buffer overflows, underflows, etc. LoopNonTermChecker is
an infinite loop detection checker [113]. FunctionSpaceStack used to model the function
space stack of symbolic functions. GlobalMemSpace modeling the global memory space of
symbolic variables. RaceChecker is used for detecting race conditions [112].

The new classes which were added to support the detection of integer overflows in source
code are shaded grey in Figure 4.1. The IIntegerOverflowObserver (for the sake of brevity
not depicted in Figure 4.1) interface is extended to notify INTDETECT about integer overflows.
The interface is implemented by IntegerOverflowChecker, which is described in detail in Fig-
ure 4.3. The IntegerOverflowChecker is used to trigger a bug report if an integer overflow
has been detected. If a satisfiable path through the analyzed code is detected, additional checks
are performed inside IntegerOverflowChecker. Further, if the resulted SMT-Lib system is
still satisfiable, a bug report is generated indicating that an integer overflow error was detected.

Next, we will briefly describe the main features of our symbolic execution engine.

Unrestricted context depth. The symbolic execution engine supports Inter-procedural path-
sensitive analysis with a call string approach [131, 243]. The path sensitivity is based on per
function control flow graphs without in-lining. The function call context is represented by a
program path leading to its call. The symbolic execution can be constrained regarding to how
many times it should run by setting a context bound (e.g., number of loop iterations, which
in general incurs accuracy degradation) or it can be used unconstrained. This may lead to
non-termination (e.g., endless loops).

Finding relevant program paths. A fixed deterministic thread scheduling algorithm runs the
symbolic execution. The algorithm depends on the thread identity numbers. Lowest Thread-ID
First (LTIF) scheduling, which is based on scheduling one of the active threads having the
lowest thread-ID first, is used. The symbolic execution is run with approximate path cover-
age which uses Depth-First Search (DFS). During DFS, program states are backtracked and
branch decisions are changed [110]. The loop iteration bound can be configured either to
prune a path until the loop iteration bound is reached, or to bypass the loop by avoiding the
BranchValidator check.
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Automatic slicing. In order to keep the equation systems for satisfiability checks small, only
relevant logic equations are passed to the solver for a certain verification condition. This
corresponds to automatic slicing [262] over the control flow (for separate analysis of different
program paths) and over the data flow (for verification conditions on a program path).

Context sharing for different checkers. All checks can be performed with one enumeration
of the satisfiable paths, and any specific checker is allowed to share the contexts because it is
separated from the symbolic path interpretation. The checkers are allowed, through an interface,
to register for notifications (triggers) and to query context equations. The symbolic interpreter
is queried whenever triggered, in order to resolve the dependencies of the variables at the
triggered location into the relevant equation system slice and adds the verification condition
formula for a satisfiability query.

Logic representation. The SMT-Lib sub-logic of arrays, uninterpreted functions and non-
linear integer and real arithmetic (AUFNIRA) has been chosen for using high-level logic that
can decide automatically. With a target and a symbolic integer as offset formula, pointers are
handled as symbolic pointers by the interpreter. They are outputted as logical formulas when
dereferenced. Symbolic variables are created for the fields of composite data structures (e.g.,
structs and in case of C++ also classes) and are not translated, but rather treated like scopes.

Path validation. PathValidator is triggered for branch nodes and uses the same interface
as checkers. For all path decisions up to the current branch the PathValidator queries the
equation SMT-lib linear system slice based on the resolution of the variable dependencies.
Next, it adds a satisfiability check. The PathValidator throws a PathUnsatException if
the solver answers unsatisfiable, which is caught by the PathExplorer (which reports the
un-satisfiable path to the PathValidator and symbolic execution proceeds with the next path).

SMT Solving. The common Eclipse distributions come with a SAT solver plug-in [140], a SMT
solver plug-in is unfortunately not (yet) available. Therefore, the SMT solver Z3 described
in [68] is used. It is wrapped by the SMTSolver class and started as an external process.

Eclipse extension. The WorkPoolManager implements the Codan IChecker interface by
plugging in the extension point org.eclipse.cdt.codan.core.checkers. While the avail-
able Codan checkers are normally configured to be run as you type or run with build, the
symbolic execution engine is only run on demand with a GUI command, because of higher
complexity and larger run-time of path-sensitive analysis. The plug-in further uses Codan
ControlFlowGraphBuilder to generate CFGs for parts of an AST which are rooted in a
function definition.

Posix threads support and path-sensitive tracing of shared variables. The symbolic exe-
cution engine offers the possibility to specify symbolic models of library functions, which are
used both for the C/C++ standard library and for the operating system (Posix threads). Relevant
thread interactions are based on read accesses and write accesses to shared variables (usage
or definition actions for variables). All global variables are marked as shared when they are
first accessed. Then, the shared property is inferred over data flow constructs like assignments,
references, function call parameters, and return values etc.
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Implementation. INTDETECT is notified from inside the StatementProcessor when an
assignment statement is encountered. Further a symbolic variable which contained a symbolic
variable name and symbolic type is sent in the notification. The Interpreter is notified by calling
ps.notifyLimitChecker(ini_ssa);. Next, the notification is delegated by the Interpreter
to the appropriate integer overflow checker which checks if there could be an integer overflow.
The slice of equations on which the ini_ssa (this is a symbolic variable used to statically
model the run-time variable x, x := expression) variable depends, is queried by the checker and
adds one satisfiability check. The check is used to verify if the symbolic variable ini_ssa can
be greater than the used integer upper bound value (the upper bound values are extracted from
the C standard library limits.h file). If the solver answers SAT (satisfiable) to the query, then the
problem is reported. The bug report contains the problem ID (unique system string), file name
where the bug was detected and line number where the bug is located. In principle CWE-190—
integer underflow (wrap or wrap-around) and CWE-192—integer coercion error are detectable.

Any number of checkers can be added and share the symbolic execution contexts. The Codan
extension point supports the addition of new problems and problem detail views. Detected
problems are reported to the marker framework with their Id, file name, line number and
problem description. We added our path-sensitive integer overflow checker alongside other
existent checkers (e.g., RaceCondition checker, InfiniteLoop checker, etc.).

The gray shaded classes depicted in Figure 4.1 (TimeWatch, IntegerOverflowChecker,
IntegersUpperBounds, and StatementLogger) were added, (≈1400 SLoC). In total we
added in StatementProcessor (≈700 SLoC) which represents code used for AST statement
traversing contained in the leave() methods. This is used for dealing with the new types of
C statements contained in the analyzed programs. IntegerOverflowChecker (105 SLoC)
is triggered for variable assignments present in the analyzed code. It generates satisfiabil-
ity queries used to check for violation of integer overflows and reports an error in case of
satisfiability. IntegersUpperBounds (42 SLoC) was used to extract the actual values for
the integer upper bounds (platform dependent) from the standard C library file limits.h by
taking into account the current CPU architecture (32-bit or 64-bit). This makes our approach
platform-independent. TimeWatch (22 SLoC) is an utility class used for time measurements
of our checker. StatementLogger (38 SLoC) utility class was used to log statements coming
from leave() methods present inside the StatementProcessor.

The symbolic function models: AbsModel(), SqrtModel() and RandModel() were added
to the Environment inside our engine (not depicted in Figure 4.1) in order to symbolically
model the mathematical functions: abs(), sqrt() and rand(). The mathematical function abs()
was symbolically remodeled by using the symbolic function model AbsModel (40 SLoC)
inside our engine. We attached to the symbolic variable of AbsModel(var_symbolic), a
SMT-Lib constraint (it checks the numeric value of the abs() function parameter. If the
parameter value is positive then the value will be not changed, else if the parameter value
is negative then the - sign will be removed) which was used to model the mathematical
modulo function. As symbolic return of the function model AbsModel(var_symbolic) we
used a symbolic copy of var_symbolic which contained the previous attached SMT-Lib
constraint. Next, we simulated the execution of the mathematical sqrt function call inside
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the function model SqrtModel, (54 SLoC), by attaching to the symbolic parameter variable of
SqrtModel(param_symbolic) the value of the sqrt operation and assigning this to the symbolic
variable, param_symbolic. We implemented our own sqrt function which can deal with big
integers based on the java.math.BigInteger. Furthermore, we added the symbolic function
model RandModel(), (29 SLoC), used to statically model the mathematical rand() function
contained in the C standard library.

The symbolic function models: SocketModel(), ListenModel(), ConnectModel(),
RecvModel(), AcceptModel() and BindModel() were used (not depicted in Figure 4.1)
in order to symbolically model the (f) communication API functions: socket(), listen(),
connect(), recv(), accept() and bind() declared in winsock2.h, windows.h, direct.h,
sys/types.h, sys/socket.h, netinet/in.h, arpa/inet.h and unistd.h. Note, that for
sake of brevity parameters are not indicated in the previous functions. The above mentioned
functions were used inside if branch containing the C stop; statement inside the then branch.
The analyzed C/C++ programs contained if branch which were used to check if the return value
of the function calls: are equal to SOCKET_ERROR (-1). In case the return value was equal to
-1 then stop; was called on the if branch—an else branch was not present in the code. The
symbolic return value of these functions would stop the symbolic program execution if it would
be equal to the macro SOCKET_ERROR -1 or not initialized with a value. Thus, making the code
located after this function calls unreachable with respect to the program execution paths and
thus, it will not be possible to detect the integer overflow bug. We attached to the symbolic
return variables of the following function models: SocketModel (39 SLoC), ListenModel
(39 SLoC), ConnectModel (41 SLoC), RecvModel (42 SLoC), AcceptModel (41 SLoC), and
BindModel, (41SLoC) numeric values through the usage of SMT-Lib constraints. This way the
part of the code where the bug was located could be reached. Note, that every numeric value
can be used as symbolic return value of the functions, except -1. Furthermore, the function
models HtonsModel (32 SLoC) and Inet_addrModel (32 SLoC) were added in order to model
the htons() and inet_addr() functions. Each symbolical function model has a constructor
method, getName(), getSignature() and an execute() method which makes the creation and
usage of new function models straight forward.

4.4 Evaluation

4.4.1 Experiments Methodology

Test Programs. We tested INTDETECT with the open source integer overflow test case CWE_-
190_Inger_Overflow contained in the Juliet test suite [207]. The used test case contains 54
baseline programs with 48 Control Flow Variants (CFV) each resulting in total of 2592 ana-
lyzed programs and 2592 (†) true positives. Every baseline test case—48 CFV—contains 38
C programs and 10 C programs.
Automated Experiment Assessment. First, we generated 26 jUnit test classes containing
100 jUnit test methods in each of the first 25 classes and respectively 92 jUnit test methods
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in the 26th class. Second, we ran each of the generated classes separately—due to Eclipse
run-time limitations it was not possible to put all 2,592 jUnit test methods in one class and run
everything at once—by using the jUnit testing environment.
Setup. We tested INTDETECT on the Eclipse IDE v. Kepler SR 1, OpenSUSE 13.1 OS, 64bit;
12 GB RAM, CPU Q9550 2.83GHz, 64-bit.

The focus of our experiments is to find out the number of false positives, false negatives, true
positives (accuracy) and the runtime timings (efficiency). Our research questions are as follows.

• RQ1: How accurate is INTDETECT w.r.t. the number of false positives, false negatives,
and true positives? (Section 4.4.2)

• RQ2: How much analysis time requires INTDETECT in order to accurately detect the
faults? ( Section 4.4.2)

4.4.2 Automated jUnit Test Cases Generation

A script was developed to generate the jUnit test methods for 2592 analyzed C programs. Our
script requires the directory location—path—as parameter followed by the Juliet test case name
for which the jUnt test cases should be generated (CWE_190 in our case). The script uses a
predefined jUnit template method and generates 100 jUnit methods per Java class file. For
2592 programs we obtained 26 jUnit test classes containing 100 jUnit test methods each and 92
jUnit test methods in the 26th test class. The dynamic parameters, which are added in each Java
source files, are: the line numbers where the bug is located, method names and the class names.
These are automatically generated based on the test cases names detected in the selected Juliet
test case. For the class names we divided the test programs in groups of 100 and named the Java
class file as CWE_ followed by the name of the 1st test program of the group of 100, followed by
underscore _ and the last test program name contained in the group. The first name of the file
(e.g., CWE...) contained in each test program was used as names for the generated jUnit test
methods. The line number where the true positive is located was determined by tokenizing the
source files contained in each test program and by searching for the string (p) /* POTENTIAL
FLAW */—this string was inserted into the code by the Juliet test suite creators in order to mark
the true positive and false positive locations. The script identifies as bug location the next line
number after the string (p) was detected. Multiple appearances of (p) are filtered out by using
several flags and counter variables used to count the number of appearances and the locations
(line numbers) of (p).

4.4.3 Automated Eclipse C/C++ Programs Generation

A second script was created in order to generate 2592 Eclipse IDE projects containing all
analyzed C/C++ programs. The projects generation script uses the directory containing the
Juliet test case (CWE_190 in our case) as parameter in order to iterate recursively through all
folders of the main directory and generates Eclipse C/C++ projects with the required header
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files contained inside. Briefly, the script uses the Eclipse C/C++ hidden project files .cproject
and .project as templates. These were next inserted into each generated project. In each
generated project the script replaces the names of the project with the names extracted from
the names of the source files contained in each Eclipse test case program. The script creates
the project folder using the same name and puts all the required files for the current test project
into the folder (needed header files were also copied inside the folder). The project names
and the appropriate project configurations are written in the hidden project description files
(.cproject and .project). Next, the C code line #define INCLUDEMAIN is added after the
code line #ifdef INCLUDEMAIN which is contained in each Juliet test case program by default
in order to have a starting point for the static analysis.

4.4.4 Experimental Results

Note, that each number [1, 54] located on the X axis of Figure 4.2 has two bars associated.
Figure 4.2 depicts for each of the 54 test cases (each containing 48 CFV—in total 2592 C/C++
programs) the run-time in seconds indicated on the left Y axis (e.g., the left bar in Figure 4.2
located on the X axis for #1) and the contribution of each CFV in % depicted on the right Y
axis (e.g., the right bar in Figure 4.2 located on the X axis for #1). The main contribution in
all 54 test cases has CFV 12 depicted in Figure 4.2 with blue color CFV 12. We observe
that baselines (#12, #24, #27, #36, #48 and #54) depicted in Figure 4.2 and in Table 4.1, first
column, have high execution times—more than 200 seconds—compared to the rest of the
programs. In each of the expensive—have run-time over 200 seconds—test cases CFV 12 has
more than 80% contribution to the INTDETECT’s run-time. Furthermore, we measured the total
execution time with respect to successful triggering, 3,638.122 seconds (3,666.36 seconds −
28.238 seconds) and the total execution time without successful triggering, 28.238 seconds
(3,666,36 seconds − 3,638.122 seconds) and found out that 0.77% (28.238 seconds out of
3638,122 seconds) additional performance overhead was induced by the programs in which
no execution exception was raised and no bug was found.

Figure 4.2 was split—depicted with dashed lines " " in Figure 4.2—from left to right having
12 test cases (24 bars) in each segment for the first 4 segments and 6 test cases (12 bars) in the
last segment located at the far most right in Figure 4.2. with the goal to depict commonalities
between each of the 5 obtained segments. We observe that the execution times are rising in
each segment to a peak value (segment 1 (#2), segment 2 (#18), segment 3 (#27), segment 4
(#47) and segment 5 (#54)) and then they abruptly drop, except segment 5 where it increases
continuously until it reaches the peak execution time (#54) for the last baseline test case. By
dividing the whole execution time among all the expensive execution baselines, (#12, #24, #36,
#27 and #48) for the first 4 segments and the #54 baseline test case we observe that those 6
baselines significantly dominated the whole execution time having execution times of more
than 200 seconds. The run-time for the above mentioned test cases is higher compared to
other baseline test cases because these programs contain the C standard library function calls
rand() and sqrt() in multiple nested if conditions which make the path conditions to be
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Figure 4.2: IntDetect run-time results for the Juliet’s CWE-190 test case.

more complex than programs which do not contain such complex nested path conditions. Thus,
incurring the additional computational overhead.

Table 4.1 contains the following abbreviations: Baseline Programs (BP, contains 48 CFV),
Source Lines of Code (#SLoC), Total Bugs Triggered from 48 TP (TBT), Total Execution
Time in seconds (TET [s]), Total Exceptions (TE), Exceptions with Trigger (0 NO/1 YES)
(EwT), Total True Positives percentage w.r.t. 48 CFV and 37 CFV (48 CFV − 11 CFV, 10
C++ programs and 1 program containing the C goto statement) (TTP 48%/37%). Table 4.1
columns 5 and 8 depict INTDETECT’s run-time timings in seconds and true positive percentages
for 37/48 CFV, respectively. False positives and false negatives are not depicted in Table 4.1
since they were not encountered during our experiment. Among the triggered bugs we have
100% success rate with respect to true positives. On the other hand, there were in total 11 (w.r.t.
2,592 programs) true positives detected where we got run-time exceptions but the bugs were
still triggered correctly, Table 4.1 column seven. However, there were in total 43 (w.r.t. 2592
programs) programs where INTDETECT successfully parsed the source code but failed to trigger
any bug, see column seven contained in Table 4.1 for more details.

Table 4.2 contains the following abbreviation: % of Detected Bugs w.r.t. to the total number
of true positives 2,592 (†), (% DB). Table 4.2 presents the results of INTDETECT by running
it on the 2592 programs. INTDETECT triggered in total 1,908 true positives with a success rate
of 73.61% DB in total as it can be observed in Table 4.2 columns 4 and 5. In terms of bug
triggering for the 48 CFV for each base line test case our plug-in triggered at most 37 bugs in
a single baseline which corresponds to a success rate of 48.53% DB while 27 being the lowest
triggering number corresponding to 1.04% DB. The rest of the DB percentages are between
1.35% and 11.11% as depicted in Table 4.2, 5th column.

79



4 INTDETECT: Static Detection of Integer Overflow Based Memory Corruptions

# BP #SLoC TBT TET [s] TE EwT TTP 48%/37%
1 fscanf_add 5,233 37 14,857 11 0 77,08%/100%
2 char_fscanf_multiply 5,539 37 76,356 11 1 77,08%/100%
3 char_fscanf_square 5,309 37 31,213 11 0 77,08%/100%
4 char_max_add 5,236 37 27,566 11 0 77,08%/100%
5 char_max_multiply 5,541 37 32,54 11 0 77,08%/100%
6 char_max_square 5,309 37 29,631 11 0 77,08%/100%
7 char_rand_add 5,236 37 46,118 11 0 77,08%/100%
8 char_rand_multiply 5,541 37 72,947 11 1 77,08%/100%
9 char_rand_square 5,308 37 29,996 11 0 77,08%/100%
10 int64_t_fscanf_add 5,228 29 34,702 16 0 60,45%/78,37%
11 int64_t_fscanf_multiply 5,493 29 69,183 17 1 60,45%/78,37%
12 int64_t_fscanf_square 5,261 29 208,189 16 0 60,45%/78,37%
13 int64_t_max_add 5,188 29 25,117 16 0 60,45%/78,37%
14 int64_t_max_multiply 5,493 29 27,401 16 0 60,45%/78,37%
15 int64_t_max_square 5,261 27 26,483 16 0 43,75%/72,97%
16 int64_t_rand_add 5,188 29 40,497 16 0 60,45%/78,37%
17 int64_t_rand_multiply 5,493 29 76,312 17 1 60,45%/78,37%
18 int64_t_rand_square 5,261 29 121,849 16 0 60,45%/78,37%
19 int_connect_socket_add 12,168 36 49,439 12 0 75,00%/97,29%
20 int_connect_socket_multiply 12,473 36 84,226 12 0 75,00%/97,29%
21 int_connect_socket_square 12,241 36 44,115 12 0 75,00%/97,29%
22 int_fgets_add 6,377 37 45,184 11 0 77,08%/100 %
23 int_fgets_multiply 6,682 36 61,268 12 0 75,00%/97,29%
24 int_fgets_square 6,450 37 218,919 11 0 77,08%/100 %
25 int_fscanf_add 5,188 37 37,441 11 0 77,08%/100 %
26 int_fscanf_multiply 5,493 37 84,837 11 1 77,08%/100 %
27 int_fscanf_square 5,261 37 211,418 11 0 77,08%/100%
28 int_listen_socket_add 13,736 36 68,908 12 0 75,00%/97,29%
29 int_listen_socket_multiply 14,041 36 106,101 12 0 75,00%/97,29%
30 int_listen_socket_square 13,809 36 52,266 12 0 75,00%/97,29%
31 int_max_add 5,188 37 27,63 11 0 77,08%/100%
32 int_max_multiply 5,493 37 28,726 11 0 77,08%/100%
33 int_max_square 5,261 34 26,957 11 0 70,83%/91,89%
34 int_rand_add 5,188 37 52,185 11 1 77,08%/100%
35 int_rand_multiply 5,493 37 79,76 11 1 77,08%/100%
36 int_rand_square 5,261 37 222,582 11 0 77,08%/100%
37 short_fscanf_add 5,188 37 41,683 11 0 77,08%/100%
38 short_fscanf_multiply 5,493 37 80,723 11 1 77,08%/100%
39 short_fscanf_square 5,261 37 46,989 11 0 77,08%/100%
40 short_max_add 5,188 37 30,207 11 0 77,08%/100%
41 short_max_multiply 5,493 37 30,051 11 0 77,08%/100%
42 short_max_square 5,261 35 31,186 9 0 72,92%/94,59%
43 short_rand_add 5,188 37 39,372 11 0 77,08%/100%
44 short_rand_multiply 5,493 37 74,297 11 1 77,08%/100%
45 short_rand_square 5,261 37 35,885 11 0 77,08%/100%
46 unsigned_int_fscanf_add 5,188 37 42,742 11 0 77,08%/100%
47 unsigned_int_fscanf_multiply 5,493 37 85,65 11 0 77,08%/100%
48 unsigned_int_fscanf_square 5,261 37 215,401 11 0 77,08%/100%
49 unsigned_int_max_add 5,188 37 31,904 11 0 77,08%/100%
50 unsigned_int_max_multiply 5,493 37 33,569 11 0 77,08%/100%
51 unsigned_int_max_square 5,261 34 37,796 11 1 77,08%/91,89%
52 unsigned_int_rand_add 5,188 37 47,831 11 1 77,08%/100%
53 unsigned_int_rand_multiply 5,493 36 58,378 10 0 75,00%/97,29%
54 unsigned_int_rand_square 5,261 37 209,779 11 0 77.08%/100%
- Total 337,573 1,908 3,666.36 684,0 1(11) /0(43) 73,61% /95,49%

Table 4.1: Bug detection results for CWE_190.

Table 4.3 shows the impact of expensive baselines test cases with respect to the total execu-
tion time, 3,666,36 seconds. The average execution time per baseline test case is 67.90 seconds
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Triggered / 48
CFV

# of
base-
lines

Baseline # # of
bugs

% DB

37 34
[1, 9], 22, [24,
27], 31,
32, [34, 41],
[43, 50],
52, 54

1,258
48.53%

36 8
19, 20, 21, 23,
28, 29,
30, 53

288 11.11%

35 1 42 35 1.35%
34 2 33, 51 68 2.62%

29 8
10, 11, 12, 13,
14, 16,
17, 18

232 8.95%

27 1 15 27 1.04%
Total 1,908 73.61%

Table 4.2: Integer overflows bugs triggered.

Execution Times T [s]
Total time for 12th, 24th, 36th, 48th, 54th and 27th baselines 1,286.28
Average time for 12th, 54th and 27th 214.38
Execution time excluding higher value 2,380.07
Average execution time excluding higher value 49.58
Average execution time per baseline programs (48 CFV) 67.89
Total execution time 3,666.36

Table 4.3: Impact of expensive baseline test cases.

but if we exclude those six expensive baseline, then the average execution time decreases by
18.31 seconds to 49.58 seconds. In our experiments, we summed up the times where we had
run-time exceptions with the times where we had no exceptions for all the programs where
the bug was detected at the right place (true positive). Moreover, we included the execution
times of the programs where the code was successfully parsed but no bug was found (no bug
was triggered at all). We did not sum up the execution times for the test cases where we had
exceptions and no bug was triggered.

Table 4.4 presents four types of exceptions that we have encountered during our experiments.
The exceptions appeared because of current limitations of our framework. Note, that the ID
numbers [101, 104]—used in Table 4.4 first column—were freely chosen to better depict the
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Exception ID Error types
101 Jump node, C goto statement
102 java.lang.ClassCastException: org.eclipse.cdt.internal.core.dom.parser

.cpp.CPPFunction cannot be cast to org.eclipse.cdt.internal

.core.dom.parser.c.CFunction
103 java.lang.ClassCastException: org.eclipse.cdt.internal.core.dom.parser

.cpp.CPPTemplateTypeParameter cannot be cast to org.eclipse

.cdt.core.dom.ast.IBasicType
104 java.lang.NullPointerException smtcodan.interpreter.FunctionSpaceStack

.enterFunction(FunctionSpaceStack.java:463)

Table 4.4: Types of exceptions encountered.

encountered exceptions. The exception ID 101 was caused by the presence of the C language
goto statement when present in the source code. INTDETECT triggered bugs in almost all
programs except the C++ programs and the programs containing the goto statement. ID 102
was encountered because our framework can not currently deal with C++ functions, only C
functions. ID 103 appeared when trying to convert a C++ template type parameter into an
IBasicType which were not compatible. The exception, ID 104, was encountered inside
the method enterFunction(SymFunctionCall nextCall, SymFctSignature fsign)
which resides in FunctionSpaceStack. The reason is that we do not create symbolic function
signatures for C++ function declarations. This limitations will be removed by making the CFG
builder algorithm aware of object instantiations and other C++ specific language semantics.

Figure 4.3 presents the bug reports after running INTDETECT on the 54 baseline programs
(each contains one CFV). The circled numbers in Figure 4.3 represent: number 1 depicts the in-
ner structure of the first baseline program, number 2 contains 54 bug reports for the 54 true pos-
itives contained in the 54 baseline programs (each contains the first CFV) and number 3 indi-
cates the bug location (file name and line number) of the first bug report indicated in the Eclipse
"Problems" view. Furthermore, the user has the possibility to trace back the detected bug—
for the programs where bug reports were generated—to the bug location (file name and line
number) by double-clicking on one of the bug reports depicted in Figure 4.3 with number 2 .

However, by excluding all C++ programs and those programs containing the C language
goto statement (no bug reports were generated and contain 11 CFV per baseline test case) a
total of 594 (11 × 54), 22.9% (594 out of 2592) test programs can be excluded meaning that
only 1998 (2592 − 594) programs are actually analyzable by our framework. Among 1998
programs containing the same number of bugs (true positives) we successfully detected the
bugs in 1908 programs (true positives), which results in a successful coverage of 95.49% with
no false positives. In the rest 90 programs (1998 − 1908), 4.51% from the total analyzable
programs (1998), INTDETECT did not trigger any true or false positives. Thus, the above results
confirm that our approach is accurate and effective in detecting integer overflows.
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Figure 4.3: CWE_190 baseline programs bug reports.

4.5 Discussion
In this Section, we discuss internal and external threats to validity.

4.5.0.1 Threats to Validity

Internal Validity. The experimental results presented in Table 4.1 may not support our findings
for several reasons. If INTDETECT incorrectly skips some bugs or misses some constraints, then
it might report false positives (we did not encounter any in our experiment). For this reason
we carefully extended the StatementProcessor in order to be capable to deal with the new
C language semantics present in CWE_190. If we misinterpreted the timing results, then the
potential total execution time would not be feasible. We addressed these factors by testing
our tool extensively on the open source programs contained in CWE_190 which have a known
number of integer overflow bugs. We repeated each run three times for each of the analyzed
programs in order to be sure that the obtained results are right.
External Validity. The results cannot be generalized for C++ programs since the open source
programs contained in CWE_190 were not analyzed due to current engine limitations. Our
engine does not support C++ language semantics due to the fact that we currently only focused
on the C language. We mitigate this issue by extending the StatementProcessor to be capable
to translate every kind of C++ language semantics in SMT-Lib statement is just a matter of
time. On the other hand the current CFG builder algorithm is not aware of C++ control flow
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related semantics (e.g., object instantiation, etc.). The required C++ data types are available
in the Codan API and will be implemented into our CFG builder algorithm so that the CFG
will contain program execution paths based on specific C++ language control flow semantics.

4.6 Summary
In this Chapter, we presented INTDETECT which is a static integer overflow detection tool that
runs on C source code and can detect integer overflows with a true positives rate of 95,49%
with no false positives. Our checker was developed as an Eclipse plug-in and was used to
automatically detect bugs in 2,592 programs. We used jUnit tests in order to automate the
assessment of the accuracy of our integer overflow checker. Furthermore, we demonstrated
that an integer overflow checker with low false positives rate can be built by formal modeling
of C language semantics which are related to integer overflows and with function models which
are used to simulate the program environment.
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Chapter 5
IntRepair: Static Repairing of Integer Overflow
Based Memory Corruptions

In this Chapter, which is part of the first part of this thesis, we extend our static C source code
analysis framework by presenting an integer overflow detection and repair tool which can
provide source code repairs, that help a programmer to automatically repair an integer overflow.
Within this Chapter, we address RQ2 by providing an integer overflow repair tool, named
INTREPAIR, which is capable to efficiently remove a fault, can automatically validate a repair
and does not introduce unwanted program behavior. Finally, note that parts of this Chapter
have already been published by Muntean et al. [197].

5.1 Introduction

What is the overall view? Integer overflows are a well-known cause of memory corruptions,
and a widely known type of vulnerability [272] that has threatened programs for decades. To
address this challenge, it has been, for example, proposed to apply the concept of automatic
repair [191] to fix integer overflows. This idea consists of using a system that produces code
patches in order to fix integer overflows. A promising research thread consists of automatically
repairing integer overflows, with notable approaches such as SoupInt [154], CodePhage [247],
TAP [249], and Sift [154]. However, those approaches suffer from the main limitation that they
do not assess correctness after modification.

What is the problem? Generating a correct repair for an integer overflow bug is a difficult task.
First, the search space of all possible repairs is large. Second, the correctness assessment must
go beyond the paths dynamically executed. In this thesis, we propose a solution to this problem.
We devise an efficient repair method for integer overflows based on symbolic analysis. The
prototype implementation, called INTREPAIR, generates correct repairs at source code level.

What are the exiting solutions? The main solutions, which do not rely on manually generated
test cases are as follows. SoupInt [270] (runtime based binary patch generator) do not produce
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source code patches, CodePhage [247] (binary based horizontal code transfer) does not check
for correctness beyond the failing input, and Sift [154] (static sound input filter generation for
binaries) relies on test cases only.

What are the limitations of the solution? However, these integer overflow repair tools either:
(1) introduce a high runtime overhead after the program was repaired, or (2) do not validate
whether the generated patches are correct and program behavior is not changed in an unwanted
manner.

What is our our insight? In this Chapter, we tackle these two problems in a novel system,
INTREPAIR, usable for automatic repair of integer overflows. Our key idea is to use symbolic
execution [34, 272, 35, 11, 159] in order to reason about the repair. In particular, our intuition is
two-fold: (1) we fuse the fault localization and repair generation phases into a single algorithm
via SMT solving, and (2) we ensure that the resulting repairs do not insert unwanted program
behavior with symbolic reasoning. We present a novel integer overflow repair technique that
operationalizes this idea and the corresponding prototype tool, INTREPAIR. To the best of our
knowledge, INTREPAIR is the first approach for automated repair of integer overflow that does
not require test cases.

How does it work? Given a program containing a defect, INTREPAIR generates a SMT sys-
tem that captures integer overflow manifestation and allows for correct patch generation and
validation. This is achieved by interweaving the bug detection SMT constraints with newly
synthesized constraints used for correct bug generation. Patch Correctness: The repairs gen-
erated by INTREPAIR are correct in the sense that the repair correctly removes the bug and does
not change program behavior. Patch Validation: By validation, we mean that the generated
synthesized patches are guaranteed to be correct. As such: (1) the automatically generated
patches are not program input dependent, (2) the generated patch removes the detected integer
overflow on all program execution paths that reach the fault location, and (3) the patches do not
introduce unwanted program behavior (i.e., only the integer overflow is removed). The integer
overflow detection checker on which INTREPAIR relies does not generate false negatives (i.e.,
every detected integer overflow is a genuine integer overflow). Further, we do not distinguish
between intended or unintended integer overflows, yet false positives may happen due to certain
implementation limitations, such as loop unrolling or recursion depth.

The implementation of INTREPAIR is built upon the Codan static symbolic execution engine
[196, 113, 114]. It uses the Z3 SMT solver [68] to solve the extracted constraints. Note that
our repair generation technique is general enough to be implemented on top of other symbolic
execution engines as well.

We evaluated INTREPAIR on 2,052 C programs contained in the SAMATE’s C/C++ bench-
mark suite [264], totaling more than one million lines of code (LOC). The evaluated programs
contain all possible program control flows that may lead to an integer overflow. Further, we use
a synthesized benchmark containing 50 large C programs (up to 20 KLOC) seeded with integer
overflows. Our experimental results show that INTREPAIR is able to: (1) effectively detect all
integer overflows, and (2) successfully repair the programs at source code level. In addition,
we present the results of a user study with 30 participants showing that INTREPAIR is effective
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compared to traditional manual repair. To the best of our knowledge, there are no other open
source tools with which we can compare against. In particular, DirectFix [161], Angelix [162],
or SemFix [205] are not suitable for comparison purposes as these tools use test cases to locate
the fault: on the contrary, we do not assume the presence of test cases.

What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• We designed a novel source code repair generation technique for integer overflows in
C programs.

• We implemented INTREPAIR, as a prototype of our novel integer overflow repairing
technique, for C source code programs. It can be automatically used to repair integer
overflows across multiple integer precision.

• We evaluated INTREPAIR thoroughly with 2,052 C programs contained in the currently
largest open-source test suite for C/C++ source code (NSA’s Juliet) and with 50 synthe-
sized programs which range up to 20 KLOC. We show that INTREPAIR’s code repairs
are effective and induce low runtime overhead.

• We evaluated INTREPAIR within a controlled experiment with 30 participants and deter-
mined that our tool is more time-effective than repairing the same programs manually.

5.2 Threat Model

Defensive Assumptions. We align our threat model (e.g., STRIDE [165]) to the general
integer overflow threat model. We assume that ALSR [219] and DEP [164] are in-place and
correctly functioning. We assume that the code is not compiled with any integer overflow
bounds checking. Lastly, we assume that the defender has access to the source code of the
application and potentially knows how to repair the integer overflow.

Attacker Capabilities. We assume a skilled attacker with sufficient resources and time to
exploit the integer overflow. Further the attacker can use the integer overflow to escalate
privileges or to manipulate the program counter according to his desires. The attacker is
equipped with the necessary tooling to find the integer overflow in the program binary and to
experiment with the code in an live interactive debugging session. Next, we don not exclude
the possibility that the attacker has access to the source code of the application. Lastly, the
attacker is aware of the existence of other vulnerabilities (e.g., buffer overflow) which might be
triggered through the previously found integer overflow. This requirement is not mandatory
but a nice to have as opposed to buffer overflows, integer overflows are exploited indirectly
through integer overflow to buffer overflow (i.e., IO2BO) vulnerabilities.
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5.3 Design and Implementation

In Section 5.3.1, we present the architecture of INTREPAIR, and in Section 5.3.2, we present the
supported overflow and underflow checks, while in Section 5.3.3, we introduce INTREPAIR’s
fault localization algorithm. In Section 5.3.4, we depict several of the repair patterns of INTRE-
PAIR, and in Section 5.3.5, we present the repair generation algorithm, while in Section 5.3.6,
we highlight implementation details. Finally, in Section 5.3.7, we describe how INTREPAIR was
integrated and can be used inside an IDE.

5.3.1 Overview
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Figure 5.1: IntRepair depicted as gray shaded boxes.

Figure 5.1 provides an overview of INTREPAIR showing its main components. Initially, the 1

source code is passed into the 2 symbolic execution engine, which first constructs a CFG and
then extracts all program execution paths. Constraints are collected along these paths and 3 the
integer overflow detection component identifies whether an integer overflow might occur for a
given execution path. In 4 a repair pattern is selected to fix the overflow. The 5 symbolic repair
validation component checks whether the negated constraints invalidate this integer overflow
error. If this is the case, 6 the validated integer overflow repair is validated and a 7 targeted
automatic repair is generated that removes the previously detected integer overflow. After
applying the repair, we obtain the 8 patched source code, which is again validated through 9 re-
factored code validation. Further, in case 3 integer overflow detection does not find an overflow,
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INTREPAIR produces 10 a removed overflow, indicating that the bug was successfully removed
and 11 repaired source code has been synthesized. Finally, in case the integer overflow was not
removed, then INTREPAIR produces 12 an unremoved overflow, and the result is 13 unrepaired
source code. Note that INTREPAIR checks for the introduction of unwanted behavior after a patch
was inserted by re-analyzing the program with the help of symbolic execution and deciding that
no new bug was inserted. For verifying a patch after it was applied, INTREPAIR does not require
any test case since the integer overflow component can decide if the bug was removed. However,
a test case can be used in conjunction with the fault detection component in order to confirm that
the bug was removed from the source code location where it was first detected before patching.

5.3.2 IntRepair Overflow and Underflow Checks

In the following, we present the three types of overflow and underflow checks that are supported
by INTREPAIR. The checks are preconditions, as shown below. If one of the preconditions
evaluates to true, then an integer overflow has been found [73].

First precondition. The addition of two integers, in which one is a variable and the other is a
positive constant, will lead to an integer overflow if the following expression evaluates to true:
((s1 > 0)∧ (s1 > (INT_MAX− s2))). Note that s2 is the positive constant.

Second precondition. The multiplication of two integers, in which one is a variable and the
other is negative, will lead to an integer overflow or underflow if the following expression
evaluates to true: ((s1 > 0)∧ (s1 > (INT_MIN/s2)))∨ ((s1 < 0)∧ (s1 < (INT_MAX/s2))).
Note that s2 is the negative constant.

Third precondition. The multiplication of two equal integers will lead to an integer overflow or
underflow if the following expression evaluates to true: ((s1 > 0)∧ (s1 > (sqrt(INT_MAX))))
∨ ((s1 < 0) ∧ (s1 < (−sqrt(INT_MAX )))). Note that s1 and s2 are the same variable.

The above preconditions are used over multiple types of inputs for s1 or s2 (i.e., RAND32(),
this is the wrapper for the C random function, fscanf() etc.). The preconditions can be applied
over multiple integer precisions, meaning that INT_MAX can take different values depending
on the currently used integer precision in the analyzed program. We call this value the maxi-
mum admissible upper bound value of an integer. This value is determined automatically during
program analysis. Further, the variables s1 or s2 can take different types: char, int64_t, int,
short, unsigned int. In contrast to IOC’s preconditions, which aim to avoid an unconfirmed
integer overflow during program runtime, our preconditions help to guide repairs at the right
code location, where the integer overflow was detected and confirmed. This results in avoiding
the bug during runtime. Note that we always use symbolic execution again as a last step to
confirm that the bug was completely fixed after a repair was inserted.

Other operations, which may lead to integer overflows, are: truncation, bit shifts and subtrac-
tion operations (see Figure 6 in Pereira et al. [222] for more details). Currently, INTREPAIR does
not support these operations, but we plan to support them in an updated version of INTREPAIR.
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5.3.3 Fault Localization
In order to generate code repairs, INTREPAIR initially needs to detect the precise location where
the integer overflow resides in the program. This is the goal of INTREPAIR’s repair location
search algorithm, which we now present. First, INTREPAIR constructs the CFG of the analyzed
program. Next, the following steps are performed consecutively in order to detect a fault.

1. Each program execution path is extracted from the previously generated program CFG.

2. The extracted path is traversed and path satisfiability checks are performed at branch
nodes.

3. When INTREPAIR encounters an integer error prone code location (i.e., assignment state-
ment) on the analyzed path, an integer overflow check is performed by notifying the
interpreter.

4. The notification is delegated to the appropriate checker (i.e., integer overflow checker)
by the interpreter.

5. The slice of SMT equations of the symbolic variable, which potentially may overflow,
together with corresponding integer overflow satisfiability checks is queried by the integer
overflow checker.

6. The check verifies if the symbolic variable, which caused the integer overflow, can be
greater (i.e., if this is true then there is an integer overflow) than the currently used integer
upper bound value (i.e., INT_MAX). These upper bound values are extracted from the C
standard library contained in the limits.h file. The lower bound is obtained by negating
the currently used upper bound value and and adding one to the result.

7. In case the SMT solver replies SAT (satisfiable, integer overflow bug present) to the previ-
ously submitted SMT query, then a problem report with problem ID (unique system string,
the ID refers to which checker detected the bug), the file name where the bug was detected,
and the line number in the file where the bug is located will be created and stored.

5.3.4 Repair Patterns
In this Section, we present the repair patterns available in INTREPAIR. We explain how these
patterns can help to repair integer overflows and how the patterns can produce correct fixes. Re-
pair patterns are stored in a decision tree. However, in the following graphics we will depict the
criteria needed to choose a specific repair pattern instead of the pattern itself. Before the bug re-
pair analysis is started, the programmer manually constructs such a decision tree. This is stored
in a tree data structure for later usage. The rationale behind the decision tree is help INTREPAIR

to perform a time efficient search for each detected fault and to pick a core repair that fits best.
Figure 5.2 depicts a decision tree used to show repair patterns available to INTREPAIR. The

series of dots indicate other operations (i.e., subtraction, bit shift, etc.) or arrows not depicted
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Figure 5.2: Decision tree used for storing repair patterns.

in Figure 5.2. Other repair patterns for int64_t, int, short, and unsigned int types are
not depicted due to space limitations. C1 up to C24 represent the criteria needed by INTREPAIR

for choosing a repair pattern. A repair is selected when at least two criteria are met. The six
arrows on the left bottom pointing up depict six repair patterns determined between C1 and one
of the criteria from C7−C12. Depending on whether one of the components of the analyzed
statement type x = y operator z; is a constant, a variable or a variable with side effects
(e.g., int z = i++; or short y = foo();) a different repair pattern will be proposed.

More specifically, from top to bottom, the decision tree contains an addition (left node) and
a multiplication (right node) operation that are used to determine the kind of operation, which
is performed in the buggy statement. At the next level in the tree (top to bottom), the type of
result variable is determined. Further, at the following level in the tree, it is determined if the
parameters of the analyzed statement are constants, variables or have side effects. Figure 5.2
depicts in total 360 repair patterns (360 possibilities to combine two criteria from the range
C1 to C12 with each other, e.g., C1 and C8, see corresponding arrow in Figure 5.2) multiplied
by five (data types) and the result is then multiplied by two, two main tree branches, e.g., add
and multiply) for the C statement type x = y operand z;.

Table 5.1 depicts four notable repair patterns in more detail. Note that in Table 5.1 we omit the
contents of the if and else branches in order to keep the graphic readable. The if branch contains
the code to log the occurrence of an integer overflow or the code which terminates the execution
of the program1. The else branch contains a statement where the integer overflow was detected.

1Note that terminating the program is an option that is not safe in critical program executions, i.e., in case
monetary transactions depend on the program execution or when the program is driving a train, etc.
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Criteria Statement Repair Pattern Format Description

C15 & C19 char a=y*y;
1 if(a > sqrt(INT_MAX) ||
2 a < -sqrt(INT_MAX)){log_or_die();}
3 else{...}

multiply two
equal variables

C15 & C17 char a=y*3;
1 if(a > INT_MAX/2 ||
2 a < INT_MIN/2){log_or_die();}
3 else{...}

multiply a vari-
able with a con-
stant

C3 & C7 char a=y+z;
1 if(a > INT_MAX/2 ||
2 a < INT_MIN/2){log_or_die();}
3 else{...}

add two vari-
ables

C3 & C11 char a=y+4; 1 if(a > INT_MAX-2){log_or_die();}
2 else{...} add a variable to

a constant

Table 5.1: Four repair patterns of IntRepair.

Consider the C statement at line number 544. a = b ∗ b; where an integer overflow was
detected at line number 544 in a program’s source code file. In this case, the pattern de-
picted in Table 5.1 on row one (C15 & C19) will be used to avoid the bug. This pattern
will be selected based on the fact that two equal variables are multiplied. As a result,
the statement will be surrounded with the code of the pattern in which parts are replaced
based on the type of statement, 543. i f (a <= sqrt(INT_MAX) || a <−sqrt(INT_MAX))
{545. log_or_die();} 546. else{ a = b∗b;}. The numbers (i.e., 543 up to 546) used in this
example represent the source code line numbers of the repaired program, respectively.

How does a repair help to fix a bug? A generated repair helps to fix a fault by providing to
the programmer a ready to use code snippet which contains complex mathematical constraints,
that are not always obvious and in some situations difficult to manually infer.

Why are the produced repairs correct? A produced repair is correct w.r.t. to the definition
of repair correctness given in the Section 5.1, since after the repair generation and insertion
INTREPAIR checks if the fault was correctly removed and if the program behavior was changed.
Additionally, after repair insertion, the whole program together with the repair is recompiled;
thus, semantic errors potentially caused by the patch are in this way excluded.

Finally, note that building a repair is not straightforward, as the repair construction relies
on complex mathematical constraints that need to be inferred based on the currently detected
fault. Further, these constrains need to be carefully plugged into the selected repair pattern in
order to provide the ready to use patch. Next, we will present the algorithm used to generate
these mathematical constraints and the repair.

5.3.5 Integer Overflow Repair Algorithm

The automated repair generation algorithm of INTREPAIR consists of the following steps.

1. Determine the integer upper bound value;
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2. Generate a SMT constraint system;

3. Select constraint values;

4. Re-compute the bound checking constraints;

5. Determine the bug type;

6. Select the repair pattern;

7. Determine the new constraint SMT system;

8. Generate code repair;

The algorithm corresponds to the box ¹ depicted in Figure 5.1. These eight steps are
performed in consecutive order as highlighted next.

5.3.5.1 Determine Integer Upper Bound Value

In order to determine the currently used integer upper bound value in the analyzed program,
INTREPAIR performs the following procedure, which allows INTREPAIR to be a multi-precision
tool in the sense that it automatically determines the integer precision needed for each analyzed
program. First, INTREPAIR retrieves the hardware overflow limits2 for each integer type. Sec-
ond, during the symbolic execution-based traversal of the analyzed program path, INTREPAIR

searches for previously defined and used integer upper bound program variables. This search
is realized by comparing each declared or used variable name (e.g., data in the code snippet)
contained in the currently analyzed program execution path with one of the supported integer
upper bound values (i.e., CHAR_MAX, INT_MAX, LLONG_MAX, SHORT_MAX, and UINT_MAX). Third,
in case such an upper bound value is found, it will be set to be the currently used integer upper
bound value. INTREPAIR can automatically detect for each environment (system), in which it
runs, the currently used integer overflow upper bound limit (i.e., INT_MAX) value. This way,
the integer precision is determined for each analyzed program individually. Next, this upper
bound value will be used for validating generated candidate code repairs and also to search
for integer overflows.

5.3.5.2 Generate a SMT Constraint System

Next, the symbolic variables and the constraints used inside the integer overflow checker are
grouped together and stored for later processing. In particular, INTREPAIR stores: (1) the
statement where an integer overflow is detected, (2) the SMT formula used to detect the bug in
the first place, (3) the bug ID of the integer overflow checker which was used to detect the bug,
(4) the symbolic variable which was used to detect the integer overflow, and (5) other symbolic
variables on which the integer overflow triggering variable may depend.

2e.g., by parsing /usr/include/limits.h on Linux OS.
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For instance, let us consider a C language assignment statement int result = varA +
varB; and its SMT counterpart (assert (= resSymbolic ( + varAsymbolic
varBsymbolic))). The C assignment statement depicts the addition of two variables and the
result is stored in a third variable, with a potential integer overflow bug. For this statement, the
information collected by INTREPAIR is: (1) int result = varA + varB;, (2) ... (assert
(= resSymbolic ( + varAsymbolic varBsymbolic))); ... checksat, note that this
SMT constraint represents a part of the SMT system used to detect the bug, (3) ID-Integer_-
Overflow_Bug, (4) resSymbolic, and (5) and the varAsymbolic variable.

5.3.5.3 Select Constraint Values

INTREPAIR selects the relevant SMT constraint variables based on the type of C language state-
ment where the integer overflow is detected. For example, consider assignment x = a1+a2;
where the variable x and potentially the variables a1 and a2 need to be taken into consideration,
because these directly influence the occurrence of the integer overflow.

The symbolic variable, i.e., resSymbolic, was selected by INTREPAIR to be further con-
strained. This is done in order to check if the code repair that will be generated could remove
the previously detected integer overflow bug. For bug removal checking, the whole SMT
constraint system slice of this symbolic variable will be used. Note that this constraint system
was previously (before running the bug removal analysis) determined during fault localization.
This variable will overflow in case of using too large values that cannot properly be stored in the
result variable. Note that depending on the complexity of the analyzed statement, more or fewer
variables can be taken into consideration in order to determine if the previously detected integer
overflow would further manifest after re-constraining. This depends on how the selected sym-
bolic variables were re-constrained. The intuition is that the integer overflow can be detected
before a certain variable will overflow. This type of behavior is useful when generating repairs
that are constraining more than one program variable. Finally, the selected variables will be
used in the next step when re-constraining the bounds during the checking of SMT constraints
of the SMT system. Note that this SMT system was used upfront to detect the integer overflow.

5.3.5.4 Re-Compute the Bound Checking Constraints

In order to solve the problem of determining a suitable variable range for avoiding an overflow,
INTREPAIR applies a specific technique for re-constraining the symbolic variable which has
overflown and which was selected in the previous step. The variable can be re-constrained after
collecting the program execution path constraints for a single program execution path, which
were used to check for the presence of an integer overflow. The presence of an integer overflow
bug is indicated if for the selected SMT system the Z3 solver reports SAT (satisfiable, integer
overflow bug present).

INTREPAIR re-constraints (for example, through integer upper bound negation) the variable(s)
selected from the previous step in order to determine a potentially safe interval which will
not lead to a second integer overflow of the symbolic variable. Note that other iterative
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techniques are possible (i.e., iterating backwards through a vector (from large to small values)
of consecutive large values and checking by selecting each value once as integer upper bound
if the check conditions will hold). The goal is to determine if there is a second integer overflow
if INTREPAIR re-constraints the selected variables as mentioned above. For this purpose,
INTREPAIR will check in the next step if for the new SMT constraint system it gets an UNSAT
(unsatisfiable, no integer overflow bug present) solver reply. The new constrained SMT will
be composed of the old SMT constraint system, which was used to detect the integer overflow,
complemented with the re-constrained SMT equations. If INTREPAIR gets an UNSAT solver
reply, then it determines that there will be no integer overflow if it re-constraints the selected
variable(s) with the new constraints (e.g., variable range negation, etc.) and as such the integer
overflow can be avoided. Finally, the information collected at this step will be used in later steps.

5.3.5.5 Determine the Bug Type

For a unique detected overflow, INTREPAIR attributes a report containing a unique bug iden-
tifier. Based on the generated bug identifier (ID), INTREPAIR can determine which bug type
it currently deals with. This information is extracted from data stored during step two. With
this ID, INTREPAIR checks in the list of currently supported checkers to which checker this
stored information belongs to and determines which repair patterns can be used to repair the
previously detected bug. This way, repair patterns usable for other types of bugs will not be
suggested when repairing integer overflows.

5.3.5.6 Selecting Repair Pattern

Based on the previously determined bug identifier (ID), INTREPAIR selects the suitable repairs
for this integer overflow from the pool of repair patterns using the decision tree (see Figure 5.2
for more details).
Pattern. The repair patterns of INTREPAIR need to address the following challenges. Each
pattern needs to incorporate complex conditions with multiple branches depending on the type
of potentially overflowing code location. An INTREPAIR pattern needs to be pre-classifiable for
typical code locations (i.e., statements) where it would best apply depending on the AST of the
buggy statement(s). Further, each pattern needs to have at least two branches: (1) in the case
the check succeeds, and (2) in case the check does not succeed for error logging. The pattern
needs to have several customizable components which can be altered during static analysis with:
context dependent values, mathematical functions, or C functions extracted from the buggy
statement. As such, INTREPAIR’s repair patterns need to be nontrivial fragments of incomplete
code, which have to be versatile and applicable to different integer overflow repair scenarios.
Patching. The repair patterns impose the following challenges on INTREPAIR’s patching process.
After the programmer/developer selects a repair pattern, the automated repair mechanism of IN-
TREPAIR needs to be able (1) to extract the components of the buggy statement such as variables,
functions (i.e., malloc, etc.) and reuse them for augmenting the selected pattern; to achieve this,
the patching mechanism needs to be able to match these extracted components with the parts
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of the pattern where these fit, (2) next, the patching mechanism needs to be able to precisely in-
corporate the buggy statement(s) inside the newly selected pattern, (3) the patching mechanism
needs to be able to precisely delete the previous statement(s) where the bug was detected and to
rewrite the existing source file with the newly generated repair pattern at the correct source code
location. As a consequence, the challenges imposed by the repair patterns and INTREPAIR’s
patching process are nontrivial and require high precision during source code file rewriting.

Repair Pattern Description. INTREPAIR’s repair patterns consist of C code skeletons where
different repair parts will be replaced with: (1) concrete values after their values have been
computed, (2) mathematical operations (e.g., division by a value, etc.), and (3) standard C library
functions. Depending on the context, placeholder variables will be replaced with corresponding
mathematical functions such as the square root function sqrt or other functions. In the situation
in which a mathematical function is used INTREPAIR does not need to compute the value of
the function upfront (during static analysis) but rather leave this to be computed later during
symbolic execution analysis (repair validation) or program runtime. This offers the advantage
that INTREPAIR does not need to be able to compute any possible mathematical function.

Further, the code repair patterns used by INTREPAIR are based on preconditions similar to
IOC’s [73] checks (see Section 5.3.2 for more details). These preconditions can cover different
types of mathematical operations such as multiplication of numbers and addition of variables.
At the same time, the repair patterns are highly configurable and versatile. For example, the
programmer can easily change, if needed, the error handling function inside the repair pattern
or can extend the precondition such that it captures more complex bug avoiding preconditions.
This can be achieved by modifying a few lines of code inside an existing pattern or by creating
a new pattern and defining the conditions (i.e., depending on the structure of the AST of the
statement where the bug was detected) when such a pattern fits best.

Selecting Repair Patterns. For the sake of brevity, we will describe the steps used for
selecting a code repair based on a C statement having three components, leftHandSide,
rightHandSide, and operator. However, INTREPAIR can deal with more complex statements
as well, see Figure 5.2 for more details.

INTREPAIR follows the following steps to select a suitable repair pattern. First, the code
statement where the integer overflow error was detected is divided into its components based
on its AST. For example the AST components of a C statement such as int result = varA +
varB; are leftHandSide=varA, operator=+ and rightHandSide=varB. Second, a series of
rules are checked against the AST of the previous C statement as follows: (1) is leftHandSide
equal/different than rightHandSide, (2) what type of operator do we have in the statement,
and (3) how many components does the statement have after the = sign, and so on. Third,
based on these rules the repair pattern which satisfies the highest number of constraints will be
selected. Note that each repair pattern has a list of properties (i.e., use when rightHandSide =
leftHandSide and operator = +, etc.) attached to it that are checked against the above stated
rules. This list of properties is statically defined at the moment when the repair pattern was
manually added to the pool of available repairs contained inside INTREPAIR. Further, in case
there are more repair patterns that fulfill the same number of rules, INTREPAIR selects the first
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repair pattern occurring in the list. In case INTREPAIR cannot determine the pattern selection
criteria due to, for example, a complex C language statement, then no repair is proposed.

Finally, note that if needed this approach can be updated such that all legitimate repair patterns
will be proposed and for each a repair can be generated and selected with a human-in-the-loop
approach.

Repair Pattern Example. In the following, we present a repair pattern used by INTREPAIR.

1if(leftHandSide.equals(
2rightHandSide)&&
3operator.equals("*")) {
4...
5return "if(sqrt("+leftHandSide+") <= sqrt("+value4+") &&
6 -sqrt("+ rightHandSide+") >= -sqrt("+value5 +"))
7 "+"{"+"\n"+"\t"+"\t"+"\t"
8 +buggyStm10 + "\n }else{ \n"
9 +"FILE *fp=fopen (\"IO_"

10 +"error_log.txt\", + \"w+\");"
11 +"\n fprintf(fp, \"IO_ID:%s
12 +FileName:%s LineNumber:%d",
13 +FileName+","+IO_bug+","
14 +LineNumber+");"
15 +"\n fclose(fp);" + " }\n";
16}

Figure 5.3: Repair pattern example.

Figure 5.3 depicts a code repair pattern used by INTREPAIR during integer overflow error
repairing. This code repair pattern contains C code compatible snippets (shaded in red color)
interleaved with several stub variables which will be replaced with concrete variables names,
values or mathematical functions depending on the type (depending on its AST structure) of
code statement containing the bug. For example, the repair pattern depicted in Figure 5.3
will be used by INTREPAIR when the leftHandSide equals (i.e., string wise comparison) the
rightHandSide and the operator equals (i.e., string wise comparison) the product operator
∗. After these checks have been performed, the repair will be assembled as follows.

First, value4, value5 and buggyStm10 located at lines 5, 8, and 10 in Figure 5.3, are
replaced with: (1) the squared root of the currently selected integer upper bound value
value4 ← sqrt(2,147,483,647), (2) the negated integer upper bound value value5 ←
-sqrt(2,147,483,647), and (3) the program code statement that contains the previously
detected integer overflow error buggyStm10 ← int result = data * data;.

Second, the variables FileName, IO_bug and LineNumber located at lines 15-16 in Fig-
ure 5.3 are replaced with concrete values obtained during bug detection. Finally, note that:
(1) other code repair patterns can be selected and used based on the format of the AST of the
program buggy statement, (2) our technique can be easily generalized to more complex C code
statements than the ones mentioned herein, and (3) each generated repair can easily be cus-
tomized to fit to different types of integer overflow mitigation scenarios, i.e., error logging, etc.
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5.3.5.7 Determine New Constraint System

In this step, INTREPAIR assembles the new SMT constraint system which is used to determine
if the previously detected integer overflow is still present. During this step, INTREPAIR takes the
constraints determined at the previous step and inserts them in the SMT constraint system which
was used to detect the integer overflow. Before inserting the new constraints in the SMT system,
INTREPAIR needs to remove the original SMT constraints which were used to detect the presence
of the integer overflow. The decision which SMT constraints have to be removed from the SMT
system (used to detect the integer overflow presence) is made based on the modular aggregation
of these SMT statements inside the integer overflow checker in which these constraints are
put together. More precisely, since the SMT constraints used to check for an integer overflow
are added in the integer overflow checker in an incremental manner, INTREPAIR can precisely
determine which constraints can be safely removed and replaced with new ones determined at
the previous step. Next, this SMT system will be fed into the Z3 solver. In case the solver replies
SAT, then the constraints added represent valid constraints which can be used to avoid the pre-
viously detected integer overflow. This new SMT constraint system serves as ground truth w.r.t.
the fact that the integer overflow can be removed if certain symbolic variables are re-constrained
in an appropriate way. Finally, note that the above-described symbolic variables have concrete
counterparts values, which will be inserted inside the code repair when assembling it.

5.3.5.8 Generate Code Repair

This step consists of putting together the final code repair(s) and saving them into a list in case
multiple repairs are suggested. After the repair components have been inserted into the pre-
viously selected code repair pattern, INTREPAIR generates a C code repair which is syntactically
correct, can be compiled and can be further on edited after insertion (if desired). Note, that
INTREPAIR generates correct patches w.r.t. the correctness definition provided in Section 5.1,
which essentially means that INTREPAIR re-checks the program after a patch was applied in
order to determine if the bug was really removed, and the program behavior was not changed.

5.3.6 Implementation

We have implemented the approach presented in Section 5.3 inside a system called INTREPAIR.
INTREPAIR is an Eclipse [77] plug-in based on the Codan [138] API. INTREPAIR consists of
approx. 10 KLOC and is developed as an Eclipse plug-in mainly because: (1) the Eclipse CDT
API can be easily reused, (2) a GUI is easily obtainable, and (3) the obtained tool can be used
in both online (during code typing) and off-line (after finishing code typing) modes. Note that
Codan [138] is used by INTREPAIR to construct the program CFG, analyze the program AST
statements, and perform bottom-up traversals by using a C program statement visitor in order
to construct SMT constraints.

The assembled repair generated in subsubsection 5.3.5.8 is sent to the Eclipse language tool
kit (LTK) API [155] based component of our engine, which will assemble the repaired code.
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The LTK component adds information on how to position the repair in the buggy program
such that the integer overflow will not occur after the repair was inserted. In case multiple
repairs have been generated, INTREPAIR saves these repairs in a list of repair candidates for the
previously detected integer overflow. Finally, the repair which was selected by the programmer
will be passed to the INTREPAIR repair insertion component, which will create two differential
views (i.e., with the repair inserted in the file containing the bug and without).

Three auxiliary tools are implemented as well to work together with INTREPAIR. Next, we
briefly describe the three additional tools which we implemented and which offer support to
INTREPAIR during program patching: (1) an Eclipse CDT projects generator tool which is used
for generating Eclipse CDT compatible projects, (2) a source code refactoring tool based on the
Eclipse LTK [155], JFace [127], and Eclipse CDT [77], for inserting program repairs, and (3)
a test case generator tool which can help to assess the accuracy of integer overflow detection
using test cases.

5.3.7 Graphical User Interface in an IDE

Figure 5.4: Screenshot of the GUI of IntRepair.

Figure 5.4 shows the INTREPAIR Graphics User Interface (GUI). First, the integer overflow
triggers a bug marker depicted in the black bordered box with a yellow bug icon. This means
that within the C statement an integer overflow error was detected. Second, by right clicking
on this bug marker the user can start the code re-factoring wizard. The code re-factoring
wizard is composed of two windows. The first window is used to make repair type decisions
(currently only in-place repairs are available). The second window depicted in the background
of Figure 5.4 contains a differential files view visualizing the differences between the original
file containing the bug and the modified file with the selected repair inserted. This second
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window helps the developer analyze the patch before it is applied. Finally, it is possible to
navigate between these two windows and in case the programmer decides to insert the repair
generated in Section 5.3.5 then this can be achieved by left-clicking on the Finish button.

5.4 Evaluation

In this Section, we present the results of our experimental evaluation and address the following
research questions (RQs):

• RQ1: How effective is INTREPAIR in repairing integer overflows? To what extent does
INTREPAIR produce false positives? (Section 5.4.2)

• RQ2: To which degree does INTREPAIR ensure that a repair completely removes the
detected integer overflow? (Section 5.4.3)

• RQ3: What is the performance impact of INTREPAIR? (Section 5.4.4)

• RQ4: How do the bug repairs of INTREPAIR preserve program correctness? (Sec-
tion 5.4.5)

• RQ5: How effective is INTREPAIR compared to manual repair of integer overflows?
(Section 5.4.6)

5.4.1 Evaluation Setup

Subject Prog. LOC # Programs Description
CWE-190 up to 638 2,052 Open source testsuite
Benchmark up to 20 KLOC 50 We introduce a benchmark

of synthetic programs

Table 5.2: Overview of the subject programs.

Table 5.2 depicts a summary of the programs used to evaluate INTREPAIR. Next, we give
details about the used programs.
Juliet benchmark. First, we selected 2,052 C programs contained in the SAMATE’s Juliet test
suite [264], which is the largest open source test suite for C/C++ code to the best of our knowl-
edge. In particular, we consider the CWE-190 category. Each program contains on average 476
LOC with a maximum of 638 LOC. Each program has integer overflows: exactly one true posi-
tive and several false positives (see characteristics of the Juliet test suite [264] for more details).
We used these program as they contain all possible program control flows which may lead to an
integer overflow and further, these help to assess previously known faults in a systematic way.

100



C
ha

pt
er

5

5.4 Evaluation

Synthesized Code. In addition, we build a benchmark with 50 synthesized programs with
complex control flows and with a high number of code lines. In each synthesized program, the
exact number of seeded integer overflows is known. The benchmark allows us to demonstrate
that INTREPAIR can scale efficiently to large and complex programs. The synthesis of programs
is parameterized as follows: (1) the total number of function calls, (2) the number of loop itera-
tions, and (3) each generated program contains exactly one true positive and a variable number
of false positives, and the true positive should be located deep inside the program, i.e., several
thousands of branches nested inside the program execution tree. Using these limits, we generate
50 programs ranging from 6 to 20 KLOC. The synthesis algorithm iterates through several
loops in which it adds functions in the program which are calling each other. These functions
contain a variable number of branches which are also counted until a certain depth is reached.
Statistics. Table 5.3 depicts several characteristics of the 2,052 analyzed programs contained

Subject Prog. Satisfiable
Paths

Unsatisfiable
Paths

Program
Branch
Nodes

Program
Branches

CWE-190 115 K. 1.2 Mil. 5.73 Mil. 12 Mil.
Benchmark 45 K. 0.7 Mil. 4.4 Mil. 8.8 Mil.

Table 5.3: Descriptive statistics of our subject programs.

in SAMATE’s Juliet test suite and the 50 programs of our benchmark. The programs contained
in the CWE-190 contain on average: 56 satisfiable paths, 584 unsatisfiable program execution
paths, and 5,800 program branches, which were counted during program analysis. In contrast,
the programs contained in our own benchmark have on average 900 satisfiable paths, 14,000
unsatisfiable program execution paths, and 28,000 program branches, which were counted
during the analysis of the programs.
User Study. We also performed a controlled experiment with 30 participants in which we
assessed the efficiency of INTREPAIR during integer overflow repair. The used protocol is
described in Section 5.4.6.
Experiment Setup. Experiments were conducted on a Dell desktop with an Intel CPU Q9550
˙@ 2.83GHz, 64-bit, 12GB RAM, Eclipse IDE Kepler and OpenSuse 13.1 OS.

5.4.2 Effectiveness
As our main test-bed we selected 2,052 C programs contained in the Juliet test suites [264] and
50 programs from our customized benchmark.
Methodology. We prepare the 2,052 C programs in Juliet in order to be handled by INTREPAIR.
Further, we generate 2,052 test cases which are used to dynamically assess if the detected
integer overflow errors are detected at the correct source code location. For the automated
generation of these test cases we used one of the tools presented in Section 5.3.6. We do the
same pre-process with the 50 programs from our own benchmark.
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(1) We assess the effectiveness of integer overflow detection by running the generated test
cases for all programs (including the 2,052 C programs in the Juliet test suite and 50 C programs
contained in our benchmark) and checking the generated reports. More precisely, we checked
whether each report describes an integer overflow reported at the expected location. (2) For
those reports, which are confirmed as true positives, INTREPAIR inserts a suitable repair into the
overflow site. (3) Then, INTREPAIR was run again in order to check if this was a true positive
and if the fault was removed.

We point out that, for the assessed programs, INTREPAIR did not detect any false positives.
Further, INTREPAIR is able to detect and repair all previously detected true positives present in
the analyzed programs without repairing any false positives. Finally, note that the ground truth
is that each of the 2,052 C programs contains one true positive and multiple false negatives and
the same is true for the programs contained in our benchmark.

Results. According to our experiments, INTREPAIR is able to detect all integer overflows (2,052
overflows contained in the Juliet test suite and 50 in our benchmark) at the expected locations
in the analyzed programs. After the repairs conducted by INTREPAIR, the integer overflow
reports are no longer generated. This means that INTREPAIR is able to perfectly repair all integer
overflows for the analyzed programs.

5.4.3 Bug Removal

In this Section, we explain how the integer overflows are completely removed by INTREPAIR.
Recall that INTREPAIR checks if a bug was completely removed after a repair was inserted in
two operation modes.

Methodology. In this experiment, we use INTREPAIR’s Manual Mode. In this mode, the user
can again analyze the repaired program by manually restarting the static analysis. In case the
symbolic analysis detects no other (or the previous fixed bug) integer overflow, then no bug
report will be generated. This helps the programmer to conclude that the bug was completely
removed and no new bug was inserted into the program.

Actually, we use INTREPAIR to re-analyze each patched program. For each of the repaired
programs, we checked if after the program was repaired, a new bug report was filed.

Results. After patching and subsequently reanalyzing each program, no new overflow reports
are generated, meaning that the bugs are completely removed without inserting new ones. For
all programs, the errors were successfully removed by inserting the repair at the correct location.

5.4.4 Performance

In this Section, we evaluate the performance of INTREPAIR in three ways (1) the time INTREPAIR

takes; (2) binary size blow-up, and (3) the runtime overhead caused by the overflow repair.
Finally, we show that INTREPAIR has the potential to scale to large programs as well.
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5.4.4.1 Static Analysis Time

The time that INTREPAIR spends in static analysis, i.e., static symbolic execution and overflow
repair processes, is an important criterion to assess the usability of our tool.

6 KLOC Programs 46 sec. (< 1 Min.)
11 KLOC Programs 151 sec. (< 3 Min.)
20 KLOC Programs 567 sec. (< 10 Min.)

Table 5.4: Average repair generation time in seconds.

Results. Table 5.4 depicts the average execution time over 10 runs for each of the benchmark
programs grouped in three main categories based on their LOC. INTREPAIR handles all programs
in under 10 Min. (567 sec.) on average. Hence, we believe that INTREPAIR is time-effective
and usable in practice.

5.4.4.2 Binary Size Blow-up

We assessed the source code and binary blow-up by counting the increase in source code lines
and in bytes for the programs before and after applying the repairs.

First, we compared the total number of lines contained in the source code against the number
of lines of code which were added after inserting all the repairs into the 2,052 vulnerable
programs. As already mentioned, the initial number of lines was 977.7 KLOC. After applying
all repairs, we added in total around 10,045 LOC.
Results. INTREPAIR yields a binary blow-up of less than 0.56% in LOC. In our opinion, this
represents an acceptable source code lines increase.

5.4.4.3 Execution Overhead

We evaluated the runtime overhead introduced by INTREPAIR by comparing the execution time
of unrepaired programs against the one of the repaired programs.
Results. In our experiments, we recorded an average runtime overhead of 1.57%. Thus, the
inserted repairs do not considerably influence the runtime overhead of the repaired program.

5.4.5 Correctness

We validate the correctness of our repairs by checking that our symbolic execution component
generates semantically different code. In other words, we want to find out if the repairs can
potentially influence the program behavior and the repair correctly removes the bug (see our
patch correctness definition in Section 5.1 for more details).

To do so, we compare the generated SMT model before and after the repair. For this, IN-
TREPAIR’s symbolic execution component stores the SMT system which was used to trigger
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the bug report. Next, this constraint system is compared with the new SMT system which was
generated after repair validation. This results in the following analysis process:

1. For all programs contained in our benchmark and the Juliet test suite, we stored the
SMT system for each program and the node (i.e., source code line number and file name)
where the bug is located.

2. We applied the repair to the detected integer overflow by automatically rewriting the
program.

3. We re-run the symbolic analysis on the patched program and store the new SMT system.

4. We semantically checked each SMT system stored at step (2) and each SMT system
collected at step (4) based on string comparison of the node with another node, where
a node is a complete statement, e.g., x = p + 5. This enables INTREPAIR to detect the
differences between these two systems.

5. We compare the SMT system differences and proceeded as follows: (1) if the new SMT
system only reflects the semantics of the inserted repair: we report no program correct-
ness violation, (2) otherwise, we reported that the program correctness will potentially
be affected by inserting this repair.

We automatically compared in total 225K SMT models and all patched programs. These
differ by up to five AST nodes and by less than three SMT constraints on average, respectively.
Further, all checked SMT models differ only with respect to the repair semantics and no
additional program semantics were introduced in the program due to the repairs.

Additionally, we performed the following evaluation process in order to increase the level
of confidence w.r.t. repair correctness.
Re-check Patched Program. We re-run the symbolic analysis, after applying the repair, on
each of the programs in order to see if there is a potential new integer overflow error or the old
one is still present in the repaired program.
Check Syntactical Program Correctness. We recompiled (we used the GCC compiler) each
of the programs to investigate if the repaired program is compilable and thus syntactically
correct. The compiler reported no syntactical errors.
Results. The normal behavior of the repaired programs does not change after applying the
repairs, thus program correctness is preserved.

5.4.6 User Study

In order to evaluate INTREPAIR’s efficiency w.r.t. integer overflow repairing compared to manual
repairing, we performed a user study with 30 graduate students (16 males and 14 females).
They all had on average between one up to two years of industry programming experience.
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Methodology. The experiment was conducted with each participant individually at a single
computer with an additional person in the room who overlooked the whole experiment. The
computer used in our experiment was equipped with two versions of Eclipse CDT, i.e., one
Eclipse version with INTREPAIR installed and the other Eclipse version without INTREPAIR

installed. We split the 30 participants evenly into two groups3. We randomly selected three
programs from our benchmark, and we told each participant of both groups to search for a
single integer overflow in each of the three programs and to repair it. The participants were
allowed to read and execute the program. A debugger was not available and no test case for
executing the overflow was provided. Further, all participants had similar experience with the
task at hand, particularly fault detection, as they had 1-2 years of experience as developers in
a software company. Finally, in the case of manual debugging no test cases where prepared for
simplicity reasons. The experiment supervisor assessed each bug detected manually by manual
inspection after this was reported by the experiment participant.

Group 1. Each participant had access to the latest Eclipse CDT IDE and to the GCC (v. 4.9.3)
compiler [82] through terminal access. The Eclipse CDT IDE in this group were installed
without INTREPAIR.

Group 2. Before the experiment, each participant from this group got a short one minute demo
movie showing how to use INTREPAIR. Each participant could search for bugs and fix them
with the help of INTREPAIR.

We measured the time needed for each participant to locate the bug and repair it and the
success rate for each analyzed program after the participant decided that he/she was finished
with all three programs at the end of their analysis. After the experiment, we asked each
participant if (1) he/she would reuse INTREPAIR in his/her daily routine and if (2) he/she would
recommend it to other peers. Finally, note that each question should be answered with yes or no.

Results. (1) In total, the participants of Group 1 needed 6534 seconds (108 Min.) to repair
the bugs in the experiment, whereas participants from Group 2 only needed 362 seconds (6
Min.) to repair them. That means, programmers using INTREPAIR in our experiment were over
18 times (6534/362) faster compared to relying on manual repair.

(2) We inspected the repairs inserted manually by Group 1 and those inserted by INTREPAIR.
41% of the manual repairs were correct, i.e., the integer overflow bugs were removed and
no further vulnerabilities were introduced. By construction, all the repairs with the help of
INTREPAIR were correct (see RQ2 for more details). Hence we conclude that INTREPAIR is
more effective w.r.t. overflow repair than manual analysis.

(3) Out of the total participants of Group 2, 94% (14 participants) found INTREPAIR to be
very useful and 87% (13 participants) would further recommend INTREPAIR to others.

3The number of females and males was split evenly between the two groups.
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5.5 Discussion
In this Section, we discuss the threats to validity of our experiments and the limitations of
INTREPAIR.

5.5.0.1 Threats to Validity

Internal validity. depends on the correctness of our prototype implementation and may be
affected by the evaluation setting and the execution of the conducted experiments. To mitigate
this, we carefully tested our prototype by repeating the experiments ten times and by taking
average performance values. To validate the correctness of our automatically generated patches,
we re-ran the analysis on the program after patching and inspected each program patch manually
in order to check for correctness.
External validity. threats may derive from the selection of programs which we used in our
evaluation. We validated our repairs on 2,052 programs and also on seeded programs having
up to 20 KLOC contained in our, especially for this purpose designed, benchmark. In more
complex applications, program repairs can dramatically increase the runtime overhead when,
for example, these reside in hot code such as loops. Thus, different results could be obtained
for different analyzed programs.
Construct validity. threats may appear from the fact that our patches may introduce overhead or
unwanted program behavior. We point out that our repairs are suggested only for code locations
where previously an integer overflow was confirmed. Further, our experiments show that our
patches do not harm performance in any significant way, do not change program behavior, are
automatically validated, and are applicable only at previously confirmed bug locations.

5.5.0.2 Limitations

First, at this stage of development the used static symbolic analysis framework (Codan) supports
a subset of the C/C++ programming language semantics. Thus currently only certain types
of statement and function headers can be handled by INTREPAIR. Nevertheless, we do not
consider this to be a major limitation, adding all C/C++ statement types and function headers
can eliminate this. Investing sufficient time and manpower can address this limitation.

Second, INTREPAIR’s implementation depends on program loop and recursion depth unrolling
which incurs well-known precision penalties for all symbolic execution-based techniques. These
operations can introduce false positives due to loop unrolling and recursion depth. Note that, by
design, INTREPAIR does not produce false positives (i.e., each detected fault is a genuine one).
Our static analysis is time-consuming. Its accuracy and performance will affect INTREPAIR’s
results. INTREPAIR does not have access to runtime information and a real environment is also
not available. In order to deal with this limitation, INTREPAIR uses function stubs which can help
to simulate the environment (interaction with third-party libraries). Note that loop unrolling
and recursion depth have to be bounded when using symbolic execution-based approaches in
general since we want to avoid the path explosion problem and thus infinite analysis time. We
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want to address this potential insufficiency by a prior analysis of program loops in order to
derive loop invariants. Further, we want to extend the list of currently supported stub functions
for the main C most used system libraries.

Third, complex program expressions cannot be handled due to limited support in the currently
available open source state-of-the-art of SMT solvers for non-linear computations. Thus, we
want to address this potential limitation by carefully providing SMT constraints which capture
as good as possible the original program constraints and by experimenting with different SMT
solvers.

Fourth, as INTREPAIR relies on static symbolic analysis of source code, it has several limita-
tions which are common to all static analysis techniques when comparing to dynamic analysis
techniques such as the well-known path explosion problem. Note that static searching through
the program paths is different than dynamic path analysis where program path coverage is
driven by the provided program input. We addressed this by implementing in INTREPAIR

different path exploration techniques in order to analyze more error-prone paths first.
Fifth, INTREPAIR’s evaluation is based on the currently largest open source test suite for

C/C++ programs, i.e., SAMATE’s Juliet test suite, due to the fact that it contains complex
control flows and a large number of situations where integer overflow can occur. The programs
contained in our benchmark are comparable with real-world programs. As a result, the find-
ings of our evaluation do not necessarily reflect the behavior of INTREPAIR when applied to
larger programs to some extent. However, we do not think that this limits the applicability of
INTREPAIR, since our tool is highly scalable due to its configurable analysis. Further, we want
to evaluate INTREPAIR on even larger programs as well.

Finally, we tested INTREPAIR in a controlled experiment with a restricted number of partic-
ipants. For this reason our findings may differ from industrial settings where real development
conditions are available. But we think that our tool can help to drastically cut down the time
needed for bug detection and repair due to its usability and low intrusiveness. Thus, we also
want to evaluate INTREPAIR in industry settings as well.

5.6 Summary
In this Chapter, we presented INTREPAIR, a novel framework which provides comprehensive
integer overflow detection, correct repair generation, and validation. To the best of our knowl-
edge, we provide the first static symbolic execution-based technique that combines detection,
generation and validation of source code repairs for C programs. We applied INTREPAIR to
2,052 C programs (approx. 1 million LOC) and to 50 programs contained in our seeded bench-
mark, which includes programs that have up to 20 KLOC. Our experimental results show that
INTREPAIR was able to effectively detect integer overflows and successfully repair them with
source code patches. Our controlled experiment shows that INTREPAIR is 18 times more time
wise effective and has a higher repair success rate than manual repairs.
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Chapter 6
BuffRepair: Static Repairing of Buffer Overflow
Based Memory Corruptions

In this Chapter, which belongs to the first part of this thesis, we extend our static source
code analysis framework in order to be able to detect and repair buffer overflows which are
one in many situations a main prerequisite for CRAs. In this Chapter, we provided a tool,
called BUFFREPAIR, which can automatically generate buffer overflow repairs, does not suffer
from false negatives, and can validate a repair. At the same time, we fully addressed RQ3
and integrated our tool into a well used and established IDE as we did with both our tools,
INTDETECT and INTREPAIR. Finally, note that parts of this Chapter have already been published
by Muntean et al. [196].

6.1 Introduction

What is the overall view? “On one hand, if one tries to put or to retrieve data from a non
existing place/index he is going to make a mess. On the other hand, if one tries to put more
or retrieve more data from a smaller place/index then he is going to cause a mess, too.” Mother
Nature Law. According to the 2011 CWE/SANS top 25 of most dangerous software errors [171]
which can lead to serious vulnerabilities in software, buffer overflows are ranked on 3rd place
after SQL injection and OS command injection.
What is the problem? Buffer overflows can generate risky resource management vulnerabil-
ities as the recent Heartbleed bug [173] confirms or can lead to a memory corruption which
is usually needed during a CRA. This bug generates a buffer over-read in the OpenSSL library
by leaking sensitive information to the outside world without the need for the attacker to have
root access on the attacked system and without leaving any trace on the attacked system. This
proves that buffer overflows can lie undiscovered in software for many years and can lead to
extremely dangerous information leaks in highly used open source software.
What are the existing solutions? There are many solutions which can generate buffer overflow
repairs [109], such as, from: (1) free form bug reports [148, 277, 3], (2) statically defined
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patch patterns [132, 105], (3) test suites using SMT solvers [69, 205], (4) test suite and genetic
programming [141, 278], by replacing the unsafe libc, alexey:patch, Sauciuc:reverse, func-
tions with safe functions, [58]. Further, in recent years, many quick fix generation tools for
buffer overflows have been proposed, such as: AutoPaG [146], SafeStack [40], DYBOC [246],
TIED [12], LibsafePlus [12], LibsafeXP [145], and HeapShield [79].

What are the limitations of the solution? None of the existing tools can reason as precisely
about the generated buffer overflow repairs with respect to: repair validation, program be-
havior preserving, and precise fault localization before the repair is inserted, as BUFFREPAIR

does. More specifically, to the best of our knowledge, AutoPAG [146] is most similar to our
approach from the backward visiting of program statements located on a program execution
path perspective. BUFFREPAIR can not be compared with AutoPAG from the point of view of
computation time and quick fix quality at this stage of development since AutoPAG has several
limitations which we will briefly list. Our algorithm stops the search after encountering the
first non-in-place bug fix location whereas AutoPAG tries to detect all possible non-in-place
bug fix locations by running a repeated inefficient data flow analysis (no program execution
paths are used). AutoPAG is not aware of program execution paths and uses a rudimentary
backward information flow propagation approach based on the sequential ordering of program
statements. The analysis (no SMT solver used) is repeated until there are no visited variables
in the previously constructed set of tainted variables. This set can contain all program variables
and can generate a significant overhead as already mentioned in the AutoPAG paper.

What is our insight? In this Chapter, we focus on fault localization and repairing of buffer
overflow bugs by leveraging precise information (i.e., failure detection, bug diagnosis, buggy
variables (program variables which are directly responsible for bug appearance), e.g., buffer
index or buffer size) provided by our buffer overflow checker [111]. The failure detection and
bug diagnosis data is used to generate quick fixes for buffer overflows and to support the repair
process of removing the bug with a refactoring wizard. A novel algorithm is used to detect
possible insertion locations in code for the generated code patches ((a) in-place—directly before
the statement which contains the bug and (b) by searching for other, non-in-place locations
where the bug can be fixed). Our approach for generating program repairs is based on: code
patch patterns, SMT solving and possible quick fix locations searching in program execution
paths which could affect the program behavior by inserting a patch at a non-in-place location.
The generated patches are sound (e.g., do not change the behavior of the program for input
which does not trigger the bug), final (no further human refinement needed), human readable
(no alien code), syntactically correct and compilable.

We address offline behavioral repair [190] (by modifying the source code). Others have
addressed state [70] or test-suite based program repair such as GenProg [141] and PAR [132].
The defect class which we address is inappropriate index variable assignment which results
in an incorrect usage of the buffer index range. The fix defect class consists of input checks
based on semi-defined patch patterns. The aim of the quick-fix is fail-secure error mitigation
(e.g., to prevent that an attacker exploits the error in order to gain system access). The final
version of the patch is determined using SMT solving.
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Program repair lies at the conjunction of two dimensions (first, an oracle is needed to
decide what is incorrect in order to detect the bug (first dimension) and another oracle to
tell what should be kept correct for sake of non-regression (second dimension)) of software
correctness [190]. We used the same SMT constraint system which was used to trigger the
bug for defining what is incorrect in the program. Additionally, we created a second SMT-Lib
(constraint system definition language used by the Z3 [68] solver) constraint system consisting
of the previously mentioned constraint system and new SMT-Lib constraints used to impose
input saturation constraints on the buggy variable.

Our patches are generated automatically and inserted semi-automatically off-line with the
possibility to insert them also online.
Our problem statement: Provide code patches (in-place or non-in-place) which can be used
independently to remove a buffer overflow bug using a bug detector (checker).

What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• An algorithm for generation of in-place and non-in-place buffer overflow quick fixes.

• A novel tool callled BUFFREPAIR usable for fault repair generation based on program
input saturation.

• Semi-automated patch insertion based on source code files differential views.

• Automated check for program behavior preserving after a patch was applied.

6.2 Motivation

In this Section, we present two real-world bug repairs as an example to highlight the fact that
bug patch generation is not a trivial task. It requires deep insights into the functionality of
the program and merits further study. There are typically an endless number of programs
who adhere to a formal specification. As such, a bug can be fixed with an infinite number of
functionally correct patches. Thus, the automatically generated repairs may change the behavior
of the program.. We present two distinctive patches depicted in Figure 6.1 on lines 5–6 and
11–13 with the + sign and by using an italic font. Note that these two repairs do not change the
program behavior for program input which does not trigger the bug. Figure 6.1 contains on line
six code comments which we present in order to indicate other possible repairs usable to remove
the buffer overflow bug located at line 12 which most likely will change program behavior.

Figure 6.1 depicts a C code snippet extracted from the test case CWE-121 [172] which is
contained in [206]. The code snippet contains a buffer overflow bug at line 12 which can be
removed using one of the two patches depicted in Figure 6.1 on lines 5–6 and 11–13. Note
that the patch structure, the used constraint variables and the bug repair insertion locations are
different for each buggy C program.
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0.void foo_bad(){
1. int data = -1;
2. char input_buf[CHAR_ARRAY_SIZE] = "";
3. if (fgets(input_buf,CHAR_ARRAY_SIZE,stdin) != NULL){
4. data = atoi(input_buf);
5. + if (data > 9 || data < 0)
6. + exit(EXIT_FAILURE); // data = 9; or data = rand() % 9; or return 0;
7. }else{
8. printLine("fgets() failed.");}
9. int i, buffer[10] = { 0 };

10. if (data >= 0){
11. + if (data <= 9 && data >= 0){
12. buffer[data] = 1; // Buffer overflow bug, index out of range
13. +}else{exit(EXIT_FAILURE);} // stop program execution
14. for(i = 0; i < 10; i++){printIntLine(buffer[i]);}
15. }else{
16. printLine("ERROR: Array index is negative.");}
17.}

Figure 6.1: Buffer overflow bug due to missing input checks.

Finding the right program variables in order to impose a constraint through a patch is a hard
task because in the worst case the values selection depends on all the other program variables.
Determining non-in-place bug repair locations is not a trivial task and should be based on
correct bug detection and on a kind of backward program execution technique on all program
execution paths which contain the bug. In general, the insertion location and structural form
of the quick repair patch can influence the overall program behavior. Thus, care should be
taken that a patch is syntactically correct, compilable and does not change program behavior
for program input which does not trigger the bug.

6.3 Threat Model

Defensive Assumptions. We align our threat model (e.g., STRIDE [165]) to the general
buffer overflow threat model. We assume that ALSR [219] and DEP [164] are in-place and
correctly functioning. We assume that the code is not compiled with any buffer overflow bounds
checking. Lastly, we assume that the defender has access to the source code of the application
and potentially knows how to repair the buffer overflow.

Attacker Capabilities. We assume a skilled attacker with sufficient resources and time to
exploit the buffer overflow. Further the attacker can use the buffer overflow to escalate privileges
or to manipulate the program counter according to his desires. The attacker is equipped with
the necessary tooling to find the buffer overflow in the program binary and to experiment with
the code in an live interactive debugging session. Next, we don not exclude the possibility that
the attacker has access to the source code of the application. Lastly, the attacker is able to probe
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the found buffer overflow in order to see how large the payload can be which he tries to insert
in the vulnerable program.

6.4 Design and Implemnetation
In this Section, we present our quick fix locations search algorithm, the steps needed to
automatically generate buffer overflow fixes and the mechanism for inserting the patches
semi-automatically into the buggy program.

6.4.1 Quick Fix Locations Search Algorithm

Figure 6.2: Quick fix locations searching and repair generation algorithm.
Input: Satisfiable program execution paths set SPaths := {sk| 0 ≤ k ≤n, ∀ n ≥ 0 }
Output: Refactorings set Rset := {r j| 0 ≤ j < 2 }

1 Wset := {wk| 0 ≤ k ≤ n,∀ n ≥ 0 }; // set of working lists, k’th list
2 Nset := {nt | 0 ≤ t ≤ n,∀ n ≥ 0 }; // set of nodes
3 Nset := /0;Wset := /0; // initializing both nodes set and working list set to empty set
4 countBP :=0; countGQF :=0; // init. counters, count buggy paths and generated fixes
5 Rset := /0;
6 while ((Satpaths.hasNext)) do
7 if (hasBug(sk) then
8 countBP := countBP + 1; // count the buggy paths
9 i := startIndex(sk); // set the start index of the path

10 wk := setWorkList(sk); // set the detected buggy path into the work list
11 NLocs := 1; // number of quick fix locations
12 C := 0; // quick fix locations counter
13 // if the work list length greater than 0 else skip path
14 if (getLength(wk) > 0) then
15 nt := initNode(wk); // the node at which the bug was detected
16 Nset :=Nset ∪ {nt}; // add a node for the in-place fix
17 r j := refact(nt); // create a new bug refactoring
18 Rset :=Rset ∪ {r j}; // add new refactoring to the set R
19 while (i >0 ∧C <NLocs) do
20 f Node := {wk,i}; // get next node from work list located at index i
21 if (isQuickFixNode( f Node)) then
22 nt+1 := f Node; // store current node
23 Nset :=Nset ∪ {nt+1}; // add the node for a non-in-place fix
24 setConsObject(wk); // store constraint
25 if (notAffectedPaths(SPaths, nt+1)) then
26 pLoc := probLoc(nt+1);
27 putMarker(pLoc); // put new marker
28 r j+1 := refact(nt+1); // create a new bug refactoring
29 Rset :=Rset ∪ {r j+1}; // add refactoring
30 countGQF := countGQF + 1; // count the generated fixes
31 end
32 C := C + 1; // increase non-in-place quick fix locations counter
33 end
34 i := i - 1; // go one step backwards on the path
35 end
36 end
37 k := k + 1; // get next satisfiable program execution path
38 end
39 end
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Algorithm 6.2 is composed of two main phases. (a) Finding the first program execution
path which contains the buggy statement and generating the in-place quick fix. This quick fix
will be suggested to the user in the GUI only if it is sound (e.g., the buffer size is equal on all
buggy program executions paths). Note that the buffer index and size are context-sensitive. In
case there are different buffer sizes on different paths then in order to preserve the soundness
of the patched program a complex in-place patch can be generated containing one if branch
and N if else branches (N represents the number of different buffer sizes on each buggy path).
Furthermore, the size (LOC) of this patch grows exponentially with the number of paths
containing different buffer sizes which renders such a quick fix to be not always practical (*).

(b) Traversing the current selected path in backward program execution order from the loca-
tion where the bug was found until a non-in-place fix location is detected and generating a new
quick fix at that location. At this program location the program execution can be safely finished
(e.g., exit(EXIT_FAILURE);) (this will not change the program behavior for input which does
not trigger the bug) if the buffer index is out of bounds or a numeric value can be set if desired
(this will not terminate program execution and most likely will change program behavior). The
second quick fix is sound as it can be observed that it does not change program behavior for
program input which does not trigger the bug—similar to the first in-place quick fix. Quick
fix (b) represents an alternative to the first quick fix which is not always feasible (e.g., (*)) and
will be suggested in the GUI only if it does not change program behavior for input which does
not trigger the bug and for each buggy program execution path at least one non-in-place quick
fix was successfully generated. This is assessed with the counters countBP and countGQF
indicated in Algorithm 6.2 which must be equal (each buggy path has a non-in-place quick
fix associated) when the algorithm finishes the search. If the counters are not equal when the
search algorithm finishes then there is at least one path where a non-in-place bug fix location
was not found. Thus, the whole quick fix will not be offered in the GUI since there could exist
one program execution path on which the bug was not fixed.

Phases (a) and (b) are repeated for all program execution paths which contain the buggy
statement (line number and file name) where the bug was detected. First, the algorithm searches
for possible insertion locations (e.g., in-place and non-in-place) for buffer overflow quick fixes
and second, it generates bug fixes. The algorithm uses: startIndex() to set the start index from
where to search on the initial path, setWorkList(), to initialize the buggy first path, initNode(),
to initialize the node at which the bug was found and refact(), to create a new refactoring. Next
we extend the notation, Spaths, consisting of all program execution paths, Wset , used to hold the
current selected execution path, Nset , is a set of nodes used to store in-place and non-in-place
path nodes (these represent program locations where refactorings will be later on inserted) and
Rset , is the set of refactorings. In line 3, Nset , and, Wset are initialized to empty set. In line 6,
the algorithm picks a new path from the Spaths in each new iteration. Upon verifying that the
chosen path contains the buffer overflow bug (previously detected), hasBug(sk), the start index,
i, and the initial buggy path, wk, are initialized. In line 11 and 12, the number of quick fix
locations, NLocs, is initialised to 1 and the quick fix location counter, C, to 0 respectively. On
encountering the condition statement getLength(wk) > 0, the algorithm checks the working list,
wk, first, its length should be greater than 0 and, second it initializes the node where the bug was
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found by updating the nodes set, Nset . In line 17 a new refactoring is created. After this step the
refactorings list located on line 18 is updated. From line 19 to line 35, the algorithm traverses
the path backwards in order to find a non-in-place fix location of the bug until the index
value, i, is greater than 0 and the counter value, C, is less than number of quick fix locations,
NLocs = 1. While visiting each path node it checks for potential non-in-place locations,
isQuickFixNode( f Node). Upon encountering a non-in-place location, it stores the current node,
nt+1, and then Nset is updated. This node is used for generating the bug patches. In line 24,
the constraint object is set at the index k. The algorithm traverses the current selected program
execution path to check if there are any influenced paths using notAffectedPaths(SPaths, nt+1).
At this stage of development a simple check is performed in order to see if the context-sensitive
buggy variable appears on the right hand side of an expression (e.g., var = expr.; e.g., expr.
= a binary expression, expr. contains our buggy variable which will be constrained with the
patch). Furthermore, it will be checked if the other influenced variables (e.g., var) are dead or
live variables along a program path. In future we plan to compute a distance-bounded weakest
precondition [103] (our engine supports the weakest precondition computation; loop and
recursion invariants are not supported) in order to check if program behavior is preserved or not.

In case the algorithm finds no influenced paths then a new refactoring is created and added
to Rset , line 29. Note that in case of using exit(EXIT_FAILURE) in the non-in-place quick fix
than no check for influenced paths is needed. In line 32, the counter C is incremented by one,
this indicates that a second refactoring was created. Next the index value, i, is decremented by
one such that the algorithm proceeds one step backwards on the current path in line 34. Note
that the algorithm can accommodate the search for more than one non-in-place location by
increasing the value of NLocs and updating the detection rules.

6.4.2 Bug Detection with SMT

Our contribution lies in bridging the gap between a buffer overflow bug report provided by an
existing buffer overflow checker and automated generation of one or more quick fixes (quick fix
structure, insertion location and values used inside the patches) which remove (automatically
assessed by re-running the bug detector on the patched program) the buffer overflow bug.

The bug localization is based on the buffer overflow checker contained in our static analysis
engine presented by Ibing et al. [111]. The buffer overflow checker returns the location of the
bug containing the file name, line number and a unique ID which defines the type of the bug.
Based on the bug report ID the following steps are performed automatically. The SMT-Lib con-
straint system which was used to detect the bug (from the buffer overflow checker) is selected.
After obtaining the system, a SMTConstraintObject object is instantiated containing the
following attributes: the buffer size, the offset and the previous mentioned SMT-Lib constraint
system. Next, we introduce the patch creation process consisting of the following seven steps.

Step 1. Input Saturation. Figure 6.1 contains at line four a non-in-place quick fix location
for the buffer overflow. This bug can be addressed with a missing input check, see lines 5–6
for more details. Due to the missing input check the values of the index variable data used in
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buffer[data] can take values outside of the buffer index interval [0, 9] which leads to a buffer
overflow or underflow. In order to determine if the index variable data can take values outside of
the allowed interval [0, 9] a SMT constraint system is generated. The SMT constraint system is
provided as input to the Z3 [68] SMT solver which will output the message SAT if data can take
values outside the allowed interval. In order to remove the buffer overflow bug, we decided to
generate two types of quick fixes (in-place and non-in-place) which are based on the input satura-
tion principle. The input saturation principle basically consists of in limiting the possible values
which the index variable data can take to only values which are contained in the buffer index
range. The generated quick fixes represent additional checks which limit the upper and lower
values of data (see Figure 6.1 for more details). The upper allowed value for data should not
be larger than the allowed buffer[data] upper index bound value, 9, and not smaller than 0.

Step 2. SMT Constraint System used for Bug Detection. The original SMT constraint

0. (set-logic AUFNIRA)
1. (declare-fun b () Int)
2. (declare-fun c () Int)
3. % c is the buffer size
4. (assert (= c 10 ))
5. (assert (>= b c))
6. (check-sat)
7. (exit)

Listing 1: (a) First SMT based oracle.

0. (set-logic AUFNIRA)
1. (set-option:produce-models true)
2. (declare-fun saturation () Int)
3. (declare-fun b () Int)
4. % c is the buffer size
5. (declare-fun c () Int)
6. (assert (= c 10 ))
7. (assert (>= b c))
8. (assert (< saturation c))
9. (assert (>=(saturation (c-1)))

10. (check-sat)
11. (get-value (saturation))
12. (exit)

Listing 2: (b) Second SMT based oracle.

Figure 6.3: First and second oracles used for fault detection and repair generation.

system used to detect the buffer overflow bug (excerpt presented in Figure 6.3 (a)) had 317
LOC. We depict only the SMT-Lib statements which matter most in our context and changed
the names of the symbolic variables for brevity. During buffer overflow/underflow detection the
checker uses SMT-Lib statements which represent path constraints and other specific statements
for buffer overflow or underflow checking. The statement in bold font located on line 5 in Fig-
ure 6.3 (a) represents the constraint which we get from the our checker (assert (>= data
bufferSize)) in case of checking for an buffer overflow. In the case of a buffer underflow
check, the checker adds to the constraint system the statement (assert (< data 0)). If one
of these two constraints are satisfied, then this means that the variable data can take values
outside the range of the buffer. Thus, a buffer overflow or underflow bug report will be issued.

The value of data depicted in Figure 6.3 (a) with b is constraint to be greater or equal
10. The solver answers to this constraint system from Figure 6.3 (a) as SAT. Thus, the set of
possible solutions for b is contained in the set [10, ∞). This means that if the program variable
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data takes any value greater or equal to 10 then a buffer overflow bug will be detected. The
checker is checking each possible execution path by asking the Z3 solver if the SMT constraint
system is satisfiable or not. If a bug report is issued then a SMTConstraintObject will be
instantiated. The buffer size, buggy variable and the SMT constraint system used to trigger
the bug are added as attributes to the previously generated SMTConstraintObject object.

Step 3. Bug Type Classification. The bug type classification is based on the checker which
was used to detect the bug. The bug checker generates a report containing a unique identifier for
each type of bug detected. Currently we have other checkers (information flow checkers [194],
infinite loop checkers [113], integer overflow checkers and race condition checkers [112])
which can run in parallel and have unique checker identifiers. We used for our checkers a
unique ID which was saved in the checker bug report. Based on the generated bug identifier
we can decide which type of bug we are dealing with. After obtaining the unique bug identifier
the bug patch pattern is selected which will be used for bug fixing.

Step 4. Patch Pattern Selection. Based on the bug type classification we select the patch
pattern(s) which can be used to fix this type of bug. Our patch patterns consist of empty C code
skeletons where certain values have to be computed based on the SMT solver used (e.g., (1)
+if (buff_size > N ‖ buff_size < 0); e.g., (2) +if (buff_size <= N && buff_size >= 0);). N
represents the buffer size determined during static analysis. Note, that N can have different
values on different program execution paths.

Step 5. Constraint Values Selection. We construct our SMT constraint system based on the
attributes stored in the SMTConstrintObject object. These attributes have to be added to the
SMT constraint system which was used to detect the bug. After solving the SMT constraint
system we will obtain the numeric values which will be inserted into the previous selected
patch patterns.

Step 6. Generating SMT Constraint Values. The generation of the constraint values is based
on the previously stored SMT-Lib system as an attribute of the SMTConstraintObject. The
new SMT constraint system (see Figure 6.3 (b)) contains the same SMT statements presented
in Figure 6.3 (a) plus some new SMT-Lib statements used to perform the calculation of the
needed value which will be later on used inside our selected patch(es). Note that the newly
added SMT-Lib statements are marked with bold font in Figure 6.3 (b). The added SMT-Lib
statements are used to perform input saturation on the variable data. The solver answers to
this constraint system from Figure 6.3 (b) as SAT. After solving the generated SMT system,
we obtain the value 9 for data. This value will be used later when we generate our final
code patches. b represents the symbolic variable data and the symbolic variable saturation
represents our constraint variable used to constrain the variable data. The symbolic variable
saturation is used to constrain the solution space of the real variable (source code variable)
data. The symbolic variable saturation can have the value 9 as single possible legal solution.

Step 7. Generating Final Code Patches. After solving the constraint system from Figure 6.3
(b) we obtain the numeric value 9 as solution for the symbolic variable saturation. The value
9 will be inserted in the previously selected patch patterns in order to constrain the possible
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values which data can take. After this step, we obtain code patches which are syntactically
correct, can be compiled and could be further on edited after insertion if desired.

6.4.3 Semi-Automatic Patch Insertion Wizard

(a) (b)

Figure 6.4: Patch insertion GUI based wizard.

Figure 6.4 (a) depicts a bug marker indicating the position of the buffer overflow. This
marker was placed by the buffer overflow checker and is depicted with a yellow bug icon,
on the left of the C statement which potentially contains a buffer overflow bug. Next, by
pressing on this bug marker, the user can start the code refactoring wizard. The code refactoring
wizard is composed of two user pages. The first user page is used to make patches selections
(in-place or non-in-place fix, only one can be selected at a time). The second page depicted
in the Figure 6.4 (b) contains a differential files view presenting the differences between the
original file containing the bug and the modified file with the selected patch(es) inserted. The
user has the possibility to navigate between this two pages using the buttons Back, Next and
Cancel in order to compare the results of applying the in-place or the non-in-place quick fix.
Finally, by pressing on the Finish button the user accepts the selected quick fix, the patch will
be written in the file and the wizard will be stopped.

6.4.4 Implementation

We have integrated BUFFREPAIR into our existing Static Analysis Engine (SAE) [111] which
is developed as an Eclipse IDE plug-in. We implemented a refactoring wizard based on the
Eclipse Language Tool Kit (LTK), JFace and CDT in order to insert the generated bug patches
into the buggy program in a semi-automated fashion. Our bug patching technique is composed
of two steps. First, the bug detection analysis is performed. If the bug is detected then this will
be marked with a marker. Second, the bug fixing algorithm starts to search backwards on the
buggy path until it detects a first non-in-place location. If such a bug fix location is found then
BUFFREPAIR marks visually the location in code with another marker. The backward searching

118



C
ha

pt
er

6

6.5 Evaluation

algorithm can be easily updated in order to accommodate the suggestion of multiple quick
fixing locations which can be addressed with other techniques than input saturation.

6.5 Evaluation

6.5.1 Experiments Methodology
We ran BUFFREPAIR on each of the programs and generated two types of patches used for fully
automatically fixing the detected faults. We used our previously developed buffer overflow
checker for fault detection and classification. The time needed to generate the patches and the
total time needed to run the fault detection were measured in milliseconds and then converted
to seconds [s]. We used as test system a 64-bit Linux kernel 3.13.0-32.57, Intel i5-3230 CPU
at 2.60GHz running on 4 CPU threads. Note that we replaced in the sound non-in-place
quick fix depicted in Listing 6.1 the string exit(EXIT_FAILURE); with data = 9;, which is
equivalent to data = (bufferSize - 1); (bufferSize can have different values for different
program paths) in order to see if our apporach for detecting affected paths works. Note, that by
using the non-in-place quick fix depicted in Listing 6.1 (contains exit(EXIT_FAILURE);
instead of data = 9;) the program behavior is preserved w.r.t. program input which does not
trigger the fault. We evaluated our approach by addressing three research questions (RQs).

RQ1: What is the overall computational overhead of BUFFREPAIR? (Section 6.5.2) We
wanted to determine the overhead introduced by BUFFREPAIR w.r.t. the fault detection time.

RQ2: Are the generated patches useful for fault fixing? (Section 6.5.3) We wanted to find
out if the final generated patches containing the values obtained from the Z3 solver are useful
for the fault fixing.

RQ3: Is the behavior of the patched program preserved? (Section 6.5.4) We wanted to find
out if the generated patches change the program behavior.

6.5.2 Performance
We addressed RQ1 by measuring the performance of BUFFREPAIR in terms of the patch gen-
eration overhead compared with the fault detection time.

Test Programs #LOCS # Paths # Affected Paths # Nodes # non-in-place Locations Patches Generation [s] Prevented
CWE-121 memcpy 1,980 39 0 2,918 18 0.424 X

CWE-121 fgets 8,771 641 20 231,337 38 0.755 X
Total 10,751 680 20 234,255 56 1.197 X

Table 6.1: Bug detection and patches generation results.
Test Programs Bug Detection + Patch Generation [s] GCC Recompile Time [s] Total [s] GCC Compilation [s] Ratio

CWE-121 memcpy 21.454 2.813 24.267 2.813 8.6x
CWE-121 fgets 178.276 6.713 184.989 6.713 27.5x

Total 199.730 9.526 209.256 9.526 36.1x

Table 6.2: Comparison of time cost between our system and GCC.
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Figure 6.5: Quick fix generation for memcpy and fgets programs.

Figure 6.5 (a) presents the results of running BUFFREPAIR on 19 memcpy programs contained
in CWE-121. The introduced overhead is calculated by comparing the times represented with
black bars (patch generation time) located on top of the yellow bars (fault detection time).
The total overhead of 1.97% was obtained by comparing the fault detection time, 21.030 [s]
(21.454[s]−0.424[s]), and the patch generation time, 0.424 [s], column seven of Table 6.1.

Figure 6.5 (b) contains the results obtained during patch generation for the 39 fgets
programs contained in CWE-121. We used the same index enumeration which was used in the
open source Juliet test suite [206] in order to have a clear mapping between analyzed programs
and programs extracted from the test suite. In comparison with the Figure 6.5 (a) we used in
Figure 6.5 (b) a logarithmic scale in order to make the results more readable. From Figure 6.5 (b)
we observe that the patch generation times indicated with black bars on top of the yellow bars are
considerably lower than the fault detection times indicated with yellow bars. The total overhead
of 0.4% was obtained by comparing the fault detection time, 17,7521 [s], (17.8276[s]−0.755[s])
and the patch generation time (0.755 [s]) contained in column 7 of Table 6.1.

The obtained results show that the patch generation time grows by a factor less than 2 (from
0.424 [s] to 0.755[s]) if the number of execution paths increases by a factor of 16,4x (641/39,
see Table 6.1 3rd column) and the number of nodes by a factor of 79,2x (231337/2918, see
Table 6.1, 5th column). We demonstrated that our approach is applicable to open source C
programs and the induced overhead is under 1%.

Figure 6.6 presents the overall overhead with yellow bars (the fault detection time) for the
fgets and memcpy programs. The black bars on top of the yellow bars represent the overhead
introduced by the patch generation algorithm for the fgets and memcpy programs. The patch
generation overhead is 1.197 [s] which represents 0.59 % from the fault detection time of
199,730 [s] indicated in column 7 of Table 6.1 and in column two of Table 6.2.
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6.5 Evaluation
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Figure 6.6: Total overhead.
Table 6.2 shows that there is no compilation difference between the patched programs and

the un-patched programs. This is because our patches have a small size and introduce no com-
pilation overhead. We observed an overhead decrease from 1,97% (memcpy programs) to 0.4%
(fgets programs) for 79.27 times (231,337/2,918, see Table 6.1, 5th column) more nodes and
for 16,4 times (641/39, see Table 6.1, 3rd column) more paths. With regard to RQ1, the results
confirm that the patch generation overhead is 0.59% when compared to the fault detection time.

6.5.3 Repair Usefulness
We addressed RQ2 by considering following scenarios: First, the syntactical correctness of our
generated patches and if the code can be recompiled after the patch was inserted. Second, if the
fault patch was useful for removing the detected fault. Third, the usefulness of the non-in-place
patch which is depicted in Table 6.3, column four. Table 6.3, column 2 shows if the resulted
program after the insertion of the in-place or the non-in-place patches remained compilable.
Columns 3 and 4 depicted in Table 6.3 indicate if the fault was removed by inserting the patch
in-place (fault location) or at the non-in-place location.

Test Programs Recompile in-place Fix Non-in-place Fix
CWE-121 memcpy X X X
CWE-121 fgets X X X*

Table 6.3: Bug fixing results.

Table 6.3, column 3 shows that all the fault could be removed by inserting the patch at
the place where the fault was detected. Table 6.3, column 4 shows that all the faults were
removed by inserting the patch at the non-in-place location except the ones indicated with
X*. The notation N (M) was used to denote the control flow variant N and the number of
detected affeted paths, M contained in the Juliet test case CWE_121_fgets [206]. In total
8 C programs: 42 (3), 45 (2), 61 (1), 63 (4), 64 (5), 66 (2), 67 (1), 68 (2) contained 20
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((3)+(2)+(1)+(4)+(5)+(2)+(1)+(2)) affected paths. An affected path contained at least one
usage of the constrained variable (e.g., data) in another statement as the path was traversed
in program execution order. Thus, the program behavior can be in this way influenced by the
set of values that the constraint variable can take after it was constrained. Note, that this is not
a sufficient condition to guarantee soundness. Thus, the results presented in Table 6.3 confirm
RQ2, that the generated fault patches were useful for removing the faults.

6.5.4 Program Behavior Preserving

Test Programs # Programs # IPrograms # IPaths % Ratio
CWE-121 memcpy 18 0 0 0
CWE-121 fgets 38 8 20 14.2

Total 56 8 20 14.2

Table 6.4: Programs behavior preserving.

We addressed RQ3 by checking if the inserted patch at the non-in-place location influences
other existing program paths. The abbreviations in Table 6.4 mean: Total number of programs
containing influenciable paths (IPrograms), Influenciable Paths (IPaths), % Ratio represents
the ratio between the total number of programs to the total number of programs containing at
least one influenced path. The Algorithm 6.2 used by BUFFREPAIR to generate repairs visits
non-in-place candidate nodes in backward program execution manner in order to find fault
repairing locations. Next, it checks if by patching the found node contained on the affected
path the behavior of the program will change. If the algorithm finds an affected path then the
non-in-place quick fix will be not generated since it could influence other variables contained in
the affected paths. We successfully avoided changing the behavior of all the analyzed programs
by proposing the fix at the fault location which is indicated in column 3 of Table 6.3. For 14.2
% of the programs (56/8, # Programs/# IPrograms presented in Table 6.4 in columns 2 and
3) we avoided changing the behavior by not proposing the non-in-place quick fix. Thus, we
can confirm that for 85.8% (100% - 14.2%) of the analyzed programs the program behavior
did not changed with regard to RQ3.

6.6 Discussion

6.6.0.1 Threats to Validity

In this Section, we discuss the internal and external threats to validity.

Internal Validity. In case we did not interpret the results of our execution measurements right
then the overhead of 0.59% could not be achievable. To avoid time measurement mistakes we
carefully designed our own time measuring mechanism and repeated the measurements three
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6.7 Summary

times for each analyzed program. Some of the decisions we make are static (select type of
patch patterns for a fault type) and some are dynamic (SMT constraint system solving). Thus,
only the dynamic decisions can influence the overhead introduced by BUFFREPAIR. We are
aware that in case the fault checker cannot detect or diagnose the fault type then our approach
would suffer from imprecision or would not work at all.
External Validity. We are aware that there are some threats which could hinder our approach
from being generalizable for large programs. We think that BUFFREPAIR’s repair generation
approach can be generalized since we followed the basic automatic program repair steps (failure
detection, fault diagnosis, fault cause localization and repair inference). We think that 0.59%
overall overhead is negligible and by addressing other types of checks than input saturation
or by using other fault patterns no major time increase would be noticeable. Thus, programs
containing long execution paths would not increase the overhead significantly with respect to
the fault detection time.

6.7 Summary
In this Chapter, we presented BUFFREPAIR, which is based on a novel technique for automat-
ically repairing buffer overflow faults by generating bug repairs using static symbolic execution
and SMT solving. Our automatically generated patches do not need any human refinement, are
compilable and can be inserted semi-automatically into buggy programs with the help of our
refactoring wizard. Our experimental results show that BUFFREPAIR is efficient when detecting
and repairing faults. We think that BUFFREPAIR can successfully be applied to high quality
projects since the generated quick fixes remove the bug and preserve program behavior. Finally,
we think that our approach can be applied in future in conjunction with other types of bug
checkers (e.g., [112], [113], [194]) which we developed.
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Chapter 7
CastSan: Runtime Detection of C++
Polymorphic Object Type Confusions

In this Chapter, which belongs to the second part of this thesis, we address dynamic memory cor-
ruption detections which can most commonly lead to (or are a prerequisite for) CRAs. We were
motivated to go this path due to the intrinsic limitations of static analysis tools. More specifically,
we developed a compiler based sanitizer tool, called CASTSAN, which can detect object type con-
fusions during runtime and which is fully integrated into a well established compiler framework
(Clang/LLVM). Within this Chapter, we address RQ4 by providing a fully functional object
type confusion tool which is based on a novel and efficient technique for the detection of object
type confusion, which—if used consistently,—can considerably reduce the likelihood of CRAs.
Finally, note that parts of this Chapter have already been published by Muntean et al. [201].

7.1 Introduction

What is the overall view? Real-world security-critical applications (e.g., Google’s Chrome,
Mozilla’s Firefox, and Apple’s Safari web browser, etc.) rely on the C++ language as main
implementation language, due to the balance it offers between runtime efficiency, precise
handling of low-level memory, and the object-oriented abstractions it provides. Thus, among
the object-oriented concepts offered by C++, the ability to use object typecasting in order
to increase, or decrease, the object scope of accessible class fields inside the program class
hierarchy is a great benefit for programmers. However, as C++ is not a managed programing
language, and does not offer object type or memory safety, this can potentially lead to exploits.
What is the problem? Figure 7.1 depicts statistics w.r.t. object type confusion bugs reported
by the United States National Institute of Standards and Technology (NIST) [208]. As of
Sept. 2017, 131 type confusion bugs were reported, from which 79 lead to arbitrary code
execution. Additionally, 8 illegal casts were found due to bit shifts, which can lead to arbitrary
code execution as well. Specifically, this figure indicates that bad type casting is a serious
concern. Bad type casting errors are based on a combination of lack of type safety and memory
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Year value Year Bad Cast (type confusion) Bit Shift based bad cast causing undefined behavior Type confusion based arbitrary code execution
2009 0 2008 0 0 0
2010 4 2009 0 0 0
2011 3 2010 4 0 2
2012 2 2011 3 0 1
2013 6 2012 2 0 1
2014 12 2013 6 0 3
2015 56 2014 12 0 6
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Figure 7.1: Ten years of object type confusion vulnerabilities.
safety. These vulnerabilities were reported in highly used real-world software such as: Google’s
Chrome and V8 JS engine, Mozilla Firefox, Microsoft’s IE 10, Edge, and Chakra JS engine,
Adobe Flash Player, & iOS/MacOS apps.
C++ object type confusions are the result of misinterpreting the runtime type of an object

to be of a different type than the actual type due to unsafe typecasting. This misinterpretation
leads to inconsistent reinterpretation of memory in different usage contexts. A typical scenario,
where type confusion manifests itself, occurs when an object of a parent class is cast into a
descendant class type. This is typically unsafe, if the parent class lacks fields expected by the
descendant type object. Thus, the program may interpret the non-existent field or function
in the descendant class constructor as data, or as a virtual function pointer in another context.
Object type confusion leads to undefined behavior according to the C++ language draft [119].
Further, undefined behavior can lead to memory corruption, which in turn leads to exploits
such as code reuse attacks (CRAs) [31] or even to advanced versions of CRAs including the
COOP attack [238]. These attacks violate the control flow integrity (CFI) [1, 2] of the program,
by bypassing currently available OS-deployed security mechanisms such as DEP [164] and
ASLR [219]. In summary, the lack of object type safety and, more broadly, memory safety
can lead to object type confusion vulnerabilities (i.e., CVE-2017-3106 [96]). The number of
these vulnerabilities has increased considerably in the last years, making exploit based attacks
against a large number of deployed systems an everyday possibility.

What are the existing solutions? Table 7.1 depicts the currently available solutions, which
can be used for C++ object type confusion detection during runtime. The tools come with the
following limitations: (1) high runtime overhead (mostly due to the usage of a compiler runtime
library), (2) limited type checking coverage, (3) lack of support for non-polymorphic classes,
(4) absence of threads support, and (5) high maintenance overhead, as some tools require a
manually maintained blacklist.

What are the limitations of the solution? We consider runtime efficiency and coverage to
be most impactful for the usage of such tools. While coverage can be incrementally increased
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Checker Year Poly Non-poly No blacklist Obj. Tracking Threads
UBSan [99] 2014 X X
CaVer [142] 2015 X X X X limited
Clang CFI [149] 2016 X X X
TypeSan [107] 2016 X X X X X
HexType [125] 2017 X X X X X
CASTSAN [201] 2018 X future work X not required X

Table 7.1: High-level feature overview of existing C++ object type confusion checkers.
by supporting more object allocators (e.g., child *obj=dynamic_cast<*child>(parent),
ClassA *obj=new (buffer) ClassA();, char *str=(char) malloc(sizeof(S)); S
*obj=reint erpret_cast<*S>(str);, see TypeSan, HexType, for more details.) and instru-
menting them for later object type runtime tracking, increasing performance is more difficult
to achieve due to the required runtime of type tracking support on which most tools rely.
Reducing runtime overhead is regarded to be far more difficult to achieve, since object type
data has to be tracked at runtime and updating data structures at runtime (i.e., red-black trees,
etc.) has to be performed during a type check. As such, due to their perceived high runtime
overhead, the tools currently available do not qualify as production-ready tools. Furthermore,
the per-object metadata tracking mechanisms generally represent an overhead bottleneck in
case the to-be hardened program contains: (1) a high volume of object allocations, (2) a large
number of memory freeing operations, (3) frequent use of object casts, (4) exotic object memory
allocators (i.e., Chrome’s tcmalloc(), object pool allocators, etc.) for which the detection
tool implementation has to be constantly maintained.

Programs
Checker soplex (C++) xalancbmk (C++) astar (C++)
Clang-CFI [149] 5.03% 4.49% 0.9%
CASTSAN [201] 2.07% 1.78% 0.3%
Speed-up 2.42 times 2.52 times 3 times

Table 7.2: Object type confusion detection overhead for SPEC CPU2006 benchmark.

Table 7.2 depicts the runtime overhead of CASTSAN compared against Clang-CFI. CASTSAN

has significantly lower runtime performance overhead.
What is our insight? In this Chapter, we present CASTSAN, an Clang/LLVM compiler-based
solution, usable as an always-on sanitizer for detecting all types of polymorphic-only object
type confusions during runtime, with comparable coverage to Clang-CFI [149]. Its technique
is based on the observation, that virtual tables (vtables) of polymorphic classes can be used
as a successful replacement for costly metadata storage and update operations, which similar
tools heavily rely on. Our main insight is that: (1) program class hierarchies can be used to
store object type relationships more effectively compared to Clang-CFI’s bitsets, and (2) the
Clang-CFI bitset checks can be successfully replaced with more efficient virtual pointer based
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range checks. Based on these observations, the metadata that has to be stored and checked for
each object during object casting is reduced to zero. Next, the checks only require constant
checking time due to the fact that no additional data structures (i.e., TypeSan and HexType use
both red-black trees for storing relationships between object types) have to be consulted during
runtime. Finally, this facilitates efficient and scalable runtime vptr-based range checks.

CASTSAN performs the following steps for preparing the required metadata during compile
time. First, the value of an object vptr is modified through internal compiler intrinsics such
that it provides object type information at runtime. Second, these modified values are used by
CASTSAN to compute range checks that can validate C++ object casts during runtime. Third, the
computed range checks are inserted into the compiled program. The main observation, which
makes the concept of vptr based range checks work, is that range checks are based on the fact
that any sub-tree of a class inheritance tree is contained in a continuous chunk of memory,
which was previously re-ordered by a pre-order program virtual table hierarchy traversal.

CASTSAN is implemented on top of the LLVM 3.7 compiler framework [151] and relies
on support from LLVM’s Gold Plug-in [153]. CASTSAN is intended to address the problem
of high runtime overhead of existing solutions by implementing an explicit type checking
mechanism based on LLVM’s compiler instrumentation. CASTSAN’s goal is to enforce object
type confusion checks during runtime in previously compiled programs. CASTSAN’s object
type confusion detection mechanism relies on collecting and storing type information used for
performing object type checking during compile time. CASTSAN achieves this without storing
new metadata in memory and by solely relying on virtual pointers (vptrs), that are stored with
each polymorphic object.

We evaluated CASTSAN with the Google Chrome [98] web browser, the open source bench-
mark suite of TypeSan [107], the open source benchmark programs of IVT [24], and all C++
programs contained in the SPEC CPU2006 [252] benchmark. The evaluation results show that,
in contrast to previous work, CASTSAN has considerably lower runtime overhead while main-
taining comparable feature coverage (see Table 7.1 for more details). The evaluation results
confirm that CASTSAN is precise and can help a programmer find real object type confusions.

What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• We develop a novel technique for detection of C++ object type confusions during runtime,
which is based on the linear projection of virtual table hierarchies.

• We implement our technique in a prototype, called CASTSAN, which is based on the Clang/L-
LVM compiler framework [151] and the Gold plug-in [153].

• We evaluate CASTSAN thoroughly and demonstrate that CASTSAN is more efficient than other
state-of-the-art tools.
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7.2 Threat Model

7.2 Threat Model

The threat model used by CASTSAN resembles HexType’s threat model. Specifically, we assume
a skilled attacker who can exploit any type of object type confusion vulnerability, but who does
not have the capability to make arbitrary memory writes. CASTSAN’s instrumentation is part of
the executable program code and is thus assumed to be write-protected through data execution
protection (DEP) or another mechanism. Further, CASTSAN does not rely on information hiding;
as such the attacker is assumed to be able to perform arbitrary reads. This is not a limitation,
as CASTSAN does not rely on randomization or code shuffling like other CFI schemes [59, 289].
As CASTSAN focuses exclusively on C++ object down-cast type confusions, we assume that
other types of memory corruptions (i.e., buffer overflows, etc.) are combated with other types
of protection mechanisms and that CASTSAN can work along these complementary defense
mechanisms. Finally, we assume that for any large existing source code base, which is affected
by object type confusions (e.g., [47]), we assume that this fault cannot currently be fixed solely
by inspecting the source code statically or manually and that the attacker has access to the
source code of this vulnerable application.

7.3 Design and Implementation

In Section 7.3.1, we present the architecture of CASTSAN, and in Section 7.3.2, we explain
how virtual table inheritance tree projections are used by CASTSAN, while in Section 7.3.3,
we describe our object type confusion detection checks. Finally, in Section 7.3.4, we outline
CASTSAN’s implementation.

7.3.1 Architecture Overview

Figure 7.2 depicts the placement of CASTSAN’s components within the Clang/LLVM compiler
framework and the analysis flow, indicated by circled numbers.

CASTSAN’s main analysis steps. CASTSAN instruments object casts as follows: (1) source
code files are fed into the Clang compiler, which adds several intrinsics needed to mark all
possible cast locations in the code, (2) CASTSAN uses the vtable metadata and the virtual table
hierarchies, which were embedded in each object file in the Clang front-end, (3) placeholder
intrinsic-based instructions are used for recuperating the vptr and the mangled name of the
object type which will be later cast, and (4) placeholder intrinsic-based instructions for the
final pre-cast checks are inserted, containing the per object cast range. The intrinsics will
be removed before runtime and will be converted to concrete instruction sequences used to
perform the object type cast check. The placeholder intrinsics are used by CASTSAN since
part of the information needed for the checking of illegal casts is not available during compile
time (the vptr value is computed during runtime). Finally, during link time optimization (LTO)
[150], the following operations are performed: (1) the virtual table hierarchy is constructed
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Figure 7.2: CastSan system architecture.
and decomposed into primitive vtable trees, and (2) the placeholder intrinsics used to check for
down-cast violations are inserted based on the analysis of the previous primitive vtable trees.

Building virtual pointer based range checks. First, the LValue (LLVM data type) ¶ and
RValue (LLVM data type) · casts are instrumented inside the Clang compiler with additional
C++ code. Second, only the polymorphic casts are selected from these casts ¸. Third, the
polymorphic casts are flagged for instrumentation using an LLVM intrinsic ¹ during LTO.
Fourth, the intrinsics inserted by CASTSAN with the help of Clang are detected º for later
usage during LTO. Fifth, the metadata of the intrinsics is read out » to acquire all necessary
information about an object cast-site. Sixth, the ranges necessary for checking object type
confusions are built in ¼. Note that an object range is computed by using the virtual address of
the object destination type and the number of all nodes (vtables) inheriting from the destination
type. Finally, the object cast-sites are instrumented with a range check ½.

7.3.2 Virtual Table Inheritance Tree Projection

CASTSAN computes virtual table inheritance trees for each class hierarchy contained in the ana-
lyzed program. Next, CASTSAN uses these vtable inheritance trees to determine if the ancestor-
descendant relation between the types of the cast objects holds. The ancestor-descendant
relations between object types rely on several properties of these ordered vtable inheritance
trees, which we will explain next. The root of such a virtual table inheritance tree is a poly-
morphic class that does not inherit from other polymorphic classes (root type). Note that a
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class has only one vtable associated to it. Further, each vtable is broken into multiple primitive
vtables. Also note that these vtables can occupy different places in this ordering. The children
of any node in the vtable tree are all types that directly inherit from the ancestor class and are
located underneath this class in the program class hierarchy. If a class inherits from multiple
vtables, it has a node in any tree that the ancestor types are a part of. The leaves of a vtable
tree are vtables which have no descendants. CASTSAN will put the vtables that are in any type
of a descendant-ancestor relation to each other in a single virtual inheritance tree. Next, we
show how a virtual table projection list is computed.

0x00 X::x()

0x18 Z::x()

0x08 Y::x()

0x10 W::x()

0x00 X::x()

0x10 Z::x()

0x08 Y::x()

0x18 W::x()

ordered virtual table

(a)

W
virtual x()

Y
virtual x()

Z
virtual x()

X
virtual x()

0x00

0x08

0x10

0x18

(b)

W
0x10

Y
0x08

X
0x00

Z
0x18

(c)

Figure 7.3: Unordered & ordered (a) vtables of the tree rooted in X . (b) contains the vptr
of each type after ordering. (c) depicts the projected list corresponding to (b).

Figure 7.3(a) depicts the memory layout of the vtables of the class represented by the
primitive hierarchy in Figure 7.3(b). The vtables contain their addresses laid out in memory
(i.e., consider address 0x08) along with the pointers to the virtual functions (i.e., Y::x()). Note
that in the unordered table located on the left side of Figure 7.3(a), there is no relationship
between the addresses of the vtables and the class hierarchy. For simplicity reasons, in
Figure 7.3(a) we opted to depict each box of the vtable hierarchy to contain a single entry. In
general, when multiple entries in each vtable are contained in the vtable hierarchy, the vtables
will be interleaved to ensure that their base pointers are consecutive addresses in memory. After
ordering the values of the addresses of the vtables (right table in Figure 7.3(a)) the addresses
are in ascending order (e.g., W inherits from Y directly, thus it comes directly after Y in the
vtable). Further, after interleaving the addresses of the vtables, their values are in ascending
order corresponding to the depth-first traversal, as shown in the projected list depicted in
Figure 7.3(c). Next, CASTSAN uses a pre-order traversal of each vtable inheritance tree in order
to construct a list of vtables, which represents a projection of a tree hierarchy onto a list. For
example, if the type of a vtable (first row in a box, see Figure 7.3(b)) is the descendant of another
type, it is inserted after the other type in the list. Further, any sub-tree of each tree is represented
as a continuous sub-list of virtual tables by CASTSAN. This means that the types that inherit from
the root type of the sub-tree will be inserted into the list in direct succession to the sub-tree root.
Finally, the projected list will be used to compute object cast ranges which will subsequently be
used to determine legal and illegal relations between the object types during a cast operation.
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7.3.3 Object Type Confusion Detection

7.3.3.1 Virtual Pointer Usage as Runtime Object Type Identifier

CASTSAN uses the virtual pointer (vptr) of an object to identify its type at runtime. Note that
any polymorphic type contains a set of virtual methods that are reachable from any object using
its vptr. The vptr of a type is saved in any polymorphic object that is created using the type’s
constructor. By type constructor, we mean the function which is called when an object of a
certain type is allocated. Furthermore, note that each legally cast instance of a polymorphic
object can be uniquely identified by its vptr since the vptr of an object is always the first field of
that object. CASTSAN therefore reads the vptr of any object at runtime to uniquely identify its
runtime type. CASTSAN does this by loading the first 64-bit of the object into a register using an
intermediate representation (IR) load instruction. This load instruction is inserted by CASTSAN

during LTO for runtime usage.

7.3.3.2 Determining Object Type Inheritance during Runtime

As previously mentioned, CASTSAN checks object casts by using the projected virtual table
hierarchy list (see Figure 7.3(c) for more details). A projected class hierarchy consists of
ordered vtable addresses. The runtime type of an object must inherit from the destination type
of the cast in order for the cast to be legal. This happens if the vtable of the runtime type is a
child in the sub-tree of the vtable of the destination type. Further, if this is the case, the runtime
type comes after the destination type in the depth-first list of the tree. Since all nodes of a
sub-tree are placed successively in the projected list, this means that these nodes are located
before the last element of the sub-tree in the list. Therefore, CASTSAN does not need to traverse
the whole sub-list representing the sub-tree of the destination type to check if the runtime type
is part of it. It is enough to check whether it is anywhere between the first and the last element
in the list. This holds because the type of the object holding the vptr has to have a vtable in the
sub-tree of the destination type, which means it inherits from the destination type. Otherwise,
if the vptr is not in the range, it has no vtable inheriting from the vtable of the destination type
and therefore its type does not inherit from the destination type. Therefore, the object cast is
illegal in this situation. CASTSAN implements this mechanism at runtime using range checks
on the vtable pointer of an object and additionally by using the values of the vtable addresses
of the destination type sub-tree. During runtime CASTSAN checks if the value of the vptr is
larger than the vtable address of the destination type and smaller than the address value of the
last vtable entry located in the sub-list corresponding to the destination type. If this holds, then
the runtime type must inherit from the destination type; therefore, the cast is legal. Otherwise,
if the vptr value is not contained between the above mentioned boundaries, then the runtime
type does not inherit from the destination type, thus the object cast is not legal.
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7.3.3.3 Virtual Table based Range Checks

CASTSAN uses vtable based range checks in order to check if the vptr of an object resides
between two allowed values. CASTSAN’s range check is based on the observation that the
addresses of the ordered vtables are re-arranged by interleaving them through a pre-order
traversal of the inheritance trees in which these vtables are contained. Therefore, the addresses
of any sub-tree lay continuously and gapless in memory. By continuously and gapless we mean
that there is no starting address of another vtable not belonging to the sub-tree in between the
addresses of a sub-tree, and the starting addresses of the vtable lie consecutively in memory,
respectively. Further, if the vptr points to any address between the first and the last address of the
sub-tree, then it has to be in the list of all addresses located in the sub-tree and therefore the cast
is legal. In this way, CASTSAN can simplify the type check to a range check. CASTSAN builds
a range check by using the vtable address V of the destination type X and the number c of all
classes that inherit from X . V and c can be determined statically at compile time for each object
cast performed in the program. To perform the check at runtime, the vptr value P is extracted
from the object before the cast. Next, the following expression is evaluated by CASTSAN

during runtime. If V + c≥ P≥ V holds, then the cast is legal, otherwise the cast is illegal and
program execution will be terminated or an error log output can be produced depending on the
employed CASTSAN usage mode flag. Note that CASTSAN offers the possibility to include in
the else-branch of the inserted cast check the option to log back-trace information instead of
terminating the program which is obviously not always desired (see Figure 7.4 for more details).

The generated object cast range check has the following advantages compared to other
state-of-the-art techniques. First, in terms of memory overhead, CASTSAN does not require any
additional metadata at runtime to be recorded, deleted or updated in order to determine class
hierarchy relationships. Second, the range check needed for the sub-typing check has O(1)
runtime cost compared to O(n) runtime cost of other tools due to traversals of additional data
structures (e.g., red-black tree).

7.3.3.4 Instrumenting a C++ Object Cast

CASTSAN replaces the cast check intrinsics inserted into the code within the Clang compiler
with a range based cast check (see ½ depicted in Figure 7.2 for more details) during LTO.
The check is substituted with an equality check if the count of vtables in the range is one.
The equality check matches the vtable address of the range with the vptr of the object. If the
addresses are equal, then the cast is legal, otherwise it is illegal. In case the range has more
elements than one, then a range check will be inserted. The steps for building and inserting the
final range check are as follows. First, the value of the start address of the range is subtracted
from the vptr value by CASTSAN. Further, if the pointer value was lower than the start address of
the vtable, then the result is negative and the cast is illegal. Second, the result of the subtraction
is rotated by three bits to the right to remove the empty bits that define the pointer length. If
the result of the subtraction was negative, this rotation shifts the sign of the result to the right,
making it the most significant bit. Therefore, if the cast is illegal, then the result of the bit
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rotation is a large number. More specifically, the number is then larger than any result of a valid
cast. This holds because the most significant bit, where the sign was shifted due to the rotation,
would have been shifted to the right. This would make the number smaller than the illegal case.
The result is either the distance of the destination type from the runtime type within the vtable
hierarchy or an invalid large number. Finally, the value is compared to the number of vtables
in the range. If the value is less than or equal to the count, then the cast is legal and program
execution can continue, otherwise an illegal cast is reported. By using these instructions, the
range check can ensure three preconditions for a legal cast using only one branch. If any of the
following preconditions do not hold, CASTSAN will report an illegal cast. This is the case if the
value of the vptr is: (1) higher than the last address in the range (i.e., the type of the object is
not directly related to the destination type), (2) lower than the first value of the vtable address
range (i.e., the runtime type of the object is an ancestor of the destination type), resulting in
the negative bit being shifted to a significant bit of the subtraction result, or (3) not aligned to
the pointer length (i.e., the pointer is corrupted). Note that in (3) the unaligned bit is rotated
to one of the significant bits or to the signing bit. Since the comparison is unsigned, the number
would then again be larger than the last address in the vtable range.

Further, note that the vptr of an object can always be used to perform the check in the primary
inheritance tree of the object source type. Finally, the primary inheritance tree, represents the
tree which contains the virtual table of the object types as primary parent.

1X *x=new W();
2Y *y=static_cast<Y>(x);
3y->x();

(a)

10x400fe0 mov %r15,%rdi
20x400fe3 callq *(%rax)

(b)

10x400fc0 ud2
20x400fcb mov $0x401080,%ecx
30x400fcf mov %rax,%rdx
40x400fd1 sub %rcx,%rdx
50x400fd6 rol $0x3d,%rdx
60x400fda cmp $0x2
70x400fde ja 0x400fc0
80x400fe0 mov %r15,%rdi
90x400fe3 callq *(%rax)

(c)

Figure 7.4: Instrumented polymorphic C++ object type cast.

Figure 7.4 (a) depicts a C++ object type cast at line number two. Figure 7.4(b) presents the
un-instrumented assembly code, and the assembly code instrumentation added by CASTSAN is
depicted in Figure 7.4(c) (the range check is highlighted in gray shaded color). In Figure 7.4(a),
without line number three the compiler does not generate code since the Clang/LLVM compiler
is designed to not generate specific code for object casts. Only for the object dispatch (see line
number three), assembly code is generated. The assembly code in Figure 7.4(b) corresponds
to the object dispatch depicted in Figure 7.4(a) at line number 3. Finally, we assume that the
OS provides an W ⊕ X protection mechanism (e.g., data execution prevention (DEP)) and thus
the assembly code depicted in Figure 7.4(c) cannot be modified (rewritten) by an attacker.

Next, we present the operations performed by the instructions contained in the range check
(gray shaded code in Figure 7.4) in order to better understand how the check operates. First,
the vtable address of type X (corresponding to line number one in Figure 7.4(a)) 0x401080
is loaded. In line number two, in Figure 7.4(c), the fixed value of the address is moved to the
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register %rcx. This is done in order to load the first value of the range. Second, the vptr of
the object x is moved to register %rdx depicted in line number three. This is done in order to
provide the second value of the subtraction of the range check. Note that the object pointer
itself was already loaded in register %rax. This is not depicted in Figure 7.4 for reasons of
brevity. Third, the sub instruction performs the subtraction of the vtable address (stored in
%rcx) from the vptr (stored in %rdx). At line number five, depicted in Figure 7.4(c), the pointer
alignment is removed from the result by using a rotation (i.e., rol) instruction. This is done
to obtain the distance of the vptr from the vtable address of the destination type located in the
vtable hierarchy. Note that if the number of all types inheriting from the destination type is
higher or equal to the distance, the cast is legal. Finally, the result is compared to the constant
$0x2, which is the number of all types inheriting from the destination type Y , specifically these
are Y and W . Then, the program execution either jumps to the address of the instruction ud2
located at line number one in Figure 7.4(c) (address 0x400fc0), which terminates the program;
otherwise, the object dispatch (line number three in Figure 7.4(c)) will be performed similar
as in Figure 7.4(b) and the program continues its execution.

7.3.4 Implementation

Components. CASTSAN is implemented as two module passes for the Clang/LLVM com-
piler [151] infrastructure by extending LLVM (v.3.7) and relies on the Gold plug-in [153].
CASTSAN is based on the virtual table interleaving algorithm presented by Bounov et al. [24]
from which it reuses its interleaved vtable metadata by transporting it from the Clang compiler
front-end to the LTO phase via new metadata nodes inserted into LLVM’s IR code. More specif-
ically, CASTSAN’s implementation is split between the Clang compiler front-end, and a new
link-time pass used for analysis and generating the final intrinsic based compiler cast checks.
CASTSAN’s transformations operate on LLVM’s intermediate representation (IR), which retains
sufficient programming language semantic information at link time to perform whole program
analysis and identify all possible types of polymorphic C++ casts in order to instrument them.

Usage Modes. CASTSAN’s implementation provides three operation modes with corresponding
compiler flags. First, attack prevention mode can be used in shipped program binaries to
customers. This mode can be used, if desired, to terminate program execution when an illegal
cast is detected, thus providing an effective mechanism for avoiding undefined behavior which
may lead to vulnerability based CRAs. Second, software testing mode can be used during
program testing in order to detect type confusion errors and to help fix them before the software
is shipped by subjecting the analyzed program to a test suite with different possible goals
(i.e., program path coverage, etc.). Finally, relaxed mode can be used to detect and log illegal
casts detected during development or deployment. This last mode is mainly intended as a
replacement for the the situation in which it is not safe to stop program execution which is
mostly the case for real-world programs.
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7.4 Evaluation
We evaluated CASTSAN by instrumenting various open source programs and conducting a
thorough analysis with the goal to show its effectiveness and practicality. The experiments
were performed using the open source benchmarks TypeSan [107], IVT [24], Google’s Chrome
(v.33.0.1750.112) web browser, and the SPEC CPU2006 benchmark (only for the C++ based
programs), which were also used by HexType [125]. If not otherwise stated, we used the
Clang -O2 compiler flag for all our experiments. In our evaluation, we addressed the following
research questions (RQs).

• RQ1: What is the runtime overhead of CASTSAN? (Section 7.4.1)

• RQ2: How precise is CASTSAN? (Section 7.4.2)

• RQ3: How effective is CASTSAN? (Section 7.4.3)

• RQ4: How can CASTSAN assist a programmer during a bug bounty? (Section 7.4.4)

Comparison Method. In addition to the runtime overhead and binary blow-up, the coverage
and precision of HexType is compared to that of CASTSAN. For benchmarking SPEC CPU2006,
the benchmark script of TypeSan, and the micro-benchmark of ShrinkWrap [106] was used.
Preliminaries. The script of TypeSan (approx. 606 Bash LOC) sets up a full environment
consisting of: Binutils, Bash, Coreutils, CMake, Pearl. These are used for instrumenting the
SPEC CPU2006, and UBench (consisting of 10 intricate C++ testcases). After the benchmark
is set up, the script compiles the programs and checks each program by starting it and checking
it to see if it executed successfully.

The script of IVT (approx. 200 Python LOC) is used to compile up to 50 C++ programs.
Some of the programs contain object type confusions. After each instrumented program
execution, the script checks if the program executed successfully or not.
Experimental Setup. We evaluated CASTSAN on an AMD Ryzen R7 1800x CPU using 8 cores
with 16 GB of RAM running the Debian 8 Jessie OS. All benchmarks were executed 10 times
to obtain reliable mean values.

7.4.1 Performance Overhead

Table 7.3 depicts the overall runtime overhead on only the relevant C++ programs contained
in the SPEC CPU2006 benchmark. The geomean value of the overhead in these benchmarks is
under 1% (0.92%). As an outlier, soplex showed an overhead of 2.07%. For most benchmarks,
the overhead is lower than 1.0%. Some SPEC CPU2006 benchmarks like astar do not contain
static casts and thus no check is performed. These results show that the overhead is within the
margin of error. This is to be expected as CASTSAN does not need to execute additional code
on execution when no checkable casts are present in the code.
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Benchmark Vanilla CastSan Overhead
soplex 207.14 211.43 2.07%
povray 123.34 125.28 1.57%
omnetpp 269.14 270.06 0.34%
astar 334.96 335.96 0.30%
dealII 186.71 188.47 0.94%
xalanckbmk 413.67 421.03 1.78%
namd 266.42 266.43 0.00%
average 1.0%
geomean 0.92%

Table 7.3: Benchmark results of running various C++ programs contained in the SPEC
CPU2006 benchmark with CastSan enabled and disabled (vanilla). The values
represent the mean time needed to finish running the benchmark program over
10 runs.

Benchmark High/Low Vanilla CastSan Overhead
gc-sunspider [256] < 123.4 124.1 0.57%
gc-octane [48] > 29885 29889 -0.01%
gc-drom-js [75] > 1987.21 1991.58 -2.18%
gc-balls [30] > 216 215 0.47%
gc-kraken [134] < 933.1 941.2 0.87%
gc-jetstream [126] < 184.06 184.44 0.21%
average -0.01%
geomean 0.31%

Table 7.4: Runtime overhead on Chrome with CastSan enabled and disabled (vanilla).
Table 7.4 depicts the average and geomean runtime overheads of CASTSAN in seven of the

most popular JavaScript benchmarks. The greater/less symbols (in High/Low) next to the name
describe if higher (>) or lower (<) values are better in the benchmark. More precisely, higher
is better for jetstream, octane, balls and dromaeo benchmarks; lower is better in sunspider and
kraken. The numbers in the columns Vanilla and CASTSAN represent aggregate benchmark
scores and have no particular intrinsic meaning. The average value of the overhead of CASTSAN

in these benchmarks is -0.01%, which is in the margin of error. The low overhead obtained
when running JavaScript benchmarks in the instrumented Chrome demonstrates that CASTSAN

can efficiently scale to large code bases with complex class hierarchies.
Figure 7.5 depicts the average and geomean runtime overheads of CASTSAN in comparison

with the Clang-CFI cast checker when ran on several C++ programs contained in the SPEC
CPU2006 benchmark with the following compiler flags: -fsanitize=cfi- cast-strict,
-fsanitize =cfi-derived-cast, and -fsanitize= cfi-unrela- ted-cast. Note that
the Clang-CFI cast checker instruments the same set of static object casts as CASTSAN. We
compared the Clang-CFI and CASTSAN runtime overhead w.r.t. the baseline LLVM 3.7 com-
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Figure 7.5: Clang-CFI (gray) vs. CastSan (black) SPEC CPU2006 benchmark overhead.
pilations. Note that for the baseline compilation no additional compiler flags and no LTO
support (we compiled without the Clang’s -flto compiler flag) was used. Finally, it can be
observed that the overhead of CASTSAN is about two times lower on average than the overhead
of Clang-CFI when running on the SPEC CPU2006 programs.
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Figure 7.6: Clang-CFI (gray) vs. CastSan (black) Chrome runtime overhead.

Figure 7.6 depicts the runtime overhead of Chrome when ran on several JavaScript bench-
marks. First, we compiled it with Clang-CFI, and second, with CASTSAN enabled and with
the following compiler flags enabled: -fsanitize=cfi-cast-strict, and -fsanitize
=cfi-derived-cast. We did not use the -fsanitize=cfi-unrelated -cast compiler
flag, since Chrome was not able to start (crashed during start) after applying this flag. In total,
the same amount of object casts where instrumented by each of the tools. However, we can
observe that compared to Clang-CFI, the geomean and average overheads of CASTSAN are
better on large code bases such as the Chrome browser. The lowest runtime overhead value,
-2.18%, was obtained with CASTSAN when running the Dromaeo-js benchmark, while the
lowest overhead, -1.17%, was obtained by Clang-CFI when running the Sunspider JavaScript
benchmark. Overall, we observed a 54 times speed-up on average and 8.9 times speed-up in
geomean for CASTSAN when compared to Clang-CFI cast checker.
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7.4.2 Precision

We evaluated the precision of CASTSAN by using complex class hierarchies of programs con-
tained in the open-source micro-benchmark of TypeSan [107] and the benchmark programs
(in total more than 50 programs) provided by the IVT tool. This benchmark includes: (1) casts
to secondary parents, (2) casts within a diamond inheritance, and (3) casts from unrelated trees.

The results indicate that each cast that is covered by CASTSAN can be precisely checked
and the implementation leaves no room for unmitigated corner cases. Moreover, CASTSAN did
not show the imprecisions described by the authors of ShrinkWrap. There, the authors show
specific cases of class inheritances (e.g., diamond inheritance) where vtable based function call
sanitizers allow calls to illegitimate functions of sibling classes. Finally, CASTSAN was able to
cope with all complex class hierarchies contained in these benchmarks and no false negatives
or false positives were reported. Thus, we conclude that CASTSAN is precise and leaves no
space for untreated corner cases.

7.4.3 Effectiveness

We evaluated the effectiveness of CASTSAN by selecting the last ten type confusions reported
in Google Chrome which had common weakness enumeration (CVE) reports associated. All
these type confusions have been reported and partially fixed in the current Chrome browser
version. The goal of this experiment is to show that CASTSAN can find object type confusions
in real-world software.

We recompiled the Chrome web browser with the CASTSAN checks in place and ran all
JavaScript benchmarks, which we also used to check the performance of Chrome (see Figure 7.6
for more details). In total, out of the ten object type confusions, CASTSAN was able to report
three type confusions at the correct location. We further investigated the other undetected type
confusions and found out that these were not detected since the used JS benchmarks do not
interact with the code of Chrome which contains these bugs. As such, this is an issue which
can be addressed with more extensive test suites which were not detected previously. Finally,
we conclude that CASTSAN is effective in detecting real-world type confusions.

7.4.4 Programmer Assistance

We evaluated how useful CASTSAN is in helping a programmer to find and fix a type con-
fusion bug. For this reason, we used a well-known type confusion bug and depict the error log
in order to show how the programmer is guided when fixing a type confusion bug. The goal
of this experiment is to show that CASTSAN can effectively help a programmer to pinpoint the
exact bug location.

Figure 7.7 depicts the backtrace that CASTSAN prints out when running the xalancbmk
program contained in the SPEC CPU2006 benchmark. The SPEC CPU2006 xalancbmk has
a known type confusion vulnerability, as mentioned in [24], which CASTSAN is able to detect.
Thus, on execution, it prints the back-trace leading to the illegal cast. Line numbers 1 to 27
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1 ./Illegal Cast Detected. Printing Backtrace:
2 ./Xalan_base[0x5a3de8]
3 ./Xalan_base(_ZNK11xercesc_2_511DOMTextImpl13getParentNodeEv+0x6)[0x5cb1c6]
4 ./Xalan_base(_ZN11xercesc_2_513DOMParentNode12insertBeforeEPNS_7DOMNodeES2_+0x25a)[0x5bae2a]
5 ./Xalan_base(_ZN11xercesc_2_511DOMAttrImpl8setValueEPKt+0xb0)[0x59e6a0]
6 ./Xalan_base(_ZN11xercesc_2_512XSDDOMParser12startElementERKNS_14XMLElementDeclEjPKtRKNS_
7 11RefVectorOfINS_7XMLAttrEEEjbb+0x520)[0x6e15e0]
8 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner14scanStartTagNSERb+0x1a0f)[0x61134f]
9 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner11scanContentEv+0x171)[0x60e451]

10 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner12scanDocumentERKNS_11InputSourceE+0x67)[0x60e0c7]
11 ./Xalan_base(_ZN11xercesc_2_517AbstractDOMParser5parseERKNS_11InputSourceE+0x22)[0x5779e2]
12 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner20resolveSchemaGrammarEPKtS2_+0x685)[0x61b8c5]
13 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner19parseSchemaLocationEPKt+0xe0)[0x61b1a0]
14 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner28scanRawAttrListforNameSpacesEi+0x4b7)[0x61ad47]
15 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner14scanStartTagNSERb+0x3b2)[0x60fcf2]
16 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner11scanContentEv+0x171)[0x60e451]
17 ./Xalan_base(_ZN11xercesc_2_512IGXMLScanner12scanDocumentERKNS_11InputSourceE+0x67)[0x60e0c7]
18 ./Xalan_base(_ZN11xercesc_2_517SAX2XMLReaderImpl5parseERKNS_11InputSourceE+0x25)[0x6537f5]
19 ./Xalan_base(_ZN10xalanc_1_828XalanSourceTreeParserLiaison14parseXMLStreamERKN11xercesc_2_
20 511InputSourceERKNS_14XalanDOMStringE+0x120)[0x7c8070]
21 ./Xalan_base(_ZN10xalanc_1_824XalanDefaultParsedSourceC1ERKN11xercesc_2_511InputSourceEbPNS1_
22 12ErrorHandlerEPNS1_14EntityResolverEPKtSA_+0x1da)[0x7cb8ea]
23 ./Xalan_base(_ZN10xalanc_1_816XalanTransformer11parseSourceERKNS_15XSLTInputSourceERPKNS_
24 17XalanParsedSourceEb+0x303)[0x7cc983]
25 ./Xalan_base(_ZN10xalanc_1_816XalanTransformer9transformERKNS_15XSLTInputSourceES3_RKNS_
26 16XSLTResultTargetE+0x2a)[0x7ccaea]
27 ./Illegal instruction

Figure 7.7: Type confusion back-trace for the xalancbmk program.
are the verbose output of CASTSAN, notifying the user that an illegal cast happened during
execution. In lines 25, 26 and 27 the mangled name of the exact function containing the illegal
object cast is printed. Using the offset printed in the square brackets at the end of the line, a
developer can find the line in the code where the illegal object cast was defined. The error log
depicted in Figure 7.7 demonstrates that CASTSAN is able to detect real type confusion bugs in
applications by running a program in backtrace-mode. Finally, we conclude that CASTSAN can
help developers during bug bounties [293], and can protect against exploitable type confusions.

7.5 Discussion
In this Section, we present CASTSAN’s limitations and discuss how these can be addressed.

7.5.0.1 Limitations

Non-Polymorphic Classes. CASTSAN provides type safety for objects stemming from poly-
morphic classes and low runtime overhead. Further, CASTSAN cannot check casts between
non-polymorphic objects. This is because only polymorphic objects have a virtual pointer (vptr).
The vptr is an integral requirement for checking object type casts using CASTSAN. This means
CASTSAN cannot mitigate all types of object type confusion vulnerabilities. This limitation
can be addressed by example by constructing for static classes an artificial virtual-table-like
metadata on which CASTSAN’s technique can be based such that our technique becomes usable
for non-polymorphic object type casts.
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Reinterpret-Cast. In C++, not only static_cast can lead to object type confusion. The
misusage of reinterpret_cast can also pose threats. HexType addresses this threat by
extending its type cast checking to reinterpret_cast in addition to static_cast. While
this can effectively hinder a type confusion vulnerability from occurring, it is debatable if
checking reinterpret_cast is viable. This question arises, as reinterpret_cast can be
used as a legitimate way of breaking class hierarchy boundaries, if the memory layout of the cast
types match. In this case, a type cast check based on class hierarchy information cannot be made.
Therefore, if reinterpret_cast is checked for type safety, its purpose can potentially be
circumvented. Similarly, as other object type confusion detection tools handle reinterpret_-
cast, we could use compiler runtime checking support for checking for this type of confusions.

CastSan Metadata. CASTSAN is able to perform type cast checks without relying on metadata
that has to be maintained during runtime. In order to achieve full object type safety in C++
programs without relaying on runtime metadata it is still an open question. Other solutions,
such as HexType, are able to come close to full coverage of all object casts, but incur high
overhead and use intens metadata update operations. Finally, CASTSAN is the first LLVM based
sanitizer that is able to achieve a high degree of object type confusion safety without the need
storing and updating metadata during runtime.

CastSan Coverage. CASTSAN coverage is not as high as that of other type confusion mitigation
schemes [107, 125], for this reason its relevance needs to be discussed; its performance over-
head is under 1% in most cases. Therefore, it is suitable for use in production software. While
type safety can not be guaranteed in every case, CASTSAN still offers a degree of additional
safety in contrast to code that is not instrumented at all. Finally, the other solutions that have
higher coverage do not offer a performance overhead that is tolerable in production software,
but CASTSAN has a tolerable overhead which proves its relevance and qualifies the tool as
relevant and production ready.

Increasing CASTSAN’s Coverage. The incremental research work between TypeSan and
HexType shows that the main path for increasing object type confusion detection coverage is to
support more types of memory allocators (i.e., jmalloc, tcmalloc, etc.) or other more exotic ones.
Further, the coverage of CASTSAN can be increased by supporting all types of C++ program
locations (i.e., statement types) where such vulnerabilities could manifest. Thus, CASTSAN’s
coverage can be consistently increased by instrumenting all these source code locations with
the needed checks in place in order to check during runtime for object type confusions.

Finding New Vulnerabilities. Finding new object type confusion vulnerabilities is directly
linked to increasing the tool coverage and is mainly driven by three lines of research. These
are: (1) check new previously not possible to be instrumented program locations, (2) support
new memory allocators (e.g., object pool allocators, etc.), and (3) reduce the runtime overhead
of an object type detection technique such that the technique becomes applicable in real-world
deployment. Thus, in future work we want to increase the coverage of CASTSAN by addressing
the above mentioned points.
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7.6 Summary
C++ object type casting confusions have an important role in modern exploits as demonstrated
by recent attacks against Mozilla’s Firefox and Google’s Chrome web browsers.

In this Chapter, we presented CASTSAN, a new polymorphic only object type confusion detec-
tion tool. CASTSAN’s novel technique is based on an efficient and time constant virtual pointer
range check which is possible by extracting virtual table inheritance trees out of a previously
constructed virtual table inheritance hierarchy. CASTSAN constructs linear projections out of
virtual table inheritance trees, which are subsequently used do build runtime object cast checks.
Our evaluation results show that CASTSAN is more efficient than state-of-the-art tools (i.e.,
Clang-CFI cast checker), and has comparable checking coverage with other state-of-the-art
tools, which—in contrast—rely on runtime intensive type tracking for checking type confusions
for both polymorphic and non-polymorphic objects.
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Chapter 8
LLVM-CFI: Analyzing Control Flow Integrity
Defenses

In this Chapter, which belongs to the second part of this thesis, we designed a static compiler
based tool, called LLVM-CFI, which is usable for assessing static state-of-the-art CFI policies.
The intuition behind this decision is motivated twofold. First, due to the fact that it is most
likely that memory corruptions can not be fully eliminated we wanted to provide an active
defense by hardening the program. Second, we wanted in the next Chapters to come up with
novel CFI based techniques for protecting indirect program control flow transfers. Further,
in order to effectively address this task, we wanted to learn how effective and which level of
security the existing CFI defenses offer. As such, we addressed RQ5 by providing a framework
for assessing static CFI policies w.r.t. calltarget set reduction after a certain CFI defense was
applied. Further, we gained important lessons which helped us prepare next design decisions
for the tools developed in the next two Chapters. Finally, note that parts of this Chapter has
already been published by Muntean et al. [198].

8.1 Introduction

What is the overall view? Ever since the first Return Oriented Programing (ROP) attack
[242], the cat and mouse game between defenders and attackers has seen several peaks
[37]. As defenses improved over time, the attacks progressed with them [37]. While de-
fenders followed several lines of research when building defenses: control flow integrity
[286, 44, 212, 218, 78, 287, 261, 24, 106, 210, 268], binary re-randomization [279], informa-
tion hiding [13], and code pointer integrity [135], the attacks kept up the pace and got more and
more sophisticated [238, 137, 143, 21, 59] by deliberately avoiding the primitives (invariants)
of the used defenses. In addition, the attackers try to exploit: (1) existing implementation bugs,
(2) new weaknesses or (3) side-channels of systems.
What is the problem? In principle, even with the myriad of defenses, performing exploits is
still possible. In practice, the situation is non-trivial, as applied CFI policies make reasoning
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8 LLVM-CFI: Analyzing Control Flow Integrity Defenses

about security harder, since attacks become highly program-dependent. The attacker is con-
fronted with the challenge of searching (manually or automatically) the protected program’s
binary or source code for gadgets which remain useful after new defenses have been deployed.
Thus, there is a growing need for more advanced defense-aware tools, that assist attackers and
security analysts searching for gadgets, in order to craft or defend against Code Reuse Attacks
(CRAs), respectively.

What are the existing solutions? Unfortunately, most static gadget discovery tools [67, 233,
237] perform relatively simple static analysis on the program binary (i.e., location- based anal-
ysis on gadget start and end addresses) in order to find useful gadgets. Furthermore, these tools
are not aware of the applied defense and lack a deeper understanding of the protected program.
As such, they can find gadgets, but they can neither determine if the gadgets are still usable after
a defense was deployed, nor can they categorize a found gadget. Other tools perform dynamic
analysis on the protected program in order to find usable gadgets. In particular, Newton [267]
models the defense dynamically, but relies on the real execution of the target program. As such,
the tool is constrained to program-driven (based on given inputs) executions. These tools, how-
ever, only cover a minimal part of the program control flow graph and its dependencies. There-
fore, the knowledge of usable gadgets that are discoverable during analysis is useful, but limited.

What are the limitations of the solution? To further raise the bar for the attacker with each
applied defense, new tools ideally need to: (1) model the defense as precisely as possible, and
(2) use precise semantic knowledge about the protected program code (source code and/or
machine code) in order to thoroughly search for available gadgets in the protected program.
Unfortunately, to the best of our knowledge, the only dynamic analysis tool available, Newton
[267] (which is not open source), is only able to find useful gadgets during runtime,with the
number of usable found gadgets being rather low. Furthermore, this tool is restricted by the
taint dynamic analysis on which it relies. Moreover, all currently available static tools naively
search in the binary of the protected program for gadgets without a prior modeling of the
defense. They also do not provide any insight to whether a gadget is usable during an attack
or whether the callsites for the found gadgets are illegal.

What is our insight? In this Chapter, we present LLVM-CFI, a static source code analysis
tool built upon the Clang/LLVM [152] compiler framework for modeling static state-of-the-art
control flow integrity (CFI) defenses to empirically compare them to each other. We focus on
static CFI defenses, as they are more common then dynamic defenses and comparing them
against each other is easier.

For evaluation convenience, we used a source code based implementation, even though
some of the original tools were implemented at binary level. Thus, our goal is to evaluate
different CFI tools, regardless of whether they were implemented at the source code or binary
level. Note that if we would evaluate all existing work on the same system, the use of different
compilers would make the results uncomparable. Further, LLVM-CFI can be also used to
find source code gadgets that are still available for attack crafting, even after a restrictive CFI
defense was deployed. LLVM-CFI relies on the insight that by carefully modeling a CFI
defense into a comprehensive policy, the introduced constraints on callsites and calltargets can
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be assessed during program compile time. Therefore, there is no need to look at the binary
of the protected program since its source code provides more semantic richness and precision
w.r.t. the constraints imposed by each CFI defense.

We evaluate LLVM-CFI with common open source programs: NodeJS, Bind, Memcached,
Httpd, Lighttpd, Nginx, Apache Traffic Server, Google’s Chrome, and Redis. We show that
LLVM-CFI can help the assessment of CFI defenses and is effective at finding gadgets, even
with highly restrictive state-of-the-art CFI defenses deployed. In addition, we demonstrate how
LLVM-CFI can be utilized to craft a code reuse attack. We also show how it can be effectively
used to empirically measure the real attack surface reduction after a certain static CFI defense
policy was used to harden a program’s binary.
What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• We show that static CFI attacker models are powerful and drastically lower the bar for
performing CRAs against state-of-the-art defenses.

• We implement LLVM-CFI, a novel framework usable for generating low-effort CRAs
and for empirically assessing CFI defenses against each other, using constraint-driven
static analysis of aggregated program meta-data obtained during program compilation.

• We evaluate and compare existing static CFI defenses against each other, showing their
strengths and weaknesses by employing LLVM-CFI’s CFI defense constraints. We show
the target sets and allow reasoning about the sizes of the sets and provide useful metrics.

• We present a NodeJS-based case study with the goal of highlighting how LLVM-CFI
can be used to craft CRAs against a state-of-the-art defense, e.g., the secure VTV/IFCC
[261] implementation.

• We introduce four new CFI defense assessing metrics that are more effective and precise
than existing metrics. We also show the significance of one of our metrics by putting it
to work in our evaluation. Compared to other tools in this Section, we take into account
object oriented program features.

8.2 Threat Model

We align our threat model with previous work by considering a powerful and realistic adver-
sary [267, 187, 251, 59, 238]. We rely on deployed and complementary mitigation techniques
to achieve a comprehensive coverage. The attacker knows which defenses are applied, has
access to the source code of his prospective victim application and the target binary is not
re-randomized in short intervals. For instance, the attacker can extract knowledge about the
environment and apply this knowledge to the attack. The program which the attacker wants
to attack contains an exploitable memory corruption (e.g., buffer overflow) that allows the
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8 LLVM-CFI: Analyzing Control Flow Integrity Defenses

attacker to corrupt memory objects (e.g., inserting fake objects). The attacker relies on an
automated gadget discovery tool to craft a CRA with reduced application knowledge. Further,
the attacker’s goal is to find gadgets and mount a CRA even if state-of-the-art CFI [261, 286]
defenses are deployed. We deliberately only focus on CFI-based defenses as this defense class
is well explored, evaluated and used in practice [149]. The system on which the vulnerable
application is running ensures that the memory can be either writable or executable (W⊕X), but
not both at the same time (e.g., DEP [164]). We assume that Address Space Layout Randomiza-
tion (ASLR) [219] is in place. A perfect (one to one mapping between callee and caller) shadow
stack implementation is also deployed, which makes the exploit of CFG returning edges impos-
sible. The attacker can therefore only jump at the beginning of a function and not inside due to
a coarse-grained forward-edge CFI [290] defense. The system on which the vulnerable applica-
tion runs enforces execute-only memory pages. This essentially means that the CPU can fetch
instructions, while normal read and write accesses trigger an access violation (e.g., XOM [25]).

8.3 Overview

LLVM-CFI is a static gadget detection framework which can be used to assist an analyst eval-
uating the attack surface of different types of static CFI defenses. To achieve this, LLVM-CFI
applies a static black box strategy in order to statically retrieve code-reuse gadgets through a set
of attacker-controllable forward control flow graph (CFG) edges. The forward-vulnerable CFG
edges are expressed as a callsite with a variable number of possible target functions. Further,
these edges can be reused by an attacker to call arbitrary functions via arbitrary read or write
primitives. To call such series of arbitrary functions, an attacker can chain a number of edges
together by dispatching fake objects contained in a vector. See, for example, the COOP [238]
attack which is based on a dispatcher gadget used to call other gadgets through a single loop
iteration. The COOP attack uses gadgets which are represented by whole virtual functions.

LLVM-CFI supports a wide range of code reuse defenses based on user-defined policies,
which are composed of constraints about the set of possible calltargets allowed by a particular
applied CFI defense. The main idea behind LLVM-CFI is to compile the target program with
different types of CFI policies and get the allowed target set per callsite for each constraint
configuration. Note that we assume the program was compiled with the same compiler as the
one on which LLVM-CFI is based. Moreover, LLVM-CFI’s policies are reusable and extensible;
they model security invariants of important CRA defenses. Essentially, under these constraints,
virtual pointers at callsites can be corrupted to call any function in the program. Thus, in this
thesis, we focus on the possibility to bend [36] a pointer to the callsite’s legitimate targets.
Further, we assume that large programs contain enough gadgets for successfully performing
CRAs. Bending assumes that it is possible for an attacker to reuse protected gadgets during
an attack making the applied defense of questionable benefit.

Figure 8.1 depicts the main components of LLVM-CFI and the work-flow used to analyze the
source code of a potentially vulnerable program in order to determine CRA statistics, as follows.
The analyst first provides as input ¶ to LLVM-CFI a program’s source code ·. Based on the
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Figure 8.1: Design of LLVM-CFI with the main stages of the analysis pipeline.
previously selected defense, the desired analysis will be performed. The analysis previously
mentioned is dependent on the selected defense model and on the available primitives. The
analyst does this if he knows that the defense he wants to apply is currently available in the
LLVM-CFI tool. The user selects the used defense model from the list of implemented defenses.
This is done by switching on a flag inside the LLVM-CFI source code, which can also be
implemented as a compiler flag, if desired. In case the defense is not available, the analyst
needs to extend the list of primitives ¸, and model his defense as a policy (set of constraints)
in the analysis component of LLVM-CFI¹. In order to do this, he needs to know about the
analysis internals of LLVM-CFI. After selecting/modeling a defense, the analyst forwards
the application’s source code º to LLVM-CFI which will analyze it with its static analysis
component. During static analysis » the previously selected defense will be applied when
compiling the program source code. As the analysis is performed, each callsite is constrained
with only the legitimate calltargets. Note that the per callsite, a legitimate calltarget is dependent
on the currently selected defense model. The result of the analysis contains information about
the residual target set for each individual callsite after a CFI policy was assessed ¼. This list
contains a set of gadgets (callsites + calltargets) that can, given a certain defense model, be
used to bend the control flow of the application. These target constraints are collected and
clustered in the statistics collection component of LLVM-CFI½. Finally, at the end of the
gadget collection phase, a list of calltargets containing potential usable gadgets statistics ¾

based on the currently applied defense(s) will be reported. Note that if needed, the set of
available primitives can be extended beyond the extensive set provided by LLVM-CFI.

8.3.1 Available Analysis Primitives

LLVM-CFI provides the following program primitives, which are either collected or constructed
during the program analysis phase. These primitives are used by LLVM-CFI to implement
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8 LLVM-CFI: Analyzing Control Flow Integrity Defenses

static CFI policies and to perform target constraint analysis. Briefly, the currently available
primitives are as follows:

Virtual table hierarchy. (see [106] for a more detailed definition) Allows performing virtual
table inheritance analysis of only virtual classes as only these have virtual tables. Note that
a class is virtual if it defines or inherits at least one virtual function. A function in C++ is virtual
if it has the C++ virtual modified.

Vtable set. Is a set of vtables corresponding to a single program class. This set is useful
to derive the legitimate set of calltargets for a particular callsite. The set of calltargets is
determined by using the class inheritance relations contained inside a program.

Class hierarchy. (see [263, 232] for more details) Can be represented as a CFG. Its main pur-
pose is to model inheritance relations between classes. Note that a program can have multiple
class hierarchies (e.g., Google Chrome). The difference between virtual table hierarchy and
class hierarchy is that the class hierarchy contains both virtual and non-virtual classes whereas
the virtual table hierarchy can only be used to reason about the inheritance relations between
virtual classes.

Virtual table entries. Allow LLVM-CFI to analyze the number of entries in each virtual table
with the possibility to differentiate between virtual function entries, offsets in vtables, and
thunks.

Vtable type. Is determined by the name of the vtable root for a given vtable. A vtable root
is the last derived vtable contained in the vtable hierarchy.

Callsites. Are used by LLVM-CFI to distinguish between direct and indirect (object-based
dispatch and function-pointer based indirect transfers) callsites.

Indirect callsites. Are based on: (1) object dispatches or (2) function pointer based calls. Based
on these primitives, LLVM-CFI can establish different types of relations between callsites
and calltargets (i.e., virtual functions). At the same time, we note that it is possible to derive
backwards relationships from calltargets to legitimate callsites based on this primitive.

Callsite function types. Allow to precisely determine the number and the type of the provided
parameter by a callsite. As such, a precise mapping between callsites and calltargets is possible.

Function types. Allow to precisely determine the number of parameters, their primitive types
and return type value for a given function. This way, LLVM-CFI can generate a precise mapping
between compatible calltargets and callsites.

These primitives can be used as building blocks during the various analyses that LLVM-CFI
can perform in order to derive precise measurements and a thorough assessment of a modeled
static CFI policy. We note that in order to model other CFI defenses, other (currently not
available) simple or aggregated analysis primitives may need to be added into LLVM-CFI’s
analysis phase.
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8.3.2 Constraints

The basic concept of any CRA is to divert the program intended control flow by using arbitrary
memory write and read primitives. As such, the result of such a corruption is to bend [36]
(modify) the control flow, such that it no longer points in the intended (legitimate) calltarget
set but rather call calltargets which would not be called during benning program execution.
This means that the attacker can point/call to any memory address in the program (shared
libraries included). While this type of attack is still possible, we want to highlight another type
of CRA in which the attacker uses the intended/legitimate per callsite target set. That is, the
attacker calls inside this set and performs his malicious behavior by reusing calltargets which
are protected, yet usable during an attack. As previously observed by Veen et al. [267], CRA
defenses try to mitigate this by mainly relying on one or two dimensions at a time, as follows:

Write constraints. limit the attacker’s capabilities to corrupt writable memory. If there is no
defense in place, the attacker can essentially corrupt: pointers to data, non-pointer values such
as strings, and pointers to code (i.e., function pointers). In this thesis, we do not investigate these
types of defenses as these were already addressed in detail by Veen et al. [267]. Instead, we fo-
cus on target constraints as these represent a big class of defenses which in our assessment needs
separate and detailed treatment. This obviously does not mean that our analysis results cannot be
used in conjunction with dynamic write constraint assessing tools. Rather, our results represent a
common ground truth on which runtime assessing tools can build their gadget detection analysis.

Target constraints. restrict the legitimate calltarget set for a callsite which can be controlled by
an attacker. With no target constraints in place, the target set for each callsite is represented by all
functions located in the program and any linked shared library. The key idea is to reduce the wig-
gle room for the attacker such that he cannot target random callsites. As most of these defenses
impose a one-to-N mapping, an attacker being aware of said mapping could corrupt the pointer
at the callsite to bend [36] the control flow to legitimate targets in an illegitate order to achieve
his malicious goals. This essentially means that all static defenses impose target constraints.

Static Analysis. LLVM-CFI is based on the static analysis of the program which is repre-
sented in LLVM’s intermediate representation (IR). The analysis is performed during link
time optimization (LTO) inside the LLVM [152] compiler framework to detect callsites and
legitimate callees under the currently analyzed CFI defense. LLVM-CFI uses the currently
available primitives and the implemented defenses to impose target constraints for each callsite
individually. Currently, LLVM-CFI supports eight target constraint defenses, but this list
can easily be extended since other defenses are based on similar mechanisms which can be
performed during a whole program analysis.

Generic Target Constraints. As mentioned above, LLVM-CFI can be used to impose existing
generic calltarget constraints (defenses) based on class hierarchy relations and callsites and
calltarget type matching with different levels of precision depending on the currently modeled
CFI defense. Further, LLVM-CFI allows extending and combining existing policies or applying
them concurrently.
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8 LLVM-CFI: Analyzing Control Flow Integrity Defenses

8.3.3 Generating Defense Statistics
During the static analysis LLVM-CFI determines the legitimate calltarget set for each callsite.
These results are used as raw data for computing more complex statistics such as the average,
minimum and maximum count of legitimate calltargets per callsite. LLVM-CFI outputs all
collected statistics about the legitimate caller/callee pairs such that these can be later used by an
analyst. The results can, for example, be used as parameters for different metrics for computing
legitimate callee return sets. Mapping calltargets to previously discovered (manually/auto-
matically) gadgets is also possible. Moreover, other relevant statistics can be built for each
callsite w.r.t. how many legitimate calltargets actually contained gadgets which are relevant to
a specific type of code reuse attack, e.g., the COOP [238] code reuse attack where a complete
virtual function (calltarget) represents a single gadget. Thus, an analyst can further infer which
calltargets should be protected by a defense and which are safe to remain unprotected, in case
he needs to strike a trade-off between protection (security) and performance which is most
likely always the case in reality.

8.4 Mapping Defenses
In this Section, we show how to map CFI defense constraints into LLVM-CFI. Similarly to
Newton [267], which was developed in parallel to LLVM-CFI, we model the security provided
by CRA defenses along two axes: (1) write constraints imposed by the defense, and (2) imposed
target constraints. The main motivation for the usage of this modeling technique is that: (1) the
majority of CFI techniques do not impose write constraints, with the exception of CFI runtime
tools which adjust their analysis by using hardware features, and (2) it serves as a natural exten-
sion (i.e., it eases understanding) of existing work. Next, we will map the defenses according to
these constraints. In our work, we focus only on one class of defense at a time and we add more
constraint types to the target constraint axis. As opposed to Newton [267], LLVM-CFI helps to
derive static constraints imposed on the target program. This mapping allows to define textual
descriptions of each CFI policy and reduces the task to a compiler-based counting problem
allowing an analyst to determine which callsites and calltargets are protected and which are not.

8.4.1 Deriving Constraints
Table 8.1 highlights the constraints imposed by each defense subclass. In our work, we do
not consider runtime-based write constraining defenses (HCFI and CsCFI, see Newton [267]
for more details), since these runtime constraints are hard to be assessed statically. Instead,
LLVM-CFI models a comprehensive set of eight defense classes with no write constraints,
which we discuss in detail in subsubsection 8.4.1.1.

8.4.1.1 Constraint Subclasses
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Defense Write Constraints Target Constraints
Class Subclass Solutions Details Dynamic Details

TypeArmor [268] None 8 Bin types
IFCC/MCFI [210, 261] None 8 Src types
Safe IFCC/MCFI [210, 261] None 8 Safe src Types
ShrinkWrap/IVT [106] None 8 Precise sub-hierar.

CFI VTV [261, 24] None 8 Sub-hierarchy
vTint [287] None 8 All vtables
Marx/VCI [218, 78] None 8 vtable paths
HCFI [212] None X Computed
CsCFI [44] Segr X None
vTrust [286] None 8 Precise src types

Table 8.1: Mapping of CFI code-reuse defenses into LLVM-CFI constraints.
TypeArmor. Imposes callsite target constraints based on a function type policy. In particular,
for each callsite only targets which fulfill the parameter count based policy are allowed during
runtime.

IFCC/MCFI. Enforces similar constraints as TypeArmor, with the exception that the function
type is computed at the source rather than at the binary level.

Safe IFCC/MCFI. Contains the same defenses as the IFCC/MCFI defense subclass, except that
in this case, we distinguish a safe mode, where type information is less strict for compatibility
reasons with real-world programs, this is discussed thoroughly by Tice et al. [261] VTV/IFCC.

VTV. Subclass enforces for each indirect callsite the whole subclass hierarchy Src sub-hierarchy
which is precise but leaves wiggle room for the attacker and it enforces too many calltargets,
as noted by Haller et al. [106].

ShrinkWrap/IVT. Subclass can enforce a more precise class sub-hierarchy (Precise src types)
than IFCC/MCFI. For each indirect callsite (object dispatch) a precise class hierarchy is
computed.

vTint. Operates at the binary level in order to find indirect callsites and virtual tables. This
defense subclass is enforcing for each callsite all entries contained in all detected virtual tables
(all vtables).

Marx/VCI. Subclass operates on binary to recuperate a quasi class hierarchy: (1) the class has
no root node, and (2) the edges in the class hierarchy are not oriented.

vTrust. Subclass enforces matching function types for each indirect callsite. It follows a
precise source code callsite-to-targets mapping (Precise src types) based on computing at all
calltargets a hash composed of the number, types, and return type of each virtual function.

Next, we highlight the differences between the VTrust CFI policy and the class hierarchy
analysis (CHA) based policy of LLVM-CFI/Shrinkwrap and IVT in order to make clear how the
calltarget sets differ depending on the used defense policy. ShrinkWrap and IVT use CHA and
based on the base type of the object, only some subtypes are allowed, while VTrust falls back to
the base objects and is therefore less precise than CHA-based policies. IVT, for example, allows

151



8 LLVM-CFI: Analyzing Control Flow Integrity Defenses

all subtypes. Note that with a larger class hierarchy also as many targets are allowed by vTrust
and IVT, whereas ShrinkWrap allows just a sub-part of the class sub-hierarchy (some subtypes).

0.class Foo { virtual void bar(); };
1.class Bar:public Foo { virtual void bar(); }
2.class Baz:public Bar { virtual void bar(); }
3.class Bac:public Bar { virtual void bar(); }
4.Bar *b = new Bar();
5.b->bar();

Figure 8.2: C++ based class hierarchy with four classes.

Figure 8.2 depicts a simple C++ class hierarchy which will be used to show that based on the
used CFI policy different functions are accessible after applying a certain policy. Under vTrust
the indirect call, line five in Figure 8.2, can target any of the four functions, and under CHA
based policy (as implemented by IVT) Bar::bar, Bac::bar and Baz::bar can be called,
while under a different version of CHA based policy (as implemented by LLVM-CFI and
Shrinkwrap) only Bar::bar and Baz::bar can be called. This highlights the fact that the CFI
policies have different granularity w.r.t. constraining the calltarget set per callsite.

Note that the first three constraint classes were first presented by Newton [267], while the
last five classes are presented for the first time in this thesis.

8.4.1.2 Out of Scope Write Constraints

Corrupting data pointers, Corrupting non-pointers, and Corrupting segregated state write
constraints are out of scope in this work, i.e., all assessed classes in this thesis do not impose
any writing constraints. We advise the reader to look at Newton [267] for more details about
these write constraints. Note that these constraints are not relevant for our CFI subclasses as
they are not dependent on them.

8.4.2 Mapping Defenses

Figure 8.3 depicts the constraints of the defenses, presented in Table 8.1. The constraints are
grouped in two categories in ascending order indicated with two arrows on the X-axis according
to their precision of determining precise target sets per callsite. The X-axis shows the write con-
straints imposed by each defense subclass, and the Y-axis shows the target constraints. Defenses
that share both the same write and target constraints impose equivalent security restrictions,
thus each (X-axis, Y-axis) pair depicted in Figure 8.3 represents an equivalence class.

Note that in this thesis, we are interested in only static CFI defenses which do not impose any
write constraints. We are aware that these defenses are thought to be accompanied by some type
of write constraint but for the sake of simplicity, we abstract these away for now. As such, run-
time CFI (black rectangle), re-randomization (yellow circle), pointer integrity (brown diamond),
and information hiding (green triangle) depicted in Figure 8.3 are not taken into consideration
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Figure 8.3: Mapping of CFI defense classes to write (X-axis) and target (Y-axis) constraints
in LLVM-CFI.

as these were thoroughly analyzed by Newton [267]. Our objective is to focus on the details
of the static CFI class in order to reveal novel insights of this widely used class of defense.

LLVM-CFI can compile a given program with DWARF information. In this situation, the
function name and location inside the program is back-traceable to the exact location in the
source file. The same level of detail is possible for the associated callsite.

Important to observe is that all static CFI defenses impose no write constraints and as
such it is recommendable to use these defenses with some type of write constraints which
for example would impose that the virtual pointer used during object dispatches cannot be
overwritten to point to an illegitimate address inside the program. Further, the value of this
pointer is determined during runtime. We further assume that there are no implementation
specific vulnerabilities of these defenses and as such the equivalence classes hold. Further,
our constraint-based classification abstracts away specific implementation details and ignores
implementation specific differences across these defenses. For example, we consider the used
primitives (e.g., class hierarchy) for enforcing the CFI policy to be ideal with no precision
differences between binary and source code based tools. As such, we are able to generate lower
bounds w.r.t. the legitimate calltarget set of these defenses. Further, our approach is applicable
to general gadget generation constraints across many different defenses.

Next, we show how to implement constraints for the mapped defenses in LLVM-CFI, by
using the primitives specified in Section 8.3.1. Specifically, we present in detail the constraints
imposed at any indirect callsite depending on the target constraint.

Corrupting code pointers. The CFI defenses which do not impose any write constraints are
allowing any memory to be corrupted, such as code pointers. This is presented in Figure 8.3 by
abstracting the CFI constraints to a counting problem of legitimate calltargets per callsite. These
defenses are located on the left hand side of Figure 8.3 depicted on the X axis with (None).
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Note that in general, these type of constraints assume that the callsite is not corruptible since
it is located in read-only memory, but since these constraints do not impose any specific code
pointer corrupting defense these are regarded in this thesis as not defending code pointer at all.

The particular constraint-based counts are obtained by computing for each constraint the
target set counts with our LLVM-CFI tool. Next, LLVM-CFI compiles any given program in or-
der to obtain the target set and performs counts according to the currently used constraint. Note
that while in Section 8.4.1.1, we provide the general description of how the constraint classes
work, in this Section, we describe how the target constraints work in detail by associating them
to the LLVM-CFI primitives.

In the following, we will present eight defense classes modeled inside LLVM-CFI. Note
that each CFI defense description is very close to how the original CFI defense policy was
implemented in each tool and was thoroughly discussed with the original authors.
Bin Types (TypeArmor). For each indirect callsite (object dispatch and indirect pointer call)
(1) count the total number of virtual table entries residing in the whole virtual table hierarchies,
and (2) count the total number of non-virtual functions residing in the program, which are
consuming at most as many parameters as provided by the call site and up to six parameters.
If a program contains multiple distinct virtual table hierarchies (islands) then continue to count
them too and take them also into consideration for a particular callsite. Note, an island is a
program class hierarchy which is not connected to any other program’s class hierarchy.
Safe src types (Safe IFCC). For each indirect callsite count the number of functions (virtual
and non-virtual) located in the whole program for which the number and type of parameters
required matches the number and type of arguments provided at the callsite. The return type
of the matching function is ignored. All types of parameter pointer types are considered
interchangeable, i.e., int* and void* pointers are considered interchangeable.
Src types (IFCC). For each indirect callsite count the number of functions (virtual and non-
virtual) located in the whole program for which the number and type of parameters required
matches the number and type of arguments provided at the callsite. The return type of the
matching function is ignored. Compared to Safe src types this policy distinguishes between
different pointer types. Neither the return value of the matching function nor the name of the
function are taken into consideration.
Precise src types (vTrust). For each indirect callsite compute the number of parameters,
their types, and the name of the function (the literal name used in C/C++ without any class
information attached) that is called at that location. Match this function type identifier with
all virtual functions contained in all virtual table hierarchies. The name of the function is
taken into consideration when building the hash but not the function return type as this can
be polymorphic. A match is given when the signature of a callsite matches with one of the
signatures of one of the virtual functions.
All vtables (vTint). For each indirect callsite, count the total number of virtual functions
pointed to by vtable entries in any vtable present in the program.
vtable hierarchy/island (Marx). For each indirect callsite count the total number of virtual
functions pointed to by vtables entries having the same index in the vtable as the index used
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at the callsite. Do this for certain vtables where the index matches with the index used at the
callsite and which are located in the class hierarchy which contains the class of the dispatched
object. The abstract classes are not taken in consideration, this can be recognized by vtables
having pure virtual function entries.
Sub-hierarchy (VTV). For each virtual callsite build the class sub-hierarchy having as root
node the base class (least derived class that the dispatched object can be of) of the dispatched
object. From the classes in the sub-hierarchy take all vtables. In these vtables find the function
entries located at the offset used by the virtual dispatch mechanism at this particular callsite.
Then count the number of virtual functions to which these entries point to.
Precise Sub-hierarchy (ShrinkWrap). For each virtual callsite identify the vtable type used.
Take the vtable of said type from the base class of the dispatched object and build the vtable
sub-hierarchy having this vtable as root node. From the vtables in this hierarchy find the
function entries located at the offset used by the virtual dispatch mechanism at this callsite.
Then count the number of virtual functions, that these entries point to.

After LLVM-CFI computes for each callsite the calltarget set, as above described, it will
sum up all results for each applied constraint and for each callsite to generate several statistics.

8.5 Assessing CFI Policies
In this Section, we present how LLVM-CFI can be used to perform different types of CFI-
related measurements. LLVM-CFI helps to provide precise and reproducible measurement
results when performing CFI-related investigations. This Section provides several alternatives
to existing limited CFI metrics: AIR [290], fAIR [261], and AIA [90], which provide average
result values w.r.t. only forward edges calltarget set reduction per callsite after a certain CFI
policy was applied to a program. Further, we will show with which novel CFI-related policies
LLVM-CFI can be used in conjunction. Another set of metrics was introduced in a recent
survey by Burow et al. [32]; we evaluate our metrics on real-world programs while in the
survey the authors evaluate their metrics on a per-mechanism basis, changing the point of view.
Finally, for space reasons we focus on the most widely used ones.

Figure 8.4 depicts the dependencies between our metrics and program primitives. In Fig-
ure 8.4, we use the following abbreviations:(1) ics: indirect call site (i.e., x86 call instruction);
(2) irs: indirect return site (i.e., x86 ret instruction); (3) P: program; (4) VT: virtual table;
(5) VTI: virtual table inheritance; (6) CH: class hierarchy; (7) CFG: control flow graph; (8)
CG: code reuse gadget; Metrics: (9) CTR: indirect call target reduction; (10) CSD: indirect
call site damping metric; (11) RTR: indirect return target reduction; (12) RSD: indirect return
site damping metric; (13) fCGA: forward-edge based CG availability; (14) bCGA: backward
return-edge based CG availability.

Based on the two observations: (1) LLVM-CFI allows to determine precise forward edge
mappings as well as backward edge mappings when the forward edge mapping is available due
to the caller callee function calling convention, and (2) LLVM-CFI can be used to search for
the presence of code reuse gadgets (i.e., COOP gadgets which are complete virtual functions).
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Figure 8.4: Dependencies between our metrics (bold text), and program metadata primitives.
Next, we formulate four advantages of our approach: (1) our metrics do not provide average

numbers but rather absolute values, (2) can be used to assess backward edge target set reduction,
(3) can be used to assess the forward and backward edge control flow transfer damping due to
a variable number of checks inserted before each indirect control flow transfer, and (4) can be
used to assess the forward and backward edge control flow transfers w.r.t. gadget availability.
Finally, we present our four CFI metrics which can be used in conjunction with LLVM-CFI.

Definition 1 (CTR). Let icsi be a particular indirect callsite in a program P, ctri is the total
number of legitimate calltargets for an icsi after hardening a program with a certain CFI policy.

Then the CT R metric is:

CT R =
n

∑
i=1

ctri (8.1)

Note that the lower the value of CT R is for a given program, the more precise the CFI policy
is. The optimal value of this metric is equal to the total number of callsites present in the
hardened program. This means that there is a one-to-one mapping. We can also capture the
distribution of the numbers of call targets using min, max, and standard deviation functions.

Minimum: mini {ctri}; Maximum: maxi {ctri}; and Standard Deviation (SD):

CT RSD =

√
∑

n
i=1(ctri− ctri)2

n
(8.2)

Definition 2 (RTR). Let irsi be a particular indirect return site in the program P, rtri is the
total number of available return targets for each irsi after hardening the backward edge of a
program with a CFI policy.

Then the RT R metric is:

RT R =
n

∑
i=1

rtri (8.3)
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Note that as lower the value of RT R is for a given program, the better the CFI policy is. The
optimal value of this metric is equal to the total number of indirect return sites present in the hard-
ened program. This means that there is a one-to-one mapping. Other key properties: Minimum:
RT RMIN = mini {rtri}; Maximum: RT RMAX = maxi {rtri}; and Standard Deviation (SD):

RT RSD =

√
∑

n
i=1 (rtri− rtri)

2

n
(8.4)

Definition 3 (CSD). Let ncni be the runtime cost for a CFI check located before an indirect
callsite icsi which is present in a given hardened program. Let k be the runtime overhead
(damping ratio) imposed by one inserted CFI check at the irsi. The k value could represent
milliseconds needed to perform a CFI check.

Then the CSD metric is:

CSD =
n

∑
i=1

ncni ∗ k (8.5)

Note that as lower the value of CSD is for a given program, the better the CFI policy is.
The optimal value of this metric is equal to the total number of indirect callsites present in the
hardened program when k equals one. The value of k can take any millisecond value.

Definition 4 (RSD). Let nrni be the runtime cost for a CFI check performed before an indirect
return site irsi which is present in a given hardened program. Let k be the runtime overhead
(damping ratio) imposed by one inserted CFI check at the irsi. The k value could represent
milliseconds needed to perform a CFI check.

Then the RSD metric is:

RSD =
n

∑
i=1

nrni ∗ k (8.6)

Note that the lower the value of RSD is for a given program, the better the CFI policy is.
The optimal value of this metric is equal to the total number of indirect callsites present in the
hardened program when k equals one. The value of k can take any millisecond value.

Definition 5 (fCGA). Let cg fi be the total number of legitimate call targets that are allowed
and which contain gadgets according to a gadget finding tool.

Then the forward code reuse gadget availability fCGA metric is:

fCGA =
n

∑
i=1

cg fi (8.7)

Note that the lower the value of fCGA is, the better the policy is. This means that every
time a calltarget containing a code reuse gadget is protected by a CFI check, this gadget is not
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reachable. The reverse is true when the calltarget return contains a gadget and there are indirect
control flow transfers which can call this indirect return site unconstrained.

Definition 6 (bCGA). Let cgri be the total number of legitimate callee returns addresses which
contain code gadgets according to a gadget finding tool.

Then the backward code reuse gadget availability bCGA metric is:

bCGA =
n

∑
i=1

cgri (8.8)

Note that the lower the value of bCGA is, the better the policy is. This means that every time
when a calltarget return site which contains a code reuse gadget is protected by a CFI check then
this gadget is not reachable. The reverse is true, when the calltarget return contains a gadget and
there are indirect control flow transfers which can call this indirect return site unconstrained.

Above, we depicted these metrics to point out that all these CFI-related measurements are
relevant and could be performed depending on the type of CFI policy a certain tool implements.
The eight assessed CFI policies can neither constrain the backward edge nor analyze their
availability of gadgets and their runtime cost.

The metrics presented above, can be used by LLVM-CFI to assess CFI policies w.r.t. other
dimensions (i.e., (1) backward edges, and (2) gadget availability) with which most of the CFI
techniques are not addressing. Thus, we did not use the four metrics in conjunction with the
eight CFI classes assessed in this thesis since these metrics to not address (1) and (2). Moreover,
we are not aware of any CFI policy which is based on these types of four metrics. Finally, by
using these metrics experiments become more reproducible and the tools better comparable
against each other.

8.6 Design and Implementation

In the following Section, we present LLVM-CFI’s design and implementation details.

8.6.1 Data Collection and Aggregation

Collection. LLVM-CFI collects the virtual tables of a program in the Clang front-end and
pushes them through the compilation pipeline in order to make them available during link-time
optimization (LTO). For each virtual table, LLVM-CFI collects the number of entries. The
virtual tables are analyzed and aggregated to virtual table hierarchies in a later step. Other data
such as direct/indirect callsites and function signatures are collected during LTO.

Aggregation. Next we present the program primitives which are constructed by LLVM-CFI:
(1) virtual table hierarchies based on the previously collected virtual tables inside the Clang
front-end. The virtual table hierarchies are used to derive relationships between the classes
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inside a program (class hierarchies), determine sub-hierarchy relationships and count, for exam-
ple, how many virtual table entries (virtual functions) a certain virtual table sub-hierarchy has.
(2) virtual table sets which are used for mapping callsites to legitimate class hierarchy-based
virtual calltargets. (3) callsite function types which are composed of the number of parameters
provided by a callsite, their types, and if the callsite is a void or non-void callsite. (4) function
types which are composed of the function name, the expected number of parameters and their
types and if the function is a void or non-void function.

8.6.2 CFI Defense Modeling
LLVM-CFI implements a set of constraints for each modeled CFI-defense, which are defined as
analysis conditions that model the behavior of each analyzed CFI-defense. These constraints are
particular for each CFI-defense and operate on different primitives. More specifically, different
constraints of a CFI-defense are implemented inside LLVM-CFI. The steps for modeling a
CFI defense are as follows: (1) Which LLVM-CFI’s primitives are used by the policy? (2) Is
there a nesting or subset relation between primitives? (3) Does the policy rely on hierarchical
meta-data primitives? (4) What is the callsite/calltarget matching criteria? (5) How to count a
callsite/calltarget match?

Note that there is no effort needed to port LLVM-CFI from one policy to another as all
policies can operate in parallel during compile time. As such, the measurement results obtained
for each policy are written in one pass in an external file for later analysis.

Next, we give a concrete example of how a CFI defense, TypeArmor’s Bin types policy [268],
was modeled inside LLVM-CFI by following the steps mentioned above. For more details,
see Section 8.4.2 in Appendix for a description on how this policy works and the constraint
sub-classes depicted in Section 8.4.1.1.

(1) The policy uses the: callsite primitive, indirect callsite, callsite function type, and function
type primitives provided by LLVM-CFI. (2) Yes, from all functions contained in the program,
we analyze only the virtual functions which expect up to six parameters to be passed by the
callsite. Next, from all callsites we filter out the ones which are not calling virtual functions
and which provide more than six parameters to the calltarget. Check if the callsite is a void
or non-void callsite. Check if each analyzed calltarget is a void or a non-void target. (3) The
policy does not rely on hierarchical meta-data. (4) A callsite matches a calltarget if it provides
less or the same number of parameters as the calltarget expects. (5) In case the matching criteria
holds, we count the total count one up for each found match.

Finally, these constraints are implemented as an LLVM compiler module pass performed dur-
ing LTO. Note that even an analyst with restricted previous knowledge can model the constraints
of a CFI policy by observing how other existing policies were implemented inside LLVM-CFI.

8.6.3 CFI Defense Analysis
LLVM-CFI performs for each implemented CFI defense a different analysis. Each defense
analysis consists of one or more iterations through the program primitives which are relevant
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for the CFI defense currently being analyzed. Depending on the particularities of a defense,
LLVM-CFI uses different previously collected program primitives. More specifically, class
hierarchies, class sub-hierarchies, or function signatures located in the whole program or in
certain class sub-hierarchy are individually analyzed. During a CFI-defense analysis, statis-
tics are collected w.r.t. the number of allowed calltargets per callsite taking into account the
previously modeled CFI-defense.

For example, for a certain CFI defense (e.g., TypeArmor’s CFI policy Bin types) it is required
to determine a match between the number of provided parameters (up to six parameters) of each
indirect callsite and all virtual functions present in the program (object inheritance is not taken
into account) which could be the target (may consume up to six parameters) of such a callsite.
In order to analyze this CFI defense and collect the statistics, LLVM-CFI visits all indirect
callsites it previously detected in the program and all virtual functions located in all previously
recuperated class hierarchies. Afterwards, each callsite is matched with potential calltargets
(virtual functions). Finally, after all virtual callsites and virtual functions were visited (after
all class hierarchies were traversed), the generated information is presented to the analyst by
printing it in the console and external files.

8.6.4 Implementation
We implemented LLVM-CFI as one link time optimization (LTO) pass by extending the
Clang/LLVM (v.3.7.0) compiler [50] framework infrastructure. The implementation of LLVM-
CFI is split between the Clang compiler front-end (part of the metadata is collected here),
and one link-time pass, totaling around 2 KLOC. LLVM-CFI supports separate compilation
by relying on the LTO mechanism built in LLVM [50]. By using Clang, LLVM-CFI collects
front-end virtual tables and makes them available during LTO. Next, virtual table hierarchies
are built which are used to model different CFI defenses. Other LLVM-CFI primitives such
as function types are constructed during LTO. Finally, each of the analyzed CFI defense is sep-
arately modeled inside LLVM-CFI by using the previously collected primitives and aggregated
data to impose the required defense constraints.

8.7 Evaluation
In this Section, we show how useful LLVM-CFI is by putting it to work and addressing the
following research questions (RQs):

• RQ1: What is the residual attack surface of NodeJS (we performed an use case) after
several CFI policies are independently applied? (Section 8.7.1)

• RQ2: What are the generalized results for all analyzed programs? (Section 8.7.2)

• RQ3: How can LLVM-CFI be used to rank CFI policies based on the level of protection
they offer? (Section 8.7.3)
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• RQ4: How can LLVM-CFI be used to construct code reuse attacks? (Section 8.7.4)

Test Programs. We evaluated LLVM-CFI by using the following real-world programs: Nginx
[204] (v. 1.13.7, C code), NodeJS [213] (v. 8.9.1, C/C++ code), Lighttpd [144] (v. 1.4.48, C
code), Httpd [7] (v. 2.4.29, C code), Redis [231] (v. 4.0.2, C code), Memcached [163] (v. 1.5.3,
C/C++ code), Apache Traffic Server [8] (v. 2.4.29, C/C++ code), and Google Chrome [97] (v.
33.01750.112, C/C++ code).
Experimental Setup. The experiments were performed on an Intel i5-3470 CPU with 8GB of
RAM running on the Linux Mint 18.3 OS. All experiments were performed ten times to provide
reliable values. If not otherwise stated, we modeled each of the eight CFI defenses inside
LLVM-CFI according to the policy descriptions provided in Section 8.4 and used Definition
1 to compute the residual attack surface after a CFI policy was applied.

8.7.1 Detailed Analysis of NodeJS
In this Section, we analyze the residual attack surface after each of the eight CFI policies
was applied individually to NodeJS. We selected NodeJS as this is a very popular real-world
application and it contains both C and C++ code. As such, LLVM-CFI can collect results for
the C and C++ related CFI polices.

Targets Median Targets Distribution
Static target NodeJs MKSnapshot
constraint NodeJS MKSnaphot Total Min Max Min 90p Max Min 90p Max
Bin types 21,950 (21,950) 15,817 (15,817) 15,817 (20,253) 15,817 (15,817) 21,950 (21,950) 12,545 (885) 30,179 (30,179) 32,478 (32,478) 8,714 (244) 21,785 (21,785) 23,376 (23,376)
Safe src types 2,885 (88) 2,273 (495) 2,273 (139) 2,273 (88) 2,885 (21,950) 0 (0) 5,751 (5,751) 5,751 (5,751) 1 (0) 4,436 (4,436) 4,436 (4,436)
Src types 1,511 (56) 1,232 (355) 1,232 (139) 1,232 (56) 1,511 (355) 0 (0) 5,751 (5,751) 5,751 (5,751) 1 (0) 4,436 (4,436) 4,436 (4,436)
Precise src types 3 2 3 2 3 0 499 730 0 507 756
All vtables 6,128 2,903 6,128 2,903 6,128 6,128 6,128 6,128 2,903 2,903 2,903
vtable hierarchy 2 1 2 1 2 0 54 243 0 16 108
Sub-hierarchy 2 1 1 1 2 0 7 243 0 11 108
Precise sub-hierarchy 2 1 1 1 2 0 6 243 0 9 108

Table 8.2: Policies evaluation for NodeJS. The values not contained in round brackets are
obtained for only virtual callsites and all targets (i.e., virtual and non-virtual),
while the values in round brackets are obtained for all indirect callsites (i.e.,
virtual and function pointer based calls) and all targets. For the Bin types, Safe
src types, and Src types policies depicted above the targets can be virtual or
non-virtual, for the remaining policies the targets inherently can only be virtual
functions. Targets: median (minimum and maximum) number of legal function
targets per callsite. Target distribution: minimum/90th percentile/maximum
number of targets per callsite.

Table 8.2 depicts the static target constraints for the NodeJS program under different static
CFI calltarget constraining policies. Table 8.2 provides the minimal and maximum values of
virtual calltargets which are available for a virtual callsite after one of the eight CFI policies
is applied. MKSnapShot contains the Chrome V8 engine and is used as a shared library by
NodeJS after compilation. We decided to add MKSnapshot in Table 8.2 as this component is
strongly used by NodeJS and represents a source of potential calltargets. The NodeJS results
were obtained after static linking of MKSnaphot.
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The targets median entries in Table 8.2 (left hand side) indicate the median values obtained
for independently applying one of the eight CFI policies to NodeJS. For both NodeJS and
MKSnaphot, the best median number of residual targets is obtained using the following policies:
(1) vtable hierarchy, (2) Sub-hierarchy, and (3) Precise sub-hierarchy. These results indicate
that these three CFI policies provide the lowest attack surface while the highest attack surface
is obtained for the Bin types policy, which allows the highest number of virtual and non-virtual
targets.

The targets distribution in Table 8.2 (right hand side) shows the minimum, maximum and
90 percentile results for the same eight policies as before. While the minimum value is 0
the highest values for both NodeJS and MKSnapshot are obtained for the Bin types policy,
while the lowest values are obtained for the following policies: (1) vtable hierarchy, (2) Sub-
hierarchy, and (3) Precise sub-hierarchy. Further, the 90p results show that on the tail end of
the distribution, a noticeable difference between the three previously mentioned policies exists.
We can observe that for these critical callsites the Precise sub-hierarchy policy provide the
least amount of residual targets and therefore the best protection against CRAs. Meanwhile,
the 90p results for the Precise src type and vtable hiearchy policies indicate that the residual
attack surface might still be sufficiently large for the attacker.

8.7.2 Generalized Results
Table 8.3 depicts results for the three policies which can provide protection for both C and C++
programs. In contrast to Table 8.4, all indirect calls are taken into account (including virtual
calls). Therefore, the targets can be virtual or non-virtual. Intuitively, the residual attack surface
grows with the size of the program. This can be observed by comparing the results for large
(e.g., Chromium) with smaller (e.g., Memcached) programs.

Table 8.4 depicts the overall results obtained after applying the eight assessed CFI policies to
virtual callsites only. The first four policies (italic font) cannot differentiate between virtual and
non-virtual calltargets. Therefore, for these policies the baseline of possible calltargets includes
all functions (both virtual and non-virtual). This is denoted with Baseline all func. Since
the remaining four policies can only be applied to virtual callsites, they restrict the possible
calltargets to only virtual functions. Thus, the baseline for these policies includes only virtual
functions (Baseline virtual function). For a better comparison between the first and second
categories of policies, we also calculated the target set when restricting the first four policies to
only allow virtual callsites. For Bin types, Safe src types, Src types, and All vtables the results
indicate that there is no protection offered. The three-class hierarchy-based policies perform
best when considering the median and average results. In addition, the Precise src type policy
performs surprisingly well, especially after restricting the target set to only virtual functions.

8.7.3 Ranking of CFI Policies
In this Section, we normalize the results presented in RQ2 using the Baseline values, (i.e., the
number of possible target functions), in order to be able to compare the assessed CFI policies
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Callsites Targets (Non-)VFunctions
Program Value Write

con-
straints

Baseline
all func.

Bin
types

Safe
src
types

Src
types

Min 885 0 0
90p 30,179 5,751 5,751

NodeJS Max none 32,478 32,478 5,751 5,751
Median 21,950 88 56

Avg 20,787 1,242 1,099
Min 357 0 0

Apache 90p 5,450 1,315 1,315
Traffic Max none 6,201 6,201 1,315 1,315
Server Median 2,608 1,315 1,315

Avg 3,350 840 835
Min 3,612 0 0
90p 201,477 64,315 64,315

Chromium Max none 232,593 232,593 64,315 64,315
Median 97,041 8,672 7,394

Avg 132,182 27,238 27,074
Min 99 0 0
90p 1,793 160 160

Httpd Max none 1,949 1,915 160 160
Median 1,070 18 16

Avg 1,017 53 48
Min 37 0 0
90p 582 44 44

Lighttpd Max none 594 582 44 44
Median 395 6 6

Avg 388 17 17
Min 92 0 0
90p 155 2 2

Memcached Max none 225 221 17 17
Median 155 2 2

Avg 157 2 2
Min 422 1 1
90p 1,172 149 149

Nginx Max none 1,270 1,259 149 149
Median 719 75 75

Avg 697 81 81
Min 1,266 1 1
90p 2,437 54 54

Redis Max none 2,880 2,635 391 391
Median 1,994 16 14

Avg 1,877 36 35

Table 8.3: Virtual and pointer based callsites results.
against each other w.r.t. calltarget reduction. This allows for a better comparison of programs
with different sizes and complexities.

Table 8.5 depicts the average, standard deviation and 90th percentile results obtained after
analyzing only virtual callsites. Unless stated otherwise, we use the CT RSD metric depicted
in Equation Equation 8.2 to compute the standard deviation (SD) for the assessed programs.
For these callsites, all eight CFI policies can be assessed.

We calculated the average over the three C++ programs after normalization. By considering
these aggregate average values, the eight policies can be ranked (from best (smallest aggregate
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Callsites Targets Baseline Virtual Function Targets
Program Value Write constraints Baseline all func. Baseline virt. func. Bin types Safe src types Src types Precise src types all vtables vtable hierarchy Sub-hierarchy Precise sub-hierarchy

Min 12,545 (1,956) 0 (0) 0 (0) 0 (0) 6,128 0 0 0
90p 30,179 (4,078) 5,751 (810) 5,751 (810) 499 (10) 6,128 54 7 6

NodeJS Max none 32,478 6,300 32,478 (4,455) 5,751 (810) 5,751 (810) 730 (243) 6,128 243 243 243
Median 21,950 (3,106) 2,885 (426) 1,511 (121) 3 (3) 6,128 2 2 2

Avg 19,395 (2,793) 2,406 (414) 2,113 (354) 86 (12) 6,128 14 8 8
Min 2,608 (232) 1 (0) 1 (0) 0 (0) 788 0 0 0
90p 4,085 (546) 1,315 (97) 1,315 (97) 17 (13) 788 34 7 7

Traffic Server Max none 6,201 796 6,201 (710) 1,315 (159) 1,315 (159) 18 (16) 788 42 18 18
Median 2,608 (232) 1,315 (97) 1,315 (97) 17 (13) 788 7 1 1

Avg 3,122 (321) 928 (76) 923 (74) 11 (9) 788 10 3 3
Min 97,041 (37,873) 0 (0) 0 (0) 0 (0) 68,560 0 0 0
90p 201477 (63,816) 64,315 (24,661) 64,315 (24,661) 48 (30) 68,560 192 25 15

Chromium Max none 232,593 78,992 232,593 (71,000) 64,315 (24,661) 64,315 (24,661) 3,029 (509) 68,560 4,486 4,486 4,486
Median 97,041 (37,873) 8,672 (4,593) 7,633 (4,593) 3 (2) 68,560 6 2 2

Avg 128,452 (45,731) 29,315 (11,119) 29,127 (11,013) 57 (19) 68,560 78 37 32

Table 8.4: Evaluation of virtual callsites for only C++ programs. Baseline all func. represents
the total number of functions, while Baseline virtual func. represents the number
of virtual functions. The first four policies (from left to right in italic font) allow
virtual or non-virtual targets, while the remaining policies inherently allow only
virtual targets. The values in round brackets show the theoretical results after
adapting the first four policies to only allow virtual targets. Each table entry con-
tains five aggregate values: minimal, 90p: minimum/90th percentile/maximum,
maximal, median and average (Avg) number of targets per callsite.

Baseline Bin types Safe src Types Src types Precise src types all vtables vtable hierarchy Sub-hierarchy Precise sub-hierarchy
Program Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p Avg SD 90p

NodeJS 6,300 59.72 21.0 92.92 7.41 6.32 17.71 6.51 6.44 17.71 0.26 0.54 1.54 97.27 0.0 97.27 0.23 0.63 0.86 0.13 0.46 0.11 0.13 0.46 0.1
Tr. Server 796 50.35 15.79 65.88 14.97 8.89 21.21 14.89 9.01 21.21 0.18 0.12 0.27 98.99 0.0 98.99 1.26 1.27 4.27 0.34 0.51 0.88 0.34 0.51 0.88

Chromium 78,992 55.23 19.08 86.62 12.6 12.16 27.65 12.52 12.22 27.65 0.02 0.11 0.02 86.79 0.0 86.79 0.1 0.43 0.24 0.05 0.41 0.03 0.04 0.41 0.02
average 28,696 55.1 18.62 81.8 11.66 9.12 22.19 11.3 9.22 22.19 0.15 0.25 0.61 94.35 0.0 94.35 0.53 0.77 1.79 0.17 0.46 0.34 0.17 0.46 0.33

Table 8.5: Normalized results using virtual callsites only. All results are normalized using
Baseline. Baseline: Total number of possible virtual targets. Each entry contains
three aggregate values: average-, standard deviation (SD) and 90p-number of
targets per callsite.

average) to worst (highest aggregate average)) as follows: (1) Precise src types (0.15), (2)
Precise sub-hierarchy (0.17), (3) Sub-hierarchy (0.17), (4) vtable hierarchy (0.53), (5) Src types
(11.3), (6) Safe src types (11.66), (7) Bin types (55.1), and (8) All vtables (94.35).

From the class hierarchy-based policies Precise sub-hierarchy perform best in all three
aggregate results (Avg, SD and 90p). In comparison, Precise sub-hierarchy performs better
w.r.t. average and standard deviation but worse w.r.t. 90p. These results indicate that these two
policies are the most restrictive, but a clear winner in all evaluated criteria cannot be determined.

Table 8.6 depicts (similarly as Table 8.5) normalized results with the difference that all
indirect callsites (both virtual and pointer based) are analyzed. Thus, the Baseline values used
for normalization include virtual and non-virtual targets. By taking into account the aggregate
averages and the standard deviation of the three policies in Table 8.6, we can rank the policies
as follows (from best to worse): (1) Src types (Avg 5.3 and SD 5.17), (2) Safe src types (Avg
5.4 and SD 5.18), and (3) Bin types (Avg 60.3 and SD 34.39).

Further, by considering the 90p values we conclude that for the most vulnerable 10% of
callsites, Bin types only restricts the target set to 87.9% of the unprotected target set. These
callsites essentially remain unprotected. Meanwhile, the Safe src type and Src type policies
restrict to only around 12% of the unprotected target set.
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Bin types Safe src types Src types
Program Baseline Avg SD 90p Avg SD 90p Avg SD 90p

NodeJS 32,478 64.0 20.43 92.92 3.82 5.83 17.71 3.38 5.64 17.71
Tr. Server 6,201 54.03 18.76 87.89 13.54 9.27 21.21 13.46 9.36 21.21

Chromium 232,593 56.83 19.84 86.62 11.71 12.11 27.65 11.64 12.16 27.65
Httpd 1,949 52.18 26.5 92.0 2.7 3.01 8.21 2.46 3.01 8.21

Lighttpd 594 65.25 27.81 97.98 2.94 3.18 7.41 2.93 3.19 7.41
Memcached 225 69.75 7.11 68.89 1.0 0.97 0.89 1.0 0.97 0.89

Nginx 1,270 54.91 24.85 92.28 6.38 4.56 11.73 6.36 4.57 11.73
Redis 2,880 65.19 16.51 84.62 1.25 2.52 1.88 1.2 2.52 1.88

average 34,773 60.3 34.39 87.9 5.4 5.18 12.09 5.3 5.17 12.08

Table 8.6: Normalized results using all indirect callsites.
8.7.4 Constructing Code Reuse Attacks

In this Section, we show how LLVM-CFI is used to build an attack which bypasses a state-
of-the-art CFI policy-based defense, namely VTV’s Sub-hierarchy Policy. This case study is
architecture independent, since LLVM-CFI’s analysis is performed at the IR level during LTO
time in LLVM. Note that LLVM IR code represents a higher level representation of machine
code (metadata), thus our results can be applied to other architectures (e.g., ARM) as well. Our
case study assumes an ideal implementation of VTV/IFCC. Breaking the ideal instrumentation
shows that the defense can be bypassed in any implementation.

In this case study, we present the required components for a COOP attack by studying the
original COOP attack against Mozilla’s Firefox web browser and demonstrate that such an
attack is easier to perform when using LLVM-CFI. Thus, we discuss the importance of the
CRA construction with LLVM-CFI at hand.

The original COOP attack presented by Schuster et al. [238] used: (1) a buffer overflow
filled with six fake counterfeit objects by the attacker, (2) precise knowledge of the Firefox
libxul.so layout, (3) where an COOP dispatcher gadget (ML-G) resides, and (4) several other
useful gadgets in order to open an Unix shell.

In general terms, to pursue a CRA the attacker needs: (1) an exploitable memory corruption,
(2) attack starting point (i.e., callsite) becomes corruptible due to (1), (3) program binary
mtemory layout leak, (4) appropriate (usable and available) gadgets, (5) the possibility to read
and write into memory, (6) the possibility to link gadgets and pass information from one to
each other, and (7) the possibility to perform calls into the system stdlib or any other reach
functionality library.

As demonstrated, the attacker first has to find an exploitable memory corruption (e.g., buffer
overflow, etc.) and fill it with fake objects. Next, the attacker calls to different gadgets (vir-
tual functions) located in the program binary. As such, we assume that NodeJS contains an
exploitable memory vulnerability (i.e., buffer overflow), and that the attacker is aware of the
layout of the program binary. The attacker would then want to bend the control flow to only per
callsite legitimate calltargets since he does not know if other defenses are in place. He would
also want to avoid calling into other program class hierarchies. Therefore, he needs to know
which calltargets are legitimate for all callsites in the main NodeJS binary.
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Ten controllable Target Policies
Callsites # Baseline

only
vFunc.

Baseline
all
Func.

Bin
types

Safe
src
types

Src
types

Precise
src
types

All
vta-
bles

vtable
hier-
ar-
chy

Sub-
hierarchy

Precise
Sub-
hierarchy

debugger.cpp:1329:33 5 6,300 32,478 31,305 4 4 1 6,128 1 1 1
protocol.cpp:839:60 2 6,300 32,478 21,950 719 719 49 6,128 57 53 49
schema.cpp:133:33 3 6,300 32,478 27,823 136 136 1 6,128 1 1 1
handle_wrap.cc:127:3 1 6,300 32,478 12,545 810 810 1 6,128 72 12 12
cares_wrap.cc:642:5 1 6,300 32,478 1,956 810 810 1 6,128 72 13 13
node_platform.cc:25:5 1 6,300 32,478 1,956 810 810 6 6,128 20 19 19
node_http2_core.h:417:5 3 6,300 32,478 1,956 810 810 6 6,128 20 19 19
tls_wrap.cc:771:10 2 6,300 32,478 3,106 35 35 8 6,128 48 13 5
protocol.cpp:839:60 2 6,300 32,478 3,106 2,984 2,984 49 6,128 53 53 49
protocol.cpp:836:60 2 6,300 32,478 3,106 719 719 49 6,128 53 53 19

Table 8.7: Ten controllable callsites and legitimate targets.
Table 8.7 depicts ten controllable callsites (in total LLVM-CFI found hundreds of control-

lable callsies) for which the legitimate target set, depending on the used CFI policy, ranges
from one to 31,305 calltargets. # depicts the number of passed parameters.

For each calltarget, LLVM-CFI provides: file name, function name, start address and source
code line number such that it can be easily traced back in the source code file. The calltargets
(right hand side in Table 8.7 in italic font) represent available calltargets for each of the eight
assessed policies.

For our case study, we decided not to use the most restrictive CFI policy (i.e., Precise
sub-hierarchy) as it enforces the same function in the virtual table sub-hierarchy. As such, only
through inheritance, chances are that the implementation of the function may vary from the
initial implementation. Thus, the number of useful gadgets in this sub-hierarchy is low.

Consequently, we assume that the attacker knows that the NodeJS binary is protected with
the Sub-hierarchy policy. The attacker ranks all callsites depending on the number of usable
calltargets. By ranking the callsites w.r.t. their residual target set, the attacker wants to know the
precise functions (calltargets) which are allowed for each callsite. Further, in order to perform
the attack, he has to access the source code of the application. After searching through the
source code, he finds several callsites where vector-based object dispatches are performed. The
attacker next finds out that the detected calltarget set contains several usable gadgets. Note that
for the COOP attack to be performable, the only hard constraint is that at least one usable ML-G
gadget must exist in the program. This constraint was addressed by the attacker at the beginning
of their source code search since they decided to only look for callsites which are part of an
ML-G COOP gadget. As such, the attacker knows exactly which gadgets are available for each
controllable callsite. As none of the static CFI policies impose write constraints by default (i.e.,
none) the attacker can overflow a buffer at a certain callsite with fake objects. Further, they start
to call their gadgets one by one and passing information over the stack through scratch registers
from one gadget to the next one. Note that their attack does not violate the CFI check in place
at the selected object dispatch location since this is contained in a ML-G gadget. Further, he
can deliberately avoid violating the original program control flow by calling into other program
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class hierarchies or other illegitimate calltargets as the original COOP attack does. Eventually,
the attacker succeeds in opening an Unix shell, similarly to the COOP.

This CRA construction shows the usefulness of LLVM-CFI for an attacker, which can
discover gadgets that are legitimate for each callsite after a certain CFI policy was applied.
This is in order to better tailor his attack w.r.t. a deployed CFI-based defense. Finally, this
demonstrates the usefulness of LLVM-CFI for an analysis.

8.8 Discussion

8.8.0.1 Limitations

In this Section, we present some limitations of LLVM-CFI and discuss other important con-
sideration w.r.t. our metrics, assessing of CRAs defenses, gadget linkalibility, and successful
exploitation.
Evaluation Results. We are aware that our evaluation results reflect the measurements ob-
tained by applying LLVM-CFI on several real-world open source programs which may not
be generalizable. We therefore believe that more programs should be evaluated with the help
of LLVM-CFI (the first CFI-based consistently reasoning framework for static CFI defenses).
Thus, we urge other researchers to use LLVM-CFI’s CFI-based metrics when assessing their
defense and comparing it with other existing tools. Finally, we envisage that LLVM-CFI could
become the de-facto-standard benchmarking framework for assessing static CFI-based defenses.
Automated Gadget Chain Construction. We are aware of the urgent need for building tools
which can generate complete gadget chains. Thus, we provide within LLVM-CFI the first step
towards building such a chain by first filtering gadgets (calltargets) which are still accessible
through bending even in the presence of state-of-the-art CFI defenses. While we simplify this
task by modeling a CFI policy and by helping to detect CFI-resistant gadgets, the last step is
still manual. Also, to the best of our knowledge, there is no CFI policy aware open source tool
which can build gadget chains fully automatically. Thus, an approach to automatically build
a gadget chain is to implement a data flow analysis used for checking how data flows from one
gadget to the next. This can be implemented at the IR or source code level in LLVM-CFI. As
LLVM-CFI operates at LLVM’s IR level, this data flow analysis could be used for example to
check if gadgets are compatible with each other. This can be done by studying the possibility
of transferring data and forming a gadget chain between them.

8.8.0.2 Other Considerations

In this Section, we present some limitations of LLVM-CFI and discuss several other key
considerations.
Our Metrics vs. other Metrics. Existing CFI-defense assessing metrics (e.g., AIR, fAIR and
AIA) are designed to reason about CFI based defenses by providing average values obtained
mostly by dividing the total number of control flow transfers to the total number of callistes
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for example. Also, when computing these values the ground truth numbers w.r.t. available
calltargets, total number of calltargets, total number of unprotected calltargets are in most
cases not provided. Thus, it is hard for any researcher which looks for reproducibility of these
results to compare his results with other research results. Further, these metrics do not reason
about other aspects of CFI-based defenses such as the forward check runtime overhead, return
site target reduction, return site target runtime overhead and availability of gadgets at the end
of the forward or backward edges. Thus the only benefit of these metrics are some average
numbers which are hard to reproduce because of the above mentioned reasons. Finally, similar
to LLVM-CFI these three metrics do not reason about gadget link-ability which would help
to shed light in areas of optimal CFI-based protection schemes which then could be effectively
used to protect applications without the need to enforce a strict CFI-policy on the whole
program binary or libraries. More specifically, think as if the defender could harden a C++
based application such that all main loop gadgets (and alike) are made unusable for any attacker.
This would remove a crucial building block for a COOP attack and thus the attacker would not
have an important building block in his arsenal. Thus, the COOP attack would not be possible.

LLVM-CFI’s metrics are superior compared to AIR, fAIR and AIA metrics since these allow
to quantify static CFI-based defenses w.r.t. to more dimensions. Further, LLVM-CFI allows to
precisely reason about the forward edge based calltarget reduction by allowing to better compare
the obtained results with ground truth numbers, by for example not averaging the results and
providing the first framework which allows to comprehensively reason about a CFI defense.
Finally, LLVM-CFI can be used to reason quantitatively and consistently about object-oriented
programing (OOP) concepts which represent the building blocks for many CFI defenses.

Assess other Code Reuse Attack Defenses. LLVM-CFI can be extended to assess other
types of attacks by first identifying the set of gadgets the given specific attack operates on.
Next, these gadgets have to be classified w.r.t to their start and end format, (i.e., how do this
gadgets look like). Further, the gadgets should be classified as benign- or malicious w.r.t. the
particular attack being assessed. For example, most of the previous CRAs were using the return
instructions to link gadgets together. This clearly violates the caller/callee calling convention
which is modeled and consistently integrated into COOP. Next, from all metrics available to
LLVM-CFI, one has to determine which of the metrics makes sense for the particular attack.
For example, some attacks just use forward edges while others exclusively use backward edges.

Assess Gadget Linkability. LLVM-CFI can be extended to measure gadget linkability, by
determining gadget availability. For example, this concept is used to check if a certain gadget is
present in the program and usable (i.e., which assures that a gadget is usable for a certain type
of attack). In order to assess gadget linkability, a policy-based language can be used. This can
be used to assess if any of two available and usable gadgets can be linked together to create a
gadget chain. A first step in this direction is to analyze the data flow between gadgets by using
this policy language. Any gadget linkability policy should assess wether—through a chain of
consecutive gadget interactions—the program stack or the heap can be sequentially modified
such that it can be used in the next step of the attack that uses the previous results computed or
prepared on the stack or heap or both. Note that a first step towards this direction was made by
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Johnson et al. [128] and Ispoglou et al. [121] which assesses gadget linkability with the help
of a policy determining if any two gadgets can be successfully linked together by analyzing
the data flow between them.
Assess Successful Exploitation. As far as we know, there is no research on how to assess
whether a code reuse attack was successful or not. Further, as noted by [36], successful ex-
ploitation primarily depends on the goals of the attack which can only be specified by the
attacker. We note that any final or intermediate goal of an attack can be determined by taking
into account gadget (1) availability, (2) usability, (3) linkability and (4) attacker goals which
are basically final or intermediate steps in the linkability deciding process.

By first implementing the capability of gadget linkability into LLVM-CFI, it can be deter-
mined through the help of the same or another policy language if intermediate or final attacker
goals are reached. Note that an attack is considered successful if all goals stated by the attacker
are reached during the attack. This basically depends on (1)-(4) mentioned above and the
possibility to define sub-linkability gadget chains for any given chain. Note that sub-linkability
chains represent attack sub-goals while the successful traversal of all sub-goals represents the
reachability of the final attack goal, which decides if an attack was successful or not.

8.9 Summary
Static source code analysis tools used for assisting an analyst during the search for code reuse
gadgets inside the source code of real-world programs can effectively be used by even a low-
effort attacker to find defense-aware gadgets in order to craft practical attacks. This stands in
contrast to previous beliefs that such analysis is limited.

In this Chapter, we presented LLVM-CFI, a CFI defense aware assessment and gadget search
framework which can be used for both defensive and offensive purposes. We implemented
LLVM-CFI, our CFI defense policy assessment framework based on static compiler which offers
the possibility to effectively analyze real-world programs. By using LLVM-CFI, an analyst can
drastically cut down the time needed to search for gadgets which are compatible with state-of-
the-art CFI defenses contained in many real-world programs. Our experiment results indicate
that most of the CFI defenses are too permissive. Further, if an attacker does not only rely on the
program binary when searching for gadgets and has a tool such as LLVM-CFI at hand to analyze
the source code of the vulnerable application, then many CFI defenses can be easily bypassed.
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Chapter 9
ρFEM: Backward-edge Protection Using
Reversed Forward-edge Mappings

In this Chapter, which belongs to the second part of this thesis, we designed and implemented
a compiler based tool, called ρFEM, which is based on the lessons learned in Chapter 8. ρFEM
protects program CFG backward edges stemming from indirect and direct forward-edge pro-
gram control flow transfers. In this way, we were able to address RQ6 and propose a novel
technique for protecting program CFG backward-edges with the help of a fine grained CFI
policy which provides an optimal set of return targets for each protected callee. In this way the
likelihood of successfully performing CRAs which exploit backward edges is greatly reduced
and at the same time we provide in this Chapter a solution which is an alternative for shadow
stack based techniques. In contrast to shadow stack techniques, ρFEM does not rely on entropy
and information hiding. Thus, the according protection disclosing vectors do not apply. Finally,
note that parts of this Chapter have been published by Muntean et al. [199].

9.1 Introduction

What is the overall view? Code reuse attacks (CRAs), such as return oriented programming
(ROP) [31] attacks, have threatened software systems for more than a decade. CRAs are
possible due to the fact that statically building a precise program control flow graph (CFG)
is theoretically not possible. Building the CFG requires precise program alias analysis (e.g.,
source code, binary, intermediate representation (IR)), which is undecidable [229]. Conse-
quently, the obtained CFG is an over or under approximation of the real program’s CFG.
In addition to control flow forward-edge (i.e., jump, call) violations, backward-edge (i.e.,
function returns, ret) violations play a crucial role in facilitating CRAs.
What is the problem? For example, an attacker can bend/modify [36] the intended control flow
of a program during runtime in such a way that he calls consecutively assembly code sequences
(gadgets) contained in the original program using CFG edges belonging to the program’s CFG
in order to achieve his malicious objective. As such, one of the main building blocks (along
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forward edges) of chaining gadgets together are CFG backward edges. This gadget chaining
process violates the caller-callee function calling convention enforced by any widely used appli-
cation binary interface (ABI), i.e., Itanium ABI [122], Microsoft ABI [101], and ARM ABI [9].

What are the existing solutions? In general, there are two approaches to protect backward-
edges integrity: (1) check-based approaches which check if a ret goes to legitimate targets,
and (2) integrity-based approaches which ensure the integrity of the return addresses in the
stack. Compared to call instructions, ret instructions are executed more frequently, thus the
check-based approach tends to introduce high performance overhead. Since ret’s target (i.e.,
return address) is determined by its call instruction, if we can efficiently ensure the integrity
of return addresses, then we can ensure the required program protection. We can not only guar-
antee an unique target for a return instruction, but also avoid checks. For a long time, shadow
stack techniques [63] (integrity-based approach) along with call-preceded return enforcement
(e.g., BinCFI [290]), control-flow locking [19], pointer encryption, and double stacks [63] were
the only available solutions against backward-edge violating attacks. Shadow stack techniques
are based on building a second shadow stack for every program stack on which function return
addresses are pushed before entering a certain function. They are then checked before leaving
the function and finally are being popped after the check was performed. This ensures that
each backward edge respects the used function calling convention by partially simulating the
original stack in parallel to the program execution.

However, with the growing demand for fully-precise control flow integrity (CFI) solutions,
it is commonly understood that any CFI-based protection mechanism not having a shadow
stack-based policy to protect the backward edges is broken [36]. For this reason, a myriad of
tools, which implement shadow stack techniques, were proposed over the last years: (1) binary
based [1, 156, 216, 289, 290, 187, 266, 221], (2) source code based [274, 19, 209, 224, 61,
211, 160, 90, 210, 212, 49, 20], and (3) other types [44, 66, 284]. Shadow stack’s integrity can
be protected by separate mechanisms such as: (1) information hiding (randomization, mostly
used) or (2) software-based fault isolation (SFI), etc. SFI can help to protect shadow stacks by
instrumenting memory writes. Essentially, the system can set up a memory region for storing
the shadow stack and then instrument a memory write in the program to ensure it does not
write to that memory region. Note that in general, all shadow stack/safe stack techniques that
do not enforce integrity but rely on information hiding are weak. At the same time, integrity
is generally more costly than information hiding. To the best of our knowledge, only Intel has
released its hardware (HW) shadow stack support, Intel CET [118]. This HW feature allows
to build shadow stack more efficiently. The common belief with this approach is that integrity-
based approaches will outperform the check-based approaches, in terms of both security and
performance. Microsoft’s RFG [282] (i.e., OS-dependent implementation, and is as of 2018
removed from the Windows bounty program [168]), which is closed source, and no performance
data was published. Further, Clang’s SafeStack [49] (i.e., compiler-based code instrumentation)
has been widely used. In addition, the original binary-based CFI implementation of Abadi et
al. [1] is not public and cannot be evaluated. Also, target sets are not discussed and it was built
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using the closed source binary rewriting framework Vulcan. As such, a compiler-based approach
is likely better but cannot be compared with the original approach, since this is not public.

In general, shadow stack techniques (i.e., source code and binary based) are precise due
to the one-to-one mapping between caller-callee pairs, have the following limitations: (1)
increased binary size (shadow stack at most double the amount of memory used for stacks),
especially in certain embedded scenarios, when not used in conjunction with hardware features
such as the Intel’s CET and the like, (2) source code based approaches provide no protection
to closed source software (note that runtime based tools e.g., ROPdefender [67] and binary
based tools can protect backward edges in binaries as these can still monitor and instrument the
binary), (3) compatibility issues with common software practices such as longjumps/setjumps,
exceptions, and continuations, that perform unconventional control flows, (4) relatively high
runtime overhead (up to 10% for a traditional shadow stack [63], mostly for binary based tools)
and considerably lower runtime overhead (around 1%) when using hardware features such as
Intel’s CET or are based on compiler support, see Clang’s SafeStack) due to implementation-
specific reasons. Further, it is interesting to note that in real programs there is no correlation
between the number of callsites a function may return to and how often it is called. Also, the
performance of shadow stack techniques is dependent on function call frequency, as functions,
which are more frequently called introduce a higher performance overhead.

What are the limitations of the solution? Unfortunately, information hiding was shown to be
generally easy to bypass (and any other information hiding [94] technique with it) and thus, the
information hiding component of Clang’s SafeStack [49] or GCC shadow stack [88] can also
be bypassed. This bypass demonstrated that at least four attack vectors exist for disclosing the
two-separated-stacks principle on which Clang’s SafeStack is based. Namely, guessing oracles,
neglected pointers, thread spraying, and allocation oracles can all independently be used to
bypass this protection technique. These attack vectors [94] do not reveal a particular limitation
of Clang’s SafeStack, but rather, that information hiding, and thus SafeStack, which relies on
this technique, can be bypassed. Similar to other CFI solutions, there is no data that needs to be
integrity protected when using ρFEM since all control metadata used in ρFEM is static. Finally,
shadow stack techniques have some readable/writable data that either needs to be integrity
protected (with additional overhead) or may be accessible by an attacker. Compared to shadow
stack techniques, ρFEM’s metadata is read-only, similar to other CFI techniques.

What is our insight? In this thesis, we present ρFEM, a context-insensitive, compile-time soft-
ware instrumentation tool used to enforce a fine-grained CFI-based policy. ρFEM protects back-
ward edges by checking them before transferring control flow. Note that the precision of ρFEM’s
backward-edge mappings relies primarily on the forward edge mappings. As ρFEM computes
the forward edge mappings for indirect transfers, we could easily implement a CFI policy, which
protects forward-edges as well. In this work, we decided to only protect backward edges, due
to the fact that this research area is considerably less researched, than forward-edge defenses.
ρFEM builds return sets for calltargets by: (1) computing a return set for each non-virtual call-
target based on reversing a precise function signature forward-edge mapping and (2) calculating
a return set for each virtual calltarget based on reversing a precise class virtual table hierarchy

173



9 ρFEM: Backward-edge Protection Using Reversed Forward-edge Mappings

forward-edge mapping. Both of these forward-edge mappings are used to compute the legit-
imate callee return address set for each calltarget by enforcing the caller/callee function calling
convention. ρFEM protects backward edges: (1) without relying on information hiding, and (2)
with low runtime overhead and binary blow-up while providing a minimal callee return address
set, and (3) by not relying on OS-specific support. The runtime overhead is small (around 1%)
due to our novel backwards reflected class hierarchy technique, which helps to build efficient
ID sets for each backward edge (virtual functions). The precise forward edge mapping consider-
ably reduces the legal callee’s return target set from arbitrary targets inside the program binary
to minimal ID sets. This allows us to perform our checks efficiently and precisely. We evaluate
ρFEM with real-world programs in addition to all pure C/C++ programs contained in the SPEC
CPU2017 benchmark and report a low runtime overhead, while maintaining high target address
precision. ρFEM provides a trade-off, giving great performance at a slight security loss.
What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• We design a novel fine-grained backward-edge protection technique by not relying on
information hiding.

• We implement our technique based on the Clang/LLVM compiler framework inside a
prototype called ρFEM.

• We evaluate ρFEM thoroughly with Google Chrome, NodeJS, Memcached, Nginx,
Lighttpd, and the SPEC CPU2017 benchmarks. We achieve a low runtime overhead
of 2.72% in geomean for the Google Chrome web browser, as well as of less than 1%
in geomean for the SPEC CPU2017 benchmarks. ρFEM enforces less than 3.54 return
targets per callee in geomean.

9.2 Threat Model
We assume a powerful attacker which can exploit any backward-edge based indirect program
transfer and has the capability to make arbitrary memory writes. Note that ρFEM focuses
exclusively on protecting indirect backward-edge based control flow transfers. We assume that
other types of protection mechanism are in place for protecting against forward-edge based
attacks. These defense mechanisms are orthogonal to our protection policy. Our approach does
not rely on information hiding from the attacker and as such we can tolerate arbitrary reads.
More precisely, we consider a powerful, yet realistic adversary model that is consistent with
previous work on code-reuse attacks and mitigations [135]. We rely on several existing and
complementary mitigations for comprehensive coverage.
Adversarial Capabilities.

• System Configuration. The adversary is aware of the applied defenses and has access to
the source and non-randomized binary of the target application.
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• Vulnerability. The target application suffers from a memory corruption vulnerability that
allows the adversary to corrupt memory objects. We assume that the attacker can exploit
this flaw to read from and write to arbitrary memory addresses.

• Scripting Environment. The attacker can exploit a scripting environment to process
memory disclosure information at run time, adjust the attack payload, and subsequently
launch a code-reuse attack.

Defensive Requirements.

• Writable (xor) Executable Memory. The target system ensures that memory can be either
writable or executable, but not both. This prevents an attacker from injecting new code
or modifying existing executable code.

• Execute-only Memory. We build on previous systems which enforce execute-only memory
pages, i.e., the CPU can fetch instructions but normal read or write accesses trigger an
access violation.

• JIT Protection. We assume mitigations are in place to prevent code injection into the just
in time (JIT) code cache and prevent reuse of JIT compiled code [211]. These protections
are orthogonal to ρFEM.

• Brute-forcing Mitigation. We require that the protected software does not automatically
restart after hitting a booby trap which terminates execution. In the browser context,
this may be accomplished by displaying a warning message to the user and closing the
offending process.

9.3 Design and Implementation
A NOP, no-op, or NOOP is an assembly language instruction available in all important used
CPU instructions set architectures (e.g., x86, x86-64, SPARC, MIPS, etc.) that does nothing. The
approach of ρFEM is based on inserting new NOPs after the caller address and filling them with
IDs before the callee returns to help constructing a mapping between legal callees and callers.
This mapping is used to enforce a fine-grained CFI policy between legal callees and callers.
To achieve this, ρFEM builds two separate caller-callee mappings: (1) for virtual functions
(callees), and (2) non-virtual functions (callees). Next, we present the general approach of how
these two mappings (sets) are constructed for a single callee.

9.3.0.1 Building Backward Edge Sets

Figure 9.1 depicts how backward edge return sets are built based on the program class hierarchy
in (a) and (b) for virtual callsites, and based on a precise forward-edge function signature type
mapping in (c) and (d) for function pointer-based callsites.
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Figure 9.1: Identifier (ID) based backward edge mapping of virtual functions called through
object dispatches, (a) & (b) and ID based backward-edge mapping of non-virtual
functions called indirectly through function pointers, (c) & (d).

Class Hierarchy. Forward edge information, provided by the class hierarchy, is used to map
backward edges (see Figure 9.1(a) forward-edge mapping and (b) backward-edge mapping for
more details). Essentially, all legitimate forward edges are reflected back. For each callee, a set
containing all the calltarget’s return sites is built. Depending on the base class of the dispatched
object at the callsite and the location in the class hierarchy, the number of calltarget return sites
differs. Note that our technique is aware of class inheritance and as such, inherited members
along the class sub-hierarchy are included in the relevant backward-edge target set.

Function Signature. Mapping backward edges using function signatures (see Figure 9.1(c)
forward-edge mappings and (d) backward-edge mapping) uses a precise forward-edge analysis
based on determining a set of legitimate calltargets for each forward edge (callsite based on
function pointer). The forward mapping is built by matching callsites and calltargets as follows.
For each callsite the number of provided parameters, their type, and the return type is used
to build a per function signature. This callsite information is matched with all calltargets in
the program during compile time by comparing the number of parameters consumed, their
type, and the return type with the data collected at the callsites (not object dispatches). For
each matching function signature (calltargets) and callsite signature pair, a set is built. Finally,
for each calltarget contained in the previously determined calltarget set, another per-calltarget
return set is built by following the caller-callee function calling convention. This essentially
means that for each calltarget-callsite mapping, the legitimate calltarget set contains the return
address located after the legitimate callsite.

9.3.1 ρFEM Design

Figure 9.2 depicts the main components of ρFEM and where these reside in different parts of
the Clang/LLVM compiler framework. The IDs and callee-side checks are generated as follows.
The virtual class metadata collected in Clang ¶ is used to reconstruct the class hierarchy during
LLVM-LTO ·. Afterwards, metadata about the function entries in the virtual tables (vtables) is
utilized together with the class hierarchy to generate IDs for virtual functions and corresponding
ranges for virtual function callsites ¸.
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Figure 9.2: Design of ρFEM.
Once all virtual functions have been assigned an ID, ρFEM continues to assign IDs to the

remaining non-virtual functions ¹. Finally, checks are inserted before the return instructions in
each function (callee) using the virtual and non-virtual function IDs calculated beforehand º.

Further, for callsites ID assignment ρFEM performs the following steps. In the Clang
front-end, each virtual function call is annotated using an LLVM intrinsic ». An intrinsic is a
particular type of Clang program annotation, that allows marking of certain program parts. This
enables inspection at a later phase along the compilation pipeline. During link-time optimization
(LTO), these intrinsics are detected and the corresponding call instructions are further annotated
for later back-end analysis ¼. All remaining calls, i.e., the ones which were not annotated in
the front-end, are marked as either direct calls or function pointer-based indirect calls ¼. In the
LLVM back-end, all annotated calls are relocated ½ and then matched with the correct ID or an
ID-range depending on the annotation type ¾. That is, virtual callsites are assigned ranges of
IDs, direct callsites are assigned the unique ID of the function called directly and callsites which
use function pointers are assigned their respective function signature ID. Next, NOP instructions
are inserted directly after the callsite, carrying the ID data as a payload ¿. Inserting the NOPs this
late in the compiler analysis pipeline (i.e., machine instruction (MI) generation stage) ensures
that no instructions are placed between the callsites and our NOPs by a different LLVM pass.
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9.3.2 Direct Call Analysis

Forward edges stemming from direct calls do not need to be protected, as the address to which
the program control flow is transfered is fixed. This address is write protected and cannot be
overwritten during runtime. The situation is different for callees which were called through
forward direct calls. Since the attacker may manipulate the callee return address on the stack,
this backward-edge needs to be protected. ρFEM handles backward edges returning from direct
calls in the following way. Each direct function gets its own ID. Direct callsites only have a
single target, for which a single valid ID can be determined. Therefore, it is sufficient to attach
a single valid ID to the callsite.

9.3.3 Virtual Call Analysis

In this Section, we explain the virtual function analysis algorithm in detail by providing its
invariant. ρFEM uses a modified version of the interleaved virtual tables (IVT) metadata as
presented by Bounov et al. [24]. ρFEM constructs backward-edge mappings of legitimate
return address sets for virtual functions (callee) by first building the virtual table hierarchy and
enforcing the respective legitimate virtual table sub-hierarchy for each callee. This metadata
consists of virtual table hierarchies for all class hierarchies of a program compiled with the
Clang/LLVM compiler. Additionally, we modify this metadata layout to have it contain: (1)
virtual table entry information, and (2) virtual table offsets which are used during our analysis.
ρFEM uses this modified metadata to determine legitimate callsites and to infer forward-edge
information. In the evaluation Section, we show that our modified metadata allows ρFEM to
be backwards compatible, as it can run alongside other tools.
Invariant. In order to construct the forward-edge target set for a virtual callsite, we need to
be able to represent the IDs of the functions contained in this set as a compact range. Note, that
we do not need a total ordering of all function IDs. Instead, we only have to be able to build
compact (no gaps) ranges.

Using the previously established terminology (see Section 2.7.4 for more details), we note
that the object at a particular callsite can either be of precise class type or of any subclass type
thereof. Furthermore, if the object has dynamic type of precise class, then, per definition, the
callsite uses the implementation provided by the base class. Therefore, any subclass of a precise
class can at most call the implementation found in the base class or an override of this implemen-
tation. Thus, the sub-graph of the vtable hierarchy rooted at the base class contains all possible
function implementations (i.e., all callees for this callsite). Hence, this sub-graph provides the
set of all functions which can be called at this particular callsite, i.e., the target set of the callsite.

Next, we describe how ρFEM uses this sub-graph to assign IDs in order to ensure the invari-
ant previously described. There are four steps, which are explained in their order of execution.
Note that the algorithm’s steps one, two, and three run at link-time optimization (LTO), i.e.,
at compile-time after static linking, while step four of the analysis runs in the LLVM back-end
i.e., after LLVM-IR was lowered to machine instructions, and right before the program binary
is emitted.
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Figure 9.3: Steps used to determine IDs and the range for function g(). (a) Step one: Build-
ing class hierarchy from the virtual table hierarchies. (b) Step two: Collecting
root class information of functions (shaded red) and overrides (shaded green).
(c) Step three: Calculating ranges and IDs for function g().

9.3.3.1 Step 1: Collecting function hierarchies

Using the modified virtual table hierarchy, a regular class hierarchy is reconstructed, i.e., if a
class has multiple vtables, they are merged into a single node in the class hierarchy. Figure 9.3(a)
shows such a class hierarchy reconstruction. Each box depicted in Figure 9.3 represents a
vtable and the first line in each vtable states the class name from which the vtable was inherited.

This class hierarchy allows ρFEM to collect information about each virtual function imple-
mentation. Firstly, the class in which the implementation was defined, and secondly, whether
this class is the root class of the given function. If it is not the root class, then the implemen-
tation has been overridden by a sub-class implementation, i.e.,ρFEM is able to analyze all
function overrides by using the vtable metadata.

This information is extracted from the class hierarchy as follows. ρFEM starts by topolog-
ically sorting the class hierarchy, which ensures that each parent is visited before any of its
children. Then, the topologically-sorted list of classes is traversed and each function entry in the
vtables of the class is inspected. In case a class contains a function implementation that was not
previously encountered, the function is regarded as it would be implemented by this class. This
happens, due to the fact that parents are visited before their children during pre-order traversal.

Finally, to differentiate between root classes and overrides (inheriting classes), we inspect
the primary vtable of the direct parent. In case such a parent exists and the parents’ primary
vtable contains an entry at the same offset as the function in the child, this child overrides the
entry in the parent with a new function implementation. Otherwise, the child defines a new
function and becomes the root class for this function. Figure 9.3(b) shows the root class and
the override information inferred by this step.
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9.3.3.2 Step 2: Function-wise traversal

The root class information from step one allows ρFEM to inspect the sub-graph of the vtable
hierarchy rooted at the root class. Note, that if we disregarded virtual inheritance this sub-graph
would be a tree.

Using this information, ρFEM can iterate over all non-overriding functions and then in an
inner loop iterate through the sub-graph rooted at the root class of the particular function. Note
that the sub-graph contains individual vtables and not classes.

ρFEM assigns unique IDs to each vtable and function combination, while ensuring the
following invariant. For a particular function, each parent vtable has to have a lower ID than all
its children (ID value is smaller). This is similar to the well-established heap invariant and can be
achieved using a pre-order traversal of the corresponding sub-graph. Thus, ρFEM starts with the
first function, iterates through the sub-graph rooted at the root class of this function, and assigns
IDs to each explored vtable. This is repeated for the sub-graph of each non-overriding function.

At the same time, the virtual call ranges are constructed as follows. Every vtable is assigned
the range of IDs, containing its own ID and the IDs of all of its children. Because of the pre-
order traversal, this results in a single closed (compact) range with its own ID having minimum
value. Note that these ranges are assigned for each individual function/vtable combination
(pair). In case that the sub-graph is a tree, then no virtual inheritance is involved. Consequently,
each vtable gets at most one ID and one range per function contained in the vtable. Otherwise,
the vtable will get multiple IDs and ranges, since with virtual inheritance a vtable can have
multiple parents and therefore can be explored from multiple paths in the same sub-graph.

Figure 9.3(c) shows the IDs and ranges assigned for function g() with the sub-graph rooted
at the vtable (B,0). Since in this example all classes use non-virtual inheritance, each vtable
gets at most one ID. Note that the three vtables shaded in gray in the left part of Figure 9.3(b)
are not part of the sub-graph and therefore have no ID assigned.

9.3.3.3 Step 3: Callee backward-edge checks

In this step, the callee-side checks are inserted. For each virtual function in the program, ρFEM
uses the information from step one to determine the class it belongs to. Then, it takes each
vtable of this class and looks up the IDs assigned to the vtable/function combinations. Note
that ρFEM might find multiple IDs, either, because there can be multiple vtables for a class
or because with virtual inheritance there can be multiple IDs for a single vtable. It is interesting
to note that in the end the total number of IDs is independent of whether virtual or non-virtual
inheritance was used, since the number of edges in the vtable hierarchy is independent of the
inheritance type. All IDs are unique IDs for this function, because the IDs were assigned for
function/vtable combinations, and a function cannot be defined twice in a vtable.

Next, the actual check is generated during LTO. The check works as follows: it takes the
callee’s return address from the stack and tries to load the range data from this address. The
NOP instructions containing this data are inserted in step four (next step). ρFEM then checks
whether or not one of the callee IDs is inside of the fetched range. If this is the case, then
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the check passes. Otherwise, the return address is not an address after a valid callsite for this
particular calltarget and program execution is interrupted.

9.3.3.4 Step 4: Attaching callsite metadata

In the Clang front-end each callsite was annotated with its base class and the function implemen-
tation of the base class which can be called by the callsite. As explained previously, a callsite
can only call functions in the sub-graph rooted at the callsite’s base class. This principle is re-
flected by the range, which is obtained through the base class/function combination. This holds,
because the range contains only the IDs assigned to the function implementations in the base
class or in any of its children classes, which were explored by the pre-order traversal in step two.

Therefore, annotating each callsite with the range assigned to the base class enforces a strict
set of valid function targets. Any function implementation dispatched at this callsite has at
least one ID inside this range, and therefore the callsite passes the check. Any other function
implementation cannot have an ID inside the range, since the ranges are closed (compact)
ranges (as explained in step two).

Finally, one last optimization is performed in Steps three and four. Rather than storing the
start and end ID of a range, the start ID and the width of the range are stored. This reduces the
amount of operations required for the check and thus the runtime overhead.

9.3.4 Function Pointer Based Call Analysis

Each callee, of which the address escapes to memory (address taken (AT)) can potentially be
called by a function pointer. Since precise control flow analysis is generally impossible due
to the fact that alias analysis is undecidable [229], we assume, that it is valid, for each function
pointer based callsite to call a callee, as long as the function signatures match. As such, ρFEM
implements a function signature encoding, allowing it to encode function signature data in IDs.
The function signature consists of: (1) the name of the caller and of the callee, (2) the number
of parameters the caller provides and the number of parameters the callee consumes (as for
now, the first eight function parameters are taken into consideration), (3) their parameter types
(as for now, 26 LLVM IR parameter types, i.e., HalfTyID, FloatTyID, VoidTyID, etc. are taken
into consideration), and (4) the callee return type.

For an AT function, ρFEM generates a function-signature-ID by using the previously men-
tioned function signature encoding algorithm. Using the same encoding, ρFEM annotates each
function pointer based callsite with such an ID. The callee accepts both the ID(s) generated
in Section 9.3.2 or Section 9.3.3 alongside with the function-signature-ID in case it was called
indirectly, but only if its own function signature was used at the callsite. Note that the regular
ID is the ID which was assigned through the pre-order traversal. Finally, during runtime, in
case the caller signature matches the callee signature, the control flow is allowed to return.
Otherwise, the control flow transfer is stopped.
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9.3.5 Backward-Edge Checks

1 ...
2 X *x=new W();
3 int t = x->foo();
4 ...

(a)

1 int foo(){
2 ...
3 return x;
4 }

(b)

1 ...
2 0x400d60 add $0x10,%rax
3 0x400d64 mov (%rax),%rcx
4 0x400d67 mov %rax,%rdi
5 0x400d6a callq *0x8(%rcx)
6 ...

(c)

1 ...
2 0x400cef pop %rbp
3 0x400cf0 retq
4 ...

(d)

1 ...
2 0x400d60 add $0x10,%rax
3 0x400d64 mov (%rax),%rcx
4 0x400d67 mov %rax,%rdi
5 0x400d6a callq *0x8(%rcx)
6 0x400d6d nopl 0x8000a(%rax)
7 0x400d74 nopl 0x80001(%rax)
8 ...

(e)

1 ...
2 0x400cce mov 0x8(%rbp),%rcx
3 0x400cd2 mov 0x3(%rcx),%eax
4 0x400cd5 mov $0x8000a,%edx
5 0x400cda sub %eax,%edx
6 0x400cdc cmp 0xa(%rcx),%edx
7 0x400cdf jbe 0x400cf1
8 0x400ce1 cmp $0x2000000,%rcx
9 0x400ce8 ja 0x400cf1

10 0x400cea cmp $0x7fffe,%eax
11 0x400cef jne 0x400cf3
12 0x400cf1 pop %rbp
13 0x400cf2 retq
14 0x400cf3 ud2

(f)

Figure 9.4: Caller (a) and callee (b) source code and caller (c) without instrumentation.
Callee assembly (d) and caller (e) and callee (f) assembly instrumentation.

Figure 9.4 depicts the instrumentation added by ρFEM to a caller and its corresponding
callee in order to protect against backward-edge control flow violations.
Range based checks. The code listings depicted in Figure 9.4(a) and Figure 9.4(b) show the
original source code, while the code listings depicted in Figure 9.4(c) and Figure 9.4(d) show
the resulting assembly instructions without applying any backward-edge checks. Lines 2 – 4
in Figure 9.4(c) execute the virtual dispatch using an object X stored in the rax register. Before
the callee returns, as depicted in Figure 9.4(d), the stack has to be popped once to clean up the
stack frame.

Next, we analyze the actual checks shown in the last row contained in Figure 9.3(e) The
newly-added NOP instructions are present in lines 6 and 7 in Figure 9.4(e) and contain a range
starting at 0x0a (StartID) with a width of 0x01 (WidthOfRange), i.e., the only callees valid
at this callsite have ID 0x0a or 0x0b. When looking at the callee’s instructions depicted in
Figure 9.4(f), we observe that its ID is located on line four. As expected, it has one of the IDs
inside the range, namely 0x0a. We can also see the range in the two instructions before (line
two and three): the start ID is loaded from the first NOP and then the callee ID is substracted
from it (StartID−0x0a). In case everything went through up to this point, the result of the
subtraction should now be in the range from 0 to WidthOfRange, which is checked with the
help of the cmp and jbe instructions located on line numbers 6 and 7 in Figure 9.4(f).
Signature-based checks. Similarly, indirect calls (i.e., function pointer based), which have
a matching function signature encoding (e.g., the cmp with the address 0x7fffe on line 10 in
Figure 9.4(f)), also pass the check and execution continues.
Error handling. In case none of the checks succeed, the program executes the ud2 instruction
depicted on line number 14 in Figure 9.4(f), causing the program to terminate. While this type
of mitigation is sufficient for our purposes, in real-world applications more sophisticated error
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handling might be used. Instead of abruptly terminating the program another possible approach
is to log each legal and illegal backward-edge transfer.
External calls. If a protected function is called by an unlabeled callsite (i.e., external library
call), then this call causes the protected function to return at the next address after the call
instruction with the help of the instructions located on line 7 and 8 in Figure 9.4(f). In our
example, we used the dummy value of 0x2000000 to differentiate between external and internal
calls. Note that ρFEM is capable of differentiating between these types of calls by determining
during compile time the address range of the protected application. As such, external calls
have a memory address not contained in the range of the protected application and the inserted
check can differentiate between internal and external calls.

9.3.6 Implementation

We implemented ρFEM as three link-time optimization (LTO) passes and a machine instruction-
level pass by extending the Clang/LLVM (v.3.7.0) compiler [50] framework infrastructure. As
three of the four ρFEM passes are performed during link time, our system requires LLVM’s
LTO. The implementation of ρFEM is split between the Clang compiler front-end (metadata col-
lection), three new link-time passes and one machine-level pass used for analysis and generating
backward-edge constraints, totaling around 3 KLOC. ρFEM supports separate compilation by
relying on the LTO mechanism built in LLVM [50]. ρFEM generates unique IDs by keeping
track of already assigned ones and continuously incrementing a counter variable for generating
new IDs. Further, by carefully traversing each class hierarchy in a pre-order traversal, unique
ID assignment is guaranteed.

9.4 Evaluation
In this Section, we focus on showing the relevance and security benefits of ρFEM. Thus, we
address the following research questions (RQs).

• RQ1: How effective is ρFEM in protecting backward edges? (Section 9.4.1)

• RQ2: Which types of backward-edge based attacks can be defended when using ρFEM?
(Section 9.4.2)

• RQ3: What security benefit does ρFEM offer when it makes backward edge ROP
gadgets not usable anymore? (Section 9.4.3)

• RQ4: What is the runtime overhead of ρFEM? (Section 9.4.4)

Test Programs. In our evaluation, we used the following real-world C/C++ programs: (1)
Memcached [163] (v. 1.5.3), (2) Nginx [204] (v. 1.13.7), (3) Lighttpd [144] (v. 1.4.48), (4)
Redis [231] (v. 4.0.2), (5) Apache Httpd Server (Httpd) [7] (2.4.29) and the following C++
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programs: (6) NodeJS [213] (v. 8.9.1), (7) Apache Traffic Server [8] (v. 2.4.29), and (8) Google
Chrome [97] (v. 33.01750.112). We selected these programs because of their security relevance
and real-world usage.

Experimental Setup. The benchmarks were performed on an Intel i5-3470 CPU with 8GB
of RAM running on the Linux Mint 18.3 Sylvia OS. We compiled each program ten times in
order to provide reliable mean values. If not otherwise stated, all programs were compiled with
the -O2 compiler optimization flag.

9.4.1 Protection Effectiveness

In this Section, we first evaluate the effectiveness of calltarget set reduction of ρFEM with first
the NodeJS program and then we present general results for multiple real-world programs.

9.4.1.1 Case Study: NodeJS

We assessed the effectiveness of return target reduction compared to allowing all possible
addresses in the binary by presenting the results obtained in a NodeJS based case study. We
selected NodeJS because it is a C/C++ program that is frequently used in practice. To achieve
better coverage of the NodeJS code base, the binary was statically linked. Therefore it includes
many functions from other libraries such as: OpenSSL, and Google’s V8 engine.
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Figure 9.5: CCDF between the number of return targets and the percentage of legitimate
callees.
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Figure 9.5 depicts the complementary cumulative distribution function (CCDF, we used a
greater than comparison). The X-axis represents the number of return targets (by number),
that a callee can target, while the Y-axis represents the percentage of callees, that allow more
than the given number of return targets. Note that for this plot, we assume that no pointer
based function calls are allowed to call virtual functions. We consider a callee to be no longer
sufficiently protected when it is allowed to return to more than ten targets, this value was
arbitrarily picked and can be adjusted.

The blue line shows the distribution when taking all functions into account. We can observe
that around 7% of the functions allow to target more than ten return addresses. The red line only
takes virtual callees into account. Around 20% of these callees allow more than ten return targets.
This is due to the range-based approach for protecting virtual callsites. Since most virtual func-
tions have their address taken, many of the return targets stem from function pointer based call-
sites. The green line shows the results for non-virtual functions, which are the majority of func-
tions contained in NodeJS (more than 85%). Therefore, the results of the green line are similar
to those of the blue line, with around 5% of the functions allowing more than ten return targets.

9.4.1.2 Generalized Results

We assessed the precision of ρFEM by counting the number of allowed return targets per
function (callee). We consider the size of this return target set an indicator for the precision
of ρFEM’s backwards-edge protection.

Statistics
Program # Callees Min 90p Max Geo. Median Avg SD
Httpd 1,086 0 20 187 3.34 3 8.92 18.18
Lighttpd 451 0 6 317 1.97 1 4.78 19.46
Memcached 106 0 8.5 136 2.81 2 6.07 15.15
Nginx 1,132 0 29 1,630 3.29 2 11.57 58.23
Redis 2,644 0 7 3,796 1.97 1 7.89 81.74
NodeJS 30,330 0 231 6,837 3.34 1 34.70 114.11
Tr. Server 6,115 0 14 2,673 3.13 2 14.80 64.04
average 5,980.57 0 45.07 2,225.14 2.83 1.71 12.68 52.99
geomean 1,616.32 0 18.23 986.87 2.77 1.57 10.28 40.74

Table 9.1: Number of allowed return addresses per callee. All virtual and non-virtual functions
are considered as callees.

Table 9.1 depicts the total number of functions hardened by ρFEM and the size of their legit-
imate return address set enforced by ρFEM. Table 9.1 contains the following entries: # Callees
(total number of callees), minimum, 90th percentile, maximum, average, geomean, median, and
standard deviation. The geometric mean values for all assessed programs are less than 3.5 return
addresses per callee. This considerably decreases the chances of a successful attack. The aver-
age value obtained for NodeJS (most complex program in Table 9.1) represents an outlier. This
value originates from the high number of small helper functions which are not in-lined and a
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large number of function pointer based indirect callsites which are pulling down the metric. We
note that these worst case functions with over a few hundred return targets are not sufficiently
protected. We investigated the worst cases in NodeJS and observed many indirect callsites
calling template functions, which were generated for a myriad of JavaScript types. These
functions all have the same signature and can therefore be targeted by many indirect callsites.

Statistics
Program # Callees Min 90p Max Geo. Median Avg SD
NodeJS 4,177 0 239 2,792 23.12 19 92.31 143.31
Tr. Server 948 0 25 992 7.54 11 20.52 59.8
Chrome 66,032 0 1,150 15,014 144.21 155 1,399.97 3,677.36
average 23,719 0 471 6,266 58.29 61.66 504.26 1,293.49
geomean 6,394.53 0 190.11 3,464.50 29.29 31.87 138.41 315.86

Table 9.2: Return addresses allowed by ρFEM for several C/C++ programs. Note that only
virtual functions are considered here as callees.

Table 9.2 depicts the sizes of the legitimate return targets for only virtual functions. By
comparing the results in Table 9.2 and in Table 9.1 against each other we note that in general
ρFEM performs not as good for virtual functions than for non-virtual functions. This is due to
the fact that ρFEM: (1) uses ranges for virtual functions instead of single IDs (ranges contain
more than one element), (2) can not precisely determine when a virtual function is called
through a function pointer based call (due to the currently used address taken analysis).

Statistics
Program Baseline Min h 90p h Max h Geo. h Med. h Avg h SD h
Lighttpd 52,060 0 0.38 3.59 0.06 0.06 0.17 0.35
Memcached 24,672 0 0.34 5.51 0.11 0.08 0.25 0.61
Nginx 173,273 0 0.17 9.41 0.02 0.01 0.07 0.34
Redis 333,835 0 0.02 11.37 0.01 0.00 0.02 0.24
NodeJS 2,479,736 0 0.09 2.76 0.00 0.00 0.01 0.05
average 612,715.2 0 0.2 6.53 0.04 0.03 0.10 0.32
geomean 179,091.65 0 0.13 5.67 0.02 0.01 0.06 0.24

Table 9.3: Fraction of instructions allowed to return to.

Table 9.3 depicts the fractions of instructions a callee can return to. The results denote the
fraction (in hper thousand) of return targets allowed per callee. The Baseline entry denotes the
number of assembly instructions (addresses) in the program binary code section(s). Note that
without any backward edge protection a return instruction can freely transfer control flow to
any of the Baseline addresses. The results depicted in Table 9.3 are important since these show
the fraction of legitimate addresses which are allowed to be called after we hardened the binary
with ρFEM. The results in second column up to the last (from left to right) were determined
by dividing the results from Table 9.1 with the total number of Baseline instructions depicted
in column 2 (Baseline) of Table 9.3. The results indicate that the fraction of addresses that
are targetable after applying ρFEM for every analyzed program, is less than one in a thousand
addresses on average targetable.
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9.4.2 Exploit Coverage
We created a suite of C/C++ programs demonstrating various possible scenarios of callee return
target address overwrites.

Exploit Stopped Remark
Active-Set Attacks [260, 258]:

Type 1 (T1) X Return to any stack func.
Type 2 (T2) X Return to a child process
Type 3 (T3) X Return to earlier callsites
Type 4 (T4) X Return to future callsites
Type 5 (T5) X Return to program begin

CALL-ret violating [242]:
Innocent flesh on the bone X Caller-callee function call-

ing conv. violation
CALL-ret non-violating [238]:

COOP (forward edge) 7 Out of scope
ret equivalent:
pop jump instr. combination 7 Out of scope

Table 9.4: Stopped backward-edge attacks.

Table 9.4 presents a summary of several types of backward-edge based attacks and the
primitives on which these rely. For each of Types one to five (T1 - T5), our suite contains at
least one program reflecting this behavior. Next, we present the backward-edge primitives on
which the attacks depicted in Table 10.5 rely. Note that T1 up to T5 can all be independently
used to bypass [260, 258] the HAFIX [65] backward-edge protection technique. T1. Return
to any active function on the stack (not just the last function put on the call stack). T2. Return
to parent code in a child process after a fork. T3. Return to earlier callsites in functions on the
stack. T4. Return directly to future callsites in functions on the stack. T5. Return directly to
the beginning of a program (typically the second callsite in main).

Type Full CFL ρFEM
T1 7 X
T2 7 X
T3 7 X
T4 7 X
T5 7 X

Table 9.5: Exploits caught by callee return target protection techniques.

Table 9.5 depicts the results of running the programs from our suite with ρFEM. We could not
evaluate these with the CFL tool as this is not open source. Based on the analysis performed by
the CFL [19] tool, we expect that CFL cannot detect any of these five types of backward-edge vi-
olations as it allows a callee to return to any address following an indirect or direct function call.
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Next, we explain how ρFEM can mitigate these attacks. T1. None of the addresses enforced
by ρFEM is a function start address, only legitimate function return addresses are enforced. T2.
In case the return address is not in the legal return target set of the particular return, then this is
forbidden. T3. Callsite addresses are rejected by ρFEM completely, allowed addresses are only
these which are following a callsite. T4. Future callsite addresses are not included by ρFEM
in the target address set and as such these are forbidden. T5. Callsite addresses are completely
forbidden by ρFEM. Finally, note, that ρFEM can stop the Galileo ROP attack [242] due to the
fact that the callee can return to any program address and this is forbidden when ρFEM is used.

9.4.3 Security Analysis

In this Section, we evaluate the availability of gadgets after using ρFEM. Assuming that the
initial backward edge is protected by ρFEM, three conditions have to be met to make a gadget
usable in a ROP chain: (1) the gadget has to start with a NOP instruction (in order to be
targetable from a secured backward edge), (2) the payload of the NOP instruction has to pass
the backward-edge check of the incoming backward edge, and (3) the return instruction at the
end of the gadget has to be either unprotected or its target has to be contained in the return target
set of the function the gadget is part of. Note that condition (2) has already been extensively
discussed in RQ1 in a generalized form. Assuming the return target set of the gadget is not
sufficient to chain to the next gadget (as shown in RQ1), then condition (3) only holds if the
backward edge is unprotected.

Gadget Statistics
Program # LTO # TR #no-NOP #ret

check
#not
pro-
tect

%not
pro-
tect

Httpd 12,664 19,723 19,430 11,033 77 0.39%
Lighttpd 5,855 7,309 7,154 1,100 132 1.81%
Nginx 15,789 20,392 20,212 8,475 128 0.63%
Memcached 1,805 2,056 2,007 184 43 2.09%
NodeJS 375,032 490,570 485,396 99,853 3,222 0.66%
Tr. Server 75,187 106,766 104,935 23,486 1,275 1.19%
average 1.13%
geomean 0.95%

Table 9.6: ret gadgets available before/after hardening.

Table 9.6 depicts the results obtained after analyzing the hardened and unhardened program
binaries using the open source ROPgadget [233] tool (ROP gadget finding tool). We passed
the following arguments to ROPgadget: –depth=30 –nosys –nojop. In this example, we
consider the Table 9.6 columns numbered from left to right, in total we have seven columns.

The second column of (# gadgets with only LTO) contained in Table 9.6 shows the number of
unique gadgets found in the unhardened binary with LTO enabled. Here, a gadget is considered
unique if it consists of a unique sequence of instructions.
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The third column (# gadgets ρFEM) contained in Table 9.6 presents the number of unique
gadgets in the hardened binaries. In this case, for a gadget to be unique, we also consider the
existence of a NOP instruction at the beginning of the gadget. This means that two gadgets
with the same sequence of instructions, one with NOP before these instructions and one without,
are different gadgets. This differentiation is important since for an attack the existence of the
leading NOP is relevant. Due to this change the number of gadgets found by ROPgadget [233]
increases compared to the unhardened binary.

The fourth column (# gadgets no-NOP miss) contained in Table 9.6 shows the number of
gadgets in the hardened binary that fail condition (1), i.e., these gadgets do not start with a NOP
instruction and are therefore not targetable by a secured backward edge. We can observe that
most gadgets do not start with a NOP instruction as expected, since the number of callsites (and
therefore of NOP instructions) is small compared to the total number of instructions.

The gadgets depicted in column five (# gadgets ret-check) contained in Table 9.6 end with
a return check generated by ρFEM and therefore can only target gadgets that match the return
target set of the function the gadget is contained in. Note, that the return instructions not
protected by ρFEM are mostly either boilerplate functions (e.g., global setup and init functions)
or small stack adjustment functions generated by LLVM. These functions rarely contain any
calculating instructions (e.g., ADD, SUB) with non-imminent operands.

The sixth column (# unprotected gadgets) contained in Table 9.6 shows the number of gad-
gets for which both condition (1) and (2) hold. These gadgets are not counted in column two or
three and therefore have a NOP instruction at the beginning, but no check of the backward edge.
These are the remaining gadgets that can be used for a ROP chain attack without exploitation
of the residual return target set evaluated in RQ1.

Finally, the seventh column (% unprotected gadgets) contained in Table 9.6 depicts the
percentage of all gadgets in the hardened binary which are unprotected after hardening the
program binary with ρFEM. We can observe that on average only 1.13% of the gadgets found
are still useful after hardening a binary with ρFEM. Thus, ρFEM protects on average 98.87%
of the identified gadgets.

9.4.4 Runtime Overhead

Figure 9.6 shows the runtime overhead of SafeStack (shaded light gray), ρFEM (shaded black),
and ρFEM +IVT (shaded gray) on popular Chrome web browser benchmarks. Thus, ρFEM can
be applied incrementally when used together with IVT, offering forward- and backward-edge
protection. The geomean overhead, when using only ρFEM and ρFEM +IVT, is 2.72% and
2.78%, respectively.

Table 9.7 depicts the overall runtime overhead when running ρFEM on all pure C/C++
programs contained in the SPEC CPU2017 (rate) benchmark. Note that, we could not compile
502.gcc_r with SafeStack, whereas it was possible with ρFEM. For this reason, we did not
include it in Table 9.7. Finally, note that the average performance overhead of ρFEM is 0.63%,
which we consider a good outcome.
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Figure 9.6: ρFEM vs. SafeStack vs. IVT overhead

Benchmark LTO SafeStack
+ LTO

SafeStack
+ LTO

%

ρFEM +
LTO

ρFEM +
LTO %

500.perlbench_r 11.0 11.1 -0.91 11.1 -0.91%
505.mcf_r 11.7 11.4 2.56% 11.7 0.00%
520.omnetpp_r 8.05 8.12 -0.87% 8.02 0.37%
523.xalancbmk_r 8.79 8.79 0.00% 8.61 2.05%
525.x264_r 18.6 19.4 -4.30% 18.5 0.54%
531.deepsjeng_r 13.6 14.0 -2.94% 13.4 1.47%
541.leela_r 12.7 12.8 -0.79% 12.6 0.79%
557.xz_r 8.73 9.13 -4.58% 8.74 -0.11%
508.namd_r 12.8 13.0 -1.56% 12.7 0.78%
511.povray_r 17.7 17.6 0.56% 16.9 4.52%
519.lbm_r 4.82 4.82 0.00% 4.82 0.00%
526.blender_r 17.1 17.0 0.58% 17.1 0.00%
538.imagick_r 17.6 19.1 -8.52% 17.7 -0.57%
average - - -1.33% - 0.63%
geomean - - 0.31% - 0.03%

Table 9.7: Overhead on the SPEC CPU2017 (rate) benchmark.
Table 9.8 captures the results of running ρFEM on several programs contained in the SPEC

CPU2017 speed benchmark and comparing the results with SafeStack. Again, note that we
could not compile 602.gcc_s with SafeStack, whereas it was possible with ρFEM. We re-
moved it from Table 9.8. The average overhead of ρFEM is 0.23% and compares favorably
to that of SafeStack with an average of 0.70%.

190



C
ha

pt
er

9

9.5 Discussion

Benchmark LTO SafeStack
+ LTO

SafeStack
+ LTO

%

ρFEM +
LTO

ρFEM +
LTO %

600.perlbench_s 3.51 3.46 1.42 % 3.55 -1.14 %
605.mcf_s 6.69 6.31 5.68 % 6.67 0.30 %
620.omnetpp_s 3.81 3.7 2.89 % 3.66 3.94 %
623.xalancbmk_s 3.73 3.65 2.14 % 3.55 4.83 %
625.x264_s 5.15 5.2 -0.97 % 5.09 1.17 %
631.deepsjeng_s 4.06 4.02 0.99 % 4 1.48 %
641.leela_s 3.62 3.54 2.21 % 3.62 0.00 %
657.xz_s 2.06 2.24 -8.74 % 2.24 -8.74 %
average - - 0.70% - 0.23%
geomean - - 2.34% - 0.42%

Table 9.8: Overhead on the SPEC CPU2017 (speed) benchmark.
9.5 Discussion

In this Section, we discuss attack trade-offs and limitations of ρFEM.

9.5.0.1 Attack Trade-offs

Size of return sets trade-offs. Compared to Clang’s SafeStack (based on LLVM v.3.7.0 stable)
the sizes of the return sets of the assessed programs of ρFEM do not ensure a one-to-one
mapping. As it can be observed in Table 9.1, the sizes of the return sets are 2.83 in geomean.
The security of the program depends on the available gadgets, which are located at the ad-
dresses directly after the addresses contained in the per function target set. In our opinion,
the availability of these gadgets has to be further evaluated, in order to tell if an attack is still
possible under these conditions.

Attacker accessibility trade-offs. As the sizes of the return sets are larger than one, in some
situations (even through the return site), these could still be used by an attacker to return to a
legitimate address, allowing access to useful gadgets. The accessibility of the gadgets depends
on the following. The larger the return set per callee is, the higher are the chances, in general,
for an attacker to be able to perform an attack.

Shadow stacks trade-offs. We note that the legitimate return set for a callee protected by a
shadow stack technique is always 1 and as such the chances to successfully perform an attack
are lower compared to using ρFEM. Further, we cannot rule out that an attacker may still be
able to perform an attack when the binary is protected by a shadow stack technique, in case the
attacker knows: (1) the legitimate return address of a callee, and (2) the return address which
can be used to access a useful gadget.
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9.5.0.2 Limitations

Labeling of legitimate return sites. ρFEM inserts labels with IDs that correspond to each
legitimate return site for each function return (callee). This means that the legitimate addresses
of each function return are marked with the NOP instructions containing the same ID. This could
provide an attacker an useful hint at which addresses it is legitimate to return. In case these
return addresses contain useful gadgets than the attacker may return at this addresses, thus
bypassing the ρFEM CFI checks. This limitation can be addresses by adding an additional level
of indirection at the location when the NOPs are inserted. In this way it should be made hard for
the attacker to determine which IDs are valid at that particular return site. Thus, the labeling
of the legitimate return sites is avoided and the attacker would not be able to determine the
legitimate return set for a particular function return and as such the bypassing of the backward
edge CFI checks would be made much harder for the attacker.

Control flow bending. Control-Flow Bending (CFB) [36] has shown that, even with fully-
precise static CFI, powerful CRAs are still possible. CFB demonstrates that without shadow
stack, perfect static CFI can be bypassed through the usage of dispatcher functions, which have
a large number of legitimate callers, such as the printf() function. Taking the dispatcher
function as a pivot, attackers can return to any legitimate callers. The common way to mitigate
CFB attacks is to use a shadow stack, where only one return target is allowed. ρFEM cannot
handle CFB attacks with the same precision as shadow stack techniques. Note that all other
techniques (excluding shadow stacks) cannot protect against CFB as well. On one hand, only
shadow stack can mitigate this type of attack but these shadow stacks can be bypassed [94].
On the other hand, the goal of ρFEM is not to be able mitigate CFB attacks. Further, note that
against the common believe that only shadow stacks can handle CFB attacks, we think that
in case the return target set per callee is small (say under five targets as in our case in geomean)
the likelyhood of finding usable gadgets in this set when performing CFB are low. As such
ρFEM can protect against CFB only to a certain degree.

No inter-modular support. ρFEM can only secure single binaries. This means that for
dynamic libraries each library hast to be compiled in order to be protected. In the current ρFEM
implementation, the IDs for different modules may overlap which increases the return target set.
In addition, inter-modular backward edges are not protected. This situation can be addressed
by synchronizing IDs between modules. The program modules are compiled after compiling
dynamic libraries. This allows for forward sharing of ID information in the modules which
use the dynamic libraries. This is an engineering limitation which is easily solvable.

Imprecise function pointer callsite analysis. In the Evaluation (Section 10.4) we show that
function pointer based callsites account for a significant amount of return targets. This is
especially problematic for virtual callees since these usually are not targets of function pointer
based callsites. This issue can be addressed by developing a better address taken (AT) function
detection which helps to reduce the number of functions that can be targeted by any function
pointer based callsite. In addition, the function signature encoding can be improved by taking
into account more types and the (e.g., this) pointer.
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9.6 Summary
Return based program indirect control flow transfers play an important role when performing
nowadays software-based code reuse attacks (CRAs) as presented in recent attacks against
Google’s Chrome and Mozilla Firefox Web browsers. The current solutions which protect
against backward-edge based return violations enforce the caller/callee calling convention
mostly based on shadow stack techniques. Unfortunately, shadow stack techniques are highly
vulnerable when attackers are using one of the existing weaknesses: (1) neglected pointers, (2)
thread spraying, (3) allocation oracles, and (4) entropy based attacks.

In this Chapter, we presented ρFEM, an Clang/LLVM based backward edge runtime pro-
tection tool that leverages static forward edge information to harden backward edges in C/C++
programs. For forward edges belonging to a virtual call this information is obtained using (1)
class hierarchy analysis, while for forward edges corresponding to a function pointer based
call (2) a function signature matching approach is used. The information from (1) and (2)
is used to create backward edge mappings which are then utilized to build backward edge
runtime constraints. We conducted an evaluation of ρFEM with several real-world programs:
Google Chrome, NodeJS, Nginx, etc. Our evaluation shows that only a low median number
of return targets per callee return site are allowed. The median number of return addresses per
callee is small enough (up to 3 return addresses) while the geomean is 2,83. This considerably
reduces the chances of successfully performing control flow bending attacks by violating
backward-edge transfers. The max value of return targets is quite high, as such these locations
can be flagged during the analysis and require some orthogonal protection, i.e., push towards
future work. The largest class of targets for a calle is 15,014 measured for the Chrome Web
browser depicted in Table 9.2. Further, we want to address these cases in our future work. As
a consequence the programmer has a clear indication where he can improve the approach.

Our evaluation results show that ρFEM can be used as an always-on runtime mitigation
technique, thus proving its practicability in real scenarios. Our experiments with the Google’s
Chrome web browser suggest that ρFEM imposes a low average runtime overhead of 2.77%
geomean. Consequently, ρFEM is compatible with current large C/C++ applications such as
Chromium, readily deployable, and advances the state-of-the-art for the protection of callee re-
turn targets. Finally note that, ρFEM does not suffer from the attack vectors used for bypassing
information hiding in general.
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Chapter 10
τCFI: Runtime Protection of Program Binaries
Against Code Reuse Attacks

In this Chapter, which belongs to the second part of this thesis, we developed a framework,
called τCFI, for protecting of legacy program binaries with new CFI policies designed by
taking into account the lessons learned in Chapter 8. These learned lessons helped us to
thoroughly address RQ7 in order to provide a tool which can effectively protect forward and
backward program CFG edges in stripped binaries (i.e., most of the semantic information has
vanished through the compilation process as this type of information is usually not required
in production-ready binaries). CRAs which rely on corrupting forward and/or backward CFG
edges due to indirect control flow transfer violations are mitigated by greatly reducing the
likelihood of successfully performing such an attack when hardening the program binary with
τCFI. The successful CRA likelihood is reduced by allowing indirect backward edges transfers
to return to only legitimate targets. This greatly reduced the attacker wiggle room. Finally, note
that parts of this Chapter have already been published by Muntean et al. [195].

10.1 Introduction

What is the overall view? The C++ programming language has been extensively used to build
many large, complex, and efficient software systems over the last decades. A key concept of
the C++ language is polymorphism. This concept is based on C++ virtual functions. Virtual
functions enable late binding and allow programmers to overwrite a virtual function of the
base-class with their own implementation. In order to implement virtual functions, the compiler
needs to generate virtual table meta-data structures for all virtual functions and provide to each
instance (object) of such a class a (virtual) pointer (the value of which is computed during
runtime) to the aforementioned table. Unfortunately, this approach represents a main source
for exploitable program indirection (i.e., forward edges) along function returns (i.e., backward
edges), as the C/C++ language provides no intrinsic security guarantees (i.e., we consider
Clang-CFI [149] and Clang’s SafeStack [49] optional).
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What is the problem? In this Chapter, we present a new control flow integrity (CFI) tool called
τCFI used to secure C++ binaries by considering the type information from application binaries.
Our work targets applications, whose source code is unavailable and that contain at least one
exploitable memory corruption bug (e.g., a buffer overflow bug). We assume such bugs can be
used to enable the execution of sophisticated Code-Reuse Attacks (CRAs) such as the COOP
attack [238] and its extensions [59, 143, 22, 137], violating the program’s intended control flow
graph (CFG) through forward edges in the CFG and/or through attacks, that violate backward
edges such as Control Jujutsu [80]. A potential prerequisite for violating forward-edge control
flow transfers is the corruption of an object’s virtual pointer. In contrast, backward edges can
be corrupted by loading fake return addresses on the stack.

What are the existing solutions? To address such object dispatch corruptions, and in general
any type of indirect program control flow transfer violations, CFI [1, 2] was originally devel-
oped to secure indirect control flow transfers, by adding runtime checks before forward-edge
and backward-edge control transfers. CFI-based techniques that rely on the construction of
a precise CFG are effective [32] if CFGs are carefully constructed and sound [257]. However,
these techniques still allow CRAs that do not violate the enforced CFG. For example, the
COOP family of CRAs bypasses most deployed CFI-based enforcement policies, since these
attacks do not exploit indirect backward edges (i.e., function returns), but rather imprecision in
forward edges (i.e., object dispatches, indirect control flow transfers), which in general cannot
be statically (before runtime) and precisely determined as alias analysis in program binaries
is undecidable [229]. Source code based tools such as: SafeDispatch [124], MCFI [210, 211],
ShrinkWrap [106], VTI [24], and IFCC/VTV [261] can protect against forward-edge violations.
However, they rely on available source code, limiting their applicability (e.g., proprietary
libraries cannot be recompiled). In contrast, binary-based forward-edge protection tools, includ-
ing binCFI [289], vfGuard [226], vTint [287], VCI [78], Marx [218] and TypeArmor [268],
typically protect only forward edges through a CFI-based policy, and most of the tools assume
that a shadow stack [135] technique is used to protect backward edges.

What are the limitations of the solution? Unfortunately, the currently most precise binary-
based forward-edge protection tools w.r.t. calltarget reduction, VCI and Marx, suffer from
forward-edge imprecision, since both are based on an approximated program class hierarchy
obtained through the usage of heuristics and assumptions. TypeArmor enforces a forward-edge
policy, which only takes into account the number of parameters of caller-callee pairs without
imposing any constraint on the parameters’ types. Thus, these forward-edge protection tools
are generally too permissive. CFI-based forward-edge protection techniques without backward-
edge protection are broken [36], thus these tools assume that a shadow stack protection policy
is in place. Unfortunately, shadow stack based techniques (backward-edge protection) were
recently bypassed [94] and add, on average, up to 10% runtime overhead [63]. Goktas et
al. [94] demonstrate that at least four independently usable attack vectors (namely: guessing
oracles, neglected pointers, thread spraying, and allocation oracles) exist for thwarting shadow
stack techniques (binary and source code based) targeting their entropy based hiding principle
and making their usage questionable. τCFI defeats these attack vectors by not relying on
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program features that are used by these attack vectors and by using a deterministic approach
rather then one based on information hiding.

What is our insight? In this Chapter, we present τCFI, which is a fine-grained forward-edge
and backward-edge binary-level CFI protection mechanism, that neither relies on shadow stack
based techniques to protect backward edges, nor any runtime-type information (RTTI) (i.e.,
metadata emitted by the compiler, which is most of the time stripped from production binaries).
Note that, in general, variable type reconstruction on production binaries is a difficult task, as
the required program semantics are mostly removed through compilation.

At a high level, there is a number of analyses τCFI performs in order to achieve its protection
objective. In particular, it (1) uses its register width (ABI dependent) as the type of the parameter
for each function parameter, (2) when determining whether an indirect call can target a function,
it checks whether the call and the target function use the same number of parameters and
whether the types (register width) match, (3) based on the provided forward-edge caller-callee
mapping, it builds a mapping back from each callee to the legitimate addresses, located next to
each caller (i.e., the instruction following the callsite). τCFI’s backward-edge policy is based
on the observation that backward edges of a program can be efficiently protected, if there is
a precise forward-edge mapping available between callers and callees. This is later used during
the classification of matching callsites and calltargets, in order to distinguish between valid
and invalid function calls, and results in a more precise callee target set for each caller than
other state-of-the-art approaches like, for instance, TypeArmor.

Analysis Details. τCFI’s analysis is based on an basic block based use-def callees analysis to
derive the function prototypes, and a liveness analysis at indirect callsites to approximate callsite
signatures. This efficiently leads to a more precise CFG of the binary program in question, which
can also be used by other systems in order to gain a more precise CFG on which to enforce other
types of CFI-related policies. These analysis results are used to determine a mapping between
all callsites and legitimate calltarget sets. Further, this mapping is used in a backward analysis
for determining the set of legitimate return addresses for each function return determined by
each calltarget. Note that we consider each calltarget to be the start address of a function.

τCFI incorporates an improved forward-edge protection policy, which is based on the insight
that if the binary adheres to the standard calling convention (i.e., Itanium ABI) for indirect
calls, undefined arguments at the callsite are not used by any callee by design and that based on
the passed function parameter types can be approximated by their corresponding register width.

τCFI uses a forward-edge based propagation analysis to determine a minimal set of possible
return addresses for calltargets (i.e., function returns), which helps to impose the caller-callee
function calling convention with high precision. This policy is based on the observation that
if a fine-grained forward-edge policy can be precisely determined between callers and callees,
then this mapping can be used backwards from the calltarget to the callsite in order to construct
a fine-grained CFI policy, which helps to impose the caller-callee calling convention backwards.
Our backward-edge policy represents a fine-grained Safe Stack [135] (recently bypassed [94])
alternative. This attack shows that in general the protection offered by shadow stacks is ques-
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tionable (at least 4 attack vectors), since it is relatively easy for a motivated attacker to disclose
the shadow stack and bypass it.

We have implemented τCFI on top of DynInst [18], which is a binary rewriting framework,
that allows program binary instrumentation during loading or runtime. Note that τCFI preserves
the original code copy of an executable by instrumenting all code of an executable shadow copy,
which is later mapped to the original binary after it was loaded and τCFI’s analysis finished.
τCFI works with legacy programs and can be used to protect both executables and libraries.
τCFI performs per-file analysis; as such each file is protected individually. We have evaluated
τCFI with several real-world open source programs (i.e., NodeJS, Lighttpd, MySql, etc.), as
well as the SPEC CPU2006 benchmarks and demonstrated that our forward-edge policy is
more precise than state-of-the-art tools. τCFI is applicable to program binaries for which we
assume source code is not available. τCFI significantly reduces the number of valid forward
edges compared to previous work and thus, we are able to build a precise backward-edge policy,
which represents an efficient alternative to shadow stack based techniques.
What are our contributions? In summary, in this Chapter, we make the following contribu-
tions:

• We present τCFI, a new CFI system that improves the state-of-the-art CFI with more
precise forward-edge identification by using type information reverse-engineered from
stripped x86-64 binaries.

• We implement τCFI as a binary instrumentation framework to enforce a fine-grained
forward-edge and backward-edge protection.

• We conduct a thorough evaluation, through which we show that τCFI is more precise
and effective than other state-of-the-art techniques.

10.2 Threat Model
We follow the same basic assumptions stated in [268] w.r.t. forward edges protection. More
precisely, we assume a resourceful attacker that has read and write access to the data Sections
of the attacked program binary. We assume that the protected binary does not contain self-
modifying code or any kind of obfuscation. We also consider pages to be either writable or
executable, but not both at the same time. Further, we assume that the attacker has the ability
to exploit an existing memory corruption in order to hijack the program control flow. As such,
we consider a powerful yet realistic adversary model that is consistent with previous work on
CRAs and their mitigations [135]. The adversary is aware of the applied defenses and has
access to the source and non-hardened binary of the target application. She can exploit (bend)
any backward-edge based indirect program transfer and has the capability to make arbitrary
memory writes. Further, our technique is orthogonal to other forward-edge and backward-edge
protection techniques. As such, we assume that our techniques can be used alongside other
existing techniques. Our approach does not rely on information hiding from the attacker and as

198



C
ha

pt
er

10

10.3 Design and Implementation

such we can tolerate arbitrary reads. Finally, the analyzed program binary is not hand-crafted
and the compiler which was used to generate the program binary adheres to one of the following
most used caller-callee function calling conventions [9, 101, 122].

10.3 Design and Implementation

In this Section, we present the overview of τCFI followed by its design and implementation.

10.3.1 Approach Overview

Hardened
Program 
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Forward Callsite Mapping
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Figure 10.1: Main steps (gray shaded box) done by τCFI when hardening a program binary.

Figure 10.1 depicts an overview of our approach. From left to right, the program binary
is analyzed by τCFI and the calltargets and callsite analysis are performed for determining
how many parameters are provided, how many are consumed, and their register width. After
this step, labels are inserted at each previously identified callsite and at each calltarget. The
enforced policy is schematically represented by the black highlighted dots (addresses, e.g.,
cs1) in Figure 10.1 that are allowed to call only legitimate red highlighted dots (addresses,
e.g., ct1). Next, to compute the set of addresses which a return instruction can target, the
address set determined by each address located after each legitimate callsite is computed. This
information is obtained by using the previously determined callsite forward-edge mapping to
derive a function return backward map that uses return instructions as keys and return targets
as values. This way, τCFI has a set of addresses for each function to which the function return
site is allowed to transfer control. Finally, range or compare checks are inserted before each
function return site. These checks are used during runtime to check if the address, where the
function return wants to jump to, is contained in the legitimate set for each particular return
site. This is represented in Figure 10.1 by green highlighted dots (addresses e.g., ctr2) that are
allowed to call only legitimate blue highlighted dots (addresses e.g., csn1). Finally, the result
is a hardened program binary (see right-hand side in Figure 10.1 fore mode details).
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10.3.2 Parameter Count and Type Policy

Parameters can be passed through registers or the stack. In the Itanium C++ ABI, the first six
parameters are passed through registers (i.e., rdi, rsi, rdx, rcx, r8, and r9). Even when a
64-bit register is used to pass a parameter, the actual number of bits used in the register might
be smaller. Therefore, we treat the used widths of parameter-storing registers as the types of
the parameters. There are four types of reading and writing access on registers. Therefore, our
set of possible types for parameters is {64,32,16,8,0}, where zero models the absence of a
parameter. For the Itanium ABI, our analysis tracks the 6 registers used in parameter passing
and classifies callsites and calltargets according to how these registers are used.

Our analysis overapproximates at callsites and underapproximates at calltargets the parameter
count and types, which is due to the general difficulty of statically determining the exact number
of arguments provided by a callsite and the number of parameters required by a calltarget and
w.r.t. the widths of registers used in parameter passing. Specifically, at a callsite, the analysis
calculates an upper bound for the number of arguments and for the widths of those registers
that store arguments. For instance, for a function call that passes one argument with a width of
32-bit, the analysis may estimate that there are two arguments passed and the first one’s width
is 64-bit. Furthermore, the analysis on a calltarget (a callee function) calculates a lower bound
for the number of needed parameters and for the widths of those registers that store parameters.

Because of the approximations in our analysis, our policy for matching callsites and call-
targets allows a callsite to transfer to a calltarget if (1) the number of estimated arguments
at a callsite is greater than the number of estimated parameters at a calltarget; and (2) for
each argument at the callsite and its corresponding parameter in the calltarget, the estimated
width of the argument is greater than the estimated width of the parameter. Part (1) is about
the parameter count and is the same as the parameter-count policy in TypeArmor [268]; part
(2) is about the parameter types and enables τCFI to provide a finer-grained policy than just
considering the parameter count.

10.3.3 Instruction Read-Write Effect

We first introduce some definitions and notation. The set I describes the set of possible in-
structions; in our case, this is based on the instruction set for x86-64 processors. An instruction
i ∈I can perform two kinds of operations on registers: (1) Read n-bit from a register with
n ∈ {64,32,16,8} and (2) Write n-bit to a register with n ∈ {64,32,16,8}. Note that there are
instructions that can directly access the higher 8 bits of the lower 16 bits of 64-bit registers.
For our purpose, we treat this access as a 16-bit access.

Next, the possible effect of an instruction on one register is described as δ ∈ ∆ with
∆ = {w64,w32,w16,w8,0}× {r64,r32,r16,r8,0}. Note that 0 represents the absence of
either a write or read access and (0,0) represents the absence of both. Meanwhile, wn with
n ∈ {64,32,16,8} implies all wm with m ∈ {64,32,16,8} and m < n (e.g., w64 implies w32);
the same property holds for rn. The Itanium C++ ABI specifies 16 general purpose integer reg-
isters. Therefore, the read-write effect of an instruction on the set of registers can be described
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as δp ∈ ∆16. Our analysis performs calculations based on the effect of each instruction i ∈I
via the function regEffect : I 7→ ∆16. Note that this function can be purely defined based on
the semantics of instructions.

10.3.4 Calltarget Analysis
Our calltarget static analysis classifies calltargets according to the parameters they expect by
taking into account the parameters’ count and types. Given a set of address-taken functions1,
the static analysis performs an interprocedural analysis to determine the register states for the
6 argument registers.

Next, we present τCFI’s analysis, followed by a discussion of optimizations and interpro-
cedural analysis. The basic analysis determines, for each register and at a particular program
location, that it is in one of the following states:

• rn, where n∈ {64,32,16,8} represents that the lower n bits of the register are read before
written along all control flow paths starting from the location.

• ∗ represents that, along some control flow path, the register is either written before read
or there are no reads/writes on the register.

The basic analysis described above can be implemented as a classic backward-liveness
analysis, except that it needs to track widths in read operations. For instance, for an instruction
i, if the regEffect function shows that i reads the lower 16-bits of rax, then the state of rax
immediately before the instruction is r16. For an instruction with multiple successors, the
register states after the instruction are calculated based on the states at the beginnings of the
successors. For instance, if an instruction has two successors, and the state of rax is r64
before the first successor and the state of rax is r32 before the second, then the state of rax
after the instruction is r32, essentially indicating that all paths starting from the end of the
instruction have a r32 read before write for rax. Recall that the calltarget analysis performs
an underapproximation; so using r32 is safe even though one of the paths performs a r64 read.

The backward-liveness analysis, however, is inefficient. Our implementation actually follows
TypeArmor [268] to perform a forward interprocedural analysis (with some modification to
consider widths of read operations). We refer readers to the TypeArmor for details and give
only a brief overview in this thesis.

First, note that τCFI’s analysis operates at the basic block level instead of the instruction
level. For clarity, a basic block is a linear sequence of machine code instructions which does
not contain any branch instructions. Second, the analysis further refines the ∗ state to be either
w or c, where w (write before read) refers to a register being written to before read from along
some control flow path and c (clear/untouched) represents that the register is untouched along
some control flow path. The reason for such a refinement is that during forward analysis,

1Since an indirect call can target a function only if the function’s address is taken, there is no need to analyze
functions whose addresses are not taken; this is similar to TypeArmor.
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if the states of all argument registers before a basic block b are either rn or w (e.g., when b
reads or writes all argument registers), then there is no need to keep analyzing the successor
basic blocks since their operations would not change the state before b; this enables an early
termination of the forward analysis and is thus more efficient. On the other hand, if the state
of one of the argument registers is c, then the forward analysis has to continue. This is because
c indicates the register is untouched so far, but it can be read or written in a future basic block.
Further, the analysis is inter-procedural and maintains a stack to match direct function calls
and returns during analysis. Finally, for indirect calls, however, it does not follow to the targets,
but performs an under-approximation instead.

10.3.4.1 Parameter count and types

Once the analysis finishes, we can calculate a function’s parameter count and parameter types
based on the state before the entry basic block of the function. The argument count is deter-
mined using the highest argument register that is marked rn. The type of an argument register
is directly given by the rn state of the register.

10.3.5 Callsite Analysis

Our callsite analysis classifies callsites according to the arguments they provide by considering
the argument count and their types. For callsite analysis, overestimations are allowed: the
callsite analysis overestimates the number of arguments and the widths of arguments. As such
a callsite is allowed to target a calltarget that requires a smaller or equal number of parameters
and that requires a smaller or equal width for each parameter.

For callsite analysis, we employ a customized reaching-definition analysis, see Khedker et al.
[130] for more details. The analysis determines the states of registers. At a particular program
location, it determines whether or not a register is in one of the following states:

• sn, where n ∈ {8,16,32,64}: this represents a state in which the register’s lower n bit
is set in a control-flow path ending at the program location.

• t (trashed): this represents a state in which the register is not set on all control flow paths
ending at the program location.

τCFI’s reaching-definition analysis is implemented as an interprocedural backward analysis
similar to TypeArmor [268], the difference being that τCFI also tracks the widths in write
operations to infer sn states. Once the analysis is finished, it uses the register state just before
an indirect callsite to determine its argument count and types: If an argument register is in state
sn, then it is considered an argument that uses n bits; the argument count is determined by the
highest argument register whose state is sn.
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10.3.6 Return Values
Knowing more information about return values of functions increases CFI precision. For
instance, an indirect callsite that expects a return value should not call a function that does not
return a value; similarly, an indirect callsite that expects a 64-bit return value should not call
a function that returns only a 32-bit value. For calltarget analysis, τCFI traverses backwards
from the return instruction of a function and searches for uses of the RAX register to determine
if a function has a void or a non-void return type. In case there is a write operation on the
RAX register, τCFI infers that the function’s return type is non-void; furthermore, it tracks the
widths of write operations to infer the width of the return type. For calltarget return-value type
estimation, overapproximations are allowed.

At a callsite, τCFI traverses forward from the callsite to search for reads before writes on
the RAX register to determine if a callsite expects a return value or not. In case there is such
a read on the RAX register, τCFI infers that the callsite expects a return value; furthermore, it
tracks the widths of read operations to infer the width of the expected return value. For callsite
return-value type estimation, underapproximation is allowed.

10.3.7 Backward-Edge Analysis
In order to protect backward edges, we have designed an analysis that can determine possible
legitimate return target addresses for each callee function. Our algorithm used for computing
the legitimate set of addresses for each callee works as follows. First, a map is obtained after
running the callsite and calltarget analysis (see Section 10.3.4 and Section 10.3.5 for more
details); it maps a callsite to the set of legal calltargets where forward-edge indirect control-flow
transfer is allowed to jump. This map is then reversed to build a second map that maps from
the return instruction of a function (callee) to a set of addresses where the return can transfer to.

The return target address set for a function return is determined by getting the next address
after each callsite address that is allowed to make the forward-edge control flow transfer. The
map is obtained by visiting a return instruction address in a function and assigning to it the
addresses next to callsites that can call the function. At the end of the analysis, all callsites and
all function returns have been visited and a set of backward-edge addresses for each function
return address is obtained. Note that the function boundary address (i.e., ret) is detected
by a linear basic block search from the beginning of the function (calltarget) until the first
return instruction is encountered. We are aware that other promising approaches for recovering
function boundaries (e.g., [6]) exist, and plan to experiment with them in future work.

10.3.8 Binary Instrumentation
10.3.8.1 Forward-Edge Policy Enforcement

The result of the callsite and calltarget analysis is a mapping that maps a callsite to its allowed
calltargets. In order to enforce this mapping during runtime, callsites and calltargets are instru-
mented inside the binary program with two labels. Additionally, each callsite is instrumented
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with CFI checks. At a callsite, the number of provided arguments is encoded as a series of six
bits. At a calltarget, the label contains six bits encoding how many parameters the calltarget
expects. Additionally, at a callsite 12 bits encode the register-width types of the provided
arguments (two bits for each parameter), while at the calltarget another 12 bits are used to
encode the types of the parameters expected. Further, at a callsite, several bits are used to
encode if the function is expecting a void return type or not, and the width of the return type if
it is nonvoid (similarly for a calltarget). All this information is written in labels before callsites
and calltargets. During runtime before a callsite, these labels are compared by performing an
XOR operation. In case the XOR operation returns false (a zero value), the transfer is allowed;
otherwise, the program execution is terminated.

10.3.8.2 Backward-Edge Policy Enforcement

Based on the previously determined reverse map, before each function return a randomly gener-
ated label value is inserted. We decided to use these kinds of values as our main requirement is
to map a return to a potentially large number of return sites. The same label is inserted before
each legitimate target address (the next address after a legitimate callsite). In this way, a function
return is allowed to jump only to the instruction that follows next to the address of a callsite.

For callsites that target a calltarget that is also allowed by another callsite, τCFI performs
a search in order to detect if the callsite already has a label attached to the address after the
callsite. If so, a new label is generated and multiple labels are stored for the address following
the callsite. In this way, calltarget return labels are grouped together based on the reverse
map. This design allows the same number of function return sites as the forward-edge policy
enforces for each callsite. Finally, in case the comparison returns true, the execution continues;
otherwise, it is terminated.

10.3.9 Implementation

We have implemented τCFI using the DynInst [18] (v.9.2.0) instrumentation framework with
a total of 5,501 lines of C++ code. We currently restricted our analysis and instrumentation to
x86-64 executables in the ELF format using the Itanium C++ ABI calling convention. τCFI can
deal with the level of executable obfuscation with which DynInst can deal. As such, we fully
delegate this responsibility to the used instrumentation framework underneath. We focused
on the Itanium C++ ABI convention as most C/C++ compilers on Linux implement this ABI.
However, the implementation separated the ABI-dependent code, so we expect it to be possible
to support other ABIs as well. We developed the main part of our binary analysis pass in an
instruction analyzer, which relies on the DynamoRIO [26] library (v.6.6.1) to decode single
instructions and provide access to its information. The analyzer is then used to implement our
version of the reaching-definition and liveness analysis. Further, we implemented a Clang/L-
LVM (v.4.0.0, trunk 283889) backend (machine instruction) pass (416 LOC) used for collecting
ground truth data in order to evaluate the effectiveness and performance of our tool. The
ground truth data is then used to verify the output of our tool for several test targets. This is
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accomplished with the help of our Python-based evaluation and test environment implemented
in 3,239 lines of Python code.

10.4 Evaluation
We have evaluated τCFI by instrumenting various open source applications and conducting
a thorough analysis in order to show its effectiveness and usefulness. Our test applications
include the following real-world programs: FTP servers Vsftpd (v.1.1.0, C code), Pure-ftpd
(v.1.0.36, C code) and Proftpd (v.1.3.3, C code); Lighttpd web server (v.1.4.28, C code); two
database server applications Postgresql (v.9.0.10, C code) and Mysql (v.5.1.65, C++ code); the
memory cache application Memcached (v.1.4.20, C code); and the Node.js application server
(v.0.12.5, C++ code). We selected these applications to allow for a fair comparison with other
similar tools. In our evaluation, we addressed the following research questions (RQs):

• RQ1: How effective is τCFI? (Section 10.4.1)

• RQ2: What security protection is offered by τCFI? (Section 10.4.2)

• RQ3: Which attacks are mitigated by τCFI? (Section 10.4.3)

• RQ4: Are other forward-edge tools better than τCFI? (Section 10.4.4)

• RQ5: Is τCFI effective against COOP? (Section 10.4.5)

• RQ6: How does τCFI compare with Clang’s Shadow Stack? (Section 10.4.6)

• RQ7: What runtime overhead does τCFI impose? (Section 10.4.7)

Comparison Method. We used τCFI to analyze each program binary individually. Next, τCFI
was used to harden each binary with forward and backward checks. The data generated during
analysis and binary hardening was written into external files for later processing. Finally, the pre-
viously obtained data was extracted with our Python-based framework and inserted into spreed-
sheet files in order to be able to better compare the obtained results with other existing tools.
Setup. Our setup is based on Kubuntu 16.04 LTS (k.v.4.4.0) using 3GB RAM and four
hardware threads running on an i7-4170HQ CPU at 2.50 GHz.

10.4.1 Effectiveness
Table 10.1 depicts the average number of calltargets per callsite, the standard deviation σ ,
and the median. In Table 10.1, the abbreviation CS refers to the callsites, while CT means
calltargets. Note that the restriction to address-taken functions (see column AT) is present.
The label count∗ denotes the best possible reduction using the parameter count policy based
on the ground truth collected by our Clang/LLVM pass, while count denotes the results of
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O2 CS CT AT count* count type* type
Target total total total limit (mean ± σ ) median limit (mean ± σ ) median limit (mean ± σ ) median limit (mean ± σ ) median

ProFTPD 157.0 1,011.0 396.0 349.3 ± 52.8 369.0 370.1 ± 43.3 382.0 338.2 ± 64.8 361.0 354.4 ± 85.1 390.0
Pure-FTPD 8.0 127.0 13.0 8.6 ± 4.6 8.0 10.1 ± 4.8 13.0 8.1 ± 4.0 5.0 10.0 ± 4.0 10.0
Vsftpd 2.0 391.0 10.0 8.0 ± 2.0 8.0 10.0 ± 0.0 10.0 6.0 ± 2.0 6.0 7.0 ± 3.0 7.0
Lighttpd 66.0 289.0 63.0 34.3 ± 15.1 21.0 43.7 ± 14.5 51.0 34.5 ± 14.7 23.0 45.4 ± 12.1 50.0
Nginx 270.0 914.0 1,111.0 316.8 ± 146.9 266.0 447.6 ± 124.0 528.0 317.5 ± 146.4 267.0 450.9 ± 110.2 528.0
MySQL 7,893.0 9,928.0 5,896.0 338.5 ± 189.5 179.0 490.6 ± 203.3 574.0 307.9 ± 163.6 186.0 519.6 ± 147.6 540.0
PostgreSQL 687.0 6,885.0 2,304.0 423.4 ± 176.7 471.0 497.0 ± 151.8 515.0 416.2 ± 188.1 541.0 476.9 ± 162.4 562.0
Memcached 48.0 134.0 14.0 12.3 ± 2.3 14.0 13.0 ± 1.4 14.0 12.7 ± 1.0 12.0 12.8 ± 1.0 12.0
NodeJS 10,215.0 20,196.0 7,230.0 763.1 ± 329.3 806.0 1,051.2 ± 293.2 1,169.0 683.2 ± 332.9 459.0 939.8 ± 314.0 1,022.0

geomean 170.1 1,104.8 259.8 89.0 ± 31.2 79.4 110.4 ± 27.0 123.1 83.7 ± 28.1 69.3 104.7 ± 27.8 111.6

Table 10.1: Allowed callsites per calltarget for τCFI’s count and type policies.

our implementation of the parameter count policy derived from binaries. The same applies to
type∗ and type regarding the parameter type policy. A lower number of calltargets per callsite
indicates better results. Note that our parameter type policy is superior to the parameter count
policy, as it allows for a stronger reduction of allowed calltargets. We consider this an important
result, which further improves the state-of-the-art. Finally, we provide the median and the pair
of mean and standard deviation to allow for a better comparison with other state-of-the-art tools.

10.4.1.1 Theoretical Limits

We explored the theoretical limits regarding the effectiveness of the count and type policies
by relying on the collected ground truth data; essentially assuming perfect classification. Based
on the type information collected by our Clang/LLVM pass, we derived the available number
of calltargets for each callsite by applying the count and type policies. From the results, (1) the
theoretical limit of the count* policy has a geomean of 89 possible calltargets, which is around
8% of the geomean of the total available calltargets (1,104), and (2) the theoretical limit of the
type* policy has a geomean of 83 possible calltargets, which is 7.5% of the geomean of the total
available calltargets (1104). In comparison, the theoretical limit of the type* policy allows about
13% less available calltargets in geomean than the limit of the count* policy (i.e., 69.3 vs. 79.4).

10.4.1.2 Calltarget per Callsite Reduction

(1) The count policy has a geomean of 104 calltargets, which is around 9.4% of the geomean
of all available calltargets (1104). This is around 24% more than the theoretical limit of
available calltargets per callsite (see count* 89 vs. 110.4). (2) The type policy has a geomean
of 104.7 calltargets, which is 9.48% of the geomean of total available calltargets (1,104). This
is approximatively 25% more than the theoretical limit of available calltargets per callsite (see
type* 83.7 vs. 104.7). τCFI’s type policy allows around 9.4% less available calltargets in the
geomean than our implementation of the count policy (104.7 vs. 110.4), and a total reduction
of more than 94% (104.7 vs. 1,104) w.r.t. the total number of calltargets (CT) available once
the count and type policies are applied.
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10.4.2 Forward-Edge Policy vs. Other Tools

Target IFCC TypeArmor AT τCFI τCFI
(CFI+CFC) (count) (type)

ProFTPD 3.0 376.0 396.0 382.0 390.0
Pure-FTPD 0.0 4.0 13.0 13.0 10.0
Vsftpd 1.0 12.0 10.0 10.0 7.0
Lighttpd 6.0 47.0 63.0 51.0 50.0
Nginx 25.0 254.0 1,111.0 528.0 528.0
MySQL 150.0 3,698.0 5,896.0 574.0 540.0
PostgreSQL 12.0 2,304.0 2,504.0 515.0 562.0
Memcached 1.0 14.0 14.0 14.0 12.0
NodeJS 341.0 4,714.0 7,230.0 1,169.0 1,022.0

geomean 8.7 170.4 259.8 123.1 111.6

Table 10.2: Legitimate calltargets and callsite pair sets for five tools.

Table 10.2 provides a comparison between τCFI, TypeArmor and IFCC w.r.t. the median
count of calltargets per callsite. The values for TypeArmor [268] and IFCC [261] depicted
in Table 10.2 have been adopted from the corresponding papers in order to ensure a fair
comparison. Further, Table 10.2 conveys the limitations of binary-based type analysis, as the
median of the possible target set size for τCFI is several times larger than the corresponding
set sizes for system using source-level analysis. Note that the smaller the geomean values are,
the better the technique is. AT is a technique that allows a callsite to target any address-taken
functions. IFCC is a compiler-based solution and is included here as a reference to show what
is possible when the program’s source code is available. TypeArmor and τCFI on the other
hand are binary-based tools. τCFI reduces the number of calltargets by up to 42.9% (geomean)
when compared to the AT technique, by more than seven times (7,230 vs. 1,022) for a single
test program w.r.t. AT, and by 65.49% (170.4 vs. 111.6) in geomean when compared with
TypeArmor, respectively. As such, τCFI represents a stronger improvement w.r.t. calltarget
per callsite reduction in binary programs compared to other approaches.

10.4.3 Effectiveness Against COOP

We investigated the effectiveness of τCFI against the COOP attack by looking at the number
of register arguments, which can be used to enable data flows between gadgets. In order to
determine how many arguments remain unprotected after we apply the forward-edge policy of
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τCFI, we determined the number of parameter overestimations and compared it with the ground
truth obtained during an LLVM compiler pass. Next, we used some heuristics to determine how
many ML-G and REC-G callsites exist in the C++ server applications. Finally, we compared
these results with the one obtained by TypeArmor.

Overestimation
Program #cs 0 +1 +2 +3 +4 +5
MySQL (ML-G) 192 184 3 1 0 1 3
Node.js (ML-G) 134 131 1 0 1 0 1
geomean 160 155 1 1 1 1 1
MySql (REC-G) 289 273 10 2 3 0 1
Node.js (REC-G) 72 69 2 0 0 0 1
geomean 144 137 4 1 1 1 1

Table 10.3: Parameter overestimation for the ML-G and REC-G gadgets.

Table 10.3 presents the results obtained after counting the number of perfectly estimated
and overestimated protected ML-G and REC-G gadgets. As it can be observed, τCFI obtained
a 96% (184 out of 192) accuracy of perfectly protected ML-G callsites for MySQL, while
TypeArmor obtained a 94% accuracy for the same program. Further, τCFI obtained a 97%
(131 out of 134) accuracy for Node.js, while TypeArmor obtained 95% accuracy on the same
program. Further, for the REC-G case, τCFI obtained an 94% (273 out of 289) exact-parameter
accuracy for MySQL, while TypeArmor had 86%. For Node.js, τCFI obtained an accuracy of
95% (69 out of 72), while TypeArmor had 96%. Overall τCFI’s forward-edge policy obtained a
perfect accuracy of 95%, while TypeArmor obtained 92%. While this is not a large difference,
we want to point out that the remaining overestimated parameters represent only 5% and thus
do not leave much wiggle room for the attacker.

10.4.4 Comparison with the Shadow-Stack

The shadow stack implementation of Abadi et al. [1] provides a strong security protection [32]
w.r.t. backward-edge protection. However, it: (1) has a high runtime overhead (≥ 21%), (2) is
not open source, (3) uses a proprietary binary analysis framework (i.e., Vulcan), and (4) loses
precision due to equivalent class merging. Hence, we propose an alternative backward-edge
protection solution. In order to show the precision of τCFI’s backward-edge protection, we
provide the average number of legitimate return addresses for return instructions and compare
it to the total number of available addresses without any protection.

Table 10.4 presents the statistics w.r.t. the backward-edge policy legitimate return targets.
More specifically, in Table 10.4, we use the following abbreviations: total number of return
addresses (Total #RA), total (median) number of return address targets (Total #RATs), total
(median) number of return address targets per return instruction (Total. # RATs/RA), percentage
of legitimate return address targets per return addresses w.r.t. the total number of addresses
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Program Total Total Total %RATs/RA
#RA #RATs #RATs/RA prog. binary

MySQL 5,896.0 3,792.0 0.6 0.014%
Node.js 7,230.0 3,864.0 0.53 0.011%
geomean 6,529.0 3,827.0 0.58 0.012%

Table 10.4: Backward-edge policy statistics.
in the program binary (% RATs/RA w.r.t. program binary). By applying τCFI’s backward-edge
policy, we obtain a reduction of 0.42 (1−0.58) ratio (geomean) of the total number of return
address targets per return address over the total number of return addresses. This means that
only 43% of the total number of return addresses are actual targets for the function returns.
The results indicate a percentage of 0.012% (geomean) of the total addresses in the program
binaries are legitimate targets for the function returns. This means that our policy can eliminate
99.98% (100% - 0.012%) of the addresses, which an attacker can use for his attack inside the
program binary. To put it differently, only 0.012% of the addresses inside the binary can be
used as return addresses by the attacker. Further, we assume that the attacker cannot easily
determine which addresses are still available for any given program binary, as it is stripped from
debug information. Note that each function q1 return (callee) is allowed to return in geomean
to around 111 legitimate addresses (MySQL 519 and NodeJS 939) in all analyzed programs.
Finally, we assume that it is hard for the attacker to find out the exact set of legitimate addresses
per return site once the policy was applied.

Figure 10.2: CDF for the PostgreSQL pro-
gram.
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10.4.5 Security Analysis
Figure 10.2 depicts the cumulative distribution function (CDF) for the PostgreSQL program
compiled with the Clang -O2 flag. We selected this program randomly from our test programs.
The CDF depicts the relation between the ratio of indirect callsites and the ratio of calltargets,
for the type and the count policies. While the CDFs for the count policies have only a few
changes, the amount of changes for the CDFs of the type policies is vastly higher. The reason
for this is fairly straightforward: the number of buckets (i.e., the number of equivalence classes)
that are used to classify the callsites and calltargets is simply higher for the type policies.
Finally, note that the results depend on the internal structure of the particular program and may
for this reason vary for other programs.

10.4.6 Mitigation of Advanced CRAs
Table 10.5 presents several attacks that can be successfully stopped by τCFI by deploying only
the forward-edge or the backward-edge policy.

Exploit Stopped Remark
COOP ML-G [238]
IE 32 bit × Out of scope
IE 1 64-bit X(FP) Arg. count mismatch
IE 2 64-bit X(FP) Arg. count mismatch
Firefox X(FP) Arg. count mismatch

COOP ML-REC [59]
Chrome X(FP) Void target where non-

void was expected
Control Jujutsu [80]
Apache X(FP) Target function not AT
Nginx X(FP) Void target where non-

void was expected
All Backward edge
violating attacks X(BP) (1)a or (2)b or (3)c.

a Jump to address /∈ in the max−min address range.
b Jump to address 6= then a legitimate address.
c Jump to address label 6= the calltarget return label.

Table 10.5: Stopped CRAs, forward-edge policy (FP) & backward-edge policy (BP).

For checking if the COOP attack can be prevented, we instrumented the Firefox library
(libxul.so), which was used to perform the original COOP attack as presented in the original
paper. We observed that due to the forward-edge policy this attack was no longer possible.
For testing if backward-edge attacks are possible after applying τCFI, we used several open
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source ROP attacks that are explicitly violating the control flow of a C++ program through
backward-edge violations. Next, we instrumented the binaries of these programs. Each attack
that was using one of the protected function returns was successfully stopped.

In summary, many forward-edge and backward-edge attacks can be successfully mitigated
by τCFI as long as these attacks are not aware of the policy in place and thus cannot selectively
use gadgets that have their start address in the allowed set for the legitimate forward-edge and
backward-edge transfers, respectively.

10.4.7 Runtime Overhead
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Figure 10.3: Runtime overhead.

Figure 10.3 presents the runtime overhead obtained by applying τCFI’s forward-edge policy
(register type; parameter count) and backward-edge policy on all C/C++ programs contained in
SPEC CPU2006. Out of the evaluated programs: xalancbmk, namd, omnetpp, dealII, astar,
soplex, and povray are C++ programs, while the rest are pure C programs. After the programs
were instrumented, we measured the runtime overhead. The geomean of the instrumented
programs is around 2.89% runtime overhead. One reason for the performance drop is cache
misses introduced by jumping between the old and the new executable section of the binary
generated by duplicating and patching. This is necessary, because when outside of the compiler,
it is difficult to relocate indirect control flow. Therefore, every time an indirect control flow
occurs, jumps into the old executable section and from there back to the new executable section
occur. Moreover, this is also dependent on the actual structure of the target as the overhead
depends on the frequency of indirect control flow operations. Another reason for the slightly
higher (yet acceptable) performance overhead is our runtime policy, which is more complex
than that of other state-of-the-art tools.
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10.5 Discussion

In this Section, we present some limitations of τCFI and indicate several attacker policy
discovery trade-offs.

10.5.0.1 Limitations

First, τCFI is limited by the capabilities of the DynInst instrumentation environment, where
non-returning functions like exit are not detected reliably in some cases. As a result, we cannot
test the Pure-FTP server, as it heavily relies on these functions. The problem is that those
non-returning functions usually appear as a second branch within a function that occurs after
the normal control flow, causing basic blocks from the following function to be attributed to
the current function. This results in a malformed control flow graph and erroneous attribution
of callsites and problematic misclassifications for both calltargets and callsites.

Second, parameter passing through floating point registers is currently not supported by
τCFI, similar to other state-of-the-art tools. Tail calls are also not supported for now as they
lose the one-to-one matching between callers and callees. Further, τCFI does not support
self-modifying code as code pages become writable at run-time. We plan to address this
limitation in future work.

Third, τCFI is not intended to be more precise than source code based tools such as IFC-
C/VTV [261]. However, τCFI is highly useful in situations when the source code is typically
not available (e.g., off-the-shelf binaries), where programs rely on third-party libraries, and
where the recompilation of all shared libraries is not possible.

Finally, while a major step forward, τCFI cannot thwart all possible attacks, as even solutions
with access to source code are unable to protect against all possible attacks [36]. In contrast,
τCFI, our binary-based tool can stop all COOP attacks published to date and significantly
raises the bar for an adversary when compared to other state-of-the-art tools. Moreover, τCFI
provides a strong mitigation for other types of code-reuse attacks as well as for attacks that
violate the caller-callee function calling convention.

10.5.0.2 Attacker Policy Discovery Trade-offs

In general, with usage of CFI techniques, it is relatively unchallenging for an attacker to figure
out where an indirect program control flow may transfer during runtime. This is because the
indirect transfer targets (backward and forward) are labeled with IDs that have to satisfy certain
conditions, e.g., a bitwise XOR operation between the bits of the start and target address of
indirect control flow transfer should return a one or zero in case the transfer is legal or illegal,
respectively.

Thus, we note that in general it is not difficult for a resourceful attacker to figure out which
callees match to which calltargets or vice versa when these are labeled with IDs for example.
τCFI is not exempted from this. In general, if the attacker knows where an indirect transfer
is allowed to jump to, he may use this wiggle space to craft his attack with the available
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(reachable) gadgets. The main assumption on which CFI and τCFI are built upon is that the
wiggle room is sufficiently reduced for an attacker such that the likelihood for a successful
attack is greatly diminished.

10.6 Summary
In this Chapter, we presented τCFI, a tool based on novel control flow integrity (CFI) defense
policies, which can be used to protect program control flow graph (CFG) forward-edges and
backward-edges in program binaries during runtime. For the protected stripped (i.e., no runtime
type information (RTTI) available) x86-64 binaries, we do not need to make any assumptions
on the presence of an auxiliary technique for protecting backward edges (i.e., shadow stacks,
etc.) as τCFI protects these transfers, too. We have evaluated τCFI with real world open source
programs and have shown that τCFI is practical and effective when protecting program binaries.
Finally, our evaluation results reveal that τCFI can considerably reduce the forward-edge legal
calltarget set, provide high backward-edge precision, while maintaining low runtime overhead.
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Chapter 11
Conclusion and Future Work

11.1 Conclusion

In this thesis, we discussed the fact that mitigation of code reuse attacks (CRAs) is of high
importance for academia and industry. Even through there are many out-of-the-box solutions
out there which amongst other research areas also focus on the main research areas covered
in this thesis these have certain limitations. As such, in this thesis we want to prpose: (1)
tools which can be used for early (i.e., during development) and late (i.e., during deployment)
detection and repairing of faults which can lead to potentially exploitable memory corruptions
that are in almost all cases the starting point for CRAs, (2) compiler based sanitizers which
gained considerable attention in the last few years as these were, for example, successfully
integrated in fuzzing environments (e.g., Google’s OSS-Fuzz [100]), and (3) tools for hardening
of legacy program binaries; none of these industry provided approaches solve the problem of
fully avoiding CRAs and at most can claim that they can combat a certain part of an attack
prerequisite. For this reason, we nowadays see an arms race in full development. In this race,
multiple protection techniques (new hurdles) are constantly being deployed with the goal to
considerably or fully reduce the likelihood of such attacks.

Further, in this thesis, we thoroughly reviewed these three main research areas mentioned
above and proposed effective solutions which considerably improve the state-of-the-art in
all of these three areas. Finally, we conclude this thesis by briefly reiterating through our
contributions in Section 11.1.1, presenting some future research avenues in Section 11.2 and
providing some final remarks in Section 11.3.

11.1.1 Contributions

In this Section, we present our contributions which cover three main interconnected research
areas with which advanced CRAs can be mitigated. We started our thesis by looking into static
source code approaches to mitigate memory corruptions by searching and repairing them, in this
avoiding potential CRAs. The common belief with this type of mitigation is that a system with
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less memory corruptions are less CRAs prone. Next, we investigated runtime based mitigation
of memory corruptions which could lead to CRAs. The intuition behind these decisions was
that since static analysis techniques have their limitations also thoroughly mentioned in the
thesis it is a natural decision to cut trough these limitations and use the full spectrum of the
program runtime information which is only available during runtime. Within this research
area we investigated how to assess existing state-of-the-art static CFI defenses and provided
a solution for protecting backward edges. Finally, the third research area covered was binary
hardening against CRAs. The intuition behind perusing this interconnected research area is
that in some situations source code is not available, code is shared only in binary form by some
vendors in order to guard market advantages, and finally it is a well established research area
which gained a lot of attention in the last years.

We now briefly visit the contribution details w.r.t all these three main research areas inves-
tigated within this thesis.

11.1.1.1 Static source code analysis for automated memory corruption localization
and repair generation.

In the first part of this thesis, more specifically, in Chapter 4, we presented a framework inside
which, we first designed and implemented and second, integrated our integer overflow detection
tool, called INTREPAIR. This tool is capable of efficiently detecting integer overflows in C
source code programs. With this approach, we answer RQ1 by providing a tool which can
reliably detect integer overflows and does not suffer from false negatives. Further, the tool is
integrated in a well established and widely used IDE (i.e., Eclipse IDE).

Next, in Chapter 5, we extended our static C source code analysis framework by presenting
an integer overflow detection and repair tool which can provide source code repairs that help
a programmer to automatically repair an integer overflow. Within this Chapter, we addressed
RQ2 by providing an integer overflow repair tool, named INTREPAIR, which is capable of ef-
ficiently removing a fault, can automatically validate a repair, and does not introduce unwanted
program behavior.

Further, in Chapter 6, we extended our static source code analysis framework in order to be
able to detect and repair buffer overflows which are in many situations a main prerequisite for
CRAs. In this Chapter, we provided a tool, called BUFFREPAIR, which can automatically gen-
erate buffer overflow repairs, does not suffer from false negatives, and can validate a repair. At
the same time, we fully addressed RQ3 and integrated our tool into a well used and established
IDE as we did with both INTREPAIR and INTREPAIR.

11.1.1.2 Dynamic source and machine code based analysis and instrumentation for
runtime memory corruption detection, CRAs mitigation and static CFI
policies assessment.

In the second part of this thesis, specifically, in Chapter 7, we investigated the detection of
dynamic memory corruptions detections which can most commonly lead to (or are a prereq-

216



C
ha

pt
er

11

11.2 Future Work

uisite for) CRAs. We were motivated to follow this path due to the intrinsic limitations of static
analysis tools. More specifically, we developed a compiler based sanitizer tool, called CASTSAN,
which can detect object type confusions during runtime and which is fully integrated into a
well established compiler framework (Clang/LLVM). Within this Chapter, we address RQ4 by
providing a fully functional object type confusion tool which is based on a novel and efficient
technique and in case of consistent use is able to considerably reduce the likelihood of CRAs.

Next, in Chapter 8, we designed a static compiler based tool, called LLVM-CFI, which is
usable for assessing static state of the art CFI policies. The intuition behind this decision is
motivated twofold. Firstly, due to the fact that it is most likely that memory corruptions can not
be fully eliminated we wanted to provide an active defense by hardening the program. Secondly,
we wanted to come up with novel CFI based techniques for protecting indirect program control
flow transfers. In order to effectively address this task we wanted to learn how effective the
existing CFI defenses are and what level of security they offer. As such, we addressed RQ5
by providing a framework for assessing static CFI policies w.r.t. calltarget set reduction after
a certain CFI defense was applied. Further, in this thesis we learned important lessons which
helped us prepare next design decisions.

Further, in Chapter 9, we designed and implemented a compiler based tool, called ρFEM,
which is based on the lessons learned in Chapter 8. ρFEM protects program CFG backward
edges stemming from indirect and direct forward-edge program control flow transfers. In this
way, we were able to address RQ6 and propose a novel technique for protecting program CFG
backward-edges with the help of a fine grained CFI policy which provides an optimal set of
return targets for each protected callee. In this way the likelihood of successfully performing
CRAs which exploit backward edges is greatly reduced. As such, we provide in this Chapter
a solution which is an alternative for shadow stack based techniques. In contrast to shadow
stack techniques, ρFEM does not rely on entropy and information hiding. Thus, the according
protection disclosing vectors do not apply.

Finally, in Chapter 10, we developed a framework, called τCFI, for protection of legacy
program binaries with new CFI policies designed by taking into account the lessons learned in
Chapter 8. These learned lessons helped us to thoroughly address RQ7 in order to provide a tool
which can effectively protect forward and backward program CFG edges in stripped binaries
(i.e., most of the semantic information has vanished through the compilation process) as this
type of information is usually not required in production-ready binaries. In this way CRAs
which rely on corrupting forward and/or backward CFG edges due to indirect control flow
transfer violations are mitigated by greatly reducing the likelihood of successfully performing
such an attack when hardening the program binary with τCFI.

11.2 Future Work

In this Section, we briefly present some future work and research avenues for each of the tools
we presented within this thesis.
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11.2.1 Next Steps related to IntDetect

In future work, we want to extend the CFG building algorithm in order to support C++ control
flow related semantics—object instantiation, dispatching, templates, etc. Additionally, we want
to implement other symbolic function models which are relevant for detection of other types
of integer related vulnerabilities. Further, we want to extend our tool such that it is possible
to detect integer underflows, and other inter overflow related problems such: integer coercion
errors, off-by one errors, unexpected sign extension, and signed to unsigned conversion errors.
Finally, we want to implement mechanisms for checking if the integer overflow was intended
or unintended and also to differentiate between benign (i.e., not exploitable) and malicious (i.e.,
exploitable) integer overflows.

11.2.2 Next Steps related to IntRepair

In future work, we aim to extend INTREPAIR to repair other integer related errors such as
signedness errors [27, 253] caused by type conversions, and handle the full C/C++ language
features as described in Section 11.2.1. More specifically, we want to extend the set of repair
patterns for different types of integer related problems as well as for the currently studied
integer overflows. Further, we want to implement an automated approach which ranks multiple
patterns which may fit to repair a certain integer overflow by letting the programmer to choose
from a list of possible features (e.g., minimal code size, usage of mathematical functions,
in-place repairing, not in-place repairing, etc.). We think that these repair prioritization features
will allow the programmer to better decide which repair fits best to his particular needs.

11.2.3 Next Steps related to BuffRepair

In future work, we want to extend BUFFREPAIR such that it can detect other types of buffer
overflow related problems (e.g., stack and heap based buffer attacks, arithmetic attacks and
format string attacks) and types (i.e., heap based buffer overflow). Further, we want to differ-
entiate between benign (i.e., not exploitable) and malicious (i.e., exploitable) buffer overflows
as well as programmer intended and unintended buffer overflows. As a natural consequence of
extending the types of buffer overflow which BUFFREPAIR could handle we want to extend our
set of buffer overflow repair patterns which need to be adapted for these new scenarios. Thus,
as we currently support in-place and non-in-place buffer overflows we also want to research
other optimal approaches for finding non-in-place repairs which are sound and potentially can
remove the fault on many program CFG execution paths. Finally, once the fault is fixed then
it will not manifest in all CFG nodes contained on all CFG program paths located under the
non-in-place repair location.
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11.2.4 Next Steps related to CastSan

In this Section, we present several future research direction w.r.t. how to increase the coverage
of CASTSAN, and the possibility of reusing the metadata used by CASTSAN in other types of
compiler based sanitizers is discussed. Finally, we present how CASTSAN can be extended to
check for non polymorphic object type confusions as well.

Increasing Coverage. CASTSAN can only check casts between polymorphic classes. This
is due to its dependence on virtual function pointers, which non-polymorphic classes do not
have. Further we note that since the virtual class hierarchy which the vptrs are derived from
is a transformation of the class hierarchy graph to trees, we think that this concept could be
extended to non-polymorphic classes as well. To achieve this, a metadata runtime similar to
HexTypes [125] could be used to store type metadata. Instead of only creating trees from
polymorphic classes, all classes could be included into the trees. A polymorphic object would
then save their own vptr while a non-polymorphic object stores it using the runtime metadata
service. The cast check itself would then still be an efficient range based check, without the need
to iterate over lists. Also, the amount of objects that need to be tracked during runtime could
drastically be reduced, due to the fact that polymorphic objects do not rely on the metadata.

Reusing the Virtual Table Metadata. IVT uses the ordered vtables to provide a fine grained
control flow integrity policy for the CFG forward-edges during runtime. As the vtable layout
provides a limited view on the class hierarchy, it can be explored if it can replace runtime type
information (RTTI) as a faster runtime type information provider. Together with the auxiliary
vtables proposed in Section 11.2.4, the metadata can be extended to provide runtime type
information for classes without vtables as well. Finally, note that RTTI on the other hand only
provides data for polymorphic classes.

Dynamic Cast. C++’s dynamic_cast is used for checking the type safety of object casts at
runtime. In LLVM this is implemented using RTTI metadata. RTTI is a slow recursive way of
storing raw runtime type information. This allows for a secure but slow checks (up to 90 times
slower than static dispatches, see Lee et al. [142] for more details) of object cast during runtime.
In large and performance oriented programs it is often not advisable to use dynamic_cast,
as its disadvantages out-weights its benefits. Similar to CASTSAN, dynamic_cast is limited
to polymorphic objects. Therefore, CASTSAN could be extended to check dynamic_cast in
addition to static_cast. Finally, we think that by extending CASTSAN in this way, programs
that make heavy use of dynamic_cast could be speed up tremendously.

Extend to Non-polymorphic Objects. In future work, we want to use our static metadata based
technique to extended existing purely runtime based object type confusion detection tools such
as TypeSan and HexType. These tools use for both polymorphic and non-polymorphic object
type checking a runtime library which adds considerable runtime overhead due to updates,
search, and deletion of object type meta-data data. We think that our approach can be used to
avoid the runtime tracking of object type metadata for polymorphic objects. Further, a comple-
mentary artificial virtual table like metadata class hierarchy can be built for non-polymorphic
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objects as well. Finally, in this way our technique can be used in this context as well, thus avoid-
ing or considerable reducing the overhead introduced by the runtime compiler checking support.
Medata Usage for Other Sanitizer Types. We envisage that our portable projected virtual
table hierarchy list technique can be used by other object type confusion detection tools to
speed-up their object cast checking mechanism. In particular, our technique could be used to
speed-up, for example, C++ runtime casts such as, dynamic_cast<>, which have to perform
a non-trivial traversal of RTTI information to check safety. This would help to further reduce
the runtime overhead by reducing the computational overhead which is mainly caused by (1)
intensive interaction between the instrumented code and compiler runtime libraries, and (2)
variable time lookup checking mechanisms. (i.e., Compiler-RT based).

11.2.5 Next Steps related to LLVM-CFI

In this Section, we briefly address possible future research directions.
Measuring Gadget Usability. In order to measure gadget usability w.r.t. a particular CRA,
two situations have to taken into account. First, in case the application was not previously
hardened with any policy one can decide based on the gadget set for the attack he/she wants
to perform if a sequence of machine instructions can be used during the attack and if these are
with reasonable effort reachable. Second, in case the binary was hardened with a protection
policy against CRAs things get more complicated since the attacker not only has to locate the
particular types in the application but he has to know how to avoid getting into the previously
inserted checks. On one hand, in case the checks are easy to spot then he can use what ever
gadget he/she can get to. On the other hand, if the attacker can not determine which protection
mechanism was applied to the program he does only know that the gadget is available but not
usable for the attack. In order to measure gadget usability our LLVM-CFI can be extended with
novel metrics which take into account individually for each gadget if is protected or not and
if a gadget belongs to a certain type of CRA.
Measuring Gadget Linkability. The starting point for a gadget linkalibility metric which
basically measures how hard or easy is to link gadgets to each other is as follows. First, the
semantics used to link gadgets have to be defined and second, these have to be related to the
relevant LLVM-CFI metrics which can quantify the presence of a COOP gadget inside a virtual
function. A starting point in this research direction was made by Crafted [128] which present
an LLVM compiler based tool which can determine all possible gadget chains inside a given
program based on an augmented CFG, instruction mapper and a control flow verifier which
can be used to determine if it is possible to execute a given instruction sequences identified
by the instruction mapper without violating the control-flow restrictions of the defense policy.
Measuring Attack Success Rate. Measuring attack success rate is based on gadget (1)
usability,(2) linkability, (3) gadget chain and (4) goal policy. In order to measure CRA success
rate first, a metric should derived which can measure if a certain type of gadget is available and
second, if this gadget is linkable (can be used in a certain gadget chain). More precisely, first,
the gadget chain policy takes the rational of the attacker w.r.t. what he/she wants to achieves
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and translates it to the needed gadgets that have to be performed. This can be mapped to a
certain gadget chain. Second, the goal of the attacker has to be determined in terms of what
he want to achieve by chaining and calling his gadgets one by one after each other. Third, the
sequence of how he can achieve his goal needs to be mapped to all possible gadget chains which
can be formed out of the available gadget set. An attack is in our opinion succeeds if the last
gadget in the gadget chain was reached (successfully used) and if the obtained result matches
with the initial goal of the attacker. Finally, in future we want to derive a metric which can
asses the success rate of an CRA by taking into account the points mentioned above (1) - (4).

11.2.6 Next Steps related to ρFEM

Static Analysis. As noted before, our approach for protecting indirect callsites, which are not
virtual dispatch callsites, is not optimal. One obvious improvement would be to use a second
stage of static analysis to infer more information about the function pointer being used at indirect
callsites. Since for most indirect callsites the pointer is chosen from a small number of function
targets right before the call happens, we assume that by using a static analysis algorithm to
narrow down the target set would result in substantial precision improvement. Thus, one main
requirement is that the algorithm used had to be conservative in order to not break the program.

Dynamic Analysis. While we consider dynamically generated checks like the ones of shadow
stack techniques of questionable use, they can work alongside ρFEM. Incorporating dynamic
information to ρFEM would allow to check the value on the shadow stack not only with the
potentially malformed return address, but also to compare it with our static set. A shadow stack
storing only a tiny flag to differentiate between indirect, virtual and direct calls could be used
to narrow down, the type of call which was made. Such a shadow stack would only have to be
a few bytes in size and therefore easier to hide in memory due to the so obtained higher address
space entropy.

11.2.7 Next Steps related to τCFI

Improving the Structural Matching. Improving the structural matching capability is in our
opinion the most important further venue of future research, as we need a reliable way to match
ground truth information against the resulting binary. This is important because since it is a
prerequisite to the ability to generate reliable measurements and reduces the current uncertainty
(i.e., we rely on the number of calltargets per callsite to match callsites and furthermore assume
that the order within ground truth and binary is the same).

Improving the Patching Schema. Devising a patching schema that is based on Dyninst
functionality, which allows annotation of calltargets such that these can hold at least 4-byte
of arbitrary data is another future research goal. This is required to hold the type data that we
generate using our classification. Keeping the runtime overhead of this binary patching schema
low is the yet another future research goal.
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Using Pointer and Memory Analysis. Introducing pointer/memory analysis to distinguish
between 32-bit and 64-bit values and actual addresses to even further restrict the possible
number of calltargets per callsite is another future reearch target. This requires in our opinion a
more precise data flow analysis, then calculating possible values for registers at each instruction.
Filtering Forward Edges. As demonstrated by the VCI [78] and Marx [218] tools it is possible
to reconstruct a quasi class hierarchy (i.e., no class root node, edges are not oriented) from
a stripped program binary. Next binary checks based on paths formed by the object calling
relationships can be inserted. In future work, we want to implement several algorithms similar
to the ones described in the above tools in order to reconstruct a quasi class hierarchy with high
accuracy and use it to compute possible calltarget sets for each previously detected callsite.
Finally, these sets can be superimposed on the sets determined by our currently available
forward edge policy with the goal to further reduce the legitimate calltarget set per callsite.

11.3 Final Remarks
In this thesis, we presented several tools which can help mitigate advanced CRAs in the user
space. We think that our highlighted limitations of available CRAs mitigation tools, our results,
and especially the problems related to current static CFI defenses are useful for the design and
implementation of future approaches to combat existing and future CRAs more effectively.
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