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Abstract

Timed automata are a popular formalism for modeling real-time systems in safety-critical
applications. Model checkers for timed automata are an effective verification method that
can automatically prove safety of such a model with respect to a temporal specification.
This thesis addresses the question of the trustworthiness of verification results obtained by
timed automata model checkers. To this end, I have studied two approaches that try to
significantly increase the level of trustworthiness by employing another popular verification
method, interactive theorem proving. Interactive theorem provers are considered to be highly
trustworthy as their correctness relies only on a small and well-tested program core that checks
every logical inference made.
In the first approach, verification, a full model checker for timed automata, Munta, was

constructed within the theorem prover Isabelle/HOL. Techniques from program refinement
were used to obtain efficiently executable code. There is a full proof of correctness for
Munta within Isabelle/HOL, meaning that verification results obtained by Munta can
be considered as trustworthy as the correctness of Isabelle/HOL itself. Munta delivers
reasonable performance and provides features comparable to mainstream model checkers for
timed automata.

The second approach, certification, attempts to lift the trustworthiness of regular unverified
model checkers to the level of trust put in Isabelle/HOL. The unverified model checker is
modified to produce a proof for the verification result, a certificate. An independent checker
confirms that the certificate is indeed a valid proof of the model checking result for the given
model and property. As the checker is itself derived from Munta and thus constructed and
verified in Isabelle/HOL, the same level of trustworthiness is achieved. The approach has
many advantages: a uniform certificate format is applicable to a large range of model checkers
that can employ many optimizations during model checking; certificates can be compressed
to speed-up certificate checking; and the certificate checker can be easily parallelized.
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Zusammenfassung

Timed Automata sind ein beliebter Formalismus, um Echtzeitsysteme für sicherhheitskriti-
sche Anwendungen zu modellieren. Model-Checker für Timed Automata sind einen effektive
Verifikationsmethode, die automatisch die Sicherheit eines solchen Modells im Bezug auf
einen gegebene temporale Spezifikation beweisen kann. Diese Dissertation nimmt sich der
Frage der Vertrauenswürdigkeit von Verifikationsresultaten, die von Timed-Automata-Model-
Checkern produziert werden, an. Dazu habe ich zwei Ansätze untersucht, die versuchen das
Level der Vertrauenswürdigkeit zu erhöhen, indem eine weitere Verifikationsmethode, das
interaktive Theorembeweisen, eingesetzt wird. Interaktive Theorembeweiser werden als höchst
vertrauenswürdig betrachtet, da ihre Korrektheit nur auf einem kleinen und gut getesteten
Programmkern beruht, der jede durchgeführte logische Inferenz überprüft.
Im ersten Ansatz, Verifikation, wurde ein vollständiger Model-Checker für Timed Auto-

mata, Munta, innerhalb des Theorembeweisers Isabelle/HOL konstruiert. Techniken aus
dem Bereich der Programmverfeinerung wurden verwendet, um effizienten ausführbaren Code
zu erhalten. Es existiert ein vollständiger Korrektheitsbeweis für Munta in Isabelle/HOL,
was bedeutet, dass die Verifikationsergebnisse, die von Munta produziert werden, genauso
vertrauenswürdig sind wie Isabelle/HOL selbst. Munta erreicht eine angemessene Performanz
und bietet Features an, die vergleichbar zu üblichen Model-Checkern für Timed Automata
sind.
Der zweite Ansatz, Zertifizierung, versucht die Vertrauenswürdigkeit von Resultaten von

regulären unverifizierten Model-Checkern auf das Level von Vertrauen, das in Isabelle/HOL
gesetzt wird, zu heben. Der unverifizierte Model-Checker wird modifiziert, um einen Beweis für
das Verifikationsergebnis, ein Zertifikat, zu produzieren. Ein unabhängiger Checker bestätigt,
dass das Zertifikat tatsächlich ein korrekter Beweis für das Model-Checking-Ergebnis ist. Da
der Checker selbst von Munta abgeleitet ist und in Isabelle/HOL verifiziert ist, wird dasselbe
Level von Vertrauenswürdigkeit erreicht. Der Ansatz hat viele Vorteile: ein einheitliches Zerti-
fikatsformat ist auf eine große Vielfalt von Model-Checkern, die viele Optimierungen während
des Model-Checkens verwenden können, anwendbar; Zertifikate können komprimiert werden,
um ihre Überprüfung zu beschleunigen; und der Zertifikat-Checker kann leicht parallelisiert
werden.
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1 Introduction

The advent of computer systems was probably the main technological advance that shaped
the world’s history over the course of the last 50 years. Nowadays, computers are ubiquitous:
most of us carry at least one of them around everywhere we go and there is hardly any sector
of life that they have not managed to penetrate yet. Increasingly, we have also trusted them
with our lives: they steer our aircraft, control cardiac pacemakers, insulin pumps, ventilators,
and other medical devices, and will soon drive our cars. The examples that I just named
are all special in their common characteristic that they combine a software system with a
component that interacts with the real physical world. Hence they are called cyber-physical
systems (CPS) [131]. This characteristic sets them apart from regular software systems, like
a text processor, your web browser, or an internet platform. While the latter are clearly
important, an error in their software does usually not immediately lead to a catastrophe such
as the loss of life or the explosion of a rocket.
Unfortunately, CPS have been plagued by fatal software failures from the early times of

their existence until today [71, 87]. This is not really surprising as some of these software
systems today are the most complex systems that have ever been constructed by human
beings [1, 39, 48, 53]. Thus, it maybe startling to think that contrary to common engineering
practice in many older disciplines, where construction starts from a detailed blueprint and
calculations, the reliability of software is still largely established by simple trial-and-error:
some test inputs are invented in one or the other way (ranging from very simplistic ad-hoc
methods to sophisticated methods such as model-based testing [105]); they are given to the
software and it is checked whether the expected outcome matches the actual outcome (where
the outcome could be a concrete output produced by software, a change in its state, an action
that is triggered, etc.). If the outcome is deemed incorrect for any of the test cases, then the
software is said to have a bug that needs to be corrected.
Once the outcome for all test cases is correct, the whole system is assumed to function

correctly. It was already noted by one of the pioneers of computer science, Edsger Dijkstra,
in his influential Turing Award Lecture “The Humble Programmer” [61] that

program testing can be a very effective way to show the presence of bugs, but is
hopelessly inadequate for showing their absence [.]

This is even more true for CPS as they continuously interact with the physical world (they
are part of a “closed loop” [203]) and thus their expected behavior cannot even be described
in terms of simple input/output pairs. In “The Humble Programmer”, Dijkstra also suggested
a pathway out of this situation [61]:

The only effective way to raise the confidence level of a program significantly is to
give a convincing proof of its correctness.

Ever since, this has been the main theme of a subdiscipline of computer science named
verification. It sets out to give a formal analysis of computer systems that proves that the
system works correctly under all given circumstances with mathematical rigor. Researchers in
the field soon came to the conviction that real software is far too complex to be analyzed in
this way by hand (e. g. with a mathematical proof of correctness written on paper). This kind
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1 Introduction

of analysis can nowadays only be found in research papers or university textbooks. Instead,
today, verification itself now uses computers to get the job done. That is, verification is usually
always understood to be computer-aided verification.

With this, the following question immediately arises:

If we use a piece of software (the verifier) to guarantee that another computer
system works correctly, how can we trust the result of the whole verification process
if the verifier itself could have a bug?

This, of course, is an important question to answer, especially if verification is meant to be
applied to CPS on which we want to trust our lives in the end. In this thesis, I attempt to
answer this question for a certain class of CPS, so-called real-time systems (RTS) [113], by
using a combination of different techniques from computer-aided verification.

1.1 Research Objective
In the following, I want to state the research objective that I just outlined in more explicit
terms. I will start by summarizing the two particular flavors of computer-aided verification
that this thesis is concerned with: interactive theorem proving and model checking.

Out of the two, interactive theorem proving [190, 167] is the older and more versatile method.
It is built around the idea that formal logics are perfectly suited for being mechanized as
computer programs. One such program is a proof checker : given a logical formula and a
proposed proof for it (in some formal proof calculus), the proof checker either confirms that
the given proof is indeed a valid proof of the formula, or it rejects the proof. This approach
was pioneered by De Bruijn’s Automath [145].

The logical formula and the proposed proof are usually written by a human. Thus this idea
naturally leads to the concept of a proof assistant: in addition to providing the capabilities of
a proof checker, the program also assists the user while developing the proof. Typically, this
always includes feedback on the validity of individual proof steps while the user is spelling
out the proof. However, the assistance can also take the form of more sophisticated features
such as search tools for finding useful proven theorems, suggesting full proofs automatically,
or identifying unprovable statements. In any case, the proof is developed through interaction
between the user and the computer. Hence this method is also called interactive theorem
proving. The terms “interactive theorem prover” and “proof assistant” are used interchangeably
in the research community. I will also use both terms in this thesis.
In contrast to interactive theorem provers, a third form of these “logical programs”, au-

tomated theorem provers [69], only take a formula as their input and try to automatically
find a proof for it. With Newell’s “Logic Theorist” [139, 82], this approach was studied even
before the proof checker idea came along, as early as in 1956. Automated theorem proving
is still an active field of research today but will not play a further role in this thesis. The
reason is that these systems are typically not capable of proving anything as complex as I set
out to do. While they have been used to resolve open mathematical conjectures [98] or to
(semi-automatically) verify programs and algorithms [79], they lack in expressivity. Therefore,
to me, there does not seem to be a simple way to apply them to anything that mixes a larger
body of mathematical theory and verification of software. Nevertheless, automated theorem
provers still played a crucial part in my work: they can be connected to proof assistants to
find proofs for intermediate propositions automatically [31, 30, 160] and thus made my work
significantly easier.
The main strength of interactive theorem proving is its expressivity. The logics that are

typically used are powerful enough to capture computer programs on the one hand but also
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1.1 Research Objective

to state any mathematical proposition on the other hand. This is also reflected in the broad
range of domains that proof assistants have already been applied to: in the verification of an
operating system [112] and a C compiler [24], for instance, but also for proving mathematical
theorems like Hales’ proof of the Kepler conjecture [86], the Four Colour theorem [75] or the
Odd Order theorem [76]. The big weakness of interactive theorem proving (as a verification
method) is also apparent: it requires human interaction. This makes it a quite laborious task
and prevents it from scaling well to the verification of large systems.

Conversely, model checking [11, 53] is a push-button method, i. e. it works fully automatically,
but it lacks in expressive power compared to interactive theorem proving. There are many
different variants of model checking but they always follow the same basic recipe: the subject
of study is a model of a system, and one wants to check certain properties of the model; the
model checker’s task is to answer these queries with “yes” or “no”. The system might be a
piece of software or hardware but could also be a board game or a biological process. The
model is a description of the system in the language of some mathematical formalism. In
the beginning, the formalism of choice was finite-state machines but now a large variety with
many different features is in use. This variety is also reflected in the granularity of the model.
For a computer network communication protocol, for instance, one could choose to model an
abstract description of the protocol that captures how different entities exchange messages
and when. Or, one could choose to model the C code of the bus drivers implementing the
protocol.

In verification, we want to ask questions about this model. Sticking with the communication
protocol example, we could e. g. ask:

Is it true that, whenever the sender emits a message that it will reach the recipient
eventually?

Or we could also ask:

Will the sender always get a confirmation of delivery within 10 seconds after the
message has reached the recipient?

We can see that these questions have a temporal component. Therefore, in model checking,
these questions are asked in the form of a tailor-made language, as formulas in a so called
temporal logic [164]. In the words of logic, the model checker’s task can now be reformulated
as follows:

Given a model and a temporal logic formula, check whether the model is indeed a
valid model of the formula.

Model checkers have also been applied successfully to a number of complex verification
tasks. It may not come as a surprise that there are also modeling formalisms that have been
invented specifically to verify CPS, and RTS in particular. One popular such formalism is the
concept of timed automata (TA). Since its invention by Alur and Dill in the 90s [2], a rich
research area has evolved around it. Different temporal logics have been studied in connection
with the formalism [53] and a number of model checkers have been constructed. They have
been successfully applied to the verification of numerous real-world examples, ranging from
pacemakers [108], over multimedia [90], communication [172], and clock synchronization [169]
protocols, to vehicle control software [182].
TA lie at a certain sweet spot between expressivity and decidability within the range

of modeling formalisms for CPS. For TA, most important questions can still be answered
algorithmically [53], while for any slightly more complex CPS formalism, one can only provide
semi-algorithms [181]: if these algorithms give an answer, then it is correct; however, for some

3



1 Introduction

models they might never terminate, i. e. one may never get an answer. It is for this positive
characteristic that I chose TA as the subject of study for my research.
Let us now return to the question that I raised at the end of the initial section. We have

looked at two types of verification tools, interactive theorem provers and model checkers, and
I have given some examples where these tools have been applied to critical systems in the
real world. But how do we know that we have gained any assurance in the safety of the
systems by applying these tools? How can we be sure that they themselves do not have a bug,
jeopardizing the whole effort? For interactive theorem proving, the answer to this question
essentially lies within the realm of logic itself. Just like a logical proof can be built from only a
very small set of axioms, the proof assistant can implement these axioms in a small inference
kernel. Then, every proof has to pass through this kernel to be accepted. This means that we
only have to trust that the inference kernel implements the axioms correctly—any other code
around it needs not be trusted. This design principle was first implemented in the system
LCF [78] and is therefore often called the LCF approach. Many interactive theorem provers
follow this tradition [178, 151, 77, 55, 88].
For model checkers, the story is different. They usually rely on a well-understood theory

with model checking algorithms that are considered correct with respect to this theory. The
arguments for the correctness of theses algorithms are usually spread out as pen-and-paper
proofs in different scientific papers. This is a first potential source of errors. Often proofs
are only given in a highly abbreviated form, are omitted, deferred to the appendix, or simply
incorrect. In any case, it is often trusted to only a small number of experts in the community
to understand the arguments for the correctness of model checking algorithms in detail.
Indeed, TA are one of the most prominent examples where this kind of error occurred. In

2003, Patricia Bouyer noticed that the common model checking algorithms that were used at
the time (and are still in use today) were incorrect for the general class of timed automata
[35]. This was only years after the first TA model checkers had been constructed and had
already been used to verify real-world models. Fortunately, in practice the error could only
lead to spurious incorrect behaviors of models being detected, and thus did not lead to any
incorrect models be verified. Another notable example is an incorrectness in the widely-used
partial order reduction technique which was only discovered last year [171]. This error could
indeed have potentially fatal consequences by allowing unsafe models to be deemed correct by
the model checker.
More common sources of errors, however, are in the implementation of a model checker.

First, these tools are complex pieces of software, and as with any complex software (that is
programmed by a human) there is ample room for human error. Second, while the model
checking algorithms that are established in research can usually be considered correct, they
typically have to be augmented with many small optimizations in the implementation to
make the resulting model checker efficient. These optimizations are often very subtle and
are frequently done on the spot, without even attempting to give a new correctness proof on
paper.
For these reasons, proof assistants are often considered more trustworthy than model

checkers. “But is that really so?”, you might contest, “After all the axioms of your logic
and their implementation in the inference kernel could also be incorrect”. While that is
certainly true, I would still argue that interactive theorem provers reach essentially the highest
standard of trustworthiness that could be imagined. First, for one of them, HOL Light [89,
117], another layer of assurance has been added: the inference kernel itself was modeled in
interactive theorem provers (HOL Light and HOL 4) and it was proven that it only allows
sound logical inferences. Repeating this effort can certainly be imagined for any other proof
assistant. But even for interactive theorem provers that lack such a formal proof of correctness,
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1.2 Summary of Contributions

Figure 1.1: Illustration of trust reduction.

the trustworthiness of their kernel is manifested as a community effort. On the one hand, it
is assumed that enough people have read and checked the code of the inference kernel. On
the other hand, established tools can usually look back at a history in which many have used
the tool but in which logical inconsistencies have only been discovered extremely rarely. I
consider such an inconsistency much easier to spot than if a model checker gives an incorrect
answer for a non-trivial model.

Finally, the most convincing argument is probably given by simply considering the size and
complexity of the code that needs to be trusted in order to trust the verification result. To
“trust” means here to assume that the code is programmed correctly. This is often referred to
as the trusted code base (TCB) of a verification tool. For an interactive theorem prover, this
may range from a few hundred to a few thousand lines of ML or OCaml code, while for model
checkers the TCB may reach tens of thousands of lines of highly optimized C or C++ code.
A similar argument can be given on the level of the formalisms. The axioms of a formal logic
are typically much easier to be stated and to be checked by a human than the description of
a modeling formalism and a temporal logic with corresponding model checking algorithms.
From this discussion, one can now derive the following idea of a “trust reduction”. It is

illustrated in Figure 1.1. Our goal is to obtain RTS (the train in the picture) that are as
trustworthy as possible (e. g. to keep the train from taking a wrong turn and falling off a cliff).
For this, we can model them (or more precisely, e. g. their control unit) as timed automata,
and phrase a description of the RTS’s correct behavior as a temporal logic formula. We then
use a model checker to ensure that the model really exhibits the intended behavior. We have
thus reduced our trust in the RTS to the question of whether we trust the model checker and
the models and formulas we came up with. To increase our level of trust further, we can now
attempt to reduce our trust in the model checker to trusting an interactive theorem prover
instead. The theme of this thesis is to add this last step to the trust reduction chain. As I
argued in the last paragraph, this is one of the highest levels of trustworthiness that we can
reasonably expect to achieve.

1.2 Summary of Contributions
Now that I have laid out the goal of my research, I want to give a brief overview of what I
have done to get there. As I already stated above, my model of choice are TA. My proof
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1 Introduction

assistant of choice is Isabelle/HOL [152]. Isabelle is a generic theorem prover that can in
principle host a range of different object logics. Out of these, HOL is the most widely used
flavor, which has also been implemented in many other systems [77, 88]. The logic provides a
good tradeoff between expressivity and convenience of use, offering advantages such as fully
automated type inference. Its implementation in Isabelle, Isabelle/HOL has been successfully
applied to large efforts in verification [112, 86, 175, 65, 138].
There are multiple reasons for my choice of Isabelle/HOL. The most obvious are of social

nature: I have been introduced to this tool already during the second semester of my un-
dergraduate studies and later I joined Tobias Nipkow’s research group in Munich that has
been at the core of Isabelle development for years. However, Isabelle/HOL was also the most
suitable choice beyond these social factors. I see three main points here.

First, Isabelle/HOL arguably offers the highest level of proof automation among all interac-
tive theorem provers. This is mainly due to its powerful term rewriting engine, the simplifier
[148], and its ability to hand off proof obligations to automated theorem provers and SMT
solvers via the Sledgehammer tool [31, 30, 160]. However, there are also many other facets,
such as offering the most convenient user interface, and a general culture of developing the
tool with automation in mind.

Second, Isabelle/HOL offers a mature facility for code generation [84, 83]. This component
allows one to export code in the functional programming languages Standard ML, OCaml,
Haskell, and Scala from definitions in HOL. This feature is essential if one does not only
aim to prove some mathematical theory correct but to also obtain practically usable verified
software in the end.

Third, the fact that Peter Lammich has also conducted his work on refinement [123, 126, 127]
in Isabelle/HOL. Building on this work, we were able to produce efficient highly trustworthy
tools for TA model checking. If it were not for this previous work, I would probably have
obtained highly trustworthy but terribly inefficient verification tools. A particularly fortunate
coincidence was that his work on refinement to imperative code [126] had just emerged when
I was looking into extracting verified tools for the first time.

As I outlined at the end of the last section, the overarching goal of the work that is presented
in this thesis is to take one further step in the chain of trust reduction. This is, to replace the
need to trust timed automata model checkers with trusting Isabelle/HOL instead. Another
way to view this is as an effort in greatly reducing the TCB of timed automata model checking.
I will now sketch the steps of my journey to achieve this goal.

Theory comes before its implementation. Therefore, before one can consider concrete model
checking tools, the first natural step is to ensure that the theory behind them is sound. This
was the first part of my work. In the basic recipe, one first defines TA in Isabelle/HOL and
assigns a mathematical meaning to them (i. e. one defines their semantics). Then, one defines
the model checking question. Recall that, usually, this question would be:

Is the given timed automaton a valid model for the given temporal formula?

However, in this first step I simplified the question by restricting the formula to so-called
reachability properties. Speaking in terms of verification, reachability properties are highly
useful for asking whether the system can ever encounter a fatal error, i. e. whether a fatal
system state is reachable. In fact, in practice, model checking of timed automata is often
restricted to or concerned with reachability properties. Nevertheless, I also provided an avenue
to extend my work to more complex temporal properties later on.
So, at first, I proved in Isabelle/HOL that the essential constructions that are used in the

most widely used approach for TA model checking are correct [191]. On the one hand, this is
the region construction that was already put forward in the seminal paper by Alur and Dill [2].
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1.2 Summary of Contributions

Figure 1.2: Illustration of trust reduction with certification.

On the other hand, there is a more scalable approach that relies on so-called zones to capture
the time component of TA states symbolically. It was exactly this approach that was found
to be wrong by Patricia Bouyer in 2003 [35]. My work mainly relies on her proofs that repair
the classic results on zone-based model checking for the case of diagonal-free timed automata
[34]. What makes the formalization of this work in Isabelle/HOL particularly interesting
is that her proofs are rather intricate and themselves rely on the correctness of the region
construction provided by Alur and Dill. We can now say with high certainty (in so far as we
trust Isabelle/HOL) that Patricia Bouyer’s work indeed salvages the theory of zone-based TA
model checking and that no further fundamental errors have snuck in.
From the theory I could then move to tools. That is, my next goal was to consider actual

model checkers for timed automata. I have considered two main approaches, verification and
certification. In the verification approach (as illustrated in Figure 1.1), the goal is to construct
the model checker fully within Isabelle/HOL accompanied by a proof of its correctness. We
followed this approach in joint work with Peter Lammich [197]. Starting from the theory
that I formalized in the first step, we developed verified abstract implementations of the main
algorithms that are similar to the ones that are at work in the popular tool Uppaal [16].
In the next step, we relied on Peter’s previous work to refine these algorithms in multiple
steps to turn them into concrete and efficient programs. Finally, we used Isabelle/HOL’s code
generator to obtain an actual executable version of the model checker that is comparable in
its core functionalities to Uppaal. One of the highlights of this work is that we were able
to implement the main data structure that is used for the aforementioned zones, Difference
Bound Matrices (DBMs) [19], imperatively. This way, we can achieve comparable efficiency
to unverified model checkers. Later, I improved on this work by equipping the model checker
with further capabilities and a graphical user interface. The resulting tool was named Munta
[192, 196].

In the certification approach1, one does not simply attempt to supersede existing unverified
model checkers but rather tries to validate their work. The idea (as illustrated in Figure 1.2)
is that the model checker runs normally but in addition to just producing a yes/no answer, it
also emits a proof that this answer is indeed correct, the certificate. Another tool, the certifier
can then validate that the certificate is in fact a valid proof of the answer. If the certifier is in

1In the literature, “to certify” sometimes refers to the act of verification with the help of a proof assistant. I
will only strictly use the terms “to certify” and “certification” for what I describe in the following.

7



1 Introduction

turn a tool that was proven to be correct in Isabelle/HOL, we can achieve the same level of
trustworthiness as for the verification approach, without the need to construct a full model
checker in Isabelle/HOL. We sacrifice completeness, however: if the model checker’s certificate
is rejected by the certifier, we know nothing. Conversely, if the certificate is accepted by the
certifier, we know that we can put high trust in the model checker’s answer.

Note that one can always build the trivially correct certifier that simply rejects every input.
Thus one also has to argue for its non-triviality at least informally. One such completeness
property would be that for every valid pair of a model and a formula, there is a certificate
that will be accepted by the certifier. In addition, one could attempt to show that the
certifier accepts any valid certificate. Proving any of these results might potentially require
significantly more background theory, however. Moreover, even if we have proved both of
these completeness properties, in the case that a certificate is rejected, we still cannot infer the
reason for that. The cause could be a bug in the model checker or the certificate extraction,
or the model might simply not satisfy the formula.
Certification has two main advantages. First, it can be much easier to verify the certifier

in a proof assistant. Second, checking that the certificate is correct may be computationally
much simpler than full model checking. For TA, we know that the asymptotic worst-case
time complexity of certification is the same as of model checking because the problem is
PSPACE-complete [2]. Yet, still, it turns out that the certificates can be checked much more
efficiently for concrete models than performing full model checking in Munta.
Building on the existing work for Munta, I have first studied this approach in joint work

with Joshua von Mutius for reachability properties [198]. With Frédéric Herbreteau and
Jaco van de Pol, we have later extended this work towards so-called liveness properties [193],
providing a crucial corner stone to handle full linear temporal logic (LTL) [164].

To conclude this section, I want to briefly touch on a few important points that are outside
the scope of this thesis. Figuratively speaking, the work presented in this thesis extends the
chain of trust for the verification process of TA at its tail. However, some potential pitfalls
remain at both ends. On one end, we model the system under study (and its environment)
using TA and formulate the criteria for its correctness using temporal logic formulas. However,
there is no assurance that we do not get the model or the formulas wrong. For the formulas,
this problem seems to be fundamental. It is similar to the problems an engineer would run
into if they want construct an aircraft but base their calculations on the viscosity of water
rather than air. These problems can probably only be addressed socially, i. e. by humans
checking each other’s work. For the model, there is a range of answers that can be given. First
of all, the complete model usually falls into two parts: one for the components of the system
and one for its environment. For the environment, the typical solution is over-approximation:
the model of the environment should allow all behaviors of the environment in the real world
and many more. Still, one also has to get this over-approximation right. If we consider
autonomous driving, for instance, we may model other cars and humans on the street but we
should also not forget about the notorious gigantic glass pane that might be carried across
the street.
On the positive side, if we are certain that we got the formulas and the environment

component right, we do not need to be concerned about the system anymore: if the model is
a valid model for the formula, the system component has to be correct. There is one more
aspect to worry about on the model side, however. We may now have a correct model of the
system but how do we get a correct system from it? One solution that has been proposed
in a broad body of work is to automatically synthesize code that correctly implements the
model by construction [7, 23, 200, 85, 157, 38, 115]. Similarly to what is done in this thesis,
the trustworthiness of this method could also be increased by verifying or certifying it with
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the help of a proof assistant. But even if we now have code that we trust, how do we know
that it will be correctly executed? How can we trust the compiler that turns the code into
machine code? How can we trust the operating system that runs this code? And how can we
trust the underlying hardware? Luckily, all the questions have already been considered by
the verification community and are still the subject of active research [24, 177, 112, 52].
At the end of the chain, there is Isabelle/HOL. I briefly want to detail what exactly it

means to trust this end of the chain. Essentially, there are two distinct parts: Isabelle/HOL
itself and what I write down in Isabelle/HOL. As I argued above, there is a strong case for
trusting a proof assistant like Isabelle/HOL, even though its logical inference kernel has not
been verified. I will also discuss the correctness of Isabelle/HOL specifically in further detail
in the conclusion (cf. Section 6.2). For what I write down in Isabelle/HOL, the strength
of proof assistants being grounded in logic shows up again. Essentially, the only piece that
needs to be trusted here is that I correctly define what the mathematical meaning of the TA
formalism is, i. e. the TA semantics. This part is indeed very concise. It is only about 150
lines of Isabelle/HOL code and thus comparable in size and complexity to a pen-and-paper
formulation of the semantics. The crux is now that all other theorems, and specifically the
correctness theorem for Munta and the certifier are formulated with regard to this semantics.
If you are ready to trust Isabelle/HOL and my semantics, then you can also trust these
correctness theorems.

1.3 Outline

To conclude the introduction of this thesis, I want to give a brief outline of its remaining
contents. The thesis is based on six publications. In the next chapter, I will introduce the
formalism of TA and summarize the main concepts of TA model checking, which will be
crucial to understand the rest of the thesis. The subsequent three chapters will each set the
stage for two of the papers by summarizing the main ideas, putting them into perspective
with respect to the overall theme, pointing to related work, and considering aspects that I
would do differently in retrospective.

The first of these chapters (Chapter 3) focuses on formalizing TA and abstract results on
model checking in Isabelle/HOL. This also includes joint work with Johannes Hölzl [195], in
which we formalized fundamental results about probabilistic timed automata (PTA). This
formalism extends TA to model uncertainty, which is often desirable in practice.
The following chapters treat the approaches of verification (Chapter 4) and certification

(Chapter 5). Finally, Chapter 6 concludes by providing some general reflections on the research
I conducted, examining related work, pointing to remaining limitations, and laying out some
future directions of research that build upon this thesis. The appendix consists of the six
papers that constitute the thesis. These papers are:

Paper A Simon Wimmer. “Formalized Timed Automata.” In: Interactive Theorem Prov-
ing - 7th International Conference, ITP 2016, Proceedings. Ed. by Jasmin Christian
Blanchette and Stephan Merz. Vol. 9807. Lecture Notes in Computer Science. Springer,
2016, pp. 425–440. doi: 10.1007/978-3-319-43144-4_26

Paper B Simon Wimmer and Johannes Hölzl. “MDP + TA = PTA: Probabilistic Timed
Automata, Formalized (Short Paper).” In: Interactive Theorem Proving - 9th Interna-
tional Conference, ITP 2018, Proceedings. Ed. by Jeremy Avigad and Assia Mahboubi.
Vol. 10895. Lecture Notes in Computer Science. Springer, 2018, pp. 597–603. doi:
10.1007/978-3-319-94821-8_35

9

https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-94821-8_35


1 Introduction

Paper C SimonWimmer and Peter Lammich. “Verified Model Checking of Timed Automata.”
In: Tools and Algorithms for the Construction and Analysis of Systems - 24th Interna-
tional Conference, TACAS 2018, Proceedings, Part I. ed. by Dirk Beyer and Marieke
Huisman. Vol. 10805. Lecture Notes in Computer Science. Springer, 2018, pp. 61–78.
doi: 10.1007/978-3-319-89960-2_4

Paper D Simon Wimmer. “Munta: A Verified Model Checker for Timed Automata.” In:
Formal Modeling and Analysis of Timed Systems - 17th International Conference, FOR-
MATS 2019, Proceedings. Ed. by Étienne André and Mariëlle Stoelinga. Vol. 11750.
Lecture Notes in Computer Science. Springer, 2019, pp. 236–243. doi: 10.1007/978-
3-030-29662-9_14

Paper E Simon Wimmer and Joshua von Mutius. “Verified Certification of Reachability
Checking for Timed Automata.” In: Tools and Algorithms for the Construction and
Analysis of Systems - 26th International Conference, TACAS 2020, Proceedings, Part I.
ed. by Armin Biere and David Parker. Vol. 12078. Lecture Notes in Computer Science.
Springer, 2020, pp. 425–443. doi: 10.1007/978-3-030-45190-5_24

Paper F Simon Wimmer, Frédéric Herbreteau, and Jaco van de Pol. “Certifying Emptiness
of Timed Büchi Automata.” In: Formal Modeling and Analysis of Timed Systems -
18th International Conference, FORMATS 2020. Vol. 12288 LNCS. Lecture Notes in
Computer Science. Springer, 2020, pp. 58–75. doi: 10.1007/978-3-030-57628-8_4

In the remainder, I will only refer to the papers by their identifiers, Paper A and so on.
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2 Timed Automata: An Overview

In principle, the papers that constitute this thesis are either written to be self-contained or
contain the relevant references to understand the material. However, these publications all
needed to make concessions to space requirements, thus discussions of preliminary knowledge
are sometimes cut quite short. For this reason and to set a common basis for the whole
thesis, this section will explain the most important notions of timed automata and model
checking that are relevant for understanding this thesis, without going into excruciating detail.
Anyone with a background in computer science or mathematics should be able to understand
this material. I will not give an introduction to Isabelle/HOL or other topics pertaining to
interactive theorem proving, however. The remaining chapters can largely be understood
without this knowledge, and the papers point to introductory material where relevant. To
readers interested in an introduction to Isabelle/HOL, I recommend reading the first half of
Nipkow and Klein’s “Concrete Semantics” [150].

2.1 Introduction
Model checking needs to start with a model, of course. As I already state above, many different
formalisms for the specification of these models have been studied before. Usually, the basic
starting point is the notion of a Kripke structure, transition system or finite-state machine,
which are augmented with additional features in more sophisticated modeling formalisms.
These three formalisms only differ slightly in their precise definition and can be considered to
be the same for the purposes of this thesis. Therefore, I will not explicate these differences
here and will only use the term transition system from now on. The nodes of transition
systems will be referred to as states and the edges as transitions.

Transition systems are essentially annotated graphs where the nodes of the graphs represent
states of some system and edges represent transitions between these states. The nodes and
edges can be labeled. One purpose of this is to model communication between systems. To this
end, a separate transition system is used to model each system in a network of communicating
systems. Transitions can then be annotated to model message exchanges over pre-defined
channels.
In timed automata [3], transition systems are extended with a notion of clocks to model

physical time. These clocks act as stopwatches. A transition can choose to reset certain clocks
when it is taken. While idling in a state, the time reading on all clocks is elapsing at the same
speed (i. e. in physical terms all clocks are perfect). These time readings can be made use of
on transitions: a transition can have a guard which demands that the transition can only be
taken when certain conditions on the current values of the clocks are fulfilled.
Figure 2.1 gives an example of two communicating timed automata1. They only use one

channel for communication, which models the physical action of the user pressing the switch.
This is often done by designating two special types of action labels for ingoing and outgoing
actions. In this case, the channel is named press, and the input and output actions are press?
and press!, respectively. The automata can synchronize on transitions with matching input
and output labels, meaning they will take the transition at exactly the same time.

1Similar examples can be found in the literature, for instance in the tutorial paper by Bengtsson and Yi [19].
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User
idle

press!

Light

off dimmed bright

x ≤ 10
x > 2, press?

press?

x ≤ 2, press?press?, x := 0

Figure 2.1: An example of two communicating timed automata.

The automata model a simple light switch and its user. The light can either be off, dimmed,
or bright. The initial states, off for the light and idle for the user, are marked by short arrows
going in from the left. If the user presses the switch once when the light is off, then the light
should be turned on and dimmed. If the user quickly (that is, within two seconds) presses the
switch a second time, then the light should turn bright. This behavior is achieved by adding
the clock x. It is reset to 0 whenever the transition from off to dimmed, which turns the light
on, is taken. Then, x is used to measure whether two seconds have already passed. While the
value of x is at most two, the transition to the bright state is enabled by the guard x ≤ 2. If
a second press is not received within this time, then the transition cannot be taken anymore
and instead the transition to the off state is enabled by the guard x > 2.

The model also features an invariant on the bright state. Its meaning is that the system can
only stay in this state while the condition x ≤ 10 is true. This could be used to model that
the light can only be bright for at most ten seconds before it has to perform an emergency
shutoff due to overheating.
Observe that the model of the user is completely nondeterministic as the user can press

the switch at any time. This is an example of a useful over-approximation of the environment
in modelling. A realistic user will never be able to press the button a second time without a
delay of say 10ms, for instance. However, any behavior that can be exhibited by a realistic
user (as far as the light switch is concerned) is captured by our model.

2.2 Semantics

I will now briefly give the formal semantics (i. e. the precise mathematical meaning) of the timed
automata formalism as a basis for further explanations. As we have seen, clock constraints
are used to guard states (as invariants) and transitions. Formally, a clock constraint is a
conjunction of constraints of the form x ∼ c or x− y ∼ c, where x and y are clocks, c is an
integer constant, and ∼ is one of <, ≤, =, ≥, >. Clock valuations are used to give a semantics
to clock constraints. A clock valuation is a mapping from clocks to their current time values.
That is, if the clocks are drawn from the set X, then any function of type X → R+

0 is a
clock valuation. A clock valuation v satisfies a clock constraint x ∼ c iff v(x) ∼ c and a clock
constraint x− y ∼ c iff v(x)− v(y) ∼ c. I write v � x ∼ c or v � x− y ∼ c to signify this. We
need two operations on clock valuations.
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2.2 Semantics

Time shift For a clock valuation v and a real d, v⊕d is defined such that (v⊕d)(x) = v(x)+d
for any clock x ∈ X. That is, the values of all clocks are shifted by time d.

Clock reset For a clock valuation v and a set of clocks r ⊆ X, [r → 0]v is defined such that:

([r → 0]v)(x) =
{

0 if x ∈ r
v(x) otherwise .

That is, the values of all clocks in r are reset to 0.

Formally, a timed automaton A is defined as a pair (T , I) where T is the set of transitions,
and I gives the invariant for each state, i. e. it assigns a clock constraint to each state. I write
an individual transition as A ` q −→g,a,r q′ where:

• q and q′ are a start and target state;

• g, a clock constraint, is the guard of the transition;

• a is an action label (used for communication in networks);

• and r is the set of clocks to be reset when the transition is taken.

A configuration of a timed automaton is a pair (q, v) consisting of a state q and a valuation v.
These are the semantic states of a timed automaton. The operational semantics define two
kinds of transitions on configurations.

Delay There is a delay transition (q, v)→d (q, v ⊕ d) if d ≥ 0 and v ⊕ d ` I(q).

Action There is an action transition (q, v) →a (q′, [r → 0]v) if A ` q −→g,a,r q′, v � g, and
[r → 0]v � I(q′) .

A run of a timed automaton is an arbitrary sequence of delay and action transitions. Note that
consecutive delay transitions can always be combined into a single delay transition. Moreover,
between two consecutive action transitions, a delay transition with time value 0 can always
be inserted. Thus, typically one only considers runs that are a strict interleaving of delay and
action transitions, as given by the following transition system:

(l, v)→ (l′, v′) = (∃d ≥ 0. ∃a v′′. (l, v)→d (l, v′′) ∧ (l, v′′)→a (l′, v′)).

Some general remarks about this semantics are in order. First, many extensions of timed
automata have been studied [34, 43]. Generally, most extensions render model checking
questions for TA undecidable [34, 46], with the notable exception of priced timed automata
[43]. Thus, TA can be said to sit at a certain sweet spot between expressivity and decidability.

One restriction of TA is particularly important, namely diagonal-free TA. In diagonal-free
TA, difference constraints of the form x − y ∼ c are disallowed (in guards and invariants).
This is important because Bouyer showed [35] that the typical DBM-based model checking
algorithms for TA are incorrect when difference constraints are allowed. Therefore, the
restriction to diagonal-free TA is usually made. Luckily, this does not mean that we will
lose in expressivity: any TA can be translated to an equivalent diagonal-free TA [2, 20].
The translation may lead to an exponential blowup in the size of the automaton, however.
There are also more practically efficient methods for model checking TA with difference
constraints [19, 36, 73]. Still, in practice, mostly TA without difference constraints are used.
For these reasons, like many authors in the field, I restricted this thesis solely to the study of
diagonal-free TA.
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Finally, a particularity to consider in connection with the semantics of formalisms for timed
systems in general is the notion of Zenoness. A run of a TA is Zeno if it makes infinitely many
transitions in only a finite amount of time. It is generally agreed upon that such runs should
be excluded from consideration because they are not realizable in practice. There are multiple
ways to handle this complication. First, any timed automaton can be converted into a strongly
non-Zeno automaton that does not allow any Zeno runs but preserves all other behaviors.
This conversion can lead to an exponential blowup (in the size of the automaton) however [96].
Thus, alternatively, specific model checking methods that try to avoid this exponential blowup
in practice can be used [96]. The most common approach is to simply consider automata
that allow non-Zeno runs to be incorrect models because they allow unrealizable behaviors.
This condition can be checked algorithmically [180, 93]. Therefore, most authors work under
the assumptions that all automata are strongly non-Zeno. I follow this convention (where
relevant).

Usually, not a single timed automaton but a network of timed automata is considered. I will
not give a precise definition for the semantics of such networks but rather allude to intuition.
Essentially, such a network of automata is equivalent to a single TA, the product automaton.
It uses vectors of states, with one dimension to record the current state of each automaton
in the network. Each internal transition of a single automaton gives rise to a transition in
the product automaton, where only the state of this single automaton is updated in the state
vector. Synchronization over a channel with matching input and output transitions yields
transitions in the product automaton that update two components of the state vector at the
same time. The initial state of the product automaton is the vector of all initial states.

The product automaton for the TA in Figure 2.1 is trivial because the automata synchronize
on every transition: it would look exactly like the automaton for the light switch with every
state replaced by a state vector that has idle as its first component. Similar techniques can
be used to add many more features to the formalism, such as shared program variables or
other notions of communication.
Finally note that the network in the example has a slight semantic oddity. Because of

the invariant on the bright state and because the automata have to synchronize on every
transition, the user is effectively forced to press the button another time after at most 10
seconds. In a more realistic model, we would therefore add another transition from bright to
off, which does not have to synchronize on press. I have omitted this to simplify the following
examples.

2.3 The Model Checking Task

We are now ready to formulate model checking questions for TA. I will focus on the afore-
mentioned reachability question for TA for now. It is whether a certain final state qf can be
reached from the initial state q0. For networks of timed automata, one often considers the
question whether a state vector can be reached, in which a single state automaton is in a final
state. In the example from Figure 2.1, for instance, we could ask wether the light can ever
turn bright, i. e. whether we can reach a state where the light switch is in state bright. For
this model the answer is “yes” because the user can press the switch with arbitrary speed. If
we model the user as in Figure 2.2, however, and add a second clock y and a state thinking,
then the user is always too slow and the answer is “no”.

For now, the model checking task I will focus on, is to provide an algorithm that can answer
such reachability questions. This is not trivial as there are infinitely many clock valuations and
thus there are (usually) infinitely many states in the semantics of TA. The rest of this section
will give a brief overview of the most prominent approaches to derive such an algorithm. In
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User

idle thinking

press!, y := 0

y > 2, press!

y ≥ 1, astray, y := 0

Figure 2.2: A modified version of the user model from Figure 2.1.

general, the model checking task is to check whether the model fulfills a formula from a range
of different (timed) temporal logics [53]. I will revisit this question in Chapters 4 and 5.

2.4 Regions

It was already discovered by Alur and Dill [2] that most interesting properties of timed
automata, including the reachability task, can be decided algorithmically. At the heart of
all these algorithms lies the so-called region construction [2]. In the following, I will briefly
sketch the core ideas behind the construction. For a more gentle introduction, see Chapter 9
of Baier and Katoen’s textbook “Principles of Model Checking” [11].

Considering Figure 2.1 again, a first key observation is that we are never interested in values
of x for which x > 10. The reason is that there is no guard in the automaton which makes a
comparison against a larger number than ten. Therefore, we do not need to know whether
x = 10.1 or x = 1010. We are just looking for the fact x > 10. Moreover, it is also irrelevant
whether x = 1.4 or x = 1.999. As long as the clock constraints in the TA are only made up of
integer constants, valuations with either value of x will always satisfy the same constraints.
These observations give rise to a finite partitioning of the clock valuations into the regions,
i. e. distinct sets of clock valuations. These are the points x = 0, x = 1, . . ., x = 10; intervals
of the form 0 < x < 1, 1 < x < 2, . . ., 9 < x < 10; and unbounded regions capturing all
valuations where the largest constant in the automaton has been exceeded, in this case the
single region given by the constraint x > 102.
From these regions and the original TA, one can now construct a finite transition system,

the region automaton. The states of this transition system are pairs of a state of the underlying
TA and a region. There is a transition between two states of the region automaton if there is
a transition in the semantics of the underlying TA between any of the valuations contained in
the region. A part of the region automaton for the light switch example is depicted in Figure
2.3. As there are only finitely many regions, the region automaton is also finite. This means
that we can easily decide the reachability question from the region automaton: we simply
need to check whether a state in the region automaton that contains a final state of the TA
is reachable. This task can be handled by standard search algorithms for graphs. In the
example, we can see that the state (bright, 0 < x < 1) is reachable in the region automaton
and thus we know that the state (bright, x = 0.1) is also reachable in the TA.
The disadvantage of the region construction is that there are prohibitively many regions

when the number of clocks is increased as the number of regions grows exponentially in the
number of clocks. This renders the construction rather useless for practical applications.

2An example for two clocks appears in the next section.
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off
x = 0

dimmed
x = 0

dimmed
0 < x < 1

dimmed
x = 1
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Figure 2.3: Part of the region automaton for the light switch given in Figure 2.1.

2.5 Zones and Abstractions

To overcome the limitations of the region construction, research on TA model checking has
focused on finding larger “partitions” of the clock valuations to obtain smaller transition
systems on which reachability can be decided. The basic idea is to consider so-called zones
instead. A zone is a set of valuations that can be described by a clock constraint. This means
that every region is also a zone. Also note that every zone is convex. Figure 2.4a depicts the
zone given by y ≤ x∧x− y ≤ 2∧ y ≥ 1. The state space of a TA can be explored symbolically
with zones because it is possible to compute the following operations:

Arbitrary delay Z↑ = {v ⊕ d | v ∈ Z ∧ d ≥ 0}

Clock reset [r → 0]Z = {[r → 0]v | v ∈ Z}

Intersection with a constraint Z ∩ g = {v | v ∈ Z ∧ v � g}

By “compute” I mean here that these operations that were defined semantically on sets
are operations that again yield zones. We are interested in the strongest postcondition of
a transition q −→g,a,r q′. For a given state Z, it consists of all the valuations v that are
reachable from any valuation u ∈ Z by taking any delay transition followed by the action
transition q −→g,a,r q′. The strongest postcondition can be computed as follows:

Post(q −→g,a,r q′, Z) = {[r → 0](Z↑ ∩ I(q) ∩ g) ∩ I(q′)}.

Similarly to the region automaton, we can then define a transition system on zones. The
reachable part of this transition system is called the zone graph. Figure 2.5 depicts the zone
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(c) Abstraction with regions

Figure 2.4: Illustration of (a) the zone given by the constraint y ≤ x ∧ x− y ≤ 2 ∧ y ≥ 1, (b) the set
of regions for two clocks x and y with the upper bound three (given as points, solid line
segments, and hashed areas), and (c) the abstraction of the zone with its covering union
of regions.

graph for the TA from Figure 2.13. It can be seen that it is smaller than the region automaton
and that we can decide reachability properties just as easily from it.
This need not always be the case, however. Figure 2.6 shows part of the zone graph for

the system consisting of the user model from Figure 2.2 and the light switch model from 2.1.
We can see that it is infinite, making it useless for algorithmic exploration. To overcome this
problem, so-called abstractions are used [59]. An abstraction is an operation that computes
an over-approximation of a zone. It should have the property that only finitely many such
over-approximations can be computed. The zone graph where an abstraction is applied to
every node is called the abstract zone graph. It is always finite. An abstraction should also be
precise, in the sense that every run of the TA can be simulated by a path in the abstract zone

3The state component for the user is not shown as there is only one state. I will follow this convention for
the remainder of the thesis.
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off
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Figure 2.5: The zone graph of the TA from Fig. 2.1.

off/idle
x = y = 0

dimmed/thinking
x = y = 0

dimmed/thinking
y = 0 ∧ x− y ≥ 1

... dimmed/thinking
y = 0 ∧ x− y ≥ 99

...

Figure 2.6: Part of the (infinite) zone graph of the TA from Fig. 2.2.

graph (which goes through the same locations) and every path of the abstract zone graph can
be instantiated to a corresponding run of the underlying TA.

I will introduce one such abstraction by example. Assuming that the maximal constant in
the automaton is 3, Figure 2.4b gives the regions for two clocks x and y. The abstraction
computes the union of regions that cover a zone. This is illustrated in Figure 2.4c (for the
zone from 2.4a). The abstraction is sound but not very useful4: as we can see from the picture,
this abstraction is not necessarily convex and thus not a zone. Instead, other abstractions that
always yield zones have been introduced [59, 13, 14]. These are often called extrapolations. It
is these extrapolations for which Bouyer discovered soundness issues [35]. We will revisit the
topic of abstractions in Chapters 3 and 5.

2.6 Difference Bound Matrices

In practice, zone-based model checking algorithms for TA represent zones with the data
structure of Difference Bound Matrices (DBMs). I will now give a brief explanation of this
data structure. Every clock constraint can be seen as a weighted graph with the variables
as nodes and where the edges represent difference constraints on these variables. Figure 2.7
illustrates this for the clock constraint y ≤ x ∧ x − y ≤ 2 ∧ y ≥ 1. It is first converted into
the equivalent set of difference constraints y − x ≤ 0 ∧ x − y ≤ 2 ∧ 0 − y ≤ −1. An edge
from x to y with weight c is added to the graph if there is a difference constraint of the form
x − y ≤ c. To encode constraints that only compare a single clock to a constant, a special
node 0 is added to the graph, representing an artificial variable that always has the value 0.
Then the graph in Figure 2.7a can be read off directly. Any path in the graph corresponds to
a difference constraint that is implied by the original clock constraint. For instance, from the
path 0 −1−−→ y

0−→ x, we can derive the constraint 0− x ≤ −1 (or x ≥ 1).
4Note that many years later Herbreteau et al. have found a way to make practical use of it nonetheless, even
if only implicitly [95]. This will be relevant in Chapter 5.
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Figure 2.7: A graph representation of the zone y ≤ x ∧ x− y ≤ 2 ∧ y ≥ 1 (a), its representation as a
DBM (b), and its shortest-path closure (c).

We can also represent such a graph in matrix form as in Figure 2.7b. This matrix form
representation is called a DBM [62]. The advantage of this representation is that all the
operations that are necessary to compute the strongest postcondition of a transition can
be computed efficiently on it. There is also a normal form for DBMs, which corresponds
to the shortest-path closure of the underlying weighted zone graph. For the example, the
shortest-path closure is depicted in Figure 2.7c. On DBMs, it can be computed with the
Floyd-Warshall algorithm [19]. Viewed from the angle of difference constraints, the normal
form of a DBM represents the set of the tightest difference constraints that can be derived
from the original DBM. Normal forms are convenient because the strongest postcondition of
a transition can be computed more efficiently on them and the questions of emptiness and
subsumption (whether one zone is a subset of another zone) can be decided easily on them.
Therefore, model checkers usually maintain the invariant that all DBMs stored are in normal
form.
Note that the above presentation has been simplified in that constraints like x − y < c

were not considered. To also include this type of constraint, DBMs do not store numbers
but entries of the form (<, c), (≤, c), and ∞. Arithmetic on this domain can be defined
in a straightforward way. Alternative data structures to DBMs to represent zones such as
minimal constraints graphs have been considered but DBMs seem to be most efficient for
model checking in practice (while other methods can decrease memory consumption) [19].

2.7 Other Model Checking Approaches

Other model checking methods do away with zones completely, and instead represent the
(explored) state-space of a given TA fully symbolically. In comparison, the zone-based method
can be described as semi-symbolic because the states of TA are represented explicitly in
the zone graph, while the time-component is represented symbolically in DBMs. The fully
symbolic methods fall into two categories: methods based on tailor-made data structures
similar to binary decision diagrams (BDDs) [184] and methods based on general-purpose
solvers for the satisfiability modulo theories (SMT) problem [142, 111]. While both approaches
promise some convincing performance advantages, they are usually not used in practice. One
reason is that implementations of these methods in “real-word” model checkers like Uppaal
are missing. Another is that, compared to the rich modeling language offered by Uppaal
for instance, the modeling formalism has to be severely restricted to apply these methods.
Therefore, I only considered the classic, semi-symbolic approach to timed automata model
checking in my work. This is what I will refer to by TA model checking in the remainder of
this thesis.
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2.8 Summary
The following is a summary of the key points that I tried to convey in this section.

• Transition systems are labeled graphs that model a system. Their nodes are called
states and their edges are called transitions.

• Timed automata (TA) extend transition systems with clocks to model time. Clocks
can be reset when a transition is taken. Clock constraints are used in guards and
invariants. Guards impose an enabling condition on transitions. Invariants restrict the
idling behavior of TA.

• Typical system models consist of networks of TA. Channels are used for communication
between automata. System models of this kind can be always be compiled into a single
equivalent timed automaton.

• The semantics of TA are infinite. Decidability of reachability checking for TA was
initially proven by providing a quotient construction, the region construction.

• The region construction still yields a very large transition system. Thus the most
prevalent model checking method for TA uses zones to obtain the (expectedly) smaller
zone graph. Zones are sets of valuations that can be represented by a clock constraints.

• The zone graph is typically not finite. Therefore, abstractions are used to calculate
a finite set of over-approximations of zones called the abstract zone graph. Usually,
extrapolations are used, which are abstractions that only yield zones as a computation
result.

• Difference Bound Matrices (DBMs) can be used to efficiently represent zones. Normal
forms of DBMs are maintained to efficiently decide the questions of subsumption (zone
inclusion) and emptiness.

Finally, I want to explicate some terminology on the different notions of states that we have
seen above.

• States of transition systems and of TA will both be called “states”. Alternatively, the
terms “location” and “discrete state” are used in the literature and can also be found in
some of my papers.

• The semantic states of TA will be named “configurations”. In my papers, they are also
often described as “concrete states” or “semantic states”.

• The term “symbolic state” can either refer to states of the zone graph or of the abstract
zone graph, depending on the context. The abstract zone graph will sometimes be
referred to as the “symbolic state space”. All of these terms can be found in my papers.

This concludes the discussion of the most important preliminary knowledge on timed
automata and model checking that is necessary to understand this thesis. In the next chapter,
I will discuss my work on formalizing most of this material in Isabelle/HOL.
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In interactive-theorem-proving speak, formalization refers to defining concepts that pertain
to a certain body of mathematics in a proof assistant and to formally prove theorems about
these concepts in the proof assistant. Before I could verify any code that belongs to a verified
model checker or certifier for TA, I had to be able to talk about TA in Isabelle/HOL. That
is, I had to formalize their semantics. It is not immediately clear what this means, however.
As we saw above, the abstract definition of the semantics would usually be given for a single
automaton, while in practice one always wants to add more sophisticated features—networks
with some form of communication at the very least. I see the latter in the realm of concrete
model checking applications. Thus, I defer the discussion of this topic to the next chapter.
Formalizing the semantics of single TA is rather easy to do, particularly in Isabelle/HOL
where one of the proof assistant’s strengths is highlighted: its ability to introduce notation
that closely resembles the one used on paper. The main part of the work that is reported on
in Paper A is not the formalization of the semantics but the formalization of essentially all
the constructions (excluding product constructions) from the last section. This lays the basis
for the verification of the tools that I produced later. In the following I will first summarize
these results and then elaborate on an extension of this work to probabilistic timed automata
(Paper B).

3.1 Regions

For the formalization of most of the material, I relied on Patricia Bouyer’s work [34]. The
main reason is that it offers by far the highest mathematical precision that I was able to find
anywhere in the literature. This naturally provided the best basis for formalization as the
proof assistant forces one to work with utmost mathematical precision. Bouyer does not only
define the classic region construction of Alur and Dill [2] but also a refined set of regions,
which has the particular property that any union of regions that covers a zone is again a zone.
This is later used for the correctness proof of a classic extrapolation.

The main result I proved is that both types of region constructions provide a correct way
to decide the reachability problem for TA. This result is not only relevant as a building block
for later results about practical TA model checking, but it is also interesting in its own right
as a computer-checked proof of this classic and important result for TA.
I will describe one particular aspect of the formalization of this result that turned out to

be interesting after finishing the work on the first paper. The region construction (as well
as the extrapolations) can be parametrized with additional information about the TA. So
far, we have only considered a “cutoff” at the largest constant that appears anywhere in the
automaton. Considering the example from Figure 2.2 again, we can see that for clock y we are
interested in much fewer regions than for x because the largest constant y is ever compared to
is 2. Therefore, a refined construction can use an individual bound for each clock. I already
used this variant in my first formalization [191]. The idea can be pushed even further. One
way is to consider local bounds for each clock [13]. That is, for each state, a different set of
bounds can be used depending on which constraints are relevant for the portion of the TA
that the state is in. Consider the state off in the example from Fig. 2.1. It is clear that the
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3 Formalizing (Probabilistic) Timed Automata

actual value of x is irrelevant there as there is no invariant on the state and the state’s only
outgoing transition has no guard and resets x. Thus, in this extreme case, a bound of −∞ can
be used for off (meaning that only one region remains, the unbounded region). I later also
added this refinement to the Isabelle/HOL formalization. My positive finding was that only
miniscule changes were necessary, which one would not necessarily expect after consulting the
non-trivial pen-and-paper proof [13].

3.2 Zones and Difference Bound Matrices

The next essential result is the formalization of the zone graph. If you read Paper A, you
will find that I do not make a distinction between sets of clock valuations and zones (recall
that only the sets of clock valuations that can be represented by a clock constraint are zones).
This is also reflected in my formalization of this result. I first formalized a purely semantic
version of the zone graph where zones are simply sets of valuations, and transitions compute
strongest postconditions. Proving the correctness of this is almost trivial.

In the next step I needed to show that strongest postconditions of actual zones again yield
zones. For this, I did not work with zones as represented by clock constraints but rather
worked on DBMs directly. I proved that the typical model checking operations on DBMs
can be used to compute the strongest postcondition of a zone. DBMs are an equally valid
representation of zones and my goal was to prove that the typical DBM-based model checking
is correct anyway. This way, duplicated work could be avoided. A key element of this work
was the formalization of the Floyd–Warshall algorithm [70, 185], which is used to compute the
shortest-path closure of DBMs. I proved the two key facts about the algorithm: shortest path
weights are correctly computed and negative cycles are detected by computing a negative
entry on the diagonal of the weight matrix. To the best of my knowledge this was the first
formalization of this classic algorithm on weighted graphs in a proof assistant. There were
however formalizations of the Warshall algorithm for Boolean matrices [158, 21, 22, 186, 67].
An interesting addition that I made later but which is not published anywhere comes

from the motivation of deadlock checking. The zone-based exploration algorithm I sketched
in Section 2.5 explores the zone graph in a forward manner by repeatedly computing the
strongest postcondition, Post, of symbolic states. Conversely, Pre, the weakest precondition
of a zone for a given transition can also be computed on DBMs. On the one hand, this is
used in (less popular) model checking approaches that explore the state space in a backwards
manner [204, 206, 66]. On the other hand, the Pre operation is important for deadlock
checking. There, given a symbolic state, we want to know whether any of the configurations
it represents is deadlocked, i. e. whether it has no successor states. The solution is to inspect
all outgoing transitions of the given state, and to compute the Pre for each transition given
its target invariant. The union of all these symbolic states contains all the configurations
that are not deadlocked [180]. Thus one just needs to check that the given symbolic state
is a subset of this union. This is another non-trivial operation on DBMs, which I have also
verified (a description of the operation can be found in Tripakis’ thesis [179]). All in all, I have
fully verified the deadlock checking operation, and the operations necessary for backwards
exploration of DBMs. Together with the aforementioned operations for computing Post, this
yields a complete verified DBM library for TA. In the next chapter (in Section 4.1), I will
discuss how this work was turned into an efficiently executable verified DBM library.
A complication that shows up in Paper A is the use of clock numberings on DBMs. In

concrete automata, as the ones displayed above, clocks use human-readable names, of course.
Similarly, in the formalization of TA, I did not specify from which domain the clocks of an
automaton are drawn. Conceptually, this is sensible, but it turns into a problem when DBMs
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come into play. The reason is that (in the formalization and in implementations but not in
the examples above) the rows and columns of DBMs are indexed by natural numbers. Thus
clocks somehow need to be identified with natural numbers. I resolved this by defining the
semantics of DBMs (in the sense of the sets of clock valuations they represent) with respect
to a clock numbering: an injective mapping from clocks to natural numbers. This leads to
complications in proofs and additional assumptions about the clock numberings need to be
carried around everywhere in the DBM formalization. Initially I thought this would pay off
by giving me more flexibility when implementing a model checker for TA. However, it soon
became clear that one wants to convert a given model such that all labels are replaced by
natural numbers as a preprocessing step anyway. Thus, looking back, I should have dropped
the clock numberings altogether, and just assumed that clocks range over the natural numbers
whenever DBMs get into play. In fact, I have done so when formalizing the operations for
deadlock checking, and some proofs could be drastically simplified compared to the forward
versions.

3.3 Extrapolation

The greatest challenge of this formalization effort was to prove the correctness of the classic
extrapolation operation on DBMs. As mentioned above, this does not really come as a surprise
as establishing the soundness of this operation has had a history of incorrect proofs, until the
question was finally resolved by Patricia Bouyer [35, 34]. She showed that the operation is
incorrect in the general case but provided a soundness proof for the case of diagonal-free timed
automata. Stumbling on her work almost was an epiphany for me—before I had followed a
long trail of references to the literature that provided loose proof sketches that I could just
never fully understand (and that I was not meant to understand as they were trying to prove
a non-theorem). Formalizing her work still was a big effort as the proof of her main theorem1,
stating that the extrapolation of a DBM always yields a subset of the union of regions that
covers the DBM, is highly technical on paper and no less so in Isabelle/HOL.
In the course of the work on certification (Paper F), I formalized a way of proving the

correctness of the extrapolation that is quite different from Bouyer’s initial work [34]. It stems
from the seminal paper on an improved extrapolation that considers different cutoffs for lower
and upper bounds of clocks (called LU -extrapolation) [15]. With this approach, the main
difficulty is still in verifying said main theorem, but it means that it is now also possible to
verify the improved extrapolation. I extend my gratitude towards Joshua von Mutius, who
adopted the main theorem to the setting of LU -extrapolation under my supervision. This
extrapolation is still the best (i. e. coarsest) that is used by the popular state-of-the-art model
checker Uppaal.2

3.4 Probabilistic Timed Automata

This section will summarize the work of Paper B, which can be seen as a spin-off of the main
topic of this thesis. I will briefly motivate this now. It is often desirable to also reason about
aspects of uncertainty. For instance, considering the example of a communication protocol
again, we might have empirical knowledge that .1% of all packets sent over a network link
are lost. We might then want to incorporate this knowledge into our model, and qualify our
formula to ask:

1I am referring to Proposition 2 of her paper “Forward Analysis of Updatable Timed Automata” [34].
2Although coarser ones exist in principle, they are not regularly used in practice.
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press?

x ≤ 2, press?press?, x := 0

Figure 3.1: A PTA model of the light switch example.

With a probability of 99.9%, will the sender always get a confirmation of delivery
within 10 seconds after the message has reached the recipient?

One way to view this is that it may be desirable to reason about uncertainty in a quantitative
instead of a qualitative way, i. e. by moving from nondeterminism to probabilities. As in the
example above, instead of asking whether a certain state can be reached, one would like to ask
with what probability the state will be reached. Probabilistic timed automata (PTA) are an
extension of timed automata to this probabilistic setting. In PTA, every transition still has a
single guard but the clocks to be reset and the target state are determined by a probability
distribution.
Consider again the light switch model from Figures 2.1 and 2.2. We assume that the user

is very distracted today, so whenever they want to take the transition back to the idle state,
operating the switch, they only do so with a probability of 0.1; otherwise they get distracted
and continue deliberating. A PTA that models this behavior is depicted in Figure 3.1. We
can now ask for minimum and maximum reachability probabilities: one can imagine different
so-called adversaries or schedulers that choose which transition should be played from a state
given the current history of states that were visited. For the example, the adversary that
always chooses to play the self-loop in state thinking gives the minimum probability 0—just
as in the case for the regular TA from Figure 2.2, the bright state will never be reached. The
scheduler that always waits for exactly one second and then immediately plays the transition
back to idle (with the other branch looping back to thinking) gives the maximum probability
of 1: the system may go back to a dimmed/thinking state many times (via off /idle) but
eventually bright/idle will be reached.
As we have seen, schedulers are used to resolve the nondeterminism contained in a PTA.

This way, the semantics of PTA can effectively be given in terms of Markov chains but I will
not delve into these details here and stick to the informal description. What is more, this is
not the way in which Johannes Hölzl and me formalized the semantics of PTA. Rather, we
directly started from his formalization of Markov Decision Processes (MDPs) [102]. MDPs are
PTA without clocks. That is, these systems still exhibit nondeterministic and probabilistic
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Figure 3.2: Part of the region automaton for the light switch given in Figure 3.1.

behavior but have no realtime component. Naturally, we formalized things the other way
round, interpreting PTA as infinite MDPs. Next, we formally proved the essential result
for PTA: minimum and maximum reachability probabilities can be computed. This result
again invokes the region construction. Using it, we can construct a finite region MDP, as
exemplified for the PTA from Figure 3.1 in Figure 3.2. The key property of this region MDP
is that the minimum and maximum probabilities for reaching any bright state are the same as
for the original PTA (as they are for any other reachability query). With existing algorithms
for MDPs [11], minimum and maximum reachability properties can then be computed on
the region MDP. One of our main contributions in this paper was to prove a probabilistic
bisimulation property (using probabilistic couplings) between the original PTA and the MDP.
This property is strong enough to derive the result for reachability probabilities from it. The
approach we took is interesting in that it is quite different from the more casual arguments
that would be made on paper but it also neatly expresses the key reason for the correctness
of this construction in a single theorem.
Another interesting feature of our formalization of PTA is that we also considered the

question of Zenoness. A scheduler is Zeno if it admits Zeno runs. Recall that a run is Zeno
if it passes an infinite number of action transitions in finite time. As these behaviors are
considered unrealizable, one often wants to exclude them when calculating minimum and
maximum reachability properties. One solution is to restrict oneself only to structurally non-
Zeno PTA for which no Zeno schedulers exist (as I do for regular TA). Marta Kwiatkowska
[121] has also provided a solution where such schedulers can be excluded algorithmically. She
gives a criterion, which can be decided algorithmically, that identifies exactly those schedulers
of the region MDP which correspond to Zeno schedulers of the underlying PTA.3 These

3This criterion goes back to a criterion for regular TA given by Bouajjani et al. [33].
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schedulers can then be excluded from the computation of minimum and maximum reachability
properties on the region MDP.

Interestingly, in our formalization of this result, the part of the proof that revealed itself to
be harder is the one that appears to be easier (or even trivial) on paper. One essentially needs
to show that every Zeno scheduler of the PTA is simulated by one on the region MDP, and the
other way round. The second part is more intricate as the schedulers identified as Zeno on the
region MDP could be realized by many different schedulers of the PTA, including non-Zeno
ones. Thus one has to carefully construct the bisimulation such that these schedulers of the
MDP always correspond to Zeno schedulers of the PTA.
Overall, I consider it the main strength of this work that it neatly combines our two

existing formalizations of MDPs [102] and TA [191] to obtain a formalization of PTA. This is
summarized in the formula “MDP + TA = PTA” used the paper title. The formula applies
for the basic definitions of PTA and the region MDP on the one hand. The formalization
of these parts can be considered to be even more concise than a pen-and-paper definition of
these concepts. On the other hand, the formula is also reflected in our bisimulation argument,
which consequently separates discrete TA-related reasoning from probabilistic MDP-related
reasoning.
The result we formalized only proves decidability, of course. As for TA, many practical

approaches to model checking PTA rely on zones [120, 153]. We hope that correctness of
these methods could also be verified in a similarly elegant way. My preliminary investigations
in that direction had two results: some published proofs have turned out to be wrong but the
authors could provide corrections for them; and it is clear that our bisimulation argument
needs to be strengthened for the correctness proofs of zone-based methods.
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4 Constructing a Verified Model Checker for
Timed Automata

In the previous chapter, I have reported on my formalization of timed automata and the
region construction. The main result, however, was a formal proof of the fact that symbolic
DBM-based forward exploration with extrapolation can be used to correctly decide reachability
queries for TA. Starting from this, my next goal was to construct a verified model checker
for TA. One might ask what there is actually left to do at this point. After all, what I have
presented above was roughly a formalization of all the material that one would find in a
tutorial on TA model checking, such as the one of Bengtsson and Yi [19]. Normally, the next
step could be to just go ahead and implement all these abstract algorithms in a tool. The
crux is of course that I want to establish a formal connection between the theory and the
tool, resulting in a correctness proof for the tool in Isabelle/HOL. In the formal setting, this
is quite some distance to bridge.

The same is also true in the informal world though. A real model checker chiefly needs two
things: an expressive modeling language and efficient implementations of the model checking
algorithms. There is also quite a gap between these and the theory in the informal setting. It
is thus a significant challenge to achieve both of these goals also in a formal setting. The first
attempt I made on this task together with Peter Lammich is described in Paper C. Later I
made some improvements to this work and added a third set of features that is important for
a real model checker: essential convenience features that make a verification tool viable as a
practical tool. These include a graphical user interface (GUI), a human-readable input format,
and output of diagnostic information. I report on the resulting tool, Munta, in Paper D.
In this chapter, I will first summarize the main techniques that we used to get efficient

implementations of the DBM algorithms that lie at the heart of TA model checking. They can
all be summarized under the same banner: refinement. Next, I will outline the verification of
the main model checking algorithms. Then, I consider two modeling formalisms that were
implemented and sketch how the product construction for them is verified. Finally, the more
practical sides of Munta are briefly explored.

4.1 Refinement

In the situation that I described above, we have the typical setting for refinement. An abstract
specification of an algorithm (forward exploration of TA with zones) is to be turned into
a concrete, efficient program (the model checker). A programming paradigm to tackle this
task has been proposed by Wirth and others already at the beginning of the 70’s: stepwise
refinement [199]. The idea is that the programmer starts with an abstract specification of
an algorithm (say pseudocode), and gradually replaces parts of it with concrete and more
and more efficient operations and implementations until they arrive at the desired efficient
program. This gets particularly interesting in the setting of verification, where correctness is
scrutinized. For the abstract specification of the algorithm it is—hopefully—comparatively
easy to prove that it is correct. Then, in the subsequent refinement steps one only has to
focus on the correctness of the individual replacements, not the algorithm as a whole. In
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up M = (λi j.
if i > 0 then if j = 0 then ∞
else min(M i 0 +M 0 j)(M i j)
else M i j)

(a)

up1 M = (λi j.
if i > 0 ∧ j = 0
then ∞
else M i j)

(b)
up2 M n = fold

(λi M. M((i, 0) :=∞))
[1 . . . n] M

(c)

up3 M n = imp_for
(λi M. mtx_set (n+ 1) M (i, 0) ∞)
1 (n+ 1) M

(d)

Figure 4.1: Refinement stages of the up operation for computing time successors.

practice, this separation of concerns can drastically reduce the burden of the verification task.
A particular variant of refinement, where only data structures are replaced (a set might be
replaced by a list, or a map might be replaced by a red-black tree, for instance), is data
refinement. Hoare already studied how to automate this task in a correctness-preserving
way in 1972 [100]. Only in recent years, this technique has been made accessible to users of
Isabelle/HOL by Lammich and Lochbihler [123, 137, 127]1. It shall be noted that one implicit
refinement step is hidden from the remaining discussion: the extraction of actual SML code
via Isabelle/HOL’s code generator [84].

Building on Peter Lammich’s previous work on refinement [123, 126], we have employed
refinement in various ways to construct Munta, but there are also instances where the idea
was used in a more ad-hoc manner. Refinement mainly shows up in two different places:
refinement of DBMs and of graph search algorithms for model checking. The former will be
the content of the rest of this section, while I will touch on the latter in the next section.
Figure 4.1 is taken from Paper C and simplified for readability. It displays the refinement

stages of the up operation on DBMs.2 This will serve as a prototypical example for the
refinement chain that is applied to all DBM operations I formalized. At the starting point,
the formalization of the abstract semantics, I had proven that up correctly computes the delay
operation ↑ of the zone represented by the DBM. We used stepwise refinement to move through
implementations up1 and up2 to arrive at the goal up3. In the first three implementations,
DBMs are represented in a mathematical way as mappings from a pair of indices to a DBM
entry. The last implementation is an imperative program using destructive updates to an array
and resembles what can be found in typical TA model checkers. The following refinement
steps come in between.

Semantic Refinement In the purely abstract, mathematical formalization, there are certain
features that cannot be implemented. For instance, constants in automata and DBMs
are given as real numbers, and DBMs can have infinite dimensionality. Thus in a first
step, this semantic “freedom” is restricted by fixing a set of clocks and representing
constants by integers. To automate the latter step, parametric reasoning with Isabelle’s
transfer tool is used [103].

Algorithmic Refinement The operation up (and others) can be optimized, by introducing
the additional assumption that the given DBM is in normal form, yielding up1. This
type of refinement is carried out manually. Later I have added further such “algorithmic”

1Similar technology is also available in Coq [54, 60].
2The figure contains some specific Isabelle/HOL syntax, which I will not explain here as it is not important
for understanding the rest of this thesis.
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refinements to stop computation early when a negative diagonal (i. e. empty zone) is
detected, or to avoid full runs of the Floyd-Warshall algorithm under certain circum-
stances. These refinements are carried out with a certain degree of automation using
fine-tuned rule sets for standard Isabelle tactics.

Ad-hoc functional implementation The computations described by up and up1 are still very
implicit as they only specify what the resulting matrix will look like but they do not
give us a computational rule to obtain this matrix. This is introduced in the form of a
functional program in up2. These functional programs are written by hand but their
proofs always follow the same structure and are highly automated.

Synthesis of an imperative implementation The functional program up2 could now in prin-
ciple be turned into an executable program by Isabelle’s code generator, but we want
to go one step further to make it more efficient. Naturally, a realistic model checker
would represent DBMs as arrays on the heap, and compute an operation like up by
applying destructive updates to the given array. With the help of Imperative HOL [45],
such programs can also be expressed in Isabelle/HOL. These can later be translated
by the code generator to imperative features of the functional programming languages
it can export code to. To obtain up3 from up2, two things need to happen. The fold
operation needs to be replaced with another looping construct and data refinement
needs to be applied to the DBM to replace it with an array. Both steps can be carried
out automatically (after some setup) by Peter Lammich’s Sepref tool [126]. Using it,
we automatically synthesize up3 from up2. Note that there is quite some non-trivial
reasoning involved “under the hood” to justify the use of destructive updates. Internally,
this reasoning is based on separation logic [166, 165].

4.2 Algorithm Verification
We are not done yet after implementing the DBM algorithms efficiently. The other core part of
TA model checkers are search algorithms and related data structures that govern the forward
exploration of the search space. One such search algorithm is the cyclicity checker that finds
a pre-cycle, i. e. a path from a state to another state that subsumes it, in a given transition
system (or reports the absence thereof). In a finite transition system, the existence of a
pre-cycle implies the existence of an actual cycle. The pseudocode is displayed in Algorithm 1.
It is phrased as a recursive depth-first search (DFS) algorithm. It uses a stack (ST ) to keep
track of the nodes that are on the current path and a passed set (P ) to keep track of the nodes
that have already been fully explored. If a subsumption to the stack is found, a pre-cycle has
been identified. If the current state is subsumed by the passed set, it can safely be discarded:
any pre-cycle that could be found from the subsumed state could also be simulated by a
pre-cycle from the subsuming state. But as the subsuming state has already been added to
the passed set, no pre-cycle starting from it can exist.
There are some interesting aspects to note about the algorithm. First, it is quite similar

to Listing 1.1 in Paper D but the latter is (nearly) actual Isabelle/HOL code! In fact, the
pseudocode is also very similar to the original variant given by Behrmann et al. [17]. Second,
the algorithm is highly parametric and is defined in terms of only a few abstract parameters, a
transition system → and a subsumption relation �. It can thus be applied beyond TA model
checking. The original algorithm is stated in the nondeterminism monad of the Refinement
Framework [123]. The framework gives us some assistance in verifying the algorithm by
providing a verification condition generator. Note that hints can be provided to this tool by
adding assertions as in line 12.
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Algorithm 1 Cyclicity Checker
1: procedure DETECT-CYCLE(P, ST, v) . Initially: P , ST empty
2: if ∃v′ ∈ ST. v′ � v then
3: return (P, ST,True) . Pre-cycle detected
4: else if ∃v′ ∈ P. v � v′ then
5: return (P, ST,False) . Subsumption to passed set
6: else
7: push(v, ST )
8: r := False
9: for all {v′ | v → v′} do . Check all successors
10: P, ST ′, r := DETECT-CYCLE(P, ST, v′)
11: if r then break
12: assert ST ′ = ST
13: pop(v, ST )
14: P := P ∪ {v} . Add v to passed set since its subtree is fully explored
15: return (P, ST, r)

After verifying this abstract implementation, we applied a number of refinement steps to
obtain a version that uses an efficient data structure for managing the passed list. For this,
we use a hash map that maps states of the TA to a list of DBMs that have been discovered for
it. The crux is that the DBMs are represented as arrays on the heap, and thus the hash map
has to store heap content. The involved separation logic tricks that we had to develop for this
made for an interesting verification task in itself. The resulting implementation is quite close
to our target, the “unified passed-waiting list” that is used by Uppaal [18]. Ours, however,
still has a higher memory footprint as DBMs cannot be shared between the state and the
heap. Achieving this would still be an interesting task for future work but only little work
has been done on verifying shared data structures in Isabelle/HOL. While this data structure
is tailored towards the needs of TA model checking, the final version of the cyclicity checker
is still parametric in the subsumption relation and the transition system. In the course of our
work, we have developed a library of such verified, efficient search algorithms that could also
find use in other applications.

4.3 Beyond Reachability

The attentive reader may wonder why I presented an algorithm checking for cycles in the
first place in the last section. Indeed, for reachability questions, Munta uses a similar
DFS algorithm that just looks for final states but does not need to identify cycles. Beyond
reachability, Munta can also check properties from a small subset of the temporal logic
CTL. These are the same as the ones supported by Uppaal. The cyclicity checker is used a
as component for checking these properties. Supporting these properties involved two main
challenges. First, to verify the necessary search algorithms as discussed in the previous section.
Second, to extend the abstract formalization to show that zone-based exploration with

extrapolations can also be used to correctly model check these properties. The main result one
has to prove here is that the abstract zone graph has a cycle through a state with a property
P if and only if the underlying TA has a run on which P holds infinitely often. To obtain
this non-trivial result, I followed the work by Bouajjani et al. [33] and formally filled out
missing pieces that one could consider “folklore theorems” in an informal setting. Only later
did it come to my attention that Li has used a quite different route to obtain the same result
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[133]. Li’s proof even yields a stronger variant of the result that applies to a larger number of
abstractions. I have also formalized this work now, and it turned out to be noticeably easier
while yielding the stronger result.

4.4 Modeling Formalisms

All the material that I have discussed in this chapter so far can be seen as just being related
to model checking of a single automaton. Consequently, this is also how it is formalized in
Isabelle/HOL. As one is typically not interested in model checking of a single automaton, a
more powerful modeling formalism needs to be built on top. “On top” is meant quite literally
here, in the sense that model checking of this formalism should be added modularly without
touching the underlying formalization for model checking of a single automaton. As in the
informal presentation I gave in Section 2.2, the reduction from the modeling formalism to the
single automaton is achieved by a product construction.
I have considered two modeling formalisms: one that tries to mimic the formalism of

Uppaal, and one that is more bare bones but is similarly found in tools such as Rabbit [27],
Red [184], TChecker [92], or Prism [119]. The former is described in Paper C, while the latter
is touched upon in the tool paper on Munta (Paper D).
Apart from networks of timed automata with communication over channels, Uppaal

supports a large variety of features such as urgent and committed locations, various constraints
that can be imposed on communication, and shared state that can consist of bounded integers
and bounded integer arrays. In particular, the shared state can be manipulated with a
C-like programming language when a transition is taken. This yields some difficulties. First,
formalizing the full language in Isabelle/HOL would be quite laborious. Second, it is not
immediately clear that the input still represents a timed automaton as programs may not
terminate. I attempted to tackle the first issue by considering only an intermediate bytecode
language that Uppaal generates from the C-like language as a pre-processing step. To address
the second issue, I added fuel to all executions of programs, i. e. by executing each program
only for a certain maximum number of steps.

Still, this approach has some issues. First, the bytecode language is not publicly documented,
thus I had to come up with a semantics for it by reverse engineering. Second, there is a
semantic gap between the Uppaal input and the bytecode input. In this gap lies the Uppaal
bytecode compiler, which would now need to be trusted. Of course, one could imagine adding a
verified compiler of this kind later. That would be laborious, however, and directly interpreting
the C-like language would then be the easier option. Second and foremost, the programs can
also be used as guards and invariants, i. e. they cannot only refer to the discrete state but
also to clocks! Hence, even if termination is disregarded (by introducing a fuel for execution),
not every model with bytecode annotation yields a valid TA semantically. Intuitively, the
issue is that unconstrained use of clocks in the programs would yield disjunctions of clock
constraints on transitions and in invariants. As a remedy for this problem, I have applied a
crude program analysis that allows only very restricted use of clocks in programs, but which is
sufficient to allow for the programs used in standard examples. It shall be noted that Uppaal
has to solve the same problem and also rejects many programs. However, it remains unclear
to me what analysis is used by Uppaal exactly.
Due to these issues with the Uppaal-style formalism, I later decided to settle for a less

ambitious approach. There, I used a formalism that allows for shared state in the form of
a number of integer variables just as before. The language to manipulate this state is more
simplistic, however. This language allows for simple expressions of arithmetic and Boolean
expressions. These expressions can be used in guards and invariants that refer only to the
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shared state, and on the right-hand side of updates to the shared-state variables. Updates to
clocks and clock constraints are strictly separated from the shared state part.
While this language is less powerful than what Uppaal offers, it is similar to what many

other tools use as well (as mentioned above). Moreover, it is sufficient for all standard TA
model checking benchmarks that I have found so far. It can also be argued that for a verified
tool like Munta, which should serve as a reference implementation or as a certifier for a
possibly large range of other model checkers, it is reasonable to settle for a simple formalism
that just captures the essence of typical modeling formalisms. The benefits gained are a simple
and clear definition of the formalism’s semantics, and a simple and portable input format.
Nevertheless, this input language offers some additional features compared to the first

attempt. These are additional synchronization primitives taken from Uppaal [19], which are
relevant as convenience features for practical models and for state space reduction: urgent
and committed states, and broadcast transitions. Two of these features, committed states
and broadcast transitions are directly implemented via the product construction. The third,
urgent states, is added as a pre-preprocessing step that adds an additional clock to the
automaton. This is beneficial as the computational overhead introduced is small and the size
of the symbolic search space is only increased slightly due to abstractions, while it avoids
additional complexity of the product construction.
A particularly interesting set of models that make heavy use of these features are the

Penn pacemaker models [108]. They model different variants of a pacemaker with different
feature sets. Their correctness is verified with respect to a heart model that can essentially
act completely nondeterministically. These models serve as a basis for generating code to
operate a pacemaker. I was able to fully verify them with Munta.

I have now discussed the two modeling formalisms that are supported by Munta. What is
still missing is the product construction to be able to actually model check these formalisms.
For both, I used the same idea, which is presented in Paper C. At the interface for the
verified model checker for a single automaton that was described in the last sections, the
automaton is given as two HOL functions: one for the invariants, mapping each state to a clock
constraint; and one for the transitions, mapping each state to a set of outgoing transitions.
The idea is to give two descriptions of the product automaton. One is a a highly abstract
mathematical description, and the other are the two HOL functions, which implement an
efficiently executable version. Then one proves that the two descriptions coincide.
The trick of this specification as two HOL functions is that the product is automatically

constructed on the fly. That is, an explicit product automaton is never constructed but its
invariants and transitions are computed as the model checker explores the state space further
and further. This is paramount for practical model checking. Unfortunately, the formal
proof of coincidence of the two representations is highly laborious while not conveying any
deep mathematical insights. I improved this in the second attempt (mostly out of need, as
additional synchronization primitives complicate the constructions) by adding an intermediate
refinement stage and introducing specialized tactics. Yet, I am still not satisfied with the
complexity of these proofs compared to how simple the product construction is intuitively.

4.5 A Practical Tool

In the last sections, I discussed everything that is needed for a verified prototype model
checker like the one we presented in the Paper C. To obtain something practical like Munta
[196], some additions were necessary (Paper D). First, there is the ability to check models for
deadlocks. On the one hand, this is necessary because all (other) correctness theorems for
Munta rely on the assumption that the given input is deadlock free. On the other hand, in a
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Figure 4.2: Screenshot of Munta’s GUI showing a transition of a modified light switch example
being selected for editing.

practical interaction with a model checker, absence of deadlocks is the baseline property that
a user typically wants to check first to ensure that the model is sensible. I already discussed
the required changes in Section 3.2.

The other additions fall into the categories of input and output. On the input side, I mainly
introduced the new modeling language, together with a simple, portable, human-readable,
JSON-based input format for it. On the output side, I added a number of convenience features:
diagnostic information like reporting the number of explored states or emitting the whole set
of explored states, and human-readable error messages for parsing and pre-processing input.
Most prominently, both sides were tied up with a graphical user interface (GUI). A screenshot
of the interface is given in Figure 4.2. The GUI runs in a web browser, and Munta itself
can even be fully used inside the browser. This functionality is enabled by exporting code to
OCaml instead of SML, which can again be compiled to JavaScript.
For all these features, the question of correctness immediately arises. In reporting errors,

there is no issue because Munta does not claim a result in case of an error. To implement
diagnostics, I use a simple logical trick to add them without jeopardizing correctness. Regard-
ing the GUI and parsing, the state of affairs is more complicated. I use the same idea of a
parse-print-parse loop to validate the correctness of both components. In this approach, a
given input is parsed to an internal representation first, then printed out again, and parsed
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back to an internal representation. It then is checked whether both internal representations
match up. The same approach is used by the GUI: it converts the input to an internal
JSON representation, displays it back to the user to double-check, and compares the JSON
representation of that input against the original.
Of course, validation has only little value compared to verification. However, for a GUI,

I do not see much that can be done. At the end, a human always has to ensure that the
given input is really what they have in mind. Nevertheless, it would be reasonable to fix
the JSON representation as a ground truth and to replace the parse-print-parse loop with a
verified parser. In principle, this is possible as a significant body of work on verified parsing
exists [12, 114, 109, 6, 129, 32, 64]. The issue is more of technical nature: there is currently
no off-the-shelf solution for verified parsing in Isabelle/HOL. When it will finally emerge, it
should certainly be used to equip Munta with a verified parser.
I have discussed two types of components of Munta so far. First, fully verified pieces of

code that have been synthesized by the code generator (the greater part). Second, completely
unverified pieces that are only validated. There is also a third type, certified components.
These are bits of unverified code whose computation result is checked (internally) by a verified
checker. For instance, I use this to compute local clock ceilings as a parameter for extrapolation
[13] by running an unverified graph algorithm first and then checking that the computed
parameters are valid.

I ran experiments with Munta on a set of standard benchmarks and compared the results
to Uppaal. They are reported on in Paper C. Generally, Munta is much slower than
Uppaal, which is to be expected as Uppaal is a highly optimized tool implemented in C
and C++. If the throughput is considered, the number of states explored per time unit, the
results look encouraging: Munta’s throughput is usually within an order of magnitude of
Uppaal’s throughput. Furthermore, Munta is able to check medium-sized benchmarks in
reasonable time. In this light, I consider Munta to be a usable reference tool for TA model
checking.

34



5 Certifying Model Checking of Timed
Automata

In the last section, I have discussed verification of a TA model checker as a way to get
highly trustworthy model checking results. As mentioned in the introduction, I have also
considered the alternative approach of certification, which will be the subject of this chapter.
To recapitulate, in certification, an unverified model checker produces a result and a proof
that the reported result is correct, the certificate. An independent tool, the certifier, is then
given the model, the proposed property, and the certificate and checks that the certificate is
indeed a valid proof of the fact that the property holds for the model. If correctness of the
certifier is verified, we achieve the same level of trustworthiness as when verifying a full model
checker. This is because the proof assistant still sits at the end of the trust reduction chain.
As hinted on in the introduction, certification has many advantages over full verification.

First, the effort of verification can be significantly reduced by only verifying a certifier. For TA,
the most prominent example of this is extrapolation. As discussed in Chapter 3, verifying the
classic extrapolation operation was a highly laborious task. With certification, it is irrelevant
to know which extrapolation was used during model checking. Instead it suffices to check
that extrapolation always yields a larger state. This allows us to use a more sophisticated
extrapolation technique [15] without verifying it. Second, the certifier can easily be parallelized
(cf. Section 5.4). Finally, since TA model checking can exploit subsumptions, the number
of states that are explored during model checking can be much larger than the number of
states that is needed for a proof of the property. In this way, the task of certification can be
computationally much cheaper than model checking. This is beneficial as the verified tool
is always expected to be slower. Note however that complexity theory tells us that, in the
worst case, checking certificates cannot be a computationally easier than TA model checking
because the problem is PSPACE-complete [2].
In the following, I will first introduce certificates for reachability properties, mostly by

example. Then, I will move on to liveness properties. These are characterized as so-called
Büchi properties. I will discuss how the certificates for reachability can be extended to handle
these properties. Next, I will outline an interesting result about both approaches, namely
that they can be made compatible with the implicit abstraction technique of Herbreteau et al.
[91, 95]. Finally, I will consider some important aspects of constructing a tool chain from an
unverified model checker to the verified certifier in practice. The work of Joshua von Mutius
and myself on reachability and the construction of a practical verified certifier is presented
in Paper E. I later extended this to Büchi properties and the implicit abstraction techniques
with Frédéric Herbreteau and Jaco van de Pol. This is reported on in Paper F.

5.1 Certificates for Unreachability

For reachability properties, a model checker can give two answers: either a state fulfilling the
property is reachable or not. The positive result usually indicates a problem with the model
signifying that a bad state is reachable. In this case, the model checker can assist the user in
fixing the model by providing a counterexample trace, a trace of configurations yielding from
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Figure 5.1: A reachability invariant for the TA from Fig. 2.1.

the initial state to a bad state. Counterexample traces can directly be used as certificates for
reachability. Constructing a verified checker for such traces would certainly be feasible (and
not very hard). The negative result, on the other hand, usually means a proof of safety: a
bad state is not reachable and therefore the system is safe. Consequently, one wants to be
able to put a high level of confidence in this type of result. Thus, in the following, I will focus
on certificates for unreachability.
In my work, certificates for unreachability are simply a set of symbolic states, i. e. pairs

of a state of the automaton and a zone. Figure 5.1 shows an example for the model from
Figure 2.1. We can see that compared to the model’s zone graph from Figure 2.5, there are
fewer symbolic states because all the off states have been replaced by a single one with the
trivial unbounded zone (true). Solid edges represent regular edges of the zone graph, while
dashed edges represent subsumptions: if there is an edge from (q, Z) to (q′, Z ′), then there
exists a transition q −→g,a,r q′ such that Post(q −→g,a,r q′, Z) ⊆ Z ′. The graph in Figure 5.1
is a reachability invariant: for any symbolic successor of any node in the graph, the successor
is either contained in the graph itself (solid edge), or it is subsumed by a larger node in the
graph (dashed edge). A reachability invariant can thus be thought of as an inductive invariant
of the zone graph. The key property of such a reachability invariant is that it can simulate
any run of the underlying automaton. That is, if there is a run from a configuration (q, v)
to (q′, v′) with v ∈ Z, and (q, Z) is part of the reachability invariant I (i. e. (q, Z) ∈ I), then
there is also run from (q, Z) to some (q′, Z ′) ∈ I with v′ ∈ Z ′ (using subsumptions or edges of
the zone graph).
This directly gives a way to certify unreachability. A certificate for unreachability is a set

of symbolic states S such that:

(1) S is a reachability invariant;

(2) the initial configuration (l0, u0) is covered by S, i. e. there is a node (l0, Z0) ∈ S with
u0 ∈ Z0;

(3) and no state in S fulfills the reachability predicate φ.

If there was a run in the automaton from (l0, u0) to (l, u) such that φ(l) holds, then there
would also be a run from (l0, Z0) to some (l, Z) ∈ S with u ∈ Z (by the first two conditions and
the simulation property of reachability invariants). This is contradicts the third condition, and
hence the certificate is a valid proof of unreachability. Note that the edges of the reachability
invariant do not need to be a part of the certificate. The certifier has to check that they exist
anyway by computing the symbolic successors of any (symbolic) state in S, and checking that
each one of them is subsumed by some other (symbolic) state in S (which could also be the
successor state itself).

The graph from Figure 5.1 is not quite a valid certificate of unreachability. As every state
is reachable, condition (3) cannot be verified for a meaningful predicate φ. In contrast, Figure
5.2 presents a valid certificate for the modified light switch model from Figure 2.2. It proves
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Figure 5.2: An unreachability certificate for the TA from Fig. 2.2.

that the lamp can never turn bright. The certificate needs only two symbolic states, while
the full zone graph is even infinite, and the number of symbolic states explored by a model
checker using extrapolation would also be much larger.
An important property of these certificates is that they are also complete. That is, for

every model and property φ, if no state satisfying φ is reachable, then there is a valid finite
certificate proving this fact. This is because from what was formalized in Chapter 3, we know
that the zone graph with the classic extrapolation is finite and complete (every run can be
simulated). It is also a reachability invariant: every successor state is subsumed by its own
extrapolation. Hence the set of symbolic states explored by a TA model checker always forms
a reachability invariant. If the exploration starts from the correct initial symbolic state, and
the analysis deems no accepting state reachable, then the set of explored symbolic states is a
correct certificate. In practice, one does not need to emit the full set of explored symbolic
states as a certificate but it is sufficient to consider only the symbolic states that are stored
at the end of exploration: they can subsume some symbolic states that were explored earlier
on and then discarded later.
One salient feature of these certificates is that checking their validity only consists of a

number of local checks that can be run independently for each state in the certificate, i. e.
checking that the state is not accepting and that all its successors are subsumed by the
certificate. Therefore the certificate checking process can be completely parallelized, which is
not possible for model checking. Moreover, the certificate checker does not need to have any
knowledge about the extrapolation that was used. As long as the extrapolation only enlarges
zones, it will produce valid subsumptions, and that is all the certifier needs to check. Overall,
the certificates I presented in this section provide a flexible and easily checkable way to prove
unreachability in TA. To the best of my knowledge, I was the first to have ever studied this
for TA1.

5.2 Certificates for Büchi Emptiness

In the previous section, I have presented a method to certify unreachability in TA. This was
presented in Paper E. In Paper F, we extended this work towards liveness properties. In
contrast to reachability, which we can use to ensure that “something bad will not happen”
(safety), the idea of liveness properties is to ensure that “something good will happen eventually”
and variants thereof. In section 3.2, I have already discussed the most basic liveness property,
deadlock freedom: the system will never get stuck. To give an example of a more complex
liveness property, in a communication protocol, for instance, we could be interested in whether
a message will always be sent eventually, even if it needs to be retried many times. In the
example of the light switch, we could ask whether the light will always turn bright eventually.
That is, in every (infinite) run of the automaton, no matter what happened before, will the
light always turn bright again at some later point (eventually)? In the language of linear
temporal logic (LTL) [164], the properties that follow this always–eventually structure can be

1For related work on certifying other types of model checking, see Section 6.1.
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Figure 5.3: A modified version of the user model from Figure 2.1.

written as GFφ, for instance GF Light.bright. The properties are interpreted over all runs
of an automaton, and G stands for always (or globally), while F stands for eventually (or
future). The automata from Figures 2.1 and 2.2 both violate the formula GF Light.bright
because the user is not guaranteed to always be fast enough to turn on the light again at any
given point in time. Figure 5.3 shows yet another modification of the user automaton. As
the user now presses the switch at least every second, the light will always turn bright again
and again, hence GF Light.bright is satisfied. In general, LTL formulas can capture many
interesting liveness properties [11].
It is a key result of research on model checking that any LTL formula can be converted

into an equivalent non-deterministic Büchi automaton (NBA) [183]. An NBA is simply a
nondeterministic finite automaton (a TA without clocks) where accepting states are interpreted
as a Büchi condition. A run is Büchi if it visits an accepting state infinitely often. The typical
approach of automata-based model checking of LTL formulas goes as follows [118]: the given
LTL formula is first negated; the negated formula is then converted to an equivalent NBA; and
finally the product with the transition system under question is constructed. The resulting
product NBA then has a Büchi run if and only if the original transition system does not
satisfy the formula. This approach can also be applied to TA. A TA where the accepting
states are interpreted as Büchi condition is called a timed Büchi automaton (TBA). At the
core of the automata-based approach to model checking LTL properties of TA thus lies the
problem of deciding whether the language of a given TBA is empty, i. e. whether the TBA
does not have a Büchi run. Analogously to reachability, we are interested in certificates for
the emptiness of TBA. Since if the constructed TBA is empty, it means the original TA fulfills
the given LTL formula.

Figure 5.4 illustrates the idea for the automaton from Figure 5.32. The Monitor automaton
is an NBA that monitors violations of GF Light.bright. A violation is a run in which the light
turns bright finitely many times and then never turns bright again. To be able to monitor
when the light turns bright, the automaton for the light was also modified. The state bright’ is
urgent: due to the constraint t ≤ 0 no time can pass in the state, and the signal turn-bright is
sent out immediately. The monitor can decide nondeterministically when it has seen the lamp
turn bright for the last time, moving to the only accepting state bad (marked by a double
circle). If the lamp would indeed never turn bright again, the monitor would stay in the bad
state forever, constituting an accepting Büchi run of the product automaton. This signals a
violation of the formula.

The emptiness of NBA can be decided by identifying so-called lassos, i. e. paths leading
up to a cycle through an accepting state [118]. The NBA has a Büchi run if and only if it
admits a lasso. For TBA, it can be shown that identifying lassos in the abstract zone graph
also suffices to decide emptiness (when common extrapolations are used) [33, 133]. However,
for efficiency, one also wants to exploit subsumptions when looking for lassos. The main

2To simplify the presentation, the constructions given here deviate slightly from typical approaches.
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Figure 5.4: A modified version of the light model from Figure 2.1 with a monitor NBA.

algorithms for identifying lassos in finite directed graphs [170], nested depth-first search and
decomposition into strongly connected components, can be adopted to exploit subsumptions
[122, 94]. However, doing so correctly is much more intricate than for the model checking
algorithms discussed so far. Moreover, it has been shown that deciding emptiness of TBA is
inherently more difficult than deciding reachability for TA with zone-based methods [94]. For
these reasons, it is not immediately clear whether one can expect to get a similarly simple way
of certifying Büchi emptiness as we did for certifying unreachability in the last section. We
were able to answer this question positively, however. The certificates for unreachability can
be augmented such that all positive features are retained: certificate checking is still local and
can easily be parallelized, the certificate checker is agnostic to the concrete extrapolation used,
and the same type of certificate can be used for all state-of-the-art algorithms for checking
emptiness of TBA.
The main idea of our certificates is to extend the certificates for unreachability with a

special type of topological numbering. To this end, properties (2) and (3) of the certificates
remain unchanged. For property (1), we also need to ensure consistency of the subsumptions
with the proposed topological numbering. For any successor of any (symbolic) state in the
certificate, we need to ensure that it is subsumed by another (symbolic) state in the certificate
(the regular requirement for a reachability invariant), and in addition that the subsuming
state’s number is at most as high as the source state’s number. Moreover, if the source state is
accepting, the subsuming state’s number must be strictly smaller. Figure 5.5 gives a certificate
for the example from Figures 5.3 and 5.4. A topological numbering is given next to the nodes.
The key idea is that the topological numbering property essentially proves that there is

no cycle through an accepting state in the certificate consisting of subsumptions and actual
edges of the zone graph. From the properties of the reachability invariant, one can show that
any Büchi run in the underlying TBA would yield such a cycle in the certificate. As there
is no such cycle, the TBA has to be empty. Herbreteau et al. had already observed that not
creating such cycles is the criterion for using subsumptions soundly when model checking TBA
[94]. We studied these certificates in an abstract way for self-simulating transition systems, a
slight relaxation of well-structured transition systems [68], which the zone graphs of TA are an
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Figure 5.5: A certificate of emptiness for the TBA from Figures 5.3 and 5.4.

instance of. We (formally) proved soundness of the certificates, and also showed (informally)
that they are complete for TBA, i. e. that for an empty TBA, a certificate can always be
constructed.

5.3 Implicit Abstraction

So far, I have stressed that one of the valuable features of our certification approaches is
that they are agnostic to the concrete extrapolation used. The second key result of Paper
F is that, when giving up this agnosticism, valid certificates can even be given even when
using abstractions that are not extrapolations. Recall that an abstraction α yields over-
approximations of zones (Z ⊆ α(Z)) and that its range is finite. An extrapolation is an
abstraction that only yields zones from zones. I am only aware of one practical model checking
approach that uses abstractions which are not extrapolations. The approach was developed by
Herbreteau et al. [91, 95]. They do not apply abstractions to zones explicitly but rather apply
them implicitly in subsumptions. That is, whenever they check whether a newly discovered
symbolic state (l, Z) needs to be explored or can be discarded, they do not check whether a
symbolic state (l, Z ′) with Z ⊆ Z ′ has already been discovered, but instead they check whether
Z ⊆ αLU (Z ′). Here, αLU is an abstraction that was already defined in the aforementioned
paper on LU -extrapolation [14]. It is always at least as big as the LU -extrapolation, yielding
a smaller symbolic search space (as illustrated in Figure 5.6). However, it does not necessarily
yield a zone and therefore it is not an extrapolation that could be used in the regular way. The
main result of Herbreteau et al. is that the subsumption check Z ⊆ αLU (Z ′) can be computed
as efficiently as a regular subsumption, meaning it can be practically used in model checking.
We showed that both certification approaches are also compatible with this technique of

implicit abstraction. More specifically, we proved that for a certain class of abstractions α
(which arise from time-abstract simulations and of which αLU is an instance), the certificate
checker just needs to replace regular subsumption Z ⊆ Z ′ with the subsumption with implicit
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Z Z ′

ExtraLU (Z ′)

αLU (Z ′)

Figure 5.6: Illustration of implicit abstraction. The zone Z ′ and its LU -extrapolation, ExtraLU (Z ′),
are not large enough to subsume Z but the LU -abstraction of Z ′, αLU (Z ′), is.

abstraction Z ⊆ α(Z ′). Compared to the situation of the last sections, one also needs to be
able to compute this operation, and to prove it correct to obtain a verified certifier.

5.4 Practical Verified Certificate Checking
In the last sections, I have summarized the theoretical insights of our work on certification
of unreachability of TA and emptiness of TBA. In this section, I will report on how we
turned these into a practical certifier that was tested against real model checkers. To obtain
a verified certificate checker, the main effort was to formalize the aforementioned results in
Isabelle/HOL. Starting from Munta, only little work had to be done to obtain an executable
tool, as Munta already implements the whole pipeline of parsing a model, applying a product
construction, and exploring the resulting automaton’s zone graph. After formalizing our
(non-trivial) abstract results, it was almost trivial to adopt the certifier for unreachability
to Büchi emptiness since only the topological numbering property needed to be checked in
addition.
In Paper E we presented a number of optimizations for this verified certifier. The most

notable is parallelization. As stated above, our certification algorithms are very well suited
for this because only local properties on symbolic states need to be checked. To exploit this
property without jeopardizing soundness, I developed techniques to soundly embed imperative
code (in Imperative HOL) back into regular HOL (which can be thought of as a functional
programming language). These rely on ideas similar to Haskell’s ST monad [130]. Then,
parallelization is introduced by instructing the code generator to replace the map operator,
which applies a function f to every element in a list, with a parallelized version. This is
correct because any “pure” functional program is side-effect free. Other optimizations include
using a machine word integer representation for DBMs (instead of standard arbitrary precision
integers) and specifying optimized code equations for essential model checking operations.

We conducted a number of experiments with the verified certifier. In Paper E, we produced
certificates of unreachability for a standard set of benchmark with our own unverified model
checker, Mlunta. The results showed that checking certificates (with the verified tool) alone
is quite consistently an order of magnitude faster than performing full verified model checking
with Munta. This is encouraging as it shows that the certification result can drastically
reduce the computational burden of obtaining highly dependable verification results for TA.
On the other hand, full model checking with the unverified tool Uppaal often still outperforms
verified certification significantly, sometimes (but rarely) even by up to an order of magnitude.
The speedup achieved through parallelization is rather dissatisfactory. For two CPU cores, a
doubling in speed is mostly nearly achieved but, when adding more cores, the effect quickly
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diminishes. We did not find a convincing explanation for this. I suspect the reasons are to be
found in the thread model of the Poly/ML3 compiler, which we use to compile the generated
SML program.
In addition, we experimented with certificate compression for unreachability certificates.

In our setting this means to reduce the number of symbolic states in the certificate after
model checking. We tried different heuristics based on subsumption between zones and
computing the convex hull of multiple zones. It is always ensured that the reachability
invariant property of the certificate is maintained. The compression factor (the number of
states after compression divided by the initial number of states) varies by model but one
technique consistently achieved a compression factor of at least 40% for all the benchmark
models. By chance, we have also achieved a compression factor of more than 95% for one
model (instead of 43% for the otherwise best technique), showing that there is still a lot of
potential for improvement on these techniques. In practice, certificate compression was not
very useful, however, as it is computationally quite expensive with Mlunta. Nevertheless, if
this task was performed by a highly optimized tool like Uppaal [16] or TChecker [92], it
could significantly bring down the overall time of verification for the tandem consisting of an
unverified model checker and the verified certificate checker.

In our second paper, we produced certificates for the emptiness of TBA with “real” model
checkers, TChecker and Imitator [8]. In both cases, topological numbers can be computed
by running an SCC decomposition on the graph which has as its nodes the symbolic states
explored by the model checkers and as its edges the actual edges of the zone graph and any
subsumptions that were used. In the paper, we discuss some further technical aspects for
the construction of this pipeline of verification tools. The results show that the performance
of checking certificates for the emptiness of TBA is similarly encouraging as in the case of
unreachability (which is to be expected given the similarity of the checkers).

3https://www.polyml.org/
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6 Conclusion

To conclude this thesis, I will summarize the most important lines of work related to mine.
Next, I will point out some important limitations of my work, and subsequently I will lay out
some ideas and perspectives for future work. Finally, I will muse on some general wisdom I
draw from my work.

6.1 Related Work
As all of the work presented in this thesis is closely related, I give an overview of the most
important literature that is related to my thesis as a whole here. Additionally, more specific
references can be found in my papers. I exclude the two main bodies of work that lie at the
foundation of my thesis, interactive theorem proving and model checking of timed automata.
The interested reader shall instead be referred to a number of extensive survey papers and
monographs on the respective topics ([190, 161, 150, 167] and [19, 11, 53]). Before summarizing
the work that is more specifically related to mine, I want to point out that André Platzer
has researched the trustworthy verification of CPS in a broad body of research, which has
recently culminated in a monograph on the topic [163]. His approach is more general in
that it can cover a large range of hybrid systems, not only timed automata. Similarly to my
work, a high degree of trustworthiness is achieved by a employing a special-purpose proof
assistant for verification. The difference is that in his work, the system is verified directly in
the proof assistant (in the usual interaction with the system). In contrast, my work focuses
on increasing the trustworthiness of automated verification tools.

6.1.1 Formalization of Timed Automata and Markov Models

Various groups have formalized TA and the related formalism of p-automata [4] in Coq, PVS
[156], and Isabelle/HOL, and have proved properties about concrete automata on this basis
[159, 72, 47, 10, 201]. All these formalizations only provide little material on the theory of
model checking TA. Advancing on this, Xu and Miao used PVS to formalize TA and the
region construction [202] and made some attempts towards formalizing DBMs. Together
with Han, they later formalized a simple predicate abstraction technique for TA [205] that
can be used to prove properties of single concrete TA. None of these works go as far as
proving the fundamental correctness results of DBM-based model checking, particularly using
extrapolations.
The most extensive formalization of MDPs is by Johannes Hölzl in Isabelle/HOL [102],

which built the basis for our formalization of PTA. Liu et al. formalize finite-state discrete-time
Markov chains [135, 136] but not MDPs. I am not aware of any previous formalization of
PTA.

6.1.2 Verified Model Checking

The most important forerunner of Munta is the CAVA project [65, 41]. It is a fully executable
model checker for LTL properties of finite-state transition systems. It follows the automata-
theoretic approach, which I have briefly described in Section 5.2, and implements partial-order
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reduction. CAVA is a real forerunner of Munta in that the refinement techniques that we
relied on for constructing Munta were in large parts developed in conjunction with CAVA.
Apart from making use of these refinement techniques, Munta was developed independently
of CAVA. CAVA outshines Munta in its support for the fully-fledged specification language
Promela [146] and for the full set of LTL properties. Munta, on the other hand, supports
the more powerful realtime (and infinite-state) formalism of TA, is in part implemented
imperatively and thus more efficient, and provides more features for practical use such as a
GUI. The only other verification of a model checker that I am are aware of is by Sprenger for
a modal µ-calculus checker in Coq [174]. The model checker does not seem to be focused on
an efficient implementation or on supporting a practical modeling formalism, however.
In the course of the CAVA project, other parts of theory in the area of the automata-

based model checking approach have been verified. Brunner has verified a tool for the
complementation of finite Büchi automata [40], and Seidl et al. have verified a modular
construction that can convert LTL formulae to equivalent Rabin and Büchi automata [42].
These tools are not model checkers per se but could be used as components of verified model
checkers. I will outline a possible combination of the latter work with Munta below (in
Section 6.3).

6.1.3 Algorithm Verification and Refinement

At the core of our constructions to make Munta an efficient and partly imperative verified
model checker lie the refinement techniques developed by Peter Lammich for Isabelle/HOL.
These started with a framework for stepwise refinement of nondeterministic programs (the
Isabelle refinement framework) [128], followed by a tool for automatically refining programs
to an efficient functional implementation (Autoref) [123], and were concluded with a tool for
automatic refinement to Imperative HOL (Sepref) [126], which built the basis for our work. I
have already mentioned (in Section 4.1) the work of Andreas Lochbihler on data refinement
to efficient functional programs [137], and the paper where Lammich and Lochbihler compare
their approaches [127].
The frameworks CoqEAL [54] and Fiat [60] provide similar functionalities to Autoref in

Coq. Recently, Fiat was extended to a tool chain that also supports refinement to imperative
programs similarly to Sepref [162]. While it has not been applied to complex algorithms yet, it
has the nice property that it is complemented with a proof-producing compiler to an assembler
language. Such a complete tool chain could also be achieved by connecting Lammich’s recent
work on refinement to the LLVM intermediate language [125] with a verified compiler for this
intermediate language.
In contrast to the top-down approach provided by refinement techniques, Charguéraud

takes a bottom-up approach to the verification of imperative programs [51, 49]: an OCaml
program is first translated to a so-called characteristic formula, which is then used as a basis
for verification. Charguéraud’s work is similar to the works of Lammich and Lochbihler in
that he verifies similar algorithms and data structures. To verify the imperative hash table
implementation which lies at the core of Munta’s state space exploration algorithms, we
borrowed some core ideas from Charguéraud’s work on higher-order representation predicates
for separation logic [50].
Many other techniques for verification of algorithms and programs with the help of proof

assistants exist. As they are only remotely connected to the work presented in this thesis, I refer
the interested reader to a recent survey by Nipkow et al. [149]. It gives an overview of different
approaches towards verifying algorithms (but not necessarily efficient implementations) in the
ITP world and an extensive list of such verified algorithms.
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6.1.4 Certification in Verification

The idea of programs that produce independently checkable certificates spans a large range of
areas of computer science: from the definition of the famous complexity class NP, over tactics
for proof assistants, to self-explaining artificial intelligence. Therefore, I will only focus on
research where certification was applied within the verification community.
Certificate checking for SAT, the problem of satisfiability of Boolean formulas, arguably

represents the most important stream of work in this area. On the one hand, producing and
checking certificates for satisfiable Boolean formulas is nearly trivial. On the other hand,
certifying the unsatisfiability of a formula is much harder and many approaches have been
proposed [189, 188, 173]. The SAT competition1, which is an important driver for research
in the area, has been demanding that tools output certificates since 2013. The verification
of (UN)SAT certificate checkers with proof assistants has also been studied [56, 57, 124] and
convincing results have been obtained [124]: for the same formula, verified certificate checking
for unsatisfiability can be (much) faster than unverified SAT solving.
The IsaFoR/CeTA project [175] embodies many applications of the certification approach

to tools for automatic termination checking and complexity analysis of programs. It is fully
verified in Isabelle/HOL. Besson et al. constructed an analyser for byte code programs, which
can be checked by a verified checker [25]. Noschinski et al. verified certificate checkers for
graph algorithms [154].
Proof tactics in proof assistants are also often based on the principle of certification

[167]. Given a proof goal, they might attempt to run an unverified decision procedure or
calculation first. In the case of a success, the unverified code produces a certificate that is
then “replayed” by composing elementary proof rules (or tactics). A notable instance of this
are tactics for replaying proofs that are produced by solvers for the satisfiability modulo
theories (SMT) problem and other automated theorem provers. These tactics give rise to
tools like Sledgehammer [31, 30], HOL(y)Hammer [110] and CoqHammer [58], which allow
the user of an interactive theorem prover (ITP) to hand off a current proof goal to a range of
external ATPs (usually involving a lossy translation). If an external ATP succeeds at proving
the goal, it is asked for a certificate, which is then replayed in the ITP. Similarly, Li et al.
replayed certificates that were produced by a computer algebra system to decide univariate
polynomial problems in Isabelle/HOL [134]. In a different approach, the primary purpose
of the tactic is to perform a computation and the certificate is a proof that is constructed
by the tactic during the calculation. Examples of this can be found in a large part of the
aforementioned work on refinement, in proof-producing compilation (in the bootstrapping
process of the CakeML compiler [177] or the Cogent compiler [5]), and Manuel Eberl’s tactic
for automatically proving limits of real functions in Isabelle/HOL [63].

In the context of software verification, the idea of producing certificates for the correctness
of a program has been broadly studied [106, 26] but none of the checkers have been verified. In
hardware model checking, approaches for certifying the results of BDD-based and IC3-based
model checkers with the help of SAT solvers have been developed [116, 207]. Again, no checkers
have been verified but a connection to the existing verified checkers for UNSAT certificates
is conceivable [99, 124]. The work of Griggio et al. is also noteworthy [80]. They provide a
proof calculus for LTL formulas on finite transition systems, and a procedure for extracting
proofs in this calculus from a typical model checker based on the IC3 approach. They also
provide a prototype implementation of a certifier for such proofs, which delivers reasonable
performance. This certifier is not verified however, and their technique is not applicable to
more advanced formalisms like TA. Older work on certification has focused on the theory of

1http://satcompetition.org/
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the µ-calculus [144, 101]. It is of more theoretical nature and has not been applied to concrete
verification tools. To my knowledge, no one has worked on a verified checker for certificates
produced by a model checker or on producing certificates from TA model checking before.

6.2 Limitations
Before I remark on different potential directions for future research, I want to discuss some
limitations of the work presented in this thesis. Roughly, there are two types. On the one
hand, these are limitations of the usefulness of the verification methods covered by my work.
On the other hand, the degree of trustworthiness of these methods has certain limits.

6.2.1 Simplifying Assumptions

On the model checking side, one important limitation are the simplifying assumptions I made
about TA throughout. These were that TA are diagonal-free and strongly non-Zeno.

Diagonal Constraints As discussed above (Section 2.2), any TA can always be converted
into an equivalent diagonal-free automaton but for the price of a potentially exponential
blowup (in the number of diagonal constraints) [20]. Nevertheless, the restriction is very
often made as most practical models fall into the class of diagonal-free TA. Moreover, most
research on TA model checking has also focused on this class. Implementing and verifying
the transformation to diagonal-free TA in Munta would be a very conceivable feat. Apart
from this, there are currently two relevant approaches to handle diagonal constraints directly
during model checking.
The older approach implemented in Uppaal [19] amounts to splitting zones according

to diagonal constraints, into a zone implying the constraint and another implying its nega-
tion. This is done for every diagonal constraint of a given TA and any zone stored during
extrapolation. Therefore, this approach essentially moves the exponential blowup from the
automaton to the zone splitting process. Moreover, it is only compatible with older, less coarse
extrapolations and does not allow one to use local clock ceilings. I do not see a theoretical
barrier for adding this technique to both, Munta’s capability as a model checker and the
certification methods we studied for reachability. For emptiness of TBA, to my knowledge,
this method has never been considered, and I have not investigated whether it can be applied
soundly to the problem.

A recently developed technique by Gastin et al. [73] builds on the ideas of Herbreteau et al.
[95] on using abstractions implicitly, which I discussed in Section 5.3. The approach appears
to be significantly superior over the older approach in practice. As we have already studied
certification techniques based on implicit abstractions in Paper F, an extension to this method
should not provide many obstacles if the correctness of the specific subsumption check with
implicit abstraction and its implementation has been proved. In fact, this should be rather
easy once the same task has been finished for the work of Herbreteau et al. [95]. However,
given the complexity of the proofs on paper, doing so seems quite laborious. An extension of
Munta’s model checking capabilities with implicit abstractions also seems quite feasible after
verifying correctness of the subsumption check. As before, the work by Gastin et al. does
not consider emptiness of TBA, and I am not aware whether it is directly applicable to the
problem.

Zenoness For reachability problems, only finite runs are considered and thus Zeno runs
cannot occur. A given TBA can be transformed such that all accepting runs are non-Zeno

46



6.2 Limitations

while keeping all other behaviors intact [180]. This transformation incurs an exponential
blowup in the number of clocks [96]. Similarly to the case of TA with diagonal constraints,
implementing and verifying the construction in Munta would be a goal within close reach.
Herbetreau et al. [96] have developed an extension of the regular zone graph construction

(with abstractions) for deciding the emptiness of TBA when only non-Zeno runs are regarded
as accepting. Their method is efficient in that the number of reachable zones is only increased
linearly in the number of clocks in the worst-case, and their proposed algorithm can often avoid
the blowup altogether. However, their algorithm does not make use of subsumptions, which
is usually considered of high importance for the efficiency of TA model checking algorithms2.
Nevertheless, extending Munta with this method would not pose any fundamental problems
but would possibly be burdensome. Similarly, on an abstract level, producing and checking
certificates for this technique would be rather straightforward but incur some (but less) work
on the implementation level.
Like deadlocks, Zeno TA could be assumed to be a modeling error. Unlike for deadlocks

however, Munta does not yet provide a way to identify such automata. The question of
detecting whether a TA has a Zeno run has been studied more intensively than excluding
such runs directly from model checking. The approaches are similarly intricate and a silver
bullet does not seem to exist at present. One line of work studied different sufficient static
conditions of TA for strong non-Zenoness that can be checked efficiently [180, 74]. All of these
are certainly simple enough to be verified in Isabelle/HOL but would make little use of the
work developed in this thesis.

In another approach, a given network of TA is first extended with an additional clock [180,
74, 133]. On this automaton, one can then prove non-existence of Zeno runs by checking that
a certain “leads to” property holds for the network. As Munta already supports this type
of property, implementing the construction on top of Munta would be rather easy. Again,
the (main) downside of this approach would be the exponential worst-case blowup incurred
by adding the additional clock [93].
Herbreteau and Srivathsan studied methods to avoid adding this extra clock [93]. Their

surprising finding was that the typical LU -extrapolation is no longer efficient in this setting.
As a remedy, they provide slight modifications of the extrapolation together with algorithms
based on the previous extended zone graph construction for excluding Zeno runs [96]. Again,
their algorithms do not make use of subsumptions but could be added to Munta. The effort
would be similar to the aforementioned techniques that are also based on the extended zone
graph construction (and synergies could be exploited if both methods were to be added). I
consider it an open question how certification of this method could be fully achieved.
Finally, it should also be noted that even the popular model checker Uppaal does not

provide methods that can take Zeno runs into account. However, the techniques based on
adding an additional clock can at least be used rather easily after manual intervention.

6.2.2 Modeling Formalism

Another limitation, which I already discussed in Section 4.4, is the expressiveness of the
modeling formalisms. To summarize, for now I have opted for a simple but interesting enough
formalism that is similar to what is provided by many other model checkers. We have shown
(in Paper C and Paper D) that it is possible to support a richer formalism like the one of
Uppaal in principle. Doing so is laborious though, due to the complexity of the product

2Note that the algorithms we targeted with certification in Paper F [122, 94] can exploit subsumptions but
were developed only for strongly non-Zeno TBA.
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construction and semantic oddities that arise when using free-form programs as annotations
on states and transitions.

6.2.3 Temporal Properties

On the semantic side, the other big limitation are the types of properties that are supported
by the methods I studied. Compared to Uppaal, Munta supports a very similar set of
properties but formulas cannot refer to clock values, i. e. they are from the temporal logic
CTL instead of TCTL. It would certainly be possible to lift this limitation, although it would
present a larger refactoring effort for Munta. The reason is that zones would now need to
be split accordingly to the clock constraints occurring in the formula. The model checker
Kronos [206] supports the full logic TCTL. Extending Munta with the automata-theoretic
construction of Bouajjani et al. [33] to support full TCTL should be feasible when employing
the methods developed in this thesis (and adding the aforementioned zone splitting).

6.2.4 Efficiency

The applicability of my work could also be inhibited by the efficiency and scalability of the
developed algorithms and tools. For verified model checking, compared to Uppaal, Munta
can only get within an order of magnitude in throughput, the number of states checked per
second (cf. Paper C). The overall model checking time can even compare less favorably when
Uppaal is allowed to use its best exploration methods, as it can then explore significantly fewer
states than Munta, depending on the model. I thus conjecture that Munta is sufficiently
efficient to be applied to medium-sized models but will be prohibitively slow for large models.
This can still be seen as a good stepping stone for a verified model checker. Moreover, Munta
can also quickly verify the realistic Penn pacemaker models [108].
With certification, we have pushed the performance boundaries much further. First, the

performance of extrapolations and other possible search-space reduction techniques such as
the choice of search order [97] is not a concern anymore. Second, throughput was greatly
improved by certificate checking, and the process can even be parallelized (while the positive
effect of this quickly diminishes beyond two cores). Thus I conjecture that the certification
methods can also scale well to the largest models that can be handled by state-of-the-art
model checkers.

6.2.5 Trustworthiness

To conclude this discussion, I want to turn to the issue of trustworthiness. This is highly
important as it was the main goal I initially set out to achieve: to make verification of realtime
systems as dependable as possible. As the verification is carried out by a computer, there
are certain factors that could lead to a wrong result and that belong to the “physical” world.
These are errors of the computer hardware or user errors such as misreading a verification
result. The most reasonable way to rule out this kind of error seems to me to simply to repeat
the verification in different settings.
All other sources of errors are confined to the “software stack”. An important notion

pertaining to this is the trusted code base (TCB) of a verification tool. Recall that this
comprises all code that has not been verified but which is simply assumed to be correct and
thus “trusted”. For Munta, this consists of3:

(a) parts of Munta that are trusted code,
3For a diagram of Munta’s architecture see Paper D.
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(b) my formalization of the modeling language semantics,

(c) the formalization of Imperative HOL and its corresponding separation logic,

(d) Isabelle/HOL’s logical kernel,

(e) Isabelle/HOL’s code generator,

(f) the target language’s compiler and runtime system,

(g) and the underlying operating system.

As I argued in the introduction, it is reasonable to trust the correctness of (d), which is also
regularly assumed within the research community. The trustworthiness of (a) is discussed in
my tool paper about Munta (Paper D). Regarding (b) and (c), I believe that trust in these
components must always be gained via manual inspection. On the positive side, these TCBs
are quite small, and Imperative HOL has been applied in many projects, which can help to
increase the level of confidence in it. The semantics of the modeling language are only around
150 lines of Isabelle/HOL text, and I claim that they compare favorably in complexity even
to a handwritten description as given in the Uppaal manual, for instance.

For the last three items, a large body of existing and ongoing work within the verification
community offers a potential remedy. Hupel and Nipkow [104] have started to tackle (e) by
generating code from Isabelle/HOL to CakeML [177] in a provably correct way (in the sense
of mechanically checked proof). In turn, CakeML is a dialect of ML that comes with a verified
compiler and runtime system, addressing the potential soundness issues of (f). There are
also other projects that provide a similar verified tool chain from a program specified in a
proof assistant to a compiled binary. The first realistic fully verified compiler was CompCert
[132, 24]. Verified code extraction to CakeML was first realized for the HOL system [143].
I already mentioned the improvements in refinement technology by Claudel et al. [162] and
Lammich [125] that allow one to directly synthesize a verified program in a low level language,
the Bedrock assembler language and the LLVM intermediate language, respectively. Such
approaches can be extended with a verified runtime system (f) and a verified operating system
(g) to complete the verified tool chain. Two major projects have addressed this goal: the work
that evolved around the verified seL4 operating system kernel [112] and the DeepSpec project
[9] (and in particular the CertiKOS project [81]). There is thus a reasonable justification to
dream of connecting Munta to a fully verified tool chain that reduces the TCB of (e) to (g)
to (nearly) zero.

6.3 Future Work and Perspectives
The discussion from the last sections directly sparks a number of interesting ideas for future
work. First, it would be desirable to extend Munta with any of the solutions to lift its
limitations that I discussed in the last section, of course. For the modeling language, an
interesting extension of Munta would be the JANI format [44]. It aims to provide a simple
standard format for TA and similar formalisms, and would thus be a fitting target for a
reference model checker and certifier like Munta, in the hope that other model checkers will
also adopt this format in the future. Related to that would be a verified parser for the format,
which is based on JSON. As many verified parsers for JSON have already been developed
(e. g. by Lasser et al. [129]), one will hopefully become available in Isabelle/HOL in the not
too distant future as well.
An obvious extension of Munta in its role as a verified model checker would be support

for better abstraction methods, as was already discussed in previous chapters (such as the
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LU -extrapolation described in Section 3.3 and the implicit abstraction techniques discussed
in Section 5.3). As a certifier, Munta’s value would probably be most increased by making it
applicable to the whole process of LTL model checking. As discussed in Section 5.2, certifying
emptiness of TBA is only a part of the automata-theoretic approach towards LTL model
checking of TA. Fortunately, the relevant constructions have already been verified to a large
extent in the CAVA project [168, 65, 42]. The main open question is how to best combine the
verified conversion from an LTL formula to an NBA with an unverified model checker. There
are two possible routes. One option is to also apply the verified construction on the unverified
side before model checking continues. Munta could then check the given certificate for Büchi
emptiness against the automaton it would construct from the LTL formula independently
(with the same construction). Another option would be to extend the work of Seidl et al. [42]
such that the unverified tool can provide yet another certificate for the correctness of the
formula automaton.
There are a number of potential interesting applications for Munta as a validation tool.

First, it could be employed in a model checking competition for TA. In other areas of formal
methods, such as SAT solving or software verification, competitions have been an important
driver for innovation and research. In both types of competitions, tools nowadays need to
produce certificates to demonstrate correctness of their results. Such a competition does not
exist yet for TA model checkers but in my opinion it would be desirable to initiate such an
event, and Munta would complement it perfectly: on the one hand, correct functioning of the
competing (semi-symbolic) model checkers could be ensured by its certification ability; on the
other hand, it would put Munta to a real-world test, both as a model checker and a certifier.
Second, Munta could be used to find bugs in other model checkers. There are multiple
possible “vectors of attack” here. In one approach, models and formulas could be generated
by some automated method. These could then be given to Munta and an unverified tool,
and the outputs could be checked for discrepancies (or where possible, certificates could be
checked for validity). A discrepancy would constitute a critical bug in the unverified tool (or
at the least a bug in the certification pipeline). In another approach, the DBM library of
other model checkers could be scrutinized, for instance by means of black-box or white-box
testing.

Just as DBMs are not only used for TA model checking, Munta’s DBM library also has other
potential applications. A particularly interesting instance would be in abstract interpretation.
Abstract interpretation is a widely spread automated program analysis technique, usually
computing an over-approximation of potentially reachable program states. To represent
reachable states symbolically, a domain of abstract values needs to be chosen. The so-called
octagonal domain [140, 141] is popular with tools that implement the technique and is based
on DBMs as a data structure. Nipkow has already verified a toy abstract interpreter in
Isabelle/HOL [147]. However, it lacks an interesting practical domain of abstract values, in
particular it is not able to track differences between variables. It would thus be attractive
(and quite feasible) to combine this with the verified DBM library to obtain a more realistic
verified abstract interpreter.

Other visions are more ambitious. For one, I have only targeted semi-symbolic methods
for TA model checking. While these are by far the most popular and the only ones that are
practically employed, there is a large range of other techniques. The most interesting ones
are fully symbolic. As mentioned in Section 2.6, they can be divided into two kinds, methods
based on BDD-like data structures and methods based on SMT solvers. Both techniques
would present an interesting target for certification. This seems particularly appealing for the
methods based on SMT solvers since methods for replaying SMT proofs are readily available
in Isabelle/HOL.
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Beyond TA, there is of course a wealth of other modeling formalisms that could be targeted.
This is particularly appealing for all well-structured transition systems [68] such as Petri nets
because our certification methods are directly applicable to them (see Paper F). For more
general hybrid systems, the certification approach again seems to be most apt as most model
checking problems are undecidable there. Thus, for instance, certifying an unreachability
invariant after model checking seems to be the most attractive option.

Finally, one can dream more broadly of how ITPs could be used to build realtime systems
with the highest degree of trustworthiness in the future. Let me allude to the “chain of trust”
metaphor from the introduction again. For the task of constructing a concrete realtime system,
I have prolonged the chain on one end, where the ITP holds everything together instead of
a model checker. I have already alluded to many options of proofing the thick links at this
end of the chain even further. On the other end of the chain sits the model. The model is
of course not yet the real system and thus there is ample opportunity to extend the chain of
trust on that side. The most immediate target there would be to generate actual code from
the model in a verified way. Such code needs to run on a dedicated realtime platform which
provides guarantees on the worst-case execution time of instructions. Different groups have
investigated code synthesis from TA [37, 200, 115, 176, 108]. However, to not cut the chain
of trust in the middle, such an approach should be verified with an ITP. An independent
research project is currently investigating exactly that4. Two other speculative and to me
completely open questions are whether ITPs can help rule out modeling errors at the interface
between user and specification, and whether a combination of interactive proof and verified
model checking within an ITP could target models whose complexity currently lies beyond
the capabilities of existing push-button technologies. As an example, I imagine that the ITP
could be used to soundly and modularly combine properties of sub-components of a model,
which in turn could either be established by further decomposition or model checking. Some
light in that direction was already shed by previous work on compositionality and abstraction
of TA [107, 155].

6.4 General Reflections
I believe that the research question I posed in the introduction has been addressed in a largely
satisfactory way. With Munta, I have extended the chain of trust from model checkers to
Isabelle/HOL in two ways: Munta can stand in for the model checker itself and thus link the
chain to Isabelle/HOL; or in its role as a certifier it can serve as a link between an unverified
model checker and Isabelle/HOL. If my only goal had been to extend this chain, then the
latter functionality would seem quite clearly superior for the reasons given in the last chapter.
However, having a fully verified model checker that can stand on its own also delivers certain
benefits, for instance as a trustworthy tool for experimentation that can be run right in the
browser like Munta. Moreover, one can argue that formalizing the correctness of the typical
extrapolation operation used in semi-symbolic TA model checking is an important scientific
undertaking by itself. This seems to be particularly true when considering all the uncertainty
and difficulties that have been related to it historically and the complexity of the correctness
argument in itself. In that light, developing a full verified model checker was also a natural
step after I had finished the formalization of all the underlying concepts.
My work can also be seen as another piece of evidence in a big sea of large verification

efforts that have been carried out with ITPs up to date (some of the most important were
listed in the introduction). They all show that ITPs today are capable of verifying rather

4The project is titled “High-Confidence Formal Verification of Real Cyber-Physical Systems: from Models to
Machine Code”. More information can be found online: https://people.kth.se/~dbro/projects.html.
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complex pieces of software, and therefore one can hope for a further uptake of the technology
in practice. I hope that the work presented in this thesis could serve as a stepping stone in
that direction.
While most of my work could in principle also have been carried out with other ITPs, it

highlights the particular maturity of Isabelle/HOL as a tool. Realistically speaking, there
would have been only one significant contender to construct an efficient verified tool (particu-
larly one that can implement DBMs imperatively) as opposed to the pure formalization work
presented in Chapter 3: Coq. As discussed in Section 6.1, the necessary technology has only
become available in Coq very recently. However, I claim that even if I were to carry out this
work anew today, Isabelle/HOL would still be the most effective tool by some margin. I have
relied on many of its distinctive features during my work: its good support for coinduction and
coinductive datatypes [28], its ability to interface with automated provers and SMT solvers
[29], its structured proof language [187], its mature code generation facilities [83], and Peter
Lammich’s work on imperative refinement [126].
Having said that, the road to Munta still has been bumpy. While ITP technology and

refinement technology are reaching ever better levels of maturity, it was still quite laborious to
get from a formalized theory to a verified model checker—a step that might seem simple at first
thought. I have already given reasons why the story is not so simple in Chapter 3 but some of
it is certainly related to difficulties that are still posed by the aforementioned technologies. The
refinement framework in particular can seem like a mysterious conundrum at first. Sometimes
even the advanced apprentice sorcerer will be bamboozled by it again, and it will only submit
after the headmaster has exacted on it a sermon of incantations. Similar beasts can also hide
behind other trees in the magical forest that is Isabelle/HOL. Some of these I encountered when
verifying product constructions; for instance when grappling with locally defined constants
that were unfolded to their logical foundation for no apparent reason. This renders most of
Isabelle’s automation useless and causes the current proof state to be unreadable. It took
me years of stumbling through the forest until the right potion was given to me by seasoned
masters (using congruence rules to prohibit this behavior in Isabelle’s simplifier).
Nevertheless, sometimes the forest can also reveal its magic to the great astonishment of

the apprentice sorcerer. This happened when I extended the TA formalization to local clock
ceilings with seemingly little effort (cf. Section 3.3). What is more, sometimes proof assistants
can also aid in proof discovery as in the following example. The seminal paper that introduced
LU -extrapolation gave a correctness argument on the basis of time-abstract simulations [14],
and showed that the LU -simulation (defined in the same paper) is time-abstract. Before
formalizing this result, Frédéric Herbreteau made me aware that Paul Gastin had suggested
that LU -simulation might even be a regular simulation. It turned out that this result is quite
trivial to prove in Isabelle/HOL, and proving that it is a proper simulation is even more
natural than proving that it is time-abstract.
Thus, if I was to dream, I would hope that Isabelle/HOL and ITP technology in general

will mature further and ease the education of future apprentice sorcerers. I believe that
there would then be a strong case to involve ITPs in regular development and research of
verification theory and tools. This is getting more and more widespread in the community,
but like in my own work, only happens after fact: once theory and tools have been developed
and scrutinized in a more informal setting, one tries to verify these. While this may often
be reasonable, I conjecture that in the future, verification within a proof assistant could also
interact beneficially with the research process itself.
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Abstract. Timed automata are a widely used formalism for modeling
real-time systems, which is employed in a class of successfulmodel checkers
such as UPPAAL. These tools can be understood as trust-multipliers: we
trust their correctness to deduce trust in the safety of systems checked by
these tools. However, mistakes have previously been made. This particu-
larly regards an approximation operation, which is used bymodel-checking
algorithms to obtain a finite search space. The use of this operation left a
soundness problem in the tools employing it, which was only discovered
years after the first model checkers were devised. This work aims to pro-
vide certainty to our knowledge of the basic theory via formalization in
Isabelle/HOL:we define themain concepts, formalize the classic decidabil-
ity result for the language emptiness problem, prove correctness of the basic
forward analysis operations, and finally outline how both streams of work
can be combined to show that forward analysis with the common approxi-
mation operation correctly decides emptiness for the class of diagonal-free
timed automata.

1 Introduction

The foundations of the theory of timed automata are presented in the semi-
nal work of Alur and Dill [1,2]. They introduced the formalism as a model for
systems with real-time constraints and showed how to decide the language empti-
ness problem via the so-called region construction. Unfortunately, the number
of regions explored by this algorithm is exponential in the size of the automa-
ton under consideration. Moreover, Alur and Dill also showed that the language
emptiness problem for timed automata is PSPACE-hard. Still, the formalism is
employed in practical model checking [12,13,19] by means of algorithms based
on Difference Bound Matrices (DBMs). These algorithms (with some more elab-
orate optimizations) can cope with many interesting real-life model checking
problems. The search space examined by the DBM algorithms is potentially
infinite. Therefore an approximation is used to obtain a finite search space. The
basic idea is to represent every state (called zone) by the smallest set of regions
which contains the state.

It took nearly a decade after this operation was initially devised, until Patricia
Bouyer discovered [5] that the common algorithmic realization of this operation
diverges from its intended result: the computed result is always a convex union of
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regions, whereas the smallest set of regions containing a zone can be non-convex.
This left a soundness problem, which fortunately vanishes for the restricted class
of so-called diagonal-free timed automata [6] (Sect. 2.1 precisely characterizes
this class). While not as expressive as the full formalism of timed automata, this
class is sufficient for modeling most of the problems of practical interest, which
explains why the problem was not discovered for many years.

This work aims to solidify the theoretical grounds on which real-time model
checking with diagonal-free timed automata stands, by formalizing the basic the-
ory and algorithms in Isabelle/HOL, and then going the full length to prove
Bouyer’s correctness result. Section 2 will present the formalization of the basic
notions for diagonal-free timed automata. Then Sect. 3 will show how we for-
malized DBMs and obtained soundness and completeness results for their basic
algorithms. This includes a formalization of the Floyd-Warshall algorithm. After-
wards (Sect. 4) we define the notion of regions and prove that they are suitable for
deciding the emptiness problem on timed automata. Finally, in Sect. 5, a refined
version of these regions will be used to precisely formalize the approximation
operation. To tie the ends of our formalization together, this characterization of
approximation will be connected with its algorithmic version. This enables us to
reuse the decidability result on the first region construction to prove that DBM-
based algorithms together with approximation can decide the language emptiness
problem for diagonal-free timed automata. For lack of space, many of our defin-
itions and proofs are shortened or stated informally. We refer the reader to the
entry in the Archive of Formal Proofs [15] for the full version (over 18500 lines).

1.1 History and Related Work

As mentioned, the basic theory was devised by Alur and Dill [1,2]. The use of
DBMs was also proposed by Dill [10] and brought to practical model checking by
Yi et al. [18]. Bouyer’s developments of our main correctness results are spread
over two papers. The first one presents a generalization of timed automata to
updatable timed automata and revisits the basic decidability results for this
class [7]. The second one [6] connects these results with DBMs to prove that
the combination of DBM-based forward analysis operations and approximation
decides the language emptiness problem.

We are aware of one previous proof-assistant formalization of timed automata
using PVS [16,17]. This work has the basic decidability result using regions
and claims to make some attempt to extend the formalization towards DBMs.
Another line of work [11,14] aims at modeling the class of p-automata [3]
(which is undecidable in the general case) in Coq and proving properties of
concrete p-automata within Coq. A similar approach was pursued with the help
of Isabelle/HOL in the CClair project [8]. In contrast, the most important con-
tributions of our work are the full formalization of the relevant DBM algorithms,
and particularly the rather intricate developments towards the correctness proof
for the approximation operation – both of which pertain to practical real-time
model checking.
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Unless otherwise stated, our formalizations of the basic notions and DBMs are
based on a popular tutorial by Bengtsson and Yi [4],while the developments for
the region constructions and the final correctness result follow Bouyer’s precise
work.

2 Diagonal-Free Timed Automata in Isabelle/HOL

2.1 Syntactic Definition

Compared to standard finite automata, timed automata introduce a notion of
clocks. We will fix a type ′c for the space of clocks, type ′t for time, and a type
′s for locations. While most of our formalizations only require ′t to belong to a
custom type class for totally ordered dense abelian groups, we worked on the
concrete type real for the region construction for simplicity. Figure 1 depicts an
example of a diagonal-free timed automaton.

s1

c1 ≤ 3

s2

c1 > 2 ∧ c2 ≤ 2

c1 < 1, a2, c2 := 0
c1 ≤ 3, a1, c1 := 0

a3

Fig. 1. Example of a diagonal-free timed automaton with two clocks.

Locations and transitions are guarded with clock constraints, which have to
be fulfilled to stay in a location or to transition between them. The variants of
these constraints are modeled by

datatype ( ′c, ′t) cconstraint =
AND (( ′c, ′t) cconstraint) (( ′c, ′t) cconstraint) |
LT ′c ′t | LE ′c ′t | EQ ′c ′t | GT ′c ′t | GE ′c ′t

where the atomic constraints in the second line represent the constraint c ∼ d
for ∼ = <, ≤, =, >, ≥, respectively. The sole difference to the full class of timed
automata is that those would also allow constraints of the form c1 − c2 ∼ d. We
define a timed automaton A as a pair (T , I) where I :: ′s ⇒ ( ′c, ′t) cconstraint
is an assignment of clock invariants to locations; T is a set of transitions written
as A � l −→g ,a,r l ′ where

– l :: ′s and l ′ :: ′s are start and successor location,
– g :: ( ′c, ′t) cconstraint is the guard of the transition,
– a :: ′a is an action label,
– and r :: ′c list is a list of clocks that will be reset to zero when the transition

is taken.
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Standard definitions of timed automata would include a fixed set of locations
with a designated start location and a set of end locations. The language empti-
ness problem usually asks if any number of legal transitions can be taken to reach
an end location from the start location. Thus we can confine ourselves to study
reachability and implicitly assume the set of locations to be given by the tran-
sitions of the automaton. Note that although the definition of clock constraints
allows constants from the whole time space, we will later crucially restrict them
to the natural numbers in order to obtain decidability.

2.2 Operational Semantics

We want to define an operational semantics for timed automata via an inductive
relation. States of timed automata are pairs of a location and a clock valu-
ation of type ′c ⇒ ′t assigning time values to clocks. Time lapse is modeled
by shifting a clock valuation u by a constant value d: u ⊕ d = (λx . u x + d).
Finally, we connect clock valuations and constraints by writing, for instance,
u � AND (LT c1 1 ) (EQ c2 2 ) if u c1 < 1 and u c2 = 2. The precise defini-
tion is standard.

Using these definitions, the operational semantics can be defined as a rela-
tion between pairs of locations and clock valuations. More specifically, we define
action steps

A � l −→g ,a,r l ′ ∧ u � g ∧ u ′ � inv-of A l ′ ∧ u ′ = [r→0 ]u
A � 〈l , u〉 →a 〈l ′, u ′〉

and delay steps via
u � inv-of A l ∧ u ⊕ d � inv-of A l ∧ 0 ≤ d

A � 〈l , u〉 →d 〈l , u ⊕ d〉
. Here inv-of

(T , I) = I and the notation [r → 0 ]u means that we update the clocks in
r to 0 in u. We write A � 〈l , u〉 → 〈l ′,u ′〉 if either A � 〈l , u〉 →a 〈l ′, u ′〉
or A � 〈l , u〉 →d 〈l ′, u ′〉.

2.3 Zone Semantics

The first conceptual step to get from this abstract operational semantics towards
concrete algorithms on DBMs is to consider zones. Informally, the concept
is simple; a zone is the set of clock valuations fulfilling a clock constraint:
( ′c, ′t) zone ≡ ( ′c ⇒ ′t) set. This allows us to abstract from a concrete state
〈l , u〉 to a pair of location and zone 〈l , Z 〉. We need the following operations on
zones:

Z ↑ = {u ⊕ d | u ∈ Z ∧ 0 ≤ d} and Z r → 0 = {[r→0 ]u | u ∈ Z}.

Naturally, we define a zone-based semantics by means of another inductive
relation:
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A � 〈l , Z 〉 � 〈l , (Z ∩ {u | u � inv-of A l})↑ ∩ {u | u � inv-of A l}〉

A � l −→g ,a,r l ′

A � 〈l , Z 〉 � 〈l ′, (Z ∩ {u | u � g})r → 0 ∩ {u | u � inv-of A l ′}〉

With the help of two easy inductive arguments one can show soundness and
completeness of this semantics w.r.t. the original semantics (where ∗ is the Kleene
star operator):

(Sound) A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′ =⇒ ∃ u∈Z . A � 〈l , u〉 →∗ 〈l ′, u ′〉
(Complete) A � 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ u ∈ Z

=⇒ ∃Z ′. A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′

This is an example of where proof assistants really shine. Not only are our Isabelle
proofs shorter to write down than for example the proof given in [18] – we have
also found that the less general version given there (i.e. where Z = {u}) yields
an induction hypothesis that is not strong enough in the completeness proof.
This slight lapse is hard to detect in a human-written proof.

3 Difference Bound Matrices

3.1 Fundamentals

Difference Bound Matrices constrain differences of clocks (or more precisely, the
difference of values assigned to individual clocks by a valuation). The possible
constraints are given by:

datatype ′t DBMEntry = Le ′t | Lt ′t | ∞

This yields a simple definition of DBMs: ′t DBM≡ nat ⇒ nat ⇒ ′t DBMEntry .
To relate clocks with rows and columns of a DBM, we use a numbering
v :: ′c ⇒ nat for clocks. DBMs will regularly be accompanied by a natural
number n, which designates the number of clocks constrained by the matrix.
Although this definition complicates our formalization at times, we hope that it
allows us to easily obtain executable code for DBMs while retaining a flexible
“interface” for applications. To be able to represent the full set of clock con-
straints with DBMs, we add an imaginary clock 0, which shall be assigned to
0 in every valuation. Zero column and row will always be reserved for 0 (i.e.
∀ c. v c > 0 ). If necessary, we assume that v is an injection or surjection for
indices less or equal to n. Informally, the zone [M ]v ,n represented by a DBM M
is defined as

{u | ∀ c1, c2, d . v c1, v c2 ≤ n −→
(M (v c1) (v c2) = Lt d −→ u c1 − u c2 < d)
∧ (M (v c1) (v c2) = Le d −→ u c1 − u c2 ≤ d)}

assuming that v 0 = 0.
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Example 1.

0 c1 c2( )0 ∞ Lt (−3 ) Le 0
c1 ∞ ∞ ∞
c2 Le 4 ∞ ∞

0 c1 c2( )0 Le 0 Lt (−3 ) Le 0
c1 ∞ Le 0 ∞
c2 Le 4 Lt 1 Le 0

0 c1 c2( )0 ∞ Le 0 Le 0
c1 ∞ ∞ Lt (−3 )
c2 ∞ Le 3 Le 0

The left two DBMs both represent the zone described by the constraint
c1 > 3 ∧ c2 ≤ 4, while the DBM on the right represents the empty zone.1

To simplify the subsequent discussion, we will set ′c = nat, v = id and
assume that the set of clocks of the automaton in question is {1 ..n}. We define
an ordering relation ≺ on ′t DBMEntry by means of

a < b
Le a ≺ Le b

a < b
Le a ≺ Lt b

a < b
Lt a ≺ Lt b

a ≤ b
Lt a ≺ Le b Lt ≺ ∞ Le ≺ ∞

and extend it to � in the obvious way. Observe that ≺ and � are total orders.
Additionally, we get the following important ordering property of DBMs (by
nearly automatic proof):

Lemma 1. ∀ i j . i ≤ n −→ j ≤ n −→ M i j � M ′ i j =⇒ [M ]v ,n ⊆ [M ′]v ,n

We can interpret DBMs as a graph with clocks as vertices and difference con-
straints as edges between them. To give a concrete meaning to this interpreta-
tion, we first define addition on DBM entries: a � ∞ = ∞;∞ � b = ∞; and
(∼1 x )� (∼2 y) = ∼ ′ (x + y) where ∼ ′ = Le if ∼1 = ∼2 = Le and ∼ ′ = Lt if oth-
erwise. Now the length of a path (of DBM indices representing clocks) defined by2

len M s t [] = M s t and len M s t (w · ws) = M s w � len M w t ws

gives the key to reasoning about this interpretation: for any u ∈ [M ]v ,n
and i , j , xs with set (i · j · xs) ⊆ {0 ..n},3 we get Lt (u i − u j ) ≺ len M i j xs via
induction on xs. Setting i = j, we can immediately conclude that DBMs with neg-
ative cycles are always empty. In the following we will make use of a predicate
expressing that a DBM does not contain any negative cycles which only consist of
vertices less or equal to k for some k :

cycle-free-up-to M k n ≡
∀ i xs. i ≤ n ∧ set xs ⊆ {0 ..k} −→ Le 0 � len M i i xs

We write cycle-free M n if cycle-free-up-to M n n.

1 We assume a default clock numbering, mapping ci to index i, for our examples.
2 [] denotes the empty list and x · xs is a list constructed from head x and tail xs.
3 set xs is the set of elements contained in xs.
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3.2 Operations

We define the necessary operations on DBMs to obtain a basic forward analysis
algorithm for reachability.

Floyd-Warshall algorithm. From Example 1 we can see that to be able to tell
if two DBMs represent the same zone, we first need to put them into some
canonical form. Formally, this canonical form is characterized by the following
property:

canonical M n ≡ ∀ i j k . i ≤ n ∧ j ≤ n ∧ k ≤ n −→ M i k � M i j � M j k

The key property of non-empty canonical DBMs is that we can find a valu-
ation u ∈ [M ]v ,n with u i − u j = d for any d between −M j i and M i j, or
equivalently:

Lemma 2. Assume Le d � M i j, Le (−d) � M j i for M with cycle-free M n,
canonical M n, and i , j ≤ n with i �= j. We define M ′ by setting M ′ i j = Le d
and M ′ j i = Le (−d) and M ′ i ′ j ′ = M i ′ j ′ for all (i ′,j ′) where (i ′,j ′) �= (i ,j ),
(j ,i). Then [M ′]v ,n ⊆ [M ]v ,n and cycle-free M ′ n.

Proof. From Lemma 1, we get [M ′]v ,n ⊆ [M ]v ,n. It remains to show that M ′

does not contain a negative cycle. Suppose there is one. Then we can also
find a smallest negative cycle, which, without loss of generality, is of the form
len M ′ i i (j · xs) ≺ Le 0 for some xs where i , j /∈ set xs. This proof step is
rather intricate in Isabelle. We use a function that explicitly computes small-
est negative cycles. An inductive argument yields a result that allows us to
rotate cycles. Now, we get Le d � len M ′ j i xs ≺ Le 0 . We have xs �= [] as this
would directly give us the contradiction Le d � Le (−d) ≺ Le 0 . This means
that Le d � len M j i xs ≺ Le 0 (by induction on xs), and because M is canon-
ical, M j i ≺ Le (−d), which is a contradiction to our assumption. ��

An important consequence is that any canonical DBM without a negative diag-
onal has at least one valuation, which we can construct by repeatedly applying
the theorem. Observe that this also implies that a DBM in canonical form is
empty iff there is a negative entry on its diagonal.

The canonical form can be computed by the Floyd-Warshall algorithm for the
all-pairs shortest paths problem. A simple HOL formulation of the algorithm is

fw-upd M k i j ≡ M (i := (M i)(j := min (M i j ) (M i k � M k j )))

fw M n 0 0 0 = fw-upd M 0 0 0
fw M n (Suc k) 0 0 = fw-upd (fw M n k n n) (Suc k) 0 0
fw M n k (Suc i) 0 = fw-upd (fw M n k i n) k (Suc i) 0
fw M n k i (Suc j ) = fw-upd (fw M n k i j ) k i (Suc j )

where f (a := b) ≡ λx . if x = a then b else f x. We abbreviate fw M n n n n as
FW M n. To prove that this algorithm computes the tightest difference con-
straint for all pairs of clocks, we claim:
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Theorem 1
cycle-free-up-to M k n ∧ i ′ ≤ i ∧ j ′ ≤ j ∧ i ≤ n ∧ j ≤ n ∧ k ≤ n =⇒
Min {len M i ′ j ′ xs | set xs ⊆ {0 ..k} ∧ i ′ /∈ set xs ∧ j ′ /∈ set xs ∧ distinct xs}
= fw M n k i j i ′ j ′

The proof is a nested induction, which follows the program structure and
uses a standard argument. The theorem implies that FW computes a canonical
form:

Corollary 1. cycle-free M n =⇒ canonical (FW M n) n

The Floyd-Warshall algorithm also detects negative cycles by computing a
negative diagonal entry. The key observation is that a matrix of this kind
either has a negative diagonal entry to start with, or there is a maximal
k < n with cycle-free-up-to M k n. The latter means that the algorithm com-
putes a negative diagonal entry in iteration k + 1. In either case the negative
diagonal entry will be preserved by monotonicity of the algorithm. This yields
an emptiness check for DBMs.

Intersection. The intersection of two DBMs is trivial to compute. It is sim-
ply the point-wise minimum: And A B ≡ λi j . min (A i j ) (B i j ). The oper-
ation is correct in the following sense: [A]v ,n ∩ [B ]v ,n = [And A B ]v ,n. The
⊆-direction can directly be proved by Isabelle’s simplifier, while ⊇ requires a
rather lengthy proof by cases.

Reset. We need an operator reset such that u c = d for all u ∈ [reset M n c d ]v ,n.
Thus we define (reset M n c d) c 0 = Le d and (reset M n c d) 0 c = Le (−d). By
doing so, all difference constraints involving c are invalidated. Therefore we set
the corresponding DBM entries to ∞. However, this alone does not yield a cor-
rect operation. Consider clocks c1, c2 and c3 and a DBM represented by the clock
constraint c1 ≥ c2 + 1 ∧ c1 ≤ c3. By setting c1 to 0, we will lose all constraints
on c2 and c3. This means that the resulting zone will contain a valuation u with
u c1 = u c2 = u c3 = 0. There is clearly no way to set c1 back to a different value
such the resulting valuation would satisfy the original constraint. The way to
resolve this issue is to encode the information we had about c2 and c3 in the origi-
nal constraint (or DBM) also in the new DBM. This is, we derive c2 − c3 ≤ −1.
Concretely, we calculate (reset M n i d) j k =min (M j i + M i k) (M j k) for all
j , k ≤ n. Note that this computation does nothing ifM is already in canonical from,
allowing a simpler implementation.

For a list of clocks cs and a list of time stamps ts(|cs| = |ts|), set-clocks cs ts u
is the valuation for which (set-clocks cs ts u) csi = tsi and the value of u c is
unchanged for all other clocks c /∈ set cs. We lift reset to reset many clocks at
once by simply folding it over the list of clocks. We proved correctness of the
lifted operation (reset ′):

(Sound) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [reset ′ M n cs v d ]v ,n
=⇒ ∃ ts. set-clocks cs ts u ∈ [M ]v ,n

(Complete) (∀ c∈set cs. 0 < c ∧ c ≤ n) ∧ u ∈ [M ]v ,n
=⇒ [cs→d ]u ∈ [reset ′ M n cs v d ]v ,n
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The proofs for these results are among the most complex ones in the whole
formalization. The reason is that manual case analyses have to be combined
with (linear) arithmetic reasoning, which is hard to automate in Isabelle.

Delay. We need an operation to compute time lapse, i.e. ([M ]v ,n)↑. For canonical
DBMs, this simply amounts to setting M i 0 = ∞ for all i ≤ n. In the general
case, intuitively we can lose information about the difference of two clocks that
was recorded between the upper bound of one of them and the lower bound of
the other. Accounting for this, we arrive at the following general operation:

up M ≡
λi j . if 0 < i then if j = 0 then ∞ else min (M i 0 � M 0 j ) (M i j ) else M i j

Correctness can be obtained similarly to the reset operation.

Abstraction. It is easy to turn an atomic clock constraint into a DBM that rep-
resents the same zone. For instance, the zone {u | u � EQ c d} is represented
by a DBM M where M c 0 = Le d and M 0 c = Le (−d), and all other entries
are unbounded. Using the already defined intersection operation for constructor
AND, a function abstr, which records entries in this manner while working recur-
sively through a constraint, turns constraints into a DBM-equivalent. Again, we
proved correctness (where collect-clks cc is the set of all clocks appearing in
constraint cc):

∀ c∈collect-clks cc. 0 < c ∧ c ≤ n =⇒ [abstr cc (λi j . ∞) v ]v ,n = {u | u � cc}

3.3 DBM Operational Semantics

In the last section we have elaborated the adequacy of our DBM-equivalents for
all zone operations, allowing us to compute the zone semantics with the help of
DBMs. Indeed we can define a new operational semantics based on DBMs:

M i = abstr (inv-of A l) (λi j . ∞) v
A � 〈l , M 〉 �v ,n 〈l , And (up (And M M i)) M i〉

A � l −→g ,a,r l ′ ∧ M i = abstr (inv-of A l ′) (λi j . ∞) v
A � 〈l , M 〉 �v ,n 〈l ′, And (reset ′ (And M (abstr g (λi j . ∞) v)) n r v 0 ) M i〉

Using the correctness results for the DBM operations, it is straightforward to
show that this semantics is equivalent to the zone semantics:

A � 〈l , [M ]v ,n〉 �∗ 〈l ′, Z 〉
←→ ∃M ′. A � 〈l , M 〉 �∗

v ,n 〈l ′, M ′〉 ∧ Z = [M ′]v ,n

However, we are not done yet: while we can practically compute the semantics
of timed automata, the search space could still be infinite. The rest of the paper
is concerned with overcoming this problem.
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4 From Classic Decidability to a Correct Approximation

4.1 Regions

In their seminal paper, Alur and Dill showed decidability of the emptiness prob-
lem for timed automata by giving an adequate finite partitioning of the set of
valuations into what they call regions. In this section, we will present our formal-
ization of this result and then show how to apply it to obtain a finite operational
semantics of zones. We use Bouyer’s definition of regions as, for one it is more
formal and thus easier to formalize, and secondly we will have to use a modified
version of it later on.

From now on we will work in a parametric theory (called locale in Isabelle),
which fixes X as the set of clocks of the automaton. Moreover, a clock ceiling k
will define an upper bound k c for the “relevant” range of any clock c ∈ X –
this ought to correspond to the maximal constant appearing for c in any con-
straint of the timed automaton, e.g., k c1 = 3 and k c2 = 2 for the automaton
of Fig. 1. This is, if ∼ c m is a constraint of the automaton, we postulate that
m ≤ k c, c ∈ X, and that m is a natural number.

A single clock value will always fall into one of three types of intervals from

datatype intv = Const nat | Intv nat | Greater nat

where the set of values they contain is given by the following rules:

u x = d

intv-elem x u (Const d)

d < u x ∧ u x < d + 1

intv-elem x u (Intv d)

d < u x

intv-elem x u (Greater d)

Let I :: ′c ⇒ intv be assigning intervals to clocks and r be a finite total pre-
order over X 0 ≡ {x ∈ X | ∃ d . I x = Intv d}. Then we define the corresponding
region region X I r as the set for which4

u ∈ region X I r iff ∀ x∈X . 0 ≤ u x ∧ intv-elem x u (I x )
and ∀ x∈X 0. ∀ y∈X 0. (x , y) ∈ r ←→ frac (u x ) ≤ frac (u y)

We will fix a set of regions Rα ≡ {region X I r | valid-region X k I r} where
valid-region X k I r holds if X is finite, r is a total preorder on X 0, and d ≤ k x
if I x = Const d, d < k x if I x = Intv d, and k x = d if I x = Greater d for all
x ∈ X. Observe that this definition remedies the potential overlap of intervals
that the definition of intv-elem would admit.

It is clear from Fig. 1, and relatively straightforward to prove in
Isabelle/HOL, that Rα is a finite partitioning of

V ≡ {u | ∀ x∈X . 0 ≤ u x} ,

4 frac r denotes the fractional part of any real number r.
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Fig. 2. (1) A region and its time successors in Rα, (2) the α-closure of a zone, and
(3) the β-approximation of a zone for X = {c1, c2} with k c1 = 3 and k c2 = 2.

the set of all positive valuations. What is not so obvious (and not mentioned
by Bouyer) but a useful property to work with, is that any valid region is also
non-empty. The crux of this proof is to observe that X 0 can be ordered in
equivalence classes according to r such that a valuation u can be chosen for
which frac (u x )≤ frac (u y) iff (x , y) ∈ r . This ordering property of finite total
preorders is non-trivial to formalize and makes this step rather technical.

4.2 Decidability with Regions

How are regions and timed automata connected? We will present three key
properties that connect regions to time lapse, clock resets, and clock con-
straints, respectively, allowing us to implement timed automata with the
help of regions. Let [u]Rα

∈ Rα be the unique region containing u. We call
[u ⊕ t ]Rα a time successor of [u]Rα for t ≥ 0 and denote by Succ Rα R the set
of all such time successors of all u ∈ R (cf. Fig. 2.1). Now the three key properties
are in order of decreasing difficulty:

(Set of regions) R ∈ Rα ∧ u ∈ R ∧ R ′ ∈ Succ Rα R
=⇒ ∃ t≥0 . [u ⊕ t]Rα

= R ′

(Compatibility with resets) R ∈ Rα ∧ u ∈ R ∧ 0 ≤ d ∧ d ≤ k x ∧ x ∈ X
=⇒ [u(x := d)]Rα

= {u(x := d) | u ∈ R}
(Compatibility with constraints)

R ∈ Rα ∧ ∀ (x , m)∈collect-clock-pairs cc. m ≤ k x ∧ x ∈ X ∧ m ∈ IN
=⇒ R ⊆ {u | u � cc} ∨ {u | u � cc} ∩ R = ∅

Proof. We concentrate on the set of regions property as it has the most inter-
esting formalization. Our proof combines elements of the “classic” result as pre-
sented e.g., in [9], and Bouyer’s approach. Let R = region X I r ∈ Rα for some
I, r, let R ′ = [v ⊕ t]Rα

, and assume u, v ∈ R and t ≥ 0. If I x=Greater (k x )
for all x ∈ X (“upper-right region”), we have Succ Rα R = {R} = {R ′} and the
proposition is obvious.

Otherwise observe that there exists a single closest successor Rsucc of R
(depicted as the thick, dark gray line in Fig. 2.1). We refer to Bouyer for a
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formal construction of this successor. We can show the characteristic property
of this closest successor:

∀ u ∈ R. ∀ t≥0 . (u ⊕ t) /∈ R −→ (∃ t ′≤t . (u ⊕ t ′) ∈ Rsucc ∧ t ′ ≥ 0 )

At this point Bouyer states that the proposition follows by “immediate induc-
tion”. However, regarding formalization, this induction is not quite imme-
diate. For instance, we attempted induction on the set of successors. This
necessitates a proof that this set is monotone, which we did not find our-
selves able to prove without asserting the very property we were about to
prove. Instead, we split the argument in two: one for the case where t < 1
and the other for the case where t is an integer. For the first case, con-
sider the “critical” set C = {x ∈ X | ∃ d . I x = Intv d ∧ d + 1 ≤ u x + t},
the set of clocks for which u ⊕ t is shifted beyond R ’s interval boundaries.
Observe that for the closest successor, the critical set is either the same (if
{x ∈ X | ∃ d . I x = Const d} �= ∅) or a strict subset (if otherwise). Thus the
proposition follows by induction on the cardinality of C. The case where t is an
integer follows by direct proof over the structure of regions. Shifting u first by
frac t and then by �t�, we arrive at the proposition. ��

This allows us to define a region-based operational semantics for timed
automata:

R ∈ Rα ∧ R ′ ∈ Succ Rα R ∧ R ∪ R ′ ⊆ {u | u � inv-of A l}
A,Rα � 〈l , R〉 � 〈l , R ′〉

A � l −→g ,a,r l ′ ∧ R ∈ Rα

A,Rα � 〈l , R〉 � 〈l ′, {[r→0 ]u | u ∈ R ∧ u � g} ∩ {u | u � inv-of A l ′}〉

From the aforementioned properties, we proved its adequacy w.r.t. to
reachability:

A,Rα � 〈l ,[u]Rα
〉 �∗ 〈l ′,R ′〉 ∧ R ′ �= ∅

←→ ∃ u ′. A � 〈l , u〉 →∗ 〈l ′, u ′〉 ∧ [u ′]Rα
= R ′

Note that it is quite natural that this property is weaker compared to previous
ones: (sets of) regions only approximate zones and thus can contain valuations
that were never reachable in the concrete semantics.

4.3 Approximating Zone Semantics with Regions

From the pure decidability result on regions, we now move back towards zones by
approximating zones with the smallest set of regions that covers them. Formally
we define the α-closure of a zone Z : Closureα Z =

⋃
{R ∈ R | R ∩ Z �= ∅}.

Observe that this set need not be convex (cf. Fig. 2.2). We use the α-closure
to define an operational semantics on zones that approximates a zone with its
α-closure at the end of each step:

A � 〈l , Z 〉 � 〈l ′, Z ′〉 =⇒ A � 〈l , Z 〉 �α 〈l ′, Closureα Z ′〉
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Bouyer would now go and prove from the region properties that the α-closure
can be “pushed through” each step:

Z ⊆ V ∧ A � 〈l , Closureα Z 〉 � 〈l ′, Z ′〉
=⇒ ∃Z ′′. A � 〈l , Z 〉 �α 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

However, we did not find this property strong enough to prove soundness of �α
∗:

A � 〈l , Z 〉 �α
∗ 〈l ′, Z ′〉 ∧ Z ⊆ V

=⇒ ∃Z ′′. A � 〈l , Z 〉 �∗ 〈l ′, Z ′′〉 ∧ Closureα Z ′ ⊆ Closureα Z ′′ ∧ Z ′′ ⊆ Z ′

Note that this property is really what one wants to have since Closureα Z = ∅
iff Z = ∅ (assuming that Z ⊆ V). We conceived that instead it is sufficient to prove
monotonicity of the α-closure w.r.t. to steps in the zone semantics:

A � 〈l , Z 〉 � 〈l ′, Z ′〉 ∧ Closureα Z = Closureα W ∧ W ⊆ Z ∧ Z ⊆ V
=⇒ ∃W ′. A � 〈l , W 〉 � 〈l ′, W ′〉 ∧ Closureα Z ′ = Closureα W ′ ∧ W ′ ⊆ Z ′

Combining this with the fact that α-closure is an involution, we proved soundness
by induction over �α

∗. Completeness follows easily from monotonicity of �∗:

A � 〈l , Z 〉 �∗ 〈l ′, Z ′〉 ∧ Z ⊆ V ∧ Z ′ �= ∅
=⇒ ∃Z ′′. A � 〈l , Z 〉 �α

∗ 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

While these results are nice from a theoretical standpoint, it is not easier to
compute the α-closure than to directly implement timed automata with the
region construction presented in the last section. Therefore, the next section
will present Bouyer’s main insight – that these results can be used to show the
correctness of an easily computable approximation operation.

5 Normalization

Consider Fig. 2.3. In addition to Rα (solid lines), the figure shows a refinement
to what we will call Rβ (dashed lines). Observe that the smallest set of regions
covering the zone painted in dark gray (i.e. its β-closure) is convex, whereas
its α-closure is not (cf. Fig. 2.2). The idea is to use this β-closure to obtain an
effectively computable convex approximation for zones represented by DBMs –
DBMs always represent a convex zone and are always covered by a convex β-
closure – while inheriting the correctness result from the α-closure as we only
refine things.

5.1 β − approximation

Due to a lack of space, we do not present our construction of Rβ and only
say that it is can be adopted from Rα with some modifications. Note that we
do not need to transfer the (rather intricate) properties connecting Rα with
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transitions of timed automata since we will infer correctness directly from the
original construction.

We now want to formalize the notion of a convex approximation of zones
with regions from Rβ . We capture the notion of convexity directly with DBMs.
From Example 1, we can see that the types of regions in Rβ also induce a specific
format for our DBMs: for a DBM entry M i j, we do not need constants outside
of [− k i ; k j ] because this is precisely the range to which our regions bound the
corresponding values (analogously for constraints involving 0). Thus we use the
following notion of normalized DBMs:

normalized M ≡
(∀ i j . 0 < i ∧ i ≤ n ∧ 0 < j ∧ j ≤ n ∧ M i j �= ∞ −→

Lt (− k j ) � M i j ∧ M i j � Le (k i)) ∧
(∀ i≤n. 0 < i −→ (M i 0 � Le (k i) ∨ M i 0 = ∞) ∧ Lt (− k i) � M 0 i)

Furthermore, all constraints only need to use integer constants, which we denote
by dbm-int M. Building from these ideas, we define for any zone Z :

Approxβ Z ≡
⋂

{[M ]v,n |

∃U ⊆ Rβ . [M ]v,n =
⋃

U ∧ Z ⊆ [M ]v,n ∧ dbm-int M n ∧ normalized M}

5.2 Connecting Approxβ and Closureα

We already argued that is possible to inherit correctness from Closureα because
we only refine regions. Precisely, Bouyer proposed that for any convex zone
Z (i.e. Z = [M ]v ,n for some DBM M), we have Approxβ Z ⊆ Closureα Z, or
equivalently:

Theorem 2. R ∈ Rα ∧ Z ⊆ V ∧ R ∩ Z = ∅ ∧ Z = [M ]v ,n ∧ dbm-int M n
=⇒ R ∩ Approxβ Z = ∅

The formalization of Bouyer’s proof for this proposition is one of the most com-
plicated parts of our development. As the prose proof is already sufficiently
complicated, we abstain from presenting our formalization of this result.

Analogously to �α, we define an approximating semantics �β using Approxβ .
The main fact we can derive from the Theorem 2 is that �α is an approximation
of �β :

Lemma 3
A � 〈l , [M ]v ,n〉 �β 〈l ′, Z ′〉 ∧ dbm-int M n ∧ [M ]v ,n ⊆ W ∧ W ⊆ V
=⇒ ∃W ′. A � 〈l , W 〉 �α 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

Using this result and some additional work, we could infer soundness and com-
pleteness of �β

∗ from the corresponding results for �α
∗.
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5.3 Computing Approxβ

So far, we have shown how to obtain a correct approximation operation from
Rβ , which only produces convex sets. The huge gain from that is that this
approximation can also be easily computed by normalizing DBMs:

norm M k n ≡
λi j . let ub = if 0 < i then k i else 0 ; lb = if 0 < j then − k j else 0

in if i ≤ n ∧ j ≤ n then norm-lower (norm-upper (M i j ) ub) lb
else M i j

norm-upper e t = (if Le t ≺ e then ∞ else e)
norm-lower e t = (if e ≺ Lt t then Lt t else e)

Lemma 4. canonical M n ∧ [M ]v ,n ⊆ V ∧ dbm-int M n =⇒
Approxβ ([M ]v ,n) = [norm M k n]v ,n

Again, we abstain from providing a full presentation of our formalization and
only mention that the main ideas are: (1) to observe that normalized integral
DBMs can always be represented by an equivalent subset of Rβ , and (2) that
norm M k n computes a minimal normalized DBM.

5.4 A Final Semantics

We have assembled all the ingredients to define a semantics for timed automata
which captures the essence of what DBM-based model checkers compute:

A � 〈l , D〉 �v ,n 〈l ′, D ′〉 =⇒ A � 〈l , D〉 �N 〈l ′, norm (FW D ′ n) k n〉

Combining the fact that β-approximation is computable and the correctness
properties of �β

∗and�∗, we have achieved our main result: a timed automaton
can reach a certain location l ′ iff we can compute a valid run (using the DBM
operations and normalization) that ends in l ′.

Theorem 3. Z = [M ]v ,n ∧ Z ⊆ V ∧ dbm-int M n =⇒
(∃ u∈Z . ∃ u ′. A � 〈l , u〉 →∗ 〈l ′, u ′〉)
←→ (∃M ′. A � 〈l , M 〉 �N ∗ 〈l ′, M ′〉 ∧ [M ′]v ,n �= ∅)

6 Conclusion

We have presented a formalization that, beginning with basic definitions and
classic results, closes the loop to show correcntess of the basic DBM-based
algorithms that are used in forward analysis of timed automata. However, we
have not yet harvested potential practical fruits of this development. A self-
evident goal is to obtain an executable version for the algorithms above. By
combination with a verified version of e.g., depth-first search, this could already
yield a verified tool for deciding language emptiness of timed automata, which
could in turn be extended to a fully verified model checker. In another direction
of development, the author has already started to reuse the presented formaliza-
tion to formalize first results about decidability of probabilistic timed automata.
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Abstract. We present a formalization of probabilistic timed automata
(PTA) in which we try to follow the formula “MDP + TA = PTA” as far
as possible: our work starts from existing formalizations of Markov deci-
sion processes (MDP) and timed automata (TA) and combines them
modularly. We prove the fundamental result for probabilistic timed
automata: the region construction that is known from timed automata
carries over to the probabilistic setting. In particular, this allows us to
prove that minimum and maximum reachability probabilities can be
computed via a reduction to MDP model checking, including the case
where one wants to disregard unrealizable behavior.

1 Introduction

Timed automata (TA) [1] are a widely used formalism for modeling nonde-
terministic real-time systems. Markov decision processes (MDPs) with discrete
time are popular for modeling probabilistic systems with nondeterminism. Prob-
abilistic timed automata (PTA) fuse the concepts of TA and MDPs and allow
probabilistic modeling of nondeterministic real-time systems. PRISM [3] imple-
ments model checking functionality for MDPs and PTA and has successfully
been applied to a number of case studies [6].

We have previously formalized MDPs [2] and TA [8] in Isabelle/HOL. This
paper presents an Isabelle/HOL formalization of PTA, which follows the formula
“MDP + TA = PTA” as far as possible by combining our existing formalizations
modularly. We prove the fundamental result for PTA: the region construction
that is known from TA carries over to the probabilistic setting. In particular,
we prove that minimum and maximum reachability probabilities (with respect
to possbile resolutions of nondeterminism) can be computed via a reduction to
MDP model checking, including the case where one wants to disregard unrealiz-
able behavior. This work is a necessary first step towards our long-term goal of
certifying the computation results of PRISM’s backward reachability algorithm
[4] for reducing PTA to MDP model checking. The formalization can be found
in the Archive of Formal Proofs [9].
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2 Preliminaries

Markov Chains. A probability mass function (PMF, or discrete distribution)
μ : : σ pmf is a function σ ⇒ R≥0 with countable support {x | μ x �= 0} whose
range sums to 1. Any PMF forms a monad, thus we have (mappmf f μ) y =
μ {x | f x = y} and (retpmf x)x = 1. A Markov chain (MC) is represented by
the transition system K : : σ ⇒ σ pmf (its kernel, which is commonly repre-
sented by a transition matrix R

|σ|×|σ|), mapping each state to a distribution of
next states. The trace space TK s is the probability measure with the property
TK s (x0 · · · xn) = K s x0 ∗ · · · ∗ K xn−1 xn (where (x0 · · · xn) is the set of state
traces starting with x0, · · · , xn). A probabilistic coupling with respect to a rela-
tion R exists between two PMFs μ and μ′ (written relpmf R μ μ′) if there exists
a distribution ν on the product type, such that the support of ν is a subset of R
and the marginal distributions of ν are μ = mappmf π1 ν and μ′ = mappmf π2 ν.
Probabilistic couplings allow us to relate two Markov chains.

Markov Decision Processes. MDPs are automata allowing probabilistic and non-
deterministic choice. An MDP is represented by the transition system K : : σ ⇒
σ pmf set , where σ is the type of states, and the probability distributions over
the next states of type σ pmf are called actions. Each MDP gives rise to a set
of MCs, each showing one possible behaviour. We introduce, coinductively, con-
figurations σ cfg , where each c : : σ cfg consists of a state σ, an action σ pmf ,
and a continuation σ ⇒ σ cfg . The configurations give rise to a Markov chain
Kc : : σ cfg ⇒ σ cfg pmf , by mapping the continuations over the actions. Each
c : : σ cfg whose actions are closed under K and which is in state s induces a
MC showing a possible behavior of the MDP K starting in s. To simplify the
theory, we assume that K x �= ∅. See [2] for details.

Timed Automata. Compared to standard finite automata, TA introduce a notion
of clocks. Clocks are indexed by natural numbers and do not have any structure.
A clock valuation u is a function of type N ⇒ R. Locations and transitions are
guarded by clock constraints, which have to be fulfilled to stay in a location or to
take a transition. Clock constraints are conjunctions of constraints of the form
c ∼ d for a clock c, an integer d, and ∼∈ {<,≤,=,≥, >}. We write u 
 cc if the
clock constraint cc holds for the clock valuation u. We define a timed automaton
A as a pair (T , I) where I is an assignment of clock constraints to locations (also
named invariants) and T is a set of transitions written as A 
 l −→g,r l′ where l
and l′ are the start and successor location, g is the guard of the transition, and
r is a set of clocks that will be reset to zero when the transition is taken. States
of TA are pairs of a location and a clock valuation. The operational semantics
define two kinds of steps:

Delay: (l, u) → (l, u ⊕ d) if d ≥ 0 and u ⊕ d 
 I l;
Action: (l, u) → (l′, [r → 0]u) if A 
 l −→g,r l′, u 
 g, and [r → 0]u 
 I l′;

where (u ⊕ d) c = u c + d and ([r → 0]u) c = if c ∈ r then 0 else u c.
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Regions. The initial decidability result [1] partitioned the set of clock valuations
into a quotient of sets of clock valuations, the so-called regions, and showed that
these yield a sound and complete abstraction1. Our formalization [8] proves this
fundamental result and decidability of reachability properties for ordinary TA.

3 Probabilistic Timed Automata

PTA fuse the concepts of TA and MDPs: discrete transitions are replaced by
probability distributions over pairs of a set of clocks to be reset and a successor
location. An example of a PTA is depicted in the left part of Fig. 1.

l1

c ≤ 1

l2

c < 1

l3

c < 1

0 < c < 1 0.3
c := 0

0.7

c := 0

c := 0

c < 1
c := 0

l1
c = 0

l1
0 < c < 1

l1
c = 1

l3
0 < c < 1

l2
c = 0

l2
0 < c < 1

1

1

0.3

0.7

1

1

1 1

1 1

1

1

1

1

Fig. 1. Example of a PTA with one clock and its region graph

Definition. Consequently, the syntactic definition of PTA is very similar to TA.
The only difference is that now transitions are of the form A 
 l −→g μ for μ of
type (N set × σ) pmf (the clocks to reset and σ for the type of locations).

Typical presentations define the semantics of PTA based on the notion of so-
called probabilistic timed structures, which are just a special type of MDP. We
omit this detour and directly formalize PTA in terms of MDPs. Consequently,
to formalize the semantics of a PTA, we define its kernel K as the smallest set
that is compatible with

(l, u) ∈ S t ≥ 0 u ⊕ t 
 I l

retpmf (l, u ⊕ t) ∈ K (l, u)
Delay

(l, u) ∈ S A 
 l −→g μ u 
 g

mappmf (λ(r, l). (l, [r → 0]u))μ ∈ K (l, u)
Action

where S is the set of valid states. A state (l, u) is valid if l belongs to A and if
u 
 I l. For technical reasons there is a third rule to add self loops for non-valid
1 We use the same notions as in [8]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.
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states. These do not change the semantics as they are not reachable from valid
states. The MDP K is uncountably infinite as S is generally infinite.

Region Graph. We want to reduce the computation of reachability probabilities
for A to a computation on a finite MDP. Analogous to TA, this reduction can
be obtained through the region quotient. More precisely, we will partition S into
a finite set of states S of the form (l, R), for l a location of A, and R a region
of A such that ∀u ∈ R. u 
 I l. With this notion, the finite MDP, coined region
graph in [5], is defined through its kernel K:

(l, R) ∈ S R′ ∈ Succ R ∀u ∈ R′. u 
 I l

retpmf (l, R′) ∈ K (l, R)
DelayR

(l, R) ∈ S A 
 l −→g μ ∀u ∈ R. u 
 g

mappmf (λ(r, l). (l, {[r → 0]u | u ∈ R})μ ∈ K (l, R)
ActionR

Here Succ R denotes the set of regions that can be reached from R by delaying
for an arbitrary amount of time. Again, for technical reasons there is a third rule
to add self loops for non-valid states. The maximum probability (under all valid
initial configurations) to reach the state in the upper right of the region graph
depicted in Fig. 1 is 0.7, while the minimum probability is 0.

4 Bisimulation

We relate the infinite MDP that defines the PTA with the finite region graph in
a way that directly allows us to prove correctness of the reduction for maximum
and minimum reachability probabilities in one go. Concretely, our agenda is to
first define abstraction and representation functions that map between config-
urations of the infinite MDPs and the finite region graph, and vice versa. We
then prove a more general bisimulation theorem on MDPs which states that the
path measure assigned to related paths is the same for related configurations.

Representation and Abstraction. We will use the overloaded notations α and
rep to denote the abstraction and representation functions for states, actions,
and configurations. The main difficulty of our formalization effort was to define
these such that one obtains the desired properties. What are these properties?
Chiefly, for a valid configuration c, the probability distributions of the successors
of c and α c should expose a probabilistic coupling w.r.t. the relation λc a. α c = a.
Moreover, the abstraction of a representative should yield the original object:
α (rep x) = x. Finally, validity should be preserved, i.e. α (l, u) ∈ S ↔ (l, u) ∈ S.

The elementary abstraction functions are easy to define: α (l, u) = (l, [u]R)
for [u]R the unique region with u ∈ [u]R, and α t = mappmf α t for an action t.
For a configuration c, α c is defined co-recursively in terms of c: the concrete
configuration c is maintained as the internal state of α c and states and actions
are simply mapped with α; the internal successor configuration however is deter-
mined by the continuation of c for the unique successor state s of c such that α s
is the successor state of α c. The definition of rep is more involved and omitted
for brevity.
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Bisimulation Theorem. At the core of our argument lies the following bisimula-
tion theorem on Markov chains:

TK x A = TL y B if R x y and ∀ω ω′. rel stream R ω ω′ −→ (ω ∈ A ↔ ω′ ∈ B)
and ∀x y. R x y −→ relpmf R (K x) (L y)

where T{K,L} denotes the trace space induced by Markov chains K and L, respec-
tively; x and y are states of K and L; rel stream R compares two traces pointwise
by R; and A and B are sets of infinite traces of K and L. Finally, R has to be
of the form R s t = (s ∈ S ∧ f s = t) for some S and f .

For a configuration c with state s, we can instantiate this theorem by taking
K = Kc, L = Kc, x = s, y = α s, f = α, and S as the set of valid configurations
of the PTA. The coupling property of K and L follows because

Kc (α c) = mappmf α (Kc c) .

For this instantiation, rel stream R x y essentially means that y is the pointwise
abstraction of x. We consider reachability properties on state traces of the form
ϕ U ψ (where ϕ and ψ can be a mixture of predicates on location and clock), so

A = {ω | ϕ U ψ (smap, ω)} and B = {ω | (ϕ ◦ rep)U (ψ ◦ rep) (smap ω)}

where smap ω maps traces of configurations to traces of MDP states. Conse-
quently, the premise on A and B is easily satisfied if

∀s t. α s = α t −→ ϕ s ↔ ϕ t ∧ ψ s ↔ ψ t ,

which matches exactly the property that is delivered by the region construction.

5 Taking Zenoness into Account

So far, we have considered bisimulation properties between trace spaces of pairs
of related configurations. Minimum and maximum reachability probabilities,
however, are considered in relation to a set of configurations C. To compute
these probabilities, one can consider the set of configurations Cα on the finite
MDP such that ∀c ∈ C.α c ∈ Cα and ∀c ∈ Cα. rep c ∈ C. If C is the set of
valid configurations, for instance, then Cα is easily proved to be the set of valid
configurations of the region graph.

Often one wants to restrict C such that unrealizable behaviors are excluded:
a configuration should not be able to keep time from passing beyond a fixed
deadline. A configuration is zeno if it admits such behaviours. In the example,
a zeno configuration could continuously take the loop transition on l1 without
letting any time pass. In [5] a computable description of Cα is given for the case
that C is restricted to configurations that only yield non-zeno behaviors with
probability 1.

The critical component of our proof for the correctness of Cα (in the sense
outlined above) is that rep chooses the successor states always such that at least
half of the amount of time that could possibly elapse does elapse.
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Interestingly, the proof of ∀c ∈ Cα. rep c ∈ C was much harder to formalize
than the other direction, although roles seem to flipped in the argument of [5].
For the harder direction, we illustrate the structure of our proof on the part that
is concerned with the single region R∞ in which all clocks have elapsed beyond
the maximal clock constant of the automaton (the region c > 1 in the example):
any run on the region graph that stays in R∞ forever is classified as non-zeno.

Our argument establishes that for a transition (l, R∞) → (l′, R∞) of the
region graph, the representing transition (l, u) → (l′, u′) will incur a time delay of
0.5 if u �= u′. An informal argument can get away by claming that the transition
can always be chosen such that the latter condition is satisfied. Unfortunately,
this is not immediately true for the semantics given above as the abstract tran-
sition could always be a reset transition and thus time would never be allowed
to elapse. A possible remedy is to fuse delay and action transitions into a single
step. We rather want to keep them separate and instead employ a probabilistic
argument: assuming that a transition with l = l′ occurs infinitely often, with
probability 1 a step with u �= u′ has to occur infinitely often.

6 Conclusion

Discussion. Our bisimulation argument neatly separates discrete, TA-related
reasoning from probabilistic, MDP-related reasoning. In fact, most of the proofs
take place on the discrete side, because none of the arguments to satisfy the
bisimulation theorem are predominantly of probabilistic nature. As seen above,
only the reasoning on zenoness needs to break with this style.

We found it crucial to carry out each argument on the right level of abstrac-
tion. There are three main levels to consider here (from low to high): Markov
chains, MDPs and configuration traces, and states and state traces of the PTA.
The theorem is usually stated on the highest level possible, and often we can
move easily from a higher to a lower level by applying a number of rewrite rules.
For the divergence argument, we even introduce another level of abstraction:
since we are only concerned with time, the location part can be dropped, and
thus we consider traces of clock valuations. The probabilistic argument described
in the last section manifests a rare case where one needs to put in some upfront
work on a lower level to hold the argument on the higher level together.

It is not yet clear to us whether it is necessary or advantageous to work with
rep. In the current formalization it still plays an important rule by providing the
diverging concrete witness for a diverging configuration of the region graph. The
bisimulation argument in Sect. 4, however, can be made relying only on α.

Lastly, our simple definition of the PTA semantics and of the region graph
shows that derived concepts can be surprisingly easy to define —even compared
to an informal definition— if the necessary foundations have already been laid.

Related Work. We are not aware of any previous proof-assistant formalizations of
PTA. There is, however, another formalization of TA and the region construction
using PVS [11]. A formalization in Coq [7] is aimed at modeling a subclass of
TA and proving properties of concrete automata.
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Future Work. We conjecture that many further results for PTA can be formalized
by following the formula “MDP + TA = PTA” in the style that we outlined
above. In particular, most of the more practical zone based (as opposed to region
based) exploration methods for the reduction to a finite MDP should lie within
the scope of this technique. The backward reachability algorithm of PRISM [4]
is an instance. This also means that verified or certified model checkers for PTA
can be devised from a modular combination of verified tools for MDPs and
TA. Work in this direction already exists for the latter [10] but not the former
formalism.
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Abstract. We have constructed a mechanically verified prototype
implementation of a model checker for timed automata, a popular for-
malism for modeling real-time systems. Our goal is two-fold: first, we
want to provide a reference implementation that is fast enough to check
other model checkers against it on reasonably sized benchmarks; second,
we strive for maximal feature compatibility with the state-of-the-art tool
Uppaal. The starting point of our work is an existing highly abstract
formalization of reachability checking of timed automata. We reduce
checking of Uppaal-style models to the problem of model checking a
single automaton in this abstract formalization, while retaining the abil-
ity to perform on the fly model-checking. Using the Isabelle Refinement
Framework, the abstract specification of the model checker is refined,
via multiple intermediate steps, to an actual imperative implementation
in Standard ML. The resulting tool is evaluated on a set of standard
benchmarks to demonstrate its practical usability.

1 Introduction

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [2].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. However, mistakes
have previously been made. This particularly concerns an approximation oper-
ation that is used by model-checking algorithms to obtain a finite search space.
The use of this operation induced a soundness problem in the tools employing it
[3], which was only discovered years after the first model checkers were devised.

Our ongoing work1 addresses this issue by constructing a fully verified model
checker for timed automata, using Isabelle/HOL [4]. Our tool is not intended
to replace existing model checkers, but to serve as a reference implementation
against which other implementations can be validated. Thus, it must provide
sufficient performance to check real world examples. To this end, we use the

1 https://github.com/wimmers/munta.
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Isabelle Refinement Framework (IRF) [5,6] to obtain efficient imperative imple-
mentations of the algorithms required for model checking.

Our work starts from an existing abstract formalization of reachability check-
ing of timed automata [7]. To close the gap to a practical model checker, we need
to address two types of issues: efficient implementation of abstract model check-
ing algorithms, and expressiveness of the offered modeling formalism. Two kinds
of algorithms deserve special attention here. The first are operations to manip-
ulate Difference Bound Matrices (DBMs) [2], which represent abstract states.
With the help of the IRF, we obtain efficient implementations of DBMs repre-
sented as arrays. The second are search algorithms that govern the search for
reachable states. These algorithms are interesting in their own right, since they
make use of subsumption: during the search process an abstract state can be
ignored if a larger abstract state was already explored. We provide a generalized
framework for different variants of search algorithms, including a version which
resembles Uppaal’s unified passed and waiting list [2].

We aim to offer a modeling formalism that is comparable in its expressiveness
to the one of Uppaal. To accomplish this goal while keeping the formalization
effort manageable, we opt to accept Uppaal bytecode as input. At the current
state of the project we have formalized the semantics of a subset of the bytecode
produced by Uppaal. We support the essential modeling features: networks of
automata with synchronization, and bounded integer state variables. We apply
a product construction to reduce models of this formalism to a single timed
automaton. As in real model checkers, the whole construction is computed on
the fly. However, not every bytecode input designates a valid automaton. To this
end, we employ a simple program analysis to accept a sufficiently large subset
of the valid inputs.

We conducted experiments on a small number of established benchmark mod-
els. The throughput of our model checker — the number of explored states per
time unit — is within an order of magnitude of a version of Uppaal running a
comparable algorithm.

1.1 Isabelle/HOL

Isabelle/HOL [4] is an interactive theorem prover based on Higher-Order Logic
(HOL). You can think of HOL as a combination of a functional programming
language with logic. Although Isabelle/HOL largely follows ordinary mathe-
matical notation, there are some operators and conventions that should be
explained. Like in functional programming, functions are mostly curried, i.e.
of type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . This means that function applica-
tion is usually written f a b instead of f(a, b). Lambda terms are written in the
standard syntax λx. t (the function that maps x to t) but can also have multiple
arguments λx y. t, paired arguments λ(x, y). t, or dummy arguments λ . t. Type
variables are written ′a, ′b, etc. Compound types are written in postfix syntax:
τ set is the type of sets of elements of type τ . In some places in the paper we
have simplified formulas or code marginally to avoid distraction by syntactic or
technical details, but in general we have stayed faithful to the sources.
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1.2 Related Work

The basis of the work presented in this paper is our existing formalization of
timed automata [7]. We are aware of one previous proof-assistant formalization
of timed automata using PVS [8,9]. This work has the basic decidability result
using regions and claims to make some attempt to extend the formalization
towards DBMs. Another line of work [10,11] aims at modeling the class of p-
automata [12] in Coq and proving properties of concrete p-automata within Coq.
A similar approach was pursued with the help of Isabelle/HOL in the CClair
project [13]. In contrast, our formalization [7] focuses on the foundations of
timed automata model checking. In particular, it encompasses a formalization
of the relevant DBM algorithms and the rather intricate developments towards
the correctness proof for the approximation operation.

We are not aware of any previous formalizations or verified implementations
of timed automata model checking. The first verification of a model checker we
are aware of is by Sprenger for the modal μ-calculus in Coq [14]. Our important
forerunner, however, is the CAVA project [15–17] by Esparza et al. It sets out for
similar goals as we do but for finite state LTL model checking. A significant part
of the refinement technology that we make use of was developed for this project,
and it was the first project to demonstrate that verification of model checking
can yield practical implementations. Compared to CAVA, our work offers sev-
eral novelties: we target model checking of timed automata, which have an infi-
nite state space; we use imperative data structures, which is crucial for efficient
DBMs; finally, we implemented complex search algorithms with subsumption.
Additionally, we operate on automata annotated with Uppaal bytecode, which
has interesting ramifications: for the product construction, and because we need
to ensure that the input actually defines a timed automaton.

2 Timed Automata and Model Checking

2.1 Transition Systems

We take a very simple view of transition systems: they are simply a relation →
of type ′a ⇒ ′a ⇒ bool. We model (finite) runs as inductive lists, and infinite
runs as coinductive streams. We write a → xs → b to denote the →-run from
a to b using the intermediate states in the list xs, and a →ys to denote the
infinite →-run starting in a and then continuing with states from the stream ys.
Additionally, we define:

a →+ b = (∃xs. a → xs → b) and a →∗ b = (a →+ b ∨ a = b).
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We define the five CTL properties that are supported by Uppaal, A♦,
A�, E♦, E�, and ���, as properties of infinite runs2 starting from a state.
For instance,

A♦ φ x = (∀xs. x →xs =⇒ ev (holds φ) (x · xs)),

and
φ ��� ψ = A� (λx. φ x =⇒ A♦ ψ x),

where ev specifies that a property on a stream eventually holds, and holds con-
strains ev to the current state instead of the remainder stream. It then is trivial
to prove identities such as E� φ x = (¬A♦ (Not ◦ φ) x).

2.2 Timed Automata

Compared to standard finite automata, timed automata introduce a notion of
clocks. Figure 1 depicts an example of a timed automaton. We will assume that
clocks are of type nat . A clock valuation u is a function of type nat ⇒ real .

Fig. 1. Example of a timed automaton with two clocks.

Locations and transitions are guarded by clock constraints, which have to
be fulfilled to stay in a location or to take a transition. Clock constraints are
conjunctions of constraints of the form c ∼ d for a clock c, an integer d, and
∼ ∈ {<,≤,=,≥, >}. We write u � cc if the clock constraint cc holds for the
clock valuation u. We define a timed automaton A as a pair (T , I) where I is
an assignment of clock constraints to locations (also named invariants); and T
is a set of transitions written as A � l −→g,a,r l′ where l and l′ are start and
successor location, g is the guard of the transition, a is an action label, and r is
a list of clocks that will be reset to zero when the transition is taken. States of
timed automata are pairs of a location and a clock valuation. The operational
semantics define two kinds of steps:

– Delay: (l, u) →d (l, u ⊕ d) if d ≥ 0 and u ⊕ d � I l;
– Action: (l, u) →a (l′, [r → 0]u)

if A � l −→g,a,r l′, u � g, and [r → 0]u � I l′;
2 This is fairly standard in the literature [2,3,12,18] but differs slightly from the

implementation in Uppaal.
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where u ⊕ d = (λc. u c + d) and [r → 0]u = (λc. if c ∈ r then 0 else u c). For any
(timed) automaton A, we consider the transition system

(l, u) →A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u) →d (l, u′′) ∧ (l, u′′) →a (l′, u′)).

That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets
the clocks annotated to the transition. We write A, s0 |= φ if φ holds in state s0
w.r.t. →A. Note that it is crucial to combine the two types of steps in order to
reason about liveness. Consider the automaton from Fig. 1 and assume the two
kinds of steps could be taken independently. Then the automaton has a run on
which some predicate P holds everywhere if and only if P s1 holds.

2.3 Model Checking

Due to the use of clock valuations, the state space of timed automata is inher-
ently infinite. Thus, model checking algorithms for timed automata are based
on the idea of abstracting from concrete valuations to sets of clock valuations
of type (nat ⇒ real) set, often called zones. The initial decidability result [1]
partitioned the state space into a quotient of zones, the so-called regions, and
showed that these yield a sound and complete abstraction3. However, practi-
cal model checking algorithms rather explore the state space in an on-the-fly
manner, computing successors directly on zones, which are typically represented
symbolically as Difference Bound Matrices (DBMs). DBMs are simply a matrix-
form representation of clock constraints, which contain exactly one conjunct for
each pair of clocks. To represent constraints on single clocks, an artificial 0-clock
is added, which is assumed to be assigned 0 in any valuation.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, an over-approximation is applied to zones to obtain a
finite search space. We call the transition system of zones the zone graph, and the
version where over-approximations are applied the abstract zone graph [18]. The
soundness argument for this method (due to over-approximation completeness
is trivial), starts from the region construction and then introduces the notion of
the closure of a zone, which is defined to be the union of all regions intersecting
with a zone. It can be shown from the correctness of the region construction that
closures yield a sound over-approximation of zones. Finally, one shows that the
result of applying the over-approximation operator to zones is always contained
in the closure, thus inheriting soundness from the soundness of closures. We have
formalized this argument and all of the material summarized in this section in
previous work [7]. It only covers the case of reachability, but we will demonstrate
how to extend the soundness argument to liveness below.

3 We use the same notions as in [7]. Soundness: for every abstract run, there is a
concrete instantiation. Completeness: every concrete run can be abstracted.
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3 A First Glance at the Model Checker

This section provides a first overview of our model checker, its construction,
and the correctness theorem we proved. The input to our checker consists of a
model, i.e. a network of Timed Automata, and a formula to be checked against
the model. To achieve high compatibility with Uppaal, guards and updates
can be formulated in Uppaal bytecode4. This intermediate representation is
computed by Uppaal from the original C-style input before the actual model
checking process is started. Given such an input, our tool will first determine
whether the input is valid and lies in the supported fragment. This is achieved
by a simple program analysis. As input formulae, our model checker accepts the
same (T)CTL fragment that is supported by UPPAAL, but restricts formulae
to not contain clocks. While this is not a principal limitation of our work, it
reduced the complexity of our first prototype. If the input is invalid, our tool
answers with “invalid input”, else it determines whether

conv N, (init , s0, u0) �max steps φ

holds for the all-zero valuation u0 under the assumption that the automaton is
deadlock-free5, and answers with true/false. Here, N is the input automaton,
conv converts all integer constants to reals (as the semantics are specified on
reals), and φ is the input formula. The relation �max steps is a variant of �
lifted to networks of timed automata with shared state and Uppaal bytecode
annotations. It is indexed with the maximum number of steps that any execution
of a piece of Uppaal bytecode can use (i.e. max steps is the fuel available to
executions). The vector of start locations init, and the shared state s0 (part of
the input) describe the initial configuration.

The actual model checking proceeds in two steps. First, a product construc-
tion converts the network to a single timed automaton, expressed by HOL func-
tions for the transition relation and the invariant assignment. Second, according
to the formula, a model checking algorithm is run on the single automaton. We
need three algorithms: a reachability checker for E♦ and A�, a loop detection
algorithm for E� and A♦, and a combination of both to check ���-properties.
Note that the aforementioned HOL functions are simply functional programs
that construct the product automaton’s state and invariant assignments on-the-
fly. The final correctness theorem we proved can be stated as follows:

{emp}
precond mc p m k max steps I T prog formula bounds P s0

{λSome r ⇒ valid input p m max steps I T prog bounds P s0 na k ∧
(¬ deadlock (conv N) (init , s0, u0) =⇒

r = conv N, (init , s0, u0) �max steps formula)
| None ⇒ ¬ valid input p m max steps I T prog bounds P s0 na k}

4 For the time being, the bytecode needs to be pre-processed slightly, mainly to rename
textual identifiers to integers.

5 Adding a check for deadlocked states to our algorithms would be conceptually simple
but is left for future work.
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This Hoare triple states that the model checker terminates and produces the
result None if the input is invalid. If the input is valid and deadlock free, it
produces the result Some r, where r is the answer to the model checking problem.

4 Single Automaton Model Checking

In this section, we describe the route from the abstract semantics of timed
automata to the implementation of an actual model checker. The next section
will describe the construction of a single timed automaton from the Uppaal-
model.

4.1 Implementation Semantics

Although we have established that the DBM-based semantics from Sect. 2 can
only explore finitely many zones, it is still “too infinite”: the automaton and
DBMs are described by real constants, and operations on DBMs are performed
on infinitely many dimensions (i.e. clocks). Thus, we introduce an implementa-
tion semantics, in which automata are given by integer constants, and where the
number of clocks is fixed. We prove equivalence of the semantics in two steps:
first, we show that DBM operations need only be performed on the clocks that
actually occur in the automaton; second, we show that all computations can be
performed on integers, provided the initial state only contains integers.

For the former step, we simplify the operations under the assumptions that
they maintain canonicity of DBMs. A DBM is canonical if it stores the tightest
derivable constraint for each pair of clocks, i.e.

canonical M n = (∀i j k. i ≤ n ∧ j ≤ n ∧ k ≤ n → M i k ≤ M i j + M j k).

During model checking, the Floyd-Warshall algorithm is used to turn a DBM
into its canonical counterpart.

For the latter step, we use Isabelle’s integrated parametricity prover [19] to
semi-automatically transfer the operations from reals to integers.

As an example, Fig. 2 displays the refinement steps of the up operation, which
computes the time successor of a zone Z, i.e. the set {u ⊕ d | u ∈ Z ∧ d ≥ 0}.

Fig. 2. Refinement stages of the up operation for computing time successors.
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In the step from up to up1, the assumption that the input DBM is canonical
is introduced. In up2, which is the version used in the implementation semantics,
the operation is constrained to clocks 1 to n. Finally, in up3, the matrices are
implemented as arrays and the fold is implemented as a foreach loop.

At this point, a naive exploration of the transitive closure of the implemen-
tation semantics would already yield a simple but inefficient model checker. The
rest of this section outlines the derivation of a more elaborate implementation
that is close to what can be found in Uppaal.

4.2 Semantic Refinement of Successor Computation

We further refine the implementation semantics to add two optimizations to the
computation of successor DBMs: to canonicalize DBMs it is sometimes sufficient
to only “repair” single rows or columns instead of running the full Floyd-Warshall
algorithm; moreover, we can terminate the computation early whenever we dis-
cover a DBM that represents an empty zone (as it will remain empty). Both
arguments are again carried out on the semantic level.

4.3 Abstraction of Transition Systems with Closures

Recall that the correctness of the reachability analysis on the abstract zone
graph in Sect. 2 was obtained arguing that the region closure of zones forms
a sound over-approximation of zones, which in turn is larger than the abstract
zone graph. We want to reuse the same kind of argument to also argue that there
exists a cycle in the abstract zone graph if and only if there is a cycle in the
automaton’s transition system. This proof is carried out in a general abstract
framework for transition systems and their abstractions.

We consider a concrete step relation →C over type ′a and what is supposed
to be its simulation, a step relation →A1 over type ′a set. We say that →A1 is
post-stable [20] if S →A1 T implies

∀s′ ∈ T. ∃s ∈ S. s →C s′,

and that →A1 is pre-stable [20] if S →A1 T implies

∀s ∈ S. ∃s′ ∈ T. s →C s′.

In the timed automata setting, for instance, the simulation graph is post-stable
and the region graph is pre-stable.

Lemma 1. If →A1 is post-stable and we have a →A1 as →A1 a with a finite
and non-empty, then there exist xs and x ∈ a such that x →C xs →C x.
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Proof. Let x → y = (∃xs. x →C xs →C y). As →A1 is post-stable, every a has
an ingoing →-edge. Because a is finite we can thus find an →-cycle in a, and
obtain the claim.

Lemma 2. If →A1 is pre-stable and we have a →A1 as →A1 a and x ∈ a, then
there exist xs such that x →xs

C and xs passes through a infinitely often.

Proof. By coinduction. From pre-stability we can find x1 ∈ a such that x →+
C x1,

from x1 we find x2 ∈ a such that x1 →+
C x2, and so forth.

We can now consider doubly-layered abstractions as in the case for regions
and zones. That is, we add a second simulation →A2 and two predicates P1 and
P2 that designate valid states of the first and second simulation layer, respec-
tively. Then we define the closure C of a state of the second layer as

C a = {x | P1 x ∧ a ∩ x �= ∅} and a →C b = (∃x y. a = C x ∧ b = C y ∧ x →A2 y).

We assume that →A1 is pre-stable w.r.t. →C and that →C is post-stable w.r.t.
→A1 . Along with some side conditions on P1 and P2

6 we can prove:

Theorem 1. If a0 →A2 as →A2 a →A2 bs →A2 a and P2 a, then there exist
x ∈

⋃
(C a0) and xs such that x →xs

C and xs passes through
⋃

(C a) infinitely
often.

Proof. We first apply C to the second layer states and get a path of the form:
C a0 →C as′ →C C a →C bs′ →C C a for some as′ and bs′. From Lemma 1 and
post-stability, we obtain a path of the form a01 →A1 as1 →A1 a1 →A1 bs1 →A1

a1 with a01 ∈ C a0 and a1 ∈ C a. By applying Lemma 2 and pre-stability, we
obtain the desired result.

This is the main theorem that allows us to run cycle detection on the abstract
zone graph during model checking: the other direction is trivial, and the theorem
can be directly instantiated for regions and (abstracted) zones. There is a slight
subtlety here since we only guarantee x ∈

⋃
(C a0). However we typically have

C a0 = a0, as all clocks are initially set to zero.

4.4 Implementation of Search Algorithms

We first implement the three main model checking algorithms abstractly in the
nondeterminism monad provided by the IRF. On this abstraction level, we can
use such abstract notions as sets and specify the algorithm for an arbitrary
(finite) transition system →. We only showcase the implementation of our cyclic-
ity checker (used for A♦ and E�). The techniques used for the other algorithms
are similar. The code for our cyclicity checker is displayed in Listing 1.1.

6 P1 states are distinct and there are only finitely many of them. For every P2 state,
there is an overlapping P1 state.
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dfs P = do {
(P, ST, r) ← recT (λdfs (P, ST, v) .

do {
if ∃v′ ∈ set ST. v′ � v then return (P, ST,True)
else do {

if ∃v′ ∈ P. v � v′ then return (P, ST,False)
else do {

let ST = v · ST ;
(P, ST ′, r) ←

foreach {v′ | v → v′} (λ( , , b). ¬ b)
(λv′ (P, ST, ). dfs (P, ST, v′))
(P, ST,False) ;

assert (ST ′ = ST ) ;
return (insert v P, tl ST ′, r)

}
}

} ) (P, [ ], a0 ) ;
return (r, P )}

Listing 1.1. Cyclicity Checker

We claim that this closely resembles the pseudo-code found, e.g., in [21]. The
algorithm takes a passed set, and produces a new passed set in addition to
the answer. This can be used in the algorithm for checking ���-properties. The
crux of the algorithm is the use of the subsumption operator �, to check whether
smaller states are already subsumed by larger states that we may have discovered
earlier (for timed automata, this would correspond to set inclusion on zones).
We assume that � is a pre-order and monotone w.r.t. →. Then, using the IRF’s
verification condition generator, we prove:

dfs P ≤ SPEC (λ(r, P ′). (r =⇒ (∃x. a0 →∗ x ∧ x →+ x))
∧(¬ r =⇒ ¬ (∃x. a0 →∗ x ∧ x →+ x) ∧ liveness compatible P ′))

if liveness compatible P.

The invariant we maintain for the passed set P is encoded in the predicate
liveness compatible P . We say that a state x is covered by P if there exists
x′ ∈ P such that x � x′. Then, informally, liveness compatible P states that the
successors of every node that is covered by P are also covered, and that there is
no cycle through nodes that are covered by P . After specifying the correct loop
invariant (using liveness compatible as the main insight) and the termination
relation, together with some key lemmas about the invariant, the verification
conditions can be discharged nearly automatically.

In subsequent steps, we gradually refine this implementation to use more
efficient data structures. The final version uses a function to compute a list of
successors, and is able to index the passed set and the stack according to a key
function on states (this corresponds to the location part of states in the abstract
zone graph). The refinement theorem can be stated as:

dfs map P ≤ ⇓ (Id ×r map set rel) (dfs P ′) if (P, P ′) ∈ map set rel .
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That is, dfs map is a refinement of dfs, where the passed set is data-refined w.r.t.
the relation map set rel . This relation describes the implementation of passed
sets indexed by keys.

These refinement steps are conducted inside the nondeterminism monad of
the IRF. The final step leads into the heap-monad of Imperative HOL [22], which
supports imperative data structures. Here, the Sepref tool [6] replaces functional
by imperative data structures and generates a refinement theorem automatically.

Maps are implemented via hash tables, which poses a challenge for the imple-
mentation as the maps contain objects stored on the heap. This was not sup-
ported by the existing implementation in the Imperative Collections Framework,
due to sharing issues: when retrieving a value from the map, we cannot obtain
ownership of the value while the map also retains ownership. This is even true
if the value is read-only. One way to solve this problem would be to extend
the separation logic that underlies the IRF to fractional permissions or read-
only permissions. Our solution, however, is more ad-hoc: we simply restrict the
operations that we perform on the hash map to insertions and an extract oper-
ation, which deletes a key-value pair from the map and returns the value (i.e.
it combines lookup and delete). To define the map implementation, we use a
trick similar to Chargueraud’s ideas from [23]: we use a heap assertion that first
connects an abstract map m with an intermediate map mh of pointers to the
elements, and then implements the map of pointers by a regular hash map mi.
Formally, the assertion is defined as:

hms assn A m mi = (∃Amh. is map mh mi ∗ map assn A m mh).

Here is map is the assertion for an existing map implementation from the Imper-
ative Collections Framework (which cannot store heap objects, but supports
pointers), and map assn A m mh connects a map of abstract values with a map
of pointers, where the relation between abstract values and pointed-to objects
is defined by A.

Then, the final implementation is produced by proving that all map-related
operations in dfs map can be replaced by insert and extract operations, and
letting Sepref synthesize the imperative variant, making use of our new hash map
implementation. The key theorem on the final implementation is the following
Hoare triple:

{emp}
dfs map impl ′ succsi a0i Lei keyi copyi

{λr. r = (∃x. a0 →∗ x ∧ x →+ x)}
It is expressed in a locale (Isabelle’s module system) that assumes that a0i,
succsi , etc., are the correct imperative implementations of a0, the successor
function, and so forth. Versions of the search algorithm for concrete transition
systems are obtained by simply instantiating the locale with the operations of
the transition system and their implementations.
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4.5 Imperative Implementations of Model Checking Operations

Recall the refinement of the up operation (Fig. 2). It is crucial that up2 is
expressed as a fold-operation with explicit updates, as only then the IRF can
extract an efficient imperative version with destructive updates and a foreach
loop. The imperative implementation up3 is, again, synthesized by the Sepref
tool. As can be witnessed for up3, the pattern fold f [1 ..< n + 1] is turned into
a foreach loop. Technically, this is achieved by a set of rewrite rules that are
applied automatically by the Sepref tool at the end of the synthesis process.
The only hurdle for this kind of synthesis is that the dimension of DBMs needs
to become a parameter of the refinement relations. For n clocks, we define

mtx assn = asmtx assn (n + 1) id assn.

This specifies that our DBMs are implemented by square-arrays of dimension
n + 1, and their elements are refined by the identity relation.

The refinement theorem for up3 is proved automatically by the Sepref tool:

(up3, up2) ∈ [λ( , i). i ≤ n] mtx assnd ∗ nat assnk → mtx assn.

This theorem states that, if the specified dimension is in bounds, up3 refines up2.
The ·d annotation indicates that the operation is allowed to overwrite (destroy)
the input matrix on the heap. Symmetrically, the ·k annotation means that the
second parameter is not overwritten (kept).

4.6 Code Extraction

Finally, Isabelle/HOL’s code generator [24] is used to extract imperative Stan-
dard ML code from the Isabelle specifications generated by Sepref. Code gener-
ation involves some optimizations and rewritings that are carried out as refine-
ment steps and proved correct, followed by pretty printing from the functional
fragment of HOL and the heap monad to Standard ML.

5 From UPPAAL-Style Semantics to a Single Automaton

5.1 UPPAAL-Style Semantics

Due to the lack of documentation on the Uppaal intermediate format, we define
an approximation of this assembler-like language by reverse engineering. This is
sufficient to check typical benchmarks, and gives a clearly defined semantics to
the fragment that we cover. The language is defined as a simple data type instr.
A step function of type instr ⇒ state ⇒ state option computes the successor
state after executing an instruction, or fails. A state consists of an instruction
pointer, the stack, the state of the shared integer variables, the state of the
comparison flag, and a list of clocks that have been marked for reset. Using a
fuel parameter, we execute programs by repeatedly applying the step function
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until we either reach a halt instruction, fail, or run out of fuel, which we also
regard as a failed execution.

A special instruction CEXP is used to check whether an atomic clock con-
straint holds for a given valuation u. However, this instruction cannot simply be
executed during model checking as it would need to work on zones instead of val-
uations. Unconstrained use of the CEXP instruction would allow for disjunctions
of clock constraints on edges, which is not part of the standard timed automata
formalism. Thus, in the same way as Uppaal, we restrict the valid input pro-
grams to those that only yield conjunctions of clock constraints on edges. We then
replace every CEXP instruction by a special meta instruction that sets the com-
parison flag to true. This amounts to enforcing a program execution where the
clock constraint, which is expressed by a piece of bytecode, holds for a valua-
tion. Edges are annotated with the conjunction of the atomic clock constraints
encountered during execution. In the current version of our tool, we separate
concerns for locations by using a state predicate, which is not allowed to use
CEXP instructions, and a separate clock constraint. The two could be merged
by using the same approach as for edges.

5.2 Program Analysis

As stated in the last section, we need to ensure that successful program execu-
tions can only induce conjunctive clock constraints. That is, we need to ensure
that program executions can only be successful when all CEXP instructions that
are encountered during execution evaluate to true. To this end, we use a naive
analysis, which recognizes a subclass of these programs that is sufficiently large
to cover common timed automata benchmarks. This analysis tries to identify
what we call conjunction blocks. A conjunction block reaching from addresses
pcs to pct ends with a halt instruction at pct, starts with a CEXP instruction
at pcs and then is extended to pct by repeatedly using one of the following two
patterns:

– a copy instruction to push the flag on the stack, followed by CEXP and an
and instruction;

– a copy instruction, followed by a jump-on-zero instruction with pct as the
destination, followed by CEXP and an and instruction.

We simultaneously show the two key properties of conjunction blocks via induc-
tion: if there is a conjunction block from pcs to pct, then any successful execution
starting from pcs ends in pct, and every CEXP instruction that is encountered
has to evaluate to true. Given a start address pcs, the whole analysis works by
computing an approximation of the set of possible addresses that can be reached
from pcs, say S, and then checking whether

Min {pc | pc ∈ S ∧ (∃ac. Ppc = CEXP ac)} to Max S

is a conjunction block, where Ppc is the program instruction at address pc. A
major limitation of this analysis is that it cannot approximate the reachable
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Fig. 3. Outline of the product construction.

set for call and return instructions, so we are not able to handle inputs that
are compiled from Uppaal programs with sub-routines. However, as the main
objective of our work is not program analysis, we consider the current naive
analysis sufficient to demonstrate the general viability of our approach.

5.3 Product Construction

The general shape of our product construction is outlined in Fig. 3. The first stage
of the construction encodes the bytecode annotations as guards and updates on
the shared state. The subsequent stage constructs a network of automata for
each shared state by essentially filtering the transitions that are valid for a given
state. For a simple network, the product can be constructed in the obvious way.
However, this is only used in the correctness proof of the final step, which directly
constructs a single automaton by pairing the location vector and the state.

The result of this construction is a highly contrived description of the single
automaton. To obtain an efficiently executable version of this description, we
specify an alternative functional implementation and prove the equivalence of
the two.

6 Experimental Evaluation

We conducted experiments on some standard benchmark models for timed
automata: a variant of Fischer’s mutual-exclusion protocol, the FDDI token ring
protocol, and the CSMA/CD protocol used in Ethernet networks. We tested one
reachability and one liveness property for each model: E♦(c > 1) and P1.b ���
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P1.c for Fischer’s protocol; E♦(¬P1.idle ∧ ¬P2.idle) and true ��� z async1 for
FDDI; and E♦(P1.abort ∧P2.send), and collision ��� active for CSMA/CD. We
compare (c.f. Table 1) our tool against Uppaal configured with two different
approximation operators: difference (Uppaal1) and location-based (Uppaal2)
extrapolation. We give the computation time in seconds and the number of
explored states, as reported by our tool and Uppaal7. Since the number of
explored states differs significantly, we also calculated throughput, i.e. the num-
ber of explored states per second. The ratio of Uppaal’s throughput and our
tool’s throughput is given in the column TR. We specify the problem size as the
number of automata in the network.

Table 1. Experimental results on a set of standard benchmarks.

Model Prop SAT Size Our tool Uppaal1 Uppaal2

Time #States Time #States TR Time #States TR

Fischer R N 5 6,61 38578 0,31 12363 6,83 0,04 3739 16,02

L Y 5 7,52 42439 0,31 20340 11,8 0,04 8149 40,1

Y 6 485,9 697612 42,85 249295 4,1 1,53 67325 30,7

FDDI R N 8 16,04 6720 0,34 5416 37,6 0,31 5416 42,0

N 10 142,8 29759 6,63 24210 17,5 6,44 24120 18,0

L Y 6 2,58 2083 0,05 2439 61,7 0,04 2439 68,7

Y 7 6,50 3737 0,15 4944 57,0 0,14 4944 62,3

CSMA/CD R N 5 4,48 9959 0,03 2704 45,3 0,03 2769 40,6

N 6 71,70 81463 1,70 17613 9,2 1,79 17939 8,8

L Y 5 4,93 11526 0,04 3802 42,4 0,04 3867 42,4

Y 6 76,83 96207 1,78 23128 10,4 1,86 12603 10,1

The results indicate that our tool’s throughput is around one order of magni-
tude lower than Uppaal’s. Encouragingly, the gap seems to decrease for larger
models. However, for larger problem sizes of some models, we also start to run
out of memory because our tool is not tuned towards space consumption. We do
not have a convincing explanation for the difference in states explored by our
tool and Uppaal — particularly, because our tool already implements location-
based extrapolation. Nevertheless, we conclude that the performance offered by
our tool is reasonable for a reference implementation against which other tools
can be validated: we can check medium sized instances of common benchmark
models, which should be sufficient to scrutinize the functionality of a model
checker.

7 Uppaal comes with a note suggesting that these numbers might be wrong for liveness
properties.
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7 Conclusion

We have derived an efficiently executable and formally verified model checker
for timed automata. Starting from an abstract formalization of timed automata,
we first reduced the problem to model checking of a single automaton, and then
used stepwise refinement techniques to gradually replace abstract mathematical
notions by efficient algorithms and data structures. Some of the verified algo-
rithms and data structures, e.g. search with subsumption and Difference Bound
Matrices, are interesting in their own right. Our experiments demonstrate that
our tool’s performance is suitable for validating other model checkers against
it on medium sized instances of classic benchmark models. Using a simple pro-
gram analysis, we can cover a subset of the Uppaal bytecode that is sufficient
to accept common models as an input.

Following the construction we expounded above, our checker can be improved
on two different axes: advanced modeling feature such as broadcast channels or
committed locations can be enabled by elaborating the product construction;
using the refinement techniques that we demonstrated above, further improve-
ments of the model checking algorithms can achieve better performance.

An alternative approach to tackle performance problems is to resort to cer-
tification of model checking results. For the simple CTL properties that are
supported by our tool and Uppaal, passed sets could be used as the certificates
and the model checking algorithms could be reused for certificate checking. As
the model checking algorithms for timed automata make use of subsumption,
passed sets can contain significantly less states than the total number of states
explored during model checking. We plan on exploring this avenue in the future.

Data Availability Statement. The datasets generated during and analyzed during

the current study are available in the figshare repository [25]: https://doi.org/10.6084/

m9.figshare.5917363.v1.
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Abstract. Munta is a mechanically verified model checker for timed
automata, a popular formalism for modeling real-time systems. Our goal
is two-fold: first, we want to provide a reference implementation that is
fast enough to test other model checkers against it on reasonably sized
benchmarks; second, the tool should be practical enough so that it can
easily be used for experimentation. Munta can be compiled to Standard
ML or OCaml and additionally features a web-based GUI. Its modeling
language has a simple semantics but provides the most commonly used
timed automata modeling features.

1 Objective and Overview

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [3].
These tools can be understood as trust-multipliers: we trust their correctness
to deduce trust in the safety of systems checked by these tools. Consequently,
we would like to ensure two things: first, the theory behind the tools should be
sound and well-understood. Second, the implementations of the theory in real
model checkers should be correct.

To address these concerns, we present Munta1, a model checker for timed
automata with a full correctness proof in the interactive theorem prover
Isabelle/HOL [13]. Everything is in one place, in a formal and highly reliable
format: the theory, from the basic formalism, over abstract formalizations of fun-
damental concepts such as regions and zones, down to concrete algorithms on
Difference Bound Matrices (DBMs), is formalized and checked in Isabelle/HOL.
Moreover, we can generate executable code from this formalization to obtain a
trustworthy model checker.

Having a formally verified tool at hand gives rise to the possibility of testing
other model checkers against it, in order to find errors in the other tools’ imple-
mentations. Therefore, the verified checker needs to be fast enough to run it on
reasonably sized benchmarks. To this end, we use refinement with the Imperative
Refinement Framework (IRF) [11] to obtain efficient imperative implementations
of the DBM algorithms that lie at the heart of state-of-the-art timed automata
model checking.
1 https://wimmers.github.io/munta/.
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Moreover, a formally verified tool can serve as a valuable basis for exper-
imentation. First, it allows one to devise extensions and modifications of the
theory, to prove them correct, and to experiment with them in a real tool—all
in one place. Second, the tool can be used to gain definite insights into the for-
malism and the model checking process by evaluating results on small models
or by examining the state space that was explored by the verified tool. To sup-
port these roles, Munta provides a clear-cut modeling language with a standard
semantics. Additionally, typical useful features of real model checkers such as
reporting the set of explored states and deadlock checking are supported.

This paper gives an overview of Munta’s functionality and architecture from
a user’s perspective. A theoretical account of the main ideas for the construction
of the verified checker can be found in previous work [16,17].

2 Functionality

2.1 Modeling Language

Munta’s modeling language supports a typical set of features: networks of timed
automata that can synchronize over channels and share a discrete finite state,
which is characterized by a set of integer variables. Guards and updates on
the discrete state can be expressed with a simple language of Boolean and
arithmetic expressions. Additionally, Munta supports the popular features of
broadcast channels, and urgent and committed locations. Currently, there still
exist some restrictions compared to other commonly used modeling languages:
automata need to be diagonal free (i.e. clock constraints cannot involve differ-
ences of clocks) and updates can only reset clocks to zero. These limitations
could be removed, however, by elaborating the current formalization. Moreover,
they are the most commonly found restrictions of the formalism in tools and
literature.

The formalized semantics of this language is compact, i.e., only around 150
lines of Isabelle formalization (compare this to the informal description found
in the Uppaal reference manual, for instance). This is the main basis of trust:
if one accepts that this semantics is sensible and one trusts the correctness of
Isabelle/HOL, one can assert full trust in Munta.

2.2 Correctness Theorem

This section briefly describes the correctness theorem for Munta informally. For
a formal account see our previous work [17] or the Isabelle/HOL formalization.
The correctness theorem is formulated in a separation logic [11] for Imperative
HOL [5], which extends HOL with imperative programming features.

The theorem shows that the model checker will terminate and either return
a result (sat or unsat), or report an error. It is proved that, when a result is
returned, that it correctly indicates whether the model satisfies the formula.
Two kind of errors can be reported: they either signify that the input model is
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malformed, or that the correctness check for a certified part of Munta failed (c.f.
Sect. 3.2). It is also proved that errors are only reported if they really arise.

Note that correctness is ensured only with respect to the semantics of the
modeling language and the semantics of Imperative HOL. None of the individual
proof steps nor our formalization of model checking algorithms need to be trusted
as everything is checked by Isabelle/HOL’s logical kernel.

2.3 Input Format

Input models to the checker are provided in a simple JSON format. On the one
hand, this means that input files are rather easy to read and understand for
a human. On the other hand, it facilitates data exchange with other tools as
parsers and printers for this format are readily available in many programming
languages. We refrain from using a templating mechanism (like, e.g. Uppaal)
to provide templates of models that can be instantiated to obtain a concrete
network. This way, translating to and from our input format remains simple.
Finally, arbitrary fields can be added to objects anywhere in the JSON files.
This allows one to transport formally irrelevant meta-information, such as the
coordinates of locations in a visual representation.

2.4 Modeling Checking Capabilities

Munta can check formulas from the subset of CTL that corresponds to the
subset of TCTL that is supported by Uppaal. Moreover, Munta provides a
deadlock checker. This is essential for practical use of the tool, as usually one
wants to ensure that models are deadlock free before verifying more complex
properties. Additionally, Munta can compute the complete set of reachable states
and provide this information to the user. This is vital for understanding and
debugging models.

2.5 Graphical User Interface

We provide a web-based GUI for Munta, programmed in the OCaml deriva-
tive Reason2 using the ReasonReact framework3. The GUI can interface
with the model checker in two ways: first, we provide a server mode, where
queries can be sent to a verification server running locally; second, we com-
pile the OCaml version of our checker to JavaScript, running it directly
in the browser. We use a parse-print-parse loop to ensure that the user’s
input is understood correctly by the model checker: the GUI can display
a normalized version of the user’s input that is guaranteed to parse to
the same internal representation as the user’s original input. Munta itself
again uses another parse-print-parse loop to produce a JSON description of
the model that is guaranteed to parse to the same object as the JSON
description that was extracted from the internal representation in the GUI.
2 https://reasonml.github.io/.
3 https://reasonml.github.io/reason-react/.

https://reasonml.github.io/
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In addition, the user can directly inspect this final JSON representation of the
model, to ensure that no errors were introduced during the translation from the
visual representation.

3 Architecture

Figure 1 gives an overview of the system architecture, which is described in more
detail in this section.

TA

Zones

Regions

Forward exploration with
local clock ceiling extraploation

DBMs

Deadlock

Single TA model checking

Parser

Error handling

Diagnostics
HOL

Code generatorOCamlJavaScript SML Server
MLton

Clock ceiling

RenamingModeling language semantics

Product construction

Fig. 1. Overview of the system architecture. Round boxes represent HOL formaliza-
tions. Boxes with sharp corners are pieces of unverified HOL code. Solid lines represent
formalizations that include a refinement step to efficient (imperative) implementations.

3.1 Isabelle/HOL Formalization

The formalization consists of three main parts. The first part is an abstract
formalization of the basic timed automata formalism (for a single automaton).
This includes a formalization of the region construction, zones, and the local
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clock ceiling extrapolation operation for zones [2]. In the end, we can prove that
forward analysis of timed automata with zones and extrapolation is correct [16].

The second part is an abstract formalization of DBMs and elementary model
checking algorithms for CTL, which are refined to concrete, executable, and
partly imperative implementations. Together with the first part, we obtain an
executable model checker for single timed automata [17].

The third part is a formalization of the modeling language and of an on-the-
fly product construction to obtain a single automaton. This construction yields
descriptions of the single automaton’s invariants and transitions as functional
programs that can be plugged into the implementation obtained from the second
part. To implement the product construction efficiently, a pre-processing step
renames the labels in the model from human-readable strings to consecutive
natural numbers.

3.2 Code Extraction and Glue Code

From the HOL specification of the model checker, Isabelle/HOL can generate
code in Standard ML (SML) and OCaml [6]. However, this alone would not yield
a usable tool. We need additional code for parsing the input, error handling, and
retrieving diagnostic information. These functionalities are directly implemented
as functional programs in HOL to keep the code portable, possibly to also export
it to Isabelle/HOL’s other target languages, Haskell and Scala.

To implement the parser, we use a parser combinator library for Isabelle/HOL
[12]. A correctness proof for the parser is replaced by ensuring consistency of the
parse-print-parse loop for each concrete input, as explained above.

Diagnostic information is obtained in a minimally intrusive way. This usually
involves defining, e.g., a constant PRINT of the HOL type string ⇒ unit as
PRINT s = (). This constant can easily be stripped away by Isabelle’s proof
automation (by essentially unfolding its definition). To actually obtain output,
we instruct the code generator to translate this specific constant in a way that
some side-effect is performed, e.g., the string s is output to the console or logged
in some background data structure. A similar technique can be used to obtain
time measurements or to trace information about explored states by using other
constants of some type α ⇒ unit .

Two parts of the model checker, the pre-processing step to relabel the model,
and the code to compute the local clock ceilings, are not verified but only certi-
fied: their computed results are checked for soundness by a verified part of the
model checker.

The ability to target SML as well as OCaml holds some advantages. With
SML, faster executables can be obtained by using the highly optimizing compiler
MLton. In contrast, OCaml code compiles to less efficient executables but is very
conveniently compatible with the implementation of our frontend: Reason hinges
on the same backend as the one that we use to compile OCaml to JavaScript4,
making it easy to run our verified model checker directly in the browser.

4 https://bucklescript.github.io/.

https://bucklescript.github.io/


Munta: A Verified Model Checker for Timed Automata 241

4 Discussion

4.1 Comparison to Other Tools

We have previously reported on an experimental evaluation of Munta, comparing
it to the state-of-the-art timed automata model checker Uppaal [17]. Generally,
Munta’s throughput (the number of explored states per time unit) is within an
order of magnitude of Uppaal’s throughput. Munta is also fast enough to check
medium-sized benchmarks within reasonable time.

Compared to Uppaal, Munta is not only much slower, but also only provides
a less sophisticated modeling language. Uppaal supports such sophisticated
features as a C-like language to describe guards and invariants on edges, channels
with priorities, or a templating mechanism. However, our modeling language does
not differ as significantly in its expressiveness from tools such as Prism (and its
implementation of probabilistic timed automata) [9], TChecker [7], Rabbit [4]
and RED [15]. Moreover, one can argue that for a tool which is mainly intended
as a platform for experimentation, it is not crucial to provide an exhaustive array
of modeling features. Instead, a simple modeling language with a clear semantics
may even be advantageous.

4.2 Trusted Code Base

To trust the results of Munta, one needs to trust the following components:

(a) our formalization of the modeling language semantics as described above,
(b) the formalization of Imperative HOL and its corresponding separation logic,
(c) Isabelle/HOL’s logical kernel,
(d) Isabelle/HOL’s code generator,
(e) and the target language’s compiler and runtime system.

Trust in (a) and (b) can only be obtained by manual inspection. Regarding (c),
it is widely accepted within the community that Isabelle/HOL only admits valid
theorems (at least on the user level). The trustworthiness of components (d) and
(e) is more debatable, however. Recent (ongoing) work by Hupel and Nipkow
[8] opens the prospect to improve on this situation in the future. It perfects (d)
by generating code from Isabelle/HOL to CakeML [14] in a provably correct
way (in the sense of mechanically checked proof). In turn, CakeML is a dialect
of ML that comes with a verified compiler and runtime system, addressing the
potential soundness issues of (e).

5 Conclusion and Future Work

We have presented Munta, a mechanically verified model checker for timed
automata. As indicated in our discussion above, further efforts are conceivable
to reduce the trusted code base. There are also several ways in which perfor-
mance of the tool could be improved. One would be to verify the model checking
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algorithms with respect to a fully imperative target language such as LLVM [10]
or C. As another approach, we are studying certification of reachability checking
for timed automata in ongoing work.

Finally, the capabilities of Munta could be improved by either enriching the
modeling formalism as discussed aboved, or by providing a more expressive spec-
ification language for model checking properties, such as full (T)CTL or LTL.
To this end, we plan to extend our work on certification towards LTL model
checking in the future.
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Abstract. Prior research has shown how to construct a mechanically
verified model checker for timed automata, a popular formalism for
modeling real-time systems.
In this paper, we shift the focus from verified model checking to certify-
ing unreachability. This allows us to benefit from better approximation
operations for symbolic states, and reduces execution time by exploring
fewer states and by exploiting parallelism. Moreover, this gives us the
ability to audit results of unverified model checkers that implement a
range of further optimizations, including certificate compression.
The resulting tool is evaluated on a set of standard benchmarks to
demonstrate its practicality, using a new unverified model checker imple-
mentation in Standard ML to construct the certificates.

Keywords: Timed automata · Certification · Model Checking · Interac-
tive Theorem Proving · Isabelle/HOL

Timed automata [1] are a widely used formalism for modeling real-time systems,
which is employed in a class of successful model checkers such as Uppaal [4].
These tools can be understood as trust-multipliers: we trust their correctness to
deduce trust in the safety of systems checked by these tools. As a consequence,
one wants to ensure as rigorously as possible that the computation results of
timed automata model checkers are correct.

Previous work [31] has addressed this problem by constructing a model checker
for timed automata that is fully verified using Isabelle/HOL [25]. This tool is
intended to be a reference implementation that can be used to scrutinize the
correctness of other model checkers. As such, it is mainly able to check small
and medium-sized benchmark examples, but the performance gap w.r.t. more
practical model checkers prevents it from checking realistic benchmark models
within reasonable time and space bounds.

We address this issue by shifting the focus from full verified model checking to
only certifying that the result produced by an unverified model checker is correct.
We only study reachability: it is the most important property that is checked
with timed automata model checkers, and some model checkers only support
reachability. It is crucial to ensure that a bad state is certainly not reachable if
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the model checker claims so, thus we want to certify unreachability. Certifying
that a state is indeed reachable would amount to extracting a timed trace and
certifying that the trace is compatible with the model. While implementing this
in a verified manner would be comparatively easy, we consider it less important
because it corresponds to the bug finding functionality of model checkers, which
carries less trust.

The recipe for certifying unreachability is simple: the model checker explores a
number of states until it determines that there are no more states to be found. If
none of the states fulfill the final state predicate (i.e. violates the safety property),
then the model checker will answer “unreachable”. We use the set of explored
states as the unreachability certificate. In essence, we only need to check that
the initial state is contained in this set, that there are no outgoing edges from
this set, and that none of the states in the set fulfill the final state predicate.

The switch to certification holds many advantages. Timed automata model
checking uses over-approximations of symbolic states to ensure termination. A
large variety of these approximation operators has been studied [2,3,14]. Our
previous work [29] has shown that, while formally proving the correctness of these
approximation operations is feasible in principle with an interactive theorem
prover, the effort is rather high. Instead, to certify unreachability, it is sufficient
to only know that the approximation operator indeed yields a state that is at
least as big as the precise symbolic state. Certifying this property is cheap.

Moreover, certification eases parallelization. Checking that a state is not final
and that all its successors are covered by the state set are local properties. We
show how to exploit this in a verified implementation, while only mildly increasing
the verification effort and the size of the trusted code base.

Finally, the number of states explored by a model checker can vary immensely,
depending on a range of factors such as the chosen approximation operator or
the search order. Thus, an efficient unverified tool can exploit different heuristics
and strategies to compute a state space that is as small as possible, and thereby
speedup the certification effort. In this context, we also study a number of
compression techniques to reduce the number of states in the certificate after the
model checker has concluded its search.

We use a new unverified model checker called Mlunta, which is implemented
in Standard ML (SML), to generate certificates for a set of standard benchmarks,
and to evaluate our verified certifier’s performance on these benchmarks 1.

Related Work This work is based on an existing Isabelle/HOL formalization of
timed automata model checking [29,31]. Other proof-assistant formalizations of
timed automata focus on proving elementary properties about the basic formalism
[33,34], or proving properties about concrete automata [26,10,8], but none of
them are concerned with model checking.

Earlier work formalizes a model checker for the modal µ-calculus [28], and
constructs a verified finite state LTL model checker [9,24,6].

1 Both tools are available online: https://doi.org/10.5281/zenodo.3679245.
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The idea of extracting certificates from the model checking process has
previously been studied in the context of the µ-calculus [23] and finite state
LTL model checking [27]. However, these works are not accompanied by a
verified certificate checker and do not attempt to scale the approach to practical
examples. Only the recent work of Griggio et al. [11] provides a practical extraction
mechanism and a certificate checker for LTL model checking, but the checker is
not verified. To the best of our knowledge, we are the first to examine certification
in the context of timed automata model checking.

Finally, in the context of software verification, the idea of producing certificates
for the correctness of a program has been broadly studied [16,5].

Isabelle/HOL Isabelle/HOL [25] is an interactive theorem prover based on Higher-
Order Logic (HOL). HOL can be thought of as a combination of a functional
programming language and mathematical logic. Isabelle/HOL mostly resembles
standard mathematical notation. Some conventions that are borrowed from
functional programming need to be explained, however. Functions are mostly
curried, i.e. of type τ1 ⇒ τ2 ⇒ τ instead of τ1 × τ2 ⇒ τ . As a consequence,
function application is usually denoted as f a b instead of f(a, b). Function
abstraction with lambda terms uses the standard syntax λx. t (the function that
maps x to t) and can also have paired arguments λ(x, y). t. Type variables are
written ′a, ′b, etc. Compound types are written in postfix syntax: τ set is the
type of sets of elements of type τ . We use the Isabelle/HOL convention that
free variables are implicitly all-quantified throughout the paper. In parts of the
paper, formulas or syntax have been simplified for readability, but we have stayed
largely faithful to the Isabelle/HOL formalization.

Contributions In short, these are the main contributions of our work:

– To the best of our knowledge, we are the first to study certification of the
model checking results of reachability checking for timed automata, including
techniques to compress certificates.

– We construct a verified implementation of such a certificate checker, including
a number of optimization techniques to make it practically usable.

Outline The remainder of the paper is organized as follows. The first section
briefly recalls the theory of timed automata, and sketches the state-of-the-art
model checking process. The second section details our approach to certification
and explains how, starting from an abstract theory, a concrete verified imple-
mentation of the certificate checker can be obtained. Section three illustrates a
number of techniques to improve the certificate checker’s performance, while only
mildly increasing the formalization effort. Section four discusses two methods for
certificate compression. The paper is concluded by an experimental evaluation
and remarks on potential future work.
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1 Timed Automata and Model Checking

Transition Systems We take a very simple view of transition systems: they are
simply a relation → of type ′a ⇒ ′a ⇒ bool for a type of states ′a. We write
a→∗ b to denote that b can be reached from a via a sequence of →-transitions.

Timed Automata To make the paper self-contained, this paragraph briefly de-
scribes timed automata and is mostly reproduced from Wimmer and Lammich
[29]. For a thorough introduction see the tutorial paper of Bengtsson and Yi [4].

Compared to standard finite automata, timed automata introduce a notion
of clocks. Figure 1 depicts an example of a timed automaton. We will assume
that clocks are of type nat . A clock valuation u is a function of type nat ⇒ real .
Locations and transitions are guarded by clock constraints, which have to be

l1 l2

c1 ≤ 1 ∧ c2 ≤ 100

l3

c1 > 0, a1, c2 := 0

a3, c1 := c2 := 0

a2, c1 := 0

c1 > 100, a4

Fig. 1: Example of a timed automaton with two clocks.

fulfilled to stay in a location or to take a transition. Clock constraints are
conjunctions of constraints of the form c ∼ d for a clock c, an integer d, and
∼ ∈ {<,≤,=,≥, >}. We write u |= cc if the clock constraint cc holds for the
clock valuation u. We define a timed automaton A as a pair (T , I) where I is
a mapping from locations to clock constraints (also named invariants); and T
is a set of transitions written as A ` l −→g,a,r l′ where l and l′ are start and
successor location, g is the guard of the transition, a is an action label, and r is
a list of clocks that will be reset to zero when the transition is taken. States of
timed automata are pairs of a location and a clock valuation. The operational
semantics defines two kinds of steps (given as their HOL descriptions):

– Delay: (l, u)→d (l, u⊕ d) if d ≥ 0 and u⊕ d |= I l;
– Action: (l, u)→a (l′, [r := 0]u)

if A ` l −→g,a,r l′, u |= g, and [r := 0]u |= I l′;

where u ⊕ d = (λc. u c + d) offsets all clocks by d in the valuation u, and
[r := 0]u = (λc. if c ∈ r then 0 else u c) resets all clocks in r to 0 in valuation u.
For any (timed) automaton A, we consider the transition system

(l, u)→A (l′, u′) = (∃d ≥ 0. ∃a u′′. (l, u)→d (l, u′′) ∧ (l, u′′)→a (l′, u′)) .
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That is, each transition consists of a delay step that advances all clocks by some
amount of time, followed by an action step that takes a transition and resets the
clocks annotated to the transition. Given a final state predicate F and an initial
state (l0, u0), we are interested in whether (l0, u0)→∗A (l, u) for any l, u with F l.
In Figure 1, the final state is l3 (i.e. F l←→ l = l3). As the guard for action a4
is never enabled, l3 is unreachable.

Model Checking Due to the use of clock valuations, the state space of timed
automata is inherently infinite. Thus, model checking algorithms for timed
automata are based on the idea of abstracting from concrete valuations to sets
of clock valuations of type (nat ⇒ real) set, often called zones. The resulting
transition system of reachable states from an initial zone is called the zone graph.
It is explored in an on-the-fly manner, computing successors on zones, which
are typically represented symbolically as Difference Bound Matrices (DBMs).
Knowledge of this data structure is not necessary to understand the rest of the
paper. Thus we refer the interested reader to Bengtsson and Yi [4] and to Wimmer
and Lammich [29,31] for a verification of this data structure. In the remainder
we will only use the term “zones” instead of referring to their implementation as
DBMs.

The delicate part of this method is that the number of reachable zones could
still be infinite. Therefore, over-approximations (or abstractions) of zones are
computed to obtain a finite search space. For our purpose, it sufficient to assume
an abstraction operator α indeed computes an over-approximation, i.e. Z ⊆ α(Z)
for any zone Z. We call the version of the zone graph where abstractions are
applied the abstract zone graph [13]. For a number of such abstraction operators,
it can be shown that the abstract zone graph is sound and complete 2. The
proofs are rather intricate, however. Thus formalizing them would be a big effort.
By focusing on certification of unreachability, this problem vanishes, as we only
need to ensure that any state (l, Z) that we deem reachable in the zone graph is
subsumed by some state (l, Z ′) with Z ⊆ Z ′ that is part of the certificate and
that was computed by the abstraction (i.e. Z ′ = α(Z1) for some Z1).

Certificates by Example Figure 2 depicts the zone graph of the automaton in
Figure 1. Each zone Z is given as a clock constraint cc such that Z = {u |u |= cc}.
A model checker like Munta would have to explore the full zone graph before
being able to decide that l3 is unreachable. Any model checker that uses the same
abstraction technique as Munta [2] would not be able to benefit from abstractions
for this example and thus the abstract zone graph is the same as the zone graph.
However, such a model checker could apply subsumptions while exploring the zone
graph. That is, when a symbolic state of the form (l2, {u |u |= c1 = 0∧c2 < k+1})
is explored, the state (l2, {u |u |= c1 = 0 ∧ c2 < k}) can safely be discarded.

This means that at the end of the model checking process, only the three
states in Figure 3a will be stored. The solid edges are part of the zone graph,

2 Soundness: for every abstract run, there is a concrete instantiation. Completeness:
every concrete run can be abstracted.
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l2, 0 < c1 ≤ 1 ∧ c2 = 0

l2, c1 = 0 ∧ c2 < 1

l2, c1 = 0 ∧ c2 < 2

· · ·

l2, c1 = 0 ∧ c2 ≤ 100

l1, c1 = c2 = 0

Fig. 2: The zone graph of the automaton depicted in Figure 1.

while the dashed edge indicates that the zone at its tail has a successor in the
zone graph ((l2, {u |u |= c1 = 0 ∧ c2 < 1})) that is subsumed by the tip of
the edge. The set of these three states can act as a certificate of unreachability.
They essentially form an inductive invariant of the zone graph: for each state in
the certificate, all its successors in the zone graph are either contained in the
certificate themselves or subsumed by another state in the certificate. Thus we
know that any symbolic state that is reachable from the initial state is subsumed
by some state in the certificate, and as the final state is not contained in the
certificate, we can conclude that it is unreachable.

Figure 3b shows a certificate with only two states that replaces the two states
for l2 by the state with a dashed border. Note that this state is not part of the
original zone graph. The certificate fulfills the same invariant property and thus
also proves unreachability. We will use this technique of adding larger states to
the certificate that are not part of the zone graph for our compression techniques
in section 4.

l2, 0 < c1 ≤ 1 ∧ c2 = 0

l1, c1 = c2 = 0

l2, c1 = 0 ∧ c2 ≤ 100

(a) Stored states

l1, c1 = c2 = 0

l2, c2 ≤ 100

(b) Smaller certificate

Fig. 3: Two certificates of unreachability for the automaton from Figure 1.
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2 From Model Checking to Certifying Unreachability

This section first describes our approach to certification abstractly. Then, we
detail how the existing formalization of a timed automata model checker was
extended—with rather low effort—to a verified certifier. In practice, networks
of timed automata with additional modeling features such as, e.g. shared state
variables, are used. However, due to the existing verified product construction for
such a formalism [31], it is sufficient to study the case of a single timed automaton
here.

2.1 An Abstract Correctness Theorem

To work towards a rigorous justification of the certification process, we first study
the problem on a more abstract level. Consider a transition system → on states
of type ′l × ′s where ′l corresponds to the finite state part of timed automata
and ′s corresponds to zones. We assume an invariant P on states, i.e.:

P (l1, s1) ∧ (l1, s1)→ (l2, s2) =⇒ P (l2, s2) .

This invariant essentially represents a restriction of → to valid states. While this
would usually be assumed implicitly, we explicate P here as it is technically more
convenient to do so in the Isabelle/HOL formalization.

The interesting feature that sets timed automata model checking apart is
subsumption. Recall that during the model checking process, it is possible to
first discover some (symbolic) state (l, Z) (a pair of a discrete state l and a zone
Z), and to find at some later point that another reachable state (l, Z ′) subsumes
(l, Z) because Z ′ semantically contains Z ′, i.e. Z ⊆ Z ′. At this point the state
(l, Z) can be discarded as we know that anything that is reachable from (l, Z) is
also reachable from (l, Z ′). Abstractly, subsumption is modeled by some fixed
preorder (i.e. a reflexive and transitive relation) 4 on ′s which is a simulation
relation between → and itself:

s1 4 s2 ∧ (l1, s1)→ (l2, t1) ∧ P (l1, s1) ∧ P (l2, s2)

=⇒ ∃t2. t1 4 t2 ∧ (l1, s2)→ (l2, t2)

In the abstract setting, a certificate consists of a set of discrete states L of
type ′l set, and a mapping M of type ′l⇒ ′s set that gives the set of reachable
symbolic states that were computed for any discrete state l ∈ L. We say that
(L,M) satisfies P if all states in the certificate (L,M) satisfy P :

l ∈ L ∧ s ∈ M l =⇒ P (l, s)

Moreover, the certificate needs to be closed. Following Herbreteau et al. [13],
we call a state covered if it is subsumed by another state in the certificate. A
certificate is closed if for each state in the certificate all its successors are covered:

l1 ∈ L ∧ s1 ∈M l1 ∧ (l1, s1)→ (l2, s2) =⇒ l2 ∈ L ∧ (∃s3 ∈M l2. s2 4 s3) (∗)

The following key theorem states that all reachable states are covered if the
initial state is covered:
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Theorem 1. Let (L,M) be closed and invariant under P . Assume l0 ∈ L,
s′0 ∈ M l0, s0 4 s′0, and (l0, s0) →∗ (l, s). Then l ∈ L and there exists s′ such
that s′ ∈ M l and s 4 s′.

Proof. By induction on the number of steps in (l0, s0)→∗ (l, s). The following
sketches how the run of covering states is constructed. The first line represents
(l0, s0)→∗ (l, s) and the states in the third line are all part of the certificate.

(l0, s0) → (l1, s1) → . . . → (l, s)

� �
(l1, t1) . . . (l, t)

� ↗ � ↗ ↗ �
(l0, s

′
0) (l1, s

′
1) . . . (l, s′)

From the assumptions on l0, s0, and s′0, we can first apply the self-simulation
property of→ to (l0, s0)→ (l1, s1) to obtain a t1 such that s1 4 t1 and (l0, s

′
0)→

(l1, t1). As the certificate is closed we thus get l1 ∈ L and we can find an s′1 ∈M l1
such that t1 4 s′1 (and thus s1 4 s′1 by transitivity). The induction hypothesis
can then be applied to l1, s1, and s′1. ut

We will now say that a certificate (L,M) is admissible iff

– it satisfies P ,
– it is closed,
– it covers the initial state (i.e. there is an s′0 ∈M l0 such that s0 4 s′0),
– and there is no l ∈ L with F l.

Corollary 1. If F is monotone w.r.t. 4 and the certificate (L,M) is admissible,
then @l s. (l0, s0)→∗ (l, s) ∧ F l .

2.2 An Abstract Certificate Checker

In practice, the certification process has to consider one additional complication.
A model is typically described in terms of human-readable identifiers, while most
model checkers and the verified model checker Munta [30] in particular represent
these as natural numbers internally to allow for efficient indexing. In our certifier,
this is accounted for by relabeling the human-readable identifiers in a given model
to natural numbers in a first (verified) pre-processing step. To save additional
transformations of the certificate after it was emitted, we let the unverified model
checker additionally emit a textual description of such a renaming. The certifier
then just needs to check that the given renaming is injective to ensure that it
can safely be applied.

Together with the theoretical analysis laid out in the last section, we can thus
derive the following strategy for certifying unreachability:

– An unverified model checker explores the reachable state space of a given
model symbolically and checks that none of the discovered states (l, s) fulfills
F l.
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1 definition check (L,M) ≡
2 monadic list all L (λl. do {
3 let S = M l ;
4 let next = succs l S ;
5 monadic list all next (λ(l′, S′). do {
6 xs← SPEC (λxs. set xs = S′) ;
7 if xs = [] then return True else do {
8 b1← return (l′ ∈ L) ;
9 ys← SPEC (λxs. set xs = M l′) ;

10 b2← monadic list all xs (λx.
11 monadic list ex ys (λy. return (x 4 y))
12 ) ;
13 return (b1 ∧ b2)
14 }
15 })
16 })

Listing 1.1: Monadic program to check whether a certificate is closed.

– The set of explored states is emitted as a certificate, possibly followed by
compression (see section 4).

– The model, the final state predicate F , the certificate, and a description of
the renaming that was used for the states are passed to the verified certifier.

– The certifier checks that the given renaming is injective, renames the model
accordingly, applies the product construction and checks that the certificate
is admissible.

If the process is successful, we can conclude by Corollary 1 that no “bad” state
(l, s) (i.e. with F l) is reachable symbolically. We will argue that this really implies
that the model is safe in the concrete case of timed automata in section 2.3.

We now lay out how a verified certificate checker that implements said
strategy for an abstract transition system can be constructed in Isabelle/HOL.
Listing 1.1 displays the definition of the core of the checker that checks whether
the certificate is closed in the sense defined above. The program is defined in the
non-determinism monad of the Imperative Refinement Framework (IRF) [20].
Some parts, such as checking set membership or converting a (finite) set to a
list are still left abstract. A non-deterministic specification SPECQ returns some
value v with Qv.

The body of the program (lines 2-16) iterates over all discrete states in the
certificate L and checks that all corresponding symbolic states are covered. Line
3 retrieves the symbolic states that correspond to discrete state l and in line 4
their symbolic successor states are computed. The result (next) is a list of pairs
of a discrete state and the set of its corresponding symbolic states. The loop
ranging from lines 5 to 15 iterates over this list to ensure that all the successor
states are covered. Given a discrete state l′ and a set of symbolic states S′, line 6
first converts it into a list xs that can be iterated over. This turns into a vacuous
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operation when the algorithm is refined to an executable version where sets are
implemented as lists. Line 8 checks that l′ is also part of the certificate. Then, in
line 9 the set of corresponding symbolic states is retrieved and converted to a list
ys. Finally, lines 10-12 ensure that all states in xs are subsumed by some state
in ys.

To prove soundness of check , we mainly need correctness theorems for the
monadic combinators monadic list all and monadic list ex. Given a list xs and
a monadic implementation Qi of a predicate Q, they check whether all states
(at least one state) in xs satisfy (satisfies) Q. This is the correctness theorem for
monadic list all, for instance:

(∀x.Qi x ≤ SPEC (λr. r ←→ Qx))

=⇒ monadic list all xsQi ≤ SPEC (λr. r ←→ list all xsQ)

where list all xsQ holds if and only if Q holds for all elements in xs. After setting
up the IRF’s verification condition generator with this rule and the corresponding
rule for monadic list ex, it is easy to prove that check is sound:

check (L,M) ≤ SPEC (λr. r =⇒ closed (L,M))

where the property closed (L,M) corresponds to condition (∗) from above.
We then use standard refinement techniques to obtain an algorithm checki that

refines check , replacing sets by lists. However, the algorithm is still specified in the
non-determinism monad and therefore not executable. We use a simple technique
to make it executable. Consider the following theorem for monadic list all :

monadic list all xs (λx. return (P x)) = return (list all xsP ) .

It allows us to replace the non-deterministic combinator monadic list all by the
deterministic list all , pushing return to the outside. By exhaustively applying a
set of such rewrite rules we obtain an alternative definition of checki where return
appears only on the outermost level, and the inner term is deterministic and thus
executable. Using these techniques, we obtain a simple certificate checker that
is executable, provided that we can implement the elementary model checking
primitives such as the subsumption check or computing the list of successors of a
state.

2.3 Transferring the Correctness Theorem

For timed automata, the abstract transition system studied above is the zone
graph →ZG(A) of a given (single) automaton A. One can show that it simulates
→A (completeness of →ZG(A)):

(l, u)→A (l′, u′) ∧ u ∈ Z =⇒ (∃Z ′. (l, Z)→ZG(A) (l′, Z ′) ∧ u′ ∈ Z ′) .

This simulation property is sufficient to establish that if there is no reachable
state (l, Z) in →ZG(A) with F l, then no final state (l, u) is reachable in →A:

(@l, Z. (l0, Z0)→∗ZG(A) (l, Z) ∧ F l) ∧ u0 ∈ Z0

=⇒ (@l, u. (l0, u0)→∗A (l, u) ∧ F l)
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In the formalization, these proofs rely on instantiating a general theory of
simulations in transition systems that is derived from the theory of Wimmer and
Lammich [31]. From Corollary 1 we get that there is no reachable final state in
→ZG(A) if the certificate check is passed. Finally, by correctness of the renaming
process and the product construction, we can conclude that there is no final
reachable state in the input model if there is no final reachable state in →A.

2.4 Implementing a Concrete Checker

All the elementary model checking primitives we need for certification have
already been implemented [31]. The abstract implementation presented above
assumes that the model checking primitives are implemented in a purely functional
manner (as they are just regular HOL functions). The existing (verified) model
checker [31], however, is an imperative implementation in the Imperative HOL
framework. Imperative HOL [7] is a framework for specifying and reasoning about
imperative programs in Isabelle/HOL. It provides a heap monad in which one
can use—analogously to the ML family of programming languages—imperative
references and arrays to express imperative programs. Usually, once we have used
an imperative implementation anywhere, the whole program would need to be
stated in the heap monad. However, we can employ a technique similar to the
one that is used for Haskell’s ST monad [21] to erase the heap monad in a safe
way under certain circumstances.

More precisely, if it can be deduced from the type of an imperative computation
that no information about references or arrays on the heap can be leaked to the
outside of the computation in its result, then the heap monad can be erased for
this computation, yielding a pure computation. In the certifier, this is primarily
used for computing the symbolic successor of a zone Z for a certain transition.
To that end, an immutable representation of the DBM M corresponding to Z is
copied to the a newly allocated imperative array, then the imperative pipeline
of computations to compute the successor M ′ is applied to M , and finally M ′

is copied back to an immutable array. Taken together, this whole computation
does not contain the type of an array or reference in its result type, and thus
can safely be turned into a pure computation. As a consequence, we are able to
reuse the existing verified model checking primitives, while being able to state
the certificate checking algorithm purely functionally.

In the concrete checker, the mapping M is implemented using a verified
functional hash table implementation based on so-called diff arrays [19]. This
data structure provides a purely functional interface to an underlying imperative
array. When a diff array is updated, it performs the update on the imperative
array, and stores a difference that can be used to re-compute the old state of the
array. Reading from the most recent version of a diff array is fast as the value
can directly be read from the underlying imperative array. If an old version is
accessed, the whole array has to be copied to recompute the old version. This
gives diff arrays good performance characteristics, as long as they are mostly
used linearly. This is the case in our application as the hash table is filled in an
initial phase, after which the hash table is used in a read-only manner.
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2.5 Parallel Execution

The attentive reader may wonder why we care about a purely functional imple-
mentation of the certificate checker at all. Indeed, we could use existing techniques
[31] to obtain an imperative implementation of the certificate checker in the
heap monad. However, in this setting it would be hard to justify the soundness
of executing parts of the checker in parallel. In the purely functional setting,
this is much simpler. Our approach to parallel execution is minimalist: we only
provide means to execute the map combinator on lists in parallel. This is achieved
by another custom code translation that is part of the trusted code base. The
parallel implementation of map uses a task queue that will contain the individual
computations that need to be run for each element of xs , and uses a fixed number
of threads to work through this list and assemble the final result.

We exploit this map implementation to work through the list of discrete states
L in parallel, using the equivalence:

list all Qxs = list all id (map Qxs) .

In doing so, we lose the ability to stop execution early once a list element does
not satisify Q. For the certificate checker, however, we assume that usually
the certificate is correct, meaning that we have to go through the whole list
anyway. We only parallelize the outermost loop of checki because this should
yield reasonably-sized work portions, given that the size of L will typically at
least be in the hundreds.

3 Scaling Performance

In this section we discuss two techniques to improve the performance of the
certificate checker without increasing the verification effort significantly.

3.1 Monomorphization

Isabelle/HOL supports polymorphism and type classes, which are valuable fea-
tures for sizeable formalization efforts. Large parts of our formalization also make
use of these features, e.g., most of the timed automata semantics are formalized
for a general time domain, and operations on DBMs are applicable on DBMs
whose entries are formed from more general algebraic structures than the ring of
integers. While this yields an abstract and general formalized theory, it can get
in our way when trying to obtain efficient code.

When generating SML code from HOL, Isabelle uses a so-called dictionary
construction to compile out type classes, which are not supported by SML. This
means that most functions carry a large number of additional parameters, which
are used to look up elementary operations, such as addition of two numbers.
These additional lookup operations degrade performance. One solution is to
ensure that all relevant constants that are exported to SML are monomorphic
(i.e. specialized to the integer type), eliminating the need for the dictionary
construction in most places. Thus, we apply a semi-automated procedure to
achieve this monomorphization.
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3.2 Integer Representation

Types such as int or nat are unbounded in Isabelle/HOL meaning they are
implemented with the help of big integers in the target languages. To improve per-
formance, we want to use machine integers instead, and instruct Isabelle/HOL’s
code generator to do that. This is still sound: SML’s standard integer operations
throw an exception if an overflow occurs instead of silently wrapping around. The
code generator can only achieve partial correctness anyway: if program execution
does not fail, then its result is consistent with the evaluated HOL term.

3.3 Refined Code Equations

The last type of optimizations we use can be considered to belong to the cate-
gory of micro-optimizations. These are improved code generator translations for
elementary operations and combinators. We employ such improved translations
to use native implementation language primitives to convert from mutable to
immutable arrays and back. The other such optimizations we use, is to directly
use integer values as counters in imperative loops instead of a natural number
representation that would box the integers in a data constructor. In the same
way, we use integers directly for array indexing.

4 Certificate Compression

In this section, we present two techniques to compress the unreachability certifi-
cate. By compression we mean reducing the number of zones that are present in
the certificate for each discrete state, using the unverified model checker. The
first technique relies on subsumption. As explained above, it is possible that the
model checker adds a zone Z to the set of explored states and later another zone
Z ′ with Z ⊆ Z ′ (i.e. Z ′ subsumes Z). Thus the first technique simply filters the
set w.r.t. ⊆ in the end.

The second technique relies on the following idea: we replace one or more
zones by their union, and check that the state space is still closed. This means
that we have to check that all the successors of the larger zone are still covered
by the current set of states. In that case, we can discard the old zones, and
replace them by their union. As the union of two zones is not necessarily convex
and thus cannot be represented as a DBM, we do not compute a precise union
of zones but their convex hull. This operation is rather cheap as it amounts to
taking the pointwise maximum of DBM entries. After computing the convex hull
of a number of zones (in canonical form), we only need to apply the expensive
operation to restore a canonical form once.

The latter technique yields a whole family of compression algorithms by
iterating one of the following operations for each discrete state until a fixed-point
is reached:

a) the convex hull of all zones is computed;
b) the convex hull of the first two zones is computed;
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c) the convex hull of the first two zones that can successfully be joined is put to
the front of the list;

d) same as c) but considering only discrete states for which compression was
successful in the last round;

e) same as d) but iterating the operation until saturation.

The next section contains an experimental evaluation of these techniques.
Note that similar techniques for reducing the search-space could also be applied

already during model checking. By doing so, the number of states explored and
the runtime of model checking could be reduced. This, however, comes at the
risk of producing spurious model checking results (i.e. a final state might be
deemed reachable, although there is no corresponding reachable state in the
timed automaton).

5 Experimental Evaluation

We evaluate the checker on a set of benchmarks that is derived from Uppaal’s
standard benchmark suite [22]. Additionally, to cover the advanced modeling
features of committed locations and broadcast channels, we use a set of bench-
marks that is derived from the pacemaker models of Jiang et al. [17] and a
modified version of the FDDI benchmark with broadcast channels. A prototype
SML implementation of a timed automata model checker (Mlunta) is used to
compute the certificates. We use reachability properties of the form E♦ false to
enforce that the model checker explores the complete state space. The results are
given in Table 1. The problem size is specified as the number of automata in the
network. We report the total runtime (wall time) of:

1. the tandem consisting of Mlunta (using the first compression technique) and
the (verified) certificate checker, both compiled with MLton;

2. the individual runtime of the (verified) certificate checker for a varying number
of threads for parallel computation, compiled with Poly/ML as it is the only
SML compiler that supports multi-threading;

3. the runtime of Uppaal configured for depth-first search (like Mlunta);
4. the runtime of an unverified SML implementation of the certificate checker

based on Mlunta (compiled with MLton);
5. and the runtime of the fully verified model checker Munta [31] extended with

the improvements from sections 2 and 4 and compiled with MLton.

As can be seen from the results, the tandem is still one order of magnitude
slower than Uppaal, but certificate checking in isolation is also up to one order of
magnitude faster than the previous verified model checker [31]. Note that Mlunta
explores significantly more states than Uppaal and Munta for “Pacemaker”.
Multi-core scale beyond two threads is relatively unsatisfactory, however. In micro-
benchmarks, we have identified that the problem appears to be with memory
allocation on the heap, even if no data is shared among threads (in our case, only
the certificate is shared but successors are computed locally). There does not
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seem to be an obvious way to improve on this situation for SML implementations.
Finally, one can see that the verified certifier is not drastically slower than the
unverified implementation based on Mlunta, indicating that the verified certifier
is not missing any obvious significant optimizations.

Certifier for #threads

Model Size Uppaal Tandem Munta Unverif. 1-MLton 1 2 3 4

FDDI 8 0.33 0.79 1.01 0.14 0.21 0.99 0.64 0.57 0.53
10 5.93 1.77 2.50 0.40 0.45 2.13 1.36 1.26 1.20
12 92.66 3.93 5.42 0.90 1.20 3.41 2.33 2.25 2.18
14 1874.28 7.28 10.73 1.86 2.22 5.36 3.94 3.90 3.88
16 *** 12.80 19.51 3.47 3.72 11.09 6.49 6.50 6.51

FDDI broad 8 0.34 0.28 1.07 0.10 0.08 0.26 0.19 0.17 0.16

Fischer 5 0.24 2.78 6.33 0.72 0.53 1.76 1.07 0.98 0.91
6 34.74 143.72 377.70 40.99 26.58 40.60 25.47 24.16 23.67

CSMA 5 0.04 0.94 4.42 0.31 0.28 1.44 0.87 0.80 0.76
6 1.53 13.48 65.16 5.24 4.18 12.16 8.04 7.87 7.76

Mode

Pacemaker 1 0.02 0.16 0.37 0.03 0.03 0.25 0.16 0.14 0.13
2 0.02 0.75 3.20 0.17 0.26 1.23 0.75 0.68 0.65
3 0.03 1.39 4.23 0.34 0.46 2.53 1.55 1.40 1.31
4 0.02 11.80 0.70 3.24 3.71 12.13 8.38 6.69 6.66
5 0.02 30.84 0.86 9.13 10.07 26.60 18.58 18.15 17.95

Table 1: Benchmarks results on a machine with 16 GB RAM and an Intel(R) Core(TM)
i7-4610M CPU at 3.00GHz with two cores and two threads per core. The column
labeled “Tandem” gives the runtime for a combination of the unverified SML tool and
the verified certificate checker. The next column gives the runtime of the unverified
SML certifier, followed by the runtimes of the verified checker for a varying number of
threads. All times are given in seconds.

Table 2 gives the results of evaluating the different compression algorithms
on the same set of benchmarks. The second variant is always applied to the
compression result of the first variant to avoid trivial computations of the
convex hull. Variant 2c) (the most expensive one) can produce drastically smaller
certificates than any other variant, and its minimum compression factor is an
order of a magnitude higher than for any other variant. Nevertheless, only variants
1 and 2a) appear to be useful in practice, as they are relatively cheap to compute.
The other variants could prove useful if the certificates were produced by a
significantly more efficient model checker, such as Uppaal or TChecker [15]. On
a final note, we have constructed a more than 95% smaller but valid certificate
for the Fischer benchmark, suggesting that there is room for improvement on
the compression algorithms.
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Variant

Model Size 1 2a 2b 2c 2d 2e

FDDI 8 0.21 0.21 1.72 69.53 3.65 3.43

FDDI broadcast 8 0.00 48.94 48.94 48.94 1.06 1.06

Fischer 5 22.03 22.03 22.72 43.06 30.40 30.40

CSMA/CD 5 26.06 41.54 43.84 81.16 58.94 47.54
6 24.86 41.91 44.02 88.35 63.24 47.02

Mode

Pacemaker 1 16.07 25.00 30.80 58.04 29.02 29.02
2 24.00 26.38 30.37 58.68 35.87 35.22
3 12.96 17.62 19.23 46.92 25.30 25.01
4 13.82 20.02 23.60 41.48 26.16 24.71
5 17.14 22.48 25.46 39.69 28.18 26.88

Average 15.71 26.61 29.07 57.58 30.18 27.03

Table 2: Certificate compression factors (given in %).

6 Conclusion and Future Work

We have presented a verified certifier of unreachability certificates for a timed
automata. The certificates are ought to be produced by an unverified model
checker. Experimentation shows that verified certificate checking in isolation is up
to an order of magnitude faster than what was previously possible with a verified
model checker [31]. The performance of a tandem of an unverified model checker
and the verified certifier could be improved by replacing the certificate-producing
part with a highly optimized tool, possibly opening room to use some of the more
powerful certificate compression techniques we suggested above. As we pointed
out above, there appears to be further room for improvement on the certificate
compression algorithms as well.

Moreover, more sophisticated tools also employ more powerful abstraction
techniques, for which our proposed certification technique is still suitable—to a
large extent without requiring additional verification effort. An exception is the
implicit abstraction technique studied by Herbreteau et al. [14] as it does not
compute abstractions of zones explicitly but rather checks subsumptions of the
form Z ⊆ α(Z ′) implicitly, meaning that one would have to prove correctness of
the subsumption check to validate certificates produced by such a model checking
process.

Finally, we intend to extend this work to certification of emptiness of timed
Büchi automata in the future, using the idea of subsumption graphs [13] and
relying on an unverified model checker implementation for timed Büchi automata
to produce the certificates [13,18].
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Data Availability Statement

The datasets generated and/or analyzed during the current study are available in
the Zenodo repository [32]: https://doi.org/10.5281/zenodo.3679245. The artifact
has been tested on the TACAS artifact evaluation VM [12].
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Abstract. Model checkers for timed automata are widely used to verify
safety-critical, real-time systems. State-of-the-art tools achieve scalabil-
ity by intricate abstractions. We aim at further increasing the trust in
their verification results, in particular for checking liveness properties.
To this end, we develop an approach for extracting certificates for the
emptiness of timed Büchi automata from model checking runs. These
certificates can be double checked by a certifier that we formally verify
in Isabelle/HOL. We study liveness certificates in an abstract setting and
show that our approach is sound and complete. To also demonstrate its
feasibility, we extract certificates for several models checked by TChecker
and Imitator, and validate them with our verified certifier.

Keywords: Timed automata · Certification · Model checking

1 Introduction

Real-time systems are notoriously hard to analyze due to intricate timing con-
straints. A number of model checkers for timed automata (TA) [1] have been
implemented and successfully applied to the verification of safety-critical timed
systems. Checking liveness properties of timed automata has revealed to be
particularly important, as emphasized by a bug in the standard model of the
CSMA/CD protocol that has been discovered only recently [16]. Several algo-
rithms have been implemented to scale the verification of liveness specifications
to larger systems [16,22,26,32,33]. Users of timed automata model checkers put
a high amount of trust in their verification results. However, as verification algo-
rithms get more complex, it becomes highly desirable to justify the users’ confi-
dence in their correctness.

There are two main approaches to ensure high degrees of trustworthiness
of automated tools: verification and certification. In the first approach, correct-
ness of the verification tool (its implementation and its theory) is proved using
another semi-automated method. This technique has been applied to model
checkers [13,34] and SAT solvers [7]. In the second approach, the automated
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tool produces a certificate, i.e. a proof for its verification result. Then an inde-
pendent tool, the certifier, checks that the proof is indeed valid. In the best case,
the certifier itself is formally verified. Examples include SAT certificate checking
[20,23] and unreachability checking of TA [37].

The certification approach promises many advantages over verification, since
certificate checking is much simpler than producing the certificate. This dras-
tically reduces the burden of semi-automated verification, which is a laborious
task. While proving correctness of a competitive verification tool might be pro-
hibitively complicated, it may be feasible to construct an efficient verified certifier
instead (in the case of SAT [23], the verified certifier was even faster than the orig-
inal SAT solvers). Finally, there is a wide variety of model checking algorithms
and high-performance implementations, which are suited for different situations.
Instead of verifying them one by one, these tools could produce certificates in a
common format, so they can be checked by a single verified certifier.

1.1 Related Work

Model checking LTL properties for timed automata [1,16,22,26,32,33] consists
of three conceptual steps: the LTL formula is transformed into a Büchi automa-
ton, the semantics of the TA is computed as a (finite) zone graph, and the cross-
product of these objects is checked for accepting cycles. The two main alternative
algorithms for detecting accepting cycles are Nested Depth-First Search (NDFS)
and the inspection of the Strongly Connected Components (SCC). The NDFS
algorithm was generalized to TA in LTSmin [21,22] and extended to parametric
TA in Imitator [2,28]. The SCC-based algorithm has also been generalized to
TA in TChecker [16,19]. Both algorithms support abstraction and subsumption
between states to reduce the state space.

Verified Model Checking. An early approach targeted the verification of a μ-
calculus model checker in Coq [27]. The NDFS algorithm was checked in the
program verifier Dafny [25,31], while a multi-core version of it was checked in the
program verifier Vercors [8,30]. A complete, executable LTL model checker was
verified in the interactive theorem prover Isabelle/HOL [13] and later extended
with partial-order reduction [9]. A verified model checker for TA, Munta [34],
has also been constructed in Isabelle/HOL [29,36].

Certification. A certifier for reachability properties in TA has been proposed
very recently [37]. A certification approach for LTL model checking was proposed
in [15]. It uses k-liveness to reduce the problem to IC3-like invariant checking.

Contributions. In this paper, we extend certificates for unreachability of TA [37]
to certificates for liveness properties, i.e. emptiness of timed Büchi automata
(TBA). We propose a common certification approach for tools using differ-
ent algorithms and various abstractions [16,22]. These certificates can be much
smaller than the original state space, due to the use of subsumption and abstrac-
tion. The difficulty here is that a careless application of subsumption can intro-
duce spurious accepting cycles. Our new contributions are1:
1 An artifact containing our code and benchmarks is available on figshare [35].

https://doi.org/10.6084/m9.figshare.12620582.v1
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– We introduce an abstract theory for certificates of Büchi emptiness, which
can be instantiated for zone graphs of TBA with subsumptions.

– We developed a fully, mechanically verified certifier in Isabelle/HOL. In par-
ticular, our certifier retains the ability to check certificates in parallel.

– We show that the previous certifier for reachability and our extension to Büchi
emptiness are compatible with implicit abstraction techniques for TA.

– We demonstrate feasibility by generating and checking certificates for two
external model checkers, representing the NDFS and the SCC approach.

Note that checking counter-examples is easy in practice, but checking “true”
model checking results is much harder. This is exactly what we address with
certifying emptiness of TBA. The main application would be to increase the
confidence in safety-critical real-time applications, which have been verified with
an existing model checker. Another possible application of the certifier would be
to facilitate a new model checking contest for liveness properties of TA.

2 Timed Automata and Model Checking

In this section, we set the stage for the rest of the paper by recapitulating the
basic notions of TA and summarizing the essential concepts of TBA verification.

2.1 Verification Problems for Timed Automata

A TA A = (Q, q0, F, I, T,X) is a finite automaton extended with a finite set of
clocks X. Q is a finite set of states with initial state q0 ∈ Q and accepting states
F ⊆ Q. I associates an invariant constraint to every state and T associates
a guard constraint g and clock reset R ⊆ X to each transition. Here (clock)
constraints are conjunctions of formulas x#c, where x is a clock, c ∈ N and
# ∈ {<,≤,=,≥, >}. Observe that we exclude diagonal constraints of the form
x − y#c. An example of a timed automaton is depicted in Fig. 1.

A clock valuation v : X → R≥0 associates a non-negative real value to
each clock x ∈ X. A configuration is a pair (q, v) where q is a state and v is a
clock valuation. The initial configuration is (q0,0). Without loss of generality,
we assume that the initial clock valuation 0 satisfies the invariant I(q0). There
are two kind of steps from a configuration (q, v):

delay (q, v) →δ (q, v′) for a delay δ ∈ R≥0 if for every clock x ∈ X, v′(x) =
v(x) + δ, and v′ satisfies the invariant I(q);

transition (q, v) →t (q′, v′) for transition t = (q, g,R, q′) ∈ T if v satisfies the
guard g, v′(x) = 0 if x ∈ R and v′(x) = v(x) otherwise, and v′ satisfies I(q′).

q0 q1 q2

x ≥ 1 x < 2, x := 0

x ≥ 2

Fig. 1. Timed (Büchi) automaton with initial state q0 and accepting state q1.
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We write (q, v) →δ,t (q′, v′) if there exists a configuration (q, v′′) such that
(q, v) →δ (q, v′′) →t (q′, v′). A run of a timed automaton is an (infinite) sequence
of transitions of the form: (q0,0) →δ0,t0 (q1, v1) →δ1,t1 · · · . A run is non-Zeno if
the sum of its delays is unbounded.

The reachability problem asks, given a timed automaton A, if there exists
a finite run from the initial configuration (q0,0) to an accepting configuration
(qn, vn) such that qn ∈ F .

In timed Büchi automata (TBA), F is interpreted as a Büchi acceptance
condition. The liveness problem then asks, whether a given TBA A is non-empty,
i.e. if there is an infinite non-Zeno run from the initial configuration (q0,0) that
visits infinitely many accepting configurations (qi, vi) with qi ∈ F . In this paper,
we work under the common assumption that TA only admit non-Zeno runs (see
[33] for a construction to enforce this on every TA).

Both problems are known to be PSPACE-complete [1]. Due to density of
time, these two verification problems cannot be solved directly from the transi-
tion system induced by configurations and steps. A well-known solution to this
problem is the region graph construction of Alur and Dill [1]. Yet, it is not used
in practice, as the region graph is enormous even for rather simple automata.

2.2 Zone Graph and Abstractions

The practical solution that is implemented in state-of-the-art tools like
UPPAAL [24], TChecker [19] and the Imitator tool [2] is based on zones. Let us
fix a set of clocks X. A zone Z is a set of valuations represented as a conjunction
of constraints of the form x#c or x − y#c for x, y ∈ X, # ∈ {<,≤,=,≥, >}
and c ∈ Z. Zones can be efficiently represented using Difference Bound Matrices
(DBMs) [12]. Moreover, zones admit a canonical representation, hence equality
and inclusion of two zones can be checked efficiently [6].

We now define the symbolic semantics [11] of a TA A. Let q, q′ be two states
of A, and let W,W ′ ⊆ R

X
≥0 be two non-empty sets of clock valuations. We

have (q,W ) ⇒t (q′,W ′) for some transition t ∈ T , if W ′ is the set of all clock
valuations v′ for which there exists a valuation v ∈ W and a delay δ ∈ R≥0 such
that (q, v) →δ,t (q′, v′). In other words, W ′ is the strongest postcondition of W
along transition t. The symbolic semantics of A , denoted by ⇒, is the union of all
⇒t over t ∈ T . The symbolic semantics is a sound and complete representation
of the finite and infinite runs of A. Indeed, A admits a finite (resp. infinite) run
(q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) →δn,tn . . . if and only if there exists a
finite (resp. infinite) path (q0,W0) ⇒t0 (q1,W1) ⇒t1 . . . (qn,Wn) ⇒tn . . . such
that vi ∈ Wi for all i ≥ 0 and W0 = {0} [11]. It is well-known that if Z is a zone,
and (q, Z) ⇒ (q′,W ′) then W ′ is a zone as well [6]. Since {0} is a zone, all the
reachable nodes in ⇒ are zones as well. The reachable part of ⇒ is called the
zone graph of A. The nodes of the zone graph are denoted as (q, Z) in the sequel
and the zone graph is simply denoted by its transition relation ⇒. Figure 2a
depicts the zone graph of the automaton in Fig. 1.
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q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0 q2, x ≥ 2

q1, x ≥ 2

(a) Zone Graph

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(b) Liveness compatible

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(c) Not compatible

Fig. 2. Three subsumption graphs for the automaton in Fig. 1.

Still, the zone graph of a timed automaton may be infinite. As a remedy,
finite abstractions have been introduced in the literature [4,5,11].

An abstraction α transforms a zone Z into a zone α(Z) such that Z ⊆
α(Z), α(α(Z)) = α(Z), and every run that is feasible from a valuation v′ ∈
α(Z) is simulated by a run from a valuation v ∈ Z. Such abstractions are
called extrapolations in the literature [5]. An abstraction is finite when the set
of abstracted zones {α(Z) |Z is a zone} is finite. Given an abstraction α, the
abstracted zone graph has initial node (q, α({0})) and transitions of the form
(q, Z) ⇒t

α (q′, α(Z ′)) for each transition (q, Z) ⇒t (q′, Z ′). Let ⇒α denote the
union of all ⇒t

α over t ∈ T . The abstracted zone graph is sound and complete:
there is a run (q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) (→δn,tn . . .) in A if and
only if there is an infinite path (q0, Z0) ⇒t0

α (q1, Z1) ⇒t1
α . . . (qn, Zn) (⇒tn

α . . .)
with vi ∈ Zi for all i ≥ 0. Hence, when α is a finite abstraction, the verification
problems for a TA A can be algorithmically solved from its abstracted zone
graph. The abstraction Extra+LU [5] is implemented by state-of-the-art verification
tools UPPAAL [24] and TChecker [19]. Our results hold for any finite, sound and
complete abstraction. The abstracted zone graph is denoted ⇒α in the sequel.

2.3 Subsumption

Consider the TA in Fig. 1 and its zone graph in Fig. 2a. Observe that every run
that is feasible from node (q1, x ≥ 1) is also feasible from (q1, x ≥ 0) since the
zone x ≥ 1 is included in the zone x ≥ 0 (recall that zones are sets of clock
valuations). We say that (q1, x ≥ 1) is subsumed by the node (q1, x ≥ 0). As a
result, if an accepting node is (repeatedly) reachable from (q1, x ≥ 1), then an
accepting node is also (repeatedly) reachable from (q1, x ≥ 0).

This leads to a crucial optimization for the verification of TA: reachability
and liveness verification problems can be solved without exploring subsumed
nodes. This optimization is called inclusion abstraction in [11]. Figure 2b shows
the graph obtained when the exploration is stopped at node (q1, x ≥ 1). All
the runs that are feasible from (q1, x ≥ 1) are still represented in this graph,
as they can be obtained by first taking the subsumption edge from (q1, x ≥ 1)
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to (q1, x ≥ 0) (depicted as a blue squiggly arrow), and then any sequence of
(actual or subsumption) edges from (q1, x ≥ 0). Such graphs with both actual
and subsumption edges are called subsumption graphs in the sequel.

It is tempting to use subsumption as much as possible, and only explore
maximal nodes (w.r.t. zone inclusion). While this is correct for the verification
of reachability properties, subsumption must be used with care for liveness ver-
ification. The bottom node (q1, x ≥ 2) in Fig. 2b is also subsumed by the node
(q1, x ≥ 0). A subsumption edge can thus be added between these two nodes
as depicted in Fig. 2c. However, due to this new subsumption edge, the graph
has a Büchi accepting path (of actual and subsumption edges) that does not
correspond to any run of the timed automaton in Fig. 1. Indeed, subsumption
leads to an overapproximation of the runs of the automaton. While all the runs
from node (q1, x ≥ 2) are feasible from node (q1, x ≥ 0), the converse is not true:
the transition q1

x<2,x:=0−−−−−−→ q2 is not feasible from (q1, x ≥ 2).
The subsumption graphs in Fig. 2b and 2c can be seen as certificates issued

by verification algorithms. The graph in Fig. 2b is a valid certificate for live-
ness verification as 1) it contains no accepting paths, and 2) every run of the
automaton is represented in the graph. In constrast, the graph in Fig. 2c is not a
valid certificate for liveness verification as it has an accepting path that does not
correspond to any run of the automaton. In the next sections, we introduce an
algorithm to check the validity of certificates produced by liveness verification
algorithms, as well as a proven implementation of the algorithm.

3 Certificates for Büchi Emptiness

In this section, we study certificates for Büchi emptiness in the setting of a slight
variation of well-structured transition systems [14]. First, we present reachability
invariants, which certify that every run in the original system can be simulated
on the states given in the invariant. Next, we show that the absence of certain
cycles in the invariant is sufficient to prove that the original transition system
does not contain accepting runs. Then, we add a proof of absence of these cycles
to the certificate. Finally, we instantiate this framework for the case of TA.

3.1 Self-simulating Transition Systems

A transition system (S,→) consists of a set of states S and a transition relation
→ ⊆ S × S. If S is clear from the context, we simply write →. We say that
s1 → s2 → . . . → sn is a path or that s1 → s2 → . . . is an (infinite) run in → if
si → si+1 for all i. Given an initial state s0 and a predicate for accepting states
φ, the path s0 → s1 → . . . → sn is accepting if φ(sn). A run s0 → s1 → . . . is
an (accepting) Büchi run if φ(si) for infinitely many i.



64 S. Wimmer et al.

A transition system → is simulated by the transition system →′ if there exists
a simulation relation � such that:

∀s, s′, t. s � s′ ∧ s → t −→ ∃t′. s′ →′ t′ ∧ t � t′

This simulation property can be lifted to paths and runs:

Proposition 1. If s1 → s2 → . . . → sn (→ . . .) is a path (run) and s1 � t1,
then there is a path (run) t1 →′ t2 →′ . . . →′ tn (→ . . .) with si � ti for all i.

Definition 1. A self-simulating transition system (SSTS) (S,→,�) consists of
a transition system (S,→) and a quasi-order (a reflexive and transitive relation)
� ⊆ S × S on states such that → is simulated by → itself for �.

In comparison to well-structured transition systems [14], our definition is
slightly more relaxed, as we only demand that � is a quasi order, not a well-
quasi order. Intuitively, transitivity of � is needed to allow for correct simulation
by arbitrary “bigger” nodes. In TA, � corresponds to subsumption ⊆, and →
corresponds to ⇒.

3.2 Reachability Invariants on Abstract Transition Systems

In this section, we introduce the concept of reachability invariants for SSTS.

Definition 2. A set I ⊆ S is a reachability invariant of an SSTS (S,→,�) iff
for all s ∈ I and t with s → t, there exists a t′ ∈ I such that t � t′.

A useful invariant is also fulfilled by some inital state. Such states will show up in
theorems below. In the remainder, unless noted otherwise, (S,→,�) is an SSTS
and I is a reachability invariant of it. Figures 2a to 2c all form a reachability
invariant for the zone graph from Fig. 2a.

As was observed by Wimmer and von Mutius [37], reachability invariants can
directly be applied as certificates for unreachability.

Definition 3. A predicate φ (for accepting states) is compatible with an SSTS
(S,→,�) iff for all s, s′ ∈ S, if φ(s) and s � s′, then also φ(s′).

An invariant I can now certify that no accepting state s with φ(s) is reachable:

Theorem 1. If ∀s ∈ I. ¬φ(s), for some compatible φ, s0 ∈ S and s′
0 ∈ I with

s0 � s′
0, then there is no accepting path s0 → s1 → . . . → sn with φ(sn).

Note that this approach to certifying unreachability is also complete: if no
accepting state is reachable from s0 in (S,→,�), we can simply set I := S.
However, this is not practical for infinite transition systems, of course. Thus we
will revisit the question of completeness for TA below.

Finally, we observe that the invariant can be limited to a restriction of �.
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Definition 4. A pair (I,�) of a set I ⊆ S and a binary relation � is a restricted
reachability invariant of an SSTS (S,→,�) iff:

1. For all s ∈ I and t with s → t, there exists a t′ ∈ I such that t � t′.
2. For all s, t, if s � t, then also s � t.

In Figure 2, the �-arrows would play the role of �. In Figure 2b, (q1, x ≥ 0)
is subsumed by both (q1, x ≥ 1) and (q1, x ≥ 2), but as we have seen in Figure
2c, it is crucial to disregard these subsumptions. Therefore we need to consider
restricted reachability invariants.

For any restricted reachability invariant, we can define a simulating transition
system →�:

Definition 5. The transition system (S,→�) is defined such that s →� t′ iff
there exists a t such that s → t and t � t′.

This simulation theorem is the key property of restricted reachability invariants2:

Theorem 2. Given s1 � t1 with t1 ∈ I, if s1 → s2 → . . . → sn (→ . . .) is a
path (run), then there is a path (run) t1 →� t2 →� . . . →� tn (→ . . .) such that
si � ti and ti ∈ I for all i.

Analogously to →�, the transition system →� can be defined, and Theorem 2
can be proved for →�. This is used for the proof of Theorem 1 (see [37]).

3.3 Büchi Emptiness on Abstract Transition Systems

In this section, we first give a general means of certifying that a transition system
does not contain a cycle, and then combine the idea with reachability invariants
to certify the absence of Büchi runs on SSTS.

Definition 6. Given a transition system → and an accepting state predicate φ,
a topological numbering of → is a function f with an integer range such that:

1. For all s, t, if s → t, then f(s) ≥ f(t).
2. For all s, t, if s → t and φ(s), then f(s) > f(t).

Proposition 2. Let f be a topological numbering of → and φ. If there exists a
path of the form s → s1 → s2 → . . . → s, then ¬φ(s).

These certificates are also complete:

Proposition 3. If there is no path s → s1 → s2 → . . . → s with φ(s) in →,
then the following are topological numberings for →.

1. The number of accepting states that are reachable from a node: f(s) :=
|{x | s →∗ x ∧ φ(x)}| (assuming {x | s →∗ x ∧ φ(x)} is finite for any s).

2 All proofs are omitted for brevity and can be found in the appendix of the online
version of this paper on arXiv: https://arxiv.org/abs/2007.04150.

https://arxiv.org/abs/2007.04150
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2. If h is a topological numbering (in the classical sense) of the strongly connected
components (SCCs) of →, then set g(s) := h(C) if s ∈ C.

We now lift this idea to the case of (restricted) reachability invariants.

Definition 7. Given an SSTS (S,→,�), an accepting state predicate φ, and
a corresponding restricted reachability invariant (I,�), a restricted topological
numbering of (S,→,�) is a function f with an integer range such that:

1. For all s, t′ ∈ I and t ∈ S, if s → t, and t � t′, then f(s) ≥ f(t′).
2. For all s, t′ ∈ I and t ∈ S, if s → t, t � t′, and φ(s), then f(s) > f(t′).

Moreover, let �� be the restriction of →� to I, i.e. the transition system such
that s �� t′ iff s, t′ ∈ I and there exists a t such that s → t and t � t′.

Now, f is clearly a topological numbering for ��. Thus �� is free of accepting
cycles. Additionally, the transition system �� trivially simulates →� with s � s′

iff s′ = s and s ∈ I. Therefore, any accepting cycle s →+
� s in →� with s ∈ I

and φ(s) yields an accepting cycle s �+
� s. Hence →� is free of accepting cycles.

From this, we conclude our main theorem that allows one to certify absence
of Büchi runs in a transition system →.

Theorem 3. Let f be a restricted topological numbering of (S,→,�) for a com-
patible predicate φ and a finite restricted reachability invariant (I,�). Then, for
any initial state s0 ∈ S with s0 � t0 for t0 ∈ I, there is no Büchi run from s0.

In practice, a certificate can now be given as a finite restricted reachability invari-
ant I as described above, and a corresponding restricted topological numbering f .
Both properties can be checked locally for each individual state in I.

3.4 Instantiation for Timed Automata

We now want to instantiate this abstract certification framework for the concrete
case of TBA. Our goal is to certify that the zone graph ⇒ does not contain any
Büchi runs. As the zone graph is complete, this implies that the underlying
TBA is empty. Thus we set → := ⇒. Subsumptions in the zone graph shall
correspond to the self-simulation relation of the SSTS. Hence we define � such
that (q, Z) � (q′, Z ′) iff q′ = q and Z ⊆ Z ′.

To certify unreachability, it is sufficient to consider arbitrary subsumptions
in the zone graph, i.e. � := � [37]. In other words it is sufficient to check that
the given certificate I is a reachability invariant for (S,→,�). We have not yet
given the set of states S. Abstractly, S is simply the set of non-empty states, i.e.
S := {(q, Z) |Z 
= ∅}. If it was allowed to reach empty zones, then soundness
of the zone graph would not be given. In practice, the certifier needs to be
able to compute ⇒ effectively, typically using the DBM representation of zones.
To this end one wants to add the assumption on states that all DBMs are in
canonical form. One needs to ensure that states are split according to φ, i.e.
∀(q, Z) ∈ S.Z ⊆ Φ(q) ∨ Z ∩ Φ(q) = ∅ where Φ(q) = {v |φ(q, v)}. This is trivial
for commonly used properties that concern only the finite state part.
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Following these considerations, we propose the following certifier for the
emptiness of TBA. A certificate C is a set of triplets (q, Z, i) where q is a discrete
state, Z is a corresponding zone, and i is the topological number for (q, Z). The
certifier runs Algorithm 1 on this certificate. The algorithm extends the one by
Wimmer and Mutius [37] with the topological numbers for liveness checking.

Theorem 4. If Büchi-Emptiness(φ,C, q0) accepts the certificate, then ⇒DBM

has no Büchi run for φ. Consequently, the underlying TBA is empty.

The proof constructs a suitable � such that (q, Z) � (q, Z ′) if Z ⊆ Z ′ and
(q, Z ′, k) ∈ C, where k is selected to beminimal. Setting I := {(q, Z) | ∃i. (q, Z, i) ∈
C)} and f(q, Z) := min{i | (q, Z, i) ∈ C}, Theorem 3 can be applied.

Algorithm 1. Certifier for the emptiness of TBA
1: procedure Büchi-Emptiness(φ, C, q0)
2: for all (q, Z, i) ∈ C do � All DBMs are well-formed
3: if Z = ∅ ∨ Z is not canonical
4: then reject certificate

5: if �(q0, Z0, i) ∈ C. {0} ⊆ Z0 � The initial state is covered
6: then reject certificate
7: for all (q, Z, i) ∈ C do � The certificate is:
8: for all (q1, Z1) s.t. (q, Z) ⇒ (q1, Z1) do
9: if (�(q1, Z

′
1, j) ∈ C. Z1 ⊆ Z′

1 � an invariant,
∧ (φ(q) −→ i > j) ∧ i ≥ j) � and a topological numbering

10: then reject certificate

11: accept certificate

The algorithm inherits several beneficial properties from [37]. First, it can
easily be parallelized. Most importantly however, the certifier does not need
to compute an abstraction operation α. Suppose the model checker starts with
a state (q0, {0}) and explores the transition (q0, {0}) ⇒ (q1, Z1). The model
checker could then abstract zone Z1 to α(Z1), and explore more edges from
(q1, α(Z1)), e.g. (q1, α(Z1)) ⇒ (q2, Z2). The certificate just needs to include
(q0, {0}), (q1, α(Z1)), and (q2, α(Z2)), and the certificate checker just needs to
check the following inclusions: {0} ⊆ {0}, Z1 ⊆ α(Z1), and Z2 ⊆ α(Z2). The
checker does not need to compute α as α(Z1) and α(Z2) are part of the certificate.

It is rather easy to see that these certificates are also complete for timed
automata. For any finite abstraction α, the abstracted zone graph ⇒α is finite
and complete. Thus, for a starting state (q0, {0}) the set

I := {(q, Z) | (q0, {0}) ⇒∗
α (q, Z)}

is a trivial finite reachability invariant that can be computed effectively for com-
mon abstractions α. Moreover, if the underlying TBA is empty, then ⇒α cannot
contain a Büchi run either, since the abstract zone graph is complete. Because
⇒α is finite, this means it cannot contain a cycle through φ. Hence a forward
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numbering of I can be given by computing the strongly connected components
of I. However, this type of certificate is not of practical interest as subsump-
tions are not considered. How certificates can be obtained for model checking
algorithms that make use of subsumption is the topic of Sect. 5.1.

4 Incorporating Advanced Abstraction Techniques

We have already discussed that the techniques that were presented above are in
principle agnostic to the concrete abstraction α used. This, however, is only true
for standard verification algorithms for T(B)A that use zone inclusion Z ⊆ Z ′ as
a simulation relation on the abstract zone graph. There is also the noteworthy
abstraction α�LU [5], which is the coarsest zone abstraction that can be defined
from clock bounds L,U [18]. Herbreteau et al. have shown that even though
α�LU (Z) is usually not a zone, it can be checked whether Z ⊆ α�LU (Z ′) directly
from the DBM representation of Z and Z ′, without computing α�LU (Z ′) [18].
Hence, one can use α�LU -subsumption over zones, Z ⊆ α�LU (Z ′), instead of
standard inclusion Z ⊆ Z ′ to explore fewer symbolic states. This technique can
also be integrated with our certification approach. This time, we will need more
knowledge about the concrete abstraction α, however.

We first describe the concept of time-abstract simulations, on which the def-
inition of α�LU is based.

Definition 8. A time-abstract simulation between clock valuations is a quasi-
order � such that if v � v′ and (q, v) →δ,t (q1, v1) then there exist δ′ and v′

1

such that (q, v′) →δ′,t (q1, v′
1) ∧ v1 � v′

1.

Behrmann et al. defined the simulation �LU based on the clock bounds L and U ,
and showed that it is a time-abstract simulation [5] (in fact one can show that
�LU is even a simulation, i.e. δ′ = δ). For any �, one can define the corresponding
abstraction α�(Z) = {v | ∃v′ ∈ Z. v � v′}. This yields a sound and complete
abstraction for any time-abstract simulation � [5]. Observe that α�(Z) is the set
of all valuations that are simulated by a valuation in Z w.r.t. �. As a result, every
sequence of transitions feasible from α�(Z) is also feasible from Z (although with
different delays).

The implicit abstraction technique based on the subsumption check Z ⊆
α�(Z ′) is compatible with our certification approach for any α� for which � is
a time-abstract simulation, and in particular α�LU . Actually, we are still able to
use algorithm Büchi-Emptiness with the only modification that the condition
Z1 ⊆ Z ′

1 is replaced with Z1 ⊆ α�(Z ′
1). We will justify this by showing that if

the algorithm accepts the certificate, then it represents a restricted reachability
invariant with a suitable topological numbering for ⇒α� . This means that ⇒α�
does not have a Büchi run (Theorem 3), which, as α� is a complete abstraction,
implies that the underlying TBA does not have a Büchi run either.

We first prove the following monotonicity property (which can be seen as a
generalization of Lemma 4 in the work of Herbreteau et al. [18]).
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Proposition 4. Let � be a time-abstract simulation. If α�(W ) ⊆ α�(W ′),
(q,W ) ⇒t (q1,W1), and (q,W ′) ⇒t (q1,W ′

1), then α�(W1) ⊆ α�(W ′
1).

Reminding ourselves that α� is idempotent, if follows that if (q,W ) ⇒t (q1,W1)
and (q, α�(W )) ⇒t (q1,W ′

1) for some states q, q1, and sets of valuations W ,
W1, and W ′

1, then α�(W1) = α�(W ′
1). In other words, ⇒ simulates ⇒α� for �

defined as (q,W ) � (q, Z) ←→ W = α�(Z).
Now, we show that the conditions of Definitions 4 and 7 can be transferred

along this simulation.

Theorem 5. Assume that the following conditions hold:

1. For all states q, and zones Z, Z ′, Z ′′, if (q, Z) � (q, Z ′), then Z ⊆ α�(Z ′).
Moreover, if α�(Z) = α�(Z ′) and (q, Z) � (q, Z ′′), then (q, Z ′) � (q, Z ′′).

2. For all q, Z, if φ((q, α�(Z))), then φ((q, Z)).
3. (I,�) satisfies condition (1) of Definition 4 for ⇒.
4. f is a restricted topological numbering for ⇒, (I,�), and φ.

Let (q,W ) �′ (q,W ′) ←→ ∃Z,Z ′.W = α�(Z) ∧ W ′ = α�(Z ′) ∧ (q, Z) � (q, Z ′),
I ′ := {s′ | ∃s ∈ I. s � s′} and f ′(s′) := Min {f(s) | s ∈ I ∧ s � s′}. Then

1. (I ′,�′) is a restricted reachability invariant for (⇒α� ,⊆).
2. f ′ is a restricted topological numbering for ⇒α� , (I ′,�′), and φ.

Algorithm Büchi-Emptiness ensures that there exist an invariant (I,�) and
a numbering f that fulfill the conditions of Theorem 5 for ⇒ (as indicated after
Theorem 4). Thus, if the algorithm accepts the certificate, there is a restricted
reachability invariant (I ′,�′) with a corresponding topological numbering f ′ for
⇒α� . Hence ⇒α� does not have a Büchi run.

5 Evaluation

In this section, we first give a brief description of the model checking algorithms
we consider and describe how certificates can be extracted from them. Then,
we outline the general architecture of our certification tool chain, and finally we
present some experiments on standard TA models.

5.1 Extracting Certificates from Model Checkers

We consider the two state-of-the-art algorithms for checking Büchi emptiness for
TA: the NDFS-based algorithm by Laarman et al. [22] and the iterative SCC-
based algorithm by Herbreteau et al. [16]. Both algorithms can be applied to
any abstracted zone graph ⇒α for a finite, sound and complete abstraction α.
As was noted by Herbreteau et al. [16], they also have in common that their
correctness can be justified on the basis that they both compute subsumption
graphs that are liveness compatible, in the sense that they do not contain any
cycle with an accepting node and a subsumption edge.
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Considering NDFS for TA from [22] more closely, it prunes the search space
by using subsumption in certain safe places. In particular, the outer (blue) search
is pruned when it reaches a state s that is subsumed by a state on which the
inner (red) search has been called, i.e. s � t and t is red. In order to generate
a liveness-compatible subsumption graph, the blue search exports all the states
which are not subsumed along with their →-successors. Moreover, the algorithm
exports �-edges as soon as the pruning by subsumption is applied.

The iterative algorithm from [16] interleaves reachability analysis and SCC
decompositions. The reachability analysis computes a subsumption graph with
maximal subsumption: a subsumption edge s � t′ is added whenever a new state t
is visited from s, and t is subsumed by some visited state t′. The resulting graph
→ ∪ � is a subsumption graph that preserves state reachability, but that may not
be liveness compatible. Therefore, an SCC decomposition is run, and all subsump-
tion edges from SCCs that contain both an accepting node and a subsumption edge
are removed. States which are not subsumed anymore are re-explored in the next
iteration of the main loop. Upon termination, the subsumption graph → ∪ � is
liveness compatible.

Both algorithms compute liveness compatible subsumption graphs. In order
to obtain a certificate we run one extra SCC decomposition of the graph with
→ ∪ �-edges from which we compute a topological ordering.

5.2 General Architecture

Our certifier is implemented as an extension of the tool Munta [34], which has
been fully verified in Isabelle/HOL [36,37]. Figure 3 depicts the architecture of
our tool chain to certify the emptiness of a given TBA. The model (a TBA)
and the acceptance property are given in the input format of Munta. For the
model checker in the middle, we used Imitator and TChecker. In a first step,
the Munta model is translated to an input model for the model checker. The
model checker decides whether the given TBA is empty. If not, then either the
model checker’s answer is correct or it has found a spurious counterexample; in
both cases no certificate can be extracted. Otherwise, the model checker emits
a certificate consisting of a number of symbolic states and the set of edges in
the subsumption graph. The latter can either include proper transitions (→)
and subsumptions (�) (this is done for Imitator with NDFS and subsumption),
or the edges that merge these two types (�’) (which is done for TChecker and
for Imitator with state merging enabled, see Sect. 5.3). In either case, in the
next step where the certificate is translated to Munta’s binary input format for
certificates, the SCC numbers (c.f. Proposition 3) are re-computed blindly from
these edges. This step additionally makes use of a renaming dictionary to map
from human readable labels for states, actions, etc., to natural numbers.

Finally, the TBA model, the translated certificate, and the renaming are given
to Munta. If it accepts the certificate, then there is an Isabelle/HOL theorem
that guarantees that the given TBA is indeed empty. If the certificate is rejected,
any of the steps in the tool chain could have failed. Note that the basis of trust
is minimal. One just needs to ensure that the model represents what one has
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Fig. 3. Workflow of the certifier pipeline. The dashed line is the trust boundary. If the
correct model is given, then the answer on the right can be trusted.

in mind, and to trust the correctness of Munta. To trust Munta, one essentially
needs to trust its TBA semantics, which is less than 200 lines long, some core
parts of Isabelle/HOL, and an SML compiler (MLton in our case). For details,
we refer the interested reader to previous publications on Munta [34,37].

5.3 Experiments

We have evaluated our approach on the TBA models that were also used by
Herbreteau et al. [16]. These are inspired by standard TA benchmarks, and all
consist of the product of a TA model and an additional Büchi automaton that
encodes the complement of the language of a given LTL formula that one wants
to check. Details are given by Herbreteau et al. [16].

For Imitator we tried two methods: NDFS with subsumption and reachability
analyis with merging [3]. Imitator does not apply abstractions (since it was
designed for parametric TA), so the full zone graph is often infinite and most
NDFS runs fail. The one that succeeds generates a valid certificate. Merging
tries to reduce the number of zones, by computing the exact convex hull of
zones. This creates new zones that could subsume several existing ones, and
often yields a finite zone graph. The certificate produced by merging is always
a reachability invariant but not necessarily a subsumption graph. Merging may
introduce spurious cycles, in which case the certificate is not liveness compatible;
these cases are caught by the Munta certifier. If there are no (spurious) accepting
cycles, we obtain a valid and quite small certificate. Note that the generalization
from subsumption graphs to our certificates is crucial to allow for merging.

Table 1 summarizes our experimental results. TChecker was run with the
algorithm from [16] and [22] and Imitator with the algorithm from [22], and with
a reachability procedure with full merging. The *** entries indicate cases where
Imitator did not terminate within 30 s. The results show that the certifier accepts
those certificates that we expect it to accept, but also rejects those that stem from
subsumption graphs that are not liveness compatible. Moreover, the certifier was
fully verified in Isabelle/HOL and still yields reasonable performance, certifying
models with more than a 100 k symbolic states in under 230 s.
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Table 1. Benchmark results on a 2017 MacBook Pro with 16 GB RAM and a Quad-
Core Intel Core i7 CPU at 3.1 GHz. For each algorithm, we show whether the certificate
was accepted, the number of DBMs in the certificate, and the time for certificate
checking on a single core in seconds.

Model TChecker Imitator

Iterative SCC NDFS Merge NDFS

CC1 ✓ 57 0.01 ✓ 3281 0.06 ✓ 58 0.01 ***

CC4 ✓ 195858 221.56 ✓ 32575 7.75 *** ***

CC5 ✓ 65639 30.63 ✓ 143057 218.98 *** ***

FD1 ✓ 214 0.02 ✓ 677 0.03 ✗ 294 0.02 ✓ 1518 0.11

FI1 ✓ 65 0.01 ✓ 71 0.00 ✓ 136 0.00 ***

FI2 ✓ 314 0.01 ✓ 344 0.01 ✓ 589 0.01 ***

FI4 ✓ 204 0.00 ✓ 224 0.01 ✓ 793 0.01 ***

FI5 ✓ 3091 0.13 ✓ 2392 0.09 ✗ 863 0.03 ***

6 Conclusion

Starting from an abstract theory on self-simulating transition systems, we have
presented an approach to extract certificates from state-of-the-art model check-
ing algorithms (including state-of-the-art abstraction techniques) that decide
emptiness of timed Büchi automata. The certificates prove that a given model
is indeed Büchi empty. We have verified the theory and a checker for these cer-
tificates in Isabelle/HOL, using the tool Munta as a basis. We demonstrated
that our approach is feasible by extracting certificates for some standard bench-
mark models from the tools TChecker and Imitator. We hope that our work can
help to increase confidence in safety-critical systems that have been verified with
timed automata model checkers. Furthermore, we envision that our tool could
help in the organization of future competitions for such model checkers.

To close, we want to illuminate some potential future directions of research.
First, one is usually not only interested in the emptiness of TBA per se, but more
generally in the question if a TA model satisfies some LTL requirements. Thus,
our tool would ideally be combined with a verified translation from LTL formulas
to Büchi automata or with a certifier for such a construction. The former has
been realized by the CAVA project [13], while an avenue towards the latter is
opened by the recent work of Seidl et al. [10].

Second, Herbreteau et al. have developed a technique of computing abstrac-
tions for TA on the fly, starting from very coarse abstractions and refining them
as needed [17]. It seems that our approach is in principle compatible with this
technique when augmenting certificates with additional information on the com-
puted abstractions, whose validity would have to be checked by the certifier.



Certifying Emptiness of Timed Büchi Automata 73

Third, one could attempt to reduce the size of the certificates. In one app-
roach, reachability certificates have been compressed after model checking (c.f.
[37]). On the other hand, model checking algorithms could speculate that the
given TBA is empty, and use this fact to use additional subsumptions to reduce
the search space, while risking to miss accepting runs. However, given the cer-
tification step afterwards, this is of no concern. For instance, one could remove
the red search from the NDFS algorithm, and use subsumption on blue nodes
instead of red nodes, as a quick pre-check. If the result passes the certifier, we
are done.

Finally, as our theory is not specific to timed automata per se, it could be
interesting to find other application domains for this approach to certification.
In light of the large body of existing work on well-structured transition systems,
this looks particularly promising as any such system is also self-simulating.
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