
ShapelineGuide – Teaching Mid-Air Gesture for Large
Interactive Displays

Florian Alt, Sabrina Geiger and Wolfgang Höhl
Ubiquitous Interactive Systems Group, LMU Munich

{florian.alt, sabrina geiger, wolfgang.hoehl}@ifi.lmu.de

Figure 1: ShapelineGuide supports users of large interactive displays in performing mid-air gestures: Upon activating the tool (left)
users get feedback on the hand(s) to be used for executing a gesture (middle) and we provide both feedback and feedforward
during executing the gesture (right).

ABSTRACT
In this work we present ShapelineGuide, a dynamic visual
guide that supports users of large interactive displays while
performing mid-air gestures. Today, we find many examples
of large displays supporting interaction through gestures per-
formed in mid-air. Yet, approaches that support users in learn-
ing and executing these gestures are still scarce. Prior ap-
proaches require complex setups, are targeted towards the use
of 2D gestures, or focus on the initial gestures only. Our work
extends state-of-the-art by presenting a feedforward system
that provides users constant updates on their gestures. We re-
port on the design and implementation of the approach and
present findings from an evaluation of the system in a lab
study (N=44), focusing on learning performance, accuracy,
and errors. We found that ShapelineGuide is superior to help
users with regard to learning the gestures as well as decrease
execution times and cognitive load.

ACM Classification Keywords
H.5.m. Information Interfaces & Presentation (e.g. HCI): Misc

Author Keywords
Dynamic Guides, Feedback, Feedforward, Mid-Air Gestures,
Large Displays, ShapelineGuide

INTRODUCTION
Large displays have become ubiquitous in our everyday life.
We use them in our workplaces to interact with different visu-
alizations but also in public spaces to browse through informa-
tion or to interact with playful applications [9].

Submitted to PerDis 2018

Interaction with such displays can be enabled using a large
variety of input modalities, most notably touch [1], mid-air
gestures [20, 23, 25], smartphones [1, 2], as well as gaze [14,
15, 28]. Interaction based on mid-air gestures in particular
suffers from the fact that today no commonly agreed-upon
gesture set exists. As a result, people need to be taught which
gestures to use as they interact with such a display.

This challenge has been recognized within the display com-
munity. As a result, researchers looked into how the use of
gestures can be supported, primarily focusing on point and
dwell [19, 25, 26]. To support more complex gestures, Sodhi
et al. presented LightGuide [22], where hints on how to per-
form the gesture are projected on the users’ hands. Yet, this
approach is challenging, since it requires a complex hardware
setup and users need to constantly shift their attention between
the content on the screen as well as the feedback on the gesture.
Octopocus provides feedback on the current status of a gesture
as well as options as to how a gesture could be further exe-
cuted (feedforward) [3]. However, the approach was designed
for desktop applications using mouse interaction and does not
cover the depth dimension.

Drawing from and extending previous approaches, we built
ShapelineGuide, a system specifically targeted at supporting
the use of mid-air gestures in front of large displays. It com-
bines feedback on the executed gesture as well as feedforward
on the possible gestures based on the current status, both inte-
grated with the current display in the form of an overlay. For
the gesture recognition we use Kinect, hence allowing gestures
to be performed in 3D space.

Results from an evaluation in the lab with 44 participants
show that our approach outperforms dynamic help menus. In
particular, we better support users in learning gestures, enable
significantly faster input, and reduce the cognitive load.

CONTRIBUTION STATEMENT
The contribution of this work is twofold. Firstly, we report
on the design and development of ShapelineGuide. Secondly,
we present an evaluation of the tool, focusing on how well it
supports the process of learning gestures, as well as on how the
tool impacts on the accuracy and speed of executing gestures
as well as on the induced cognitive load.

BACKGROUND & RELATED WORK
Our work draws from several strands of prior research, most
notably mid-air gestures – in particular, when used in front of
large displays – and approaches to support learning them.

Mid-Air Gestures
A number of classifications exist for gestures [4, 5, 13, 27].
A gesture can either be symbolic (i.e. has a unique meaning),
deictic (i.e. pointing gestures), iconic (i.e. gestures that provide
information on size, form, and orientation of an object) or
pantomimic (i.e. a simulating a tool or object) [21].

We primarily focus on deictic gestures in this work, in partic-
ular mid-air gestures. We define mid-air gestures as gestures
that are executed freely in 3D space without necessarily touch-
ing the display. Mid-air gestures can be performed with one or
multiple parts of the human body – we refer to the latter case
as multiple gestures in the remainder of this paper.

Furthermore, discrete and continuous gestures can be distin-
guished. Whereas discrete gestures trigger an action only as
they have been fully executed (for example, printing out a
document as the user draws a circle in mid-air), continuous
gestures trigger a constant action (for example, controlling the
volume of a video showing on the display).

Mid-Air Gestures and Large (Public) Displays
Researchers looked at how mid-air gestures can be employed
for large displays. Chen et al. investigated users’ ability to per-
form scaling, rotation, and translation tasks using mid-air ges-
tures to modify a 3D virtual car [6]. Furthermore, ergonomic
issues of using mid-air gestures have been investigated [7].

Relatively little is known on how to teach users gestures in
front of large displays. Walter at al. showed how to communi-
cate a single gesture [25]. Furthermore it was shown, that user
representations can be used to first attract attention of users
and then switch to the use of gestures [26]. Maekelae et al.
investigated the concurrent use by multiple users by means
of a cursor [19]. However, the aforementioned projects all
employ point and dwell or teach a single gestures, rather than
focusing on how a more complex gestures set can be taught.

Approaches to Teaching Gestures
Due to the lack of standardization, the use of mid-air gestures
leads to challenges in the real world [8]. After being informed
that gestures are available the three major challenges are [12]:
How to start with the gesture input? What path of movement to
follow? What action is associated with this gesture command?

To facilitate gesture-based interaction, it is important to ad-
dress these questions during the conception of a system. In gen-
eral, there are two basic mechanisms to support users with the
gesture interaction: feedforward and feedback mechanisms.

Feedforward Mechanisms
Feedforward mechanisms give user an indication of the ges-
tures to be executed. Before a gesture is executed, the feed-
forward mechanism provides relevant information, such as
the next possible executable gesture, visualized subsegments
of a gesture, or the complete visualized movement path. In
general, the feedforward mechanism is characterized by two
major characteristics: the level of detail presented to the user
and the update rate of these details [3].

Kurtenbach et al. [16] applied this feedforward mechanism to
their marking menu in the form of text labels. Another possibil-
ity to teach users available gestures are contextual animations
[17]. Through the use of animations and accompanying texts,
the gestures are demonstrated to the user. Grossmann et al. [10]
presented the hover widgets application. While users moves
their input pen over a graphic tablet, they get a continuous
overview of all possible gestures.

Feedback Mechanisms
Feedback mechanisms provide information about the current
status during the execution of a gesture, e.g., status of the exe-
cuted movement path, error messages on incorrect movements,
or current position on a movement path [3].

Igarashi et al. [11] developed pegasus, a system which is based
on the interactive beautification technique. In general, a user
can draw geometric shapes with an input pen. Subsequently,
the drawn shape is examined for predefined conditions and
dependencies. Ultimately, the system draws the embellished
geometric shape on the basis of newly calculated coordinates.
In sum, it gives feedback about the systems interpretation of
the gesture and the user is able to choose among alternatives.

The GDT class window from Long et al. [18] gives the user
feedback through a numeric value describing how well the
gesture was recognized.

Dynamic Guides
An approach to combine feedback and feedforward mecha-
nisms is dynamic guides. In this way, continuously updated
information on the gesture execution is provided.

An example is OctoPocus [3], which helps users learn, execute,
and remember gestures. Starting from the mouse position,
colored lines, representing the partial segments of the gestures,
are displayed. To execute a gesture, the user should follow the
line, representing the movement path. The color of the line is
adapted based on the mouse movement.

Sodhi et al. [22] proposed LightGuide, a dynamic guide for
mid-air hand gestures. Through visual hints the user is sup-
ported in learning and executing mid-air gestures. With the
help of an overhead projector these visual hints are projected
onto the user’s body in the form of light.

Due to the input modality, OctoPocus only covers 2D gestures.
In case of mid-air gestures, a third dimension is needed. Light-
Guide achieves this, but focuses on simple gestures, which can
only be performed by one body part. One of our goals is to
take advantage of OctoPocus and LightGuide and extend it for
use with large displays.

OctoPocus LightGuide ShapelineGuide

Dimensionality 2D 3D 3D

On-Display yes no yes

LightGuide ShapelineGuide

Multiple Gestures no yes

Number of Body parts1 >1

Gestures with interruption no yes

Figure 2: Comparison between OctoPocus, LightGuide and the
ShapelineGuide. In particular, ShapelineGuide is optimized
for use on large displays and mid-air gestures.

SHAPELINEGUIDE
In the following we report on the design of ShapelineGuide,
focusing on the requirements, concept and implementation.

Requirements
With ShapeLineGuide, we combine the advantages of Oc-
topocus and LightGuide (see Figure 2) and apply them to
public displays. Like both systems, we use visual hints, im-
plemented as graphical components, such as shape and color.
Like OctoPocus, we show these hints on the display to avoid at-
tention switches for the user. In addition, we allow gestures to
be supported in 3D space, which is not possible for OctoPocus
that was designed for use on desktops using the mouse.

In addition, three functional requirements are necessary to
interact with the ShapelineGuide. The user should be able to
choose a gesture from the existing gesture set. To trigger the
action of the chosen gesture it must be possible to execute the
gesture. If users have begun the gesture execution, but want to
cancel it, they should be able to abort the action.

Concept
To optimally support users while executing mid-air gestures,
the concept integrates continuous feedback on the gesture
execution progresses and feedforward. Though in the current
implementation we focus on using the hands, in general the
developed concept can be extended to further body parts.

Basic visualization of gestures. The gestures are represented
by geometrical shapes arranged next to each other. The starting
point of the gesture is communicated to the user through a
fully saturated shape. Finally, a text label is used to make clear
to the user which action the respective gesture triggers.

Structuredness. Visualizing many gestures can lead to visual
clutter. To avoid this, we visualize gestures as geometric shape,
including a text label, that can be selected like a button. By
hovering with the right body part over the button, the whole
gesture visualization is displayed. The positions of the gesture
buttons executed with the left hand, are placed on the left
display border and the gestures executed with the right hand
on the right display border.

Affiliation. In the beginning it is important to know with
which body part a gesture is executed. Our concept exploits
the phenomenon of preattentive perception by assigning each
body part a particular color, used in the gesture visualization
(e.g., all gestures executed with the left hand are blue).

Figure 3: Example of a rotation gesture: the circles and their
trajectory indicate how the gesture needs to be performed from
left to right to rotate the object (phone).

Multiple gestures. All multiple gestures are displayed in one
color. Furthermore, the user can identify the corresponding
gesture lines, through the same geometric shape.

Perspective. In general, several approaches exist to represent
depth on a two-dimensional display. We apply two methods
known from the psychology of perception literature. The first
method is based on obscuring and overlapping objects (ob-
scured objects are perceived as farther away). The second
method for the representation of spatial depth is based on the
human perception of object sizes. If two components have
the same physical size, the nearer component is perceived as
larger. Both concepts can be applied to the geometric shapes
we use to visualize the gesture.

Feedforward mechanism. The user is informed about all pos-
sible gestures by the respective visualized hints. In addition a
text label describes the corresponding action. When the user
begins to execute a gesture, a partial segment of the visualized
gesture, which has not yet been executed, is displayed with full
color saturation. The geometrical shapes with full saturation
are expanded proportionally to the movement path.

Feedback mechanism. When the user begins to execute a
gesture, the current status of the gesture execution is continu-
ously communicated to the user. All geometric shapes of the
respective gestures, over which the user has already moved
the active body part, are displayed in a specific color (Figure
3). Icons provide feedback, in case of errors (Figure 4).

Icons. Figure 4 shows all used icons. The icons in the first
box are used to support the text labels to make the user in-
terface comprehensible for people unfamiliar with the used
language. In the first line the magnifying glass was selected
as a common icon for zooming. The icon is represented by a
magnifying lense. The icons for the rotation are symbolized
by arrows pointing in the respective direction. The activation
of the details is represented by one eye with a plus sign. The
icon for the color change is symbolized through a color pot.
The second box shows all icons used as feedback mechanism.
The first icon expresses that in the case of multiple gestures,
two hands must be used to perform the gesture. The second
and third icons symbolize a change of hand, if the user wants
to execute a gesture with the wrong part of the body.

Colors. Depending on the body part, the visualized gestures
have different colors. Gestures executed with the left hand are
displayed orange, right-hand gestures are green. For multiple
gesture visualization yellow was used.

Figure 4: Icons used by the ShapelineGuide to provide feed-
back to the users.

Implementation
In a next step we came up with a gesture set. To recognize
gestures we use Kinect and computer vision techniques.

Gesture Builder
To create a gesture set the Kinect Studio was used in our work.
Kinect Studio is an application with which sensor data can be
recorded and monitored. All used gestures are recorded and
saved as a file with the help of Kinect Studio. Accordingly, it
is possible to create individually gesture sets, suitable to the
corresponding system.

Gesture Recognition
The recorded gesture files are used by the Visual Gesture
Builder for the gesture recognition as well. Its main task is
to generate data, that can be used by the ShapelineGuide at
runtime, to detect mid-air gestures. This gesture recognition is
based on the approach of machine learning. In particular all
recorded files are added to the Visual Gesture Builder. After-
wards each file is tagged with different values, which describe
if the gesture is executed at the moment, or not. This tagging
can be done with discrete values or continuous values, de-
pending on the gesture. After finishing the tagging, a database,
based on the files, is build. Finally, this database should be
integrated in the implementation, to recognize gestures.

EVALUATION
We conducted a study to find out whether the dynamic feedfor-
ward and feedback provided by ShapelinGuide helps users in
learning, executing, and remembering a particular gesture set.
In particular, we compare the ShapelineGuide to a standard
help menu, placed on the left display border. As users activate
the help menu, all gestures are displayed. The movement path
is communicated through an animation.

Hypotheses
During the evaluation, we tested the following hypotheses:

• Hypothesis 1: The error rate is lower for users of the Shape-
lineGuide.

• Hypothesis 2: The execution time to successfully complete
a task is shorter for users of the ShapelineGuide.

• Hypothesis 3: Users of the ShapelineGuide learn the mid-
air gestures faster than users of the standard help menu.

• Hypothesis 4: The usability is rated better by users of the
ShapelineGuide than by users of the standard help menu.

• Hypothesis 5: Users of the ShapelineGuide have a lower
cognitive load than users of the standard help menu.

• Hypothesis 6: The user experience is rated better by Shape-
lineGuide users than by standard help menu users.

Study Design
To evaluate the mentioned hypotheses a true experiment was
designed. To minimize external influences, the experiment was
carried out in the lab. To avoid learning effects, we opted for a
between subject design.

Procedure
Participants were randomly assigned to one of two groups. The
first group was completing the experiment with the support of
ShapelineGuide, the second one with the support of the stan-
dard help menu. The procedure is based on the pre-test/post-
test design, which is a standard for evaluating learnability. In
general, the experiment is structured in five phases: pre-test,
training, post-test, questionnaires and debriefing.

Pre-test. Before the training phase, all participants were in-
troduced to the existing commands. Afterwards they should
guess a mid-air gesture for each of the introduced commands.
The phase was used to determine whether the participants in-
tuitively guessed the gestures and thus had advantages in the
execution of the mid-air gestures in the experiment.

Training. Depending on the different groups, the participant
should successfully execute ten given tasks with the support
of the ShapelineGuide or the standard help menu. The ten
tasks consist of five commands. Each of the commands was
be repeated. To start the training, a displayed grey circle had
to be activated by the participant. After activating the training,
the first task is displayed. Participants could now decide for
themselves whether he or she was using the help or not. One
task ended when the user had successfully executed the task.
After completing the task, the confirmation and a new task
were displayed to the user.

Questionnaires. Participants filled in three questionnaires on
usability, user experience, and the cognitive load.

Post-test. In this phase, the data for evaluating the learnability
was collected. Each participant was asked to perform the given
commands and the corresponding mid-air gesture. The correct
gesture executions were counted and documented.

Debriefing. After the participants finished the post-test they
were asked to provide feedback in general, including remarks,
advantages or disadvantages of the used system.

Sample Application
For the study, we gave the participants the task to manipulate
the 3D model of an iPhone [24]. Via a defined gesture set the
user can interact with the model: rotation to the left, rotation to
the right, zooming/scaling, activating the details of the iPhone
and a color change.

Tasks
Within the training phase, every participant had to solve ten
tasks. Overall, these ten tasks consists of five individual tasks,
where each of these five tasks was repeated once. Repetitions
were later used to assess learnability.

1. Rotate the iPhone to the left.

2. Rotate the iPhone to the right.

3. Scale the iPhone to the maximum.

4. Activate the details of the iPhone.

5. Change the color of the iPhone.

6. Activate the details of the iPhone.

7. Rotate the iPhone to the left.

8. Scale the iPhone to the maximum.

9. Rotate the iPhone to the right.

10. Change the color of the iPhone.

Gesture Set
The gesture set used in this experiment is shown in Figure
5. We chose arbitrary gestures to avoid any bias from users
being familiar with particular gestures. The first gesture is
used for rotating the iPhone to the left. The second gesture is
for activating the iPhone details. Both of these gestures are
executable with the left hand. The third and fourth are executed
with the right hand. The rotation to the right is symmetrical
to the first one. To change the color of the iPhone, gesture
four has to be executed. Finally, gesture number five, triggers
scaling and needs to be executed with both hands.

Figure 5: Gesture set

Data Collection
During the experiment, we logged execution times. In partic-
ular, we measured the overall input time, defined as the time
period from the start of the task to the successful completion
of the task. The pure input time measures the time, as soon as
a participant is accessing the help, until the task is completed.

To assess learnability, we counted the number of correctly
executed gestures.

Furthermore, we counted the number of errors, whereas each
task is either rated as correct or incorrect. Correct means that
the participant has executed the requested gesture and the
system has successfully recognized it. An incorrect gesture
execution can be explained by the following errors:

• Starting point: The participant starts at the wrong position
to execute the gesture.

• Body part: The participant uses the wrong body part to
execute the gesture.

• Number of body parts: The participant uses the wrong
number of body parts to perform the gesture.

• Gesture: The participant executes a gesture that is present
in the gesture set, but was not required, or the participant
executes a gesture, which is not present in the gesture set.

• Execution: The participant performs the required gesture
incorrectly, which is why it is not recognized.

Figure 6: Number of errors per task

We count for each task, how many errors the participant makes,
until the task is completed. For each incorrect trial, the specific
error was recorded. Participants had three minutes to execute
each task. If they were not successful, the experimenter would
step in and the attempt be counted as incorrect.

After the training, participants completed three questionnaires:
the UEQ to assess user experience, the SUS to measure us-
ability, and the short NASA TLX to evaluate cognitive load.

Apparatus
The experiment was conducted on a 42” Samsung LED Dis-
play with an aspect ratio of 16:9. The screen resolution was
1920 ×1080 pixel. As sensor to recognize and edit the mid-
air gesture interaction we used Microsoft’s Kinect One. The
systems ran on a Lenovo IdeaPad U310 running Windows 10.
The software was implemented in C# and Unity.

RESULTS
In the following section, we report on the results of our experi-
ment, ordered by the different phases.

Participants
We recruited 44 participants (18 males, 26 females) aged be-
tween 20 and 70 years. None of the participants had previous
experience with using mid-air gestures before. Participants
were randomly distributed to the different conditions.

Pre-test
At the beginning, all participants were asked which gesture
they would intuitively associate with the available actions.
Since the selected gestures are intentionally more complex, no
participant could come up with the correct answer. Thus, all
participants were eligible for the following phases.

Training
Regarding the number of errors we found a significant dif-
ference between the ShapelineGuide (M = 0.51,SD = 1.057)
and the standard help menu (M = 1.72,SD = 2.270), with
T (279) = −5.834, p < 0.001. Fewer errors were made when
using the ShapelineGuide (see Figure 6). We believe reasons
for this result are that users were able to quickly understand if
they executed gestures with the wrong body part. Furthermore,
users of the ShapelineGuide rarely made a mistake in the cate-
gory gesture and execution, probably as a result of them being
aware of the movement path of the gestures.

0

5

10

15

20

25

30

35

ShapelineGuide Standard help menu

M
e

an
 v

al
u

e
 (

se
co

n
d

s)

System

Figure 7: Differences of the overall input time

Regarding the overall input time, users of the ShapelineGuide
(M = 20.76 s,SD = 14.30 s) were significantly faster than the
users of the standard help menu (M = 31.26s,SD = 23.11s)
with T (151.5) = −3.887, p < 0.001. Figure 7 shows the arith-
metic mean values of the input time. From this diagram it can
be seen that the median difference is10.50 s. We explain the
shorter input time with the fact that users of the help menu
tried more gestures before accessing the help menu.

Similarly, the users of the ShapelineGuide(M = 14.32 s,SD =
11.83 s) were significantly faster with regard to pure input time
than with the standard help menu(M = 19.00 s,SD = 17.37 s),
with T (212) = −2.340, p < 0.05. The mean difference be-
tween the input times is 4.68 s. The lower pure input time with
ShapelineGuide can be explained through the lower error rate.

Questionnaires
The user experience was assessed through the UEQ ques-
tionnaire. In the following, the results, structured by the di-
mensions, efficiency, transparency, controllability, stimulation,
originality and attractiveness, are presented. For all these di-
mensions, the ShapelineGuide was rated significantly better.

Also with regard to usability, the ShapelineGuide was rated
better, T (33.431) =8.022, p < 0.001. On average, users rated
the ShapelineGuide with 84.89 points, which indicates a very
high usability. The average score for the help menu is 68.

Cognitive load was evaluated by the short version of the NASA
TLX questionnaire. The evaluation showed that there was
a significant difference between the ShapelineGuide (M =
25.57,SD = 12.55) and the help menu (M = 47.88,SD =
15.55), with T (42) = −5.235, p < 0.001. In particular, frus-
tration was high among the users of the help menu users com-
pared to the ShapelinGuide users. Note, that on average, cog-
nitive load was not too high for both approaches (all values
below 50 on a scale from 0–100).

Post-test
The users of the ShapelineGuide were able to reproduce 87
of 110 gestures. With the support of the standard help menu,
the participants were able to remember 64 gestures in total. In
addition, a significant difference between the ShapelineGuide
(M = 3.95, SD = 0.899) and the standard help menu (M = 2.91,
SD = 1.342) was found (T (42) = 3.036, p < 0.01).

In most cases, participants of the standard help menu could
remember the movement path, but the wrong hand was used,
or the gesture was executed from a wrong starting point. Note,
that the gestures for the rotation of the iPhone was learned
fastest in both systems. Although the gesture for the color
change was executed last, it was the least remembered gesture.

Debriefing & Observations
Participants reported that with ShapelineGuide, they felt ‘safe’
during the execution of the task, that it was ‘routine’ and ‘fun’.
An advantage of the ShapelineGuide was the real-time feed-
back. This was particularly useful with regard to the size of the
gestures. Whereas for the help menu participants sometimes
performed gestures in a too subtle manner for the system to
recognize, this never happened for the ShapelineGuide.

SUMMARY
Users learn the execution and the gestures itself better with
the ShapelineGuide, compared to a standard help menu. The
ShapelineGuide also requires less input time and less cognitive
load for executing gestures. Especially the on-display learning
and the easy-to-understand UI was preferred by the users,
compared to the standard help menu.

How do I start with the gesture input? The user knows
through the saturation of the visualized gesture path, where
to start the input. Furthermore the correct body part for the
execution is communicated with a color code.

What path of movement do I have to follow? The Shape-
lineGuide shows the full movement path of the gesture, which
helps users to learn the gesture execution. With the help of
the feedback and feedforward mechanism the visualization of
the movement path is updated continously, regarding the body
part movement. An advantage over the standard help menu
is, that the size and proportion of a gesture is displayed in a
realistic manner.

What action is associated with this gesture command?The
use of text labels and icons shows the user, which associated
action is triggered, when executing the gesture. By showing
the movement path of each possible gesture and associated
action, it is easier to learn the gesture command sets.

CONCLUSION & FUTURE WORK
In this work we introduced the ShapelineGuide, a concept to
support learning mid-air gestures on large displays. We com-
pared it to standard help menus, finding that ShapelineGuide
better supports the learning of gestures and decreases execu-
tion time as well as cognitive load.

In the future we plan to apply the concept beyond the lab. In
particular, we see large potential of the approach in public
space – in particular for situations with many first-time users,
for example, in airports or museums. Furthermore, we plan
to test the approach with different types of content as well as
with further/different gesture sets and body parts.

REFERENCES
1. Florian Alt, Thomas Kubitza, Dominik Bial, Firas Zaidan,

Markus Ortel, Björn Zurmaar, Tim Lewen,

Alireza Sahami Shirazi, and Albrecht Schmidt. 2011.
Digifieds: Insights into Deploying Digital Public Notice
Areas in the Wild. In Proceedings of the 10th
International Conference on Mobile and Ubiquitous
Multimedia (MUM’11). ACM, New York, NY, USA,
165–174.

2. Matthias Baldauf, Florence Adegeye, Johannes Harms,
and Florian Alt. 2016. Your Browser is the Controller -
Advanced Web-Based Smartphone Remote Controls for
Public Screens. In Proceedings of the 5th ACM
International Symposium on Pervasive Displays (PerDis

’16). ACM, New York, NY, USA.

3. Olivier Bau and Wendy E. Mackay. 2008. OctoPocus: A
Dynamic Guide for Learning Gesture-based Command
Sets. In Proceedings of the 21st Annual ACM Symposium
on User Interface Software and Technology (UIST ’08).
ACM, New York, NY, USA, 37–46.

4. Bill Buxton and Mark Billinghurst. 2006. Human Input to
Computer Systems: Theories, Technique and Technology.
http://www.billbuxton.com/inputManuscript.html.
(2006).

5. Claude Cadoz. 1994. Le geste canal de communication
homme-machine: La communication instrumentale.
Techniques et Sciences Informatiques (1994), 31–61.

6. Li-Chieh Chen, Yun-Maw Cheng, Po-Ying Chu, and
Frode Eika Sandnes. 2017. Identifying the Usability
Factors of Mid-Air Hand Gestures for 3D Virtual Model
Manipulation. In Universal Access in Human–Computer
Interaction. Designing Novel Interactions, Margherita
Antona and Constantine Stephanidis (Eds.). Springer
International Publishing, Cham, 393–402.

7. Li-Chieh Chen, Po-Ying Chu, and Yun-Maw Cheng.
2016. Exploring the Ergonomic Issues of User-Defined
Mid-Air Gestures for Interactive Product Exhibition. In
Distributed, Ambient and Pervasive Interactions, Norbert
Streitz and Panos Markopoulos (Eds.). Springer
International Publishing, Cham, 180–190.

8. Nigel Davies, Sarah Clinch, and Florian Alt. 2014a.
Pervasive Displays - Understanding the Future of Digital
Signage. Morgan and Claypool Publishers.

9. Nigel Davies, Sarah Clinch, and Florian Alt. 2014b.
Pervasive displays: understanding the future of digital
signage. Synthesis Lectures on Mobile and Pervasive
Computing 8, 1 (2014), 1–128.

10. Tovi Grossman, Ken Hinckley, Patrick Baudisch,
Maneesh Agrawala, and Ravin Balakrishnan. 2006.
Hover Widgets: Using the Tracking State to Extend the
Capabilities of Pen-operated Devices. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’06). ACM, New York, NY, USA, 861–870.

11. Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya,
and Hidehiko Tanaka. 1997. Interactive Beautification: A
Technique for Rapid Geometric Design. In Proceedings
of the 10th Annual ACM Symposium on User Interface

Software and Technology (UIST ’97). ACM, New York,
NY, USA, 105–114.

12. Simon Ismair, Julie Wagner, Ted Selker, and Andreas
Butz. 2015. MIME: Teaching Mid-Air Pose-Command
Mappings. In Proceedings of the 17th International
Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’15). ACM, New York,
NY, USA, 199–206.

13. Maria Karam and M. C. Schraefel. 2005. A Taxonomy of
Gestures in Human Computer Interactions. (2005).

14. Mohamed Khamis, Ozan Saltuk, Alina Hang, Katharina
Stolz, Andreas Bulling, and Florian Alt. 2016a.
TextPursuits: Using Text for Pursuits-based Interaction
and Calibration on Public Displays. In Proceedings of the
2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ’16). ACM, New
York, NY, USA, 274–285.DOI:
http://dx.doi.org/10.1145/2971648.2971679

15. Mohamed Khamis, Ludwig Trotter, Markus Tessmann,
Christina Dannhart, Andreas Bulling, and Florian Alt.
2016b. EyeVote in the Wild: Do Users Bother Correcting
System Errors on Public Displays?. In Proceedings of the
15th International Conference on Mobile and Ubiquitous
Multimedia (MUM ’16). ACM, New York, NY, USA,
57–62. DOI:http://dx.doi.org/10.1145/3012709.3012743

16. Gordon Kurtenbach and William Buxton. 1994. User
Learning and Performance with Marking Menus. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’94). ACM, New
York, NY, USA, 258–264.

17. Gordon Kurtenbach, Thomas P. Moran, and William
Buxton. 1994. Contextual Animation of Gestural
Commands. Computer Graphics Forum 13, 5 (1994),
305–314.

18. Allan Christian Long, Jr., James A. Landay, and
Lawrence A. Rowe. 1999. Implications for a Gesture
Design Tool. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’99).
ACM, New York, NY, USA, 40–47.

19. Ville Mäkelä, Tomi Heimonen, Matti Luhtala, and
Markku Turunen. 2014. Information Wall: Evaluation of
a Gesture-controlled Public Display. In Proceedings of
the 13th International Conference on Mobile and
Ubiquitous Multimedia (MUM ’14). ACM, New York,
NY, USA, 228–231.DOI:
http://dx.doi.org/10.1145/2677972.2677998

20. Jörg Müller, Robert Walter, Gilles Bailly, Michael Nischt,
and Florian Alt. 2012. Looking Glass: A Field Study on
Noticing Interactivity of a Shop Window. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY,
USA, 297–306.

21. Bernard Rimé and Loris Schiaratura. 1991. Gesture and
speech. (1991).

22. Rajinder Sodhi, Hrvoje Benko, and Andrew Wilson. 2012.
LightGuide: Projected Visualizations for Hand
Movement Guidance. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’12). ACM, New York, NY, USA, 179–188.

23. Maurice Ten Koppel, Gilles Bailly, Jörg Müller, and
Robert Walter. 2012. Chained Displays: Configurations
of Public Displays Can Be Used to Influence Actor-,
Audience-, and Passer-by Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA, 317–326.

24. Maximilian Walker and Markus Teufel. 2013. Interactive
iPhone. (2013). http:
//www.cip.ifi.lmu.de/~teufel/iphonetreejs/iphone.html

25. Robert Walter, Gilles Bailly, and Jörg Müller. 2013.
StrikeAPose: Revealing Mid-air Gestures on Public
Displays. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 841–850.

26. Robert Walter, Gilles Bailly, Nina Valkanova, and Jörg
Müller. 2014. Cuenesics: Using Mid-air Gestures to
Select Items on Interactive Public Displays. In
Proceedings of the 16th International Conference on
Human-computer Interaction with Mobile Devices &
Services (MobileHCI ’14). ACM, New York, NY, USA,
299–308.

27. Jacob O. Wobbrock, Meredith Ringel Morris, and
Andrew D. Wilson. 2009. User-defined Gestures for
Surface Computing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’09). ACM, New York, NY, USA, 1083–1092.

28. Yanxia Zhang, Hans Jörg Müller, Ming Ki Chong,
Andreas Bulling, and Hans Gellersen. 2014.
GazeHorizon: Enabling Passers-by to Interact with Public
Displays by Gaze. In Proc. of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp 2014) (2014-09-13).
559–563.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

