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simulation

Abstract

We propose new schemes to implement and probe strongly interacting phases of matter in and

out of equilibrium with quantum simulation experiments. We probe the Fermi-Hubbard model

by studying higher-order correlations and the spectral function, and by applying pattern analysis

andmachine learning techniques. In the Bose-Hubbardmodel we study scrambling of information

as well as thermalization and the absence thereof. We investigate the latter case in a quantum gas

microscope and through interferometric probes accessible to superconducting qubits.

i





Thesis advisor: Michael Knap Annabelle Bohrdt

Probing strongly correlated many-body systems with quantum
simulation

Kurzfassung

Wir schlagen neueMethoden vor um stark wechselwirkende Phasen im und außerhalb desGleich-

gewichts mit Quantensimulationsexperimenten zu implementieren und zu untersuchen. Wir un-

tersuchen das Fermi-Hubbard Modell indem wir Korrelationen höherer Ordnung und die Spek-

tralfunktion betrachten und indem wir Mustererkennungs- und Machine Learning Techniken an-

wenden. Im Bose-Hubbard Modell studieren wir die Verwürfelung von Information sowie Ther-

malisierungundderenAbwesenheit. Wir erforschen letzterenFall in einemQuantengasmikroskop

und mithilfe von interferometrischen Untersuchungen, die mit supraleitenden Qubits zugänglich

sind.
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Theability to reduce everything to simple fundamental laws does not imply the abil-
ity to start from those laws and reconstruct the universe. [...] At each level of com-
plexity entirely new properties appear. We can now see that the whole becomes not
merely more, but very different from the sum of its parts [19].

Philip Warren Anderson

1
Introduction

When simple constituents interact with each other, their collective behavior can lead to
complex emergent phenomena. An illustrative example is a colony of ants: each ant has very little
knowledge, and there is no central unit to make decisions. The interplay of many ants nonetheless
yields a colony which as an entity exhibits complex behavior with regards to foraging, fighting off
intruders and strategic planning. In science, it has for a long time been a central goal to understand
the most elementary building blocks, such as how single ants behave, how individual synapses in
the brain work, or how atoms ormolecules are built up. Once the individual components are iden-
tified and well understood, a different question arises: how do these constituents interact, and
what collective behavior emerges from their interplay? In condensed matter physics, one tries to
understand or predict the macroscopic behavior of a large collection of simple constituents, such
as atoms or electrons. Often, the microscopic laws governing the behavior of these constituents
are well known. In quantum many-body physics, the relevant microscopic degrees of freedom can
often be descibed by a Hamiltonian, which prescribes how the particles can move and interact.
In some cases, the qualitative physics is captured by approximating the impact of all other con-
stituents on any given constituent as a single, averaged effect. In such a mean-field description,
the many-body problem is thereby effectively reduced to a one-body problem. One example is
a Bose-Einstein condenstate, where a significant fraction of bosonic particles occupies the lowest

5



available quantum state. If this happens, microscopic phenomena such as wavefunction interfer-
ence become apparentmacroscopically. After theoretical predictions by Bose and Einstein in 1924
[20, 21], this statewas realized and probedmore than 70 years later in experimentswith cold atoms
[22, 23], yielding a Nobel prize in 2001. Today, Bose-Einstein condensates are routinely produced
experimentally, with one such experiment orbiting the Earth on board of the International Space
Station [24].
The beauty and at the same time challenge of quantummany-body physics lies in the fact that even
when we know the Hamiltonian describing a system, we do not necessarily see or understand all
of the rich physics that it captures. This is particularly true for strongly correlated systems, where
simple mean-field theories become insufficient and the single-particle description breaks down.
An extreme example are one dimensional metallic systems, in which the fundamental excitations
are of a collective nature [25], vastly different from the original constituents – in P.W. Anderson’s
words, the whole here really becomes very different from its parts [19].
The discovery of new phenomena in condensedmatter physics often starts with an unexpected ex-
perimental observation, such as the exact quantization in integers of e2/h of the Hall conductivity
in cold, quasi-two-dimensional semiconductors in high magnetic fields found by von Klitzing in
1980 [26]. Only two years later, Tsui, Stormer and Gossard experimentally discovered the frac-
tional quantum Hall effect, in which the Hall conductance shows precisely quantised plateaus at
fractional values of e2/h [27]. The ensuing theoretical research established the field of topological
order and the associated emergent phenomena, such as fractional charge, fractional statistics and
chiral edge states [28].
Experiments on real materials can however be hard to understand theoretically, because many dif-
ferent effects can play a role, such as phonons, multiple bands, and disorder in the sample. Tak-
ing all these effects and their interplay into account is often challening. Moreover, tunability in
conventional solid state experiments is typically very limited, rendering a systematic comparison
with theoreticalmodels harder. Probably themost paradigmatic example are the cupratematerials,
which exhibit high-temperature superconductivity. The completely unexpected discovery of this
phenomenonbyBednorz andMüller in 1986 [29] led to aNobel prizeonly a year later, and awealth
of theoretical as well as experimental research until today. High-temperature superconductors are
materials that exhibit zero resistivity below a critical temperature, which can be high enough to be
achieved by cooling with liquid nitrogen. There are numerous applications for high-temperature
superconductors, suchas levitating trains,magnetic resonance imaging, andhigh-efficiencyelectric
power distribution. Since the discovery of the cuprate materials more than thirty years ago, physi-
cists have sought to understand how superconductivity is possible in these systems. However, the
mechanismunderlying high-temperature superconductivity is still not understood, and this lack of
comprehension remains a major obstacle in developingmaterials for practical use with higher crit-
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ical temperatures and better material properties. The most widely agreed-upon model, believed to
capture all essential features of the cuprate materials, is the Fermi-Hubbard model [30, 31]. Large
parts of the community believe that this conceptually simple model contains all key ingredients to
explain high-temperature superconductivity. To date there exists, however, no unifying theoretical
description of the Fermi-Hubbardmodel, which could explain all the phases that emerge due to the
complex interplay of spin and charge.
Exact numerical simulations of the Fermi-Hubbard model are hindered by the dimension of the
Hilbert space, which grows exponentially with system size. While a variety of numerical methods
exist, each of themhas some drawback. QuantumMonteCarlo calculations of the Fermi-Hubbard
model for example face the sign-problem, such that simulations at finite doping and low tempera-
ture are very difficult. Exact diagonalization calculations can access arbitrary doping and tempera-
ture regimes, but are limited to very small systems – typically a 4× 4 system is the largest possible
for the Fermi-Hubbard model.
As early as 1982, Feynman proposed quantum simulation as an alternative to the numerical simu-
lation of quantum systems on classical computers [32]. There are two different approaches, analog
and digital quantum simulation. A universal digital quantum simulator can basically simulate any
given system through the application of the corresponding quantum gates. The basic idea of ana-
log quantum simulation is to experimentally realize the quantum systemdescribed by theHamilto-
nian under consideration in awell-controlled setting. In the past fewdecades, tremendous progress
has been made in the field and today, several hundred quantum simulators exist worldwide [33],
with platforms ranging from ultracold atoms, trapped ions and superconducting qubits, to quan-
tum dots. In a quantum simulator, the relevant parameters are well controlled and can usually be
tuned in a wide range. Moreover, they enable the measurement of quantities difficult or impossi-
ble to access in conventional materials, such as non-local observables, higher-order correlators and
entanglement measures [6, 34–36]. Depending on the platform, complete access to the quantum
state is possible. In quantum gas microscopes for examples, ultracold atoms trapped in optical po-
tentials can be imaged with single site resolution, yielding snapshots of the quantum many-body
state. These new experiments call for completely new ways to analyze data and make use of the
wealth of information contained in the measurements, such as pattern recognition and machine
learning techniques.
New experimental probes are furthermore possible through quantumquenches and non-equilibri-
um dynamics, which can be observed since the system is well isolated from the environment and
thus evolves under its own intrinsic quantum dynamics. Non-equilibrium physics warrants com-
pletely new descriptions beyond the equilibrium paradigm with new research questions ranging
from thermalization behavior, to spreading of quantum information, entanglement dynamics, non-
thermaliz- ing behavior in integrable and disordered systems, to Floquet engineering. At the same
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time, experimental tools havebeendeveloped tomakedynamical processes accessible in condensed
matter experiments, such as using photo-excitation of cuprate materials, leading for example to
light-induced superconductivity [37]. Predicting, describing, andunderstanding thenewphenom-
ena that can emerge in non-equilibrium settings is a fascinating challenge of modern condensed
matter theory. One example for non-equlibrium physics is the thermalization – or lack thereof –
of closed quantum systems. Conserved quantities, such as total particle density and energy, can
slow down thermalization, leading to hydrodynamic behavior at long times. In some cases, such
as integrable systems or systems with strong disorder, there are extensively many conserved quan-
tities, and the system does not thermalize at all. In experiments with cold atoms, the lack of ther-
malization on experimentally accessible time-scales has been observed for example in the case of
an initially prepared density domain wall in a disordered two-dimensional bosonic system [38].
This experiment accesses long times in a large two-dimensional, interacting quantum many-body
system without translational invariance, thus reaching regimes which are increasingly hard, if not
impossible, to simulate numerically.
As a theorist, now is the time to work in the field of quantum simulation. Experiments are starting
to explore unchartered territory by simulating parameter regimes which have not been accessed
otherwise. Completely newmeasurements are possible and necessary to probe these regimes, and
the interpretation of experimental data is becoming more challenging, as a direct comparison to
numerical simulations is often not possible anymore. New observables allow for an in-detail com-
parison of experimental results to different model predictions, yielding completely new insights
based on microscopic details into the emerging many-body phenomena.

The remainder of this thesis is organized as follows:

• In chapter 2, we give a brief introduction to quantumsimulation in general and the platforms
used in this work in particular.

• Part I deals with the Fermi-Hubbard model and begins with a general introduction of the
phase diagram, experimental progress and relatedmodels, such as the t−Jmodel, in chapter
3.

– Chapter 4 treats the one-dimensional Fermi-Hubbardmodel. In section 4.1, we intro-
duce the squeezed space used in subsequent sections. Section 4.2 covers our proposal
to experimentally access the spectral function as measured in angle resolved photoe-
mission spectroscopy with a quantum gas microscope, as well as numerical results for
the spectral functionof the one-dimensional t−Jmodel [2]. In section 4.3, wepresent
experimental and numerical results for time-resolved spin-charge deconfinement [7].
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We conclude this chapter with a first step in two dimensions, as we consider cyclic
ring-exchange on a ladder [9] in section 4.4.

– Chapter 5 containsour results for a singlehole in the two-dimensional Fermi-Hubbard
model. The results in this chapter build on the geometric string theory introduced in
section 5.1, see [3, 4]. Wefind that emergent constituents – partons – can form, which
carry fractionsof theoriginal fermionquantumnumbers, andpresentnewly accessible
direct signatures for partons in such systems. In section 5.2 we introduce algorithms
to find such signatures in the form of string patterns by analyzing single snapshots. In
section 5.3, we study string patterns as well as higher-order correlation functions in
the ground state of the t− Jmodel with a single hole [4, 12]. We extend our results to
the spectral function in section 5.4 and are able to explainmost low-energy features in
the spectrum in the framework of the geometric string theory [10]. In section 5.5, we
study the dynamics of a single hole created in a two-dimensional system. We explain
the emergence of two different time-scales for the dynamics starting from the ground
state, an infinite temperature state [11], and a finite temperature state [14]. In sec-
tion 5.6, we proceed to the ground state of two holes and analyze the spin correlations
relative to the holes.

– Chapter 6 extends these results to the case of the Fermi-Hubbardmodel at finite dop-
ing. In section 6.1, we introduce the pecularities of the experimental setup used in the
remainder of the chapter [6]. In section 6.2, we discuss the π-flux RVB state, which
constitutes a possible theoretical description of the dopedFermi-Hubbardmodel. We
then analyze conventional observables, such as two-point spin correlation functions,
for the experimental data as well as the π-flux and geometric string theory in section
6.3. Next, we search for string patterns in the three datasets in section 6.4. Finally, in
section 6.5, we apply machine learning techniques to the snapshots in order to make
full use of the information contained in the data [5].

– In chapter 7, we summarize our findings on the Fermi-Hubbardmodel and provide an
outlook.

• Part II contains our results on the Bose-Hubbard model. We start with the introduction of
the model and a brief discussion of thermalizing and non-thermalizing systems and their
dynamics.

– In chapter 8, we study the spread of quantum information in a system where quasi-
particles cease to exist [1]. In particular, in section 8.1 we investigate out-of-time or-
dered correlation functions, which serve as a proxy for the scrambling of quantum in-
formation,withmatrix product state techniques in theone-dimensionalBose-Hubbard

9



model at finite temperatures. In section 8.2, we compare our results to time-ordered
correlation functions, which show significantly slower dynamics due to globally con-
served quantities. We propose two different measurement protocols to access time-
ordered as well as out-of-time ordered correlation functions in quantum simulation
experiments in section 8.3.

– Chapter 9 contains our results onmany-body localization. We start with a brief intro-
duction to many-body localization, the τ-bit picture and its entanglement properties.
In section 9.2, we present our results onmany-body localization in an experimentwith
superconducting qubits, where we directly probe entanglement properties as well as
the non-local interactions in the τ-bit picture [13]. In section 9.3, we discuss appli-
cations of machine learning techniques to snapshots as obtained from a quantum gas
microscope simulating the dynamics of the one-dimensional Bose-Hubbard model
with quasi-periodic disorder.

– In chapter 10, we summarize our findings on the Bose-Hubbard model and provide
an outlook for interesting future research directions.

• Part III contains the appendices, which cover technical details on the results presented in
the main text.

– In chapter A, we provide an overview over the numerical methods used in this work.
In particular, in section A.1, exact diagonalization is introduced and the details for
spin 1/2 systems, the t − J model, the Fermi-Hubbard model and the Bose-Hubbard
model are discussed. We briefly introduce the Lanczos algorithm and elaborate on its
application for time evolution, the spectral function, finite temperature and the spec-
tral function at finite temperature. In section A.2, we give a very short introduction
to matrix product states and operators, as well as simulating ground states and time
evolution in this formalism. In section A.3 we discuss the Metropolis Monte Carlo
algorithm used to sample snapshots, in particular from anMPS and from aGutzwiller
projected density matrix at finite temperature. In section A.4 we provide details on
the analysis of single snapshots, both from numerical simulations and experimental
data. In section A.5 we provide a brief overview over the neural network techniques
used in our analysis.

– In chapterB,weprovidedetails on the spectral function in theone- and two-dimensional
t − J model and possible extensions of the measurement scheme to other quantities
and models. We discuss momentum shifts in the spectral building principle in one
dimension and details on the numerical simulations for the spectral function in two
dimensions.
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– In chapter C, we provide details on the results on the Bose-Hubbard model. We dis-
cuss the numerical simulations and data analysis for the out-of-time ordered correla-
tion functions. We show additional experimental and theoretical data on our studies
of many-body localization.
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Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a won-
derful problem, because it doesn’t look so easy.

Richard Feynman

2
Quantum Simulation

Some quantum many-body problems are so complex that not even the most powerful classi-
cal supercomputers can provide a solution [39]. The exponentially growing Hilbert space renders
numerical simulations difficult, even if one employs clever algorithms. Experiments on real ma-
terials are on the other hand often limited by sample properties and quality as well as accessible
observables. Moreover, the combination of many different – often uncontrolled – ingredients can
make an interpretation challenging. Quantum simulation can bridge this gap between theory and
real materials by directly probing the quantum many-body model under consideration in a clean
and tunable setting. Beyond that, quantum simulation experiments can reach regimes and enable
probes which are otherwise completely inaccessible.
In quantum simulation experiments, the general idea is usually to start with comparably simple ele-
mentary building blocks, such as ions, atoms or superconducting qubits, which we can understand
and control very well. Using these ‘simple’ constituents, we then build the complex system we are
trying to understand – as Markus Greiner likes to put it: “building and investigating quantum ma-
terials one atom at a time” [40]. In analogue quantum simulation, the resulting complex system
directly simulates the Hamiltonian under consideration, i.e. for example the thermal state of the
system, the real-time evolution of a given initial state, or the response of the system to a pertur-
bation are determined by the Hamiltonian we wish to study. The parameters of the Hamiltonian,
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such as the interaction strength, hopping amplitude, or filling, can usually be tuned within a wide
range, thus allowing to probe different regimes. At the same time, theHamiltonian parameters can
typically be tuned or measured independently, which in real materials is often not the case.
The main challenges faced by quantum simulation experiments today are scalability – especially
while keeping everything under control – and state preparation [33]. An important goal in a lot of
quantum simulation setups is now to reach lower equilibrium temperatures and thus typically the
most interesting part of the phase diagram.
Quantum simulation is nowadays a vast field of research with plenty of different platforms, each
of which has its own advantages and drawbacks. Often, this difference between platform means
that they can tackle complementary aspects of a problem. At the same time, the simultaneous de-
velopment of different setups has the advantage that once unchartered territory, where numerical
simulations are no longer possible, is reached, one quantum simulator can verify another.
A non-comprehensive list of current quantum simulation platforms includes

• Superconducting qubits, which will be discussed in more detail in section 2.2. The main
drawback here is scalability, because each qubit has to be calibrated individually and poten-
tial sources of errors increase significantly with the system size. On the other hand, arbitrary
read-outs and state preparations are possible, with a high repition rate.

• Cold atoms in optical lattices, which will be discussed in more detail – in particular in the
context of quantum gas microscopy – in section 2.1. Cold atoms can simulate fermionic as
well as bosonic models, and almost arbitrary lattice geometries are possible. Atoms come
with the advantage that all of themare equal, andnomore calibration is needed. Scalability is
thus much easier. Currently one of the main challenges here is to reach lower temperatures.

• Atoms in optical tweezers, which allow for a large degree of spatial control. Interactions
between individual atoms can for example be realized through excitation to Rydberg states.
Depending on the spacing between the atoms, different interaction strengths can be realized
[41].

• Cold molecules, which need to be either produced from individual atoms, or cooled down.
Cooling down molecules is somewhat more complicated than cooling atoms due to their
complex internal structure. Cold molecules however allow for a variety of interactions be-
tween molecules, and at the same time, the study of their internal degrees of freedom is by
itself a fascinating application of quantum simulation [42].

• Trapped ions, which can simulate spin systems with long-range interactions and allow for a
large degree of control for state preparation, such as superposition states, and readout [43].
One of the main challenges here is scalability.
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• Color (e.g. nitrogen-vacancy) centers in diamond, which typically simulate a spin system
with long-range (dipole-dipole) interactions. These experiments canbedonewithout a high
vacuum and at comparably high temperatures and feature long coherence times [44, 45].
The spin states can be prepared and read-out optically and the dynamics can be driven with
resonant microwave excitations [46]. Due to inhomogeneities, either in diamond or in the
placement of the defects, disorder can play a role here. Scalability, whilemaintaining control
over the placement of defects, is one of the active areas of research here. These platforms are
also employed for quantum metrology.

• Dopant atoms in silicon, which can simulate the Fermi-Hubbard model and easily achieve
very low temperatures [47]. TheHamiltonian parameters are here fixed upon fabrication of
a sample and currently, only small system sizes can be realized with a high degree of control
[48]. Typical probes here are scanning tunneling microscopy and transport measurements.
Snapshots of the quantum state, such as for example in a quantum gas microscope, are not
possible.

• Quantum dot arrays, which are also natural candidates for the quantum simulation of the
Fermi-Hubbard model, since they are described by the same Hamiltonian [49]. The quan-
tumdots are realizedbyelectrostatically confinedconduction-bandelectrons and theHamil-
tonian parameters, such as chemical potential and hopping amplitude, can be tuned through
gate electrodes. Currently, only small system sizes can be realized and probed with high fi-
delity, but very low temperatures can be reached. Local charge occupation as well as global
charge transport can be measured. Moreover, local spin degrees of freedom and nearest
neighbor singlet-triplet correlations are in principle accessible [50].

2.1 Cold Atoms andQuantumGasMicroscopy

Experimentswith cold atoms in optical lattices have evolved into awell-established field in the con-
text of quantum simulation in the past two decades. Many excellent review articles [39, 51, 52] and
theses, such as e.g. [53–56] to name but a few, have been written on the subject – most of them
by the people who actually work on the experiments. The goal of this section is thus not to pro-
vide an in-depth introduction to the field, but rather to summarize themost important aspects and
achievements from a theorist’s point of view.
In experiments with ultracold atoms, dilute atomic gases are cooled down to theNanokelvin range,
usually by using a sequence of laser and evaporative cooling techniques. The atoms are then spa-
tially confined in optical lattices. These setups allow for a large degree of control, where typically
the hopping, interaction strength, and chemical potential can be tuned in a significant range. In
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the following, we will briefly summarize the typical experimental procedure in a quantum gas mi-
croscope for the example of fermionic Lithium-6 atoms as used in the groups of Immanuel Bloch
and Markus Greiner, which provided the experimental cold atom results presented in this thesis.
Lithium is chosen in those experiments because it has a broadFeshbach resonance, which allows to
tune interactions, and because – compared for example to Potassium – its mass is smaller, thus al-
lowing for larger hopping amplitudes t. Themain aspects of the experimental procedure presented
here also apply to experiments with bosons.

2.1.1 Experimental sequence

The experiment starts with an atomic beam of Lithium produced from a heated block of Lithium.
This beam then travels through a Zeeman slower into a vacuum chamber, where on the order of
108 atoms are loaded into a magneto-optical trap. Subsequently, the atoms are cooled down to
approximately 60μK in a sequence of magneto-optical or dipole traps. At this point, the cloud is
sufficiently cold to be loaded into an optical dipole trap. This trap is used to transfer the atoms from
the magneto-optical trap to a transport beam, which is focused to a narrow waist. This transport
beam is used to move the atoms from the magneto-optical trap to the glass cell, or science cham-
ber, where the rest of the experiment happens. Once the atoms enter the science chamber, they
are trapped by a beam angled with respect to the transport beam, yielding a crossed dipole trap.
The next step is another stage of evaporative cooling by ramping the trap depth. A magnetic field
gradient can be used to spill the most energetic atoms out of the trap.
In the experiments discussed in part I of this thesis, the Fermi-Hubbard model with spin up and
spin down fermions is realized. To this end, two spin states are needed, and in principle there are
different ways to obtain them, see e.g. Ref. [39]. Here, we discuss the realizationwith two different
hyperfine statesofLithium-6,which is used in thediscussedexperiments. Inprinciple, experiments
with more than two spin components are possible by straightforward extension [52]. If an imbal-
ance between spin up and spin down fermions occurs after the steps described thus far, one can
use a microwave pulse to resonantly drive the transition between the two relevant hyperfine states
to obtain an equal mixture.
At this point, e.g. the experiment in Markus Greiner’s group has about 105 atoms in each spin state
at a temperature of T/TF ≈ 0.05. However, in order to load a single layer in the accordion lattice
in the next step, another evaporation step follows, leading to approximately 2000 atoms in the trap.
Now, the temperature of the system can no longer be determined with the help of the absorption
imaging system, as the latter is not sensitive enough at these densities. Therefore, the temperature is
usually determined from site-resolved imaging after the lattice is loaded, for example by comparing
the spin correlations to quantum Monte Carlo simulations. Another possibility that was recently
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realized is the direct measurement of the equation of state, which allows for thermometry with the
help of the fluctuation-dissipation theorem [57].
Next, the atoms are loaded into the accordion lattice and transported to the object plane of the high
resolution imaging system. Just before loading the lattice, a final evaporation step is used in order
to reach colder temperatures. The final trap depth is used to precisely control the atom number,
and the magnetic bias is used to set the atomic scattering length and thus the interaction strength.
Finally, the atoms are loaded into the optical lattice. Depending on the specific setup, the imaging
is often parity projected,meaning that a site occupied by two fermionswith opposite spin is imaged
as empty. In order to determine the chemical potential corresponding to half-filling, i.e. one atom
per site, one can thus tune the chemical potential μ and for each value of μ, count the number of
singly occupied sites. At half-filling, this number is maximized. For finite doping in this type of
setup, the doping value is then determined by fitting the singles density to quantum Monte Carlo
simulations.

2.1.2 Interactions

In general, there are different ways interactions are implemented. For example, atomic species with
large magnetic moments, polar molecules, and Rydberg atoms can realize long-range interactions.
In the case of Lithium-6 discussed here, atoms in different hyperfine states interact via two-body
van derWaals interactions. These interactions have a hard-core cut-off on a distance scale given by
the atomic radius. In general, the extent of the atomic wave function is larger than the range of the
inter-atomic potential. Therefore, the detailed shape of the short-range potential does not matter
and only s-wave scattering plays a role. The potential between two different spin states can then be
approximated as a pure contact interaction potential V(r) = V0δ(r) [52, 54], where the strength
is determined by the scattering length a,

V(r) =
4πℏ2a

m
δ(r). (2.1)

Due to the Pauli principle, only two fermionswith opposite spin can interact in this way. At low en-
ergies, scatteringwith non-zero angularmomentum, such as p-wave scattering, is suppressedby the
scattering centrifugal barrier. The scattering length a determining the strengh of the interaction po-
tential can exhibit magnetic field dependent resonances, the so-called Feshbach resonances. These
occur when a closed molecular channel energetically approaches the scattering state of an open
channel of two colliding atoms [53, 55]. This energy difference between the bound state and the
scattering state of two free atoms can be tuned by amagnetic field, if the corresponding states have
different magnetic moments. The amplitude and sign of the scattering length a can thus be tuned.
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The two hyperfine states of Lithium used in the described experiments have a broad Feshbach res-
onance, which has been measured out very well [58]. The on-site interaction U in the Hubbard
model can thus be well controlled by tuning the magnetic field bias using Feshbach coils. In order
to determine the actual value of U for a given magnetic field, the amplitude of the lattice in one
direction can be modulated sinusoidally at a variable frequency ν for a given time and modulation
depth. If the modulation frequency ν matches the interaction energy, ν = U/h, more doubly oc-
cupied sites appear in the system. In the parity projectedmeasurements inMarkusGreiner’s group,
this leads to a reduction in the observed density. The value of the on-site interaction U is thus de-
termined as the position of the resonances [53].

2.1.3 Optical lattices

Optical lattices are typically formed by interfering several laser beams of identical frequency, thus
realizing a periodic light structure, whichmimics the crystal lattice of a solid. For a laser with wave-
length λL, the periodic potential obtained by shining two counter-propagating laser beams along
e.g. the x axis is

Vx(x) = V0,x sin2(πx/λL). (2.2)

Atoms can be trapped in such periodic light fields because the alternating electric field of the laser
light creates an oscillating atomic dipole parallel and proportional to the local electric field of the
laser. The atomic dipole then interacts back to the same electric field via dipole interaction. Thus,
an optical dipole potential

Vx(x) = d20Ε(x)
2/4ℏδ (2.3)

is created, where d0 is the matrix element of the atomic dipole, Ε(x) is the amplitude of electric
field, and δ = ωL − ωA is the detuning between laser and atomic angular frequencies [52]. The
sign of the detuning δ determines whether the potential is attractive (red-detuned) or repulsive
(blue-detuned) at the intensity maxima. The intensity and detuning of the laser can both be tuned
experimentally, thus enabling control of the sign and amplitude of the potential. Moreover, with
the help of more complicated laser configurations different geometries, dimensionality, spin de-
pendence as well as disorder in the lattice can be realized [52]. The optical lattice has a Gaussian
envelope due to theGaussian profile of the laser beams, leading to a harmonic confinement, which
is approximately quadratic at the center of the trap. In order to create a flat potential in the region
used for the experiment, a digital micromirror device can be used to obtain an additional harmonic
potential in the opposite direction. Note thatmisaligning the center of this compensating potential
with the harmonic confinement from the lattice lasers leads to a linear potential gradient across the
experimental region of interest. Another option is to not compensate for the harmonic potential
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and instead employ the inhomogeneity: if the potential varies sufficiently slow, the local density
approximation can be applied and the potential leads to a spatially varying effective chemical po-
tential. The system then realizes a broad range of fillings in one experimental run, and thus many
doping values can be scanned simultaneously.
In order to derive the Hubbard Hamiltonian, two approximations are commonly made:

(i) only the lowest band is occupied. This approximation is valid as long as the on-site interac-
tion U, the thermal energy kBT and the chemical potential μ are smaller than the bandgap
to the first excited band

(ii) the Wannier functions are sufficiently localized on one lattice site. This tight binding ap-
proximation is valid as long as the lattice potential is sufficiently deep.

The hopping amplitude t is then obtained from the integral over theWannier functions, which de-
cay fast with distance and the interaction strengthU is given by the integral overWannier functions
on the same lattice site. For a non-vanishing overlap between Wannier functions at next nearest
neighboring sites, the corresponding hopping amplitude t′ is non-zero and can thus be tuned by
the lattice depth. The Wannier states get narrower as the amplitude of the periodic potential is
increased. This allows to vary the ratio of tunneling amplitude t to interaction strength U by tun-
ing the lattice potential V0, since the tunneling energy decreases with increasing localization of
the Wannier functions, whereas the interaction energy increases. In particular, the Hamiltonian
parameters scale as

t
Er

≃ 4√
π

(
V0

Er

)3/4

exp
(
−2
√

V0/Er

)
and

U
Er

≃
√

8
π
kLa
(

V0

Er

)3/4

, (2.4)

where the recoil energy Er = ℏ2k2L/2m sets the energy scales of particles in the lattice and kL =

2π/λL is the laser wavevector. For a detailed derivation see Ref. [52] and references therein.

2.1.4 Imaging

The idea of site-resolved imaging is to collect sufficientlymany fluorescent photons fromeach atom
with a high-resolution imaging objective to be able to resolve the occupation on neighboring sites.
One of the first quantum gas microscope experiments used large optical lattices to facilitate imag-
ing, but this has the drawback of reducing the tunneling amplitude within the lattice during the
experiment [59]. For a sizeable hopping amplitude t, the lattice spacing in the optical lattice needs
to be small, which leads to lattice spacings close to the limit of optical resolution. As a conse-
quence, several hundreds of fluorescent photons need to be collected per atom to faithfully de-
termine whether a single site is occupied. In order to obtain a binarized image, a threshold value
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is used to determine the occupation of a given lattice site. One challenge is to collect sufficiently
many photons before the atoms hop between sites. Typically, this is resolved by employing deep
optical lattices for imaging, which are ramped up sufficiently fast to freeze the atom distribution, as
well as efficient cooling mechanisms. Note that the specifics of this ramp actually can change the
observable physics: for example, in the Fermi-Hubbard model, virtual doublon-hole excitations
exist. If the lattice is ramped up sufficiently slow, these doublon-hole pairs can recombine into two
singly occupied sites, but also move apart from each other, thus displacing the spins in between.
After the first quantum gas microscopes were realized for bosonic Rubidium [60, 61], it took an-
other six years for fermions to be imaged with single site resolution [62–65]. One of the reasons is
that more elaborate laser cooling methods such as Raman-sideband cooling are necessary for site-
resolved detection of fermions.
If a single site is occupied by two atoms, the imaging procedure leads to a light assisted collision,
which results in the loss of both atoms. The collected fluorescence signal from this site is then
identical to the signal from an empty sites, and thus the measurement is parity projected. In the
Lithium quantum gas microscope experiment in Markus Greiner’s group discussed in chapter 6,
it is currently not possible to image both hyperfine states simultaneously. In order to obtain spin
observables, one of the two hyperfine states can be removed before imaging by driving a nearly
closed transition to a higher manifold with a resonant pulse, thus removing the atoms in the corre-
sponding hyperfine state from the trap. This means, however, that in a given snapshot, only atoms
in one spin state are visible, and empty sites in the image can be holes, doublons, or atoms in the
other spin state. In the corresponding experiment in Immanuel Bloch’s group discussed in section
4.3, the simultaneous detection of two hyperfine states is possible by spatially separating the states
directly before imaging using a Stern-Gerlach setup. In Markus Greiner’s Rubidium experiment
the local occupation number can be resolved by letting the atoms expand in the second spatial di-
mension [66].
The microscope objective can additionally be used to project spatial patterns of light onto the sys-
tem, thus creating a different potential landscape.

2.1.5 What has been achieved

In experiments with cold atoms in optical lattices, a broad range of milestones have been achieved
in the past two decades and it is beyond the scope of this thesis to cover all of them. For a more
comprehensive review and further reading, references [39, 67] are recommended. Here, we only
want to highlight some of the many outstanding experiments in the field.
The starting point for the study of strongly correlated many-body physics with cold atoms was the
observation of the superfluid toMott insulator transition in theBose-Hubbardmodel by tuning the
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ratio of tunneling to interaction strength t/U, Ref. [68]. Later, the Higgs amplitude, which is the
excitation mode corresponding to oscillations of the amplitude of the superfluid order parameter
in the vicinity of the superfluid to Mott insulator transition was observed [69].
In 2008, Mott insulators of fermions were realized using potassium and probed through the com-
pressibility, which vanishes as the number of atoms is varied, as well as the reduction of doubly
occupied sites [70, 71]. Later, Mott insulators of lithium were realized, and the compressibility at
this point could be measured by observing the change in the density profile throughout the trap
[72]. As next steps, short range magnetic correlations were observed [73, 74], antiferromagnetic
correlations in one-dimensional systems [75] as well as antiferromagnetism across the system in
a two-dimensional Fermi-Hubbard system [76]. Inspired by experiments on real materials, trans-
port measurements [77, 78] and angle-resolved photoemission spectroscopy [79] have been real-
ized in the Fermi-Hubbard model.
In the description above, we focused on realizations of the Fermi-Hubbardmodel in a quantumgas
microscope, and the work in part I of this thesis is concerned with the one and two dimensional
Fermi-Hubbard model in a square lattice. However, different geometries, such as a triangular or
honeycomb lattice are possible and different atomic species can be used. Today, rubidium [60, 61],
ytterbium [80, 81], potassium [65, 82, 83] and lithium [64, 84, 85] have been imaged and more
microscopes are being built. Additionally, very strong effective magnetic fields and complex tun-
neling parameters can be engineered. In the groups ofTilmanEsslinger inZurich, Immanuel Bloch
and Monika Aidelsburger in Munich, and Klaus Sengstock and Christof Weitenberg in Hamburg,
systems with topological order have been realized in this way [86–89].
The isolation from the environment possible in cold atom experiments also enables the observa-
tion of dynamical properties and non-equilibriumphysics. The time evolution of amany-body sys-
tem with disorder has been observed in one and two spatial dimensions. In both cases, a memory
of the initial state could still be seen in the local occupation [90–92]. Moreover, configurational
correlations related to the logarithmic growth of entanglement have been measured [35]. Using
two copies of the system, the Renyi entropies can be measured [93], and the thermalization of a
systemwas studied using entanglement properties [94]. Other out-of-equilibrium experiments in-
clude for example the study of the relaxation of a spin spiral imprinted onto the system [95] and
the dynamics of a single mobile spin impurity [96].
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2.2 SuperconductingQubits

In this section, we give a brief introduction to superconducting qubits and their application in
quantum simulation. For more details we refer to the many excellent review articles and theses
written on the subject, such as Ref. [97–99]. Superconducting qubits have been suggested as pos-
sible platform for quantumcomputing already in 1997 [100] and a lot of research anddevelopment
is conducted among others by companies like Google, IBM, Rigetti and Intel.
Superconducting qubits are solid state electrical circuits. Their fabrication is based on technolo-
gies developed for conventional integrated circuits. Each qubit is a non-linear LC resonator. The
non-linearity is needed to be able to separately adress the transitions between different levels. In
a quantum harmonic oscillator, consisting of an inductor and a conductor, the levels are equally
spaced with a frequency ω0 = 1/

√
LC and transitions between different levels can thus not be

adressed independently. In the non-linear LC circuits used as superconducting qubits, a Josephson
junction is used as inductance. A Josephson junction consists of two superconductors, separated
by a thin insulating layer, allowing for coherent tunneling of Cooper pairs. The insulator is usu-
ally fabricated through oxidation of the superconductor, yielding an insulating barrier a few tens of
atoms thick [97]. The two superconductors can have a different phase. The current through the
Josephson junction is given by

I = I0 sin (2πΦ/Φ0) , (2.5)

with the superconducting flux quantum Φ0 = h/2e. This periodicity of the current is caused by
the discreteness of Cooper pair tunneling across the junction. The energy stored in the junction,
called the Josephson energy, is

EJ =

∫
I · Vdt = −Φ0

2π
I0 cos(2πΦ/Φ0). (2.6)

The Hamiltonian for a single qubit is

Ĥ =
Q̂2

2C
−
(
Φ0

2π

)2 1
L
cos(2πΦ̂/Φ0) (2.7)

with the charge Q̂ of the capacitor. The energy separation of the system is large enough to work at
temperatures of about 0.01K, which are reached in cryogenic refrigerators.
Additional inductors, capacitors and Josephson junctions can be added to the qubit architecture to
achieve certain design goals. The circuit parameters are used to engineer various qubit properties.
In the design of a qubit, a trade-off between different goals has to be made, such as the anhar-
monicity being large and the sensitivity to various noise sources being small. Choosing a higher
impedance Z0 =

√
L/C yields a higher non-linearity, such that the system can be easily treated
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as a two level system. This comes however at the price of a higher sensitivity to noise. A large res-
onance frequency is desirable to suppress thermal effects. If the resonance frequency is too high,
the corresponding control electronics are not as common anymore and thus expensive [98].
There are three general superconducting qubit architectures: flux, phase and charge qubits. In the
flux qubit, a superconducting loop with one or possibly several Josephson junctions is threaded
with a magnetic field. Different integer numbers of magnetic flux quanta can be trapped in the su-
perconducting loop. In the phase qubit, a current flowing through the Josephson junction alters
the phase between the two sides of the junction. A charge qubit consists of a small superconduct-
ing island, which is connected to a large superconducting reservoir through a junction. The charge
offset ng used to tune the qubit frequency is controlled through a capacitively coupled gate voltage.
The Hamiltonian for this type of circuit is

Ĥ = 4EC(N̂ − ng)
2 − EJ cos Φ̂, (2.8)

where N̂ are the excess Cooper pairs on the island and Φ̂ is the phase difference across the junc-
tion. The Josephson junction provides a valve for Cooper pairs and couples the two qubit states
|N⟩, |N + 1⟩, without and with an additional Cooper pair on the island. Charge qubits are par-
ticularly susceptible to charge noise. In the transmon qubit, this problem is avoided by adding a
shunt capacitor. The circuit is described by the same Hamiltonian as above, but the ratio of EJ/EC

is tuned to values ≥ 50, thereby significantly reducing the sensitivity to charge noise. This how-
ever comes at the cost of reducing the anharmonicity to about −200MHz, which is only a few
percent of the level spacing ω01 ∝ 5GHz. Measurement, control and coupling of the qubits is
achieved through microwave resonators with techniques from circuit quantum electrodynamics.
In the Google experiments, each pair of neighboring qubits is inductively coupled to a coupler
loop through a mutual inductance, see Fig. 2.2.1. The coupler loop has a Josephson junction, such
that the inductance can be tuned by applying a magnetic flux through the coupler loop, yielding a
variable coupling strength gij between the two qubits [101]. The circuits can be engineered such
that the coupling current, induced by the first qubit in the coupler loop, is much smaller than the
critical current of the coupling junction. Only a small, tunable fraction of the current in the first
qubit is induced through the coupler in the second qubit. With this architecture, the coupling can
be tuned to any value−55MHz ≤ g/2π ≤ 5MHz and in particular also to zero [98]. This can for
example increase the fidelity and coherence during the application of single qubit gates.
An array of coupled superconducting qubits is described by the Bose-HubbardHamiltonian [13],

HBH =

nQ∑
i

hia†i ai +
U
2

nQ∑
i

a†i ai(a†i ai − 1) + J
∑
⟨i,j⟩

(
a†i aj + h.c.

)
, (2.9)
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Figure 2.2.1: Superconducting qubit device used for part of the experimental results in
section 9.2. a) Optical micrograph of the nine qubit linear-chain device. b) Circuit diagram
for a three qubit subsection of the device, indicating which element controls which part of the
Hamiltonian.

where a† (a) denotes the bosonic creation (annihilation) operator, hi is the on-site detuning, J =
gi,i+1 is the hopping rate between nearest neighbor lattice sites, U is the on-site Hubbard interac-
tion, and nQ is the number of qubits. The qubit frequency, the nearest neighbor coupling, and the
nonlinearity set hi, J, and U, respectively.
Circuit properties are not as exactly reproducible as for example the properties of isolated atoms,
such that a newly fabricated circuit needs to be calibrated first. The values of the circuit model pa-
rameters, such as transition frequencies and coupling strength, are infered for example from spec-
troscopic measurements. In comparison to quantum gas microscopes, the repition rates for su-
perconducting qubit experiments are very high and thus a large amount of measurements is easily
possible.

2.2.1 What has been achieved

Quantum simulation with arrays of superconducting qubits is a relatively new field, such that im-
portant milestones have been achieved in the past few years. Besides analog quantum computa-
tion, superconducting qubits are also a promising platform for a quantum computer, and a lot of
research is focused on the development of technology to obtain a universal quantum computer
that can outperform a classical computer. Perhaps most prominently, the Google team recently
reported a dramatic speed-up in the sampling from a probability distribution as compared to a
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classical supercomputer [102]. The same technology, namely state preparation, high fidelity gate
operations, and readout, can also be used for digital quantum simulation, where the Hamiltonian
is typically trotterized into one- and two-qubit gate operations.
TheparadigmaticHeisenberg and Ising interacting spinmodels have for examplebeen implemented
with superconducting qubits using digital quantum simulation [103]. The Fermi-Hubbard model
has been realized, albeit for very small system sizes [104]. For the Fermi-Hubbard model, the lo-
cal Hilbert space dimension is four as compared to two for a spin system. Therefore, usually two
qubits are needed to simulate one lattice site in the fermionic system. Thedigital simulation is com-
plicated further by the necessity to implement non-local Jordan-Wigner strings in order to obtain
the correct fermionic commutation relations. Another field of research in digital quantum simula-
tion is quantum chemistry. Superconducting qubits have for example been used to compute the
energy surface of molecular hydrogen [105].
Analog quantum simulation experiments using arrays of superconducting qubits have shown a va-
riety of physical phenomena. Among them is the realization of a quantum random walk of one
and two excitations on a 12 site chain [106], and the implementation of synthetic gauge fields
[101, 107]. Signatures of many-body localization have been observed by using a spectroscopic
scheme to measure the eigenenergies of the underlying Hamiltonian [108].
Since the particles in the system are microwave photons, intrinsic particle losses are a potential
problem in superconducting qubit arrays. One approach tomake use of this property is dissipative
preparation andmanipulation of the quantum system, as for example in Ref. [109], where dissipa-
tion was used to stabilize a Mott insulator of photons.
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Part I

The Fermi-HubbardModel
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3
Introduction

The Fermi Hubbard model is described by the Hamiltonian

Ĥ = −t
∑
σ=↑,↓

∑
⟨i,j⟩

(
ĉ†i,σ ĉj,σ + h.c.

)
+ U

∑
j

ĉ†j,↑ĉj,↑ĉ
†
j,↓ĉj,↓, (3.1)

which appears deceivingly simple: spin up and spin down fermions, described by fermionic cre-
ation and annihilation operators ĉ(†)i,σ , hop between neigboring lattice sites with a hopping ampli-
tude t. Two fermions of opposite spin occupying the same lattice site are associated with an inter-
action energy U. The Pauli exclusion principle prevents two fermions with the same spin to sit on
the same lattice site. Here, we are interested in the regime U ≫ t, but before – at half-filling – the
Nagaoka regime is reached and the system becomes polarized [110].
The Fermi-Hubbard model was originally introduced in 1963 by John Hubbard [111] to describe
the transition between conducting and insulating states. The discovery of high temperature super-
conductivity in the cuprates in 1986 by Bednorz and Müller [29] sparked an increased interest in
the two dimensional Fermi-Hubbard model, which is believed to capture the main features of the
cuprate phase diagram [30, 31]. High-temperature superconductors are materials which can have
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critical temperaturesTc above 77K, reachable by cooling with liquid nitrogen¹. Cuprate supercon-
ductors are high-temperature superconductors which consist of layers of copper oxides, alternat-
ing with layers of oxides of other metals. There exist a variety of cuprate materials, such as LBCO
(lanthanum barium copper oxide), the material studied by Bednorz and Müller [29] and YBCO
(yttrium barium copper oxide). The relevant physics is mostly based on the valence electrons of
the copper atoms, and it is thus believed that most aspects of the cuprate phase diagram are cap-
tured by the two-dimensional Fermi-Hubbard model.
Intriguingly, the properties of the cuprate materials are not fully explained. The long-standing goal
of the field is to understand the phase diagram and in particular, how to enhance superconductiv-
ity. Assuming the mechanism behind the high critical temperatures as well as possibly competing
phases are understood, one can dream about engineering new materials which become supercon-
ducting at room temperature. The optimal material would moreover be easy to manufacture and
handle, as opposed to mostly brittle cuprate materials.
However, despite its apparent simplicity and decades of research, the phase diagram of the Fermi-
Hubbard model still poses many open questions. At half-filling, the model is comparably well
understood. As the temperature is lowered, long-range antiferromagnetic correlations build up,
which can extend across the entire system. Note that due to the Mermin-Wagner theorem, there
cannot be true long-range order in the two-dimensional model. However, the correlation length
canbe exponentially large in the temperature and thus be bigger than the system sizes considered in
numerical simulations and quantum simulation experiments. Going away from half-filling to finite
doping in the phase diagram in Fig. 3.3.1, the situation becomes more complicated. In the cuprate
materials, doping is realized by introducing foreign elements in the interleaved ‘charge-reservoir’
layers, thus adding or removing electrons in the copper-oxygen planes [112]. Within the Fermi-
Hubbard model, (hole-)doping is simply described by having less than one particle per site. Even
the properties of a single hole in an anti-ferromagnet are not fully agreed upon, let alone themech-
anism that leads to the pairing of two charge carriers.
In conventional superconductivity, the interactions between electrons and phonons lead to the
formation of Cooper pairs. As the Debye frequency of phonons depends on the mass of the lat-
tice ions, the transition temperature of conventional superconductors varies for different isotopes.
The corresponding dependence could not be shown in the cuprate materials, indicating that a
different mechanism than electron-phonon interactions is at play. It is widely believed that anti-
ferromagnetic spin fluctuations play a crucial role. The Fermi-Hubbard model describes the latter,
while it does not include phonons.
In 1987, only a year after the discovery of high temperature superconductivity in the cuprates, An-

¹Materials are sometimes called high temperature superconductors if their critical temperature is below 77K, but
still much higher than expected from conventional theoretical descriptions.
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dersonproposed the resonating valence bond theory to describe the phenomenon [30]. A resonat-
ing valence bond state is an equal superposition of all possible coverings of the lattice with singlets.
The holes then move freely through this covering of singlets, which comprises a spin liquid. This
state can be expressed with the help of a Gutzwiller projection on a mean field level, as will be dis-
cussed inmore detail in section 5.1 andA.3. Anderson proposed to use projectedmean-field states
as trial wavefunctions [30], where all components corresponding to doubly occupied sites are re-
moved from the mean-field wavefunction. This projected state was found to be a good variational
ground state of the t − J model over a range of dopings [113].
Twentyyears after thediscoveryofhigh-temperature superconductivity, alreadymore than 100.000
papers had been published on the subject [114]. With this wealth of publications on the subject,
an exhaustive review has become basically impossible. The literature is too vast for anyone to have
a comprehensive overview. Different materials yield different experimental outcomes with prop-
erties like disorder, phonons, and interlayer couplings varying. Often it is difficult to scan the entire
range of interesting doping values in onematerial. Early work often suffers frommore inhomogen-
ities and a less optimal fabrication process of samples. From a theory perspective, in a way even
less is known about the Fermi-Hubbard model itself. While the quest to understand (or even map
out!) its phase diagram has resulted in the development and improvement of several theoretical
methods, its numerical simulation is still difficult. Analytical theories, or simple pictures, are either
lacking, or highly debated, and people working in the field usually have strong opinions, thus ren-
dering an objective review from an expert almost impossible. WhenAndersonwas asked towrite a
review on the subject from his personal perspective in 2010, he already states in the abstract: Also,
their purpose was for it to serve as an “introduction to the more technical debates”, but its message is that
almost all of these are not relevant.” [115].
The remainder of this chapter is structured as follows. We start by introducing the descendants of
the Fermi-Hubbard model considered in this thesis. We then briefly – and by no means exhaus-
tively – discuss the experimental and numerical methods used to probe the cuprate materials and
the Fermi-Hubbard model. Finally, we provide an overview over what is known (or not known)
about the different phases in the phase diagram.
In chapter 4, we present results on the one-dimensional Fermi-Hubbard and t− Jmodel. We then
move on to two dimensions and start in chapter 5 with a detailed description of the ground state
anddynamical properties of a single hole. In chapter 6, we discussmany holes, going up to a doping
of more than 30%. We conclude in chapter 7.
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3.1 Descendants of the Fermi-Hubbard model

In order to describe the actual materials inmore detail, sometimes the Fermi-Hubbardmodel with
an additional t′-term is considered, which captures hopping to next nearest neighboring sites. In
this thesis, we however only consider the ’pure’ Fermi-Hubbard model, as described by Eq. 3.1.
In cuprate materials, the ratio of interaction strength U to hopping t is usually big, the most com-
mon case being U/t = 12. In the limit of U ≫ t and below half filling, the Fermi-Hubbard Hamil-
tonian (3.1) can bemapped to the t−J∗ model using a Schrieffer-Wolf transformation, as discussed
in detail in Ref. [116]. We briefly summarize the transformation in the following.
The Hamiltonian (3.1) is written as sum of kinetic and interaction part Ĥ = T̂ + V̂ with

T̂ = −t
∑
σ=↑,↓

∑
⟨i,j⟩

(
ĉ†i,σ ĉj,σ + h.c.

)
and V̂ = U

∑
j

ĉ†j,↑ĉj,↑ĉ
†
j,↓ĉj,↓. (3.2)

The kinetic part is further split up as

T̂ = T̂0 + T̂−1 + T̂1, (3.3)

where T̂m changes the number of doubly occupied sites by m. It holds

T̂†
m = T̂−m and [V̂, T̂m] = mUT̂m, (3.4)

since the interaction energy changes by mU after one of the hops in T̂m. A unitary transformation
of the Hamiltonian can be written as

Ĥ′ = eiŜĤe−iŜ = Ĥ +
1
1!
[iŜ, Ĥ] +

1
2!
[iŜ, [iŜ, Ĥ]] + ... (3.5)

In order to obtain aHamiltonian without couplings between states with different numbers of dou-
bly occupied sites up to a given order in t/U, we need to eliminate the last two terms from

Ĥ = V̂ + T̂0 + T̂−1 + T̂1. (3.6)

This can be done by choosing
iŜ =

1
U
(T̂1 − T̂−1), (3.7)

yielding

Ĥ′ = eiŜĤe−iŜ = V̂ + T̂0 +
1
U
([T̂1, T̂−1] + [T̂0, T̂−1] + [T̂1, T̂0]) +O

( 1
U2

)
. (3.8)
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Figure 3.1.1: Doublon-doublon and doublon-hole correlations for the ground state of the
Fermi-Hubbard model at half-filling and U/t = 8, obtained with DMRG on a 6 × 20 cylinder.
The connected a) doublon-doublon and b) doublon-hole correlations are shown. Note that
the colorscale is clipped in both cases to make features beyond nearest neighbors visible; the
maximum value for the doublon-hole correlation is ±0.244.

The procedure can be generalized to a recursive scheme to eliminate the corresponding terms up
to any desired order in t/U, see Ref. [116]. Note that this transformation also gives a prescription
on how to return from e.g. the groundstate of the Heisenberg model to the Fermi-Hubbard model
at half-filling to a given order in t/U by introducing doublon-hole pairs accordingly. Due to the
structure of the Hamiltonian, doublon-hole pairs on nearest neighbor sites dominate strongly for
large U/t, see Fig. 3.1.1. Moreover, correlations between doublon-hole pairs only appear in the
third order transformation.
Up to orderO(t2/U) the exact representation is

Ĥt−J∗ = P

−t
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + J
∑

j

(
Ŝj+1 · Ŝj −

n̂j+1n̂j

4

)

− J
8

i ̸=r∑
⟨i,j,r⟩,σ

(
ĉ†i,σ ĉr,σ n̂j −

∑
σ′,τ,τ′

ĉ†i,σσσ,σ′ ĉr,σ′ · ĉ
†
j,τστ,τ′ ĉj,τ′

)P , (3.9)

see e.g. Ref. [117]. Here,P denotes the projection operator on the subspacewithout double occu-
pancy, and ⟨i, j, r⟩ is a sequence of neighboring sites. The operator ĉ†j,σ creates a fermionwith spin σ
on site j and n̂j,σ = ĉ†j,σ ĉj,σ denotes the density operator of fermions with spin σ. The spin operators
are defined by Ŝj =

1
2

∑
σ,σ′ ĉ

†
j,σσσ,σ′ ĉj,σ′ , where σ denotes a vector of Pauli matrices. The first term

in Eq. (3.9) describes tunneling of holes with amplitude t. The second term corresponds to spin-
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exchange interactions of Heisenberg type, with anti-ferromagnetic coupling constant J = 4t2/U.
For a single hole, the term n̂j+1n̂j leads to a constant shift in energy, which we will not include in
the analysis in the following sections. Together these first two terms define the t − J model. It is
extended to the t − J∗ model by including the last term, which describes next-nearest neighbor
tunneling of holes correlated with spin-exchange interactions. In our numerical simulations, we
often consider the t − J instead of the t − J∗ model, thus neglecting the term proportional to J/8.
For the case of exactly one particle per site, the t − J∗ model reduces to the isotropic Heisenberg
model,

ĤJ = J
∑

j

Ŝj+1 · Ŝj. (3.10)

The t-XXZ model is described by the Hamiltonian

Ĥt−XXZ = P
[
−t
∑
⟨i,j⟩,σ

ĉ†i,σ ĉj,σ + Jz
∑

j

Ŝz
j+1Ŝ

z
j +

J⊥
2

∑
j

(
Ŝ+j+1Ŝ

−
j + h.c.

)]
P , (3.11)

with the same terminology as introduced above. Hamiltonians closely related to Eq. (3.11) can
be realized independently of the Fermi-Hubbard model in a quantum gas microscope using polar
molecules [118], Rydberg dressing [119, 120] or by spin-dependent interactions [121]. In this
case, there is no next-nearest neighbor hole hopping term. Furthermore, anisotropic spin coupling
constants can also be realizedwith spin-dependent lattices [122]. In these types of setups, the cou-
pling J/t can in principle be tuned to arbitrary values, including to J/t > 1. This case cannot be
realized as an approximation of the Fermi-Hubbard model, since we assumed a large ratio of U/t
in the mapping to the t − J(∗) model.
The crossover from one to two dimensions in the Fermi-Hubbard model can be studied in a cold
atom experiment by tuning the lattice depth in one spatial direction [123]. In this case, the interac-
tion U stays constant while the ratio ty/tx is tuned, and upon mapping the Fermi-Hubbard model
to the t− J(∗) model, the spin exchange couplings become Jy/Jx = t2y/t2x, realizing theHamiltonian

Ĥ1D2D
t−J = −

∑
i,σ

P
(
txĉ†i,σ ĉi+ex,σ + tyĉ†i,σ ĉi+ey,σ + h.c.

)
P +

∑
i

JxŜi · Ŝi+ex + JyŜi · Ŝi+ey . (3.12)
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3.2 Experimental and numerical probes

3.2.1 Experiments on the cuprate materials

A lot of progress in understanding the cuprates, and by extension the Fermi-Hubbard model, has
been made through experiments. A common experimental probe in condensed matter physics
is Angle Resolved Photoemission Spectroscopy (ARPES), where the photoemission of electrons
from a sample is used to gain insights into the electronic structure. The excitation spectrum of
cuprate materials measured with ARPES has for example revealed the d-wave nodes predicted by
various theories [124–127]. For a comprehensive review on the method and experimental results
up to 2003, we recommendRef. [128]. In section 4.2, we discuss a protocol to performARPES in a
quantumgasmicroscope, thus enabling the same experimental probe in a clean andwell-controlled
realization of the Fermi-Hubbard model.
Another typical probe is scanning tunnelingmicroscopy (STM),where the local density of states is
measured with atomic resolution. This method is in a way a complementary probe to ARPES, as it
provides real-space information. STM has for example demonstrated the spatial inohmogeneities
inmany samples, whichmight also influence the results obtainedwith other experimentalmethods
[129].
With the synthesis of large single crystals with controlled doping values, neutron scattering has
become a valuable tool [130]. Neutron scattering can be used to probe the dynamical structure
factor, which can exhibit evidence for antiferromagnetic correlations and stripe order.
Nuclear magnetic resonance (NMR) measurements of the Knight shift and its temperature and
doping dependence have provided the first experimental probes of the elusive pseudogap phase.
Important insights have also been gained by transport and conductivity measurements. In order
to understand transport properties, measurements of theHall coefficient [131], which can be used
to access the carrier density, are invaluable.
The competing phases at low temperatures in the cuprate phase diagram can be investigated by
suppressing superconductivity with highmagnetic fields. In the case of underdoping, i.e. a doping
smaller than the optimal doping for superconductivity, quantum oscillations have been observed
in the resistance, indicating well-defined quasiparticles with fermionic statistics [132]. Since then,
quantum oscillations have been observed in other quantities, such as the specific heat [133]. An-
other method to suppress superconductivity is to introduce impurities in the sample.
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Figure 3.3.1: Conjectured phase diagram of the Fermi-Hubbard model. A schematic of
the conjectured phase diagram of the finite-size 2D Fermi–Hubbard model [5].

3.2.2 Numerical Methods to probe the Fermi-Hubbard model

A lot of effort has beenmade to study the problemnumerically. However, until today the exact sim-
ulation of the Fermi-Hubbard model remains challenging. We recommend Ref.[134] for a review
of some of the most commonly used numerical methods. In quantum Monte Carlo simulations,
the sign problem becomes apparent for low temperatures, high values of U/t, and finite doping.
The local Hilbert space dimension of four limits exact diagonalization calculations to very small
systems. Matrix product state algorithms are used to simulate the ground state of one dimensional
systems, andwhile extensions to two spatial dimensions are possible, they usually comewith some
limitation, such as a cylinder geometry, which might favor certain states. Instead of describing
the entire lattice, a different approach is taken in cluster approximations, such as cluster dynamical
mean field theory: a single (small) cluster is treated exactly, while the surrounding system provides
an external bath, which in turn influences the degrees of freedom of the small cluster [135]. The
size of the small cluster can then be varied to some degree.
While definitive statements about the phase diagram of the Fermi-Hubbard model in the relevant
parameter regime of U ≥ 6t remain scarce, all numerical methods agree on one thing: there are
various competing states, which are close in energy [112].
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3.3 Phase diagram

TheFermi-Hubbardmodel is believed to capture many aspects of the cuprate phase diagram, such
as antiferromagnetism [136], its disappearance upon doping, stripes, the pseudogap phase [137]
andpairing, see Fig. 3.3.1. One of the biggestmysteries of the phase diagramare the pseudogap and
bad (or strange) metal regime, which defy a description in terms of conventional quasiparticles.
As mentioned above, the low temperature part of the cuprate phase diagram can be explored by
applying a strong magnetic field, which suppresses superconductivity and thus enables the study
of possibly competing phases. Moreover, the strength of the magnetic field necessary to suppress
superconductivity at a given temperature and doping gives an indication of the competition at this
point in the phase diagram [133].
Superconductivity and stripe formation for example seem to compete and coexist in the phase di-
agram [138, 139]. Numerical studies of the Fermi-Hubbard and the t − J model have shown that
this competition is strongly affected by extensions of the model, such as the next nearest neighbor
hopping t′ mentioned above [140, 141]. In order to investigate these phases which are so close in
energy, numerical and experimental methods which are able to capture all phases under consider-
ation without any bias are necessary.

3.3.1 Antiferromagnet

The parent compounds of the cuprate materials, i.e. samples without doping, and the half-filled
two-dimensional Fermi-Hubbard model, are Mott insulators. This means that the system is insu-
lating, even though the band is half filled and thus should be metallic according to band theory.
The reason for the insulating behavior are strong interactions. In the case of the Fermi-Hubbard
model, theMott insulator is an antiferromagnet, because the virtual hopping, allowedbyoccupying
a single site with a spin up and a spin down fermion, yields an energy gain of 4t2/U for anti-aligned
spins. The t − J model introduced in section 3.1 with exactly one particle per site corresponds di-
rectly to the Heisenberg model.
Early numerical simulations, for example with quantumMonte Carlo, have shown that the ground
state of the half-filled two-dimensional Fermi-Hubbard model had long-range antiferromagnetic
order [136]. In order to make a statement about the ground state, successively lower temperatures
were simulated and the result was extrapolated to the T = 0 limit. Experimentally, the antifer-
romagnetic state has been observed in neutron scattering experiments, where the two sublattice
structure leads to Bragg peaks at momentum k = (π/a, π/a) [142–144]. Note that in two di-
mensions, there is no actual Néel temperature. However, in cuprate materials, the small interlayer
coupling effectively leads to coupled two-dimensional layers. In pure two dimensional finite size
systems, such as the one studied in a cold atom realization of the Fermi-Hubbardmodel in a quan-
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tum gas microscope in Ref.[76], the antiferromagnetic correlations can span the entire system at
sufficiently low temperatures.

3.3.2 Pseudogap

The pseudogap is probably the most mysterious and elusive part of the phase diagram. A variety
of experimental observations hint towards certain properties, but their theoretical interpretation
remains unclear and debated. There is no definite finite-temperature phase boundary, but instead
a crossover at T∗ for dopings p < p∗. The defining property of the pseudogap is that there is an
energy gap in some properties, but not in others [129]. Phrased differently, increasing the tem-
perature from the superconducting state, certain gap-like features persist in the normal state, i.e.
without superconductivity. For a review of pseudogaps in a general context, see Ref. [145].
Early experiments on the cupratematerials showed gap-like behavior in the normal state above the
superconducting phase in the uniform spin susceptibility, probed through NMR measurements
of the Knight shift [146, 147]. In conventional superconductors, the Knight shift is temperature
independent in the normal state. Below the critical temperatureTc for superconductivity, the pair-
ing of electronic spins into superconducting Cooper pairs leads to a sharp drop in the Knight shift
[148]. In the cuprate materials for doping below the optimal doping, the Knight shift drops at
temperatures significantly higher than Tc. One possible conclusion is that pairs already form for
temperaturesT > Tc, which leads to a so-called spin gap [146]. Numerically, the temperature and
doping dependence of the Knight shift has for example been observed in cluster DMFT studies of
the two-dimensional Fermi-Hubbardmodel [149]. A similar signature has been found directly for
the spin susceptibility, which exhibits a maximum at the temperatureT∗, already at half-filling and
in the Heisenberg model [150].
One picture of the pseudogap is thus as follows: the observed gap is due to paring, but long-range
order is not yet established. Thephase stiffness is comparably small, and thermal fluctuations there-
fore easily inhibit the ability to carry a supercurrent [130]. However, definite proof for pairing cor-
relations up to high temperatures is still lacking and even difficult to define precisely [112]. Nu-
merically, the d-wave pairfield susceptibility has been used to probe the pre-formed pairs [151].
Apart from the spin susceptibility, a pseudogap has also been seen in a variety of other experi-
ments, maybe most prominently in ARPES measurements. In the superconducting phase, the
spectral function at the antinodal point k = (0, π) exhibits a narrow peak, which is a signature
of a well-defined quasiparticle [130]. The onset of this peak is found above the Fermi energy, thus
indicating the presence of a gap. As the temperature is increased through the critical temperature
Tc, the quasiparticle peak disappears. The gap, however, persists. One possible conclusion is that
the quasiparticle in the superconducting phase exists due to the phase coherence, which is lost
in the pseudogap phase [130]. The formation of a pseudogap near the antinodal point has been
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observed numerically for example with determinantal quantum Monte Carlo simulations [152].
Around the nodal points k = (±π/2,±π/2), so-called Fermi-arcs have been seen experimentally
[153]. These arcs of high spectral weight appear like a part of a small Fermi surface, but they have
two end points and the backside of the putative Fermi surface is invisible. In a Fermi-liquid state,
onewould expect a closed Fermi surface. Themicroscopic origin of the Fermi arcs is poorly under-
stood. For example, it remains unclear whether the observed arcs are due to inherent many-body
effects, or whether they emerge in the many-body systemmerely by renormalizing parameters in a
putative effective single-particle theory. Furthermore, it remains unclear whether there exist states
on the backside of the Fermi arcs whose spectral weight is strongly suppressed. If this is the case,
and the Fermi-arcs can be understood as being part of a Fermi surface, this will have some intrigu-
ing consequences: The expected area enclosed by the putative Fermi surface would violate Lut-
tinger’s theorem [154], indicating the existence of either a hitherto unknown broken translational
symmetry or of topological excitations [155]. If the latter was the case, it would imply striking
consequences for the nature of the constituents that determine the physics of strongly correlated
cuprate compounds [156, 157].
Another route to probe the pseudogap phase are transport measurements. In particular, in high
magnetic fields, which suppress superconductivity, the Hall coefficient has been measured at low
temperatures. Starting from high doping, the carrier density is n = 1 + p, corresponding to the
number of holes relative to a maximally filled system. With decreasing doping p, one enters the
pseudogap phase. This is accompanied by a rapid drop in the Hall coefficient nH, yielding a carrier
density of n = p in the pseudogap phase [133]. Correspondingly, the resistivity shows a large
upturn at low temperatures for samples in a high magnetic field. This is consistent with a loss of
carrier density [133]. Note that only the density of charge carriers is reduced, while their mobility
does not change significantly [158].

3.3.3 Strange metal

The state at dopings higher than p∗ is a so-called strange metal for a range of dopings, until it be-
comes a normalmetal or a Fermi liquid [133]. In the strange or badmetal regime, the conductivity
at temperatures much higher than Tc is almost two orders of magnitude smaller than in a simple
metal [112]. At low temperatures, the resistivity scales linearly with temperature, as opposed to
the quadratic scaling predicted by Fermi liquid theory. In Fermi liquid theory, the charge is carried
by the quasiparticles and the conductivity corresponds to the current of those carriers. As a con-
sequence, the resistivity should scale as T2 at low temperatures. Moreover, the mean free path of a
quasiparticle cannot be less than the lattice spacing, which leads to the Mott-Ioffe-Regel limit as a
lower bound on the diffusion constant [159, 160]. The strong interactions thus seem to lead to a
breakdown of Fermi liquid theory in this regime and a destruction of the quasiparticle picture.
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In a cold atom realization of the Fermi-Hubbard model, the diffusion constant of the charge has
been measured by observing the relaxation of an imposed density modulation at a fixed doping
value of 18% [77]. From the diffusion constant, a value for the resistivity can be obtained. This
resistivity exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit men-
tioned above.

3.3.4 Stripes

In the cuprate phase diagram at low temperatures and intermediate doping values, superconduc-
tivity and stripe order appear to be competing phases. Most generally speaking, stripes are an in-
homogeneous spin and charge ordering. First experimental evidence for stripes was found for ma-
terials in which some of the original La atoms had been replaced by Nd, thus distorting the crystal
structure [161, 162]. This distortion causes spin fluctuations to condense into a static spin density
wave. Neutron scattering experiments on such materials then showed that the Bragg peak at the
antiferromagnetic ordering vector Q = (π, π) splits up into four peaks, which are displaced by
±p, where p is the doping [161, 162]. In the charge sector, the Bragg peaks are displaced from the
fundamental lattice reflections by 2p. In real space, the picture here is that the holes sit in charged
stripes, which are quarter (half of half) filled and occur at a distance of 1/2p (lattice spacing a = 1).
These charged stripes correspond to antiphase boundaries for the spins, such that the spin period
is twice the value of the charge period, 1/p. This property leads to the corresponding differences in
the positions of the Bragg peaks.
One particular case for static stripes is the formation of a pair density wave, where the charged
stripes are internally superconducting, while the phase reverses from stripe to stripe [163]. With-
out replacing some of the La atoms with Nd, i.e. looking at the origincal compounds, the same
general picture holds. However, the spin density wave order is not static, but instead fluctuating,
leading to fluctuating stripes [164].
Another experimental probe used in this context is scanning tunneling microscopy. Experiments
on several different underdoped cuprates have shown charge modulations [133]. Not all charge
modulations are however accompanied by spin density wave modulations, thus rendering them
distinct from the stripes discussed above.
Numerically, the situation for the Fermi-Hubbard model is still heavily debated. DMRG studies
found evidence for stripes in the ground state of the Fermi-Hubbard model on small cylinder ge-
ometries [134, 165]. Up to today, the question which state – stripe or superconducting order,
some combination thereof or even more complex order – has the lowest energy in a given param-
eter regime is debated and the close competition between the different states has been shown also
for the t − J model, for example with iPEPS (infinite projected-entangled pair states) simulations
[166].
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The situation for numerical simulations is additionally complicated by the fact that modifying the
model slightly, e.g. by adding a t′-term, can change which state is lowest in energy [167]. More-
over, one has to take care not to influence the observed physics by the geometry most suitable for
a given numerical method. A lot of DMRG studies for example have been performed on cylinders
of width four or six, where this method is capable of resolving the competing phases to a very high
accuracy [168].

3.3.5 Superconductivity

Early experiments on the magnetic flux threading through a ring of a cuprate material showed
strong evidence for Cooper pairing [169]. In the following years, the pairing symmetry itself was
tested, for example through quantum interference effects in a SQUID (superconducting quantum
interference device) [170], and the general agreement today is that the cuprates exhibit predomi-
nantly d-wave pairing symmetry. For an extensive review on the early experiments we recommend
Ref. [171]. ARPES measurements have revealed the concrete form of the gap to be [172, 173]

Δ(k) ∝ Δ0
[
cos(kxa)− cos(kya)

]
(3.13)

The unconventional pairing observed in the cuprates is associated with gapless quasiparticle ex-
citations at the lowest temperatures, leading to different thermodynamic properties than in the
conventional superconductors [112].
It has been found that the critical temperature for superconductivityTc is proportional to the zero-
temperature superfluid density, or phase stiffness, ρs(T = 0) for many underdoped materials; this
is called the Uemura relation [174]. The phase stiffness is a measure for the ability of the super-
conducting state to carry a supercurrent [130]. In conventional superconductors, the gap is much
smaller than the phase stiffness. As the temperature is increased, superconductivity is destroyed
because electrons do not pair anymore. In the underdoped cuprates, the two energy scales are
more balanced and as the temperature is increased, the ability of the state to carry a supercurrent
is destroyed.
Analytical studies, for example a slave-bosonmeanfield theory for the t−Jmodel, showed that apo-
tential superconducting state in this model has d-wave symmetry [127]. Studies by Trugman and
Scalapino showed that on a 2× 2 plaquette with antiferromagnetic correlations, a paired state has
dx2−y2 symmetry [175]. Numerical results, for example from dynamic cluster approximation tech-
niques, on the d-wave pair-field susceptibility suggest that the two-dimensional Fermi-Hubbard
model has a d-wave pairing phase at U = 4t [176]. One has to note however that these studies
are limited to some degree by the size of the cluster. Moreover, the interaction strength relevant
for the cuprate materials is typically rather U = 8...12t. A very recent study using DMRG and
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auxiliary field quantumMonte Carlo probed pairing in the ground state atU = 6...8t and dopings
0.1 < p < 0.2 and concluded that in this parameter regime in the pure Fermi-Hubbardmodel (i.e.
without t′ term), only short-range pairing occurs and the system is not superconducting [168].

3.3.6 Fermi-liquid at high doping

At high doping, beyond the superconducting dome, the cuprates can be described by Landau’s
Fermi-liquid theory. As opposed to the neighboring strange metal regime, the resistivity scales as
ρ ∝ T2 forT → 0 [133]. ARPESmeasurements in the Fermi-liquid regime have revealed that the
Fermi surface is a single large cylinder.
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4
OneDimension

One dimensional systems are special, as interactions between particles have more drastic
effects here compared to higher dimensions. The restricted dimensionality enhances the interac-
tions between particles and effectively destroys the quasi-particle picture. The excitations of the
system are always collective excitations [177]. This collective nature of the excitations can lead to
the emergence of new quasiparticles. The low energy behavior of a one dimensional system is uni-
versally captured by the Luttinger liquid description, independently of the quantum statistics of
the original particles [178, 179]. In the case of spinful fermions, a single fermionic excitation car-
rying charge±1 and spin±1/2 can split up into a collective charge excitation and a collective spin
excitation. These collective spin and charge excitations are then fundamentally different from free
electrons. In general, spin and charge excitation, in the following called spinon and chargon, do
not have the same velocity. The spatial separation of a single excitation through the independent
dynamics of spinon and chargon is an example of fractionalization.
One dimensional systems are theoretically comparably well understood. Luttinger liquid theory
and the bosonization formalism for example predict many properties correctly, such as indepen-
dent velocities for the different collective excitations and the behavior of correlation functions.
Moreover, some one dimensional systems can be solved exactly with the Bethe ansatz [180, 181].
Due to their entanglement structure, one dimensional systems can be studied particularly well nu-
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merically with matrix product state methods.
In traditional condensedmattermaterials, the physics of one dimensional systems can be observed
if the couplings in one spatial direction are significantly stronger than in the other two directions.
The coupling in one spatial dimension is often strongly reduced due to spacer layers, which physi-
cally separate two dimensional planes [182]. One dimensional chains with only weak couplings
to the neighboring chains can be realized through anisotropic overlaps of orbitals, for example
due to the Jahn-Teller effect [183]. Angle-resolved photoemission spectroscopy (ARPES) experi-
ments on the quasi-one dimensionalmaterial SrCuO2 have showndirect signatures of independent
spinon and holon branches at low energies [184, 185]. Other one dimensional experimental plat-
forms include carbon-nanotubes, experimentswhich have shown the expected power law behavior
in conductancemeasurements [186]. In quantumwires in semiconductors, tunneling experiments
have shown the singular nature of the spectral function, which is associated with spin-charge sep-
aration [187].
Quantumgasmicroscopy experiments open a newperspective on spin charge separation, as the di-
rect observation in real space and time is possible. In a recent experiment in equilibrium [75], the
two-point spin correlations in a Fermi-Hubbard chain were measured. Without doping, antiferro-
magnetic correlations extend over long distances. As soon as holes are introduced, the spin corre-
lations at distances larger than d = 1 are strongly suppressed, seemingly contradicting spin-charge
separation. The explanation for this phenomenon is that the antiferromagnetic spin correlations
are not truly reduced, but merely hidden. In Ref. [75], these hidden correlations were revealed by
going to squeezed space. In the squeezed space, the sites occupied by holes are completely removed
from the system, leaving behind a spin chain. Within this spin chain, the antiferromagnetic corre-
lations are restored to their undoped values [75].
In this chapter, we first put the squeezed space representation on a more formal footing. We then
continue by studying spin-charge separation in the spectral function aswell as in a non-equilibrium
experiment. In section 4.2 we propose a measurement scheme for the spectral function in quan-
tum gas microscopes, where the finite system sizes allow us to observe spin-charge separation at
all energies. In ARPES experiments on traditional materials, the fractionalization manifests itself
through a continuum in the spectrum. In a finite size system however, this continuum is replaced
by discrete lines, which can be associated with the quantized momenta of the quasi-particles. In
section 4.3, we study dynamical spin-charge separation after the creation of a hole in collabora-
tion with a quantum gas microscopy experiment. We observe the emergence of two independent
excitations propagating at different velocities through observables in the spin and charge sector,
respectively. The corresponding velocities are in agreement with theoretical predictions for the
spinon and chargon velocity.
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4.1 Squeezed space representation

This section is partly based on the publication

• Annabelle Bohrdt, Daniel Greif, Eugene Demler, Michael Knap, Fabian Grusdt: “Angle-
resolved photoemission spectroscopy with quantum gas microscopes.” – Phys. Rev. B 97,
125117 (2018) [arXiv:1710.08925]

Structure and text have been rearranged and adapted here.

In the squeezed space representation, empty sites are effectively removed from the system. We
independently keep track of the hole positions and spin configurations. While the squeezed space
appears to be more of a theoretical construct and is not accessible in traditional condensed matter
experiments, it can be directly used in snapshots from a quantum gas microscope. For each snap-
shot, we can obtain its squeezed space representation by removing the holes from the system and
saving their former positions independently. The exact diagonalization implementation of the t− J
model with a single hole discussed in section A.1 is inspired by the squeezed space construction:
instead of allowing for three states on each site, we construct a spin 1/2Hilbert space forL− 1 sites.
For each of the L possible hole positions, the Hamiltonian is then simply constructed by turning
off the corresponding spin couplings.
We derive an effective Hamiltonian describing a single hole inside a one-dimensional spin chain.
For concreteness we discuss the t − J∗ Hamiltonian from Eq. (3.9), but generalizations to other
couplings are straightforward. The hole can be described by a bosonic representation where the
spins are mapped to constrained fermions f̂j,σ and the holons to bosonic operators ĥ†j . In this case

ĉj,σ = ĥ†j f̂j,σ . (4.1)

We can simplify the holon degree of freedom by effectively removing it from the spin chain. This
can be achieved by defining a basis of theHilbert space of a spin chain with a single hole, with basis
states ĥ†j |0⟩ ⊗ |σ̃1, ..., σ̃L−1⟩, where

|σ̃1, ..., σ̃L−1⟩ ≡ ˆ̃f †1,σ̃1 ...̂̃f
†
L−1,σ̃L−1

|0⟩. (4.2)

Here, σ̃ i = ↑, ↓. The index i labels spins in the chain from left to right, independent of the holon
position. Note that only L − 1 spins appear in Eq. (4.2) because there is no spin on the physical
site occupied by the holon, and we used the spinon operators ˆ̃f to define a constrained fermion
representation of spins in squeezed space.
Next we need to express the original Hamiltonian, Eq. (3.9), formulated using operators ĉj,σ , in the
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new basis. Without doping, the Hamiltonian

Ĥ = J
∑

j

Ŝj+1 · Ŝj, Ŝi =
1
2
f̂ †i,ασα,β̂fi,β (4.3)

corresponds to a Heisenberg spin chain. In the case with doping, there exist no exchange interac-
tions between the two spins adjacent to the hole. For a single holon we can thus write the Hamil-
tonian in Eq. (3.9) as Ĥt−J∗ = Ĥt + ĤJ + ĤNNN with

ĤJ = J
∑

j

ˆ̃Sj+1 · ˆ̃Sj

(
1− ĥ†j ĥj

)
, ˆ̃Si =

1
2
ˆ̃f †i,ασα,β

ˆ̃fi,β. (4.4)

The hopping term
Ĥt = −tP

∑
⟨ij⟩,σ

ĉ†i,σ ĉj,σP , (4.5)

moves the holon by one site while the order of fermions ˆ̃f in squeezed space is not modified. One
can write Ĥt most conveniently as

Ĥt = −t
∑
⟨ij⟩

ĥ†j ĥi = −2t
∑

k

cos(k)ĥ†kĥk. (4.6)

For the next-nearest neighbor tunnelings, the situation is more complicated. They are of a general
form

ĤNNN =
∑

σ,σ′,τ,τ′
gσ,σ′,τ,τ′

∑
i

ĉ†i+2,σ ĉ
†
i+1,τ ĉi+1,τ′ ĉi,σ′ + h.c., (4.7)

where the coefficients g can be read off from Eq. (3.9). The term in Eq. (4.7) modifies the order
of spins because it moves a fermion from site i to i + 2. This involves an exchange of the fermions
at sites i and i + 1, which introduces an additional minus sign. We can see this by calculating the
action of ĤNNN on a basis state:

ĤNNNĥ†i+2|0⟩ ⊗ |..., σ̃ i, σ̃ i+1, ...⟩. (4.8)

To lighten the notation, we consider the action of a single term in the sum in Eq. (4.7). Represent-
ing the basis state in terms of the original ĉ†i,σ operators yields

ĉ†i+2,σ ĉ
†
i+1,τ ĉi+1,τ′ ĉi,σ′ ĉ

†
1,σ̃1 ...̂c

†
i,σ̃ i

ĉ†i+1,σ̃ i+1
...|0⟩

= ĉ†1,σ̃1 ...̂c
†
i−1,σ̃ i−1

(−1)i−1δσ′,σ̃ iδτ′,σ̃ i+1 × ĉ†i+1,τ(−1)îc†i+2,σ ...|0⟩. (4.9)
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In the notation introduced above, this state can be identified with

−δσ′,σ̃ iδτ′,σ̃ i+1 ĥ
†
i+2 ⊗ |..., σ̃ i−1, τ, σ, σ̃ i+2, ...⟩. (4.10)

The next-nearest neighbor term leads to an exchange of the spins on sites i and i + 1 in squeezed
space which can be described by a term of the form 4S̃i · S̃i+1 − 1, see e.g. supplementary material
in Ref. [75]. By taking into account the minus sign from the fermion exchange above, we arrive at
the following expression,

ĤNNN =
J
2

∑
j

ĥ†j+2ĥj

(
ˆ̃Sj+1 · ˆ̃Sj −

1
4

)
+ h.c.. (4.11)

From the second term in the brackets, we derive the corresponding term− 1
4 J cos(2kh) in the holon

dispersion, Eq. (4.23).
In summary, the t − J∗ Hamiltonian for a single hole can be written in squeezed space as

Ĥt−J∗ = −
∑
kh

ĥ†kh
ĥkh

(
2t cos(kh) +

1
4
J cos(2kh)

)
+

J
2

∑
j

[
ĥ†j+2ĥj

ˆ̃Sj+1 · ˆ̃Sj + h.c.
]

+ J
∑

j

ˆ̃Sj+1 · ˆ̃Sj

(
1− ĥ†j ĥj

)
. (4.12)

In section 4.3, we label the coordinates in squeezed space with ĩ and distances in squeezed space as
x̃ for clarity.
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4.2 Angle-resolved photoemission spectroscopy with quantum gas mi-

croscopes

This section is based on the publication

• Annabelle Bohrdt, Daniel Greif, Eugene Demler, Michael Knap, Fabian Grusdt: “Angle-
resolved photoemission spectroscopy with quantum gas microscopes.” – Phys. Rev. B 97,
125117 (2018) [arXiv:1710.08925]

Structure, text and figures have been rearranged and adapted here.

Quantum gas microscopes are a promising tool to study interacting quantum many-body systems
and bridge the gap between theoretical models and real materials. So far, they were limited tomea-
surements of instantaneous correlation functions of the form

〈
Ô(t)

〉
, even though extensions to

frequency-resolved response functions
〈
Ô(t)Ô(0)

〉
would provide important information about

the elementary excitations in amany-body system. For example, single-particle spectral functions,
which are usually measured using photoemission experiments in electron systems, contain direct
information about fractionalization and the quasiparticle excitation spectrum.
Traditional solid state experiments rely on measurements of time-dependent response functions
of the form ⟨Ô(t)Ô(0)⟩ in the frequency domain ¹. Examples include inelastic neutron scattering,
x-ray spectroscopy, scanning tunneling microscopy, angle-resolved photoemission spectroscopy
(ARPES), or purely optical probes. In contrast, quantum gas microscopes are used to perform de-
structive measurements accompanied by a collapse of the many-body wave function. In order to
relate cold atom experiments to their solid state counterparts and facilitate direct comparisons, it
is desirable to measure similar physical observables in both systems [74, 188–193].
One of themost powerful tools for studying strongly correlated electrons in solids is angle resolved
photoemission spectroscopy. In this technique, electrons are ejected from the surface of a sample
through the photoelectric effect. By counting the number of photoelectrons and measuring their
energy ω and momentum k, the single-particle excitation spectrum A(k, ω) is obtained. The spec-
tral function reveals fundamental properties of the system and its excitations [128, 129], and im-
portant insights about high-Tc cuprate superconductors havebeenobtained fromARPESmeasure-
ments, see also chapter 3. One of the most puzzling observations in this context is the appearance
of Fermi arcs in the spectrum below optimal doping in the pseudogap phase [129]. Amicroscopic
understanding of this phenomenon is currently lacking, and it is expected that experiments with
ultracold atoms can shed new light on this long-standing problem.

¹More precisely, one measures retarded correlation functions, i.e. in the case of bosonic operators φ̂, DR(t) =

iΘ(t)⟨φ̂(t)φ̂(0)− φ̂(0)φ̂(t)⟩ and for fermionic operators ψ̂, GR(t) = iΘ(t)⟨ψ̂(t)ψ̂†
(0) + ψ̂†

(0)ψ̂(t)⟩.
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Spectral functions have already beenmeasured in fermionic quantum gas experiments for instance
by radio-frequency spectroscopy [188] and its momentum resolved extension [194], Bragg spec-
troscopy [195] and lattice modulation spectroscopy [70, 196]. Although these techniques have
been very successful in characterizing strongly correlated systems, acquiring a sufficiently strong
signal has always required creating multiple excitations. In addition, final-state interactions often
complicate the interpretation of the obtained spectra.
Here, we propose a scheme for themeasurement of momentum-resolved single-particle excitation
spectra without final-state interactions, similarly to ARPES, using a quantum gas microscope, see
Fig. 4.2.1. To demonstrate our scheme, we consider variations of the t − J model with isotropic
and anisotropic spin interactions, see section 3.1.
The ground state of the 1D t − J model with isotropic spin interactions does not possess long-
range order and is described by Luttinger liquid theory instead [177]. The spin-liquid nature of
this ground state leads to an intriguing signature in the spectral function already for a single hole
[197]: at low energies, most of the spectral weight is found for momenta 0 ≤ |k| ≤ π/2, with
lattice constant a = 1, whereas between π/2 < |k| ≤ π the spectral weight is suppressed by sev-
eral orders of magnitude, see Fig. 4.2.1 b). This phenomenon is to some extent reminiscent of the
Fermi arcs observed by ARPES in the pseudogap phase of cuprates [129].

4.2.1 Measuring spectral functions in a quantum gas microscope

In the followingweoutline our proposal to experimentallymeasure the spectral function of a single
holewith simultaneousmomentum and energy resolution in a quantumgasmicroscope. Thebasic
idea is to excite a single particle from a filled 1D system S by latticemodulation into an adjacent 1D
“detection” system Sdet. The latter consists of empty sites and is offset in energy by Δ ≫ ty where
ty is the bare tunneling amplitude between S and Sdet, see Fig. 4.2.1 a). The lattice modulation can
be described by a perturbation term

Ĥpert(τ) = δty sin(ωshakeτ)T̂y (4.13)

in the Hamiltonian. Here τ denotes time, δty is the modulation amplitude of the hopping between
S and Sdet described by the operator T̂y, and ωshake is the modulation frequency.

Implementation in the t − J∗ model A balanced two-component spin mixture of ultracold
fermionic atoms in an optical lattice allows for a clean implementation of the t − J∗ model intro-
duced in Eq. (3.9) in the limit of large U/t ≫ 1. To create the optical lattice configuration nec-
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Figure 4.2.1: ARPES in a quantum gas microscope measurement scheme. a) Proposed
experimental setup. A lattice modulation along the y-direction creates a hole in the physi-
cal system S by transferring a single particle into the neighboring, thermodynamically discon-
nected detection system Sdet, which is offset in energy by Δ. A subsequent momentum space
mapping technique enables the determination of the momentum k of the excitation. The
rate of the transferred atoms is proportional to the spectral function A(k, ω). b) Exemplary
calculated spectral function of the t − J model with next-nearest neighbor interactions and
isotropic spin couplings for L = 16 sites, tunneling t/J = 4, temperature T/J = 0.2 and open
boundary conditions. The spectral weight in units of 1/J is color coded. Individual holon and
spinon branches in the spectrum are clearly visible, as indicated by the dashed and dashed-
dotted lines. c) In a mean field approach, the ground state of the effective spin degrees of
freedom, which is a Luttinger spin liquid, is described as a half-filled Fermi sea of spinons. In
the measurement process, a holon is created and a spinon is removed, such that the accessi-
ble momenta are restricted to k ≲ π/2 at low energies, which explains the asymmetry in b).
d) Measuring the momentum of the excitation. The momentum of the hole-excitation in S is
measured from the momentum of the excited particle in Sdet, which has a finite size of L sites
determined by the energy offset Ewall at the edges. Ewall is chosen to be larger than all relevant
energy scales in S. The three methods discussed in the main text are illustrated. The exem-
plary diagram shown in the first column illustrates that the eigenenergies in Sdet are smoothly
connected when introducing a potential gradient Egrad (here L = 10). For Egrad ≫ t the eigen-
states are localized on individual lattice sites. For the first method we keep Ewall unchanged,
whereas we set Ewall = 0 for the other two methods before the bandmapping.
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essary for the detection scheme we propose a standard retro-reflecting laser configuration along
the x-direction with a lattice depth of Vx and tunneling t, and a superlattice configuration in the
y-direction that creates several copies of decoupled double-well systems, see Fig. 4.2.1 a). This has
the advantage of obtaining several measurements per experimental cycle. However, a standard lat-
tice along the y-direction could also be used and the energy offsetΔ could be created with a digital
micro-mirror device.
The superlattice potential can be created for example by two retro-reflected laser beams at wave-
lengths λy/2 and λy [198], which create a short and long wavelength lattice of depth Vl

y and Vs
y. By

setting their phase difference ϕ close to π/2 a controlled energy offset between the two sites of the
double well can be introduced with bare tunneling ty. The total optical potential is given by

V(x, y) = Vx cos2 (2πx/λx) + Vl
y cos

2 (2πy/λy
)
+ Vs

y cos
2 (4πy/λy − ϕ

)
. (4.14)

The lattice depths along the y-direction can be chosen sufficiently deep, such that the tunneling
between different double wells is negligible. In addition, the energy offset is much larger than all
other energy scales Δ ≫ U, t (but smaller than the energy gap to the next band) to make direct
tunneling processes off resonant. This also ensures that there are no atoms in Sdet when loading the
fermionic spin mixture from the initial harmonic trap into the lattice.
To implement the detection scheme for the spectral function, we propose to periodicallymodulate
the depth of the long wavelength lattice according to

Vl
y(t) = Vl

y + δVl
y sin(ωshakeτ). (4.15)

This leads to an induced oscillatory tunnel coupling δty along the y-direction between the spin
system S and the detection system Sdet. Thereby the perturbation described in Eq. (4.17) can be
realized. The strength of the induced tunneling is given by

δty = δVλ

∫
w∗
L(y) cos

2(2πy/λ)wR(y)dy, (4.16)

wherewL(y) andwR(y)denote theWannier functions of the left and right lattice sites of the double-
well system created by the lattices along the y-direction [199].

4.2.2 Single-particle transfer

A successful excitation transfers a single particle from S to Sdet. As themodulation is only along the
y-axis (i.e. perpendicular to the 1D system), the total momentum is conserved and the excitation
couples simultaneously to all individualmomenta k. This can be seen by rewriting the perturbation
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(4.13) in momentum space,

T̂y = −
∑
i,σ

(
d̂†i,σ ĉi,σ + h.c.

)
= −

∑
k,σ

(
d̂†k,σ ĉk,σ + h.c.

)
. (4.17)

Here ĉi(k),σ denotes the annihilation operator at site i (momentum k) in S and d̂†i(k),σ denotes the
respective creation operator in Sdet. The spin-index is σ =↑, ↓. The energy change of the system
with one hole as compared to the initial state without a hole is ℏω = EN−1 − EN. For a lattice
modulation frequency ωshake this is determined by energy conservation,

ℏω = ℏωshake − Es(k)− Δ, (4.18)

where Δ is the energy offset and Es(k) = −2t cos(ka) is the energy of the particle in the detection
system, with t the hopping amplitude of the particle in Sdet. As explained in Sec. 4.2.3, a subsequent
momentum-spacemapping technique of the single particle in Sdet allows one to determine themo-
mentum k of the transferred atom. Thus, both full momentum and energy resolution are achieved.
By measuring the final position of the transferred atom and repeating the same measurement for
various lattice modulation times, the excitation rate Γ(k, ω) can be determined. This rate quanti-
fies the probability for creating a hole with momentum k and energy ℏω in S, normalized by the
modulation time. Up to constant pre-factors, it is identical to the hole spectral function,

Γ(k, ω) =
2π
ℏ
|δty|2A(k, ω), (4.19)

as obtained by Fermi’s golden rule.
The spectral function of the hole A(k, ω) is defined as

A(k, ω) =
1
Z0

∑
n,m

∑
σ

e−βEN
n |⟨ψN−1

m |̂ck,σ|ψN
n ⟩|

2 × δ(ℏω − EN−1
m + EN

n ), (4.20)

with |ψN
n ⟩,EN

n denoting the eigenstates and -energies of the systemSwithNparticles. Furthermore,
β = 1/kBT is the inverse temperature and Z0 =

∑
n e−βEN

n denotes the partition function before
the perturbation Eq. (4.13) is switched on.
For small system sizes it is important to choose a sufficiently small excitation amplitude δty/ty, such
that atmost a single particle is transferred, in order to avoidmultiple excitations aswell as final state
interactions. The latter can also be avoided by implementing a spin-changing Raman transfer to a
non-interacting spin state instead of a latticemodulation. For large systems, we expect multiple ex-
citations to not alter the spectral function as long as the average fraction of excited particles remains
sufficiently small.
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4.2.3 Momentum Resolution

A crucial step for measuring the spectral function is the momentum detection in the probe system
Sdet. This can be achieved by combining the capabilities of a quantum gas microscope with a digi-
tial micromirror device (DMD), which gives control over the optical potential of the atoms on a
site-resolved level. This precise control has already been demonstratedwith bosonic and fermionic
atoms with single-site resolution [200, 201]. By illuminating the DMD with blue-detuned light, a
box-like potential with hard walls at the two ends of the 1D systems can be created. This limits
the size of both systems S and Sdet to L sites. By adding a parabolic potential, any harmonic con-
finement in the 1D system caused by the underlying Gaussian beam shape of the lattice beams can
additionally be cancelled over the region of interest. The box geometry ensures that the absolute
value of the momentum |k| of the transferred particle remains unchanged after the action of the
perturbation Ĥpert(τ), while still confining the particle within Sdet.
The perturbation is followed by a bandmapping step, which converts momentum space into po-
sition space. Subsequent site-resolved imaging then allows one to reconstruct the particle’s mo-
mentum. We now discuss three possibilities how such a mapping procedure can be implemented
and give an estimate for the achievable momentum resolution in typical experimental setups. The
momentum resolution κ is quantified by the inverse number Nk of different momentum states in
the lowest band with |k| < π/a that are detectable,

κ = 1/Nk. (4.21)

Wannier-Starkmapping The first method formappingmomentum space into position space
is to smoothly introduce a potential gradient along the x-direction, which causes an energy shift
of Egrad per lattice site. Such a potential gradient can be implemented for example by applying a
magnetic field gradient exploiting the atomic Zeeman shift or by using the DMD. In the limit of
a vanishing gradient Egrad ≪ t the single-particle energy eigenstates in Sdet are quasi-momentum
states Es(kn) with discrete momenta kn = nπ/L owing to the finite size of the box. For very large
gradients Egrad ≫ t the eigenstates are Wannier-Stark states localized on single lattice sites and
separated in energy by Egrad. As shown in the left column of Fig. 4.2.1 d), these eigenstates are
smoothly connected for an increasing potential gradient Egrad.
The momentum resolution of this method is determined by the initial number of lattice sites in
Sdet and is given by 1/L. Adiabatic mapping requires the gradient ramp time to be much slower
than the smallest energy splitting δEs, which in this case is given by the energy spacing between
adjacent quasi-momentum states at Egrad = 0. The finite lifetime of atomic quantum gases sets
an upper limit for the gradient ramp time and thus a lower limit to δEs. This limits the maximum
box size and hence the momentum resolution of this method. Experimentally, ramp timescales of
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hundreds of tunneling times are routinely used in lattice loading protocols, corresponding to an
energy of about 0.01t [63]. Assuming a tenfold slower gradient ramp time to ensure adiabaticity
(δEs = 0.1t), we find L = 20. This demonstrates that already this simple scheme gives a very good
momentum resolution of about κ ≈ 1/20. Furthermore, the ramp velocity can be increased at later
times in the protocol, since the energy spacings become larger with growing Egrad, thus enhancing
the momentum resolution.

Time-of-flightmapping An alternativemethod of determining themomentum is to perform
a time-of-flight expansion along the x-direction in Sdet after exciting the single particle. This can
be done by suddenly turning off the DMD light which creates the box potential and applying a
bandmapping of the lattice in the x-direction, see Eq. 4.14. Thismaps quasi-momentum states into
momentum states [202] of Sdet. Ballistic expansion of the single particle along the x-direction for a
duration of τtof and subsequent detection of the displaced atomic position xtof using the quantum
gas microscope then allows one to determine the atomic momentum via k = πmλ2xxtof/(2hτtof),
where m is the atomic mass, h is the Planck constant and xtof and k are normalized to the lattice
spacing.
This procedure requires a sufficiently long time-of-flight expansion such that the initial system size
is negligible, i.e. 2hτtof/(mλ2x) ≫ L. During the detection procedure the lattice depths along the
y-direction remain unchanged to ensure that the particle remains trapped inside the 1D tube. The
largest achievable value of τtof is determined by the largest spatial separation Ltof under the mi-
croscope where site-resolved imaging can still be reliably performed. As the particles are initially
located in a box of L sites, there are also Lmomentum states. After free expansion to a size of Ltof, a
particle initially in a momentum state will then be detected within a spatial region that approaches
Ltof/L sites for long time-of-flight times. Corrections due to a finite time-of-flight are therefore
negligible if this size exceeds the initial system size L. From this we obtain an upper bound for
the initial system size of L =

√
Ltof. In addition, clean mapping requires a flat system along the

x-direction after the bandmapping. The harmonic confinement along that direction caused by the
y-lattice beams can be cancelled by a blue detuned anti-confinement beam created by a DMD or
Gaussian beam with a suitable beam waist.
In bosonic quantum gas microscopy a related variant of the proposed technique has already been
implemented, where atoms in a small system of a few sites were expanded in 1D tubes to a width
of about Ltof = 100 sites and successfully detected with single-site resolution [93]. For these pa-
rameters we estimate a momentum resolution of κ ≈ 1/10 for our scheme.

T/4-mapping A third technique for mapping momentum-space into real space that does not
rely on a long expansion distance is based on a quarter period rotation in phase-space in the pres-
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ence of a harmonic trap [203]. After suddenly introducing an underlying harmonic confinement
with period T into the probe system Sdet, the real-space distribution after a time evolution of T/4
will precisely correspond to the initialmomentumdistribution of the transferred particle (and vice
versa).
To achieve this, we propose to first suddenly turn off theDMD light for the box potential and apply
a bandmapping of theVx lattice, as before. Then a strong harmonic confinement can be introduced
by rapidly increasing the lattice depth along the y-direction. This leads to an increased harmonic
confinement along the x-direction owing to the Gaussian beam shape of the laser beam. Alterna-
tively, aDMDwith red-detuned light couldbeused. After letting the single particle inSdet evolve for
a quarter period, its position can bemeasured with the quantum gasmicroscope. The advantage of
this method compared to the previous one is that it does not require imaging over large distances
for good momentum resolution. By adjusting the frequency ω of the strong harmonic trap, the
largest displacement of the single particle relative to the center of the box can be controlled. It can
be chosen to be comparable to the initial system size L. Assuming a maximum imaging width of
100 sites (as before), this method would allow a momentum resolution of about κ ≈ 1/100.
Current typical sizes of fermionic lattice systems at low temperatures with single-site resolution
are on the order of 10 sites [75, 201]. The highest desirable momentum resolution is therefore
κ = 1/10, which would be provided by all three proposed methods. In the future, when larger
system sizes become available experimentally, the Wannier-Stark mapping and the quarter-period
rotation scheme promise the highest momentum resolution.

4.2.4 Spectral building principle

In one dimension, spin-charge separation takes place and thus the holon propagates on a timescale
set by the hopping amplitude t and is largely decoupled from the dynamics of the spinon, which
moves on a timescale set by the exchange energy J. In order to determine where spectral weight
is expected, spinon and holon are treated as independent particles. This constitutes the so-called
spectral building principle [204, 205].
The dispersion relation of a free spinon is known from Bethe ansatz calculations for the isotropic
spin chain [177]

εs(ks) = J
π
2
| cos(ks)|, −π/2 ≤ ks ≤ π/2. (4.22)

The holon dispersion
εh(kh) = −2t cos(kh)−

1
4
J cos(2kh) (4.23)

corresponds to the one of a free particle and can be derived from the t− J∗ Hamiltonian itself. The
second term stems from the next nearest neighbor hopping of the hole, see Eq. (3.9). The spectral
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Figure 4.2.2: Spectral building principle. The combined dispersion relation of spinon and
holon, Eq. (4.24), can be constructed by fixing the spinon or holon momentum, ks or kh, and
varying the other momentum, respectively. Because the spinon dispersion is only defined
from ks = −π/2...π/2 for zero temperature the spectrum is strongly asymmetric around
k = π/2 at low and high energies (blue and red boundaries). In this case spectral weight
can only be found in the shaded areas. The dashed blue and red lines indicate the lower and
upper boundaries obtained when the spinon dispersion is extended to ks = −π...π assuming
εs(ks) = cos(ks)Jπ/2. This case is relevant for high temperatures.

building principle allows us to predict the positions of the peaks in the spectral function bymaking
use of momentum conservation, k = ks + kh, and energy conservation

ε(k) = εh(kh) + εs(ks) = −2t cos(kh)−
1
4
J cos(2kh) + J

π
2
| cos(ks)|. (4.24)

Theenergy ε(k) = EN−1
m −EN

n in Eq. (4.24) enters the δ-function in the Lehmann representation of
A(k, ω), Eq. (4.20)We set ks = k−kh inEq. (4.24) and for a given k regard theholonmomentum kh

as a free parameter. In an infinite system, Eq. 4.24 provides an upper and lower bound for the region
in which spectral weight exists at zero temperature, see Fig. 4.2.2. For a finite system with L sites,
the quantization of the holon momentum leads to L distinct lines instead of a continuum. Each
branch in the spectrum shown in Fig. 4.2.1 can be associated with a quantized holon momentum
kh by changing the spinon momentum ks.

4.2.5 Numerical results for the one dimensional t − J model

The spectral function of a single hole in a one-dimensional, antiferromagnetic spin chain with pe-
riodic boundary conditions and at zero temperatures has been studied in the past [197, 204–206].
Here we extend those results to the experimentally relevant case of systems with open boundary
conditions, Fig. 4.2.1, and finite temperatures, Fig. 4.2.3. Several ARPESmeasurements have been
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Figure 4.2.3: Temperature dependence of the spectral function. We consider the t − J∗

model with periodic boundary conditions and L = 16 sites for t = 8J at temperatures a)
T = 0.4J, b) T = 0.75J and c) T = 5J. In a) and b), a comparison with peak positions ex-
pected from the spectral building principle due to holon and spinon dispersions, Eq. (4.24),
is provided (gray dots). Additionally, in a) open blue circles denote peaks expected from the
spectral building principal due to low energy excitations in the spin chain relevant at finite
temperatures, see text.

performed in quasi-one dimensional materials, see e.g. Refs. [184, 206], and direct signatures of
independent spinon and holon branches have been found at low energies [185].
The spectral function considered here is related to the Green’s function of the hole as

A(k, ω) = −(1/π)ℑG(k, ω) (4.25)

and canbe calculatedusing standardLanczos techniques [197, 207], see sectionA.1.5. The δ-peaks
obtained by this means are slightly broadened to obtain a smoother spectral function.

Finite temperature In Fig. 4.2.3, the spectral function is shown for temperatures T/J = 0.4,
T/J = 0.75 andT/J = 5. Here, gray dots denote the peak positions predicted by the spectral build-
ing principle including shifts in both spinon and holon momentum due to their different quanti-
zation conditions, see section B.1.
At sufficiently low temperatures, the peaks of the spectral function as calculated with exact diago-
nalization methods coincide with the peak positions predicted by the spectral building principle,
indicating that spinon and chargon can indeed be treated independently. In particular, this agree-
ment is not restricted to low energies, but holds across the entire spectrum. The peaks are broad-
ened by thermal fluctuations in energy and momentum.
In the case of finite temperature and periodic boundary conditions, additional peaks appear be-
tween the lines predicted by the spectral building principle. These peaks, marked by blue circles
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Figure 4.2.4: Spectral function for the t-XXZ Hamiltonian, Eq (3.11), for a system with
20 sites, periodic boundary conditions, with hopping t = 8J⊥ and a) Jz = J⊥, b) Jz = 4J⊥. Gray
dots correspond to spinon and holon dispersion, see Eq. (4.24) and Eq. (4.26), respectively,
with the spinon momentum restricted to half the Brillouin zone, −π/2 ≤ ks ≤ π/2. Red dots
in b) denote spinon momenta in the remaining half of the Brillouin zone, where no spectral
weight appears in the isotropic case Jz = J⊥.

in Fig. 4.2.3, are caused by the low-lying thermal excitations of the spin chain: the lowest energy
states carry momentum close to zero and π. An excitation in the spin chain with momentum π
introduces a twisted periodic boundary effect for the chargon, thus causing additional lines in the
spectrum; see also section B.1.
Upon increasing the temperature to valuesT ≳ J, low-energy excitations start to appear for π/2 ≤
k ≤ π and the spectral building principle starts to break down. As the temperature approaches
and exceeds J, a single well-defined spinon no longer exists and therefore the distinct lines visible
at low temperatures are replaced by a continuum. For high temperatures T ≫ J, the distribution
of spectral weight is mostly determined by the density of states and spectral weight is shifted from
k = π/2 to k = 0 and k = π, respectively.

Anisotropy In Fig. 4.2.4, the spectral function at zero temperature is shown for the t − XXZ
modelwith a) Jz = J⊥ andb) Jz = 4J⊥ for a systemwithperiodic boundary conditions. In the latter
case, the additional red dots indicate the peak positions predicted by the spectral building principle
for values of the momentum |k − kh| > π/2, which are excluded by the spinon dispersion in the
isotropic case. The spinon dispersion is given by εIss (ks) = J⊥ cos(2ks) + J⊥ + Jz in first order
perturbation theory in J⊥/Jz. The spectral building then leads to

ε(k) = −2t cos(kh) + J⊥ cos (2(k − kh)) + J⊥ + Jz. (4.26)

Fig. 4.2.4 b) shows an almost symmetrical distribution of spectral weight around |k − kh| = π/2
in the anistotropic case as compared to the isotropic case in Fig. 4.2.4 a), where no spectral weight
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Figure 4.2.5: Ground state energies in the t-XXZ Hamiltonian as a function of the total
momentum k for a single hole in a spin chain (full symbols). We used the same parameters as
in Fig. 4.2.4 a) and b) respectively. The dashed line corresponds to the free spinon dispersion
a) in the Heisenberg model with Jz = J⊥ and b) in the XXZ model with Jz = 4J⊥.

appears for spinon momenta |k − kh| ≥ π/2.

“Missing” spectralweight Thequestion arises, why in the isotropic case, there is no spectral
weight at low energies for |k − kh| ≥ π/2. In Fig. 4.2.5, we demonstrate that at the corresponding
energies and momenta eigenstates of the Hamiltonian exist by calculating the ground state energy
of the t− Jmodel with a single hole as a function of total momentum kwith exact diagonalization.
As can be seen in Fig. 4.2.5, the corresponding low-energy eigenstates exist for all k and their ener-
gies are approximately symmetric around k = π/2.
A possible explanation for the missing spectral weight is a selection rule: since the ground state of
the Heisenberg model is a singlet, only states with total spin S = 1/2 and one hole can have finite
weight in the spectrum at zero temperature. In Ref. [197], it has been shown with exact numerics
that the ground state of the t − J model with a single hole at momenta |k| > π/2 has S = 3/2
and thus yields an overlap of zero. However, numerically we find eigenstates with S = 1/2 for
|k| > π/2 at energies only slightly higher. In particular, these states give rise to a non-zero spectral
weight at low energies for |k| > π/2. This spectral weight is not visible in Fig. 4.2.4 a) since it is
suppressed by about three orders ofmagnitude compared to the spectral weight at low energies and
momentum |k| < π/2. In contrast to what has been suggested in Ref. [197], a selection rule seems
not to be sufficient to explain the asymmetry of the spectral weight observed for a hole created in a
Heisenberg chain. In contrast to the Ising case, theHeisenberg spin chain has singlet character and
can be understood as a resonating valence-bond state [117]. The ground state of the Majumdar-
Gosh model [208, 209] can be represented exactly using resonating valence-bond states. We thus
calculate the spectral function of a single hole in the Majumdar-Gosh model to address the ques-
tion whether the valence-bond character of the ground state wavefunction already leads to a sharp
drop of the spectral weight as the spinon momentum crosses k = π/2.
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Figure 4.2.6: The Majumdar-Ghosh spin chain. a) Visualization of the model realized on
a zig-zag chain. Next-nearest neighbor hopping terms for the hole are not included here. In
b), the spectrum of a Majumdar-Ghosh spin chain with 20 sites and periodic boundary condi-
tions with hopping t = 8J and at temperature T = 0 is shown. Gray dots correspond to spinon
and holon dispersion, see Eq. (4.28).

By adding next-nearest neighbor couplings for the spins to Eq. (3.11), we arrive at theHamiltonian
of the Majumdar-Ghosh model [117, 208, 209] interacting with a hole-like impurity described by
ĥj,

ĤMG = t
∑

j

(
ĥ†j+1ĥj + h.c.

)
+ J
∑

i

Ŝi · Ŝi+1 +
J
2

∑
i

Ŝi · Ŝi+2 − J
∑

j

ĥ†j ĥjŜj · Ŝj+1. (4.27)

Note that the impurity is only switching off nearest neighbor interactions in our toy model. We
defined the spectral function as usual, by removing a spin and creating the hole-like impurity at
the same site. Without the hole, the Majumdar-Ghosh model describes certain materials, where
the atoms form a zig-zag chain [210], see Fig. 4.2.6 a), and constitutes an example of an exactly
solvable, frustrated spin system. Its degenerate ground states are exactly known, for a pedagogical
discussion see e.g. Ref. [117]. They spontaneously break the translational symmetry and consist of
states in which neighboring spins form a singlet. The two lowest energy states with this property,
which are related to each other by a shift by one lattice site, are degenerate in the thermodynamic
limit and are separated from the excitation spectrum by a gap.
In Fig. 4.2.6 b), the spectral function of a single hole in a Majumdar-Ghosh spin chain is shown.
Gray dots correspond to the combined dispersion relation of the holon and the spinon, ε(k) =

εh(kh) + εs(k− kh)with εh(kh) = −2t cos kh and the Majumdar-Ghosh dispersion relation [211]

εs(ks) = J
5
4
+

J
2
cos(2ks), (4.28)

where ks is restricted to half of the Brillouin zone. The distinct lines in the spectrum are remarkably
well described by Eq. (4.28), demonstrating spin-charge separation.
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Figure 4.2.7: Mean-field theory for the spin chain. a) Slave-fermion description of the
anisotropic spin chain. In the anisotropic XXZ spin chain, the sub-lattice symmetry can be
spontaneously broken when Jz > J⊥. In this case the effective hopping Hamiltonian of spinons
corresponds to a tight-binding model with alternating on-site potentials. The mean field solu-
tions for different spins are related by a translation of one lattice site. b) Numerical solution
of the self-consistency equations for the order parameters χ and δ, Eqs. (4.45), (4.46). For
0 ≤ Jz ≤ J⊥ the ground state is a gapless quantum spin liquid (QSL). For Jz ≳ J⊥ the two
order parameters δ and χ are both non-vanishing and the ground state is a spin-density wave
(SDW).

Thecomparison to the isotropicHeisenberg spin chainwithout frustrationhighlights an interesting
feature. An asymmetry in the distribution of spectral weight around |k − kh| = π/2 is clearly
visible. However, the spectral weight is not as clearly restricted to half of the Brillouin zone as in
the spectrum of the Heisenberg chain. Thus, a valence bond solid nature of the ground state is not
sufficient to explain the sharp decrease of spectral weight observed for the anisotropic spin chain
in Fig. 4.2.4.
Below, we argue that this sharp decrease of spectral weight for a single hole in the one-dimensional
t − J model can be understood as a direct signature for the presence of a Fermi sea of spinons.
This is characteristic for a quantum spin-liquid, where slave fermions are introduced in a mean
field description [28]. Note that this Fermi sea is not formed by Jordan-Wigner fermions, obtained
by fermionizing the spins, as suggested in Ref. [206]. These Jordan-Wigner fermions are strongly
interacting and the non-interacting Fermi sea is thus not a good approximation.

4.2.6 Mean field theory

We use a slave-fermionmean field theory to describe the spin chain [28, 212, 213], which contains
a non-trivial order parameter, that is finite even in one dimension. For simplicity we consider sit-
uations with zero total magnetization here. Our starting point is the t-XXZ model Eq. (3.11) with
zero or one hole. We introduce slave boson operators ĥj to describe the holons, and constrained
fermions f̂j,α describing the spins [117]. The index α =↑, ↓ corresponds to the two spin states and
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it holds
Ŝi =

1
2

∑
α,β

f̂†i,ασα,β̂fi,β. (4.29)

The slave particles satisfy the condition∑
α

f̂ †j,α̂fj,α + ĥ†j ĥj = 1. (4.30)

The original fermionic operators can be expressed as

ĉj,α = ĥ†j f̂j,α. (4.31)

With the new operators, a spin state |σ1, ..., σL⟩with σ j =↑, ↓ is expressed as

|σ1, ..., σL⟩ ≡ f̂ †1,σ1 ...̂f
†
L,σL|0⟩. (4.32)

States with holes are created by applying ĥ†j f̂j,α fromEq. (4.31). Note that the ordering of operators
in Eq. (4.32) is important due to their fermionic anti-commutation relations. The hopping term
in Eq. (3.11) yields a difficult quartic expression−t

∑
⟨i,j⟩
∑

σ ĥ†j ĥîf †i,σ f̂j,σ . In the following, we con-
sider the problem in squeezed space introduced in section 4.1, which is obtained by removing all
holes from the chain. The chargons now occupy bonds between the lattice sites j̃ of the squeezed
space [75, 214, 215]. In this framework, only operators f̂j,α on sites j̃ are included, thus yielding

new operators ˆ̃fj,α = f̂̃j,α with j̃ = j +
∑

i≤j ĥ
†
i ĥi. In terms of the squeezed space operators, the

hopping term in Eq. (3.11) yields a quadratic term involving only holons, −t
∑

⟨i,j⟩ ĥ
†
j ĥi, see sec-

tion 4.1. This term contributes the dominating part of the free holon dispersion relationEq. (4.23),
−2t cos(kh). The last two terms of Eq. (3.11) do not change in squeezed space and correspond to
a spin chain without doping.
TheHamiltonian of the spin chain, Eq. (3.11) at half filling, can be expressed in terms of the spinon
operators [28],

ĤXXZ = − 1
2

∑
i,α

ˆ̃f†i,α
ˆ̃fi+1,α

[
J⊥
ˆ̃f†i+1,ᾱ

ˆ̃fi,ᾱ + Jz
ˆ̃f†i+1,α

ˆ̃fi,α
]
+

Jz
2

∑
i,α

ˆ̃f†i,α
ˆ̃fi,α −

Jz
4

∑
i,α,β

ˆ̃f†i,α
ˆ̃fi,α
ˆ̃f†i+1,β

ˆ̃fi+1,β,

(4.33)

where, ↑̄ = ↓ and ↓̄ = ↑. This expression is exact within the subspace defined by the constraint∑
α
ˆ̃f†i,α
ˆ̃fi,α = 1. In the mean field approximation applied below, this constraint is replaced by its

ground state expectation value ∑
α

〈̂̃
f†i,α
ˆ̃fi,α
〉
= 1. (4.34)
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At the isotropic point, Jz = J⊥, Eq. (4.33) corresponds to the SU(2) invariant Heisenberg Hamil-
tonian ĤH. In this case the termˆ̃f†i,α

ˆ̃fi+1,α is replaced by its ground state expectation value

χ i,α =
〈̂̃
f†i,α
ˆ̃fi+1,α

〉
. (4.35)

When χ i,α = χ is independent of the spin index α, the resulting mean-field Hamiltonian is also
SU(2) invariant. By diagonalizing the latter we obtain a self-consistency equation for χ which will
be solved numerically below.
Away from the SU(2) invariant Heisenberg point, i.e. when Jz ̸= J⊥, we can write the original
Hamiltonian as a sum of the Heisenberg term ĤH plus additional Ising couplings,

ĤXXZ = ĤH + (Jz − J⊥)︸ ︷︷ ︸
=ΔJz

1
4

∑
i

δ̂iδ̂i+1, (4.36)

where δ̂i = 2Ŝz
i is the local magnetization,

δ̂i =
∑

α

(−1)α̂̃f†i,α
ˆ̃fi,α, (−1)↑ = 1, (−1)↓ = −1. (4.37)

We allow for a finite expectation value of the magnetization in the mean-field description. Assum-
ing that the discrete symmetry T̂xŜx, which flips the spins and translates the system by one lattice
site, is unbroken, we obtain

⟨δ̂i⟩ = (−1)iδ. (4.38)

This leads to a second self-consistency equation for the staggered magnetization δ. The effective
mean-field Hamiltonian is obtained from Eq. (4.36) by introducing the order parameters δ and χ
and keeping terms up to quadratic order. It has a two-site unit cell because the magnetization is
opposite for different sub-lattices. This corresponds to a tight-binding Hamiltonian with nearest-
neighbor tunneling of strength J⊥χ and on-site potentials (−1)i(−1)αδ/2, as illustrated in Fig. 4.2.7
a). For spinons of type α it can be written as

Ĥα =

∫ π
2

− π
2

dk
(̂̃
f†k,A,α

ˆ̃f†k,B,α
)

hα(k)

(̂̃
fk,A,α
ˆ̃fk,B,α

)
, (4.39)

63



where we defined the Fourier transformed spinon operatorsˆ̃fk by the relations

ˆ̃f2n,α =
√

L
2π

∫ π
2

− π
2

dk e−2ikn̂̃fk,A,α

ˆ̃f2n+1,α =

√
L
2π

∫ π
2

− π
2

dk e−2ikne−ik̂̃fk,B,α.
(4.40)

For α =↑ spinons it holds

h↑(k) =

(
−δ/2ΔJz −2χJ⊥ cos(kx)

−2χJ⊥ cos(kx) δ/2ΔJz

)
, (4.41)

and a similar expression is obtained for α =↓ by changing δ → −δ. In addition, there is a constant
energy contribution of J⊥(1/4 + 2χ) + 1/4ΔJzδ2 per particle which is not included in Eq. (4.39).
We diagonalize the mean-field Hamiltonian in order to derive the coupled self-consistency equa-
tions for δ and χ. A new set of spinon operators F̂k,μ,α, with band index μ = ±, can be defined, for
which

Ĥα =
∑
μ=±1

μ
∫ π

2

− π
2

dk εk F̂†
k,μ,αF̂k,μ,α. (4.42)

The mean-field dispersion relation is given by

εk =
√
(2χJ⊥ cos(k))2 + (ΔJzδ/2)2, (4.43)

which gives rise to a band-gap to collective excitations of

ΔMF = |ΔJzδ|. (4.44)

Thus a non-vanishing staggered magnetization ΔJzδ ̸= 0 opens a gap in the spectrum. Because of
the mean-field constraint in Eq. (4.34) we obtain

〈̂̃
f†i,α
ˆ̃fi,α
〉
= 1/2, i.e. we describe spinons at half

filling. When ΔJzδ ̸= 0 the ground state is a band insulator, whereas ΔJzδ = 0 corresponds to a
gapless spinon Fermi sea.
Using thenewspinonoperators F̂k,μ,α wecancalculate theorderparameters δ and χ self-consistently,

χ =
1
π

∫ π
2

− π
2

dk cos2(k)
χJ⊥
εk

, (4.45)

δ =
1
2π

∫ π
2

− π
2

dk
ΔJzδ
εk

. (4.46)
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The numerical solutions for δ and χ to Eqs. (4.45), (4.46) are shown in Fig. 4.2.7 b). For 0 ≤
Jz ≤ J⊥, the only solution is the symmetric one with δ = 0 and χ = 1/π and energy EMF(δ =

0, χ = 1/π). This state has no magnetic order and corresponds to a quantum spin liquid (QSL).
At the isotropicHeisenberg point where Jz = J⊥ = J it predicts the following dispersion of spinon
excitations,

εk = J
2
π
| cos k|. (4.47)

The analytical form of the spinon dispersion ∼ | cos(k)| is correctly described by the mean-field
theory. Compared to the exact result from Bethe ansatz calculations, Eq. (4.22), this expression
is too small by a factor of π2/4 ≈ 2.47. Deviations from the exact solution are a result of the
meanfield approximation, i.e. ourneglectingof gaugefluctuations ensuring the constraint of single-
occupancy [28].
For Jz > J⊥, two additional solutions ±δ ̸= 0 with an energy below EMF(δ = 0, χ = 1/π)
appear. Note that in Fig. 4.2.7 b), only the solution with δ > 0 is shown. In this regime, the
translational symmetry of the original Hamiltonian Eq. (4.33) is spontaneously broken. Because
there exists a non-zero staggered magnetization δ ̸= 0, this phase can be identified with a spin
density wave (SDW). At large couplings, Jz ≥ 2J⊥, we find that the mean-field order parameter χ
vanishes and the system is fully ordered with δ = ±1 as expected in the classical Néel state. This
second transition is an artifact of the mean-field theory: From exact Bethe ansatz calculations it
is known that the staggered magnetization approaches the classical value δ = ±1 monotonically
until it is asymptotically reached for Jz/J⊥ → ∞.
As can be seen fromFig. 4.2.7 b), the order parameter δ only takes a significant value for Jz ≃ 1.2J⊥.
By solving the elliptic integral in Eq. (4.46) perturbatively in the limit δ ≪ 1, we find that the
staggered magnetization depends non-analytically on Jz − J⊥, with all derivatives dnδ/dΔJnz = 0
vanishing at the Heisenberg point:

δ ≃ 4
π

J⊥
Jz − J⊥

e−2 J⊥
Jz−J⊥ . (4.48)

From Eq. (4.44) it follows that the excitation gap has the asymptotic form

ΔMF ≃
4
π
J⊥ exp

[
−2

J⊥
Jz − J⊥

]
. (4.49)

Close to the transition point fromQSL to SDWΔMF can be compared to exact resultsΔB obtained
from Bethe ansatz methods for the XXZ chain. From the exact expressions derived in Ref. [216]
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we obtain the following asymptotic behavior,

ΔB ≃ 4πJ⊥ exp

[
− π2

2
√
2

(
J⊥

Jz − J⊥

)1/2
]
. (4.50)

The non-analyticity is correctly predicted by the mean-field theory, and only the power-law expo-
nent appearing in the exponential function is not captured correctly.
We conclude that the slave-fermion mean field theory provides a rather accurate description of
the one-dimensional spin chain near the critical Heisenberg point. This is possible because a non-
trivial order parameter (χ) is introduced that does not vanish even in one dimension. The theory
provides quantitatively reasonable results and describes correctly the qualitative behavior at the
singular phase transition from QSL to the conventional symmetry broken SDW phase.

Spectralweightofspinonexcitations Weproceedby calculating thematrix elements that
determine the weight in the single-hole spectra based on the slave-fermion mean field theory. The
relevant matrix elements, which describe the creation of a hole in the ground state of the spinon
system, are of the form

λn
ks
= |⟨ψn |̂̃fks,σ|ψ0⟩|

2 − π ≤ ks ≤ π, (4.51)

with the ground state of the undoped spin chain

|ψ0⟩ =
π/2∏

k=−π/2

∏
σ

F̂†
k,−,σ|0⟩. (4.52)

The full spectral function A(k, ω) is a convolution of the spinon part and the holon part,

A(k, ω) =
π∑

kh,ks=−π

∫
dωhdωs δ (ω − ωs − ωh)× δk,kh+ksAs (ks, ωs)Ah(kh, ωh). (4.53)

Neglecting the coupling of the holon to collective excitations of the spin chain, see Ref. [2], the
holon spectrum is determined by Ah(kh, ωh) = δ(ωh − εh(kh)). The spinon part is given by
As(ks, ωs) =

∑
n δ(ωs − ωn)λn

ks
, where the eigenstate |ψn⟩ has energy ωn.

For every ks there exists one unique state |ψn⟩ with λn
ks
̸= 0. The corresponding λks := λn

ks
can be

calculated by mapping the original spinon operators ˆ̃fks,σ onto the transformed operators F̂ks,±,σ .
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This leads to

λks =

cos2
(

θks
2

)
|ks| ≤ π/2

sin2
(

θks
2

)
|ks| > π/2,

(4.54)

where the mixing angle is determined by

tan θks =
δ(Jz − J⊥)
4χJ⊥ cos(ks)

(4.55)

In the isotropic Heisenberg case, J⊥ = Jz = J, the only solution to the self-conistency equation is
δ = 0, leading to θks = 0 and thus

λks =

1 |ks| ≤ π/2

0 |ks| > π/2.
(4.56)

This discontinuity in λks gives rise to the sharp drop of spectral weight observed in Figs. 4.2.1, 4.2.3,
and 4.2.4 when ks is varied across the value π/2. It is a direct signature for the spinon Fermi sea,
which in turn is a key signature of a quantum spin liquid.
In the Ising limit J⊥ = 0 we obtain the classical Néel state with δ = ±1 and χ = 0. This yields
θks = π/2, i.e.

λks = 1/2. (4.57)

In this case, discrete translational symmetry is broken, which leads to a mixing of momenta ks and
ks + π and a homogeneous re-distribution of spectral weight across all ks. There is therefore no
discontinuity in the distribution spectral weight at the zone boundary ks = ±π/2, as observed in
Fig. 4.2.4 b).

Spin-imbalanced systems In the slave-particlemean field picture, the slave fermions form two
spinon Fermi seas. For a spin-imbalanced system, we thus expect to see two different Fermi mo-
menta. Our scheme tomeasure the spectral function in experimentswith cold atoms is particularly
well suited to access the spectral function of a single hole in a system with finite magnetization.
Moreover, by detecting the spin of the removed particle [217], the spin-resolved version of the
spectral function can be measured. In Fig. 4.2.8 a), the spectral function of a single hole in a spin
imbalanced system is shown for a removed particle with spin up and down, respectively. As in
Fig. 4.2.4, gray dots denote the positions of expected peaks due to holon and spinon dispersions,
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Figure 4.2.8: Spectral function in a spin-imbalanced system with 20 sites and N↑ = 4,
N↓ = 16 at zero temperature and with periodic boundary conditions. a) shows the minority
(top) and majority (bottom) spectrum, resolved after the spin of the removed particle. b)
depicts the spinon Fermi seas for the two different species, which are filled correspondingly.

Eq. (4.24) for−k↑/↓F ≤ k ≤ k↑/↓F with k↑/↓F = πN↑/↓/L. In the slave-fermion mean field theory,
the spinons form two Fermi seas, which are filled corresponding to the spin imbalance in the sys-
tem. Accordingly, in Fig. 4.2.8, the sharp decrease in spectral weight occurs at different momenta
for the removed particle belonging to the majority or minority species.

4.3 Time-ResolvedObservation of Spin-ChargeDeconfinement

This section is based on the publication

• Jayadev Vijayan, Pimonpan Sompet, Guillaume Salomon, Joannis Koepsell, Sarah Hirthe,
Annabelle Bohrdt, Fabian Grusdt, Immanuel Bloch, Christian Gross: “Time-Resolved Ob-
servation of Spin-Charge Deconfinement in Fermionic Hubbard Chains.” – Science 367,
186 (2020) [arXiv:1905.13638]

Structure, text and figures have been rearranged and adapted here.

Quantum gas microscopes are optimally suited to observe dynamics in real space. Recently, equi-
librium signatures of spin-charge separation have been observed by Immanuel Bloch’s Lithium
quantum gas microscope [75]. Here, we probe the dynamical deconfinement of spin and charge
excitations in real space and time, where initially a particle is removed from a half-filled Fermi-
Hubbard chain. We start from a spin-balanced mixture of Lithium atoms in the lowest two hyper-
fine states, which is loaded into several one-dimensional tubes. The total atom number is fixed,
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such that the chains are close to half-filling in the center of the harmonically confined cloud. In
each experimental run there are at least three one-dimensional chains of mean length 13 atoms,
each with a unity filled region of about 9 sites and short-range antiferromagnetic spin correlations
[84, 85, 217, 218]. The local quench is realized by the high fidelity removal of one atom from a
single site in the center of each chain using an elliptically shaped near-resonant laser beam.
The main part of the experimental analysis below is done at t = h × 250Hz and U/t = 15,

corresponding to an exchange interaction of J = h × 65Hz. We define a hopping time τt =

h × (4πt)−1 = 0.32 ms as the time it takes for a hole to move by one site if it propagates at the
theoretically expected maximum group velocity of vmax

t = ax/τt, where ax is the lattice spacing in
the direction of the chain. Correspondingly, we define τJ = h × (π2J)−1 = 1.56ms, which is the
time it takes a spinon to move by one site, if it propagates by the theoretically expected maximum
group velocity of vmax

J = ax/τJ.

4.3.1 Spinon and Chargon Velocity

After the removal of a single particle from the Fermi-Hubbard chain of ultra-cold atoms, the evolu-
tion of the system is tracked in real space and time with a quantum gas microscope. In particular,
we study the holon dynamics by monitoring the local hole density as well as the spinon dynam-
ics by evaluating nearest neighbor spin correlations in squeezed space, Fig. 4.3.1. The spreading of
both types of excitations is approximately ballistic, but with different propagation velocities.
In Ref. [179], the authors study spin charge separation following a quench with time dependent
DMRGmethods for the one dimensional Hubbardmodel. The system is in the ground state of the
Fermi Hubbard Hamiltonian with an additional spin dependent potential in the chain center. In
the beginning of their protocol, this potential is switched off and in the following dynamics, charge
and spin location are tracked. Even though the simulation starts from the ground state of the sys-
tem, the observable signal is comparably small. In the quantum gas microscope experiment, all
measurements are based on snapshots, and usually not more than a few thousand snapshots are
taken for each time step. Therefore, in order to be able to faithfully measure an observable, the
expectation value cannot be too small.
While tracking the hole position in each snapshot is straightforward, monitoring the spinon dy-
namics requires more specific observables, which are adapted to the experimental capabilities. At
the experimental temperatures ofT = 0.7J, the connected nearest neighbor spin correlation func-
tion at half filling is still comparably big. Upon doping, the hole motion washes out the spin corre-
lation functions. However, as has been shown in recent equilibrium experiments [75], the nearest
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Figure 4.3.1: Experimentally observed spreading of spinon and chargon after the cre-
ation of a hole in the center of a Fermi-Hubbard chain at half-filling, with t = h × 250Hz and
U/t = 15, corresponding to an exchange interaction of J = h × 65Hz. a) Hole density distri-
bution

〈
n̂h
i
〉

as a function of time after the quench. The wavefront of the distribution starts at
the center of the chain and expands outward linearly with time. Interference peaks and dips
are visible throughout the dynamics, indicating the coherent evolution of the charge excita-
tion. b) 1D cuts of the experimental hole density distributions at times 0τt, 1.88τt, and 3.77τt
(blue circles) are compared with simulations of a single-particle quantum walk (gray squares).
c) Nearest-neighbor squeezed-space spin correlation C(x̃ = 1) distribution as a function of time
after the quench. d) 1D cuts of the experimental C(x̃ = 1) distributions at times 0τJ, 1.54τJ,
and 3.08τJ (red circles) along with exact diagonalization simulations of the Heisenberg model
(gray squares). Error bars denote one standard error of the mean.
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Figure 4.3.2: Spinon and chargon velocity in one dimension. a) Time evolution of the
widths of the hole density distributions (blue circles) and nearest-neighbor spin correlation dis-
tributions (red circles) after the quench. The measured widths are defined as the full width at
30% of maxima of the distributions (see inset). Density and spin excitations reach the edge
of the unity-filled region of the chain (central nine sites) after different evolution times. Their
dynamics are in quantitative agreement with both a single-particle quantum walk for the hole
and exact diagonalization calculations of the Heisenberg model for the spin (gray squares).
They are also found to reproduce the predictions of the extended t − J model at our tem-
perature (gray dashed lines). The velocities of the spin (0.58 ± 0.04 sites/ms) and the charge
(3.08±0.09 sites/ms) excitations are obtained as half the slope of a linear fit to the data (solid
blue and red lines), ignoring the width immediately after the quench. b) Holon velocities as a
function of t/h. The velocities of the holon (blue circles) increase linearly with the tunnel-
ing rate in the chain, consistent with vtmax = 4πtax/h sites/ms (blue dashed line). c) Spin-
excitation velocities as a function of J/h. The velocities of the spin excitation (red circles)
increase linearly with the spin-exchange coupling in the chain, consistent with vJmax = π2Jax/h
sites/ms (red dashed line). Error bars denote one standard error of the mean.

neighbor spin correlations in squeezed space,

C̃i(x̃ = 1) = 4(
〈
ˆ̃Sz

ĩ
ˆ̃Sz

ĩ+1

〉
−
〈
ˆ̃Sz

ĩ

〉〈
ˆ̃Sz

˜i+1

〉
), (4.58)

stay sizeable.
Directly after the quench, a strong local reduction of the antiferromagnetic correlations takes place.
The spin correlation across the hole corresponds to the equilibrium next nearest neighbor correla-
tion – there is an enhanced probability to find ferromagnetic correlations here. This constitutes the
creation of a spinon by the local quench. Note that this next nearest neighbor correlator across the
hole corresponds to a nearest neighbor correlator in squeezed space. In the following dynamics,
the region with reduced local anti-ferromagnetic correlation spreads with a light-cone like prop-
agation of the wavefront. In order to extract a velocity from the observed light-cone spreading,
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Figure 4.3.3: Dynamics in the Fermi-Hubbard and t − J∗ model for a system with 8 sites
at a) U/t = 8 and b) U/t = 15 and t/J correspondingly. The plots show the difference in the
local occupation ⟨n̂i⟩ after the removal of a particle in the center of the system. Differences at
time zero are due to the fact that the corresponding site can be either empty or occupied by a
doublon in the Fermi-Hubbard model, whereas in the t − J model initially each site is occupied
by exactly one particle.

we monitor the full width of the distributions. Specifically, we consider the full width at 30% of
the maximum of the distribution, see inset of Fig. 4.3.2 c). The velocities are then defined as half
the slope of a linear fit to the width as a function of time, Fig. 4.3.2. As expected, the hole density
distribution reaches the edge of the system considerably faster than the squeezed space spin cor-
relation function and correspondingly the extracted holon velocity is considerably larger than the
spinon velocity. For all different values of U/t probed in the experiment, the extracted velocity is
consistent with the theoretically expected maximum group velocity determined by the dispersion
of a free particle and the spinon dispersion, respectively, Fig. 4.3.2 b), c).

Comparison to numerics The experimentally observed distributions are furthermore in ex-
cellent agreement with exact diagonalization simulations of the t − J∗ model, Eq. (3.9), at finite
temperature with a harmonic potential. For small system sizes, we also compared exact diagonal-
ization results for the t − J∗ and Fermi-Hubbard models and found good agreement up to small
differences at the boundaries, Fig. 4.3.3. Increasing the ratio ofU/t– and simultaneously t/J for the
t− J∗ model – reduces these differences further, as can be seen by comparing Fig. 4.3.3 a)U/t = 8
and b) U/t = 15.
Since the velocities of spinon and chargon differ, we additionally performed separate numerical

simulations of their dynamics. To this end, the chargon dynamics is compared to exact diagonal-
ization results of a free particle in a trap. For the spinon dynamics, we consider a Heisenberg spin
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Figure 4.3.4: Dynamics in the t − J∗ and Heisenberg model for t/J = 3.8, T/J = 0.7
and V/J = 0.456 from exact diagonalization. a) Difference between the squeezed space near-
est neighbour correlator distribution in the t − J∗ model and the Heisenberg model ΔC(1).
b) Velocity extraction for the spinon in the simulation of the extended t − J model (t − J∗

model) (red squares) and the Heisenberg model (green squares). The extracted velocities of
0.58± 0.04 sites/ms for the t− J∗ model and 0.61± 0.05 sites/ms for the Heisenberg model are
obtained by fitting a straight line to the points (dashed lines). c) Temperature dependence of
the spinon velocity. The ratio of the numerically extracted velocity and the maximum group
velocity vJmax = π2Jax/h for t/J = 3.8, V/J = 0.456 and periodic (open) boundary conditions
for the spins (hole) as calculated for the t − J∗ model (red squares) and the Heisenberg model
(green squares). At low temperatures, the coherent motion of the spinon which moves by two
sites every step (see inset), makes the extraction of the velocity from a linear fit challenging.

chainwithL sites, fromwhich one site in the center is removed initially. The remainder of the chain
is then squeezed together and the ensuing dynamics is simulated for a spin chain with L − 1 sites.
Importantly, there is no empty site in the system and as a consequence also no hole dynamics.
Both the spinon and the chargon dynamics show excellent agreement with the corresponding nu-
merical simulations, see Fig. 4.3.2 a). As shown in Fig. 4.3.4, the spin dynamics is very similar for
the t − J∗ and the Heisenberg model.
Since in the latter case no hole is involved, the comparison between the two simulations yields
insights into the effect of the hole on the spin dynamics. In Fig. 4.3.4 a), the relative difference be-
tween the squeezed space C(x̃ = 1) correlations for the t − J∗ and Heisenberg model are shown.
Apart from the initial dynamics on the central bond, the relative difference is below 8% during
the entire time evolution, showing how similar the correlations under consideration are in the two
models. As shown in Fig. 4.3.4 c), the extracted spinon velocity decreases with increasing tem-
perature. We attribute this effect to the probability to create a spinon, which exhibits a similar
temperature dependence, see Fig. 4.3.7 c).
For the chargon, the coherent evolution is visible in the interference pattern of its dynamics. For
the spinon on the other hand, the temperatures are much higher in comparison and thus there are
no visible interference effects. In numerical simulations, lowering the temperature has an effect on
the time evolution of the squeezed space spin correlation function. In the inset of Fig. 4.3.4 c), the
corresponding distribution function is shown at a temperature ofT = 0.1J. In this case, the spinon
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excitation moves by two bonds at a time and the bonds in between remain largely untouched by
the quench. From the numerical simulations we can again extract a spinon velocity as described
above. In Fig. 4.3.4 c), the velocity is shown to decrease as a function of temperature, where the
steepest decline happens for temperatures T ≤ J.
Note that for temperatures T ≲ J, the open boundary conditions have a strong effect on the
squeezed space nearest neighbor correlator: the spin at the boundary is only coupled to one other
spin, such that the correlations are stronger on every second bond in the vicinity of the edge. This
boundary effect is visible throughout the spin chain in squeezed space and renders the extraction
of a spinon velocity with the method described above challenging. We therefore simulate periodic
boundary conditions for the spins, while the hole is still subject to open boundary conditions and
the harmonic potential. This leads to a smooth behavior of the squeezed space correlatorC(x̃ = 1)
and thus enables the extraction of the spinon velocity, which is used in Fig. 4.3.2
We probe the dynamics of the spin excitation beyond nearest neighbor correlations by consider-
ing
〈
ˆ̃Sz

ĩ
ˆ̃Sz

j̃

〉
at different points in the time evolution after the quench in Fig. 4.3.5. The background

signal
〈
ˆ̃Sz

ĩ
ˆ̃Sz

j̃

〉
bg
, defined as the spin correlations in thermal equilibrium at the same temperature,

is subtracted here, such that

4 ·
〈
ˆ̃Sz

ĩ
ˆ̃Sz

j̃

〉
diff

= 4 ·
〈
ˆ̃Sz

ĩ
ˆ̃Sz

j̃

〉
− 4 ·

〈
ˆ̃Sz

ĩ
ˆ̃Sz

j̃

〉
bg

(4.59)

is shown. Note that the spin correlations are reversed beyond nearest neighboring sites, indicating
the extent of the spin excitation. The different behavior at the three different time steps shows the
spread of the spin excitation throughout the system. In Fig. 4.3.5 b) and c), the excitation starts to
reach the boundary at the latest considered time.
So far, we studied the creation of a hole in a spin (or half-filled Fermi-Hubbard) chain. Another
possible scenario starts from a pinned hole, which is released at time zero. A pinned hole effectively
cuts the chain into two disconnected pieces. The dynamics of the hole itself is very similar to the
situation studied before, where the hole was created instead of released, Fig. 4.3.6 a). The spin
sector, however, behaves differently: initially, there are no spin correlations between the left and
the right half of the chain. As soon as the hole is released and moves through the system, the two
disconnected spin chains become connected and correlations start to build up. In Fig. 4.3.6, this
scenario is studied with time-dependent matrix product states, starting from the ground state of
the system with a pinned hole. Fig. 4.3.6 b) shows the sign-corrected spin correlation function
(−1)i

〈
Ŝz
0Ŝz

i

〉
.
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Figure 4.3.5: Long-range squeezed space spin correlations in a spin chain after the sud-
den creation of a hole at time zero for three different evolution times, Eq. 4.59. Here, the
background contribution, i.e. the equilibrium long-range spin correlations in a spin chain with
one site less, is subtracted to better visualize the dynamics due to the quench. a) Experimen-
tal data. b), c) Exact diagonalization simulation for a Heisenberg spin chain at temperature
b) T = 0.75J and c) T = 0.3J with open boundary conditions with L = 14 sites, where site 7 is
removed initially. The remainder of the chain is squeezed together, there is no hole dynamics.
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Figure 4.3.6: Releasing a hole in a spin chain. The simulation starts from the ground
state of the one-dimensional t − J model with a hole pinned at site 10. At time zero, the hole
is released and can move with a hopping amplitude of t/J = 3.5 through the system. a) The
hole spreads rapidly and reaches the edge of the system at times ∝ 2/J. The plot shows the
hole density, where the colorbar is clipped at 0.5 to make more features visible. b) The spin
correlations (−1)i

〈
Ŝz
0Ŝz

i
〉

between site 0 and site i are zero for i ≥ 10 initially. The pinned
hole cuts the spin chain into two disconnected parts. During the dynamics, spin correlations
between the left and the right half of the system build up.

4.3.2 Spatial separation of quasi-particles

Apart from the spreading of the quasi-particles with different velocities, we can use the capabilities
of the quantum gas microscope to further probe their spatial separation. In particular, the spin
correlation across the hole,

CSHS(2) = 4
∑

i

〈
Ŝz
i n̂

h
i+1Ŝ

z
i+2

〉
, (4.60)

can be extracted from the snapshots. Initially, this correlation correspond to the equilibrium next
nearest neighbor spin correlation, which is positive, Fig. 4.3.7. After a few tunneling times of the
chargon, the spin-hole-spin correlationCSHS is negative with a large absolute value. In principle, in
an unbound state, the spinon and chargon would spatially separate over arbitrary large distances.
However, in the finite size system considered here, the chargon and spinon distributions overlap
again after their initial separation. At longer times,CSHS therefore saturates at a value of about -0.25,
which is slightly smaller in absolute value than the equilibrium nearest neighbor spin correlation.
In order to analyze the influence of the charge on the spin sector beyond the immediate vicinity of
the hole, we compare the nearest neighbor spin correlation as a function of distance from the hole
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Figure 4.3.7: Deconfinement of the quasi-particles. a) Spin-hole-spin correlations (CSHS)
averaged over the entire chain as a function of time after the quench. The correlator starts
with a positive value consistent with the next-nearest neighbour spin correlations in the ab-
sence of the quench (top grey shaded region) and turns negative, approaching the nearest
neighbour spin correlations without the quench (bottom grey shaded region) by 4τt. At longer
evolution times, the correlator shows reduced antiferromagnetic correlations due to the oscil-
lating dynamics of the hole in our finite size system. The inset shows the lack of dependence
of the normalized deviation from the mean nearest neighbour correlations δC1 on the distance
d from the hole at times 4τt (purple) and 19τt (yellow). Error bars denote 1 standard error of
the mean (s.e.m.). b) Spatially resolved magnetization fluctuations

〈
Σ2

j̃

〉
(BG)

in sub-regions
of the chain with (red) and without (grey) the quench at 3.77τt. The background fluctua-
tions

〈
Σ2

j̃

〉
BG

are due to quantum and thermal fluctuations in the system. The peak in the

difference signal
〈
Σ2

j̃

〉
−
〈
Σ2

j̃

〉
BG

indicates the location of the spin excitation. Grey and red
shades denote 1 s.e.m without and after the quench respectively. c) Efficiency of initially cre-
ating a single local spinon ηspin (orange) and hole ηhole (blue) at the central site, as defined in
Eqs. (4.63) and (4.64), after an ideal quench as a function of temperature as predicted from
exact diagonalization of the Heisenberg model (for the spinon) and the Hubbard model (for
the hole). With increasing temperature, ηspin (ηhole, inset) decreases due to the increase of
thermal spin (density) excitations, preventing the creation of a localized spinon (chargon) by
the quench. Taking into account our quench efficiency, the measured amplitude is consistent
with the prediction at a temperature of kBT/J = 0.75 (grey shaded region).
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to the spatially averaged nearest neighbor correlations,

δC1(d) =
〈
Ŝz
i Ŝ

z
i+1

〉
•i•i+1◦i+1+d∨i−d

/
〈
Ŝz
i Ŝ

z
i+1

〉
− 1. (4.61)

Here, d is the distance of the hole from the closest of sites i and i+ 1. In the inset of Fig. 4.3.7 a), δC1

is shown for two different evolution times. In both cases, there is no dependence on the distance
d, indicating the lack of influence of the chargon on the spin excitation.
In order to further characterize the dynamics of the quasi-particles, we locate the excess spin in
the system with an envelope function analysis. We define an operator quantifying the local spin
fluctuations in squeezed space as

Σ̂2
j̃ =

(∑
ĩ

ˆ̃Sz
ĩ · f

σ
j̃ (̃i)

)2

with f σ
j̃ (̃i) = exp(−(̃i − j̃)2/(2σ2)) (4.62)

a smooth window function centered at lattice site j̃ with a characteristic size σ. At zero tempera-
ture, this operator is expected to capture local fractional quantum numbers [219]. Assuming the
mean distance between thermal spin fluctuations is larger than the size of the envelope function σ,
a single spinon – carrying spin 1/2 – at site j̃ would increase

〈
Σ̂2

j̃

〉
by 1/4.

In Fig. 4.3.7 b), we consider
〈
Σ̂2

j̃

〉
for σ = 1.5 at time 3.77τt. At this time, the highest probability

to detect the hole is at sites±2. We post-select on chains with a single hole in the central nine sites,
but outside the central three sites. We compare

〈
Σ̂2

j̃

〉
to
〈
Σ̂2

j̃

〉
BG

, which is the same quantity, but
without the creation of a hole at time zero, and thus provides a background value. We observe a
well localized signal extending over the central three sites, which is consistent with Fig. 4.3.1 c)
and distinct from the position of the chargon. The maximum deviation

〈
Σ̂2

j̃

〉
−
〈
Σ̂2

j̃

〉
BG

reaches
0.13± 0.01, which is about half of the value expected at zero temperature. We attribute this differ-
ence mainly to the finite temperature in our experimental system leading to a background density
of thermal spin excitations. Therefore, even an ideal quench does not create an initially localized
spinon with unity probability. In Fig. 4.3.7 c), the probability to create a single local spinon,

ηspin = 4
(〈

Σ̂2
j̃=0

〉
−
〈
Σ̂2

j̃=0

〉
BG

)
, (4.63)

and the probability to create a hole,

ηhole = 1− ⟨(n̂i=0 − 1)2⟩ , (4.64)

obtained from exact diagonalization calculations is shown. For the spinon, we use the Heisenberg
model and for the chargon, the Hubbard model. In the latter case, doublon-hole excitations can
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decrease the probability ηhole, but comparably high temperatures in units of J are necessary for a
sizeable effect. The gray shaded region indicates the experimental temperatures. The experimen-
tally measured value of ηspin in Fig. 4.3.7 b) is consistent with this prediction, taking into account
the imperfect quench in the experiment.
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4.4 Cyclic ring-exchange on a ladder

This section is based on the publication

• Annabelle Bohrdt, AhmedOmran, EugeneDemler, Snir Gazit, FabianGrusdt: “Multiparti-
cle interactions for ultracold atoms in optical tweezers: Cyclic ring-exchange terms” – Phys.
Rev. Lett. 124, 073601 (2020) [arXiv:1910.00023]

Structure, text and figures have been rearranged and adapted here.

In most of the numerical simulations presented in this work, the Fermi Hubbard model is approx-
imated by the t − J model. However, upon further expanding the Hubbard Hamiltonian in t/U,
higher order spin interactions arise. Specifically, cyclic ring exchange terms on the plaquettes of
the square lattice appear with a coupling K = 20t4/U3. Theoretical studies by Roger and Delrieu
based on the three band Hubbard model [220] as well as experimental results [221, 222] suggest
that these four-spin exchange termsmaybe important for the physics of the cuprates, however their
effect on the phase diagram is still debated. Moreover, experiments show that ring-exchange terms
can also be present in copper-based spin-ladder materials [223, 224].
Herewe propose a scheme to experimentally realize and probemulti-particle interactions for ultra-
cold atomswith optical tweezers and study a chiral cylic ring exchange (CCR) termwith a complex
phase on a ladder numerically. Usually, the ring exchange term is considered as a small correction
to the two spin exchange coupling J. We instead study a model with only the ring exchange term
present, described by the Hamiltonian,

ĤCCR(φ) = K
∑

p

(eiφP̂p + e−iφP̂†
p), (4.65)

and tune the complex phase φ, which leads to different ground state phases. Here, the sum is over
all plaquettespof the underlying lattice and theoperator P̂†

p(P̂p) cyclically permutes the spin config-
uration on plaquette p in the (counter-)clockwise direction. A generalization to finite hole doping,
with zero or one particle per lattice site, is straightforward.

4.4.1 Multiparticle interactions for ultracold atoms in optical tweezers

The general idea of the scheme is to use the capabilities of optical tweezers [41, 225–228] in com-
bination with strong Rydberg interactions to quickly change the spatial configuration of atoms in
order to realize exchange processes. In the following, the concrete implementation of the Hamil-
tonian (4.65) on a single plaquette with four sites and SU(2) symmetry is discussed. Note that the
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Figure 4.4.1: Realizing chiral cyclic ring exchange. a) Proposed setup: SU(2)-invariant
chiral cyclic ring-exchange interactions can be realized by combining state-dependent lattices
generated by optical tweezer arrays and strong Rydberg interactions with a central Rydberg-
dressed control qubit (C). The auxiliary states |τ = 1⟩|σ⟩ with σ =↑, ↓ (orange) of the atoms
on the sites of the plaquette are subject to a state-dependent tweezer potential, which allows
us to permute them coherently around the center. Our protocol makes use of stroboscopic π
pulses between the physical states τ = 0 (green) and the auxiliary states τ = 1, which only
take place collectively on all sites and are conditioned on the absence of a Rydberg excitation
in the control atom. b), c) Proposed protocol: The sequence in b) is repeated periodically
with period T = 2(tc + trx). When tc ≪ 2π/Δc, 1/Ωc, it implements a Trotterized time evo-
lution of the effective Hamiltonian (4.65), which realizes CCR couplings when Δc ≫ Ωc. The
individual time steps are illustrated in c).

scheme can be directly generalized to SU(N) symmetry, to a ladder or two dimensional geometry
as well as plaquettes with a different number of sites and moreover to other types of multiparticle
interactions.

Permutations Weconsider aplaquettewith four sites, whereoneach site a static optical tweezer
traps one atom. Throughout the entire sequence, these atoms remain in the vibrational ground
state of the microtraps. Two internal states σ =↑, ↓, for example hyperfine states, are used to im-
plement an effective spin 1/2 on each lattice site. As a specific configuration, we suggest to use
133Cs atoms and utilize their F = 3, mF = 2, 3 hyperfine states to represent the two spins. Opti-
cal pumping with site-resolved addressing can then be employed to prepare arbitrary initial spin
patterns [229] and study their dynamics under HCCR. We then propose to physically rotate the
tweezer array around the center of the plaquette in order to realize the permutation

P̂|σ1σ2σ3σ4⟩ = |σ4σ1σ2σ3⟩ (4.66)

81



and its counter-clockwise counterpart. Importantly, the motional and spin states of the atoms are
not changed during the rotation. Optimized trajectories can be chosen to cancel heating effects
from themotion [230]. These require a timescale set by the quantum speed limit that scales as the
inverse energy gap of each trap trot ∼ 1/Δε. For deep trapping potentials where Δε ≈ 150 kHz,
rotation times of trot < 10 μs are achievable.

Superposition Applying the time evolution operator,

e−iĤCCRΔt = 1− iĤCCRΔt, (4.67)

to a state leads to a superposition of the permuted and non-permuted state. In order to create such
a superposition, we assume that each atom has an additional internal degree of freedom τ = 0, 1
and we can employ two sets of optical tweezer arrays, one of which strongly confines the τ = 1
state, but has almost no effect on atoms in the τ = 0 state. We can then permute the atoms if and
only if they are in the τ = 1 state, by only rotating the latter set of tweezers, effectively realizing

Û+ =
∏

j

|1⟩j⟨1| ⊗ P̂ +
∏

j

|0⟩j⟨0| ⊗ 1̂, (4.68)

where P̂ and 1̂ are applied to the spin 1/2 degree of freedom σ. We denote Û− = Û†
+. The super-

position of permuted and non-permuted state is then realized by applying Û+ to a superposition
of all atoms in |τ = 1⟩ and |τ = 0⟩. Concretely we propose to realize the new states |τ = 1⟩|σ⟩ in
133Cs atoms by F = 4, mF = 3, 4 hyperfine levels, where mF = 3 (mF = 4) corresponds to σ =↓
(σ =↑). These additional levels will be used as auxiliary states, whereas the states |τ = 0⟩|σ⟩ in-
troduced before – implemented as F = 3, mF = 2, 3 levels in 133Cs– realize the physical spin states.
The evolution above can then be realized by using the near-magic wavelength λmagic ≈ 871.6 nm in
133Cs, which strongly confines atoms in the state τ = 1 but almost does not affect atoms in τ = 0.

Control atom In order to realize this superposition of all atoms in the τ = 1 and all atoms in
the τ = 0 state, we propose to use a control qubit trapped in the center of the plaquette, which can
be in the states |±⟩c, Fig. 4.4.1 a). If it is in the state |+⟩c, a transfer to the Rydberg state |r⟩c can
occur with a resonant π pulse and Rabi frequency Ωr. If on the other hand the control atom is in
the state |−⟩c,Ωr is off-resonant and no excitation to the Rydberg state is possible. The idea is now
to use the Rydberg blockade mechanism to collectively transfer or not transfer all atoms on the
plaquette from |0⟩j to |1⟩j. To this end, a Raman transition by lasersΩ(1),Ω(2) through an interme-
diate Rydberg state |r⟩j is used, where a coupling fieldΩEIT established a two photon resonance to
the Rydberg state with both of the Raman lasers. Electromagnetically induced transparency (EIT)
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[231] then suppresses the transition |0⟩j ↔ |1⟩j. The EIT is however lifted by the Rydberg block-
ade if the control atom is in the Rydberg state |r⟩c [232], thus enabling the transfer between the τ
states of all atoms simultaneously. This part of the sequence corresponds to the switching

Ûsw = |+⟩c⟨+| ⊗

∏
j

|1⟩j⟨0|+ h.c.

⊗ 1̂σ + |−⟩c⟨−| ⊗ 1̂τ ⊗ 1̂σ (4.69)

over a time tsw. After the transfer another π pulse is applied to the control atom in order to ensure
that the atom remains trapped, since the Rydberg statemight not be trapped by an optical tweezer.
The actual superposition between permuted and non-permuted states of the atoms can now be
realized by driving a transition between the states |±⟩c of the control qubit with a dressing laserΩc

at detuning Δc over a time tc,

Ĥc = Δc|+⟩c⟨+|+Ωc (|+⟩c⟨−|+ h.c.) . (4.70)

During the rest of the protocol, Ωc = 0 and the control atom picks up a phase ±φc if it is in the
state |+⟩c. This phase φc corresponds to the complex phase in the Hamiltonian (4.65) and can be
controlled by adjusting Δc and the times of the different steps fo the protocol.

Effective Hamiltonian The complete protocol consists of a periodic repitition of the dif-
ferent steps as shown in Fig. 4.4.1 b). At all discrete time steps nT, where T = 2(tc + trx) and
trx = 2tsw + trot, the unitary evolution is described by an effective Hamiltonian

e−inTĤeff =
(
ÛT
)n

=
(
Ûrx,+ÛcÛrx,−Ûc

)n (4.71)

with
Ûrx,± = Ûsw

(
Û±φc

⊗ Û±
)
Ûsw (4.72)

and
Û±φc

= e∓iφc |+⟩c⟨+|+ |−⟩c⟨−|. (4.73)

For tc ≪ 2π
Δc
, 2π
Ωc

, the effective Hamiltonian is to leading order in tc

Ĥeff =
tc
T

(
2Δc|+⟩c⟨+| ⊗ 1̂+Ωc

(
|−⟩c⟨+| ⊗

(̂
1+ eiφcP̂†

)
+ h.c.

))
. (4.74)

ForΩc ≪ Δc, the state |+⟩c can be eliminated because it is only virtually excited, yielding

Ĥeff = K
(
2+ e−iφcP̂ + eiφcP̂†

)
(4.75)
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with
K = − 1

2T
tcΔc

(
Ωc

Δc

)2

. (4.76)

For realistic parameter values of Ωc = 0.2Δc, tcΔc = 0.4, trot = 10μs and tsw, tc ≪ trot, a strength
ofK/ℏ = 2π · 50Hz can be achieved. This requiresΩc/2π ≫ 1.3kHz, which can be easily realized;
the condition tsw ≪ 10μs can also be met, as the Rydberg π-pulses on the control atom can be
executed in ∼ 100 ns each and the Raman transfer between the states |0⟩j and |1⟩j can be driven
with coupling strengths above 1MHz.
The result can be extended to multiple plaquettes by implementing the trotterized time step T in-
terchangeably on inequivalent plaquettes.

Extension to the J − Q model

Our proposed protocol is versatile enough to implement larger classes of models with multi-spin
interactions. In our derivation of Eq. (4.75) above we only used the fact that P̂†P̂ = 1 and the
cyclic ring-exchange operator P̂ can be replaced by an arbitrary permutationP of spins. Moreover,
introducing more than one control qubit per plaquette allows to implement multiple such terms
P(n)

p per plaquette p: For every control atom n associated with plaquette p a coupling term

∝ Ω(n)
c

[
|−, n⟩c⟨+, n|

(
1+ e−iϕ(n)c P̂(n)

p

)
+ h.c.

]
can be implemented. By integrating out the n-th control atom, with detuning Δ(n)

c ≫ Ω(n)
c , an

effective Hamiltonian of the form

Ĥeff ∝
∑
p,n

(Ω(n)
c )2

Δ(n)
c

(
e−iϕcP̂(n)

p + h.c.
)

(4.77)

is obtained. We envision that control atoms can be stored in a register and moved into the center
of the plaquette individually when they are needed for the protocol.
As a specific example, we discuss an implementation of the J − Q model [233] on a ladder. The
conventional way to write the J−QHamiltonian [233] is in terms of spin operators Ŝj on the sites
j of the lattice,

ĤJQ = J
∑
⟨i,j⟩

Ŝi · Ŝj − Q
∑
⟨ijkl⟩

P̂i,jP̂k,l, (4.78)

where ⟨ijkl⟩ denotes a sequence of corners of a plaquette. The second term describes projectors
on singlets,

P̂i,j = Ŝi · Ŝj −
1
4
. (4.79)
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Figure 4.4.2: Ground state phase diagram of the chiral cyclic ring exchange Hamil-
tonian on a ladder, obtained from DMRG in a system with 64 sites: different observables
are evaluated in the ground state of the Hamiltonian (4.65) to characterize the phases. Upon
varying φ, three different phases can be identified: A topological Haldane phase featuring a
vanishing gap in the entanglement spectrum a) and edge states with a non-zero local magne-
tization for Sz

tot = 1 b); A symmetry-broken phase around φ = π with long-range ferromagnetic
correlations c); And a symmetric phase for small φ, where the staggered vector chirality re-
mains non-vanishing over long distances d).

We use a representation in terms of pairwise permutation operators P̂i,j = 2
(
Ŝi · Ŝj + 1

4

)
, for

which
ĤJQ =

2Q + J
2

∑
⟨i,j⟩∈R

P̂i,j +
Q + J
2

∑
⟨i,j⟩∈L

P̂i,j −
Q
4

∑
⟨ijkl⟩

P̂i,jP̂k,l (4.80)

up to an overall energy shift, which depends on the boundary conditions. Here
∑

⟨i,j⟩∈R (
∑

⟨i,j⟩∈L)
denotes a sum over all links on the rungs (legs) of the ladder and the last term contains a sum over
sequences of corners ⟨ijkl⟩ of the plaquettes.
To implement Eq. (4.80), we propose to use one control atom per link ⟨i, j⟩, to realize the first and
second terms∝ P̂i,j. In addition, twocontrol atomsper plaquette are required to realize P̂12P̂34 and
P̂14P̂23 respectively; here the sites of the plaquette are labeled by integers 1, 2, 3, 4 in anti-clockwise
direction around the plaquette.
Similar extensions can be envisioned for implementing the J − Q model in two dimensions. This
model features a phase transition around J/Q ≈ 0.04 between an antiferromagnet and a valence-
bond solid, which has been proposed as a candidate for a deconfined quantum critical point [233].

4.4.2 Ground state phase diagram on a ladder

Westudy the ground state of theHamiltonian (4.65)usingDMRG– inparticular, using the iTensor
package – and to this end, rewrite theHamiltonian for a spin 1/2 system in terms of spin operators.
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As a starting point, we express P̂p in terms of pairwise spin-permutation operators,

P̂ij = P̂ji = 2
(
Ŝi · Ŝj +

1
4

)
, (4.81)

for which P̂ij|σ iσ j⟩ = |σ jσ i⟩. Hence

P̂p = P̂43P̂32P̂21. (4.82)

Using standard identities for spin operators, we obtain

eiφP̂p + e−iφP̂†
p = cos(φ)

[
1
4
+ Ŝ1 · Ŝ2 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ4 + Ŝ4 · Ŝ1 + Ŝ2 · Ŝ4 + Ŝ1 · Ŝ3

+ 4(Ŝ1 · Ŝ2)(Ŝ3 · Ŝ4) + 4(Ŝ1 · Ŝ4)(Ŝ2 · Ŝ3)− 4(Ŝ1 · Ŝ3)(Ŝ2 · Ŝ4)
]

+ 2 sin(φ)
[
Ŝ1 · (Ŝ2 × Ŝ3) + Ŝ1 · (Ŝ3 × Ŝ4) + Ŝ1 · (Ŝ2 × Ŝ4) + Ŝ2 · (Ŝ3 × Ŝ4)

]
.

(4.83)

The ground state of the Hamiltonian (4.65) is characterized by different corrrelations as the com-
plex phase φ is varied, Fig. 4.4.2. The limiting cases of φ = 0 and φ = π have been studied in
Ref. [234]. As predicted there, we find a dominant vector chirality and a ferromagnet, respectively.
The latter case can be understood from the variational energy ⟨ĤCCR(π)⟩, which is minimized for
ferromagnetic configurations. In the sector Sz

tot = 0 used in our DMRG in Fig. 4.4.2 c), we find
phase separation with two ferromagnetic domains of opposite magnetization.
At intermediate φ we find an emergent Haldane phase, with two-fold degenerate states in the en-
tanglement spectrum, see Fig. 4.4.2 a). For a finite Sz

tot = 1 the expectation value ⟨Ŝz
L,1⟩ at the edge

is non-zero, see Fig. 4.4.2 b). The spin gapΔES = E0,S=1−E0,S=0, defined as the difference between
the ground state energy with and without finite total magnetization, is zero in this phase, since the
additional spin can be placed in the spin-1/2 topological edge states of the systemwithout increas-
ing the total energy. We corroborate this picture further by considering the K − K′ model with
alternating strengths K, K′ of the CCR interactions on adjacent plaquettes. In subsection 4.4.2 we
provide an explicitly derivation of a spin-1model with a gapped Haldane ground state [235, 236]
for φ = π/2 and K′ ≪ K.
For small φ ≲ π/4, the system is dominated by vector chirality correlations, as discussed in Ref.
[234]. This phase is characterizedby correlations of the form Ŝx,y×Ŝx′,y′ in a staggered arrangement
around each plaquette. We find that the staggered correlation between different rungs, measured
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from the center L/2 of the chain,

(−1)x
〈(
ŜL/2,1 × ŜL/2,2

)
·
(
ŜL/2+x,1 × ŜL/2+x,2

)〉
, (4.84)

decays slowly as a function of the distance x and retains significant non-zero values over the con-
sidered system sizes, see Fig. 4.4.2 d). The transition between the dominant vector chirality and
Haldane phases is a symmetry-protected topological (SPT) phase transition.
Using the global SU(2) symmetry, the staggered vector chirality becomes

6
〈
Ŝx
L/2,1Ŝ

y
L/2,2

(
Ŝx
L/2+x,1Ŝ

y
L/2+x,2 − Ŝy

L/2+x,1Ŝ
x
L/2+x,2

)〉
(−1)x. (4.85)

Measuring it requires access to two four-point functions of the form ⟨Ŝμ
i Ŝν

j Ŝλ
kŜ

ρ
l ⟩ which can be de-

tected by making use of local addressing techniques, see e.g. [237]. To detect the Haldane phase
experimentally, we propose to study weakly magnetized systems and image the topological edge
states. Alternatively, one could work in the plaquette basis and measure the Haldane string order
parameter. An interesting future extensionwould be to usemachine learning techniques to retrieve
non-local order parameters from a series of quantum projective measurements.

The spin-1Haldane phase

To obtain a better understanding of the Haldane phase observed in our DMRG simulations, we
perform a rigorous analytical analysis of a simplified model with CCR couplings of strength K, K′

on alternating plaquettes,

ĤCCR(K′) = K
∑
p∈P

(eiφP̂p + e−iφP̂†
p) + K′

∑
p∈P

(eiφP̂p + e−iφP̂†
p), (4.86)

where P denotes the set including every second plaquette and P its complement.
The K − K′ model (4.86) can be solved exactly in the limit K′/K = 0, where its ground state is
a product of decoupled plaquettes P. The eigenstates of a single plaquette p ∈ P can be labeled
by the total spin Ŝp =

∑4
j=1 Ŝj where j = 1...4 denotes the four sites of the plaquette (labeled in

anti-clockwise direction).
The two states with Sz

p = ±2 have an energy ε2(φ) = 2K cos φ. In the sector with Sz
p = ±1 there

exist four states corresponding to the four positions jof theminority spin. The eigenstates are plane
wave superpositions of different j = 1...4 with discrete momenta pn = nπ/2 for n = 0, 1, 2, 3 and
corresponding energy εn1 (φ) = 2K cos(φ + pn). Finally there exist six states with Sz

p = 0. Four
of them correspond to plane-wave superpositions of domain wall configurations, including ↑↑↓↓
and all cyclic permutations. They have discrete momenta pn = nπ/2 for n = 0, 1, 2, 3 and the
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same energy εn2(φ) = 2K cos(φ + pn) as states in the sector Sz
p = ±1. Two additional states |±⟩

correspond to symmetric and anti-symmetric superpositions of Néel states | ↑↓↑↓⟩ ± | ↓↑↓↑⟩ on
the plaquette, with eigenenergies ε±2 (φ) = 2K cos(φ + q±)where q+ = 0 and q− = π.
In the following we focus on the case when φ = π/2. The ground state of every plaquette is three-
fold degenerate with energy ε(π/2) = −2K, and the states are

|↑⟩ = 1
2

4∑
j=1

e−ijπ/2Ŝ−j | ↑↑↑↑⟩ (4.87)

|0⟩ = 1
2

4∑
j=1

e−ijπ/2Ŝ+j Ŝ+j−1| ↓↓↓↓⟩ (4.88)

|↓⟩ = 1
2

4∑
j=1

e−ijπ/2Ŝ+j | ↓↓↓↓⟩ (4.89)

Since the single plaquette is SU(2) invariant, this triplet of states corresponds to the sector Sp = 1
where the total spin on the plaquette is Ŝp = Sp(Sp + 1).
The three states | ↑⟩p, |0⟩p, | ↓⟩p define a system of spin-1 operators Ĵp on every plaquette p ∈ P.
When |K′| ≪ K, and without loss of generality K > 0, they are protected by a gap Δ ≈ K from
further state andK′ only introduces couplingbetweenneighboringplaquettes ⟨p, q⟩. Makinguseof
SU(2) invariance, we calculated the resultingmatrix elements of the termK′∑

p∈P(e
iφP̂p+ e−iφP̂†

p)

analytically. This leads to the following effective Hamiltonian,

Ĥeff =
∑
⟨p,q⟩

(
ε0 + λ

[
cos(θ)

(
Ĵp · Ĵq

)
+ sin(θ)

(
Ĵp · Ĵq

)2]) (4.90)

where ε0 = −2K + 31
72K

′. The remaining two coupling constants are given by

λ cos(θ) =
K′

16
, λ sin(θ) =

K′

144
, (4.91)

i.e. λ = 0.0629K′ and θ = 0.035π. For these parameters, the effective Hamiltonian is very close
to a Heisenberg spin-1 chain. Because of the small second term∝ λ sin(θ) ≪ λ cos(θ), the model
interpolates between the exactly solvable AKLT model [238] and the simple Heisenberg spin-1
chain. Hence the ground state of the effective Hamiltonian (4.90) is gapped [239] and has spin-
1/2 edge states [236] reflecting the symmetry protected topological order [240, 241].
We checked numerically by exact diagonalization of numerically accessible system sizes that the
system remains gapped at φ = π/2 when the ratio K′/K is continuously tuned from 0 to 1. Since
the system remains inversion symmetric around the central bond of the ladder, and this symmetry
is sufficient to protect the topological character of the topological Haldane phase [241], this estab-
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lishes that the homogeneous ladder with K = K′ is in a non-trivial symmetry-protected phase at
φ = π/2. The SU(2) symmetry of the system is also sufficient to protect the topological Haldane
phase [241].
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Everything should be made as simple as possible, but not simpler.

Albert Einstein

5
OneHole in TwoDimensions

Attheheartofhigh-temperature superconductivity is the quest todescribe a single hole
in a twodimensional antiferromagnet. In theFermi-Hubbardmodel, strong local anti-ferromagnetic
correlations persist even at finite doping. Understanding the interplay of spin and charge degrees
of freedom is thus a relevant first step to study the phase diagram of the Fermi-Hubbard model in
the vicinity of half-filling. In the past decades, a tremendous amount of progress has been made
theoretically. However, a unifying yet simple description is still lacking. Moreover, numerical sim-
ulations are challenging in the most relevant regime of U ≫ t.
When a single dopant is introduced into a spin background, it can be considered as amobile impu-
rity which becomes dressed by magnetic fluctuations and forms a new quasi-particle: a magnetic
polaron. In the case of a hole doped into a Heisenberg anti-ferromagnet, as described by the t − J
model, this dressing leads to strongly renormalized quasi-particle properties [242–244].
Themagnetic polaron problem of a single hole moving in an AFMbackground is often considered
to be essentially solved. Various semi-analytical and numerical techniques have been applied, and
many of the key properties of magnetic polarons have been numerically established [207, 242–
258]. Nevertheless, there is no agreement on the correct physical interpretation of the obtained
results. Partly, this can be attributed to conflicting numerical findings, and disconnected theoreti-
cal interpretations of the different features.
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Previously, the following theoretical scenarios have been discussed:

(a) String picture: Early on, it has been proposed that strings of over-turned spins are attached to
mobile dopants in a Néel state [257, 259–265]. This predicts the scaling of the ground state
energyE0 ≃ −2

√
3t+ c0t1/3J2/3 of a single hole at t ≫ J, as discussed in section 5.1.1 below.

The string picture also predicts the existence of vibrationally excited states, whose energies
should scale as En = −2

√
3t+ cnt1/3J2/3 – in accordance with numerical observations [253,

254]. Recentultracold atomexperimentsmeasured spin-spin correlation functions [5, 266],
as discussed in chapter 6, and spin-charge correlations [267], see also section 5.3, which also
support the string picture.

(b) Parton picture: Based on phenomenological grounds and numerical evidence, Béran et al.
[268] proposed the parton picture, in which mobile dopants are described by fractional-
ized (heavy) spinons, carrying the spin quantum number, and (light) chargons, carrying its
charge. In a subsequent work [269], Laughlin drew an analogy with the 1D Fermi-Hubbard
model and suggested that the low-energy ARPES spectrum in cuprates can also be inter-
preted in terms of point-like spinons and chargons, possibly interacting through a weakly
attractive force. Scenarioswith spin-charge separation as envisionedbyAnderson [30], with
a quasi-particle weight Z = 0 and as found in 1D, can be ruled out numerically [254] at in-
finitesimal doping. In principle, the partons could be confined, or form a molecular bound
state in a deconfined fractionalized Fermi liquid [270, 271]). Here, we consider the case
where spinons and chargons form a bound state. In the parton picture, the dispersion rela-
tion of the one-hole ground state is determined by the spinon dispersion, whichmust have a
bandwidth Ws = O(J) dominated by spin-exchange. In order to make quantitative predic-
tions, detailed knowledge about the parton dispersions and their microscopic interactions
is required; this is typically beyond the scope of phenomenological descriptions.

(c) Polaron picture: The most widely used microscopic picture so far, has been the polaron sce-
nario [242–244, 246–250]. As the mobile dopant moves through the AFM, one assumes
that it interacts with collective magnon excitations. This picture should not be considered
to be separate from (a) and (b): For example, strong interactions with magnons can de-
scribe strings of over-turned spins attached to the dopant. The strong renormalization of
the bandwidth of the dopant fromO(t) to the observedO(J) is for example predicted in the
magnetic polaron picture, although without identifying a clear physical mechanism. This is
a general disadvantage of the polaron picture: when t > J the system is so strongly coupled
that all predictions require advanced numerics or uncontrolled approximations. While the
polaron picture per se is certainly correct, it is of little help in the identification of simpler
constituents of these polarons.
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Here, we establish a unifying physical picture, which is able to explain the rich phenomenology in
the ground state, as well as the spectrum and dynamics at strong couplings t ≫ J. We combine the
parton and string pictures ofmagnetic polarons, by arguing that the latter are composed of spinons
and chargons connected by universal (geometric) strings, as introduced below in section 5.1. Im-
portantly, we provide quantitative descriptions of both ingredients, including a microscopic trial
wavefunction [4, 272], see section 5.1.
We go beyond earlier phenomenological studies of partons and demonstrate that quantitative pre-
dictions of the spinon properties are possible. Our starting point is a parton theory of the undoped
Heisenberg AFM. Specifically, we focus on fermionic U(1) Dirac spinons: These have previously
lead to accurate variational predictions [273, 274] (building upon Anderson’s resonating valence
bondparadigm[30, 212]), and they have recently beenproposed toprovide a universal description
of a larger class of quantum AFMs [275]. For example, the shape of the magnetic polaron disper-
sion, with its minimum at the nodal point, is inherited from the optimized spinonmean-field state
of the Heisenberg AFM [4]. Similar observations were made in Refs. [276, 277], but without in-
cluding geometric strings.
Note that for many of the results in the subsequent sections and in chapter 6, we do not need any
insights about the spinon properties, but instead apply the frozen spin approximation (see below)
to snapshots of the un-doped parent state.
In this chapter, we describe various approaches we took to tackle the problem. We numerically
calculate the ground state of the t− Jmodel with a single hole usingDMRG, and investigate differ-
ent spin-charge correlations. We simulate the dynamics after the creation of a hole in the ground
state of the Heisenberg model using a matrix product operator based method. In both cases, the
numerical results can be understood in the framework of the geometric string theory. We start here
by explaining the geometric string theory (GST) and the frozen spin approximation (FSA), which
constitute a simple and illustrative picture to interprete our findings. Inspired by the geometric
string theory, we introduce an algorithm to search for string patterns in snapshots of the quantum
state. In the case of the t − Jz model, these string patterns can be retrieved almost exactly. We
present numerical as well as semi-analytical results for the ground state properties and the dynam-
ics after the creation of a hole in terms of hole position, spin and spin-charge correlation functions.
We discuss the spectral function, a common observable in conventional solid state experiments.

5.1 Geometric String Theory and Frozen Spin Approximation

This section is based on the publications

• FabianGrusdt,MartonKanasz-Nagy,AnnabelleBohrdt,Christie S.Chiu,Geoffrey Ji,Markus
Greiner, Daniel Greif, Eugene Demler: “Parton theory of magnetic polarons: Mesonic res-
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onances and signatures in dynamics” – Phys. Rev. X 8, 011046 (2018) [arXiv:1712.01874]

• Fabian Grusdt, Annabelle Bohrdt, and Eugene Demler:“Microscopic spinon-chargon the-
oryofmagneticpolarons in the t-Jmodel”–Phys. Rev. B99, 224422(2019) [arXiv:1901.01113]

• AnnabelleBohrdt, EugeneDemler, FrankPollmann,MichaelKnap, andFabianGrusdt:“Parton
theory of ARPES spectra in anti-ferromagneticMott insulators” – Phys. Rev. B 102, 035139
[arXiv:2001.05509]

Structure, text and figures have been rearranged and adapted here.

The geometric string theory is based on earlier work by Beran and others [257, 259–263, 268].
Most importantly, the geometric string theory establishes a connection between the undoped sys-
tem, here the antiferromagnetic parent state, and the strongly correlated quantum states at finite
doping. In this section we consider a single hole and its properties. In section 6, we apply the same
approach at finite doping and treat all holes independently of each other and achieve remarkable
agreement for all spin-based quantities considered. Without taking into account any correlations
between different holes, the geometric string theory allows us to predict the doping dependence
of observables like the staggeredmagnetization, spin correlations as well as the more involved pat-
terns dicussed below.
A single dopant introduced into a spin background can be considered as amobile impurity, or a po-
laron. The dressing cloud of the polaron is due tomagnetic fluctuations and the new quasi-particle
is therefore also called magnetic or spin polaron. Here, we mainly consider a hole doped into an
antiferromagnet, where the dressing by magnon fluctuations results in a strong renormalization
of the quasi-particle properties [197, 243]. Beran et al. [268] were the first to propose a parton
picture of the magnetic polaron, which describes the magnetic polaron as a composite similar to
mesons formed by quark-antiquark pairs in high-energy physics. In the case of a hole in an anti-
ferromagnet, the meson-like bound state is formed by a heavy spinon carrying the spin quantum
number and a light chargon carrying the charge. The partons are connected by so-called geometric
strings of displaced spins. The parton construction is a refinement of the commonly usedmagnetic
polaron picture, which is particularly useful to describe and understand the microscopic structure
of the magnetic polaron in real space. These real space properties can often be directly probed by
state-of-the art quantum gas microscope experiments.
Within the geometric string theory considered in this thesis, we use the frozen spin approxima-
tion (FSA): the motion of the hole merely displaces the spins on its trajectory without changing
their quantum states or their entanglement with each other or the remaining spins. As the char-
gon moves along a given trajectory starting from the spinon, a string of displaced spins is left be-
hind. This means that the spins along the strings change their positions in the lattice while remain-
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a) b)

Figure 5.1.1: Frozen spin approximation. In the approximate FSA basis we only allow pro-
cesses where the motion of the chargon displaces the surrounding spins without changing their
quantum states. As a result, nearest neighbor correlations Cey – red – (next-nearest neigh-
bor correlations Cex+ey – yellow – respectively) in the frozen spin background a) contribute to
next-nearest neighbor correlators (nearest neighbor correlators respectively) measured in states
with longer string lengths b).

ing in the same quantum state. The geometric string theory thus provides a generalization of the
squeezed space used in the description of one dimensional systems in chapter 4 to twodimensions:
the squeezed space labels of the spins correspond to their original lattice sites before the chargon
is introduced. The motion of the chargon along a string Σ then changes the lattice geometry and
thus the squeezed space labels no longer correspond to the actual lattice sites occupied by the spins.
The connectivity of the lattice is therefore changed by the chargon motion and spins which are
nearest neighbors in squeezed space can become next nearest neighbors in the actual lattice. Con-
sequently, nearest neighbor correlations in the frozen spin background contribute to next nearest
neighbor correlationsmeasured in the physical lattice and vice versa, see Fig. 5.1.1. For example, in
Fig. 5.1.1, the spin operator located at site j̃ initially, becomes S̃̃j = Ŝ̃j−ex when the chargon moves
from j̃− ex to j̃ along the string Σ. Due to the opposite sign and different magnitude of these spin
correlations, the next nearest neighbor correlators close to the dopant are strongly suppressed and
can even change their sign as discussed in sections 5.3 and 6.
Most theories for the t − J model start from the weak coupling regime, where the hole tunneling
t is small compared to the spin exchange coupling J. We consider the opposite limit: for t ≫ J,
but before the Nagaoka regime is reached at t ≈ 20J, there is not sufficient time for the spins in
squeezed space to adjust to the fluctuating lattice geometry introduced by the chargonmotion. The
frozen spin approximation can be understood as an analogon to the Born Oppenheimer approxi-
mation: we first obtain the background of the slow spin system and then solve the problem of the
fast chargon on top of this background, where we assume that the spin system cannot react to this
fast motion.
The shape and orientation of the geometric string are strongly fluctuating – the string is in a super-
position of many different possible configurations, the total number of which grows exponentially
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with the average length of the string. This can be seen in the Bethe lattice picture in Fig. 5.1.2:
with increasing depth in the Bethe lattice, the number of nodes at this depth increases. As a con-
sequence, after averaging over all different string configurations, the actual effect of the string on a
given spin in squeezed space is strongly reduced. This provides an additional justification for the
frozen spin approximation.

5.1.1 Formal description

Tomake the single-occupancy condition built into the t− J model explicit, we use a parton repre-
sentation, see also section 4.2.6,

ĉj,σ = ĥ†j f̂j,σ . (5.1)

Here ĥj is a bosonic chargon operator and f̂j,σ is a S = 1/2 fermionic spinon operator [28, 117].
The physical Hilbert space is defined by all states satisfying∑

σ

f̂ †j,σ f̂j,σ + ĥ†j ĥj = 1, ∀j. (5.2)

We start from the half-filling ground state |Ψ0⟩ of the undoped spin Hamiltonian ĤJ, Eq. (3.10),
and consider cases where |Ψ0⟩ has strong AFM correlations. The ground state of the Heisenberg
model Eq. (3.10) has long-range AFM order, but the presence of strong and short-ranged AFM
correlations would be sufficient to justify the approximations made below.
The simplest state doped with a single hole is obtained by applying ĉjs,σ to |Ψ0⟩, where · reverses
the spin: ↑ =↓, ↓ =↑. This state,

|js, σ, 0⟩ = ĉjs,σ|Ψ0⟩ = ĥ†jŝ fjs,σ|Ψ0⟩, (5.3)

with a spinon and a chargon occupying the same lattice site js, defines the starting point for our
analysis of the parton bound state constituting the magnetic polaron. In the following we assume
that t ≫ J, which justifies a Born-Oppenheimer ansatz: first the initially created valence spinon at
site js will be fixed andwe determine the fast chargon fluctuations. Similar to nuclear physics, these
fluctuations can involve virtual spinon anti-spinon pairs.
The main assumption in the geometric string theory is that we can approximate the Hilbert space
of a single hole in a spin system as a tensor product

H = Hspinon ⊗HΣ, (5.4)
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Figure 5.1.2: Bethe lattice description. The spins are labeled according to their initial lat-
tice sites. The motion of the hole then re-arranges the spins, leading to a different spin con-
figuration for different paths taken. We map the different strings to sites on the Bethe lattice.
The sites on the Bethe lattice correspond to different arrangements of the spins labeled by
their initial lattice sites.

whereHspinon is spanned by all one spinon states andHΣ is the Hilbert space of geometric strings.
Every string state can be represented by a site on theBethe latticewith coordination number z = 4,
Fig. 5.1.2. Crucially, even though the holemight end up on the same position, different paths taken
lead todifferent spin configurations and thusdifferent siteson theBethe lattice. Inparticular, within
the frozen spin approximation, the spins keep their quantumstate and their entanglementwith each
other, but are displaced along the trajectory. Therefore,HΣ is equivalent to a free particle hopping
on a Bethe lattice. A state |js, σ⟩|Σ⟩ in the approximate Hilbertspace is – up to normalization –
associated with a state in the Hilbertspace of the t − J model as

|js, σ, Σ⟩ ∼ |Ψ(Σ, js, σ)⟩ = ĜΣĥ†jŝ fjs,σ|Ψ0⟩. (5.5)

Here the string operator, defined by

ĜΣ =
∏

⟨i,j⟩∈Σ

(
ĥ†i ĥj

∑
τ=↑,↓

f̂ †j,τ̂ fi,τ
)
, (5.6)

creates the geometric string by displacing the spin states along Σ. The product
∏

⟨i,j⟩∈Σ is taken
over all links ⟨i, j⟩which are part of the string Σ, starting from the valence spinon position js.
In a 2DclassicalNéel state, |ΨN

0 ⟩ = |... ↑↓↑ ...⟩, most string states |js, σ, Σ⟩ aremutually orthonor-
mal. Specific configurations, so-called Trugman loops [261], constitute an exception, but within
an effective tight-binding theory it has been shown that this only causes a weak renormalization of
the spinon dispersion [3]. Since the ground state |Ψ0⟩ of the infinite 2D Heisenberg model has
strong AFM correlations, similar to a classical Néel state, we expect that the assumption that string
states form an orthonormal basis remains justified. To check this, we calculated all such states with
string lengths up to ℓ ≤ 4 and arbitrary spinon positions js using exact diagonalization (ED) in a
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4× 4 system. We found that |⟨js′, σ, Σ′|js, σ, Σ⟩|2 < 0.06 unless Σ = Σ′ or Σ and Σ′ are related by
a Trugman loop.
Nowwe will follow the example of Rokhsar and Kivelson: They introduced their celebrated dimer
model [278] by defining a new basis which reflects the structure of the low-energy many-body
Hilbert space in a class of microscopic spin systems. Similarly, we will postulate in the context of
the FSA that all string states are mutually orthonormal. This defines the new basis of string states
|js, σ, Σ⟩ which is at the heart of the FSA. Note, however, that we will return to the full physical
Hilbert space of the original t − J model later.
In order to construct the Hamiltonian in the approximate Hilbert space, we need to calculate the
matrix elements

⟨ψ (Σ2, js2, σ2) |Ĥt−J|ψ (Σ1, js1, σ1)⟩. (5.7)

This leads to a direct hopping with amplitude t between neighboring sites of the Bethe lattice,

ĤΣ = −t
∑
⟨Σ1,Σ2⟩

(|Σ2⟩⟨Σ1|+ h.c.) , (5.8)

a potential energy term
Ĥpot =

∑
Σ

VJ (Σ) |Σ⟩⟨Σ| (5.9)

with
VJ (Σ) = ⟨ψ (Σ, js2, σ) |ĤJ|ψ (Σ, js2, σ)⟩, (5.10)

and a tight-binding Hamiltonian

Ĥsp =
∑

σ

∑
i,j

Ji,j
(̂
s†j,σ ŝi,σ + h.c.

)
=
∑

σ

∑
k

ωsp(k)̂s†k,σ ŝk,σ . (5.11)

In the approximation considered in this thesis, other matrix elements are neglected. The effective
Hamiltonian in the approximate Hilbert space is thus

Ĥeff = ĤΣ + Ĥpot + Ĥsp. (5.12)

98



Linear string theory

In the linear string theory,weapproximate thepotential energyVpot (Σ)by its expression for straight
strings

Vpot (Σ) ≈
dE
dl

lΣ + g0δlΣ,0 + μh, (5.13)

with the linear string tension
dE
dl

= 2J
(
Cex+ey − Cex

)
, (5.14)

where
Cd = ⟨ψ0|Ŝd · Ŝ0|ψ0⟩ (5.15)

are spin-spin correlation functions in the undoped ground state. The second term in Eq. 5.13
contributes only for string lengths lΣ = 0 and describes a weak spinon-chargon attraction g0 =

−J(C2ex −Cex). The last term is an overall energy offset, μh = J(1+C2ex − 5Cex). Here, we assume
fourfold rotational symmetry of |ψ0⟩, which implies that Cex = Cey .
We can then obtain the ground or thermal state of the system by solving the hopping problem on
the Bethe lattice in the presence of the linear string potential 5.13. As in Refs. [3, 259, 260, 262],
we obtain approximations to the spinon-chargon binding energy EFSA

sc and the bound state wave-
function,

|ψFSA
sc (js, σ)⟩ =

∑
Σ

ψFSA
Σ |js, σ, Σ⟩. (5.16)

The depth in the Bethe lattice corresponds to the string length. Later we will use the probabilities
for different depths in the Bethe lattice for example in the ground state to obtain a string length
distribution. When we compare the string theory to numerical or experimental data, we simulate
strings by sampling string lengths from this distribution.

Mappingtoonedimension TheSchrödinger equation for theholonmovingbetween the sites
of the Bethe lattice can be written in compact form as

t
∑

s

ψℓ+1,s + tψℓ−1 + Vℓψℓ = Eψℓ. (5.17)

Here the linear string potential is given byVℓ = Vpot (Σ), withVpot (Σ) fromEq. 5.13 and ℓ = lΣ. In
general thewave function ψ(Σ) depends on the indexΣ ∈ BL corresponding to a site on the Bethe
lattice, or equivalently a string Σ. A useful parameterization of Σ ∈ BL is provided by specifying
the length ℓ of the string as well as ℓ angular coordinates s = s1, ..., sℓ with values s1 = 1...z and
sj = 1...z− 1 for j > 1. This formalism is used in Eq. (5.17). In Eq. (5.17) only the dependence on
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s = sℓ is shown explicitly. Because we started from the LST, the potential Vℓ is independent of s.
The normalization condition is given by∑

Σ∈BL

|ψ(Σ)|2 =
∑
ℓ,s

|ψℓ,s|
2 = 1 (5.18)

where the sum includes all sites of the Bethe lattice.
The simplest symmetric wave functions ψ(Σ) only depend on ℓ and are independent of s. We here
only consider this case, which realizes the rotational ground state of the magnetic polaron. It is
useful to re-parametrize the wave function ψℓ by writing

ψℓ,s =
(−1)ℓ

2
(z − 1)(1−ℓ)/2︸ ︷︷ ︸

=λℓ

φℓ, ℓ ≥ 1, (5.19)

ψ0 = φ0. (5.20)

The normalization for the new wave function φℓ is given by the usual condition,
∑∞

ℓ=0 |φℓ|2 = 1,
corresponding to a single particle in a semi-infinite one-dimensional system with lattice sites la-
beled by ℓ.
The Schrödinger equation (5.17) for the 1D holon wave function φℓ becomes [259],

−t∗
2√
z − 1

φ1 + V0φ0 = Eφ0, (5.21)

−t∗
(

φ2 +
2√
z − 1

φ0

)
+ V1φ1 = Eφ1, (5.22)

−t∗
(
φℓ+1 + φℓ−1

)
+ Vℓφℓ = Eφℓ, ℓ ≥ 2. (5.23)

Away from the origin ℓ = 0, the effective hopping constant t∗ in the 1D model is given by [259,
260]

t∗ = t
√

z − 1. (5.24)

The tunneling rate between ℓ = 0 and 1, on the other hand, is given by 2t∗/
√

z − 1 = 2t.
We consider the continuum limit of the effective 1Dmodel where φℓ → φ(x) and x ≥ 0 becomes
a continuous variable, see Ref. [259]. This is a valid description in the strong coupling limit, where
t ≫ J. For simplicity we will ignore deviations of Vℓ from the purely linear form at ℓ = 0, as well
as the renormalization of the tunneling t∗ → 2t from site ℓ = 0 to 1. As a result one obtains the
Schrödinger equation [259] (

− ∂2
x

2m∗ + V(x)
)

φ(x) = Eφ(x), (5.25)

100



where the effective mass is m∗ = 1/2t∗, and the confining potential is given by V(x) = −2t∗ +
4JS2x.
By simultaneous rescaling of lengths, x → λ1/3x, and the potential J → λJ, one can show that the
eigen-energies E in the continuum limit are given by [243, 259, 262]

En(t/J) = −2t
√

z − 1+ tan(t/J)−2/3, (5.26)

for some numerical coefficients an.
The scaling of the magnetic polaron energy like t1/3J2/3 is considered a key indicator for the string
picture. It has been confirmed in different numerical works for a wide range of couplings [207,
246, 248, 254, 279], both in the t − J and the t − Jz models. In section 5.3, we show that the
average string pattern length scales with (t/J)1/3, as expected from these considerations. Diagram-
maticMonte Carlo calculations byMishchenko et al. [254] have moreover confirmed for the t− J
model that the energy−2

√
3t is asymptotically approached when J → 0. However, for extremely

small J/t on the order of 0.03 it is expected [255] that the ground state forms a ferromagnetic po-
laron [110] with ferromagnetic correlations developing inside a finite disc around the hole. In this
regime Eq. (5.26) is no longer valid.
Using ultracold atoms in a quantum gasmicroscope the universal scaling of the polaron energy can
be directly probed, e.g. in the t− Jz model, when Jz/t is varied and for temperaturesT < Jz. To this
end the spin part of the Hamiltonian ⟨ĤJz⟩ can be directly measured by imaging the spins around
the hole. Note that ⟨ĤJz⟩ has the same universal scaling with t1/3J2/3z as the ground state energy at
strong couplings.
The excited states of the effective 1D Schrödinger equation (5.25) correspond to vibrational reso-
nances of themeson formed by the spinon-holon pair, labeled by the vibrational quantum number
n. In a semi-classical picture, they can be understood as states where the string length is oscillating
in time. In section 5.4, we find evidence for these vibrational excitations in the spectral function.
Within LST the entire spectrumof themagnetic polaron can easily be derived bymaking use of the
symmetries of the holon Hamiltonian on the Bethe lattice. Around the central site, where ℓ = 0,
we obtain aC4 symmetry. TheC4-rotation operator has eigenvalues eiπm4/2 withm4 = 0, 1, 2, 3 and
the eigenfunctions depend on the first angular variable s1 in the following way: eiπm4s1/2. So far we
assumed that the wave function ψℓ only depends on the length of the string ℓ, which corresponds
to an eigenvalue of C4 which is m4 = 0.
In addition, every node of the Bethe lattice at ℓ > 0 is associated with a P3 permutation symme-
try. The P3-permutation operator has eigenvalues ei2πm3/3 with m3 = 0, 1, 2 and the eigenfunctions
depend on the j-th angular variable sj, j > 1, in the following way: ei2πm3sj/3. The symmetric wave
function ψℓ discussed so far had m3 = 0 for all nodes.
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In section 5.2.2, we compare the string length distributions in the ground state and the first excited
rotational state and retrieve the corresponding string patterns from snapshots.

Non-linear string theory

Instead of the approximation for the potential energy presented above, we can also obtain the exact
value ofVpot (Σ) for eachΣ. In this case, we start from theHeisenberg ground or thermal state. For
the numerical results on a cylinder presented below, we use the Heisenberg ground state for the
same system size and boundary conditions. From this parent state, we calculate the spin correla-
tion functions for all possible distances. Every possible string corresponds to a new configuration
of the spins, which are labeled by their intitial position, see Fig. 5.1.2. For each string, we can ob-
tain the corresponding potential energy Vpot (Σ) by calculating the difference between the initial
and final values of

〈
Si · Sj

〉
on neighboring sites i, j. For the latter, we possibly need correlation

functions at arbitrary distances, which we calculated before.
While this approach is in principle slightly more exact than the approximation made in the linear
string theory, we are here limited to string lengths of l ≤ 11. Even though we only have to consider
a single particle moving in a potential, the number of sites in the Bethe lattice and thus the dimen-
sion of the Hilbert space grow as 4 · 3l−1.

Fermionic spinon representation

We consider the 2D Heisenberg Hamiltonian ĤJ in Eq. (3.10) at half filling. Its ground state
spontaneously breaks the SU(2) spin symmetry and has long-range Néel order [280]. The corre-
sponding low-energy excitations – spin-1magnons constituting the requiredGoldstonemode– are
most commonly described by a bosonic representation of spins, using e.g. Schwinger- orHolstein-
Primakoff bosons. Recently it has been argued that the high-energy excitations of theAFMground
state can be captured more accurately by a fermionic spinon representation [274] however.
The fermionic spinon representation which we use in Eq. (5.1) is partly motivated by analogy with
the 1D t − J model, where spinons can be understood as forming a weakly interacting Fermi sea
[2, 212, 213], see section 4.2. On the other hand,Marston andAffleck [281] have shown in 2D that
the ground state of the Heisenberg model in the large-N limit corresponds to the fermionic π-flux,
or d-wave [212], state of spinons. For our case of interest, N = 2, the π-flux state is not exact, but
it can be used as a starting point for constructing more accurate variational wavefunctions. To this
endwe consider a general class of fermionic spinonmean-field states |ΨMF(Bst,Φ)⟩, defined as the
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ground state at half filling of the following Hamiltonian,

Ĥf,MF = −Jeff
∑
⟨i,j⟩,σ

(
eiθ

Φ
i,j f̂ †j,σ f̂i,σ + h.c.

)
+

Bst

2

∑
j,σ

(−1)jx+jy f̂ †j,σ(−1)σ f̂j,σ , (5.27)

with Peierls phases θΦi,j = (−1)jx+jy+ix+iyΦ/4 corresponding to a staggered magnetic flux±Φ per
plaquette and a staggered Zeeman splitting∼ Bst which can be used to explicitly break the SU(2)
symmetry.
A trial wavefunction for the SU(2) symmetric π-flux state is obtained by applying the Gutzwiller
projection [30, 212] to themean-field statewithΦ = π andBst = 0, i.e. |Ψπ⟩ = P̂GW|ΨMF(0, π)⟩.
Although it features no long-range AFMorder, this trial state leads to a very low variational energy
at half filling and it is also often considered as a candidate state at finite doping [282]. In chapter
6, we sample snapshots from the Gutzwiller-projected thermal density matrix of the mean-field
Hamiltonian (5.27) with these parameters and refer to it as π-flux state. Another extreme is the
Φ = 0 uniform RVB state with Bst = 0, i.e. |Ψ0⟩ = P̂GW|ΨMF(0, 0)⟩, which also yields a reason-
able variational energy at half filling.
The best variational wavefunction of the general type P̂GW|ΨMF(Bst,Φ)⟩ has been found to have a
non-zero staggered field Bst ̸= 0, consistent with the broken SU(2) symmetry of the true ground
state, and staggered flux 0 < Φ < π [273]. More recent calculations determined the optimal
variational parameters of this “staggered-flux + Néel” (SF+N) trial state

|ΨSF+N⟩ = P̂GW|ΨMF(B
opt
st ,Φopt)⟩ (5.28)

to beΦopt ≈ 0.4π and Bopt
st /Jeff ≈ 0.44 [274]. The corresponding variational energy per particle

ESF+N
0 /L2 = −0.664J is very close to the true ground state energy E0/L2 = −0.669J known from

first-principle Monte-Carlo simulations [283].
Themain shortcoming ofmean-field spinon theories as in Eq. (5.27) is that they neglect gauge fluc-
tuations. These lead to spinon confinement in the ground state of the 2D Heisenberg model [28]
and, hence, free spinon excitations as described by Eq. (5.27) cannot exist individually. Indeed,
if the Gutzwiller projection method is used to define a variational wavefunction, the underlying
mean-field spinon dispersion is usually not considered to have a concrete physical meaning. We
emphasize, however, that a single spinon can exist in combination with a chargon if they form a
meson. In this case, which is of primary interest to us, we argue that the spinon dispersion (5.29)
has a concrete physical meaning.
The main difference between spinon models with different values of the staggered fluxΦ is their
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a) b) c)Bst = ∞ Bst = 0, Φ = 0 Bst = 0, Φ = 0.4π ωs(k)

Figure 5.1.3: Mean-field spinon dispersion. ωs(k) from Eq. (5.29) is shown in the following
limiting cases: a) Bst/Jeff → ∞, b) Bst = Φ = 0, c) Bst = 0 and Φ = 0.4π. The color bar is
indicated on the right.

dispersion relation. From theHamiltonian Eq. (5.27) we obtain themean-field spinon dispersion

ωs(k) = −
√

4J2eff
∣∣∣cos(kx)e−iΦ4 + cos(ky)ei

Φ
4

∣∣∣2 + B2
st

4
. (5.29)

For Bst = 0 and Φ ̸= 0 it has Dirac points at the nodal point k = (π/2, π/2). A finite stag-
gered magnetic field Bst opens a gap everywhere. In this case the dispersion has a minimum at
k = (π/2, π/2), unlessΦ = 0 when the dispersion is degenerate along the edge of the magnetic
zone boundary. The energy difference between the anti-nodal point (0, π) and the nodal point
(π/2, π/2) is zero forΦ = 0, see Fig. 5.1.3, and maximal whenΦ = π.
For the optimal variational parametersΦopt andBopt

st , the shape of themean-field spinon dispersion
relation (5.29) closely resembles the known dispersion of a single hole moving inside an AFM: It
is weakly dispersive on the edge of the MBZ, has its minimum at (π/2, π/2) and a pronounced
maximum at (0, 0).This is consistent with our conjecture from the spinon-chargon theory that the
magnetic polaron dispersion is dominated by the spinon at strong couplings, t ≫ J.

Trial wavefunction

We propose a trial wave function for the magnetic polaron formed by a single hole, which goes
beyond Anderson’s RVB paradigm by explicitly including short-range hidden string order. As in
the RVB approach, we use Gutzwiller projected mean-field states of spinons as key ingredients
in our trial wave function. By adding geometric strings we include short-range hidden order and
take Anderson’s ansatz in a new direction. Our method is not based on spin-charge separation
but instead describes meson-like bound states of spinons and chargons. To obtain a complete de-
scription of the meson-like bound state constituting a hole in an AFM, we combine geometric

104



strings with the fermionic spinon representation. Starting fromEq. (5.5) with |Ψ0⟩ = |ΨSF+N
MF ⟩ ≡

|ΨMF(B
opt
st ,Φopt)⟩we construct a translationally invariant trial wavefunction,

|Ψsc(k)⟩ =
∑
js

(u(j
s)

k,σ,−)
∗eik·js

L/
√
2

×
∑
Σ

ψΣ ĜΣ P̂GW f̂js,σ|ΨSF+N
MF ⟩. (5.30)

Here k denotes the total lattice momentum of the spinon-chargon magnetic polaron state, and L
denotes the linear system size. We dropped ĥ†j because the state of the single chargon is fully de-
termined by the Gutzwiller projection; u(j

s)
k,σ,− denotes the cell-periodic part of a Bloch wavefunc-

tion. This ansatz is based on amean-fieldmodel of theHeisenberg AFMwith fermionicU(1)Dirac
spinons f̂js,σ , which has attracted renewed interest recently [275]. The mean-field state

|ΨSF+N
MF ⟩ =

∏
k∈MBZ

∏
σ

f̂ †k,σ,−|0⟩ (5.31)

is a fermionic band insulator [212], where f̂ †k,σ,μ creates a spinon with band index μ = ±.
In general, the values of the string wavefunction ψΣ ∈ C can be treated as variational parame-
ters in Eq. (5.30), but in practice we use the result obtained explicitly from the FSA calculation in
Eq. (5.16): I.e. we set ψΣ in Eq. (5.30) equal to ψFSA

Σ determined in Eq. (5.16). The undoped par-
ent state |ΨSF+N

MF ⟩ in Eq. (5.30) can be replaced by any fermionic spinon mean-field wavefunction
|Ψf

MF⟩. In particular, this allows to use Eq. (5.30) to describe spinon-chargon bound states even in
phases with deconfined spinon excitations.
We recapitulate the physics of Eq. (5.30): First, the valence spinon is created in themean-field state.
At strong couplings it carries the total momentum kMP of the meson-like bound state, f̂kMP,σ =

L−1∑
j e

ikMP·ĵfj,σ . The Gutzwiller projection subsequently yields a state in the physical Hilbert
space,

P̂GW f̂kMP,σ|ΨSF+N
MF ⟩ =

∑
js

∑
α

Φ(js, α)ĥ†jŝ fjs,σ|α⟩ (5.32)

where
∑

α denotes a sumover all half-filledFock states |α⟩. In this new state the spinon andchargon
positions js coincide. In the last step we apply the string operators ĜΣ to this state and create a
superposition of fluctuating geometric strings in Eq. (5.30), which captures the internal structure
of the meson-like bound state. The k-dependent physical properties of the trial wavefunction can
be calculated using variational Monte Carlo sampling [4, 113].
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5.2 Searching for patterns - the analysis of single snapshots

One of the most fascinating properties of quantum systems is their ability to be in a superposition
state. In particular, in a quantum gas microscope, if one repeats the exact same preparation pro-
cedure and then takes a measurement, the outcome will most likely be different from realization
to realization. The reason is that a quantum gas microscope measures Fock space snapshots, and
each Fock space configuration is obtained with a probability given by the square of the absolute
value of its amplitude in the wavefunction or density matrix. Intriguingly, in correlated quantum
systems, the superposition principle can lead to hidden order: while in every single configuration,
a single pattern is present, the specific patterns vary from configuration to configuration and upon
averaging, the system simply appears to be less ordered.
When evaluating conventional observables, like the density or two-point correlation functions,
one typically averages over many snapshots. However, assuming that the underlying patterns ap-
pear in Fock space, the projective measurements performed in quantum gas microscopes can not
only restore the hidden order, but also reveal those patterns. In particular, the data provided by a
quantum gasmicroscope containsmuchmore information than just one- or two-point correlation
functions and our goal is to make use of this information to learn something about the underlying
physics. In the one dimensional case considered in section 4.3, the spin order is hidden by the hole
motion. Individual snapshots show antiferromagnetic orderingwith the hole at different positions.
Averaging over many snapshots yields strongly suppressed two-point spin correlations. We were
able to restore the antiferromagnetic order by evaluating the spin correlations in squeezed space,
thus taking into account the hole position in each individual snapshot. Similar work has been done
in equilibrium in Ref. [75], where the difference between real and squeezed space correlations is
studied.
In the remainder of this chapter we aim to reveal underlying patterns in single snapshots of the two
dimensional t−J andFermi-Hubbardmodel. In particular, we search for string patterns as evidence
for the geometric string theory presented in section 5.1. As discussed in detail in section 5.1, the
system is usually in a superposition of many different string lengths, positions and configurations.
Introducing a hole in an antiferromagnet therefore leads on average to a reduction of the spin or-
dering. However, in individual snapshots, we can search for patterns of a string attached to the hole.

5.2.1 String pattern finding algorithms

In the following, we will outline three different algorithms to find string patterns in snapshots.
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Figure 5.2.1: Different string pattern finding algorithms illustrated for a single straight
string in the t − Jz model. a) Exemplary snapshot, showing the spin pattern with spin ups
(white), spin downs (black) and hole (gray). b) Red area method: the perfect Néel state with
the same sublattice magnetization is subtracted, revealing the string as the difference, here
shown in red. The gray site is the position of the hole. c) Happiness method: for each site,
the happiness is the number of antiferromagnetic bonds. Starting from the hole, we identify
the hole by following a certain happiness pattern as described in the main text.

Red area method

The algorithm used in most of this work is the red area method. The procedure is in principle mo-
tivated by the t − Jz model, but can be applied to the isotropic t − J model as well. In the latter
case, there will be a background signal. In this algorithm, we consider the difference between the
snapshot under consideration and the perfect Néel state with the same sublattice magnetization.
This yields a set of sites which differ between the two images. We call these sites red sites and a con-
nected set of such sites red area. A string pattern is extracted by finding the longest non-branching
path within the red area connected to the hole.
In the experimental data analyzed in chapter 6, the positions of the holes are not known. We can
therefore not straightforwardly follow this algorithm. Instead, we go through all red areas and for
each of them, extract the longest non-branching path contained. The set of sites is counted as a
string pattern if one end of the non-branching path is consistent with having a hole there, i.e. if the
site is detected as empty. Once such a string pattern is identified and added to the list of found
strings, we correct the corresponding deviation from theNéel state. This removes the sites belong-
ing to the string pattern from the corresponding red area. If the red area had branches, red sites will
remain after this removal. We continue with this algorithm until no red sites remain. The details
and results of this method are discussed in section 6.4 and A.4.
In the simplified version of the red area method, we consider the number of sites in the red area
connected to the hole, and do not restrict the string patterns to non-branching objects. The results
from this method are compared to the original red area method and the happiness method in sec-
tion A.4.
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Happiness method

Adifferent approach tofind stringpatterns is basedon analyzing the four bondsof each site. Nearby
order is characterized by labeling each site with the number of anti-aligned bonds it has with its
nearest neighbors, termed the happiness of that site. For example, sites in a classical AFM would
all be labelled with happiness 4, while a ferromagnet would have sites with happiness 0. As a hole
moves through anAFM, sites which previously had happiness 4will exhibit reduced happiness, see
Fig. 5.2.1 c). Depending on the length of the string, sites within a string can be characterized by
specific happiness patterns. Based on this, the algorithm begins by storing all sites which could be
the beginning of a string. For each candidate string beginning, it checks if there is a neighboring site
which could be the next site in the string, given the happiness and spin occupation of that site. This
process continues until the string cannot be propagated any further, at which point the algorithm
searches for a neighboring site which could be the end of the string.
For a hole in the t − Jz model, the following reasoning holds: Since the AFM spin order is main-
tained along a string without loops, the bonds within the string that do not include the holon posi-
tion are anti-aligned. Since spins on the string are displaced with respect to the surrounding AFM,
the bond between site i and j is aligned if site i is occupied by a spin and belongs to the string and
site j is not part of the string. Therefore, the happiness θi on sites i belonging to the string corre-
sponds to the number of neighboring spins that are also part of the string. For sites j outside of
the string, θj = 4− Ns

i , where Ns
i is the number of neighboring sites that belong to the string. By

analyzing the happiness according to these rules, we can start from the holon position and recon-
struct the attached string. Sites at the boundary have only two or three instead of four neighbors.
We can therefore not obtain a reliable value for their happiness. Strings which contain sites at the
boundary are thus potentially not identified correctly.
This algorithm has been used in Ref. [3] and as a comparison to the red areamethod in section 6.4.

Neural network method

A neural network can be used to trace back string patterns in snapshots. One approach is to inter-
pret the process of tracing back the string pattern as a ‘time’ trace, where in each ‘time step’ a hole
can be placed, moved, or deactivated. For each original snapshot, this leads to a series of snapshots,
each of which with a label indicating the required action. We use this series of snapshots then as
input for a recurrent neural network, which is a specific type of network taylored for time series
[284]. In particular, we use a TensorFlow [285] implementation of a recurrent neural network
with an LSTM (long short-term memory) cell [286, 287] and train it to retrace strings. In order
to avoid ambiguities during the training process, we always start from the hole which is furthest
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Figure 5.2.2: String pattern finding with a recurrent neural network. A recurrent neu-
ral network is used to trace back string patterns in a perfect Néel state in a 6 × 6 system.
a) Training and test accuracy during the training of the neural network. The test accuracy
is obtained from a separate data set not used during training. Values of more than 90% are
obtained. b) Sampled and retrieved string length distribution.

left and up in the image when we create the labels and snapshot series. Additionally, if the situa-
tion is ambigous, we always choose the string to be longer and, if necessary, switch the direction,
such that the hole starts further left and/or up. Avoiding any kind of ambiguity in the labeling and
correspondingly in the snapshot series generated is important to enable an efficient training of the
neural network.
For a system of size Lx × Ly, there are Lx × Ly + 5 possible labels: the first Lx × Ly labels corre-
spond to the position where a new hole should be initiated. Note that we assume here that we do
not know where the holes are, but instead only have knowledge of the position of one spin species
as in the experimental data used in chapter 6. To be consistent, the hole can only be placed on an
empty site. If a hole is currently active, the label of a new hole position indicates that the old hole
is deactivated, and the new hole is initiated at the given position. The next four labels provide the
direction of the next move of the currently active hole, namely up, down, left, or right. The last
label finishes up the current series of snapshots.
After training, we provide the network with one snapshot at a time. Initially, for each snapshot, the
remainder of the series, apart from the first actual snapshot, is filled upwith dummy snapshots, e.g.
a perfectNéel state. Once this series is used as an input, the network provides a label, which tells us
what to do next. Once this action is performed, the new snapshot replaces the first dummy snap-
shot and the updated snapshot series is used as input. This procedure is repeated until a maximum
number of steps is reached, or the network outputs the ‘finish’-label.
In Fig. 5.2.2 a) the resulting accuracy is shown. Here, we train the network to find a single string in a
perfectNéel state in a 6×6 system. Arbitrary perturbations to theNéel state, as discussed in section
5.2.2, are in principle possible here, too. Note that as opposed to e.g. Fig. 5.2.3, the hole position is
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Figure 5.2.3: Finding string patterns in the Néel state. We sample 1000 string lengths
according to the string length distribution of a) the ground state and b) the first rotational
excitation of the t − Jz model with t/Jz = 10. A hole is placed into a perfect Néel state and
moved in random directions without self-retracing for a number of bonds given by the sam-
pled string length. The resulting snapshots are analyzed for string patterns with the happi-
ness method. Differences between sampled and measured distributions are due to loops and
boundary effects. Loops lead to strings being detected as shorter string patterns.

not known here, such that the network has to find the correct position first. In Fig. 5.2.2 b), the ob-
tained length distribution is compared to the sampled distribution. Themain error occurs because
the network does not finish a string correctly, but instead oscillates between two configurations,
leading to a high count in the longest possible string length.

5.2.2 Finding string patterns in the Néel state and beyond

The algorithms introduced in section 5.2.1 are all motivated by the picture of a Néel state. In this
case, the path a single hole has taken can be found with a very high fidelity. The only strings that
cannot be retraced exactly are those containing loops and, if working with the happiness method,
strings that touch on the boundary. Note that in both cases, the found string patternwill be shorter
than the actual string. The most common cases of loops reduce a string of length l = 4 to a string
pattern of length l = 0 (bonds) and l = 6 to l = 2.
In Fig. 5.2.3 the sampled and measured string length distribution is shown for strings introduced
by hand into a Néel state. Here, we use a lattice with 100× 100 sites to avoid boundary effects. The
discrepancy between sampled and measured distribution is therefore mostly due to loops. In the
histogram, more strings are found than sampled for lengths l ≤ 3. These additional short string
patterns are due to loops formed by longer strings. Accordingly, there are less strings with length
l ≥ 4measured than sampled. Note that only strings of length l = 4 and longer can form loops.
Fig. 5.2.3 a) and b) compare the result for the ground state string length distributionwith the string
length distribution of the first rotational excitation of the string. In the latter case, there are no
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strings of length zero and the distribution is shifted to longer string lengths. As a result, there are on
average more loops for the first rotational excitation distribution and the measured string length
distribution is in this case less accurate compared to the ground state. We do not take into ac-
count the probabilities of different string configurations here, i.e. for a string of length l = 4, all
4 · 33 = 108 string configurations are equally likely to be put into the Néel pattern by hand, even
though the non-linear geometric string theory would predict slightly different weights for different
configurations.

Perturbations to the Néel state

In the numerical and experimental results in the remainder of this chapter and chapter 6, we con-
sider the t − J and the Fermi-Hubbard model in the ground state, at finite temperature and out
of equilibrium. As compared to the Néel state snapshots analyzed above, there are several pertur-
bations that complicate the search for string patterns. The most relevant of these perturbations
are

1. the exchange of the two spins on a bond, as this corresponds to the Si ·Sj term in theHamil-
tonian.

2. the direction of the Néel order parameter is not necessarily aligned with the measurement
axis. Measuring in the wrong basis leads to seamingly random spin flips in the snapshots. In
chapter 6, we post-select on a high staggeredmagnetization to preferably analyze snapshots
in which the Néel order parameter is algined with the measurement axis.

3. doublon-hole pairs in theFermi-Hubbardmodel: if the two spins on abond are anti-aligned,
they can form a virtual doublon-hole pair, which appears as two empty sites in the snapshots
taken in the experiment in chapter 6.

We can mimick these perturbations on top of the Néel state. In particular, we can go through all
bonds and exchange the two neighboring spins with a given probability pex. The direction of the
Néel order can be taken into account to some extent by flipping each spin with a probability given
by the tilt angle θ. Finally, a doublon-hole pair is created on a bond with a probability pdh if the two
spins are anti-aligned.
In Fig. 5.2.4, we study the different perturbations separately as well as combined. In particular,we
consider a tilt of θ = 0.1, 0.3π without other disturbances, Fig. 5.2.4 a) and b). The latter tilt angle
leads to significant deviations in the measured string length distribution. This indicates that such
a strong misalignment between the ordering and measurement axis hinders a faithful retrieval of
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Figure 5.2.4: Finding string patterns in a perturbed Néel state. The Néel order param-
eter is tilted by an angle θ with respect to the measurement axis. On each bond, spin ex-
changes are introduced with a probability given by pex. We sample string lengths according to
the string length distribution of the ground state of the t − Jz model with t/Jz = 10. A hole
is placed into a snapshot after tilting and adding spin exchanges. The hole is then moved in
random directions without retracing its own path for a number of bonds given by the sampled
string length. Finally, doublon-hole pairs are introduced on bonds with anti-aligned spins with
a probability given by pdh. Doublon-hole pairs are here simulated as spin downs, resembling
the experimental measurements in chapter 6. The resulting snapshots are analyzed for string
patterns with the happiness method. We consider 500 snapshots for each set of parameters.
The system size is 100× 100 to avoid boundary effects of the happiness method.
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Figure 5.2.5: Finding string patterns in Heisenberg snapshots. a) A string of length four
is simulated in Heisenberg quantum Monte Carlo (qMC) snapshots at temperature T/J = 0.2
and T/J = 0.5. If the hole positions are known, exactly one string is found per snapshot. The
length distribution of the found string patterns is peaked at l = 4, but has a finite width and a
very broad tail for long string lengths. b) The full counting statistics of the absolute value of
the staggered magnetization for the Heisenberg data with and without a string of length l = 4
at temperature T/J = 0.5. c), d) The measured string length distribution for T/J = 0.2, 0.5
without knowledge of the hole position.

the string patterns. In Fig. 5.2.4c) and d) the case without a tilt and doublon-hole pairs, but with
a probability of pex = 0.2, 0.5 for an exchange process on each bond is studied. While the general
form of the distribution is captured roughly in both cases, the snapshots with pex = 0.05 lead again
to strong deviations in the retrieved string length distribution. Adding doublon hole pairs with a
probability of pdh = 0.08 (corresponding to U/t = 7) without any other perturbations does not
significantly alter the retrieved string length distribution, Fig. 5.2.4e). The main effect is a strongly
enhanced signal for l = 0 strings, which is most likely due to the fact that the perturbation caused
by the doublon hole pair cuts the string off. The combination of all three perturbations leads to a
modified measured string length distribution, which however still closely resembles the sampled
distribution as long as the perturbations are not too strong, Fig. 5.2.4f).
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5.2.3 Retrieving string patterns in Heisenberg quantum Monte Carlo snapshots

Most of the perturbations to aNéel state discussed in section 5.2.2 appear in theHeisenbergmodel.
Here,weanalyze snapshotsobtained fromquantumMonteCarlo (qMC) for theHeisenbergmodel
at finite temperatures T/J = 0.2 and 0.5 [288]. The snapshots are obtained for a system of size
40×40with periodic boundary conditions. We analyze a window of size 10× 10 in each snapshot.
We study the signatures of a single string of length l = 4 against the background of the finite tem-
perature Heisenberg state. In Fig. 5.2.5 a), the string length distribution obtained with the red
area method with knowledge of the hole position is shown. While the distribution is peaked at
l = 4, it is very broad and very long string lengths appear with a sizeable probability. The large
amount of very long string patterns found is related to the full counting statistics of the staggered
magnetization shown in Fig. 5.2.5 b): since the Néel ordering vector can point in any direction,
many of the snapshots taken contain seemingly random patterns. In chapter 6, we post-select on a
high staggered magnetization to avoid this effect. The background signal for string patterns in the
Heisenberg model is analyzed in Fig. 5.2.5c) and d). Here we compare the pure Heisenberg data
to Heisenberg snapshots with a single string of length l = 4 added at temperature T/J = 0.2, 0.5,
respectively. While the signal indeed increases for string patterns of length l = 4, the difference is
extremely small, rendering a faithful detection of single stringswithout post-selection difficult. The
measured string length distribution is in all cases peaked at odd string lengths. This corresponds
to a perturbation of two sites, which occurs frequently in the Heisenberg model due to the Si · Sj
term in the Hamiltonian.
In section A.4, we compare the experimental data at half-filling and finite doping to Heisenberg
qMC data with and without artificial doublon-hole pairs to study the additional background sig-
nal.

5.2.4 Comparisons with geometric string theory snapshots

Given the clear prescription provided by the geometric string theory, we can also generate a new
set of snapshots with the predictions of the analytical theory based on data from the Heisenberg
model. In each snapshot, we first determine the spinon position either in the center of the system
or by sampling from a given distribution. As a next step, we find the length l of the new string
by sampling from the analytical string length distribution. Finally, we create a hole at the spinon
position and then move it l times by one site, where the direction in each step is random without
allowing a self-retracing of the string. Moving the hole through the spin background displaces the
spins and introduces a local suppression of the antiferromagnetic ordering present in the system.
While we are aware that the algorithms outlined in section 5.2.1 are not capable of reliably finding
the exact path taken by a hole in the t − J or Fermi-Hubbard model, we will show in the following
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sections strong evidence that they are sensitive to traces of strings. Most importantly, for the com-
parison between the actual numerical simulation of the t− J model and the semi-analytically gen-
erated geometric string theory snapshots, we apply the same algorithm to both sets of snapshots.
Therefore, even though the algorithm might not be perfect, the same types of problems occur in
both cases and a straightforward comparison of the results allows to draw conclusions about the
similarity of the datasets.
For theMPS simulations discussed in the following, we employ standardMetropolisMonte Carlo
sampling techniques to obtain snapshots. There, we start from a random Fock space configuration
and propose updates given by exchanges between two sites. Note that the total magnetization Ŝz

tot

is fixed for all proposed configurations. The probability for a given snapshot is determined by its
overlap with the matrix product state of interest.
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5.3 A single hole in the ground state of the t − Jmodel

This section is based on the publication

• Fabian Grusdt, Annabelle Bohrdt, and Eugene Demler: “Microscopic spinon-chargon the-
ory of magnetic polarons in the t-J model”
– Phys. Rev. B 99, 224422 (2019) [arXiv:1901.01113]

Structure, text and figures have been rearranged and adapted here.
The algorithm introduced in 5.2 enables the search for evidence for the hidden string order in

the ground state discussed in 5.1 in terms of string patterns. In this section, we present numerical
results from matrix product state simulations on a cylinder with a length of eight sites and a cir-
cumference of six sites. First, the algorithm is applied to snapshots sampled from the ground state
of the Heisenberg model, where a hole was deterministically placed in the origin. As opposed to
the t − Jz model discussed in 5.2, the Néel order parameter in the ground state of the Heisenberg
model can point in any direction and in particular is not necessarily aligned with themeasurement
axis, see also section 5.2.3. This leads to a background signal of finite string pattern lengths even
for an immobile hole, see Fig 5.3.1 b). The even-odd effect can be explained by quantum fluctu-
ations: a single spin exchange leads to a connected deviation of length two sites from the perfect
checkerboard. If the hole is placed next to such a deviation, our algorithm detects it as a string
of length two. Note that it is more likely that the hole is placed next to than on top of the two
site deviation, because there are three times more possible configurations for the former case. For
the ground state of the t − J model with a mobile hole, the distribution of string pattern lengths
changes. In the case of a small t/J = 0.4, mainly string patterns of length one and three appear,
while the count for string patterns of length zero decreases. For t/J = 3, the length distribution
becomes much broader and the count for longer lengths increases significantly. Since the string
pattern algorithm is sensitive to quantum fluctuations in the spin background, the string length
distribution predicted by the geometric string theory shown in Fig. 5.3.1 a) differs quantitatively
from the extracted string pattern lengths in Fig. 5.3.1 b). However, the broadening of the string
pattern length distribution with increasing t/J is correctly predicted and can be understood intu-
itively from the geometric string theory. Moreover, the string patterns detected in the geometric
string theory simulations, bands in Fig. 5.3.1, match thematrix product state simulations. Since we
directly use the string length distribution shown in Fig. 5.3.1 a) as input for the GST simulations,
this indicates that the difference between the expected and extracted distribution of string lengths
is mostly due to the background, which cannot be entirely separated from the signal.
Fromthe stringpattern lengthdistribution, an average length canbeobtained. As shown inFig. 5.3.1
c), this average length scales approximately linear with (t/J)1/3. This scaling behavior is expected
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Figure 5.3.1: String pattern lengths extracted from snapshots of the ground state. a) The
geometric string theory string length distribution used in the frozen spin approximation for
t/J = 0.4 and t/J = 3. b) The distribution function of the length ℓ of string-like patterns em-
anating from the hole. A striking difference is observed between a localized and a mobile hole
(MPS, indicated by symbols connected with dashed lines). Mobile holes are described quan-
titatively by the geometric string theory (FSA, shaded ribbons). c) The size of the magnetic
polaron as a function of t/J by determining the average length ⟨ℓ⟩ of the string-like objects re-
vealed in individual snapshots. The scaling behavior with (t/J)1/3 is expected from linear string
tension in the strong coupling regime, but before the Nagaoka polaron is realized at t/J ≤ 20.

from the linear string theory in the strong coupling regime before the hole forms a Nagaoka po-
laron at t/J ≥ 20, as discussed in section 5.1.
The average string pattern length is a measure for the size of the region around the hole in which
the spin background is altered by the hole motion. In each snapshot, one string pattern configura-
tion and length are observed. While a single string like object easily extends over two to three sites
away from the hole, averaging over many of those lengths and configurations, and thus directions
of the string object, will lead to a much smaller sphere of influence of the chargon. In the language
of the commonly used magnetic polaron theory, this sphere of influence is the dressing cloud of
the magnetic polaron and its size is given by the magnetic polaron radius. Apart from the average
string length, we can estimate the magnetic polaron radius by considering local spin correlations
as a function of their bond-center distance to the hole, Fig. 5.3.2 a). The nearest and next nearest
neighbor spin correlations shown in Fig. 5.3.2 b) depend strongly on t/J for small bond center dis-
tances. Especially the diagonal next nearest neighbor spin correlations close to the hole are strongly
suppressed. This can be directly understood from the geometric string theory: the chargon is lo-
cated at one end of a fluctuating geometric string, along which all spins are displaced by one site.
Upon averaging over all string configurations, the next nearest neighbor correlations close to the
hole therefore contain a significant contribution of nearest neighbor correlations, which have the
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Figure 5.3.2: Magnetic polaron radius extracted from local spin correlations. a) Nearest
and next nearest neighbor spin correlation functions are evaluated as a function of their bond
center distance from the hole. b) For increasing t/J, the effect on spin correlations near the
hole grows. The frozen spin approximation, based on snapshots from the undoped Heisenberg
AFM, captures the general behavior, but misses details, like significantly enhanced nearest
neighbor correlations at bond-center distances of 1.5 and 2.06. c) Using the trial wave function
(string-VMC) introduced in section 5.1 we calculate the local spin correlations as a function
of their bond-center distance from the hole. We compare our string-VMC result Cn(d)/3 to
Cz

n(d) for t/J = 3 obtained from the same DMRG simulations as part b). d) The local spin
correlations shown in b) are fitted by a function of the form C∞

n + ae−d/Rmp . The fit parameter
Rmp is interpreted as the magnetic polaron radius.
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opposite sign. Directly next to the dopant, the geometric string theory predicts

C2
(
1/
√
2
)
GST ≈

(
pGST
0 +

1− pGST
0

2

)
C2 +

1− pGST
0

2
C1, (5.33)

where pGST
l is the string length distribution and C1, C2 are the nearest neighbor and diagonal next

nearest neighbor spin correlations in the undoped system. In other words, the diagonal next near-
est neighbor correlation directly next to the hole is approximately determined by the weighed sum
of C1 and C2. The relative contribution of C1 is given by the probability to have a string of length
l > 0, which will change two out of four of the diagonal spin correlations to C1.
Further away from the hole, at bond center distances larger than three sites, there is no visible t/J
dependence. After fitting a function of the form C∞

n + ae−d/Rmp to the spin correlations as a func-
tion of the bond center distance d, we extract the fit parameter Rmp as the radius of the magnetic
polaron, Fig. 5.3.2 c). Similar to the average string pattern length shown in Fig. 5.3.1 c), the radius
of themagnetic polaron obtained this way also scales linearly with (t/J)1/3. However, themagnetic
polaron radius is less than a site for all values of t/J considered, whereas the average string pattern
length varies between 2 and 3 sites with increasing t/J. This can be explained by the large number
of possible string configurations with a given length l, NΣ(l) = 4 × 3l−1 for l > 0. Every single
string configuration has a strong effect on those spin correlations, where one of the spins is part of
the string and the other is not. Averaging over all those string states yields a significant reduction of
the effect of the string on a given spin correlation relative to the dopant. The correlations between
the mobile hole and the surrounding spins are thus liquid-like.
Apart from the overall reduction of the spin correlations close to the hole, additional spatial struc-
ture in the nearest neighbor spin correlations is observed. At a bond center distance of d = 1.5, the
correlations are enhanced, whereas at d = 2.06, a reduction of the nearest neighbor correlations
takes place, which gets stronger with increasing t/J. The frozen spin approximation does not cap-
ture this additional spatial structure.
The fact that this feature is present in the trial wave functionwhen t ≪ J, see Fig. 5.3.2 b), indicates
that it is caused by the microscopic correlations of the spinon position with its spin environment.
The emergence of a second length scale, in addition to the string length l ∝ (t/J)1/3 captured by
the FSA, can be considered as an indirect indication of fermionic spinon statistics: the Fermi mo-
mentum kF defines a second intrinsic length scale in this case.
In the meantime, this feature has moreover been observed in quantum Monte-Carlo simulations
of a single hole in the t − J model at low finite temperatures [289].

5.3.1 Dominant higher-order correlation functions

This section is based on the publications
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Figure 5.3.3: Higher order correlations in the two-dimensional t−J model. Fifth-order spin-
charge correlations around a mobile dopant in the t− J model are compared to the correspond-
ing fourth-order spin correlators in the undoped Heisenberg model. We consider spin-balanced
ensembles with

〈
Ŝz〉 = 0. a), b)The results are based on DMRG calculations for the ground

state on a 6×12 cylinder, where the correlations are evaluated in the center of the cylinder and
we average over all legs. a) For the ground state of one mobile dopant in the t − J model, the
connected fifth-order correlations Ccon

♢ (blue) are significantly larger than the lower-order dis-
connected terms Cdisc

♢ = C♢ − Ccon
♢ (yellow). In the undoped Heisenberg model, the opposite

is true: lower order correlations are dominant, while the connected higher-order correlations
are smaller. b) Fifth-order spin-charge correlations in the ground state of the t − J model with
a single dopant as a function of t/J. Our numerical results (data points, bare correlations C♢
in red) are explained by the frozen-spin approximation ansatz (ribbons, width indicates sta-
tistical errors). c) Temperature dependence of the higher-order correlations C♢ (red) and the
disconnected Cdisc

♢ (yellow) parts. We compare the corresponding correlators D♢ in the un-
doped Heisenberg model (top) to predictions for a mobile dopant with t/J = 2 using the FSA
based on Heisenberg quantum Monte Carlo snapshots. We moreover show results from exact
diagonalization (faint lines).

• Annabelle Bohrdt, YaoWang, Joannis Koepsell, Marton Kanasz-Nagy, Eugene Demler, and
Fabian Grusdt:“Dominant fifth-order correlations in doped quantum anti-ferromagnets” –
Phys. Rev. Lett. 126, 026401 (2021) [arXiv:2007.07249]

• YaoWang,AnnabelleBohrdt, JoannisKoepsell, EugeneDemler, andFabianGrusdt: “Higher-
Order Spin-Hole Correlations around a Localized Charge Impurity” – arXiv:2101.00721

Structure, text and figures have been rearranged and adapted here.

Motivated by the string picture introduced above, we now evaluate higher order correlations. In
particular, we consider the correlation function of the four spins surrounding the hole,

C♢(r) =
24

⟨n̂hr ⟩
⟨n̂hr Ŝz

r+ex Ŝ
z
r+ey Ŝ

z
r−ex Ŝ

z
r−ey⟩, (5.34)
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see alsoFig. 5.3.3. Thecorrelationweconsiderhere is adirect generalizationof the three-point spin-
charge correlators ⟨Ŝz

j−1n̂hj Ŝz
j+1⟩ underlying hidden AFM correlations in the 1D doped Hubbard

model [75, 215]. To witness the presence of genuine higher-order correlations, we calculate the
connected correlator in the co-moving frame with the hole,

Ccon
♢ (r) = C♢(r)−24

[ ∑
l/∈(i,j,k)

⟨n̂hr Ŝz
r+iŜz

r+jŜz
r+k⟩c

⟨n̂hr ⟩
⟨n̂hr Ŝz

r+l⟩
⟨n̂hr ⟩

+
∑

(i,j)/∈(k,l)

⟨n̂hr Ŝz
r+iŜz

r+j⟩c
⟨n̂hr ⟩

⟨n̂hr Ŝz
r+kŜz

r+l⟩c
⟨n̂hr ⟩

+
∑

i ̸=j/∈(k,l)

⟨n̂hr Ŝz
r+i⟩

⟨n̂hr ⟩
⟨n̂hr Ŝz

r+j⟩
⟨n̂hr ⟩

⟨n̂hr Ŝz
r+kŜz

r+l⟩c
⟨n̂hr ⟩

+
⟨n̂hr Ŝz

r+ex⟩
⟨n̂hr ⟩

⟨n̂hr Ŝz
r+ey⟩

⟨n̂hr ⟩
⟨n̂hr Ŝz

r−ex⟩
⟨n̂hr ⟩

⟨n̂hr Ŝz
r−ey⟩

⟨n̂hr ⟩

]
, (5.35)

where the sums are over disjoint sets of lower-order connected correlators (defined equivalently)
involving sites i, j, k, l = ±ex,y measured relative to the hole. In a spin-balanced ensemble, the
expectation values ⟨n̂hr Ŝz

r+l⟩ = 0 and the only relevant lower-order correlators are

Cdisc
♢ (r) = C♢(r)− Ccon

♢ (r) =
∑

(i,j)/∈(k,l)

⟨n̂hr Ŝz
r+iŜz

r+j⟩c
⟨n̂hr ⟩

⟨n̂hr Ŝz
r+kŜz

r+l⟩c
⟨n̂hr ⟩

. (5.36)

Usually the values of high-order correlation functions are dictated by more fundamental lower-
order correlators. Moreover, numerical studies of the Fermi-Hubbard and t − J model have often
focused on the analysis of two-point correlation functions with the goal of characterizing differ-
ent types of broken symmetries. Two-point correlation functions can furthermore be naturally
accessed in solid state systems using scattering experiments[290–292] and they play a central role
in the development of effective mean-field theories. Recently, with the advent of quantum simu-
lators and especially quantum gas microscopes, the analysis of higher-order correlation functions
has become a new experimental tool in the study of quantum many-body states [35, 36, 217, 267,
293, 294]. They have rarely been studied so far, even though they contain a wealth of information
about the underlying quantum states and are expected to become relevant when mean-field theo-
ries characterized by Gaussian correlations are no longer sufficient to capture the physics.
Intriguingly, for a magnetic polaron, formed when a single mobile hole is doped into an AFM, the
lower-order correlators are significantly smaller than the higher-order correlatorsC♢(r) andCc

♢(r).
In Fig. 5.3.3 we show DMRG results for the ground state of a single hole in the t − J model and
compare to the undoped Heisenberg model, where lower-order spin correlations dominate. Our
data demonstrates that themobility of thehole plays an important role for observing sizable higher-
order spin-charge correlations. As t/J is increased from t/J = 1 to t/J = 5, the absolute value ofCc

♢

doubles. Importantly, the product of the two-point correlation functions is an order of magnitude
smaller.
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We define related fourth-order correlators in the absence of doping as

D♢(r) = 24⟨Ŝz
r+ex Ŝ

z
r+ey Ŝ

z
r−ex Ŝ

z
r−ey⟩. (5.37)

A corresponding expression is obtained for the connected part Dcon
♢ (r). In the Ising AFM, D♢ = 1

and Dcon
♢ = 0. We performed DMRG simulations for the 2DHeisenberg model on a 6× 12 cylin-

der and obtainD♢ = 0.12 andDcon
♢ = −0.083 in the ground state, see Fig. 5.3.3 a). The connected

4th-order correlator only becomes negative because we subtract the significantly larger and posi-
tive two-point correlators,D♢−Dcon

♢ = 0.20. As expected for aweakly correlatedquantumsystem,
and different from the ground state with a mobile hole in the t− J model, the lower-order correla-
tors dominate in the two-dimensional Heisenbergmodel: They aremore than twice as large as the
genuine fourth order correlations.
The order of magnitude of D(con)

♢ can be understood from a simplistic model of spontaneous sym-
metry breaking. Consider an ensemble of classicalNéel stateswithAFMorder parameters pointing
in random directions. Because D(con)

♢ is always measured in the z-basis, averaging over the entire
ensemble yields

D♢|cl = 0.2, Dcon
♢ |cl = −0.133. (5.38)

These correlations are purely classical. Quantum fluctuations are expected to further reduce these
values in the SU(2) invariant Heisenberg model, as confirmed by our DMRG calculations. Non-
zero fifth-order ring-correlations Ccon

♢ (r) < 0 provide a signature of AFM correlations hidden by
the motion of the dopants. To gain some intuition, we consider a toy model of a single hole in-
side an Ising AFM. In this case, C♢ measures the probability p> for the hole to be attached to an
Sz-string Σ of length ℓΣ > 0, C♢ ≈ p< − p> = 1 − 2p>. The approximate sign in this equation
indicates that we neglected string configurations affectingmore than one spin in the direct vicinity
of the hole.
Assuming that the system is in an equal superposition of all string configurations, we can esti-
mate various correlation functions. Because the hole is equally likely to occupy either sublattice,
⟨n̂hr Ŝz

r±ex,y⟩ = 0. Three-point correlations ⟨n̂hr Ŝz
r±ex,y Ŝ

z
r±ex,y⟩ ≈ 0 vanish, as can be seen by averaging

over the four possible orientations of the first string segment, counting from the hole, and neglect-
ing string configurations which affect more than one spin in the immediate vicinity of the hole, see
Fig. 5.3.4 a). Hence, Eq. (5.35) implies Cc

♢(r) ≈ C♢(r) ≈ −1.
In this setting, relevant to the t − Jz model [3, 295], C♢ takes the role of a Z2 Gauss law: the mo-
bile dopants representZ2 charges and theZ2 electric field lines correspond to Sz-strings of flipped
spins. Similarly, in the SU(2) invariant t − J or Fermi-Hubbard models the higher-order correla-
tor C♢ serves as an indicator for geometric strings [3, 4] of displaced – rather than overturned –
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Figure 5.3.4: Higher order correlations: RVB and geometric string trial states. a) The
three-point spin-charge correlator diagonally next to the hole,

〈
n̂h
j Ŝz

j+ex Ŝ
z
j+ey

〉
(green bubble)

vanishes for a mobile hole moving through a classical Néel state at the end of an infinitely
long Sz-string. The fifth-order correlation C♢ remains sizeable and negative. b) Comparison
of RVB and geometric string trial states in a 14 × 14 system with Sz

tot = 1/2. For the ‘plain
vanilla’ uniform and π-flux RVB states doped with a single hole (left), C(con)

♢ is small. The
string wave-function (right) with a weak SU(2) breaking staggered magnetization along Sz

exhibits larger values of the spin-charge correlator and shows a strong dependence on the ratio
of t and the string tension dE/dl = 1.09J [4] which determines the average length of geometric
strings in the trial state. Note that the doped RVB states have no t/J dependence.

spins. Note that we observed the reduction of the two-point spin correlations close to the hole in
the ground state of the t − J model in Fig. 5.3.2.
The t/J dependence observed in Fig. 5.3.3 b) can be explained by the geometric string ansatz [3, 4],
see section 5.1. We compare to this theory by generating a new set of snapshots as discussed in sec-
tion 5.2.4: we start from snapshots of the Heisenberg ground state in the Fock basis and create a
hole by randomly removing one spin. This dopant is subsequently moved through the system in
random directions, re-ordering the surrounding spins; the string length distribution is calculated
from a linear string model with string tension dE/dℓ = 2J(C2 − C1) [3], where C1(2) are nearest
(next-nearest) neighbor spin correlations in the undoped system. This way, new sets of snapshots
are generated for every value of t/J, from which the higher-order correlators can be obtained.
The interpretation of C♢ as a signature detecting the presence of Sz- or geometric strings suggests
that C♢ < 0, whereas the corresponding correlator around a particle

D♢(r)− ⟨n̂h
r⟩C♢(r) = ⟨(1− n̂h

r)Ŝ
z
r+ex Ŝ

z
r+ey Ŝ

z
r−ex Ŝ

z
r−ey⟩ > 0; (5.39)

i.e. negative correlations are only expected around the mobile dopant. In Fig. 5.3.3 a) we confirm
this picture by calculating four-spin correlations around a particle instead of a hole.
An important class of microscopic variational wavefunctions that can be used to model problems
at finite doping values, is constituted by Anderson’s RVB paradigm [30, 212]. Being able to resolve
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properties of themany-bodywavefunction onmicroscopic scales, ultracold atomexperiments pro-
vide an opportunity to put the RVB theory to a rigorous experimental test in a clean system.
Herewe calculate the higher-order spin charge correlationsC(con)

♢ for twoparadigmatic dopedRVB
trial states. The uniform RVB state starts from an unpolarized Fermi sea of free spin-up and spin-
down spinons, |FS⟩. To describe a free hole excitation moving through the system, one spinon
with momentum k and spin σ is removed. A meaningful trial state for the t − J model, without
double occupancies, is obtained by applying the Gutzwiller projection: |ΨuRVB⟩ = P̂GW f̂k,σ|FS⟩.
We use standardMetropolisMonte Carlo sampling to evaluateC(con)

♢ in the trial state |ΨuRVB⟩, and
show our result in Fig. 5.3.4. We findC(c)

♢ = −0.040(4)with significantly smaller magnitude than
found by DMRG, cf. Fig. 5.3.3.
We find a similar result for the doped π-flux RVB state, for which decent agreement with experi-
mental data has recently been reported in ultracold atoms at finite doping [5, 266], see also chapter
6. The π-flux state with a single hole has the same form as the uRVB state above, except that the
Fermi sea |FS⟩ is replaced by a Dirac metal of spinons obtained when introducing π magnetic flux
per plaquette in the effective spinon Hamiltonian [277]. In this case Ccon

♢ = −0.049(3) slightly
increases andC♢ = −0.008(3) decreases inmagnitude. Both are significantly weaker than numer-
ically expected from DMRG when t ≳ J.
As discussed in section 5.1, geometric strings can be included in the trial wavefunction [4]. Now
we demonstrate that the presence of such geometric strings increases the expected higher-order
correlators. We start from the optimized RVBwavefunction for half filling (no doping) [273, 274],
which includes a weak spontaneously formed staggeredmagnetization along z-direction. A spinon
is removed in the usual way and after the Gutzwiller projection a geometric string is added to the
hole, thus re-arranging the spins surrounding the dopant; see Ref. [4] for details.
In Fig. 5.3.4 b) (right panel) we show how C(con)

♢ evaluated for this string wavefunction depends
on the ratio of hole tunneling t and the linear string tension dE/dℓ underlying the model. When
t/J = 0 the length of geometric strings is zero and the observed increase of the higher-order corre-
lator is due to the staggered magnetization along z included in the trial wavefunction. For increas-
ing tunneling t the string length grows and another significant increase of C(con)

♢ is observed. We
also checked that including strings in the SU(2) invariant π-flux RVB state leads to such an increase
of higher-order correlations. This supports our picture that the mobility of dopants leads to long
geometric strings, which in turn underly strong higher-order spin charge correlations.
We turn to a discussion of the limitations and requirements to observe higher-order correlations
experimentally. Fig. 5.3.3 b) demonstrates how thermal fluctuations suppress higher-order corre-
lations. We show the lower-order disconnected terms Cdisc

♢ and compare them to the higher-order
correlators C♢, in two cases: For the undoped Heisenberg model we use quantum Monte Carlo
simulations. For a single mobile dopant our predictions are based on the frozen-spin approxima-

124



Figure 5.3.5: Higher order correlations and hole mobility C♢(r, d) as a function of dis-
tance d from the hole. a) DMRG simulation for the ground state on a 6 × 12 cylinder, where
the hole is on site 6. The different distances to the boundaries of the cylinder lead to a small
asymmetry in the correlation. b) Exact diagonalization calculations for the ground state of the
Fermi-Hubbard model on a 4× 4 system with periodic boundary conditions in both directions.
The hole is pinned in the origin with a pinning potential V of varying strength, V/t = 0, 2.5, 5,
and the correlation is shown for r = 0.

tion with the spin background given by Heisenberg quantum Monte Carlo data, see section 5.2.4.
Thecorrelators are evaluated from 104 snapshots for each temperature. Wealso compare to exact di-
agonalization (ED) calculations in a 4×4 system and find good agreement. In the geometric string
theory, Cdisc

♢ is approximately zero up to temperatures T ≲ 0.5J, while the higher-order correlator
C♢ is of the order of−0.1. Without a hole, the disconnected partDdisc

♢ is significantly larger thanD♢

for these small temperatures. For T ≳ 0.6J the correlations decay quickly. The relevant tempera-
ture rangehas alreadybeenaccessedexperimentally [76], andweexpect thatmorequantumgasmi-
croscopy experiments operating in this regime will follow in the near future [65, 83, 85, 217, 296].
In Fig. 5.3.3 b), the proposed higher-order correlations are extracted from snapshots as in a quan-
tumgasmicroscopy experiment. We expect themain challengewill be to collect sufficient amounts
of data to obtain acceptable errorbars. Current experiments offering simultaneous spin- and charge
resolution [297] are very close to the temperature regime required for observing the higher-order
correlations proposed here.
Our numerical studies for a single doped hole reveal the importance of the holemobility for estab-
lishing higher-order correlations andmaking them become the dominant spin-charge correlations
in the system. In Fig. 5.3.5, we demonstrate this explicitly by considering the effect of a localized
pinning potential for the hole. Similar to Eq. (5.34), we define the same correlation function with
an additional dependence on the distance d to the hole as

C♢(r, d) =
24

⟨n̂hr ⟩
⟨n̂hr Ŝz

r+d+ex Ŝ
z
r+d+ey Ŝ

z
r+d−ex Ŝ

z
r+d−ey⟩. (5.40)

In Fig. 5.3.5 a), the distance dependent correlation is shown for the ground state of the t− Jmodel
on a 6× 12 cylinder. While the correlation around the hole is strongly negative, there is only a weak
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effect around neighboring sites and no change in C♢(r, d) for large distances. In Fig. 5.3.5 b), the
same correlations are shown for a single dopant in the ground state of the Fermi-Hubbard model
on a 4 × 4 torus simulated with exact diagonalization. Here, a pinning potential V on the origin
is included, which restricts the mobility of the dopant. Already for V/t = 2.5, C♢ around the hole
becomes positive and is almost indistinguishable from the background value.
An interesting question concerns the behavior of the higher-order correlations when doping is in-
creased and numerical studies of the Fermi-Hubbard model become more challenging [298]. In
this regime we propose to measure the higher-order correlators by state-of-the-art ultracold atom
experiments. Such studies can shed new light on the nature of charge carriers in the pseudogap
and strange-metal [77] regimes or the pairing mechanism between dopants. They also provide
a new experimental route to distinguish theoretical trial states, e.g. in the RVB class. While our
machine-learning analysis in section 6.5 suggests that up to≃ 15% doping a model based on geo-
metric strings may be favorable compared to doped π-flux RVB states, further refined experiments
as proposed here will be required to establish where and how the nature of charge carriers changes
upon doping. In a recent work, we implemented a neural network that allows for interpretability of
the results and found that similar higher-order (up to fourth order) correlations play a significant
role in distinguishing geometric string theory from the π-flux RVB state [16].

5.4 The Spectral Function

This section is based on the publication

• Annabelle Bohrdt, Eugene Demler, Frank Pollmann, Michael Knap, and Fabian Grusdt:
“Parton theory of ARPES spectra in anti-ferromagnetic Mott insulators” – Phys. Rev. B
102, 035139 [arXiv:2001.05509]

Structure, text and figures have been rearranged and adapted here.

In Section 4.2, we discussed a measurement scheme for the spectral function in a quantum gas
microscope and its application to one dimensional systems. The same scheme can in principle also
be applied in a two dimensional system. The spectral function of the two dimensional attractive
Fermi Hubbard model has moreover been measured with a slightly different protocol in a cold
atom experiment at comparably high temperatures across the BCS-BEC crossover [79]. In this
work, the authors use a radiofrequency pulse to excite atoms from the interacting system to a non-
interacting final state. Afterwards, the T/4-mapping discussed in section 4.2.3 is applied in the
two-dimensional system to obtain momentum resolution.
Here, we present numerical results for the spectral function of a single hole in the two dimensional
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t − J model obtained with TeNPy. The numerical findings can be explained qualitatively with a
parton construction based on the geometric string theory.
In the one dimensional case discussed in Section 4.2, the fractionalization of the excitation leads
to a continuum – or in the case of a finite system to several distinct lines – in the spectrum. How-
ever, in two dimensions, a discrete quasiparticle peak is found, which corresponds to a long-lived
magnetic polaron excitation[4, 207, 242–258, 267]. For reconciling the experimental observations
with numerical calculations in the clean t− J orHubbardmodels, inclusion of electron-phonon in-
teractions has been an important issue [299, 300]. At finite doping, but before the systembecomes
superconducting, a pseudogap is observed [282]. Instead of a closed Fermi surface, asmight be ex-
pected from a Fermi-liquid state, Fermi-arcs have been found at low energies around the nodal
points (±π/2,±π/2) [153] (we use units where the lattice constant a = 1 and ℏ = 1). These arcs
of high spectral weight appear like a part of a small Fermi surface, but the backside of the putative
Fermi surface is invisible. Themicroscopic origin of Fermi arcs in the pseudogap phase of cuprates
is not understood today, but their existence has been argued to imply exotic underlying physics and
topological order [154–157].
Theoretically predicting ARPES spectra of real solids is challenging. Microscopic models are hard
to solve because they involve non-trivial band structures, electron-phonon and electron-electron
interactions; Moreover, model parameters are not exactly known. This has lead to a long-standing
debate about the explanation of ARPES spectra in the undoped AFM insulator and the origin of
Fermi arcs.
Here we focus on ARPES spectra in clean toy models for doped AFMs. Even in such idealized
scenarios, the theoretical challenges are significant enough that many open questions remain and
a universally accepted understanding is lacking. Our work contributes two significant advances:
(i) we improve state-of-the-art numerical simulations of ARPES spectra and (ii) we combine our
results with recent insights into the microscopic structure of charge carriers in doped AFMs ob-
tained from numerical simulations and cold atom experiments with quantum gasmicroscopes, see
sections 5.1, 5.3, chapter 6 and Refs. [6, 267]. As a result, we reach a detailed understanding of
one-hole ARPES spectra in the paradigmatic t − J model.
Our findings have important consequences, both theoretically and experimentally. Ultracold atom
experiments enable clean studies of the Fermi-Hubbard model with tunable parameters [73, 74,
76, 217, 218, 266, 267], in 1D or 2D, as discussed in section 2.1 and 4.2. One can also study con-
tinuous dimensional cross-overs which are relevant to solids as well [301, 302]. ARPES spectra
can be accessed in optical lattices [2, 79, 189, 194, 196, 303], allowing to experimentally test our
theoretical predictions in the near future. On the theoretical side, our work verifies that one-hole
ARPES spectra in the AFM can be understood from more fundamental constituents (partons),
whose properties we can describe on a quantitative andmicroscopic level, see also sections 5.1 and
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5.3. Moreover, this leads to new insights to the current puzzles of cuprates, in particular themicro-
scopic origin of Fermi arcs.
The main results of this section are as follows.

1. We argue that state-of-the-art numerical calculations of the spectral function conclusively
demonstrate that magnetic polarons in the clean t− Jmodel are composed of partons: they
form meson-like bound states of spinons and chargons.

2. The spin-charge correlations present in this model at strong coupling can be efficiently de-
scribed by a Born-Oppenheimer product wavefunction, if one works in the so-called geo-
metric string basis [3, 4], see also sections 5.1 and 5.3. As an important consequence of this
second result, we demonstrate that all characteristic low-energy features in the spectrum at
strong coupling can be attributed to either spinon or chargon properties.

3. We have a simple analytic understanding of the microscopic chargon properties. This leads
us to the conjecture that a one-to-one relation exists, valid at strong coupling, between the ob-
served one-hole spectral function and the spectrum of a constituting spinon in the undoped parent
AFM. This result has consequences well beyond the present work, suggesting ARPES spec-
troscopy at strong coupling as themost direct tool yet to probe the properties of constituting
spinons in quantum AFMs. Possible applications include studies of quantum spin liquids.

For low energies, nomore than≈ 2t above the one-hole ground state, themain spectral features of
a single hole in the 2D t − J model, assuming t > J are summarized below.

(i) At the lowest energies, a dispersive quasiparticle peak – themagnetic polaron – is observed.
Its bandwidth is on the order of the super-exchange coupling J – rather than hole tunneling
t – and the shape of the dispersion relation differs significantly from that of a free hole. This
is confirmed by our td-MPS studies, see Fig. 5.4.1.

(ii) The quasiparticle residue Z(π/2,π/2) around the dispersion minimum at the nodal point de-
pends strongly on t/J. All numerical methods have conclusively shown that Z(π/2,π/2) > 0,
despite conflicting theoretical proposals [304]. This is also confirmed by our td-MPS sim-
ulations, see Fig. 5.4.3.

(iii) Above the magnetic polaron ground state, at excitation energies ΔE < t, a second peak has
been observed. The most reliable signatures were obtained by Monte-Carlo calculations
[253, 254], while large-scale exact diagonalization studies yielded conflicting results for in-
creasing system sizes [207, 251]. Like the ground state energyE0 itself, the energy of the first
peak E0 has been shown to be consistent with a scaling of the form En = −2

√
3t+ cnt1/3J2/3,

asymptotically for t ≫ J. This is confirmed by our td-MPS studies, see Fig. 5.4.2.
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(iv) The quasiparticle residue Z(k) has strong, and non-monotonic momentum dependence.
Our td-MPS simulations confirm this feature, see Fig. 5.4.1.

We numerically establish the following additional features, see Fig. 5.4.1:

(v) Around k = (π, π) the spectral weight is suppressed in a wide window up to energies of
orderO(2t) above the ground state.

(vi) The first excited peak – see (iii) – can be observed for all momenta, provided the ground
state residueZ(k) is non-negligible. The dispersion relation of the first excited peak is quali-
tatively identical to the ground state – i.e. the excitation gapΔk has onlyweakk-dependence.

Comparing to the different theoretical scenarios discussed in the introduction, some of these fea-
tures can be explained as follows:

(a) String picture: The picture of strings of over-turned spins in a Néel state [257, 259–265]
explains (iii), the scaling of the ground state energy E0 ≃ −2

√
3t+ c0t1/3J2/3 of a single hole

at t ≫ J; The string picture also predicts the existence of vibrationally excited states, with
the same dependence on t and J. Feature (ii) is also expected from the string picture, owing
to the finite length of the strings. Features (i) and (iv) - (vi) require explanations beyond the
string picture.

(b) Parton picture: Here, the mobile dopants are described by fractionalized spinons and char-
gons. The parton picture explains (i): the dispersion relation of the one-hole ground state is
determined by the spinon dispersion, whichmust have a bandwidthWs = O(J) dominated
by spin-exchange. The conjectured chargon dispersion, with bandwidth Wc = O(t), is ex-
pected to lead to additional features at higher energies in the spectrum. Features (ii) and
(iii) are only consistent with the parton picture, if spinons and chargons form a bound state.
To make quantitative predictions and fully explain features (ii) - (vi), detailed knowledge
about the parton dispersions and their microscopic interactions is required; this is typically
beyond the scope of phenomenological descriptions. An experimental work [305] has also
led to an interpretation of the pronounced high-energy features in the spectrum as signa-
tures of spinon and chargon branches.

(c) Polaron picture: The mobile dopant is dressed by the collective magnon excitations [242–
244, 246–250]. Spin-wave calculations of the spectral function [246, 248] have revealed
several vibrational peaks with the expected scaling ≃ t1/3J2/3 of their energies [248], thus
explaining (iii). The strong renormalization of the bandwidth of the dopant (i), fromO(t)
to the observedO(J) is also predicted, although without identifying a clear physical mech-
anism.
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In section 5.1, we combined the parton and string pictures ofmagnetic polarons and provide quan-
titative descriptions of both ingredients. Here we argue why – at strong coupling – any feature of
the spectrum is determined by either the spinon or the chargon / string properties: Essentially, a
Born-Oppenheimer product ansatz in the geometric string basis [3, 4], see also section 5.1, allows
us to factorize spinon and chargon contributions.
Themean-field theory we use to describe spinons naturally predicts a strongly momentum depen-
dent contribution Zs(k) to the quasiparticle weight, see Fig. 5.4.4. Already on themean-field level,
a strong suppression of spectral weight around (π, π) is predicted. Since the low-energy excited
states of the magnetic polaron correspond to string excitations, sharing the same spinon contribu-
tionZs(k) to the quasiparticleweight as the ground state, the suppressionof spectralweight around
(π, π) over a wide energy window is thus explained [feature (v)]. We furthermore go beyond the
mean-field theory, by including a Gutzwiller projection in our trial wavefunction, see section 5.1.
As a result, we find non-monotonic k-dependence of Z(k) for t ≳ J – explaining feature (iv), and
in excellent agreement with unbiased numerical results.

5.4.1 Parton theory of ARPES spectra

Similar to the 1D case, we introduce the parton representation

ĉj,σ = ĥ†j f̂j,σ (5.41)

with the chargon operator ĥj and the S = 1/2 spinon operator f̂j,σ , see section 5.1. The physical
Hilbert space is spanned by all states satisfying∑

σ

f̂†j,σ f̂j,σ + ĥ†j ĥj = 1 (5.42)

for all positions j. As before, we focus on the strong coupling limit t ≫ J where the fast motion of
the hole can approximately be factorized in the geometric string basis. In this approximation, the
spinon-chargon bound state with center-of-mass momentum k can be described as

|ΨFSA
sc (k)⟩ = 1

L

∑
js

eik·j
s∑

Σ

ψFSA
Σ |js⟩|Σ⟩, (5.43)

where the heavy spinon carries the momentum k and is bound to the lighter chargon, which is
delocalized over many different string configurations.
For a parent state |ψ0⟩ with strong antiferromagnetic correlations, we can assume that the basis
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states are mutually orthonormal,

⟨js ′|js⟩⟨Σ′|Σ⟩ ≈ δjs ′,jsδΣ′,Σ, (5.44)

as discussed in section 5.1. The spectral function can be written as

A(ω, k) = Re
1
π

∫ ∞

0
dt eiωt × ⟨Ψ0|eiĤt

(∑
σ

ĉ†k,σ

)
e−iĤt

(∑
σ

ĉk,σ

)
|Ψ0⟩. (5.45)

The state on the right hand side is(∑
σ

ĉk,σ

)
|Ψ0⟩ = |ks⟩|Σ = 0⟩, (5.46)

with the plane-wave spinon state

|ks⟩ = L−1
∑
js

eik
s·js|js⟩. (5.47)

On the left hand side, ⟨Ψ0|eiĤt = eiω0t⟨Ψ0|. Here, wemeasure frequencies relative to the energy of
the parent state, ω0 = 0. Based on the assumption that spinon-chargon states are eigenstates, we
approximate

e−iĤt|ks⟩|0⟩ ≈ e−iĤst|ks⟩e−iĤΣ t|0⟩, (5.48)

with Ĥs and ĤΣ effective Hamiltonians of the spinon and string (chargon) introduced in section
5.1, respectively. Since the eigenstates factorize into spinon-chargon bound states, the spectral
function becomes a convolution of the spinon and chargon contribution,

A(ω, k)|bound =
∫

dν As(ω − ν, k)Ac(ν). (5.49)

The spinon contribution

As(ω, ks) = Re
1
π

∫ ∞

0
dt eiωt × ⟨ks|e−iĤst|ks⟩ (5.50)

depends on the momentum ks, whereas the chargon contribution

Ac(ν) = Re
1
π

∫ ∞

0
dt eiνt⟨Σ = 0|e−iĤΣ t|Σ = 0⟩ (5.51)
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does not depend on the momentum. We assume the spinon to be static, as in earlier sections, to
derive the main features of Ac(ν). Due to the approximately linear string tension, a discrete set
of vibrational and rotational states is predicted, as discussed in section 5.1. The rotational states
have a node in the center, |ψΣ=0|2 = 0, and are thus invisible in the spectral function. In earlier
numerical studies, there have however been indications for the lowest vibrational states [248]. We
extract the position of the first vibrational peak from the spectral function as discussed in appendix
B.2, see also Fig. 5.4.2 a). As shown in Fig. 5.4.2 b), the energy gap to the first vibrational string
excitation scales as Δc ≃ t1/3J2/3 as expected. The low-frequency regime of the spectrum is thus
mainly determined by the spinon spectrum of width≃ J ≪ Δc:

A(ω, k) = As(ω − νc, k)Zc for ω ≪ Δc, (5.52)

where νc is the ground state energy of the chargon and Zc is the chargon contribution to the quasi-
particle weight. The entire momentum dependence of the spectral function at low energies is thus
determined by the spinon contribution, which we expect to exhibit a quasiparticle structure

As(ω, k) = Zs(k)δ (ω − ωs(k)) . (5.53)

Here, Zs(k) is the spinon contribution to the quasiparticle residue and ωs(k) is the spinon disper-
sion.
The chargon contribution to the quasiparticle residue Zc is determined by the probability of string
length zero,

Zc = |ψΣ=0|
2, (5.54)

determined from the geometric string theory. As we have seen in section 5.3, the string length
distribution and thusZc depends strongly on t/J. At low energies, the spectral function is therefore
expected to take the form

A(ω, k) = ZcZs(k) δ (ω − νc − ωs(k)) , ω ≪ Δc. (5.55)

While the chargon properties Zc and νc are universally determined by the geometric string the-
ory, the spinon properties Zs(k) and ωs(k) depend on specific properties of the parton model. As
a consequence, the one-hole spectral function reveals direct information about the properties of
constituting spinons in the underlying spin model. The above considerations hold in any system
with sufficiently strong local anti-ferromagnetic correlations and strong couplings t ≫ J. Usually,
information about spinons is extracted from the dynamical spin structure factor [274, 306, 307],
in which case one can only study pairs of (interacting) spinons.
A comment is in order about our notion of constituting spinons. If the spin system is in a confining
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phase, as in the case of the 2DHeisenberg AFMwith long-range order, isolated spinon excitations
cannot exist: there is no spin-charge fractionalization. The strong coupling parton theory above
explicitly assumes, however, that the spinon is bound to the chargon. Such mesonic bound states
can exist even in a confining phase. In this case theARPES spectrum is expected to reveal the prop-
erties of the constituting spinon, without the strong renormalization effects present e.g. in the spin
structure factor due to spinon-spinon interactions. In a possible deconfined phase, free spinon ex-
citations can exist: the constituting spinons are identical to the free spinons in this case. At strong
couplings we still expect that spinon-chargon bound states, as described above, will form at low
energies. This scenario is realized e.g. in fractionalized Fermi liquids [270, 271], and in this case
the ARPES spectrum of the form in Eq. (5.55) is expected to directly reveal the properties of free
spinons.

Unbound spinon-chargon pairs

Spin systems in a deconfined phase can also support unbound spinon-chargon pairs. In this case
the spectral function also becomes a convolution of a spinon and a chargon (or holon) part, as dis-
cussed indetail in section4.2. Because the center-of-massmomentumcanbedistributed arbitrarily
between the two partons, the convolution includes both frequency and momentum integrals,

A(ω, k)|unbound =
∫

dνdκ As(ω − ν, k− κ)Ac(ν, κ). (5.56)

In the absence of a bound state the quasiparticle residueZ = 0 vanishes, a hallmark of spin-charge
separation [308].
The deconfined scenario is realized for example in the 1D t− Jmodel at strong coupling [177, 205,
213, 309]. There, a similar wavefunction as in Eq. (5.43) can be used to describe the eigenstates of
a single hole [215, 310], but the string wavefunctions are extended: ψFSA

Σ (kc) = e−ikcΣ/
√

L where
Σ ∈ Z denotes linear string configurations of length ℓΣ = |Σ| and kc is the chargon momentum.
The spinonwavefunction in 1D can be accuratelymodeled by a slave-particlemean-field ansatz for
spinons forming a Fermi sea [2, 213], see section 4.2. Magnon corrections in 1D have also been
calculated and shown to be small [2].

5.4.2 Numerical Results

Employing the matrix product state techniques discussed in Section 5.5 and Appendix A.2, we
calculate the time-dependent Green’s function

C↑(x, y, t) = ⟨Ψ0|eiĤt̂c†x,y,↑e
−iĤt̂c0,0,↑|Ψ0⟩ (5.57)
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Figure 5.4.1: Spectral function in the 2D t − J model. a) We perform td-MPS simu-
lations of single-hole spectra in the t − J model on 4 × 40 cylinders of different geometry.
At strong couplings t ≫ J, here t = 3J, a strong suppression of spectral weight is observed
at (π, π) at low-to-intermediate energies. Details of the td-MPS calculations are provided in
Appendix B. The spectrum is obtained along cuts in the Brillouin zone, calculated for dif-
ferent coverings of the cylinder by MPSs (both indicated in the top row). The dashed lines
indicate the dispersion relations of the lowest two peaks (determined as local maxima of the
spectrum), which we interpret as the ground and first vibrational states of the magnetic po-
laron. b) Momentum dependence of the quasiparticle weight. We calculate the quasiparticle
residue Z(k), normalized by Zmax = maxk Z(k), from the trial wavefunction (5.30) along a cut
(0, 0) − (π, 0) − (π, π) − (0, 0) in a periodic 12 × 12 system. Parameters are t = 3J and we
used the optimized mean-field parameters Bst/Jeff = 0.44 and Φ = 0.4π. The solid green line is
a guide to the eye. We compare our results to the bare mean-field prediction (solid blue line)
and results from our td-MPS calculations (red dots). See section B.2 on how Z(k) is numeri-
cally extracted from td-MPS.
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Figure 5.4.2: Vibrational excitations in the spectral function in the 2D t − J model.
a) We show the frequency cut of the one-hole spectral function at the nodal point k =
(π/2, π/2), for the same parameters as in Fig. 5.4.1 a). The extracted positions of the ground
state (first peak) and vibrationally excited (second peak) magnetic polaron are indicated by
dashed lines. b) We analyze the energy ΔE between the lowest two pronounced peaks in the
spectrum. Our td-MPS results (red) on 4 × Lx cylinders are compared to quantum Monte
Carlo calculations by Mishchenko et al. (blue, data extracted from Ref. [254]) and the effec-
tive geometric string approach (gray). A fit ΔE/t = a(J/t)2/3 + b to our td-MPS data yields
a = 2.51 and b = 2 × 10−3. All data is for the ground state at the nodal point, k = (π/2, π/2).
Finite size effects in our td-MPS calculations are expected to be weak, but quantitative esti-
mates of their size are difficult.

for the t − J model on a cylinder, where |Ψ0⟩ is the ground state at half-filling. We then Fourier
transform C↑(x, y, t) to obtain

A(kx, ky, t) =
1√
LxLy

∑
x

∑
y

e−ikxxe−ikyyC↑(x, y, t). (5.58)

Inorder to smoothen the spectral functionweperforma linearprediction in real timebeforeFourier
transforming to frequency space, see section B.2.

A(ω, k) =
1√
2π

∑
t

eiωtÃ(kx, ky, t). (5.59)

The resulting spectral function is shown in Fig. 5.4.1 for t/J = 3 and a cylinder with 4 legs. Consis-
tent with earlier spin-wave [248], exact diagonalization [207, 251], truncated basis [257], cluster-
perturbation [311] andquantumMonte-Carlo calculations [253, 254],wefindawell-definedquasi-
particle peak at low energies. Themomentumdependence of the peak position corresponds to the
spinon dispersion as expected. The vibrational peaks discussed above are extracted from the fre-
quency dependent spectral functionA(ω, π/2, π/2) as shown in Fig. 5.4.2 a). As can be seen from
the cuts at momenta k = (0, 0), (π/2, π/2) and (π, π), there is no spectral weight at low energies

135



Figure 5.4.3: Quasiparticle residue Z(π/2, π, 2) in the 2D t − J model. a) The quasipar-
ticle weight Z(π/2, π/2) at the nodal point is shown as a function of J/t. We find that earlier
numerical Monte Carlo studies by Brunner et al. [253] and Mishchenko et al. [254] predict val-
ues close to the bare chargon, or string, contribution Zc = |ψFSA

Σ=0|2 expected from the geomet-
ric string approach (solid gray line). This is confirmed by our DMRG simulations on cylinders
with Lr legs – we used bond dimensions χ = 500 (χ = 600) for Lr = 4 (Lr = 6). b) We
plot Z(π/2,π/2)/Zc as a function of J/t. The data shows only weak dependence on J/t, indicat-
ing that Zc(J/t) captures the main J/t-dependence of the quasiparticle weight; note that for
J/t ≲ 0.2 (t/J ≳ 5) finite-size effects start to become more sizable in the DMRG. The insets
show the same data plotted over t/J.

in the latter case but instead a high energy feature. Note that this feature appears at a different fre-
quency and exhibits a sharper form than the broad peak observed at k = (0, 0) around ω = 0,
indicating that different mechanisms are at play [311]. In order to obtain the ground state quasi-
particle weight, we use the ground state of a single hole in the t− Jmodel |Ψ1h

0 ⟩ to directly calculate

Z(π/2, π/2) = 2 ·
∑
i

|
〈
Ψ1h

0

∣∣ ĉi,↑ |Ψ0⟩ |2. (5.60)

Since the ground state of the t − J model with a single hole is at k = (π/2, π/2), only contri-
butions at this momentum are unequal zero and an additional Fourier transform is not necessary.
In Fig. 5.4.3, the resulting quasiparticle weights are compared to data from quantum Monte Carlo
calculations.
From the parton theory, we expect that the quasiparticle weight factorizes into a spinon and a char-
gon, or string, contribution, Eq. (5.55). While the momentum dependence is contained in the
spinon contribution, only the chargon contribution depends on t/J for t ≫ J. The gray line in
Fig. 5.4.3 directly corresponds to the chargon contribution Zc(J/t) = |ψFSA

Σ=0(J/t)|2 without any
free parameters. This geometric string theory results agrees quantitatively well with the numerics,
indicating that the spinon contribution is Zs(π/2, π/2) ≈ 1. In Fig. 5.4.3 b), we further investigate
the J/t dependence by normalizing the quasiparticle weight by the chargon contribution, which
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yields an approximately flat function. Finite-size effects play an increasing role at smaller values of
J/t for theDMRG.We find that the behavior ofZ(π/2,π/2)/Zc is consistent with approaching 1when
t ≫ J.
Overall, the parton theory provides a good qualitative and even quantitative understanding of the
numerical results for the spectral function at low and intermediate energies. The high energy fea-
ture at k = (π, π) is not captured by our considerations here.

5.4.3 Trial wavefunction and mean field approximation

We apply variational Monte Carlo sampling [113] to calculate the quasiparticle weight based on
the trial wavefunction introduced in section 5.1,

Z(k) =
∑

σ |⟨Ψsc(k)|̂fk,σP̂GW|ΨSF+N
MF ⟩|2

|⟨ΨSF+N
MF |P̂GW|ΨSF+N

MF ⟩⟨Ψsc(k)|Ψsc(k)⟩|
. (5.61)

Here, the denominator guarantees proper normalization.
Amean-fielddescriptionof spinons is obtainedbydropping theGutzwiller projection inEqs. (5.30),
(5.61) andworking directlywith themean-fieldHamiltonian fromEq. (5.27). In principle bosonic
or fermionic spinons can both be considered. However, the bosonic theory would require strong
interactions to explain the observed spinon quasiparticle weight Zs(k) ≈ Z(k)/Zc. We will argue
that non-interacting fermionic spinons readily predict the qualitative features of Zs(k).
We calculate ZMF(k) by applying the FSA and mean-field approximations in Eq. (5.61). Note that
k is an arbitrary vector from the full Brillouin zone (BZ); spinon operators f̂k,σ are defined in the
BZ, whereas for spinons f̂k,σ,ν with band indices ν the cases k ∈ MBZ and k /∈ MBZ have to be
distinguished.
In the FSA we assume that only the trivial string state Σ = 0 contributes, since non-trivial string
states are approximately orthogonal to the background AFM. Using Eq. (5.30), we obtain

⟨Ψsc(k)|̂fk,σP̂GW|ΨSF+N
MF ⟩ ≈ ψ∗

Σ=0

∑
js

u(j
s)

k,σ,−e−ik·js

L/
√
2

× ⟨ΨSF+N
MF |̂f †js,σ P̂GW f̂k,σP̂GW|ΨSF+N

MF ⟩

= ψ∗
Σ=0 ⟨Ψ

SF+N
MF |̂f †k,σ,− P̂GW f̂k,σP̂GW|ΨSF+N

MF ⟩. (5.62)

In the second step, we used

f̂ †k,σ,μ =
∑
j

e−ik·j

L/
√
2
u(j)k,σ,μ f̂ †j,σ . (5.63)
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Then, dropping the Gutzwiller projectors yields

ZMF(k) = Zc

∑
σ

|⟨ΨSF+N
MF |̂f †k,σ,− f̂k,σ|ΨSF+N

MF ⟩|2. (5.64)

This expression is of the general form expected from the parton theory, see Eq. (5.55). Note that
f̂k+K,σ,− ≡ f̂k,σ,−, where K is the reciprocal lattice vector, but f̂k+K,σ ̸= f̂k,σ . We then use the
following identities

f̂ †k,σ = λ+k f̂ †k,σ,+ + λ−k f̂ †k,σ,−, (5.65)

f̂ †k+K,σ = λ+k+K f̂
†
k,σ,+ + λ−k+K f̂

†
k,σ,−, (5.66)

where k ∈ MBZ and the factors λ± are given by

λμ
k =

1√
2

(
u(A)k,σ,μ + u(B)k,σ,μ

)∗
(5.67)

λμ
k+K =

1√
2

(
u(A)k,σ,μ − u(B)k,σ,μ

)∗
; (5.68)

A and B denote sites j from the A and B sublattice, respectively, and μ = ± is the band index. The
spinon contribution on the right hand side of Eq. (5.64) is thus related to the mean-field Bloch
wavefunction u(A,B)k,σ,− for sites j from the A, B sublattice respectively,

ZMF
s (k) =

1
2

∑
σ

|u(A)k,σ,− + u(B)k,σ,−|2, k ∈ MBZ

|u(A)k,σ,− − u(B)k,σ,−|2, else.
(5.69)

One important conclusion is that ZMF
s (k) generally reflects the k-dependence of the Bloch wave-

functions, which is determined by the parameters Bst/Jeff and Φ in the mean-field Hamiltonian
Eq. (5.27). Moreover, momenta within the MBZ and outside of it are treated separately, causing
constructive and destructive interference of the Blochwavefunctions respectively. In the following
limiting cases themean-field spinon contributionZMF

s (k) shows interesting behavior. In a classical
Néel state, whenBst/Jeff → ∞, it holds (u(A)k,σ,−, u

(B)
k,σ,−) = (1, 0) or (0, 1). This leads to a featureless

spinon spectrum, ZMF
s (k) = 1 everywhere, see Fig. 5.4.4 a). For the uniform resonating valence

bond state, Φ = 0 and Bst = 0, it holds u(A)k,σ,− = u(B)k,σ,− = 1/
√
2. The spinons form a Fermi

sea occupying the MBZ, which is directly reflected by the strongly asymmetric spectral weight:
ZMF
s (k) = 2 for k within MBZ, and ZMF

s = 0 otherwise, see Fig. 5.4.4 b). When Bst = 0 but the
staggeredmagnetic fluxΦ ̸= 0, the mean-field dispersion has a Dirac cone around the nodal point
k = (π/2, π/2). This leads to a shard drop of spectral weight along the diagonal from (0, 0) to
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Figure 5.4.4: Mean-field spinon contribution to the quasiparticle residue. ZMF
s (k) from

Eq. (5.69) is shown in the following limiting cases: a) Bst/Jeff → ∞, b) Bst = Φ = 0, c) Bst = 0
and Φ = 0.4π. The color bar is indicated on the right.

(π, π) crossing the Dirac point, see Fig. 5.4.4 c).

5.4.4 Momentum dependence of quasiparticle weight

In Fig. 5.4.1 b) we plot the k-dependence of the quasiparticle weight Z for t/J = 3 obtained from
MPS simulations, the trial wavefunction and the mean field approximation. For the MPS simula-
tions, we assume a Gaussian form of the lowest energy peak and extract Z correspondingly from
the height and the full width at half maximum of the peak. For the trial wavefunction, we use the
string wavefunction ψΣ = ψFSA

Σ obtained from the FSA in Eq. (5.30). For the mean-field theory,
we use the parameters Bst/Jeff andΦ optimized for the half-filled Heisenberg AFM [274].
The result from the trial wavefunction is in very good agreement with our numerical td-MPS and
previous Monte-Carlo results [253]. In the center of the MBZ, around (0, 0), we observe a dip of
the spectralweight. Themaximumis foundat the edgeof theMBZ, including at thehigh-symmetry
points (0, π) and (π/2, π/2). Outside the MBZ, the Z-factor is strongly suppressed, dropping to
below 10−2 at (π, π). Overall we observe a strong momentum dependence of the Z-factor, which
is qualitatively captured by the trial wavefunction. The latter includes strong k-dependence as a
consequence of the Fermi statistics that determine the spinon properties in the trial state.
In the mean field theory, we observe a sharp drop of ZMF

s (k) around the nodal point, although the
weak staggered field leads to some broadening. Around (0, π) and (π, 0), the decrease of the spec-
tral weight is smoother, which we attribute to the larger distance in k-space from the Dirac cone
found at the nodal point for Bst = 0.
Overall, thek-dependenceof thequasiparticleweight fromthemean-fieldparton theory,ZMF(k) =
ZcZMF

s (k), captures the numerical observations. In particular, it explains the strong suppression
of spectral weight around (π, π), extending up to high energies, as a direct signature of fermionic
spinon statistics. Other features observed numerically, such as the more pronounced broadening
of spectral weight around the edge of the MBZ and the suppressed quasiparticle residue at (0, 0)
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can be attributed to the Gutzwiller projection and effects beyond FSA. As shown above, these fea-
tures are correctly predicted by the trial wavefunction Eq. (5.30).
The sudden drop of the quasiparticle weight around the nodal point is reminiscent of the miss-
ing spectral weight on the backside of the Fermi arcs observed in the pseudogap phase of cuprates
[153]. A similar effect has been observed in a doped spin liquid on the Kagomé lattice, believed
to exhibit spin-charge separation [312]. Within ourmicroscopic approach, the strong suppression
of the quasiparticle residue in the vicinity of the nodal point, but outside theMBZ, is explained by
the underlying structure of constituting fermionic spinons.

5.4.5 Dimensional crossover

Wesubject theparton theory to another test and studyARPESspectra in thedimensional crossover.
We tune the ratio

α = ty/tx (5.70)

of tunneling amplitudes along x and ydirections, which leads to spin-exchange couplings Jy = α2Jx.
In ultracold atom experiments with optical lattices, the value of α can be easily tuned, see section
3.1.
Our main motivation for considering the dimensional crossover is that the parton theory with
fermionic spinons correctly describes the ARPES spectrum in the 1D t − J model [2, 213], as
we have seen in section 4.2. For non-zero α > 0 we expect a non-vanishing string tension ∝ αJx
which should lead to spinon-chargon binding. At α = 1we have established above that the parton
theory can explain the numerically observed spectra.
In the 1Dcase, spinons and chargons aredeconfined andunbound for t ≫ J. Because the spectrum
is a convolution of spinon and chargon contributions both inmomentum and frequency domains,
see Eq. (5.56), a coherent quasiparticle peak is absent. Nevertheless, the integrated spectral weight
Zω(k) =

∫ Δω
0 dν A(ν0(k) + ν, k) in a low-energy region of width Δω = O(J) around the ground

state at ν0(k) reveals the structure of the spinon Fermi sea. Because t ≫ J, only chargon states
from a narrow range of momenta Δkc around the minimum at kc = 0 of the chargon dispersion
νc(kc) = −2t cos(kc) contribute to Zω(k) ¹; hence Zω(k) ∝ Zs(k). In one dimension, the mean-
field parton theory for the optimized parameter Bst = 0 in Eq. (5.27) predicts a step function, see
Eq. (5.69),

ZMF
s (k) =

2, |k| ≤ π/2

0, else,
(5.71)

¹The chargon and spinon dispersions are only defined up to an overall gauge choice shifting their momenta in
opposite directions.

140



Figure 5.4.5: Dimensional crossover for the spectral function. a) For varying anisotropy
α = ty/tx (indicated in top row) of the hopping elements, and α2 = Jy/Jx of the super-exchange
couplings, we use td-MPS to calculate the spectral function. We consider cylinders of length
Lx = 40 along x, with circumference Ly = 4 along the periodic y direction; tx/Jx = 3 is
fixed. The MPS is wrapped around the cylinder along diagonals, which allows us to calculate
diagonal cuts: ky = kx + k(0)y with k(0)y = π, π/2, 0 (cuts 1, 2, 3 – see inset below left panel).
b) Predictions for the spinon contribution Zs to the spectral weight (color map) and dispersion
from fermionic mean-field theory of spinons, as described in the text. Mean-field parameters
are taken from Ref. [272]. The delta-function peaks are represented by broadened lines with
integrated weight equal to Zs(k). In a) and b) the location of dispersion minima in the low-
energy region (blue boxes) are indicated by gray arrows.
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which directly reflects the Fermi-Dirac distribution of spinons in the ground state [2, 213].
In 1D, the above argument predicts a strong suppression of spectral weight up to energies of order
O(2t) ≫ J around k = π, which has been observed numerically [2, 197, 205], see section 4.2. As
discussed earlier, we find the same phenomenology around k = (π, π) in two dimensions, where
we also attributed the effect to the underlying fermionic spinon statistics in the mean-field parton
theory. To further support our argument that the 1D and 2D cases are due to the same physi-
cal principle, now we demonstrate that they continuously evolve into each other in a dimensional
cross-over.
In Fig. 5.4.5 a)we showour numerical td-MPS results for values of α = 1/3, 2/3 and 1. We consider
three cuts along diagonals, ky = kx + k(0)y with k(0)y = π, π/2 and 0. For α = 1/3 the spectrum still
closely resembles the 1D case, and only a weak dependence on ky is observed: The minima of the
ground state dispersion in the second cut, corresponding to k(0)y = π/2, are slightly displaced to
the left of kx = ±π/2, as expected from the mean-field spinon dispersion shown in Fig. 5.4.5 b).
While some spectral weight appears at k = (π, 0) (first cut with k(0)y = π), it remains absent over
a broad energy range at k = (π, π) (third cut with k(0)y = 0). In general, the high-energy features
can still be understood from a theory of quasi-free spinons and chargons as in 1D.
For α = 2/3 a well-defined quasiparticle peak is visible at low energies. This is expected from the
parton theory, which predicts the formation of a spinon-chargon bound state as soon as the string
tension∝ Jy becomes sizable. Around k = (π, π)we still observe a strong suppression of spectral
weight over a wide energy range of orderO(2tx). The dispersive features at high energies, reminis-
cent of a free chargon branch, become increasingly less pronounced as α approaches 1.
In Fig. 5.4.5 b) we plot the mean-field spinon dispersion expected for the dimensional cross-over.
While the overall scale is difficult to predict, the shape of the spinon dispersion resembles the nu-
merically observed quasiparticle dispersion [the low-energy onset of the spectrum in Fig. 5.4.5 a)]
for all considered values of α. The variational mean-field parameters Bst(α) and Φ(α) have been
taken from Ref. [272]. The color-scale in Fig. 5.4.5 b) indicates the spinon quasiparticle weight
ZMF
s (k). Around the nodal point k = (π/2, π/2) the numerically obtained spectrum, as a func-

tion ofmomentum, evolves significantlymore smoothly than expected from themean-field theory.
We attribute this to the effect of the Gutzwiller projection neglected in the mean-field calculation,
as discussed earlier for the 2D case. Around k = (π, π) the mean-field theory correctly predicts
the strongly suppressed quasiparticle weight at all values of α. We conclude that the parton the-
ory correctly predicts the observed qualitative features of the ARPES spectrum in the dimensional
cross-over.
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Figure 5.5.1: Spectral function compared to local density. We calculate the ratio of the
sum over all positions of the spectral function squared and compare it to total number of
holes, which is fixed at one. At short times, the ratio quickly drops to small values, indicat-
ing that the time- and site-resolved charge density cannot be captured directly by the spectral
function but contains additional information.

5.5 Dynamics of aHole in two dimensions

This section is based on the publications

• Annabelle Bohrdt, Fabian Grusdt, Michael Knap: “Dynamical formation of a magnetic po-
laron in a two-dimensional quantum antiferromagnet” – New J. Phys. 22 123023 (2020)
[arXiv:1907.08214]

• Geoffrey Ji,MuqingXu, LevHaldarKendrick,Christie S.Chiu, JustusBrüggenjürgen,Daniel
Greif, AnnabelleBohrdt, FabianGrusdt, EugeneDemler,MartinLebrat, andMarkusGreiner:
“Dynamical interplay between a single hole and a Hubbard antiferromagnet”
– arXiv:2006.06672

Structure, text and figures have been rearranged and adapted here.

The correlation functionCσ(x, y, t) defined in Eq. (5.57) can be used to obtain an estimate on the
local hole density after the creation of a hole. In particular, the absolute value squared ofCσ(x, y, t),
summed over both spin indices σ, is

|
∑

σ

Cσ(x, y, t)|2 = ⟨Ψ0 |̂c†0,0eiĤt̂cx,y|Ψ0⟩⟨Ψ0 |̂c†x,ye−iĤt̂c0,0|Ψ0⟩, (5.72)
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Figure 5.5.2: Hole dynamics in the dimensional crossover from one dimensional spin
chains to a two dimensional system. The color plots show the hole density as a function of
the distance to the origin in cylinder direction. The red lines are the mean value of the hole
density. From left to right, the plots correspond to ty/tx = 0, 1/3, 2/3, 1.

and the local hole density after the creation of a hole at the origin at time t = 0 is〈
n̂h(x, y, t)

〉
= ⟨Ψ0|̂c†0,0eiĤtn̂h

x,ye
−iĤt̂c0,0|Ψ0⟩

= ⟨Ψ0|̂c†0,0eiĤt(1− ĉ†x,yĉx,y)e
−iĤt̂c0,0|Ψ0⟩

= ⟨Ψ0|̂c†0,0eiĤt̂cx,yĉ
†
x,ye

−iĤt̂c0,0|Ψ0⟩.

(5.73)

Note that we used the operators ĉ(†)x,y = ĉ(†)x,y,↑ + ĉ(†)x,y,↓ and particle number conservation in both
the spin-up and the spin-down sector in Eq. (5.72). The difference between the hole density af-
ter a local quench and the absolute value squared of the real-space and time correlation function
C(x, y, t) is thus given by the projection onto the ground state |Ψ0⟩ in Eq. (5.72). We can obtain
the following inequality:

|
∑

σ

Cσ(x, y, t)|2 ≤ ⟨Ψ0 |̂c†0,0eiĤt̂cx,y
∑

n

|Ψn⟩⟨Ψn|̂c†x,ye−iĤt̂c0,0|Ψ0⟩ =
〈
n̂h(x, y, t)

〉
(5.74)

In Fig. 5.5.1, we compare the sum over all positions of the absolute value squared of the real-time
and -space spectral function to the total hole density, which is fixed to be one. The ratio of the two
quantities is significantly below one for the values of t/J = 2, 3 considered in Fig. 5.5.1 a), b), re-
spectively, thus indicating that the spectral function does not provide the same information as the
local hole density. Note that within the geometric string theory picture, the sum over all positions
of |
∑

σ Cσ(x, y, t)|2 gives the probability to have a string of length zero at time t. In the follow-
ing, we investigate the dynamics of a hole after its creation (or release) from an antiferromagnet
and study its impact on the spin background in terms of string patterns as well as spin correlation
functions.
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Figure 5.5.3: Hole dynamics in the two dimensional t − J model on a square lattice for
t/J = 1.5, 2, 3 with cylinder length Lx = 18 and circumference Ly = 4. a) The initial spread-
ing with velocity proportional to the hole hopping t coincides for all values of the hopping for
times in units of 1/t (inset). For longer times, the Manhattan distance increases with a slower
rate determined by the spin exchange J and is independent of the hopping t. b) Manhattan
distance of the hole to the origin and average string pattern length obtained from matrix
product state (MPS) snapshots are compared to geometric string theory (GST) predictions
at t/J = 2. The latter are obtained based on snapshots from the ground state of the Heisen-
berg model.

5.5.1 in a Quantum Antiferromagnet

In order to gain insights into the system away from the ground state, we studied the properties of
a hole created into the ground state of the Heisenberg model using matrix product operator based
techniques [313]. The creation of a hole in the t − J model corresponds to a local high energy
excitation. In the one dimensional case discussed in section 4.3, spin-charge separation occurs and
spinon and chargon spread independently of one another. Once couplings between several one
dimensional chains are turned on, the situation changes. The interplay between spin and charge
degrees of freedom introduces an emergent length scale, which depends on the ratio of tα/Jᾱ, where
α = x, y, x̄ = y and vice versa. In a cold atom experiment, the dimensional crossover can be
realized by tuning the lattice depth in one dimension. This leaves the interaction U constant while
the ratio of ty/tx is changed. As theFermi-HubbardHamiltonian is approximatedby the t−Jmodel,
the spin exchange couplings are then Jy/Jx = t2y/t2x. For ty/tx = 1/3, the ratio of spin exchange
couplings is thus Jy/Jx = 1/9. As a consequence, the chargon can propagate freely for a comparably
long distance. For the system sizes considered here, the hole dynamics therefore closely resemble
the one dimensional case, see Fig. 5.5.2. As the couplings ty and Jy are further increased, the hole
slows down considerably. The emergent length scale can be read off approximately as the value at
which the mean distance starts to bend over (red lines). In the isotropic case, two different time-
scales are observed. Initially, the hole spreads ballistically with a velocity proportional to t. At
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Figure 5.5.4: Time evolution of nearest neighbor spin correlations after creating a
hole in the ground state of the t− J model for t/J = 2. a) The nearest neighbor spin correlator
as a function of position and time. b) Interpreting the deviation of the nearest neighbor spin
correlator from its equilibrium value as the spinon distribution, we can compare the spreading
of the spinon the hole dynamics. The spinon distance is shown as comparison, but shifted up
by one.

long times, the hole again propagates ballistically, but with a velocity given by the spin exchange
coupling J. This dependence on t and J is shown in Fig. 5.5.3 a) by considering different values of
t/J: the initial dynamics is identical if the time is plotted in units of 1/t, see inset. However, for later
times, the Manhattan distance, defined as

r =
∑

x

∑
y

(|x|+ |y|) ·
〈
n̂h(x, y)

〉
, (5.75)

increases with the same slope if the time is shown in units of 1/J. These numerical findings can be
understood in terms of the parton construction described in section 5.1: the excitation created in
the system is decomposed into a spinon, carrying the spin quantum number, and a chargon, car-
rying the charge. Spinon and chargon are bound to each other by a string of displaced spins. The
properties of this string can be derived with the help of the geometric string theory. Since chargon
and spinon are bound together after the initial short time dynamics, the propagation of the hole at
intermediate and long times is determined by the slower spinon dynamics.
Wemodel the spinondynamicswith the help of the tight-bindingHamiltonian (5.11). The spinon
dispersion ωsp(k), and thereby the spinon tunneling matrix elements Jj,i in the effective Hamilto-
nian (5.11), is determined by fitting it to the magnetic polaron dispersion:

ωsp(k) = A
[
cos(2kx) + cos(2ky)

]
+ B

[
cos(kx + ky) + cos(kx − ky)

]
. (5.76)
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The fit parameters A and B depend weakly on t/J, and we take them from Ref. [246]. For t/J = 2
this yields: A = 0.25J and B = 0.36J.
Further evidence for the string theory is provided by analyzing Fock space snapshots sampled from
the time evolvedmatrix product state. We search for the stringpattern connected to thehole in each
snapshot by applying the algorithm described in section 5.2. Since the ground state of the Heisen-
berg model is not a perfect checkerboard pattern, the average length directly after the creation of
the hole is already larger than zero. Thus, the difference to this initial length is shown in Fig. 5.5.3.
At short times, the average length of the string pattern grows exactly as the Manhattan distance of
the hole to the origin. After a time proportional to 1/J, the string pattern length saturates, while
the hole distance increases further with a smaller velocity. At long times, the string length decays
slightly, an effect that is not captured by the geometric string theory. Note that the sum over all
positions of |

∑
σ Cσ(x, y, t)|2 considered in Fig. 5.5.1, simultaneously increases. This is consistent

with a decrease of the string length, as this quantity corresponds to the probability to have a string
of length zero.
The predictions of the geometric string theory combined with the dynamics of the spinon can be
compared to the numerical results by placing and moving the hole by hand in snapshots of the
Heisenberg ground state, as discussed in section 5.2.4. In particular, the dynamics of the chargon
relative to the spinon is in this picture described by themotion of a single particle in a potential, see
section 5.1, for which the dynamics can be easily solved. We solve the single spinon problem on a
cylinder with the same circumference as used in the exact numerics as described above. As shown
in Fig. 5.5.3 b), this leads to a remarkable agreement with the numerical data. Note that there is no
free fitting parameter in the theory here.
In Fig. 5.5.4, the dynamics of the spin excitation is directly compared to the spinon dynamics ac-
cording to Eqs. (5.11) and (5.76). Fig. 5.5.4 a) shows the time evolution of the nearest neighbor
spin correlations along the cylinder. We can interpret this as a probability distribution by con-
sidering the value of the nearest neighbor spin correlations relative to their equilibrium value and
normalizing the resulting distribution in each time step to one. From this numerically observed
probability distribution, we obtain the spreading of the spinon shown in Fig. 5.5.4 b) (blue) and
compare it to the spinon dynamics discussed above (green). Apart from the short-time dynamics,
the time evolution of the spinon spreading, obtained from the spin correlations as well as from the
tight-binding model, matches the spreading of the hole itself.
In section 5.1, we discussed the non-linear as well as the linear string theory. The linear string

theory assumes the same potential energy for each string of a given length, irrespective of its con-
figuration. In this approximation, the potential energy cost of the spin system is given by the same
string tension for each site the hole moves. In the non-linear string theory, the different energies of
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Figure 5.5.5: Convergence of hole dynamics with bond dimension and system size. a)
Manhattan distance of the hole to the origin for t/J = 2, 4 and values of the bond dimension
χ = 300, 600, 900, 1200, 1500. For the times used here, the differences between simulations with
different bond dimensions are small. b) System size dependence of the Manhattan distance
of the hole for t/J = 2. For a cylinder of length 10 sites, finite size effects become visible at
an earlier time. The dynamics of the observed quantities is very similar for cylinders of length
18 and 26 sites up to longer times. Dashed versus straight lines compare the two theoretical
approximations (NLST and LST) to the numerical results for the Manhattan distance of the
hole. Non-linear string theory results are limited to a string length of 10 bonds.

the spin background for different configurations of the string are taken into account. In Fig. 5.5.5
b), the Manhattan distance of the hole to the origin is compared to linear as well as non-linear
string theory predictions. There is a visible difference between the two approximations and the
non-linear string theory agrees significantly better with the numerical results.
The dynamics considered so far took place on a cylinder of length 18 or 19 sites. At long times, a
significant fraction of the hole density has reached the edge, as can be seen in Fig. 5.5.2. We there-
fore also evaluated the dynamics on cylinders of length 10 and 26 sites, Fig. 5.5.5 b). In the case of
a short cylinder, the Manhattan distance of the hole to the origin already saturates at early times,
before the second velocity is observable. The value at which the distance saturates is the same for
t/J = 2 and t/J = 4, the only difference being that it is reached at earlier times in the latter case.
For longer cylinders, Lcyl = 18, 26, the Manhattan distance of the hole to the origin coincides on
the timescales considered here. The results presented above are therefore not subject to sizeable
finite size effects regarding the cylinder direction.
So far, we studied the dynamics after a hole was created in the ground state of the Heisenberg

model. A slightly different scenario takes place if we start from the ground state with an immo-
bile hole in the origin, which is then released. In Fig. 5.5.6, the time evolution of different spin
observables after releasing the hole is shown. Themagnitude of the next nearest neighbor spin cor-
relations, both across the origin and across the hole, Fig. 5.5.6 a), decays quickly and then saturates
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Figure 5.5.6: Time evolution of spin observables after releasing a hole from the ground
state of the t − J model. a) The next nearest neighbor spin correlator next to the hole (yellow)
and the origin (green) exhibits fast initial dynamics and reaches a constant value on the time
scale of 1/J. b) The global staggered magnetization oscillates slowly with a period determined
by the system size.

at a finite value. Note that the diagonal spin correlations across the hole (averaged over all four
bonds) is close to zero, which can be understood from the geometric string theory picture, see also
Eq. (5.33).
The global staggered magnetization, Fig. 5.5.6 b), however exhibits slow oscillations with a period
determined by the system size. Since the total spin is conserved, there is a minority spin species,
which favors the sublattice on which the hole is pinned initially. The localized hole has therefore
a similar effect as a staggered field. After the hole is released and is approximately equally likely
on both sublattices, no sublattice is favored anymore by the minority spin species – the effective
staggered field is turned off. Note that the situation in 2D is different to the case of a pinned hole
in a one-dimensional system studied in Fig. 4.3.6. In the latter case, the two halfs of the system are
previously disconnected and therefore no correlations exist at time zero. For a two-dimensional
system, the effect of a pinned hole is not as strong, but still has a significant influence on the spin
surroundings, see also Fig. 5.3.5 and Ref. [18].

5.5.2 in a Quantum Antiferromagnet at Finite Temperature

The dynamics of a single hole in a two-dimensional system can be explored in a quantum gas mi-
croscope, as introduced in section 2.1 and discussed in section 4.3 for a one-dimensional system.
Here, I collaboratedwith the group ofMarkusGreiner atHarvard to study the dynamics of a single
dopant. The initial system is a half-filled two-dimensional square lattice of fermionic Lithium-6
atoms at U/t = 8.72(28), corresponding to t/J = 2.18(7) and a temperature of T/t = 0.340(19),
with a single hole pinned at a fixed site with the help of a digital micromirror device (DMD). In
particular, the DMD is used to project a repulsive potential locally on a single lattice site. During
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Figure 5.5.7: Short-time dynamics of a hole after a quench clipped to 5 × 5 quadrants.
The experimental data is averaged over horizontal, vertical and diagonal reflections. We com-
pare the experimental data to a non-interacting quantum walk, a non-interacting spin-1/2
QMC simulation at T = ∞, a free particle on a Bethe lattice, and time-dependent MPS sim-
ulations of the t − J model at t/J = 2. For the MPS simulation, the rows at dy = ±2 are
equivalent and are duplicated for clarity.

the adiabatic loading process, atoms will preferentially not populate a site with such a repulsive
potential, thus leading to pinned holes. After adiabatic loading, the pinned holes are released by
rapidly shutting off the light illuminating the DMD and thus the pinning potential within 0.03ℏ/t.
In this particular experiment, spin-resolved imaging is not possible. After a variable evolution time
τ, the dynamics can be frozen by rapidly increasing the lattice depth, and either the parity projected
density or the density of one of the two spin states can be imaged. Due to charge fluctuations in the
form of doublon-hole pairs, it is not possible to exactly track the holes in each experimental realiza-
tion. Instead, we compute the average density distribution of singly occupied sites and subtract it
from the background density of singles obtained from experimental realizations without any holes.
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Figure 5.5.8: Short-time evolution of the hole density at the central and adja-
cent sites. The experimental data is compared to a non-interacting quantum walk, a non-
interacting spin-1/2 QMC simulation at T = ∞, and time-dependent MPS simulations of the
t − J model at t/J = 2 and T = 0.

Short-time dynamics of the hole

Inorder to collectmoredata for the short-timedynamics of the system, four holes are pinned simul-
taneously in a seven site wide square pattern. The average hole density on these four sites is initially
0.81(2), without significantly affecting the adjacent sites. In Fig. 5.5.7, the background subtracted
density distribution is shown for selected times, averaged across all four holes and the dihedral
symmetries of the square lattice. Within half a tunneling period, the hole tunnels to the four neigh-
boring sites, Fig. 5.5.7. The short-time dynamics retains clear coherent features, such as the loss
and revival of the hole density at the origin, or return probability, that sets it apart from a classical
diffusion process. We compare the experimental data to different theoretical approaches:

(i) A freequantumwalk, corresponding to themotionof ahole in a ferromagnetic environment.
The data is based on the analytic formula in [314], scaled to a two-dimensional system:

ρi,j(τ) = |Ji(2τt)Jj(2τt)|2, (5.77)

whereJ is the Bessel function of the first kind and i, j are the site coordinates relative to the
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initial location.

(ii) The motion of a hole in a paramagnetic spin-1/2 environment, simulated with a quantum
Monte Carlo algorithm in a 40× 40 system, using the code provided at
https://github.com/MartonKN/Dynamical-spin-correlations-at-infinite-temperature.

(iii) The propagation of a hole on a Bethe lattice, motivated by the general discussion in section
5.1, but at J = 0. The calculation here is based on [315]. The path-distinguishability effects
due to the spin background are modeled by incoherently summing probabilities on node of
the graph leading to the same hole location.

(iv) Time-dependent matrix product state simulations of the dynamics of a single hole created
in the ground state of the t − J model at t/J = 2, as discussed in section 5.5.1.

In Fig. 5.5.8, we compare the experimental hole densities on the central site and its neighbors at
d = (1, 0), (0, 1), d = (1, 1), d = (2, 0), (0, 2), and d = (2, 1), (1, 2) to the different theoretical
predictions. Up to times τ ≈ 0.5ℏ/t, all shown theoretical models describe the experimental re-
sults quantitatively correct. For intermediate times, the td-MPS simulation correctly predicts the
revival time of the density at the central site at τ = 1.2ℏ/t, but the actual value of the density is
magnified due to finite size effects.
Theamplitudeof theoscillations in thedensityon thenearest neighbor sites is directly related to the
indistinguishability of spin backgrounds after two tunneling events ending at the same site. Quan-
tum interference is maximal in a ferromagnet (free quantumwalk), reduced in an antiferromagnet
(ground-state td-MPS simulation) and between these two extremes in a paramagnet (infinite tem-
perature QMC). In the experiment, we observe a suppressed density at the nearest neighboring
site at τ = 1ℏ/t, indicating that the antiferromagnetic background plays a role for the holemotion.

Long-time dynamics of the hole

For later times, the density distributions of the four holes overlap. For times later than τ = 1ℏ/t,
we therefore prepare a single hole in the center of the system. In this case, the hole density on the
initial site before release is 0.867(12). In order to study the hole propagation at later times, we want
to calculate the root-mean-squared (RMS) hole distance from its initial site. In principle, the RMS
distance could be calculated directly from the experimental data as

dRMS =

√√√√∑
dx,dy

(d2x + d2y)ρd

/∑
dx,dy

ρd, (5.78)
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Figure 5.5.9: Long-time evolution of the hole density in terms of the root mean square
(RMS) distance. a) Experimental data compared to a non-interacting quantum walk, dynam-
ics on a Bethe lattice, the Mott-Ioffe-Regel (MIR) limit, and time-dependent MPS simulations
of the t − J model at t/J = 2 and T = 0. b) Experimental RMS distance for U/t = 8.72(28) and
U/t = 17.2(6).

where ρd is the hole density at coordinate d = (dx, dy) relative to the initial hole position. How-
ever, statistical fluctuations in the hole density at large distances lead to large uncertainties in the
hole position. Therefore, we fit the experimental data to a Gaussian density distribution in an anal-
ysis region, which contains most of the hole density [14]. In Fig. 5.5.9 a), the RMS distance of
the hole in the experiment is compared to the theoretical approaches described above, as well as
a diffusive square-root law dRMS =

√
4Dτ with diffusion constants D = t2a/ℏ and D = J2a/ℏ.

At short times, the RMS distance exhibits the same ballistical growth observed in Fig. 5.5.3. This
behavior is captured by all theories. After times τ = 1ℏ/t, the RMS distance shows a clear bend,
similar to the time-dependence discussed in section 5.5.1. For a free quantum walk, the RMS dis-
tance is given by dRMS = (2t/ℏ)τ, which does not capture the experimentally observed dynamics.
The Bethe lattice dynamics (iii) predicts a crossover to diffusive hole motion at times consistent
with the bend in the RMS distance. This confirms that quantum interference effects start to play a
role at timescales comparable with the tunneling time. The Mott-Ioffe-Regel (MIR) limit sets the
diffusion constant D = t2a/ℏ in the diffusive square-root law dRMS =

√
4Dτ shown in Fig. 5.5.9

a). This limit classically corresponds to Brownianmotion with amean-free-path of one lattice con-
stant. The hole velocity in this picture is set by the tunneling energy t. Experiments in the group
of Waseem Bakr have shown that the MIR limit provides a lower bound for diffusion at large dop-
ing values [77]. For the quench considered here, this lower bound is violated. However, a similar
lower bound is satisfied, with the hole hopping t replaced by the spin exchange J, indicating that the
long-time velocity is determined by the superexchange instead of the bare tunneling. In order to
compare the td-MPS simulations on the four-leg cylinder to the experimental data in the full two-
dimensional system, we calculate the one-dimensional RMS distance in the td-MPS data and scale
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it to a two-dimensional Euclidian norm. Over the observable time-scales, the td-MPS simulation
agrees well with the experiment. It should be noted, however, that the anisotropy of the td-MPS
simulation could in principle favour faster ballistic motion, whereas the increased magnetic order
in the ground state (as compared to the finite temperature state in the experiment) could enhance
the slow-down of the hole.
In the ground state simulations in Fig. 5.5.3, we changed the ratio of t/J and observed that the long
time dynamics only depends on J. In the experiment, we can equivalently tune U/t and thus t/J
using a Feshbach resonance, as discussed in section 2.1, and compare the resulting RMS distance
as shown in Fig. 5.5.9 b) for U/t = 8.72(28) and U/t = 17.2(6). The temperature in units of t
is slightly decreased for the larger value of U/t to T/t = 0.241(18). Similar as in the numerical
simulations in Fig. 5.5.3, the short-time dynamics agrees almost exactly, confirming the ballistic
growth with t, independent of J. Small initial deviations are due to a larger hole preparation infi-
delity. At times larger than τ = 1ℏ/t, the RMS distance bends over for both values of U/t, but the
velocity for the larger U/t (i.e. smaller J/t) is significantly reduced, indicating again that the spin
exchange J plays a role in this dynamics. In the inset, the same data is shown with time in units of
1/J instead of 1/t, confirming that J is determining the time evolution in the long-time limit. The
dashed black line corresponds to the RMS distance of a magnetic polaron, where the overall scale
is shifted for better comparison. These results suggest the formation of amagnetic polaron at short
times, which then continues to spread ballistically, as discussed in section 5.5.1. A linear fit to the
RMS distance for times τ ≥ 0.8ℏ/J yields a velocity of 0.15(17)a/(ℏ/t) for U/t = 17.2(6) and
a velocity of 0.40(10)a/(ℏ/t) for U/t = 8.72(28). The ratio of the velocities is consistent with a
ballistic spreading with velocity proportional to J.

Spin recovery dynamics

In section 5.5.1, we obtained the average length of the string pattern attached to the hole as a func-
tion of time. In this experimental setup, it is not possible to resolve hole and both spin species
simultaneously, and thus the string pattern attached to the hole cannot be determined. However,
through the separate imaging of both spin components, the spin correlations can bemeasured. It is
not possible to track the spin correlations relative to the hole, but we can study the recovery of the
spin correlations at the origin, where the hole was originally pinned. In Fig. 5.5.10 a), the spin cor-
relations from the initial hole location are shown for select times. Initially, these correlations vanish
due to the presence of the hole. As the hole hops to one of the neighboring sites, the correlations
from the initial hole site correspond to those of the exchanged neighboring spin. The antiferro-
magnetic correlation pattern is thus reversed, which can be seen by the red color in Fig. 5.5.10 a).
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Figure 5.5.10: Dynamics of spin correlations after a quench. a) Sign-corrected spin cor-
relations from the initial hole location at select times, symmetrised across reflections. The
correct AFM pattern (blue) is slowly restored, but does not fully equilibrate during the ex-
perimentally observed times. b), c) Sign-corrected nearest and next nearest spin correlations
from the initial hole as a function of time. A Bethe-lattice model (purple band) describes the
short-time dynamics, but does not capture the slow dynamics at long times. The same spinon
dynamics described in section 5.5.1 quantitatively captures this long-time behavior of the ex-
perimental spin correlations. The green triangulars show the recovery of the singles density at
the initial site.
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Figure 5.5.11: Comparing experiment to linear string theory. Root mean square (RMS)
hole distance as measured in experiment (points) and predicted by spinon-holon model
(dashed curves).

Note that the nearest neighbor spin correlation does not turn ferromagnetic at short times, since it
results from a mixture of diagonal correlations weakened by the presence of the pinned hole. This
reversal of the antiferromagnetic pattern is the dynamical analogue to the polaronic behavior in
equilibrium observed in [267].
The nearest and next nearest spin correlations from the initial hole site shown in Fig. 5.5.10 b)
and c) clearly show the slow dynamics at long times. The swapping of the spin correlations by the
hole motion can be modeled and we can quantitatively compare the experimental measurements
to the correspondingly swapped spin correlations of the same system without a quench. In partic-
ular, we displace spins by hand in the experimental snapshots at time τ = 0 to obtain a new set of
snapshots for each time τ. In the simplest picture, the hole trajectories are predicted by the Bethe
lattice model, which does not include any exchange coupling J. As shown in Fig. 5.5.10 b) and c),
this model correctly describes the spin correlations at short times, but cannot capture the relax-
ation at long times. We can include the spinon dynamics discussed in section 5.5.1 by shifting the
experimental snapshots, and thus the effective hole origin, according to the time-dependent spinon
distribution. This picture corresponds to the formation of a magnetic polaron, in our discussion
here a spinon-holon-string, which then spreads with the spinon velocity. Including the spinon
dynamics results in an accurate prediction of the long-time behavior of the spin correlations, cap-
turing their slow return to equilibrium. The discrepancy between the spinon-holon-string and the
experimental data around τ = 1 − 2ℏ/t in the nearest neighbor spin correlation is potentially
caused by spin relaxation mechanisms beyond this model, such as magnon emission. We further-
more note that the string model in this case overestimates the RMS distance of the hole compared
to the experimental measurements, Fig. 5.5.11.
To compute the RMS hole distance, we here first convert the string-hole wave function to a proba-
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Figure 5.5.12: Dynamics in an infinite temperature background. a) A hole is created in
the center of a cylinder with a random configuration of spins. As the hole moves through the
system, it rearranges the spins and thereby leaves a memory. b) Its dynamics can therefore be
approximated as a quantum random walk on the Bethe lattice. c) For no spin couplings, J =
0, the hole spreads diffusively at intermediate times. In the case of strong Ising interactions,
Jz = 10t, the spreading is limited to comparably short distances. The faint lines are the results
for individual inital product states. Fluctuations strongly increase for finite Jz. The yellow line
corresponds to the dynamics of a single particle on the Bethe lattice with a disorder potential.

bility distribution ph,rel for rh−rs, where rh is the hole position. This is possible because every string
Σ can bemapped (by following the path Σ takes on the square lattice) to a relative position rh − rs,
so that converting ph(ℓ, τ) to ph,rel(rh − rs, τ) only requires solving the combinatorial problem of
howmany paths at each layer ℓ of the Bethe lattice arrive at each relative position rh − rs. TheRMS
distance of the hole is then given by

dRMS(τ)2 =
∑
rh,rs

ps(rs, τ)ph,rel(rh − rs, t)r2h, (5.79)

which can be computed either directly or by summing the RMS distances of ph,rel and ps in quadra-
ture.

5.5.3 in a Random Initial State

So far, we considered the dynamics of the hole starting from the ground state and a low temperature
equilibrium state of the system. However, we can also create a hole in a product state. Sampling
over a random ensemble of such product states constitutes an effective infinite temperature state
of the spin system as initial state. We expect the chargon dynamics to be well described by the
geometric string theory at finite but small temperatures, such that the spin correlations are still
non-vanishing. At infinite temperature on the other hand, all spin correlations are zero and thus no
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string tension exists. As shown in Refs. [315, 316], the chargon dynamics is nevertheless and even
for J/t = 0 still associated with a memory effect in the spin system.
As the hole moves through the system, different paths taken lead to different spin configurations.
The hole dynamics for J/t = 0 can therefore be approximated by a quantum random walk on
the Bethe lattice [315], where we assume that all paths are distinguishable. Mapping back to the
square lattice, the ballistic motion on the Bethe lattice translates to diffusive behavior. The dynam-
ics observed in our numerical simulations is consistent with this diffusive motion, Fig. 5.5.12. For
the spin 1/2 system considered here, different paths of the hole can lead to the same spin configura-
tion, rendering thosepaths effectively indistinguishable. Especially since alignedneighboring spins
occur more often, finding string patterns relative to the initial Fock space configuration is consid-
erably harder compared to the case where the hole is created in the ground state of the Heisenberg
model. Moreover, this indistinguishability of different paths can in principle lead to a slight modi-
fication of the diffusive behavior.
Introducing spin couplings effectively creates a disorder potential on the Bethe lattice. In order to
simplify our theoretical picture, we here consider only Ising interactions. The disorder potential
can be understood as follows: in each Fock space configuration, the motion of the hole by one
site from i to j changes the energy of the spin system by Δε⟨ij⟩ = 0.25Jz (ΔNσσ̄ − ΔNσσ), where
ΔNσ(σ̄)σ is the change in the number of (anti-)aligned spins on neighboring sites. The energy dif-
ferenceΔε⟨ij⟩ is therefore a randomnumber between±0.5(z̃−1)Jz with z̃ the coordination number
of the lattice. The holemotion can then be approximated by a quantum randomwalk on the Bethe
lattice with a disorder potential Wl =

∑
⟨ij⟩∈Σ Δε⟨ij⟩, where the sum runs over all bonds ⟨ij⟩ along

the string Σ. For the spin configuration depicted in Fig. 5.5.12 a), the potential of the different
hole position along the considered path isWl/Jz = 0,−1.5, 0, 0.5, 0.5 for l = 0, ..., 4 for example.
Note that for sites further apart on the Bethe lattice, the range of possible energy differences scales
with the distance between the sites.
InFig. 5.5.12 c), we consider the case of strong Ising interactions, Jz = 10t, which could for example
be realized with Rydberg interactions. Strong spin interactions lead to a strong disorder potential
and thus the spreading of the hole is significantly reduced and consistent with subdiffusive spread-
ing.
For the t−Jmodel with J⊥ = Jz = 0.5t, the spin interactions are similarily expected to constitute a
disorder potential on the Bethe lattice. The additional spin dynamics however limit our numerical
simulations for the t− Jmodel with J⊥ = Jz = 0.5t to short times. On the time scales accessible, a
fast initial growth of the rootmean squared distance to the origin is observed as in the cases shown
in Fig. 5.5.12.
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Figure 5.6.1: Distance between two holes in the ground state. For two holes in the
ground state of the t − J model on a 6 × 18 cylinder, a) the root mean square distance and
b) the distance along the cylinder (x-direction) between the holes is shown for t/J = 2, 3, 5,
evaluated from 2000 snapshots for each value of t/J. With increasing t/J, the distance distribu-
tion gets broader. For the considered parameters, the two holes are mostly within a distance
of ∼ 5 sites of each other.

5.6 TwoHoles in TwoDimensions

So far, we considered the properties of a single hole in the two-dimensional t − J model in the
ground state as well as out-of-equilibrium. Many of the observed phenomena can be explained not
only qualitatively, but also quantitatively with the geometric string theory introduced in section
5.1, where the charge excitation is bound to a spin excitation through a string of displaced spins.
For the case of two holes, different scenarios are possible and we cannot straightforwardly gener-
alize the description used for a single hole. Here we present numerical results for the ground state
of two holes in the t − J model on a cylinder obtained with TeNPy.
The most obvious quantity to consider in this case is the distance between the two holes. In

Fig. 5.6.1, the root mean square distance between the holes is shown. Since the finite circumfer-
ence of the cylinder limits the distance in y-direction to y = 3, we also show the distance along the
cylinder separately. The data shown here is evaluated from 2000 snapshots for each value of t/J.
For the smallest ratio of hopping amplitude to spin exchange considered, t/J = 2, the two holes
are on nearest or next nearest neighboring sites in almost half of the snapshots. With increasing
t/J, the distance distribution gets broader, but the holes tend to stay within approximately 5 sites
of each other even for t/J = 5.
In section 5.3, we analyzed how a single hole changes the surrounding spin correlations. In the

case of two holes considered here, we can evaluate the spin correlations for any given configuration
of the holes. If we for example consider holes on nearest or next nearest neighboring sites, which
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Figure 5.6.2: Spin correlations relative to two holes in the ground state of the t− J model
on a 6 × 18 cylinder for holes at a distance d = (1, 0) (left) and d = (1, 1) (right), marked as
black circles. a) t/J = 3, evaluated from 2000 snapshots (left) and directly from the matrix
product state (right). b) The holes are pinned in the center of the cylinder at the correspond-
ing relative distance and the spin correlations are directly evaluated from the matrix product
state. The colorscale is clipped from −0.55 to +0.55 in all cases.
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are among the most common configurations for t/J = 3, the spin correlations far away from the
holes should be unaffected and close to the corresponding value in the Heisenberg model, similar
to the case for one hole. In the immediate vicinity of the holes, the spin correlations can however
be heavily influenced, as shown in Fig. 5.6.2 a) for t/J = 3. For two holes on a nearest neighbor
bond, Fig. 5.6.2 a) left, the diagonal spin correlation next to the pair is strongly reduced, while the
other bonds remain unaffected. The case of two holes on the diagonal next nearest neighbor bond
is even more striking: the diagonal spin correlation between the holes is reversed and becomes
strongly antiferromagnetic instead of ferromagnetic.
We confirm that this effect is not purely geometric in Fig. 5.6.2 b) by considering the case of two
holes located in the center of the cylinder at the corresponding relative position to each other with
the help of a strong pinning potential V/t = 20. While the corresponding corelations are also re-
duced, there is no sign reversal and the overall effect is much weaker.
Similar correlations were evaluated for mobile holes in the ground state of the t − J model in
Ref. [317] and interpreted as a signature of hole pairing. In Ref. [15], we evaluate the connected
counterpart of the four-point spin-hole correlation considered here at finite temperature and fi-
nite doping in a quantum gas microscope. Considering the connected part means that all lower
order contributions are subtracted and we thus directly analyze signatures in the spin correlations
due to the interaction of the two holes with each other. While there is no signature of pairing in
the hole-hole correlations, the connected higher-order spin-hole correlations, in particular for the
d = (1, 0) configuration of the two holes, shows the same behavior as observed in the ground state
t − J model numerics.
In Fig. 5.6.3, we evaluate spin correlations relative to holes further apart. Correlations further away
from the holes remain unaffected, while all correlations between the holes are either strongly re-
duced, or sign reversed. Note that the statistical noise increases here, since the correlations are eval-
uated from snapshots and the corresponding hole configurations appear less frequently, as shown
in Fig. 5.6.1. In both cases considered here, the diagonal spin correlations between the holes are
strongly antiferromagnetic instead of ferromagnetic. In a simple picture similar to the geometric
string theory discussed for the case of a single hole, this can be intuitively understood by the dif-
ferent possible paths connecting the two holes, yielding the same mechanism that leads to sign
changes in the diagonal next nearest neighbor spin correlation closest to a single hole discussed in
section 5.3.
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Figure 5.6.3: Spin correlations relative to two holes at increasing distance in the
ground state of the t − J model with t/J = 3 on a 6 × 18 cylinder for holes at a distance a)
d = (2, 0), b) d = (2, 1), c) d = (3, 0), d) d = (3, 1) marked as black circles. The correlations
are evaluated in the center of the cylinder. The colorscale is clipped from −0.55 to +0.55 in all
cases.
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6
ManyHoles in TwoDimensions

This chapter is based on the publications

• Annabelle Bohrdt, Christie S. Chiu, Geoffrey Ji, Muqing Xu, Daniel Greif, Markus Greiner,
Eugene Demler, Fabian Grusdt, Michael Knap: “Classifying Snapshots of the Doped Hub-
bard Model with Machine Learning”
– Nature Physics Vol. 15, pp. 921–924 (2019) [arXiv:1811.12425]

• Christie S. Chiu, Geoffrey Ji, Annabelle Bohrdt, Muqing Xu, Michael Knap, Eugene Dem-
ler, Fabian Grusdt, Markus Greiner, Daniel Greif: “String patterns in the doped Hubbard
model” – Science Vol. 365, Issue 6450, pp. 251-256 (2019) [arXiv:1810.03584]

Structure, text and figures have been rearranged and adapted here.

Canwe understand the behavior of many holes with a theoretical description based on a single
hole? While we certainly do not describe all properties correctly, we present convincing evidence
in this chapter that a lot of the physics seen at finite doping is already captured if each hole is consid-
ered independently. Apart from the geometric string theory introduced earlier, we also compare
the experimental results to a resonating valence bond theory ansatz. For the results in this chapter,
I collaborated closely with the team from professor Markus Greiner’s Lithium experiment. In the
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following, we first describe the specifics of the experimental setup, which was already introduced
in section 2.1. Next, conventional observables like spin correlation functions are discussed. In the
remainder of the section, the ability of the quantum gas microscope to measure snapshots of the
quantum many-body state is put to use. A modified version of the string pattern finding algorithm
discussed earlier is applied to the experimental as well as theoretical snapshots. Finally, we present
our machine learning approach to the problem, where a neural network is trained to distinguish
the two theories and then has to decide which one describes the experiment best.

6.1 The Experiment

Understanding the phase diagram of the Fermi-Hubbard model remains one of the key challenges
in condensed matter theory. Experiments on cuprate materials have shed some light on the un-
derlying mechanisms, but have at the same time opened up new questions for theorists. In the
past, phenomenological and numerical approaches have provided important insights. Quantum
gas microscopy is naturally suited to assess microscopic theoretical approaches. Here, we study
the Fermi-Hubbardmodel realized with cold atoms in a quantum gas microscope as introduced in
chapter 2.
The experimental setup used here consists of a balanced two-component gas of fermionic Lithium
in the lowest band of a square optical lattice with U/t = 8.1(2), see also Refs. [76, 84]. Entropy
redistribution with a digital micro-mirror device enables a disk-shaped homogeneous system of
approximately 80 sites with temperatures as low asT/J = 0.50(4) [6, 296]. The local chemical po-
tential can be altered, thus doping the system, while the temperature is independently controlled
[6]. We use the nearest-neighbor spin correlator to determine the temperature by comparing to
numerical data.
The quantum gas microscope provides projective measurements of the quantum state of the sys-
tem in the parity-projected Fock basis. In the case of the doped Fermi-Hubbard model, parity-
projection means that a double occupancy cannot be distinguished from a hole. In the current
state of the experiment, the measurements of the microscope moreover only tell us whether there
is an atom or not, but does not reveal the hyperfine state, which encodes the spin. We can how-
ever selectively image one of the spin states by removing the other spin state before imaging, as
discussed in section 2.1. For each doping value considered below, we usually have three sets of
snapshots: one where only spin ups are imaged, one where only spin downs are imaged and one
where both spin up and spin down are imaged. Note however that this does not allow us to infer
the occupation of a given empty site in any one of the snapshots, as each image corresponds to a
separate run of the experiment.
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Figure 6.1.1: Spin correlations as function of doping and temperature. a) prior to
grouping by doping shows additional spread from statistical fluctuation and temperature.
The temperature of each dataset is indicated by the colorbars; the average temperature of all
datasets, weighted by dataset size, is T = 0.65(4)J. b) Comparison of the measured nearest-
neighbor spin correlator to determinantal quantum Monte Carlo simulation shows that as we
dope the system, its temperature does not increase.

Due to the fact that only one spin species is imaged in each snapshot, the spin-spin correlations

Cs(d) = (−1)||d||
∑
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need to be evaluated through particle correlations. In Ref. [63] it was found that the spin-spin
correlations can be expressed as

Cs(d) =
1
2

∑
σ∈{↑,↓}

(⟨pp⟩Rσ + ⟨hh⟩Rσ − ⟨ph⟩Rσ − ⟨hp⟩Rσ)− ⟨hh⟩NR − (⟨p⟩R↑ − ⟨p⟩R↓)
2, (6.2)

where the indices for the two different sites have been droped and the subscripts refer to no re-
moval (NR), removal of spin up (R ↑) or removal of spin down (R ↓) atoms. The correlations
⟨pp⟩, ⟨ph⟩ etc. are then the particle particle, particle hole and hole hole correlations averaged over
the snapshots after the corresponding removal for the distance d. For a more detailed discussion,
see Ref. [63]
Thedatapresented in section6.3 includes sampleswith temperaturesbetween0.5J and0.7J, binned
by doping values with 2% resolution. In Fig. 6.1.1 a) we plot Cs(1), Cs(

√
2), and Cs(2) versus dop-

ing for each individual experimental dataset, where colorbars for eachquantitydenote temperature.
While it is clear that colder temperatures are accompanied by stronger correlations, crucially one
can see that the zero crossing of Cs(

√
2) persists across the entire temperature range included.
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Wecanalso compare the experimentallymeasureddopingdependenceof thenearest neighbor spin
correlator Cs(1) to determinantal quantum Monte Carlo calculation of the Hubbard model on an
8× 8 homogeneous square lattice using the Quantum Electron Simulation Toolbox, see Fig. 6.1.1
b) [79, 318]. Agreement between the two indicate that our experimental approach to doping the
system does not change the temperature of the sample beyond experimental uncertainty.
The doping itself is determined from the single-particle occupation density (singles density). As
discussed in chapter 3, there are doublon-hole fluctuations in the Fermi-Hubbard model, which
are mostly restricted to nearest neighboring sites. Due to the parity projected measurements in
the experiment, doublons appear as empty sites. The doping can therefore not simply be deter-
mined by counting the number of singly occupied sites in the snapshots. Instead, we obtain the
doping as a function of the singles density from independent numerical simulations. For data be-
tween T = 0.6J and T = 0.8J we use data obtained from a determinantal quantum Monte Carlo
algorithm [79, 318], and for all larger temperatures we use data obtained from a numerical linked-
cluster expansion algorithm[150]. ForT < 0.6J, the signproblembecomes significant. As a result,
in this regime we use data at T = 0.6J, as the density sector of the equation of state is relatively
insensitive to temperature here. We account for an imaging fidelity of 98.5%. When statistical fluc-
tuations cause the singles density to exceed the numerically-obtained singles density at half-filling,
we treat those samples as at half-filling. As discussed in section 2.1, the ramp protocol in the ex-
periment can influence the number of doublon-hole pairs as well as the distance between doublon
and hole in the snapshots.
When determining the standard error of doping values for each experimental dataset, we assume
that the particle density is linearly dependent on singles density. We apply a linear fit to doping
versus singles density from the numerical simulation mentioned above, yielding approximately
δ = 1.22 × (0.905 − ns), where δ is doping and ns is the singles density. We then calculate the
standard error of the singles density and use the linear fit result to get the standard error of the
mean doping value.
Since the actual doping value varies across datasets, we group datasets by their mean doping values
within windows of width 2%. This yields a single mean doping value d̄ for the entire group. The
associated uncertaintyΔ is determined by assuming each dataset kwithin the group was taken at a
different doping value dk with a corresponding uncertainty δdk. Then Δ can be calculated as:

Δ =

√
1∑
k nk

∑
k

((dk − d̄)2 + δdk
2)nk (6.3)

For datasets which are sufficiently close to half-filling, fluctuations of additional holes or particles
will both result in a decrease of the singles density. This single-sided cut-off of statistical fluctua-
tions will lead to a systematic offset in the mean. To estimate this offset, we assume that the statis-
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tical fluctuations in total density follow a normal distribution centered at half filling with standard
deviation σ. Then the resulting distribution in the singles density follows a half-normal distribu-
tion, characterized by an offset in themean of σ

√
2/π and standard deviation of σ

√
1− 2/π. Note

that this provides an upper bound of the systematic offset, because in reality our datasets are not all
centered exactly at half filling. If we consider all datasetswhich arewithin one standard deviation of
half filling, this results in an estimated systematic offset in the mean doping of the grouped dataset
of about 0.25%. This systematic uncertainty is included in the errorbar for half-filling doping val-
ues. We note that a higher-order correction to the dependence of the singles density on the total
density makes the singles density less sensitive and therefore would only decrease the magnitude
of this systematic error.
Based on the experimental snapshots at half-filling, we can generate a dataset of geometric string
theory snapshots for each desired doping value, as outlined in section 5.2.4. Using the effective
geometric string Hamiltonian ĤΣ introduced in section 5.1, we can calculate the expected string
length distribution. We consider a thermal state ρ̂Σ = eβĤΣ

/ZΣ for the string part. Theoverall state
ρ̂ = ρ̂1/2⊗ ρ̂Σ factorizes andwe use the experimental temperatureT = 0.6J throughout. This fixes
the string tension (dE/dl) = 0.85J, which we obtain by calculating the finite-temperature spin
correlations Cs(1), Cs(

√
2) in the undoped Heisenberg model using a standard quantum Monte

Carlo code from the ALPS package. We keep track of the exponentially large string Hilbert space
by making use of the discrete rotational symmetries of the Bethe lattice which are present when
the string potential depends only on the length lΣ of the string. Note that in this section, we show
string lengths in units of sites rather than the bond count: the length of a string l (in sites) is re-
lated to the length lΣ (in bonds) as l = lΣ + 1. We fix the quantum numbers σ and j specifying the
beginning of the geometric string. However, spin-exchange processes introduce matrix elements
between states with different initial positions, |j, σ, Σ⟩ and |j′, σ, Σ′⟩ with a strength ∝ J smaller
than the dominant hopping amplitude t > J. As a result of such processes, we expect that j can be
chosen randomly. Thebeginnings of different fluctuating strings are expected to become correlated
at sufficiently low temperatures. However, since their dynamics is determined by an energy scale J,
and the experimental temperature is of similar order ofmagnitude, we expect that such correlations
between j1 and j2 associated with two different holes can be neglected in the current experimental
regime.
Additionally, we generate a set of sprinkled hole snapshots for each doping value under consider-
ation by placing the corresponding number of holes into the experimental half-filling data at ran-
dompositionswithoutmoving themafterwards, thus effectively realizing a geometric string theory
dataset with string length lΣ = 0 throughout.
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6.2 π Flux Theory

Anderson’s resonating valence bond (RVB) picture [30] considers trial wavefunctions of free holes
moving through a spin liquid comprised of singlet coverings. Originally, Anderson suggested RVB
states as possible ground state of the two dimensional Heisenberg model. It can be shown that if
the total state of a system is a singlet, the state can be written as a superposition of states, each of
which corresponding to some singlet configuration. In particular, in every one of those states, each
spin is part of a singlet. Resonating valence bond states describe states which are superpositions of
different coverings of the lattice with singlets, typically on nearest neighbor bonds. Note that if the
system size goes to infinity, the ground state of the 2D Heisenberg model spontaneously breaks
a symmetry and possesses long-range anti-ferromagnetic order, which cannot be described by a
quantum spin liquid. After the discovery of high temperature superconductivity, Anderson put
RVB states forward as description of the regime at finite doping, where the holemotion introduces
frustration.
Here,wewant to compare experimental data fromthedopedFermi-Hubbardmodel to anSU(2) in-
variant quantum spin liquid ansatz. We consider one particular class of RVB wavefunctions which
has been studied extensively, called π-flux states [277, 319], see also section 5.1.1. While we can
in principle construct many different resonating valence bond wavefunctions, we assume that the
details of theRVB theory are not highly relevant, since these are usually probed through longwave-
length properties, which we do not consider here. The variational energy of the π-flux state pro-
vides a reasonable estimate of the ground state energy at half-filling and also appears at finite tem-
perature and doping in the phase diagram calculated by Wen and Lee [277]. At half-filling, the
Gutzwiller projected π-flux state is equivalent to theGutzwiller projected d-wave superconducting
ground state [277]. Sampling snapshots from the d-wave superconducting ground state is some-
what involved, since the number of fermions is not conserved and one therefore needs to consider
arbitrary particle number sectors simultaneously. In order to understand howwell a quantum spin
liquid state can describe the Fermi-Hubbard model at finite doping, we here consider the reason-
able yet comparably simple π-flux state.
The resonating valence bond states can be obtained from a Gutzwiller projected mean field state.
In order to obtain amean field description of a spin liquid, we use the samedescription as in section
4.2 and express the spin operators as

Ŝi =
1
2

∑
α,β

f̂†i,ασα,β̂fi,β, (6.4)
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see Eq. 4.29. We proceed as before and replace the operator f̂†i,α̂fj,α by its expectation value χij. The
π-flux state is now given by the ansatz [28]

χi,i+x = iχ1, χi,i+y = iχ1(−1)ix . (6.5)

The mean field Hamiltonian is then equivalent to free fermions hopping on a square lattice with
π flux per plaquette. We obtain the snapshots for the π-flux state by sampling from the thermal
density matrix of the mean field Hamiltonian as described in detail in section A.3. In the sam-
pling process, each site in real space can only be empty or occupied by one of the two fermion
species. We thus avoid double occupancies and directly perform aGutzwiller projection. Without
the Gutzwiller projection, double occupancies are not penalized in the mean field theory and thus
appear more frequently than expected from the original problem.
Note that already in the description of a single hole in the ground state in sections 5.3 and 5.4, we
used a similar construction to obtain a trial wavefunction for the spin background at half-filling.

6.3 ConventionalObservables

For each doping value, we now have four sets of snapshots: the experiment, π flux theory, the
geometric string theory, and sprinkled holes. These datasets can be analyzed for a variety of ob-
servables. Conventionally, one- and two-point correlation functions are studied.

6.3.1 Spin Correlations

In order to determine how far the antiferromagnetic ordering of the system spreads, we consider
two point spin correlation functions, Eq.6.1. Evaluating these correlations as a function of the dis-
tance, we obtain the correlation length. According to the Mermin-Wagner-Hohenberg theorem,
the continuous SU(2) symmetry cannot be spontaneously broken in two spatial dimensions in the
thermodynamic limit at finite temperature, and thus there is no long-range spin order. However,
in this experiment, the system sizes are finite with a linear system size of about ten sites. For suffi-
ciently low temperatures T < J, the correlation length can become comparable to the system size.
The antiferromagnetic correlations extend then across the entire system. Given that we later want
to apply an algorithm similar to the string pattern finding algorithm introduced in section 5.2.1, the
correlation should span adistance comparable to the linear size of the system. InFig. 6.3.1, we study
the sign corrected spin correlations as a function of distance for low temperatures, T ≤ 0.7J and
high temperatures, T > 1.2J. Note that the data at half-filling is the same data shown in Fig. 6.1.1
grouped for a range of temperatures. For the experimental temperatures of T = 0.6J, the spin
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Figure 6.3.1: Spin correlations as function of distance for doping δ = 0 and δ = 0.09 and
a) cold and b) hot temperatures. The spin correlations are obtained from the particle particle,
particle hole and hole hole correlations in snapshots without removal and after removal of spin
up or spin down atoms, Eq. 6.1.

correlations at large distances are still finite, but small. Upon doping, these correlations decrease
further, as shown in Fig. 6.3.1. We therefore primarily analyze local correlation functions and com-
pare the two theories to the experiment at different doping values. In Fig. 6.3.2, the spin correla-
tions for d = 1, d =

√
2, and d = 2 are shown as a function of doping. Asmore andmore holes are

introduced into the system, the spin correlations get smaller. This qualitative behavior is captured
by both theories and to some extend even by the sprinkled holes dataset. However, at a doping
value of about 20%, the diagonal next-nearest neighbor spin correlations change sign and become
negative, see Fig. 6.3.2 b). While the π-flux theory predicts a slow further decay towards zero, the
geometric string theory correctly predicts the sign change.
This effect can be understood directly in the string picture: as the holes move through the system,
the spins are re-arranged and spins which used to be nearest neighbors, are suddenly next-nearest
neighbors. The – formerly positive – next-nearest neighbor spin correlator therefore now contains
an admixture of the nearest neighbor spin correlator, which is negative andbigger. Once thedoping
is high enough, the diagonal next-nearest neighbor spin correlator averaged over the entire system
therefore turns negative. We observed the same effect in section 5.3, where in the ground state of
the t − J model with a single hole, the diagonal next-nearest neighbor spin correlation function
closest to the hole was strongly suppressed, see Fig. 5.3.2. While the three point correlation func-
tion between two spins and a hole cannot be evaluated in this experimental setting, it has been
extracted in two recent works from Immanuel Bloch’s group [15, 267]. In Ref. [15], we compare
the corresponding connected correlations to the geometric string theory as well as a uniform and
π-flux RVB state. The latter does not capture the experimentally observed behavior of the con-
nected three point correlation functions.
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Figure 6.3.2: Spin correlations as function of doping. Decay of a) nearest-neighbor, b)
diagonal next-nearest-neighbor, and c) straight next-nearest-neighbor spin-spin correlation
functions upon doping. While the π-flux theory most quantitatively explains Cs(1), only the
string model captures the sign change of Cs(

√
2) and more quantitatively explains the two

longer-distance correlators. In all three cases, sprinkled holes overestimate the spin correla-
tions.

Thesame reasoning holds in principle for the straight next-nearest neighbor correlator. In this case,
the absolute values of the correlation function are even smaller, thus rendering a statement about
the sign change harder. The nearest neighbor spin correlator decays as a function of doping, but
stays negative up to the largest doping values considered. The quantitative behavior is extremely
well described by the π-flux theory, where the free fitting parameter was used to optimally match
the experimental half-filling Cs(d = 1). The geometric string theory captures the qualitative be-
havior, but does not match the experiment as well as the π-flux theory does. One possible reason
is the existence of doublon hole pairs: we do not know the location of doublon hole pairs in the ex-
perimental half-filling snapshots on which the geometric string theory is based. Upon introducing
and moving holes by hand in those snapshots, doublon hole pairs will get split up, which can lead
to a smaller nearest neighbor correlator. This is an artifact of the way the geometric string theory
snapshots are generated and the lack of full information about hole and doublon positions in the
experimental data. Another possible explanation are back actions of the spin system, which starts
to heal the string. Such a healing process would presumably first affect the nearest neighbor spin
correlations, since those directly appear in the Hamiltonian. In Fig. 6.3.3, we study sign-corrected
spin-spin correlations up to distance d = 3 for experimental data, geometric string theory and
π-flux theory. The longer-distance spin correlations have however very small absolute values at in-
creased doping, such that a clear statement about a possible sign-change in the experimental data
is difficult.
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Figure 6.3.3: Spin correlations up to distances of three sites as function of doping
from experiment (left), geometric string theory (middle), and π-flux states (right). Geometric
string theory seems to explain the experimental data more closely than π-flux states.

Figure 6.3.4: Full counting statistics of the staggered magnetization for doping values
of 6.0(5)% (left), 10.0(8)% (center), and 19.7(6)% (right). Both π-flux states and geometric
string theory show reasonable agreement, whereas sprinkled holes do not. The figure is based
on more than 29, 900 experimental realizations at an average temperature of T = 0.65(4)J.

6.3.2 Staggered Magnetization

The spin correlations analyzed above were averaged over the entire ensemble of snapshots. As a
first step in making full use of the capabilities of the quantum gas microscope, full counting statis-
tics of quantities are considered. In particular, we calculate the staggered magnetization for each
snapshot and study histograms showing how often which value of the staggeredmagnetization oc-
curs in the entire set of snapshots. In Fig. 6.3.4, the staggeredmagnetization full counting statistics
is shown for three different doping values. With increasing doping, the distribution gets narrower.
This can be understood as a loss of antiferromagnetic ordering due to themotion ofmore andmore
holes in the system. The snapshots where holes are sprinkled into the experimental half filling im-
ages do not capture this effect at all. Both the π-flux as well as the geometric string theory predict
the behavior seen in the experimental data and show very good quantitative agreement. For small
dopings, Fig. 6.3.4 a), the geometric string theory describes the experimental resultsmore accurate
than the π-flux theory, which underestimates the antiferromagnetic ordering in the system a bit.
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Figure 6.3.5: Distance dependence of anti-moment correlations for a) low and b) high
doping values. The correlation functions are in stark contrast up to distances of d =

√
5.

6.3.3 Anti-moment Correlations

The observables studied so far contain only information about the spin sector and in the geometric
string theory we even assume that the holes are uncorrelated. Experimentally, we can access anti-
moment correlation functions in the entire parameter regime studied so far. Based on previous
theoretical investigations and solid state experiments, signatures of hole pairing, stripe phases and
even hole anti-bunching are expected in different regions of the phase diagram, see chapter 3.
Since in the snapshots obtained from this experiment, doublons and holons are indistinguishable,
we consider anti-moment correlations

Ch(|d|) = ⟨(1− n̂s,i) (1− n̂s,i+d)⟩ − ⟨(1− n̂s,i)⟩ ⟨(1− n̂s,i+d)⟩ , (6.6)

where n̂s,i is the single particle occupation on site i. The anti-moment correspond to the moment
correlations, since on every site in the experimental images there is either a particle or no particle.
At half-filling, numerical simulations predict an increased nearest neighbor anti-moment corre-
lator due to doublon hole pairs. In the experiment, this effect is observed qualitatively but with a
smaller amplitude than predicted theoretically. This quantitative disagreement is most likely based
on imperfect imaging fidelity and does not change the qualitative results presented here. In order
to avoid signatures based on doublon hole pairs, we focus on anti-moment correlations between
sites further apart than nearest neighbors.
In Fig. 6.3.5, the distance dependence of the anti-moment correlations for 3% and 19% doping is
shown. Close to half filling, the nearest neighbor anti-moment correlation is positive due to dou-
blon hole pairs and for further distances, the correlations are approximately zero. However, upon
increasing doping, all anti-moment correlations up do distances d = 2 are statistically significantly
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negative, indicating a hole-hole repulsion in this regime. The negative anti-moment correlations
at distance d = 1 correspond to correlations between sites of different sub-lattices and indicate
that holes do not tunnel preferentially between sites of one sub-lattice, as was predicted by theo-
ries of point-likemagnetic polaronswith a dispersionminimumat (π/2, π/2) in the Brillouin zone
[243, 244, 246, 248]. At larger distances, even though there appear to be some oscillations in the
anti-moment correlations, within error bars the holes are uncorrelated.
The anti-moment correlations in Fig. 6.3.5 are compared to π-flux theory data. Within error bars,
π flux theory shows good qualitative agreement with the experimental data for the anti-moment
correlations.
As a reference, we additionally consider a phenomenological theory of free fermionic chargons
described by an effective Hamiltonian

Ĥch = t
∑
⟨ij⟩

(
ĥ†j ĥi + h.c.

)
(6.7)

on a square lattice. The chargon-chargon correlations in this theory are calculated from the cor-
responding thermal density matrix ρ̂ch = e−βĤch with β = 1/kBT the inverse temperature and
T = 0.3t as in the experiment. The free chargon theory is motivated by considering magnetic po-
larons with a finite extent due to the spinon-chargon bound state predicted by the geometric string
theory. At sufficiently large doping, the geometric strings are expected to overlap substantially,
yielding a chargon dispersion relation independent of the spinons. As a consequence, a decon-
fined phase of spinless chargons may be realized. Here, we consider free fermions for simplicity,
but qualitatively similar anti-correlations are expected for a gas of bosonic chargons with hard-core
repulsion. Apart from an overestimation of the d = 1 anti-moment correlation, the free chargon
theory shows good agreement with the experimental results, Fig. 6.3.5.
We further characterize the observed anti-correlations by studying the doping dependence of the
diagonal and straight next-nearest neighbor anti-moment correlations inFig. 6.3.6 a). Starting from
doping values of approximately 10%, the anti-moment correlations are consistently negative out-
side of the error bars and continue to decrease as more holes are introduced into the system. The
anti-moment correlation function considered so far contains trivial contributions from doublon
hole pairs present in the system. In Fig. 6.3.6, we study the anti-moment correlation function nor-
malized by the amount of holes doped into the system δ:

g̃(2) (|d|) = Ch(|d|)
δ2

+ 1. (6.8)
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Figure 6.3.6: Doping dependence of anti-moment correlations. a) Diagonal next-nearest
neighbor and straight next-nearest neighbor antimoment correlators versus doping. At both
distances negative correlations grow with doping. b) Normalized antimoment correlator at
d =

√
2 versus doping. The experimental result cannot be explained by the π-flux or a point-

like magnetic polaron theory (see text), but instead matches a free fermionic chargon the-
ory. Error bars on the doping are calculated as described in section 6.1. All other error bars
represent one s.e.m.. The figure is based on more than 9900 experimental realizations at an
average temperature of T = 0.65(4)J.

The rescaled correlation function can now be directly compared to theoretical approaches without
doublon hole pairs. In particular, we here compare to π flux theory data without artificially intro-
duced doublon hole pairs in order to avoid any artifacts due to the chosen procedure.
Given the small number of introducedholes below5%doping, no statement canbemade about the
correlations in the experimental data in this regime. As mentioned above, in the geometric string
theory data used so far, we assumed that the chargons are completely uncorrelatedwith each other.
In Fig. 6.3.5, we compared the experimental data to a free chargon theorymotivated by a picture of
strongly overlapping strings. The comparison for the normalized g(2)(d =

√
2) function, Fig. 6.3.6

b), shows consistency of this theoretical approach with the experiment.
We additionally compare the experimental results to a description of the chargons as point-like
magnetic polarons in terms of the tight-binding Hamiltonian

Ĥmp =
∑

k

εmp(k)m̂†
km̂k (6.9)

with the known dispersion relation of the dressed hole [246, 248]

εmp(k) =
[
4χ2J2| cos(kx)e−iΦ/4 + cos(ky)eiΦ/4|2 + B2

st/4
]1/2

. (6.10)
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This model is motivated by the mean-field description of the Néel state with staggered flux, where
the parameters χ = 0.8, Bst = 0.35J, and Φ = 0.4π are chosen such that the quantum Monte
Carlo results at J = 0.4t are correctly captured [253]. The comparison in Fig. 6.3.6 b) shows that
this approach is incompatible with the experimental data, since the former predicts significantly
weaker hole-hole anti-correlations. In the π-flux theory, the doped holes are similarily modeled as
point-like objects moving in a quantum spin liquid of singlets. As can be seen in Fig. 6.3.6 b), this
theory underestimates the magnitude of the anti-correlations as well.
Note that we do not compare directly to the geometric string theory and sprinkled hole snapshots,
as the holes in both datasets are placed at random positions and there are thus no correlations
between them.

6.4 String Patterns

Measurements performed in quantumgasmicroscopes containmore information than the observ-
ables discussed so far. As explained in detail in section 5.2, a set of several hundreds or thousands
of snapshots can be analyzed for different patterns and thereby we can aim to take more – if not
all – available information into consideration. For the sets of snapshots considered here, the algo-
rithm outlined in section 5.2 has to be slightly modified for two main reasons. First, we consider
finite doping here, so for most datasets there is more than one hole in each snapshots and different
string patterns can overlap. Second, the positions of the holes are not known and we can there-
fore not take the longest string-like object attached to a hole as string pattern as we did before. We
tackle these problems by hard-coding a procedure to extract string patterns. As before, we take as a
reference the checkerboard pattern where the sublattice magnetization is chosen according to the
snapshot under consideration. Analyzing the sites which deviate from the checkerboard pattern,
we extract string patterns according to the following rules [6]:

1. every string pattern is a connected subset of sites forming a path without branching points,

2. each site can only be part of one string pattern,

3. longer string patterns are favored,

4. every string pattern must have at one end a site which is detected as empty, and therefore
consistent with having a hole on that site.

Amoredetailed versionof this algorithmaswell as twomodifications and the corresponding results
are discussed in section A.4. Since the hole positions are not known here, almost every deviation
from aNéel state will be counted as a string pattern. Therefore, already at half filling a large number
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FIG. S1. String detection algorithm. This schematic outlines the string detection algorithm used in the main text and
described in section 3.1 of the supplementary text. The algorithm only uses images with one spin species removed. After
postselection, the deviation from a reference checkerboard pattern is used to identify string patterns.

Figure 6.4.1: String pattern finding algorithm for the experimental data at finite temper-
ature and doping and unknown hole positions. The algorithm only uses images with one spin
species removed. After postselection, the deviation from a reference checkerboard pattern is
used to identify string patterns.
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Figure 6.4.2: String patterns for different temperatures at half filling and 10% doping
and comparison with simulated models, for temperatures below a) and above b) the superex-
change energy J. The observable is only sensitive to doping in the colder dataset, and simu-
lated strings seem to fit the doped experimental result best. Points have been slightly offset
horizontally for readability and insets plot the same data on linear-linear axes. c) Relative and
absolute (inset) difference between doped and undoped pattern-length histograms, highlight-
ing temperature-dependent sensitivity. The sprinkled-hole result is used for the undoped case
as it accounts for the change in density.

of string patterns is extracted, yielding a considerable background signal, Fig. 6.4.2 a). In order to
be able to observe a change with finite doping, we consider only string patterns which are longer
than two sites in the total string pattern counts discussed later, thus omitting the signal from the
most common spin fluctuations.
Moreover, as opposed to sections 5.3 and 5.5, the spin background does not correspond to the
ground state of the system, but a finite temperature statewith additional thermal excitations, which
lead to additional deviations from the Néel state. In particular, for the temperatures realized in
the experiment, the correlation length of the spin system is smaller than the system size. In each
snapshot, we therefore consider a smaller window with a linear size of seven sites, Fig. 6.4.1. This
window is moved through the snapshot and the position with the highest staggered magnetiza-
tion is taken, assuming that in this area, the measurement axis is aligned with the direction of the
Néel order parameter. Additionally, we post-select the new set of smaller snapshots to be analyzed
for string patterns and consider only the 50% with the highest value of the staggered magnetiza-
tion for each doping value. Note that we choose a fraction of available snapshots instead of a fixed
threshold. Based on the assumption that the hole motion reduces the antiferromagnetic order in
the snapshots, we do not want to only use snapshots above a fixed staggeredmagnetization thresh-
old, but also capture those with lower staggered magnetization due to the motion of the holes. In
Fig. 6.4.2 a), the string length distribution pδ(l) is shown for the lowest experimentally achieved
temperatures, T < 0.7J, and doping δ = 0.0 (red), as well as δ = 0.1 (blue). For all string pattern
lengths except for l = 2 and l = 4, a clear difference between half filling and finite doping is visible.
The comparably high values of p0.0(l = 2) and p0.0(l = 4) stem from the same effect as discussed
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in section 5.3 – spin exchange processes leading to a deviation of two sites from the Néel state.
The finite doping δ = 0.1 case is compared to the string length distributions obtained from the
corresponding snapshots for the geometric string theory, π flux theory, sprinkled holes as well as
an infinite temperature state. The sprinkled holes scenario shows almost no difference to the half
filling case, suggesting that the mere existence of additional holes is not sufficient to account for
the increase in string patterns found in the snapshots. The π flux ansatz as well as the geometric
string theory show good agreement with the experimental data for a doping of δ = 0.1. It should
be noted, however, that both theories as well as the experiment almost coincide with the infinite
temperature limit for δ = 0.1, suggesting that a form of saturation, where no additional string pat-
terns can be found, is reached here.
For high temperatures, T > 1.5J, there is almost no difference between half filling and finite dop-
ing anymore, both closely resemble the infinite temperature case, Fig. 6.4.2 b). In particular, the
experimentally found number of string patterns p0.1(l) at δ = 0.1 relative to the sprinkled holes
case p0.1s (l) is significantly enhanced at long string lengths for the cold data, whereas no increase
in the number of string patterns is found in the hot data, Fig. 6.4.2 c). Considering the absolute
instead of the relative difference in the string length distributions shows an increase in the number
of extracted string patterns across all lengths for the cold experimental data at a doping of δ = 0.1.
By summing over the number of found strings of all lengths, we obtain a total string count. Here,
we neglect strings of length two sites and shorter to avoid an overly large background signal. In
Fig. 6.4.2 d), we systematically study the difference in the string count between the experimental
data at 10% doping and the sprinkled holes snapshots at the corresponding doping value. With in-
creasing temperature, the difference in the string count decreases and for temperatures T > J, no
significant signal is measurable. As can be seen in the inset, this effect is mainly due to the fact that
the background signal measured in the sprinkled holes data increases considerably with increasing
temperature, thus making it hard to see any effects due to the actual doping.
In Fig. 6.4.3 a) we evaluate the same quantity, the total string count, for the lowest temperatures
achieved in this experiment as a function of doping. For doping values up to about 10%, the string
count per site increases approximately linearlywith the doping. For doping values bigger than 15%,
the string count saturates. This ismost likely an effect of the string pattern finding algorithm, which
is limited to finding a certain number, depending on the specific length distribution, of strings in
a snapshot. As expected from the previous results, the sprinkled holes do not capture the increase
seen in the experimental data, and instead only show a small growth as a function of doping. The
geometric string theory, on the other hand, captures the experimental result remarkably well over
all doping values. As shown in sectionA.4, the input string length distribution used to generate the
geometric string theory snapshots is crucial to obtain this agreement – considering input distribu-
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Figure 6.4.3: String pattern count and average length for different doping values at
the lowest achieved temperatures T < 0.7J. a) (Top) Total number of string patterns ex-
ceeding length 2, normalized by the system size, as a function of doping. Although the string
model and sprinkled-hole simulation both agree with experiment at half-filling by construction,
already at low doping the string model performs significantly better than sprinkled holes. The
string model is quantitatively accurate across a larger doping range than for π-flux states, but
both are in better agreement with experiment than the sprinkled-hole simulation. (Bottom)
Although the absolute difference between doped and sprinkled-hole pattern-length histograms
increases with doping, the shape remains roughly invariant. b) Average string-pattern length
versus doping. Doped AFMs exhibit longer-length string patterns compared to heated AFMs,
even when the staggered magnetization or nearest-neighbor spin correlator is equal and holes
are sprinkled in to equate doping levels (see text). c) Total string count at 10% doping as a
function of temperature, with corresponding sprinkled-hole string count subtracted. Sensitiv-
ity to strings decreases with temperature owing to decreased order in the parent AFM as seen
in the sprinkled string count (inset). In a) and b), error bars on the doping are calculated as
described in section 6.1. All other error bars represent 1 s.e.m.. The figure is based on more
than 24, 800 experimental realizations.
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tions given by different temperatures leads to bigger deviations from the experimental results. In
comparison to the geometric string theory, the π flux theory captures the qualitative behavior but
overestimates the string count at small dopings and underestimates it at large values of the doping,
thus yielding a slightly worse quantitative agreement with the experimental data.
From the string length distribution pδ(l) we can furtermore obtain an average string length given
by the weighted average

⟨l⟩δ =
∑

l

pδ(l)l. (6.11)

In the geometric string theory picture, where we treat each hole independently of all the other
holes, the string length should stay constant. With small modifications, this is what we observe
up to doping values of almost 20% for both the experimental data as well as the geometric string
theory snapshots. For larger dopings, the string patterns start to overlap substantially, which leads
to overall shorter strings as different string patterns cut each other into smaller pieces.
In order to ensure that we defined new observables and not merely complicated measures for the
magnetic ordering, we compare these results to experimental data at higher temperatures, where
the magnetic ordering is lost due to the increased temperature instead of the finite doping. To
this end, we use experimental data at temperatures between T = 0.7J and T = 1.6J. From each
temperature dataset, we obtain a number of new datasets with holes sprinkled in according to all
doping values under consideration. We thus obtain a set of snapshots for each temperature and
doping value. From the experimental data at finite doping, we determine the average staggered
magnetization mz as well as the nearest neighor spin correlations C1. For a given doping value, we
then compare mz as well as C1 to the finite temperature data with the corresponding number of
holes sprinkled in. It is necessary to compare to the hole sprinkled data since the string pattern ob-
servables are constructed to be to some extent sensitive to the total number of holes present in the
snapshots. For each doping value, the corresponding set of snapshots with the same mz (orange)
or C1 (red) is selected and the average string pattern length is shown. As can be seen in Fig. 6.4.2
c), both approaches lead to a different qualitative behavior than the actual experimental doping.
At half filling, the same dataset is analyzed for the experimental doping, both high temperature ap-
proaches and the geometric string theory. As soon as the doping is increased, the average string
pattern length obtained from both high temperature approaches decreases almost linearly and is
significantly smaller than the results from experimental doping. We are thus confident that the
string pattern observables measure qualitatively new physics as compared to conventional observ-
ables.
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Figure 6.5.1: Machine Learning snapshots from the Fermi-Hubbard model. Exemplary
snapshots from the experiment, geometric string theory and π-flux theory at half-filling and
9% doping (left). A neural network is trained to distinguish geometric string from π-flux the-
ory. After training, the network is shown experimental snapshots and has to assign one of the
theory labels (right), see text. Image by C. Hohmann.

6.5 Classifying Snapshots withMachine Learning

So far, we compared the experimental data to π-flux and geometric string theory with respect
to specific observables, namely conventional quantities like the staggered magnetization and two
point correlation functions as well as string patterns. The latter were specifically taylored for the
geometric string theory and it is not straightforward to find a comparable observable for the π-flux
theory – or any other theory one might want to compare the experimental data to.
In order to decide which theory fits the experiment best, taking into account all available data,
we now choose an approach without any bias towards one theory by employing machine learning
methods. In the past few years, machine learning has become a valuable tool in condensed matter
physics.
Itsmain applications so far include representing the wave functions of correlatedmany-body states
[320–323], the determination and characterization of a phase transition [324–333], quantum state
tomography [334, 335], hypothesis testing for experimental scanning tunneling microscopy data
[336], and to support quantum simulation experiments, for example in optical readout in quan-
tum gas microscopes [337] or optimized quantum circuits in digital quantum simulation [338].
For a recent review, see Ref. [339]. Here, we take an alternative route and use a convolutional
neural network (CNN) to classify experimental data at finite doping into different theoretical cat-
egories in order to determine which theory describes the system best on the microscopic level,
see also section A.5. This approach provides insights into the underlyingmicroscopic structures of
the state, which may be inaccessible to conventional observables but can be essential for gaining a
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Figure 6.5.2: Classifying single snapshots of the many-body density matrix. a) Ran-
domly chosen snapshots from the experiment and the two theories. Colored sites are occu-
pied by one spin species, gray sites represent the other spin species, holes and doublons. b)
The convolutional neural network is trained to identify to which dataset category any given
snapshot belongs. Here, we consider experimental data, geometric strings and snapshots from
π-flux theory, all at 9% doping. The probabilities in c) show how a sample of 400 snapshots
which have not been used during training is classified. While the π-flux theory is recognized
comparably well, a clear separation between experimental data and geometric strings is not
possible. The standard errors of the mean over ten repetitions of the process are shown by the
errorbars, see text for details.

deeper understanding of the emergent physics. First, we train a convolutional neural network to
distinguish snapshots from the following three categories: experiment, π flux theory, and geomet-
ric string theory, all at 9% doping. The resulting classification of a test set of data not used during
training is shown in Fig. 6.5.2. Here, the x axis displays the actual class of a snapshot, while the y
axis corresponds to the probability with which the network sorts it into the different categories.
The overall accuracy achieved for this task is 47%, which is a comparably low value. Notably, the
network manages to distinguish π-flux from geometric string theory data with a higher accuracy.
In particular, the experimental snapshots are classified as such in less than half of the cases. This
indicates that it is in principlemeaningful to classify the experimental images as one of the two the-
ories, because otherwise experimental images would be classified correctly most of the time.
Next, wemake use of one of themost powerful features of neural networks: their ability to general-
ize to new data not encountered during training. We train the neural network to distinguish π-flux
from geometric string theory snapshots at each doping value and subsequently input experimental
images into the network, which then has to assign one of the two theory labels. This classification
shows how similar the experimental data is to the theoretically simulated data. In Fig. 6.5.3 b),
the resulting classification is shown. Up to doping values of about 15%, significantly more experi-
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Figure 6.5.3: Training to distinguish theories. a) The network is trained to distinguish
snapshots from geometric string theory (blue) and π-flux theory (orange) at each doping
value. After the training sequence, experimental images at the same doping are shown to the
network. b) The average of the resulting classification of the experimental data at the cor-
responding doping value. The inset shows the precision for the trained classes on a subset of
data not used for training. The vertical errorbars show the standard errors of the mean over
ten repetitions of the process and are smaller than the plot markers. The horizontal errorbars
for the doping are obtained as described in section 6.1.

mental snapshots are classified as geometric string theory than as π flux theory. For higher doping
values, roughly the same number of snapshots are classified as either theory.
The ability of the neural network to distinguish π-flux from geometric string theory on the level of
individual images indicates that the physical structure of these states is different. We can further
improve the accuracy of our classification by taking into account the information that an entire set
of measurements belongs to the same physical state. When the CNN sorts each snapshot into one
of the two categories with probabilities p and 1 − p, the entire sample is classified by the category
in which the majority is sorted. As the number of shots in each category follows a binomial dis-
tribution, the probability to make a wrong classification of the entire sample decays exponentially
with the number of snapshots. Therefore, the entire experimental dataset at any doping value be-
low 15%would be classified as geometric string theory data with almost 100% probability
In Fig. 6.5.4 a), we combine four snapshots at a time to a single image. As shown in the inset, the
precision increases to values higher than 80%. Moreover, experimental snapshots are classified as
geometric string theory with a much higher probability up to intermediate doping values of 12%.
For higher doping values, where no signicifant distinction was possible in the case of the classifi-
cation of a single snapshot at a time, Fig. 6.5.3 b), the experimental data is now labeled as π flux
theory.
Before training the neural network, we randomly select 250 snapshots from the full data for testing.
These snapshots are not used during training, but only to test the performance of the network and
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determine the accuracy. In order to average out fluctuations in the results, we repeat the training
with a different choice of the test data set and sorting of experimental data ten times. The error bars
for the different accuracies as well as the percentage of experimental snapshots detect as one of the
two theories shown in the figures represent the standard deviation over the different runs,

Δx =

√∑N
i=1 (xi − x̄)2

N − 1
, (6.12)

whereN is the number of runs, xi is the quantity under consideration in the i-th run and x̄ is the
average value of the said quantity over allN runs.
So far, the geometric string theory snapshots were based on experimental data at half filling. In

order to avoid any potential bias, we also generated geometric string theory data based onHeisen-
berg Quantum Monte Carlo (QMC) snapshots instead of experimental data. In this case, we ad-
ditionally have to add doublon-hole pairs, similar to the π flux theory snapshots. Since we are not
restrictedby thenumber of available experimental snapshots, we increase our data sets here to 6800
snapshots per theory for each doping value. Similar as before, for each doping value, we train the
network to distinguish the two theories and subsequently input experimental snapshots, which are
then labeled as one of the two theories. The obtained classification is qualitatively equivalent to the
results shown before, see Fig. 6.5.4 b). We can thus conclude that the reason the string theory is
favored by the neural network is not the fact that it is based on experimental data.
On a test set not used during training, the network achieves a precision above 70% for the classifi-
cation of snapshots from the two theories for all doping values considered. Theprecision is defined
as the percentage of snapshots classified as a theory, which in fact stem from that theory. For basic
applications ofmachine learning, such as the recognition of handwritten digits, much higher values
are commonly achieved for the precision. However, as exemplified in Fig. 6.5.1, single snapshots
from the two theories look extremely similar - far more so than different handwritten digits. More-
over, we have shown in section 6.3 that commonly evaluated observables, such as spin correlation
functions and the staggeredmagnetization are very similar in both cases. Increasing the systemsize,
and thus providing more information in each image, can enhance the precision. Other ways to im-
prove the performance include larger data sets as well as full information about both spin species
and doublon and hole positions. In Fig. 6.5.4 d), the network is trained to distinguish the two the-
ories based on snapshots where simultaneously the positions of the holes and both spin species are
known. The geometric string theory in this case is based on Heisenberg Quantum Monte Carlo
data, because in the experimental half filling data, doublon hole pairs are present with unknown
positions. While we cannot sort experimental data as one of the two theories in this case, since not
all information is available in this case, Fig. 6.5.4 d) shows a significantly increased precision in the
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Figure 6.5.4: Distinguishing π flux and geometric string theory. The network is trained
to distinguish snapshots from geometric string theory (blue) and π-flux theory (orange) at
each doping value, a) four snapshots at a time. Each input corresponds to four randomly
chosen images from one theory. After training, experimental images at the same doping are
shown to the network. Again, we show the network four images at a time and the network
has to classify them into the same category. The plot shows the average of the resulting clas-
sification over all available experimental data at the corresponding doping value. The inset
shows the precision that is achieved for the trained classes on a subset of data not used for
training. b), c), d) As opposed to Fig. 6.5.3 and a), the geometric string theory data is based
on Heisenberg quantum Monte Carlo simulations to avoid a potential bias by using experi-
mental half-filling data. After training, experimental images at the same doping are shown to
the network. b) shows the average of the resulting classification over all available experimen-
tal data at the corresponding doping value. The inset shows the precision that is achieved for
the trained classes on a subset of data not used for training. c) Staggered magnetization of
the two classes after sorting. After training the CNN to distinguish geometric string theory
and π-flux theory, we show experimental data to it, which is then classified by the network as
one of the two theories. As a result, we obtain a subset of experimental data sorted into the
string theory class and accordingly a second complementary subset classified as π-flux theory.
For these two new datasets, we now determine the average value of the staggered magneti-
zation. d) No doublon-hole pairs are added and the information about the positions of the
holes is kept in the snapshots. Since both datasets stem only from theoretical data, we are
not restricted in the number of snapshots and use 6800 snapshots from each category. The
performance of the network improves as compared to the inset of part b).
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classification of a test set of the two theories.
In order to obtain some insights on what quantity the network uses to make its decisions, we ana-
lyzed the experimental datasets after the classification. For each doping value, we obtain two sub-
sets of experimental images: the snapshots which are classified as π flux theory, and those labeled
as geometric string theory. In Fig. 6.5.4 c) we show the average staggeredmagnetization separately
in those two datasets. Across all doping values, the obtained staggeredmagnetization is similar for
the sets of data classified as the two theories, indicating that this observable is not employed for the
classification by the neural network. In Ref. [16] we develop a modification of the network archi-
tecture, the Correlator Convolutional Neural Networks (CCNN), with which an interpretation of
the patterns used by the neural network is possible. We employ this architecture to again distin-
guish geometric string from π-flux theorywith full information andwithout doublonhole pairs and
find that the dominating signature of geometric string theory at finite doping are four-point corre-
lators with two neighboring aligned spins next to a hole. This correlation function is expected due
to the string re-arranging the spins. In particular, we observed similar correlation functions in the
ground state in section 5.3 and experimentally, these signatures have been observed in Ref. [267]
and at finite doping in Ref. [15].
One way to simplify the pattern recognition is to post-select the snapshots to a high value of the
staggered magnetization. In all snapshots, the underlying SU(2) symmetry of the Fermi-Hubbard
Hamiltonian leads to fluctuations of the Néel ordering vector. The post-selection is a way to avoid
confusion due to images with Néel ordering vector that is not aligned with the measurement axis,
in which case it can be harder to find certain patterns in a single snapshot. In Fig. 6.5.5, we per-
form the following post-selection procedure: for experimental as well as theory data, we calculate
the absolute value of the staggered magnetization |mz| for every snapshot and use only the 30% of
all snapshots with the highest value of |mz| in each dataset. Importantly, this still corresponds to
a large number of snapshots, which can be considered as a representative sample of the quantum
state.
Fig. 6.5.5 a) is qualitatively the same as the corresponding result in Fig. 6.5.3 b). However, the
post-selection seems to improve the precision achieved by the CNN to some degree, even though
less snapshots are available for training here.
Starting at half-filling and cold temperatures around 0.6J the AFM correlations vanish both with
increasing doping or increasing temperature [6]. We approach the question of how similar these
regimes are on the microscopic level. At each doping value we train the CNN to distinguish geo-
metric string theory data and experimental data at high temperature and half-filling. We randomly
add holes to the hot data according to the respective doping level to prevent the network from dis-
tinguishing the two theories trivially by the density. In order to obtain a sufficiently large training
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Figure 6.5.5: Machine learning post-selected snapshots. a) The network is trained to
distinguish snapshots from geometric string theory (blue) and π-flux theory (orange) at each
doping value. All datasets are post-selected to high absolute values of the staggered mag-
netization. After training, experimental images at the same doping are shown to the net-
work. The plot shows the average of the resulting classification over all available experimental
data at the corresponding doping value. The inset shows the precision that is achieved for
the trained classes on a subset of data not used for training. The vertical errorbars show the
standard errors of the mean over five repetitions of the process and the horizontal errorbars
for the doping are obtained as described in section 6.1. b) The CNN is trained to distinguish
geometric string theory at a given doping value from experimental images at half-filling and
temperatures T ≥ 0.9J with the corresponding number of holes randomly sprinkled into the
pictures to prevent a distinction based on the filling. After training, experimental images at
low temperatures, T ≈ 0.6J, and the corresponding doping value are shown to the network.
The plot shows the average of the resulting classification. The inset shows the precision that
is achieved for the trained classes on a subset of data not used for training. The vertical error-
bars show the standard errors of the mean over ten repetitions of the process and the horizon-
tal errorbars for the doping are obtained as described in section 6.1.
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set, we use half-filling data for temperatures between T = 0.9J and 1.8J for the high temperature
class. As in Fig. 6.5.5 a), we apply post-selection based on high values of the staggered magneti-
zation here. For doping below ∼ 15%, the network classifies the experimental data as geometric
string theory, see Fig. 6.5.5 b). However, the precision decreases with increased doping, see inset
of Fig. 6.5.5 b). This shows that it is difficult for the CNN to distinguish the theories, indicating
that the classification of experimental pictures around 15% doping is challenging.

6.5.1 Confusion Learning

The precision or accuracy achieved on a test set not used during training can itself be used as a
probe of the system. The confusion learning scheme introduced in [325] provides a method to in-
vestigate the question how the system changes as a parameter – such as the temperature – is varied.
Given snapshots of theHeisenbergmodel, obtained fromQMC, at temperatures between 0.1J and
1.6J, we assign the label A to all snapshots at temperatures T < Ti and the label B to all data at
T ≥ Ti for some cutoff temperature Ti. We then train a CNN to assign these labels correctly to
single snapshots. IfTi = 0.1J, all datawill be labeled as B and therefore the accuracy of the network
will be optimal, because it can simply learn to always choose the label B. Similarily, if Ti = 1.7J, all
labels will be A and again the accuracy will be 100%.
If there is a detectable change in the snapshots at a temperature T∗ in the considered range, the
network should also be able to classify snapshots with an elevated accuracy if Ti = T∗. For other
values of Ti, the performance should be worse. A W-shaped accuracy as a function of Ti is there-
fore the signature of such a detectable change. Furthermore, if no temperature exists at which a
significant change in the snapshot occurs, the accuracy as a function of Ti will be in the shape of a
V instead.
In Fig. 6.5.6 a), we demonstrate this scheme for the case of a qualitative change in the data at an
intermediate temperature T∗. For a threshold value 0.1J < Ti < T∗, the network has to learn to
assign label B to a mixture of snapshots for T < T∗ and T > T∗, i.e. snapshots that differ qualita-
tively. It is thus impossible to learn the correct labeling, and instead the networkwill learn to assign
the label B to whichever category has more snapshot for the given threshold Ti. The accuracy for
category B, shown for the case of a strong qualitative change at T/J = 0.8 as faint orange line in
Fig. 6.5.6 c), therefore stays constant at 100% for the lowest few values of the temperature. The
same is true for category A, coming from high temperatures.
In Fig. 6.5.6 b), the performance of the network is shown for different values ofTi. Even though the
accuracy does not increase up to 100% at any intermediate value, a peak around T = 0.8J arises.
This is in agreement with quantum Monte Carlo calculations where the uniform spin susceptibil-
ity has a peak at roughly the same value [150, 340, 341]. This behavior of the spin susceptiblity

189



Figure 6.5.6: Confusion Learning in the Heisenberg model. In the confusion learning
scheme, the existence and value of a parameter at which a qualitative change in the data oc-
curs is investigated on the basis of the accuracy of the neural network. Here, we label Heisen-
berg Quantum Monte Carlo snapshots from a 16 × 16 system at temperatures below a cutoff
Ti with label A and correspondingly data at T > Ti with label B. a) If there is a qualita-
tive change in the data, e.g. in the middle of the temperature range, the network learns the
‘wrong’ label for the minority label within each half. b) The plot shows the accuracy achieved
for a test set of 500 images not used during training. If the network can find a qualitative
change in the data at some intermediate value of the temperature, a peak appears between
the lower and upper bound of available data. This yields the characteristic W-shape. The
shaded squares show the uniform susceptibility χ(q = 0,T) obtained from Quantum Monte
Carlo calculations for the Heisenberg model [340]. c) Accuracies for the subsets labeled as A
and B for different threshold values. Shaded lines correspond to artificial data, where all snap-
shots below T/J = 0.8 are all ones, whereas snapshots for temperatures T/J > 0.8 are zeros.
d) Averaged nearest-neighbor spin correlation C1 as a function of temperature, obtained from
the snapshots.
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is a signature of the pseudogap phase observed in the cuprates materials. The fact that the neural
network finds a qualitative change in the snapshots at the same temperature indicates that the phe-
nomenology can be observed in this type of data. It will be an exciting future direction to study the
observables on which the neural network bases its decision, for example with the method devel-
oped in Ref. [16]. Note that the most obvious quantities that can be extracted from the snapshots,
such as the nearest neighbor spin correlation function, donot exhibit a drastic change atT/J = 0.8,
but instead decrease continously as a function of temperature.
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7
Summary andOutlook

In this part of my thesis, we studied the Fermi-Hubbard model in one and two spatial dimen-
sions. We observed spin-charge separation in the dynamics of a cold atom experiment and pro-
posed a measurement scheme for the spectral function in a quantum gas microscope. In the spec-
tral functionof a single hole in a spin chain, spin charge separation canbeobserved across all energy
scales, even at the finite temperatures realized in cold atom experiments. An interesting future di-
rection is thus the experimental realizationof our proposal. In principle, themeasurement can even
be performed for a two dimensional system with the help of a second layer as probe system. We
calculated the spectral function for a single hole in the two-dimensional t − J model with matrix
product state techniques. From the spectral function, the quasi-particle weight and the magnetic
polaron dispersion can be extracted. In future work, the properties of the Fermi-Hubbard model
on a ladder could be studied in more detail. Here, we proposed a scheme to realize chiral ring
exchange interactions with optical tweezers. It remains an open question how doping modifies
the phase diagram obtained here. The interplay betweenmulti-body interactions and higher order
correlation functions, in particular in the presence of dopants, is an interesting future direction.
The ladder itself is on the one hand a natural interpolation between one dimensional chains and a
two dimensional system, but on the other hand has properties distinct from both the 1D and the
2D case. Further investigation into ladders could also include the study of two independent spin
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chains only coupled through the motion of holes.
In our work on the two-dimensional Fermi-Hubbard model and its descendants, we compare nu-
merical and experimental results to predictions from the geometric string theory. This analytical
theory provides an intuitive understanding for the motion of a hole in a spin background with
strong local anti-ferromagnetic correlations. For the spectral function, we obtain excellent quanti-
tative agreement for the dependence of the quasiparticle weight on the ratio t/J without any free
fitting parameter. The geometric string theory moreover describes the qualitative momentum de-
pendence of the quasiparticle weight correctly. The string itself has excited states, such as vibra-
tional and rotational excitations. In the conventional spectral function, rotational excitations are
not visible, since the creation of a local hole realizes the symmetry of the lowest rotational state
m = 0. Higher rotational states can however be observed if the excitation is chosen correspond-
ingly. In future work, we want to numerically calculate the spectral function for a corresponding
initial excitation of a hole hopping to its neighboring sites with a hopping element modified by a
complex phase. We additionally want to work on schemes to experimentally realize such an excita-
tion in a quantum gas microscope and conventional ARPES experiments. In our numerical work
wewere able to observe a peakwhich is fully consistent with the first vibrational excitation in terms
of its momentum dependence as well as the t/J dependence of the gap to the ground state.
We simulated the ground state of a single hole in the t− Jmodel numerically and compared differ-
ent observables to predictions from the geometric string theory. To obtain these predictions, we
used two differentmethods: we described the ground state of theHeisenbergmodel by a trial state
obtained from the best available RVB state and then added strings on top of the spin background.
Alternatively, we sampled snapshots from an MPS representing the ground state of the Heisen-
berg model and then put one string with a length given by the geometric string theory into each
snapshot by hand. One exciting future directionwould be to implement amatrix product state rep-
resentation of the string theory prediction by adding the strings not in the sampled snapshots, but
directly to theMPS.With this kind of representation, our predictions could be testedmore directly
and observables not accessible with snapshots could be evaluated. Furthermore, the combination
of geometric string theory and matrix product states could be extended to finite doping, allowing
also for comparisons in this regime. For our calculations of a single hole in the ground state, we
considered higher-order spin-charge correlations, such as the spin-spin correlations as a function
of distance to the hole or the ring-type correlation around the hole. While some of these correla-
tions have already been observed in equilibrium experiments [15, 267], we hope to be also able to
observe higher order ring-type correlations in a quantum gas microscope in the future.
Oneof the central parts ofmyPhDhas been the development ofmethods to gainmore information
from snapshots as generated by a quantum gas microscope. Firstly, we modified a set of snapshots
by hand to obtain a GST prediction. Secondly, we search for specific patterns in those snapshots.

194



Finally, we usedmachine learning techniques to analyze the snapshots. In the ground state of a sin-
gle hole in the t − J model, we searched for string patterns and compared the found string pattern
length distribution to predicitions from geometric string theory. A natural extension of this work is
to consider the same system at finite temperature. The geometric string theory predicts a transition
at some finite temperature, as the free energy can be minimized by increasing the entropy through
a large number of possible configurations. With finite temperature matrix product state methods,
we are in principle able to again sample snapshots and search for string patterns.
We studied the dynamics of a single hole created in the ground state of the Heisenberg model on
a cylinder. After a fast initial dynamics, the hole motion slows down significantly, but still spreads
ballistically with a velocity now given by the spinon velocity. This, combined with the saturation
of the average string pattern length found in snapshots, provides convincing evidence for the for-
mation of a magnetic polaron as a chargon and spinon bound together by a string. Extensions of
this work include the study of the dynamics of a hole in a harmonic confining potential, which is
directly realized in cold atoms experiments. We furthermore studied the dynamics of a hole in a
finite temperature spin background experimentally and found behavior consistent with the theo-
retical description in the ground state. At the currently realized temperatures of T ≈ 0.7J, the
spin correlations decay comparably fast with distance and the string tension is already somewhat
smaller as compared to the ground state. The dynamics of the spinon is not as straightforward in
the case of finite temperature, and diffusvie behavior is expected at long times. Further theoretical
investigations are needed here.
Within thegeometric string theory,weassume that themotionof thehole introduces anti-ferromag-
tonetic, thus frustrating, J2 couplings between next nearest neighboring spins. The study of a single
hole in the J1 − J2-model would therefore be a first step towards simulating the spin background at
finite doping. Another approach would be to study the properties of a spin model with randomly
chosen regions with J2-couplings, since this is how we assume independent holes to introduce the
frustration. The J1− J2 model andmodifications thereof can be readily studiedwithMPSmethods.
A natural next step is the study of two holes, where a wealth of open questions remain. We studied
the properties of the ground state of two holes in the t − J model and in particular their relative
distance and the microscopic potential landscape between the two holes by calculating the corre-
sponding multi-point spin-hole correlation functions. In future research, following our analysis so
far, one can search for string patterns, possibly connecting the two holes and study how their bind-
ing energy behaves as a function of t/J. Additionally, a deeper understanding in terms of a simple
theory, for example by extension of theGST, is needed. Understanding the properties of two holes
in a system with bosonic particles could provide additional insights.
In the last chapter of this part, we studied the Fermi-Hubbard model at finite doping and com-
pared conventional observables, such as spin correlation functions, as well as string patterns to
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an RVB state and the geometric string theory. We showed that both theories capture the behav-
ior of the experimental data to a large extent with one or even without any fitting parameter. At
the same time, many open questions and opportunities for refinement exist. The geometric string
theory used here is based on the assumption that each hole can be treated independently, which
is almost certainly no longer true for intermediate to high doping values. Interaction effects be-
tween different holes should be included in the theoretical description and a first step towards this
could be taken by studying two holes, as mentioned above. In the experimental data, we observed
strong anti-correlations between holes at finite doping, which theGSTdid not include. These anti-
correlations were also not captured by the π-flux state. In future work, the theoretical approaches
should bemodified to be able to describe this behavior. With the π-flux state, we chose one partic-
ular RVB state, while in principle many different possibilities exist. One could compare different
RVB states in termsof conventional observables, string patterns and alsowith ourmachine learning
approach. Here, we trained a neural network to distinguishGST from π-flux snapshots. After train-
ing, we input experimental data, which was then assigned one of the two theory labels. The same
approach can be used to compare themany different existing theories, for example in terms of RVB
states with different parameters. Potentially different results will be obtained in different regions of
the phase diagram, enabling an understanding of the physical mechanisms at play. We developed a
new network architecture, the correlator convolutional neural network, which directly determines
which correlation function is most important to distinguish two theories, or experiment from the-
ory. An exciting question for future research is which particular correlations are most important
when distinguishing other theories, or theory from experiment.
The experimental data used in this study suffered from the drawback that the two different spin
species could not be resolved simultaneously. In the coming months and years, updates to the ex-
periments are expected which will allow for full resolution and hopefully also lower temperatures.
Data with information of the hole positions, obtained either from new experimental studies or nu-
merical simulations, such as MPS or QMC data, enable a more detailed study. In particular, the
above proposed studies for two holes could also be done for many holes by analyzing the spin cor-
relations between holes as well as string patterns connecting several holes, maybe even allowing for
something akin to a percolation transition. With the knowledge of the hole positions in snapshots
at finite doping, we can also analyse the data for pattern-pattern correlations and possible nematic-
ity.
New numerical and experimental tools, such as neural network quantum states or silicon donor
arrays provide a new opportunity to gain insights into the doped Fermi-Hubbardmodel and at the
same time come with the challenge to ask the right questions and to find suitable observables. On
the other hand, an exciting next step is to go back to the actual cuprate materials we aimed to de-
scribe with the Fermi-Hubbard model. In solid state experiments, such as ARPES or STM, these
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materials are probed andwe hope to be able to draw some closer connections between these results
and our theoretical approaches. In particular, our numerical and analytical results for the spectral
function could be extended to include for example the effect of phonons.
In conclusion, we were able to gain many interesting insights from quantum simulation experi-
ments, numerical simulations and theoretical considerations. A comparably simple theory can ex-
plain a lot of the physics we observed in the Fermi-Hubbard model in and out of equilibrium, in
the ground state and at finite temperature and close to half filling as well as at finite doping. At the
same time, many exciting open questions remain for future research.
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Part II

TheBose-HubbardModel
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The paradigmatic model to study interacting bosons is the BoseHubbardmodel, described by
the Hamiltonian

Ĥ = −J
∑

i

(â†i âi+1 + h.c.) +
U
2

∑
i

n̂i(n̂i − 1)−
∑

i

μn̂i. (7.1)

Here, â(†)i is the annihilation (creation) operator of a boson at site i and n̂i = â†i âi is the local par-
ticle number operator. The Bose-Hubbard model was introduced by Fisher et al. in 1989 in order
to describe the destruction of superfluidity in the presence of strong interactions [342]. Jaksch et
al. suggested in 1998 to realize the Bose-Hubbard model with cold atoms in optical lattices [343].
In an experiment with cold atoms, the ratio U/J can be easily tuned by varying the depth of the
lattice. The kinetic energy, given by J, favors delocalization of the particles over lattice sites. The
interaction energyU disfavors having more than one particle at any given site. If the ratio of atoms
to lattice sites is an integer and U/J is larger than a critical value, the ground state of the system is
no longer a compressible superfluid with power-law correlations but a gapped Mott insulator with
short range correlations. The transition from a superfluid to a Mott insulating phase has been ob-
served in a Bose-Einstein condensate in a three-dimensional optical lattice upon tuning the lattice
depth in the famous experiment by Greiner et al. [68]. At finite temperatures and in one dimen-
sion, the system is a correlated, normal fluid.
In this part, we study the one dimensional Bose-Hubbard model and its thermalization proper-
ties with and without disorder. In a thermalizing system, the expectation value of any local, non-
conserved operator reaches its thermal value after sufficiently long time. If the time evolution
starts from a product state, this expectation value corresponds to the thermal equilibrium expec-
tation value at a temperature given by the energy density in the system. Thermalization itself –
either starting from an arbitrary state, such as a product state, or after the local perturbation of an
equilibrium state – is a process that can have many fascets. For example, operators that commute
with the Hamiltonian are conserved under the time-evolution and their expectation value cannot
change. Globally conserved quantities can slow down the thermalization process. However, lo-
cal observables can reach their thermal equilibrium value much earlier in the time-evolution and
thus look thermal. Depending on which quantity one studies, the system can appear thermalized,
even though it is not yet. Introducing disorder can slow down and even inhibit thermalization
completely. Here, we study different aspects of thermalization and the lack there-of in a variety of
observables.
In chapter 8, we propose a measurement protocol to experimentally access time-ordered as well
as out-of-time ordered (OTO) correlation functions. The latter are related to the scrambling of
information in correlated quantum systems and we numerically study their behavior in the non-
integrable, one-dimensionalBose-Hubbardmodel in the incoherenthigh-temperature regime. While
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information scramblinghappensballistically even in this regime, other correlation functions,which
are related to globally conserved quantities, exhibit much slower diffusive behavior.
In chapter 9, we study many body localization. The presence of strong disorder in the one-dimen-
sional Bose-Hubbardmodel leads to localization. In section 9.2we probe the effects of interactions
between the particles with an interferometric protocol and extract the non-local couplings in the
many-body localized phase. We use two different echo protocols –where similar to the out-of-time
ordered correlation functions the effect of reversing the time-evolution is used – to further inves-
tigate interaction effects. With superconducting qubits, the reduced density matrix of a subsystem
is directly accessible and we extract the entanglement of formation and the distillable entangle-
ment from the two qubit density matrix. In section 9.3 we study the transition from a thermalizing
to a many-body localized (MBL) phase in a quantum gas microscope. We use machine learning
techniques to study the dynamics of the system after a global quench in snapshots of the quantum
many-body state.
We summarize our findings and provide an outlook for interesting future research questions in
chapter 10.
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8
Scrambling andThermalization

This chapter is based on the publication

• A. Bohrdt, C. B. Mendl, M. Endres, M. Knap: “Scrambling and thermalization in a diffusive
quantum many-body system.” – New J. Phys. 19, 063001 (2017) [arXiv:1612.02434]

Structure, text and figures have been rearranged and adapted here.

The dynamical response of a many-body system to a local perturbation is obtained from a
time ordered correlation function, ⟨Ŵ(t)V̂(0)⟩, which describes the relaxation of the many-body
system following the initial excitation by the operator V̂ that is then probed at later times by Ŵ.
However, in general such time-ordered correlation functions cannot capture the spread of infor-
mation across a quantum system, especially in a regime where quasiparticles are not well-defined.
Recently, it has been proposed that spreading or “scrambling” of quantum information across all the
system’s degrees of freedom can be characterized by out-of-time ordered (OTO) correlation func-
tions: ⟨Ŵ†(t)V̂†(0)Ŵ(t)V̂(0)⟩ [344–349]. The OTO correlation in a state |ψ⟩ can be understood
as overlap between two states |ψ1(t)⟩, |ψ2(t)⟩, which differ in the order in which the operators are
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applied,

|ψ1(t)⟩ = eiĤtŴe−iĤtV̂|ψ⟩ (8.1)

|ψ2(t)⟩ = V̂eiĤtŴe−iĤt|ψ⟩. (8.2)

Theout-of-timeordered correlation thus probes how the operators Ŵ and V̂ inhibit the cancelation
between the time evolution forward and backward [350], similar to the echo protocols discussed
in section 9.2.
TheOTOcorrelation functions appear as the out-of-time ordered part ofC(t) = ⟨|[Ŵ(t), V̂(0)]|2⟩
and hence predict the growth of the squared commutator between Ŵ(t) and V̂(0). OTO corre-
lators could thus be capable of describing a quantum analogue of the butterfly effect in classical
chaotic systems, which characterizes the spread of local excitations over thewhole system. At short
times, OTO correlators are expected to grow exponentially with a rate characterized by the Lya-
punov exponent λL. The Lyapunov exponent has been conjectured to be bounded by 0 ≤ λL ≤
2πT [348]. This bound is saturated in strongly coupled field theories with a gravity dual [345] and
in disordered models describing a strange metal [346, 351, 352]. By contrast, λL does not fully
saturate the bound for a critical Fermi surface [353] and is parametrically smaller in Fermi liquids
or other weakly coupled states [352, 354, 355].
Here, we study both time-ordered and OTO correlators in a diffusive many-body system by con-
sidering the concrete example of the non-integrable, one-dimensional Bose-Hubbardmodel. Thus
far, it is a largely open question, how OTO correlators spread in diffusive systems with a few glob-
ally conserved quantities [349, 353, 355, 356]. In our work, we study this question by performing
matrix-product operator (MPO) based simulations of the Bose-Hubbard model at high tempera-
tures, at which well defined quasi-particles cease to exist. We demonstrate that in this regime the
time-ordered one-particle correlation functions are strongly incoherent and feature rapidly decay-
ing excitations, whereas the OTO correlators indeed describe the ballistic spreading of informa-
tion across the quantum system (see Fig. 8.1.1). In contrast to the linear light-cone spreading of
quantum information, the eventual global thermalization of the closed system takes parametrically
longer, due to hydrodynamic power-laws resulting from globally conserved quantities. For exam-
ple, we show that the local density correlation function decays as∼ 1/

√
Dt, describing diffusion in

one dimension with the corresponding diffusion constantD. Thus, the time scales associated with
the spread of information and with global thermalization are different.
We compute the dynamical correlation functions at finite-temperature for systems up to L = 50
sites using MPO techniques. The presented results are evaluated for virtual bond dimension 200
to 400 and the local bosonic Hilbert space is truncated to three states, which is sufficient to render
the system nonintegrable. The presented results are checked for convergence with respect to the
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Figure 8.1.1: Green’s function and OTO correlation for the one-dimensional Bose-
Hubbard model at U/J = 1, μ = 0 and a), b) T/J = 1 and c), d) T/J = 4 for L = 24 sites,
calculated at a maximum bond dimension of 200. At the lower temperature of T/J = 1, a faint
light-cone can be observed in the Green’s function a). A light-cone with the same velocity is
exhibited by the OTO correlator b). c) In the high temperature regime, well-defined quasi-
particles cease to exist. The breakdown of well-defined quasiparticles is demonstrated by the
one-particle Green’s function Gij(t) = ⟨c†j (t)ci⟩, which quickly decays to zero within τJ ∼ 0.6.
The lifetime is thus shorter than the hopping rate, indicating a regime of incoherent transport.
d) However, the OTO correlator Fij exhibits a light-cone spreading of information.

MPO bond dimension and system size; see section C.1 for details on the numerical simulations.

8.1 Spread ofQuantum Information

Wenumerically simulate the BoseHubbardmodel in a parameter regime (U = J, μ = 0,T = 4J),
where the time-ordered single-particle Green’s function

Gij(t) = ⟨c†j (t)ci⟩, (8.3)

rapidly decays in time, Fig. 8.1.1 c). We extract a quasiparticle lifetime of approximately τJ ∼ 0.6,
shorter than the microscopic hopping rate, which indicates incoherent transport. In sections 4.2
and 5.4, we saw howmuch information about the quantum state of the system is contained in time-
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ordered correlation functions. However, in general, time-ordered correlation functions are not ca-
pable of capturing the spread of information and entanglement. This holds especially in the case
where no well-defined quasiparticles exist and the single particle Green’s function is almost fea-
tureless. The spread of quantum information is generically not linked to the transport of quasipar-
ticles [357] and thus a need for different probes arises. Recently, out-of-time ordered correlators
(OTOCs) were proposed as a measure of the spread of quantum information and entanglement
across all degrees of freedom of the system [344–349].
OTO correlators describe the growth of the commutator between two local operators Ŵ and V̂ in
time

C(t) = −⟨|[Ŵ(t), V̂(0)]|2⟩. (8.4)

The time-dependent operator Ŵ(t) = eiĤtŴe−iĤt can be expanded as

Ŵ(t) =
∞∑
l=0

(it)l

l!
[Ĥ, ...[Ĥ, Ŵ], ...]. (8.5)

In the following, we will consider local operators Ŵ, which act on a single site. TheHamiltonian Ĥ
typically couples two neighboring sites. As time increases, and therefore the higher order terms in
Eq. (8.5) become important, the time-dependent operator Ŵ(t) affects more and more sites. This
expansion in real space is captured by the OTO correlation. The commutator C(t) defined above
will be zero initially for spatially separated operators Ŵ, V̂. Once the operator Ŵ(t) has spread to
the location of V̂, the commutator will become sizable.
In classical chaotic systems, the sensitivity of the time evolution on the initial conditions is char-
acterized by the Lyapunov exponent, (∂q(t)/∂q(0))2 ∼ exp[λLt]. In a quantum system, the time
evolution is unitary, and therefore quantities like the fidelity are preserved during the dynamics. In
a semiclassical picture, the commutator in (8.4) can be replaced by Poisson brackets. Then, for the
choice of Ŵ = qj and V̂ = pi, this quantity reduces to

C(t) ∼ ⟨(∂qj(t)/∂qi(0))2⟩. (8.6)

Therefore, the correlation function C(t) describes the sensitivity of the time evolution and is ex-
pected to grow exponentially at short times∼ exp[λLt], with a rate λL that resembles the Lyapunov
exponent in classical chaotic dynamics. Rewriting the momenta and coordinates as combinations
of creation and annihilation operators, (8.4) generically consists of OTO correlators of the form

Fij(t) = ⟨c†j (t)c†i cj(t)ci⟩. (8.7)
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In a chaotic system, information spreads ballistically [350], with a velocity given by the butterfly
velocity vB. In other cases, such as in a system that exhibits many-body localization as discussed in
chapter 9, operators spread logarithmically and the out-of-time ordered correlation function thus
exhibits power law rather than exponential time dependence [350, 358, 359].
Here, we are interested in the high temperature regime of a thermalizing system and thus con-
sider the quantum statistical average ⟨. . .⟩ = tr[ρ̂ . . .] over an initial thermal state with weights
distributed according to the Gibbs ensemble ρ̂ = e−Ĥ/T/Z. Z is the partition function and the
Boltzmann constant kB is set to one. Alternatively, the average can also be performed with respect
to an arbitrary initial state, for example a pure state ρ̂ = |ψ0⟩⟨ψ0|. For thermalizing systems, it
is then expected that an effective temperature is approached at late times which depends on the
energy density imprinted on the system by the initial state [360–362]. Once the system is ther-
malized, the expectation value of a local, non-conserved operator will correspond to the thermal
expectation value at this effective temperature. Regarding this quantity, the information about the
initial state is lost.
In Fig. 8.1.1 d), OTO correlators Fij evaluated at comparatively high temperatures T = 4J, in-
teractions U = J, and chemical potential μ = 0 are shown as a function of time t and distance
(i − j). For OTO correlators in the coherent Luttinger Liquid regime, see Ref. [363]. Despite the
high temperature and in sharp contrast to the single particle Green’s function, the OTO correla-
torFij exhibits a pronounced light-cone spreading of the information across the quantum state for
|i− j| ≲ 7. For larger distances the light cone seems to exhibit a plateau, which we attribute to the
finite MPO bond dimension used in the numerical simulations. OTO correlators are somewhat
challenging to simulate with MPO techniques, because they directly reflect the fast spreading of
entanglement.

8.1.1 Lyapunov exponent, butterfly and light-cone velocity

We now characterize the OTO correlatorsFij(t) in detail. To this end, we subtract ⟨n̂in̂j⟩ from the
Fij(t) and consider its relative change: F r

ij(t) = |Fij(t)−⟨n̂in̂j⟩|/⟨n̂in̂j⟩. Examples for the reduced
OTO correlatorF r

ij(t) are shown in Fig. 8.1.2 for interaction U = J and different temperatures T.
The reduced OTO correlatorF r

ij(t) starts off at zero, forms the light-cone plateau, and approaches
the steady-state value as an exponential.
From the light-cone spread of the OTO correlator, we extract two velocities:

1. The light-cone velocity vlc, which we define by the space-time region where the reduced
OTO correlatorsF r

ij(t) surpasses a small threshold of 0.05% of its final value.
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Figure 8.1.2: Light-cone spreading of quantum information. Contour plots of the re-
duced OTO correlator F r

ij(t) ∼ |Fij(t) − ⟨n̂in̂j⟩|/⟨n̂in̂j⟩ as a function of time and distance for
interaction strength U = J, chemical potential μ = 0, and temperature a) T = 2J and b)
T = 16J, respectively. The spreading of quantum information forms a light-cone pattern. The
contour lines indicate changes of F r

ij(t) by 0.1.

Figure 8.1.3: Butterfly and light-cone velocity a) Reduced OTO correlators F r
ij(t) are

shown as a function of time for different distances |i − j|, interaction strength U = J, and
temperature T = 4J. We introduce the light-cone velocity vlc by the space-time region, where
F r surpasses a small threshold and the butterfly velocity vb where it attains a large fraction of
order one. b) The light-cone velocity vlc grows with temperature and is bounded from below
by the zero temperature Luttinger liquid velocity (colored arrows). By contrast, the butterfly
velocity vb is systematically smaller than vlc and approximately independent of temperature T.
The data is shown for two values of the interaction strength U = J and U = 3J.
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Figure 8.1.4: Lyapunov exponent. The reduced OTO correlator F r
ij(t) is expected to grow

exponentially on a timescale set by the butterfly velocity vb with a rate that defines the Lya-
punov exponent λL. a) In our system, the regime of exponential growth is restricted to a
rather small time range, see also section C.1. b) Our data suggests that the Lyapunov expo-
nent λL is parametrically smaller than the conjectured upper bound 2πT and increases slowly
as the temperature T is lowered. The data is shown for interaction strength U = {1, 3, 9}J.

2. The butterfly velocity vb, which we define by the space-time region where the OTO corre-
lator attains a large fraction (20%) of its final value. We find that vb does not significantly
depend on this cutoff, as long as it is chosen to a sizeable fraction; see section C.1.

The light cone velocity vlc increases with temperature T and is bounded from below by the zero
temperatureLuttinger liquid velocity; seeFig. 8.1.3. Thebutterfly velocity vb is systematically lower
than vlc and is almost independent of temperature. The butterfly velocity determines the time scale
tscr for scrambling information across the many-body quantum state which is linear in system size
tscr ∼ L/vb. Based on results from holography, it has been argued in Ref. [356] that the light-cone
and the butterfly velocity should be quite generally the same. This should be contrasted to our
results for the Bose-Hubbard model and to a study of non-relativistic non-Fermi liquids [353]. In
both cases the butterfly velocity has been found to be smaller than the light-cone velocity.

Previous studies of strongly coupled field theories [348] or disordered SYK models [346] pre-
dict an exponential growth in the initial dynamics of the reduced OTO correlator of the form
F r

x(t) ∼ exp[λL(t − x/vb)] with butterfly velocity vb and a growth rate λL, which is refered to
as Lyapunov exponent. Both systems display a clear separation between the collision time τ and
the scrambling time tscr, at which the OTO correlator assumes an appreciably large value. Hence,
in these systems the exponential growth occurs up to parametrically late times determined by a
large parameterN, which controls the approach to a semiclassical limit. We tested the results of our
numerical simulations against this prediction and find that they are incompatible with an exponen-
tial growth in time inasmuch as there appears to be no parametrically large regime of exponential
growth in ourmodel, see Fig. 8.1.4 a) and sectionC.1. This is a consequence of the average particle
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density, which is controlled by the chemical potential, being typically on the order of one for the
chosen parameters. This effectively restricts the accessed local Hilbert space dimension and hence
there is no large separation between collision and scrambling time [364]. Therefore, we cannot
unambiguously define a Lyapunov exponent. Finding the analytic form for the initial growth in
our system remains an outstanding challenge.
Nonetheless, one can estimate a growth rate λL by linearizing theOTOcorrelator around the space-
time region set by the butterfly velocity, which is shown as a function of temperature for different
values of the interaction strength U and chemical potential μ = 0 in Fig. 8.1.4 b). We note how-
ever that the concrete values for the Lyapunov exponent depend on the space-time region, around
which we linearize, see Fig. 8.1.4 a) and section C.1. It has been conjectured that the Lyapunov
exponent is bounded by 2πT, which is the value it assumes in a strongly coupled field theory with
a gravity dual [348]. In our system, λL is parametrically lower than this bound and increases slowly
when lowering the temperature. Moreover, we find that the dependence of the Lyapunov exponent
on the interaction strength U is small with slightly larger values of λL for intermediate interaction
strength, U = 3J, which is in the vicinity of the quantum critical point.

8.2 Thermalization

Conservedquantities restrict howaclosedquantumsystemcanapproachglobal equilibrium: while
local equilibrium is approached after a few scattering events, attaining global equilibrium is re-
stricted due to the relaxation of conserved quantities, which have to be transported over long dis-
tances. Since observables that overlap with conserved quantities evolve slowly, global thermaliza-
tion becomes a slow process. In the Bose-Hubbardmodel, energy, latticemomentum and the total
particle number are conserved. From hydrodynamics we infer that, for example, the conserved
particle number leads to a diffusion equation of the density [365, 366]

∂tn − D∇2n = 0, (8.8)

whereD is the diffusion constant. The connected density correlation functionCn(x− x′, t− t′) =
Re[⟨n(x, t)n(x′, t′)⟩−⟨n(x)⟩⟨n(x′)⟩] relates the density at space-time (x, t) to the density at (x′, t′)
via

n(x, t) ∼
∫

dt′dx′Cn(x − x′, t − t′)n(x′, t′) (8.9)

and itself satisfies the diffusion equation for times t > 0 in a hydrodynamic regime. From the
solution of this equation, together with the boundary conditionCn(x, t = 0) = δ(x−x′),Cn(x, t)
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Figure 8.2.1: Density correlations in the Bose Hubbard model. Conserved quanti-
ties restrict the approach of a closed quantum system to global equilibrium, thus, rendering
global thermalization a slow process. In the Bose-Hubbard model the total particle num-
ber is conserved leading to diffusive power-law tails in the connected density correlator
Cn(x, t) = Re[⟨n̂x(t)n̂0⟩ − ⟨n̂x⟩⟨n̂0⟩]. a) At low temperatures (T = J), where quasiparticles
are reasonably well defined, the density correlator does not reach the diffusive regime within
the accessible simulation time but is dominated by ballistic sound peaks. b) By contrast, for
high temperatures (T = 10J) the crossover to diffusion becomes apparent. c) For tempera-
tures T ≳ 4J the local density correlator Cn(0, t) ∼ 1/

√
Dt, where D is the diffusion constant.

By contrast, at low temperature T = J the diffusive regime has not yet been reached within
the numerically accessible times and the correlations rather decay ballistically Cn(0, t) ∼ 1/t.
The slow relaxation of the hydrodynamic modes leads to the global thermalization time scale
tth ∼ L2/D that is parametrically larger than the scrambling time scale tscr ∼ L/vb of quantum
information.

is expected to be of the form [365]

Cn(x, t) ∼=
C̃√
4πD|t|

e−
x2

4D|t| , (8.10)

with C̃ =
∫

dx Cn(x, 0). At sufficiently low temperatures T = J, Fig. 8.2.1 a), quasiparticles are
reasonably well defined and the ballistic spread of sound modes dominates the dynamics of the
connected density correlator in the numerically accessible time regime. For high temperatures
T = 10J, the density correlator displays diffusive behavior after a few hopping times and attains
a finite value in the region between the sound mode peaks. The local x − x′ = 0 density corre-
lation function shown in Fig. 8.2.1 c) exhibits diffusive power-law decay Cn(0, t) ∼ 1/

√
Dt for

temperatures T ≳ 4J. Here, D is a diffusion constant, which is extracted for temperatures T ≥ 4J
in 8.2.1. Thedecrease of the diffusion constant with increasing temperature observed here is some-
what counterintuitive. We attribute this behavior to the fact that the calculations are performed in
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T/J D/(a2J) DλL/v2b
4 14.29(27) 7.2(6)
6 11.69(10) 6.0(4)
8 10.42(04) 5.4(3)

10 9.79(01) 5.1(3)

Table 8.2.1: Diffusion constant D and the ratio DλL/v2B for different temperatures T.
The errors as indicated in the parentheses are errors from the fits.

the grand-canonical ensemble, where the particle density depends on the temperature and, in par-
ticular, increases with temperature in the chosen parameter regime.
The slow relaxation of the hydrodynamicmodes leads to the global thermalization time scale tth ∼
L2/D that is parametrically larger than the scrambling time scale tscr ∼ L/vb of quantum informa-
tion.
We note that the connected density correlator does not exhibit pronounced hydrodynamic long
time tails, which could result from higher order gradient corrections to the diffusion equation and
mask the 1/

√
Dt decay. This seems to be a particular property of the density correlator, as we find

at high-temperatures pronounced t−3/4 corrections in the energy-density correlation function (not
shown), in agreement with Ref. [366].

It has been proposed that the diffusion constant is related to the butterfly velocity vb and theLya-
punov exponent λL via D ∼ v2b/λL [367–370], where 1/λL is a bound for the local thermalization
time in which the system is able to attain local equilibrium characterized by a local temperature
and local chemical potential that varies between different regions in space. From our simulations,
we obtain coefficients of the order DλL/v2b ∼ 5.5 for temperatures T ≳ 6J; see Tab. 8.2.1, which
seems to suggest a connection between the spread of information and local thermalization, as sug-
gested by calculations for holographic matter. However, clearly global thermalization is a para-
metrically slower process than information scrambling and takes for systems of size L times of the
order tth ∼ L2/D. Experimentally measuring OTO correlators and density correlators will make
it possible to further check these holographic predictions.

8.3 MeasuringDynamical Correlators

Despite their usefulness to characterize interacting many-body systems, it remains challenging to
experimentally access dynamical correlation functions in real space and time [192, 371], see also
the discussions in section 4.2 and 5.4. In the following, we present two different protocols to mea-
sure dynamical correlation functions, including the special case of out of time ordered correlators.
While a sign reversal of the Hamiltonian is needed to measure the out of time ordered correlators,
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our protocols do not rely on an ancilla spin to switch between different Hamiltonians, as many
other proposals do [372–374]. Both protocols discussed below are general and can be applied to
bosons as well as fermions and require no specific form of the Hamiltonian.

8.3.1 Global Protocol

The global protocol is based on the interference of the entire many body state, as first pioneered
in quantum gas microscopy experiments studying the second Renyi entropy [93, 94], and results
in the measurement of the exact correlation function under consideration. The drawbacks of this
protocol are that it does notwork for thermal initial states and it is not scalable to large system sizes,
since it is based on the measurement of a many-body wave function overlap. This requires a high
fidelity of the beam splitter operations, since the number of necessary beam splitter operations is
extensive.
For the measurement of both the Green’s function and the OTO correlators, the initial state |ψ⟩
can be an arbitrary pure state, such as the ground state, or a simple product state. An effective finite
temperature state can be obtained for quenches from initial pure states to some final Hamiltonian.
In a thermalizing system [360–362], the effective temperature is then determined by the energy-
density produced by the quantum quench, as discussed in detail in section 9.3.

Single particle Green’s function

1. Prepare two identical copies of a pure state |ψ⟩ ⊗ |ψ⟩. Remove a particle on site i in the left
system by locally transferring the atom to a hyperfine state that is decoupled from the rest of
the system or by transferring it to a higher band of the optical lattice, yielding ci |ψ⟩ ⊗ |ψ⟩.

2. Evolve the system in time for a period t, exp[−iĤt]ci |ψ⟩ ⊗ exp[−iĤt]|ψ⟩.

3. Create a hole on site j of the right system

|ψ l(t)⟩ ⊗ |ψr(t)⟩ ≡ e−iĤtci |ψ⟩ ⊗ cje−iĤt|ψ⟩. (8.11)

4. Measure the swapoperator V̂ , which interchanges theparticles between the left and the right
subsystem

⟨V̂⟩ = tr[|ψr(t)⟩⟨ψ l(t)| ⊗ |ψ l(t)⟩⟨ψr(t)|]

= |⟨ψr(t)|ψ l(t)⟩|
2 = |⟨c†j (t)ci ⟩|2 = Ggl

ij (t). (8.12)
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Figure 8.3.1: Global scheme to measure dynamical correlation functions. Schematic
illustration of the experimental protocol to determine the a) time-ordered Green’s function
Ggl

ij (t) = |⟨ψ|c†j (t)ci|ψ⟩|2 as well as b) OTO correlation functions Fgl
ij (t) = |⟨ψ|c†j (t)c

†
i cj(t)ci|ψ⟩|2.

Details of the protocol are described in the text.
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The expectation value of the swap operator is experimentally determined by a global 50%-50%
beam splitter operation, which is realized by tunnel-coupling the left and the right system, fol-
lowed by a measurement of the parity-projected particle number [93, 375, 376]. We abbreviate
the sequence of the operations (1–3) as Ô(i, j).

Outoftimeorderedcorrelations TheOTOCscanbemeasuredusing the samebasic steps
as the single particle Green’s function, where additionally the sign of the Hamiltonian has to be
reversed in the middle of the protocol.

1. Apply Ô(i, j) (see above).

2. Globally invert the signof theHamiltonian. For the interaction term, this can be achievedby
ramping the magnetic field across a Feshbach resonance, as demonstrated experimentally,
for instance, in the realization of negative temperature states [377]. The sign of the hopping
matrix element can be inversed by appropriately tuning the drive frequency of a modulated
optical lattice [378].

3. Apply Ô(j, i) again, yielding

|ψ l(t)⟩ ⊗ |ψr(t)⟩ ≡ eiĤtcje−iĤtci |ψ⟩ ⊗ cieiĤtcje−iĤt|ψ⟩. (8.13)

4. Measure thewavefunctionoverlapof the two systemsusingbeamsplitter operations inorder
to obtain the square modulus of the OTOC.

Thermal initial states In the case of a thermal initial state, after the first three steps of our
protocol, Fig. 8.3.1 a), the system is prepared in the state ρl(t) ⊗ ρr(t), where ρα(t) is a generic
density matrix. The measurement of the swap operator V̂ yields [376]

⟨V̂⟩ = tr V̂ρl(t)⊗ ρr(t)

= tr V̂
∑
μν

ρl,μ(t)ρr,ν(t)|μ⟩⟨μ| ⊗ |ν⟩⟨ν|

= tr
∑
μν

ρl,μ(t)ρr,ν(t)|ν⟩⟨μ| ⊗ |μ⟩⟨ν|

=
∑

μ

ρl,μ(t)ρr,μ(t) = tr ρl(t)ρr(t). (8.14)

For pure states, ρl,r(t) = |ψ l,r(t)⟩⟨ψ l,r(t)|, we directly obtain (8.12). However, at finite tempera-
ture, the measurement does not directly yield the square of the correlation function. In particular,
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Figure 8.3.2: Local scheme to measure dynamical correlation functions. Us-
ing local beam-splitter operations only, our protocol measures a) time ordered corre-
lator G loc

ij (t) ∼ Im[⟨a†j (t)ai⟩⟨aj(t)a
†
i ⟩] as well as b) the OTO correlator F loc

ij (t) ∼
Im[⟨a†j (t)a

†
i aj(t)ai⟩⟨a†j (t)aiaj(t)a

†
i ⟩]. A detailed description of the protocol is given in the text.

we obtain for the Green’s function protocol

⟨V̂⟩ =
∑
μν

ρμρν⟨μ|c
†
i cj (t)|ν⟩⟨ν|c†j (t)ci |μ⟩. (8.15)

By contrast, the desired modulus square of the thermal Green’s function would be

|⟨ci(t)†cj⟩|2 =
∑
μν

ρμρν⟨μ|c
†
i cj (t)|μ⟩⟨ν|c†j (t)ci |ν⟩. (8.16)

Hence, at high temperatures, (8.15) is suppressed by a factor 1/Z, where Z is the partition sum,
and thus vanishes in the thermodynamic limit. A similar reasoning applies in the case of OTO
correlators.
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8.3.2 Local Protocol

Here, we introduce an alternative local protocol that is scalable to large system sizes since it only
requires two beam splitter operations irrespective of the system size.

Local beam splitter operation A local beam splitter operation on site l is realized by cou-
pling the left and the right copy of the quantum system by a tunneling Hamiltonian

ĤBS
l = −JBS(a†l bl + b†l al ), (8.17)

where a†l (b†l ) creates a particle in the left (right) system. The unitary evolution under (8.17),
BSl(τ) = exp[−iĤBS

l τ], for time τBS = π/4JBS defines a 50%-50% beam splitter operation(
āl

b̄l

)
=

1√
2

(
1 −i
−i 1

)
︸ ︷︷ ︸

=BSl

(
al

bl

)
. (8.18)

Furthermore, the phase of the beam splitter can be adjusted by applying a field gradient between
the left and the right system ĤF

l = h
2 (b

†
l bl − a†l al) for a duration τ f, R(τ f) = exp[−iĤF

l τ f]:

BSl = R†(φ)BSl R(φ) =
1√
2

(
1 −ie−iφ

−ieiφ 1

)
, (8.19)

where φ = hτ f.

Single particle Green’s function

1. Apply a beam splitter operation on site i for a duration τJBS. In the limit of small τJBS ≪ 1,
the unitary evolution can be linearized BSl(τ) = 1− iĤBS

l τ + O(J2BSτ2).

2. Evolve the two copies for the physical time t.

3. Apply a 50%-50% beam splitter operation on site jwith a phase that is detuned from the first
one by φ = π/2.

4. Measure the density difference δn̄j between the right and the left subsystem. The densities
after the beam splitter operation BSj are

n̄l,j = ā†j āj =
1
2
(a†j − b†j )(aj − bj) (8.20a)

n̄r,j = b̄†j b̄j =
1
2
(a†j + b†j )(aj + bj), (8.20b)

217



Figure 8.3.3: Correlation functions obtained from the local interference of two quan-
tum states. OTO correlation functions F loc

ij (t) as measured by the protocol based on local
beam splitter operations contain similar information as the originally introduced correlators.
The data is shown for temperature T = 4J, interactions U = J, chemical potential μ = 0,
and systems of size L = 30. The comparison with Fig. 8.1.1 d) shows the same light-cone
spreading.

such that the density difference between the right and left system is

δn̄j = n̄l,j − n̄r,j = −(b†j aj + a†j bj ). (8.21)

The measurement outcome is thus

G loc
ij (t) = ⟨BS†i (τ)eiĤtBS†j δn̄jBSje−iĤtBSi(τ)⟩

= 4JBSτ Im{⟨a†j (t)ai ⟩⟨aj (t)a
†
i ⟩}+ O(J3BSτ

3),
(8.22)

where in the second line particle number conservation and the fact that the duration of the first
beam splitter operation on site i is short was used.
The conventional time ordered one-body correlation function is defined as Gij(t) = ⟨a†j (t)ai ⟩.
In our protocol, the imaginary part of the product of a particle and a hole correlation function is
measured. However, we argue below that this observable carries related information as the time-
ordered correlation function Gij(t). Since we measure the imaginary part of the correlation func-
tion, G loc

ij (t) is initially zero but then develops a peak that quickly decays. We determine the quasi-
particle lifetime τJ ∼ 0.32, which corresponds roughly to half the lifetime obtained for theGreen’s
function Gij(t). This factor can be attributed to the fact that here the product of two correlation
functions is measured.

Out of time ordered correlations can be measured in the same way:

1. Apply a beam splitter operation for a short duration τJBS ≪ 1 at site i.
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2. Evolve the system for a duration t.

3. Remove a particle on site j in both copies using single-site addressing.

4. Flip the sign of the Hamiltonian Ĥ → −Ĥ, as discussed in the global protocol.

5. Time evolve the system for a duration t.

6. Apply the 50%-50% beam splitter operation BSi on site i, yielding

F loc
ij (t) = ⟨BS†i (τ)eiĤta†j b

†
j e−iĤtBS†i δn̄i

× BSieiĤtajbje−iĤtBSi(τ)⟩

= 4JBSτ Im{⟨a†j (t)a†i aj (t)ai ⟩⟨a†j (t)ai aj (t)a
†
i ⟩}+ O(J3BSτ

3). (8.23)

The OTO correlator F loc
ij (t) obtained from local interference corresponds to the product of two

OTO correlation function. At the temperatures considered here, it contains essentially the same
information as the one originally introduced as shown in Fig. 8.3.3. Since the protocol measures
the imaginary part of a product of two OTO correlators, its initial value is zero. The scrambling of
information across the quantum state manifests itself in the linear propagation of a wave-packet in
F loc

ij (t) fromwhich light-cone and butterfly velocities can be extracted. In Fig. 8.3.3, we once again
attribute the plateau in the light-cone, which starts at |i−j| ≳ 7, to the finiteMPObonddimension
of 400.

8.3.3 Static correlation functions and full state tomography

With both the global and the local protocol, static one-body correlation functions can be straight-
forwardlymeasured by setting the physical time t = 0. A generalization of the local protocolmakes
it possible to measure static correlations functions of arbitrary order. Above, we used correlators
of δn̄i to determine one-body correlation functions of the original many-body state:

⟨δn̄iδn̄j⟩ = 2⟨a†i aj ⟩⟨ai a
†
j ⟩. (8.24)

Correspondingly, higher order correlators in δn̄i yield higher order static correlation functions in
the creation a†i and annihilation operators ai. This protocol scales favorablewith system size. More-
over, correlators between arbitrary sites and of arbitrary order can be evaluated in a single shot by
performing the beam splitter operations on the full system.
With the knowledge of arbitrary static correlation functions, a full state tomography can be per-
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formed. The density matrix describing the quantum state of a system can be expressed as

ρ̂ = N
∑
i1,...iN

ri1,...iN σ̂ i1 ⊗ ...⊗ σ̂ iN , (8.25)

where N is a normalization constant and the σ̂ ij constitute a suitable basis [379]. For fermions
or hard-core bosons, the Pauli matrices provide a possible basis. Using correlators up to sufficient
order, it is possible todetermine theStokes parameters ri1,...iN and thereby to reconstruct the density
matrix, which paves the way for the full state tomography of quantum states withmassive particles.

8.3.4 Dynamical density correlation functions

The protocols discussed so far are suitable tomeasure the single particle Green’s function as well as
theOTOcorrelator. In order to observe the diffusive behavior of the dynamical density correlation
functions discussed in section 8.2, we discuss two different schemes to access them experimen-
tally. The dynamic structure factor S(k, ω), which is the spatial and temporal Fourier transform
of the density correlator Cn(x, t), can be measured with Bragg spectroscopy [380, 381]. In Bragg
spectroscopy, the detuning of the two laser beams sets the frequency ω and the angle between the
beams the transferredmomentum k. A measurement of the absorption of the system as a function
of k and ω directly maps out the dynamic structure factor S(k, ω). Diffusion manifests itself in the
wavevector and frequency resolved structure factor S(k, ω) as Lorentzian peaks with half-width-
half-maximum that scales as Dq2.
It is furthermore possible to measure the dissipative response ⟨[ni(t), nj]⟩ to a local perturbation
of the system in a quantum gas microscope. To this end, a local potential δH = njδμ is cre-
ated at site j by applying a laser for a short time τ, yielding the time evolution exp[−iδHτ] ∼
1 − iδHτ + O(δμ2τ2). Measuring the density at site i after the unitary time evolution for dura-
tion t we obtain

χ locij (t) = ⟨ni(t)⟩+ iδμτ⟨[ni(t), nj]⟩+ O(δμ2τ2). (8.26)

In equilibrium, the fluctuation-dissipation theorem provides an exact relation between ⟨[ni(t), nj]⟩
and ⟨ni(t)nj⟩. The accurate measurement of the former therefore enables the observation of diffu-
sive response in the dynamical density correlator.
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9
Many-Body Localization

9.1 Introduction

Most of the systems discussed so far thermalize in the sense that the different degrees of
freedom of the system exchange energy and information efficiently. While the system itself has to
remain in a pure quantum state under the unitary time evolution, it can act as a thermal bath for its
subsystems. The subsystems then appear thermal after a comparably short time and information
about the initial state is mostly lost in the time evolution. This evolution of a far-from-equilibrium
state to a state that appears to be in thermal equilibrium is described by the eigenstate thermaliza-
tion hypothesis (ETH) [360–362]. This behavior is the most common in the dynamics of quan-
tum systems and the properties of such systems are usually described using quantum statistical
mechanics. In chapter 8, we discussed how conserved quantities, such as the density, can lead to
slow diffusion. In a thermalizing system, the local physical observables a long time after a quench
are only determined by the values of these conserved quantities.
Some systems, however, avoid thermalization. In these cases, information encoded in the initial
state can remain accessible even long times after the quench. A famous example is Anderson local-
ization in non-interacting systems with disorder [382], where single-particle eigenstates become
exponentially localized. Anderson himself already posed the question how interactions between

221



the particles change this scenario. In the past two decades, localization in an interacting system at
finite energy density, calledmany body localization (MBL) has been investigated extensively [383–
388].
A lot of numerical studies have been performed for the XXZ spin chain with a random magnetic
field hz

i ∈ [−W,W] at each site. This model realizes Anderson localization in the limit of Jz → 0.
In this case, an arbitrary small disorder strength W is sufficient to localize all single particle states.
In the interacting system, disorder strengths smaller than a critical value,W < Wc, lead to delocal-
ized eigenstates in themiddle of the spectrum, introducing amany-body mobility edge [389], which
may however cease to exist in the thermodynamic limit [390]. Even in one dimension, there is
therefore a transition between the many-body localized and the thermal phase [92]. One way to
determine the critical disorder strength is to study the average ratio of adjacent level spacings. In
the ergodic phase, the level statistics of the energy spectrum correspond to a Gaussian-orthogonal
ensemble, whereas in the localized phase, the level statistics are Poisson [385].

9.1.1 Entanglement properties

In a system forwhichETHholds, a sufficiently small subsystemAof an eigenstate |α⟩will have ther-
mal expectation values. The corresponding reduced densitymatrix ρ̂A = trB |α⟩⟨α| is thermal. The
entanglement entropy then corresponds to the thermodynamic entropy Sent(A) = tr ρ̂A log ρ̂A =

Sth(A). The thermodynamic entropy, however, is extensive. For eigenstates |α⟩ at finite energy
density, the entanglement entropy thus has a volume-law scaling.
In the many-body localized case, the entanglement entropy follows an area-law. This behavior is
typical for the ground state of a gapped system. In MBL systems, even highly excited states obey
this area-law scaling. Intuitively, this can be understood from the fact that within theMBL phase, a
local perturbation can only affect the degrees of freedomwithin the localization length ξ, whichwe
will introduce below. The effect on spins far away from the local perturbation is expected to decay
exponentially with distance. In particular, a Hamiltonian Ĥ = ĤA ⊗ ĤB has no entanglement be-
tween subsystemsA andB. We now introduce a term coupling the subsystemsA andB locally. The
eigenstates of the new Hamiltonian can be obtained from the eigenstates of the old Hamiltonian
by entangling spins in A with spins in B over a distance∝ ξ around the boundary of A and B. The
entanglement entropy then scales with the size of the boundary between the subsystems.

9.1.2 Integrals of motion: the τ-bit picture

Eigenstates of a (topologically trivial) MBL Hamiltonian can be connected to product states by
a finite number of quasi-local unitary transformations, since they exhibit area-law scaling of the
entanglement. These unitary transformations accordingly diagonalize the MBL Hamiltonian in

222



the corresponding product state basis [386].
We consider theXXZ spin chain with a disorder field and apply the unitary transformationUwith

τ̂z
i = Û†Ŝz

i Û, (9.1)

where the τ̂z
i are the integrals of motion of the Hamiltonian, i.e. [τ̂z

i , Ĥ] = 0. Since [τ̂z
i , τ̂

x,y
i ] ̸= 0,

theHamiltonian expressed in the τ-basis cannot contain any τ̂x or τ̂y in order to satisfy [τ̂z
i , Ĥ] = 0.

In other words, any τ̂x,y
i terms would change τ̂z

i , which is a conserved quantity. The Hamiltonian
therefore takes the general form

Ĥτ =
∑

i

h̃i τ̂z
i +
∑
i,j

J̃ij τ̂z
i τ̂

z
j +
∑
i,j,k

J̃ijk τ̂z
i τ̂

z
j τ̂

z
k + ... =

∑
i

Δi({τz
j })τz

i . (9.2)

In theMBLregime, theunitary operator Û is quasi-local, and thus the τ̂z
i are typically close to the Ŝz

i .
The τ-bit operator on site i is constructed using Ŝz

i and nearby sites. The weights for contributions
from other sites decays exponentially with the distance in the localized regime. The couplings J̃ij,
J̃ijk, ... have to decay exponentially with distance because Ĥτ is obtained from the localHamiltonian
Ĥ through the quasi-local transformations Û. Note that the J̃ij, J̃ijk, ... terms are what distinguished
MBL from an Anderson localized system. In Section 9.2.3, the couplings J̃ij between two sites are
measured experimentally.
This form of the Hamiltonian is particularily convenient to consider dynamics, because it is writ-
ten in terms of conserved quantities. Thus, if we consider the time evolution of a product state of
τz
i s, the state cannot change but only acquires a phase. A generic initial state can be written as a

superposition of product states of τz
i : ∣∣ψ0

〉
=
∑

α

pα |α⟩ , (9.3)

where |α⟩ is a product state of τz
i s, and the time evolution is

∣∣ψ0(t)
〉
=
∑

α

e−iEαtpα |α⟩ . (9.4)

Expressing the Hamiltonian as (9.2) directly gives an intuitive explanation for the breakdown of
ergodicity: the initial values of the local integrals of motion cannot change during the dynamics
and the MBL system therefore keeps a memory of the initial state during the time evolution.

223



Intuitive picture for entanglement entropy dynamics

We consider the case of strong disorder and assume that we directly manipulate τ bits in the exper-
iment for simplicity. If we start from the vacuum and apply π/2 pulses on sites i and j and for now
ignore all sites in between, the state is

|ψ⟩ = 1
2
(|0⟩+ |1⟩)i ⊗ (|0⟩+ |1⟩)j . (9.5)

Time evolution leads to

|ψ(t)⟩ = 1
2
eĩJijt
(
|0⟩i ⊗ |0⟩j + |1⟩i ⊗ |1⟩j

)
+

1
2
e−ĩJijt

(
|0⟩i ⊗ |1⟩j + |1⟩i ⊗ |0⟩j

)
, (9.6)

where we neglected the fields h̃i, since they do not contribute to the build-up of entanglement. The
reduced density matrix of site i is

ρi = trj ρ =
1
2

(
1 cos(2̃Jijt)

cos(2̃Jijt) 1

)
. (9.7)

The entanglement entropy
S = − tr ρi log ρi (9.8)

therefore reaches its maximum value of log(2)when the off-diagonal entries are zero, i.e. for J̃ijt =
π/4. For a single value of J̃ij, the entanglement entropy is then given by

S = − cos2(̃Jijt) log cos2(̃Jijt)− sin2(̃Jijt) log sin2(̃Jijt) (9.9)

and thus oscillates in time. Averaging over many disorder realizations, and thus a distribution of
J̃ij’s as shown in section 9.2.3, leads to a slow growth, followed by a saturation to a finite value de-
termined by the shape of the distribution.
The same argument can be generalized to the case of many spins. During the time evolution, each
spin accumulates a phase given by the effective field created by all the other spins. The couplings J̃ij,
... which determine this effective field, decay exponentially with distance. The effective magnetic
field thus also decays exponentially with distance. At the same time, the couplings J̃ij, ... follow a
distribution which can become very broad for small distances |i− j|, see section 9.2.3. In order for
a given spin to acquire a phase of order one, a correspondingly long time needs to pass, leading to
the characteristic logarithmic growth of entanglement in the MBL phase. Note that this growth is
not observed in the Anderson localized case, as there are no interactions J̃ij, J̃ijk, etc..
In this chapter, we study the interacting Bose-Hubbard model with strong disorder, which ex-
hibits many-body localization. We investigate different aspects of the question howmuch the time
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evolved quantum state differs from the initial state and which role interactions play. In section 9.2,
we use an array of superconducting qubits to studymany-body localization. We start by proposing
a measurement scheme that employs the Jarzynski equality to access the free energy of a system
that does not necessarily have to thermalize. As a first experimental step, wemeasure the local par-
ticle number, which provides a first sign of localization, in the one-dimensional as well as small
two-dimensional systems. We then proceed by making full use of the preparation and read-out
capabilities of the experimental setup and extract the non-local couplings J̃ij. Using interferomet-
ric protocols, we provide further evidence for said couplings. Finally, we reconstruct the reduced
density matrix of a two-qubit subsystem and extract different entanglement properties from it. In
section 9.3, weworkwith Fock space snapshots of the time-evolved state of the systemafter a global
quench. These snapshots can be directly obtained in a quantum gas microscope. We use machine
learning techniques to study the MBL transition. Evaluating experimental data from a quantum
gas microscope leads to excellent agreement with numerical simulations. Based on the same type
of snapshots, we study the approach to thermal equilibrium with the help of a neural network.

9.2 Probing many-body localizationwith superconducting qubits

Subsections 9.2.2, 9.2.3, 9.2.4, and 9.2.5 of this section are based on the publication

• B. Chiaro, C. Neill, A. Bohrdt, M. Filippone, et al. [collaboration with the group of J. Mar-
tinis] “Direct measurement of non-local interactions in the many-body localized phase” –
arXiv:1910.06024

Structure, text and figures have been rearranged and adapted here.

In this section, we use an array of coupled superconducting qubits, as introduced in section 2.2,
to study the dynamics of interacting photon excitations in a disordered potential. The system is
described by the Bose-Hubbard model, Eq. (7.1), with a random on-site detuning μi ∈ [−W,W].
The qubit frequency, the nearest neighbor coupling, and the nonlinearity set μi, J, and U, respec-
tively. We are able to tune μi and J independently at a fixed nonlinearity of U = 160MHz. Similar
to the Schrieffer-Wolf transformation discussed in chapter 3 for the Fermi-Hubbard model, the
Hamiltonian can be approximated by an XXZ spin chain in the case of low occupancies and strong
interactions U ≫ J,W.
The remainder of this section is organized as follows. In subsection 9.2.1, we introduce the Jarzyn-
ski equality and discuss a measurement protocol, which is directly accessible with the supercon-
ducting qubit setup used in the remainder of this section. We then turn to the experimental part
and show results for the local particle number as a first signof localization. Next, we extract the cou-
plings Jij from the τ-bit picture introduced in section 9.1.2. We use the experimental capabilities
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of the superconducting qubit setup to perform interferometric probes of many-body localization,
again enabling us to directly observe interaction effects. Finally, we reconstruct the two-qubit re-
duced density matrix in subsection 9.2.5 and extract different entanglement properties.

9.2.1 The work distribution function and Jarzynski equality

The Jarzynski equality states that the mean work performed on a system during a thermodynamic
process and the difference in the free energies of the system before and after the process are con-
nected by the equality [391] 〈

e−βw〉
w = e−βΔF. (9.10)

Here, 〈
e−βw〉

w =

∫
dwp(w)e−βw (9.11)

is the average with respect to the work distribution function p(w), where the latter is defined as the
probability density of having performed theworkw during the process. Importantly, the difference
in the free energy ΔF enters the equality regardless of whether the system is in equilibrium at the
end of the protocol. This means that for the Jarzynski equality to hold it is not necessary that the
system actually equilibrates. In particular, one can measure the free energy of a system that does
not actually ever reach an equilibrium state, such as a many body localized system [391–395].
We consider a quantum system described by aHamiltonianH0. Let us first assume that the system
is prepared in a thermal initial state ρ0 =

1
Z0

e−βH0 . We will see below that this does not have to be
realized experimentally. Ramping someparameters, the final systemwill be describedby adifferent
Hamiltonian H1. We will be interested in the free energy of H1 as a function of temperature. We
define the characteristic function G(u) as

G(u) =
∫

dwe−iwup(w). (9.12)

It can be shown [392] that
G(u) = ⟨eiuH1e−iuH0⟩0, (9.13)

where the expectation value is with respect to the initial density matrix ρ0. When setting u = iβ
we obtain the Jarzynski relation

G(iβ) = ⟨e−βw⟩w = e−βΔF. (9.14)
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Figure 9.2.1: Free energy from the Jarzynski equality. Numerical simulation for the
Jarzynski protocol described in the main text for a one-dimensional system described by the
Hamiltonian (7.1) with L = 6 sites, N = 3 particles, disorder strength W/J = 5, and interac-
tion strength U/J = 3.5. a) The characteristic function G(u) obtained as described in the main
text. In order to calculate the free energy difference ΔF, we multiply G(u) with a damping
function. b) Free energy difference ΔF, calculated according to the Jarzynski equality (green)
and compared to the exact result (red).

We now assume that the initial Hamiltonian H0 is in the form

H0 =
∑

i

εi|i⟩⟨i|. (9.15)

This allows us in particular to easily simulate the thermal initial state by preparing product states
and multiplying the result with the corresponding thermal weight and furthermore to obtain the
free energy of the trivial HamiltonianH0 directly. The characteristic functionG(u) can in this case
be obtained by measuring the overlaps

ri(u) = ⟨i|eiH1u|i⟩, (9.16)

and successively multiplying the ri with e−iεiu. For each temperature, we furthermore weight the
overlaps with the corresponding thermal weight, such that

G(u) =
1
Z0

∑
i

e−βεie−iεiuri(u). (9.17)

Thismimics the thermal state ρ0. In order to obtain thework distribution function p(w)we have to
perform a Fourier transformation. Because G(u)will be damped in the experiment, we use a filter
function

F(u) = e−(Γu)2 , (9.18)
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Figure 9.2.2: Work distribution function p(w) in a disordered Bose-Hubbard model as de-
scribed by Hamiltonian (7.1) with L = 6 sites, N = 3 particles, disorder strength a) W/J = 1,
b) W/J = 10.5, interaction strength U/J = 3.5, and inverse temperature βJ = 5, from exact
diagonalization. In the case of strong disorder, b), the work distribution function is dominated
by a few peaks, as compared to a rather broad feature for weak disorder. c) This behavior can
be quantified by considering for example −

∑
w p(w) log p(w) for a range of disorder values.

For each disorder value in c), we average over 15 disorder realizations. The error bars denote 1
s.e.m.

which gives:

p(w) =
∫

du e−iwuF(u)G(u). (9.19)

In other words, the filter function broadens the delta-peaks in the spectrum and thus in p(w).
Therefore, Γ has to be chosen smaller than the many-body energy spacings of the Hamiltonians,
but still sufficiently large towork as a proper cutoff to the temporal data inG(u). In the experiment,
there will anyways be some decoherence rate present, so an artificial broadening is not necessary.
With the help of the Jarzynski equality, we can determine the difference in free energyΔF from the
work distribution function p(w),

⟨e−βw⟩w =

∫
dwe−βwp(w) = e−βΔF. (9.20)

This finishes the protocol and we were able to measure the free energy of a closed and interacting
many-body system which has not even been at equilibrium.

Measurement protocol summary

1) Measurement

(i) generate initial product state |i⟩
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(ii) time evolve with Hamiltonian of interest Ĥ1 for a time u

(iii) measure overlap ri(u) = ⟨i|eiH1u|i⟩

(iv) repeat (i)-(iii) for a set of initial states |i⟩

2) Postprocessing

(i) calculate G(u) for desired β from the measured ri(u). All temperatures are obtained
simultaneously

(ii) Fourier transform G(u) to obtain p(w)

(iii) Use Jarzynski equality to obtain ΔF

Experimentally, one only needs to measure the overlaps ri(u). For a system of superconducting
qubits, this has already been done in the context of the measurement of the energy spectrum of a
many-body localized system [108].
Intriguingly, the work distribution p(w) itself, which is directly obtained during the protocol out-
lined above, shows signatures of many-body localization. In Fig. 9.2.2 a), b), the work distribution
p(w) for the Bose-Hubbard model is shown for weak and strong disorder for a fixed disorder real-
ization, indicating the different behavior. We quantify this behavior by calculating

−
∑

w

p(w) log p(w) (9.21)

for a range of disorder strengths μ, where we average over 15 disorder realizations for each value of
μ.
The Jarzynski equality itself has been experimentally tested, for example in a systemof trapped ions
[395].

9.2.2 First signs of localization – local particle numbers

Evidence for localization can be obtained bymeasuring themobility of excitations. The time evolu-
tion of the local occupation is a straightforwardmeasure for localization, which has been observed
for example in cold atom experiments in one and two dimensions [90–92]. In Fig. 9.2.3, we initial-
ize the systemwith a number of photon excitations nph. Wemeasure the populationNq9 (t) on one
of the initially excited qubits, q9, as the systemevolves underHamiltonian (7.1). Fig. 9.2.3 a) shows
Nq9 (t) for nph = 2. We choose a reference time tref, in which Nq9 (t) approaches an asymptotic
value after initial transients have been damped, before the dynamics of our system are dominated
by relaxation to the environment at large time scales (dashed black line), or delocalization within
our closed system driven by extrinsic dephasing [13, 396–400].

229



Figure 9.2.3: Time evolution of the local particle number for different disorder strengths
w/J. a) In a chain of 9 qubits, two qubits were excited (’q6’, ’q9’). The on-site population of
’q9’ was measured with resolution of |0⟩, |1⟩, |2⟩ for various magnitudes of disorder w/J, with
J = 40MHz. The overline indicates average over disorder realizations, and each data point is
the average of 50 realizations. The parameter τhop = (2πJ)−1 has been introduced to connect
the laboratory time t with the hopping energy. Nref is defined to be the average on-site pop-
ulation across instances of disorder at the reference time tref = 100 ns, after initial transients
have been damped. The dashed black line indicates expected photon loss for a single qubit
measured in isolation. b) Nref as a function of disorder for nph = 1, 2, 3. Inset shows which
qubits were excited at t = 0 ns.

Fig. 9.2.3 b) shows the disorder averaged population after tref = 100 ns of evolution as a function
of the disorder strength. At low disorder, in the diffusive regime, we expect the dynamics to sat-
isfy the ergodic hypothesis. Here, a uniform averaging over the available phase space implies that
the expected occupancy of a given qubit should be nph /nQ. For multiple photon excitations our
observations are consistent with ergodic dynamics at weak disorder; however, as we increase the
disorder strength, significant deviations from the thermal value are observed, which indicates that
our systembecomesmany-body localized. Wenote that withmore photons in the system, the pop-
ulation converges to its thermal expectation value at higher disorders. This is expected because the
increased interactions assist with the thermalization process and drive delocalization. In the case
of a single excitation our system is non-interacting and hence localized for all disordermagnitudes.
The apparent approach of the population to the thermal value at extremely weak disorder indicates
the regime where the single-particle localization length exceeds our system size. In Fig. 9.2.4, the
onsite population for small 2D geometries is shown for nph = 1, 2, 3, 4. The initial location of the
excitations was randomized between runs but the observation site was always one of the initially
excited qubits. Similar to the 1D geometry, with sufficient disorder the onsite population takes a
non-thermal stationary value and is consistent with many-body localization. In the 2D geometries
the onsite population is consistent with thermalization at higher disorders when there are more
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Figure 9.2.4: Time evolution of the local particle number in 2d arrays for different dis-
order strengths w/J and particle numbers. a)-d) Onsite population for nph = 1, 2, 3, 4 on a 3x3
array of qubits. e)-h) Onsite population for nph = 1, 2, 3, 4 on a 4x4 array of qubits.
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Figure 9.2.5: Distribution of the non-local interactions a) The histogram of J̃ij values
measured for 1000 instances of disorder vs. distance between Qi and Qj . b) The disorder-
instance-averaged values of J̃ij in linear (main) and semi-logarithmic scale (inset) for two ratios
of disorder w/J = 5 (green) and w/J = 5 (gray).

photons in the system (greater nph), as in the 1D case.

9.2.3 Extracting the couplings

A hallmark of the MBL phase are the non-local interactions J̃ij between τ-bits introduced in Sec-
tion 9.1.2. To investigate the emergent non-local interactions, we measure the distribution of the
couplings P(̃Jij), Fig. 9.2.5 with a conditional phase measurement made possible by our ability to
drive on-site rotations. Our protocol consists of preparing the qubit Qi in a superposition state
(|0⟩ + |1⟩)/

√
2 and then measuring the time evolution of ⟨σx

i ⟩ under two conditions: when Qj is
in the |0⟩ state and when it is in the |1⟩ state. The rate of phase accumulation of Qi is conditioned
on the state ofQj and thereby permits the extraction of the J̃ij. In the τ-bit picture, the protocol can
be understood as follows. We start from the initial state

|ψA⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |1⟩, (9.22)

where we only consider the two sites i and j. The system then evolves under the Hamiltonian

Ĥ = h1 τ̂z
1 + h2 τ̂z

2 + J̃12 τ̂z
1 τ̂

z
2. (9.23)

During a time-evolution for time t, a phase accumulation takes place, such that

|ψ(t)⟩ = 1√
2
(e−iφ01t|01⟩+ e−iφ11t|11⟩) (9.24)

232



with
φ01 = −h1 + h2 − J̃ij and φ11 = h1 + h2 + J̃ij. (9.25)

Measuring ⟨σx
1 ⟩ in this case yields 2 cos(φAt) with φA = −2h1 − 2̃Jij. If we on the other hand start

from the initial state
|ψB⟩ =

1√
2
(|0⟩+ |1⟩)⊗ |0⟩, (9.26)

the measurement of ⟨σx
1 ⟩ will give 2 cos(φBt) with φB = −2h1 + 2̃Jij. The difference between the

two phases thus directly yields the coupling J̃ij.
In a system with more than two sites, in principle also higher order interactions J̃ijk, ... should be
taken into account. For the measurements presented here, these interactions can be neglected.
We Fourier transform the experimentally measured time evolution and determine the dominant
low frequency peak and associate its shift as the J̃ij. Repeating this process several times for differ-
ent disorder realizations, we obtain the distribution of the couplings J̃ij. We find the J̃ij to be broadly
distributed, Fig. 9.2.5 a) with a mean that is rapidly decaying with increasing distance between the
qubits (Fig. 9.2.5 b)). The broad distribution of the couplings has profound consequences. In par-
ticular, upon disorder averaging the entanglement entropy between the two qubits grows logarith-
mically in time and saturates at a finite value, see also section 9.2.5. By contrast, a sharp distribution
of the couplings would lead to an oscillatory behavior of the entanglement entropy between two
entities[401].

9.2.4 Interferometric Probes

The effect of interactions on the properties of a localized system can be probed by comparingmea-
surements from spin and DEER echo protocols [402]. The main idea is to probe the dephasing of
a given spin due to its entanglement with a different, distant spin, see Fig. 9.2.6. While in the ex-
perimentally realized Hamiltonian local occupation numbers of 2 and higher are crucial to obtain
any interactions, we only consider manipulations and measurements in the 0 and 1 manifold for
the protocols discussed here. Local occupations higher than one are unlikely, Fig. 9.2.6 c), and we
thus expect that neglecting them does not alter the qualitative outcome of the discussion.
In order to illustrate the protocols, we consider the case of strong disorder, where the τz

i are very
close to the physical spins Sz

i and assume that we directly manipulate τ bits in the experiment. For
simplicity, we start with the initial state

∣∣ψ0

〉
= |0⟩ ⊗ |...0j...⟩. First a π/2 pulse is applied locally

at site i in both protocols,

|ψ⟩ = R (π/2) |ψ0⟩ =
1√
2
(|0⟩+ |1⟩)⊗ |...0j...⟩. (9.27)
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Figure 9.2.6: Spin and DEER echo protocol. a) Spin and b) DEER echo pulse sequences.
DEER differs from spin echo by the addition of a remote π/2-pulse simultaneous with the
π-pulse between the free precession intervals. c) Exact diagonalization estimate of the occu-
pation of higher transmon levels during the DEER echo protocol. The probability to have a
maximum local occupation of nmax

i = 1, 2, 3 during the DEER echo protocol is shown.

Next, the system is time evolved for a time t. During this time evolution, the spin at site i experi-
ences a field

Δi = h̃i +
∑

j

Jijτz
j +
∑
j,k

Jijkτz
j τ

z
k + ... (9.28)

given by the state of the surrounding τ bits, such that

|ψ⟩ = e−iĤtR (π/2) |ψ0⟩ =
1√
2
(eiΔit|0⟩+ e−iΔit|1⟩)⊗ |...0j...⟩. (9.29)

At the middle of the protocol, a π pulse is applied at site i, such that

|ψ⟩ = R (π) e−iĤtR (π/2) |ψ0⟩ =
1√
2
(eiΔit|1⟩ − e−iΔit|0⟩)⊗ |...0j...⟩ (9.30)

In the case of the spin echo protocol, the system is then again time evolved for a time t. The phases
picked up during the first and second time evolution cancel in this case

|ψ⟩ = e−iĤtR (π) e−iĤtR (π/2) |ψ0⟩ = e−iĤt|ψπ⟩ =
1√
2
(|1⟩ − |0⟩)⊗ |...0j...⟩ (9.31)

and after the final π/2 pulse, the system is back in its initial state:

|ψ⟩ = R (π/2) e−iĤtR (π) e−iĤtR (π/2) |ψ0⟩ = −|0⟩ ⊗ |...0j...⟩ = −|ψ0⟩. (9.32)
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Figure 9.2.7: Spin and DEER echo in the disordered Bose Hubbard model. a) Purity
of the single qubit for spin (red dashed) and DEER (solid) echo experiments for w/J = 5. The
remote DEER pulse induces dephasing, decreasing the purity. The contrast between spin and
DEER echo probes the non-local interaction J̃ij between the spin and DEER echo lattice sites.
b) Same as a) from exact diagonalization simulations.

In the system under consideration, the physical spins do not exactly correspond to the τ bits and
therefore the system does not return entirely to its initial state, as other dynamics is also possible
during the time evolution.
In the DEER echo sequence, the first time evolution is the same as above, with effective field Δi.
Then, a π/2 pulse is applied at site j, putting the τ bit at that site in a superposition of |0⟩ and |1⟩,
where for the latter case the effective field experienced by the τ bit at site i changes to Δ̃i, which
corresponds to Δi with all terms that contain τz

j modified accordingly. The state after the second
time evolution is therefore

|ψ⟩ = 1
2

[
|1⟩ ⊗ |...0j...⟩+ ei(Δi−Δ̃i)t−iΔjt|1⟩ ⊗ |...1j...⟩

−|0⟩ ⊗ |...0j...⟩ − e−i(Δi−Δ̃i)t−iΔjt|0⟩ ⊗ |...1j...⟩
]

(9.33)

and the final π/2 pulse gives

|ψ⟩ = − 1√
2
[
|0⟩ ⊗ |...0j...⟩+ ie−iΔjt sin((Δi − Δ̃i)t)|1⟩ ⊗ |...1j...⟩

+e−iΔjt cos((Δi − Δ̃i)t)|0⟩ ⊗ |...1j...⟩
]
. (9.34)

Measurement of τz
i then yields

⟨τz
i ⟩ =

1
2
[
1+ cos(2(Δi − Δ̃i)t)

]
. (9.35)

The final measurement of ⟨τz
i ⟩ thus probes the effect of the interaction with the – possibly distant
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– spin on site j. In particular, the comparison between spin and DEER echo protocols directly
shows the effect of the interactions in the system. The difference between spin and DEER echo
decreases with increasing distance between the two lattice sites, since the corresponding couplings
J̃ij decay, see Section 9.2.3. As the DEER echo site is moved closer to the probe site, the signal in
terms of difference between the two echo protocols gets stronger, see Fig. 9.2.7. The experimental
imperfections caused e.g. by dephasing reduce the contrast between the two echos compared to
the exact diagonalization results, Fig. 9.2.7 b), but is still clearly visible. In a thermalizing system,
otherprocesses lead todephasing andchange the stateduring the timeevolution, leading to a strong
decay of both echos. In an Anderson localized system, the two protocols would also yield the same
result, but in this case the final state is close to the initial state and the overlap is thus big.
FromEq. (9.35), the coupling J̃ij can in principle be extracted for a given disorder realization as the
frequency of the cosine.

9.2.5 The two qubit reduced density matrix

In a superconducting qubits experiment, the density matrix can in principle be completely mea-
sured, since arbitrary local rotations are possible. In practice, the exponentially growing size of the
Hilbert space and the correspondingly growing number of necessary measurements restricts the
number of states on which a full state tomography is performed. Here, the reduced density matrix
of two separate qubits is reconstructed.
Numerically, the reduced density matrix of a small subsystem can be obtained in two different
ways: by tracing out the parts of the full density matrix which belong to spins other than the ones
under consideration or by explicitely measuring all possible correlations up to n-th order, where n
is the number of spins in the subsystem, see also Section 8.3.3. For the case of two spins, the latter
approach is still feasible.

Von Neumann entanglement entropy From the reduced density matrix ρ2q of the qubits
on site 1 and 3, we extract the von Neumann entropy

SvN = −tr ρ2q log ρ2q (9.36)

as a measure of the entanglement of the subsystem with its environment, Fig. 9.2.8. The fast ini-
tial rise of the vonNeumann entanglement entropy can be related to a hopping to the neighboring
sites. Similarily, the local occupation changes on the same time scales, Fig. 9.2.8 f)-h). The dis-
order averaged expectation value ¯⟨σz⟩, with ⟨σz⟩ = 1/2 − ⟨n̂i⟩ initially rises because population
from the subsystem qubits is transferred to the environment which has a smaller photon density.
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Figure 9.2.8: Von Neumann entanglement entropy of a two qubit subsystem a) Parti-
tioning of the 9-qubit chain into a subsystem and environment. The subsystem qubits (A and
B) are initialized into superposition states, and an additional excitation is placed on site C to
enhance many-body interactions. b) Numerically calculated von Neumann entanglement en-
tropy for times up to 105 ns. The logarithmical growth at long times is clearly visible. c) Von
Neumann entanglement entropy extracted from the two qubit reduced density matrix recon-
structed tomographically from experimental measurements. The J = 0 data acts as a control
experiment. We attribute entropy accumulation in the control experiment to open system ef-
fects. d) Experimental data after subtracting the baseline entropy measured in the control
experiment from each of the data series. e) Result of exact diagonalization numerics. f)-h):
same as c)-e) for the disorder averaged expectation value ⟨σz⟩, which does not change signifi-
cantly after an evolution time of 10 ns.
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Note that in the convention used here, a larger value for ¯⟨σz⟩ corresponds to a lower occupation.
However, while the local occupation stays approximately constant afterwards, the entanglement
entropy continues to rise albeit much slower. The long time behavior is consistent with the log-
arithmic growth expected from numerical simulations, see Fig. 9.2.8 a), as well as the τ-bit pic-
ture discussed in Section 9.1.2. Similar behavior for the entanglement growth has been observed
numerically, see e.g. Ref. [403] and experimentally in a quantum gas microscope [35]. The von
Neumann entropy quantifies entanglement with all external degrees of freedom and is not able
to disambiguate entanglement with the environmental qubits due to unitary dynamics from open
system effects. As such, our observed entropy SvN is an upper bound for the entanglement gener-
ated under the closed system Hamiltonian time evolution. The J = 0 curve (black) in Fig. 9.2.8
c) provides an estimate of the amount of entropy that is due to open system effects, as there are no
interactions between the qubits in the system and the observed entropy is thus attributed to extrin-
sic dephasing and relaxation processes. In Fig. 9.2.8 d) we show the experimentally measured von
Neumann entropy after subtracting the baseline provided by the J = 0 data, which compares well
to the exact diagonalization calculations in e). The disagreement at short times is attributed to the
transient response of the control pulses. The time evolution of the von Neumann entanglement
entropy depends on the choice of initial state, as illustrated in Fig. 9.2.9. The chosen initial state
for the two qubits in subregion A directly creates a superposition state similar to the superposition
between two neighboring sites used in Ref. [401]. If the initial state corresponds to product state
excitations in region A, only rare resonances between neighboring sites realize superpositions. Af-
ter a fast initial dynamics, no additional growth of the entanglement entropy can be observed on
the time scales considered here.

Operational entanglement measures In order to estimate the entanglement contained in
the two qubit subsystem, wemake use of operational entanglement measures, since the subsystem
is in a mixed state as it is part of a larger system. One such operational entanglement measure is
the entanglement of formation (EOF), which is a measure for the entanglement needed to create
the observed two-qubit reduced density matrix [404]. With this entanglement measure, we are
affirmatively detecting entanglement between sites of the subsystem. The observed EOF cannot
be attributed to open system effects which would tend to suppress the entanglement of formation.
The EOF is therefore a more conservative entanglement measure than for example the von Neu-
mann entanglement entropy, and a valuable tool for characterizing the experimental system, which
is always coupled to environmental degrees of freedom to some extent. The entanglement of for-
mation is defined as

EF(ρ) = ε(C(ρ)) (9.37)
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Figure 9.2.9: Von Neumann entanglement entropy of a two qubit subsystem – initial
state dependence. We perform a numeric analysis on a nine site chain to show the impor-
tance of the initial state in the time evolution of the entanglement entropy. We choose sites
1 and 3 as subregion A and the rest of the system as region B. Choosing the initial state con-
sidered in Fig. 9.2.8 (green line) leads to good qualitative agreement with the experimental
results shown in Fig. 9.2.8 c)-e). There is a sharp increase in entanglement entropy during the
first hopping interval, followed by a growth consistent with a logarithmic time dependence.
a) Placing the excitation in subregion B closer to subregion A (black line) leads to a sharper
increase for short times. Starting from a state with a superposition on site 1 and an excitation
on site 8, but without any occupation on site 3 (blue line) leads to the same growth at long
times. However, the initial increase is less pronounced. Without the excitation in subregion
B, the entanglement grows only very weakly at long times (orange line). b) Initializing prod-
uct instead of superposition states locally (red line) leads to a relaxation on short time-scales,
after which the two body reduced density matrix does not change much anymore, the entan-
glement saturates correspondingly. Placing the excitation in subregion B on site 2 (brown
line) yields similar results. An initial state with more local superpositions distributed over the
entire system (pink line) leads again to a slow growth of the entanglement with time.
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Figure 9.2.10: Operational entanglement measures Entanglement of formation between
qubits in various 2-qubit subsystems (A,Bi). To observe the development of entanglement
between sites A and B the subsystem is initialized in a product of single qubit superposition
states and the entanglement of formation of the two qubit density matrix is extracted, for
subsystems of a) 1×10, b) 2×5, and c) 3×5 array of qubits with J = 30MHz and w/J = 10. In a
2 qubit subsystem (A,B) of a 3 by 7 array of qubits, a Bell pair is created, and the logarithmic
negativity d) and coherent information e) are extracted from measurements of the subsystem
density matrix and averaged over 80 realizations of disorder for J = 30MHz with w/J = 12. We
initialize the environment with an excitation at a position Ci which is varied.
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with
ε(x) = −h+(x) log2 h+(x)− h−(x) log2 h−(x) (9.38)

where
h±(x) = − 1

2
(
1±

√
1− x2

)
. (9.39)

The concurrence C(ρ) of a mixed state of two qubits is defined as

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4) , (9.40)

where λi are the eigenvalues of
R =

√√ρρ̃√ρ (9.41)

and
ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy). (9.42)

InFig. 9.2.10, the experimentallymeasured entanglementof formation is shown for a) aonedimen-
sional system, b) a two-leg ladder and c) a three-leg ladder. We initialize the subsystem in a product
state of single qubit superpositions and observe the development of entanglement between the
subsystem qubits. Regardless of geometry of the qubit array, entanglement grows gradually be-
tween the localized, spatially separated sites over several hopping times. The entanglement grows
faster when the subsystem qubits are closer to each other. This can be understood by considering
two isolated qubits, which are becoming correlated with a rate given by the effective interactions
J̃ij that increases with decreasing distance, see Fig. 9.2.5. The EOF for a single disorder realization
possesses a sinusoidal shape. However, due to the disorder average over the broad distribution
of the couplings J̃ij the EOF saturates at intermediate times and only decays at late times due to
open system effects. The EOF results have to be contrasted with the von Neumann entanglement
entropy, which would continuously increase because it includes entanglement with all degrees of
freedom external to the subsystem.
Within the τ-bit picture, the different τz eigenstates only acquire a phase but do not transform into
each other during the time evolution. In particular, the two qubit states |00⟩, |01⟩, |10⟩ and |11⟩ ac-
cumulate a phase±JABt. Following the calculation above for the entanglement of formation yields

EF(ρ) = sin(2JABt) (9.43)

for the chosen initial state. For qubits A, B further apart, the coupling JAB is smaller and thus the
timescales are longer.
The results thus far illustrate how interaction effects propagate entanglement throughout the sys-
tem in terms of the von Neumann entropy and the entanglement of formation. However, because
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Figure 9.2.11: Logarithmic negativity in the one-dimensional Bose-Hubbard model.
In a 2 qubit subsystem (A,B) of a one-dimensional array of nine qubits, a Bell pair is created,
and the logarithmic negativity is extracted from a) experimental measurements of the subsys-
tem density matrix. b) Similar to Fig. 9.2.8 b), the experimentally measured time trace for
J = 0 is subtracted. c) Exact diagonalization simulation.

MBL systems are non-thermal, features of their initial state remain imprinted on them. While sta-
ble non-thermal local occupations as shown in Fig. 9.2.3 exemplify this behavior, the extension of
this memory to quantum correlations has not been demonstrated experimentally. To probe this
aspect, we prepare a maximally entangled Bell state between two subsystem qubits in a 3×7 qubit
array and monitor the subsystem density matrix as the pair interacts with a remote photon. We
focus on the distillable entanglement (DE), i.e., the entanglement which can be extracted from
the mixed density matrix. The upper and lower bounds of the DE are the logarithmic negativity
entropy and the coherent information entropy respectively, shown in Fig. 5(d) and (e).

To probe this aspect, we start from a highly entangled state and then study how this entangle-
ment is preserved over time. To this end, we prepared the subsystemof qubits on sites A andB (see
Fig. 9.2.10 d)) in a Bell state and let the system time evolve. In the strongly localized phase, the sys-
tem can be described in the τ bit picture, where dephasing between the different τ bits causes a
loss of the quantum information imprinted in the subsystem, but only on exponentially long time
scales. Again, we have to make use of operational entanglement measures, since the subsystem is
in a mixed state as it is part of a larger system. Specifically, we consider the entanglement that can
in principle be extracted from the two qubit subsystem: the distillable entanglement. While it is in
general not possible to exactly determine the distillable entanglement, a lower bound is given by
the coherent information

ED(ρ2q) ≥ SvN(ρ1q)− SvN(ρ2q), (9.44)
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where ρ1q,2q are the reduced density matrices of one of the two qubits and the two qubit subsys-
tem, respectively, and SvN(ρ) is the von Neumann entanglement entropy. An upper bound to the
distillable entanglement is given by the logarithmic negativity[405–409] which is defined as

EN(ρ2q) = log2 ||ρ
TA
2q ||1. (9.45)

Here, ρTA
2q is the partial transpose of the reduced density matrix with respect to one of the qubits

and || · ||1 denotes the trace norm.
The initial drop of the distillable entanglement on the single hopping timescale, Fig. 9.2.10 d), e)
is attributed to population transfer from the Bell pair into the environmental qubits. Thereafter,
interaction with the remote photon induces local dephasing in the subsystem. With the remote
photon at larger distances, the distillable entanglement remains finite over several hopping times
for high disorder strengths. Thedistillable entanglement is increasingly reduced as the remote pho-
ton is brought closer to the Bell pair and the coherent information that lower bounds the distillable
entanglement approaches zero at earlier times. This data illustrates that in themany-body localized
phase, a memory of the initial entanglement can persist to late times.
In Fig. 9.2.11, the logarithmic negativity is determined in a one-dimensional system of nine qubits
for a fixed disorder strength w = 400MHz and varying couplings J = 0, 5, 10, 20, 30, 40MHz. In
the case of weak disorderw/J, the logarithmic negativity decays to a low value on short time scales,
since the quantum dynamics entangles the two qubit subsystemwith the remainder of the system,
Fig. 9.2.11. For increasing disorder strength w/J, the long-time value of the logarithmic negativity
increases significantly.
By introducing phase sensitive algorithms and measurement, we have directly probed the nonlo-
cal interactions responsible for entanglement propagation and mapped the spatial structure of the
localized orbitals. The techniques introduced here extend easily to the characterization of digital
algorithms and also more broadly to other synthetic quantum systems, thus offering a new toolkit
to experimentally probe entanglement dynamics in a variety of settings.
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9.3 Machine learning dynamics in a disordered system

This section is based on the publication

• A. Bohrdt, S. Kim, A. Lukin, M. Rispoli, R. Schittko, M. Knap, M. Greiner, and J. Léonard:
“Analyzing non-equilibrium quantum states through snapshots with artificial neural net-
works” – arXiv:2012.11586

Structure, text and figures have been rearranged and adapted here.

Quantum simulation experiments can enable the observation of the time-evolution of a quantum
many-body system starting from a non-equilibrium state with almost perfect isolation from the en-
vironment, as we have for example seen in sections 4.3, 5.5.2, and 9.2. In the past decade, a variety
of non-equilibrium phenomena has been observed with examples ranging from exotic phases real-
ized through Floquet driving [410] to time crystals [411, 412] and quantum scars [413].
Depending on the experimental platform, different measurements and observables are accessible.
In a quantum gas microscope, Fock space snapshots of the quantum many-body state are mea-
sured. While quantities such as the entanglement entropy, as studied with superconducting qubits
in section 9.2, are not easily accessible in this setup, Fock space snapshots provide awealth of infor-
mation about the quantum many-body state and a variety of different, also non-local and higher-
order, correlations can be obtained. In many cases, theory can provide a clear prediction which
observables should be studied, such as a given order parameter for a well-known phase transition.
For some problems, however, it is not as clear which observable to look at, and bymaking a choice
for one specific quantity, valuable information might be discarded. In section 6.5, we showed that
Fock space snapshots of the quantummany-body state provide a natural input for neural networks.
Employing these snapshots as training and test data in machine learning applications has, among
others, the advantages that usually, many hundreds to thousands of snapshots are routinely taken
andmoreover, raw data is used, where no analysis for specific quantities based on human interpre-
tations has taken place. Therefore the neural network itself makes the decision which observables
to extract from the data and use for the specific task at hand.
In this section we study the dynamics of an interacting quantum many-body system in terms of
actual experimental data as well as numerically generated, but experimentally accessible data with
the help of neural networks. In particular, we consider the one-dimensional Bose-Hubbardmodel,
Eq. 7.1, for different disorder strengths W and interaction strengths U. In a cold atom setup, the
on-site disorder can be created with an incommensurate lattice as

hi = cos(2πβi + φ). (9.46)
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In the experiment considered here, the full on-site occupation can be resolved in the snapshots
takenwith the quantum gasmicroscope by splitting up the one-dimensional chain in a second spa-
tial direction before imaging.
This system exhibits a many-body localized phase. The transition from an ergodic to a many-body
localized phase is fundamentally different from the well-studied case of equilibrium phase transi-
tions, as it describes a non-equilibrium setting. Machine learning approaches to study the MBL
phase transition have employed the entanglement spectrum [414–416] or full eigenstates [417]
as inputs. Those quantities are experimentally not, or at least not easily, accessible. In Ref. [418],
time traces of the local magnetization are used as inputs to a neural network. Here, we go one step
further and consider Fock space snapshots. This analysis has two main advantages:

(i) these snapshots are the direct measurement in quantum gas microscopes, whereas the local
magnetization or particle number requires averaging over many snapshots, and thus more
data taking.

(ii) Averaging over many measurements always means discarding information, which might be
valuable. In Ref. [35] it was for example shown that measures for the entanglement entropy
can be extracted from Fock space snapshots. Using snapshots as input allows the neural
network to find the best observable for the classification task at hand, using all available in-
formation without any bias.

We start by characterizing the transition from a thermalizing to a many-body localized system by
training a neural network to distinguish the extreme cases, then using data at intermediate values
of the disorder strength as input in section 9.3.1. The accuracy achieved by the neural network
can itself be used as a probe. This idea is for example employed in the confusion learning scheme
introduced in Ref. [325] and used in this section for snapshots in a wide range of disorder values.
We start from a uniform density state and apply the confusion learning scheme separately for dif-
ferent points in the time evolution. While the characteristic ‘W’-shape, indicative of a qualitative
change in the data, emerges for all time steps, the corresponding value of the disorder strength
slowly increases with increasing time. Finally, in section 9.3.2, we use the accuracy as a probe to
study how the system approaches thermal equilibrium – or fails to do so. In particular, we evalu-
ate the accuracy achieved when the network is trained to distinguish the current time step from a
thermal state at an effective temperature determined by the energy density of the initial state. This
approach makes optimal use of the capabilities of a neural network, as the network parameters are
in each time step optimized to distinguish this time step from thermal equilibrium, thus allowing
the neural network to determine the observable most strikingly different in the two datasets.
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9.3.1 Learning the MBL transition
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Figure 9.3.1: Learning a phase transition. Snapshots of the many-body quantum state
in the long-time limit for various disorder strengths W/J are analyzed with machine learning
techniques. a) A neural network is trained to distinguish exact diagonalization snapshots at
W/J = 0.3 and W/J = 11 for U/J = 2.9 and a system with 12 sites. After the training process
is finished, snapshots at intermediate values of the disorder strength are used as input. The
plot shows the resulting classification for numerical data (shaded band) as well as experimen-
tal snapshots (symbols). Increasing the number of snapshots grouped together k leads to a
sharper signal. We simultaneously evaluate snapshots from ten different disorder realizations
in the numerical data. In the experimental data, each snapshot is from a different disorder re-
alization. The accuracies are averaged over two independent runs and the errors denote one
s.e.m. b) The transport distance Δx and on-site fluctuations F , see text, are evaluated from
the same snapshots. Shaded bands correspond to exact diagonalization snapshots, symbols
are based on experimental data.

Among the first applications of machine learning techniques to the study of quantum many-
body systems was the investigation of phase transitions, and in particular, the transition from a
thermalizing to a many-body localized (MBL) phase. In Refs. [414, 415], for example, the entan-
glement spectrum was used as an input to the neural network. These works showed that a neural
network can in principle be used to locate the transition. Here, we focus on Fock space snapshots
of the many-body quantum state as input data, which are the direct output of quantum gas mi-
croscopy experiments and thus experimentally readily accessible for the systems of interest.
In Fig. 9.3.1, we first train the network to distinguish snapshots of the many-body quantum state,
obtained from exact diagonalization calculations, in the long-time limit after a quench for low
(W/J = 0.3) and high (W/J = 11.0) disorder strength for an interaction strength of U/J = 2.9.
We consider a one-dimensional system with 12 sites, which is initialized in a uniform density state,
|ψ(t = 0)⟩ = |111111111111⟩, and use snapshots in the long-time limit at time tJ = 100. Here, we
average over ten different disorder realizations, obtained by varying the phase φ in the potential
(9.46). After the network has learned to label the extremal cases correctly with sufficiently high
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accuracy, we input snapshots for intermediate values of the disorder strength. As output, for each
disorder strength we obtain the fraction of snapshots labeled as many-body localized and thermali-
zing, see Fig. 9.3.1 a). Based on these results, the phase transition to themany-body localized phase
is located betweenW/J = 6 andW/J = 10, as expected. One way to determine the exact position
of the transition is the analysis of the level statistics, which change from Gaussian-orthogonal en-
semble statistics to Poisson statistics as the disorder strength is increased and one enters the MBL
phase. As shown in section C.2.2, finite size effects inhibit the determination of the exact position
of the transition here. The machine learning method identifies a transition at W∗/J ≈ 8, which
is consistent with the level statistics calculated for smaller systems in section C.2.2. The increase
in the fraction of snapshots classified as MBL becomes sharper as more snapshots are grouped to-
gether during training and evaluation, as canbe seenby comparing the results for different numbers
of snapshots grouped together k in Fig. 9.3.1 a). After training and evaluating numerically simu-
lated snapshots, we can also use experimental data at U/J = 2.9 and various disorder strengths as
input to the neural network. As shown in Fig. 9.3.1 a), the resulting classification agrees well with
the neural network output for purely numerically simulated data.
In order to relate to previous work, in particular Ref. [66], we directly evaluate observables from
the snapshots and calculate the transport distance Δx, defined as

Δx = 2
∑

d

|d| ·
〈
G(2)

c (i, i + d)
〉
i (9.47)

with
G(2)

c (i, i + d) = ⟨n̂in̂i+d⟩ − ⟨n̂i⟩ ⟨n̂i+d⟩ , (9.48)

and the on-site fluctuationsF , defined as

F = G(2)
c (d = 0), (9.49)

in Fig. 9.3.1 b). Comparing the output of the neural network in part a) with the transport distance
Δx in b) shows a similar behavior, indicating that the network presumably uses a similar observable
to make the distinction.

Confusion Learning In Ref. [325], it was suggested to use the accuracy achieved on a test
set to probe whether and where a phase transition exists. The method, called confusion learning, is
explained in detail in section 6.5. Here, we have a dataset of snapshots for values of the disorder
strength 0.3 ≤ W/J ≤ 11.0. In order to test for a qualitative change in the data at a given valueW∗,
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a) b)

a) b)

Figure 9.3.2: Confusion learning in a disordered system. Snapshots of the many-body
quantum state of a system with 12 sites, U/J = 2.9, and various disorder strengths W/J and a
single disorder realization are analyzed using confusion learning. A neural network is trained
to label all snapshots with W < W∗ as phase A and the remainder as phase B. If a qualitative
change in the data occurs, the accuracy will peak at an intermediate value of W∗. a) Result-
ing accuracy in the long-time limit, tJ = 250. b) Accuracies during the time evolution. The
results are averaged over 15 independent runs and the width of the band in a) corresponds to
one s.e.m.

we label all snapshots for W ≤ W∗ as phase A and correspondingly all snapshots with W > W∗ as
phase B. Assuming the snapshots are qualitatively different for W ≤ W∗ as compared to W > W∗,
the network should achieve a high accuracy in assigning the correct labels. However, if there is no
qualitative change at the W∗ under consideration, there will be confusion about the correct labels
and the accuracywill thus be lower. Therefore, if there is a detectable phase transition or qualitative
change in the data, the accuracy as a function of W∗ will be in the shape of a W, where the central
peak occurs at the phase transition, W∗ = Wc.
As opposed toFig. 9.3.1, we consider a single disorder realization here. Additionally, we specifically
train the network to find differences between the snapshots at all available values of the disorder
strength. Before,we trained thenetwork todistinguish theextremal casesofW/J = 0.3 andW/J =
11.0, thus identifying the observables with the largest difference in their expectation value for these
two values of the disorder strength. In the confusion learning scheme, however, the network is
trained to distinguish snapshots at a disorder strength smaller and larger than the current limitW∗,
and training occurs separately for each available value of W∗. Thus, differences in the snapshots
occuring for intermediate values of the disorder strength can be learned here.
In Fig. 9.3.2 a), the resulting accuracy achieved by the network is shown as a function of W∗ for
training snapshots in the long-time limit at tJ = 250. In agreement with Fig. 9.3.1, a peak around
W∗/J = 8 is clearly visible. After the initial short-time dynamics, a peak at intermediate values
of W∗/J appears not only in the long-time limit, but at all times. For each time step shown, we
separately apply the confusion learning scheme. As can be seen in Fig. 9.3.2 b), the position of the
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c) d)

b)

Figure 9.3.3: Learning thermalization in the Bose-Hubbard model with disorder. The
system is initialized in a state with uniform density and the ensuing time evolution is inves-
tigated. In each time step, the neural network is trained to distinguish snapshots from the
current time step from snapshots from a thermal state with the same energy density. The
plots show the resulting accuracy, while grouping 5 snapshots together in each input, for a)
W/J = 1.5, b) W/J = 4.5, c) W/J = 8.0, and d) a wide range of disorder strengths. A high ac-
curacy indicates that the current time step can be easily distinguished from the thermal state.
The upper limit of the plots in a)-c) for both the accuracy and −Δx corresponds to the value
at time t = 0, whereas the lower limit corresponds to the value in thermal equilibrium.

peak slowly moves from W∗/J ≈ 6 to W∗/J ≈ 8.

9.3.2 Learning thermalization

Similar to the confusion learning scheme studied above, we now use the accuracy itself as probe.
In particular, starting from a product state of the form

|ψ(t = 0)⟩ = |11111111⟩ (9.50)

we study the approach to thermal equilibriumby comparing the current time step to a thermal state
of the same Hamiltonian. In principle, all conserved quantities of the model should be taken into
account. Most importantly, the energy density of the initial state can be matched by choosing the
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temperature of the thermal state accordingly. In particular, the energy density of the initial state
|ψ0⟩ is given by

Ei = ⟨ψ0|Ĥ|ψ0⟩. (9.51)

The effective temperature Teff is then determined such that the density matrix of the system,

ρ̂β =
1
Z
exp
(
−βeffĤ

)
, (9.52)

with the inverse temperature βeff = 1/Teff and

Z = tr
(
exp
(
−βeffĤ

))
(9.53)

fufills
Ei = tr

(
Ĥρ̂β

)
. (9.54)

The energy density
E(β) = tr

(
Ĥρ̂β

)
(9.55)

is calculated for a rangeof values β until the effective temperature is determined such thatEq. 9.54 is
fulfilled. We then sample snapshots for each time step under consideration as well as the effective
temperature. Note that in the entire procedure, one has to consider a fixed disorder realization,
since the energy density and thus the effective temperature as well as the resulting thermal state
varies between different realizations, see section C.2.2.
Additionally to the energy, the total particle number is conserved in the system. The thermal state
is calculated within a correspondingly fixed particle number sector to take this conservation into
account. As discussed in chapter 8, such conserved quantities can lead to slow diffusive behavior,
for example in the corresponding correlation functions.
In Fig. 9.3.3 the accuracy achieved on a test set not used during training is shown as a function of
time for different disorder strengths. In each time step, the neural network parameters are opti-
mized to enable the classification of snapshots into the categories current timestep versus thermal.
This procedure has the advantage that the features used to make the classification can vary for dif-
ferent time steps and in particular, the network specifically searches for differences between the
current time and thermal equilibrium. It is therefore in principle capable of identifying specific
observables that have not yet reached their thermal equilibrium value.
For smallW/J, Fig. 9.3.3 a), the system thermalizes comparably fast: for times tJ ∝ 10, the network
basically fails to distinguish snapshots from the time-evolved state after the quench from the corre-
sponding thermal state and only reaches an accuracy of approximately 50%, which corresponds to
guessing. The accuracy achieved by the neural network shows a very similar behavior as the trans-
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port distance Δx , Eq. 9.47. Note that the lower limit of the plot in Fig. 9.3.3 a)-c) corresponds to
the thermal equilibrium value. At intermediate W/J, Fig. 9.3.3 b), where the system is in a critical
regime [66], the network is able to distinguish the time-evolved from the thermal state at all avail-
able times, up to tJ ∝ 1000. At short to intermediate times, the accuracy stays close to 100%, even
though the transport distance Δx already shows a visible increase. This indicates that the neural
network picks up a quantity that thermalizes slower than Δx, which is defined by the connected
density-density correlation function. For high values of W/J the system fails to thermalize on the
time-scales accessed here, and the network is able to distinguish the current timestep from the ther-
mal equilibrium state with an accuracy of almost 100%, while Δx increases slightly. As shown in
Fig. 9.3.3 d), the accuracy is close to 100% at all times considered for disorder strengths W/J ≥ 6,
indicating that the system is very far from reaching a thermal equilibrium state. In Fig. 9.3.1 a), the
transition to the MBL phase was located at slightly larger values of W/J. However, in this case, we
considered a system with L = 12 sites, which is considerably larger than the L = 8 site system
studied here. The critical disorder strength typically shifts to slightly larger values as the system
size is increased.
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10
Summary andOutlook

In this partof the thesis, we studied the scrambling of information, thermalization and entan-
glement properties in the Bose-Hubbard model with and without disorder.
Out-of-time ordered correlators (OTOCs) have been proposed as a measure of the scrambling of
information in a quantum many-body system. We calculate OTO and time ordered correlation
functions in the one-dimensional Bose-Hubbard model with matrix product state techniques at
finite temperature. At sufficiently high temperatures, we saw that quasiparticles cease to exist, as
the single particle Green’s functions decays rapidly. The out-of-time ordered correlator however
exhibits a distinct light-cone spreading. This ballistic spreading is to be contrasted to the density
correlations, which show diffusive behavior due to the conserved total particle number. For future
work, it would be interesting to develop analytical predictions for the growth of OTOCs, which in
our numerics deviates significantly from the simple exponential growth obtained in strongly cou-
pled field theories, or for the bounds that characterize the information propagation and Lyapunov
exponents. Thenumerical study of out-of-time ordered correlators in other interactingmany-body
systems, such as Fermi-Hubbard or spinmodels, could be beneficial. Taking such routes could help
to advance our fundamental understanding of information scrambling, transport, and thermaliza-
tion.
We propose measurement protocols to experimentally access OTO and time ordered correlations
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in a quantum simulator. An exciting future direction would of course be to measure OTOCs in
a diffusive many-body system experimentally. In the past few years, a number of other propos-
als to measure OTOCs have been published. In Ref. [419], OTOCs of local operators in a small
Ising spin chain have been measured in a nuclear magnetic resonance quantum simulator setup.
In a trapped ion quantum simulator with seven sites, OTOCs have been measured in a protocol
which at the same time verifies that quantum scrambling – as opposed to decoherence – took place
[420]. The scheme introduced in Ref. [421], based on the idea to use randomized measurements,
has been applied in a trapped ion quantum simulator [422] and could also be used in the super-
conducting qubit system studied in section 9.2.
Here, weused this experimental setup to studymany-body localization in theBose-Hubbardmodel
with disorder in one dimension as well as ladder and small two-dimensional systems. As a first
step, we observed the localization of particles during the time-evolution. The localization in terms
of local particle numbers has been observed in large one- and two-dimensional systems in cold
atom experiments [90–92]. However, the entanglement properties of the system cannot be di-
rectly studied in such a setup, and superconducting qubits provide a promising platform to further
investigate the entanglement dynamics in larger two-dimensional systems in the future.
Localization can occur without any interactions between the particles. In themany-body localized
phase, the system can be described by the τ-bit picture introduced in section 9.1.2, where distant
qubits interact (in lowest order) through non-local interactions J̃ij. We were able to experimen-
tally measure the distribution of these couplings J̃ij. For small distances, many different coupling
strengths aremeasured for different disorder realizations. For larger distances, themeasured distri-
bution becomes increasingly narrow. Theoretically, one expects a log-normal distribution for the
couplings J̃ij, with a variance that grows linearly with spatial separation [423]. Detecting the cor-
responding broad tails with small weight remains however an open challenge for experiments. The
experimentally measured disorder averaged values for J̃ij decay for increasing distance and exhibit
a broader distribution as function of |i− j| for weaker disorder. The distance and disorder strength
dependence of these non-local interactions explain the observed behavior in the remainder of this
section. We used the interferometric protocols introduced in Ref. [371] to further probe the inter-
action effects in the many-body localized phase.
With the measurements possible in a superconducting qubit experiment, full state tomography of
a subsystem is feasible. We reconstructed the reduced density matrix of a two qubit subsystem
and and directly extracted entanglement properties from it, such as the vonNeumann entropy and
operational entanglement measures. In the many-body localized regime, we observed growth of
the vonNeumann entanglement entropy evenwhen the local particle numbers did not change any-
more. Operational entanglementmeasures, such as the entanglement of formation, show a growth
of the entanglement over timewhen the system is initialized in a product state. Finally, we prepared
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the system in a Bell state and used the coherent information and logarithmic negativity to estimate
how much distillable entanglement remains in the system after a given evolution time. Increasing
disorder or reducing the distance between the two qubits involved in the initial Bell state leads to
a finite value of the distillable entanglement for the experimentally accessible times.
In future research, it would be interesting to investigate the reduced density matrix of subsystems
larger than two qubits. One specific route could be to employ machine learning techniques to
efficiently reconstruct the reduced density matrix with an optimized choice of measurements. An-
other interesting research direction along these lines is machine learning assisted Hamiltonian in-
terference from a given set of measurements, where the Hamiltonian actually realized experimen-
tally – including all possible couplings and imperfections – could be studied.
We used machine learning techniques to study thermalization in the Bose-Hubbard model with
disorder, as realized by the Rubidium quantum gas microscopy experiment in Markus Greiner’s
group at Harvard. Training a neural network to distinguish snapshots of the many-body state at
the current time step from a thermal state at the same energy density allows us to use the accuracy
as a proxy for how thermal the state looks. In particular, the network is trained to find all possible
differences between the time-evolved and the thermal state, such that any possible differences visi-
ble in Fock space snapshots will be taken into account. An interesting future direction would be to
directly extract (almost) conserved local operators with this approach, which would be in the case
of many-body localization a complementary route to the extraction of the couplings J̃ij performed
in the superconducting qubit experiment, section 9.2.3.
Again employing machine learning methods, we studied the transition between the thermalizing
and the many-body localized phase in the Fock space snapshots of the one-dimensional Bose-
Hubbard model in the long-time limit as well as during the time evolution. We showed that the
confusion learning scheme introduced in Ref. [325] is well suited to find the transition. An inter-
esting future direction is to employ different network architectures, such as for example recurrent
neural networks, and to use the entire time trace as an input.
We proposed a protocol to use the Jarzynski equality to access the free energy of a system that is
not necessarily in thermal equilibrium. With the measurements performed in Ref. [108], the free
energy of the corresponding system– the chain of superconducting qubits with disorder studied in
section 9.2 – can be directly evaluated. This method provides a valuable tool to further investigate
the thermalization properties of a system.
The experimental setups discussed in this part of my thesis are extremely promising platforms to
study interesting two-dimensional quantum many-body systems in the future, such as for exam-
ple fractional quantum Hall physics. Moreover, the superconducting qubit setup with which we
worked here is well suited to apply unitary gates, thus enabling digital quantum computing [102]
as well as the implementation of random local unitary circuits [424]. From a theorists perspec-
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tive, the development of schemes to realize and probe interesting phenomena, while employing
the advantages of a given experiment, is an important and exciting task.
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A
Methods

A.1 Exact diagonalization

The idea of exact diagonalization is to write down the Hamiltonian in some (more or less) conve-
nient basis. ThisHamiltonian can then be diagonalized exactly to obtain ground and excited states,
finite temperature expectation values and time evolutions. For a Hilbert space dimension exceed-
ing a certain size, thematrix cannot be diagonalized exactly anymore, as for example a dimension of
65536 already requires 34GB to store the full Hamiltonian matrix. As long as the Hamiltonian can
still be stored efficiently, Lanczos techniques can be used to study all of the above, see Sec. A.1.5.
Even with Lanczos techniques, exact diagonalization can only be used for comparably small sys-
tem sizes, for example for low-energy properties of systems with 40 sites for a spin-1/2model with
Sz
tot = 0 or 20 sites for the Fermi-Hubbard model at half-filling, all while employing all possible

symmetries [425]. In the following, we discuss the construction ofHilbert space and operators for
different physical systems and Lanczos methods.

A.1.1 Spin systems

In a spin 1/2 system, the localHilbert space dimension is two, spin up and spin down. A convenient
representation of a Fock state is thus the binary representation: 0 corresponds to spin down, 1 to
spin up. In order to construct aHilbert spacewithout taking any conservedquantities into account,

259



we can simply use the numbers between 0 and 2L−1, where L is the number of sites. Each number
corresponds then to the state given by its binary representation and all 2L states are included.
In order to represent the S+i operators for a given site i, we go through the basis states |α⟩ and check
whether the entry on position i is 0 or 1. If it is 1, no entry in the matrix for S+i is made for this spe-
cific basis state. If the basis state entry on position i is 0, we construct the new state |α̃⟩ by changing
this 0 to a 1. The new state corresponds to a different position in the basis, namely the basis state at
the position given by its binary representation. In the matrix for S+i the entry in line α̃, column α is
set to 1.
Once the S+i operator is constructed, the remaining spin operators are obtained as S−i =

(
S+i
)†

and Sz
i = S+i S−i − 1/2̂1. The Hamiltonian as well as arbitrary obesrvables are then constructed as

sums of products of S+i , S−i and Sz
i for the different sites i.

Sz
tot conservation

It often is helpful tomake use of conservation laws in theHamiltonian. In particular, this canmean
to arrange the basis states according to a conserved quantity, such that for example states are sorted
according to their value of Sz

tot. When the Hamiltonian conserves Sz
tot and is written in this reor-

ganized basis, it becomes block-diagonal. This can be helpful in diagonalizing the Hamiltonian.
Often one is only interested in a certain value of Sz

tot, for example because the ground state is in this
sector or because a time evolution starting from a product state is considered.
The conservation of Sz

tot can be readily implemented using the same general concept as before. In
the construction of the basis, we however only take states which are in the Sz

tot sector under con-
sideration. This leads to a set of numbers α, given by the binary representation of these basis states,
which is smaller than 2L. These numbers are saved in a list, such that the index l(α) of a given num-
ber α in this list corresponds to the number the state |α⟩ takes in this block.
In order to construct the S+i operator, two consecutive blocks of Sz

tot must be considered, since by
applying S+i we go from one block to the other. The construction of the operators is exactly the
same as before, with the only difference that the entry in the matrix is not made at position (α̃, α),
but instead at position (l1(α̃), l2(α)). Here, l1(α̃) corresponds to the index of α̃ in the list corre-
sponding to the block with the higher number of Sz

tot.
If only one specific value of Sz

tot is considered, the operators Sz
i can be directly obtained in this

subsector. The same holds for the product S+i S−j , which usually appear in the Hamiltonian. Note
however that applying the operators S±i always changes the Sz

tot sector. If for example expectation
values of the form

⟨ψ|S−i e−iĤtS+j |ψ⟩ (A.1)
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are evaluated, the entire calculation, including the state |ψ⟩ and theHamiltonian Ĥ have to be con-
sidered in the combined subsectors of Sz

tot, Sz
tot + 1.

Taking the conservation of Sz
tot into account, the dimension of the Hilbert space used for practical

calculations can be reduced from 2L to

D(L,N) =
⌊N

2 ⌋∑
j=0

(−1)j
(

L + N − 1− 2j
L − 1

)(
L
j

)
=

(
L
N

)
, (A.2)

where N is the number of spin ups in the block under consideration.

Shift operator T̂ for spins

It can be useful to have an operator that shifts all spins by one site, for example to make use of
translational invariance either in the pure spin system or in a spin system with a single hole, see
Sec. A.1.2. In order to construct this operator directly, we can again make use of the binary repre-
sentation. The shift operator T̂ shifts each spin by one site to the right and attaches the right-most
spin on the left side again. To explicitly construct T̂, we do

• divide out the last site: α̃ = α − 2L−1 · bitget(α, L)

• shift everything by one site to the right: α̃ → 2 · α̃

• preprend last entry of α as first entry of α̃: α̃ → α̃ + bitget(α, L).

Here, bitget(α, L)means the L-th digit of the binary representation of α.

A.1.2 t − J model with a single hole

For a single hole in the t − J model, the Hilbert space can be constructed as L times the Hilbert
space of a spin system with L − 1 sites, Dt−J(L,N) = L · Dspin(L − 1,N). The Hamiltonian has
a block structure: the blocks on the diagonal correspond to different hole positions, Fig. A.1.1 a).
The entries are thus the spin Hamiltonians with dimension Dspin(L− 1,N)with the couplings ac-
cording to the hole position turned off. On the off-diagonal, the hole hopping is implemented by
connecting the according diagonal blocks through blocks of the form t · 1̂.
In order to create a hole in a spin system, we need to construct a hole creation operator that acts in
the accordingHilbert space. Thematrix representing this operator is rectangular, as it takes us from
the Dspin(L,N(+1))-dimensional Hilbert space of the spin system to the Dt−J(L,N)-dimensional
Hilbert space of the t − J model. We distinguish between the creation of an up and a down hole,
i.e. the annihilation of an up or down spin. To construct the up-hole creation operator on site i,
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ĤJ,3
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Figure A.1.1: Exact diagonalization methods. a) exemplary construction of the t − J
Hamiltonian for a single hole in one dimension. The blocks on the diagonal correspond to
the spin part of the Hamiltonian, the off-diagonal terms are the hole hopping. b) Labeling of
a two-dimensional lattice for convenient implementation in exact diagonalization.

ĥ†i,↑, we go through the spin basis for L sites and N + 1 spin ups and check for each basis state |α⟩
whether there is a spin up on site i. If no, the application of ĥ†i,↑ annihilates the state. If yes, we
remove that site from the basis and thus construct a new state |α̃⟩ on L − 1 sites with N instead of
N + 1 spin ups. We find the index of this state in the (L − 1,N) basis and make an entry in the
column corresponding to |α⟩ and the row corresponding to |α̃⟩ in the i-th block.
Note that we can further simplify the numerical calculations if the system is translationally invari-
ant. In this case, we can apply a Lee-Low-Pines transformation which brings us in the co-moving
frame of the hole. We then obtain a block diagonal Hamiltonian for each momentum value k with
the dimension given by Dspin(L− 1,N), thus reducing the Hilbert space dimension under consid-
eration by a factor of L.

Labeling a two-dimensional square lattice

So far, we only discussed the creation of operators along a chain of length L. The geometry of
the Hamiltonian can in principle be arbitrary. Due to the limited system sizes that can be treated
with exact diagonalization, one usually considers one-dimensional or small two-dimensional (2D)
systems. In order to easily construct the Hamiltonian one usually labels the sites in a 2D system in
a convenient way.
One straightforward example for the labeling of the sites is shown in Fig. A.1.1 b): the sites are
sequentially labeled throughout the 2D grid with dimensions mx, my. The index i of a site can be
obtained from its 2D coordinates (x, y) as

i = x · my + y. (A.3)
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A.1.3 Fermi-Hubbard model

The Hilbert space for spinful fermions corresponds to the product of the Hilbert spaces for two
separate spin 1/2 systems, where the number of spin ups in the first spin system corresponds to
the number of up fermions in the Fermi-Hubbard system, N1 = N↑. Accordingly, the number of
spin ups in the second spin system is given by the number of down fermions in the Fermi-Hubbard
system, N2 = N↓. We can therefore construct the two spin bases separately according to the de-
scription in Sec. A.1.1. The Sz

tot conservation for the spin Hilbert space corresponds to the conser-
vation of N↑ and N↓ for the Fermi-Hubbard Hilbert space, thus reducing the dimension from 4L

to D(L,N↑) · D(L,N↓). We can further employ the same algorithm to construct the S+i operators
for a spin system. These operators can be used directly to obtain the ĉ†i,σ operators with σ =↑, ↓,
acting on the respective subspace of the Hilbert space, e.g.

ĉ†i,↑ = Ŝ+i ⊗ 1̂, (A.4)

where the identity acts on the other spin chain. This construction is possible since nothing changes
for the basis states of the down fermions when an up fermion is created/annihilated.
Since the S+i operators are constructedwithin two subsectors of the totalmagnetization, it is useful
to first obtain the terms S+i S−j , which will be used in the Hamiltonian. This allows us to use only
the block corresponding to the total magnetization or particle number N↑ under consideration in
the Fermi-HubbardHamiltonian. Note that in the construction of operators, Fermi statistics need
to be taken into account. In particular, one given convention for the ordering of the creation and
annihilation operators has to be used consistently. For hopping terms this means that we need to
include a factor (−1)Δn, where Δn is the number of (up and down) fermions on intermediate sites.
For a nearest neighbor hopping of σ fermions from site i to i + 1, we need to include a factor of
(−1)n̂i,σ̄ , where σ̄ is the flipped spin.

A.1.4 Bose-Hubbard model

For theBose-Hubbardmodel, we cannot simply use the binary representation of numbers ormodi-
fications thereof as we did so far. The general strategy however remains the same: find a convenient
representation of the basis states and then construct the operators b̂†i by going through the basis.
In order to get a manageable dimension of the Hilbert space, we use the conservation of the total
particle number N and introduce a cut-off nmax to restrict the maximally possible occupation on
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each site. The dimension of the Hilbert space of N particles on L sites is

D(L,N, nmax) =

⌊ N
nmax+1⌋∑
j=0

(−1)j
(

L + N − 1− j(nmax + 1)
L − 1

)(
L
j

)
. (A.5)

We follow the algorithm presented in Ref. [426] to construct the basis states but modify it to acco-
modate the cut-off in the local particle number nmax. For a given total particle number N, the basis
is obtained as follows:

• start with all particles on the first site as initial state |ψ0⟩

• if N > nmax, we obtain the next state from |ψ0⟩with the algorithm given in Ref. [426] until
we have a state for which the local occupations ni all fulfill ni ≤ nmax. This is then the initial
state |ψ0⟩.

• we obtain the number of states for N particles on L sites,

d =
(N + L − 1)!
N!(L − 1)!

, (A.6)

which is an upper limit for the numer of states in the sector under consideration.

• while the count c ≤ d, we construct a new state from the last state added to the basis. During
the construction of the next state, the count c is increased by one for all intermediate states,
even if those do not fulfill ni ≤ nmax for all sites i.

Through the construction of the basis states presented below, the states are ordered according to
the rule that the state |n1, n2, ..., nL⟩ is superior to the state |ñ1, ñ2, ..., ñL⟩ if ni = ñi for 1 ≤ i ≤ k− 1
and nk > ñk. The construction of the next state, given |ψ0⟩, is done as follows:

• start with the highest state |N00...0⟩

• suppose nk ̸= 0 and ni = 0∀k + 1 ≤ i ≤ L − 1

• obtain the next (inferior) state |ñ1, ñ2, ..., ñL⟩with

– ñi = ni∀1 ≤ i ≤ k − 1

– ñk = nk − 1

– ñk+1 = N −
∑k

i=1 ñi

– ñi = 0 for i ≥ k + 2.
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We now have constructed the basis. The most straightforward way to obtain the operators b̂†i is to
go through this basis for particle number N and for each state get a new state after the application
of the creation operator. Then, the index of this new state in the basis for particle number N + 1
is searched by going through the entire basis. However, this last step is rather inefficient. Since
we know exactly how we constructed the basis, we can infer the index of each basis state directly
without having to search through an entire basis.
In particular, to construct the operator b̂†i going from N to N+ 1 particles, we go through the basis
states |α⟩ and for each state, find the occupation on site i. If that occupation is ni ≤ nmax − 1, we
obtain a new state |α̃⟩ in theN+ 1 particle basis by setting ñi = ni + 1. The corresponding entry in
the matrix for b̂†i will be

√
ni + 1. We then find the position p of |α̃⟩ in the basis by employing the

same algorithm we used to construct the basis:

• initialize the number of remaining particles asR = N+ 1 and the position of |α̃⟩ in the basis
as p = 1

• loop through the sites j = 1 : L − 1

– for each site j, loop through the possible occupation numbers higher than the one re-
alized in the current state: nhigherj = ñj + 1 : min(N + 1, nmax)

* calculate the number D(L − j,R, nmax) of possibilities to distribute R particles
on L − j sites with the help of the formula in Eq. A.5

* increase p = p + D(L − j,R, nmax)

– update the number of remaining particles as R = R − ñj

As a result, the index p of |α̃⟩ is obtained and we can make the corresponding entry in the matrix
for b̂†i . Note that it can be beneficial to calculate and save

(N
k

)
for all needed values ofN and k in the

beginningof the algorithmand then later access them ina table insteadof repeatedlyperforming the
same calculation. The basis for all values of N can be constructed in the same way. Since we know
from Eq. A.5 how big each block is, we know the start and end indices of the corresponding blocks
in the combined Hilbert space, such that we can easily access the subsector under consideration
later. The Bose-Hubbard Hamiltonian as well as arbitrary observables can be directly obtained
using the raising and lowering operators.

A.1.5 Lanczos methods

The goal of the Lanczosmethods presented here is to obtain some quantity, for which we in princi-
ple would need to diagonalize the Hamiltonian. We need to have some initial state |ψ0⟩ and know
the action of theHamiltonian Ĥon any given state. Note that it is not strictly necessary to construct
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the Hamiltonian explicitly to apply these algorithms. The main idea of the Lanczos algorithm is to
repeatedly apply theHamiltonian to |ψ0⟩ to obtain a small set of states which are important for the
specific quantity we want to calculate.

Krylov basis

TheKrylov basis is the set of states obtained by repeatedly applying theHamiltonian to some initial
state and subsequently orthonormalizing the new state with respect to the existing states. We start
with some initial state |ν0⟩, which depends on the problem under consideration. We then obtain a
second state as

|ν̃1⟩ = Ĥ|ν0⟩ − ε0|ν0⟩, (A.7)

where εn = ⟨νn|Ĥ|νn⟩ is the expectation value of Ĥ. The norm of |ν̃1⟩ is β1 and we obtain |ν1⟩ by
normalizing |ν̃1⟩ accordingly. Given the two states |ν0⟩ and |ν1⟩, we obtain the next state |ν2⟩ as

|ν̃n+1⟩ = Ĥ|νn⟩ − εn|νn⟩ − βn|νn−1⟩ (A.8)

with βn =
√
⟨ν̃n|ν̃n⟩. The state |ν2⟩ is obtained by normalizing |ν̃2⟩. We continue to construct

states |νn⟩ until n ≥ dKrylov or other conditions for convergence are satisfied.
For most applications, it is not even necessary to save all the basis states {|ν⟩} as discussed below.
In general, we approximate the Hamiltonian as

Ĥ = V̂T̂V̂†, (A.9)

where V̂ is the Krylov basis and T̂ is the tridiagonal matrix obtained as

T̂n,m = ⟨νn|Ĥ|νm⟩ = ⟨νn|ν̃m+1⟩+ εm ⟨νn|νm⟩+ βm ⟨νn|νm−1⟩ = βnδn,m+1 + εmδn,m + βmδn,m−1.

(A.10)
Thedimensionof thismatrix T̂ is givenby thenumberof states in theKrylovbasiswhich canusually
be chosen to be much smaller than the dimension of the full Hamiltonian Ĥ.

Dynamics

To calculate the time evolution of some state |ψ0⟩ under the Hamiltonian Ĥ, we first construct the
Krylov basis as described above. Note that we do not need to save all the basis states but in each
step n only keep the two preceeding vectors |νn−1⟩ and |νn⟩. Note that with step n, the constructing
of the state |νn+1⟩ is meant as we start from the state |ν0⟩. With all available values βi, εi, i ≤ n, we
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construct the matrix T̂, Eq. A.10 and diagonalize it such that

T̂ = ÛD̂Û†. (A.11)

The contribution to the time-evolved state is then obtained with the help of

|φ⟩ = Ûe−itD̂Û†ê1, (A.12)

where t is the time and ê1 = (1, 0, 0, ..., 0)T in Krylov space. If the last entry in |φ⟩, φn (since we are
in the n-th step of constructing the Krylov basis), is smaller than some threshold, we can stop here
and do not need to calculate further states in theKrylov basis. The time evolved state is in each step
n updated as

|ψ(t)⟩ = |ψ(t)⟩+ φn−2|νn−1⟩, (A.13)

where φn−2 is the corresponding entry in |φ⟩.
In order to now time evolve a given state |ψ0⟩ up to time t, we discretize the time steps as dt =

t/Nsteps. We only time evolve by dt to obtain a new state |ψ(dt)⟩, from which we construct a new
Krylov basis and again time evolve by dt. This process is then repeated Nsteps times.

Spectral function

The spectral function can be written as

A(ω) =
1
π
ℑGA(ω + iη + E0) (A.14)

with the Green’s function
GA(z) = ⟨ψ0|Â

†(z − Ĥ)−1Â|ψ0⟩ (A.15)

for some operator Â. In Krylov space, we can approximate this Green’s function as [204, 427]

G̃A(z) = ⟨ψc|
1

z − T̂
|ψc⟩ =

dKrylov∑
n=0

1
z − Ẽn

〈
ψc|ψ̃n

〉 〈
ψ̃n|ψc

〉
. (A.16)

Here, |ψc⟩ = A|ψ0⟩ and Ẽn, |ψ̃n⟩ are the eigenvalues and corresponding eigenvectors of T̂. The
Krylov space is constructed with |ψc⟩ as initial state.
Upon constructing the basis state, we thus keep the values of εn and βn as before to construct T̂.
For every basis vector nwemoreover need to calculate ⟨ψc|V̂|ψ̃n⟩where V̂ is the Krylov basis. This
however corresponds to the first entry in V̂|ψ̃n⟩ by construction of V̂. We thus save the energies Ẽn

and the corresponding weights |⟨ψc|V̂|ψ̃n⟩|2. With this values, we can obtain the Green’s function
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for arbitrary values of z as

GA(z) =
dKrylov∑
n=0

1
z − Ẽn

|⟨ψc|V̂|ψ̃n⟩|
2. (A.17)

The spectral function is then obtained as

A(ω) =
1
π
ℑ

dKrylov∑
n=0

1
ω + iη + E0 − Ẽn

|⟨ψc|V̂|ψ̃n⟩|
2. (A.18)

Finite temperature

Lanczos techniques can also be used to calculate finite temperature expectation values [428, 429].
In this case, the initial state for theKrylov basis is a random state andwe sample overmany different
random states. The expectation value is then written as

〈
Â
〉
=

D
R · Z

R∑
r=1

dKrylov∑
j=0

e−βẼr
j

〈
r|ψ̃r

j

〉
⟨ψ̃r

j |Â|r⟩, (A.19)

where R is the number of random states used and D is the dimension of the (subsector of the)
Hilbert space under consideration. The partition sum can be calculated as

Z =
D
R

R∑
r=1

⟨r|V̂Ûe−βD̂Û†V̂†|r⟩ (A.20)

and the thermal expectation value of the operator Â thus becomes

〈
Â
〉
=

∑R
r=1⟨r|V̂Ûe−βD̂Û†V̂†Â|r⟩∑R
r=1⟨r|V̂Ûe−βD̂Û†V̂†|r⟩

. (A.21)

Where for each random state |r⟩ a separate Krylov basis V̂ and correspondingly matrix T̂ and its
diagonalization D̂, Û is created.
For very low temperatures, the finite temperature Lanczos method does not converge well and
instead the low temperature Lanczos method should be used, see Ref. [430].
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Finite temperature spectral function

The methods introduced above can be combined to obtain the spectral function at finite tempera-
tures [428]. Assume we want to calculate

A(k, ω) =
1
Z0

∑
n,m

e−βEN
n |⟨ψN−1

m |̂ck|ψN
n ⟩|

2δ(ω − EN−1
m + EN

n ) =
1
π
ℑG(k, ω) (A.22)

with
G(k, ω) =

1
Z0

∑
n

e−βEn⟨ψn(N − 1)|(ω − Ĥ − iη)−1|ψn(N − 1)⟩ (A.23)

and |ψn(N − 1)⟩ = ĉk|ψN
n ⟩. Without the finite temperature Lanczos method, we could now go

through all eigenstates |ψN
n ⟩ of the Hamiltonian, apply ĉk to obtain |ψn(N − 1)⟩ and then generate

for each of these D states a Krylov basis V̂. The finite temperature spectral function can then be
calculated as described in A.1.5 with an additional thermal weight given by e−βEN

n /Z0 for the con-
tribution of the state |ψN

n ⟩.
Instead, we can also use the finite temperature Lanczos method and sample R random states |r⟩,
for each of which we generate a Krylov basis. The Green’s function is then calculated as

G(k, ω) =
1
Z

∑
r

∑
l

∑
m

e−βε(r)l

〈
r|ψ(r)

l

〉 ⟨ψ(r)
l |̂c†kV̂(h)|φ(h)

m ⟩⟨φ(h)
m |V̂(h)†ĉk|r⟩

ω + iη + ε(r)l − E(h)
m

(A.24)

with
Z =

∑
r

∑
l

|
〈
r|ψ(r)

l

〉
|2e−βε(r)l . (A.25)

For the calculation of A.24, we can use the following:

• for each random vector |r⟩, a Krylov basis V̂ is created. The overlap
〈
r|ψ(r)

l

〉
equals the first

entry in the l-th eigenstate of the matrix T̂, the energy ε(r)l is the corresponding eigenvector.

• from the eigenstate |φ(r)
l ⟩ of T̂ we calculate ĉk|ψ(r)

l ⟩ = ĉkV̂|φ(r)
l ⟩.

• analogous to Section A.1.5, we use ĉk|r⟩ as initial state for the Krylov basis V(h) to calculate
the spectral function.

• from this, we obtain T̂(h), which is diagonalized to get the eigenstates |φ(h)
m ⟩ and correspond-

ing eigenvalues E(h)
m .

• as in Section A.1.5, we obtain a list of energies and corresponding weights. In this case, the
same energy can appear twice. Before the spectral function is calculated from the Green’s
function, these weights are added up and the second entry is removed from the list.
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A.2 Matrix Product States: ground state and dynamics with TeNPy

For small system sizes, the exact diagonalization methods introduced in section A.1 are the tech-
nique of choice. However, the Hilbert space of a quantum many-body system grows exponen-
tially with the size of the system, and therefore the limitations of exact diagonalization are typically
reached at systems with a few tens of lattice sites. In order to numerically simulate larger system,
one needs some way of truncation, since it is impossible to keep all basis states. One of the most
successful numericalmethods is thedensitymatrix renormalization group (DMRG) introducedby
Steven White in 1992 [431]. This method is based on the idea to use the entanglement properties
of the system to choose a clever subset of basis states in which to perform the calculation, omitting
states which do not play a big role for the properties of the system. In this appendix, we give a brief
overview over matrix product states, matrix product operators and the DMRG algorithm. For a
comprehensive introduction on the subject and a discussion of all the technical details we recom-
mend the excellent review articles Ref. [432] and Ref. [433].
For a typical state, such as most randomly chosen states from a given Hilbert space, the bipartite
entanglement exhibits a volume law. That means that the entanglement between two parts of the
system grows with their size. However, the ground states of gapped, local systems follows an area
law: the bipartite entanglement scales with the area of the border between the two parts of the sys-
tem. In a Schmidt decomposition of the states, the Schmidt values decay rapidly in this case. This
allows for an efficient truncation by neglecting states with small values in the Schmidt decomposi-
tion.
A generic pure quantum state for a system with N sites can be written as

|ψ⟩ =
∑

j1,j2,...,jN

ψ j1j2...jN |j1, j2, ..., jN⟩, (A.26)

with a local basis jn on site n with jn = 1, ..., d. Here, d is the local Hilbert space dimension, which
is e.g. d = 2 for a spin-1/2 system, d = 3 for the t − J model and d = 4 for the Fermi-Hubbard
model. The idea of a matrix product state is then to write the coefficients ψ j1j2...jN as a product of
matrices, with one matrix for each site i = 1, ...,N [433]:

|ψ⟩ =
∑

j1,j2,...,jN

M[1]j1M[2]j2 ...M[N]jN|j1, j2, ..., jN⟩, (A.27)

where M[n]jn is a χn × χn+1 dimensional matrix. χn is the bond dimension, which determines how
many states are kept. Changing thebonddimension in a simulation allows for a convergence check:
if the bond dimension is changed significantly, but the physical properties do not change anymore,
the simulation is likely to be converged. At the boundary, the matrices are vectors, since the bond
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dimensions χ1 = 1 and χN+1 = 1. For each site, we will have d matrices – one for each physical
index – which are typically grouped together into one tensor of order three.
In principle, this representation is exact, if we choose the bond dimension χ sufficiently big. In
practice, the dimension of the Hilbert space grows exponentially with the system size, such that a
truncation is necessary to be able to tackle the problemwith reasonable computational ressources.
This truncation is done by limiting the bond dimension and thus the size of the matrices. After
some procedures, it is necessary to compress the matrix product state, i.e. to reduce the bond di-
mension due to a prior increase. Such an increase in bond dimension happens for example due to
the summation of twomatrix product states, or due to the application of amatrix product operator
(see below) to thematrix product state. There are two general routes to do so: variational compres-
sion and SVD (singular value decomposition) compression. Variational compression is in general
computationally cheaper, but relies on a reasonable starting state for the variational procedure. The
idea here is to find the best approximation of the given MPS with large bond dimension χ′ in the
space of matrix product states with smaller bond dimension χ. For SVD compression, one does
not need a suitable starting state. Depending on how big χ′ is compared to χ, the computational
cost for this procedure is howeverO(χ′2dχ) if χ′ ≤ dχ andO(χ′d2χ2) otherwise [432].
Note that theMPS representation in Eq. (A.27) is not unique, since there is some freedom in trans-
forming the matrices. A common choice is the canonical form, where each matrix M (omitting
sub- and superscripts) is decomposed into a product of a matrix Γ and a square, diagonal matrix Λ.
Bringing an arbitraryMPS into canonical form – usually by a sequence of singular value decompo-
sitions – is an operation ofO(χ3) [432].

A.2.1 Constructing the Hamiltonian as MPO

Matrix product operators (MPOs) are the natural generalization of matrix product states to oper-
ators. Similar to Eq. (A.27), we can represent an operator as

O =
∑

j1,...,jN,j′1 ,...,j′N

vLW[1]j1j′1W[2]j2j′2 ...W[N]jNj′NvR|j1, ..., jN⟩⟨j′1, ..., j′N|, (A.28)

where eachW[n]jnj′n is aD×Dmatrix with operators as entries [433]. Here,D is determined by the
object we are representing and is typically much smaller than the bond dimension χ of the MPS.
The left and right vectors vL, vR terminate the MPO at the boundaries and are correspondingly
given by

vL = (1, 0, ..., 00) vR = (0, 0, ..., 0, 1)T (A.29)

with a length given by D.
A local Hamiltonianwith short-range interactions can be represented exactly using anMPOwith a
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comparably small dimension D. But also for long-range interactions, a good approximation of the
Hamiltonian as MPO is often possible [432]. A typical example for the construction of an MPO
is the XXZ Heisenberg spin chain, which is described by the Hamiltonian

H =
∑

n

[
J
(
Sx
nS

x
n+1 + Sy

nS
y
n+1 + ΔSz

nS
z
n+1

)
+ hzSz

n

]
. (A.30)

In order to obtain itsMPO representation, it is useful to write theHamiltonian as a tensor product,

H =J[Sx ⊗ Sx ⊗ 1⊗ 1⊗ ...⊗ 1+ 1⊗ Sx ⊗ Sx ⊗ 1⊗ ...⊗ 1+ ...

+ Sy ⊗ Sy ⊗ 1⊗ 1⊗ ...⊗ 1+ 1⊗ Sy ⊗ Sy ⊗ 1⊗ ...⊗ 1+ ...

+ Δ (Sz ⊗ Sz ⊗ 1⊗ 1⊗ ...⊗ 1+ 1⊗ Sz ⊗ Sz ⊗ 1⊗ ...⊗ 1+ ...)]

+ hz (Sz ⊗ 1⊗ 1⊗ ...⊗ 1+ 1⊗ Sz ⊗ 1⊗ ...⊗ 1+ ...) .

(A.31)

The corresponding matrix product operator for a given site n can then be written as

W[n] =


1 Sx Sy Sz hzSz

0 0 0 0 JSx

0 0 0 0 JSy

0 0 0 0 JΔSz

0 0 0 0 1.

 (A.32)

Taking the product in Eq. (A.30) yields the correct expression for the Hamiltonian. Constructing
theMPO for a givenHamiltonian is typically straightforward, but – depending on the terms in the
Hamiltonian – can require a bit of book-keeping. We follow the steps below to construct theMPOs
used in this thesis, which are typically for a cylinder geometry. In this geometry, we consider one
(or two, depending on the couplings) rings around the cylinder. Within a ring, we treat the first
and last site slightly differently.

• Define the local Hilbert space dimension d and the corresponding operators. For example,
d = 3 for the t− Jmodel. In this case, for example the spin operators used in theMPOneed
to have dimension d = 3 accordingly.

• The entries in the top left and bottom right corner of each matrix W[n] are 1.

• In the first row of eachW[n], put all possible operators fromwhich a term in theHamiltonian
can start

• Starting in the second row, in the first column to the right of the last entry in the first row,
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put identities on the diagonal until the second to last column. In some cases, we want to
change the entries on some of said diagonals from identities to other operators, for example
if we need Jordan-Wigner strings connecting the two operators in the first row and the last
column. In the example above, this step changes nothing, as the last entry in the first row is
already in the second to last column.

• Finalize the term in the Hamiltonian with the corresponding operator in the last column.

• In order to figure out which operator goes where – which can be a bit cumbersome on a
cylinder – it is useful to know that the coupling between sites i and i+ r in the Hamiltonian
corresponds to the entry in the last column at positionNop ·(r− 1), whereNop is the number
of operators used in the first row.

A.2.2 DMRG

Here, we very briefly outline the general idea of theDMRGalgorithm to obtain the ground state of
a Hamiltonian under consideration. For a detailed discussion we strongly recommend the review
articles [432] and [433]. The DMRG algorithm is a variational approach to optimize the matrix
product state with regards to the energy. In particular, one considers bond after bond and vari-
ationally optimizes the tensors of the two neighboring sites on this bond to minimize the ground
state energy ⟨ψ|H|ψ⟩, all while keeping the rest of the chainfixed. Theground statewithin the space
spanned by the basis set on the bondunder consideration can be found for examplewith a standard
Lanczos algorithm. The effective Hamiltonian is a matrix with dimensions χ2maxd

2 × χ2maxd
2. In the

Lanczos algorithm, the most costly operation is the matrix-vector multiplication, which scales as
O(χ3maxDd2 + χ2maxD

2d3) [433]. Once the ground state in the subspace is found, a singular value
decomposition has to be applied to get the MPS back to canonical form. Additionally, if the max-
imal bond dimension is already reached, one needs to truncate to avoid the growth χ → dχ. The
same procedure is then repeated for the next bond.
The computational cost can be lowered by making use of conserved quantities, such as the charge
or Sz,tot. In this case, the tensors can be brought into a block-diagonal structure, which can be kept
during the entire algorithm. A block diagonal structure lowers the computational cost, for exam-
ple of the SVD. In TeNPy, conserved quantities are conveniently implemented through a vector,
which gives the value of each conserved quantity for each basis state. Correspondingly, the entries
in the Hamiltonian have to be zero if the conserved quantities do not match up [433].

A.2.3 MPO based time evolution

This section is based on the supplemenary material of the publication
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• Annabelle Bohrdt, Fabian Grusdt, Michael Knap: “Dynamical formation of a magnetic po-
laron in a two-dimensional quantum antiferromagnet” – New J. Phys. 22 123023 (2020)
[arXiv:1907.08214]

Structure and text have been rearranged and adapted here.

In sections 5.4 and 5.5, we consider a cylinder with Lr = 4 legs and the matrix product opera-
tor representing the Hamiltonian thus contains terms coupling sites at a distance of up to Lr. After
creating a hole in the origin by applying ĉ0,0, we time-evolve the matrix product state with the ma-
trix product operator based technique introduced in Ref. [313]. This method has the advantages
that it can be applied to long-ranged Hamiltonians, such as our model on the cylinder, while pre-
serving the symmetries of the problem and that it has a constant error per site.
In the Euler approximation of the operator exponential

e−iδĤ = 1− iδ
∑

j

Ĥj +O(δ2), (A.33)

where Ĥ =
∑

j Ĥj and the Ĥj act on a subset of the lattice, the error per site is Lδ2, since L2

combinations of Ĥj are omitted. In Ref. [313], a local version of the Euler stepper in the next order
was introduced,

ÛII(δ) = 1− iδ
∑

j

Ĥj −
1
2
δ2
∑
j,k

′′
ĤjĤk + ..., (A.34)

where the sum
∑′′

j,k runs over all terms Ĥj, Ĥk withmaximally one overlapping site. In this approx-
imation, only O(L) contributions, namely those that overlap, are omitted and the error per site
is therefore constant in the system size. Moreover, contributions with arbitrary powers of single-
site terms are treated exactly here. While there is no closed general matrix product operator rep-
resentation for ÛII(δ), there exists an approximation scheme with error O(δ3). Details on this
approximation and the algorithm to obtain the corresponding MPO can be found in Ref. [313],
see also Refs. [434–436]. For a review on time evolution techniques for matrix product states see
Ref. [437].
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A.3 MetropolisMonte Carlo sampling

A.3.1 Snapshots from an MPS

Our starting point is amatrix product state |ψ⟩, for example the ground state of the t−Jmodelwith
a single hole, andwewant to sample real space snapshots using a standardMetropolisMonteCarlo
sampling algorithm. In the following, we denote such a real space snapshot, or the configuration
of spin ups, spin downs and holes, by α. In order to apply the Monte Carlo algorithm, we need
to specify allowed steps to obtain a new configuration, e.g. the exchange of the occupation of two
neighboring sites. Another option would be to exchange two randomly chosen, possibly distant,
sites. Once a protocol to obtain a new configuration is chosen, we can calculate the number of
possible updates Mn reachable from a given configuration αn.
The sampling procedure is as follows:

1. choose a random configuration α0 = α, with the corresponding number of spin ups, spin
downs and holes

2. calculate the probability p(α) = | ⟨α| ψ⟩ |2

3. while n < nmax do

(a) find the number of possible updatesM(α), randomly choose one of them as proposed
configuration α′.

(b) calculate the probability p(α′) = | ⟨α′| ψ⟩ |2

(c) find the number of possible updates M(α′)

(d) the transition probability is given by A(α′|α) = min
(
1, M(α)p(α′)

M(α′)p(α)

)
(e) draw a random number r ∈ [0, 1)

• if r < A(α′|α), the state is accepted and αn+1 = α′

• if not, then the state is rejected and αn+1 = αn.

Initially, the probabilities in general increase rapidly and then settle to amore or less constant value
for large n. The first snapshot should not be extracted from above procedure while the p(αn) are
still increasing significantly. Then, every l-th snapshot is saved, where l should be sufficiently big to
allow for changes all across the system, l = O(Lx · Ly).
Usually, one repeats the entire process several times, i.e. starts at 1.with different randomly chosen
initial states, to ensure that the extracted snapshots are really independent of one another.
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A.3.2 π-flux states

This section is based on the supplemenary material of the publication

• Christie S. Chiu, Geoffrey Ji, Annabelle Bohrdt, Muqing Xu, Michael Knap, Eugene Dem-
ler, Fabian Grusdt, Markus Greiner, Daniel Greif: “String patterns in the doped Hubbard
model” – Science Vol. 365, Issue 6450, pp. 251-256 (2019) [arXiv:1810.03584]

Structure, text and figures have been rearranged and adapted here.

Shortly after the discovery of high-temperature superconductivity in the cupratematerials, Ander-
son proposed the resonating valence bond (RVB) states as a possible description of these systems
[30]. We simulate such RVB states, for example in section 6.2 and in Ref. [15], by sampling Fock
space snapshots from the Gutzwiller projected thermal density matrix of the mean-field Hamilto-
nian

ĤMF = − 1
2
J∗
∑
i∈A

∑
σ

(
eiθ0 ĉ†i,σ ĉi+x,σ + e−iθ0 ĉ†i,σ ĉi+y,σ + h.c.

)
− 1
2
J∗
∑
i∈B

∑
σ

(
e−iθ0 ĉ†i,σ ĉi+x,σ + eiθ0 ĉ†i,σ ĉi+y,σ + h.c.

) (A.35)

introduced in section 5.1.1. Here, i ∈ A(B) denoting lattice sites iwhich are part of the A(B) sub-
lattice and ĉ(†)i,σ is the annihilation (creation) operator of a fermion with spin σ. The Hamiltonian
describes a system with staggered flux ±Φ = ±4θ0. We choose θ0 = π

4 . Although it features
no long-range AFM order, this choice of parameters leads to a very low variational energy for the
ground state at half filling and it is also often considered as a candidate state at finite doping [282].
We want to obtain Fock states of fermions described by the Gutzwiller projected thermal density
matrix ρ̂ = PGWe−ĤMF/kBTPGW. In order to do so, we simultaneously sample in real and momen-
tum space. The sampling in real space yields the required snapshots. The Gutzwiller projection is
automatically taken into account, as no site can be occupied bymore than one particle. We sample
in momentum space to describe the finite temperature state correctly. We diagonalize ĤMF to ob-
tain the dispersion relation, which is necessary to determine the thermalweights. The combination
of real and momentum space sampling is taken into account through the Slater determinant.
Fourier transforming ĤMF leads to

ĤMF =
∑

k∈MBZ,σ

(
ĉ†k,σ ĉ†k+G,σ

)
ĥk

(
ĉk,σ

ĉk+G,σ

)
(A.36)

with
ĥk = ReR(k)τ̂z + ImR(k)τ̂y (A.37)

276



and
R(k) = −J∗

(
cos kxeiθ0 + cos kye−iθ0

)
, (A.38)

with Pauli matrices τ̂ = (τ̂x, τ̂y, τ̂z). Here, k ∈ MBZ denotes momenta k =
(
kx, ky

)
in the

magnetic Brillouin zone. Diagonalizing ĥk leads to two eigenstates
∣∣uk,μ〉 = (u0k,μ, u1k,μ)T

for every
momentum k in the magnetic Brillouin zone. Bloch’s theorem yields the wave function

ψk,μ(r) =
1√
L2

(
u0k,μ + u1k,μe

−iGr
)

e−ikr (A.39)

with band index μ = ±. We consider a system of 16 by 16 sites and cut out a circular region of
interest of the same size as in the experiment to obtain the same boundary effects in both cases.
For a given doping value, we assume a spin balanced system and start from a random occupation
of states in momentum space for both up and down fermions as well as a random configuration
without double occupancies in real space. The exclusion of states with double occupancies in the
sampling corresponds to applying the Gutzwiller projection. From any given state, updates in real
space as well as updates in momentum space for up and down fermions are possible. In real space,
two neighboring sites can exchange their occupation if they differ. In momentum space, a given
fermion can change itsmomentum to any other unoccupiedmomentum. Note that inmomentum
space, we treat up and down fermions separately from each other such that two fermions of oppo-
site spin can have the same momentum. The snapshots are generated by Metropolis Monte Carlo
sampling [113] according to the probability distribution

pβ(αr, αk) = e−βE(αk)| ⟨αr|αk⟩ |2, (A.40)

where β = (kBT)
−1 is the inverse temperature and

∣∣αr(k)〉 denote Fock states in configuration
(momentum) space. Note that Eq. (A.40) is not normalized. However, the normalization does
not matter for the Metropolis sampling, since only ratios of probability distributions are required.
In Fig. A.3.1 a), the evolution of the logarithm of the probabilities during sampling is shown. The
energy of a state |αk⟩ is given by

E(αk) =
∑

k occ. in αk

ε(k) (A.41)

with eigenenergies ε(k) of ĥk and k occ. in αk denotes momenta k which are occupied in the con-
sidered Fock state |αk⟩.
After generating a sample of several thousand Fock states αr, doublon-holon pairs are artificially
addedwith a probability given by 4t2/U2 on nearest-neighbor sites with opposite spins for the data
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Figure A.3.1: Sampling snapshots for π-flux theory. a) Logarithmic probabilities log(pβ)
for the Metropolis Monte Carlo sampling at T = 0.5J∗ for one particle per site. After a fast
initial increase, the probability saturates at a constant value. Once this plateau is reached,
snapshots are taken during the sampling. Between two snapshots that are used in the analy-
sis, we sample 2000 steps. Each set of snapshots consists of several independent Monte Carlo
runs starting from randomly chosen initial configurations. b) Temperature dependence of the
nearest neighbor spin correlation at half-filling. While the temperature dependence is qualita-
tively similar to the behavior in the Heisenberg model, see Fig.6.5.6, the absolute values differ.

shown in chapter 6. The experimentally measured anti-moment correlator as shown in Fig. 6.3.6
of the main text, as well as numerics[438], indicate that restricting doublon-hole pairs to nearest
neighbors is a valid approximation in this regime, see also Fig.3.1.1. In the following, we consider
a region of interest of the same size and shape as in the experiment. Furthermore, we simulate the
experimental imaging procedure and keep in every snapshot the knowledge of either the parity-
projecteddensity distributionof both spinsorwithone spin state removed. Thecoupling J∗ = 3J in
themeanfieldHamiltonian is chosen such that at half filling, thenearest- andnext-nearest-neighbor
spin correlators obtained from the simulation at the temperature T = 0.2J∗ = 0.6J fit the experi-
mental data as closely as possible. Without any other fitting parameter, the doping dependence of
the nearest neighbor spin correlator is described correctly. However, the temperature dependence
of the spin correlators even at half filling is not captured correctly with these parameters.
In Fig. A.3.1 b), the temperature dependence of the nearest neighbor spin correlation C1 at half-
filling is shown for the π-flux theory snapshots without doublon-hole pairs. While the general
trend with temperature is the same as in the Fermi-Hubbard model at half-filling, or the Heisen-
berg model, see Fig. 6.5.6, the temperature can not be scaled up linearly: while T/J = 0.6 in the
Heisenbergmodel roughly corresponds toT/J∗ = 0.2 for the pi-flux theory, doubling the temper-
ature leads toC1 = −0.22 forT/J = 1.2 in theHeisenbergmodel andC1 = −0.32 forT/J∗ = 0.4
in π-flux theory. Since the temperature enters the density matrix before the Gutzwiller projection,
there is no one-to-one correspondence with the actual temperature.
In Ref. [15], we use the same algorithm to sample snapshots for a π-flux as well as a uniform RVB
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state and free fermions. In the latter case, we do not constrain ourselves to Fock states |α̃r⟩ with
maximally one fermion per site. Here, we set the effective coupling J∗ = t, motivated by the fact
that at high dopings, the mean-field Hamiltonian with uniform flux is a good approximation of the
actual system.
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A.4 Snapshot Analysis

A.4.1 String pattern finding algorithm

This section is based on the publication

• Christie S. Chiu, Geoffrey Ji, Annabelle Bohrdt, Muqing Xu, Michael Knap, Eugene Dem-
ler, Fabian Grusdt, Markus Greiner, Daniel Greif: “String patterns in the doped Hubbard
model” – Science Vol. 365, Issue 6450, pp. 251-256 (2019) [arXiv:1810.03584]

Structure, text and figures have been rearranged and adapted here.

Postselection and finite-size effects

The size of the postselection region is chosen to be 7 sites in diameter according to the AFM cor-
relation length at half filling. We vary the window to a smaller circular region of 5 sites in diameter,
or to a larger circular region of 8 sites in diameter, and find that the qualitative dependence of the
string count on doping remains the same, see Fig. A.4.1. The baseline string count at half filling
increases for larger postselection regions as the region becomes larger than the correlation length
and the deviation from the reference checkerboard increases.
This finite-size variation seems to affect experiment and all theoretical simulation results similarly,
which is reasonable given that the pattern detection algorithm is identical in all analyses. However,
in Fig. A.4.2g), we simulate strings in the infinite-length limit and detect a greater number of string
patterns upon doping. This result suggests that when the system is much smaller than the length
of the string patterns, the number of detected strings is biased higher. Indeed, increasing the size
of the postselection region results in a slight decrease of the estimated detection efficiency.
We also consider the effect of moving the window to achieve the highest values of the staggered
magnetization. We find that fixing the window to the center of the system while keeping a postse-
lection threshold of 60% greatly increases the number of string patterns found at half filling relative
to the additional number of patterns found upon doping the system, see Fig. A.4.1 b). This is due to
a greater average deviation from the reference checkerboard. In principle, we could achieve a bet-
ter signal to noise by postselecting more strongly on which images we use, at the cost of increased
statistical fluctuation. While the half-filling value changes, the estimated detection efficiency does
not change statistically significantly, indicating robustness of the detection algorithm to this effect.
Finally, the fraction of images kept in the post-selection process can be varied. We choose to keep
the top 60% of images in an effort to capture the tail of the histogram of the staggered magneti-
zation, while maintaining a reasonably high number of images. Upon changing the postselection
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Figure A.4.1: Effect of post-selection on string count. All parameters not mentioned are
kept fixed as in the procedure outlined in the main text. In all cases, we see that the quali-
tative features described in the main text are maintained. a) Using a different-size window
for the analysis region, either 5 or 8 sites in diameter. b) Fixing the window position to the
center of the system, compared to scanning the window position to maximize the staggered
magnetization. c) Varying the percentage of data kept when postselecting on the staggered
magnetization, either 40% or 80%.
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to 40% or 80%, see Fig. A.4.1c), we find fewer or more string patterns at half-filling, respectively.
However, the slope of the string count as a function of doping in the low-doping regime does not
change statistically significantly.

Different input distributions

We vary the geometric string theory prediction of the string length distribution to examine how
the resulting detected string-pattern length distribution changes, see Fig. A.4.2 b)-g). Changing
the temperature for Boltzmann sampling of the string states yields a worse agreement with the
experimental result, as does changing the participation ratio of holes in strings by only moving a
fraction of the holes which have been randomly placed. We also alternatively select only strings of
a given length and find the best agreement for strings of length 4; this is close to the average string
length at T = 0.6J of 4.2. From these results we conclude that perturbations to the analytic string
length histogram are unlikely to improve agreement with the experimental measurement. We note
that the decrease in string count at very high doping for infinite-length strings is likely an artifact
from simulation.

Comparison to full readout

In images taken in the experiment, we do not distinguish between holes, doublons, and the re-
moved spin species. In a systemwith full readout, this distinction is available. In this case, the hole
positions are known and the number of detected string patterns must correspond to the number
of holes which are not in doublon-hole pairs, i.e. dopants. However, the detected distribution of
string lengths can still be modified by overlaps between strings in the same way as in our experi-
ment. In the main text, we discuss the fidelity of the different string pattern detection algorithms
in section 5.2. Here, we simulate the experimental situation as closely as possible, but with full
spin readout. We simulate full spin readout in quantum Monte Carlo simulations of the Heisen-
bergmodel with simulated strings. The simulation is performed on a 40-site by 40-site systemwith
periodic boundary conditions, from which a 10-site-diameter disk is cut out to match the experi-
mental system. Postselection is then done in the same way as in the experimental data analysis. In
Fig. A.4.3 a) a comparison of the detected string length distribution with and without full readout
is shown, where the distribution obtainedwithout full readout has the half-filling distribution sub-
tracted. While the signal with full readout is a factor of about five higher, the relative distribution
of the detected string-pattern lengths remains the same.
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Figure A.4.2: Effect of analytic string length distribution on measured string count.
a) String count versus doping, as in Fig. 6.4.3 of the main text, but including all string-
pattern lengths in the count. The agreement between all simulations and experiment suggests
that this quantity may be trivially dependent on doping. b) Comparison of experimentally
measured string count and simulated geometric strings, for analytic string length distributions
corresponding to temperatures T/J of 0.55, 0.60 (as in main text), and 0.65. The T/J = 0.60
distribution matches experiment best. c) Same, but varying the fraction of simulated holes
which are then propagated to simulate strings. The best agreement occurs when all holes are
part of strings. d-g) Same, but for simulated strings which are of all of a single length, rang-
ing from 2 sites to the infinite-site limit, instead of sampled from the analytic distribution as
described in the main text. In b-g), the experimental result shown is the same.
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PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
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ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
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Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
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 XF DBO BMTP HFOFSBUF B OFX
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NPEFM� *O FBDI TOBQTIPU
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PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ

1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�
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8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
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 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
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ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
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XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
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UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ
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*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
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 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ

1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
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 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
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ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
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 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�
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 XF DPVME BDIJFWF B CFU�
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TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT
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'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ

1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�
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ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�
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8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ
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 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ
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1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
TBNQMJOH UFDIOJRVFT UP PCUBJO TOBQTIPUT� ĉFSF
 XF TUBSU GSPN B SBOEPN 'PDL TQBDF DPOėHVSBUJPO
BOE QSPQPTF VQEBUFT HJWFO CZ FYDIBOHFT CFUXFFO UXP TJUFT� /PUF UIBU UIF UPUBM NBHOFUJ[BUJPO 4̂[UPU
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
.BLF OJDF ėHVSF UP TIPX TUSJOH ėOEJOH BOE TUSJOH DSFBUJOH BMHPSJUINT�
8IJMF XF BSF BXBSF UIBU UIF BMHPSJUINT PVUMJOFE JO TFDUJPO Ǎ�Ǌ�ǉ BSF OPU DBQBCMF PG SFMJBCMZ ėOEJOH
UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�
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8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ

1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
 XF ėSTU EFUFSNJOF UIF TQJOPO QPTJUJPO FJUIFS JO UIF DFOUFS PG UIF TZTUFN
PS CZ TBNQMJOH GSPN B HJWFO EJTUSJCVUJPO� "T B OFYU TUFQ
 XF ėOE UIF MFOHUI M PG UIF OFX TUSJOH
CZ TBNQMJOH GSPN UIF BOBMZUJDBM TUSJOH MFOHUI EJTUSJCVUJPO� 'JOBMMZ
 XF DSFBUF B IPMF BU UIF TQJOPO
QPTJUJPO BOE UIFO NPWF JU M UJNFT CZ POF TJUF
 XIFSF UIF EJSFDUJPO JO FBDI TUFQ JT SBOEPN XJUIPVU
BMMPXJOH B TFMG�SFUSBDJOH PG UIF TUSJOH� .PWJOH UIF IPMF UISPVHI UIF TQJO CBDLHSPVOE EJTQMBDFT UIF
TUSJOH BOE JOUSPEVDFT B MPDBM TVQQSFTTJPO PG UIF BOUJGFSSPNBHOFUJD PSEFSJOH QSFTFOU JO UIF TZTUFN�
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FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
'PS UIF.14 TJNVMBUJPOT EJTDVTTFE JO UIF GPMMPXJOH
 XF FNQMPZ TUBOEBSE.FUSPQPMJT.POUF $BSMP
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FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
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 XF DBO BMTP HFOFSBUF B OFX
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UIF FYBDU QBUI UBLFO CZ B IPMF JO UIF U− + PS 'FSNJ�)VCCBSE NPEFM
 XF XJMM TIPX JO UIF GPMMPXJOH
TFDUJPOT TUSPOH FWJEFODF UIBU UIFZ BSF TFOTJUJWF UP USBDFT PG TUSJOHT� .PTU JNQPSUBOUMZ
 GPS UIF DPN�
QBSJTPO CFUXFFO UIF BDUVBM OVNFSJDBM TJNVMBUJPO PG UIF U− +NPEFM BOE UIF TFNJ�BOBMZUJDBMMZ HFO�
FSBUFE HFPNFUSJD TUSJOH UIFPSZ TOBQTIPUT
 XF BQQMZ UIF TBNF BMHPSJUIN UP CPUI TFUT PG TOBQTIPUT�
ĉFSFGPSF
 FWFO UIPVHI UIF BMHPSJUIN NJHIU OPU CF QFSGFDU
 UIF TBNF UZQFT PG QSPCMFNT PDDVS JO
CPUI DBTFT BOE B TUSBJHIUGPSXBSE DPNQBSJTPO PG UIF SFTVMUT BMMPXT UP ESBX DPODMVTJPOT BCPVU UIF
TJNJMBSJUZ PG UIF EBUBTFUT�
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"MM CFMPX JT DPQJFE GSPN TUSJOH QBĨFSOT QBQFS TVQQMFNFOU BU UIF NPNFOU� 'JHVSF SFGFSFODFT FUD
OFFE UP CF BEKVTUFE�

1ŃňŉňĹŀĹķŉĽŃł ĵłĸ ĺĽłĽŉĹ�ňĽŐĹ ĹĺĺĹķŉň

ĉF TJ[F PG UIF QPTUTFMFDUJPO SFHJPO JT DIPTFO UP CF Ǐ TJUFT JO EJBNFUFS BDDPSEJOH UP UIF "'. DPS�
SFMBUJPO MFOHUI BU IBMG ėMMJOH� 8F WBSZ UIF XJOEPX UP B TNBMMFS DJSDVMBS SFHJPO PG Ǎ TJUFT JO EJBNFUFS

PS UP B MBSHFS DJSDVMBS SFHJPO PG ǐ TJUFT JO EJBNFUFS
 BOE ėOE UIBU UIF RVBMJUBUJWF EFQFOEFODF PG UIF
TUSJOH DPVOU PO EPQJOH SFNBJOT UIF TBNF
 TFF 'JH� "�ǌ�ǉ� ĉF CBTFMJOF TUSJOH DPVOU BU IBMG ėMMJOH
JODSFBTFT GPS MBSHFS QPTUTFMFDUJPO SFHJPOT BT UIF SFHJPO CFDPNFT MBSHFS UIBO UIF DPSSFMBUJPO MFOHUI
BOE UIF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE JODSFBTFT�
ĉJT ėOJUF�TJ[F WBSJBUJPO TFFNT UP BĎFDU FYQFSJNFOU BOE BMM UIFPSFUJDBM TJNVMBUJPO SFTVMUT TJNJMBSMZ

XIJDI JT SFBTPOBCMF HJWFO UIBU UIF QBĨFSO EFUFDUJPO BMHPSJUIN JT JEFOUJDBM JO BMM BOBMZTFT� )PXFWFS

JO 'JH� 4Ǐ(
 XF TJNVMBUF TUSJOHT JO UIF JOėOJUF�MFOHUI MJNJU BOE EFUFDU B HSFBUFS OVNCFS PG TUSJOH
QBĨFSOT VQPO EPQJOH� ĉJT SFTVMU TVHHFTUT UIBU XIFO UIF TZTUFN JT NVDI TNBMMFS UIBO UIF MFOHUI
PG UIF TUSJOH QBĨFSOT
 UIF OVNCFS PG EFUFDUFE TUSJOHT JT CJBTFE IJHIFS� *OEFFE
 JODSFBTJOH UIF TJ[F
PG UIF QPTUTFMFDUJPO SFHJPO SFTVMUT JO B TMJHIU EFDSFBTF PG UIF FTUJNBUFE EFUFDUJPO FđDJFODZ�

r H


8F BMTP DPOTJEFS UIF FĎFDU PG NPWJOH UIF XJOEPX UP BDIJFWF UIF IJHIFTU WBMVFT PG UIF TUBHHFSFE
NBHOFUJ[BUJPO� 8F ėOE UIBU ėYJOH UIF XJOEPX UP UIF DFOUFS PG UIF TZTUFN XIJMF LFFQJOH B QPTUTF�
MFDUJPO UISFTIPME PG ƪƤ% HSFBUMZ JODSFBTFT UIF OVNCFS PG TUSJOH QBĨFSOT GPVOE BU IBMG ėMMJOH SFMBUJWF
UP UIF BEEJUJPOBM OVNCFS PG QBĨFSOT GPVOE VQPO EPQJOH UIF TZTUFN
 TFF 'JH� 4Ǌ#� ĉJT JT EVF UP B
HSFBUFS BWFSBHF EFWJBUJPO GSPN UIF SFGFSFODF DIFDLFSCPBSE� *O QSJODJQMF
 XF DPVME BDIJFWF B CFU�
UFS TJHOBM UP OPJTF CZ QPTUTFMFDUJOH NPSF TUSPOHMZ PO XIJDI JNBHFT XF VTF
 BU UIF DPTU PG JODSFBTFE
TUBUJTUJDBM ĚVDUVBUJPO� 8IJMF UIF IBMG�ėMMJOH WBMVF DIBOHFT
 UIF FTUJNBUFE EFUFDUJPO FđDJFODZ EPFT
OPU DIBOHF TUBUJTUJDBMMZ TJHOJėDBOUMZ
 JOEJDBUJOH SPCVTUOFTT PG UIF EFUFDUJPO BMHPSJUIN UP UIJT FĎFDU�
'JOBMMZ
 UIF GSBDUJPO PG JNBHFT LFQU JO UIF QPTU�TFMFDUJPO QSPDFTT DBO CF WBSJFE� 8F DIPPTF UP LFFQ

ǉǌǋ

6B;m`2 �X9Xk, 1z2+i Q7 �M�HviB+ bi`BM; H2M;i? /Bbi`B#miBQM QM K2�bm`2/ bi`BM; +QmMiX
U�V ai`BM; +QmMi p2`bmb /QTBM;- �b BM 6B;X j� Q7 i?2 K�BM i2ti- #mi BM+Hm/BM; �HH bi`BM;@T�ii2`M
H2M;i?b BM i?2 +QmMiX h?2 �;`22K2Mi #2ir22M �HH bBKmH�iBQMb �M/ 2tT2`BK2Mi bm;;2bib i?�i
i?Bb [m�MiBiv K�v #2 i`BpB�HHv /2T2M/2Mi QM /QTBM;X U"V *QKT�`BbQM Q7 2tT2`BK2Mi�HHv K2�@
bm`2/ bi`BM; +QmMi �M/ bBKmH�i2/ ;2QK2i`B+ bi`BM;b- 7Q` �M�HviB+ bi`BM; H2M;i? /Bbi`B#miBQMb
+Q``2bTQM/BM; iQ i2KT2`�im`2b 5/+ Q7 yX88- yXey U�b BM K�BM i2tiV- �M/ yXe8X h?2 5/+ = Ƥ.ƪƤ
/Bbi`B#miBQM K�i+?2b 2tT2`BK2Mi #2biX U*V a�K2- #mi p�`vBM; i?2 7`�+iBQM Q7 bBKmH�i2/ ?QH2b
r?B+? �`2 i?2M T`QT�;�i2/ iQ bBKmH�i2 bi`BM;bX h?2 #2bi �;`22K2Mi Q++m`b r?2M �HH ?QH2b �`2
T�`i Q7 bi`BM;bX U.@:V a�K2- #mi 7Q` bBKmH�i2/ bi`BM;b r?B+? �`2 Q7 �HH Q7 � bBM;H2 H2M;i?- `�M;@
BM; 7`QK k bBi2b iQ i?2 BM}MBi2@bBi2 HBKBi- BMbi2�/ Q7 b�KTH2/ 7`QK i?2 �M�HviB+ /Bbi`B#miBQM �b
/2b+`B#2/ BM i?2 K�BM i2tiX AM U"@:V- i?2 2tT2`BK2Mi�H `2bmHi b?QrM Bb i?2 b�K2X
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1 2 3 4 5 6 7 8 9

string-pattern length `(sites)

10�5

10�4

10�3

10�2

10�1

p�
(`

)

simulated � = 0.1, full readout
simulated � = 0.1, partial readout, difference from half-filling

6B;m`2 �X9Xj, ai`BM; T�ii2`M /2i2+iBQM rBi? bBKmH�i2/ 7mHH bTBM `2�/Qmi �M/ T�`iB�H
`2�/Qmi- i?2 H�ii2` rBi? ?�H7@}HHBM; bB;M�H bm#i`�+i2/- mbBM; >2Bb2M#2`; ZJ* /�i� rBi? �//2/
+?�`;2 ~m+im�iBQMb �M/ bi`BM;bX h?2 bB;M�Hb ?�p2 [m�HBi�iBp2Hv i?2 b�K2 b?�T2 #mi �`2 Qzb2i
/m2 iQ i?2 HQr2` /2i2+iBQM 2{+B2M+v rBi?Qmi 7mHH bTBM `2�/QmiX
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1 2 3 4 5 6 7 8 9

string-pattern length `(sites)

10�5

10�4

10�3

10�2

10�1

p�
(`

)

Heisenberg QMC
Heisenberg QMC + charge fluctuations
Heisenberg QMC + charge fluctuations + strings
experiment doping � = 0.0
experiment doping � = 0.1

1ĹŇŉŊŇĶĵŉĽŃłň ŉŃ ŉļĹ /͐Ĺŀ ňŉĵŉĹ

*O UIF OVNFSJDBM BOE FYQFSJNFOUBM SFTVMUT JO UIF SFNBJOEFS PG UIJT DIBQUFS BOE DIBQUFS ǎ
 XF DPO�
TJEFS UIF U − + BOE UIF 'FSNJ�)VCCBSE NPEFM JO UIF HSPVOE TUBUF
 BU ėOJUF UFNQFSBUVSF BOE PVU
PG FRVJMJCSJVN� "T DPNQBSFE UP UIF /ÊFM TUBUF TOBQTIPUT BOBMZ[FE BCPWF
 UIFSF BSF TFWFSBM QFSUVS�
CBUJPOT UIBU DPNQMJDBUF UIF TFBSDI GPS TUSJOH QBĨFSOT� ĉF NPTU SFMFWBOU PG UIFTF QFSUVSCBUJPOT
BSF

ǉ� UIF FYDIBOHF PG UIF UXP TQJOT PO B CPOE
 BT UIJT DPSSFTQPOET UP UIF 4J ·4K UFSN JO UIF)BNJM�
UPOJBO�

Ǌ� UIF EJSFDUJPO PG UIF /ÊFM PSEFS QBSBNFUFS JT OPU OFDFTTBSJMZ BMJHOFE XJUI UIF NFBTVSFNFOU
BYJT� .FBTVSJOH JO UIF XSPOH CBTJT MFBET UP TFBNJOHMZ SBOEPN TQJO ĚJQT JO UIF TOBQTIPUT�
'VMM DPVOUJOH TUBUJTUJDT PG UIF TUBHHFSFE NBHOFUJ[BUJPO
 QPTU�TFMFDUJPO MBUFS

ǋ� EPVCMPO�IPMF QBJST JO UIF'FSNJ�)VCCBSENPEFM� JG UIF UXP TQJOT PO B CPOE BSF BOUJ�BMJHOFE

UIFZ DBO GPSN B WJSUVBM EPVCMPO�IPMF QBJS
 XIJDI BQQFBST BT UXP FNQUZ TJUFT JO UIF TOBQTIPUT
UBLFO JO UIF FYQFSJNFOU JO DIBQUFS ǎ�

8F DBO NJNJDL UIFTF QFSUVSCBUJPOT PO UPQ PG UIF /ÊFM TUBUF� *O QBSUJDVMBS
 XF DBO HP UISPVHI BMM
CPOET BOE FYDIBOHF UIF UXP OFJHICPSJOH TQJOT XJUI B HJWFO QSPCBCJMJUZ QFY� ĉF EJSFDUJPO PG UIF
/ÊFM PSEFS DBO CF UBLFO JOUP BDDPVOU UP TPNF FYUFOU CZ ĚJQQJOH FBDI TQJO XJUI B QSPCBCJMJUZ HJWFO
CZ UIF UJMU BOHMF ӂ� 'JOBMMZ
 B EPVCMPO�IPMF QBJS JT DSFBUFE PO B CPOEXJUI B QSPCBCJMJUZ QEI JG UIF UXP
TQJOT BSF BOUJ�BMJHOFE� ĉF DBTFT

r ӂ = Ƥ.ƥӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ.ƧӍ, QFY = Ƥ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƩ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ.ƤƦ, QEI = Ƥ

r ӂ = Ƥ, QFY = Ƥ, QEI = Ƥ.ƤƬ

r ӂ = Ƥ.ƥӍ, QFY = Ƥ.ƤƦ, QEI = Ƥ.ƤƬ
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(JWFO UIF DMFBS QSFTDSJQUJPO QSPWJEFE CZ UIF HFPNFUSJD TUSJOH UIFPSZ
 XF DBO BMTP HFOFSBUF B OFX
TFU PG TOBQTIPUT XJUI UIF QSFEJDUJPOT PG UIF BOBMZUJDBM UIFPSZ CBTFE PO EBUB GSPN UIF )FJTFOCFSH
NPEFM� *O FBDI TOBQTIPU
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Figure A.4.3: Background signal in string pattern detection. a) String pattern detection
with simulated full spin readout and partial readout, the latter with the half-filling signal sub-
tracted, using Heisenberg QMC data with added charge fluctuations and strings. The signals
have qualitatively the same shape but are offset due to the lower detection efficiency with-
out full spin readout. b) Measured string pattern distribution for Heisenberg QMC simulation
at half-filling and for 10% doping. Without introducing charge fluctuations in the Heisenberg
simulation, we see a significant deviation from experiment in the half-filling distribution at low
lengths. However, the simulation including charge fluctuations qualitatively matches experi-
mental data, providing evidence that the string patterns detected in the experimental data at
half-filling arise from the distinction between snapshots of a quantum antiferromagnet and the
reference checkerboard.

Signal at half-filling

Apart from doublon-hole pairs, the Fermi-Hubbardmodel at half filling forU ≫ t can be approxi-
mated by the Heisenberg model. We can therefore examine the detected string-pattern length dis-
tribution from Heisenberg QMC simulation to better understand our experimental signal at half
filling. For consistency, after simulating a 40-site by 40-site system with periodic boundary con-
ditions, we cut out the same sample size and use the same readout and post-selection schemes as
in the experiment, and we add doublon-hole pairs into the simulation by converting neighboring
sites with opposite spins into doublon-hole pairs with a probability given by 4t2/U2.
Fig. A.4.3 b) shows the string length distribution from the experiment at half filling as well as from
QMC simulations of the Heisenberg model at T = 0.6J with and without artificial doublon-hole
pairs. The introductionof artificial doublon-hole pairs corrects the significant discrepancybetween
the QMC data and the experimental data at strings of short lengths. The resulting simulated data
agrees reasonably well with experiment, suggesting that the detected string patterns in the exper-
imental data at half filling come from the deviation of a quantum AFM from the checkerboard
reference pattern. Slightly more long string patterns are found in Heisenberg QMC snapshots
compared to experiment half-filling. This discrepancy may be due to a failure to consider non-
adjacent doublon-hole pairs, which are expected at the experimental parameters. Indeed, this ef-
fect decreases upon doping as doublon-hole fluctuations become rarer, where the QMC data with
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Figure A.4.4: Comparison to other string finding algorithms. a) The string length his-
togram and total string count produced with the simplified red area algorithm. Apart from an
increase in values of the string-pattern-based observables at half-filling, the results are similar
to the detection algorithm used in the main text. b) Same quantities, but produced with the
happiness method, are also sensitive to doping but may be too noisy to be useful.

simulated strings agrees quite well with the experimental measurements.

Comparison to other string finding algorithms

Figure A.4.4 shows the same quantities plotted in main text Figs. 6.4.2 and 6.4.3, but under a) the
simplified red area and b) the happiness string detection algorithm introduced in section 5.2.1.
Note that the signal to noise ratio is significantly lower and the absolute signal itself is lower by al-
most an order of magnitude. This is not surprising, especially given that quantum fluctuations and
projection noise do contribute considerably to measurement and reduce the sensitivity of string
patterns to string states. Here the experimental result seems to best match the sprinkled holes sim-
ulations, however uncertainties are large and this is highly inconsistent with all other results with
conventional observables, requiring further investigation.
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A.5 Machine learning

In this section, we give a brief introduction into neural networks and an overview over machine
learning techniques. For a detailed introduction into the topic we refer to the many excellent
ressources, for exampleRefs. [285, 287, 339, 439]. Here, wediscuss supervised learning algorithms
and in particular convolutional neural networks.

A.5.1 Neural networks

A neural network is a collection of connected neurons, inspired by the biological neural networks
in brains. Each of the neurons typically has several incoming connections and provides an output,
which is some non-linear function of the sum of the incoming data. The connections and neurons
are associatedwithweights andbiases, whichwewill callθ here. Theweights andbiases are adjusted
during the learning process. A standard example is the learning of handwritten digits: many images
of handwritten digits are input to the network. Each of these images x(i) has as a label y(i) the digit it
represents. The neural network is then trained to adjust its weights and biases in such away that for
a given input image, the output hθ(x(i)) corresponds to the correct label y(i). For an inpuct vector
x(i), the values of the neurons in the next layer are calculated as

a(2) = g(z(2)) with z(2) = θ(1)a(1). (A.42)

Note that here, the superscripts refer to the number of the layer as opposed to the number of the
sample under consideration. The first layer is the input, a(1) = x(i). The function g(z) can for
example be the sigmoid function,

g(z) =
1

1+ e−z . (A.43)

A cost function is defined, which we aim to minimize during the training process. One could for
example choose the squaredistancebetween theoutput of theneural network and the correct label,
such that the cost function becomes

J(θ) =
1
2N

N∑
i=1

|hθ(x(i))− y(i)|2. (A.44)

The goal is then to minimize J(θ) as a function of the network paramters θ. A common way to do
so is to use gradient descent. Here, one starts with some initial guess for θ and then changes θ in
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each step of the process along the direction in which J(θ) becomes smaller:

θj → θj − α
∂

∂θj
J(θ) ∀θj ∈ θ. (A.45)

Note that all weigths and biases θj are updated simultaneously. The parameter α is the learning rate.
If it is chosen too small, the gradient descent will be slow. If α is too large, the gradient descent
may fail to converge. We decrease the learning rate α over the course of training to obtain fast
convergence.
In order to avoid problems when calculating the gradient, the cost function is often chosen as

cost(hθ(x(i)), y(i)) = −yi log(hθ(x(i)))− (1− y(i)) log(1− hθ(x(i))) (A.46)

with

J(θ) =
1
N

N∑
i=1

cost(hθ(x(i)), y(i)). (A.47)

In the case of more than two possible outputs, the labels y(i) are written as vectors of length K,
where K is the number of possible outputs. All entries in y(i) are zero except for the k-th entry,
which corresponds to the correct label and is set to one. If we for example want to label hand-
written digits with labels 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, the label 2 would be represented by the vector
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T. The cost function then becomes

J(θ) =
1
N

N∑
i=1

K∑
k=1

(
−y(i)k log((hθ(x(i)))k)− (1− y(i)k ) log(1− (hθ(x(i)))k)

)
. (A.48)

If the number of free parameters in the neural network is too big compared to the sample size,
overfitting can become a problem. There are two standard ways to avoid this: one can add the
square of the weights to the cost function, such that large weights are punished and the network
has to find ways to avoid using all possible weights. Alternatively, one can use dropout, where a
randomly chosen subset of neurons is not used in each training step, such that the network cannot
rely too much on any given neuron. We chose the latter approach.
In order to calculate the gradient of J(θ) efficiently, the backpropagation algorithm is commonly
used. In this algorithm, a given training example (x(i), y(i)) is first propagated forward through the
network, calculating the values of all neurons, including the output value hθ(x(i)). For each node
in each layer, we now want to obtain a measure for the error stemming from this node, given a
total error in the output. For an output node, this is straightforward, and the error is simply the
difference between the output hθ(x(i)) and the correct label y(i). For the neurons in the hidden
layers, the process is a bit more involved and we have to backtrace the error terms of the nodes in
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the following layer (i.e. closer to the output). For a neural network with one hidden layer, we do
the following for each sample x(i):

1. the sample x(i) is propagated forward through the network, yielding the values of z(2), a(2)

for the hidden layer and z(3), a(3) for the output layer.

2. for each possible label k in the output layer, we get

δ(3)k = a(3)k − yk. (A.49)

3. for the hidden layer (l = 2), the errors are

δ(2) =
(
(θ(2))Tδ(3)

)
. ∗ g′(z(2)), (A.50)

where .∗ is the element-wisemultiplication and g′(z) is the gradient of the sigmoid function,
which is conveniently

g′(z) = g(z)(1− g(z)). (A.51)

4. add the contribution to the gradient from this example as

Δ(l) = Δ(l) + δ(l+1)(a(l))T. (A.52)

5. the gradient for the cost function is then

∂

∂θ(l)mn

J(θ) = D(l)
mn =

1
N
Δ(l)

mn. (A.53)

Convolutional neural network

In a convolutional neural network (CNN), Fig. A.5.1, each neuron of the first hidden layer is only
connected to a small subregion in the input data. The input is usually two dimensional, such as an
image. In our case, we use subregions of 3 × 3 and the input are snapshots of the quantum many
body state. For further discussion and applications of CNNs in quantum many-body physics see
References [326–328, 441] The hidden layer in the CNN is generated as a convolution of a mask
Mi with the input. Each neuron in one layer is obtained from the same – in our case 3 × 3 – mask
Mi at different positions of the input. Different masks then lead to several layers instead of only
one hidden layer. The fact that one mask is moved across the entire input image to generate one
hidden layer makes use of translational invariance: the same feature can appear anywhere in the
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Figure A.5.1: Convolutional Neural Network. The main building block of CNNs, which
are conventionally used to analyze visual imagery, is the convolutional layer with a set of
learnable filters Mi as parameters [440]. At each possible position of a given filter in the in-
put image, the inner product between the filter and the input data is computed. This yields
a two dimensional activation map of the filter. During training, the network learns to set the
entries of the filters such that the corresponding value in the activation map is high when spe-
cific types of patterns are detected. The convolutional layer is followed by a fully connected
layer, which then sorts the data into the different categories [5].

picture and we do not need to encode it with a number of variables of the system size in the neural
network. Instead, we encode one feature in one filter, which is then moved to all positions. This
way, the number of neural network parameters is reduced significantly as compared to a fully con-
nected neural network which allows for all possible positions of a number of features. We use the
tensorflow [285] package to implement a convolutional neural network to analyse snapshots of the
doped Fermi-Hubbardmodel. The network is implemented as shown in the Python example code
below.

import t e n s o r f l o w a s t f
t f . r e s e t _ d e f a u l t _ g r a p h ( )

# ## s a v i n g
p a t h = ’ . / n e two r k / Doping ’ + s t r ( dop i n g )+ ’ / ’

# ## t f Graph i n p u t
x = t f . p l a c e h o l d e r ( ” f l o a t ” , [None , mX*mY] )
y_ = t f . p l a c e h o l d e r ( ” f l o a t ” , [None , l e n ( c a s e s ) ] )
x_ image = t f . r e s h a p e ( x , [ −1 , mX, mY , 1 ] )
ke ep_p rob1 = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 )
ke ep_p rob2 = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 )

# ## S t o r e l a y e r s w e i g h t & b i a s
w e i g h t s = {
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’Wc1 ’ : t f . V a r i a b l e ( t f . t r u n c a t e d _ n o rm a l ( [ p1 , p1 , 1 , f 1 ] , s t d d e v = 0 . 1 ) ) ,
’ Wfc1 ’ : t f . V a r i a b l e ( t f . t r u n c a t e d _ n o rm a l ( [ i n t (mX*mY* f 1 ) , f c S i z e 1 ] , s t d d e v = 0 . 1 ) ) ,
’ o u t ’ : t f . V a r i a b l e ( t f . t r u n c a t e d _ n o rm a l ( [ f c S i z e 1 , l e n ( c a s e s ) ] , s t d d e v = 0 . 1 ) )
}
b i a s e s = {
’ bc1 ’ : t f . V a r i a b l e ( t f . c o n s t a n t ( 0 . 1 , s h a p e =[ f e a t u r e S i z e 1 ] ) ) ,
’ b f c 1 ’ : t f . V a r i a b l e ( t f . c o n s t a n t ( 0 . 1 , s h a p e =[ f c S i z e 1 ] ) ) ,
’ o u t ’ : t f . V a r i a b l e ( t f . c o n s t a n t ( 0 . 1 , s h a p e =[ l e n ( c a s e s ) ] ) )
}

# ## C r e a t e mod e l
de f n e u r a l _ n e t ( x_ image ) :

# F i r s t c o n v o l u t i o n a l l a y e r :
h_conv1= t f . nn . r e l u ( t f . add ( t f . nn . conv2d ( x_ image , w e i g h t s [ ’Wc1 ’ ] ,
s t r i d e s = [1 , 1 , 1 , 1 ] , p a d d i n g = ’SAME ’ ) , b i a s e s [ ’ bc1 ’ ] ) )
h _ f l a t = t f . r e s h a p e ( h_conv1 , [ −1 , i n t (mX*mY* f e a t u r e S i z e 1 ) ] )
# d r o p o u t
h_drop = t f . nn . d r o pou t ( h _ f l a t , k e ep_p rob1 )
# f i r s t f u l l y c o n n e c t e d l a y e r
h_ f c 1 = t f . nn . r e l u ( t f . add ( t f . matmul ( h_drop , w e i g h t s [ ’ Wfc1 ’ ] ) ,

b i a s e s [ ’ b f c 1 ’ ] ) )
# d r o p o u t
h_ f c 2_d rop = t f . nn . d r o pou t ( h_ fc1 , k e ep_p rob1 )
# Ou t p u t f u l l y c o n n e c t e d l a y e r w i t h a n e u r o n f o r e a c h c l a s s
o u t _ l a y e r = t f . matmul ( h_ f c2_drop , w e i g h t s [ ’ ou t ’ ] ) + b i a s e s [ ’ ou t ’ ]
r e t u r n o u t _ l a y e r

y_conv = n e u r a l _ n e t ( x_ image )
o u t s = t f . nn . s o f tm a x ( y_conv )
p r e d i c t i o n = t f . a r gmax ( t f . nn . s o f tm a x ( y_conv ) , 1 )

c r o s s _ e n t r o p y = t f . r educe_mean (
t f . nn . s o f t m a x _ c r o s s _ e n t r o p y _ w i t h _ l o g i t s ( l a b e l s =y_ , l o g i t s = y_conv ) )

r e g u l a r i z e r = t f . nn . l 2 _ l o s s ( w e i g h t s [ ’ Wfc1 ’ ] ) # o p t i o n a l r e g u l a r i z a t i o n
l o s s _ f c t = t f . r educe_mean ( c r o s s _ e n t r o p y + l ambda0 * r e g u l a r i z e r )

g l o b a l _ s t e p = t f . V a r i a b l e ( 0 , t r a i n a b l e = F a l s e )
l e a r n i n g _ r a t e = t f . t r a i n . e x p o n e n t i a l _ d e c a y ( s t a r t e r _ l e a r n i n g _ r a t e ,
g l o b a l _ s t e p , d e c a y _ s t e p s , d e c a y _ r a t e , s t a i r c a s e =True )

t r a i n _ s t e p = t f . t r a i n . AdamOpt imi ze r ( l e a r n i n g _ r a t e ) . m i n im i z e ( l o s s _ f c t )
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c o r r e c t _ p r e d i c t i o n = t f . e q u a l ( t f . a r gmax ( y_conv , 1 ) , t f . a r gmax ( y_ , 1 ) )
a c c u r a c y = t f . r educe_mean ( t f . c a s t ( c o r r e c t _ p r e d i c t i o n , t f . f l o a t 3 2 ) )

Before training the neural network, we randomly select 250 snapshots from the full data for test-
ing. These snapshots are not used during training, but only to test the performance of the network
and determine the accuracy. In order to average out fluctuations in the results, we repeat the train-
ing with a different choice of the test data set and sorting of experimental data ten times. The error
bars for the different accuracies as well as the percentage of experimental snapshots detect as one
of the two theories shown in the figures represent the standard deviation over the different runs,

Δx =

√∑N
i=1 (xi − x̄)2

N − 1
, (A.54)

whereN is the number of runs, xi is the quantity under consideration in the i-th run and x̄ is the
average value of the said quantity over allN runs.
There are many other architectures and applications for neural network. In our search for string
patterns, we also applied recurrent neural networks, which are optimally suited for time-traces, to
backtrace strings, see section 5.2.1. A different approach would be to implement an unsupervised
learning algorithm, such as reinforcement learning, to find strings in snapshots.
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B
Details on thespectral function

B.1 1D ARPES

This section is based on the publication

• AnnabelleBohrdt,DanielGreif, EugeneDemler,MichaelKnap, FabianGrusdt:“Angle-resolved
photoemission spectroscopy with quantum gas microscopes.” – Phys. Rev. B 97, 125117
(2018) [arXiv:1710.08925]

Structure, text and figures have been rearranged and adapted here.

B.1.1 Extensions of the measurement scheme

The scheme for measuring the spectral function of a single hole can be generalized to implement
different spectroscopic probes using ultracold atoms. This appendix illustrates two examples: mea-
suring the dynamical structure factor S(ω, k) in one-dimensional spin chains and extending the
scheme to implement the analog of double photoelectron spectroscopy [442, 443].
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Figure B.1.1: Direct measurement of the dynamical spin structure factor. a) The
empty probe system is replaced by a fully polarized spin chain and coupled to the system us-
ing superexchange interactions in the y-direction. By detecting a single magnon created in Sdet

and measuring its momentum, the dynamical spin structure factor S(k, ω) can be measured. In
b) we calculate S(k, ω) for the isotropic Heisenberg model in a finite-size box of length L = 16
at a temperature T = 0.2J. It shows the expected broad continuum reflecting the fractionaliza-
tion of a spin-flip excitation into a pair of spinons. The black dashed lines correspond to the
theoretically expected upper and lower boundaries at zero temperature.

B.1.2 Dynamical spin structure factor

The spectral function A(k, ω) probes the properties of a single hole interacting with the surround-
ing spins. To obtain information about the spin system alone, more direct measurement schemes
are required where no charge excitations are generated. Themost common example is the dynam-
ical spin structure factor S(k, ω), where a spin-flip excitation with momentum k is created at an
energy ω. Using a Lehmann representation similar to Eq. (4.20) it can be defined by

S(k, ω) =
1

2Z0

∑
n,m

e−βEM
n |⟨ψM+1

m |Ŝ+k |ψ
M
n ⟩|

2 × δ(ℏω − EM+1
m + EM

n ), (B.1)

with |ψM
n ⟩, EM

n denoting the eigenstates and -energies of the system S with total magnetization M.
In solids, S(k, ω) can be measured in inelastic neutron scattering experiments [444].
To directly measure the dynamical spin structure factor S(k, ω) using a quantum gas microscope,
we propose to replace the empty probe system Sdet by a spin chain which is fully polarized along
the z-direction, see Fig. B.1.1 a). Instead of the modulated tunnel coupling T̂y from Eq. (4.17), the
system can be coupled to the probe by super-exchange interactions,

Ĵy =
∑

i

Ŝi · Ŝi,det, (B.2)

where Ŝi,det denotes the spin operator on site i in the probe system. By modulating the tunnel-
ing amplitude ty as in the case of the spectral function, the resulting super-exchange coupling jy
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is also modulated with the same frequency ωshake. The time-dependent perturbation thus reads
Ĥpert(τ) = δjy sin(ωshakeτ)̂Jy, cf. Eq. (4.13).
Similar to the case of the spectral function, the perturbation creates an excitation in the probe sys-
tem Sdet: here, the excitation is a magnon carrying spin Sz = −1 with momentum−k and energy
ωm(−k), where ωm(k) denotes the magnon dispersion relation. In order to measure the momen-
tum of themagnon, we assume that spin up and down states have different magnetic moments. By
applying a magnetic field gradient along the x-direction before taking a spin-resolved image [217]
onecan thus implement theWannier-Starkmappingdiscussed inSec. 4.2.3 for the singlemagnon in
Sdet. Similarly, amagnetic field gradient along the y-direction can be used to realize spin-dependent
energy offsets Δσ , analogous to the energy offset Δ considered in the case of the spectral function.
Finally, by measuring the position of the magnon after applying the Wannier-Stark mapping, the
excitation rate Γ(k, ω) is obtained, which is directly related to the dynamical spin structure factor

Γ(k, ω) =
2π
ℏ
|δjy|2S(k, ω), (B.3)

as obtained by Fermi’s golden rule.
In Fig. B.1.1 b) we show an example for the dynamical spin structure factor S(k, ω), calculated at
finite temperature and for realistic system sizes accessible in current experiments. The spin-flip
creates a pair of two fractionalized spinon excitations. As a result, one can observe a broad spinon
continuum, which is considered a key indicator for a quantum spin liquid.

B.1.3 Double photoelectron spectroscopy

Further insight into the nature of excitations in the system can be obtained bymeasuring their spa-
tial correlations. An interesting method which achieves this goal in solids is double photoelectron
spectroscopy [442, 443], where a correlated pair of two photoelectrons is emitted and detected.
Similarly, processes can be considered where two atoms are transferred into the initially empty
probe system Sdet. To avoid interactions between the two emitted atoms, one could e.g. consider
a situation with two probe systems SdetL,R, one to the left and one to the right of the system S, and
post-select on cases with one atom per probe system.
The resulting spectrum contains pairs of individual one-particle events as well as two-particle pro-
cesses which provide additional information about the system. The two-particle contributions can
be distinguished from one-particle effects by using coincidence measurements. In this technique
one post-selects events where both excitations are created simultaneously. In the quantum gas mi-
croscope setups discussed here this can be achieved by extending SdetL,R in the y-direction. One can
use the travelled distance from the system S in y-direction as a measure of the time that passed be-
tween the creation and the detection of a particle.
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From the coincidence measurements described above, information about the two-hole spectral
function A12(k1, k2, k′1, k′2; ω) can be extracted, see Ref. [443]. It contains information about the
correlations between the two created holes in the system. These correlations are expected to be
weak in a system with one-dimensional chains with spin-charge separation, where holons form a
weakly interacting Fermi sea [177, 310]. On the other hand, in systems that are superconduct-
ing, correlations are expected to play an important role and give rise to distinct features of Cooper
pairing in the two-hole spectrum [445]. Using ultracold atoms, situations with attractive Hubbard
interactionsU < 0 have been realized [446] which become superconducting at low temperatures.
Here the method described above could be applied to directly access the strong two-particle cor-
relations present in this system.

B.1.4 Details on the boundary conditions and momentum shifts

In this Appendix, we discuss the different shifts for holon and spinon momenta that have to be
taken into account in the application of the spectral building principle in Eqs. (4.24) and (4.26).
Strictly speaking, there is no translational invariance in squeezed space. However, it is a good ap-
proximation up to 1/L. The firstmomentum shiftwe discuss is due to these corrections. The holon
moves along L lattice sites. Its momentum is therefore quantized in units of 2π/L. By contrast,
there are only L − 1 spins, such that the spinon momentum is ks = ns2π/(L − 1) with ns integer.
Therefore, we have to shift the momentum to account for the different quantization conditions for
spinon and holon. The spinon momentum ks = k − kh in Eq. (4.24) is thus replaced by

k′s = k − kh +
k − kh

L − 1
. (B.4)

This is the smallest possible shift to obtain the correct quantization of k′s as an integer multiple of
2π/(L − 1).
In a chain with periodic boundary conditions, a further momentum correction arises: the holon
shifts the spins by one lattice site every time it moves across the entire system. When the spins
are translated by one site, the wavefunction picks up an overall phase eiPs where Ps is the total mo-
mentum of the spin chain after removing the holon. Ps = P0 + ks is determined from the spinon
momentum ks up to an additive constant P0 which is independent of the momentum. Thereby, a
twisted periodic boundary effect with twist angle given by the spinon momentum Ps is introduced.
This corresponds to a shift of all holon momenta kh by the momentum Ps of the spins divided by
the system size L. For periodic boundary conditions, we thus have to replace kh in Eq. (4.24) with

k′h = kh −
Ps

L
. (B.5)
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In Fig. 4.2.3 a) and b) we included the corrections from Eq. (B.4), (B.5) for the positions of the
gray dots and found by comparison to our numerical calculations that P0 = π.
At small but finite temperatures, there exist collective excitations which carry momentum π. They
contribute to Ps in Eq. (B.5) and thus shift the holon momentum in the case of periodic boundary
conditions by an additional amount of π/L,

k′h = kh −
2π + ks

L
. (B.6)

Correspondingly, additional peaks appear between the ones found at zero temperature, which are
marked by blue circles in Fig. 4.2.3 a).

B.2 2D spectral function: details on the numerical simulations

This section is based on the publication

• Annabelle Bohrdt, Eugene Demler, Frank Pollmann, Michael Knap, and Fabian Grusdt:
“Parton theory of ARPES spectra in anti-ferromagnetic Mott insulators” – Phys. Rev. B
102, 035139 [arXiv:2001.05509]

Structure, text and figures have been rearranged and adapted here.

The spectral function is calculated as theFourier transformof the time-dependent correlation func-
tion

Ci,j(t) =
∑

σ

⟨ψ0|e
iĤt̂c†j,σe−iĤt̂ci,σ|ψ0⟩, (B.7)

where |ψ0⟩ is the ground state of the t − J model without a hole on a cylinder with four legs. The
time evolutionof the ground statewith the t−JHamiltonian eiĤt|ψ0⟩ = eiE0t|ψ0⟩. We thus calculate

• the ground state without a hole, |ψ0⟩, using DMRG

• the timeevolutionof theground state after aholewas created in theorigin, |ψ(t)⟩ = e−iĤt̂c0,σ|ψ0⟩

• the overlap of |ψ(t)⟩with the state where a hole was created at a position j, |ψ1⟩ = ĉj,σ|ψ0⟩.

The time evolution of ĉ0,σ|ψ0⟩ is performedusing thematrix product operator based time evolution
introduced in Ref. [313]. In Fig. B.2.1 a) we compare the correlation function Ci,j(t) for different
bond dimensions χ at a time of t0 = 8 (1/J), which is the maximal time used for the spectral
function shown in the main text. While there are small differences in the absolute numbers, the
qualitative behavior is captured correctly already at a bond dimension of χ = 600. For later times,
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Figure B.2.1: Numerical details for the 2D Spectral function. a) We check the conver-
gence of our td-MPS calculations with the bond dimension χ in the real time and space cor-
relation function Ci,j(t) for the latest time (8 in units of 1/J) considered for t/J = 3. b) Linear
prediction and Gaussian envelope. After the spatial Fourier transform, we use linear prediction
to enhance the time window (orange dashed). Before Fourier transforming in time, the time
dependent data is multiplied with a Gaussian envelope of width σω = 0.25J (green dashed-
dotted). Here, as an example, we show the corresponding time traces for kx = 0, ky = π/2 at
t/J = 3.

the deviations between different bond dimensions increase further.
We perform a spatial Fourier transform to obtain

A(k, t) =
∑
j

e−ik·jC0,j(t). (B.8)

As our time evolution is limited to times 0 ≤ t ≤ t0 = 8/J, we use linear prediction to
increase the time window. Afterwards, the data is multiplied with a Gaussian envelope w(t) =

exp[−0.5(tσω)
2], where σω = 2/t0 = 0.25J is chosen in order to minimize the weight of the data

generated by linear prediction in the spectrum [436]. An example of a time-trace used for our cal-
culation of the spectral function is shown in Fig. B.2.1 b). We confirmed that the results do not
depend on the details of this procedure. Fourier transforming in time yields the spectral function

A(k, ω) =
1
2π

∫ ∞

−∞
dtA(k, t). (B.9)

In this signal, theGaussian envelops introduced in the time domain before lead toGaussian broad-
ening of the obtained peaks, sufficiently small for our analysis.
The diagonal cut through the Brillouin zone from (0, 0) to (π, π) is obtained by labeling the sites
around the cylinder in a zigzag fashion as indicated in top of Fig. 5.4.1 a). One ring around the
cylinder with this labeling contains 2Lr instead of Lr sites. We calculate the ground state as well as
the dynamics with the couplings in the Hamiltonian according to the modified lattice geometry.
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Figure B.2.2: Dependence of DMRG data on parameters. We check how our DMRG
calculations of the ground state quasiparticle weight Z change when the bond dimension
χ and the circumference Lr of the cylinder are changed. The inset shows the difference
Zgs(Lr, χ)− Zgs(Lr = 4, χ = 500) – note the overall scale 10−3.

For each time step, we obtain an array with mx · 2Lr entries. This array is reshaped into an 2mx · Lr

array and then the Fourier transform is performed, yielding A(k, t). Due to the relabeling of the
sites, the momenta are transformed as

kx → kx

ky → ky + kx.
(B.10)

In particular, for ky = 0we obtain the cut from (0, 0) to (π/2, π/2) shown in Fig. 5.4.1 a).

It can be shown analytically that the ground state quasiparticle weight Z(π/2, π/2) shown in
Fig. 5.4.3 in the main text corresponds to the integral over the first peak in the spectral function.
However, Z(π/2, π/2) can be expressed more conveniently as the overlap:

Z(π/2, π/2) =
∑

σ

∣∣⟨ψ1h
0 |̂c(π/2,π/2),σ|ψ

0h
0 ⟩
∣∣2 . (B.11)

We can thus obtain the quasiparticle weight directly from the ground states of the t− Jmodel with-
out a hole, |ψ0h

0 ⟩, andwith a single hole, |ψ1h
0 ⟩, without the need to calculate any time evolution. The

ground state of a single hole in the t − J model has momentum k = (π/2, π/2). In a translational
invariant system, we can further simplify the calculation by writing:

Z(π/2, π/2) =
∑

σ

∑
j

∣∣⟨ψ1h
0 |̂cj,σ|ψ

0h
0 ⟩
∣∣2 . (B.12)
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Hencewe only need to calculate the overlap of the one-hole ground statewith a locally created hole
at different positions j: ĉj,σ|ψ0h

0 ⟩. In Fig. B.2.2 we show how this procedure changes with the bond
dimension χ and circumferences Lr = 4 and 6, for different t/J.
A comment is in order concerning theuseofEq. (B.12). Toemploy it in our finite-size cylinders, we
must assume that the ground state |ψh

0⟩doesnot spontaneously break the translational symmetry in
the thermodynamic limit and canbewell approximatedby a standingwaveof nodal pointmomenta
±(π/2,±π/2) in thefinite-size system. InRefs. [447, 448]Zhuet al. have shown in few-leg ladders
with open boundary conditions, that the finite-size ground state |ψh

0⟩ can showmanifestations of a
spontaneously broken translational symmetry in the thermodynamic limit, as indicated by strong
charge modulations in the finite-size ground state. In our numerics on four-leg cylinders, we find
no indications for this scenario.
To extract Z(k) for k different from the nodal points, we determine the height of the first peak
and its full width at half maximum. We assume a Gaussian form and thus calculate Z(k) as the
corresponding integral over the Gaussian function.
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C
Details on the Bose-Hubbardmodel

C.1 Numerical simulations and data analysis for theOTOCs

This section is based on the publication

• A. Bohrdt, C. B. Mendl, M. Endres, M. Knap: “Scrambling and thermalization in a diffusive
quantum many-body system.” – New J. Phys. 19, 063001 (2017) [arXiv:1612.02434]

Structure, text and figures have been rearranged and adapted here.

C.1.1 Numerical simulations

The numerical simulations are based on finite-temperature, time-dependent matrix product oper-
ators (MPO) [432, 449–453], and were implemented by Christian B. Mendl.
For the density correlations, we evaluate [452]

〈
n̂ℓ(t)n̂j(0)

〉
β
def
=

1
Z

tr
[
e−βĤ(eitĤn̂ℓe−itĤ)n̂j

]
=

1
Z

tr
[(
ei

t
2 Ĥe−βĤ/2n̂ℓe−i t

2 Ĥ
)(
e−i t

2 Ĥn̂je−βĤ/2ei
t
2 Ĥ
)]

,

(C.1)
where β is the inverse temperature and Z the partition function. We construct the MPO approxi-
mation of the two terms in the parentheses by first computing e−βĤ/2n̂ℓ and n̂je−βĤ/2, respectively,
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Figure C.1.1: Comparison of numerical data for different bond dimensions. OTO cor-
relators Fij(t) are shown for T = 4J and U = J, and bond dimension a) 20 and b) 400. The
plateau emerging around |i − j| ≈ 5 in a) diminishes and appears only at larger distances for
the higher bond dimension shown in b). However, despite the large difference in the bond
dimension, deviations from the linear light cone are still apparent.

and then performing a real-time evolution up to t
2 and − t

2 . By exploiting the time translation in-
variance, ⟨n̂ℓ(t)n̂j(0)⟩β = ⟨n̂ℓ(t/2) n̂j(−t/2)⟩β, the maximum simulated time has effectively been
reduced by a factor two, which in turn reduces the required virtual bond dimension of the MPO.
To evaluate e−βĤ/2, we employ a second-order Suzuki-Trotter decomposition with imaginary time
step Δτ (typically ΔτJ = 0.025) after splitting the Hamiltonian into even and odd bonds, as de-
scribed inRef. [449]. Thereal-timeevolutionproceedsbyLiouville steps Â(t+Δt) = eiΔtĤÂ(t)e−iΔtĤ.
For eachof the stepswe combine a fourth-order partitionedRunge-Kuttamethod [454]with even-
odd bond splitting of the Hamiltonian. As noted in Ref. [452], the Liouville time evolution has
the advantage that the virtual bond dimension does not increase outside the space-time cone set
by Lieb-Robinson-type bounds. The high order decomposition also allows for relatively large time
steps (in our case ΔtJ = 0.125 or 0.25).
For the OTO correlators ⟨c†j (t)c†ℓcj(t)cℓ⟩β, a regrouping analogous to Eq. (C.1) would lead to four
terms inside the trace, such that a straightforward contraction to evaluate the trace becomes com-
putationally very expensive. Instead, we evaluate

〈
c†j (t)c

†
ℓcj(t)cℓ

〉
β =

1
Z

tr
[(
eitĤe−βĤc†j e−itĤc†ℓ

)(
eitĤcje−itĤcℓ

)]
(C.2)

and time-evolve both e−βĤc†j and cj up to time t. Subsequent application of the site-local operators
c†ℓ and cℓ does not affect the virtual bond dimension in the MPO representation.
In our simulations, we restrict the local Hilbert space to three states due to computational limita-
tions. Since the average particle number per site is approximately one, this restriction should not
qualitatively affect the simulation results. Moreover, truncating the local Hilbert space to three
states is sufficient to render the system non-integrable, which is crucial to observe the thermaliza-
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Figure C.1.2: Determining the light-cone vlc and butterfly velocity vb. The velocities
resulting from a linear fit to the times at which F r

ij(t) reaches the value F∗ are shown for U =
J and T = {4, 10}J. The errorbars are the fitting errors. Inset: The inverse slope of the linear
fit to the times as a function of distance |i − j| determines the different velocities (shown for
U = J and T = 4J).

tion behavior studied in this work.
SinceOTO correlators are closely linked to the spreading of entanglement, it is challenging to sim-
ulate themusingMPO techniques. In Fig.C.1.1we compare the data obtained for the same simula-
tion parameters but differentmaximal bond dimensions. TheMPObond dimension of 20 leads to
an apparently super-ballistic growth of the light-cone around |i− j| ≈ 5, see Fig. C.1.1 a). Increas-
ing the bonddimension shifts this numerical artifact to larger distances. It is however exponentially
costly to reach full convergence of the OTO correlator. In the analysis of the numerical data we
therefore only considered small distances, where we checked that increasing the bond dimension
does not alter the correlators.

C.1.2 Data analysis

We describe in detail, how we determine the light-cone velocity vlc, the butterfly velocity vb, and
the Lyapunov exponent λL. The light-cone velocity is defined as the ratio of the distance |i − j|
and the time at which the reduced OTO correlatorF r

ij(t) reaches a small threshold. The butterfly
velocity, however, sets a scale for the time it takes to scramble information over the system and
is therefore defined via the time at which F r

ij(t) attains a large value of order one. The specific
threshold one chooses to determine the butterfly velocity is thus somewhat arbitrary. We illustrate
the dependence of the velocity v on the chosen thresholdF∗ of the reducedOTOcorrelatorF r

ij(t)
in Fig. C.1.2. For large values ofF∗, the velocity converges toward a constant. Hence, the butterfly
velocity will be largely insensitive to the precise choice ofF∗ as long as it is large enough. For the
definition of vb, we consider the specific value ofF∗

b = 0.2.
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Figure C.1.3: Determining the Lyapunov exponent λL. OTO correlators F r
ij(t) are shown

for T = 10J and U = J. Solid lines depict the predicted exponential growth from which we de-
termine (a) the Lyapunov exponent λL = 2.9(1) and (b) the light-cone exponent Λlc = 10.3(5).
The dashed gray line denotes the threshold value F∗ used to determine the velocities vb and
vlc, respectively. We obtain the exponents by fitting our data in a restricted regime around
the threshold value F∗ to the predicted exponential growth, see text for details. However,
we note that in our data the exponential growth is limited to a rather small time range. The
errorbars shown in Fig. 8.1.4 correspond to errors obtained from such fits.

In the limit F∗ → 0, there is a strong dependence of v on the choice of the threshold. The
light-cone velocity vlc is defined by the fastest spread of information through the system and is
determined by the reduced OTO correlator attaining a small value. To fulfill this definition, we fix
F∗

lc = 0.0005; see inset in Fig. C.1.2.
As described in section 8.1, from the SYK model and strongly coupled field theories one could

expect that the OTO correlator grows exponentially on a timescale set approximately by the but-
terfly velocity. We thus fit the exponential function

F r
x(t) = a · eλL

(
t− x

vb

)
(C.3)

to the numerical data simultaneously for distances 1 ≤ |i − j| ≤ 5 within the range −2.5 ≤
logF r

ij(t) ≤ −1. The butterfly velocity vb is determined as described above with the threshold
F∗ = 0.2, which lies well within the interval of the considered data points; see Fig. C.1.3a for
an exemplary plot. We note, however, that our data does not support an exponential growth of the
OTOcorrelator over parametrically large times, since the collision time τ is similar to the scrambil-
ing time tscr in our system. This is demonstrated by extracting the growth rate Λlc from linearizing
the OTO correlator around the light-cone velocity within the range −14 ≤ logF r

ij(t) ≤ −4.5,
Fig. C.1.3b, which yields larger rates. In particular, for the parameters shown in Fig. C.1.3, we ob-
tain λL = 2.9(1) and Λlc = 10.3(5), respectively.
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Figure C.2.1: Time evolution of the local particle number for all disorder instances for
different disorder strengths w/J. The data shown in Fig. 9.2.3 prior to disorder averaging for
disorder strengths a) w/J = 20, b) w/J = 5, c) w/J = 2 and d) w/J = 0.5.

C.2 Details onMBL

C.2.1 Characterizing MBL with superconducting qubits: additional data

In Fig. C.2.1, we show the time evoution of the local particle number prior to disorder averaging for
nph = 2 and selected values of disorder parameter w for J = 40MHz. The disorder averaged data
(black lines) is contained in Fig. 9.2.3 a) of the main text. The spread in values at short time is pri-
marily due to readout error, as state preparation error is small. For stronger disorder, Fig. C.2.1 a),
b), the spread between disorder realizations is significantly larger than for small disorder strengths,
Fig. C.2.1 c), d).
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In the main text, we consider the dynamics up to times of about 100ns, well before the system is
dominated by decoherence. The coupling to the environment renders the actual experiment an
open system with relaxation – i.e. photon loss – and dephasing. The characteristic relaxation time
is T1 ∼ 10μs, while the characteristic dephasing time is a few μs. The relaxation can be approxi-
mately modeled for a single qubit as

Ncorr(t) = N(t)/e−t/10μs. (C.4)

In the case of strong disorder, and thus small localization length, relaxation is the dominant process
by which a photon leaves the site on which it was initialized. This can be observed by the bending
of the local particle number in Fig. C.2.1 starting at times∼ 1μs.
In Fig. C.2.2 we show extended data for echo sequencemeasurements for several values of the dis-
order strength w with J held fixed at 40MHz. Compared with Fig. 9.2.7 of the main text, the initial
state for these measurements had an additional excitation at the indicated position (purple). In
these measurements ⟨σz⟩ = ⟨1− 2â†â⟩ does not depend on the position of the echo pulses. Note
that an increase in ⟨σz⟩ corresponds to a reduction in the local photon number, e.g. due to tunnel-
ing to the neighboring sites. In the case of strong disorder, ⟨σz⟩ stays constant for all the observed
times. We observe the expected signature of non-local interactions for all disorder strengths in the
measurement of the purity. For increasing values of the disorder strength w/J, the purity stays at a
higher value as expected from the τ-bit picture.

C.2.2 Machine learning dynamics in a disordered system: additional data

Transition: level statistics

Upon increasing thedisorder strength, the level statistics of theHamiltonian evolve fromGaussian-
orthogonal ensemble statistics to Poisson statistics as the system enters theMBL phase [385]. We
consider the level spacings

δ(n)φ = |E(n)
φ − E(n−1)

φ |, (C.5)

where E(n)
φ is the n-th eigenenergy of Hamiltonian (7.1) with disorder realization given by φ. The

ratio of adjacent gaps is then given as

r(n)φ = min
(
δ(n)φ , δ(n+1)

φ

)
/max

(
δ(n)φ , δ(n+1)

φ

)
. (C.6)

For a given system size L, we fix the particle density to one particle per site and for each disorder
strengthW/J obtain the average value of this ratio over 30 disorder realizations, i.e. different values
of φ. In Fig. C.2.3, the resulting average value of the ratio of adjacent energy gaps ⟨r⟩ is shown as a
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Figure C.2.2: Spin and DEER echo in the disordered Bose Hubbard model for different
disorder strengths w/J. a) Spin and DEER echo pulse sequences. The blue outline indicates
the position of the DEER echo pulse, and the position of an additional excitation is indicated
in purple. b) Purity of the single qubit density matrix after the spin echo (dashed red lines)
and DEER echo (solid lines) experiments. c) ⟨σz⟩ monitored over the echo experiments.
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Figure C.2.3: Level statistics. Average value of the ratio of adjacent energy gaps for dif-
ferent system sizes L = 6, 7, 8 at a density of one particle per site as a function of disorder
strength.
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Figure C.2.4: Effective temperatures. Effective inverse temperatures βeff for U/J = 2.9,
W/J = 4.5 as a function of φ for a system with L = 6 sites and a density of one particle per
site.

function of the disorder strength for system sizesL = 6, 7, 8. Comparing the different system sizes
shows strong finite size effects, inhibiting the determination of the exact position of the transition.

Thermalization: effective temperatures

In section 9.3.2, we determine the effective temperature corresponding to the energy density of
the initial state of the system. Due to the disorder potential, this effective temperature varies for
different values of φ, where φ determines the disorder realization, see Eq. (9.46). In Fig. C.2.4, the
effective temperature is shown as a function of φ for a system with L = 6 sites at unity filling for
interaction strength U/J = 2.9 and disorder strength W/J = 4.5.
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