
Chair of Computational Modeling and Simulation
Department of Civil, Geo and Environmental Engineering
Technical University of Munich

Efficient Vertical Object Detection in Large
High-Quality Point Clouds of Construction
Sites

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the Department of Civil, Geo and Environmental Engineering of the Technical
University of Munich.

Supervised by Prof. Dr.-Ing. André Borrmann
Alexander Braun M.Sc.
Dipl.-Math.(FH) Heiko Bauer
Florian Noichl M.Sc.
Chair of Computational Modeling and Simulation

Submitted by Miguel Arturo Vega Torres

Submitted on 15. October 2020





Abstract

Nowadays, even when adherence to project schedule and budget are the most critical
performance metrics among project owners, still 53% and 66% of typical construction
projects exhibit schedule delays and cost overruns, respectively. Intending to contribute to
a more efficient construction progress monitoring, this thesis proposes a method to detect
some of the most common temporary objects classes in a laser scanner point cloud of a
construction site. These objects can provide a precise estimate of the current construction
progress. For this purpose, this thesis focuses on the detection of cranes, scaffolds, and
formwork.
The method involves computer vision and machine learning techniques to detect vertical
instances of the selected object classes. The proposed workflow begins with the automatic
downsampling and rotation of the point cloud. Subsequently, the target objects are detected
using a combination of several techniques: image processing over vertical projections, finding
patterns in 3D detected contours and performing checks over specifically generated vertical
cross-sections. A deep learning algorithm was leveraged to classify these cross-sections for
the purpose of formwork detection.
The method was applied on three real point clouds of construction sites to assess its accuracy.
The results reveal that the method achieves average rates above 88% for precision and
recall. Moreover, the technique also achieved outstanding computational time performance.
This demonstrates the capability of the method to support the automatic segmentation
of point clouds of construction sites. Further development can be done to increase the
precision and automation of the technique.



Zusammenfassung

Heutzutage weisen 53% der typischen Bauprojekte Verzögerungen und sogar 66% Bud-
getüberschreitungen auf, obwohl die Einhaltung des Projektplans und des Budgets die
wichtigsten Leistungsmetriken für die Bauherren sind. Mit dem Ziel, zu einer effizienteren
überwachung des Baufortschritts beizutragen, wird in dieser Arbeit eine Methode vorgeschla-
gen, mit der einige der häufigsten temporären Objekttypen in einer Laserscanner-Punktwolke
einer Baustelle erkannt werden können. Die Erkennung dieser Objekte ermöglicht eine
genaue Abschätzung des Baufortschritts. Hierfür konzentriert sich diese Arbeit auf die
Erkennung von Kränen, Gerüsten und Schalungselementen.
Das Verfahren umfasst Methoden aus Computer Vision und Machine Learning, um vertikale
Instanzen der ausgewählten Objektklassen zu erkennen. Der vorgeschlagene Workflow
beginnt mit einem automatischen Downsampling und der Rotation der Punktwolke. Im
Anschluss werden die Zielobjekte mithilfe einer Kombination verschiedener Techniken erfasst.
Sie umfassen unter anderem die Bildverarbeitung über vertikale Projektionen, Auffinden
von Mustern in den in 3D erkannten Konturen sowie überprüfungen von gezielt hierfür
erzeugten vertikalen Querschnitten. Zur Klassifizierung der Querschnitte zum Zweck der
Schalungserkennung wurde ein Deep Learning Algorithmus genutzt.
Um die Genauigkeit der Methode bewerten zu können, wurde diese auf drei realen Punk-
twolken von Baustellen angewendet. Die Ergebnisse zeigen, dass die Methode Durch-
schnittsraten über 88% für Präzision und Rückruf erreicht. Darüber hinaus erzielt das
Verfahren eine hervorragende Rechenzeitleistung. Dies zeigt die Fähigkeit des Verfahrens,
die automatische Segmentierung von Punktwolken von Baustellen zu unterstützen. Die
Methode kann weiterentwickelt werden, um die Präzision und Automatisierung zu erhöhen.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, inefficiencies, such as cost and time overruns, are still a regular occurrence in
the construction industry. According to Mace and Jones (2016) 53% and 66% of typical
construction projects record schedule delays and cost overruns, respectively.

The Klynveld Peat Marwick Goerdeler International Cooperative (KPMG), in its Global
Construction Survey, (Armstrong & Gilge, 2017) revealed that adherence to the project
schedule is not only the most essential performance measure in construction industry
contracts but also the central issue in the execution of the projects.

After a careful analysis of the most recent research, reports and internal anecdotal observa-
tions from more than 100 construction projects over the past 10 years Lin and Golparvar-Fard
(2020), identified the key issues that contribute the most to the lack of productivity in the
construction industry. Among these issues, the main three are 1) discrepancy among owners,
contractors and subcontractors regarding how projects are progressing; 2) the absence of
systematic reporting of performance to project teams causes unresolved issues to pile up
quickly; and 3) missed linkage to physical progress - the individuals concerned in project
planning or revising short and long-term plans are commonly not present on construction
sites.

One of the main root-causes of these issues is the fact that in the construction industry,
the monitoring process is still mostly performed manually. This practice is expensive,
labour-intensive and not comprehensive. On large construction sites, the call for exhaustive
and accurate monitoring techniques rapidly increases since the area becomes too large to
be manually monitored.

Many approaches have emerged to address this problem (please see Chapter 3 for more
detailed information), perhaps one of the most promising approaches is the one implemented
by Braun et al., introduced in 2016 and most newly developed in 2020, in which, among other
steps, a 4D building information model is compared with a point cloud of a construction site,
allowing the tracking of progress. This is possible because in such a model, all construction
elements, besides having 3D geometry, are linked with time information, enabling a report
of the planned state of construction at any given time.

One of the preeminent challenges with this approach is the presence of temporary construc-
tion elements in the point cloud. These temporary elements are usually not present in the
building information model, and even worse, may occlude large portions of the permanent
structures in the point cloud. This makes a reliable comparison with the 3D geometry of

1



the model more challenging. These temporary elements are mainly: scaffolds, formwork,
cranes, reinforcement and machinery.

In an effort to overcome this challenge, the goal of this thesis is the detection of cranes,
scaffolds, and formwork in laser scanner point clouds of construction sites. Besides the fact
that these objects are prevalent on a construction site, detecting them is useful for the
following reasons:

Cranes

Knowing how many operational cranes there are along with their exact position and height,
not only gives a rough idea about the state of the construction progress but also enables
the verification of compliance with safety regulations, like the distance from the crane to
the building or to other cranes. Furthermore, this information could be useful to make
retroactive improvements regarding the type of crane and the location where a crane
should be deployed, which is a critical factor that directly influences the productivity on a
construction site (Simons, 2016; Stromberger, 2012).

Scaffold

Detecting scaffolding components is not only useful to track the progress of the construc-
tion site but also to perform precise safety regulations checks regarding the minimum
requirements that scaffold should fulfil, this could be done implementing corroborated
methods such as those introduced by Wang (2019). This last step is crucial because, as
Wang identified, falling from scaffolds is one of the leading causes of fatal accidents on
construction sites.

Formwork

Formwork is always needed when the concrete in-situ construction technique is used, which
in concrete construction is currently the most common construction method. Identifying
the location of the formwork gives crucial information about the exact current state of
construction progress. A placed formwork does not exclusively represent a building element
that is currently under construction, it also indirectly gives key information about other
completed tasks in the construction site. For example, it can give information about the
previous construction of a concrete slab or the completion of previous tasks to build a
foundation, such as excavating footings and compacting the soil on which the formwork is
placed. After the detection of formwork elements and thanks to the low ranging error of
laser scanner point clouds, the quality of the construction can also be evaluated. Beyond
the correct position of the formwork element itself, the precise location of all elements
present in formwork drawings, like openings and important elements, can automatically be
verified. Moreover, an automated dimensional quality assessment can also be performed, in
which the compliance with the structural plans can be ensured, before pouring concrete;
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this can be done using validated methods applied to laser scanner point clouds such as
those proposed by M.-K. Kim et al. (2020).

In addition to the previously mentioned reasons, the detection of the selected object classes
could also assist the management of these elements in the construction site.
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1.2 Research objectives

The main goal of this thesis is the development and testing of an algorithm capable of
performing automatic detection of vertical instances of the selected three object classes (see
Section 1.1) in high-quality point clouds of construction sites.

The research aims to answer the following question:

How is an automatic recognition of the selected three object classes in high-quality point
clouds of construction sites possible?

Additionally, the following research sub-questions will be answered as well:

Object segmentation

- Is it possible to implement a safe and efficient prefiltering of the tentative permanent
structures of a building to improve computational speed?

- To what extent can the verticality, horizontality, and parallelism of the objects on a
construction site be exploited for the recognition of the three target object classes?

Validation

- How good is the proposed method compared to existing methods?

- To what extent can the proposed method assist the monitoring of the construction
process?

Further research

- What are the bigger challenges in object recognition at different stages of the con-
struction?

- Is it possible to achieve perfect recognition? What is needed to accomplish it?

- What semantic improvements in the point cloud are necessary to obtain greater
automation in the scope of construction progress monitoring?

1.3 Research scope

The following points define the limits of this thesis.
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- The research focus is the detection of the selected three specific object classes. Other
classes, for example, walls, floors, stairs, ceiling, and columns, might be partially
automatically isolated in a preprocessing step. However, their accurate segmentation
lies outside the scope of this research.

- The method will only seek vertical instances of the selected object classes, slanted
or horizontally positioned exemplars will not be detected. In this specific case, this
seems to be a reasonable condition taking into account that on a construction site,
objects of the selected classes are almost always in a vertical position, at least when
they are being used.

1.4 Reading guide

This thesis is structured in the following chapters:

- Chapter 2 introduces the theoretical background needed to understand essential
concepts in this thesis. It contains the theory of Octree, KD-Tree, as well as the
typical geometry of the selected target objects. This information gives fundamental
support that will be useful for the successful detection of the objects in a point cloud.

- Chapter 3 gives an overview of current approaches of construction progress monitoring
and point cloud segmentation. The limitations of these methods are discussed.

- Chapter 4 explains the proposed approach in this research. It illustrates the workflow
of the implemented vertical object detection method.

- Chapter 5 reports results, analysis and validations of the proposed method. On top
of that, computational performance analyses are presented.

- In Chapter 6 all the research questions are answered, the limitations of the proposed
workflow are explained and discussed, and finally the main contributions of this thesis
and ideas for future work are presented.
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Chapter 2

Theoretical Basics

2.1 Space-partitioning data structures

This section introduces the theory behind the two data structures used in this thesis: Octree
and Kd-trees. An additional explanation of why these data structures are used is also
provided.

2.1.1 Octree

An octree structure is perhaps the simplest way to partition a point cloud. Like pixels in
an image, voxels are basic rasterized units of the three-dimensional space, which represent
a location on a regular cubic grid.

A point cloud can be converted into a voxel-grid, and the object geometries can be
approximated with a given spatial resolution, defined as the voxel size, sometimes also
called leaf size.

An octree-structure divides the space recursively into eight equal subspaces until the given
minimum voxel size is reached. Finally, each sub-space (or voxel) can be found along the
octree. A general representation of the voxel-structure is shown in Figure 2.1.

In this thesis, an octree structure is used in the downsampling process, in which the number
of points is reduced, and a minimum distance between two points or, equivalently, the
maximum number of points in a particular volume is ensured. While the Point Cloud
Library (PCL) (Rusu & Cousins, 2011) allows the straightforward implementation of a
Voxel Grid (VG) filter to downsample a point cloud, if the point cloud is too large and the
leaf size is too small, this method will throw an exception. This is because there might be
insufficient memory to record all voxels. Therefore, one first partition in an octree structure
is necessary. Once the point cloud is organized into an octree with a voxel size of 5 meters,
the voxel grid method with 5 millimetres leaf-size is applied in every voxel of the octree.
This method not only allows a uniform and fast downsampling of large point clouds but
also preserves the colour information of the original point cloud.

Since the VG method approximates the point cloud with the centroid in every voxel, it
might not accurately represent the underlying surface in cases where there is a lot of noise
in the data or the leaf size is large and the objects present curved surfaces. Nonetheless,
considering the low amount of noise in terrestrial laser scanner (TLS) point clouds and
the fact that this thesis focuses on detecting objects that are larger than 3 centimetres
(considering the diameter of a scaffold upright as the smallest dimension) a leaf-size of
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Figure 2.1: Representation of the octree-structure (Xu, 2019).

5 millimetres still preserves all the necessary features to properly represent the original
geometry of the target objects.

The comprehensive review of the different algorithms to filter point clouds elaborated by
X.-F. Han et al. (2017), showed that whereas the VG method is not the best to remove the
noise, it is the most computationally efficient while performing a downsample task.

The VG method also plays a critical role in this thesis since it will ensure a minimum
distance between every two points. This characteristic will be exploited to isolate vertical
objects of a certain minimum height in the point cloud (see Chapter 4). This would not be
possible if the downsampling method redistributes the points leaving non-uniform densities,
as in the case of the optimum dataset method introduced by Blaszczak-Bak (2016). This
method tries to preserve more points where there are complex surfaces and less where there
are uncomplicated areas. According to Suchocki and Błaszczak-Bąk (2019) the optimum
dataset method presents a suitable solution for the reduction of datasets from diagnostic
measurements of building objects using TLS, since it preserves more points in sections
of the point cloud where cracks, crevices or cavities are present. Similarly, Eickeler and
Borrmann (2018) introduce a method to reduce the size of large point clouds, preserving
geometrical features.

In cases where a lot of noise is present, like in point clouds captured with RGB-D cameras,
other methods like Growing Neural Gas (Orts-Escolano et al., 2015), Edge Aware Resample
or L0 minimization (X.-F. Han et al., 2017) yield better results than the VG method.
Moreover, methods based on Graph Laplacian Regularization (J. Zeng et al., 2020) or Deep
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Learning (Rakotosaona et al., 2019) represent novel alternatives to remove outliers and
reduce noise in unordered point clouds.

2.1.2 KD-Tree

KD-Tree, first introduced by Bentley (1975), is a data structure devised for arranging
points in a K-Dimensional space. The idea is that a binary tree is used to partition the
dataset with samples sorted to the leaves of the tree. This offers a fast kNN query time of
O(k log(n)), rather than O(n) as in the Grid case (Vermeulen et al., 2017).

The Kd-Tree always splits the data along hyperplanes (lines in the 2D case) that are
perpendicular to the axes. The partition is typically at the median value for the selected
feature. In a 2D case, the algorithm starts finding a middle point along the horizontal axis
and then divides the space into two halves perpendicular to this axis at this middle point.
For each subdivision, the central point along the vertical axis is found. Subsequently, the
subdivisions are divided into halves at that middle point with a line perpendicular to the
vertical axis. The steps above are repeated until the partition space can not be further
subdivided.

Figure 2.2 is an example of the subdivisions of a 2D space. The corresponding binary tree
is on the right side of the plot.

Figure 2.2: The Kd-Tree partitioning of the 2D feature space shown on the left corresponds
to the tree on the right (Cunningham & Delany, 2020).

To query the nearest neighbours of Q with a Kd-Tree, the algorithm will locate it in the
cyan region (hypercube in higher dimensions) represented by G in the binary tree. While
the nearest neighbour could also be in the grey area, the distance between G and Q already
gives an upper bound on the distance to this neighbour, as shown with the red circle around
Q. Except for the grey region, the rest of the tree can be excluded from consideration. This
capability to exclude large parts of the data is the reason why it yields the O(k log(n))

performance (Cunningham & Delany, 2020).
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In this thesis, the usage of an optimized header-only library for building Kd-Tree named
nanoflann (Blanco & Rai, 2014) is considered the most appropriate, taking into account
that Vermeulen et al. (2017) demonstrated that the application of this library for kNN
search, outperforms other state-of-the-art methods.
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2.2 Geometry of the target objects

This section summarizes necessary specifications about the usual geometry of the target
objects, which are of crucial importance to detect these objects in the point cloud. Additional
justification for the selection of certain types of target objects is also given.

2.2.1 Cranes

Some of the most common types of cranes in the construction industry are the crawler
crane, self-erecting crane, telescopic crane, and tower crane (Simons, 2016). A summary of
the advantages and disadvantages of every type is given in Norman-Spencer (2012). This
thesis focuses on tower cranes because they are the most commonly used in the construction
of tall buildings (Böttcher and Neuenhagen, 1997, p. 58).

The main components of a tower crane are the base, mast, slewing unit, operating cabin,
jib, and counter-jib. The mast rests on the base of the crane and gives the crane its
designed height. On top of the mast, the slewing unit with gears, motor, and rotation
system is connected. At the front of the slewing unit, the jib is attached and at the back
the counter-jib with weights. Figure 2.3 shows the main components of a tower crane.

Figure 2.3: Tower crane components.

To detect the cranes in a point cloud, the geometry of the mast will play a significant role.
Therefore it is explained in more detail in the following section.

2.2.1.1 Mast geometry

The mast is generally made of individual steel trussed sections that are connected together.
The number of sections will determine the overall height of the crane.
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While a section of a mast is always a square, its breadth can vary between 1.2 m to 2.5 m
depending on the crane’s type (see Figure 2.4).

Block foundation

Tower crane mast 
(ca. 1,2 m x 1,2 m to
2,5 m x 2,5 m, depending on the type)

Required space 

Figure 2.4: Top view of a tower crane mast with dimensions (Schach and Otto, 2017, p. 28).

The geometry of every section can differ depending on the type of crane and the manufacturer.
There are even cases when a single crane is composed of different section types; some of the
most common are shown in Figure 2.5.

IC BEC HC

Figure 2.5: Different types of tower crane mast.

The exact geometry of every section can vary drastically depending on the manufacturer, the
type of crane, and its size. There are also unique section designs, mostly for the base mast
section. For example, for cranes that can climb inside a building; they need a particular
configuration of space to be able to install a hydraulic mechanism inside them.

For the purpose of this thesis and to keep the method reliable and straightforward, only
cranes with a horizontal line in the mast will be detected, i.e. cranes with a mast section
type EC (according to Figure 2.5) will not be recognized. Moreover, to allow the detection
of self-erecting cranes that usually have a smaller mast width in comparison with tower
cranes, a minimum mast width of 1 m instead of 1.2 m will be used.

2.2.2 Scaffold

Opposite to sections of a tower cranes mast, scaffold elements consist of different smaller
pieces that are usually manually assembled on the construction site. These are mainly:
uprights (or standards), guard-rails, toe-boards, and work platforms. Additionally, there
are also special sections of the scaffold system with diagonal braces, stairs, or additional
accessories that enable the scaffold to adapt to different needs, for example, bridges or
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extensions to make the scaffold wider. This thesis will focus on detecting faced scaffold
elements. The main parts of a faced scaffold are shown in Figure 2.6.

Figure 2.6: Faced scaffold components in accordance with EN 12811-1.

Depending on the manufacturer, the exact geometry of a scaffold can vary, but some
minimum distances are established by standardized norms. Following DIN EN 12 811-1,
the minimum scaffold bay width is 0.6 m, and while there could be scaffold bay width
of more than 2.4 m, in this thesis only scaffold with a maximum width of 1.2 m will be
considered. This consideration is based on the fact that cost-effective scaffold systems are
mainly made in the width classes W06 and W09 (Schach and Otto, 2017, p. 240), which
have a width between the selected range (0.6 m to 1.20 m) in accordance with the table 1
of DIN EN 12 811-1. Similarly, the scaffold bay length could vary between 1.5 m to 3 m in
line with DIN 4420-4. Figure 2.7 present the main components of a scaffold, together with
its standardized minimum and maximum dimensions.
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Guard-rails

Uprights
or Standards

Work platform

Toe-board

length (from 1,5 to 3 m)

width 
(from 0,6 to 1,2 m)

Figure 2.7: Scaffold main components and dimension ranges.

2.2.3 Formwork

Among the many types of formwork, the most common are wall, column, and slab formwork.
Similar to scaffold elements, there could be specialized types of formwork, and they could also
have additional accessories, for example, a working platform. This thesis will concentrate
on wall formwork. Figure 2.8 shows a render of wall formwork elements as they would be
placed on a construction site.

Whereas the exact geometry of a formwork element depends on the manufacturer, the
basic idea of vertical and horizontal wailing beams in front of an interior wall panel always
remains constant. Since the task is to detect whether there is a formwork or not and not
its exact position or type, it is considered sufficient to work with the styles that a single
manufacturer provides. In this case, wall formwork elements of the manufacturer PERI will
be used. These are shown in Figure 2.9.
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Figure 2.8: PERI "DOMINO" Wall formwork render (PERI, 2018).

Figure 2.9: PERI Wall formwork dimensions (PERI, 2018).
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Chapter 3

Related Work

3.1 Automated construction monitoring

In the past few years, there has been a lot of research on the topic of construction progress
monitoring. Based on previous research, there are now two main approaches to capture the
as-built status of a construction site. While one is purely based on 2D images, the other
is based on point clouds. The basic idea is to compare photos as well as the point clouds
against a 4D building information model to monitor the progress on site. This is possible
because, as explained in the motivation (see Section 1.1), such a model contains not only
the 3D geometric information of the building elements but also the time information when
they should be built.

The main advantage of 2D images is that they can be captured with low-cost cameras and
can be used to quickly document the status of the construction site. Therefore, there have
been many investigations in this area, e.g., Kropp et al. (2018) compares registered 2D
videos with a 4D building information model to perform indoor progress estimation and
delay prediction in construction sites. The method can identify, for instance, whether the
drywall is already installed or whether it is already painted or not, as well as the presence
of particular building elements, such as radiators. This method is powerful but is highly
dependent on the accuracy of the image-to-model registration process. Since their images
do not contain depth information, a reliable comparison between the captured image and
the 4D building information model is very challenging.

If there are sufficient images captured from different points of view, a 3D point cloud
reconstruction is possible using Structure-from-Motion (SfM) methods (Wu, 2013). Once
a point cloud (as-built) is generated, it can be compared against the geometry of the 4D
building Information Model (as-planned) to track the progress of construction.

3.1.1 Image-based point clouds

Golparvar-Fard et al. (2011, 2015) uses a SfM process to create photogrammetric point
clouds from unstructured images. For the comparison of as-planned and as-built geometry,
the scene is discretised into a voxel grid. Subsequently, probabilistic and supervised machine
learning approaches were used to define the construction progress, also enabling to take
into account occlusions.

Braun et al. introduced a method in which instead of using a voxel grid, the deviations
between a point cloud and the building model are measured directly and verify with a
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scoring function (2016, 2019). More recently, Braun et al. (2020) presented a robust method
to overcome the challenge of temporary elements present in a point cloud of a construction
site. This challenge is illustrated in Figure 3.1, in which the presence of transient objects in
the point cloud does not allow a straightforward geometric comparison with the building
information model. To detect the presence of these temporary elements, they first compare
the 4D building information model with a photogrammetric point cloud. Then, a Precedence
Relationship Graph (PRG) allows them to make assumptions concerning regions that are
not visible due to occlusions, and hence not directly detectable with the first comparison.
Subsequently, to detect visible objects that were not recognised in the geometric comparison
with the point cloud, three strategies where developed: The first is a distance threshold,
to consider the possibility that formwork elements with a thickness of around 0.2 m are
present in the point cloud; the second is colour-based object detection, which basically
exploits the fact that formwork elements have different colour distribution in contrast with
concrete elements; the third and final strategy is based on deep learning techniques; here a
convolutional neural network was trained to detect formwork, scaffolding, columns, and
walls. To summarise, the introduced methods originate a much more robust object detection
process in comparison with a purely geometry-based approach, achieving higher detection
accuracy in a range between 80% to 90%.

Figure 3.1: Comparison of a photogrammetric point cloud with a building information
model. Temporary structures, such as formwork, that are not present in the model hinder
the possibility of making a simple 3D geometric as-built vs. as-planned comparison (Braun
et al., 2020).

For indoor mapping, Amer and Golparvar-Fard (2018) proposed a method based on SfM,
Multi-View Stereo (MVS), and Simultaneous localization and mapping (SLAM) algorithms
in which walkthrough videos are used to locally reconstructed workspaces in 3D without
using markers. This allows project teams to capture images of every workspace at a
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high frequency (e.g., daily) and continuously produce dense 3D models, enabling to track
continuous changes in indoor construction scenes.

Laser scanning represents another alternative to generate point clouds. Whereas image-
based methods provide multiple viewpoints and therefore fewer occlusions, laser scanners
offer more accurate and denser point clouds of the objects of interest, which allows a more
precise and reliable geometric comparison.

3.1.2 Laser scanner point clouds

Bosché and Haas (2008) presented one of the first approaches concerning construction
progress tracking with laser scanner point clouds. After manually referencing the 3D CAD
model in the laser scanner’s coordinate frame, the method transforms the model into a point
cloud. Then, it compares this generated point cloud with the laser scanner point cloud with
a range point matching metric, which is used to define a proximity threshold between the
as-planned and the as-built points. Later Bosché (2010, 2012) proposed another approach
for large scale as-planned vs as-built comparison, in which the generated point clouds are
co-registered with the model using a semi-automated coarse registration approach and
a complementary ICP-based refined registration algorithm. Results of this approach are
shown in Figure 3.2. Turkan et al. (2012, 2013) further developed this system for progress
estimation using a 4D building information model and the earned value analysis. Then
Turkan et al. (2014) use distance thresholds and a negative space volume technique to
detect temporary and secondary objects in a point cloud of a construction site after the
comparison with a 3D/4D model.

C. Kim et al. (2013) describe an additional process to review construction status and
determine if the identified component states are mutually consistent and subsequently to
modify inaccurate reports caused by incomplete 3D point cloud data set. Based on this
work, Son et al. (2017) proposed a method to automatically update the schedule through
the use of project-management software given a point cloud and a 4D building information
model.

Bosché et al. (2015) propose a Scan-vs-BIM object detection workflow to monitor the built
status of Mechanical Electrical and Plumbing (MEP) works, computing the "percentage
built as planned" metric. They integrated the Hough transform to detect circular cross-
sections and a comparison with a 4D BIM to be able to handle out-of-plane deviations and
pipe occlusions. While the method worked well, it was developed to detect only objects
with a known cylindrical geometric shape.

More recently, K. Han et al. (2018) introduce a colour-based detection method to determinate
the state of the construction of elements in a point cloud of a construction site. After a
geometrical comparison of a point cloud with a 4D building information model, the average
value of the colour of the points that belong to the BIM element is compared with colour
values from a large dataset of patches of different materials in a construction site. This
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Figure 3.2: Performance of the approach proposed by Bosché (2010) for automated recog-
nition of 3D CAD model objects in large construction site laser scans: (a) Laser scanner
point cloud; (b) the 3D CAD model after registration with laser scanner point cloud; (c)
object recognition results displayed in the point cloud. Each point cloud recognised as
corresponding to a CAD model object is displayed with a unique colour. Grey points are
those that have not been matched to any of the CAD objects; (d) object recognition results
displayed in the CAD model, where objects coloured in green are those recognised in the
point cloud.

allows them to determine the material of every building element. The underlying dataset is
constituted of various materials such as asphalt, cement, formwork, etc.

While most of the previously presented methods heavily rely on the assumption of the
existence of a 4D building information model with accurate geometric and time information
to be able to detect building elements, the 3D object detection problem should still be
solvable without a building information model. Without this assumption, this problem
becomes more challenging.

3.2 Point cloud segmentation

This Section presents an overview of studies that attempt to segment the point cloud
without having a building information model.
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Whereas there has not been much research on the detection of exactly the selected object
classes using point clouds, there has been plenty of research on the reconstruction of a
building information model from point clouds (Fichtner, 2016; Maalek et al., 2019; Macher
et al., 2017). For example, in a very recent study, Nikoohemat et al. (2020) propose a
workflow for indoor 3D reconstruction from point clouds taken from a Mobile Laser Scanner
(MLS), in which the permanent structures (such as walls, floors and ceilings, and stairs)
and clutter are differentiated based on a surface region growing algorithm, a posterior
adjacency graph, and heuristic rules. An overview of the method is presented in Figure 3.3.
While this approach allows the identification of slanted walls, ceilings, and ramps, it comes
with the computational cost of needing to perform a surface growing algorithm on the
entire point cloud. Their method also utilise the trajectory of the MLS to find the different
building levels, this makes part of their approach not suitable for point clouds of multi-storey
buildings captured with a TLS, due to the evident absence of this trajectory.

Figure 3.3: The process of identifying a permanent structures proposed by Nikoohemat
et al. (2020). (a) Point clouds, (b) points segmented using the surface growing algorithm,
(c) intersection between adjacent segments, (d) and (e) the adjacency graph where edges
are colored by three classes (wall, floor and ceiling), (f) detected walls (blue) and floor
(yellow).

Deep learning has proved its superiority in many real-life applications. Unfortunately and
since the point clouds don’t have a sequential order, like images or sound, Deep Neural
Network (DNN) cannot be trained on point clouds right away. As a picture is organised
in pixels, a point cloud has to be divided into chunks or voxels of fixed size to be used to
train a DNN. Depending on their size, voxels can become very memory expensive because
to capture in-depth features a high resolution is needed. Lamentably, in 3D space, the
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memory consumption rises by the power of three. Nonetheless, there has been a lot of
research in this area.

For example, Breu (2019) investigated the application of a DNN to detect objects in a
point cloud of a construction site. More specifically Breu used a custom implementation of
PointNet (Qi et al., 2016) in PyTorch1 to extract features from synthetic random situated
mesh objects, such as containers, houses, excavators, etc. The proposed workflow cut
the generated point cloud into equal slices and samples points from the surface of the
mesh objects and then preprocesses them to make them trainable by PointNet. While
the method achieved good results in artificially generated data, in real data, it showed a
low performance. As the author explains, this approach has two main drawbacks: One is
the lack of appropriate real training data, and the second is the limitation of PointNet to
process a maximum of 2500 points per input. The latter suggests that this approach is
suitable for detecting only small objects in the point cloud, considering that scenes, where
large objects are located, could perfectly have millions of points.

Another related study was done by Sun (2020). She leverages a trade-off method that
combines the 3D distance information with the 2D detection results from YOLOv3 to
generate frustum proposals. Then uses Frustum PointNets to implement 3D instance
segmentation and 3D bounding box estimation on the point clouds. The 2D object
detection is based on a panorama image rather than a normal field of view (NFoV) images.
Therefore it is necessary to map the panorama to NFoV images and projecting the detected
results back to the panorama. This approach allows a very fast computational performance
for 3D object detection. However, it has the following three main drawbacks: First, the
results of the 3D detection heavily depend on the 2D detection performance, which depends
on colour information and image-background conditions. Second, the 3D detector can
merely detect one object in each frustum. Since the implemented 3D segmentation networks
only segment one object from each frustum, the occluded objects are regarded as the
background if one was already detected. Third, the target object has to be present in at
least two frustums with a large difference in its view angles. Otherwise, the generated 3D
box will be biased, since the intersecting space still cannot be obtained and the background
elements can not be eliminated.

In another recent research, S. Zeng et al. (2020) use deep point features extracted with
a DNN to perform building element retrieval in point clouds of construction sites and
historical buildings. The method is based on the idea of metric learning, it can classify
building elements with complex geometrical shape characteristics without requiring pre-
built CAD/BIM models, but just a user exemplar selection from the laser-scanned point
cloud itself. According to the authors, this method can extend to complex building
environments and generalise better to unknown objects, including temporary structures
and equipment. The DNN architecture used to compute the features is shown in Figure 3.4.
Their method demonstrates to achieve high precision. However, it has the following three
drawbacks: First, it is not rotational-invariant, i.e. it retrieves only elements that are
a rigid translation of the selected exemplar; second, extracting the deep features is very

1More specifically, he used the implementation from fxia22: https://github.com/fxia22/pointnet.pytorch
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computationally expensive; and third, it is a semi-automated approach that additionally
requires some domain knowledge by the user to select the correct building element exemplar
with appropriate boundaries.

Figure 3.4: Deep neural network architecture used to compute point-level features in the
method proposed by S. Zeng et al. (2020).

Xu et al. (2018) propose a method to detect scaffolds in photogrammetric point clouds
of construction sites. Firstly, and after a preprocessing, they automatically isolate the
building facades together with scaffolds using an orthogonal projection and a local maximum
threshold approach. Then they use a histogram in the vertical axis, to find the different
horizontal structures of the scaffolds. Afterwards, a plane fitting algorithm based on
RANSAC is applied, with the constrain of just fitting horizontal and vertical planes.
Subsequently, the parallelism between the facade and the scaffolds is exploited to separate
these two objects. In the next step, they used a proposed feature descriptor for point clouds,
called Linear Straight Signature Histogram of Orientations (LSSHOT), which is based on
Principal Component Analysis (PCA). The robustness of their descriptor, allows them to
identify the different building parts of scaffolds from low-quality point clouds.

Additionally, a random forest algorithm was trained to classify the output of their feature
descriptor. Finally, Xu et al. also proposed a method to reconstruct the small patches
of the classified points, and so endow them with regular parametric representations, or
in other words, building a CAD-model of the recognised parts of the scaffold out of the
segmented point cloud. This methodology is illustrated in Figure 3.5. This seems to be a
compelling method, although it assumes that the scaffold elements have a width of 0.8 m
and are always next to a wall, which is not necessarily always the case.
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high intensity, showing up as bright piecewise lines or dots in the image
(see Fig. 20a), are expected to be selected as points of vertical struc-
tures. An algorithm using the local maximum threshold is proposed to
extract these bright pixels. A sliding window of a given size is applied to
the projection image, by which the standard deviation σl and the mean
value ul of all the pixels Pl covered by the sliding window are obtained.
In light of the Chebyshev's inequality, using a local maximum threshold
τp can be determined by a given global estimation of noise percentage rp
from the whole image, with the help of σl and ul. Thus, the set of pixels
Pv representing vertical structure is selected following Eq. (6).
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where the local maximum threshold τp for every sliding window is
equal to ul+β ⋅ σl. While rp is the noise percentage of the whole image
used to approximate the noise percentage in a local window. In this
work, the rp is set to 0.1 empirically, which largely depends on the
quality of the point cloud.

3.3.2. Horizontal projection
For extracting horizontal structures, we adopt the idea from

Ref. [5], in which horizontal structures are assumed appearing as peaks
in the distribution of points mapped along the vertical axis, as hor-
izontal structures generate a high number of samples owning similar
heights. A histogram can be obtained via a projection to the vertical
axis, the peak of which corresponds to horizontal structure and then
located by the use of the mean shift algorithm [5,35]. Two thresholds τl
and τh are given to constrain the finding of peaks, limiting the lower
bound of the height of Z-axis for slicing and the minimal number of
points projected into a valid bin, respectively. Here, τl and τh are set to

1 m and 10, respectively, which are empirical values for our testing
dataset. Since the accumulated histogram is discrete, the bin size (i.e.,
the thickness of the sliced point cloud) is consistent with the size of
voxel grid for a maximal precision. In our work, the bin size is set to
three times larger than the voxel size used in the down-sampling. By the
projection and the selection of local peaks, points belonging to hor-
izontal structures are sliced from the entire point cloud.

3.3.3. Planar surfaces extraction
In this stage, an assumption is made that major facades of the

building are mainly constructed with a planar shape, for example, the
vertical walls, inner and outer rows of the scaffolds. A plane-fitting
algorithm based on RANSAC is applied [11]. Considering the major
surfaces of facades consistently having a vertical or horizontal direc-
tion, a constraint in accordance with the direction of normal vectors is
added to the plane fitting process.

3.3.4. Surfaces grouping and slicing
Vertical planar surfaces being part of the same facade including the

inner and outer rows of scaffolds as well as the building surface (see
Fig. 8) are firstly grouped and identified. Horizontal planar surfaces are
then segmented confirming the points belong to the decks of scaffolds.

For grouping vertical planar surfaces, we take advantage of the
distinctive structure of facades in unfinished buildings showing up as a
“sandwich-like” arrangement, with rows of scaffolds located in parallel
with the building surface and having a fixed distance between each
other. In Fig. 8, the relationship between the building surface and the
inner and outer rows of the scaffolds is sketched. By utilizing this
specific structure, planar surfaces pertaining to scaffolds and building
walls surface is confirmed.

To begin this process, all the vertical planar surfaces are firstly set in
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Figure 3.5: Proposed methodology for the detection and reconstruction of scaffolds by Xu
et al. (2018).

More recently, Wang (2019) proposed a workflow to detect scaffolds. However, instead of
using photogrammetric point clouds, they used laser scanner point clouds. The workflow
was devised to enable automatic safety regulation checks over scaffold elements. Their
method extracts horizontal and vertical slices of previously manually cut small sections
of the point clouds where scaffold elements are present. Subsequently, minimising the
root-square-error, circles are fitted in every horizontal section. Once a circle is detected, its
centre is vertically projected in a grey-scale image. Later a threshold on this image reveals
the position of uprights, and thus also of the scaffold element. Then with a similar strategy
and using plane and line fitting techniques all the other parts of the scaffold (work platforms,
toe-boards, and guard-rails) are successfully detected, and their position is validated against
the respective safety regulations. Figure 3.6 shows some results after the application of
these techniques. This method seems to be very robust, but as the authors mentioned there
is still room for improvement; its main three drawbacks are: First, whereas the process
does not assume the presence of a wall next to the scaffold for its detection, as in Xu et al.
(2018), it supposes that its uprights are perfectly vertical, which is not in every case true.
Second, the method was developed to detect scaffolds in previously small manually clipped
sections of the point cloud, which makes the task much more manageable as working with
the entire point cloud of a construction site. The third and final drawback is that slicing a
point cloud every 0.05 m, generating a vertical projection of every slide and on the top of
that performing a circle fitting in every projection, is very computationally expensive and
maybe even not feasible in large point clouds.
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Figure 3.6: Results after applying the technique proposed by Wang (2019): (a) the detected
area of the scaffold shown as a red polygonal area, (b) detected work platform from the
point cloud data shown as red points, (c) detected toe-boards and their heights, and (d)
detected guard-rails and their locations.

For a more comprehensive literature review about applications of 3D point cloud data in
the construction industry featured in publications between 2004 and 2018, the reader is
referred to Wang and Kim (2019).

3.3 Conclusions related work

There has been a lot of improvements in automatic construction progress monitoring in
the past 10 years. While some methods are based on Images, from which point clouds
could be generated, others are based on laser scanner point clouds. Moreover, most of
the techniques presented in that section rely on the assumption of the existence of the 4D
building information model. With such a model and a point cloud, an as-built vs as-planned
comparison is possible, allowing the automatic monitoring of the progress. However, the
automatic tracking is hindered due to the presence of temporary building elements which
should still be detectable without having such a model.

There has not been much previous research on the detection of exactly the selected objects
using point clouds. Most of the related work focuses on the reconstruction of a building
information model from point clouds (Fichtner, 2016; Maalek et al., 2019; Macher et al.,
2017; Nikoohemat et al., 2020).

While deep learning approaches for point cloud segmentation seem to be very promising,
aside from requiring many labelled data, they still have some additional critical limitations.
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One limitation is the maximum number of points that can be processed at the same time,
making the method not suitable to detect large objects. Another main drawback is, e.g.
the non-rotational invariant constraint, which restricts the practice to only be able to find
items with known XYZ-orientation.

More promising methods like the ones proposed by Xu et al. (2018) or Wang (2019), take
advantage of the verticality of the objects to detect scaffold elements, as well as in-depth
knowledge of the underlying geometry of the objects, like dimensions of the uprights or
possible bay width distances. While still having some drawbacks, these methods showed
promising results for the specific case of scaffold detection in point clouds of construction
sites. Further work can be done to detect scaffolds more efficiently, as well as to recognise
additional objects, such as cranes and formwork elements.
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Chapter 4

Methodology

4.1 Overview

The workflow of the proposed crane, scaffold, and formwork detection is illustrated in
Figure 4.1. The first step is a preprocessing of the raw laser scanner point cloud, in which a
downsampling step based on an Octree-voxel grid method is applied, followed by a rotation
of the point cloud, that will align it to the building axes.

Laser scanner 
point cloud

Segmented 
point cloud 

1. Preprocess

2. Crane detection

3. Scaffold detection

ROIs Separation

3D Contour detection

4. Formwork detection

Cross-section generation

2D Image classification

Downsampling

Point cloud rotation

Figure 4.1: Workflow overview.

The second step is the detec-
tion of cranes, in which different
techniques are used. To recog-
nize cranes, first, the Regions of
Interest (ROIs) that may con-
tain cranes are separated from
the rest of the point cloud us-
ing image processing techniques
over a vertical projection of the
point cloud. A second step in-
volves 3D vertical contour de-
tection and merging. Later, an
algorithm will search a pattern
characteristic of a tower crane
in these vertical lines, which
will reveal the possible positions
of the cranes. Subsequently,
the final location of cranes is
determined by applying checks
over vertical cross-sections pro-
jections.

The third step is the detection
of scaffolds. Here the procedure is very similar to the detection of cranes. However, the
pattern which will be searched in vertical lines is specific to the standardized dimensions of
scaffold elements.

As the last step, formwork elements are detected. Here once again, the ROIs that might
contain formwork elements are prefiltered, vertical cross-sections projections are generated,
and a Machine Learning (ML) algorithm is used to determine the presence of formwork
elements. In the following sections, these four steps are explained in more detail.
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4.2 Preprocessing

4.2.1 Downsampling

Filtering or downsampling the point cloud is vital for two reasons: First, it will allow the
method to take advantage of the fact that the point cloud has a uniform density, and
second, it is the first step that will reduce the computational cost as the number of points
is reduced almost by half.

As already mentioned in Section 2.1.1, while working with massive point clouds and small
leaf sizes, the VG method of PCL can not be implemented right away. This is because there
is a maximum limit to the number of voxels the computer can handle before running out of
memory. For example, with a voxel-grid leaf size (V Gls) of 5 mm the method will throw an
exception if the point cloud is broader than 6.45 m in every dimension (i.e. if ∆X, ∆Y

and ∆Z are all bigger than 6.45 m ). On the other hand, if V Gls is, e.g. set 8 times larger
than 5 mm, to 0.04 m (like done in Xu et al. (2018)) the maximum point cloud size to be
able to implement the method is 51.6 m in every dimension or, equivalently, 137.388 m3.

Since in this thesis, it is essential to have a very dense point cloud, another filtering method
has to be implemented that allows working with large point clouds and a V Gls of 5 mm.
To solve this problem, and as already introduced in Chapter 2, the point cloud is first
organized into an octree with a resolution of 5 m. Once the octree is created, the voxel
grid method with a leaf size of 5 mm can now be applied in every leaf voxel of the octree.
This is equivalent to dividing the point cloud in occupied 3D squared boxes of 5 m size and
then treating every peace of the point cloud as a separated point cloud. While it is also
possible to use an octree resolution of 5 mm directly, experiments showed that with this
resolution, the process does not only require more time but also does not filter the point
cloud correctly, leaving unwanted points between the boundaries of the octree leaves.

The selected method not only allows a uniform and fast downsampling of large point clouds
but also preserves the color of the original point cloud. Additionally, since V Gls is small
enough, all the necessary geometric features are also conserved. Figure 4.2 shows a large
and a small section of the point cloud together with their downsampled versions.

4.2.2 Point cloud rotation

This step aims to rotate the point cloud so that it is aligned with the principal axes of
the building. While the data does not necessarily need to follow the Manhattan-World
assumption 1, the fact that most of the buildings or at least large sections of them are
design based on a rectangular grid will be exploited here. To be able to take advantage
of this fact, it is necessary to rotate the point cloud so that the main walls are parallel to

1This assumption states that indoor scenes were built on a cartesian grid which led to regularities in the
image edge gradient statistics.
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(a) (b)

(c) (d)

Figure 4.2: Point cloud down sampling with a leaf size (V Gls) of 5 mm: (a) original point
cloud section with a formwork element; (b) downsampled point cloud with a leaf size of 5
mm; (c) smaller section of the point cloud; (d) downsampled version of (c).

either the x- and the y-axis. Figure 4.4 shows a top viewpoint cloud which is not aligned
with the structural building axes.

The automated method to find building axes proposed here consist of three steps: 1) Walls
ROIs Separation, 2) 2D Line detection and 3) determination of the final angle of rotation.

It is imperative to mention that before applying this method, the point cloud has to be
divided into different sections, each section with the points for each building floor. This is
a requirement for the process to be able to filter objects by its minimum height. Figure 4.4
illustrates the first level of the building, this is the only step that is still done manually, the
rest is a fully automated process.

4.2.2.1 Walls ROIs separation

In a construction site, many vertical objects are present, however, usually, only large
load-bearing walls are correctly aligned to the structural axes of the building. Hence, and
in an effort to accomplish a reliable method, firstly, these large walls are separated from
the rest of the point cloud.

This separation is mainly done by applying thresholds on a vertical projection of the
point cloud. When trying to detect vertical objects in a point cloud, generating vertical
projections seems to be a very suitable approach. This is because it will not only reduce
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Figure 4.3: Top view of a not aligned point cloud with the structural building axes. Test
dataset: Nr. 2.

the amount of data to be processed but also because 2.5D images (i.e. 2D images with
height information) can be processed much faster than 3D points.

As the point cloud was already downsampled, it is known that the minimum distance
between two points is 5 mm. Considering the presence of occlusions in the point cloud, and
the possible presence of formwork covering the walls, it is assumed that vertical walls may
have at least 1.2 m (hmin) of height, which is around half of the height of an average wall.
Since the points are spaced every 5 mm, a projection of the points between two consecutive
building floors in the XY plane in a grayscale accumulation image (Iacc), which stores the
number of points projected on each pixel, allows the differentiation of the objects by its
height.

To make this point clear, consider a vertical line of 1 m length. If the line is formed by
points every 5 mm, it implies that the line is actually a column of 200 points. If these points
are projected in the XY plane in a grey-scale accumulation image, they will be represented
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Figure 4.4: Clipped first floor of the point cloud. Test dataset: Nr. 2.

as a pixel with value 200. In this way, it is possible to separate objects of different heights
using a vertical projection, as long as they have a vertical non-occluded surface.

Formally, the threshold operation that transforms the image Iacc into a binary image B,
where only vertical elements higher than hmin are present, can be defined as follows.

B = Th (Iacc) = {(r, c) ∈ Iacc | Iacc(r, c) > hmin}

Where r and c are the corresponding row and column indices of the pixels in the image.

Subsequently, the objects can also be differentiated by their size, using the blobs or connected
components produced in the vertical projection. Before this, 10 iterations of a dilation
morphological operation with a structural element (S) with rectangular shape of size 10 x
10 (SR10), will join small blobs that are close to each other and which may conform bigger
objects (as shown in Figure 4.5b); later the blobs can be separated by its number of white
pixels. Large objects will then be represented by blobs with large areas or equivalently,
with a large number of pixels. The relationship between the number of pixels and the real
area depends on the grid side length used while creating the vertical projection. In this
thesis the grid side length has a value of 5 mm, this means that one pixel in the image
represents 5 mm or, equivalently, a horizontal line of 1 m length will be represented by 200
pixels. Consequently, 1 m2 will be represented by a region containing 40.000 pixels.

Let D be the image resulting from applying the dilation operation denoted by ⊕ with a
structural element S to the binary image B (D = B ⊕ S) and let C1, C2, . . . , Cn be the
connected components on the binary image D (Ci ∩ Cj = ∅ | i 6= j). Then, the ROIs of
the walls (Wregions) are the connected components Ci of the image D which have an area
larger than Amin:
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Wregions = {Ci ∈ D | A (Ci) > Amin}

Where A is the count of the pixels in the corresponding blob A (Ci) =
∑

(r,c)∈Ci
1 divided

by 40.000, which is the number of pixels in one square meter.

Since all the walls in a room will be connected, after the dilation step, they will be
represented by a single blob in the vertical projection. Assuming that the minimum length
of all walls in a room is 5 m and its width is 0.3 m, it means that the walls in a room will
be represented by blobs with a minimum area of Amin =1.5 m2. Figure 4.5c shows the final
wall ROIs, which are the result of filtering by size the blobs in a dilated vertical projection
after passing a height threshold.

(a) (b) (c)

Figure 4.5: Wall ROIs in a vertical projection: (a) original vertical projection (for better
visibility, the inverted binary version is shown here); (b) binary image after threshold and
dilation; (c) final Wall ROIs (Wregions) after separation by blob size. Test dataset: Nr. 2.

4.2.2.2 2D Line detection

Once the ROIs of large walls are isolated in Wregions, this image is used as a mask to filter
the original vertical projection. Then, using the probabilistic Hough transform algorithm,
2D lines are fitted in this filtered vertical projection. For better line detection accuracy, the
angular resolution is set to π/(180 · 100), allowing the algorithm to search for lines with an
angle precision of up to two decimal places.

The minimum line length and the maximum space allowed between lines were set at 0.5
m and 1 m, respectively. 0.5 m is considered an appropriate value for the minimum line
length, since the smallest lines can be part of smaller objects that are not aligned with the
structural building’s axes and additionally, only in sporadic cases, a wall is shorter than
0.5 m. On the other hand, the maximum space allowed between lines will merge smaller
segments that lie on the same wall. Figure 4.6 presents the regions of the original vertical
projection where only walls and large objects are present, together with its 2D detected
lines.
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(a) (b)

Figure 4.6: 2D line detection in filtered vertical projection: (a) inverted filtered vertical
projection after applying Wregions as a mask; (b) 2D detected lines in (a). Test dataset: Nr.
2.

4.2.2.3 Angle of rotation

Finally, the angle of rotation is determined using the k-means algorithm over the slopes of
the previously detected 2D lines. This method assumes that there are not many walls that
are not orthogonal to the building axes. Under this assumption, the majority of the detected
2D lines will have either of the two angles that correspond to the searched angle of rotation.
Therefore, it is possible to apply k-means to find out the values of the 2 centres of the two
groups of line-angles in a one-dimensional histogram. Figure 4.7a shows a one-dimensional
histogram of the azimuth angles of the detected 2D lines and Figure 4.7b shows the resulted
two groups and centres after applying k-means a maximum of 10 iterations or until an error
of less than 0.1 is achieved. In this case, the two found angles are -31.3◦ and 61.3◦, taking
either of them as the angle of rotation concerning the Z-axis will align the point cloud with
the building axes.
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Figure 4.7: Final angle of rotation with k-means: (a) one-dimensional histogram of the
azimuth angles of the detected 2D lines; (b) the resulted two groups and centers after
applying k-means.
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Since the two building axes should be orthogonal, the difference between the two centres
has to be around 90◦, if it is not the case the algorithm will throw an exception. This is
just to confirm that the correct construction axes were found.

Once the point cloud is downsampled and aligned with the structural building axes, the
next step is the detection of the target objects.

4.3 Crane detection

This step aims to detect the cranes present in the scan data. It consists of three sub-steps,
which are 1) Cranes ROIs Separation, 2) 3D contour detection and 3) individual crane
recognition. Details of each step are described as follows.

4.3.1 Cranes ROIs separation

This step aims to efficiently filter out points that have more likelihood to belong to a crane
from the rest of the point cloud. Similarly, as done to filter the regions with walls to rotate
the point cloud, this section will take advantage of the verticality of the tower cranes.

Analogously as performed in Section 4.2.2.1, this step applies a threshold on a dilated
vertical projection to filter objects taller than hmin = 0.7 m and with an area in a vertical
projection between Amin = 0.0075 m2 to Amax = 0.3 m2. Amin was selected assuming
that a steal angle of the tower mast has a minimum side length of 0.10 m (or a bit less
because of occlusions) and Amax thinking about the possibility that a side of the crane (of
maximum 3 m long) would be in a single blob. This might be caused by the presence of
other objects like lamps, posters or banners that are hanging on a side of the tower crane
mast. Here the dilation operation is performed only 3 times with a rectangular structural
element of size 10 x 10 (SR10). Figure 4.8 illustrates the filtering process of the crane ROIs
with a vertical projection.

(a) (b) (c)

Figure 4.8: Crane ROIs in a vertical projection: (a) original vertical projection with arrows
indicating the location of the cranes (for better visibility the inverted binary version is
shown here); (b) binary image after threshold and dilation; (c) final crane ROIs after
separation by blob size. Test dataset: Nr. 2.
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At this point, it is essential to clarify that the goal of this step is not to filter all the points
that belong to cranes, but at least those that belong to the characteristic four vertical steel
angles that constitute the mast of a tower crane. Later, these four vertical angles will be
searched among all the other thin and tall objects that will pass this filter. In Figure 4.9b,
all the elements that pass the filter are shown.

(a) (b)

Figure 4.9: Crane ROIs in point cloud: (a) original point cloud with a blue arrow indicating
the location of the crane; (b) Crane ROIs, notice the presence of other thin and tall objects
additional to the cranes. Test dataset: Nr. 1.

4.3.2 3D contour detection

The 3D line detection is performed using the code provided by Lu et al. (2019). They
implemented a fast 3D line detection algorithm that demonstrated to overcome other
state-of-the-art methods. As they carefully explain in their paper, the process is divided
into three main steps: First, the point cloud is segmented in regions based on the previous
calculation of the Principal Component Analysis (PCA) information of every point; second,
3D planes are fitted in every region and lines are detected over a 2D projection of this
planes which are then projected back to the 3D space; and finally, in a post-processing
step, the detected 3D lines are passed through an outlier removal and a horizontal merging
process. For a more in detail explanation of the complete procedure, the reader is referred
to Lu et al. (2019).

The implementation of the algorithm of Lu et al. (2019) plays a crucial role in the proposed
object recognition method, not only because it allows translating from unorganized points to
3D lines that delineate the objects, but also because it is fast. Therefore its implementation
in large point clouds is very convenient. Figure 4.10 illustrates the 3D line detection results
in a point cloud with the lower section of a tower crane mast.

Once the lines are detected, they are divided according to their inclination into three
groups: vertical, horizontal and diagonal lines. A line is considered vertical if its angle
concerning the Z-axis is smaller than 5◦. Similarly, a line is deemed to be horizontal if
its angle concerning the Z-axis is something between 85◦ to 95◦. The rest of the lines are
classified as diagonal. Figure 4.11a presents the detected 3D contours in the crane ROIs
point cloud with different colours depending on their inclination.

35



(a) (b)

Figure 4.10: Detected 3D contours in a point cloud with a crane: (a) original clipped point
cloud of a crane with only points of the first building level; (b) 3D detected contours in (a).
Test dataset: Nr. 1.

Subsequently, the vertical lines are merged. This step is essential because sometimes, due
to point cloud occlusions, the algorithm of Lu et al. will accurately detect small vertical
segments that actually are part of a single large vertical object (see for example the crane
detected lines in Figure 4.10b or in Figure 4.11a). Since the goal here is to detect relatively
large vertical objects, it seems sensible to merge the small pieces of vertical lines into a
single line if they are close enough. To this end, the vertical lines are treated as 2D points
on a horizontal plane, then these points are grouped taking into account that the maximum
distance between two points in a group must not exceed 20 cm. The lines in a group are
merged, taking the total average of the X and Y coordinates and the minimum and the
maximum Z values of the lines in the group. Once the vertical lines are merged, they
are also filtered by their length, leaving behind the lines that are less than 1.5 m long.
Figure 4.11b shows the resulted merged vertical lines after filtering by their size.

(a) (b)

Figure 4.11: Detected 3D contours in the crane ROIs point cloud: (a) in cyan, red
and magenta are the vertical, horizontal and diagonal originally detected 3D contours,
respectively; (b) merged 3D vertical contours in crane ROIs point cloud. Test dataset: Nr.
1.
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4.3.3 Individual crane recognition

Now that the vertical lines are detected, the pattern that characterized a crane will be
searched in these vertical lines. As explained in Section 2.2.1, the mast of tower cranes
always has a characteristic square section, with a lateral size between 1 m (1.2 m of tower
cranes and 1 m for self-erecting cranes) and 2.5 m. Therefore, the main goal of this step
is to find four vertical lines, which follow this geometric distribution, typical of a Cuboid.
To find the groups of vertical lines with this geometry, the algorithm proposed here (see
Algorithms 1, 2 and 3) will first search for pairs of vertical lines with a distance in between
in the range from 0.8 m to 2.7 m (± 0.2 m of the original range). Once a pair of lines
with this characteristic is found, the algorithm checks if there exists some overlap in their
height, i.e. if both lines are in similar height ranges. The exact overlap check is detailed in
Algorithm 2.

As illustrated in Figure 4.12, there are four possible regions where the other two steel
angles could be present. The location of these regions is known since cranes mast have a
square horizontal cross-section (as shown in Figure 2.4). The other two steel angles must
be parallel on either of the two sides of the horizontal line that connects the two originally
found possible steel angles. As shown in Algorithm 1, the method will use the distance
between the two original lines to determine the centres of these four regions. A tolerance
of 0.2 m around these four centres will cover all the possible areas where the other two
steel angles could be present. Notice in Algorithm 3 that also the cases when only three
lines were found are saved (in P1). However, experiments on the tested dataset showed that
checking only the groups of four lines is sufficient.

0.8 m - 2.7 m

(b)

r = 0.2 m

(a) (c)

Figure 4.12: Determination of the location of the possible regions with cranes: (a) original
3D vertical lines of a tower crane mast; (b) top view of the vertical lines, a pair of vertical
lines with a distance in between in the range from 0.8 m to 2.7 m is indicated with a dashed
line; (c) the other two steel angles could be in the four blue regions, which are 0.2 m radius
circles located at a distance d (distance between the first two found lines) on each side in
the perpendicular direction to the horizontal line connecting the original pair of lines found.

After detecting the groups of four lines that reveal the possible location of the cranes,
the next step is to extract the points that belong to the likely crane mast faces. For
this purpose, the algorithm will check the presence of points located between every two
continuous vertical lines of every detected group. This will filter out groups of lines that
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Algorithm 1: Find pattern in vertical lines
Input :A vector with the merged vertical lines M = {L0, L1, ..., Ln}
Output :Vector of vectors of line indices P ← ∅ revealing possible crane locations

1 for ∀(Li, Lj) ∈M : i < j do
2 pi ← L0

i , pj ← L0
j

3 d← ‖pi − pj‖
4 u← (pj − pi)/d
5 u⊥ ← (−uy, ux)
6 if 0.8 < d < 2.7 and overlap(Li, Lj) then
7 C ← {pi + du⊥, pj + du⊥, pi − du⊥, pj − du⊥}
8 R← ∅
9 for ∀c ∈ C do

10 for ∀Lk ∈M : i < k and k 6= j do
11 pk ← L0

k

12 t← ‖pk − c‖
13 if t < 0.2 and overlap(Li, Lk) then
14 R← R ∪ k
15 else
16 R← R ∪ 0
17 end
18 end
19 end
20 saveLineIndices(i, j, R0, R1)
21 saveLineIndices(i, j, R2, R3)
22 end
23 end

Algorithm 2: Determine if there is overlapping between vertical lines
1 bool ovelap(Li, Lj)

Input : two vertical lines Li, Lj

Output : true if there is a vertical overlap between the two lines
2 Zmaxi ← max(L0

i .z, L
1
i .z), Zmini ← min(L0

i .z, L
1
i .z)

3 Zmaxj ← max(L0
j .z, L

1
j .z), Zminj ← min(L0

j .z, L
1
j .z)

4 if Zmini < Zmaxj < Zmaxi or Zmini < Zminj < Zmaxi then
5 return true
6 else
7 return false
8 end

Algorithm 3: Save line indices
1 void saveLineIndices(i, j, k,m)

Input : indices i, j, k,m of lines
Output : saves not repeated line indices if found

2 if k > 0 and m > 0 and {j, i, k,m} 6∈ P0 then
3 P0 ← P0 ∪ {j, i, k,m}
4 else if k == 0 and m > 0 and {j, i,m} 6∈ P1 then
5 P1 ← P1 ∪ {j, i,m}
6 else if k > 0 and m == 0 and {j, i, k} 6∈ P1 then
7 P1 ← P1 ∪ {j, i, k}
8 end
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although having the same underlying geometric distribution, do not represent cranes in the
point cloud. Figure 5.9 illustrates some of these cases.

After the previously described occupancy check, a vertical 2D cross-section will be created.
Every cross-section represents one face of the possible tower crane mast and will then be
used to classify the groups of lines as a crane or as non-crane. The algorithm will check
the existence of a horizontal line in every one of the four faces of the mast of the tower
crane. As shown in Figure 4.13, all the vertical cross-sections of a crane have at least one
horizontal line that is at least 80% long of the total width of the image.

Figure 4.13: Small set of automatically generated crane vertical cross-sections

Once the four cross-sections passed this occupancy and horizontal line checks. The cor-
responding group of four lines should contain the possible crane points. Therefore, the
algorithm will fit the smallest possible 2D rectangle, in which these four lines lie, and then
all the edges of the fitted rectangle are extended outwards by a distance of 0.2 m. This
is to include a larger area in case that crane components are beyond the locations of the
founded lines of the tower crane mast. Subsequently, the height of every possible crane
will be check to be at least 10 m below the maximum height of all the cranes point clouds.
After passing this total height threshold, and as shown in the rectangle in Figure 4.14a, the
region for the crane is found. Later, as shown in Figure 4.14b, the point cloud data within
the rectangle is extracted. Finally, and similarly as performed in Turkan et al. (2014), once
an object is detected, the corresponding matched points are removed from the point cloud,
in which the next object will be searched.

4.4 Scaffold detection

The scaffold detection process follows very similar steps as crane detection, with two main
differences: First, the threshold values of the ROIs separation step are different. Second,
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(a) (b)

Figure 4.14: Final detected crane: (a) vertical projection with crane location indicated with
a red rectangle; (b) 3D detected crane points, which are inside the region indicated in (a).
Test dataset: Nr. 1.

the method for detecting the pattern on vertical lines must also be adjusted to detect not
only square but also rectangular patterns characteristic of a scaffold.

4.4.1 Scaffold ROIs separation

Considering that scaffolds could be more occluded in comparison with cranes, the height
threshold for scaffold ROIs hmin was set to 0.2 m. This step will not only filter out ground
floor points, but also some short objects.

Subsequently, a dilation operation is performed 6 times with an elliptical structuring element
of size 5 x 5 (SE5). Here, the use of an elliptical structuring element is considered more
appropriate in place of the default rectangular one, since the uprights have cylindrical
sections. Note that the size of the structuring element is also half the size used for the
crane detection, this is because the scaffold uprights are smaller than the steel angles of the
crane.

The minimum blob size Amin was set to 0.002 m2, while the maximum Amax to 0.075 m2.
This is considering that an average diameter of an upright of 0.05 m, its vertical projected
area will be of 0.002 m2. Amax was set considering the possible presence of other vertical
objects close to the uprights, which after dilation will be merged.

Similar as with the cranes, after separating the ROIs, vertical 3D contours are detected,
merged and filtered by a minimum length of 0.4 m.
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4.4.2 Individual scaffold recognition

Something unique about scaffolds is that they do not always follow a squared pattern, as
happens to be the case with the cranes. Nonetheless, the uprights of scaffolds typically
follow a rectangular design, with dimensions that vary by manufacturer. As explained in
Section 2.2.2, there are some usual ranges for the scaffold bay length and width. Moreover,
as confirmed by Wang (2019), and because all scaffolds must have vertical uprights touching
the ground, it is reliable to recognize scaffolds by finding the uprights.

Since the range for the bay length is greater than that of the bay width, the proposed
algorithm will first search for pairs of vertical lines with a distance in between in the range
from 1.5 m to 3 m (bay length range). Similarly, as with the cranes, the algorithm checks if
there exists some overlap in their height (see Algorithm 2).

Analogously to the crane case and since scaffolds are rectangular, the four possible locations
of the other two uprights are known. The other two uprights must be parallel on either of
the two sides of the horizontal line that connects the two originally found possible uprights.
Given that the bay width could vary between 0.6 m to 1.20 m, taking a distance of 0.9 m
with a tolerance of 0.3 m around these four points, will cover all the possible regions where
the other two uprights could be present. These potential regions with their correspondent
tolerance are shown in Figure 4.15.

1.5 m - 3 m

0.9 m

(b)

r = 0.3 m

1.2 m
0.6 m

(a) (c)

0.9 m

Figure 4.15: Determination of the location of the possible regions with uprights: (a) original
3D vertical lines of a scaffold element; (b) from an aerial perspective a pair of vertical lines
with a distance in between in the range from 1.5 m to 3 m was found; (c) the other two
uprights could be in the four blue regions, which are 0.3 m radius circles located at 0.9 m
on each side in the perpendicular direction to the horizontal line connecting the previously
pair of lines found.

Once the groups of four lines that reveal the possible location of the scaffolds are detected,
the following steps to detect scaffolds are very similar as with the cranes. An occupancy
check between every two continuous vertical lines of every group is performed, flowed by a
horizontal line check over cross-sections. Here, at least three sides must have a horizontal
line of at least 90% of the total width of the generated cross-section. Finally, scaffold points
will be extracted, and the remainder of the point cloud will be used to search Formwork
elements.
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4.5 Formwork detection

The formwork detection procedure differs from the other two presented detection processes
in two aspects: First, while the threshold values are very similar as for wall ROIs separation,
once the ROIs with formwork are separated from the whole point cloud, they are then
filtered in blobs that are aligned to the X and Y-axes. Second, in every aligned blob-point
cloud, vertical cross-sections will be generated and classified with a Deep Learning (DL)
algorithm, revealing the location of the formwork elements.

4.5.1 Formwork ROIs separation

Since formwork (especially foundation formwork) could be much shorter in comparison
with walls, the height threshold for formwork ROIs hmin was set to 0.075 m. This step will
basically filter out ground floor points or points that have less than 15 neighbours with the
same or very similar X and Y coordinates.

Subsequently, a dilation operation is performed 6 times with an SR10 rectangular structuring
element, and the minimum blob size Amin was set to 0.25 m2. The reasons for these values
are the same as those explained in Section 4.2.2.1 to separate the wall ROIs. However,
taking into account the smaller size of formwork in comparison with walls, especially
foundation formwork, Amin is smaller in comparison with the one used for wall separation.

4.5.2 Individual formwork recognition

Here, opposite as with the cranes and scaffolds, the 3D line detection is not implemented
right away over the formwork ROIs. This is because, since the point cloud is already rotated,
it is possible to filter out formwork elements that are aligned to the building axes more
efficiently.

To detect formwork elements that follow the Manhattan-Word assumption, the blobs of
the formwork ROIs are further subdivided in blobs that are aligned to the X and Y-axes.
These axes correspond to the building axes as the point cloud was already rotated. These
blobs are shown in Figure 4.16.

(a) (b)

Figure 4.16: Horizontal and vertical formwork blobs: (a) vertical formwork blobs; (b)
horizontal formwork blobs in dataset Nr. 3.
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Subsequently, vertical cross-sections or facade view projections will be generated. To find
the right location where these cross-sections must be created, 2D lines are detected in a
vertical projection of the point cloud in every blob. For horizontal blobs, the algorithm
search for the lowest and the highest horizontal lines. If the difference between them is
larger than 11 cm (the standard width of formwork), then there might be a formwork
element. To finally identify which blobs are formwork or not, two vertical cross-sections
will be generated for every blob. One from the top, where the highest horizontal line is
located. And another from the bottom where the lowest horizontal line is located. The
blobs in vertical regions were previously rotated 90◦ to be able to treat them as horizontal
ones. Over the generated cross-sections, a DL algorithm will allow the final formwork
detection. Something unique about the cross-section for formwork is the fact that they will
also contain depth information, this enables the DL algorithm to take into consideration
not only the exterior rips of a formwork but also its interior plane surface. Figure 4.17
illustrates the difference between a cross-section with real colour an another with depth
information.

(a)

(b)

Figure 4.17: Formwork vertical cross-section: (a) with the real color; (b) with depth
information.

The PyTorch C++ frontend was used to train and test the used DL algorithm. The neural
network used consists of 5 convolutional layers with max-pooling and ReLU activation, and
3 fully connected layers. 244 images were used to train the model, these were generated
with dataset Nr. 1, and a dataset augmentation step. Figure 4.18 shows some of these
images. The data set was augmented with mirror 180◦ flips over the x, y and both axes,
generating 3 new images form every original one. The dataset was divided into 60% training
set and 40% testing set. Two Dropouts were used to prevent overfitting, one located after
the convolutional layers and the other after the first fully connected layer. After 90 epochs,
the algorithm achieved a maximum accuracy of 93,3% over the testing set, demonstrating
to be suitable for this binary classification task. The following are the parameters used
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to train the neural network: image size = 238, train batch size: 8, test batch size: 200,
optimizer: Stochastic gradient descent, learning rate: 0.001 with a momentum of 0.5, loss
function: negative log-likelihood.

(a) (b)

Figure 4.18: Set of formwork cross-section: (a) formwork; (b) bogus.

4.6 Parameter summary

Table 4.1 summarizes the different parameters used to filter the objects in the point cloud.
Here hmin refers to the minimum height in meters that the object needs to have to be filtered
out in the accumulated grey-scale image. S is the structural element and its corresponding
size used in the dilation step. Di is the number of iterations of the dilation operation. Amin

and Amax are the minimum and maximum areas of the blobs to filter the objects after
the dilation. Finally, lmin refers to the minimum length of the merged vertical lines which
applies only for crane and scaffold detection.

Table 4.1: Parameter Summary

Parameter Cranes Scaffolds Formworks Walls

hmin (m) 0.7 0.2 0.075 1.2
S R10x10 E5x5 R10x10 R10x10
Di 3 6 6 5
Amin (m2) 0.0075 0.002 0.25 1.5
Amax (m2) 0.3 0.075 MAX MAX
lmin (m) 1.5 0.4 N/A N/A
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Chapter 5

Results and Analysis

In this chapter, the results of applying the proposed methods on real datasets are presented
and analysed. Firstly, the datasets, hardware and software used are discussed in Section 5.1.
Then the validation results after applying the proposed method are shown as well as a
detailed analysis of the relevant cases. Finally, the computational time of the process is
given and analysed.

5.1 Datasets and Tools

5.1.1 Point cloud datasets

The performance of the proposed method was validated on four different laser scanner point
clouds obtained from a construction site in Germany under various phases of construction.
The point cloud data were acquired using a terrestrial laser scanner at several scanning
locations over the entire construction site. Table 5.1 enumerates the different datasets,
providing additional information about the month they were obtained, their aligned di-
mensions, the volume and the area they cover, and the number of points they contain.
Figure 5.1 illustrates the datasets.

Table 5.1: Point cloud Datasets

Nr. Acquisition month ∆x, ∆y, ∆z [m] Volume [m3] Area [m2] Nr. of points
1 Sep. 2019 71, 58, 46 189.428 4.118 127.121.272
2 Nov. 2019 53, 60, 46 146.280 3.180 223.272.813
3 Apr. 2020 39, 78, 25 76.050 3.042 67.213.140

It is worth mentioning that dataset Nr. 3 is a smaller, manually selected region of a vast
dataset. Since the original dataset has a size of more than 20 GB (in their compressed zip
format), it will require a lot of computational time to work with it directly. However, the
selected region is still quite large, having more than 50 million points.

Table 5.2 shows the number of points of the datasets after the downsampling step and
clipping the level of interest. The minimum and maximum Z-values of the level of interest
were inserted manually, to be able to cut it. In the case of a multi-storey building, for
better results, these values should include neither the ceiling nor the floor of the respective
level. However, if they contain only the floor, the method should still work correctly, as
long as there are no objects of the story directly below.
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(a) (b)

(c)

Figure 5.1: Point cloud datasets: (a) dataset Nr. 1; (b) dataset Nr. 2 (as it is originally
colorless, it is shown here with height ramp colors); (c) dataset Nr. 3. (note here the lack
of color at the back part of the point cloud)

Note that only the points that are in the clipped level of interest will be used to detect
the location of the target objects. The automatically found angle of rotation of the point
clouds are -31.3◦, -53.4◦ and 0.2◦ for the respective datasets, number 1, 2, and 3.

5.1.2 Hardware

LASER SCANNER

All the point clouds used throughout this thesis were captured with a FARO Laser Scanner
Focus S 350 Plus. This is a high-speed 3D terrestrial laser scanner for long-range applications.
It is compact, lightweight (4.2 kg including battery) and device for indoor and outdoor
environments to deliver detailed measurement and documentation with a ranging error of
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Table 5.2: Point cloud Datasets

Point cloud
Number of points for each dataset

Nr. 1 Nr. 2 Nr. 3

Original 127.121.272 223.272.813 67.213.140
After Downsampling 64.182.855 187.654.059 62.049.852
After clipping level of interest 64.065.562 51.716.679 62.047.390

±1mm1, a dual-axis compensator (levelling each scan with an accuracy of 19 arcsec) and
a height sensor (height relative to a fixed point via an electronic barometer). For more
information about this laser scanner, the reader is referred to the official Technical sheet2

of FARO Focus Laser Scanners.

COMPUTER

The algorithms in this thesis were all developed and tested on a laptop with a 64-bit
Windows 10 operating system. The specifications of the used laptop are stated as follows:

Name and brand Dell XPS 15 9560
Processor Intel(R) Core(TM) i7-7700HQ CPU @ 2.80 GHz
RAM 32 GB
GPU GeForce GTX 1050

1According to the technical sheet the ranging error is defined as a systematic measurement error at
around 10 m and 25 m.

2Available in https://insights.faro.com/long-range-laser-scanners/techsheet-faro-focus-laser-scanners
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5.1.3 Software

The programming language C++ is used in the implementation of all the steps of the
methodology. The following are the additional dependencies of the code:

• OpenCV 4.23 is used intensively for image processing, clustering and 2D line detection.

• PCL4 is a powerful library to deal with point cloud processes, here is used to read
and write point clouds in PLY and PCD binary format and to downsample the point
cloud.

• OpenMP is used in some functions of the code to perform parallel computations.

• The 3D line detection is performed using the open-source code provided by Lu et al.
(2019)5 which in turn uses nanoflann6 for building KD-Tree and find the nearest
neighbours of every point in the point cloud.

• The PyTorch C++ Frontend7 is used to train and load a neural network and perform
inference over generated vertical cross-section projections.

• A plug-in application was developed for the FARO software SCENE, which allows
the easy usage of the proposed method in this software. This plug-in requires the
SCENE API App Developer Package version 2.0.21 or posterior8.

• Fast Light Tool Kit (FLTK)9 was used to create the Graphical User Interface (GUI)
of this plug-in.

3https://github.com/opencv/opencv
4https://github.com/PointCloudLibrary/pcl
5https://github.com/xiaohulugo/3DLineDetection
6https://github.com/jlblancoc/nanoflann
7https://pytorch.org/cppdocs/frontend.html
8https://developer.faro.com/md_pages_guides_plugin_app.html
9https://github.com/fltk/fltk
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5.2 Validation results

Figure 5.2 presents the segmentation results of the three data sets, here the cranes are
visualised in green, the scaffolds in blue, and the formwork elements in red. Table 5.3
shows the validation results for every dataset, giving the precision, recall, and F1-score for
every target object, those were calculated based on the number of points on the respective
segmented point cloud, and with the following formulas:

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

It is worth mentioning that these validation results were calculated based on points, mainly
because it is challenging to count separate instances of formwork elements. As later shown
in figure Figure 5.8, the formwork elements that are over a single wall would be counted as
a single instance. However, in this section of the wall, there are not only formwork elements.
Detecting these additional points as formwork reduces the precision of the method. Such
small details could not be perceived with only counting instances. Therefore using the
points is a more reliable measure.

Table 5.3: Validation Results

Dataset Nr. Object Precision Recall F1-Score

1
Crane Mast 100,0% 100,0% 100,0%
Scaffold 100,0% 100,0% 100,0%
Formwork 85,1% 68,1% 75,7%

2
Crane Mast 100,0% 100,0% 100,0%
Scaffold 89,1% 95,1% 92,0%
Formwork 36,4% 90,3% 51,9%

3
Crane Mast 100,0% 100,0% 100,0%
Scaffold 100,0% 82,6% 90,5%
Formwork 85,1% 100,0% 91,9%

Overall 88,4% 92,9% 89,1%
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(a) (b)

(c)

Figure 5.2: Automatically segmented Point clouds: (a) dataset Nr. 1; (b) dataset Nr. 2 (as
it is originally colorless, it is shown here with height ramp gray-scale colors); (c) dataset
Nr. 3. In green detected cranes, in blue detected scaffolds, and in red detected formwork
elements.

5.3 Analysis

5.3.1 Crane Detection

One compelling finding while detecting cranes was that shoring elements might have very
similar geometric features as cranes. Therefore it is not enough to differentiate them only
by their cross-sections, as shown in Figure 5.3. A differentiation with their total height, as
explained in the Chapter 4 offers a quick and effective solution for this issue. However, this
solution implies the manual deletion of the jib and of the hook of the crane. Otherwise,
these points could be above the regions where shoring are present and will yield to a wrong
total height calculation.

Another worth mentioning case is shown in Figure 5.4. Here we are dealing with a self-
erecting crane that was moving during the point cloud acquisition. Since self-erecting cranes
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(a) (b)

Figure 5.3: The geometric similarity between cross-sections of shoring and cranes: (a) the
3D point cloud of a section of one mast of a tower crane next to two shoring elements ;(b)
cross-sections: the first two are cranes and the following two are shoring

move not only the jib but also the mast; the point cloud of the mast of the crane is surrounded
by the noise produced by scans of the same crane in another position. Nonetheless, the
crane was not moving all the time. Therefore there are still some characteristic features
that allowed its correct detection.

(a) (b)

Figure 5.4: Possible issue while detecting self-erecting cranes: (a) the self-erecting crane
was moving during the scan acquisition, therefore there is a lot of noise in the point cloud
;(b) however, some important geometric features were still present in the point cloud, which
allowed the detection of the crane.

5.3.2 Scaffold Detection

Whereas cranes are always separated enough from each other, scaffold elements are usually
very close or even join together to build large scaffold systems. This fact produces interesting,
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unexpected results. Figure 5.5 illustrates the case were two scaffold elements are close
enough to each other to cause small incorrect detections. Instead of only detecting two
scaffold instances, the algorithm will retrieve four. Two are the correct ones, and the other
two are the overlapped scaffolds, as shown in Figure 5.5b. This is because even when this
set of uprights do not build a scaffold, they are within the distances ranges established
inFigure 4.15 and also passed the cross-sections checks.

(a)

(b) (c)

Figure 5.5: Overlapped wrong detected scaffolds: (a) detected Scaffold point cloud;
(b)correctly detected scaffold instances; (c) Overlapped wrong detections.

The reason why the method was not 100% precise in the dataset Nr. 2 is because the object
illustrated in Figure 5.6 was wrongly detected as a scaffolding element. The item in question
is a stacking pallet or container for props. There are two reasons for this false detection.
First, the distances between the four vertical steel angles of this pallet are within the ranges
established for scaffold detection. Second, as shown in Figure 5.6b, the cross-sections of
this object have a clear horizontal line, allowing the item to pass the cross-section check for
scaffolds.

A possible way to avoid this sort of false positives could be to consider also the circularity
of the uprights as a requirement to detect scaffolds. Another alternative could be checking
the presence of at least two horizontal lines in the cross-section. However, these two ideas
would require a scaffold scanned from different locations and almost free of occlusions.

Occlusions are indeed the reason why the method did not always have perfect recall.
Figure 5.7 presents the two cases where the scaffolds were not detected. Figure 5.7a shows
the single not detected scaffold element present in the dataset Nr. 2. As can be visualised,
the presence of horizontal occlusions, especially in one of its uprights hinder the detection
of this object. In Figure 5.7b shows some of the not detected scaffolds in the dataset Nr. 3.
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(a) (b)

Figure 5.6: False positive scaffold: (a) 3D view of the stacking pallet for props; (b) cross-
sections of the short sides of a scaffold (left) and a stacking pallet (right). Note that both
have the characteristic horizontal line. However, the pallet has only one line, while scaffolds
may have at least two; as long as it was not occluded in the scan.

Here the problem is that the interior uprights (close to the facade of the building) were not
scanned good enough. Without enough points of these uprights, the method will never be
able to detect scaffolds, even if the other parts of the scaffolds are entirely present in the
point cloud.

(a) (b)

Figure 5.7: True negative scaffolds: (a) non-detected scaffold in dataset Nr. 2; (b) one
instances of the non-detected scaffold in dataset Nr. 3.

A possible solution for the case shown in Figure 5.7a might be to analyse also all the possible
triplets of vertical lines that have the pattern of a scaffold. As shown in 3, these triplets
of lines are also saved. However, this might not only be more computationally expensive
but also might manifest the detection of more false-negative scaffold objects, which in turn
would reduce the precision of the algorithm. Despite this, this should still be tested.
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5.3.3 Formwork Detection

Regarding formwork detection, there are still three main challenges to overcome. First,
is the presence of other objects next to formwork elements and in the same wall in the
point cloud. Figure 5.8 illustrates this issue. Here not only formwork but also vertical
reinforcement is present. However, with the proposed method, the whole section is classified
as formwork. To overcome this issue, it has to be treated as an object segmentation problem
and not as an image classification problem. In an object segmentation problem, instead of
classifying the complete image, the location of the different objects in the image is detected.
To this end would be necessary to label the exact location of the different target objects
over several generated cross-sections and subsequently train a model to perform object
segmentation in 2D images.

(a)

(b)

Figure 5.8: Formwork detection issue: (a) the whole section will be classified as formwork,
even when in the image there is also reinforcement; (b) besides formwork elements, there
are also window parapets.

The second challenge in formwork detection is the detection of formwork elements that do
not follow the Manhattan -World assumption. To address this issue, one could analyse
the regions where several 3D horizontal lines are present, generate a cross-section there,
and classify it as well as done with the Manhattan-Wold formwork elements. The third
and final challenge while detecting formwork is again the presence of occlusions. Whereas
high wall formwork usually did not present many occlusions, foundation formwork was
sometimes heavily occluded. Therefore, the method performed much better in dataset Nr.3
in comparison with dataset Nr.1, because in dataset Nr. 1 the foundation formwork was
very occluded. This should be solvable scanning the construction site from more scanning
locations.
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5.4 Computational time analysis

Table 5.4 presents the times in seconds for each of the steps in the methodology for each
dataset.

Table 5.4: Computational time

Step Sub-step
Computational time
for each dataset [s]

Nr. 1 Nr. 2 Nr. 3

Preprocessing Downsampling 35 63 14
Clipping level of interst 7 16 6
ROIs Separation 5 4 2
Finding building axes 9 9 4
Point cloud rotation 2 5 1
Vertical projection 9 6 7

Total Preprocessing 67 103 34

Crane detection ROIs Separation 5 6 3
3D Line detection 12 77 11
Find pattern in lines 1 1 0
Cross-section checks 8 230 29
Height check 2 4 4
Crane points extraction 23 63 48

Total Crane detection 51 381 95

Scaffold detection ROIs Separation 8 8 5
3D Line detection 9 105 17
Find pattern in lines 1 1 0
Cross-section checks 81 1939 621
Scaffold points extraction 69 192 83

Total Scaffold detection 168 2245 726

Formwork detection ROIs Separation 3 9 4
Horizontal and Vertical ROIs 11 10 5
Blob Point cloud classification 64 88 40
Formwork points extraction 75 41 23

Total Formwork detection 153 148 72

Total time
in seconds 439 2877 927

in minutes 7,3 48,0 15,5

One of the main issues regarding computational time was manifested while detecting cranes
and scaffolds. The problem is the presence of props that support slap formwork. This is
because they are not only thin and tall as the steel angles of the mast of a tower crane, but
also they can perfectly have a cuboid geometric distribution. This is illustrated in Figure 5.9.
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Here more than 30 instances of possible cranes where detected, only after searching for
the pattern in vertical lines. The next step implies the cross-section generation for each of
the likely cranes, to perform the occupancy check and the horizontal line check. The need
to perform these checks in such a large number of possible cranes is very computationally
expensive. However, this is necessary to properly detect the cranes in the point cloud.

(a) (b)

Figure 5.9: Detected groups of vertical elements for cranes only using the vertical lines: (a)
only detected vertical lines; (b) the corresponding point cloud inside the regions delimitated
from the groups of vertical lines. Note that even when there is only a single crane, the code
detected more than 30 elements with the same pattern in vertical lines as in a crane. Most
of the detected elements are props (in the front of the image (b)) and shoring (in the back).

One possible solution could be the separation of indoor and outdoor spaces. Once the areas
are separated, the crane and scaffold search can be performed only over the point cloud
located in outdoor areas. However, this would prevent the detection of scaffold elements
in indoor spaces. Another possible solution could be to search for a diagonal foot in the
surroundings of every detected vertical element. Wherever this diagonal foot is present,
then there is a prop for slap formwork and not a scaffold or crane element. However, not
all the props have this diagonal foot, and only separating some of them might not totally
solve the problem. Another, perhaps more reliable solution might be to detect the presence
of ceiling about the vertical elements, neither scaffold nor cranes would be touching a roof
above them. Despite that, it might be even more computationally expensive to detect and
differentiate ceilings of work platforms, in comparison to only checking the presence of
horizontal lines in generated cross-sections.

After manually removing the regions with props in the dataset Nr. 2. Crane detection and
scaffold detection take, 68 s and 437 s, instead of 381 s and 2245 s. Needing a total time of
608 s, 1637 s (almost 30 minutes) less than with the presence of props in the point cloud.
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Chapter 6

Conclusions and Further Development

This thesis aimed to design a workflow that takes a 3D laser scanner point cloud of a
construction site and efficiently detects defined target objects, giving semantic meaning to
the points in the point clouds. The target objects are cranes, scaffolds, and formwork.

To draw the conclusions, the research questions defined in Section 1.2 are answered.
Subsequently, the choice of the methods used will be discussed. Finally, the limitations and
ideas for future work will be presented.

6.1 Conclusions

To draw conclusions for this research, first the sub-questions defined in Section 1.2 are
answered separately. After this, the main research question is answered.

Object segmentation

1. Is it possible to implement a safe and efficient prefiltering of the tentative
permanent structures of a building to improve computational speed?

The achieved computational performance would not have been possible without a
prefiltering of the point cloud. Since a laser scanner point cloud of a large construction
site could have millions of points, a fast and feasible solution should try to reduce the
number of points before they are processed, leaving only the ones that represent the
objects of interest. To this end, a method that distinguishes regions of interest ROIs
in the point cloud is first applied in the thesis. The process is based on the intrinsic
geometric features of the target objects. For example, to identify possible regions with
cranes or uprights of a scaffold, the method will search high and thin vertical items. On
the contrary, to query the areas where formwork could be present, the process explores
lower and broader regions. This search can be done over a grey-scale accumulation
image of the point cloud, as explained in Chapter 4.

2. To what extent can the verticality, horizontality, and parallelism of the ob-
jects on a construction site be exploited for the recognition of the three target
object classes?

Indeed, the verticality of the target objects is the most critical feature that allows its
fast and accurate segmentation with the proposed workflow. The horizontality also
plays an essential role in multi-storey buildings since the point cloud has to be divided
into vertical sections depending on the different floor levels. Subsequently, at every
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level, the usual parallelism and orthogonality of the walls enable a fast formwork search
once the point cloud is rotated according to the main building axes. Evidently, the
Manhattan-World assumption does not hold for every building, therefore searching walls
that are not aligned to the main building axes is still necessary. However, for structural
and architectural simplicity, the majority of the building floor plans follow a rectangular
grid for the most part. Therefore, it seems reasonable to first take advantage of this fact
before looking for walls in other directions.

Validation

1. How good is the proposed method compared to existing methods?

In comparison with the proposed method, Xu et al. (2018) have two restrictions: First,
the scaffold must be next to a facade; Second, it must have a bay width of 0.8 m.
Considering more possible scaffold dimensions makes the proposed method in this thesis
more robust. However, it will give lower performance than Xu et al. (2018) in low-quality
point clouds.

In comparison with Wang (2019), the method is not restricted to clipping the point cloud
to specific regions where the scaffold is present. Since they do not provide computational
time, it is not possible to compare the computational performance reliably. Nonetheless,
as their method generates horizontal slices every 0.05 m and fits circles in each of them,
such a technique would undoubtedly take more time than an approach that simply
projects all the points in 2.5D grey-scale accumulated images and filter the objects.
However, Wang (2019) provides additional steps to detect the parts of every scaffold
system and check compliance with the regulations. Such procedures are not provided in
this thesis.

A final comparison of the proposed method with S. Zeng et al. (2020) in terms of
computational times lends useful insights/insightful results. According to S. Zeng et al.
(2020), their process requires around 60 seconds to extract the features of a point
cloud with 400,000 points. Considering the linear relationship of the time concerning
the number of points, one could estimate that for a point cloud with more than 50
Million points (as the ones used in this thesis), their method would require around 125
minutes to only extract the features. This is two times more than the time that the
proposed method requires to detect the three target objects in the more critical case,
i.e. Dataset Nr. 2. However, the method proposed by S. Zeng et al. (2020) would be
more appropriate to recognize objects with more complex geometries, which have other
important geometric features different than the ones considered in this thesis.

2. To what extent can the proposed method assist the monitoring of the con-
struction process?

As explained in the motivation (see Section 1.1), detecting the location of the formwork
gives crucial information about the exact current state of the construction progress. If,
for example, in the last level of a construction site, all walls are covered with formwork
elements, only detecting them would give a clear statement about the actual status of
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the construction site. Since usually, this is not the case, also recognizing already built
structures like walls, floor, and columns would be necessary. Despite that, the best way
to automatically track the planned schedule is with a 4D building information model.
Once the temporary target objects are detected in the point cloud, it might be easier
to automatically detect the rest of the objects. This automatic detection can be done
with a reliable geometrical comparison of the rest of the point cloud with the building
information model as performed by Braun and Borrmann (2019).

It is worth mentioning that to achieve a good overview of the construction progress,
it is only necessary to scan the last superficial levels of the construction site together
with its surroundings. This is possible because the presence of internal parts and lower
levels could be inferred with a PRG as explained in Braun et al. (2020). This would not
only reduce the amount of data to be processed but will also facilitate its acquisition,
avoiding the need to scan every single level. However, if the goal is to document every
available space of the construction site, this procedure is inevitable.

Further research

1. What are the bigger challenges in object recognition at different stages of
the construction?

Three big challenges were identified while trying to detect the objects in the point cloud.
First, while searching for cranes and scaffolds, the presence of props that support slab
formwork force the method to generate many cross-sections. This significantly reduces
computational time performance. One solution might be to firstly separate indoor and
outdoor spaces and perform scaffold detection only in outdoor spaces. However, this
would not allow detecting scaffold elements that are inside the building. Second, the
fact that a single wall does not necessarily have formwork in its whole extension hinders
a precise detection of this object. A possible solution would require the implementation
of a model capable of performing object segmentation (instead of a simple image
classification) over the generated cross-sections, which in turn might be useful to detect
vertically placed reinforcement. Third, the presence of occlusions (more precisely the
horizontal ones) makes it almost impossible to detect the objects with this method. For
example, a scaffolding element with one occluded upright will not be detected, even
when the rest of its parts are present in the point cloud. This case was illustrated in
Figure 5.7. The best way to solve this issue is by avoiding occlusions while scanning
possibly by using not only one but different scanning techniques. For example, a TLS
might be very appropriate to scan the exterior part of the building, and since it is
accurate even in large distances, only a few scans would be required. An MLS might be
used to detect the last, more superficial levels of a multi-storey construction site, and
finally, a Unmanned Aerial Vehicle (UAV) laser scanning system that scans everything
from a top view could include surfaces that were not possible to scan with the other
technologies due to accessibility issues.

2. Is it possible to achieve perfect recognition? What is needed to accomplish
it?
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Perhaps the most important and most obvious factor in achieving a perfect recognition
is that the object has to be scanned from different positions avoiding leaving occluded
sections. During the development of this thesis, it was found that for the cranes, it is
usually not a problem to have scans from different positions, since their surroundings
are typically large free areas. However, two factors were identified that could hinder its
recognition: First, the presence of many objects hanging on the surface of the mast of
the tower crane (as lamps, posters, and banners). For example, if the selected vertical
section of the crane has four banners in its four sides, the method will not detect that
crane, since the prefiltering step will not allow passing this object. Nonetheless, this
is not usually the case if the section is close to the base of the crane since banners
are generally in a higher position where they are more visible. Second, in the cases of
self-erecting cranes, if the crane was in movement during the acquisition of the scans,
the resulted point cloud might be full of unwanted points that recorded the different
positions of the crane mast, making almost impossible to detect the crane.

For scaffold recognition two factors were identified as well: the first factor is similar
to the first one found for cranes, if scaffolds are covered by a very dense safety screen
(as usual on many construction sites), the scaffolds might not be detected. This is
because the safety screen might be very close to the uprights and if they are projected
in a vertical projection, they will be prefiltered as wall elements since they will not
be anymore thin and small. The second factor that hinders scaffold detection is the
fact that they are usually only scanned from one side. Since the scaffolds are usually
very close to the facade of the building, mainly only outdoor scans contribute to the
acquisition of the scaffold point cloud, and as explained in a previous item, only with
one occluded upright, the scaffold will not be detected.

The problem of the presence of a safety screen was also identified by Wang (2019).
Perhaps their method would be more appropriate in these cases since it is based on the
circularity of the uprights. Although, still the problem might be to have not occluded
scanned scaffolds. This may be solvable with a TLS with several scan locations over
the scaffold elements. The recently released FARO Trek offers a possible solution for
navigating and scanning such environments while maintaining high accuracy. Other
methods to access and scan narrow spaces are, for example, UAV-borne laser scanning
systems or an MLS, which usually have, however, less accuracy than a TLS.

While wall formwork elements were usually not heavily occluded, foundation formwork
was much more occluded, creating more challenges to detect them. The usage of FARO
Trek would certainly overcome this issue since the scans would be done from a lower
level in comparison with a traditional TLS. Additionally, to achieve better formwork
recognition performance, the geometry of every possible formwork element could be
incorporated. This would allow detecting the location of formwork elements that are
partially occluded vertically and therefore, not totally present in the point cloud.

3. What semantic improvements in the point cloud are necessary to obtain
greater automation in the scope of construction progress monitoring?
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To completely automate the proposed method, an additional workflow should be im-
plemented to automatically separate the stories of a building. This method should be
robust enough to detect slight changes in the height (caused by small stairs or ramps)
in a single storey in large buildings, to successfully separate them.

Furthermore, an improvement in the detection of formwork elements is needed, together
with the recognition of vertical and horizontal placed reinforcement. As mentioned
in the motivation (see Section 1.1) detecting the location of the formwork not only
gives crucial information about the exact current state of construction progress but also
could be useful to evaluate the quality of the construction. To this aim an integration
with a detailed 4D building information model is necessary. Besides allowing to check
compliance with the schedule, an integration with a 4D building information model will
allow identifying and verifying the presence of openings and essential building elements.
Subsequently, and as done by M.-K. Kim et al. (2020), an automated dimensional quality
assessment can also be performed, to ensure compliance with the structural plans, once
the reinforcement is recognized in the point cloud.

As mentioned before, separating outdoor-indoor spaces would allow identifying faster
scaffolds and cranes, and additionally, it would be an essential step to detect slab
formwork.

Once all the temporary objects and the permanent structures have been detected (in the
best case after a geometrical comparison with a 4D building information model), it might
be possible to quantify the construction progress. For example, retrieve information
about how many m3 of concrete have been used as well as the area of slab, walls and
number of columns built, along with all the work that was required to carry them
out as m2 of formwork and reinforcement placed. All this would not only support the
monitoring of the progress but also would contribute to a systematic, transparent and
seamless work on the construction site.

In the following, a summarized answer to the main research question is given.

How is an automatic recognition of the selected three object classes in high-
quality point clouds of construction sites possible?

As a final conclusion, one could argue that as long as there is a way to infer basic
geometrical constrains on the target objects, it might be possible to achieve very impressive
performance on a 3D object detection problem. This not only in terms of accuracy but also
in computational performance. In this thesis, the vertical orientation of the target objects,
as well as its minimum height and other geometrical features, played an essential role in
being able to detect them in the point cloud. Similar to genetic algorithms, the successful
implementation of such a method requires careful engineering of the representation of the
objects, in this case, it means a precise knowledge of the geometry of the target objects.
Evidently, such a method would not be applicable to all objects (e.g. deformable objects).
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Nonetheless, the process is not limited to just some given examples or non-rotational
invariant constraints.

Furthermore, using 2D and 2.5D projections allows the implementation of a very efficient
method to filter and subsequently detect objects in the point cloud. This enables the
application of the technique on very large point clouds without compromising its accuracy.
Finally, the implementation of a deep learning algorithm to classify 2.5D projections
of vertical cross-sections of the point cloud proved to be very accurate for formwork
classification.

6.2 Discussion

As a FARO requirement, the proposed method should not depend on color information.
Therefore, the proposed approach uses only geometric information to detect the target
objects in the point cloud of the construction site. However, using colour information would
allow the implementation of additional methods, such as object segmentation on 2D colour
images of construction sites with previously trained ML models like the one made recently
available by Nath and Behzadan (2020), and re-projection over the point cloud as done by
Qi et al. (2017). This could improve the detection speed. Nonetheless, the fact that the
proposed method is based solely on geometric information increases the robustness of the
method, allowing its implementation also in cases where colour information is not available.

The method also requires a high-quality point cloud with a resolution of around 5 millimetres
or less. Small adjustments can make the algorithm usable in point clouds with higher
resolutions, perhaps up to 2 cm (higher resolutions might hinder scaffold detection mostly).
However, working with low-quality point clouds, such as those generated from photogram-
metric methods, would require major changes. One of them would be the implementation
of another method to detect vertical 3D contours in point clouds. The LSSHOT point
descriptor developed by Xu et al. (2018) could be a suitable way to achieve such a method,
as it was originally developed for low-quality point clouds.

Some empirical parameters were established in the proposed workflow. However, they are all
general enough to allow recognition of a large variety of target objects. For example, there
are some small constrains in the minimum height and dimension of the vertical projected
areas of the objects that allow its fast separation of the rest of the point cloud. Similarly,
the algorithms to find the vertical lines of cranes and scaffolds were not only designed
within the standards distance ranges given by the respective regulations, but also with
some tolerances allowing the method to include small variations of these distances. Such
variations could arise in the data due to unforeseen circumstances, as is not unusual in real
point clouds.
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6.3 Contributions

This thesis adds some new insights into the research on construction site point cloud
segmentation. More precisely, this thesis introduces the following contributions:

• A method to quickly and uniformly downsample large point clouds maintaining a low
resolution.

• The applications of morphological operations over 2.5D accumulated images, produced
from the projection of the point cloud, proved to be a very suitable and efficient way
to filter vertical objects in the point cloud.

• It was demonstrated that it is possible to reliably and quickly find the orthogonal
main axes of a building, using 2D detected lines in a prefiltered vertical projection of
the point cloud.

• A detailed definition of the geometry of the target objects as they are defined by the
corresponding regulations or manufacturers was provided.

• A dedicated algorithm to find specific patterns in 3D vertical detected contours proved
to be useful to detect vertical objects, as long as minimal constraints on their geometry
can be defined.

• The generation of 2D projections from vertical cross-sections allowed the development
of a highly accurate vertical object detection method.

• The implementation of a deep learning algorithm to classified 2.5D projections of
vertical cross-sections showed promising results to accurately detect formwork elements
in the point cloud.

6.4 Limitations and recommendations for further develop-
ment

In this thesis, it has been proven that is is possible to efficiently detect cranes, scaffolding,
and formwork elements in large 3D laser scanner point clouds of construction sites. However,
the method still has some shortcomings, and will therefore not work on every point cloud.
Moreover, the method could be extended to detect more objects and enrich the point cloud
with more semantic information. For these reasons, a summary of recommendations for
future research is provided.

• A workflow could be developed to separate the stories of a building automatically.
This method should be robust enough to detect slight changes in the height in a single
story in large buildings caused by small stairs or ramps, to successfully separate the
stories.
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• One of the big challenges was the presence of props that support slab formwork and
have similar geometric distribution as uprights of scaffolds or steel angles of cranes.
To overcome this challenge, one possible solution might imply separating outdoor
and indoor spaces. This would allow faster identification of scaffolds and cranes in
outdoor spaces since props that support slab formwork are only present in indoor
spaces. However, this would not allow detecting scaffold elements that are inside of
the building. Additionally, the separation of spaces would be an important first step
to detect slab formwork.

• More precise detection of formwork elements could be achieved with 2D object
segmentation techniques. To this aim, an appropriate dataset of labelled images has
to be generated, and a model has to be trained. Besides that, the recognition of
formwork elements that do not follow the Manhattan-word assumption is still missing.
This could be possibly done by applying the 3D contour detector in the rest of the
unclassified point cloud after detecting the Manhattan-word formworks. Locations,
where a certain number of horizontal contours are detected, could be further analyzed
similarly as it is done with the other formwork elements.

• After detecting formwork elements, the recognition of vertical and horizontal placed
reinforcement would complete the main set of not permanently-visible objects that
determine the current state of the construction progress.

• To achieve a fully automated construction monitoring, it is required the integration
with a detailed 4D building information model containing the geometry and time
information of the permanent structures, as done by Braun et al. (2020). This
would also enable the identification and verification of the presence of openings and
important building elements in the right location on the construction site.

• Subsequently, and as done by M.-K. Kim et al. (2020), an automated dimensional
quality assessment can also be performed, to ensure compliance with the structural
plans.

• Safety regulations can be also be verified in cranes and scaffold elements, for the
latter Wang (2019) already proposed a method that requires the detection of every
single element of the scaffolds, such as guard-rails, toe-boars, and working platforms.

• A major, constrain with Terrestrial Laser Scanner (TLS) is the low mobility and
flexibility of setting up the scanner at several locations, which is crucial to avoid
occlusions. Although some new techniques like the FARO Trek might contribute to
overcoming this challenge, it is necessary to investigate also other point cloud data
acquisition techniques with higher flexibility and mobility to achieve less occluded
point clouds. Other techniques include photogrammetry with images taken from
cameras mounted on a UAV (as Braun et al. (2020) proved to be a suitable method
for construction progress monitoring), UAV-borne laser scanning system, and Mobile
Laser Scanner (MLS).
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• The methods developed in this thesis could be speed-up with the parallelization
of some functions, for example, the generation of the 2.5D accumulated images, as
well as the 2D line detection. OpenCV offers not only CPU but also GPU parallel
computations that could make a significant performance improvement.

• Finally, it would be useful to generate a navigation graph of a construction site. This
with the aim of ensuring that there are always safe and efficient paths for mobility on
the construction site. However, this would require detecting ladders and all possible
paths in a scaffold system, which are usually not easily visible. Therefore, this is still
a very challenging task.
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