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Notations

The following overview of the notations of this thesis is limited to the most common

abbreviations and symbols regarding the overall context of this work. Some of the symbols

are also used as part of subscripts and superscripts.

Abbreviations

CTRA Constant Turn Rate and Acceleration (motion model)

DST Dempster–Shafer Theory of evidence [34, 35, 111]

FOV Field Of View

GPU Graphics Processing Unit

GTAM Grid-based Tracking And Mapping [118]

ID Identifier

OCS Object Coordinate System

RMSE Root Mean Square Error

UKF Unscented Kalman Filter [55]

VRU Vulnerable Road User (pedestrians, cyclists, etc.)

Cell Individual grid cell c of the discretized grid representation

Map Accumulated dynamic grid map Mt of the occupancy grid mapping

Particle Individual particle filter hypothesis χ of the low-level particle tracking

Track Individual object track instance τ of the high-level object tracking

Symbols

General

t,∆t Time instance t and time difference ∆t between two time instances

v Velocity component

x, y Position components, partly summarized as 2-D position vector x = [xx, xy]

z Measurement

η Normalization coefficient

Γ Specified threshold

N (µ, σ2) Normal distribution with mean µ and variance σ2 (evaluation: N ( · ;µ, σ2))

U(· , ·) Uniform distribution with specified lower and upper bounds of the interval

p(·), p(· | ·) Probability density function p, with conditional probability p(· | ·)
E(·)[·] Expected value of a random variable

[·]T Transpose of a vector or matrix

Rφ Rotation matrix with angle φ

VIII



Evidential Occupancy Grid Representation

c Cell of the discretized grid structure

dc Grid cell size (square with dc × dc)

xc Position of the center of cell c

A(c) Spatial area (2-D interval) of the cell c with center position xc

G Grid structure, describing the set of all individual cells c, i.e., c ∈ G
F, S,D Hypotheses of freespace (F ), static occupancy (S), dynamic occupancy (D)

O Hypothesis of occupancy, abbreviation for {S,D}, i.e., O = {S,D}
{F,D} Hypothesis of passable area (freespace or dynamic occupancy)

{S,D} Hypothesis of occupancy (static or dynamic occupied)

Θ,Θz Frame of discernment (full set), with Θ = {F, S,D}, Θz = {F,O}
2Θ Hypotheses power set of all combinations of the different hypotheses of Θ

θ Arbitrary hypothesis subset of Θ, with θ ∈ 2Θ

m(·) Basic belief assignment (evidence mass) of a specified hypothesis set

m(· | ·⊕ ·) Evidence mass based on the evidential combination (⊕) of two sources

bel(·) Belief of a specified hypothesis set

pl(·) Plausibility of a specified hypothesis set

ζ(· , ·) Conflict mass between two sources

Dynamic Grid Mapping and Low-Level Particle Tracking

Mt Accumulated dynamic grid map with the individual evidence masses m(·)
Mt Predicted dynamic grid map

M̂t Particle-based map prediction of the dynamic part

M′
t Adapted map prediction of the non-dynamic part

Mz,t Fused measurement grid

Mz∗,t Fused measurement grid enhanced by additional occupancy classification

fD Function for the particle-based convergence toward dynamic occupancy (D)

βS, βD Sensor-based occupancy classification coefficients for S and D, respectively

γD Assignment uncertainty parameter of {D} based on {F,D} and {S,D}
λ
(·)
(·) Individual terms of the adapted evidential occupancy filtering

χ Individual particle hypothesis (position xχ, velocity vχ, occupancy value oχ)

X , X̂ Total population of all particles χ ∈ X and corresponding prediction X̂
|X c| Number of particles in a cell c

nmax Maximum number of particles per grid cell

∆nχ Difference between the number of existing particles and its target in a cell

νc
t Mean particle-based 2-D velocity estimate of a grid cell c

vR, vT Radial and tangential velocity component, respectively

wχ Particle (velocity) weight based on radar and camera measurement data
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Notations

Object Extraction and Association

Cτ,t Set of dynamic occupied cells associated to a track τ

Ck
τ,t Sub-cluster of the set Cτ,t

GD,t Set of currently dynamic occupied grid cells above a threshold ΓD
min

Gζ∅
D,t Set of unassociated dynamic occupied grid cells, with Gζ∅

D,t ⊆ GD,t

GO,t Set of currently occupied grid cells above a threshold ΓO
min

τ Individual object track, τ ∈ Tt

Tt Set of currently tracked objects

fa(c) Association function for each grid cell c

lχ Particle label that connects a particle χ to a track τ

X τ
t Particle population of all particles linked to a track τ

ζ∅ Symbol for denoting no association

N c
ε ε-neighborhood of a cell c for density-based clustering

Object State Estimation

a Acceleration state component, a = v̇

gτ Geometric state of a track τ (bounding box size)

l Length of the bounding box

sτ,t Dynamic state of a track τ at time t

w Width of the bounding box

φ Orientation state component

ω Turn rate state component, ω = φ̇

IX
φ Particle-based confidence interval of the assumed object orientation

k Specific object class instance, k ∈ K
K Set of possible classes (car, truck, pedestrian, cyclist, motorcycle, other)

rF (A) Ratio of the freespace evidence within a defined grid area A
ϑe
z Edge visibility of the measurement box, e ∈ {front, rear, left, right}

ν Weighted mean cell velocity vector of all associated cells
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Abstract

Mobile robots require an accurate environment perception to plan intelligent maneuvers

and avoid collisions with traffic participants or obstacles. To obtain a robust model of

the current surroundings, measurement data of multiple sensors have to be processed in

different ways. This includes several tasks, such as abstracting object instances, data

association, temporal filtering, and sensor data fusion. Popular approaches are commonly

based on a sensor-individual object tracking with an early-stage object abstraction and a

late-stage sensor fusion. However, that procedure causes significant information loss of the

raw measurement data for the subsequent processing steps, potentially resulting in object

ambiguities and thus in an error-prone high-level object fusion. This is particularly critical

for autonomous driving in complex urban scenarios with densely moving traffic, partial

occlusions, and unstructured parts of the static environment.

This thesis proposes a novel multi-sensor environment estimation strategy – the Grid-

Based Object Tracking. The fundamental idea of this work is to fuse and temporally filter

measurement data by a low-level environment model based on the generic concept of dy-

namic occupancy grids, whereas the object estimation is performed subsequently based

on that grid representation. That way, objects are extracted robustly and consistently by

using the full information of the fused and temporally accumulated data of all sensors,

without requiring any early-stage object abstraction. Moreover, this approach fully com-

prises and combines tracking moving objects and mapping the static environment, taking

into account all measurement detections, which overall ensures that all occurring objects

and obstacles are reliably contained in the resulting environment representation.

In this work, measurement data of lidar, radar, and camera sensors are processed. They

are modeled in a uniform occupancy grid representation with uncertainties using an evi-

dential Dempster–Shafer model, which is further extended by separate velocity and classifi-

cation grid layers. The sensor fusion is performed cell-wise based on the grid cell discretiza-

tion. For the temporal accumulation, a new dynamic grid mapping approach combined

with a low-level particle filter tracking is proposed, resulting in accurate cell velocity es-

timates and a differentiation of static and dynamic occupancy over time. Finally, moving

objects are extracted based on the dynamic grid estimation, which thereby serves as a track-

before-detect strategy that enables a generic detection of arbitrary-shaped moving objects

primarily by identifying their cell-wise occupancy motion. To utilize the full potential of

the overall approach, also new concepts for the object state estimation and association are

presented that benefit from the grid-based representation as well, e.g., by evaluating the

current object visibility based on the additional freespace information of the grid.

The proposed approach is evaluated with real sensor data and test vehicles, demonstrat-

ing that it is well suited for real-time multi-sensor environment perception applications,

especially in the context of autonomous driving in challenging urban environments.
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Abstract

Zusammenfassung

Mobile Roboter benötigen eine genaue Umgebungswahrnehmung zur intelligenten Fahr-

manöverplanung und Kollisionsvermeidung mit Verkehrsteilnehmern oder Hindernissen.

Um ein robustes Modell der aktuellen Umgebung zu erhalten, müssen Messdaten mehrerer

Sensoren verarbeitet werden. Dies beinhaltet verschiedene Schritte, wie etwa die Abstrakti-

on von Objekten, die Datenassoziation, die zeitliche Filterung und die Sensordatenfusion.

Bekannte Ansätze basieren üblicherweise auf einem sensorindividuellen Objekt-Tracking

mit einer frühen Abstraktion der Messdaten zu Objektinstanzen und einer späten Fusi-

on der Sensordaten. Allerdings führt diese Vorgehensweise zu einem deutlichen Informa-

tionsverlust der Messdaten für die darauffolgenden Verarbeitungsschritte, was potenziell

Objekt-Mehrdeutigkeiten und somit eine fehleranfällige Sensorfusion auf Objektebene zur

Folge haben kann. Dies ist insbesondere für autonomes Fahren in komplexen urbanen Sze-

narien mit dichtem Straßenverkehr, teilweisen Verdeckungen und einer unstrukturierten

statischen Umgebung kritisch.

Diese Thesis stellt eine neuartige Strategie zur Multi-Sensor Umgebungsschätzung vor –

genannt Grid-Based Object Tracking. Die Grundidee dieser Arbeit besteht darin, Messda-

ten in einem Low-Level Umgebungsmodell zu fusionieren und zeitlich zu filtern, basierend

auf dem generischen Konzept von Dynamic Occupancy Grids. Die Objektschätzung erfolgt

hingegen erst aufbauend auf dieser Grid-Repräsentation. Dies ermöglicht eine robuste und

konsistente Extraktion von Objekten, da hierbei die vollständigen Informationen der fu-

sionierten und zeitlich akkumulierten Messdaten aller Sensoren betrachtet werden, ohne

dass diese zuvor zu Objektinstanzen abstrahiert werden müssen. Zudem kombiniert dieser

Ansatz vollumfänglich die Schätzung von sich bewegenden Objekten mit der Schätzung

der statischen Umgebung und berücksichtigt dabei alle Messdetektionen. Insgesamt wird

somit sichergestellt, dass in der resultierenden Umgebungsrepräsentation alle auftretenden

Objekte und Hindernisse zuverlässig enthalten sind.

In dieser Arbeit werden Messdaten von Lidar-, Radar-, und Kamerasensoren verar-

beitet. Diese werden in einer einheitlichen Occupancy Grid Darstellung mit Unsicher-

heiten mithilfe eines Dempster–Shafer Evidenzmodells sowie weiterer Grid-Ebenen für

Geschwindigkeits- und Klassifikationsinformationen modelliert. Die Sensorfusion erfolgt

dabei zellweise basierend auf der Grid-Zelldiskretisierung. Für die zeitliche Akkumulation

wird ein neuer Dynamic Grid Mapping Ansatz vorgestellt, der mit einer Partikelfilter-

basierten Dynamikschätzung kombiniert ist. Hieraus resultiert eine genaue Schätzung von

Geschwindigkeiten der Grid-Zellen sowie eine Unterscheidung von statischer und dynami-

scher Belegung über die Zeit. Bewegte Objekte werden dann aufbauend auf dieser Dynamic-

Grid-Repräsentation extrahiert, die dabei als Track-Before-Detect Strategie dient und eine

generische Detektion beliebiger Objekte primär durch die Erkennung der Bewegung derer

Occupancy-Zellen ermöglicht. Um das volle Potenzial dieses Ansatzes zu entfalten, wer-

den zudem neue Konzepte für die Objektzustandsschätzung und -assoziation vorgestellt,

die ebenfalls von der Grid-basierten Darstellung profitieren, z. B. wird die Sichtbarkeit der

Objekte anhand der zusätzlichen Freiraum-Information des Occupancy Grids bestimmt.

Der Ansatz wurde mit realen Sensordaten und Testfahrzeugen evaluiert; die Ergebnisse

demonstrieren eine erfolgreiche Anwendung als Multi-Sensor-Umgebungsschätzung, insbe-

sondere im Kontext des autonomen Fahrens in komplexen urbanen Umgebungen.
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1 Introduction

This thesis investigates the multi-sensor environment perception of mobile robots, in partic-

ular the detection and tracking of moving objects in the context of automated driving. This

introductory chapter first briefly motivates the broad topics of mobile robots, autonomous

vehicles, and multi-sensor environment perception in general, followed by a short discussion

of the challenges in that context. Finally, an overview of the proposed approach of this

thesis is presented, including a summary of the main contributions as well as the structure

of the subsequent chapters. Parts of this thesis have also been published separately in [1–5].

1.1 Motivation

Mobile robots have been a vast field of research for several decades. Enormous technological

progress has been achieved in the meantime with many robots already being used success-

fully in various applications. In the household sector, for example, service robots for domes-

tic tasks, such as autonomous vacuum cleaning robots and lawn mower robots, are being

used more and more frequently, with a total of 39.5 million units expected to be sold world-

wide in the period 2019–2021 and an estimated compound annual growth rate (CAGR) of

about 31% [54]. Similarly, in the logistics industry, warehouses are increasingly automated,

even for complex tasks such as object-individual orders with small products or working

alongside humans, by mobile piece picking robots [18]. Some supermarkets also already

employ first assistance robots, not only for floor cleaning or inventory shelf-scanning tasks,

but also for directly guiding and supporting customers [19, 53]. Moreover, several compa-

nies have started to use small delivery robots for autonomously bringing parcels and goods

such as groceries from warehouses or retail stores to homes and offices within urban areas

by small ground-based robots [114] or air drones [9, 10]. Equivalently, in the whole trans-

portation sector, established means of transportation such as trains, trucks, buses, or cars

are more and more automated to support and relieve drivers – toward the ultimate vision

of autonomous driving, i.e., self-driving vehicles without requiring human drivers.

Autonomous vehicles thereby have great potential to fundamentally change our lives in

different ways. Most importantly, automated systems generally have the ability to signifi-

cantly increase the safety of transportation as they permanently remain attentive without

getting tired, potentially saving millions of lives. Various advanced driver-assistance sys-

tems (ADAS) already support drivers and significantly increase the road safety, but, still,

globally about 1.35 million people die every year in road accidents [144], mostly caused by

human driving errors that are principally preventable. Another aspect of intelligent au-

tonomous vehicles is an efficient traffic flow without traffic congestion, not only by avoiding

accidents, but also by predictive and cooperative speed adaptation rather than the com-

mon shock wave phenomenon of stop-and-go reactions [52, 145], possibly further improved

by vehicle-to-everything (V2X) communication [140]. This reduces the overall emission
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as well as the average travel time, while passengers can also spend their time during the

journey on other tasks. Since then no drivers are required anymore, transportation costs

for both moving people as well as goods can be further reduced, which also enables higher

individual mobility and economically priced on-demand transportation services. Robo-taxi

fleets in urban environments may thereby further revolutionize the shape of cities itself,

since then the large areas of parking lots would not be necessary anymore [90]. Overall, this

wide-ranging vision of autonomous driving is also expressed in economic studies, projecting

the global autonomous vehicle market to be valued at $54.23 billion in 2019, increasing to

$556.67 billion by 2026 with a CAGR of 39.47% from 2019 to 2026, according to [68].

With all this great potential, almost all automakers as well as several other tech compa-

nies and research institutes are working intensively to make self-driving vehicles a reality.

Although there has been tremendous progress in the last decade, intelligent and safe au-

tonomous driving in complex urban environments still remains a big challenge. One of

the most essential issues to drive autonomously and safely is a detailed understanding of

the surroundings of the corresponding vehicle. To plan interactive maneuvers and avoid

collisions in dynamic environments, it is essential to know which parts of the local en-

vironment are currently passable, where obstacles have to be avoided, and where other

traffic participants are moving. Therefore, sensor measurement data have to be processed

in different ways to obtain such information. This environment perception includes several

tasks, for example, object instances have to be abstracted from the raw measurement data

by specific features. A robust object tracking further requires a temporal filtering over

time including data association and recursive state estimation. In addition, it is crucial

to fuse measurement data of different kinds of sensors, in particular the three types lidar,

radar, and camera, to advantageously combine the respective strengths and weaknesses of

their individual physical measurement principles.

This thesis presents a novel multi-sensor environment perception approach that is suit-

able for real-time autonomous driving applications. A consistent estimation of moving

objects, static obstacles, and passable freespace is proposed, taking into account measure-

ment data of lidar, radar, and camera sensors. The basis of this approach forms a generic

low-level occupancy grid representation of the environment, but focus is also given on the

subsequent high-level abstraction and tracking of moving objects – overall resulting in

the Grid-Based Object Tracking. The contribution of this work is discussed in more detail

after the following overview of multi-sensor environment perception techniques.

1.2 Challenges of Multi-Sensor Environment Perception

For intelligent mobile robots it is crucial to perceive and understand the current local envi-

ronment, which overall represents a very broad subject area with many different research

approaches and applications. A fundamental and safety-critical task of environment per-

ception, in particular in the context of autonomous driving, is the robust detection and

temporal filtering of all kinds of objects and obstacles as well as passable areas of the sur-

roundings. In the following, the sensor-based estimation of such essential parts is discussed

for approaches that are solely based on measurement data of sensors mounted on the ego ve-

hicle, without depending on localization, offline road maps, or other external information.

2
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Detecting and tracking objects can involve various aspects and characteristics. In the

simplest case, only a single target is tracked with also only one measurement being present

at each time instance, i.e., the measurement directly corresponds to the object instance.

Since real sensor measurements are generally noisy and may also reflect only a part of the

object state, a state estimation with a tracking over time is required for robustness. For

example, only noisy position measurements of an object track may be available, but the

temporal filtering enables a smoothed position estimation as well as an implicit estimation

of the velocity and acceleration as the corresponding first and second derivatives, respec-

tively. Typically, a recursive strategy is applied with the two alternating steps of prediction

and measurement update, which, in the context of probabilistic estimation, corresponds to

a Bayes filter. This means that the expected state at the time instance of the measurement

has to be calculated based on the previous state combined with a motion model, which is

then partly corrected by the actual measurement. Most commonly, different variants of

the Kalman filter [57], including the extended Kalman filter (EKF) [32] and the unscented

Kalman filter (UKF) [55], or the particle filter [33] are used for almost all applications as

robust recursive state estimation methods. Challenges generally occur in selecting proper

measurement and state process models as well as an applicable filtering tradeoff between

increasing the robustness against noise and minimizing the filtering latency for highly

dynamic movements such as emergency braking.

The assumption that an object causes only a single measurement detection is reasonable

if that object can be approximated as a point target without a spatial extent, which may be

applicable for object tracking in very far distances like maritime or aerospace scenarios. In

the context of local environment estimation of mobile robots, however, in particular with

recent high-resolution lidar sensors, objects like a car or even a pedestrian may result in a

large number of measured detections of a sensor. Hence, the spatial extent as well as the

observable shape of an object have to be taken into account, resulting in so-called extended

object tracking [43]. This also means that measurement points have to be combined to form

a hypothesis of an object instance, most commonly using a bounding box shape assumption,

which then can be used to update the filtered object track, as exemplarily illustrated

in Fig. 1.1a. This object hypothesis extraction represents the actual object detection task.

There are various object detection approaches, which are usually optimized for the spe-

cific measurement data of the corresponding sensor type used. Established approaches

thereby focus on extracting and evaluating specific hand-modeled features. For lidar

data, the raw measurement points are thereby generally first clustered to segments,

e.g., using (radially bounded) nearest neighbor clustering [63, 79], density-based cluster-

ing [11, 40, 129], or a spatial grid structure discretization with a subsequent connected

component clustering [46]. Given such clusters, relevant features are analyzed to deter-

mine if a cluster represents an object, typically regarding specific object shape assump-

tions, for example using line, corner, or box fitting [45, 78, 79, 152]. Challenges remain

if such features are not very obvious, e.g., due to measurement noise or a lower resolu-

tion in larger distances, partial occlusion, or objects with unusual shapes that have not

been explicitly modeled. Radar detections are typically clustered similarly using density-

based approaches, which can be further enhanced by a polar range/azimuth representation

and additionally taking into account measured Doppler velocity and amplitude informa-
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Fig. 1.1: Illustration of different challenges of object tracking. (a) Single object tracking of extended

targets: measurement detections (black squares) have to be combined to form an object mea-

surement (green box) for updating the object track (orange box). (b) Multi-object tracking:

object measurements have to be associated to the individual tracks. (c) Multi-sensor multi-

object tracking: object tracks (or measurements) of different sensors have to be fused, here

with additional objects of a static road boundary (left side) and object ambiguities.

tion [62, 75]. In contrast to range-based lidar or radar measurements, camera-based object

detection methods require semantic image processing with class-specific features. Popular

image-based feature detection approaches are scale-invariant feature transform (SIFT) [72],

Haar-like features [132], or histogram of oriented gradients (HOG) [28]. Such classic com-

puter vision methods, however, have been significantly outperformed in the last couple of

years by modern deep learning approaches, in particular with different variants of convo-

lutional neural networks (CNN), e.g., [16, 39, 58, 67, 82, 97, 138]. Recently, similar CNN-

based approaches have also been successfully applied for object detection with lidar point

clouds [23, 153], as well as radar data [139, 151]. Overall, such deep learning approaches

enable an end-to-end learning without requiring any hand-modeled features, but in return

they depend on the availability of large labeled datasets, with a high variety of scenarios

and objects for a robust generalization, and high-performance computation power for so-

phisticated training and inference. Moreover, neural networks with full end-to-end learning

may possibly result in unknown behavior and are hard to analyze in detail, which, when

they are not combined with directly interpretable algorithms, is critical for safety-relevant

tasks such as object detection in the application of self-driving vehicles.

In addition to multiple measurement reflections that arise from a single object instance,

there are typically also multiple objects in the environment that have to be individually

tracked and distinguished, commonly known as multi-object tracking (MOT). Hence, data

association between the object hypotheses of the current measurement and the temporally

filtered object tracks that have been seen before, predicted to the time instance of the mea-

surement, is required to update each track by the proper measurement. This is exemplarily

illustrated in Fig. 1.1b for a simple scenario with two objects and unambiguous measure-

ments. Typically, a validation gate of each predicted track is computed to exclude measure-
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ments that differ significantly from the expected measurement likelihood, for example using

the Mahalanobis distance [73] of the object state and covariance. Popular data association

approaches are different variants of local or global nearest neighbor (NN/GNN) [65] asso-

ciation using fixed one-to-one associations, joint probabilistic data association (JPDA) [41]

using association probabilities with a weighted average of all validated measurements, or

multiple hypothesis tracking (MHT) [17, 96] using different hypotheses of the data associa-

tion and track update. Recently, multi-object tracking approaches based on random finite

sets (RFS) are increasingly used, e.g., [15, 74, 98–100, 133], modeling not only the object

states as random numbers, but also the number of objects and measurements itself. In con-

trast to common object-individual tracking approaches with separate filters, this enables a

more generic estimation of uncertainties about object instances and the corresponding data

association. However, due to its high computational complexity, this requires several ap-

proximations for real-time applications and also appropriate models for the probabilities of

birth, detection, disappearance, and false alarm in terms of clutter that may all be difficult

to model. Overall, data association challenges remain when there are association ambigu-

ities between multiple measurements and different tracks, in particular when objects are

close to each other. This even gets more complex when some of those measurements do

not represent an actual existing object, i.e., clutter, or when multiple measurements are

originated by the same track, e.g., due to partial occlusion. Hence, the data association

problem is also coupled with the object detection problem as discussed before.

As described so far, multi-object tracking for a single sensor is already a complex task.

For a robust and comprehensive environment estimation, covering a full surrounding 360°

detection area, however, sensor data fusion of multiple heterogeneous sensors is required,

with an advantageous utilization of the respective sensor strengths. A popular strategy for

such a multi-sensor multi-object tracking is a sensor-individual object detection and track-

ing as described above, followed by a late-stage high-level fusion of the filtered object tracks

of all sensors, e.g., [7, 8, 22, 76]. This means that for each individual sensor the raw mea-

surement data are abstracted to object instances, e.g., using a bounding box model. The

fusion is then performed afterwards based on that abstracted object representation, which

requires a high-level association between the object tracks of the different sensors. Such

an approach is suitable when objects can be clearly separated and distinguished from the

remaining part of the environment, i.e., when objects can be robustly detected and the ob-

ject abstraction is feasible without any significant approximation error. For instance, this

might be the case for highway scenarios with larger distances between traffic participants.

Thereby the early-stage object abstraction reduces the amount of data that have to be

transferred and processed in the subsequent steps, especially when it is directly computed

within the individual sensor processing units. However, if those object approximations are

inaccurate or some object assumptions are invalid, this early-stage abstraction results in

information loss of the subsequent processing steps and thus also in a more error-prone

fusion due to object ambiguities, as exemplarily illustrated in Fig. 1.1c.

For urban scenarios with densely moving objects, partial occlusion, and complex maneu-

vers of various traffic participants, such an information loss due to an early object approxi-

mation is therefore disadvantageous. This applies in particular to latest autonomous vehi-

cle prototypes with performant computing resources and an increased number of equipped
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sensors as well as their higher scanning resolutions itself. Hence, a major challenge of

multi-sensor multi-object tracking therefore remains in reducing the information loss of

common high-level object fusion architectures by fusing measurement data before object

assumptions are made, i.e., an early-stage low-level fusion with a late-stage object abstrac-

tion. This is also essential for the object detection itself, as it may be difficult to extract

an object by the measurement data of an individual sensor but more feasible to detect

that object given the combined data of multiple sensors. The same applies for separating

different object types and instances, such as closely moving pedestrians and a small vehicle.

A fundamental question thereby is which kinds of objects should be extracted at all – only

actually moving objects, all detectable vehicles and traffic participants, or even also all

obstacles of the static environment such as guardrails or buildings? For large static obsta-

cles, in particular when they are curved or non-convex, an object box fitting might result

in an improper approximation. In particular high-level object fusion approaches are even

more error-prone with such an object extraction of the static environment, since different

sensors may result in varying numbers and forms of extracted objects of that same static

environment, which is also depicted in Fig. 1.1c. An example of that issue with real-world

measurement data of lidar and radar sensors is demonstrated in Fig. 1.2. Based solely

on the high-level object representation of both sensor types as given in Fig. 1.2e, various

object ambiguities occur that prevent achieving an accurate multi-sensor model of the local

environment. In fact, it is even hard to understand the scenario at all that way. Details

of this scenario, including camera images, are demonstrated together with the processing

steps of the proposed approach in the next section in Fig. 1.3.

A popular concept for modeling and estimating the static environment without re-

quiring specific object assumptions is occupancy grid mapping [37, 128]. The basic idea

here is to spatially discretize the local environment into grid cells and estimate occupancy

probabilities of each grid cell. Sensor-specific measurement data can thus be modeled in

that uniform occupancy grid representation, enabling to represent obstacles with arbitrary

shapes without extracting specific high-level object features, only depending on the reso-

lution of the cell discretization. Furthermore, the concept of occupancy probabilities also

enables to model the opposite of obstacles – the freespace, i.e., cells that are free of ob-

stacles, which is important not only for the temporal filtering of clutter measurements but

also to determine the observability and clearance within the local environment. Since the

discrete grid structure remains fixed in the world and the odometry of the ego-movement is

assumed to be known, the association is implicitly performed by a cell-wise combination for

both the temporal mapping accumulation and the sensor data fusion. Hence, occupancy

grids enable not only a uniform sensor-independent representation and a probabilistic oc-

cupancy accumulation, but also a robust sensor data fusion and association, all by the grid

cell discretization without requiring object assumptions.

Typically, tracking dynamic objects and mapping the static environment are performed

as separate tasks, where measurement data either belong to the object representation or the

mapping of the remaining parts. This, however, requires a classification of the measurement

data into stationary obstacles and dynamic objects. Thereby it is also possible to perform

that classification by evaluating the measurement position in the accumulated grid map,

while dynamic parts are characterized by inconsistencies of previously derived freespace
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(a) (b)

(c) (d)

(e)

Fig. 1.2: Example of the problem of the late-stage sensor data fusion of abstracted object boxes with

real measurement data of lidar and radar sensors in an urban environment. (a/b) Lidar mea-

surements and corresponding object tracking. (c/d) Radar measurements and corresponding

object tracking. (e) Visual overlap of the sensor-individually tracked objects of (b) and (d)

that have to be fused to achieve a multi-sensor object tracking.

and currently measured occupancy or vice versa [80, 135, 137]. Hence, this enables a

moving object detection by clustering measurement data classified as dynamic, e.g., [20, 56,

106, 135]. Such a detection concept directly based on those occupied/free inconsistencies,

however, is error-prone to measurement inaccuracies of ranging or odometry sensors.

Therefore, a more robust strategy requires a recursive dynamic state estimation of the

grid map, i.e., extending the concept of occupancy grid mapping toward dynamic envi-

ronments. Latest approaches of such dynamic occupancy grids are based on a grid-based

particle filtering concept that enables a generic estimation of moving parts by continuous

velocity distributions of each grid cell, e.g., [29, 83, 85, 121]. Overall, this promising tech-

nique results in an accurate dynamic estimation and thus also in a temporally filtered cell-

wise static/dynamic classification. Challenges remain in a robust and efficient combination

of the persistent occupancy grid map accumulation and the short-term particle-based dy-

namic estimation, but also in an advantageous utilization of those dynamic grid mapping

concepts as part of a generic object tracking including object detection and association.
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1.3 Main Contribution and Outline of This Work

As discussed in the previous section, multi-sensor environment perception is a complex task

with various challenges. Thereby the concept of occupancy grids has many advantages: It

enables a uniform representation with an implicit data fusion and association by the cell

discretization; the additional dynamic grid estimation further enables a temporal filtering

of occupancy probabilities for both stationary and moving parts. No object assumptions

are required for that low-level estimation – in fact, it can be used instead as a pre-processing

step for the moving object tracking itself, which can then further benefit from that grid-

based sensor fusion and dynamic estimation. Based on the great potential of such a com-

bined approach, this work investigates a new environment perception strategy that fully

utilizes the advantages of dynamic grid mapping with a subsequent object tracking.

Overall Contribution of the Thesis

This thesis proposes theGrid-Based Object Tracking – a novel approach for the multi-sensor

multi-object tracking of moving targets including a consistent mapping of static obstacles

and passable freespace. The fundamental idea is to fuse and pre-process measurement data

in advance of the object tracking by the generic estimation of dynamic occupancy grids,

overall representing an early-stage sensor fusion and dynamic estimation with a late-stage

object abstraction. This architecture is significantly different to popular object tracking

approaches with a high-level object fusion, which are commonly based on the reversed

processing order in terms of an early-stage sensor-individual object abstraction and a late-

stage dynamic estimation and fusion. The resulting object estimation of this work is thus

based on the combined and temporally accumulated low-level measurement data of all

sensors, which has several decisive advantages.

The principal strength of the proposed strategy is clearly evident when comparing the

previously presented high-level object fusion example of Fig. 1.2 with the corresponding

processing steps of this work, which are highlighted in Fig. 1.3. The environment is modeled

here on the grid cell-level based on the low-level sensor fusion and mapping, where the

temporal filtering results in a generic differentiation of static and dynamic occupancy.

Surrounding traffic participants are thus directly noticeable as their movement results in

areas of dynamic occupancy, which significantly simplifies the subsequent moving object

tracking. As a result, all four traffic participants of this scenario are robustly extracted as

object instances here, whereas stationary obstacles, such as the construction site fence on

the right side, are accurately represented as static occupied cells in the grid map without

requiring any further object abstraction – that scenario was not directly obvious based on

the object-level representation of Fig. 1.2e.

The key advantage of the proposed approach is that it fully comprises and combines the

two tasks of tracking moving objects and mapping the static environment. Objects, obsta-

cles, and passable freespace are all consistently estimated based on the common low-level

occupancy grid map representation. No error-prone object abstraction or pre-classification

of measurement data into the static world or dynamic objects is required since measure-

ment detections are generally represented as occupancy; the differentiation between static

and dynamic occupancy is carried out as part of the temporal filtering over time within
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1.3: Overview of the main processing steps of the proposed approach. The scenario is the same

as in Fig. 1.2, which consists of four traffic participants: a vehicle in the front and another

one in the back, an overtaking scooter on the rear left side, and a pedestrian on the side-

walk that is partly occluded by a construction site fence. Color coding of the evidential grid

representation: green (freespace), pink (occupancy), blue (dynamic occupancy), red (static

occupancy), cyan (passable area). (a) Raw lidar and radar measurement data. (b) Fused

2-D measurement occupancy grid. (c) Temporally accumulated dynamic grid map. (d) Aug-

mented measurement grid (static/dynamic occupancy classification and cell-wise velocity

estimates by filtered dynamic grid map). (e) Object extraction and association (only con-

sidering dynamic occupied cells). (f) Grid-based object tracking (temporally filtered object

state estimation). (g)/(h) Camera images (rear/front) of the scenario (occurring moving

objects are highlighted by yellow circles).
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the dynamic grid mapping. This conceptual design ensures that no measurement data are

neglected due to an unknown object or obstacle type, i.e., all range-based measurement

detections result in an occupancy accumulation in this work. Other popular approaches

generally lack that essential ability, as they are based on already abstracted object in-

stances or an independent estimation of obstacles and objects. The algorithmic robustness

of this work also applies to the subsequent moving object extraction, which is based on the

dynamic grid map estimation including the cell-wise velocity estimation that thereby serves

as a track-before-detect strategy. That way, arbitrary-shaped moving objects are generally

detected by identifying their occupancy motion, overall ensuring a robust object estimation

in various environments, even for unknown object types that have never been seen before

or sparse sensor data with only a small number of detections, e.g., in far distances or in case

of partial occlusions. Popular appearance-based object detection approaches that rely on

specific features of the object shape, in contrast, commonly fail in such scenarios. This also

includes recent deep learning approaches, which, as opposed to this work, further highly

depend on large labeled training datasets. Altogether, the proposed approach results in

a generic and consistent environment estimation of arbitrary obstacles and objects, which

is especially crucial for the safety of autonomous robots in unstructured environments to

ensure avoiding collisions even in complex and unknown scenarios.

The primary grid-based estimation of this work thereby has several other benefits, also

for the subsequent object tracking. Due to the uniform occupancy model of all measure-

ment data, the approach does not necessarily depend on sensor-specific characteristics;

instead, it is directly adaptable to the number of sensors used, their mounting positions,

and the types of sensors themselves. Moreover, the additional freespace information of the

grid represents the negative information where currently no objects are present. This is

important not only for improving the object estimation itself, but also for determining the

overall observability of the scenario, i.e., to distinguish actual collision-free passable areas

and unknown occluded areas with potentially undetected objects or obstacles.

In conclusion, this thesis presents a novel environment perception approach that robustly

and consistently estimates moving objects, stationary obstacles, and passable freespace,

with a full surrounding 360◦ detection area of multiple lidar, radar, and camera sensors.

The approach thereby remains generic and versatile in various environments due to the

uniform dynamic grid representation and the movement-based object estimation. More-

over, since it is solely sensor-based, no prior map knowledge is required. Furthermore, it

is shown that the algorithm is real-time capable on a conventional modern computer by

an efficient implementation with highly parallelized GPU processing. All in all, the out-

come of this work is a new real-time multi-sensor environment estimation algorithm that

improves the perception capabilities of mobile robots and thus eventually their safety and

intelligence, especially for future autonomous driving applications.

Overview of the Individual Chapters of the Thesis

As part of the proposed overall Grid-Based Object Tracking strategy, this work addresses

all relevant processing steps of it: modeling and fusing the input measurement data, the

dynamic grid mapping, the object extraction and association, and the object state estima-

tion. To utilize the full potential of that approach, novel techniques are proposed for each
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of those processing steps, primarily based on the characteristics of the grid-based estima-

tion. In the following, a brief summary of the individual chapters of this thesis is given; a

detailed discussion of the contribution, including related work, is included in each chapter:

� Chapter 2 introduces the measurement grid representation for different sensor data

of lidar, radar, and camera. Measurement data are abstracted by an evidential occu-

pancy grid model, based on the Dempster–Shafer theory of evidence, to obtain a uni-

form, sensor-independent environment representation with uncertainties. A generic

grid-based fusion strategy of the sensor-individual measurement grids is proposed,

including concepts for the spatiotemporal alignment of asynchronous sensors. In

contrast to high-level object fusion approaches, no object abstraction or association

is required here due to the implicit cell-wise processing of the grid structure. To fur-

ther prevent information loss of additional sensor-specific measurement data such as

radar Doppler velocities and camera classification, as opposed to common grid-based

approaches, the measurement grid representation is extended by separate velocity

and classification grid layers in this work. The resulting fused measurement grid

represents the combined unaccumulated measurement data of all integrated sensors.

� Chapter 3 addresses the temporal accumulation of the fused measurement grids over

time. A new evidential dynamic grid mapping approach with a particle-based dy-

namic estimation is proposed. The dynamic grid map is modeled using an extended

evidential representation and filtering, which enables differentiating static and dy-

namic occupancy over time, implicitly modeling temporal transitions of hypotheses,

and handling conflicts of contradicting hypotheses. A particle-based velocity estima-

tion is used for filtering the dynamic state of the grid map and thereby initialize and

predict its dynamic occupancy, whereas static occupancy is directly modeled in the

grid map without requiring particles. Compared to other particle-based dynamic grid

approaches, this combined estimation with the persistent evidential map accumula-

tion improves both the robustness of the occupancy classification and the efficiency

of the particle tracking. Moreover, this approach is further enhanced by evaluating

the additional radar velocity and camera classification data of the fused measurement

grid for improving the cell velocity estimation as well as the occupancy classification.

� Chapter 4 presents novel approaches for the moving object detection and data as-

sociation, both based on the characteristics of the dynamic occupancy grid. New

objects are extracted by a density-based clustering of dynamic occupied cells with

a subsequent connectivity-based clustering and velocity variance analysis to mini-

mize false positives. In contrast to common appearance-based detection algorithms,

arbitrary-shaped moving objects are thus detected by the movement tracking itself,

without depending on specific features or training data. Furthermore, for filtered ob-

jects that have been extracted in the past, individual grid cells are directly associated

before abstracting object hypotheses, i.e., an association on the grid cell-level rather

than on the object-level, which is essential for urban scenarios with partial occlusions

and dense traffic. That association approach is further enhanced by linking particles

of the underlying particle-based dynamic grid estimation with object tracks, as this

enables an accurate free-form occupancy likelihood approximation of each object.
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� Chapter 5 proposes new concepts for the object state estimation over time – the final

step of a robust object tracking based on already associated measurement data. A

common box-model object shape is selected, but, compared to other object tracking

approaches, the grid-based measurement representation of this work also contains

freespace information that is evaluated in addition to associated occupied grid cells.

To fully utilize this extended measurement information, the object state is estimated

by two different filtering techniques. For the dynamic motion state, a popular UKF-

based estimation is used, with a specific object pose update by robustly selecting the

most visible reference point regarding surrounding freespace. The motion estimation

is further enhanced by a radar-based Doppler velocity measurement update. For the

static object shape, as a novelty, a combination of a histogram filter geometry distri-

bution estimation and an object classification concept is proposed. This enables to

model non-Gaussian distributions of the length and width by distinguishing lower and

upper bounds of the measurement, also evaluated by the freespace, and to use prior

class knowledge of the assumed object size when it has not been fully observed yet.

� Chapter 6 focuses on a detailed qualitative and quantitative evaluation of different

aspects of the proposed grid-based object tracking approach. This work has been pri-

marily tested with real sensor data of test vehicles in various complex scenarios in the

context of autonomous driving, also using reference measurement systems for ground

truth generation, which is further extended by challenging simulation scenarios.

� Chapter 7 concludes this thesis and presents an outlook of potential improvements

and extensions for future work.
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2 Measurement Grid Representation and Fusion

This chapter introduces the generic occupancy grid representation of sensor measurement

data, which forms the basis of this work. It is shown how different measurement data of

lidar, radar, and camera are modeled and fused within the grid-based framework. The oc-

cupancy grid is modeled using an evidential representation based on the Dempster–Shafer

theory of evidence, resulting in separate occupancy and freespace evidence masses. Addi-

tional sensor-specific measurement data, in particular radar Doppler velocities and camera

classification information, are as well integrated into the grid-based measurement repre-

sentation, modeled by separate grid layers, to avoid information loss of such important

data. The individual measurement grids are fused robustly without requiring an explicit

association by utilizing the spatial grid cell discretization. Thereby additional strategies

for the spatiotemporal alignment of asynchronous sensor data and handling the activity

and update status of the different sensors are proposed. The resulting fused measurement

grid of this chapter represents unaccumulated measurement data, i.e., measurements from

a single time instance, which forms the input for the temporal filtering of the dynamic grid

mapping and the object tracking that are addressed in the subsequent chapters.

2.1 Introduction

The concept of occupancy grids is a popular way to model sensor-specific measurements

in a uniform low-level representation by discretizing the local environment into grid cells

and deriving occupancy probabilities for each cell. Various sensor data can thus be fused

and temporally accumulated cell-wise without requiring specific object assumptions. In

the following, different approaches of occupancy grids are briefly discussed before the con-

tribution of this chapter is summarized. The focus is thereby placed on the representation

of the occupancy state and the sensor data fusion strategy. The dynamic grid estimation

including the temporal accumulation is addressed separately in Chapter 3.

2.1.1 Related Work

The original idea of occupancy grid mapping was proposed by Elfes [37] in the late 1980s.

The local environment is discretized by quadratic grid cells in a planar 2-D representation,

where the occupancy state of a grid cell is modeled using a Bayesian occupancy probability.

It is based on the following key assumptions or approximations:

� Binary state: The state of a cell is either fully occupied or fully free, i.e., the area of a

cell is not partially occupied and free, requiring a sufficiently fine cell discretization.

� Cell independence: Cells are independent of each other, which is essential for simpli-

fying the estimation problem of the map into an efficient cell-individual estimation.
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2 Measurement Grid Representation and Fusion

� Known robot pose: The pose of the robot is known, e.g., measured by odometry

sensors, otherwise that would be a SLAM [127] problem.

� Static world : Each cell in the fixed world has a static state that does not change,

i.e., no moving objects occur in the local environment.

This occupancy grid representation enables a direct sensor fusion and temporal accumu-

lation with an implicit association, i.e., a cell-wise processing due to the uniform cell

discretization. Occupancy probabilities are thereby combined using the Bayes rule, or,

equivalently using a logarithmic representation, by the summation of the log-odds ratio

of the occupancy probability and its counterpart. Overall, that occupancy grid mapping

concept is widely used in various applications, often still using similar approximations and

assumptions. A detailed overview of occupancy grid mapping and various extensions is

given in [128]; the following brief discussion is limited to approaches that are relevant in

the context of this work.

The assumption that grid cells are independent of each other enables an efficient occu-

pancy grid computation by a parallel processing of the individual cells utilizing the high

parallelization capability of a graphics processing unit (GPU), as presented in [50, 147].

Thereby the authors model range-based measurement data as occupancy grids that directly

use the polar coordinate system of the respective measurement space, i.e., grid cells are

discretized by the measurement angle and range. Those polar grids are then transformed to

a uniform Cartesian space, as required for the data fusion and temporal accumulation, by

a GPU-optimized texture mapping approximation [44]. However, that polar-to-Cartesian

cell transformation may result in improper approximations, especially when multiple polar

cells overlap with one Cartesian cell or vice versa. This could potentially also cause the

disappearance of a small obstacle close to the sensor origin with a high angular resolution

due to averaging that occupied polar cell with freespace cells of neighboring beams.

The efficient occupancy grid computation of [50] is utilized for the road boundary detec-

tion based on lidar and radar sensor data, which are compared but not fused in that work.

Thereby radar measurements with non-zero absolute Doppler velocities are removed, i.e.,

such measurement information of moving parts is not considered. In [147], the occupancy

grid fusion of multiple lidar sensors is demonstrated using the common log-odds represen-

tation with the assumption of a static environment. Similarly, a grid fusion of lidar, sonar,

and monocular camera data based on the Bayes rule is presented in [115], with a specific

occupancy threshold binarization adaptation and a neighborhood cell consideration for

filtering the inaccurate sonar measurements.

Pagac et al. [91] introduced an evidential occupancy grid representation based on the

Dempster–Shafer theory (DST) of evidence [34, 111], which enables a more generic model

of uncertainties and conflicts by separate evidence masses of occupancy, freespace, and un-

known instead of a single Bayesian occupancy probability. A similar approach is proposed

by Moras et al. [80, 81], which further use the evidential hypotheses to determine conflicts

and thereby detect moving objects as discussed separately in the dynamic grid estimation

of the next chapter. The generic concept of such an evidential grid framework is also used

in several other approaches and forms the basis of this work as well.

An evidential grid fusion of lidar and stereo camera is presented by Seeger et al. [109],

where small and large obstacles are distinguished as separate hypotheses and the state of
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neighboring cells is considered to improve the obstacle detection for narrow vertical field

of view sensors. The same authors extend the fusion strategy in [110] using an obsta-

cle association concept between different sensor grid maps by evaluating their individual

covariance with a discounting strategy of imprecise sensor grids. However, the obstacle

association is primarily intended for highway scenarios, whereas more cluttered urban sce-

narios might result in wrong associations. They also include radar sensors in that work,

but, since only the static environment is considered, equivalently to [50], detections with a

non-zero Doppler velocity are ignored, which is further restrained by filtering out all sensor

data that can be associated to objects of a separate object tracking module.

In a different way, Nuss et al. [87] explicitly include the information of moving objects in

the fusion of lidar and monocular camera data. The measurement data of both sensors are

also represented as evidential grid maps, where the lidar derives occupancy evidence with a

high position accuracy and the camera derives evidence of the image classification obtained

by a scene labeling, with additionally estimating the spatial uncertainty of the camera-to-

world projection. Overall, a fused evidential occupancy grid is extracted that contains not

only occupancy evidence but also camera classification information. However, the approach

remains error-prone to an inaccurate depth estimation of the camera. They also proposed

to fuse lidar and radar data in [88], however, focusing on using radar Doppler velocities for

the dynamic grid estimation without detailing the measurement grid fusion concept, which

also applies to [121], as both discussed in more detail in Chapter 3. Recently, Valente et

al. [130] presented a similar approach to fuse lidar and camera data, but using a stereo

camera with a more accurate depth estimation, at least in the near range. They also use an

evidential occupancy grid representation; however, occupancy evidence is directly derived

from the stereo camera data, ignoring freespace, without including any additional camera

segmentation information in the fused measurement grid.

Overall, there are various approaches for modeling and fusing sensor data using an oc-

cupancy grid representation. The specific sensor models generally depend on the deployed

sensor type and are therefore usually not directly comparable. Evidential occupancy grids

thereby represent a generic concept for robustly modeling different hypotheses and thus also

uncertainties and conflicts. Since several of the grid-based approaches focus on estimating

static environments, various measurement data of moving objects are often intended to be

filtered out instead of explicitly including such measurement information, which also applies

to radar Doppler velocities and camera segmentation information. For fusing measurement

data of dynamic environments, however, measurements of moving objects obviously have

to be considered. Thereby it is further important to take into account differences of the

measurement time instances, since the environment may change in-between, which is not

investigated by any of those grid-based fusion approaches. In the following, those different

aspects are addressed to achieve a robust measurement grid fusion that forms the input of

the subsequent dynamic grid mapping and object tracking.

2.1.2 Contribution and Outline

This chapter presents how measurement data of lidar, radar, and camera are reasonably

modeled and robustly fused within the grid-based representation of this work. The main

contributions are as follows within the respective sections:
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� Section 2.2 provides a brief introduction of the selected evidential occupancy grid

representation including the spatially discretized grid structure and the evidential

model that is based on the Dempster–Shafer theory of evidence.

� Section 2.3 presents the sensor models that are required to derive measurement grids

with the uniform evidential occupancy grid representation for the used lidar, radar,

and camera sensors of this work. Moreover, as opposed to common grid-based ap-

proaches, the measurement grid representation is further extended by separate grid

layers for radar Doppler velocities and camera classification information to retain

such important additional measurement data in the grid-based framework.

� Section 2.4 focuses on the grid-based data fusion that combines the individual sensor

measurement grids. Thereby evidence masses are generically fused with the respec-

tive uncertainties, utilizing the evidential Dempster–Shafer framework, and, due to

the spatial grid discretization with the cell-wise processing, no association or object

abstraction is required. In contrast to similar grid fusion approaches, the problem of

asynchronous sensor data is considered, where new strategies for the spatiotempo-

ral alignment of measurement data and handling the activity status of the different

sensors are proposed.

This chapter is completed by demonstrating some qualitative results including a brief

summary in Section 2.5. In conclusion, the resulting fused measurement grid represents

the combined unaccumulated measurement data of all integrated lidar, radar, and camera

sensors with a full surrounding 360◦ detection area.

2.2 Evidential Occupancy Grid Representation

As motivated before, the basic idea of occupancy grids is to discretize the local environment

into grid cells and estimate the occupancy state of each individual cell. This section briefly

introduces the used spatial grid structure and the evidential occupancy representation.

2.2.1 Spatial Grid Structure

The environment is spatially discretized by a 2-D Cartesian grid, resulting in the individual

grid cells c ∈ G of the local grid structure G. As commonly used, all cells are arranged as

equally sized squares in this work. The grid is referred to a fixed odometry coordinate sys-

tem, where the position of the ego vehicle, relative to the starting location that denotes the

origin of the coordinate system, is estimated by accumulating the relative ego-movement,

measured by motion sensors.

The area of the relevant grid cells changes with the position of the ego vehicle, i.e.,

only the current local environment is considered, which is illustrated in Fig. 2.1 for two

time instances. Thereby only integer translations ∆x and ∆y regarding the cell size are

performed and rotations of the grid structure are avoided. Instead, the pose of the ego

vehicle inside the local grid varies over time, as also used in [36, 49, 84, 118]. The ego

vehicle can be positioned at the center of the relevant area, but also, for instance, placed
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Fig. 2.1: Illustration of the grid structure with the fixed odometry coordinate system. The relevant

area of the local grid adjusts with the pose of the ego vehicle, depicted by two time instances

shown in red and blue, respectively. The fixed grid structure thereby ensures an exact spatial

overlap of the individual cells between different time instances, whereas the pose of the ego

vehicle within that local grid changes, here with a radial offset to the center of the local grid.

with a radial offset to that center, which then corresponds to a circular movement of the

ego vehicle within the local grid, varying with a changing ego orientation, as also depicted

in Fig. 2.1. Hence, this enables a greater perception range to the most critical area in the

front without enlarging the local grid resolution. This position offset can also be applied for

the local grid of each individual sensor and adapted to the respective sensor field of view,

e.g., using an additional tangential offset for sensors that are primarily mounted to the side.

Overall, since occupancy grids of different sensors are also all modeled in that uniform

odometry coordinate system, an exact spatial overlap of cells is achieved for both the

temporal accumulation and the fusion of measurement data of different sensors. Therefore,

the spatial discretization of the grid structure enables an implicit data association and

fusion by a cell-wise processing, which is a generic and robust approach since no specific

object assumptions are required.

2.2.2 Evidential Occupancy Representation

Based on the spatial grid structure, the occupancy state of each individual cell is estimated.

Thereby the Dempster–Shafer theory (DST) of evidence [34, 35, 111] is used, which, in

contrast to a single Bayesian occupancy probability, enables modeling separate hypotheses

including their combined hypotheses and thus also a more generic representation of uncer-

tainties. In the following, similar to [80, 91, 121], measurement data are modeled in the
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occupancy grid by the two hypotheses occupancy (O) and freespace (F ), resulting in the

frame of discernment

Θz = {O,F} , (2.1)

which represents the set of all modeled hypotheses. In Chapter 3, based on [121], the

occupancy hypothesis O is further divided into the two hypotheses static occupancy (S)

and dynamic occupancy (D), which forms the basis for distinguishing static obstacles

and moving objects as part of the temporal filtering. However, this chapter remains the

hypotheses superset O = {S,D} of occupancy without that static/dynamic differentiation.

In the DST framework, each hypothesis θ of the power set 2Θ with the frame of dis-

cernment Θ, i.e., θ ∈ 2Θ or equivalently θ ⊆ Θ, is represented by an evidential basic belief

mass m(θ), also denoted evidence mass in the following, with the basic belief assignment

m : 2Θ → [0, 1] , m(∅) = 0 ,
∑

θ⊆Θ

m(θ) = 1 . (2.2)

In terms of the defined frame of discernment Θz = {O,F}, this means that the evidence

masses of the individual hypotheses of occupancy, freespace, and the remaining unknown

set have to fulfill the equation

m(Oz) +m(Fz) +m(Θz) = 1 . (2.3)

The sum of the evidence masses of all subsets of a hypothesis θ is described in the DST

framework by the belief

bel(θ) =
∑

θ̃⊆θ

m(θ̃) ≤ p(θ) , (2.4)

which represents a lower bound of the Bayesian probability p(θ), whereas the corresponding

upper bound is defined by the plausibility

pl(θ) =
∑

θ̃⊇θ

m(θ̃) ≥ p(θ) . (2.5)

This also means that, based on the evidence masses of occupancy m(Oz) and

freespace m(Fz) with the frame of discernment Θz as defined in (2.1), the Bayesian occu-

pancy probability p(Oz) can be derived, using the pignistic transformation [113], by

p(Oz) = bel(Oz) +
1

2
m(Θz) =

1

2
(bel(Oz) + pl(Oz)) , (2.6)

with p(Oz) = 0.5 denoting an unknown state that also represents the prior here. That un-

known state, however, cannot be distinguished from contradicting occupancy and freespace

measurements in that Bayesian representation.

Overall, the occupancy grid model represents a generic, sensor-independent environment

model. The evidential DST framework further enables estimating individual hypotheses

as well as their supersets and the conflicts between different hypotheses, which is used for

the sensor data fusion and especially later in the temporal filtering with the additional

static/dynamic occupancy differentiation.
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2.3 Sensor Measurement Grids

The previous section has summarized the concepts of the spatial grid discretization and the

evidential occupancy model that result in a generic representation of range-based measure-

ment data. This section discusses how the sensor-individual measurement grids of lidar,

radar, and camera data, which form the input data of this work, are derived. Thereby the

generic evidential occupancy grid derivation based on position measurements is presented,

but also the representation of radar velocity measurements and camera classification in-

formation within that grid-based framework, as exemplarily illustrated in Fig. 2.2.

2.3.1 Generic Position-Based Evidential Occupancy Grid Derivation

As discussed before, there are several variants for determining occupancy grids based on

sensor data. Those approaches can be divided into the following three aspects. First, a

polar grid structure, equivalent to the polar measurement space, can be used with a subse-

quent transformation to the Cartesian space, e.g., with a texture mapping approximation

approach [50, 147], or the Cartesian grid can be filled directly. Second, a forward sensor

model can be used that incorporates the dependency between neighboring cells [126], or an

inverse sensor model can be used that efficiently evaluates the occupancy of each cell inde-

pendently. Third, the occupancy state of a cell can be modeled by a Bayesian occupancy

probability or by evidence masses using the DST framework.

In the following, occupancy and freespace evidence masses are derived directly within a

Cartesian 2-D grid representation with position measurements by an inverse sensor model,

similar to [118]. Thereby measurements zj, with the index set j ∈ J defining all currently

occurring measurements of the corresponding sensor, are evaluated, but in the following

only the measured 2-D position xj
z of each measurement zj is considered for the occupancy

grid calculation. That position xz is relative to the local grid structure, i.e., it is referred

to the same odometry coordinate system as the position of the center of the cell c ∈ G that

is defined by xc. An illustration of a measurement occupancy grid derived from position

measurements is depicted in Fig. 2.2a.

Occupancy Evidence

The occupancy evidence is modeled by a 2-D Gaussian distribution

N (x;µ,Σ) =
1

2π
√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.7)

of the measurement with the measured position as the mean µ and the corresponding spa-

tial uncertainty as the covariance matrix Σ, evaluated at the position x. The covariance Σ

can be adapted, e.g., regarding the radial and tangential measurement direction.

In the following, as an approximation, the occupancy evidence mass m(Oc
z) of the grid

cell c is evaluated at the cell center xc rather than calculating the exact 2-D integral of

the Gaussian distribution over the area of the cell. Hence, for one measurement point xz,

the occupancy evidence mass m(Oc
z) is proportional to N (xc; xz,Σz). More generally, for
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Fig. 2.2: Illustration of the different sensor measurement grids (the sensor origin position is denoted

as xs, measurements are depicted as black dots). (a) Generic evidential occupancy grid

derivation from range-based measurements as primarily used for lidar data (pink: occupancy

evidence, green: freespace evidence). (b) Adjusted evidential occupancy grid derivation for

radar sensors with a higher uncertainty and additionally included radial velocity information

(blue arrows). (c) Camera classification grid and camera-detected object (yellow box).

multiple measurement points xj
z with j ∈ J affecting the cell c, the occupancy evidence is

derived by a Gaussian mixture of the individual measurements, i.e.,

m(Oc
z) = min

(
mmax

O ,
∑

j∈J

α
zj ,c
O N

(
xc; x

j
z,Σ

j
z

))
. (2.8)

The variable α
zj ,c
O ∈ R+

0 additionally enables regulating the impact of the measurement zj
on the cell c, which can depend, for example, on the positive predictive value (PPV) or

the signal-to-noise ratio (SNR) of the measurement, but also on the geometric evaluation

like the ratio of the beam overlap of that measurement with that cell. This factor also

regulates the overall saturation of the occupancy evidence in that cell, while the upper

bound of the resulting cell occupancy evidence is limited by the parameter mmax
O < 1.

Freespace Evidence

A cell that is currently not occupied or occluded, but visible regarding the current sensor

field of view, i.e., not described by the unknown state, is defined as freespace. This freespace

is typically not directly measured, but implicitly derived between the sensor origin and the

first measured obstacle within that measurement beam. Therefore, a polar relation of

the angles is required to derive the freespace evidence of the Cartesian grid. Thereby

the relative positions of the measurement and the evaluated cell from the sensor origin xs

are considered in the following, i.e., the two vectors (xj
z − xs) and (xc − xs). The angle

difference between those vectors is calculated by

∆ϕ(xc, x
j
z, xs) = arccos

(
(xj

z − xs) · (xc − xs)

∥xj
z − xs∥ · ∥xc − xs∥

)
(2.9)
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using the dot product of the two vectors and their corresponding magnitude. Hence, the

relevant measurements of a cell are limited to the set

J ′
c = {j ∈ J | |∆ϕ(xc, x

j
z, xs)| ≤ ϕmax

F } (2.10)

with the maximum considered angle difference ϕmax
F , which has to be selected at least as

the half of the angular sensor resolution, whereas larger values enable further considering

neighboring beams. The freespace evidence is finally derived as

m(F c
z ) =




min

(
mmax

F (1−m(Oc
z)) ,

∑
j∈J ′

c

α
zj ,c
F

)
, if dmin

F ≤ ∥xc − xs∥ < min
j∈J ′

c

∥xj
z − xs∥

0 , else ,

(2.11)

between a minimum distance dmin
F ≥ 0 to the sensor origin and the first measured obstacle

in the determined angular interval with the relevant measurements J ′
c . Similar to (2.8),

the parameter α
zj ,c
F further enables regulating the impact of the measurement zj on the

freespace of the cell c, e.g., the ratio of the beam overlap of that measurement with that cell.

The maximum freespace evidence of a cell is limited by the parameter mmax
F < 1, which

is further reduced by the conflict mass with the occupancy evidence, i.e., the occupancy

evidence dominates the freespace evidence, such that m(Oc
z) +m(F c

z ) < 1 with a certain

remaining mass m(Θc
z) > 0 of the unknown state to avoid singularities in the measurement

grid fusion or the temporal accumulation.

Overall, the measurement occupancy grid is thus generally described by

Zt = {zct | c ∈ G}, zct =
[
m(Oc

z), m(F c
z )
]T

(2.12)

with the individual cell measurements zct . This occupancy and freespace derivation in the

Cartesian grid structure is applicable to arbitrary range-based measurements. In the fol-

lowing, the measurement grids for the used lidar, radar, and camera sensors are briefly

discussed, which also contain additional information modeled in separate layers, in partic-

ular radar Doppler velocities and camera classification and segmentation information.

2.3.2 Lidar Measurement Grids

Lidar sensors provide accurate position measurements with a high angular resolution and

precisely measured distances. Therefore, those sensors are well suited for deriving occu-

pancy grids with high evidence masses for both occupancy and freespace. In this work, two

different lidar configurations are used, which have to be handled slightly different, as briefly

discussed in the following. Those two different configurations are illustrated in Fig. 2.3

and shown in an example with real sensor data in Fig. 2.4.

In the first configuration, shown in Fig. 2.3a, low-mounted lidar sensors with only a few

vertical layers and a small vertical field of view are used, which are aligned approximately

parallel to the roadway. Due to the low-mounted sensor position, the freespace can be

derived directly between the sensor origin and the first measured obstacle in each beam

segment. Hence, the generic position-based sensor model as defined in (2.7)–(2.11) and

depicted in Fig. 2.2a can be used without modifications.
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(a) Lidar configuration with a low-mounted sensor with only a few vertical layers.

(b) Lidar configuration with a high-mounted sensor with a high vertical resolution.

Fig. 2.3: Comparison of two lidar configurations with different mounting positions and sensor reso-

lutions. The illustration shows an example with an obstacle (gray box) and the occurring

measurement detections (black dots), while segmented ground points of (b) are additionally

filled in green. The 1-D sideview perspective of the occupancy grid is shown on the ground

of each configuration, respectively.

In the second configuration, shown in Fig. 2.3b, a high-mounted lidar sensor, above the

roof of the ego vehicle, with a high vertical resolution and a full 360◦ horizontal field of view

is used. Therefore, the number of measurement points is significantly higher than those

obtained in the first configuration, resulting in a more accurate and denser environment

representation. However, this also leads to many measurement reflections on the ground

surface, and also some reflections of high obstacles that are passable underneath, which

both should not be handled as obstacles for the 2-D occupancy grid. Hence, this requires

a point cloud segmentation of the 3-D measurement data. For this pre-processing task, an

efficient local ground plane estimation as proposed in [46] is used, and invalid obstacles

that are too high are determined by a maximum height relative to the estimated ground

plane. An example of the resulting point cloud segmentation is shown in Fig. 2.4b.

In that second configuration, due to the high-mounted sensor position, the vertical

field of view close to the sensor is limited and partially occluded by the ego vehicle itself.

This means that there could be undetected obstacles close to the ego vehicle underneath

the vertical field of view. Therefore, the freespace is not directly derived from the sensor

origin. Instead, it is only derived above a minimum distance dmin
F , as included in the general

freespace model in (2.11), which has to be selected large enough such that even a small

obstacle is detectable at that distance within that beam segment. The field of view thereby

depends on the relative sensor position, the pitch and roll movements of the ego vehicle, and

the geometry of the ego vehicle as well as sensor mounting attachments. However, the raw

lidar measurement data also contain detections on the ground, which have been segmented

by the ground plane estimation as described before. This means that the freespace can
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(a) (b)

(c) (d)

(e)

Fig. 2.4: Example of the lidar measurement data and the corresponding measurement grid with the

two different sensor configurations. (a) Measurement data of the low-mounted front lidar

sensor with only a few vertical layers. (b) Measurement data of the high-mounted lidar sensor

with a high vertical resolution. The color coding additionally shows the point segmentation

(green: ground, red: valid obstacles, yellow: passable underneath). (c) Measurement grid of

the sensor data of (a). (d) Measurement grid of the sensor data of (b). (e) Camera image.
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2 Measurement Grid Representation and Fusion

also be directly computed from the measurement without explicitly evaluating the sensor

field of view, thereby representing the most conservative choice with actually measured

freespace in contrast to an implicit beam derivation. Hence, freespace within one beam

segment is derived in distance intervals that contain only ground points, i.e., the lower and

upper distance thresholds are defined by the first and last measured consecutive ground

point without any in-between obstacles. Those measured ground points further enable

deriving freespace behind smaller obstacles, as also illustrated in 2.3b.

Overall, lidar measurement grids, for both sensor configurations, are modeled with high

evidence masses for occupancy as well as freespace, since they generally have a high spatial

accuracy. They form the main sensors for the occupancy grid mapping and thus also for

the detection and the pose and shape estimation of moving objects of this work.

2.3.3 Radar Measurement Grids

Radar sensors are widely used in various perception systems, in particular due to their

robustness in different weather conditions, the high detection range, the ability to directly

measure velocity components by the Doppler effect, and the advanced level of industrializa-

tion with relatively low production costs compared to lidar sensors. Detailed information

about the physical measurement principle based on radio waves and different applications

of radars can be found, for instance, in [59, 112, 142].

Similar to lidar detections and range-based measurements in general, radar detections,

extracted by signal processing of the raw frequency measurement, also represent obstacles

measured in the polar space by the corresponding distance and azimuth angle. The radar

measurement occupancy grid, as illustrated in Fig. 2.2b, is thus also derived as described

before with the position measurements xj
z, which is directly computed in the Cartesian

space of the grid. As with all sensors, thereby the sensor uncertainty has to be considered

for the parameterization of the occupancy and freespace derivation. Most commonly, the

spatial accuracy of radars, in particular the angular accuracy, is lower in comparison to

lidar sensors. In such a case, the occupancy derivation of (2.8) has to be selected more

conservatively with a higher spatial uncertainty Σj
z and a lower amplitude α

zj ,c
O , in particu-

lar for measurements with a low radar cross section (RCS) [64], which may further depend

on the ratio of false positives or additional measurement effects like multi-path reflections.

Equivalently, also the freespace derivation of (2.11) has to be adjusted then. In addi-

tion, since the angular resolution is not directly fixed for some radar sensors, i.e., radar

detections may occur at arbitrary angles without specific beam segments, the freespace

limitation regarding the first obstacle of neighboring measurements may be selected more

restrictive by considering a higher maximum angle difference ϕmax
F in (2.10). An exam-

ple of real radar detections with a conservatively-modeled evidential occupancy grid is

demonstrated in Fig. 2.5c–2.5d.

Another very important aspect of radar sensors is the unique ability to actually measure

velocity components by the Doppler effect. This direct velocity measurement, i.e., not

implicitly derived by the position difference, significantly improves the dynamic estimation

on both the grid cell-level and the object-level, as discussed in the subsequent chapters.

Therefore, it is important to retain that measurement information and include it within

the measurement grid representation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Fig. 2.5: Example of the measurement data of the different sensor types and their corresponding

measurement grid representations. (a) Lidar detections (high-mounted sensor). (b) Lidar

measurement occupancy grid. (c) Radar detections. (d) Radar measurement occupancy grid.

(e) Radar velocity grid (blue lines). (f) Camera detections and objects. (g) Camera classi-

fication grid of static detections (red cells). (h) Camera classification grid of objects with

additional spatial camera–lidar alignment (blue cells). (i) Image of the scenario.
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2 Measurement Grid Representation and Fusion

In the following, a radar velocity measurement is described by the vector

zr =
[
vrz , θ

r
z, xs

]
(2.13)

with the radial velocity component vrz , the corresponding azimuth angle θrz, and the 2-D

position xs of the sensor origin. All components are referred to the fixed odometry coordi-

nate system, i.e., the angle θrz corresponds to the angle between that radial measurement

direction and the x-axis of the grid structure. Accordingly, the radial velocity

vrz = vrz,rel + vrego,s , (2.14)

describes the absolute velocity rather than the originally measured relative velocity vrz,rel,

i.e., it is already compensated by the velocity vrego,s of the ego vehicle evaluated at the

position xs of the sensor s. The velocity component vrego,s of the measuring sensor depends

on the longitudinal velocity vego and the turn rate ωego of the ego vehicle, which are both

referred to the center of the rear axle as the assumed center of rotation. However, the

position differences between the sensor s and that reference position of the ego vehicle

within the object coordinate system (OCS), i.e., the fixed mounting position within the

ego vehicle, have to be taken into account, which are defined by ∆xOCS
s and ∆yOCS

s . The

2-D velocity of the sensor within the OCS of the ego vehicle is then determined by

[
vx,OCS
ego,s

vy,OCS
ego,s

]
=

[
vego − ωego ∆yOCS

s

ωego ∆xOCS
s

]
, (2.15)

as described in more detail in [59], which is also similarly discussed in Section 5.4.2 in

the context of the radar-based velocity estimation of surrounding target vehicles. The

compensating velocity of the sensor is finally calculated as

vrego,s = cos(θrz − φego) v
x,OCS
ego,s + sin(θrz − φego) v

y,OCS
ego,s (2.16)

with the angular difference θrz − φego between the azimuth angle of the radial component

and the orientation of the ego vehicle.

In order to combine this velocity information with the position measurements of the

occupancy grid, each radar velocity measurement zr is also represented in the discretized

grid structure for the individual grid cells c ∈ G. Equivalent to the occupancy derivation,

the velocity information is also spread over several cells to model the spatial uncertainty,

but also the assumed similarity of the velocity component in neighboring cells. Thereby

at most one radial velocity measurement is represented in a cell, requiring that the best

measurement regarding the highest occupancy evidence is selected by

j∗ = argmax
j∈J

(
α
zj ,c
O N

(
xc; x

j
z,Σ

j
z

) )
, (2.17)

using the occupancy derivation of each measurement j as defined in (2.8). The measured

velocity information of a cell c ∈ G finally results in

zcv = zrj∗ ∀ {c ∈ G | m(Oc
z) > mmin,v

O } , (2.18)
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while only cells above an occupancy evidence mmin,v
O > 0 are considered for containing the

corresponding velocity measurement.

Overall, radar Doppler sensors enable also to derive measurement velocity grids, which

are modeled as two additional layers of each measurement grid to represent the 2-D velocity

vectors, i.e., the radial velocity vrz and the corresponding measurement direction θrz. Those

measured radial velocities are visualized as additional arrows in the illustration of Fig. 2.2b

as well as in Fig. 2.5e. Moreover, as used later for the radar-based object state estimation in

Section 5.4, the position of the radar sensor origin xs is also contained in the measurement

grid to avoid bias errors of the cell positions due to the grid discretization. In the current

processing step, for the measurement grid of one sensor, this sensor position is equal for

all cells and thus included independently of the individual cells.

2.3.4 Camera Measurement Grids

Camera sensors are also very popular for various perception applications, as they are well-

developed, relatively cheap to produce, and computer vision is essential for a detailed scene

understanding that is similar to human vision. The measurement principle of camera sen-

sors, however, is significantly different to lidar or radar sensors, since, in contrast to such

generic range-based measurements, relevant information has to be extracted first from the

image, by segmentation and classification, before it can be further processed. As computer

vision is a very broad and complex field with various approaches, it is not covered in the

scope of this thesis. Instead, the image processing parts as well as the projection into the

world coordinate system are assumed to be pre-processed in advance and available as input

to this work. In the following, two kinds of extracted measurement data of the camera

sensors are used. First, primarily for the estimation of surrounding traffic participants,

extracted high-level objects with a bounding box shape are available. Second, primar-

ily for the additional estimation of the static environment, detections that represent the

first obstacle in terms of non-drivable area in an angular segment using a polar discretiza-

tion are available. Thereby both objects and detections include classification information,

whereby the instance-based segmentation information is only present for objects. Both

representations are depicted in Fig. 2.2c and shown with real sensor data in Fig. 2.5f.

Based on such pre-processed camera measurement data, especially using the detection-

based representation, occupancy grids can be derived similarly to those of the lidar and

radar sensors. However, the depth estimation based on camera images is generally rather

inaccurate, which is also the case for the cameras used in this work. This means that

the distance error of camera-extracted objects and obstacles can be high, as demonstrated

in Fig. 2.5f for the most distant vehicle, for instance. Hence, it would be error-prone to

directly derive significant occupancy and freespace evidence masses of that sensor, since

the occupancy evidence masses of all sensors are fused cell-wise as discussed in the next

section, which requires a high position accuracy. Therefore, occupancy and freespace

evidence masses are not directly derived from the camera data in the following. Instead,

the camera information is primarily used for the segmentation as well as the classification,

which are modeled as separate grid layers by

zκ =
[
κcam
class, κ

cam
id

]
, (2.19)
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2 Measurement Grid Representation and Fusion

with κcam
class denoting the camera classification and κcam

id denoting the segmentation in terms

of an object identifier or index that links a grid cell to an instance of the camera object list.

This additional information is then used to classify occupied cells of other sensors; hence it

can be derived with a higher spatial uncertainty here. This classification strategy is directly

applied for the camera-based obstacle detections of the static environment, with a modeled

high uncertainty in the radial direction as shown in Fig. 2.5g. The camera-detected objects

are handled differently, as briefly discussed in the following.

Spatial Camera–Lidar Alignment

To further improve the position accuracy of the camera objects, in particular in larger

distances, an existing camera–lidar alignment strategy [119] is applied; other similar ap-

proaches can be found, for instance, in [14, 31, 150]. The basic idea here is to correct

the distance of camera objects by lidar data if matching lidar detections can be found in

that angular camera segment with a maximum allowed relative distance difference. As a

result, camera objects are directly linked to lidar detections, where also the camera clas-

sification and segmentation of objects is then derived with the same spatial accuracy as

the occupancy evidence of the lidar detections, as exemplary demonstrated in Fig. 2.5h.

This strategy can also be further extended using an association of the camera objects with

radar detections, in particular when no corresponding lidar data were found in the angular

camera segment. If no matching range-based sensor data are found for a camera-detected

object, this object is assumed to be a false positive, i.e., a wrongly extracted object.

2.4 Measurement Grid Fusion

The previous section has presented how measurement data of different sensors are rep-

resented as individual measurement grids using the evidential occupancy and freespace

hypotheses and the spatial grid cell discretization. This section focuses on the subsequent

sensor data fusion of those different measurement grids to obtain one fused measurement

grid, which forms the input to the measurement update of the grid mapping and object

tracking of the subsequent chapters.

2.4.1 Basic Cell-Wise Fusion of Evidence Masses

The occupancy grids of all sensors are discretized using the fixed odometry coordinate

system, ensuring an exact spatial overlap of all grid cells of different sensors as described

in Section 2.2.1. Therefore, the sensor data fusion can be performed for each individual

cell of the uniform grid structure by combining the evidence masses of each sensor for that

particular grid cell. Hence, no explicit association between the measurements of different

sensors is required, since the grid structure implicitly performs that cell-wise association.

General Combination Principle of Evidential Belief Masses

The evidence masses of different sources, e.g., measurements of multiple sensors, can be

fused within the Dempster–Shafer evidential framework with various rules of combination,
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2.4 Measurement Grid Fusion

while the combination is typically denoted by the symbol ⊕. The basic idea is formed by

the intersection of different hypotheses, resulting in the conjunctive rule of combination

m(θ|Zs1 ⊕c Zs2) =
∑

α∩β=θ

m(αs1)m(βs2) , θ, α, β ⊆ Θ , (2.20)

based on the evidential data Zs1 and Zs2 of the two sources s1 and s2, respectively, which

is denoted in the following by the conditional term Zs1 ⊕c Zs2 . Thereby θ describes the

evaluated hypothesis of the frame of discernment Θ, whereas α and β describe all possible

hypotheses of the sources s1 and s2, respectively, within that same frame of discernment Θ,

such that the intersection of those hypotheses results in the evaluated hypothesis θ of the

combined output.

Similar to (2.20), the conflict mass

ζ(Zs1 ,Zs2) =
∑

α∩β=∅

m(αs1)m(βs2) (2.21)

describes the evidence of the sum of intersections resulting in the empty set ∅, which is

caused by evidence masses of contradicting hypotheses. This conflict mass can be assigned

in different ways toward the evidence masses of the individual hypotheses θ ⊆ Θ, taking

into account that the evidence masses of all subsets of Θ including Θ itself have to sum

up to 1 as defined in (2.2). A popular approach is Dempster’s rule of combination [111]

m(θ|Zs1 ⊕d Zs2) =
m(θ|Zs1 ⊕c Zs2)

1− ζ(Zs1 ,Zs2)
, ζ(Zs1 ,Zs2) < 1 , (2.22)

which normalizes the conjunctive combination ⊕c by an inverse of the conflict mass, i.e.,

the conflict mass is assigned proportionally to the corresponding evidence masses of the

intersections. Another possibility is an assignment of the conflict mass to concrete hy-

potheses, e.g., the unknown set Θ, the union set α ∪ β, or a hypothesis-specific assignment

modeled by expert knowledge [70]. The latter is used in Chapter 3 to solve the prediction

and measurement update of the dynamic grid mapping with specific behavior.

For more than two sources, the combination is simply performed iteratively by

m(θ|Zs1 ⊕Zs2 ⊕ · · · ⊕ ZsN ) = m (θ| ((Zs1 ⊕Zs2)⊕ . . . )⊕ZsN ) , (2.23)

since the used evidential combination approaches fulfill the associative property [123].

Cell-Wise Evidential Measurement Grid Fusion

In the context of the measurement grid fusion of this chapter using the frame of discern-

ment Θz = {O,F} with the two individual hypotheses occupied O and freespace F , the

conjunctive rule of combination of (2.20) of a cell c ∈ G of the grid structure G results in

m(Oc
z|Zs1 ⊕c Zs2) = m(Oc

z,s1
)m(Oc

z,s2
) +m(Oc

z,s1
)m(Θc

z,s2
) +m(Θc

z,s1
)m(Oc

z,s2
) , (2.24)

m(F c
z |Zs1 ⊕c Zs2) = m(F c

z,s1
)m(F c

z,s2
) +m(F c

z,s1
)m(Θc

z,s2
) +m(Θc

z,s1
)m(F c

z,s2
) . (2.25)

As described before, the conflict mass

ζ(Zs1 ,Zs2) = m(Oc
z,s1

)m(F c
z,s2

) +m(F c
z,s1

)m(Oc
z,s2

) , (2.26)
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which is caused here by contradicting occupied and freespace measurements, can be as-

signed in different ways. The most conservative choice in the context of collision avoidance

would be an assignment to the occupancy mass m(Oc
z), meaning that an obstacle that

is measured by at least one sensor would always dominate measured freespace of other

sensors. However, such a strategy would also be error-prone to false positives in terms

of ghost obstacles and objects, which could cause, for example, critical emergency brake

maneuvers. Instead, the evidence masses of the sensor measurement grids, as described

in the previous section, are modeled and weighted in a way such that they represent the

certainty of that particular sensor measurement. Therefore, the conflict mass is assigned

proportionally to both contradicting hypotheses by (2.22), i.e., the measurement grids are

fused cell-wise using the common Dempster’s rule of combination. The remaining unknown

mass of the combination thereby results in

m(Θc
z|Zs1 ⊕Zs2) = 1−m(Oc

z|Zs1 ⊕d Zs2)−m(F c
z |Zs1 ⊕d Zs2) > 0 . (2.27)

An example of that cell-wise measurement grid fusion with real measurement data of

five surrounding lidar sensors is shown in Fig. 2.6, which can be extended with an arbitrary

number of additional measurement grids of any sensor type.

2.4.2 Spatiotemporal Alignment of Asynchronous Sensor Data

It has been shown how occupancy and freespace evidence masses of sensor-individual mea-

surement grids are fused cell-wise using Dempster’s rule of combination, resulting in a

fused measurement grid with all measurement data representing the same time instance.

However, the measurement time of different sensors is typically not exactly synchronized,

e.g., due to varying measurement rates or an intentional offset to minimize mutual inter-

ferences of active sensors with the same physical measuring principles and an overlapping

field of view. Similarly, also the latency between the measurement time and the time when

the data is actually available as input to the sensor fusion algorithm typically varies for

different sensor types depending on the sensor-specific signal processing steps and also on

the data communication.

For static environments, it is sufficient to evaluate the pose of the ego vehicle and thus

the sensor origin at the corresponding measurement time. Since each sensor measurement

grid is represented in reference to the fixed odometry coordinate system, this time instance

is important to correctly map the raw measurements, which are relative to the sensor origin,

to that fixed grid structure. Hence, the measurement grid fusion can be performed for all

available measurement grids in static environments without further evaluating their time

instances, as they are already represented in that uniform fixed coordinate system.

For dynamic environments, however, time differences between individual measurements

are problematic, since the environment itself may change between different measurements,

e.g., due to surrounding moving objects, which cannot be directly compensated. As illus-

trated in Fig. 2.7, that problem of asynchronous sensor data is particularly relevant for the

low-level cell-wise fusion of this work, since spatial differences of position measurements

with varying time instances result in offsets of several grid cells due to the fine grid resolu-

tion. Hence, measurements of the same moving object may occur at completely different

grid cells, causing multiple occupancy shapes and occupancy/freespace conflicts.
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2.4 Measurement Grid Fusion

(a) Measurement grid of lidar front. (b) Measurement grid of lidar front-left.

(c) Measurement grid of lidar front-right. (d) Measurement grid of lidar rear-left.

(e) Measurement grid of lidar rear-right. (f) Fused measurement grid of the 5 lidar sensors.

(g) Camera rear. (h) Camera front.

Fig. 2.6: Example of the cell-wise measurement grid fusion of the evidence masses of the sensor-

individual measurement grids of the five low-mounted lidar sensors of a real test vehicle.
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(a) (b)

(c) (d)

Fig. 2.7: Illustration of the problem of asynchronous sensor data fusion of measurement grids in dy-

namic environments without considering time differences. (a) Latest measurement grid at ts1
of sensor s1 (e.g. front-middle). (b) Latest measurement grid at ts2 of sensor s2 (e.g. front-

left), here with ts2 ≫ ts1 . (c) Fused measurement grid of (a) and (b). (d) Illustration of the

actual scenario with a static road boundary (gray) and an oncoming moving object (blue).

A naive sensor data fusion approach is thus to combine the latest measurement data of all

sensors, without evaluating their original measurement times, i.e., ignoring the additionally

included individual processing times and communication latencies of all sensors. To avoid

these mentioned fusion ambiguities or artifacts, however, it is important to consider those

time differences and to determine which sensor data have to be included in the current

measurement grid fusion. In contrast to high-level fusion approaches that combine sensor-

individually tracked objects, e.g., [8], no direct prediction of the individual sensor data to

one combined time instance is possible, since no objects are abstracted and no dynamic

estimation is available at this low-level processing step. One exception are radar detections

that can be predicted by the measured Doppler velocity when the movement direction

is known, which, at least for fast-moving objects such as highway scenarios, can often

be approximated by the heuristic of a movement direction parallel to the ego vehicle.

That concept has been proposed in [5] as preliminary work of this thesis. In this work,

however, primarily urban scenarios are considered, where that heuristic is generally not

valid. Therefore, the remaining section focuses on a generic measurement time interval

alignment strategy, as also published in [5], combined with a newly proposed fusion logic

that determines the activity and update status of all individual sensors.

Measurement Time Interval Alignment

The major part of time-caused fusion errors can be minimized by considering the original

measurement times rather than the times when the individual measurement grids are

available, i.e., without the additional latency. In the following, it is thereby assumed

that the measurement times of the individual sensors are referred to one system clock

without any sensor clock synchronization errors. This strategy requires a buffering of the
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ti

t∗i t∗i+1t∗i−1t∗i−2

tavailable

Ti−1,fusion

∆t∗

2

Fig. 2.8: Measurement time interval alignment approach, which evaluates the original measurement

times ti (upper row) rather than the time tavailable (lower row) when the measurement

data are available for the fusion, delayed by sensor and communication latencies. The

fusion interval Ti−1,fusion (dark gray area) is defined by the measurement time t∗i−1 of a

reference sensor with the corresponding update rate ∆t∗. The colored circles indicate the

time instances of occurring measurements with individual colors for each sensor.

sensor data, meaning that the fusion has to wait for the sensor data with the highest

latency, causing a trade-off between the accuracy of the fusion and the overall latency of

the system. As proposed in [5], the basic idea is to use one sensor with measurement

times t∗i as a reference sensor of the fusion, which defines corresponding time intervals

Ti,fusion =

[
t∗i −

t∗i − t∗i−1

2
, t∗i +

t∗i+1 − t∗i
2

)
, (2.28)

or, if the measurement update rate ∆t∗ of that reference sensor is constant, by

Ti,fusion =

[
t∗i −

∆t∗

2
, t∗i +

∆t∗

2

)
, with ∆t∗ = t∗i − t∗i−1 ∀i , (2.29)

which then enables to define the fusion interval Ti,fusion without waiting for the next mea-

surement of that reference sensor at t∗i+1.

All measurement grids, where the original measurement times are within that fusion

time interval Ti,fusion, are included in that fusion and thus approximated by the time t∗i ,

while each measurement is included exactly once in the fusion process. By that interval

alignment approach, the maximum fusion time error of each included measurement grid

is limited to ∆t∗/2, as also illustrated in Fig. 2.8. As noted before, possible fusion time

errors thereby only affect moving parts of the environment, since the measurement grid

itself, i.e., the mapping of the raw sensor data to the fixed odometry frame, is derived

before that fusion step with the original measurement time of that sensor.

As an example, with a reference sensor with a measurement frequency of 25Hz, the time

interval corresponds to ∆t∗ = 40ms, limiting the maximum time error to ∆t∗/2 = 20ms.

For urban scenarios with typical velocities up to 50 km/h, the maximum time-caused fusion

error is thus 0.02 s · 13.89m/s = 0.28m, which, with a grid cell size of 0.15m, corresponds

to an error of 1–2 grid cells. This error is commonly negligible as it is not significantly

larger than the spatial uncertainty of most sensors, whereas possible latency differences

of about 110ms would result in errors of up to 10 grid cells for a fusion of the latest

measurement grids without any interval alignment, which would significantly distort the

fusion result and thus also the subsequent processing steps.
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The selection of the reference sensor thereby depends on different aspects. Generally, to

minimize that error, the sensor with the highest measurement frequency, i.e., the smallest

intervals ∆t∗, should be selected as the reference sensor. This further guarantees that at

most one measurement of each sensor is included in the fused measurement grid. Addition-

ally, since the area in front of the ego vehicle is typically most time-critical, a sensor with

a field of view in that area should be selected. Moreover, the spatial accuracy of a sensor

should be taken into account, as the relevance of the time-error reduces when the sensor

already has a high measurement uncertainty. Most commonly, a spatially-accurate lidar

sensor that is oriented to the front area represents a suitable choice as a reference sensor

for the time-interval fusion, which is also the case for the sensors as used in this work.

Overall, this simple measurement time interval alignment already significantly reduces

critical time errors caused by high latencies of some sensors. However, this approach re-

quires buffering sensor data and a decision when the fusion should be performed, in partic-

ular when measurement data of some sensors are missing within the fusion interval Ti,fusion,

i.e., a tradeoff between waiting for sensor data and reducing the overall system latency.

This sensor data handling is briefly addressed in the following.

Sensor Activity and Update Status

Fusing measurement data with the measurement time interval alignment requires a concept

for determining which sensors are active, which sensor data within a fusion interval are

already available, and which sensor data are still pending due to a higher latency. The

corresponding fusion logic is presented as pseudocode in Algorithm 1.

For each incoming measurement Z with the time tz of the sensor sz ∈ S, with S rep-

resenting the set of all sensors, the function MeasurementGridCallback(sz, Z, tz) is

called, which first sets the activity status of this sensor sz to active and separately saves

tz as the latest time instance of it. If the measurement is not too old, i.e., if it is within

the next fusion interval or newer (tz ≥ tfusion −∆t/2) with tfusion ±∆t/2 representing the

next fusion time instance and interval width, that measurement is buffered by adding it

to the sensor data queue. After that it is checked if the fusion should be performed, which

is the case if no active sensor is pending, or, as a fallback to reduce the overall latency,

if the time tz is significantly newer that the fusion time instance tfusion with the time dif-

ference parameter twaitmax > ∆t/2. If no measurement data of a sensor are available in the

current fusion interval, but newer data of that sensor are already present for one of the

following fusion intervals, e.g., due to a slower measurement rate, the fusion should also

be triggered, since it is assumed that the measurement data of one sensor arrive in time

order, i.e., no older data are expected to arrive for that sensor. Hence, active sensors

are only interpreted as pending if no buffered data are in their queue, as determined by

AnyActiveSensorPending(). If the fusion should be performed, it is evaluated which

sensors and which of their measurement data are included in the fusion, where sensors

that are not included in the fusion are set to inactive if their latest measurement time is

significantly older than the fusion time with the time difference parameter tinactivemax > ∆t/2.

Overall, this measurement time interval alignment strategy combined with the fusion

logic represents a robust approach for minimizing errors of the asynchronous sensor data

fusion. Moreover, it enables to automatically detect when sensors are inactive, where the
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Algorithm 1 Pseudocode of fusion logic with buffered sensor data and sensor activity

status. The fusion logic is updated by sensor data callbacks, given the sensor sz, measure-

ment data Z, and corresponding measurement time tz. Further parameters: next fusion

time tfusion, fusion interval length ∆t, set of all sensors S, max. time twaitmax > ∆t/2 to wait

for sensor data, max. time tinactivemax > ∆t/2 before sensor is set to inactive.

function MeasurementGridCallback(sz, Z, tz)

sz.active = true ▷ Set sensor with incoming meas. to active

sz.tlatest = tz ▷ To check inactivity, separately save latest meas. time of sensor

if tz ≥ tfusion - ∆t/2 then ▷ Only process meas. within fusion interval or newer

sz.queue.push(Z) ▷ Add meas. to end of sensor queue

▷ Fusion is triggered if time delta is too large or no active sensor is pending

if (tz > tfusion + twaitmax) OR !AnyActiveSensorPending() then ▷ Apply fusion

G = {} ▷ Grids to be fused

for s ∈ S do ▷ Determine which sensors contribute to current fusion

sensorIncludedInFusion = false

while !s.queue.empty() AND s.queue.front().t < tfusion + ∆t/2 do

G.push(s.queue.front())

▷ Alternatively, only use one meas. of each sensor (closest to tfusion)

s.queue.pop() ▷ Remove evaluated sensor data from queue

sensorIncludedInFusion = true

end while

if !sensorIncludedInFusion AND s.tlatest < tfusion - tinactivemax then

s.active = false ▷ Set sensors without recent meas. to inactive

end if

end for

(. . . ) ▷ Fuse grids of G and update subsequent modules

end if

end if

end function

function AnyActiveSensorPending( )

for s ∈ S do ▷ Check the status of each sensor s ∈ S

if s.active AND s.queue.empty() then ▷ Pending if active and no data queued

return true

end if

end for

return false

end function

fusion should not further wait for missing sensor data, and if sensor data of the active

sensors are still pending in the current fusion interval, with an additionally introduced

maximum waiting time to enable a tradeoff between waiting for all pending data and

limiting the total system latency.
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2 Measurement Grid Representation and Fusion

2.5 Results and Summary

This chapter has presented how measurement data of lidar, radar, and camera sensors

are processed and fused within the grid-based framework. Sensor-individual measure-

ment grids are derived for each sensor with specific models to utilize the respective sensor

strengths. An evidential occupancy grid representation is applied with separate hypothe-

ses of occupancy and freespace using the Dempster–Shafer theory of evidence. Based on

that uniform representation and the same spatial grid cell discretization within one com-

bined odometry coordinate system, the sensor measurement grids are fused cell-wise by an

evidential combination strategy without requiring specific features. To deal with inactive

sensors and asynchronous sensor data, an additional fusion logic with a measurement time

alignment concept has been proposed. Examples of the different sensor types and configu-

rations, their measurement grids, and the measurement grid fusion have been shown with

real sensor data in Fig. 2.4–2.6.

Two more scenarios of the resulting fused measurement grid with the different layers

are demonstrated in Fig. 2.9 and Fig. 2.10. Thereby the primary evidential occupancy

grid layers are shown in (a), which are mainly derived from lidar data due to their high

spatial accuracy. Radar detections further include radial Doppler velocity measurements,

which are also modeled in the grid representation by separate layers as depicted by blue

lines in (b). Those velocity vectors are already compensated by the ego movement, i.e.,

they represent the absolute velocity in the radial measurement direction. Note that for

the static environment that vector is thus close to zero, but some radar detections may

also result in an incorrect velocity due to measurement noise, e.g., caused by a wrongly

resolved frequency or azimuth angle. The camera classification information of both the

static detections, only available in the front area in this work, and surrounding objects is

shown in (c). The corresponding segmentation information that links grid cells to object

instances is visualized in (d). Thereby the additional camera–lidar alignment enables that

the camera-detected objects with their imprecise position estimation, as shown uncorrected

in (d), are matched with the spatially accurate lidar data. This means that the lidar

detections are partly enriched by the camera information, whereby the camera classification

and segmentation of objects are derived at the same precise position as the occurring

occupancy evidence of the lidar measurements.

Altogether, this fused measurement grid already represents an accurate model of the

current local environment with a full surrounding 360° detection area by multiple lidar,

radar, and camera sensors. The generic occupancy grid representation is further extended

by the additional radar velocity measurements and camera information, which partly en-

able a direct detection of moving objects and a classification of the environment. However,

to further improve the robustness against noise, occlusion, or missing measurement data,

a temporal filtering over time is essential. Moreover, it is important that moving objects

and static obstacles are estimated in a generic way by considering all sensor data, which

is supported but not fully dependent on the additional radar Doppler or camera data. In

other words, moving objects also have to be detected solely from occupancy measurements

without any supplemental measurement information of the dynamic state, which has to be

derived implicitly by the temporal filtering and accumulation. Those aspects are addressed

in the following chapters.
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(a) (b) (c) (d)

(e) (f)

Fig. 2.9: Results of the different grid layers of the fused measurement grid in a real-world scenario.

(a) Evidential occupancy grid of all sensors (primarily based on lidar data, but also derived

from radar data). (b) Velocity grid (based on measured radial radar Doppler velocities).

(c) Camera classification grid (all classes of the static environment are shown in red; all classes

of objects are shown in blue). (d) Camera segmentation grid (with spatial camera–lidar

alignment) and corresponding camera-detected object instances without distance correction.

(e/f) Camera images (rear/front).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.10: Another example of the fused measurement grid for a junction scenario. (a) Evidential

occupancy grid. (b) Radar velocity grid. (c) Camera classification grid. (d) Camera

segmentation grid and object instances. (e/f) Camera images (rear/front).
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3 Dynamic Grid Mapping and Particle Tracking

The previous chapter has focused on the representation and fusion of sensor measurements

as measurement grids. The fused measurement grid thereby contains measurement data

that approximately represent a single time instance. This chapter focuses on the subsequent

temporal accumulation of the fused measurement grids over time, i.e., the occupancy

grid mapping. As the overall application is the estimation of dynamic environments, this

requires an additional estimation of the dynamic state of the grid cells and thus a prediction

and measurement update of the accumulated occupancy grid map. This is achieved by a

newly proposed combination of a dynamic grid mapping and a grid-based particle filter

tracking. The dynamic grid map is modeled using an extended Dempster–Shafer evidential

representation by dividing the hypothesis of unclassified occupancy of the measurement

grid into two separate hypotheses of static and dynamic occupancy. Those hypotheses are

differentiated over time by an adapted evidential filtering, which is also used to implicitly

model the temporal transitions between the individual hypotheses and their supersets as

well as the conflict handling between contradicting hypotheses. A particle-based velocity

estimation is used to determine the dynamic state of the grid map and thereby initialize and

predict its dynamic occupancy evidence masses. Static occupancy, in contrast, is directly

modeled in the grid map without requiring particles, increasing efficiency and improving

the static/dynamic occupancy classification due to the persistent map accumulation.

The work presented in this chapter is an extension of [4] that has been published in

the context of this thesis, which is not explicitly referenced in the following. Additional

contribution results from evaluating radar- and camera-specific measurements for improving

the static/dynamic occupancy classification as well as the particle-based velocity estimation.

3.1 Introduction

The generic representation and the discretized cell structure of occupancy grids enable a

low-level sensor data fusion, without specific object assumptions, by the implicit cell-wise

association of different sensors, which has been discussed in the previous chapter. That

strategy is also used for the temporal filtering, resulting in a cell-wise accumulation of

the individual evidence masses and thus a mapping of the local environment, also without

requiring object assumptions. Equivalent to the measurement grid fusion, the individual

cells thereby exactly overlap in the temporal filtering, as depicted in Fig. 2.1, due to the

fixed odometry coordinate system and the known relative ego movement within it.

The original concept of occupancy grid mapping [37] requires a static state of the lo-

cal environment for an accumulation of occupancy probabilities without performing any

prediction, since moving objects would cause contradicting occupancy artifacts along their

movement without further adjustments. But within the last decade that idea of occupancy

grid mapping has been extended toward dynamic environments by additionally estimating
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the dynamic state of the grid, typically referred to as dynamic occupancy grids or dynamic

grid mapping. Recent promising approaches use particle filters for a short-term estima-

tion of cell velocities of the occupied environment and thereby distinguish between static

obstacles and moving parts, still without forming high-level objects. However, a robust

and efficient combination of the persistent occupancy grid map accumulation and that

short-term particle-based dynamic estimation still remains a challenge. Those aspects are

addressed in this chapter; the contribution and the outline of the proposed approach are

summarized after a brief discussion of related work in the following.

3.1.1 Related Work

For occupancy grid mapping in dynamic environments it is essential to estimate the dy-

namic state of grid cells. A simple strategy is a binary classification of occupied cells

into static or dynamic by determining inconsistencies between the occupancy value of the

accumulated grid map, i.e., the temporally filtered measurements of the past, and that

of the new measurement [135, 137]. For example, the accumulated grid map indicates a

high freespace probability of a specific grid cell, whereas the current measurement for that

same cell represents a high occupancy probability. Assuming noise-free measurement data,

this inconsistency has to be the result of a moving object that currently passes over that

cell, i.e., a dynamically occupied cell. Equivalently, using a Dempster–Shafer evidential

occupancy grid representation, conflict masses are analyzed in [56, 80], which is further

extended in [69] using prior map knowledge with a modified evidential combination and ac-

cumulation. Recently, a similar evidential approach was presented in [51] using an adapted

transferable belief model. A distance-based kernel function additionally weights the occu-

pancy transfer toward static or dynamic based on the vicinity of a cell. Thereby new static

cells are characterized by neighboring static cells of the map, whereas dynamic cells are

classified by previously measured occupancy in a distance-based location that depends on

the expected average velocity of moving objects and the corresponding measurement time

difference. In addition, object hypotheses can be extracted and tracked using distance-

based clustering of those detected moving parts, e.g., [20, 24, 56, 104, 134]. However, a

static/dynamic classification based solely on analyzing inconsistencies or conflicts is error-

prone to measurement inaccuracies of ranging or odometry sensors. Even though results

of an object tracking can be used to improve this classification, no robust cell-individual

velocity estimation is achieved this way.

In [26, 122] the Bayesian Occupancy Filter (BOF) is introduced, an approach that

recursively estimates the dynamic state of an occupancy grid through discrete cell velocities

modeled as neighborhood cell transition histograms. However, an accurate and wide range

cell velocity estimation using these transition histograms of each cell requires enormous

computing/memory consumption and the discretization also leads to aliasing problems.

This approach has been further extended in various interesting approaches – a detailed

review of the BOF including multiple extensions is given in [102].

Most promising approaches use particle filters to estimate the dynamic state of the

occupancy grid, partly referred to as Sequential Monte Carlo BOF (SMC-BOF). Originally

proposed by Danescu et al. [29, 30], each particle represents a point mass of occupancy

with continuous position and velocity that moves freely in the entire grid structure. The
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number of particles in a cell is adapted proportional to the cell occupancy value. Sampling,

weighting, and resampling of the particles results in a robust filtering of both the occupancy

probabilities and the multimodal velocity distribution for each grid cell. A cell is classified

as either static or dynamic by evaluating the velocity variance of all particles in that cell.

Tanzmeister et al. [118, 120, 121] adapted that grid-based particle filtering strategy

of [29] toward a Dempster–Shafer evidential representation with an additional mapping of

evidence masses, referred to as evidentialGrid-based Tracking And Mapping (GTAM) [121].

Occupancy and freespace are modeled as separate evidential hypotheses as in [80], but the

occupancy hypothesis is further subdivided into the two hypotheses of static occupancy

and dynamic occupancy, which are then estimated continuously in contrast to the discrete

classification of [29]. In addition to an initial uniform velocity distribution of new particles,

pure static particles with zero-velocity are sampled that improve the convergence of static

occupancy. The number of particles and the occupancy evidence in a cell are defined by

the measured occupancy belief, while additional particle survival probabilities enable short

persistence in occluded areas. Moreover, the output of the particle filtering is temporally

accumulated, allowing full persistence of the static environment in a grid map represen-

tation without keeping all particles. However, information of the accumulated map is not

considered in the particle filtering and dynamic evidence masses are not accumulated, i.e.,

multiple measurements do not increase the dynamic masses.

Similarly, Nègre et al. [83] introduced the idea of Hybrid Sampling BOF (HSBOF) as

an adaptation of [122] and [29] toward a decomposition of static and dynamic occupancy.

Static occupancy is represented in a typical occupancy grid, whereas dynamic occupancy is

modeled by particles, i.e., particles only represents the dynamic environment rather than

all occupied areas, which significantly reduces the number of required particles. The same

authors improved this idea in [101] by introducing formal states of static occupancy, dy-

namic occupancy, freespace, and unknown areas in the filtering process, resulting in a more

accurate velocity estimation and compact algorithm definition. However, in contrast to

the evidential representation of [121], no dependencies of the individual hypotheses and

their supersets are modeled by these states. The temporal filtering and the combination

of the states of the approach cannot be compared, since they are not described in detail.

Another SMC-BOF approach has been presented by Nuss et al. [88] based on the con-

cepts of [29, 30, 83, 120]. They focused on fusing laser and radar data, and improving the

particle velocity estimation using radar Doppler velocity measurements, similarly described

in [121]. An extension and reformulation of Nuss et al. [85] models the grid-based dynamic

estimation as a random finite set (RFS) problem using a combination of Bernoulli filter and

PHD filter. As noted by the authors, this approach is not real-time capable. Therefore,

they also proposed an approximation using evidences that is similar to [121], restricting

particles to areas of currently visible occupancy. However, static and dynamic occupancy

are not individually estimated. Since occupancy is only filtered by the particles with-

out an additional grid map accumulation, occlusion also leads to particle destruction and

information loss of static occupancy.

Recently, based on [85], Vatavu et al. [131] proposed the idea of Multi-Layer Particle

Filter-based Tracking (MLPT), where, in addition to the occupancy grid layer, also a se-

mantic grid layer with camera information is used as input. Particles are grouped as track-
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lets, where all particles of a tracklet share common higher-level data, such as a semantic

label or an object identifier, and are self-localizing using landmarks with respect to the

estimated object shape of each tracklet. The main idea is to enrich particles with extended

group information with a more precise particle-to-measurement matching, overall improv-

ing the convergence of the dynamic estimation and thereby also requiring less particles.

With that extended particle estimation, however, the computational effort increases sig-

nificantly, and it also introduces dependencies on the accuracy of the object-based tracklet

estimation on that particle-level.

3.1.2 Contribution and Outline

The different variants of the dynamic occupancy grids, in particular those that use a

particle-based estimation of the dynamic state, already show promising results. How-

ever, none of these approaches fully combines the benefits of an evidential representation

with multiple hypotheses, a consistent filtering of evidence masses with a persistent grid

mapping accumulation of the static environment, and an efficient particle-based filtering.

Moreover, additional radar and camera measurement data are not evaluated in detail for

improving the static/dynamic occupancy classification and particle velocity weighting.

Those aspects are addressed in the following. As a result, a new concept for the dynamic

grid mapping with a particle-based dynamic estimation and an evidential Dempster–Shafer

representation is proposed. The main contributions of this approach are as follows:

� The evidential occupancy grid mapping and the particle-based dynamic estimation

are combined into one filtered estimation. Rather than performing those two parts as

separate processing steps, the particle-based estimation is directly integrated within

the evidential map accumulation. The evidential dynamic grid map thereby forms

the core component of the temporal filtering, since, in contrast to the short-term

particle population, it represents a persistent accumulation. That way, it is ensured

that previously aggregated information of the static environment is retained when

such areas are outside the current field of view or temporarily occluded, which avoids

information loss in such a case. The particle-based estimation is thereby primarily

used for the initialization and prediction of dynamic occupancy of the grid map.

� Based on this combined evidential estimation, static occupancy is directly accu-

mulated by the evidential grid map representation without requiring any particles.

Therefore, particles solely represent the hypothesis of dynamic occupancy of the grid

map. As a result, this significantly reduces the number of required particles and thus

directly increases the computational efficiency of the dynamic grid estimation.

� As an extension of the evidential representation of [121], the hypothesis of passable

area is introduced as the superset of current freespace and dynamic occupancy. To

model the temporal transition, freespace evidence is transferred to the superset of

passable area within the prediction. Overall, this enables a consistent prediction of all

hypotheses, an implicit dynamic classification for occupancy measurements in cells

with previously accumulated passable area, and a differentiation between previously

measured freespace that may be temporarily occupied and actual current freespace.
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� All evidence masses of the dynamic grid map are consistently filtered within the

Dempster–Shafer framework – instead of using individual particle survival proba-

bilities. This also enables the accumulation of dynamic occupancy over time. An

explicitly modeled conflict assignment further ensures that the persistent map accu-

mulation dominates the more uncertain particle-based prediction.

� An adapted evidential filtering strategy with a modified assignment of occupancy

evidence masses is proposed, which is directly integrated into the evidential mea-

surement update. This enables that measurements of unclassified occupancy can

partially increase the subsets of static occupancy or dynamic occupancy of the map,

which overall results in a generic and robust static/dynamic differentiation that is

solely based on the temporal filtering. Hence, no pre-classification of the measure-

ment data is necessarily required for this dynamic grid estimation – but it is also

presented how additional radar velocity and camera classification measurement data,

if available, can further improve that evidential filtering and occupancy classification.

� Based on the updated dynamic grid map, the particle population is updated accord-

ingly to retain the consistent dynamic occupancy estimation of both representations

and also to enable the temporal filtering of the particle-based velocity estimation.

Thereby it is also demonstrated how radar velocity measurements and camera orien-

tation estimates further enhance the particle initialization and weighting.

These different aspects of the proposed approach are structured into the following sections:

� Section 3.2 introduces the two representations of the evidential dynamic grid map and

the low-level particle population. It is also discussed how those two representations

are linked to each other regarding the dynamic occupancy evidence mass.

� Section 3.3 proposes the prediction step of the dynamic grid map. It results from a

combination of the particle-based prediction of dynamic occupancy and an adapta-

tion of the non-dynamic hypotheses of the previous map.

� Section 3.4 addresses the measurement update of the dynamic grid map. It is dis-

cussed in detail how static and dynamic occupancy are filtered and differentiated over

time – based on unclassified occupancy measurements, but also with additional radar

velocity and camera classification information, and with feedback of filtered objects.

� Section 3.5 focuses on the weighting and resampling of the particle population, in-

cluding the consistent representation with the dynamic grid map and an enhanced

particle filter update with radar and camera measurement data.

� Section 3.6 presents the augmented measurement grid, an enriched form of the mea-

surement grid with a static/dynamic classification of measured occupancy, robustly

differentiated by the filtered dynamic grid map, and particle-based cell velocity esti-

mates. This representation forms the input to the subsequent object tracking.

Finally, qualitative results and a summary of the proposed dynamic grid mapping and

particle tracking approach are briefly presented in Section 3.7. Further results of this

approach, including a quantitative evaluation, are demonstrated in Chapter 6.

43



3 Dynamic Grid Mapping and Particle Tracking

3.2 Dynamic Grid Map and Particle Representation

This section introduces the representation of the dynamic occupancy grid map including

the evidential hypotheses and the particle-based estimation of the dynamic state. Based

on that dynamic grid map and particle tracking definition, the subsequent sections then

discuss in detail the combined temporal filtering of both representations.

3.2.1 Evidential Frame of Discernment for Dynamic Environments

The evidential occupancy grid representation of the measurement grids has been modeled

by the frame of discernment Θz = {F,O} with the two hypotheses of freespace (F ) and oc-

cupancy (O) using the Dempster–Shafer evidential framework, as presented in Section 2.2.

The dynamic grid mapping of this chapter, however, requires an additional estimation of

the dynamic state of the occupied environment and thus a differentiation of static and

dynamic occupied areas. Therefore, as proposed by Tanzmeister et al. [118, 120, 121], the

occupancy hypothesis (O) is further divided into the two hypotheses static occupancy (S)

and dynamic occupancy (D) in the following, i.e.,

O = {S,D} . (3.1)

The overall frame of discernment of all possible individual hypotheses thus results in

Θ = {F, S,D} , (3.2)

which is referred to as the FSD-frame in [121]. The corresponding powerset of all combi-

nations of the different hypotheses arises from

2Θ =
{
{F}, {S}, {D}, {S,D}, {F,D}, {S, F}, {Θ}, ∅

}
(3.3)

with the following possible hypotheses:

{F} passable area that is currently free (freespace),

{S} not passable area that is statically occupied (static occupancy),

{D} passable area that is currently dynamically occupied (dynamic occupancy),

{S,D} currently occupied (temporary or permanent occupancy),

{F,D} passable area (free or dynamically occupied),

{Θ} unknown state, i.e., either free or occupied.

Equivalent to [121], the superset {S, F} is also not used in the following as it is perma-

nently conflicting by definition. However, as a difference, the superset {F,D} of passable

area is considered in this work. Although that hypothesis is always conflicting for a single

measurement, it represents a reasonable hypothesis in the temporal filtering as the corre-

sponding two subsets {F} and {D} are interchangeable over time. For example, a grid

cell that has currently been observed as freespace {F} may be occupied at a different time

by a moving object, modeled as dynamic occupancy {D}, which moves across that grid

cell, i.e., that area is generally passable and can thus be modeled by {F,D}. Overall,

the superset {S,D} primarily models measured occupancy at a single time instance which

cannot be directly classified as static or dynamic occupancy, whereas the superset {F,D}
models the uncertain state of measured freespace predicted to a different time, as it could

then be occupied by a moving object.
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3.2.2 Dynamic Grid Map Representation

For all hypotheses θ ∈ 2Θ of the powerset 2Θ with the frame of discernment Θ, evidence

masses m(θ) are estimated within the Dempster–Shafer framework, as defined before

in (2.2). In the following, the argument of the evidence mass, i.e., the corresponding

hypothesis set, is abbreviated without brackets or comma for better readability, in partic-

ular m({S,D}) = m(SD) and m({F,D}) = m(FD).

The accumulated evidential dynamic occupancy grid map at time t of all modeled

hypotheses with Θ = {F, S,D} is thus described by

Mt =
[
m(St), m(Dt), m(SDt), m(Ft), m(FDt)

]T
. (3.4)

The evidence mass of the unknown state m(Θt) is thereby implicitly included as the re-

maining evidence mass, since all evidence masses have to sum up to 1, cf. (2.2). As with

the measurement grid, those evidence masses are defined for all cells c ∈ G of the grid

structure G, where the cell index c is omitted for better readability when irrelevant.

Overall, this dynamic grid map Mt with the Dempster–Shafer evidential model forms

the main component of the low-level grid-based environment estimation of this work. It

represents the fused and temporally accumulated estimation of the local environment, dis-

tinguishing between static occupancy, dynamic occupancy, freespace, and their combined

evidential hypotheses. An example of the estimated dynamic grid map Mt with real sensor

data in an urban scenario is shown in Fig. 3.1a. Another representation of that scenario is

demonstrated in Fig. 3.1b, highlighting the particle-based velocity orientation estimation

of each cell. Before the particle representation is discussed in more detail, the color coding

of the grid visualizations is briefly presented in the following.

Red–Green–Blue (RGB) Color Coding of Different Evidential Hypotheses

The evidence masses of the different hypotheses of the frame Θ = {F, S,D} are visualized

in this work by an additive color mixing

RGB =

(
1−

∑

θ∩{S}=∅

m(θ), 1−
∑

θ∩{F}=∅

m(θ), 1−
∑

θ∩{D}=∅

m(θ)

)
, θ ⊂ Θ , (3.5)

using the red–green–blue (RGB) color model. This means that static occupancy results

in red (R), freespace in green (G), dynamic occupancy in blue (B), unclassified occupancy

in pink (R + B), passable area in cyan (G + B), and an unknown state in white. The

hypotheses supersets thereby correspond to the additive color of the individual subsets,

which is also illustrated in Fig. 3.2a. This generic visualization thus also agrees to that of

the measurement grids as used in the previous chapter. Note that the yellow color is not

used in the evidential occupancy grid visualization, since the conflicting superset {S, F}
between static occupancy and freespace is not modeled in this work as described above.

Hue–Saturation–Lightness (HSL) Color Coding of Velocity Orientation

In order to visualize the velocity estimation of a dynamic occupied grid cell, a hue–

saturation–lightness (HSL) color coding is selected, similar to [84, 118]. Given a particle-

based 2-D cell velocity estimate νc
t , the orientation ϕc = arctan(νc,y

t , νc,x
t ) is encoded as the
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(a)

(b)

(c) (d)

Fig. 3.1: Example of the estimated dynamic grid map in an urban scenario with a differentiation of

static occupancy, dynamic occupancy, freespace, and their hypotheses supersets. (a) Repre-

sentation of the estimated evidence masses of the different hypotheses. (b) Representation

of the particle-based velocity orientation estimation (color circle) with an additional grayscale

encoding of the occupancy value. (c/d) Camera images (rear/front) of the scenario.

46



3.2 Dynamic Grid Map and Particle Representation

{F}

{S,D}
{S} {D}

{Θ}

{F,D}

(a) (b) (c)

Fig. 3.2: Illustration of the grid color coding visualizations. (a) RGB mixture of evidential hypotheses:

static occupancy {S} is shown in red (R), freespace {F} in green (G), dynamic occu-

pancy {D} in blue (B), unclassified occupancy {S,D} = {O} in pink (R+ B), passable

area {F,D} in cyan (G+B), and an unknown state {Θ} in white (R+G+ B). (b) Hue

color circle of the velocity orientation in reference to the red-colored ego orientation. (c) HSL

color cone: colors show the orientation of moving parts with an additional grayscale occu-

pancy value encoding (image source: Wikimedia Commons: ”HSL color solid dblcone”).

H-channel with a color circle as depicted in Fig. 3.2b. The S-channel depends on the ve-

locity magnitude |νc
t |, normalized by a function αv(|νc

t |) ∈ [0, 1] such that velocities higher

than a modeled threshold result in full saturation, and the corresponding dynamic evidence

mass m(D) of that cell. As visualized in Fig. 3.2c, the L-channel enables to model the

grayscale value, whereby fully saturated colors result with L = 0.5. This channel is further

used to model information about the occupancy value similar to an occupancy probability.

Overall, the HSL-coding is selected as

HSL =

(
ϕc, αv(|νc

t |)m(D),
1

2

(
1−

(
bel(O)− αv(|νc

t |)m(D)
)
+
∑

θ∈{F,FD}

m(θ)
))

. (3.6)

Thereby the L-channel is modeled such that unknown areas (m(Θ) = 1) result in

gray (L = 0.5), freespace and passable area (m(F ) +m(FD)) in white (L = 1), and occu-

pancy of currently non-moving parts in black (L = 0). Note that in this work occupied

cells of tracked objects can be modeled to retain as dynamic occupied rather that static

occupied even though their velocity converges toward zero, e.g., when they stop at a traffic

light, since only dynamic occupied cells are considered in the subsequent object track-

ing. Hence, depending on the normalized velocity magnitude αv(|νc
t |), dynamic occupied

cells (m(D) > 0) can result in an orientation color (αv(|νc
t |) ≫ 0, L ≈ 0.5), but also in

black as for the static environment when they are currently not moving (αv(|νc
t |) ≈ 0).

The particle representation, which forms the basis of such a cell-wise velocity estimation

of the dynamic grid map, is presented in the following.

3.2.3 Low-Level Particle Representation

The evidential representation of the dynamic grid map enables a differentiation of static

and dynamic occupancy as separate hypotheses. To distinguish those two hypotheses, a

filtered estimation over time of the dynamic state of the grid map is required, which also
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includes a prediction of the dynamic occupancy evidence masses based on the corresponding

movement of those occupied cells. As discussed before, most of the recent promising

approaches, e.g., [29, 83, 85, 121, 131], use a particle filter for that dynamic estimation of

the occupancy grid. The basic idea of all those approaches is that each individual particle

of the particle population represents a hypothesis of occupancy at a particular 2-D position

within the grid structure and with a specific 2-D velocity for the corresponding movement

estimation. Particles that steadily move over time from occupied cells into cells with newly

measured occupancy are reinforced as those movement hypotheses are supported by the

corresponding measurements, whereas particles that move into grid cells with an unknown

or freespace state are reduced and deleted. In other words, the survival of the fittest

principle of a particle filter is applied in terms of the current occupancy values of grid cells

and their movement over time.

This particle-based dynamic estimation is also used in this work, but that short-term

filtering is combined with the persistent evidential filtering of the dynamic grid map to

avoid information loss of temporarily occluded parts of the static environment. Hence,

as part of the dynamic grid mapping, the particle population is primarily used for the

initialization and the prediction of the dynamic evidence mass m(Dt). Therefore, particles

are concentrated in areas with moving (or possibly moving) occupancy of the environment,

as exemplarily shown in Fig. 3.3.

Each particle χ ∈ Xt of the particle population Xt at time t is described by a posi-

tion xχ ∈ R2, a velocity νχ ∈ R2, and an occupancy evidence amount oχ ∈ [0, 1), i.e.,

χ =
[
xx
χ, x

y
χ, ν

x
χ, ν

y
χ, oχ

]T
. (3.7)

The population of all particles χ in a grid cell c regarding the individual particle positions xχ

evaluated at time t is described by the population subset

X c
t = {χ ∈ Xt | xχ ∈ A(c)} , (3.8)

with the 2-D interval

A(c) =

[
xx
c −

dc
2
, xx

c +
dc
2

)
×
[
xy
c −

dc
2
, xy

c +
dc
2

)
∈ R2 (3.9)

defining the spatial area of the grid cell c given the corresponding center position xc and

a constant cell size of dc × dc that is equal for all grid cells c ∈ G. The sum of all particle

occupancy values oχ of that population X c
t of each grid cell c at time t is selected to be

equal to the dynamic evidence mass m(Dc
t ) of that cell, which links the dynamic occupancy

mass of the dynamic grid map Mt with the particle population Xt, i.e.,
∑

χ∈X c
t

oχ = m(Dc
t ) . (3.10)

As depicted in Fig. 3.1b, the particle tracking also enables a robust low-level velocity

estimation and thus an estimation of a 2-D grid cell velocity

νc
t =

1

m(Dc
t )

∑

χ∈X c
t

oχνχ (3.11)
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Fig. 3.3: Visualization of the particle population for the scenario of Fig. 3.1. Each particle is rep-

resented as a black point, as highlighted by the additionally shown enlarged areas of two

moving objects (here with up to 100 particles per grid cell with cell size dc = 0.15m).

by the mean particle velocity of all particles in a cell, weighted by their occupancy values

that sum up to the dynamic occupancy evidence mass. The static occupancy mass m(St)

is not considered in the mean velocity estimation of (3.11) to obtain a bimodal velocity

distribution and thus keep the particle-based cell velocity estimate νc
t of the dynamic

hypothesis and the zero-velocity estimate of the static hypothesis separately.

Overall, the combination of the dynamic grid map with the low-level particle represen-

tation enables a robust estimation of dynamic environments. The particle population is

thereby linked with the dynamic occupancy evidence mass of the dynamic grid map, as

discussed in detail in the following sections.

3.3 Particle-Based Prediction of the Dynamic Grid Map

The temporal filtering of the dynamic grid map requires two steps as part of a recursive

state estimation: the prediction of the previous map Mt−1 to the time t of the new

incoming measurement and the measurement update of the predicted map with the current

measurement given by the fused measurement grid as derived in the previous chapter. A

schematic overview of the proposed prediction and measurement update of the dynamic

grid map, combined with the particle population, is depicted in Fig. 3.4.

The prediction of the dynamic grid map is thereby estimated in two different ways by

distinguishing between the dynamic part and the non-dynamic part, which is illustrated

in Fig. 3.5. The dynamic part is predicted using the low-level particle tracking, resulting

in a predicted particle-based map M̂t. The non-dynamic part, in contrast, is directly

adapted from the previous map, primarily adjusting the freespace evidence, which results

in the predicted non-dynamic map M′
t. Finally, those different predictions are combined
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Fig. 3.4: Overview of the proposed dynamic grid mapping and particle tracking approach.

to the predicted dynamic grid map

Mt = (1− ε) (M̂t ⊕M′
t) . (3.12)

Thereby the reduction factor ε additionally models the temporal uncertainty of the predic-

tion, meaning that the evidence masses slowly converge toward the unknown state m(Θ).

This factor, however, is omitted in the following discussion for a better readability. Overall,

this prediction thus consists of three steps, which are presented in the following.

3.3.1 Prediction of the Dynamic Evidence Mass

The dynamic occupancy evidence m(Dc
t ) of a cell c of the map Mt is coupled with the

occupancy evidence values oχ of the particles χ ∈ X c
t in that cell, cf. (3.10). Hence, the

basic concept of the prediction of the dynamic mass of the map results from predicting the

particle population, with each particle retaining its occupancy value, and then evaluating

the new position of the particles and thus summing up the occupancy values of all predicted

particles present in a grid cell.

All particles χ ∈ Xt−1 of the particle population Xt−1 at time t−1 are predicted to time t,

with the time difference ∆t in-between, by a simple constant velocity motion model with

x̂χ,t = xχ,t−1 +∆t vχ,t−1 + wx , (3.13)

v̂χ,t = vχ,t−1 + wv , (3.14)

where wx and wv represent additive zero-mean 2-D Gaussian noise terms for the posi-

tion and velocity, respectively, with the corresponding distributions Wx ∼ N (0,Σw,x) and

Wv ∼ N (0,Σw,v), and the diagonal covariance matrices Σw,x and Σw,v.
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Fig. 3.5: Illustration of the prediction and update steps of the dynamic grid map.

Overall, this results in the predicted particle population X̂ t. Thereby also the set of

particles X̂ c

t that are present in a grid cell c has to be re-evaluated by the predicted particle

positions, i.e., equivalent to (3.8),

X̂ c

t =
{
χ ∈ X̂ t | x̂χ,t ∈ A(c)

}
. (3.15)

Based on those predicted particles X̂ c

t , the predicted dynamic mass finally results in

m(D̂c
t) = min

(
1− εo,

∑

χ∈X̂ c
t

oχ

)
, εo ∈ (0, 1) . (3.16)

Since particles of various cells could be predicted into the same cell, that sum could possibly

exceed the maximum value 1 of an evidence mass. Therefore, that value is limited in (3.16)

to 1−εo to obtain valid evidence masses and also avoid saturation, i.e., remain an unknown

mass m(Θ̂t) ≥ εo > 0. This forms the predicted particle-based grid map

M̂t =
[
0, m(D̂t), 0, 0, 0

]T
, (3.17)

with the same structure of the evidence masses as the dynamic grid map Mt, cf. (3.4),

meaning that in this case no other evidences are derived and thusm(θ̂t) = 0 for θ ⊂ Θ\{D}.

3.3.2 Prediction of the Non-Dynamic Evidence Masses

The remaining non-dynamic part of the map is predicted by an adaptation of the evidence

masses of the previous map Mt−1. Thereby the static and unclassified occupancy evidence

masses remain as they were before, the dynamic evidence mass is ignored and set to 0, and

the freespace evidence mass is transferred to the superset {F,D} of passable area, as the
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3 Dynamic Grid Mapping and Particle Tracking

state {F} is time-dependent and may have changed to dynamically occupied at that new

time t. Overall, this results in the adapted map

M′
t =




m(S ′
t)

m(D′
t)

m(SD′
t)

m(F ′
t )

m(FD′
t)



=




1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1
1−m(Dt−1)

1
1−m(Dt−1)



Mt−1 =




m(St−1)

0

m(SDt−1)

0
m(Ft−1)+m(FDt−1)

1−m(Dt−1)



,

(3.18)

also structured equivalently to (3.4). The transfer of m(F ) toward m(FD) as part

of the prediction thus ensures that moving objects with dynamic evidence m(D) that

move across a cell with passable area m(FD) are consistently resolved as dynamic occu-

pancy, since {D} is a subset of {F,D} and the intersection of both hypotheses results

in {F,D} ∩ {D} = {D}. Hence, also the conjunctive rule of combination ⊕c of those hy-

potheses, cf. (2.20), is implicitly resolved toward m(D) without any occurring conflicts.

However, this also means that the evidence mass m(FD) is reduced when dynamic oc-

cupancy m(D) is derived or predicted into that cell, while that reduced evidence mass

of {F,D} would remain at that lower value even when the dynamic mass is predicted to a

different cell in the next time step or that predicted dynamic mass in that cell has not been

confirmed by any measurement. To ensure that the accumulated passable area evidence

retains the previous value after a dynamic object leaves this cell, the derivation of m(FD′
t)

is adjusted in (3.18) and also depends on the previous dynamic evidence mass m(Dt−1).

The denominator thereby represents the reciprocal of the reduction by a dynamic mass

and thus represents the normalization to the originally accumulated value.

Note that the previous dynamic mass m(Dt−1) is not transferred to m(FD′
t) in (3.18),

as, in contrast to the measured freespace m(Ft−1), the dynamic mass is usually not directly

measured and is thus primarily derived by a prediction. Hence, that implication would be

critical for wrongly predicted dynamic occupancy masses. In fact, it would even form the

basis for a self-affirmation of dynamic occupancy, since the combination of subsequently

measured unclassified occupancy {S,D} with that then falsely derived {F,D} in turn re-

sults in the intersecting set {D} and thus implicitly derives the false hypothesis of dynamic

occupancy rather than the actual hypothesis of static occupancy in that case.

3.3.3 Resulting Combined Predicted Dynamic Grid Map

The predicted dynamic grid map Mt finally results from the combination (3.12) of the

particle-based prediction of the dynamic part M̂t and the prediction of the non-dynamic

part M′
t that is derived by an adaptation of the previous map Mt−1. That evidential

combination M̂t ⊕M′
t of those two sources results in one possible conflict mass

ζ(M̂t,M′
t) = m(S ′

t)m(D̂t) ≡ ζ , (3.19)

as defined before in (2.21). As part of the measurement grid fusion, Dempster’s rule of

combination (2.22) has been used to assign conflicts proportionally to the corresponding

hypotheses. In this chapter, in contrast, the assignment of conflicts is explicitly modeled to

solve the prediction, and also the subsequent measurement update, with specific behavior.
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The static/dynamic conflict mass ζ is assigned to the predicted static mass, meaning

that the accumulated static occupancy mass, which results from measurements within that

evaluated grid cell, dominates the more uncertain particle-based prediction of the dynamic

occupancy mass in case of a conflict. In other words, the evidence of static occupancy

remains unchanged in the prediction. Hence, the predicted static mass results in

m(St) = m(S | M̂t ⊕c M′
t) + ζ = m(St−1) , (3.20)

with M̂t⊕cM′
t representing the conjunctive rule of combination (2.20) of those two sources

regarding the basic intersection of the hypotheses. All remaining predicted hypotheses are

combined without additional conflict assignment, i.e.,

m(θt) = m(θ | M̂t ⊕c M′
t), θ ⊂ Θ \ {S} , (3.21)

and, altogether, the predicted dynamic grid map results in

Mt =




m(St)

m(Dt)

m(SDt)

m(F t)

m(FDt)



=




m(St−1)

(1−m(St−1)) m(D̂t)

(1−m(D̂t)) m(SDt−1)

0

(1−m(D̂t))
m(Ft−1)+m(FDt−1)

1−m(Dt−1)



. (3.22)

Overall, the proposed combined prediction Mt of the dynamic grid map Mt−1 uti-

lizes advantageously the Dempster–Shafer evidential framework for implicitly modeling the

temporal transitions between current freespace {F}, passable area {F,D}, and dynamic

occupancy {D}, as well as the evidential combination with the separate particle-based

prediction of the dynamic mass m(D̂t), and an explicitly modeled conflict assignment.

3.4 Measurement Update of the Dynamic Grid Map

The dynamic grid map Mt has been predicted to the time t of the incoming fused measure-

ment grid Mz,t. Based on that prediction, this section focuses on the second step of the

recursive estimation, the measurement update by that fused measurement grid, eventually

resulting in the desired updated dynamic grid map

Mt = Mt ⊕Mz,t , (3.23)

as also schematically shown in Fig. 3.4 and exemplarily illustrated in Fig. 3.5. The fused

measurement grid

Mz,t =
[
0, 0, m(SDz,t), m(Fz,t), 0

]T
(3.24)

contains the two measured evidential hypotheses of unclassified occupancy {S,D} = {O}
and freespace {F}, and represents the grid-based fusion of the sensor-individual measure-

ment grids as discussed in the previous chapter. Since generally only unclassified occupancy

is directly measured, an adapted evidential filtering is required to distinguish static occu-

pancy {S} and dynamic occupancy {D} of the accumulated dynamic grid map Mt, which
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is discussed in the following. This static/dynamic occupancy differentiation, however,

can also be further improved when additional radar-based Doppler velocity and camera-

based classification measurements are available for the evaluated grid cells, which is also

addressed in this section after the generic case of distance-only measurements.

3.4.1 Conflict Assignment

The combination (3.23) of the predicted dynamic grid map Mt as derived in (3.22) and

the measurement grid Mz,t causes three possible conflicts

ζ(Mt,Mz,t) =m(St)m(Fz,t)︸ ︷︷ ︸
ζFS

+m(Dt)m(Fz,t)︸ ︷︷ ︸
ζFD

+m(SDt)m(Fz,t)︸ ︷︷ ︸
ζFSD

(3.25)

between the three different occupancy masses of the prediction and the measured freespace.

Since the freespace mass m(Ft−1) of the dynamic grid map is transferred toward m(FDt)

as part of the prediction, i.e., m(F t) = 0, no further conflicts occur by the measured

unclassified occupancy mass m(SDz,t), meaning that none of the remaining hypotheses

intersections results in the emptyset, i.e., {S,D} ∩ θ ̸= ∅ ∀θ ⊆ Θ\{F}.
Similar to (3.19), the three conflict masses of (3.25) are also individually assigned by

m(St) ← 1
2
ζFS ,

m(Ft) ← 1
2
ζFS + ζFD + ζFSD ,

(3.26)

based on the following discussion. The static/free conflict ζFS is equally transferred to {S}
and {F}, since both hypotheses have been measured at the current time or accumulated

previously, thus no further knowledge is available. The dynamic/free conflict ζFD , in con-

trast, is assigned to {F}, as m(Dt) is only an uncertain particle-based prediction and

m(Fz,t) describes an actual measurement of the current time instance. Equivalently, the

occupancy/free conflict ζFSD is also transferred to the more recent freespace measurement,

since unclassified occupancy {S,D} of a previous time, in contrast to {S}, is also an un-

certain state as it could be caused by a dynamic object. Hence, all conflicts of ζ(Mt,Mz,t)

are assigned toward static occupancy or freespace of the updated map Mt.

3.4.2 Occupancy Differentiation from Distance-Only Measurements

The occupancy measurement m(SDz,t) of the measurement grid Mz,t does not distinguish

between static and dynamic obstacles, as this information is generally not directly available

for distance-based measurements like lidar detections. In terms of the update of the dy-

namic grid map, this means that the static and dynamic evidence masses are not increased

by the default conjunctive rule of combination ⊕c, i.e.,

m(S |Mt ⊕c Mz,t) ≤ m(St) ,

m(D |Mt ⊕c Mz,t) ≤ m(Dt) , if m(FDt) = 0 ,
(3.27)

even if an occupancy measurement m(SDz,t) > 0 occurs at that cell. Equivalently, neither

of the two hypotheses is derived from {S,D} in the prediction step. In other words, without
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modifications of the evidential filtering of the measurement update, static occupancy would

never appear in the accumulated dynamic grid map and dynamic occupancy would only

be initialized if unclassified occupancy is measured in a cell with an accumulated evidence

of passable area m(FDt), since {D} forms the intersection of the two superset hypotheses.

Therefore, the occupancy derivation of the measurement update is adapted in the following

to enable the desired convergence toward static and dynamic occupancy over time.

Adaptation of the Unclassified Occupancy Derivation

The unmodified update of the unclassified occupancy mass using the conjunctive rule of

combination (2.20) consists of three parts that are given by

m(SD |Mt ⊕c Mz,t) = m(SDt)m(Θz,t)︸ ︷︷ ︸
λΘ
SD

+m(SDt)m(SDz,t)︸ ︷︷ ︸
λSD
SD

+ m(Θt)m(SDz,t)︸ ︷︷ ︸
λSD
Θ

. (3.28)

These three terms λΘ
SD, λ

SD
SD, λ

SD
Θ form the basis for the adjustment of the occupancy deriva-

tion with the static/dynamic differentiation. The individual interpretation and modified

assignment of each of the three summands is discussed in the following.

The first term λΘ
SD depicts the combination of the predicted occupancy mass m(SDt)

with the remaining unknown mass of the measurement m(Θz,t), which is defined as

m(Θz,t) = 1−m(SDz,t)−m(Fz,t) (3.29)

since only {S,D} and {F} are modeled in the measurement grid Mz,t. This means that

λΘ
SD equals m(SDt) if no measurement occurs. In such a case, the predicted map Mt

should not change, i.e.,

m(Θz,t) = 1 ⇒ Mt = Mt . (3.30)

Hence, the summand λΘ
SD remains assigned to {S,D} by

m(SDt) ← λΘ
SD . (3.31)

The second term λSD
SD represents the mutual support of the occupancy masses of Mt

and Mz,t. An occupied cell should converge toward static occupancy {S} when multiple

occupancy measurements for that same cell are accumulated. Thus, the static occupancy

mass is increased by λSD
SD, i.e.,

m(St) ← λSD
SD . (3.32)

The sum of the first two terms

λΘ
SD + λSD

SD = m(SDt)
(
m(Θz,t) +m(SDz,t)

)
︸ ︷︷ ︸

1−m(Fz,t)

≤ m(SDt) (3.33)

corresponds at most to the predicted occupancy mass m(SDt), i.e., it models the decrease

of the predicted occupancy mass by a conflicting freespace measurement m(Fz,t). Only the

third term λSD
Θ models the increase of the occupancy mass.
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Dynamic occupancy has to be initialized and increased differently than the convergence

of static occupancy derived from accumulated occupancy at the same cell. Instead, dy-

namic occupancy is primarily characterized by newly occurring occupancy. Hence, an

amount fD ∈ [0, 1] of the newly increased occupancy mass λSD
Θ is assigned to {D}, i.e.,

m(Dt) ← fD λSD
Θ ,

m(SDt) ←
(
1− fD

)
λSD
Θ .

(3.34)

The amount (1− fD) remains in {S,D}, whereby fD < 1 results in slow convergence to-

ward static occupancy with several occupancy measurements of that same cell, cf. (3.32).

The variable fD is modeled as a function of the ratio between the number of predicted

particles |X̂ c

t | in that cell and the defined maximum number of particles nmax in a cell. To

achieve fast convergence of dynamic occupancy, fD is modeled

fD ≡

√
|X̂ c

t |
nmax

, |X̂ c

t | ≤ nmax (3.35)

as the square root of this ratio. Dynamic evidence is initialized by spreading particles

in cells with unclassified occupancy as discussed in Section 3.5. These particles initially

have no individual dynamic occupancy value, i.e., oχ = 0, hence no predicted dynamic

occupancy mass is derived, cf. (3.16). New dynamic occupancy in (3.34) is thus only

derived when predicted particles are confirmed by an occupancy measurement in that cell.

Those different adaptations of the occupancy derivation, in comparison with the original

conjunctive combination, are illustratively summarized with multiple examples in Fig. 3.6.

All cases are based on an unclassified occupancy measurement m(SDz,t) = 0.4. If the state

of the predicted map is fully unknown, m(Θt) = 1, and no predicted particles are within

that cell, fD = 0, both results are equal, i.e., m(SDt) = m(SD |Mt ⊕c Mz,t) = m(SDz,t),

as shown in (a). However, if the predicted map already contains accumulated occupancy,

m(SDt) > 0, static occupancy is newly derived or increased with that measurement, as

demonstrated in (b) and (c), respectively, which is not the case with the conjunctive rule.

Equivalently, if predicted particles are present in that cell, fD > 0, dynamic occupancy is

newly derived or increased with that measurement, depicted in (d) and (e), respectively,

which is also not the case with the original combination rule.

Adaptation of the Dynamic Occupancy Derivation

Dynamic occupancy is also implicitly increased by the selected set of hypotheses 2Θ to-

gether with the modeled prediction. Previously measured freespace is transferred to the

superset of passable area m(FDt) in the prediction as explained in (3.18). In such a case,

newly measured occupancy m(SDz,t) results in an increased dynamic mass m(Dt),

m(D |Mt ⊕c Mz,t) = m(Dt)
(
1−m(Fz,t)

)
+ m(FDt)m(SDz,t)︸ ︷︷ ︸

λSD
FD

, (3.36)

since the intersection of {F,D} and {S,D} is {D}, which is represented by the term λSD
FD.

This complies the desired behavior that observed passable area that is currently occupied
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Fig. 3.6: Exemplary illustration of the occupancy derivation. Rows from top to bottom in all examples:

factor fD depending on the number of predicted particles, predicted map Mt, measurement

grid Mz,t, conjunctive combination ⊕c of Mt and Mz,t, and proposed combination of Mt

and Mz,t as defined in (3.53). (a)-(e) show different examples of varied predicted values

of fD and Mt, whereas m(SDz,t) = 0.4 is equal in all examples. Figure initially published

in [4], © 2018 IEEE.

has to be of a dynamic obstacle. However, completely resolving this toward {D} is prone

to measurement and odometry errors as discussed in Section 3.1.1. Measured occupancy

is thus partly assigned to m(SDt) even though freespace has been accumulated before. A

parameter γD ∈ [0, 1] regulates the modeled uncertainty of the assignment of λSD
FD,

m(Dt) ←
(
1− γD

)
λSD
FD + fD γD λSD

FD ,

m(SDt) ←
(
1− fD

)
γD λSD

FD ,
(3.37)

while γD = 0 corresponds to a total assignment of λSD
FD to m(Dt) without any modeled

uncertainty as in (3.36). The remaining amount γD λSD
FD that is not implicitly derived as

{D} represents an increased unclassified occupancy evidence like the term λSD
Θ . As in

(3.34), a part fD of that is still assigned to {D}, which, however, depends on the number

of predicted particles and not the accumulated evidence mass of passable area m(FDt).

Resulting Updated Occupancy Evidence Masses

Overall, the measurement update of the occupancy evidence masses for the hypotheses

{S}, {D}, and {S,D}, based on the conjunctive combination ⊕c as defined in (2.20), is

adapted by



m(St)

m(Dt)

m(SDt)


 =




m(S |Mt ⊕c Mz,t)

m(D |Mt ⊕c Mz,t)

m(SD |Mt ⊕c Mz,t)


+




1 0 0

0 fD −
(
1− fD

)
γD

−1 −fD
(
1− fD

)
γD





λSD
SD

λSD
Θ

λSD
FD


 , (3.38)

ignoring the additional conflict mass assignment of (3.26) here. That modified assignment

of the terms λSD
SD and λSD

Θ , both defined in (3.28), ensures a robust derivation and thus

differentiation of static and dynamic occupancy over time with measurements that only

represent the superset of unclassified occupancy. Static occupancy is thereby character-

ized by repeating occupancy measurements within the same grid cell, whereas dynamic

occupancy is initialized in cells with newly measured occupancy by the presence of particle

hypotheses, modeled by the factor fD. In addition, the assignment of the term λSD
FD of (3.36)

toward {D} is adjusted for robustness by an introduced uncertainty factor γD to reduce

that implicit derivation of dynamic occupancy, based on the evidential hypotheses inter-

section, for measured occupancy in cells with an accumulated evidence of passable area.
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3.4.3 Additional Radar- and Camera-Based Occupancy Classification

The adapted occupancy filtering of (3.38) has demonstrated the generic case of deriving

static and dynamic occupancy as part of the evidential filtering over time from measure-

ments of unclassified occupancy without any additional measurement information. This

static/dynamic occupancy differentiation can be further enhanced when radar Doppler

velocity measurements or semantic information of a camera sensor are available for the

evaluated cells, as that additional information enables a direct occupancy classification

of the measurement. Hence, in the following, the unclassified occupancy measurement

m(SDz,t) is divided into separate measurement occupancy evidence masses of the subsets

of static occupancy m(Sz∗,t), dynamic occupancy m(Dz∗,t), and the remaining mass of

unclassified occupancy m(SDz∗,t), i.e.,

m(SDz,t) = m(Sz∗,t) +m(Dz∗,t) +m(SDz∗,t) . (3.39)

Thereby the occupancy belief of the original measurement, as defined in (2.4), remains

unmodified by (3.39), i.e., bel(SDz∗,t) = bel(SDz,t) = m(SDz,t). In other words, this

means that the overall evidence of occupancy including its subsets is not increased or

decreased, only the subdivision between the superset {S,D} and the individual hypothe-

ses {S} and {D} is adapted in the following.

The occupancy measurement subdivision is modeled by the two factors βS, βD ∈ [0, 1]

with βS + βD ≤ 1, such that the static mass is derived by m(Sz∗,t) = βS m(SDz,t), the

dynamic mass by m(Dz∗,t) = βD m(SDz,t), and the remaining unclassified occupancy mass

bym(SDz∗,t) = (1− βS − βD)m(SDz,t), overall resulting in the adapted measurement grid

Mz∗,t =




m(Sz∗,t)

m(Dz∗,t)

m(SDz∗,t)

m(Fz,t)

0



=




0 0 βS 0 0

0 0 βD 0 0

0 0 (1− βS − βD) 0 0

0 0 0 1 0

0 0 0 0 0



Mz,t . (3.40)

In the following, it is discussed how both factors βS and βD are determined from radar-

and camera-based measurements, as well as the combination of those two sources.

Radar-Based Occupancy Classification

As presented in Section 2.3.3, the measurement grid of radar sensors additionally con-

tains the measured radial velocities vrz as a separate velocity layer. Those direct velocity

component measurements are used for the static/dynamic occupancy differentiation us-

ing a zero-mean Gaussian model with individual variances σ2
r,S and σ2

r,D, and a maximum

value of βS,max ∈ [0, 1] and βD,max ∈ [0, 1] for the static and dynamic assignment factors, re-

spectively. Thereby the constraint βradar
S + βradar

D ≤ 1 is ensured by selecting the variances

accordingly by σ2
r,D ≥ σ2

r,S. Altogether, this results in the radar-based coefficients

βradar
S = βradar

S,max exp

(
− (vrz)

2

2σ2
r,S

)
, (3.41)

βradar
D = βradar

D,max

(
1− exp

(
− (vrz)

2

2σ2
r,D

))
, (3.42)
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Fig. 3.7: Illustration of the radar-based occupancy classification coefficients βradar
S and βradar

D (here

with βradar
S,max = 0.6, βradar

D,max = 0.99, σ2
r,S = 0.75m2/s2, σ2

r,D = 1.25m2/s2).

which are exemplarily illustrated in Fig. 3.7. In conclusion, this means that a measured

radial velocity, already compensated by the ego motion as discussed in (2.14), with an

absolute value |vrz | close to zero increases the evidence of static occupancy, whereas the

evidence of dynamic occupancy increases with the magnitude of the radial velocity.

The radar-based maximum classification evidence of occupancy toward static βradar
S,max

has to be selected lower than the maximum dynamic value βradar
D , since only the radial

velocity component is measured, which is also zero for objects moving directly tangential,

i.e., orthogonal to the evaluated direction. As discussed later in Section 3.4.4, additional

information by a feedback of the subsequent object tracking can be further taken into

account to improve the static/dynamic convergence. Thereby the radar-based evaluation

of static occupancy by the factor βradar
S can be suppressed for cells within predicted objects

to remain dynamic occupancy for tangential object movements as well as stopping objects.

Camera-Based Occupancy Classification

Camera measurements obtain semantic information and thus enable a classification that is

also included for the corresponding occupied cells of the measurement grid, cf. Section 2.3.4.

This classification is also taken into account to further improve the static/dynamic differ-

entiation of measured occupancy. Therefore, if a cell includes a camera classification zκ, it

is evaluated whether this class is part of the superset Kstatic that represents classes of the

static environment, or, alternatively, if that class is part of the group Kdynamic of dynamic

objects. This results in the camera-based occupancy classification coefficients

βcamera
S =

{
βcamera
S,max,κ , if zκ ∈ Kstatic

0 , else
, (3.43)

βcamera
D =

{
βcamera
D,max,κ , if zκ ∈ Kdynamic

0 , else
. (3.44)

The maximum values βcamera
S,max,κ and βcamera

D,max,κ can further be modeled individually for each

determinable class κ and thereby also depend on the camera classification accuracy of

the corresponding class. The first group Kstatic of static classes includes, for instance,

road boundaries, buildings, or vegetation, whereas the second group Kdynamic of dynamic

classes includes pedestrians, cyclists, animals and so on. Vehicles like cars and trucks are

a special case, as they are generally movable, but may also be parked for a longer period
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of time, in particular in urban scenarios. The subsequent grid-based object tracking of

this work extracts objects in areas with dynamic occupancy. Hence, depending on the

decision whether parking vehicles should also be extracted as filtered objects, they may

or may not be included in the second group Kdynamic. Thereby classes that cannot be

explicitly assigned to Kstatic or Kdynamic are not contained in either of those two groups, as

they have to be mutually exclusive as used in (3.43)–(3.44), i.e., Kstatic ∩ Kdynamic = ∅. In
other words, not all determined classes of the camera have to be used for the occupancy

classification, but only those that allow an unambiguous static/dynamic differentiation.

Combined Sensor-Based Occupancy Classification

The occupancy classification coefficients have been determined for both radar velocity

measurements and camera-based semantic information. Those different sources have to be

fused to obtain the combined multi-sensor classification into static βS and dynamic βD. To

perform this combination, the coefficients are interpreted as evidence masses within the

frame ΘO = {S,D} with m(S) = βS, m(D) = βD, and m(ΘO) = 1− βS − βD. The goal is

thus the evidential combination

β = βradar ⊕ βcamera , (3.45)

that is also resolved by the conjunctive combination ⊕c of the intersecting hypotheses and

an explicit assignment of possible conflict masses as performed equivalently in the other

evidential combination steps of this chapter. Thereby two possible conflicts occur by the

combination (3.45), caused by a contradicting static/dynamic classification of the camera

and the radar, i.e., βcamera
S βradar

D and vice versa βcamera
D βradar

S . Both conflicts are assigned to-

ward dynamic, as the dynamic classification of both sensor types is more accurate than the

static classification. For camera measurements, the low spatial accuracy is only corrected

for movable objects by the camera–lidar alignment, whereas the static environment with-

out specific features remains uncorrected. For radar measurements, detections of moving

objects with large Doppler velocities are robustly classified as dynamic, whereas a Doppler

velocity of zero could also be caused by a movement tangential to the evaluated radial

component. Overall, the combination including that conflict assignment results in

βS = βcamera
S (1− βradar

D ) + βradar
S (1− βcamera

D )− βcamera
S βradar

S , (3.46)

βD = βcamera
D + βradar

D − βcamera
D βradar

D , (3.47)

which, eventually, enables the adaptation of the measurement grid Mz,t by this additional

sensor-based static/dynamic occupancy differentiation.

Resulting Occupancy Adaptation with Additional Measurement Information

The subdivision of measured unclassified occupancy into static occupancy and dynamic

occupancy by the additional radar- and camera-based measurement information forms the

enhanced measurement grid Mz∗,t as defined in (3.39). This enables a direct measurement

update with an implicit evidential combination of the dynamic grid map with that en-

hanced measurement grid, i.e., Mt = Mt ⊕Mz∗,t, rather than the original measurement

grid Mz,t that does not further distinguish measured occupancy.
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This generic extension combines the benefits of an optional sensor-based occupancy

classification with the adapted evidential filtering for a static/dynamic differentiation of

the remaining unclassified occupancy measurements as part of the mapping over time as

proposed in (3.38). The introduced adjusted assignment of the terms λSD
SD, λ

SD
Θ , λSD

FD can

directly be adapted toMz∗,t, it only has to be considered that the remaining mass of unclas-

sified occupancy of the measurement may be reduced due to assignment toward the indi-

vidual subsets of static or dynamic, i.e., m(SDz∗,t) = (1− βS − βD)m(SDz,t) ≤ m(SDz,t).

Hence, the terms λSD
SD, λ

SD
Θ , λSD

FD have to be defined accordingly by


λSD∗
SD

λSD∗
Θ

λSD∗
FD


 =



m(SDt)m(SDz∗,t)

m(Θt)m(SDz∗,t)

m(FDt)m(SDz∗,t)


 = (1− βS − βD)



λSD
SD

λSD
Θ

λSD
FD


 (3.48)

to represent the combination of the predicted map Mt with Mz∗,t rather than Mz,t, i.e.,

the conjunctive combination of the evidence masses with m(SDz∗,t) rather than m(SDz,t).

Overall, equivalent to (3.38), the update of the occupancy evidence masses, ignoring

the additional assignment of conflict masses, results in



m(St)

m(Dt)

m(SDt)


 =




m(S |Mt ⊕c Mz∗,t)

m(D |Mt ⊕c Mz∗,t)

m(SD |Mt ⊕c Mz∗,t)


+




1 0 0

0 fD −
(
1− fD

)
γD

−1 −fD
(
1− fD

)
γD





λSD∗
SD

λSD∗
Θ

λSD∗
FD


 . (3.49)

Note that (3.49) equals (3.38) if no sensor-based occupancy classification is performed, i.e.,

if βS = βD = 0, meaning that this represents a generic extension of the previous formulation

and is thus used in the following, without requiring that such additional radar- or camera-

based measurement information actually has to be present.

Additionally Occurring Conflicts by the Sensor-Based Occupancy Classification

The sensor-based occupancy classification and the combination of that enhanced measure-

ment grid Mz∗,t with the predicted dynamic grid map Mt introduce new conflict masses,

ζ(Mt,Mz∗,t) = ζ(Mt,Mz,t) +m(St)m(Dz∗,t)︸ ︷︷ ︸
ζD

∗
S

+m(Dt)m(Sz∗,t)︸ ︷︷ ︸
ζS

∗
D

+m(FDt)m(Sz∗,t)︸ ︷︷ ︸
ζS

∗
FD

,

(3.50)

in addition to the conflict masses ζ(Mt,Mz,t) caused by the measured freespace evidence

as defined in (3.25). All those additionally occurring conflicts are thus caused by the

subdivision of measured unclassified occupancy into static and dynamic. However, in

contrast to (3.26), there is generally no decisive indication whether those conflicts are

caused by a wrong hypothesis of the predicted dynamic grid map or a wrong sensor-based

occupancy classification. Therefore, all three additional conflicts are assigned toward the

original measurement hypothesis of unclassified occupancy, i.e.,

m(SDt) ← ζD
∗

S + ζS
∗

D + ζS
∗

FD , (3.51)

which represents a conservative choice as the static/dynamic occupancy classification has

then to be resolved over time in the subsequent measurement update steps and the currently

measured occupancy also dominates the previously measured freespace in terms of a more

cautious assumption of collision avoidance.
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3.4.4 Adapted Occupancy Convergence by Object Tracking Feedback

Another option to improve the dynamic occupancy convergence of the filtered dynamic

grid map is to use high-level information of the subsequent object tracking. Without any

object information or sensor-specific measurements, the evidential filtering of the dynamic

grid map is designed such that one fixed grid cell with repeating unclassified occupancy

measurements converges toward static occupancy, as described before in Section 3.4.2.

This approach is effective for any type of static obstacle, but may also affect actually

moving objects, since a fixed grid cell may also be occupied over a longer period of time

by different parts of moving objects, in particular the large side of a slow-driving truck. In

other words, the generic grid cell-individual static/dynamic occupancy classification lacks

the evaluation of the overall object-level movement estimation in such cases.

If a filtered object track has been extracted before and predicted to the measurement

time of the current measurement update of the dynamic grid map, this feedback infor-

mation can be considered to avoid convergence of measured occupancy toward static oc-

cupancy within the areas of the predicted tracks. This convergence behavior is normally

regulated by the factor fD as defined before in (3.35) depending on the ratio of the number

of particles present in that cell. By overwriting this ratio and setting fD = 1 for all grid

cells within the area A(T̂ t) of the set of predicted object tracks T̂ t, independent on the

number of actually present particles, i.e.,

fD =




1 , if c ∈ A(T̂ t)√

|X̂ c
t |

nmax
, otherwise

, (3.52)

the convergence toward static occupancy is suppressed, since all newly measured unclas-

sified occupancy is then derived toward dynamic occupancy of the map. Note that this

only affects newly measured unclassified occupancy, whereas previously accumulated static

occupancy of the dynamic grid map remains as it is, which is important for robustness

when that area A(T̂ t) of the predicted tracks is inaccurate and, for example, overlaps with

parts of the static environment that have been accumulated before.

Hence, apart from the factor fD, no further adaptation of the evidential filtering is

required to support the convergence of dynamic occupancy by high-level information of the

subsequent grid-based object tracking. This feedback could be limited to object tracks that

move above a certain minimum speed such that the dynamic grid map converges toward

static occupancy when those tracks move very slow or stop moving. However, in this work

this feedback is applied for all tracks in order to actually achieve that behavior, i.e., that

occupied cells within previously tracked objects remain as dynamic occupancy even though

those objects may stop at a traffic light etc. As discussed in the next chapter, this simplifies

and improves the association between occupied cells and the filtered object tracks, since

then only dynamic cells have to be considered for the object tracking. That way static

occupancy artifacts of temporarily stopping objects are avoided and the particle population

within those objects is retained due to the dynamic occupancy, enabling a fast particle-

based movement detection in the event of the object continuing to move, and a robust

differentiation when an object like a pedestrian stops directly next to a static obstacle.
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In addition to supporting dynamic occupancy of the grid map, an evaluation on the

object-level can also be used to detect a false dynamic estimation, e.g., caused by newly

occurring occupancy at a guardrail that gets visible with the movement of the ego vehicle,

which can be handled in different ways. In this work, in such a case, predicted dynamic

occupancy m(Dt) of the map is reset in terms of transferring that predicted evidence mass

toward unclassified occupancy m(SDt) and avoiding the convergence by setting fD = 0,

which, however, is only applied when an object hypothesis or filtered track is deleted with a

high certainty that it actually represents a false positive, otherwise the cell-wise evidential

filtering of the dynamic grid map is not modified by deleted objects.

3.4.5 Overall Resulting Updated Evidence Masses of the Map

This section has discussed in detail the different aspects of the measurement update of

the dynamic grid map. To sum it up, the updated dynamic grid map Mt, with the map

structure as defined in (3.4), altogether, results in



m(St)

m(Dt)

m(SDt)

m(Ft)

m(FDt)




︸ ︷︷ ︸
Mt

=
(
Mt ⊕c Mz∗,t

)
︸ ︷︷ ︸
default conjunctive
combination of
Mt and Mz∗,t

+




1 0 0

0 fD −
(
1− fD

)
γD

−1 −fD
(
1− fD

)
γD

0 0 0

0 0 0






λSD∗
SD

λSD∗
Θ

λSD∗
FD




︸ ︷︷ ︸
adapted evidential occupancy filtering

+




1
2
ζFS
0

ζD
∗

S + ζS
∗

D + ζS
∗

FD
1
2
ζFS + ζFD + ζFSD

0




︸ ︷︷ ︸
conflict mass
assignment

(3.53)

with a division into three terms. The first part depicts the default conjunctive combina-

tion m(θ|Mt ⊕c Mz∗,t), between all hypotheses of the predicted map Mt of (3.12) and

the measurement grid with the sensor-based occupancy classification Mz∗,t as introduced

in (3.40). The second part represents the adapted occupancy derivation of the evidential

filtering as defined in (3.38) and (3.49), i.e., modifications based on the conjunctive com-

bination. The third part models the assignment of occurring conflict masses as discussed

in (3.26) and (3.51).

Overall, this measurement update of the dynamic grid map thoroughly utilizes the

Dempster–Shafer evidential framework for filtering the different hypotheses of static occu-

pancy, dynamic occupancy, freespace, and their combined hypotheses supersets. Thereby

additional radar- and camera-based measurements are evaluated, if available, to classify

occupancy of the current measurement into static and dynamic. Furthermore, the eviden-

tial filtering based on the conjunctive combination of evidence masses has been adapted

to enable the convergence of measured unclassified occupancy toward static and dynamic

occupancy over time as part of the mapping. Moreover, evidential conflict masses are

individually assigned depending on the contradiction of the corresponding hypotheses.

3.5 Weighting and Resampling of the Particle Population

The previous section has presented the measurement update of the evidence masses of

the dynamic grid map Mt. Thereby the dynamic occupancy mass m(Dt) of that filtered
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map is linked to the low-level particle population Xt, meaning that the sum of the occu-

pancy values oχ of all particles χ ∈ X c
t in a grid cell c corresponds to the filtered dynamic

mass m(Dc
t ) of the map of that cell, as introduced in Section 3.2.3. This connection enables

the particle-based prediction of the dynamic evidence masses of the previous map Mt−1

by evaluating the predicted particle population X̂ t, cf. Section 3.3. However, the updated

dynamic grid map Mt thus also requires a subsequent determination of a new particle

population Xt based on the new dynamic evidence mass m(Dt) and that predicted particle

population X̂ t. This weighting and resampling of the particle population is essential for

achieving the temporal filtering of those particle hypotheses by the survival of the fittest

principle, i.e., the robust occupancy movement tracking over time, and also for retaining

the consistent representation of the dynamic evidence mass between both the grid map

and the occupancy values of the particle population.

3.5.1 Cell-Wise Occupancy-Based Number of Desired Particles

The number of desired particles is adapted within each grid cell based on the occupancy

evidence of that cell and a predefined maximum number of particles nmax in a single cell c,

i.e., |X c
t | ≤ nmax, as similarly proposed in [29, 121]. In other words, instead of defining a

fixed value for the total number of particles of the whole grid structure, the population is

adapted individually in each grid cell.

Since particles represent only hypotheses of dynamic occupancy in this work, particles

only have to be drawn in areas of the map Mt with dynamic occupancy m(Dt) or newly

occurring unclassified occupancy. The latter is required to enable deriving new dynamic

occupancy for measurements of unclassified occupancy based on the number of particles

that are present in that cell, represented by the factor fD, as discussed in (3.34). The

increased unclassified occupancy mass of the updated occupancy mass m(SDt) of the map

compared to the predicted evidence m(SDt) thereby arises from

m(SDt) =
(
λΘ
SD + λSD∗

SD

)
︸ ︷︷ ︸

≤m(SDt)

+(1− fD)
(
λSD∗

Θ + γDλ
SD∗

FD

)
+ ζD

∗

S + ζS
∗

D + ζS
∗

FD︸ ︷︷ ︸
≡m(SD+

t )

(3.54)

using (3.53) with m(SD|Mt ⊕c Mz∗,t) = λΘ
SD + λSD∗

SD + λSD∗
Θ , cf. (3.28), (3.48). Note that

particle hypotheses should only be spawn in areas of such increased unclassified occu-

pancy m(SD+
t ) and thus newly occurring occupancy measurements m(SDz,t) rather than

all cells with previously accumulated unclassified occupancy m(SDt), otherwise a large

number of particles would permanently be spawn in such cells and finally spread over the

whole grid structure. Hence, the number of desired particles, based on the combination of

dynamic occupancy and newly occurred unclassified occupancy of the dynamic grid map,

has to be selected proportional to the cell density

ρct = m(Dc
t ) +m(SD+,c

t ) , (3.55)

here explicitly stating the cell index c to avoid ambiguities due to the following usage in

combination with the particle population of a specific grid cell c.
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To further improve the robustness of the particle initialization, the number of the

predicted particle population |X̂ c

t | is at most decreased by a predefined reduction fac-

tor κp ∈ (0, 1) in order to prevent an abrupt reduction of the number of predicted particles,

i.e., to ensure a certain number of surviving particles even without supporting occupancy

measurements. This is particularly relevant for irregularly occurring occupancy measure-

ments, e.g., from sensors with a low measurement rate that are not included in every fused

measurement grid.

Overall, the new number of particles in a cell c is defined by

|X c
t | =

⌊
max

(
ρct nmax, κp|X̂

c

t |
)⌋

, (3.56)

and the new occupancy values of all particles in that cell are uniformly set to

oχ =
m(Dc

t )

|X c
t |

, χ ∈ X c
t , |X c

t | > 0 , (3.57)

such that their sum corresponds to the updated dynamic mass m(Dc
t ) of the dynamic

grid map Mt as defined in (3.10) and thus both representations retain consistent. In the

following, it is discussed how the predicted particle population X̂ c

t within a cell can be

weighted based on radar velocity measurements and camera orientation estimates.

3.5.2 Radar- and Camera-Based Particle Velocity Weighting

The occupancy evidence regulates the number of particles of a grid cell, but that measure-

ment does not enable an individual weighting of the particles within the cell due to the

spatially discretized grid structure. In other words, the position hypotheses of all particles

of the same grid cell are equally likely. The velocity hypotheses, however, can be weighted

when additional radar- or camera-based measurements are available.

Radar-Based Radial Velocity Component Weighting

Radar detections include a direct measurement of the radial velocity component vrz along

the measurement direction θrz, as described in Section 2.3.3 and also used in the occupancy

classification in Section 3.4.3. This enables a weighting of the radial component of the

velocity of a particle χ, as similarly performed in [88, 121]. The projection of the 2-D

Cartesian particle velocity to the radial direction θrz is described by

vrχ = cos(θrz) v
x
χ + sin(θrz) v

y
χ . (3.58)

The corresponding particle velocity weight results in

wradar
χ ∝ N (vrχ; v

r
z , σ

2
v,z) , (3.59)

which represents a Gaussian distribution with the measurement mean vrz and the vari-

ance σ2
v,z, evaluated at the radial velocity component vrχ of the particle χ.
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Camera-Based Orientation Weighting

The camera measurements include detected objects with the corresponding object orien-

tation φcamera
z . This orientation information can also be used to weight the movement

orientation of the particles, which is determined by

φχ = arctan

(
vyχ
vxχ

)
(3.60)

with the 2-D Cartesian particle velocity (vxχ, v
y
χ). Thereby it has to be taken into account

that only the orientation of the object is determined here, but not whether the actual

movement itself is forward or backward. Hence, the evaluated difference between the

particle movement direction and the camera orientation is given by

∆φχ = min
(
(|φχ − φcamera

z | mod π), π − (|φχ − φcamera
z | mod π)

)
, (3.61)

resulting in the corresponding camera-based particle weight

wcamera
χ ∝ N (∆φχ; 0, σ

2
φ) (3.62)

that is modeled equivalently to (3.59), here with a zero-mean Gaussian distribution since

directly the orientation difference ∆φχ is evaluated.

Combined Weighting

The two weights are combined by a simple multiplication, i.e.,

wχ = wradar
χ wcamera

χ , (3.63)

which enables a full 2-D velocity weighting of the corresponding particles when both the

radial velocity wradar
χ and the orientation weight wcamera

χ are present. To increase the overall

robustness against wrong measurements, the minimum value of both weights wradar
χ and

wcamera
χ can additionally be limited to a value greater than zero such that particles still

have a chance to survive in that case.

3.5.3 Initialization of New Particles

If no particles are present in an evaluated grid cell, or when additional random particles

should be drawn that are independent of the predicted population, new particles have to be

initialized, similar to the aspects of the particle weighting. For the particle position xχ no

preferred position within the discretized grid cell can be evaluated by the measurements, as

also no position weight is determined. Hence, the position of all new particles is distributed

uniformly within the spatial extent of that grid cell c, i.e., within the area A(c) as defined

in (3.9). The initial particle velocity sampling, however, can be enhanced toward the real

velocity by evaluating radar- and camera-based measurements, similar to the weights wradar
χ

and wcamera
χ as well as the combination of both. This results in different cases of the particle

velocity sampling, which are illustrated Fig. 3.8 and discussed in the following.
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Fig. 3.8: Illustration of the initial particle velocity sampling with differently available measurements.

Each figure shows a possible realization with 1000 sampled particle hypotheses (blue points)

with vmax = 40m/s and the real velocity v = [10, 20]T m/s (plus symbol). The measure-

ments are selected noise-free here for simplification. Independent of the measurement,

each particle is drawn uniformly with probability pv,u = 0.1 here. (a) Sampling without

measurement information. (b) Sampling with radar-based radial velocity measurement

vrz = 16.24m/s (small circle), with radial direction θrz = 20deg (radial: dotted line; tangen-

tial: dashed line), σ2
v,z = 0.5m2/s2, σ2

θ,z = 0.15. (c) Sampling with camera-based orientation

measurement φcamera
z = 63.43 deg (dash-dotted line), pforward = 0.9, σ2

φ,z = 0.2. (d) Sam-

pling with combination of radar- and camera-based measurements.
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Velocity Sampling Without Measurement Information

When no measurement information is available for the particle velocity sampling, a uniform

distribution is selected. Thereby the maximum velocity magnitude of the initial particle

velocity vχ is limited by a maximum modeled value vmax, i.e., ∥vχ∥ ≤ vmax. To ensure that

the sampled 2-D Cartesian velocity vχ = [vxχ, v
y
χ]

T is within the circle with the radius vmax,

values are sampled in the polar space with the random variables

Φu ∼ U(−π,+π) , (3.64)

Vu ∼ U(0, vmax) , (3.65)

and the corresponding concrete realizations of the orientation ϕu and the velocity magni-

tude vu, respectively. Hence, the initial particle velocity

vχ = vu

[
cos(ϕu)

sin(ϕu)

]
(3.66)

is determined by the transformation from the polar space to the Cartesian space.

The particle velocity sampling can be enhanced when radar or camera measurements are

present, which is presented in the following. However, to remain robust against completely

wrong measurements, similar to possible lower bounds of the particle velocity weights, each

newly drawn particle thereby still remains a probability pv,u of being sampled uniformly as

defined in (3.66) and thus ignore any corresponding velocity measurement information. To

simplify the following discussion, however, this probability pv,u is not further stated below.

Velocity Sampling with Radial Velocity Measurement

The initial sampling of the velocity can be significantly improved when a radar-based

radial velocity measurement is available, since then only the tangential component remains

unknown. Therefore, the Cartesian particle velocity

vχ =

[
cos(θR) − sin(θR)

sin(θR) cos(θR)

]

︸ ︷︷ ︸
RθR

[
vR
vT

]
(3.67)

is determined in this case by the two components of the radial velocity vR and the tangential

velocity vT using the rotation matrix RθR with the evaluated radial direction θR. That

radial direction is given by

θR = θrz + qθ,z , (3.68)

with the measurement angle θrz and additive zero-mean Gaussian noise qθ,z with vari-

ance σ2
θ,z. As described before, the maximum particle velocity is limited by the value vmax,

∥vχ∥2 = v2R + v2T ≤ v2max , (3.69)

which also applies to the combination of the radial and tangential component. Therefore,

as also proposed in [5], the possible range of the tangential component is restricted by

|vT | ≤ vT,max(vR) = vmax

√
1− v2R

v2max

, (3.70)
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Fig. 3.9: Illustration of the maximum tangential velocity vT,max(vR) (gray interval) depending on the

radial velocity vR and a fixed limitation ∥vχ∥ ≤ vmax (circle) of the overall Cartesian particle

velocity vχ. Figure similarly published in [5].

with vmax ≥ |vR|, which is also illustrated in Fig. 3.9. Despite that limitation, no further

information about the tangential component is available. Overall, the radial and tangential

velocity components of (3.67) underlie the distributions

VR ∼ N (vrz , σ
2
v,z) , (3.71)

VT ∼ U(−vT,max(vR), +vT,max(vR)) , (3.72)

i.e., the radial velocity vR is given by the measurement vrz with additive Gaussian noise

by the variance σ2
v,z, equivalent to (3.59), and the tangential velocity vT is modeled by a

uniform distribution using the restriction of the maximum possible value vT,max(vR).

Velocity Sampling with Orientation Measurement

Similar to the velocity sampling of radar measurements, the camera orientation measure-

ment φcamera
z also directly measures one component of the target 2-D velocity distribution.

Hence, equivalent to (3.66), the particle velocity distribution is sampled by

vχ = sv vu

[
cos(φχ,z)

sin(φχ,z)

]
(3.73)

Thereby the orientation φχ,z is given by the measurement with additive Gaussian noise qφz
that is modeled with variance σ2

φ,z, i.e.,

φχ,z = φcamera
z + qφz . (3.74)

However, as discussed before, the camera-based extraction only describes the object orien-

tation, but not whether that object actually moves forward or backward. Hence, in addition

to the uniform distribution of the velocity magnitude vu ∈ [0, vmax], an additional discrete

binary random variable sv ∈ {+1,−1} is introduced to model the sign of that velocity

magnitude, with the probability P (sv = +1) = pforward of the forward movement and the

remaining probability P (sv = −1) = pbackward = 1− pforward of the backward movement. If

no model assumption of the binary movement direction is available, both directions are

modeled with an equal probability, i.e., pforward = pbackward = 0.5, which then corresponds

to the Rademacher distribution [47].
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Velocity Sampling with Combination of Measurements

The most accurate velocity initialization that is close to the actual object velocity is

achieved by combining the measurements of the radar Doppler velocity and the camera

object orientation estimation. As stated in [5], the full 2-D velocity can be determined

from the measured radial velocity when the movement orientation is known, since then the

unobserved tangential velocity component is calculated by

vT = vR tan(θR − φχ,z) , (θR − φχ,z) mod π ̸= 0 , (3.75)

using the measured orientation φχ,z of the camera with the additional uncertainty as mod-

eled in (3.74) and equivalently the radial direction θR of (3.68) as well as the distribution

of the radial velocity component of (3.71). The particle velocity vχ is thus eventually de-

termined by (3.67). Note that the movement direction φχ,z in (3.75) only has to define the

movement axis, but not whether the movement along that axis is forward or backward, i.e.,

the camera-based forward movement probability pforward is not evaluated in this case, as

that direction is implicitly resolved by the sign of the measured radial velocity vR. However,

the equation (3.75) is only defined if the radial direction and the object orientation are not

orthogonal to each other, i.e., (θR − φχ,z) mod π ̸= 0 or above a small value to avoid singu-

larities, as then the radial velocity component is zero. In such a case, the particle velocity

has to be determined by the camera orientation as in (3.73). Additionally, errors between

the measured radial velocity and the camera orientation can be detected if the magnitude

of the determined tangential component vT of (3.75) and thus the combined velocity is

unreasonably high, i.e., if |vT | is above the maximum value vT,max(vR) as defined in (3.70).

In such a case, if the cause of the error is unknown, the uniform particle velocity sampling

of (3.66) is used as the most conservative choice without evaluating those measurements.

3.5.4 Resampling of the Particle Population

It has been shown how velocity or orientation measurements of radar and camera sensors

are evaluated to determine particle weights wχ of the predicted population X̂ c

t as well as

the velocity distributions for the sampling of new particle hypotheses. Moreover, the new

number of particles |X c
t | within the cell c has been determined in (3.56). On this basis, the

new particle population X c
t has to be drawn, i.e., the resampling of the particle population.

For the selection of the new particle population, the low variance sampling as proposed

in [128] is used. Hence, instead of drawing particles independently of each other, they are

drawn proportionally based on their weights and only a single random number is chosen

to draw the remaining fractional part with the probability given by the particle weight.

For example, for 4 existing particles with equal weights and a total of 9 desired particles

without new initialization, each existing particle is selected at least twice and one is selected

a third time, rather than drawing 9 times any of the 4 existing particles.

Relative Adjustment of the Particle Population

To minimize the creation and copying of particles, only the difference of the particles

∆nX = |X c
t | − |X̂ c

t | (3.76)
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that have to be added or deleted based on the predicted population can be applied as an ap-

proximation to increase the computational performance. Hence, particles of the predicted

population have to be copied or new random particles have to be initialized if ∆nX > 0,

whereas the particle population has to be reduced, i.e., individual particles have to be

deleted, if ∆nX < 0. This also means that for ∆nX = 0 no modification of the particle

population X̂ c

t is applied, even though the particle weights wχ might be different.

New random particles, i.e., independent of the predicted population, are sampled as

presented in Section 3.5.3 when the particle population has to be increased (∆nX > 0).

This is obviously necessary when no predicted particles are present in a cell (|X̂ c

t | = 0)

and thus no particles can be copied. In addition, as proposed in [118], even with existing

particles in that cell, some new random particles are sampled in order to reduce the particle

deprivation problem [128], i.e., to remain the variety of different particle hypotheses and

thus the possibility that the present particles may not represent the real object movement.

The number of random particles thereby depends on the weighting of the predicted particle

population, such that more random particles are sampled when those predicted particles

do not match the velocity measurements and vice versa [118]. This corresponds to a fixed

weight wrandom
χ′ for the initialization of a new random particle, which has to be selected

with respect to the particle weights wχ as determined in (3.63). In other words, this value

has to be modeled as wrandom
χ′ > wχ if the probability of sampling a random particle should

be higher that a particle with the weight wχ and vice versa.

Deletion of Particles with Particle Weights

The low variance sampling [128] as used in the copying of particles can also be applied for

the reduction of the particle population, i.e., this way only those particles are selected that

have to be deleted from the existing population. The following approach for the deletion

of particles is based on preliminary work of this thesis as initially presented in [116].

The measurement-based weights wχ as determined in (3.63), which are assumed to be

normalized by wχ ∈ [0, 1] in the following, have to be reversed for the deletion, meaning

that the weight for a particle being selected for deletion has to be selected as

w̃χ,del = max(1− wχ, w
min
del ) , (3.77)

such that particles that do not correspond with the measurement result in a high prob-

ability of being deleted, while each particle receives at least a minimum weight for dele-

tion wmin
del > 0. However, if more than one particle has to be deleted (∆nX < −1), particles

with high deletion weights w̃χ,del may be selected several times for the deletion, which, in

contrast to the copying of particles, is senseless, as each particle can be at most deleted

once. A particle is at most chosen once for the deletion, if the corresponding weight is

smaller than or equal to the limit

wlim
del =

∑
w̃χ,del

|∆nX |
, χ ∈ X̂ c

t , (3.78)

as this value corresponds to the step width of the low variance selection. To ensure this

limitation of the deletion, the difference of the weights w̃χ,del above that limitation wlim
del
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Algorithm 2 Modification of the particle weights for the deletion.

Require: Number of particles to delete ndel and initial weights wχ,del = w̃χ,del.

Ensure: Modify weights wχ,del such that each particle is at most selected once for deletion.

wlim
del ←

∑
wχ,del

ndel

▷ Overall limit of all individual weights

while max(wχ,del) > wlim
del do

∆Sa ← 0 ▷ Sum of the difference of the weights above wlim
del

Sb ← 0 ▷ Sum of the weights below wlim
del

for all wχ,del do ▷ Determine the sums ∆Sa, Sb

if wχ,del > wlim
del then

∆Sa ← ∆Sa + wχ,del − wlim
del

wχ,del ← wlim
del ▷ Limit weights above wlim

del

else if wχ,del < wlim
del then

Sb ← Sb + wi

end if

end for

for all wχ,del do

if wχ,del < wlim
del then

wχ,del ← wχ,del

(
1 +

∆Sa

Sb

)
▷ Increase weights below wlim

end if

end for

end while

has to be distributed to the weights below the limitation to remain the overall sum of the

weights and the number of particles that are selected for deletion. Therefore, the particle

weights for the deletion are iteratively adjusted as presented in Algorithm 2.

This modification is illustrated in an example in Fig. 3.10 with |X̂ c

t | = 7, ∆nX = −5,

and the following deletion weights:

originals weights w̃χ,del:

first iteration:

modified weights wχ,del:

[

[

[

1.0 , 0.1, 0.200, 0.5 , 0.1, 0.080, 0.300

0.456, 0.175, 0.351, 0.456, 0.175, 0.140, 0.526

0.456, 0.19, 0.38, 0.456, 0.19, 0.152, 0.456

]

]

]

Thereby the limitation results in wlim
del =

2.28
7

= 0.456; values above that limitation are

highlighted in gray. For the original weights with a possible random selection shown by

the black dotted lines in Fig. 3.10a, the particle χ1 with the deletion weight w̃χ1,del would

be selected three times, but also with each other low variance sampling configuration,

which visually corresponds to a rotation of the dotted circular structure, it would be at

least selected twice. After the second iteration of the proposed weight adaptation, the

final weights wχ,del are determined, ensuring that each particle is at most selected once

for the deletion, i.e., wχ,del ≤ wlim
del . In this example, the particles χ1, χ4, and χ7 are

definitely deleted, and two more particles are selected from the remaining particles, in the

configuration of Fig. 3.10b the particles χ2 and χ3 are chosen.
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(a) Original weights for the deletion.

wχ1,del

wχ2,del

wχ3,del

wχ4,del

wχ5,del

wχ6,del

wχ7,del

(b) Modified weights for the deletion.

Fig. 3.10: Modification of the particle weights for the deletion using the low-variance sampling concept.

The weights are adapted such that each particle is at most selected once for the deletion.

The example shows 7 existing particles, from which 5 particles have to be deleted.

Overall, this section has presented how the particle population Xt is updated such that

the combination with the dynamic evidence mass m(Dt) of the updated map Mt remains

consistent and the convergence of the particle tracking is achieved in terms of the resam-

pling of the most promising particle hypotheses given the measurement data. Thereby

the velocity hypotheses of the predicted particle population X̂ t are weighted by radar and

camera measurements, which are also used for the initial velocity distribution of newly

sampled particles. The number of particles is adjusted cell-wise, primarily proportional to

the dynamic occupancy evidence mass, and only the desired difference of the cell-individual

particle population is efficiently updated by adding or deleting particles.

3.6 Augmented Measurement Grid

The dynamic grid mapMt as introduced in this chapter represents an accumulated estima-

tion of the local environment including a differentiation of static and dynamic occupancy.

This classification is also important for the subsequent object tracking, as only occupied

cells classified as dynamic have to be considered for the moving object tracking, whereas

the static environment does not require a further abstraction. To avoid multi-filtering of

the object tracking, however, it is important to update objects only with occupied cells

that are currently measured rather than the filtered occupancy accumulation of the dy-

namic grid map. Therefore, in the following, a new representation is introduced – the

augmented measurement grid – which is briefly presented in this section. A comparison

of the fused measurement grid without further occupancy differentiation, as derived in the

previous chapter, and the adjusted augmented representation is demonstrated in Fig. 3.11,

which is based on the dynamic grid map of Fig. 3.1.

The main idea of this augmented measurement grid representation is to use the fil-

tered evidence masses of the dynamic grid map Mt for distinguishing static and dynamic

occupancy of the measured occupancy belief of the fused measurement grid Mz,t. This

strategy is similar to the radar- and camera-based occupancy classification as proposed in

Section 3.4.3. However, the subsequent object extraction should not fully depend or rely on
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(a)

(b)

Fig. 3.11: Example of the fused measurement grid as originally measured and with the additional

static/dynamic occupancy classification based on the estimation of the dynamic grid map

of Fig. 3.1a. (a) Fused measurement grid. (b) Augmented (fused) measurement grid.

the additional radar or camera measurement data of that current fused measurement grid.

Therefore, it is essential that this static/dynamic differentiation is generically estimated

and robustly filtered, which is directly estimated by the dynamic grid map. Overall, this

results in a pseudo measurement z̃, where the occupancy classification is selected by

m(Sz̃,t) = min
(
m(SDz,t)(1−m(Dt)), m(St)

)
, (3.79)

m(Dz̃,t) = min
(
m(SDz,t)(1−m(St)), m(Dt)

)
, (3.80)

m(SDz̃,t) = m(SDz,t)−m(Sz̃,t)−m(Dz̃,t) . (3.81)

Thereby the evidence mass of the static or dynamic occupancy hypothesis achieves at most

the filtered value of the dynamic map, but it is also limited by the measurement belief itself

and the conflict with the contradicting hypothesis. Another strategy is to multiply the
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corresponding evidence mass of the filtered map with the measurement, which, however,

results in a more conservative classification of the pseudo measurement when the value of

the map is not fully accumulated yet.

Since the measurement belief remains unchanged and equals the original occupancy

measurement, i.e., bel(Oz̃,t) = bel(Oz,t) = m(SDz,t), this classified measurement grid still

represents an uncorrelated and currently measured occupancy belief, only the subdivision

between {S}, {D}, and {S,D} is adapted by the filtered map. Therefore, this augmented

measurement grid can be used for a measurement update to the subsequent object tracking

without resulting in a multi-filtering of the occupancy-based position filtering.

The particle tracking as part of the dynamic grid mapping does not only support dis-

tinguishing static and dynamic occupancy, it further enables a robust low-level velocity

estimation of dynamic parts without requiring specific object assumptions. As introduced

in (3.11), the 2-D cell velocity is estimated by the mean particle velocity of all particles in

a cell, weighted by the individual particle occupancy values. The corresponding velocity

grid representation has been demonstrated in Fig. 3.1b. This cell-wise velocity estimation

forms also an important input to the object extraction, since it further enables a more

sensible clustering of objects that move closely to each other and velocity estimates of the

object instances by calculating the mean velocity of all associated grid cells. Therefore,

also included in the augmented measurement grid representation. Note that the particle-

based velocity estimation is filtered and thus correlated. Hence, as discussed in more detail

in the object state estimation in Chapter 5, this velocity estimate is primarily used for the

initialization of the object velocity but not for the subsequent measurement updates, for

which the directly measured and thus uncorrelated radar Doppler velocities, which are also

still included in the measurement grid, are then primarily used.

3.7 Results and Summary

This chapter has discussed how the local environment is robustly modeled and estimated

by a temporal filtering of different measurement data. A novel approach has been proposed

which combines the benefits of a persistent occupancy grid mapping accumulation with a

short-term grid-based particle tracking for the dynamic state estimation in changing envi-

ronments with moving objects. The presented evidential dynamic grid map forms the core

component that processes all incoming fused measurement grids by an adapted eviden-

tial filtering within the Dempster–Shafer framework. Thereby the evidential occupancy

hypothesis as used in the fused measurement grid of the previous chapter is subdivided

into separate hypotheses of static occupancy and dynamic occupancy, which is essential for

differentiating moving and stationary parts of the occupied environment. The evidential fil-

tering of the dynamic grid map is further adapted to model the temporal transition between

previously measured freespace toward the superset of passable area, specific assignment of

occurring conflicts between the different hypotheses, and an adjusted occupancy differen-

tiation to achieve the convergence from unclassified occupancy into the subsets of static

or dynamic occupancy. Dynamic occupancy masses of the grid map are directly coupled

with the particle tracking, i.e., the temporally filtered particle population corresponds to

position and velocity hypotheses of potentially moving parts of the environment. Hence,
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this enables a robust velocity distribution estimation of individual grid cells and thus also

a robust prediction of their dynamic occupancy masses. Static occupancy, in contrast,

is directly accumulated in the persistent map representation without requiring particles,

which avoids information loss during temporary occlusion of the static environment and

further reduces the computational effort of the particle estimation.

Overall, this approach results in an efficient and consistent temporal filtering of the dif-

ferent evidential hypotheses of static occupancy, dynamic occupancy, freespace, and their

combined hypotheses supersets, but also in a robust low-level velocity estimation, all with-

out requiring specific object assumptions. An example of the dynamic grid map including

the velocity estimation has been demonstrated with real sensor data in Fig. 3.1. This

generic estimation strategy primarily requires measured evidence masses of unclassified

occupancy and freespace as input, i.e., the fused measurement occupancy grid as shown

in Fig. 3.11a. Additional information of the measurement data such as a static/dynamic

classification is not necessarily required, as this is implicitly estimated by the filtering over

time including the particle-based movement estimation. Hence, even if that measurement

classification is not directly available, the measurement data can then be indirectly clas-

sified into static and dynamic based on the filtered estimation of the dynamic grid map,

resulting in the augmented measurement grid as demonstrated in Fig. 3.11b. That repre-

sentation forms the main input of the subsequent detection and tracking of moving objects,

where only areas of dynamic occupancy have to be evaluated. But it has also been dis-

cussed in detail how additional radar Doppler velocity measurements, camera classification

and object orientation information, and feedback of the high-level object tracking further

contribute to the dynamic grid mapping and particle tracking as optional inputs.

Two more challenging urban scenarios are demonstrated in Fig. 3.12–3.13. The first

scenario includes several oncoming vehicles and cyclists, a vehicle turning left, a stopped

vehicle in front of the ego vehicle, and multiple surrounding pedestrians, which are all ro-

bustly estimated as dynamic occupied with their respective velocities. Thereby the stopped

vehicle in the front has been observed moving before and an object track has been extracted,

therefore, even though the velocity correctly converges toward zero, it remains dynamic

occupied rather than converging toward static by the feedback of that predicted object

to the dynamic grid map as presented in (3.52). The particle-based velocity estimation

is further demonstrated in Fig. 3.12c for the left-turning vehicle, highlighting the robust

cell-wise velocity estimation. As shown in that example, the velocity vectors are accurately

estimated for the individual grid cells, solely based on the particle movement estimation,

which, in the case of such a turning object, differ due to its turn rate. The second scenario

in Fig. 3.13 also demonstrates the successful dynamic grid map estimation for a complex

urban scenario with several crossing cars, a bus, and multiple pedestrians. There are also

two boom barriers in the front area, which are robustly estimated as static obstacles, and

pedestrians directly next to the static environment that are correctly distinguished by the

dynamic occupancy classification and the respective velocity estimation.

Based on this robust low-level dynamic grid mapping, moving objects have to be ab-

stracted in the following from those individual occupied grid cells, i.e., a spatial represen-

tation of object instances, as that object abstraction is essential for a scene understanding

and maneuver planning for autonomous driving with surrounding traffic participants.
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(a)

(b)

(c) (d)

Fig. 3.12: Results of the dynamic grid mapping and particle tracking with real sensor data for a

challenging urban scenario. (a) Evidential dynamic grid map. (b) Particle-based velocity

orientation visualization. (c) Detailed representation of the particle population and resulting

cell-wise velocity estimation for the left-turning vehicle. (d) Camera images (rear/front).
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(a)

(b)

(c)

(d) (e)

Fig. 3.13: Further real data results of the dynamic grid mapping. (a) Evidential dynamic grid map.

(b) Particle-based velocity orientation visualization. (c) Augmented measurement grid rep-

resentation. (d/e) Camera images (rear/front) of the scenario.
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The dynamic grid mapping of the previous chapter enables a robust occupancy grid map-

ping with a temporal accumulation of the fused measurement grids in dynamic environ-

ments including a differentiation of static and dynamic occupancy. The applied particle-

based estimation thereby also enables a robust low-level tracking of the dynamic state of

the occupied environment including cell-wise velocity estimates. This chapter investigates

the subsequent extraction of moving objects as well as the association with predicted ob-

ject tracks that have been extracted at a previous time. In other words, the cell-individual

estimation of the dynamic occupancy grid is abstracted in the following toward the set

or cluster of dynamic grid cells that belong together as they are originated by the same

moving extended object instance. New objects are extracted by a density-based clustering

of dynamic occupied cells with similar cell velocities, which is further extended by a sub-

sequent connectivity-based clustering of neighboring occupied cells and a velocity variance

analysis to minimize false positives of the object abstraction. Moreover, a new associa-

tion approach is proposed that directly evaluates the individual grid cells before forming

object cell clusters. Thereby the particles of the underlying low-level particle tracking, as

introduced in the previous chapter, are linked with the high-level object tracks, i.e., an

object label is attached to each particle. Occupied cells are thus associated to objects by

evaluating the particle label distribution within each grid cell. In addition, a subsequent

clustering is performed, in which multiple sub-clusters of an object are extracted and fi-

nally checked for plausibility to further increase the robustness of the association. The

object state estimation, including the abstraction of the bounding box shape, is discussed

separately in Chapter 5 based on the set of associated occupied cells of this chapter.

The work presented in this chapter is based on [2] and [3] that have been published in

the context of this thesis, which are not explicitly referenced in the following.

4.1 Introduction

Object detection is an essential task with the aim of abstracting measurement data toward

a more generic high-level representation of object instances, which is crucial for any kind

of scene understanding or interpretation. For mobile robots, it is important to know where

other traffic participants are in the current local environment, for example surrounding

vehicles, cyclists, or pedestrians. This object extraction forms the basis for planning inter-

active maneuvers and avoiding collisions with other traffic participants, i.e., for enabling

safe and intelligent autonomous driving applications. Those objects thereby have to be

extracted from different sensor data, such as camera images, range-based detections of

lidar or radar sensors, or some other pre-processed or fused representation of measurement

data. Due to the wide range of sensors with their respective characteristics as well as

different types of considered objects, this results in a broad field of research with various
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approaches and applications. The same applies to the temporal filtering of objects for a

robust object estimation over time, requiring an association between current measurement

data and the predicted objects of the previous time instance, which also depends on the

measurement data and the corresponding object detection or abstraction.

In this work, measurement data of lidar, radar, and camera are modeled within the

generic occupancy grid representation, followed by the grid-based sensor fusion as well as

the temporal accumulation of the evidential dynamic grid mapping, as presented in the

previous chapters. The derived augmented measurement grid, as introduced in Section 3.6,

additionally combines the unaccumulated sensor data of the fused measurement grid with

the filtered static/dynamic occupancy differentiation of the dynamic grid map and the

particle-based cell velocity estimation. Based on that enhanced occupancy grid represen-

tation, the goals of this chapter are the extraction of newly occurring moving objects and

the association of the current measurement with the predicted object tracks that have

been extracted before. The contribution and outline of this chapter are presented after the

following brief discussion of related work in that context.

4.1.1 Related Work

Based on the occupancy grid representation of measurement data, there are various strate-

gies for distinguishing static and dynamic occupied parts of the environment, as discussed

in detail in the previous chapter. Thereby a simple concept for classifying occupied cells

as dynamic is to determine free/occupied inconsistencies between the accumulated map

and new measurements, e.g., [80, 135–137]. This concept is used in multiple approaches

to classify parts of the measurement data as dynamic, which are then clustered to extract

object hypotheses. In [135, 136], a distance-based clustering is applied to abstract objects,

which are temporally filtered by a multiple hypothesis tracking (MHT) with a consideration

of multiple matching association hypotheses. Object hypotheses are extracted similarly

in [20, 106] and associated to the filtered tracks using a global nearest neighbor (GNN)

approach. In addition, the object tracking and the occupancy grid mapping are linked

in [20] to improve each other by extending the object states with a list of associated and

accumulated grid cells. In [56], cell clusters are extracted from dynamic grid cells using a

density-based clustering and a joint probability data association (JPDA) is used.

Extracting object hypotheses by clustering dynamic grid cells is essential for newly

occurring objects since no previous information is available. For the association with

existing tracks that have been extracted before, in contrast, information of predicted tracks

is available that can be taken into account in advance of a clustering step. This is crucial

for solving ambiguities of a clustering in dense environments, where, for example, one

object instance can result in several clusters due to partial occlusions, but also the other

way, i.e., one combined cluster can also be originated by different objects that move too

close to each other such that they cannot be clearly separated in the clustering. In [77],

information of existing object tracks is considered by forming a region of interest of each

predicted track, which restricts possible starting points of a clustering with an association

of the clustered cells to the corresponding track. Ambiguities of multiple possible objects

of a cluster are solved using an additional k-means re-clustering based on the number of

predicted tracks within the area of that cluster. However, their main goal is a more efficient

80



4.1 Introduction

clustering and association, without addressing a detailed prediction of expected areas of

occupancy or object shape information in those regions of interest.

As discussed in the previous chapter, recent approaches of dynamic occupancy grids, in-

cluding this work, use a grid-based particle filter for robustly estimating the dynamic state

of the occupied environment. Each particle thereby represents a hypothesis of occupancy

at a specific position with a particular velocity. The low-level particle tracking thereby

does not only improve the generic filtering of dynamic occupancy, it also results in accurate

cell velocity distribution estimates. Hence, those cell velocities can be further evaluated

for the clustering and association of objects moving closely to each other with different

velocities. Based on the particle-based dynamic grid estimation, filtered objects can also

be directly extracted by clustering dynamic cells of the filtered dynamic grid map, i.e.,

without a subsequent filtering on the object-level, since the particle population already

represents a filtering of occupancy and velocity distributions. As stated in [29], those

particles could be extended by a unique identifier (ID) to reconstruct trajectories of the

extracted objects and thus perform the association over time. Similarly, in [101], an object

ID of those particles is used to extract object clusters including their mean velocity and

gravity center. This ID is propagated by the particle resampling, i.e., duplicated particles

inherit the ID, whereas randomly drawn new particles are initialized with a new unique ID.

However, the resulting object clusters tend to have similar problems as described before,

i.e., a large object can result in several small clusters of estimated objects, whereas objects

moving closely to each other converge toward one single cluster.

Other recent approaches [48, 95, 117, 143] use deep learning concepts for the object de-

tection based on dynamic occupancy grids. But, in contrast to the generic cell clustering

extraction of arbitrary-shaped moving objects, those machine learning-based approaches

require large labeled training datasets for a robust generalization with various kinds of

objects. Furthermore, those approaches do not address combining the object detection

with the data association by evaluating information of predicted tracks before extracting

object hypotheses to further improve both the association as well as the object detection

as discussed before. Another recent strategy is to perform not only the detection of ob-

jects but also the tracking over time with deep learning approaches using recurrent neural

networks (RNN), which is presented in [38] based on a dynamic grid representation. The

demonstrated results, however, show that the generalization in complex urban environ-

ments is still very difficult, which is therefore simplified in [38] by a stationary ego vehicle

that does not move itself.

4.1.2 Contribution and Outline

There are already multiple approaches that use similar concepts of dynamic occupancy

grids as part of a high-level object tracking. The main idea thereby is that the additional

static/dynamic occupancy differentiation directly simplifies the moving object detection

of the environment, since only occupied areas classified as dynamic have to be evaluated.

However, none of these approaches further combines in detail the advantages of the particle-

based dynamic grid estimation, which results in accurate cell-wise estimates of the velocity

and occupancy likelihood, with the object detection and data association tasks. Those

aspects are addressed in this chapter, with the main contributions as follows:
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� A new clustering-based extraction of moving objects is proposed that generically

detects arbitrary-shaped moving objects by the movement itself, without requiring

sensor-specific features or labeled training data. In contrast to other similar ap-

proaches, a robust combination of a density-based and a connectivity-based clustering

is presented, where also the particle-based cell velocity estimates as well as the re-

sulting velocity variance are evaluated. This improves both the ability to distinguish

closely moving objects with different velocities and the reduction of false positives.

� A novel cell-level data association concept is presented, where individual grid cells of

the measurement are directly associated with predicted objects even before they have

to be abstracted to the object-level. This reduces information loss and association

ambiguities, especially in scenarios with partial occlusions or densely moving traffic.

Two strategies are presented: A simplified approach using the predicted state of ob-

ject tracks and a detailed approach, the particle labeling association, where particles

of the underlying low-level particle tracking are linked to object tracks, which enables

an accurate occupancy likelihood approximation and thus a more robust association.

Moreover, a subsequent clustering and verification concept further improves the as-

sociation by forming and evaluating sub-clusters of the individual cells of an object.

In contrast to common approaches that first extract object hypotheses of the measurement

and then perform the association afterwards, the processing order of those two steps is also

handled differently in this work due to the proposed cell-level association strategy where

measurement data are associated to predicted objects in advance of the object abstraction.

This also applies to the structure of this chapter:

� Section 4.2 first provides a brief overview of the object detection and association

concepts based on the characteristics of the dynamic grid representation of the pre-

vious chapter. It is discussed how the dynamic occupancy classification simplifies

the moving object detection and which strategies arise for the data association with

object tracks that have been extracted before.

� Section 4.3 presents the cell-level data association concept where individual grid

cells are directly evaluated before forming object cell clusters. First, the simplified

approach based on the predicted object state with a box-shape is demonstrated,

which is then further enhanced by the proposed particle labeling association. Based

on this cell-individual association, in a subsequent clustering step, multiple sub-

clusters of an object are evaluated and finally checked for plausibility.

� Section 4.4 addresses the extraction of newly occurring object tracks, which is per-

formed after the association step and thus only applied to the remaining set of unas-

sociated grid cells. Thereby initial hypotheses are extracted by a density-based clus-

tering of dynamic cells, which is then further enhanced by a subsequent connectivity-

based clustering with a velocity variance analysis of adjacent occupied cells.

Finally, the chapter is concluded in Section 4.5 by different qualitative results in chal-

lenging urban scenarios and a summary.
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4.2 Overview of the Extraction and Association Strategies

This overview section briefly discusses how objects can be generally detected and associated

based on the characteristics of the dynamic occupancy grid representation of this work.

The proposed approaches for the association and extraction of objects are then presented

in detail in the subsequent sections.

4.2.1 Object Detection Based on Dynamic Occupancy Classification

Object detection is generally a challenging task, in particular for a sensor-individual object

detection when the evaluated features of that sensor are not very significant, e.g., due to

a low number of measurement detections in larger distances, unstructured object shapes,

partial occlusion, or clutter noise. The fused measurement grid of this work, as presented

in Chapter 2, already simplifies the object detection task since all measurement data of a

single time instance are fused in advance without requiring object assumptions. Objects

can thus be detected based on the measurement information of all used sensors, which, in

addition to occupancy and freespace evidence masses, can optionally also contain further

radar Doppler and camera classification information. Observable objects with correspond-

ing measurement detections can thereby only occur in occupied areas. Hence, based on

the measured occupancy evidence bel(Oc
z,t) = m(Oc

z,t) of the fused measurement grid Mz,t,

the set of relevant grid cells c of the grid structure G can be limited to

GO,t = {c ∈ G | bel(Oc
z,t) ≥ ΓO

min} ⊆ G , (4.1)

with a required minimum occupancy belief ΓO
min > 0.

One possibility is thus to extract high-level objects for all, arbitrary-shaped, occupied

areas of the environment given by the set of cells GO,t. However, as motivated before, it is

not very effective to abstract object instances of the whole static environment, e.g., using

a bounding box approximation. Instead, static obstacles can be modeled and estimated

more accurately and efficiently by the occupancy grid map accumulation using the same

grid representation as the input without further object abstraction. The dynamic grid

mapping as proposed in the previous chapter enables that filtered accumulation including

the differentiation of static and dynamic occupancy. Therefore, the object detection and

tracking should be limited to dynamic parts of the environment, i.e., moving objects.

Overall, this significantly simplifies the object detection and tracking, since only the subset

GD,t = {c ∈ G | m(Dc
z̃,t) ≥ ΓD

min} ⊆ GO,t (4.2)

of currently occupied cells with a dynamic occupancy mass greater or equal than a defined

threshold ΓD
min ≥ ΓO

min > 0 have to be considered for this purpose. Note that m(Dc
z̃,t)

represents the dynamic occupancy mass of the augmented measurement grid as introduced

in (3.81) and not directly the dynamic occupancy massm(Dc
t ) of the dynamic grid mapMt,

since only cells with currently measured occupancy are considered to avoid multi-filtering

on the object-level.

Altogether, this multi-sensor object detection based on the dynamic grid estimation

has several advantages. The dynamic grid estimation significantly simplifies the object
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cell measurements

{zct | c ∈ G}

extracted dynamic

occupied cells
cell clusters

spatial object

hypotheses

predicted occupied

cells of tracks

object tracks

τ ∈ T̂ t

object-level

association

cell-level

association association

problem

Fig. 4.1: Illustration of the association problem and a comparison of the different abstraction levels

including the required processing steps.

detection task and serves as a track-before-detect strategy that enables detecting arbitrary-

shaped moving objects solely based on the generic particle-based movement tracking on

the grid cell-level. Objects can thus be extracted by clustering dynamic grid cells of GD,t

without requiring specific feature extraction or labeled training data. Furthermore, as radar

Doppler measurements and camera information are also evaluated within the dynamic

grid mapping, those measurements also implicitly improve the object detection. Note that

by the additional feedback of the object tracking toward the dynamic grid mapping as

introduced in (3.52), occupied cells within that predicted area remain as dynamic occupied,

which enables to continue tracking objects that temporarily stop moving. Moreover, static

obstacles and dynamic objects are consistently estimated by that combined approach.

4.2.2 Measurement Abstraction Levels of the Association Problem

The association between the current measurement data and the temporally filtered objects,

called tracks, which have been already extracted before, can be generally performed on

different levels of abstraction. Most commonly, object hypotheses are abstracted from the

measurement data without considering the predicted tracks and the association step is

then performed afterwards on the object-level. In terms of the dynamic grid estimation of

this work, spatial objects hypotheses can be extracted by clustering dynamic occupied cells

of the measurement with a subsequent abstraction of the object shape, resulting in the

bottom path of Fig. 4.1 with an abstraction of the cell measurements toward the object-

level representation. For new occurring objects that clustering strategy is expedient as no

prior knowledge of predicted tracks is available in such a case.

However, clustering without additional information can be error-prone in dense urban

environments, as demonstrated in Fig. 4.2. For example, multiple objects that temporarily

move closely to each other may result in one large cluster, whereas partial occlusions of one

object may result in several small clusters, which is the case in Fig. 4.2b due to a limited

sensor field of view. This potentially leads to association errors on the object-level, which

are preventable when information of predicted tracks is available and considered in advance

of the clustering to help solving these ambiguities, as shown in Fig. 4.2e. Therefore, based
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(a) (b) (c) (d) (e)

Fig. 4.2: Example of the clustering and association with multiple surrounding vehicles. The vehicle on

the rear left results in two separate areas of measured occupancy here due to a limited sensor

field of view of that test vehicle. (a) Classified measurement grid. (b) Clustering without

prior knowledge. (c) Predicted tracks and occupancy likelihood approximation from predicted

track state. (d) Predicted tracks and labeled particle population. (e) Resulting cell-wise

association by considering predicted tracks. Figure initially published in [2], © 2018 IEEE.

on the cell measurements zct with the individual grid cells c ∈ GD,t of the set of dynamic

occupied cells as defined in (4.2), another strategy is to directly associate those cells to the

predicted tracks without a preceding clustering. The predicted object tracks thereby have

to be evaluated in the grid cell representation, i.e., the association is then performed on

the grid cell-level, as depicted by the upper path of Fig. 4.1.

Overall, both the extraction of new objects and the association with existing ones, based

on the cell-level association, result in a set of dynamic occupied grid cells

Cτ,t = {c ∈ GD,t | fa(c) = τ} (4.3)

that are associated to the corresponding track τ ∈ Tt, with

Tt = T̂ t ∪ T new
t (4.4)

describing the set of all currently tracked objects, both the predicted tracks T̂ t that have

been extracted before and the newly extracted ones T new
t . As this work handles extended

objects rather than point objects, multiple cells can be associated to a track. However,

each cell is at most associated with one track in this work, i.e.,

Cτ1,t ∩ Cτ2,t = ∅ ∀τ1, τ2 ∈ Tt, τ1 ̸= τ2 . (4.5)

This mapping of dynamic occupied cells to the object tracks given the cell measurements

and predicted object track states is thereby formally described by the surjective function

fa : GD,t → Tt ∪ {ζ∅} : c 7→ τ , (4.6)

while cells that are not associated to a track are mapped to an auxiliary variable ζ∅.

85



4 Object Extraction and Association

That cell-to-track assignment is divided into two steps in the following: The association

of cells with predicted tracks that have been extracted before is performed first, presented

in Section 4.3, whereas the clustering-based extraction of newly occurring objects is applied

afterwards in Section 4.4, where only the remaining dynamic cells that have not already

been associated are considered. The extraction of the spatial object shape and other high-

level attributes are discussed separately as part of the object state estimation in Chapter 5.

4.3 Cell Association for Existing Object Tracks

As motivated before, object tracks that have been extracted before have to be associated

with dynamic occupied grid cells of the current measurement. The association should

thereby be performed on the grid cell-level rather than on the object-level, i.e., without

requiring a high-level object hypotheses extraction to avoid information loss of such a

measurement abstraction before additional information of the predicted track is taken

into account. In the following, two different strategies for such a cell-wise association

are presented, followed by a subsequent clustering concept of those associated cells where

multiple potential sub-clusters of a track are formed and eventually checked for plausibility.

4.3.1 Association Based on Predicted High-Level Object Track

A simple strategy for an association of individual grid cells with predicted tracks is to

evaluate the similarity between a dynamic occupied grid cell c ∈ GD,t and the object state

of a predicted track τ ∈ T̂ t projected to that cell-level representation. The main idea

thereby is to compute the expected area of measured occupancy of a predicted track, i.e.,

its occupancy likelihood, by an approximation based on the predicted object pose and

box model shape. This generic concept has been published in more detail in [3], which

is briefly summarized in the following. The low-level particle representation as available

in this work, however, enables an even more accurate occupancy likelihood approximation

and association strategy, which is presented in detail hereafter.

The expected area of measured occupancy of a predicted track is defined by a position-

based association probability αx(c, τ), which represents the probability that a cell c with

center position xc is occupied by a predicted track τ , similarly described as a track cover

probability in [86]. The probability αx can be approximated with different degrees of detail.

In the simplest case, a binary validation gate can be selected, i.e., whether a cell is inside

or outside the predicted spatial object shape, e.g., using a bounding box model. A more

advanced probabilistic model can additionally evaluate, for instance, the distance between

a cell and the predicted object area, uncertainties of the predicted track pose and extent,

and the current visibility of the bounding box edges regarding the surrounding freespace

evidence masses as proposed in [3]. That position association probability is determined for

each possible track, as the source of an occupied cell may be ambiguous due to multiple

objects close to each other or clutter measurements. An example of the resulting position

association probabilities as determined in [3] is demonstrated in Fig. 4.2c.

Since the dynamic grid estimation also includes particle-based cell velocity estimates,

an additional velocity-based association probability αv(c, τ) models the likelihood of the
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cell velocity estimate νc
t based on the mean of the estimated track velocity vτ and the

corresponding covariance matrix Στ,v of the track state sτ , modeled by an unnormalized

Gaussian distribution evaluated at νc
t , i.e.,

αv(c, τ) ∝ N (νc
t ; vτ ,Στ,v) , αv ∈ [0, 1] . (4.7)

Those two association probabilities of the position and velocity are finally combined to

a joint association probability

α(c, τ) ∝ αx(c, τ)
(
λvαv(c, τ) + 1− λv

)
, (4.8)

here with an additional weighting coefficient λv ∈ [0, 1] that regulates the impact of the

velocity association probability αv to the total association probability α. Since the cell

velocity estimate or predicted track velocity may be wrong and differ from each other, a

coefficient λv > 0 ensures that cells still remain a position-based association probability,

for example for cells located in the middle of a predicted track.

As stated in (4.5), a cell is at most associated to one track, meaning that only the

maximum association probability α(c, τ ∗c ) of a cell c to the best fitting track

τ ∗c = argmax
τ∈T̂ t

α(c, τ) (4.9)

is considered, i.e., a nearest neighbor association for each individual cell regarding α(c, τ).

Overall, a cell c is finally associated to the best fitting track τ ∗c ,

fa(c) =

{
τ ∗c , if α(c, τ ∗c ) ≥ Γc

min,α

ζ∅, else
∀ c ∈ GD,t , (4.10)

if the association probability is greater or equal than a minimum threshold Γc
min,α ∈ (0, 1).

This threshold can be set to a fixed value, or, alternatively, also be selected inversely pro-

portional to the current measurement occupancy belief bel(Oc
z,t). The latter then further

combines the uncertainty of the association with the measurement uncertainty if a cell

is actually occupied, so that a lower association probability requires a higher certainty

that a cell is occupied in order to be extracted and vice versa. Thereby only dynamic

occupied cells c ∈ GD,t that are inside the gating area regarding the position association

probability αx(c, τ) of at least one predicted track have to be considered here.

4.3.2 Particle Labeling Association

The cell-wise association based on the predicted high-level track state already enables to

associate individual grid cells to a track without requiring a clustering or object hypothesis

abstraction. However, a major drawback of that approach is that the occupancy likelihood

approximation of cells extracted from the box representation is not accurate, even if the

current visibility of the box edges is considered. This is critical in environments with

dense traffic, since overlapping areas of multiple objects close to each other cause conflicts

of multiple similar cell association probabilities that cannot be robustly solved that way.
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(a) (b) (c) (d)

Fig. 4.3: Illustration of the different concepts of the occupancy likelihood approximation of a preceding

object. (a) Predicted object track. (b) Approximated position association probability based

on the predicted object state. (c) Estimation of the dynamic grid map. (d) Representation

of the corresponding low-level particle population, which could be partly linked to that track.

Therefore, in order to further improve the association strategy, a more accurate occu-

pancy likelihood representation of the predicted tracks is required. Independent of object

instances, the prediction of the dynamic grid map with the low-level particle population,

as discussed in the previous chapter, already presents the actual occupancy likelihood esti-

mation of the dynamic environment. Hence, the main motivation of the following approach

is to link parts of the particle population with each object track. In other words, the basic

idea is that particles can be linked to an object by attaching an object label to each particle,

where the predicted population of all particles linked to an object represents the prediction

of its occupancy likelihood. That idea is also illustrated by an example in Fig. 4.3, where

the occupancy likelihood of a preceding vehicle is characterized by the currently visible

parts of that object, here similar to an L-shape, which is accurately represented by the

particles, in contrast to the rough approximation that is derived from the predicted object

state with the box-model. This enhanced association approach is denoted as the particle

labeling association, which has also been published in [2] as part of this thesis.

Particle Label Extension as Object Identifier

The main idea of this association strategy is to extend the track attributes by linking a

set of low-level particles χ ∈ Xt, as defined in (3.7), to each high-level object track τ ∈ Tt.

For this purpose, an object label index

lχ ∈ Tt ∪ {ζ∅} (4.11)

is attached to each particle χ that defines the possible connection to a corresponding track.

The set of particles linked to a track τ is thus defined by

X τ
t =

{
χ ∈ Xt | lχ = τ

}
, (4.12)
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where each particle is at most linked to one track at time t, i.e.,

X τ1
t ∩ X τ2

t = ∅ ∀τ1, τ2 ∈ Tt, τ1 ̸= τ2 . (4.13)

An example of the labeled particle population is shown in Fig. 4.2d with a color-coding of

the particle labels, also demonstrating its free-form occupancy likelihood approximation.

This label is inherited in the particle resampling step to remain the linking to the cor-

responding track, while completely new drawn particles are initialized with lχ = ζ∅, i.e.,

without any linked track. However, the particle label is not evaluated in the particle filter

itself, i.e., no object relation is used for the prediction or weighting of the particles to re-

tain a robust low-level tracking without modeling specific extended object assumptions for

the point mass particles. Hence, the filtering behavior of the particle tracking remains un-

changed. In the following, the population Xt represents updated particles after resampling,

meaning that a particle velocity weighting and update using radar Doppler measurements

and camera orientation estimates as presented in Section 3.5.2 are performed in advance.

Measured velocities are thus implicitly considered by the updated particle population.

Cell Association Using Particle Label Evaluation

Based on the set X τ
t of particles linked to a track τ ∈ Tt, dynamic occupied grid cells

c ∈ GD,t are associated to that track τ by evaluating the particle label distribution in a

cell c. The origin of an occupancy measurement in terms of the corresponding object

instance is thereby indicated by the ratio

rτc =
|X τ

t,c|
|Xt,c|

∈ [0, 1] (4.14)

of the number of particles |X τ
t,c| linked to a track τ compared to the total number of

particles |Xt,c| in that cell c. This ratio rτc can also be interpreted as an association prob-

ability, equivalent to the notation α(c, τ) as introduced in (4.8). Hence, in the following,

α(c, τ) = rτc is used, with the result that also the remaining steps of the association can be

applied as defined before with the association probability α(c, τ). This means that only the

best fitting track τ ∗c of that cell c is considered, as determined in (4.9), which corresponds

to the track with the highest particle labeling ratio rτc in that case. The set of associated

cells Cτ,t then finally results from the function fa(c) as defined in (4.10), i.e., a cell c is only

associated to its best fitting track τ ∗c if the corresponding particle labeling ratio fulfills a

minimum threshold.

Particle Label Update / Reselection of Linked Particles

After the measurement update of the tracks, the linking between the particles and tracks

has to be updated. On the one hand, particles that are too far away from the bounding

box of the corresponding track should not retain linked to that track. On the other hand,

particles without a corresponding track, i.e., lχ = ζ∅, but that are inside the bounding box

of a track and have a similar velocity, may be linked to that track. This concept basically

corresponds to a gating, i.e., defining which area of a track is generally valid and which not.
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(a) (b) (c)

Fig. 4.4: Illustration of the particle labeling association concept. The scenario shows a guardrail on

the left side, partly wrongly classified as dynamic, and two existing tracks with one turning

right. (a) Classified measurement grid. (b) Labeled particle population and associated cells

(ζ∅: black, τ1: cyan, τ2: orange). (c) Update of particle labels (filled rectangles: bounding

boxes of updated tracks; dashed lines: valid gating areas of tracks). Figure initially published

in [2], © 2018 IEEE.

The first case, i.e., unlinking all particles that do not match with the linked track

anymore, is described by

lχ ← ζ∅ ∀ χ ∈ Aτ
1 , τ ∈ Tt , (4.15)

where the set of all particles that have to be unlinked from the track τ is determined by

Aτ
1 =

{
χ ∈ X τ

t | xχ /∈ b(sτ ,∆b)
}
. (4.16)

Thereby the position xχ of a particle χ is compared with the bounding box b(sτ ,∆b) of

the track τ which depends on the track pose and length/width that are part of the object

state sτ , where the valid area is enlarged by a distance parameter ∆b. This unlinking

strategy implicitly includes resetting labels of deleted tracks.

The second case, i.e., linking new particles to a track, including newly extracted

tracks T new
t , is described by

lχ ← τ ∀ χ ∈ Aτ
2 , τ ∈ Tt , (4.17)

with the set of corresponding particles

Aτ
2 =

{
χ ∈ X ζ∅

t | xχ ∈ b(sτ ) ∧ vχ ∈ vg(sτ ) ∧
(
∄τ̃ ∈ Tt\{τ} : xχ ∈ b(sτ̃ )

)}
. (4.18)

A particle is only newly linked to a track if it is directly inside the not enlarged bounding

box b(sτ ) of exactly one track. In addition, the particle velocity vχ is compared to a defined

valid velocity gating interval vg(sτ ) of the track. In overlapping areas of multiple tracks,

no new particles are linked to any track. In such a case, particles that remained their label,

without being unlinked by (4.15), are used to solve these ambiguities.

The different steps of the particle labeling concept are illustratively summarized in

Fig. 4.4. Dynamic occupied cells of the classified measurement grid, shown in Fig. 4.4a,

are associated to the two existing tracks by evaluating the particle label distributions, cf.

Fig. 4.4b. After the measurement update of the tracks, the particle labels are updated,

while particles outside the gating area are unlinked from that track and particles without

a label that are inside the bounding box of a track are added to that track, see Fig. 4.4c.
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Altogether, the particle labeling approach enables a robust association with an accurate

free-form occupancy likelihood representation. Thereby the linkage between the filtered

particle population and the tracked objects is retained over time, which further implicitly

helps to solve association ambiguities in overlapping areas of object tracks, since particles

keep their label from the past in such a case. This ensures, for instance, that a cell remains

associated to a track if it was clearly associated to that track before, even if another object

then approaches that area and moves closely to it.

4.3.3 Additional Clustering with Verification

In the following, the proposed cell-wise particle labeling association is further extended by

a subsequent clustering step, which has also been published as part of [2]. This concept

can also be equivalently applied to the simplified association based on the predicted object

state. The main idea of this additional step is to extract multiple sub-clusters of a track

that are then checked for plausibility, while only the best sub-clusters are finally selected

for the association and the object measurement update. The motivation is thereby twofold:

� Dynamic cells that have not been associated to any track by the particle population

but are directly adjacent to associated cells may be added to that cluster. This may

occur for cells that are outside the gating area of the track by an inaccurate bounding

box shape b(sτ ); for example, a preceding vehicle that turns quickly where a wrongly

estimated box orientation does not fully cover the long side of the detected L-shape.

� The association of individual cells close to a track, i.e., inside its gating area, may

be wrong. Possible scenarios, for instance, are road boundaries next to a track, with

some parts wrongly classified as dynamic, or parts of newly appearing objects that

have not been extracted but are also directly next to an existing track.

Hence, the aim of the additional clustering and verification strategy is to reduce both false

negatives and false positives of the association. This concept is divided into three steps,

which are discussed in the following.

Adaptive Dynamic Evidence Threshold Selection

In the first step, an adaptive threshold γ(τ) of the dynamic evidence mass m(Dz̃,t) is

determined based on the cells of c ∈ Cτ,t that are associated to a track τ by the particle

labels. Cells below that threshold are considered as insignificant or too uncertain regarding

the dynamic evidence mass of that cluster. Therefore, those cells are discarded to improve

the robustness of the association, which reduces the set Cτ,t to the subset

C ′
τ,t =

{
c ∈ Cτ,t | m(Dc

z̃,t) ≥ γ(τ)
}
. (4.19)

The adaptive threshold is thereby selected as

γ(τ) = max

(
ΓD
min, Γ

D,a
min

1

|Cτ,t|
∑

c∈Cτ,t

m(Dc
z̃,t)

)
, (4.20)
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which depends on the mean dynamic evidence mass of the set Cτ,t and a coeffi-

cient ΓD,a
min ∈ [0, 1], where the minimum value of γ(τ) is limited by the fixed dynamic

evidence mass threshold ΓD
min as defined before in (4.2).

In contrast to selecting a higher threshold of ΓD
min itself, where cells below that value

would not be considered in the initial cell-wise particle labeling association, this adaptive

threshold selection compares the dynamic evidence mass of a cell with the mean of all cells

associated to that track. Hence, this enables that cells with a lower dynamic evidence

remain associated if the other cells of that track have as well a similarly low dynamic

evidence mass, e.g., for objects in larger distances, but also that those more uncertain cells

are ignored if the mean dynamic evidence mass of the cells of that track is significantly

higher. Overall, this adaptive concept reduces false positives of the association and enables

a more sensitive clustering of neighboring dynamic cells as described in the following.

Clustering of Associated Cells and Neighbors

Based on the set C ′
τ,t of cells that fulfill the minimum dynamic evidence threshold γ(τ),

sub-clusters Ck
τ,t of each track are formed, where each sub-cluster represents a set of directly

connected cells. Thereby each track τ has a total of |Kτ | sub-clusters, with k ∈ Kτ denoting

the respective index of the sub-cluster. The basic idea of the clustering is that either the

full sub-cluster Ck
τ,t is actually part of the track τ , i.e., all cells c ∈ Ck

τ,t of the sub-cluster

should be associated to the track, or that the full sub-cluster represents a false hypothesis

of the association, i.e., none of the cells of Ck
τ,t should remain associated to that track. In

conclusion, a track can consist of several sub-clusters that are correctly associated, and

potentially some rejected sub-clusters that are not necessarily originated from that track.

In the following, in addition to the cells of the set C ′
τ,t, also adjacent unassociated

dynamic occupied cells of the set

Cζ∅
τ,t =

{
c ∈ GD,t | fa(c) = ζ∅ ∧ m(Dc

z̃,t) ≥ γ(τ) ∧ (rτc + rζ∅c ) ≥ (1− Γr,other
max )

}
(4.21)

can be added to the sub-clusters of the track τ . Thereby only cells with a dynamic mass

of at least the adaptive threshold γ(τ) are considered, which further have no significant

indication of a different track origin, i.e., unassociated cells with an ambiguous particle

label distribution are excluded in Cζ∅
τ,t. Therefore, the particle label ratio, as introduced in

(4.14), for the case of no object label or the label of the track itself (lχ ∈ {ζ∅, τ}), i.e.,

rτc + rζ∅c =
|X τ

t,c|+ |X ζ∅
t,c |

|Xt,c|
= 1−

∑

τ̃∈Tt\{τ}

rτ̃c (4.22)

has to be above a selected threshold (1− Γr,other
max ), with Γr,other

max ≪ 1 representing the max-

imum allowed ratio of particles linked to a different track. That consideration of the

additional neighboring cells improves the association for scenarios where some adjacent

cells are outside the gating area of the track, as motivated before.

The different sub-clusters Ck
τ,t are then formed by a single-linkage hierarchical clustering

with a distance threshold Γd
max between the cell centers xc, i.e., two cells c1 and c2 are

associated to the same cluster if

∥xc1 − xc2∥ ≤ Γd
max , c1 ∈ C ′

τ,t , c2 ∈ C ′
τ,t ∪ Cζ∅

τ,t . (4.23)
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This constraint can be further restricted if camera segmentation information is available,

i.e., if cells are linked to camera object instances, denoted by κid, as introduced in (2.19).

Therefore, in addition to (4.23), cells can only be added to a cluster if also the camera

object instance of the cell does not contradict with that of the cluster. For instance, the

two cells c1 and c2 are only combined if

(κc1
id = κc2

id) ∨ (κc1
id = ζ∅) ∨ (κc2

id = ζ∅) , (4.24)

which is fulfilled when at least one of the two cells has no camera information in terms

of no associated object instance, denoted by ζ∅, or if both cells are linked to the same

camera object. Overall, the camera segmentation information is thus used to achieve a

finer division of the sub-clusters, but not to combine sub-clusters with a larger position

distance in-between. That way it is ensured that the association does not fully rely on the

camera segmentation including the transformation from the image space to the occupancy

grid model.

In conclusion, each sub-cluster Ck
τ,t contains at least one cell of the set C ′

τ,t, whereas the

union of all sub-clusters of a track includes all cells of the set C ′
τ,t, and a cell is at most

associated to one cluster, i.e.,

Ck
τ,t ⊆ C ′

τ,t ∪ Cζ∅
τ,t, Ck

τ,t ∩ C ′
τ,t ̸= ∅, C ′

τ,t ⊆
⋃

Ck
τ,t ∀k ∈ Kτ . (4.25)

Cluster Score Verification

So far, all sub-clusters of a track only represent candidates for the association, but they

have to be checked for plausibility before they are finally associated. Therefore, each sub-

cluster is compared with the predicted object state ŝτ of the corresponding track to form a

score. Finally, only the sub-clusters with the highest scores remain associated to that track.

In the following, a simple approach is presented that evaluates the conformity of the

position and the geometry of the sub-cluster and the predicted track. First, a position

score λx
τ,k is determined, which results from the ratio of the number of cells that are inside

the predicted bounding box, i.e.,

λx
τ,k =

∣∣∣
{
c ∈ Ck

τ,t | xc ∈ b(ŝτ )
}∣∣∣

∣∣Ck
τ,t

∣∣ . (4.26)

Second, the length bl(Ck
τ,t) and width bw(Ck

τ,t) of each cluster are calculated, i.e., an oriented

minimum bounding box is extracted using the predicted track orientation. This extracted

bounding box geometry is compared

∆blτ,k =
|bl(Ck

τ,t)− bl(ŝτ )|
bl(ŝτ )

, ∆bwτ,k =
|bw(Ck

τ,t)− bw(ŝτ )|
bw(ŝτ )

(4.27)

with the length bl(ŝτ ) and width bw(ŝτ ) of the bounding box b(ŝτ ) of the predicted track.

This relative geometry conformity is mapped to a geometry score factor

λb
τ,k = exp

(
−ηb min(∆blτ,k,∆bwτ,k)

)
∈ [0, 1] , (4.28)
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with a scaling parameter ηb ∈ R+. Only the more fitting side of the box is considered

in λb
τ,k, i.e., it is sufficient if only the length or the width of the track is represented by a

cluster. Both scores of the sub-cluster are finally combined by

λτ,k = λx
τ,k λ

b
τ,k ∈ [0, 1] . (4.29)

This concept can be further extended by analyzing additional aspects like the particle-based

cell velocities, adjacent static occupied evidence m(Sz̃,t), the included freespace evidence

m(Fz,t), or the camera segmentation information κid as also evaluated in (4.24). Moreover,

it can be further evaluated if the combination of sub-clusters results in a higher score, in

which case they should be considered jointly.

To compare those cluster score relatively to each other, all cluster scores of a track are

normalized with respect to the best cluster score of that track, i.e.,

λτ,k =
λτ,k

max
k′∈Kτ

λτ,k′
. (4.30)

Altogether, sub-clusters are finally associated to the corresponding track

f ′
a(c) =

{
τ , if c ∈ Ck

τ,t ∧ λτ,k ≥ Γλ
min

ζ∅ , else
∀c ∈ GD,t , (4.31)

if the normalized score of that sub-cluster is above a threshold Γλ
min ∈ [0, 1]. Due to the

normalization, the best fitting sub-cluster of a track is always associated to that track,

whereas additional sub-clusters are only added if they have a similar score.

All in all, the proposed cell-level association approach enables an association of indi-

vidual grid cells by evaluating the predicted tracks that have been extracted before, which

is essential for scenarios with objects moving closely to each other. Hence, occupied cells

area associated before they are abstracted to the object-level representation, which avoids

information loss. Based on this cell-individual association, the subsequent clustering and

verification concept further improves the robustness of the association by analyzing those

associated cells and thereby detecting and rejecting wrongly associated cells of neighboring

dynamic areas that actually do not belong to that track.

4.4 Extraction of Newly Occurring Object Tracks

The previous section has demonstrated the association between dynamic grid cells and

predicted object tracks that have been extracted before. Thereby information of those

existing tracks is used to directly perform the association on the grid cell-level before

clustering those cells and without requiring an object-level abstraction. But in addition to

that association, newly occurring moving objects have to be detected and extracted, which

is presented in this section.

Therefore, the unassociated dynamic cells of the remaining grid set

Gζ∅
D,t = GD,t \

⋃

τ∈T̂ t

⋃

k∈Kτ

Ck
τ,t (4.32)
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have to be analyzed for potential new object tracks. Here all potential sub-clusters Ck
τ,t of

the existing tracks τ ∈ T̂ t are excluded from GD,t, i.e., new object tracks are only extracted

when they are clearly separated from existing tracks.

The proposed object extraction approach is divided into two steps, as also published

in [3] in the context of this thesis. First, a density-based clustering of dynamic occupied

cells is performed to extract the initial hypotheses of newly occurring moving objects.

Second, those clusters are extended by a subsequent region growing of neighboring occupied

cells, which are then finally evaluated by a velocity variance analysis to decide whether a

cluster forms a valid new track or not. Those two steps are discussed in the following.

4.4.1 Density-Based Clustering of Dynamic Occupied Cells

Potential object instances of the unassociated dynamic occupied cells of the set Gζ∅
D,t are

formed by a density-based clustering. In this work, the DBSCAN algorithm [40] is used,

with the ε-neighborhood

N c
ε =

{
c′ ∈ Gζ∅

D,t

∣∣∣
(
∥xc − xc′∥ ≤ Γc,c′

ε,x

)
∧
(
∥νc

t − νc′

t ∥ ≤ Γc,c′

ε,v

)
∧
( ∑

c̃∈D(c,c′)

m(F c̃
t ) ≤ Γc,c′

ε,F

)}

(4.33)

of a cell c. It describes the set of cells c′ that are neighbors to the cell c regarding a defined

ε-distance, which is divided into three conditions here: a maximum position distance Γc,c′
ε,x

of the 2-D cell centers xc ∈ R2, a maximum cell velocity difference Γc,c′
ε,v , and a maximum

value Γc,c′

ε,F of the sum of the in-between freespace evidence mass m(Fz,t). Thereby D(c, c′)

defines the set of in-between cells of c and c′. A simple and conservative choice for it is the

rectangular area between two cells, e.g., using a summed area table [27]; alternatively, cells

of the connected line can be extracted by Bresenham’s line algorithm [21]. By considering

the available in-between free space and the estimated velocities, objects close to each other

can be better separated in comparison to a direct clustering of sensor measurement data.

Thereby also the position distance threshold Γc,c′
ε,x can be enlarged if measurements occur

on different parts of one object.

Moreover, if additional semantic segmentation information of the camera sensors is

available, similar to (4.24), the ε-neighborhood N c
ε of the cell c can be further improved.

The basic idea thereby is that if a cell c′ has the same camera object instance as the

evaluated cell c (κc
id = κc′

id), it is more likely that that cell c′ is a neighbor of the cell c.

Equivalently, if those two cells belong to different camera object instances (κc
id ̸= κc′

id), it

should be more unlikely that they belong to the same ε-neighborhood. However, those two

cases should only be evaluated if both cells actually contain a linked camera object instance,

i.e., to improve the overall robustness, it is assumed that the set of all cells linked to a

camera object generally represents only a subset of all occupied cells of the actual object.

This means that the ε-neighborhood N c
ε remains unchanged and correspond to the case of

no camera information if κc
id = ζ∅ or κ

c′

id = ζ∅, which can be summarized by ζ∅ ∈ {κc
id, κ

c′

id}.
Overall, also with camera information the generic ε-neighborhood definition of (4.33) is

used, only the corresponding thresholds are adapted depending on the camera segmentation
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matching, i.e., the maximum position difference threshold is modeled by

Γc,c′

ε,x (κ
c
id ̸= κc′

id) ≤ Γc,c′

ε,x (ζ∅ ∈ {κc
id, κ

c′

id}) ≤ Γc,c′

ε,x (κ
c
id = κc′

id) , (4.34)

which also applies to the respective thresholds of the velocity Γc,c′
ε,v and the freespace Γc,c′

ε,F .

Altogether, the density-based clustering results in multiple cell clusters Ci ⊆ Gζ∅
D,t, where

each index i describes a potential new object track instance. Those cell clusters are further

extended and evaluated in the following.

4.4.2 Additional Region Growing with Velocity Variance Analysis

Based on the density-based clusters Ci of dynamic occupied cells with similar velocities, the

local neighborhood of each cluster is analyzed in terms of the adjacent occupied cells. The

main motivation is to determine false positives of the object hypotheses by evaluating the

velocity variance of that extended cluster, since the cell velocities and thus the dynamic

masses of the evidential dynamic occupancy grid may be partly incorrect, as demonstrated

in Fig. 4.5. Moreover, this strategy is also helpful for correctly detected objects that have

just started to move and which have not been fully converged toward dynamic occupancy,

e.g., the long side of a vehicle, where then all connected occupied cells of that track can

thus be extracted.

Region Growing of Adjacent Occupied Cells

In the following, each density-based cluster Ci is expanded to a cluster C+
i ⊇ Ci by iteratively

adding all neighboring unassociated and unclustered occupied cells in a seeded region

growing [6] with Ci as the starting seed points. Hence, not only dynamic occupied cells

of Gζ∅
D,t can be added in this step, but also all occupied cells of GO,t as introduced in (4.1),

i.e., cells where the current measurement occupancy belief bel(Oc
z,t) is greater or equal

than a threshold ΓO
min. For the connectivity criterion of the region growing, the directly

adjacent cells in terms of the 8-connected neighborhood is used. To overcome possible

small gaps in the current measurement data, e.g., due to temporal occlusion or missing

measurement data, that connectivity analysis can be further enhanced by also considering

the accumulated dynamic grid map Mt, meaning that cells of the current measurement

data can also be connected if there is a connection of occupied cells in the filtered map.

An example of the region growing is demonstrated in Fig. 4.5b–4.5c. In that example,

the maximum number of iterations is limited in terms of an efficient implementation,

since the main motivation is to reduce false positives. Velocity differences are ignored in

this connectivity-based clustering step; instead, the velocity variance of the new cluster is

analyzed as discussed in the following.

Velocity Variance Analysis

If any cell has been added to the initial cluster (C+
i ̸= Ci), the velocity variance σ2

vi
of

the extended cluster C+
i is evaluated. First, the weighted mean velocity νi of the clus-

ter is calculated, but only the cells of the initial dynamic cluster Ci are considered and

the particle-based cell velocity νc
t is only weighted by the respective dynamic evidence
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(a)

C1
C2

(b)

C+1

C+2

(c) (d)

Fig. 4.5: Object extraction for a scenario with an incorrect dynamic estimation at a wall. Both clusters

C1 and C2 represent potential objects moving north. But only C1 describes a real vehicle,

C2 is a false positive. (a) Augmented measurement grid. (b) Density-based clustering of

dynamic occupied cells. (c) Additional region growing step of neighboring occupied cells

(the maximum number of iterations was limited to 40 here). (d) Camera image.

mass m(Dc
z̃,t), since the evaluated variance is related to the initial dynamic cluster of a

moving object. Hence, the weighted mean velocity of each cluster Ci is determined by

νi =

(∑

c∈Ci

m(Dc
z̃,t)

)−1 ∑

c∈Ci

m(Dc
z̃,t) ν

c
t . (4.35)

Based on that mean velocity of the initial cluster Ci, the velocity variance is evaluated

for all cells of the extended cluster C+
i . Since the particle-based cell velocity νc

t only

represents the velocity hypothesis of dynamic occupancy m(Dc
z̃,t), as introduced in (3.11),

the static occupancy evidence mass m(Sc
z̃,t) with the hypothesis of a zero-velocity has to

be considered separately in the variance calculation, which results in

σ2
vi
=

( ∑

c∈C+
i

(
m(Dc

z̃,t) +m(Sc
z̃,t)

))−1 ∑

c∈C+
i

(
m(Dc

z̃,t)∥νc
t − νi∥2 +m(Sc

z̃,t)∥0− νi∥2
)
. (4.36)

Hence, rather than evaluating the mean of a cell as a combination of the static hypothesis

and the dynamic hypothesis, both are compared separately with the cluster mean νi for the

variance evaluation here. For instance, with a particle-based cell velocity of the dynamic ev-

idence that is twice the cluster mean (νc
t = 2νi), but withm(Dc

z̃,t) = m(Sc
z̃,t) = 0.5, the com-

bined velocity hypothesis of this cell would correspond to the cluster mean (0.5νc
t + 0.5 · 0),

but (4.36) ensures that the variance of that cell is still high, since neither the static hy-

pothesis with velocity zero nor the dynamic hypothesis with velocity νc
t really corresponds

to the mean cluster velocity νi in that case.

Overall, valid clusters that form new tracks have to be below a maximum allowed

velocity variance, i.e., σ2
vi
≤ σ2

v,max. In conclusion, new tracks are extracted, when there are

dense clusters of unassociated dynamic occupied cells with similar velocities. Furthermore,

these clusters must not be directly next to static obstacles with a large velocity variance,

assuming that the grid resolution and measurement certainty is generally high enough

to model gaps between occupied cells of different sources. However, this does not affect

already tracked objects, since the association is handled differently as described before.
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4.5 Results and Summary

This chapter has presented a novel concept for the object extraction and association based

on the characteristics of the dynamic occupancy grid representation of the previous chapter.

The fundamental idea of the proposed approach is summarized in an example in Fig. 4.6.

The fused measurement grid of the current measurement data, shown in Fig. 4.6a, is classi-

fied by the filtered dynamic grid map, resulting in the augmented measurement grid repre-

sentation with a differentiation of static and dynamic occupancy, cf. Fig. 4.6b. This directly

simplifies the moving object detection, since only occupied cells classified as dynamic have

to be considered, which represents a generic track-before-detect strategy without requiring

specific object assumptions. The approach is further enhanced by evaluating the corre-

sponding low-level particle population of the dynamic grid estimation, shown in Fig. 4.6c,

as well as the predicted object tracks that have been extracted before, depicted in Fig. 4.6d.

Hence, knowledge of the tracked objects is considered before abstracting object hypothe-

ses and thus losing information of the current measurement data, i.e., dynamic grid cells

are directly associated on the grid cell-level rather than on the object-level. The result-

ing association of the occupied cells is depicted in Fig. 4.6e–4.6f, demonstrating that also

measurement data of largely occluded objects that are barely visible can thus be robustly

associated, which is here the case for the left-most vehicle (ID 8) that is mostly occluded

by another vehicle (ID 4). In order to achieve an accurate free-form occupancy likelihood

representation of the predicted object tracks, particles of the low-level particle population

are linked to the object tracks as shown in Fig. 4.6g, which, overall, results in a robust and

generic association strategy.

As motivated before in Fig. 4.2, it is also essential to consider the predicted object

tracks for solving association ambiguities when an object is split into separate areas of

occupancy measurements, e.g., due to a restricted sensor field of view, which cannot be

directly handled by a clustering. Two approaches have been proposed for the association

on the grid cell-level: a simplified strategy using the predicted object bounding box model

and, as also depicted in Fig. 4.6g, a detailed occupancy likelihood approximation using

the low-level particle population. Both concepts enable a cell-individual association that

helps to solve association ambiguities, which has also been demonstrated in Fig. 4.2c–4.2e.

In scenarios with multiple tracks moving closely to each other, however, this box model

occupancy likelihood approximation is error-prone to inaccuracies of the predicted track

state. Fig. 4.7 shows such a scenario with two vehicles closely moving in parallel. Their

correct estimation is illustrated in Fig. 4.7b. To demonstrate the error-proneness in case of

an incorrect state estimation, an orientation offset of 15° is added to the predicted track on

the right side (ID 1). Hence, the front left corner of that track overlaps with the rear right

corner of the other vehicle (ID 2), as shown in Fig. 4.7c. Ambiguous cells in the overlapping

area can thus be associated to the wrong track, leading to wrong measurement updates,

which then further reinforce the incorrect state estimation and thus the association of the

next time instance, cf. Fig. 4.7g. In contrast, the particle population linked to a track

represents a detailed occupancy likelihood approximation of that track, see Fig. 4.7d. This

approach is robust against overlapping areas of the box models, cf. Fig. 4.7e and Fig. 4.7h,

since the particles remain their label from the previous time instance in such a case, i.e.,

the label is only updated when no ambiguities occur.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.6: Proposed grid-based object detection and association in an urban environment with dense

traffic and partial occlusion. (a) Fused measurement grid. (b) Augmented measurement grid.

(c) Low-level particle population. (d) Predicted object tracks. (e/f) Resulting associated

occupied cells Cτ of each track (with/without grid overlay). (g) Proposed labeled particle

population. (h) Camera images. Figure initially published in [2], © 2018 IEEE.

(a) (b) (c) (d) (e) (f)

(g) (h)

Fig. 4.7: Scenario with two closely moving vehicles with a modified orientation estimation. Orientation

of track 1 is modified in (c), (e), (g), (h) by an offset of 15°. (a) Augmented measurement

grid. (b)+(c) Occupancy association probabilities. (d)+(e) Labeled particle population.

(f) Camera image. (g)+(h) Associated cells over time (z-axis) and predicted track box

model with 15° orientation offset of track 1, (g) corresponds to (c); (h) to (e). Figure

initially published in [2], © 2018 IEEE.

99



4 Object Extraction and Association

(a) (b)

(c) (d) (e)

(f)

Fig. 4.8: Scenario with a vehicle moving closely to a road boundary with a curb that is wrongly

classified as dynamic. (a) Augmented measurement grid (dashed area shows section of (c)-

(e)). (b) Labeled particle population and predicted tracks. (c) Particle labeling association.

(d) Additional clustering process (color of a sub-cluster is not related to the corresponding

track here). (e) Finally associated clusters and resulting measurement minimum bounding

boxes. (f) Camera image. Figure initially published in [2], © 2018 IEEE.

In order to further enhance the particle labeling association approach, a subsequent sub-

clustering and verification concept has been proposed. This is demonstrated in Fig. 4.8,

where the cell-individual particle labeling association results in some wrongly associated

cells. In that scenario, cells of a nearby curb, which are incorrectly classified as dynamic,

but are not extracted as a separate track, are associated to the closely moving track. The

additional clustering process, however, distinguishes those cells of the curb as a separate

sub-cluster, as demonstrated in Fig. 4.8d. Hence, by evaluating the individual scores of

each cluster, that outlying cluster results in a low cluster score and is thus excluded.

Note that the selection of valid clusters is chosen conservatively here, i.e., the score of a

cluster has to be similar to the best cluster of that track. As presented in the next chapter,

an object track is updated by an extracted minimum bounding box of the associated cells.

Hence, false negatives, i.e., occupied cells of that track which have been omitted in the

association, only lead to a smaller, more conservative minimum bounding box that still

correctly updates the track. False positives, in contrast, result in an overestimation of the

bounding box and thus also of that filtered track, which is more critical. As discussed

before, this cluster score verification concept can also be extended by evaluating multiple

hypotheses and different combinations of the individual sub-clusters of a track, which,

however, also increases the computational effort.

Altogether, this chapter has presented a robust strategy for the grid-based object extrac-

tion and association, resulting in a set of occupied grid cells of the current measurement grid

that are assigned to an object track. In the following, it is discussed how the corresponding

object state estimation is updated based on those associated occupied grid cells, i.e., the

temporal filtering on the object-level, which forms the final step of the object tracking.

Further results of the overall grid-based object tracking approach are demonstrated after-

wards in Chapter 6.
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The previous chapters have presented how measurement data are processed on the grid

cell-level using the discretized grid representation with the uniform evidential occupancy

and freespace hypotheses. This includes the sensor data fusion and the dynamic grid esti-

mation by the individual grid cells, but also the object extraction and association that both

result in a set of associated occupied grid cells for each object track instance. This chapter

focuses on the subsequent high-level object state estimation, i.e., the temporal filtering on

the object-level. Thereby the associated occupied grid cells are abstracted to a bounding

box model, but also the freespace evidence as well as radar velocity measurements and

camera classification information are evaluated to further improve the object state estima-

tion. A UKF-based estimation of the dynamic motion state is presented, where the object

pose is robustly updated by selecting the most visible reference point in terms of the sur-

rounding freespace and a box orientation optimization in terms of minimizing the included

freespace. The motion state estimation is further enhanced by utilizing radar Doppler

velocity measurements with a robust update directly in the Doppler measurement space.

Moreover, a new combined approach for the object shape estimation and classification

is proposed using a histogram filter geometry distribution estimation and a Naive Bayes

classifier. Thereby the histogram-based representation enables to model non-Gaussian dis-

tributions of the length and width and hence to distinguish lower and upper bounds of the

measurement box, also determined by the surrounding freespace of the box edges. The

estimated object box size is finally extracted by evaluating both the accumulated measure-

ments of the histogram filter distribution and the likelihood of the most likely object class,

which further enables to consider prior class knowledge of the assumed object size when it

has not been fully observed yet.

The work presented in this chapter has been published in [1] in the context of this thesis,

which is not explicitly referenced in the following.

5.1 Introduction

Mobile robots, especially autonomous vehicles, require a robust object estimation of sur-

rounding traffic participants to predict their individual trajectories, plan interactive maneu-

vers, and avoid collisions. Therefore, object instances have to be detected and abstracted

from the measurement data of different sensors. However, it is further essential to track

those objects over time with a temporal filtering of the object state estimation. Only then

a real robustness against measurement noise is achieved, previously obtained measurement

information is aggregated, and parts of the object state that are not directly observable can

be implicitly derived based on the motion tracking. That object state estimation, including

the measurement abstraction and the recursive filtering, is addressed this chapter.
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Object tracking approaches, and thus also the corresponding object state estimation,

generally directly depend on the input data and the different processing steps as well

as their order. As motivated in the introduction of this thesis, high-level object fusion

approaches that are based on a sensor-individual object tracking with an early-stage object

abstraction, e.g., [8, 22, 76], are critical as they cause error-prone information loss regarding

the subsequent processing step. In contrast to that, low-level early-stage sensor fusion

approaches with a late-stage object abstraction and tracking, as performed in this work,

result in a consistent multi-sensor object tracking, where the object state estimation forms

the last processing step based on the combined measurement data of all sensors. In the

following, new strategies for the object state estimation in the context of the grid-based

measurement representation of this work are proposed. Details of the contribution and

outline of this chapter are presented after the following brief discussion of related work.

5.1.1 Related Work

Object tracking is a broad field of research with various approaches and applications; a

general overview is given, for instance, in [148]. The following discussion of related work

focuses on similar generic grid-based approaches with some additional relevant work on

radar Doppler-based motion estimation.

As discussed in the previous chapter, a simple strategy for the grid-based object extrac-

tion is to classify measurement data as dynamic by determining free/occupied inconsisten-

cies with the temporally accumulated grid map, which are then clustered to form object

instances. This is applied in [135], where objects are tracked by a common Kalman filter

using a simple bounding box shape model, without providing further details on the filtering.

Their approach is extended in [136] by a multiple hypothesis tracking (MHT) [17] using

an interacting multiple model (IMM) [146] approach with a fixed set of sixteen different

motion models along eight possible movement directions. However, such discrete motion

models limit the overall estimation accuracy and also require a Kalman filter instance for

each motion model. In [20], oriented bounding boxes of lidar data are extracted with an

L-shape orientation fitting, based on [78], which are then also filtered by a Kalman filter.

A constant 2-D acceleration model is used by decoupling the x- and y-direction, without

directly filtering the object orientation, whereas the object length and width are estimated

by a low-pass filter. A similar Kalman filtering approach is presented in [106], where the

estimated object state is further extended by the orientation and steering angle. Moreover,

the object state is adapted to the best observable reference point at the box corners, edge

centers, or the center of the box, based on the extracted features of the lidar data, which

enables an accurate position estimation. But their approach also requires a transformation

of the full object state and a recalculation of the respective error covariance matrix. A

different filtering strategy is presented in [56], where clusters of dynamic cells are tracked

as a free-form object model by a particle filter using a constant turn rate and velocity

motion model. The object state representation thereby directly includes a set of grid cells

with an additional hit counter that combines the hypotheses of the individual particles.

However, since all those approaches directly rely on the dynamic occupancy classification

of occupied/free inconsistencies, they remain error-prone to measurement inaccuracies of

ranging or odometry sensors, which thus also affects the object state estimation.

102



5.1 Introduction

A more robust filtering strategy requires a recursive dynamic state estimation of the

occupancy grid. As presented in Chapter 3, and similarly used in other recent ap-

proaches [29, 83, 85, 121, 131], a grid-based particle filter is used for efficiently estimat-

ing continuous velocity distributions of each grid cell, which is further combined with an

adapted evidential filtering of the occupancy masses. As presented in [3], also published in

the context of this thesis, the mean of the cell velocity estimates of all associated cells can

then also be used for a direct measurement update of the object velocity and orientation

with a subsequent object state filtering. However, this results in correlated input data of

an object-level Kalman filter and thus in a multi-filtering of the velocity and orientation,

which can cause higher filtering latencies in nonlinear scenarios. A similar object velocity

measurement update by the particle-based cell velocity estimates is presented in [149],

which is further extended by a de-autocorrelation scheme to whiten the correlated velocity

input of the Kalman filter object tracking. However, they use a simplified linear approxi-

mation that is prone to deviations of that model, in particular in relevant scenarios with

critical nonlinear movements.

Another strategy based on such dynamic occupancy grids is to avoid a subsequent fil-

tering on the object-level and directly extract tracked objects from the filtered particle

population by grouping the low-level particles to object instances. This is applied in [29]

and similarly in [101], as also briefly discussed in Section 4.1.1. However, then the object

estimation primarily results from the short-term particle estimation without a persistent

high-level shape estimation. This is error-prone, also for the association, in scenarios with

different viewing angles of a moving object, temporal occlusions, or densely moving traffic.

Moreover, by averaging the cell-wise low-level particle estimation, no detailed dynamic

state estimation on the object-level can be robustly derived, e.g., the velocity or acceler-

ation of the long side of a truck or the turn rate of a turning vehicle, as this requires an

evaluation for the full spatial object context rather than the local cell-individual evaluation.

A different approach is proposed in [94] with virtual rays of a laserscanner that are sim-

ilar to a polar grid representation, which are used to compute the measurement likelihood

with a pre-defined cost-function of a box model object shape, also considering the expected

freespace around an object. The object state is then estimated by a Rao-Blackwellized

particle filter (RBPF) with a sampling of the motion state and Gaussian estimates of the

geometry. Hence, that approach introduces using the freespace information for the object

state estimation, but the polar grid structure of the virtual rays is not directly extendable

to a generic multi-sensor approach and no static/dynamic classification is used.

The object shape can also be estimated using an object local grid map [12, 108], enabling

a detailed free-form shape estimation by accumulating occupancy probabilities with an

individual grid for each object, also considering the freespace information of the grid.

However, for most applications an abstracted box model is sufficient and more robust,

since such an object local grid map requires complex and error-prone re-alignment with the

movement of the corresponding object. Furthermore, the memory-intensive representation

is unfavorable for large trucks or in heavy traffic urban scenarios.

An accurate motion estimation, in particular for highly dynamic movements, further

requires Doppler radars that enable directly measuring velocity components. A multi-

radar object tracking is proposed in [60, 61] by deriving the velocity profile that describes
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the varying Doppler velocities of an extended object over the azimuth angle. Depending

on the number of sensors and measurements, a least-squares regression is used to resolve

up to three degrees of freedom of the object state, i.e., the velocity, orientation, and turn

rate. Similarly, in [103], the velocity profile is used for a single-radar tracking, where

linear and nonlinear motions are distinguished and in the latter case the orientation is

separately estimated based on the extracted contour of all radar detections. In [125], a

Gaussian process is used for the radar-based shape estimation, combined with an extended

Kalman filter (EKF) for the motion state estimation, which, however, results in complex

partial derivatives that are prone to linearization errors. But since radars typically have a

lower spatial accuracy than lidar sensors, all those radar-only approaches have difficulties

in estimating the object pose and size, which in turn affects the motion estimation due to

the inaccurately determined center of rotation.

5.1.2 Contribution and Outline

There are already several promising object tracking approaches that partly use benefits

of the dynamic grid estimation, the freespace information contained in the grid, or radar

Doppler velocity measurements. However, none of these approaches fully combines the

different benefits, which is addressed in the following to achieve a generic and robust

multi-sensor object tracking. Based on already associated occupied grid cells including the

extraction of new objects, presented in the previous chapter, this chapter focuses on the

subsequent object state estimation, with the main contributions as follows:

� In addition to the associated occupied grid cells, the proposed object state estimation

also evaluates the freespace evidence of the measurement grid representation. In

contrast to sensor-specific approaches that process only the raw sensor measurement

detections, this work thus further determines the current visibility of object parts in a

generic way based on the fused information of all sensors with different fields of view.

� A new dynamic state estimation strategy with an unscented Kalman filter (UKF)

is presented that is based on the characteristics of the dynamic grid representation.

Thereby the particle-based cell velocity estimates of the dynamic grid enable a direct

initialization of the object velocity and movement direction. The object bounding

box orientation is further locally optimized by minimizing the included freespace for

different box orientations. Moreover, also the object position is robustly updated by

selecting the most visible reference point based on the surrounding freespace.

� The dynamic state estimation is further extended by a generic radar velocity-based

UKF motion estimation strategy. In contrast to other similar approaches that per-

form the measurement update in the object state space by abstracting the radar

Doppler measurements to one estimated object velocity along a specific orientation,

the proposed approach directly performs the update in the radar Doppler velocity

measurement space by projecting the UKF sigma points to the expected radial veloc-

ities. This concept thus avoids the error-prone radar measurement abstraction and

thereby further enables that the full dynamic state is implicitly updated by the UKF.
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� A novel concept for the object shape estimation and classification is proposed. A

histogram filter geometry distribution estimation is presented, that, in contrast to

the UKF estimation, enables to model non-Gaussian distributions of the length and

width and thus also to distinguish lower and upper bounds of the measurement box,

also evaluated by the freespace-based visibility. Objects are then classified by a Naive

Bayes classifier based on the geometry distribution and maximum velocity, but also

considering the camera classification information. The estimated object box size is

finally extracted by evaluating both the accumulated measurements of the histogram

filter distribution and the likelihood of the most likely object class, i.e., prior class

knowledge of the assumed object size is used when it has not been fully observed yet.

Those different aspects of the proposed approach are divided into the following sections:

� Section 5.2 introduces the object state representation that is divided into the dynamic

motion state and the static object shape due to the two different filters used.

� Section 5.3 presents the generic UKF-based dynamic state estimation, including the

object box abstraction of the associated occupied cells, the freespace-based box edge

visibility evaluation with the reference point selection, the particle-based object ve-

locity and orientation initialization, and the freespace-based orientation optimization.

� Section 5.4 extends the UKF dynamic state estimation by the additional utilization

of the radar Doppler velocity measurements.

� Section 5.5 proposes the combined object shape estimation and classification strategy,

based on the generic histogram filter geometry distribution estimation for the length

and width of the bounding box and the corresponding Naive Bayes classifier.

Finally, some qualitative results and a summary of this chapter are presented in Sec-

tion 5.6, which is then continued by a detailed evaluation of the overall grid-based object

tracking approach in Chapter 6.

5.2 Object State Representation

Before the object state estimation is discussed in detail, the object state representation of

each object track τ ∈ Tt of all currently tracked objects Tt at time t is briefly introduced

in this section. Since the object state is estimated by two different filtering techniques in

this work, the object state representation is divided into two separate parts: the dynamic

motion state sτ,t and the static object shape gτ .

The dynamic state of a track τ at time t is defined by the vector

sτ,t =
[
xx
t , x

y
t , vt, at, φt, ωt

]
, (5.1)

which is composed of the 2-D position x = [xx, xy], the longitudinal velocity v with the

corresponding acceleration a = v̇, and the orientation φ with the turn rate ω = φ̇.
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Fig. 5.1: Illustration of the object state representation. Each object is modeled by a bounding box

with length l and width w; the dynamic state is composed of the position x, the longitudinal

velocity v and acceleration a, and the orientation φ with the corresponding turn rate ω.

Figure initially published in [1], © 2019 IEEE.

The corresponding object shape is modeled by an oriented bounding box with length l

and width w, which is summarized by the geometric state

gτ =
[
l, w

]
. (5.2)

The length axis of the bounding box of the track is oriented along the track orientation φt

and the width axis is defined orthogonal to it. This state is assumed to be static, i.e., it

does not change over time, thus the time index of gτ is omitted.

Equivalent to the grid representation, the accumulated odometry is used as the uniform

reference frame of the position of all tracks. Thereby the position x of an object is fixed

at its estimated center of rotation, which is approximated between the center point and

the middle rear point of the selected box representation for all object types, i.e., along

the object length axis at 0.25 l. Accordingly, the velocity v, the acceleration a, and the

turn rate ω are also referred to that position x. The selected object state representation

is summarized in an illustration in Fig. 5.1.

5.3 Dynamic State Estimation

This section focuses on the recursive estimation of the dynamic state sτ,t of the object

track τ , as defined in (5.1), which is temporally filtered by an unscented Kalman fil-

ter (UKF) [55]. First, the prediction step of the UKF state with the corresponding covari-

ance is briefly described, followed by different aspects of the measurement update step,

which focus on the required abstraction of the measurement data of the grid structure

toward the object state representation.

5.3.1 Prediction

The recursive UKF filtering requires a prediction of the previous value at time t− 1 to

the time t of the current measurement, with the in-between time difference ∆t. This in

turn requires a motion model of the mean state sτ,t and a process noise model of the

corresponding covariance Στ,t, which are both briefly described in the following.
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Motion Model

The motion model describes the state transition of the previous object state sτ,t−1 to the

predicted object state ŝτ,t. In the following, all predicted variables are characterized by

a hat symbol. The motion model of this work is based on a non-linear constant turn

rate and acceleration (CTRA) motion model [105], a popular vehicle model that enables

clothoid trajectories. To increase the overall robustness, the CTRAmotion model is slightly

modified in this work by ensuring slow convergence of the turn rate ω and acceleration a

toward zero, which is modeled by two reduction factors εω, εa ∈ (0, 1), i.e.,

ω̂t = (1− εω)ωt−1 , (5.3)

ât = argmin
a1,a2

(
|a1|, |a2|

)
, a1 = (1− εa) at−1 , a2 =

−vt−1

thorizon
. (5.4)

Moreover, the acceleration is additionally limited by the term −vt−1/thorizon here to prevent

a sign change of the velocity without the object stopping or slowing down. For example, a

fast-moving object with vt−1 ≫ 0 that performs a full braking with a ≪ 0 would otherwise,

due to a too slowly decreasing absolute acceleration, eventually overshoot and result in a

predicted significant negative velocity. The parameter thorizon ≥ ∆t thereby defines the

time horizon and hence the smoothness of the limitation.

The remaining state is updated by the default CTRA motion model [105] with

φ̂t = φt−1 + ω∆t , (5.5)

v̂t = vt−1 + a∆t , (5.6)

x̂x
t = xx

t−1 +
1

ω2

[
ωv̂t sin(φ̂t) + a cos(φ̂t)− ωvt−1 sin(φt−1)− a cos(φt−1)

]
, (5.7)

x̂y
t = xy

t−1 +
1

ω2

[
− ωv̂t cos(φ̂t) + a sin(φ̂t) + ωvt−1 cos(φt−1)− a sin(φt−1)

]
, (5.8)

using ω = ω̂t and a = ât. To avoid singularities, the position update in (5.7)–(5.8) is

replaced by a constant acceleration motion model for ω ≈ 0.

Process Noise Model

The applied process noise model is based on a Wiener-sequence acceleration model [13, 71],

Qw = σ2
w,ζ̈




∆t4

4
∆t3

2
∆t2

2
∆t3

2
∆t2 ∆t

∆t2

2
∆t 1


 , (5.9)

where, for a state [ζ, ζ̇, ζ̈], a change of the acceleration ζ̈ is assumed to be an independent

white noise process with variance σ2
w,ζ̈

. Applying (5.9) independently to the tangential

acceleration a and the radial acceleration ω̇ of the state as defined in (5.1), the UKF

process noise matrix results in

Q =

[
Q1 0

0 Q2

]
, (5.10)
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with the two symmetric submatrices

Q1 = σ2
w,a




∆t4

4
cos2 φ ∆t4

4
sinφ cosφ ∆t3

2
cosφ ∆t2

2
cosφ

∆t4

4
sinφ cosφ ∆t4

4
sin2 φ ∆t3

2
sinφ ∆t2

2
sinφ

∆t3

2
cosφ ∆t3

2
sinφ ∆t2 ∆t

∆t2

2
cosφ ∆t2

2
sinφ ∆t 1


 , (5.11)

Q2 = σ2
w,ω̇

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]
. (5.12)

Overall, these motion and process noise models are used for the prediction of the dy-

namic state and the corresponding covariance, which represents the first step of the recur-

sive state estimation of the UKF. For the second step, the measurement update, measure-

ment data of the grid structure have to be abstracted to the object state representation,

which is addressed in the following.

5.3.2 Transformation of Associated Cells to the Box Representation

The set Cτ,t of occupied cells of the current measurement grid that have been associated

to the track τ , as defined in (4.3) and discussed in detail in the previous chapter, is

transformed to an oriented minimum bounding box in the following. Hence, occupied grid

cells are abstracted to the same object box representation as the filtered tracks in this

processing step. Given the orientation φ, the length and width of the measurement box

lz = max
c∈Cτ,t

(x̃φ,x
c )− min

c∈Cτ,t
(x̃φ,x

c ) + δφd (5.13)

wz = max
c∈Cτ,t

(x̃φ,y
c )− min

c∈Cτ,t
(x̃φ,y

c ) + δφd (5.14)

are computed as the distance of the maximum and minimum of the positions xc of the

associated cells c ∈ Cτ,t with

[
x̃φ,x
c , x̃φ,y

c

]T
= Rφ

[
xx
c , x

y
c

]T
(5.15)

describing the cell position xc of the odometry reference frame mapped to the object

coordinate system (x̃φ,x, x̃φ,y) using the rotation matrix Rφ around the angle φ. As xc

represents only the center of a cell, similar to a dilation, an additional extent

δφd = dc
(
| sin(φ)|+ | cos(φ)|

)
∈ [dc,

√
2 dc] (5.16)

is added to the length and width to cover the complete quadratic cell with a size of dc × dc
by the extracted object size along the orientation φ. The orientation φ of the bounding

box is determined by analyzing the freespace of the measurement grid for various box

hypotheses with different orientations, which is described separately in Section 5.3.5. A

geometric illustration of the transformation to the box model is shown in Fig. 5.2.
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Fig. 5.2: Transformation of associated grid cells to a bounding box model. Associated cells are filled

gray and crucial cells are highlighted red. The inner dotted rectangle fits the cell centers,

the solid rectangle also considers the cell extent by adding δφd . All possible reference points

are visualized by yellow squares. Figure initially published in [1], © 2019 IEEE.

5.3.3 Position Measurements with Reference Point Selection

The associated occupied grid cells have been abstracted to an oriented measurement box

as described above, which enables a position update. The position of the center of the

measurement box in the odometry frame is calculated as

xcenter
z = RT

φ




min
c∈Cτ,t

(x̃φ,x
c ) + 1

2
(lz − δφd )

min
c∈Cτ,t

(x̃φ,y
c ) + 1

2
(wz − δφd )


 . (5.17)

The position of the filtered track is referred to the assumed center of rotation, approximated

as the position between the center and the middle rear point of the box, cf. (5.1). Hence,

a direct position update of x̂t is achieved using the extracted position with 1
4
lz rather than

1
2
lz in (5.17). The size of the measurement box, however, may change through occlusion

or a changing sensor field of view, as it is only a minimum bounding box. Consequently,

the center position xcenter
z may vary even if the object does not move, also with noise-free

measurement data.

A robust estimate of the position therefore requires using reference points that describe

the position in reference to a certain fixed point of an object. Thereby, the position update

of the UKF is achieved by transforming the position of the internal state ŝτ to the selected

reference point of the measurement space, i.e., a predicted measurement is calculated using

the UKF sigma points. In this work, the reference point can be either at a corner, an edge

center, or the center of the box, as also used in [7, 106]. The position in terms of a reference

point is thus defined as

xref
z = xcenter

z +RT
φ

[
δrefz,l lz
δrefz,w wz

]
, δrefz,l , δ

ref
z,w ∈

{
0,+1

2
,−1

2

}
, (5.18)

where δrefz,l and δrefz,w have to be selected with respect to the most robust position estimate.

Rather than using the reference point with the shortest distance to a certain sensor

origin, the surrounding freespace evidence of the measurement grid is considered to de-

termine the best reference point. Hence, this concept is suitable for a multi-sensor setup
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Ae,left
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Ae,rear
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Ae,right

Ae,left

Ae,front
Ae,rear

(b)

Fig. 5.3: Analysis of track edge visibility considering the freespace evidence in the surrounding striped

rectangle areas Ae,τ . Visible edges are highlighted red, a yellow square denotes the selected

reference point. (a) Scenario where the rear and right edge are visible. (b) Scenario with

additional freespace at the left edge such that the extracted width represents also an upper

bound. Figure initially published in [1], © 2019 IEEE.

and takes all current sensor observabilities, modeled in the evidential grid representation,

into account. Each edge e ∈ {front, rear, left, right} of the measurement box is analyzed

regarding its current visibility ϑe
z ∈ [0, 1], while ϑe

z = 1 means that the edge e is currently

a fully visible boundary and thus denotes a true object boundary. Thereto, the ratio

rF (A) =
1

|A|
∑

c∈A

m(F c
z,t) , A ⊆ G (5.19)

defines the sum of the current freespace evidence m(F c
z,t) of all cells c ∈ A ⊆ G in an area A

compared to the number of cells |A| of that area, i.e., its cardinality. Hence, the estimated

edge visibility is approximated by

ϑe
z ≈ rF (Ae) , (5.20)

i.e., the surrounding freespace ratio rF (Ae) in an area Ae around the edge e of the mea-

surement box that is expected to be freespace in order to represent a visible boundary. In

this work, an outside rectangle area is used, as shown in Fig. 5.3.

The position along the length axis is finally selected as

δrefz,l =





+1
2
, if ϑfront

z ≥ ϑmin ∧ ϑrear
z < ϑmin

−1
2
, if ϑfront

z < ϑmin ∧ ϑrear
z ≥ ϑmin

0 , else

, (5.21)

meaning that the position is at an edge if the corresponding visibility is above a defined

threshold ϑmin > 0. If both the front and the rear edge are visible, the center depicts

the most robust position along the length axis. The position δrefz,w along the width axis is

determined equivalently with the visibilities of the left edge ϑleft
z and the right edge ϑright

z .
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In sum, the corresponding corner point is selected if exactly two orthogonal edges are

visible, whereas the in-between edge center is selected when multiple corner points are

available. If no object edge is fully visible regarding surrounding freespace, e.g., due to

partial occlusion, the reference point can optionally be selected by evaluating the closest

distance to the ego vehicle. This edge visibility ϑe
z is also considered later for the geometry

estimation, which is discussed in Section 5.5. Overall, this reference point selection with

the freespace evaluation enables a robust position update of the track.

5.3.4 Velocity and Orientation Estimation by the Particle Tracking

The object position is updated by abstracting a bounding box of the associated occupied

cells. In addition to the occupancy and freespace evidence of the measurement grid, the

input data also contain 2-D cell velocities νc
t , estimated by the low-level particle tracking

with the particle population Xt as defined in (3.11). Hence, equivalent to (4.35), the 2-D

weighted mean velocity vector

ν =

( ∑

c∈Cτ,t

m(Dc
z̃,t)

)−1 ∑

c∈Cτ,t

m(Dc
z̃,t)ν

c
t (5.22)

of all associated cells of the set Cτ,t, weighted by the corresponding dynamic evidence

mass m(Dc
z̃,t), represents an estimate of the velocity and orientation of the object track in

terms of the velocity magnitude and movement direction, i.e.,

vz̃ = ∥ ν ∥ , (5.23)

φz̃ = arctan(ν) . (5.24)

The corresponding weighted variances are calculated as

σ2
v,z̃ = ησ

∑

c∈Cτ,t

m(Dc
z̃,t) (∥νc

t ∥ − vz̃)
2 , (5.25)

σ2
φ,z̃ = ησ

∑

c∈Cτ,t

m(Dc
z̃,t)

(
(arctan(νc

t )− φz̃) mod 2π
)2

, (5.26)

with an unbiased weight normalization [42]

ησ =

∑
c∈Cτ,t

m(Dc
z̃,t)

( ∑
c∈Cτ,t

m(Dc
z̃,t)

)2

− ∑
c∈Cτ,t

(
m(Dc

z̃,t)
)2 . (5.27)

That 2-D velocity ν represents a rough but robust estimate since it is temporally filtered

by the particle tracking using a simple constant velocity motion model without specific

object assumptions. As described before, the particle tracking thereby serves as a track-

before-detect concept. Hence, the velocity and orientation, in terms of the movement

direction, of a newly extracted high-level object are directly initialized with that estimate

even without directly measuring those states.
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Since the particle tracking is performed permanently, i.e., even after objects are ex-

tracted, this particle-based velocity and orientation estimation can be extracted in each

update step. Hence, vz̃ and φz̃ can be interpreted as pseudo measurements and directly

used for the UKF update as performed in previous work of this thesis [3]. However, these

estimates are already filtered by the particle tracking, causing correlation of those pseudo

measurements and thus violating the required uncorrelated input noise of a Kalman filter.

This multi-filtering can increase the filtering latency, i.e., the system becomes slower to

any deviations of the motion model, which is critical for scenarios with a fast-changing

turn rate or acceleration. Therefore, in this work, the velocity and orientation estimates

of the particles are only used directly for the object state initialization.

Nonetheless, since the particle-based estimation does not rely on specific object shape

assumptions, the estimated mean and variance are used to form a confidence interval

IX
φ =

{
φ ∈ [−π, π]

∣∣ |φ− φz̃| mod π ≤ γσ σφ,z̃ + σX
φ,min

}
(5.28)

of the assumed object orientation based on the movement of the point-mass particles.

The parameter γσ scales the respective variance, with defined added uncertainty σX
φ,min of

the particle filtering in general. Hereby, since the UKF state estimation is not used for

determining this orientation interval, a feedback of the object state and a drift off toward

a wrong local convergence is avoided.

Overall, the low-level particle tracking enables a robust velocity and orientation ini-

tialization of the object state, while a subsequent direct measurement update is avoided

as this would result in multi-filtering. Instead, the orientation is further estimated by a

local optimization of the filtered state regarding the currently measured freespace, which

is described in the following, whereas the velocity is only updated with radar Doppler

measurements, as presented in the next section.

5.3.5 Orientation Estimation Based on Freespace Evidence

The freespace evidence m(F c
z,t) of the measurement grid is evaluated in terms of the sur-

rounding areas of the box edges to determine the current visibility of each edge as used

for the reference point selection of the position update. In the following, this freespace

information is also used for estimating the object orientation by analyzing the inside area

of the object box. For this, the freespace ratio rF (Aφ
i ) as defined in (5.19) is evaluated

with the area Aφ
i enclosing all cells inside the measurement minimum bounding box with

length lz and width wz given the set of associated cells Cτ,t and the respective evaluated

orientation φ, cf. (5.13)–(5.14). This concept is based on the assumption that objects do

not contain freespace inside the object shape.

In other words, this means that a low freespace ratio rF (Aφ
i ) implies that the corre-

sponding measurement box fits well with the data of the measurement grid, whereas an

inaccurate orientation estimate results in a higher freespace ratio. Hence, this is described

by the optimization problem

φ∗
z = argmin

φ∈IX
φ

κ(φ), κ(φ) = rF (Aφ
i ) , (5.29)
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minimizing the cost function κ(φ) that equals the ratio rF (Aφ
i ) of the included freespace.

The possible range of the orientation φ is thereby limited by the particle confidence interval

IX
φ as defined in (5.28).

If the track τ is not newly extracted and its predicted orientation is within the par-

ticle confidence interval, then the optimization starts with that predicted track orienta-

tion (φ0 = φ̂t), otherwise the mean particle orientation is used (φ0 = φz̃,τ ). A hill-climbing

optimization with a discrete orientation delta δφ, e.g., δφ = 2◦, is then performed, resulting

in the discrete optimum φi∗ with φi = φ0 + i · δφ ∈ IX
φ and i ∈ Z. Finally, a continuous

optimum is approximated by the weighted mean with the two neighbors φi∗ ± δφ, i.e.,

φ∗
z ≈

(∑

φ′

1

κ(φ′)

)−1 ∑

φ′

1

κ(φ′)
· φ′, (5.30)

φ′ ∈ {φi∗ , φi∗ + δφ, φi∗ − δφ} . (5.31)

The corresponding variance

σ2
φ,z = (∇r −∇l)

−2 (5.32)

is determined by the right- (i > i∗) and left-sided (i < i∗) gradients with the maxima φmax,r
i

and φmax,l
i , respectively, i.e.,

∇r =
κ(φmax,r

i )− κ(φi∗)

φmax,r
i − φi∗

, φmax,r
i = max

i>i∗
φi . (5.33)

In contrast to an L-shape fitting, this freespace evaluation concept does not require a

feature-specific extraction. Furthermore, occupancy can occur not only on the outer edge,

but also anywhere inside that object. Moreover, only a local optimization is performed

based on the orientation of the predicted track and the estimated movement direction of

the particle tracking, hence, resulting in an approach that is also robust against deviations

from the box model shape.

Overall, this section has presented a UKF-based dynamic state estimation of an object

with measurement data modeled by the dynamic grid representation. The object position

and orientation are updated by an abstracted measurement box of the associated occupied

cells and an evaluation of the freespace of the grid. For the object state initialization, the

mean of the 2-D cell velocities of the underlying low-level particle tracking is used as the

initial estimate of the object velocity and orientation in terms of the movement direction.

5.4 Additional Radar-Based Dynamic Estimation

The dynamic state of each track is robustly estimated based on the occupancy and freespace

evidence of the measurement grid as described in the previous section. In the following,

that concept is further extended by evaluating radar Doppler measurements that may occur

at a track, which significantly improves the dynamics estimation for nonlinear movements.
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(a) (b) (c)

Fig. 5.4: Extended particle labeling association with radar measurements. (a) Classified measurement

grid with radar measurements illustrated by arrows. (b) Dynamic cells with labeled particles

and predicted track. (c) Extracted minimum bounding box formed by cells with a high

dynamic mass. The remaining cells with radar velocities are considered for the dynamic

state estimation, but not utilized for the extraction of the bounding box. Figure initially

published in [1], © 2019 IEEE.

5.4.1 Association of Radar Doppler Measurements

As defined in (2.18), the radar velocity measurements zcv,t are represented in the mea-

surement grid structure as separate layers, containing the radial velocity vrz , the azimuth

angle θrz, and the position xs of the corresponding sensor origin at the measurement time t.

The radar measurements thereby typically have a higher spatial uncertainty than those of

lidar sensors, thus resulting in a lower occupancy evidence and multiple cells containing

the same radial velocity measurement, which in turn is useful for the velocity weighting of

the low-level particle tracking, as discussed before. The presented cell association strategy,

however, discards cells with a low dynamic occupancy evidence mass, as defined in (4.19),

as only cells with a higher occupancy evidence should be taken into account to robustly

form the measurement minimum bounding box of the object.

Hence, all occupied cells of the extended set of associated cells C+
τ,t ⊇ Cτ,t, still extracted

by evaluating the particle label distributions but without discarding cells with a low oc-

cupancy evidence, are considered in the following, while only cells that contain a velocity

measurement are relevant, i.e.,

Cr
τ = { c ∈ C+

τ,t | ∃ zcv,t } . (5.34)

This extended association is illustrated in Fig. 5.4, which forms the basis for updating the

tracks by the associated radar Doppler measurements.

5.4.2 Geometric Relations of the Radial Velocity Component

The velocity of a track τ is represented as a scalar velocity vτ along the orientation φτ

with the turn rate ωτ , which is referenced to the center of the rear axle, cf. Fig. 5.1. The

2-D Cartesian velocity vi in the odometry reference frame at an arbitrary point xi of the
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object is calculated as

[
vxi
vyi

]
= vτ

[
cos(φτ )

sin(φτ )

]
+ ωτ

[
−(xy

i − xy
τ )

xx
i − xx

τ

]
, (5.35)

as described in [61] using the instant center of rotation (ICR) and the assumption of the

Ackermann steering geometry with a drift-free driving state.

The radial velocity component regarding the angle θri results in

vri =
[
cos(θri ), sin(θ

r
i )
] [vxi

vyi

]

=vτ (cos(θ
r
i ) cos(φτ ) + sin(θri ) sin(φτ )) + ωτ

[
cos(θri ), sin(θ

r
i )
] [−(xy

i − xy
τ )

xx
i − xx

τ

]
, (5.36)

which depends on the evaluated position xi if a turn rate occurs (ωτ ̸= 0), i.e., a turning

object results in different velocity vectors for different positions of that object. Using the

cell centers xc of z
c
v,t as the position, however, is critical, as it introduces a bias error due

to the grid discretization and the additional spatial uncertainty over multiple grid cells as

shown in Fig. 5.4. Instead, the position of the original radar detection can also be described

[
xx
i

xy
i

]
= di

[
cos(θri )

sin(θri )

]
+

[
xx
s

xy
s

]
(5.37)

relative to the corresponding position xs of the sensor origin at the time of the measurement

with the distance di = ∥xi − xs∥ between the evaluated position xi and the sensor origin xs

and the azimuth angle θri of the measurement. Since (5.37) also fulfills the relation

[
cos(θri ), sin(θ

r
i )
] [−xy

i

xx
i

]
=

[
cos(θri ), sin(θ

r
i )
] [−xy

s

xx
s

]
, (5.38)

the radial velocity of (5.36) can also be evaluated without any additional bias error, which

finally results in

vri =vτ cos(θ
r
i − φτ ) + ωτ

(
sin(θri )(x

x
s − xx

τ )− cos(θri )(x
y
s − xy

τ )
)

(5.39)

using the trigonometric addition formula [141]

cos(θri − φτ ) = cos(θri ) cos(φτ ) + sin(θri ) sin(φτ ) . (5.40)

The different geometric relations of the velocity parts are summarized in Fig. 5.5.

5.4.3 Radar-Based Motion Estimation

Based on the relation between the radial velocity component and the object state as derived

in (5.39), the object state estimation can be updated by the radar measurements vrz,i with

the corresponding measurement azimuth angle θrz,i and the sensor position xs. A common
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ωτ

vi

ICR

vτ

xx
i − xx

τ

xy
i − xy

τ

sensor

vri

x

y

xs

xτ

xi

θri

di

φτ

Fig. 5.5: Geometric relations of the velocity components of an object with a turn rate using the

instant center of rotation (ICR) as the stationary rotation point of the object. The radial

velocity vri depends on the angle θri of the radial component, the dynamic object state sτ ,

and the position difference between the track xτ and the evaluated position xi or the sensor

position xs. Figure initially published in [1], © 2019 IEEE.

approach is to summarize the relation of all radar measurements to an equation system,

resulting in a least-squares (LSQ) optimization problem in the form of

min
vxz ,v

y
z ,ωz

∥∥∥∥∥∥∥∥∥∥∥∥




cos(θrz,1) sin(θrz,1) Ωz,1
...

...
...

cos(θrz,i) sin(θrz,i) Ωz,i
...

...
...

cos(θrz,N) sin(θrz,N) Ωz,N






vxz
vyz
ωz


−




vrz,1
...

vrz,i
...

vrz,N




∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(5.41)

by transforming (5.39) to the equivalent relation

vrz,i =

[
cos(θrz,i) sin(θrz,i)

(
sin(θrz,i)(x

x
s − xx

τ )− cos(θrz,i)(x
y
s − xy

τ )
)

︸ ︷︷ ︸
Ωz,i

]

vxz
vyz
ωz


 (5.42)

using the Cartesian representation of the object state velocity rather than the polar rep-

resentation, i.e., vxz = vz cos(φz), v
y
z = vz sin(φz). That representation can then be trans-

formed to the object state representation by vz =
√
(vxz )

2 + (vyz )2 and φz = arctan(vyz , v
x
z ),

with a respective uncertainty error propagation. Hence, this generally enables to derive

measurements of the scalar object velocity vz, the object orientation φz, and the turn
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radar Doppler detections

{vrz,i}

predicted dynamic object state

ŝτ,t =
[
x̂xt , x̂

y
t , v̂t, ât, ϕ̂t, ω̂t

]T

LSQ approach

{vrz,i} → vz, ϕz, ωz

innovation in

object state space

vz − v̂t, ϕz − ϕ̂t, ωz − ω̂t

UKF approach

ŝτ → {v̂ri }

innovation in

measurement space

{vrz,i − v̂ri }

Fig. 5.6: Overview of possible radar-based motion estimation concepts. The left path represents an

innovation in the object state space by an object state abstracting of the radar Doppler mea-

surements, whereas the right path represents the proposed concept where the measurement

update is performed directly in the measurement space by transforming the predicted object

state to predicted radial velocity components.

rate ωz, which can then be directly used to update the dynamic object state sτ of the

object track τ . However, in order to derive the full three degrees of freedom of (5.41),

the rank of the matrix also has to be greater or equal than three, which, as denoted by

Kellner et al. [59–61], is fulfilled if at least two radar sensors provide a total of at least

three detections. Otherwise, the number of degrees of freedom has to be reduced, e.g., by

avoiding to extract an orientation measurement and using the predicted track orientation

instead, or, in the case of only one detection, by further assuming that no turn rate occurs,

resulting in different cases and error-prone assumptions.

But the UKF estimation also enables a different strategy, since the innovation between

the predicted state and the measurement is evaluated in the measurement space for a

Kalman filter, while the UKF sigma points ξ ∈ Ξ enable the nonlinear projection h(ξ).

Hence, rather than abstracting the measurements from the measurement space to the

object state space, it is also possible to transform the predicted object state ŝτ to the radar

Doppler velocity measurement space and then determine directly the innovation between

the measured radial velocity component vrz,i and the expected value v̂ri for the measurement

update. This concept thus avoids the error-prone radar measurement abstraction of the

LSQ optimization and thereby further enables that the full dynamic state is implicitly

updated by the UKF. A comparison of those two different strategies is illustrated in Fig. 5.6.

In order to determine the predicted radial velocity component v̂ri for each measured ve-

locity vrz,i with azimuth angle θrz,i and the corresponding sensor position xs,i, each predicted

sigma point ξ̂τ,t of the track τ is projected

hr
i (ξ̂τ,t) =v̂τ,t,ξ cos(θ

r
z,i − φ̂τ,t,ξ) + ω̂τ,t,ξ

(
sin(θrz,i)(x

x
s,i − x̂x

τ,t,ξ)− cos(θrz,i)(x
y
s,i − x̂y

τ,t,ξ)
)

(5.43)

to the measurement space of the radial velocity using the relation of (5.39).
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previous state sτ,t−1 predicted state ŝτ,t θri

hr
i (ξ̂

φ
τ,t)

x
sensor

ξ̂φτ,t

ξ̂φ+τ,t

ξ̂φ−τ,t

hr
i (ξ̂

φ+
τ,t )

hr
i (ξ̂

φ−
τ,t )

ξφ+τ,t−1 ξφ−τ,t−1ξφτ,t−1

Fig. 5.7: Illustration of different state orientations φ of the UKF sigma points ξ, their prediction ξ̂,

and the different expected radial velocity components hri (ξ̂τ,t) given the observation angle θri
of the radar sensor. Figure initially published in [1], © 2019 IEEE.

The predicted radial velocity then results from the weighted sum of all sigma points, i.e.,

v̂ri =
∑

ξ∈Ξ

wξh
r
i (ξ̂τ,t) , (5.44)

which is used to determine the innovation vrz,i − v̂ri as well as the state-measurement cross-

covariance matrix and the Kalman gain, finally resulting in the updated state and covari-

ance, as described in more detail in [55]. For the dynamic state sτ,t as defined in (5.1),

there is a total of |Ξ| = 2 · |sτ,t|+ 1 = 13 sigma points.

The measured azimuth angle θrz,i is assumed to be noise-free in (5.43), i.e., errors of this

parameter are not considered by the predicted UKF measurement in this work. However,

implausible measurements, e.g., caused by micro-Doppler [25] or a wrong association, are

discarded by evaluating the innovation with the predicted measurement covariance using

a 3σ-range as the valid gating area.

Overall, this UKF-based measurement update by the radar Doppler velocities enables a

robust and generic dynamic state estimation. Not only the velocity is estimated that way,

but all variables of the dynamic state sτ,t are estimated implicitly, as they all influence the

predicted state ŝτ and the derived predicted radial velocity v̂ri . For example, a different

track orientation results also in a different angle difference to the azimuth angle of the

measurement, which leads to a different radial velocity as illustrated in Fig. 5.7. An

explicit determination of the velocity, orientation, and turn rate by an LSQ fitting of the

equation set (5.39) for all measured radial velocities, in contrast, requires at least three

detections of two sensors at the same measurement time and with varying azimuth angles.
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5.5 Shape Estimation and Object Classification

This section focuses on the shape estimation in terms of the length and width of the bound-

ing box of an object track. Furthermore, an object classification is performed based on the

geometry distribution estimation and the maximum filtered velocity of the track. Finally,

a specific object track size is extracted using both the geometry distribution and the object

classification. Overall, this combined estimation enables modeling prior class knowledge

of the assumed length and width when either of them has not been fully observed yet.

5.5.1 Histogram Filter Geometry Distribution Estimation

The box shape is updated iteratively by the geometry measurement of the current time

instance t

zgτ,t =
[
zlτ,t, z

w
τ,t, z

ϑ,front
τ,t , zϑ,rearτ,t , zϑ,leftτ,t , zϑ,rightτ,t

]T
. (5.45)

However, the real length and width are usually not fully observable, which means that the

measured length zlτ,t and width zwτ,t generally describe only a minimum bounding box, i.e.,

a lower bound of the geometric shape. The visibility zϑτ,t ∈ [0, 1] of each edge of the current

measurement indicates whether zlτ,t and zwτ,t also represent upper bounds and thus the real

size of that track. For example, an upper bound of the length lτ is measured if both edges

at the front and the rear are currently visible.

Overall, the goal is to estimate the geometry of a track τ given all measurements up to

time t, denoted as 1 : t, i.e.,

p(lτ , wτ | zgτ,1:t) = p(lτ | zgτ,1:t) p(wτ | zgτ,1:t) . (5.46)

The length and width are estimated separately, assuming independence of both. In the

following, only the estimation of the length distribution p(lτ | zgτ,1:t) is described, since the

width distribution p(wτ | zgτ,1:t) is determined equivalently.

The inverse sensor model of the length is modeled as a piecewise function

p(lτ | zgτ,t) ∝ exp

(
−(lτ − zlτ,t)

2

2ςϑlτσ
2
l

)
, ςϑlτ =





(
zϑ,frontτ,t zϑ,rearτ,t

)−1

, if lτ ≥ zlτ,t

1 , else
, (5.47)

i.e., a normal distribution in which the variance below and above the measured mean zlτ,t
differs by a scaling variable ςϑlτ . This scaling variable is used to model the impact of the

edge visibility. If both edges are fully visible, i.e., zϑ,frontτ,t = zϑ,rearτ,t = 1, then the probabil-

ity p(lτ | zgτ,t) corresponds to an unmodified normal distribution with zlτ,t representing an

estimate of the real length. If at least one edge is not visible, then zlτ,t is only a lower

bound of lτ , in which (5.47) is modeled similar to a sigmoid function. This sensor model

is illustrated in Fig. 5.8 for varying edge visibilities.

The probability distribution of the length p(lτ | zgτ,1:t) is estimated by a 1-D histogram

filter, requiring a decomposition of the continuous state space lτ ∈ R+ into discrete val-

ues {li}Ili=1 = [l1, l2, . . . , lIl ]. The probability density function of the random variable Lτ
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Fig. 5.8: Inverse sensor model with varying boundary visibilities. The example shows the length dis-

tribution with a measured length of lz = 3.5m (dashed line). Figure initially published

in [1], © 2019 IEEE.

is thus approximated by the discrete probability mass function {pilτ ,t} in that interval, i.e.,

p(lτ | zgτ,1:t) ≈
pilτ ,t
δi

, lτ ∈
(
li − δi

2
, li +

δi
2

]
, (5.48)

with δi defining the interval size of the corresponding bin i. The individual interval size δi
can be adapted over time based on the current distribution using dynamic decomposi-

tion [128] to increase the histogram approximation. However, a constant interval size is

used here, i.e., static decomposition, since the number of required intervals Il is rather low

due to the accuracy limitation of the input grid resolution and the limited range of the

possible values of the modeled classes.

The posterior probability distribution of the discrete length intervals {li}Ili=1 is then

recursively estimated,

pilτ ,t =
p(li | zgτ,t) pilτ ,t−1

Il∑
j=1

p(lj | zgτ,t) pjlτ ,t−1

, (5.49)

by applying Bayes rule and using the inverse sensor model as defined in (5.47). The

initial length distribution {pilτ ,0}
Il
i=1 is set to a uniform distribution with pilτ ,0 =

1
Il
∀i.

To ensure convergence toward new measurements and avoid singularities, the minimum

value of each discrete probability pilτ ,t−1 of the previous time instance is limited to a

value ϵmin > 0 in (5.49).

5.5.2 Classification Based on Geometry and Velocity Information

In the following, the object track is classified regarding the modeled classes k ∈ K of the set

K = {car, truck, pedestrian, cyclist,motorcycle, other} . (5.50)

This classification is based on the features length l, width w, and velocity v, resulting in

the estimation problem

p(k | l, w, v) = p(k) p(l, w, v | k)
p(l, w, v)

. (5.51)
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Those features are assumed to be conditionally independent of each other, i.e.,

p(l, w, v | k) = p(l | k) p(w | k) p(v | k) , (5.52)

which simplifies (5.51) to a Naive Bayes classifier with

p(k | l, w, v) ∝ p(k) p(l | k) p(w | k) p(v | k) . (5.53)

The modeled likelihood functions of the length p(l | k), the width p(w | k), and

the velocity p(v | k) are shown in Fig. 5.9 for all classes k ∈ K except the class

k = {other}, which is modeled uniformly for all features. The length is modeled as

a normal distribution N (l; µl,k, σ
2
l,k) with mean µl,k and variance σ2

l,k for the classes

k ∈ {pedestrian, cyclist,motorcycle}. The classes car and truck are modeled differently

due to their greater variety in the length. Hence, both classes are represented using lower

and upper boundaries of the possible length, which is modeled

p(l | k) ∝ S(l, lkmin, α
k
l,min)

(
1− S(l, lkmax, α

k
l,max)

)
, k ∈ {car, truck} (5.54)

using a combination of two sigmoid (logistic) functions with

S(x, x0, α) =
1

1 + e−α(x−x0)
. (5.55)

Similarly, the likelihood of the velocity v given a class k is also modeled as a negated

sigmoid function

p(v | k) ∝ 1− S(v, vkmax, α
k
v) . (5.56)

This means that a class k is unlikely if the observed velocity v exceeds the maximum

velocity vkmax of this class. This feature is only used as an exclusion criterion, hence, the

likelihood in (5.56) is not normalized over the individual classes here. For example, a

velocity of v = 1km/h does not represent a gain of information and should result in equal

class probabilities of all classes k ∈ K regarding the velocity feature. This is equivalent to

normalizing (5.56) and adjusting the individual class priors p(k) in (5.53) accordingly.

The best class regarding the maximum a posteriori classification given the features

(l, w, v) then results in

k∗ = argmax
k∈K

p(k | l, w, v) = argmax
k∈K

p(k) p(l | k) p(w | k) p(v | k) . (5.57)

However, rather than classifying the individual measurements and recursively filtering

that classification, the classification is directly performed on the filtered track τ . This

means, the classifier is based on the probability distributions of the length Lτ and widthWτ ,

which are recursively estimated by the histogram filter as described above. Therefore,

instead of evaluating a single length l of the likelihood p(l | k), the expectation

EL[ p(Lτ | k) ] =
Il∑

i=1

p(li | k) pilτ ,t (5.58)
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Fig. 5.9: Modeled likelihood p(·|k) of the features length l, width w, and velocity v given the individual

classes k ∈ K. The distributions are illustrated unnormalized with η indicating different

normalization factors. Figure initially published in [1], © 2019 IEEE.

regarding the likelihood of Lτ that considers all possible discretized lengths {li}Ili=1 weighted

by their corresponding probability pilτ ,t has to be taken into account. Accordingly, the

expectation EW [ p(Wτ | k) ] of the likelihood for the width distribution Wτ has to be de-

termined. For the velocity feature that is evaluated by the classifier, the maximum of the

filtered velocity over all time instances of the track is used, i.e.,

vmax
τ = max

t′=1,...,t
(vτ,t′) . (5.59)

Overall, based on (5.57), the best fitting class k∗
τ of the track τ regarding the filtered

geometry state and the maximum of the filtered velocity results in

k∗
τ = argmax

k∈K
EL,W [ p(k |Lτ ,Wτ , v

max
τ ) ]

= argmax
k∈K

p(k) p(vmax
τ | k)EL,W [ p(Lτ | k) p(Wτ | k) ]

= argmax
k∈K

(
p(k) p(vmax

τ | k)
Il∑

i=1

p(li | k) pilτ ,t
Iw∑

i=1

p(wi | k) piwτ ,t

)
. (5.60)

This simple classification concept can further be combined with other extracted features,

especially direct camera classification information, which is described in the following.
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5.5 Shape Estimation and Object Classification

5.5.3 Combined Object Classification with Camera Information

One of the major strengths of camera sensors is their ability to perceive the semantic of

scenes and especially the classification of objects. The measurement grid representation of

this work also contains such camera classification information κcam
class, as introduced in (2.19),

which has also been used before for improving the dynamic grid mapping as well as the

object extraction and association. As derived in (5.60), the generic classification strategy

enables a robust object classification even if no camera information is available, based on

the features length, width, and velocity. But if the associated occupied cells Cτ,t of a track

include such additional camera information, the object classification should primarily use

that camera information as input.

Generally, this corresponds to extending the Naive Bayes classifier of (5.53) by another

feature, the camera classification κcam
class, i.e.,

p(k | l, w, v, κcam
class) ∝ p(k | l, w, v) p(κcam

class | k) (5.61)

which is also assumed to be conditionally independent of the other features. Equivalently,

the best fitting class k∗
τ of a track τ regarding the maximum a posteriori classification

of (5.60) extends in that case to

k∗
τ = argmax

k∈K
p(k) p(vmax

τ | k)EL,W [ p(Lτ | k) p(Wτ | k) ] p(κcam
class | k) , (5.62)

i.e., by the likelihood p(κcam
class | k) of the camera classification given the object class k.

This likelihood can be modeled based on the characteristics and the influence of the

camera to the classification. In the simplest case it corresponds to a binary assign-

ment where only the camera class is supported and all other classes (k ̸= κcam
class) are ex-

cluded, for example, p(κcam
class = pedestrian | k = car) = 0 when a car would never result in

a camera classification of a pedestrian. However, the likelihood can also be selected to

allow modeling the correlation or misclassification between similar classes, for example,

p(κcam
class = motorcycle | k = cyclist) > 0 still allows the class cyclists, even if the camera

classification has the class motorcycle.

Overall, this extended strategy represents a robust object classification approach that

combines the advantages of the camera classification with the generic estimation based on

the histogram filter geometry distribution as well as the maximum observed velocity of

that track. In the following, this classification is further used to extract estimates of the

real length and width of the bounding box shape of the track.

5.5.4 Extraction of Estimated Length and Width of Box Model

The histogram-based geometry distribution estimation results in probabilities {pilτ ,0}
Il
i=1

and {piwτ ,0}Iwi=1 of the discrete intervals of the length and width. Overall, however, a spe-

cific value of the assumed length lτ and width wτ is required for the used box model

representation of the track. For this purpose, the estimated length and width distributions

are combined with the best fitting class k∗
τ as defined in (5.62) as the extended classification

strategy with camera information if available. Thus, an unobservable full length or width,

e.g., a preceding vehicle for which only a minimum length is observable, is then estimated
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5 Object State Estimation

by evaluating the corresponding likelihood of the length or width given the class k∗
τ as

depicted in Fig. 5.9 rather than extracting that observed minimum bounding box.

The finally extracted length l∗τ , and equivalently the width w∗
τ , is determined by the

length of the histogram bin with the highest combined probability

pi,lcomb ∝ p(li | k∗
τ ) p

i
lτ ,t . (5.63)

regarding the length likelihood p(li | k∗
τ ) of the best class k∗

τ and the length histogram

distribution pilτ ,t, i.e.,

l∗τ = li∗lτ , i∗lτ = argmax
i=1, ..., Il

{
pi,lcomb : pi,lcomb >

(
(1 + ϵ) max

j=1,...,i
pj,lcomb

)}
. (5.64)

In the case of multiple lengths with similarly high probabilities, the smallest length is

chosen by (5.64) in order to extract the minimum bounding box. The factor (1 + ϵ) with

a small ϵ > 0 increases the robustness by ensuring that larger values of the length are

only extracted if the corresponding probability is significantly higher than the previous

maximum. By considering only the best class k∗
τ in (5.63) rather than all classes weighted

by their individual class probability as determined in (5.60), it is ensured that the extracted

length l∗τ also fits to the assumed length of the best class k∗
τ of that track.

The length can also be calculated by the mean length weighted by pi,lcomb, i.e.,

lτ,k∗ =

(
Il∑

i=1

pi,lcomb

)−1 Il∑

i=1

pi,lcomb li . (5.65)

However, that weighted mean increases when only lower bounds of the length are observed,

since then the normalized probabilities of the unobserved larger length values are higher,

resulting in a larger extracted length, which is unfavorable in that application and thus

avoided using (5.64).

The priors p(k) of the classes k ∈ {pedestrian, cyclist} are selected higher than the prior

of the class car such that slow-moving small objects – even when no upper boundary of

the length or width has been observed – tend to be classified as such smaller objects. This

means, if none of the evaluated features contradicts with the class pedestrian, that class

should dominate the others. This results in a more robust association, since the extracted

size is also used for the gating area of the association, cf. (4.15)–(4.18), which is selected

more conservatively that way.

Overall, this object shape extraction strategy combines the histogram filter geometry

distribution estimation of the length and width with the corresponding likelihood of the

modeled classes, which, altogether, results in a reasonable object size estimation.

5.6 Results and Summary

This chapter has presented new approaches for a robust object state estimation, primarily

based on the characteristics of dynamic occupancy grids. Thereby the associated occu-

pied grid cells, as derived in the previous chapter, are abstracted to an oriented minimum

bounding box model for each object instance. In addition, the freespace layer of the grid is
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evaluated, where the current visibility of each edge of the measurement box is determined

by the surrounding freespace. The position of the bounding box is thereby referred to the

most visible reference point regarding the edge visibility, enabling a robust position estima-

tion for scenarios with occlusions and changing sensor fields of view. Similarly, a generic

object orientation optimization strategy has been proposed, where the freespace within

the box is evaluated and minimized. Moreover, the particle-based cell velocity estimates

of the dynamic grid estimation allow a direct velocity and orientation initialization on the

object-level by forming the mean velocity vector of all associated cells. This particle move-

ment direction, combined with the corresponding variance, further represents a confidence

interval in which the freespace-based object orientation optimization is evaluated.

The object state estimation has been divided into two separate probabilistic filtering

strategies. The dynamic state is estimated by a UKF using a common Gaussian state rep-

resentation, where the UKF sigma points, in contrast to a standard Kalman filter, allow

nonlinear transformations of the state transition and observation models. Together with

the selected CTRA motion model, this enables tracking nonlinear movements including

the combined estimation of the acceleration and turn rate. For a precise dynamic esti-

mation, radar Doppler velocity measurements have been further integrated into the UKF

approach. Thereby the projection of the UKF sigma points enables a direct update in the

measurement space of the radial velocity components, i.e., no error-prone abstraction of

the Doppler measurements toward the object state space is necessary that way.

The object shape is estimated differently based on a histogram filter, as it is not limited

to Gaussian distributions. Hence, arbitrary distributions of the length and width can be

modeled, allowing one to distinguish lower and upper bounds of the object size, which are

differentiated by the freespace-based box edges visibility. Moreover, an object classification

approach has been presented based on a Naive Bayes classifier. It primarily utilizes the

camera classification if such information is available and associated to the track; but even

without camera information, the object is generically classified based on the histogram

distributions of the length and width as well as the maximum observed track velocity.

The finally extracted object size combines the histogram geometry distributions with the

classification and the corresponding class geometry likelihood, where the assumed object

size is supported by prior class knowledge if it has not been fully observed yet.

Altogether, the presented approach thereby also combines the individual sensor

strengths of lidar, radar, and camera for the object-level estimation. Lidar sensors with

their high spatial accuracy primarily contribute to the object pose and shape estimation,

since occupancy and freespace of the grid are mainly derived from lidar in this work; radar

sensors primarily contribute to the motion estimation by their Doppler velocity measure-

ments; and camera sensors primarily contribute to the object classification. Nevertheless,

the proposed approach is still modeled generically, such that the full object state and classi-

fication can still be estimated solely based on occupancy measurements, without necessarily

depending or fully relying on additional sensor-specific measurement data.

This chapter is concluded by some qualitative results in different urban scenarios that

are demonstrated in Fig. 5.10. The upper scenario in Fig. 5.10a shows an intersection

with a lot of cross traffic. All vehicles are correctly detected and their moving direction is

robustly estimated, even though the left-crossing vehicles in the back are highly occluded
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(a)

(b) (c)

Fig. 5.10: Results of the object-level estimation in complex urban scenarios. Object classification color

coding: car (yellow), truck (orange), pedestrian (purple), cyclist (cyan), motorcycle (blue),

unknown (gray). Blue arrow: scalar object velocity; red arrow: object acceleration and yaw

rate (transformed to lateral acceleration alat = v · ω). (a) Intersection with a lot of cross

traffic. (b) An unknown object (tram) and surrounding vehicles. (c) Several surrounding

pedestrians and a turning car. Figure initially published in [1], © 2019 IEEE.

by the right-crossing vehicles in the front. One truck is included in that sequence, which

is correctly classified since the observed length is larger than those of cars. It can also

be seen that stopped vehicles, directly next to the ego vehicle, remain being tracked since

they have been observed moving and thus extracted before. Furthermore, a pedestrian who

stopped on the right side of the ego vehicle is also correctly extracted, which is outside

the camera field of view at the shown time instance. The second scenario in Fig. 5.10b

shows a situation with a tram, which is classified as unknown as the large length and small

width does not fit the modeled classes. Since the extracted object geometry is determined

by the histogram filter distribution combined with the classification, unobserved parts,

like the lengths of the partially occluded vehicles in the front (ID 46) or behind the ego

vehicle (ID 14), are estimated by the classification likelihood, resulting in reasonable box

dimensions of those vehicles. The third scenario in Fig. 5.10c includes several slow-moving

pedestrians crossing the road as well as a turning vehicle, among others, which are all cor-

rectly extracted, tracked, and distinguished. Further qualitative and quantitative results

of the overall grid-based object tracking approach are demonstrated in the next chapter.
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The previous chapters have proposed novel methods for the dynamic grid estimation as

well as the subsequent object extraction and tracking. Thereby first qualitative results

have been demonstrated in combination with the respective summary of each chapter.

In the following, a more detailed evaluation of the proposed grid-based object tracking

approach is presented for various scenarios in the context of urban autonomous driving.

First, an overview is given in Section 6.1, which addresses details of the sensor setup, the

grid configuration and implementation, and a brief summary of the different processing

steps of this work. Afterwards, the dynamic occupancy grid estimation is evaluated in

Section 6.2. Results of the object-level estimation and tracking are then subsequently

presented in more detail in Section 6.3. Finally, this chapter is summarized in Section 6.4

together with a brief discussion of the overall application of the proposed approach.

Parts of the evaluation have been presented in [1–4] in the context of this thesis, which

are not explicitly referenced in the following.

6.1 Overview

This section presents an overview of the sensor setup of the test vehicles, followed by a

brief summary of the main processing steps of the proposed approach for one exemplary

scenario and a discussion of the primary grid configuration and implementation.

6.1.1 Sensor Setup

The presented methods of this work have been tested with real sensor data in various traffic

scenarios of multiple test vehicles during the last years. Thereby the most comprehensive

sensor setup of a test vehicle is composed as follows:

� Lidar sensors:

– 5 low-mounted lidar sensors with a low vertical field of view (FOV).

– 1 high-mounted lidar sensor with a high vertical FOV and 360◦ horizontal FOV.

� Radar sensors:

– 3 long-range radar sensors (1 to the front, 2 to the rear).

– 6 short-range radar sensors (4 corners, 2 to the left/right side).

� Camera sensors:

– 2 high-resolution cameras to the front and rear.

– 4 wide-angle cameras at the side.
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(a) Lidar. (b) Radar. (c) Camera.

(d) Test vehicle.

Fig. 6.1: Illustration of the sensor setup with an indication of the respective sensor field of views
(not to scale). (a) Lidar sensors (red: low-mounted sensors, orange: high-mounted 360◦

sensor at the roof). (b) Radar sensors (light blue: short-range radar sensors, purple: long-
range radar sensors). (c) Camera sensors. (d) Image of a BMW 7 Series test vehicle with
the corresponding sensor setup (photos courtesy: BMW Group, part of an official video:
https://twitter.com/i/status/1219211789822504961).

An illustration of that sensor setup including images of the corresponding test vehicle is

depicted in Fig. 6.1. Altogether, this enables full 360◦ coverage with a multi-sensor fusion

and partial redundancy of lidar, radar, and camera sensors. The maximum detection range

of those sensors is about 150–200m, with measurement rates between 16–25Hz. Details of

the two different low- and high-mounted lidar configurations have been presented before

in Fig. 2.3. For the odometry estimation of the ego movement, the test vehicle further

consists of high-precision inertial measurement units (IMU).

6.1.2 Main Processing Steps of this Work

Before this work is evaluated in more detail, the main processing steps of the proposed

grid-based object tracking are briefly recapitulated in the following, which are further

illustrated by an example in Fig. 6.2. As presented above in the sensor setup, different
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.2: Overview of the main processing steps of the proposed approach. (a) Raw measurement

data of lidar, radar, camera. (b) Fused measurement grid. (c) Dynamic grid map. (d) Aug-

mented measurement grid. (e) Labeled particle population. (f) Associated grid cells and

measurement boxes. (g) Overall resulting object tracking. (h) Camera image of the scene.
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measurement data of multiple lidar, radar, and camera sensors form the input of this

work. These measurement data are illustrated in Fig. 6.2a, containing the range-based

lidar and radar detections as well as the camera-based object instances. The measurement

detections of each individual sensor are represented as a measurement occupancy grid

using the evidential Dempster–Shafer representation with the two hypotheses of occupancy

and freespace. All those sensor-individual measurement grids are fused cell-wise, with a

temporal alignment of asynchronous sensor data, overall resulting in the fused measurement

grid as depicted in Fig. 6.2b. Thereby the measurement grid representation additionally

contains radar velocity measurements and camera classification information, which are not

highlighted here in that example.

The fused measurement grid forms the input of the dynamic grid mapping, which per-

forms the temporal filtering and accumulation of evidence masses that enables the differ-

entiation of static and dynamic occupancy over time, as demonstrated in Fig. 6.2c. The

low-level particle tracking thereby further enables a robust cell-wise velocity estimation.

The augmented measurement grid representation of Fig. 6.2d combines the static/dynamic

occupancy differentiation of Fig. 6.2c with the current measurement grid of Fig. 6.2b, re-

sulting in unfiltered occupancy measurements that are only extended by the additional

static/dynamic classification, avoiding multi-filtering for the subsequent object tracking.

Based on this generic low-level dynamic grid estimation, high-level object instances

are extracted and tracked, where for moving objects only dynamic occupied cells have to

be considered, as the static environment remains in the grid map representation. The

association of measurement data to tracked object instances is thereby achieved using the

particle labeling association, shown in Fig. 6.2e, where the low-level particle population is

partially linked to object instances. Newly occurring objects are formed by a density-based

clustering of dynamic occupied cells with similar cell velocities. The resulting association

of occupied cells as well as the corresponding measurement minimum bounding boxes are

illustrated in Fig. 6.2f. The finally resulting object tracking, including the object state

estimation as well as the object classification, is summarized in Fig. 6.2g.

6.1.3 Primary Grid Configuration and Algorithm Implementation

In the following, the main configuration of the occupancy grid representation is briefly

discussed, as it forms the core of the proposed environment perception. The fundamental

concept of the grid structure and discretization with the fixed odometry coordinate system

has been presented before in Fig. 2.1. This grid configuration can be adjusted in different

ways, primarily by the grid resolution in terms of the total number of evaluated grid cells,

the grid cell size in terms of the discretization size, and the offset of the ego vehicle within

the grid structure. The selection of the grid configuration in turn generally depends on

different aspects, for instance, the desired application and arising scenarios, the accuracy

and range of the sensor setup, and the available computation power and runtime.

Most results of this work have been achieved with the configuration as shown in Fig. 6.3.

In that configuration, the cell size is set to 0.15m× 0.15m with a total of 1536× 1536

cells, which is selected here as a multiple of 128 = 27, i.e., 1536 = 12 · 128, for an efficiency-

optimized memory allocation of the implementation. The selected cell size ensures a high

spatial accuracy of obstacles as well as the pose and shape of object tracks, required for
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Fig. 6.3: Illustration of the grid configuration of the fused measurement grid. The local environment

is discretized by a total of 1536× 1536 grid cells with a cell size of 0.15m× 0.15m and a

radial position offset of the ego vehicle of about 30m backwards from the grid center. The

left part shows the full grid area (here shown with a raster size of 20× 20 cells); the right

part shows a section of the grid in detail where the individual grid cells are visible.

a precise path planning in narrow streets of urban environments with closely stopped or

parked vehicles. But this also ensures a detailed movement estimation with a fine-granular

tracking of occupancy position changes, while the cell size is still sufficiently large enough to

remain robust against measurement noise and ensure the occupancy accumulation within

one cell over time. Combined with the large amount of grid cells, this results in a total

grid area of the local environment of 230.4m× 230.4m. The ego vehicle is thereby posi-

tioned with a radial offset of about 30m backwards from the grid center. Altogether, this

ensures a detection range with at least 100m to the rear and 130m to the front of the

ego vehicle, where, depending on the orientation of the ego vehicle within the odometry

coordinate system, the maximum possible range to the front in that configuration is about√
2 · 130m ≈ 184m in case of a diagonal alignment.

For the measurement grid fusion, the roof-mounted lidar sensor is selected as the main

trigger sensor due to the high spatial accuracy and the full 360◦ coverage. The measure-

ment rate of this sensor is about 50ms, which thus also represents the update rate of

the grid fusion and all subsequent processing steps of the dynamic grid mapping as well

as the object tracking. Since the primary application of this work is an online real-time

environment perception as part of autonomous driving test vehicles, the overall runtime

is also crucial and has to be considered for the algorithm configuration, as opposed to

offline post-processing strategies. Hence, to ensure that all relevant measurement data are

permanently processed without skipping measurement update cycles, the overall runtime

should be below the measurement rate of 50ms.
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Fig. 6.4: Evaluation of the algorithm runtime for a longer sequence of a test drive in a highly dynamic

urban environment with a varying number of occurring traffic participants, indicated by the

number of extracted object tracks (blue dotted line) and low-level particles (red dashed line).

Results are averaged over 10 time steps here. (Hardware specs: CPU: Intel Xeon Gold 6134

[cores/threads: 8/16, 3.2 GHz]; GPU: Nvidia GeForce GTX 1080 Ti).

To achieve a fast algorithm computation, the implementation of this work is based on

C++, where most parts are further optimized using Nvidia CUDA [89] for an efficient

processing on the GPU that is highly parallelized, especially for the individual grid cells

and low-level particles. The runtime is evaluated in Fig. 6.4 for a longer sequence of a

test drive in a changing dynamic urban environment. This evaluation shows the algorithm

runtime based on already derived measurement grids of the individual sensors. Hence, it is

composed of the four following processing steps: the grid fusion of all incoming measure-

ment grids, the dynamic grid mapping including the particle tracking, the object tracking

including the object extraction and association, and a minor post-processing part that

can be processed after the current output where primarily the relation between the object

tracks and the particle labeling is updated. In that scenario, the full sensor setup with

the grid configuration as discussed above is used. For the particle tracking, a maximum of

nmax = 100 particles per grid cell is selected, which is used for all results of this work.

The runtime evaluation is processed on a modern common development computer, de-

tails of the hardware are given in the caption of Fig. 6.4. Overall, the resulting runtime for

that configuration is commonly between 15–30ms, which also depends on the dynamics of

the scenario, as indicated by the additionally shown number of currently tracked objects

and low-level particles. But even for such highly dynamic scenarios with a large number

of occurring traffic participants and thereby increased number of objects tracks and par-

ticles, the runtime is still significantly below the measurement update rate of 50ms here.

Thereby the hardware resources of the test vehicle prototype are even more powerful, but
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also require processing several other autonomous driving tasks that have not been consid-

ered here. Altogether, those results demonstrate that the algorithm of this work, with the

extensive grid configuration and respective sensor setup as discussed above, is efficiently

implemented and generally real-time capable.

6.2 Dynamic Occupancy Grid Estimation

In this section, the dynamic grid mapping as proposed in Chapter 3 is evaluated in more

detail. First, the accumulation over time is briefly presented by an example. Second,

the proposed approach is compared to the approach of Tanzmeister et al. [120, 121], fo-

cusing on a scenario with partial occlusion of the road boundary. Third, the occupancy

classification of this work is analyzed for a challenging highway scenario with a guardrail

and a long truck, where different results with and without additional information of radar

velocity measurement, camera classification information, and feedback of the subsequent

object tracking are presented. Finally, the camera-based dynamic occupancy convergence

is further evaluated for two more urban scenarios that contain stationary objects.

6.2.1 Accumulation over Time

The temporal evolution of the dynamic grid map is illustrated for an exemplary scenario

in Fig. 6.5. In the initial update step, shown in Fig. 6.5a, the dynamic grid map corre-

sponds to the fused measurement grid without any accumulation. Thereby no additional

radar velocity or camera classification information is included here, hence, also no direct

occupancy classification of that measurement grid is derived.

Note that in this work, to remain robust against measurement errors, the impact of the

measured evidence masses of the fused measurement grid in the measurement update of

the accumulated map is limited to the interval [0, ηz] with ηz ≤ 1 regulating the maximum

amplitude of a measurement. However, the grid visualization of the measurement grid, and

correspondingly the augmented measurement grid, is referred to the maximum amplitude

without considering the actual impact of the dynamic grid map update. In this work, the

maximum evidence mass of the measurement is limited to ηz = 0.4.

The dynamic grid map after the second measurement update is shown at Fig. 6.5b,

already indicating the accumulation as well as the slight convergence of the static environ-

ment. Static and dynamic occupancy are clearly differentiated in this scenario at t ≈ 0.5 s,

as demonstrated in Fig. 6.5c. This is improved in Fig. 6.5d at t ≈ 1 s, where areas of

the moving vehicles fully converge toward dynamic occupancy, which is further enhanced

here by extracted moving objects of the subsequent object tracking and the corresponding

feedback to the dynamic grid mapping, as presented in Section 3.4.4. The accumulation

over time with different fields of view, due to the moving ego vehicle, is further depicted in

Fig. 6.5e, e.g., visible at the parked vehicles or the two fountains with the octagonal bases.

Overall, the proposed approach generally enables an accurate map accumulation of

the local environment with a robust temporal filtering including a differentiation of static

and dynamic occupancy as well as passable freespace. In the following, the dynamic grid

mapping is evaluated in more detail in different scenarios.
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(a) t = 0 s. (b) t ≈ 0.1 s.

(c) t ≈ 0.5 s. (d) t ≈ 1 s.

(e) t ≈ 4 s. (f) Camera images (front/rear) at t = 0 s.

Fig. 6.5: Dynamic map accumulation with static/dynamic occupancy differentiation over time.
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6.2.2 Comparison with Original Approach

The proposed dynamic grid mapping approach including the particle tracking concept

is primarily based on the work of Tanzmeister et al. [120, 121], denoted as evidential

Grid-based Tracking And Mapping (GTAM), as briefly presented in Section 3.1.1. In the

following, both approaches are compared in a scenario with multiple fast-moving vehicles

that temporarily occlude parts of the static environment – such scenarios with temporary

occlusion depicted the main motivation for further enhancing the GTAM approach regard-

ing the information loss in that case. This comparison has also been presented as part

of [4], where, as noted before, the main concept of the proposed dynamic grid mapping

has been originally published as part of this thesis.

The following scenario is evaluated without radar Doppler velocity measurements, cam-

era information, or feedback of the subsequent object tracking, i.e., only occupancy mea-

surements of lidar sensors are used as input data to highlight more clearly the different

occupancy filtering and classification of both approaches solely based on occupancy mea-

surements. Moreover, the sensor setup includes only the low-mounted lidar sensors without

the high-mounted roof lidar sensor, thereby further highlighting the effect of partial occlu-

sion for objects moving closely to the ego vehicle.

A qualitative comparison of the resulting evidential grids at a fixed time is demonstrated

in Fig. 6.6. The fused measurement grid, representing the input to both approaches, is

visualized in Fig. 6.6a. On both the left and the right side of the ego vehicle there is

one car each in that scenario, both moving at a similar speed as the ego vehicle, which

temporarily occlude parts of the road boundaries behind them. The proposed evidential

dynamic grid map of this work is shown in Fig. 6.6b. Static and dynamic occupancy are

robustly filtered and correctly distinguished. The occluded area of the road boundary

persistently remains as static occupancy, since it is accumulated and temporally filtered

in the grid map representation. Accordingly, the corresponding augmented measurement

grid, as demonstrated in Fig. 6.6c, represents correct occupancy classification results.

In contrast, the GTAM particle map in Fig. 6.6d, representing the particle-based occu-

pancy classification, fails in such a scenario and points out a significant systematic draw-

back of that approach. Although particles at the road boundaries show a slow but correct

convergence behavior from wrong dynamic occupancy to static occupancy, the edges of the

temporarily occluded road boundaries are classified incorrect, as highlighted by the dotted

areas. The correctly filtered static information is lost when static particles are destructed

due to occlusion, which then results in a wrong dynamic classification again when the area

is not occluded anymore. Although the output of the particle map including static occu-

pancy is accumulated in the DST map representation in Fig. 6.6e, which remains when

particles are destructed, it is not used as a feedback to the particle filtering.

This behavior has also been observed in urban scenarios where the sensor field of view

can change quickly due to the ego motion and obstacles passing closely to the sensors. For

example, similar results occur at house walls with densely parked vehicles in front, where

gaps between those near obstacles cause a fast-changing sensor field of view and thus fast

changing occlusions of the areas behind.

Another decisive advantage of the proposed approach is the significantly reduced number

of used particles, as the static environment is directly modeled in the map without requiring
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(a) (b) (c) (d) (e) (f) (g)

(h)

Fig. 6.6: Comparison of the dynamic grid estimation of the proposed approach and [121] in a scenario

with guardrails temporary occluded by vehicles. The ego vehicle and three vehicles on its

left, right, and front left are moving north. Input data are exclusively from lidar measure-

ments. (a) Fused measurement grid. (b) Dynamic map. (c) Augmented measurement grid.

(d) Particle map of [121], not limited to measurement grid evidences here to visualize parti-

cle destruction. The dotted areas highlight the critical destruction of static particles due to

occlusion. (e) DST map of [121]. (f) Particle population of proposed approach. (g) Particle

population of [121]. (h) Camera image. Figure initially published in [4], © 2018 IEEE.

static particles in contrast to [121], as demonstrated in Fig. 6.6f–6.6g. In that exemplary

scene, using only the low-mounted lidar sensors with a grid configuration of 680×680 cells,

a cell size of 0.2m× 0.2m, and a maximum of nmax = 100 particles per cell, as evaluated

in [4], the population of the entire grid consists of 48.787 particles, whereas the GTAM

approach uses 158.719 particles, i.e., more than three times as many particles in that case.

A further advantage of the proposed dynamic map in comparison to the DST map

representation is the introduced hypothesis of {F,D}. Hence, passable area {F,D} that

may be temporarily occupied and actual current freespace {F} are modeled separately,

which can be used to analyze the current occlusion of a traffic scenario.

The evidential filtering of the scenario of Fig. 6.6 over time for one fixed cell of the

right road boundary is further analyzed in Fig. 6.7. This illustrates in detail the different

consequences of the temporary occlusion, here at t ∈ [70, 91], of a static cell caused by the

right vehicle as described above. Note that in this work, as discussed before, the maxi-

mum evidence mass of the fused measurement grid, and correspondingly the augmented

measurement grid as well as the particle map of [121], is within the interval [0, ηz] and thus
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Fig. 6.7: Temporal filtering of occupancy evidence masses at a static cell on the right guardrail of

the scenario of Fig. 6.6. Occupancy masses are visualized as unstacked stems using the

same color coding as for the grid visualization, i.e., pink =̂ m(SD), red =̂ m(S), and

blue =̂ m(D). The measurement grid impact is ηz = 0.4. (a) Fused measurement grid.

(b) Proposed dynamic map. (c) Augmented measurement grid. (d) Particle map of [121].

(e) DST map of [121], blue shows not limited dynamic evidence of particle map without

normalization here. Figure initially published in [4], © 2018 IEEE.
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limited by the factor ηz ≤ 1, whereas the grid visualization is referred to the maximum

amplitude without considering the actual impact.

The comparison of both approaches for the scenario of Fig. 6.6 is finally evaluated

quantitatively in terms of the static/dynamic occupancy classification and the number of

required particles. A binary classification

Λ =

{
{S}, if m(St) ≥ ψΛ

{D}, else
(6.1)

is performed for all relevant occupied cells of the fused measurement grid that have at least

an occupancy mass ofm(SDΛ,min), i.e., m(SDz,t) ≥ m(SDΛ,min). This classification, with a

variation of the threshold ψΛ ∈ [0, 1], is evaluated with labeled ground truth data, resulting

in a receiver operating characteristic (ROC) curve. The results of the proposed approach in

comparison to [121] for a small sequence of 250 frames of the scenario of Fig. 6.6 are demon-

strated in Fig. 6.8a. This quantitative evaluation confirms the qualitatively shown results.

Especially for scenarios with temporary occlusion of road boundaries, the false dynamic

classification is significantly reduced by the proposed architecture in comparison to [121].

The number of required particles |Xt| of the evaluated sequence is shown in Fig. 6.8b. At

initialization, both approaches create new particles proportional to the sum of measured

occupancy, indicated by the pink dotted line. The proposed approach uses the filtered

occupancy evidence of the map, thus the impact of one measurement is limited to the

interval [0, ηz], here ηz = 0.4 is used, as described above. The approach of [121], in contrast,

directly initializes particles proportional to the not limited measured occupancy evidence.

After the initialization phase, the proposed approach significantly reduces the number

of particles, as the static environment converges toward {S} which is modeled without

particles. Since the ego vehicle is moving forward in that scenario, new cells of unclassified

occupancy are detected every step. Around t ≈ 100, the detected occupied area enlarges

significantly, and new dynamic objects occur in the sensor field of view, indicated by the

dashed blue line that corresponds to nmax times the number of ground truth dynamic

grid cells of the fused measurement grid. Hence, the number of particles increases for

both approaches. The number of particles of [121] remains proportional to the measured

occupancy evidence with a large amount of required static particles. Overall, in comparison

to [121], the proposed approach thereby requires significantly less particles to accurately

represent the local environment, in that scenario approximately only a third, which thus

also significantly reduces the corresponding memory and computation resources.

Altogether, this comparison has demonstrated that the proposed approach enables a

more robust and efficient dynamic grid mapping than the original work of [121]. Due to

the persistent map accumulation rather than using short-term static particles, information

loss is avoided for scenarios with temporary occlusion of the static environment, which

significantly increases the static/dynamic occupancy classification, while at the same time

the number of required particles is significantly reduced. In this comparison, no addi-

tional information of radar Doppler measurements, camera information, or feedback of the

object tracking has been used to focus on the fundamental filtering differences of both ap-

proaches. In the following, it is discussed how such additional information further improve

the occupancy classification of the proposed dynamic grid mapping approach.
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Fig. 6.8: Quantitative comparison of the proposed approach and GTAM [121] for the scenario of

Fig. 6.6. (a) Receiver operating characteristic with a variation of the classification threshold

ψΛ. Positive denotes the binary classification of dynamic here. (b) Number of total particles

|Xt| with nmax = 100 particles per cell. Pink dotted line indicates nmax
∑

m(SDz,t) without

ηz, blue dashed line indicates number of ground truth dynamic cells of the fused measurement

grid times nmax. Figure initially published in [4], © 2018 IEEE.

6.2.3 Occupancy Classification with Additional Information

As discussed so far, the dynamic grid mapping generally converges toward static or dynamic

occupancy over time, even for occupancy measurements without additional measurement

information, solely based on the adapted evidential occupancy filtering as presented in

Section 3.4.2. Thereby the temporal filtering is designed such that occupied grid cells

converge toward static occupancy when multiple occupancy measurements occur at the

same position over time, whereas they converge toward dynamic occupancy when they are

newly occurring and correspond with the predicted low-level particle population, i.e., when

the movement is properly tracked by the particle filtering. However, there exist scenarios

in which the movement and thus the static/dynamic occupancy differentiation cannot be

properly solved for the individual grid cells without any further information, which is

discussed in the following before the extension with additional information is presented.

Critical Scenarios of Occupancy Classification without Additional Information

A complex highway scenario that is particularly challenging for the occupancy classifica-

tion is demonstrated in Fig. 6.9. Generally, as shown in Fig. 6.9a, static and dynamic parts

of the environment are properly accumulated and distinguished here, even though the de-

tection area is quite large and includes several fast-moving vehicles that are also partly

occluded here. However, when focusing on the dashed image section, as shown enlarged

in Fig. 6.9b, this scenario also highlights the two prominent problem cases of any dynamic
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grid mapping approach – newly observed parts of straight guardrails of the static environ-

ment and an observed long side of moving trucks. From the cell-individual perspective,

those two cases cannot be really distinguished, as discussed in the following.

On the one hand, both cases exhibit a (pseudo) movement of newly occurring occupancy

in the front edge area that corresponds to the ego-speed and the respective movement of

the sensors field of view, thus converging toward dynamic occupancy. In that scenario, the

newly observed parts of the static environment are further limited by occlusion of another

moving vehicle, thus additionally influenced by the relative movement of that vehicle.

On the other hand, an initially newly occurring occupied cell of both cases then remains

occupied at that fixed position, with respect to the fixed odometry coordinate system, for

multiple subsequent measurements and thus converges toward static occupancy. That can

be caused either by the fact that the cell actually results from the fixed static environment,

but also by different parts of the moving truck, especially the observed long left side of the

truck in that scenario, where the movement of the truck across that fixed cell remains tem-

porarily occupied for several time instances. As an example, with an object length of 20m

and a velocity of 20m/s = 72 km/h, a fixed cell can be occupied for 1 s; with a measurement

update rate of 20Hz this corresponds to an occupancy accumulation of 20 cycles.

A reasonable trade-off between the wrong dynamic estimation of the guardrail and the

wrong convergence of the moving truck toward static occupancy is shown in Fig. 6.9b; de-

picting the relevant section of the enlarged image of Fig. 6.9a. In that case the evidential

occupancy filtering as proposed in (3.38) is used without modifications. For the parame-

ter γD that models the uncertainty of the implicit derivation of dynamic occupancy m(Dt)

based on the accumulated passable area evidencem(FDt) of previously measured freespace

and currently measured occupancy m(SDz,t), as introduced in (3.37), a value of γD = 0.7 is

selected. This also represents the default value of this work based on the characteristics of

the equipped sensors and the respective measurement models, overall resulting in a robust

behavior in various scenarios, also in the case of improperly derived freespace across static

obstacles, as it is slightly the case in that scenario for far away parts of the small guardrail.

The convergence of the proposed dynamic grid mapping can also be adapted to achieve a

faster convergence toward static or dynamic occupancy, as demonstrated in Fig. 6.9b–6.9g.

In Fig. 6.9c, the case without the introduced uncertainty parameter γD is depicted, i.e.,

γD = 0, generally resulting in a faster dynamic convergence if evidence of passable area

has been accumulated before for those cells. However, this does not directly improve the

result of the large truck here, where, based on the sensors field of view of the ego vehicle,

no freespace was observable in the past in front of the truck, which just completed a lane

change to the right in that sequence. A slight improvement is noticeable for the preceding

car, one lane left to the ego vehicle, which moves across previously accumulated passable

area and thereby results in full convergence toward dynamic occupancy here. However, that

parametrization also results in a more error-prone dynamic occupancy estimation of the

static guardrail due to inaccuracies of derived freespace. The opposite extreme case of this

parameter with γD = 1 is shown in Fig. 6.9d, avoiding any implicit derivation of dynamic

occupancy for previously accumulated passable area, resulting in a better convergence of

static occupancy in the case of wrongly derived freespace, but also a reduced convergence

toward dynamic occupancy for correctly accumulated freespace. The case of Fig. 6.9d is
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(a) Dynamic grid map (without additional information) with default parametrization.

(b) γD = 0.7 (image section of (a)). (c) γD = 0.

(d) γD = 1. (e) γD = 1, fD selected linear.

(f) Prediction conflict assigned to SD. (g) Prediction conflict assigned to D.

(h) Camera image of the scenario.

Fig. 6.9: Evidential dynamic grid mapping and respective occupancy classification in a highway sce-

nario with a straight guardrail and a long truck. This example shows the issues of the

cell-individual static/dynamic classification for those two cases without using any additional

information. The overall dynamic grid mapping result with the default parametrization is

shown in (a), the critical section (dashed rectangle) is highlighted in (b); while results with

different modifications of the occupancy filtering are shown in (c)–(g).
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further adjusted in Fig. 6.9e by selecting the factor fD for the convergence toward dynamic

based on the number of particles, as introduced in (3.35), linearly instead of the square root,

resulting in a very conservative estimation of dynamic occupancy and a fast convergence

toward static occupancy, for both the guardrail and the long side of the moving truck.

As discussed before, the proposed occupancy filtering is generally designed such that an

occupied cell converges toward static with multiple occupancy measurements occurring at

that fixed cell over time. This is primarily ensured by the dominance of static occupancy

over the particle-based dynamic occupancy in the prediction step, where static occupancy

remains unchanged by assigning the corresponding prediction conflict ζ toward m(St) as

discussed in (3.20). Hence, the convergence of static occupancy is significantly reduced,

with a respective enhanced convergence toward dynamic occupancy, when that prediction

conflict is assigned to m(SDt), shown in Fig. 6.9f, or even directly to the dynamic mass

m(Dt) as depicted in Fig. 6.9g. This represents the extreme case toward dynamic occu-

pancy where no static artifacts occur at the truck, however, it clearly limits the robustness

of the accumulation of the static environment or even completely suppresses it that way.

Altogether, the static/dynamic occupancy filtering can be adjusted in different ways;

however, for the cell-wise estimation solely based on occupancy measurements, it is not

possible to fully distinguish the two cases of guardrails and the long side of moving trucks

properly without additional information. From the cell-individual perspective, both exhibit

the same characteristics of newly occurring occupancy at the edge of the sensor field of

view and multiple subsequent occupancy measurements at a fixed cell.

Improved Occupancy Classification with Additional Information

In the following, the same scenario as in Fig. 6.9 is evaluated, but using additional in-

formation for the dynamic grid mapping, based on radar Doppler velocity measurements,

camera classification information, and using the feedback of the subsequent object track-

ing. This significantly enhances the dynamic grid mapping for the critical parts of the

guardrail as well as the long truck, as presented in Fig. 6.10. The resulting dynamic grid

map based on the combination of all additional sources is depicted in Fig. 6.10a, details are

presented in Fig. 6.10b–6.10f, showing the enlarged relevant image section as before. The

left column thereby further illustrates the occupancy classification coefficients based on the

respective additional information of the latest measurement update, i.e., not accumulated

over time. For comparison, the result of without any additional information is shown again

in Fig. 6.10b, which is equivalent to Fig. 6.9b.

The dynamic grid map with additional radar Doppler velocity measurements, with the

respective occupancy classification coefficients for static βradar
S and dynamic βradar

D as in-

troduced in (3.41)–(3.42), is highlighted in Fig. 6.10c. Based on those direct velocity

measurements, the wrong pseudo movement of the guardrails as well as the wrong static

convergence of the moving truck can be directly solved, eliminating almost all wrong oc-

cupancy classification artifacts. Only some minor errors remain, especially slight dynamic

occupancy for the guardrails on both the left and the right side, since the respective radar

measurement data are not fully dense and also contain some measurement errors.

Results based on additional camera classification information are shown in Fig. 6.10d.

Note that for the camera classification, the static environment is based on the detection
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(a) Dynamic grid map with additional information of radar, camera, and object tracking.

(b) Results without additional information (as in Fig. 6.9b).

(c) Results with radar velocity information.

(d) Results with camera classification (top: only static obstacles, bottom: camera obstacles+objects).

(e) Results with feedback of subsequent object tracking.

(f) Results with combination of radar, camera, and object tracking information (image section of (a)).

Fig. 6.10: Enhanced dynamic grid mapping with additional information (same scenario as in Fig. 6.9).
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representation, whereas dynamic parts are based on the object instances with the additional

spatial alignment with lidar data, as presented in Section 2.3.4. Two different results of

the camera data are shown in Fig. 6.10d – the upper row results from using only the

static classification with the coefficient βcamera
S , the lower row includes also the dynamic

classification with βcamera
D of camera-detected vehicles. As discussed with the definition

of βcamera
D in (3.44), that coefficient can be modeled differently depending on the class

of the camera object, where vehicles are a special case that can be modeled to converge

toward dynamic, but do not necessarily have to be, as in the case of parked vehicles in

urban environments, which can also be modeled as part of the static environment. This

is further discussed in the next scenario. If no camera object movement information is

directly available for such vehicles, this can also be modeled depending on the occurring

scenarios, possibly automatically adapted by the current speed of the ego vehicle, such that

for highway-like scenarios as in Fig. 6.10, where no parked vehicles are expected, all camera-

detected objects should converge toward dynamic occupancy and therefore be extracted

in the subsequent object tracking. Overall, the camera classification significantly improves

the dynamic grid mapping in that scenario. The static environment is improved by the

camera obstacle detections that are only available in the field of view of the front camera,

but thereby highly depends on the respective camera distance estimation. Dynamic parts

are improved by the camera object instances, if the respective object class is selected to

be modeled as dynamic, which further depends on the spatial camera–lidar alignment.

Another possibility for improving the dynamic occupancy convergence is to utilize in-

formation of the subsequent object tracking as feedback to the dynamic grid mapping, as

presented in Section 3.4.4. This is demonstrated in Fig. 6.10e, where all occurring mov-

ing objects are already correctly tracked as demonstrated by the respective bounding box

shapes used for the feedback that are shown in the left image. That way, the movement is

thereby further evaluated on the object-level in addition to the estimation of the individual

grid cells, which enables to suppress all static artifacts of moving objects, especially in the

case of the long truck. Moreover, this strategy further allows one to keep track of objects

in urban environments that temporarily stop at a traffic light. For a more conservative ap-

proach, the feedback where dynamic occupancy is retained can thereby be limited to those

object tracks that are quite certain and have been seen by multiple sensors and thereby

be confirmed by radar Doppler measurements or corresponding camera object instances.

The static environment remains unchanged that way, therefore, the guardrail of Fig. 6.10e

still exhibits wrong dynamic occupancy as before in Fig. 6.10b.

Finally, the combination of those different inputs, as summarized in (3.53), is highlighted

in Fig. 6.10f, which depicts the most comprehensive results. Altogether, even though the

proposed dynamic grid mapping generally achieves promising results without additional

information, some scenarios such as newly occurring parts of straight guardrails and the

long side of trucks cannot be fully solved from the cell-individual perspective and therefore

require further information. Each of the presented additional inputs thereby significantly

improves the resulting dynamic grid map for such scenarios, but, by that combination, the

approach is further robust against partly missing or wrong sensor data and thereby utilizes

the different advantages of the radar velocity measurements, the camera classification, and

the feedback of the subsequent object tracking.
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Camera-Based Dynamic Occupancy Convergence and Object Extraction

In the following, the influence of camera object instances as additional classification infor-

mation for the dynamic convergence of the dynamic grid mapping as well as the subsequent

object extraction is addressed. As discussed for the scenario of Fig. 6.10d, the classifica-

tion information of camera-detected objects can optionally be used to enforce an occupancy

classification convergence toward dynamic, especially in highway scenarios. For urban en-

vironments, however, camera-detected vehicles can generally also be permanently parked,

in which case an extraction of object tracks is not absolutely necessary, since the repre-

sentation of static occupied cells generally enables a more accurate position and shape

representation of obstacles by the persistent grid map accumulation, which further is more

efficient since no particles or object track instances are required.

Such an example with a large number of parked vehicles is presented in Fig. 6.11.

Thereby Fig. 6.11a represents the case where all camera-detected objects are included

in the group of dynamic classes Kdynamic that are modeled by an occupancy classification

coefficient of βcamera
D = 1 here, as defined in (3.44). As a result, all occupied cell that contain

camera object information converge toward dynamic occupancy in the dynamic grid map,

even if those objects are not moving. The corresponding object extraction is demonstrated

in Fig. 6.11b, with a total of 25 vehicles (cars and trucks/vans) that are all parked here,

in addition to 19 moving vulnerable road users (VRUs), i.e., pedestrians and cyclists. The

respective object boxes class color coding has been introduced in Fig. 5.10. Hence, object

tracks are correctly extracted for all stationary vehicles here. However, the object track

estimation of non-moving objects fully relies on the camera information, not only for the

object occurrence itself, but also for the initialization of the orientation estimation, as no

robust particle-based movement direction estimation is possible in that case.

A different configuration of that scenario is shown in Fig. 6.11c, where camera-detected

vehicles are excluded from the group Kdynamic and thus have no effect on the occupancy

classification. Therefore, all parked vehicles properly converge toward static occupancy in

the grid map, in which case the grid cell representation can be directly used for an accurate

collision avoidance. Nevertheless, camera-detected pedestrians and cyclists are retained in

the group Kdynamic and are thus always extracted as object tracks, since, even if they are

currently not moving, that category of traffic participants is generally highly dynamic and

vulnerable. Hence, that additional information about the presence of surrounding VRUs

is directly safety-relevant for autonomous driving applications, where the speed and safety

distance have to be selected even more conservatively than to stationary obstacles.

Such a scenario is highlighted in Fig. 6.12, where a pedestrian with a bike stands close

to the road, waiting at pedestrian lights. Without any camera information, solely based on

range-based measurements, that pedestrian is modeled as part of the static environment

without any additional object information, as shown in Fig. 6.12a–6.12b. Nonetheless,

the non-moving pedestrian is still robustly detected as an obstacle that way, as all mea-

surements are considered and consistently accumulated in the dynamic grid map. But by

utilizing additional camera information, the dynamic grid mapping is adapted such that the

occupied cells of the pedestrian converge toward dynamic occupancy and an object track

with the respective classification is properly extracted, as presented in Fig. 6.12c–6.12d.
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(a) (b) (c) (d)

(e) (f)

Fig. 6.11: Influence of the camera classification for the dynamic occupancy convergence and subse-

quent object extraction. (a/b) Dynamic convergence for all camera-detected object types.

(c/d) Dynamic convergence only for camera-detected VRUs. (e/f) Camera images.
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(a) (b) (c) (d)

(e)

Fig. 6.12: Influence of the camera classification for the estimation of stationary VRUs. On the right

side there is a pedestrian with a bike standing directly next to the road. (a/b) Results

without any camera information. (c/d) Results with camera information. (e) Camera image.

Altogether, this section has evaluated different aspects of the dynamic grid mapping.

This work has been compared to the approach of [120, 121], demonstrating that the pro-

posed concept is more robust and more efficient for estimating the static environment

due to the persistent grid map accumulation rather than using short-term static parti-

cles, especially for scenarios with temporarily occluded areas of the static environment.

Moreover, it has been demonstrated how the static/dynamic occupancy classification is

further enhanced by additional measurement data of radar and camera sensors as well as

using feedback of the subsequent object tracking, which is essential for solving challeng-

ing scenarios with newly observed parts of straight guardrails and moving trucks with an

observed long side. Thereby it has also been analyzed how the occupancy filtering can

be modified by the camera classification such that even non-moving object tracks are able

to be extracted due to an enforced dynamic convergence. This adapted filtering has been

restricted to pedestrians and cyclists, whereas parked vehicles remain as static occupied

in the grid map representation without a subsequent object extraction, as the static occu-

pancy accumulation ensures a high spatial accuracy without relying on the camera object

estimation, which is also more efficient since no particles or object tracks are required.

6.3 Object Detection and Tracking

Based on the presented dynamic grid estimation, this section evaluates the subsequent

object-level estimation in more detail. First, the object extraction and association are

demonstrated for different challenging scenarios. Afterwards, the UKF-based dynamic

state estimation is quantitatively evaluated for challenging full braking and turning maneu-

vers. Finally, the combined object shape estimation and classification concept is analyzed

for a simulation scenario with different configurations.
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6.3.1 Object Extraction and Association

In the following, the robustness of the moving object extraction and cell-wise association

as well as the overall object tracking is demonstrated qualitatively for different challenging

urban and highway scenarios.

Extraction of Arbitrary-Shaped Moving Objects

The generic extraction of arbitrary-shaped moving objects is highlighted in a challenging

scenario in Fig. 6.13, which contains a truck with a specific low-mounted pipe construction

on the rear. To demonstrate the robustness of the object extraction and association even

with sparse sensor measurement data, only the low-mounted lidar sensors with the low

vertical field of view are used here, i.e., no information of the radar, the camera, or the

roof-mounted lidar sensor is evaluated in that scenario, as also presented in [1]. Hence, the

lidar detection pattern at the sensing height does not fit a rectangular shape and results in

an unstructured shape here, as depicted in Fig. 6.13a. However, since the proposed dynamic

grid estimation with the low-level particle tracking generally estimates the movement of

the individual occupied cells without depending on any object assumptions, those moving

parts robustly converge toward dynamic occupancy with an accurate velocity distribution

estimation of the respective cells, as shown in Fig. 6.13b. As the proposed moving object

extraction concept results from a density-based cell clustering of dynamic occupied cells

with similar velocities, which in turn is based on the dynamic grid estimation, even such

rare objects are robustly extracted, which also applied to the cell-level association when

that object track has been extracted before, as demonstrated in Fig. 6.13c–6.13d. Hence,

this approach is also suitable for lower resolution sensor data, whereas, in contrast, an L-

shape feature detection or a box fitting on the raw measurement data, without considering

the particle-based movement direction estimation or the predicted object track, are prone

to such deviations of the box shape model.

Extraction of Far-Distant Moving Objects

Another challenging scenario of the moving object extraction is demonstrated in Fig. 6.14,

where the ego vehicle is approaching an oncoming vehicle that is at far distance. Thereby

the oncoming vehicle enters the detection area of the grid structure in the upper right

corner, whereas the ego vehicle is approximately aligned diagonal within the grid due to

the ego orientation in the odometry coordinate system. Hence, this example enables the

maximum possible range to the front, which is up to 184m with the grid configuration as

introduced in Fig. 6.3. In that scenario, the oncoming vehicle results only in a single lidar

detection, with an additional camera object detection of that vehicle, whereas no radar

information is available. The resulting dynamic grid mapping over time is visualized in

Fig. 6.14b, illustrating the fixed area within the odometry frame that is independent of

the ego movement within that sequence. The results demonstrate the correct convergence

toward dynamic occupancy over time, while still including artifacts of unclassified occu-

pancy of the previous time instances until the full convergence toward dynamic occupancy

is achieved. The respective augmented measurement grid with the additional representa-

tion of the particle-based cell-wise velocity estimates is highlighted in Fig. 6.14c, indicating
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(a) (b) (c) (d) (e)

Fig. 6.13: Moving object with an unstructured shape; the detection pattern of the low-mounted lidar

sensors at the sensing height does not fit a rectangular shape. (a) Lidar detections of

front sensor (black: obstacles, gray: ground). (b) Augmented measurement grid (blue lines

indicate cell velocities). (c) Associated cells and measurement bounding box. (d) Resulting

object tracking. (e) Camera image. Figure initially published in [1], © 2019 IEEE.

that a first convergence of the velocity estimation is already achieved after three time in-

stances. Since the augmented measurement grid is only derived for the corresponding

measurement data of the current time instance, the grid mapping artifacts of the initial

frames have no effect here. Even though the object track is extracted conservatively here

after the full convergence of seven time instances, the distance of the object detection is

still more than 160m in that example, as shown in Fig. 6.14a. Overall, this scenario has

demonstrated that the presented grid-based object tracking is generally also capable of

detecting objects in far distance, also with very sparse sensor data.

Association for Densely Moving Traffic Participants and Occurring Occlusion

A challenging urban scenario with multiple surrounding vehicles and an approaching

scooter is shown in Fig. 6.15. Multiple time instances are visualized that illustrate the

movement of the scooter, which is very close to the other vehicles and the ego vehicle and

thus also causes occlusions. As with the example before in Fig. 6.13, also no measurement

data of the camera or the roof-mounted lidar sensor are available in this scenario, as ini-

tially presented in [2], to focus on the robustness of the approach without those enhanced

measurement data. The scooter is robustly extracted as a new object track, even though

the initial position is in-between two extracted vehicles. As demonstrated by the different

processing steps and the successive time steps, the proposed particle labeling association

with the subsequent clustering and verification of the sub-clusters of a track, as presented

in Section 4.3, correctly associates the measured occupied cells to the corresponding tracks

and thus successfully distinguishes those different objects. This is even the case in the final

sequence where the scooter stops directly next to a vehicle and the dynamic occupancy of

both objects is directly adjacent, shown in the bottom image of Fig. 6.15a, which could

not be separated by a common clustering extraction without prior knowledge of the pre-

dicted tracks here. Overall, this scenario has demonstrated the robustness of the object

extraction and association for scenarios with densely moving or stopped vehicles as well as

fully or partial occlusions of the surrounding traffic participants.
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(a) Scenario with the resulting object extraction at t7.

(b) Dynamic grid mapping for the different time instances t1–t7.

(c) Augmented measurement grid with the particle-based cell velocity estimation for t1–t7.

Fig. 6.14: Object extraction for an oncoming vehicle at far distance on a test ground. The visualized

raster corresponds to a size of 10m× 10m here.
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(a) (b) (c) (d) (e)

(f)

Fig. 6.15: Scenario with multiple surrounding stopped vehicles and an approaching scooter. Rows

show evaluation over time. (a) Augmented measurement grid. (b) Predicted tracks and

labeled particle population. (c) Particle labeling association. (d) Additional clustering step

(cluster colors are not related to the corresponding tracks here). (e) Finally associated

clusters and measurement bounding boxes. (f) Camera images. Figure initially published

in [2], © 2018 IEEE.
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Another urban scenario with temporary occlusions of crossing traffic is demonstrated

in Fig. 6.16. In this sequence, a blue bus (ID 189) on the right side of the intersection waits

for oncoming traffic to pass by in order to turn left, which is also the case for multiple cars

in the opposite direction. Thereby the bus as well as other stopped vehicles are significantly

occluded several times from the perspective of the ego vehicle due to the crossing traffic in

front of them. The proposed object extraction and association approach, however, robustly

keeps track of those partly occluded vehicles and thereby also retains their individual ID.

This scenario further demonstrates the robustness of the overall object tracking in urban

environments in general, where the object pose and shape are also accurately estimated

for partly occluded objects due to the evaluated visibility in terms of the freespace of the

measurement grid, which in turn is essential for the consistent association here.

Object Tracking for Highway Scenarios with Fast-Moving Vehicles

A different type of challenging scenarios for the object estimation is presented in Fig. 6.17,

demonstrating the successful application of the grid-based object tracking also for highway

environments. As opposed to urban environments with the complexity of densely moving

traffic and occlusions, highway scenarios are primarily challenging due to the generally fast

speed of both the ego vehicle and surrounding vehicles as well as the resulting required

larger detection range. As highlighted in Fig. 6.17a, all of those fast-moving vehicles around

the ego vehicle are detected and robustly tracked in that scenario, including a far-distant

car in the front area that is barely visible due to the occlusion of the more close overtaking

cars as well as the preceding truck in front of the ego vehicle.

A variation of such highway environments is presented in Fig. 6.17b, depicting the be-

ginning of a construction site scenario in which the lane course is redirected by delineator

posts and thus deviates from the normal course here. Since the object tracking approach

of this work has no dependencies on road map information that might be incorrect here,

the objects are accurately represented at their actual position without relying on any lane

assignment or prior map knowledge. Another major benefit of the proposed strategy is

that not only moving objects are estimated here but also the static environment in terms of

the temporally filtered dynamic grid map, which is shown here on the ground rather than

the augmented measurement grid to highlight the accumulated grid map representation.

Further details of the dynamic grid mapping in such highway scenarios have been discussed

before in Fig. 6.9–6.10. Hence, the overall consistent and combined environment estima-

tion ensures that in this scenario, in addition to the other traffic participants, also such

construction site delineator posts are robustly extracted here as accumulated static occu-

pancy. This is crucial for obstacle avoidance and an adapted path planning of autonomous

vehicles in such scenarios, but possibly also for updating road map information.

6.3.2 Dynamic State Estimation for Highly Dynamic Maneuvers

In this section, the dynamic state estimation of the object tracking is evaluated quantita-

tively using real sensor data of a test vehicle with a reference measurement system. Two

challenging scenarios are presented, the first scenario addresses high negative accelerations

of a full braking maneuver, whereas the second scenario focuses on turning maneuvers with
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Fig. 6.16: Object tracking at an urban intersection with crossing traffic and occurring temporary

occlusions. The rows from top to bottom show the evaluation over time of that sequence.
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(a) (b)

Fig. 6.17: Results of the proposed approach in highway scenarios. Here the dynamic grid map is

shown on the ground instead of the augmented measurement grid to further highlight the

accumulation of the static environment. (a) Highway scenario with fast-moving vehicles.

(b) Highway construction site with delineator posts and a modified road course.
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multiple ”figure-eight” trajectories. The following evaluation has been originally published

in [1] in the context of this thesis, together with the proposed object state estimation.

Full Braking Scenario

The first scenario represents an emergency braking situation with an abrupt high nega-

tive acceleration, up to −9m/s2, which is presented in Fig. 6.18. The target vehicle first

increases the velocity up to 10.6m/s, then stops by a full braking around t ∈ [6.7 s, 8 s],

and finally performs a short slow forward movement around t ∈ [12 s, 16 s]. The ego ve-

hicle also starts moving with a similar velocity, with a position offset to the right of the

target vehicle, and performs a slightly smoother braking action around t ∈ [8.5 s, 11 s],

and then remains stopped. Three different variants of the UKF measurement update are

analyzed in the following.

The UKF state estimation using the position of the extracted minimum bounding box

as the measurement update is shown in red. The velocity is thereby implicitly estimated by

position changes, i.e., first order derivative of the measurable position, whereas the accel-

eration is determined by the change of the estimated velocity, i.e., second order derivative

of the measurable position. A robust balancing of position measurement noise and pro-

cess noise therefore results in a sluggish state estimation with a higher filtering latency.

Moreover, the red dotted line shows the filtering behavior without the additional limita-

tion of the acceleration as defined in (5.4), i.e., without the time horizon thorizon. Thereby

the velocity overshoots to the negative (up to −1.7m/s) without that limitation, since

the acceleration converges very slowly toward zero. In contrast, the estimation with the

limitation, with thorizon = 0.25 s, shown by the red solid line, converges fast toward zero by

that additional constraint.

The multi-filtering approach, where the mean velocity ν of all associated cells as defined

in (5.22), based on the cell-wise particle velocity estimates νc
t , is additionally used as a

direct velocity update of the object state is shown in green. As discussed before, this

results in correlated input data of the UKF, even though the particles are partly weighted

by radar Doppler measurements in the shown case. That approach is robust against wrong

object assumptions and position updates, e.g., due to an incorrect association, but in

that highly nonlinear case it causes a high filtering latency, which is unfavorable in such

critical situations. Furthermore, accurately estimating slow velocities, in the case of the

slow forward movement after the full braking, is not accurately possible by the particles, in

particular when primarily the long side of the vehicle is observed, since that slow movement

cannot be fully resolved for the individual cells of that part without considering neighboring

cells, i.e., the overall object movement.

In contrast to multi-filtering based on the particle estimation, the proposed radar

Doppler-based UKF measurement update directly uses those measured velocity compo-

nents in the object state estimation, which is shown in blue. This results in an accurate

estimation of the object velocity and a significant reduction of the filtering latency, in par-

ticular of the acceleration, which is important for the reaction speed and thus the safety

of autonomous mobile robots. The 3σ-validation gating of Doppler measurements, i.e.,

ignoring all measurements that are implausible with regard to the standard deviation of

the expected measurement, further increases the system robustness, as it is less prone to
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Fig. 6.18: Full braking scenario with real sensor data. The shown time of all data corresponds to

the original measurement time to focus on the filtering behavior, i.e., sensor and system

latencies as well as the processing time are excluded in the comparison with the ground

truth data. Figure initially published in [1], © 2019 IEEE.

outliers. The blue dotted line illustrates the variant without gating, which in turn re-

quires increasing the Doppler measurement variance and thus decreasing the influence of

the radar sensors here.

This discussion of the different approaches is confirmed by the root mean square error

(RMSE) of the velocity and acceleration in that scenario, which is summarized in Ta-

ble 6.1. To demonstrate the influence of Doppler measurements on the object extraction,

the position-only approach (red line) is performed here without using any radar sensors

at all, not for the underlying grid-based estimation either. For the other two approaches,

in contrast, the dynamic grid estimation is enhanced by radar measurements, resulting
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Tab. 6.1: Root mean square error (RMSE) analysis of dynamic state estimation for highly dynamic

movements with real sensor data. Results initially published in [1].

Full braking scenario v-RMSE [m/s] a-RMSE [m/s2]

with UKF-Doppler 0.1902 1.0931 (0.9301)∗

with UKF-Doppler (no gating) 0.4044 1.4730 (1.3499)∗

position-only 0.8641 2.0248 (1.9264)∗

position-only (no acceleration limitation) 0.9580 2.4813 (2.3844)∗

multi-filtering 1.1097 1.9468 (1.8341)∗

Turning ”figure-eight” scenario φ-RMSE [deg] ω-RMSE [deg/s]

UKF-Doppler + freespace estimation 3.6869 11.4381

freespace estimation 4.8958 15.0031

multi-filtering 9.7007 19.9929

∗ calculated with moving-average smoothing of the measured ground-truth data.

in a faster object extraction, about 1 s in that configuration. Nonetheless, all approaches

result in a good initial object velocity estimate, as they all use the mean particle-based

cell velocity for the initialization.

Turning Scenario with ”Figure-Eight” Trajectories

The second scenario focuses on the orientation and turn rate estimation, which is tested

with challenging multiple ”figure-eight” trajectories as shown by the path in Fig. 6.19. This

represents an extreme case with high and fast changing turn rates with up to 65 deg/s occur

in that scenario, much higher than that of common turning vehicles.

The green line shows the multi-filtering approach, where a measurement update of the

object orientation is performed by the mean movement direction of the particle-based 2D

cell velocity estimation. Even though the vehicle is successfully tracked for the complete se-

quence, the estimation of the orientation and in particular the turn rate is rather inaccurate

for that highly nonlinear movement, as the low-level particle tracking only estimates 2-D

velocities on the cell-level without any considered high-level object instance or turn rate.

The orientation estimation based on the currently measured freespace, as proposed

in Section 5.3.5, is shown in red. That generic approach results in a robust orientation

estimation, which is primarily based on the high spatial accuracy and thus the derived

freespace information of lidar sensors here.

Best results are achieved by combining that freespace-based orientation estimation with

the UKF-Doppler state estimation, which is shown in blue. In that combined approach,

also the radar Doppler radial velocity components at different parts of the object are taken

into account, which implicitly enable measuring the object orientation and turn rate.

The different orientation estimation approaches of the turning scenario are also sum-

marized in Table 6.1 by the RMSE analysis, equivalent to the full braking scenario as

discussed before. Altogether, those results for both scenarios have demonstrated that the

presented dynamic state estimation strategy results in an accurate object state estimation,

even for such highly dynamic maneuvers.
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Fig. 6.19: Turning scenario with multiple ”figure-eight” trajectories and real sensor data. As with

Fig. 6.18, the shown time of all data corresponds to the original measurement time by

excluding sensor and system latencies as well as the processing time in the comparison with

the ground truth data. Figure initially published in [1], © 2019 IEEE.
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6.3.3 Object Shape Estimation and Classification

In the following, the geometry estimation and object classification are analyzed, primarily

by a simulated sequence with two different variants, while the object classification is further

quantitatively evaluated in a real scenario. This evaluation has been originally published

in [1] in the context of this thesis, together with the proposed object state estimation.

Simulated Test Scenario

The evaluated simulation scenario consists of a non-moving ego vehicle, which is overtaken

by another vehicle, as shown in Fig. 6.20. The first variant in Fig. 6.20a includes an

additional parked vehicle that occludes parts of the overtaking vehicle in the beginning;

the second variant in Fig. 6.20b is without occlusion. The trajectory of the overtaking

vehicle is equal in both variants, the vehicle accelerates in the first 4 s of the sequence up

to a velocity of 5m/s and then moves with constant velocity. The simulated ground-truth

object box has length l = 3.9m and width w = 1.8m. As the focus here is on the shape

estimation, only lidar data are simulated, directly on the edge of the simulated box, with a

small simulated distance error variance of 0.03m2. A detailed evaluation of the measured

and extracted length and width as well as the classification is shown in Fig. 6.21.

The first variant with occlusion, cf. Fig. 6.20a, illustrated by solid lines in Fig. 6.21,

is simulated such that the measured width of the minimum bounding box in the initial

acceleration phase is about 0.75m, and no noteworthy length is observable, i.e., only the

front left corner of that target is visible from the position of the ego vehicle. As denoted

before, the priors of the classes pedestrian and cyclist are selected higher than the prior

of the class car for a more conservative object size estimation, since the assumed object

size is also used for the gating area of the association. Hence, in the beginning, the

class pedestrian results in the highest classification probability, since none of the observed

features contradicts with that model.

Around t ≈ 2 s, the accelerating simulated object has a velocity about 3m/s and thus

the maximum estimated object velocity vmax
τ also increases to that value. Due to that

increasing velocity, the class pedestrian becomes less probable; the class cyclist achieves

the highest probability. Around t ≈ 5 s, the vehicle starts overtaking and larger parts

of the width are observable, whereas also the class cyclist becomes unlikely; the object

is then classified as a car, with an increased extracted length and width given by the

likelihood of the class. While the target drives alongside the ego vehicle, the front and

rear edge are both visible, thus the real length, i.e., not only a lower bound, is observed,

which is selected smaller than the likelihood of the class car in this simulation. The

measured length, and thus the estimated object size, is slightly higher than the ground-

truth box due to the grid cell and histogram discretization combined with the modeled

spatial measurement uncertainty and the simple measurement simulation directly on the

outer edge of the simulated rectangle. The full object width is observed near the end of

the sequence when the target continues moving straight forward in front of the ego vehicle.

The geometry estimation is clarified further in Fig. 6.22 by the corresponding histogram

probability distributions of the length and width over time for that sequence. Thereby

also the inverse sensor model with the boundary visibility consideration is recognizable, as
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t0 = 0 s

t1 = 1.4 s t2 = 4.25 s t3 = 4.85 s t4 = 5.75 s t5 = 7.3 s t6 = 9.95 s t7 = 11.85 s t8 = 14.75 s

(a) Scenario with a parking vehicle occluding parts of the approaching vehicle.

t0 = 0 s

t1 = 1.4 s t2 = 4.25 s t3 = 4.85 s t4 = 5.75 s t5 = 7.3 s t6 = 9.95 s t7 = 11.85 s t8 = 14.75 s

(b) Scenario without occlusion.

Fig. 6.20: Simulated scenario of an approaching overtaking vehicle in two variants: with and without

a parking vehicle causing partial occlusion of the approaching vehicle, shown in (a) and (b)

respectively. The ego vehicle is stopped in that scenario, the approaching vehicle accelerates

in the beginning before overtaking. In the lower row only image parts of the upper row are

shown, which correspond to the respective dotted area. Figure similarly published in [1].

introduced in Fig. 5.8, which is used to distinguish whether the current length or width

measurement is only a lower bound or also an upper bound.

The second variant without occlusion, shown in Fig. 6.20b and illustrated by dotted

lines in Fig. 6.21, is simpler since the full width of the target is visible directly from the

beginning. Due to that observed width, the object is directly classified as a car in the

initialization, even though the velocity is very slow at that starting point. The assumed

length is directly adjusted regarding the likelihood of the class, resulting in an extracted

length of approximately 4.4m here, which is much more accurate than the maximum

observed length that is only about 0.5m up to t ≈ 5 s.

Overall, as shown by the comparison of both variants with and without high occlusion

in the initial phase, the proposed geometry estimation and object classification adapts as

desired with regard to the measured box size, the observability in terms of the adjacent

freespace, and the target velocity.
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Fig. 6.21: Evaluation of the geometry estimation and classification of the overtaking vehicle scenario

of Fig. 6.20 for both variants. Results for the scenario with occlusion (Fig. 6.20a) are shown

by solid lines and for the scenario without occlusion (Fig. 6.20b) by dotted lines, respectively.

The simulated ground-truth object box has length l = 3.9m and width w = 1.8m. Figure

initially published in [1], © 2019 IEEE.
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(b) Scenario without occlusion.

Fig. 6.22: Histogram distributions over time of the length and width estimation for the simulated

overtaking scenario of Fig. 6.20 for both variants with and without occlusion. All probabil-

ities pi·,t are normalized to the highest probability of all bins i in each time step t for better

representation. The interval size of each bin is δi = 0.05m; only a part of the estimated

length and width range is shown. Figure similarly published in [1].

Object Classification in Real Urban Scenarios

The proposed object classification concept is finally evaluated by a real traffic scenario in

an urban environment. This evaluation has also been published as part of [1], which further

contains an attached video of the resulting object tracking in that sequence. The evaluated

sequence has a duration of about 8min with various vehicles, pedestrians, cyclists, etc. As

originally presented in [1], neither camera information nor the roof-mounted lidar sensor

with the higher vertical resolution are available in that scenario. Hence, as opposed to

achieve the best possible classification results that also highly depends on the classification

results of the camera or a dense lidar point cloud, the main focus of that evaluation is

to demonstrate the general ability to classify objects based on limited measurement data

using the 2-D occupancy grid representation without any height information.

The resulting confusion matrix of the object classification is presented in Table 6.2.

Thereby only extracted moving objects are evaluated, since non-moving obstacles or parked

vehicles remain in the static grid representation in this work. Hence, a simple ground

162



6.4 Summary and Overall Approach Application

Tab. 6.2: Confusion matrix of the object classification in a real test sequence. Columns depict the

actual class, rows the estimated class. All extracted objects are evaluated each time the

overall tracking is updated, only the best class is considered. Results initially published in [1].

Car Truck Pedestrian (Motor-)Cyclist∗1 Other False-Positive

Car 23781 39 945 1035 114 882

Truck 45 437 0 0 567 324

Pedestrian 76 0 9530 1792 0 167

(Motor-)Cyclist∗1 1800 0 834 9888 0 0

Other 294 0 0 0 403 0

# Occurrences∗2 25996 476 11309 12715 1084 1373

Rate 0.915 0.918 0.842 0.778 0.372 0.026 (FPR)

∗1 The classes cyclist and motorcycle are combined here due to occurring slow object speeds.
∗2 Total number of evaluated occurrences of that actual class (sum of column).

truth labeling of the actual class of each of the extracted object tracks is performed,

including falsely extracted objects that are labeled as false positives. All extracted objects

are evaluated each time the overall tracking is updated, while only the best class k∗
τ as

determined in (5.60) is considered. As noted before, those classification results are not

directly comparable with other approaches, also since only moving objects are extracted

here. But they indicate that the proposed simple Naive Bayes classification approach,

solely based on the histogram filter geometry distribution estimation and the maximum

observed track velocity over time, even without integrating additional camera information

as presented in (5.62), achieves promising results with real sensor data without necessarily

depending on a high vertical resolution sensor data or camera images.

6.4 Summary and Overall Approach Application

This chapter has presented a detailed evaluation of the different aspects of the proposed

grid-based object tracking approach in various urban and highway environments.

First, a brief overview of the overall approach and evaluation setup has been given.

Thereby the test vehicle setup with the different lidar, radar, and camera sensors has been

presented, followed by a short illustrative recapitulation of the main processing steps and

a discussion of the primary grid configuration as well as the algorithm runtime.

Second, different aspects of the proposed dynamic grid mapping have been evaluated.

As demonstrated in the scenario with temporarily occluded areas of the static environment,

the original approach of Tanzmeister et al. [120, 121] results in information loss in such

scenarios due to the short-term filtering with static particles, whereas the proposed archi-

tecture retains that static occupancy information due to the persistent map accumulation.

This increases not only the robustness of the occupancy filtering, but also the estimation ef-

ficiency, since the number of required particles is significantly reduced that way. Moreover,
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it has been demonstrated how additional measurement data of radar and camera sensors as

well as information of the subsequent object tracking further improve the static/dynamic

occupancy classification. As a result, even complex highway scenarios with newly observed

parts of straight guardrails and moving trucks with an observed long side are robustly rep-

resented, which otherwise cannot be fully solved from the cell-individual perspective. In

addition, it has also been analyzed how the dynamic occupancy filtering can be adapted

by the camera classification such that even non-moving objects can be extracted, which

has been applied to pedestrians and cyclists, as those vulnerable road users are generally

highly dynamic and therefore require an even more conservative safety distance than to

stationary obstacles. Parked vehicles, in contrast, remain as static occupancy in the grid

map without a subsequent object extraction in the application of this work, as this rep-

resentation is spatially more accurate and more efficient, without requiring particles or

object tracks or depending on the accuracy of the camera object estimation.

Third, the evaluation of the subsequent object tracking has been addressed. Thereby

it has been demonstrated that generally arbitrary-shaped moving objects are extracted,

even with sparse sensor data that do not fit a rectangular shape, also for large detection

distances above 160m. Moreover, the robustness of the association as well as the overall

object tracking over time has been highlighted by complex urban and highway scenarios,

even for scenarios with densely moving traffic, temporary occlusions, fast-moving vehi-

cles, and unstructured environments of construction sites. Those qualitative results have

been further extended by a detailed quantitative evaluation of the dynamic state estimation

using a target vehicle with a reference measurement system, which has performed challeng-

ing highly dynamic full braking and ”figure-eight” turning maneuvers. Those results have

proven the accuracy and robustness of the object state estimation even for such extreme

cases with high longitudinal or lateral accelerations, including a comparison of different

strategies of the object state update. Finally, the combined object shape estimation and

classification approach has been evaluated, where effects of the object shape visibility and

occlusion have been discussed by different variations of a simulation scenario, whereas the

robust object classification has been further proven for real traffic scenarios.

Altogether, this chapter has demonstrated that the proposed grid-based object tracking

approach of this thesis results in a generic and robust real-time environment estimation

with a full surrounding 360◦ detection area based on multiple lidar, radar, and camera

sensors. Moving objects as well as static obstacles and passable freespace are consistently

estimated in various unstructured environments, even in scenarios with densely moving

traffic participants, partial occlusions, or highly dynamic maneuvers. The implemented

algorithm is actively used within autonomous driving test vehicle prototypes for both the

multi-sensor object tracking and the obstacle detection of the surrounding static environ-

ment. Moreover, the resulting object tracking is further used as real sensor data input

to other related research projects in the field of autonomous driving that are based on

high-level object instances, e.g., for learning interaction-aware probabilistic driver behav-

ior models [107], for the set-based prediction of pedestrians [66], for fail-safe trajectory

planning [92, 93], or for a semantic grid-based road model estimation [124].
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Modeling and estimating the current local environment remain major challenges of mobile

robots, as also the requirements on the accuracy, the robustness, and the detection range

are permanently increasing. This is particularly the case for the ongoing development of

autonomous driving with the generally high scenario complexity of unstructured dynamic

environments. Therefore, an accurate environment model is required that properly rep-

resents moving objects, static obstacles, and passable freespace, which has to be robustly

estimated by processing measurement data of multiple sensors – those aspects represented

the overall goal and the scope of this work.

This thesis presented the Grid-Based Object Tracking – a novel environment perception

strategy that combines a multi-sensor multi-object tracking with a consistent estimation of

static obstacles as well as passable freespace. Measurement data are thereby fused and pre-

processed by a low-level environment estimation based on the generic concept of dynamic

occupancy grids, whereas the object-level estimation is performed subsequently based on

that grid representation. Hence, as opposed to popular high-level object fusion approaches

that are based on an error-prone early-stage sensor-individual object abstraction, the pro-

posed strategy corresponds to an early-stage sensor fusion and dynamic estimation with

a late-stage object abstraction. Objects are thus estimated based on the combined mea-

surement data of all sensors in this work; the additional low-level dynamic grid estimation

further enables a generic detection of arbitrary-shaped moving objects, while the static

environment is retained in the grid representation without abstracting object instances.

Overall, the proposed strategy results in a highly robust and accurate multi-sensor envi-

ronment estimation, even with many occurring objects, unstructured surroundings, sparse

sensor data, or partial occlusions. Thereby measurement data of multiple lidar, radar,

and camera sensors are fused, obtaining a full surrounding 360◦ detection area of hetero-

geneous sensors. Moreover, the grid-based framework of this work is optimized to combine

the advantages of the different sensor principles – spatially accurate lidar sensors represent

the main sensors for the generic occupancy/freespace grid derivation and thus also for the

object pose and shape estimation; radar sensors primarily contribute to the dynamic esti-

mation on both the grid-level and the object-level by their Doppler velocity measurements;

and the semantic information of camera sensors further improves the static/dynamic oc-

cupancy differentiation as well as the object extraction and classification.

Another important benefit of the presented concept is its high versatility for different

environments and applications. First, the approach is solely sensor-based, i.e., the envi-

ronment is fully estimated by the current sensor measurement data without requiring or

relying on any prior map knowledge or localization, which enables an application in var-

ious unknown environments. Second, the algorithm is able to be processed online using

a conventional modern computer, i.e., no offline post-processing is required, due to the

efficient implementation with highly parallelized GPU computation. Third, the generic
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grid-based estimation framework is directly adaptable to modifications and extensions of

the sensor setup, as it only requires that the corresponding measurement data are mod-

eled in the uniform measurement grid representation. This also applies to the subsequent

object tracking, as it is based on the abstracted dynamic grid representation rather than

sensor-specific characteristics.

Altogether, the proposed approach is well suited for real-time multi-sensor environment

perception applications. The implemented algorithm is actively used for the multi-sensor

object tracking and obstacle detection within test vehicle prototypes for autonomous driv-

ing in urban environments, demonstrating the successful application with promising and

robust results in challenging real-world scenarios. Thereby the output is also used as real

sensor data input to other related research projects in the field of autonomous driving.

As part of the grid-based object tracking strategy, the different aspects of sensor data

fusion, temporal filtering of the dynamic grid mapping, object extraction and association,

and object state estimation have been addressed in this work. Novel concepts have been

proposed for all these fields, primarily based on the characteristics of the dynamic grid

estimation, to fully utilize the potential of the overall approach. In the following, the main

contributions of each of those processing steps are briefly summarized.

Measurement Grid Representation and Fusion: The measurement data of all sensors

are modeled and fused using a uniform evidential Dempster–Shafer occupancy grid rep-

resentation. Thereby all measurements have been considered in this work, as opposed to

common grid-based approaches that model only the static environment and try to filter

out moving parts. To handle asynchronous sensor data with different measurement and

latency time instances, a new fusion strategy has been presented such that all fused data

approximately represent the same time instance and thus the same status of the dynamic

environment. Moreover, to retain important additional measurement data of radar and

camera sensors, separate velocity and classification grid layers have been introduced.

Dynamic Grid Mapping and Particle Tracking: A novel evidential dynamic grid map-

ping strategy has been proposed that combines the benefits of a persistent grid map ac-

cumulation with a short-term particle filter tracking of the dynamic state of the grid. To

differentiate static and dynamic occupancy over time, solely based on unclassified occu-

pancy measurements, the occupancy filtering of the evidence masses has been adapted

within the Dempster–Shafer framework, also regarding implicit temporal transitions be-

tween the individual hypotheses and their supersets as well as conflicts between contradict-

ing hypotheses. Dynamic occupancy of the grid map is thereby directly coupled with the

particle tracking, overall resulting in a robust velocity distribution estimation of individual

grid cells and thus also a robust prediction of their dynamic occupancy masses. Static

occupancy, in contrast, is directly accumulated in the persistent map representation with-

out requiring particles. Compared to state-of-the-art approaches, especially in scenarios

with temporarily occluded areas of the static environment, false dynamic classification has

been significantly reduced due to the persistent static occupancy accumulation of the grid

map, as opposed to a short-term estimation with static particles that results in informa-

tion loss in such scenarios. Not only the occupancy classification is improved that way,

but also the computational efficiency due to the drastically reduced number of required

particles. Moreover, the proposed approach has been further enhanced by additionally
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evaluating radar velocity measurements and camera classification information as well as

using feedback of the subsequent object tracking. As a result, even challenging scenarios

with newly observed parts of straight guardrails and moving trucks with an observed long

side are robustly estimated, which otherwise generally cannot be fully solved from the

cell-individual perspective.

Object Extraction and Association: Moving objects are robustly detected based on the

dynamic grid estimation with the low-level particle tracking, which corresponds to a generic

movement-based track-before-detect approach. That strategy enables detecting arbitrary

moving objects by their occupancy motion, without depending on specific features or train-

ing data, in contrast to common appearance-based detection algorithms. The robustness

of the object extraction has been presented for objects with unstructured shapes, unknown

classes, and sparse sensor data in far distances as well as partial occlusions. In addition

to that generic movement-based object detection, the proposed approach has been fur-

ther extended to also incorporate additional input information of object instances. Hence,

non-moving objects can be extracted as well by adapting the dynamic occupancy filtering

within the areas of such input objects. This has been demonstrated for camera-detected

pedestrians and cyclists due to their generally high dynamic and vulnerability, but also

for the feedback of already tracked objects in order to continue tracking them when they

temporarily stop moving. Newly occurring objects are extracted by a novel combination of

a density-based and connectivity-based clustering, where dynamic occupied cells with simi-

lar velocities are compared with the local neighborhood regarding the cell velocity variance

to minimize false positives. For tracks that have been extracted in the past, individual

grid cells are directly associated on the grid cell-level rather than on the object-level. A

new association approach has been proposed, where particles of the underlying low-level

particle tracking are linked to object tracks by an attached label. The occupancy likelihood

of a track, i.e., the expected areas of measured occupancy, including the current visibility

and free-form shape, is thus accurately represented by the predicted particle population

linked to that track. Overall, this results in a robust cell-wise association, even for sce-

narios with clutter measurements, densely moving objects, or partial occlusions with gaps

in-between, where clustering-based approaches without any information of the predicted

tracks commonly fail.

Object State Estimation: The associated occupied grid cells of each object track are

abstracted to a popular oriented bounding box model of the measurement. However, as

opposed to other object tracking approaches, the presented object state estimation has

been further optimized for the characteristics of the underlying dynamic grid. The object

pose is thereby updated by selecting the best visible reference point regarding the current

visibility of the bounding box edges, determined by the surrounding freespace of the grid,

and a generic orientation extraction by combining the particle-based movement direction

with a freespace-based optimization approach. In contrast to popular L-shape box fitting

approaches that require dense and accurate sensor data, the proposed strategy ensures

a robust dynamic state estimation even in challenging scenarios with sparse sensor data,

occlusions, and changing sensor fields of view. The approach has been further extended

by directly processing the radar velocity measurements for the object state update, where

a new Doppler-based UKF update has been proposed that robustly utilizes the radial ve-
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locity measurement space. In contrast to an indirect multi-filtering velocity update by the

underlying dynamic grid, this significantly reduces the filtering latency and therefore fur-

ther increases the estimation accuracy of the velocity, acceleration, orientation, and turn

rate, as demonstrated for highly dynamic full braking and turning maneuvers. Finally, a

new strategy for the object size estimation has been proposed by combining a histogram

filter geometry distribution estimation with a Naive Bayes object classification concept,

which in turn is based on the filtered geometry distribution, the maximum observed veloc-

ity, and obtained camera classification information. This enables to model non-Gaussian

distributions of the length and width by distinguishing lower and upper bounds of the mea-

surement, also evaluated by the freespace-based visibility, and to use prior class knowledge.

As a result, the extracted object box size implicitly adapts to the assumed size of the object

class and the actually observed lower and upper bounds of the measurement data.

In conclusion, this thesis has presented new methods for sensor data fusion, temporal

filtering and mapping, data association, and object tracking, which overall significantly

improve the perception capabilities and thus the safety of mobile robots, especially in the

context of future autonomous driving applications. Still, fully autonomous driving remains

a very challenging task that requires further advancements of the respective algorithms and

sensors to achieve the ultimate goal of being completely driverless.

As final remarks, some conceivable similar applications and future research fields are

briefly discussed. The presented methods could possibly be further adapted, for instance,

for other types of mobile robots, also as part of an offline post-processing ground-truth

generation or reference algorithm for perception systems with low online computation

power, as well as for removing artifacts in terms of filtering out dynamic parts for offline

map generation or localization of the static environment, or for tracking moving objects

of premises or indoor applications, possibly also with distributed or stationary sensors.

Potential algorithmic improvements can be achieved, for example, by integrating the height

information into the environment model by a 2.5-D or 3-D model, e.g., for an enhanced

estimation of small obstacles like curbs or also a more detailed object size estimation and

classification. Another possibility is to extend the object tracking by a temporally filtered

existence probability estimation for improving both the extraction as well as the deletion of

object tracks. Finally, there is also great potential in a more extensive use and integration

of latest machine learning approaches for the object detection and semantic segmentation

into this approach – while still also retaining the robustness of the generic movement-based

dynamic grid estimation with the ability of detecting and tracking even unknown moving

object types and the consistent estimation along with the static environment.
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[101] L. Rummelhard, A. Nègre, and C. Laugier. Conditional Monte Carlo Dense Occu-

pancy Tracker. In Proc. IEEE Intell. Transp. Syst. Conf., pages 2485–2490, 2015.

[102] M. Saval-Calvo, L. Medina-Valdés, J. M. Castillo-Secilla, S. Cuenca-Asensi,
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