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Thank you for your scientific guidance and professional advice. Specially, thank you for the

great working atmosphere and for the opportunity to learn and grow professionally being

part of this team.

My most sincere gratitude to Dr. Alex Lin and the team at BWH. Thanks for contributing

significantly to my professional development and academic career. I learned a lot being

part of your group and enjoyed the always friendly and welcoming environment.

Thanks to all the collaborators for their time and effort put in this work. In UCSF, Dr. Peder

Larson, Dr. Brian Burns, Dr. Jeremy Gordon, Dr. Jason Crane and all the people at the

department of Radiology and Biomedical Imaging.

To my dear colleagues and friends from TU München and GE Global Research.

To all my friends, for their advice and all experiences we have shared together.

To my family, for always giving me the strength and motivation to achieve greater things.

To Sandra, for always being there with your unconditional support and love.

This work was partly supported by the doctoral fellowship CONACyT–DAAD (91549693) and the

Bavaria California Technology Center (BaCaTeC).

v





Abstract

In recent years, advances in medical imaging technologies like Magnetic Resonance (MR)

Imaging have demonstrated their potential to positively impact the diagnosis and treatment

of diseases, improving the life quality of individuals. Specifically, two modalities that

are particularly interesting for the medical community are MR Spectroscopy (MRS) and

Spectroscopic Imaging (MRSI) capable of mapping the metabolic composition of tissues.

The present thesis addresses the major challenges of this technique that limits the access to

MRS and MRSI examinations and their adoption in the medical practice. The work focuses

on the development of optimized acquisition and reconstruction methods to achieve higher

robustness, sensitivity, and speed. Thus, improving the reliability of the examinations and

diagnosis made by the radiologist.

The obtained improvements in acquisition sequences, signal reconstruction, signal en-

hancement, and data visualization are presented and validated. These major developments

include: (i) A reconstruction framework that enabled accelerated brain MRSI with an im-

proved signal quality and reduced artifacts, acquired in standard MR systems (3 Tesla)

within a clinically relevant time, (ii) an MRSI methodology optimized for ultra-high mag-

netic fields (7 Tesla) that enabled high-resolution metabolite mapping, and (iii) machine

learning methods for an improved signal quantification in MRS and MRSI.
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Zusammenfassung

Fortschritte in den medizinisch bildgebenden Verfahren, wie Magnetresonanztomogra-

phie (MRT), haben in den letzten Jahren gezeigt, dass sie das Potenzial haben, die Diagnose

und Behandlung von Krankheiten und die Lebensqualität von Menschen zu verbessern.

MR-Spektroskopie (MRS) und MR Spektroskopische-Bildgebung (MRSI) sind Technolo-

gien, die für die Medizin und die Wissenschaft interessant sind, als sie die metabolische

Zusammensetzung von Geweben messen können.

Diese Dissertation befasst sich mit den großen Herausforderungen, die diese bildgeben-

den Verfahren haben, die die Verfügbarkeit und Akzeptanz dieser Art von Studien in

der medizinischen Praxis einschränken. Die Arbeit konzentriert sich auf die Entwicklung

optimierter Aufnahme- und Rekonstruktionsmethoden, um eine höhere Empfindlichkeit

und Geschwindigkeit zu erreichen. Somit verbessert sich die Zuverlässigkeit der vom

Radiologe durchgeführten Untersuchungen und Diagnosen.

Verbesserungen in den Pulssequenzen, der Signalrekonstruktion, der Signalverarbeitung

und der Datenvisualisierung werden vorgestellt und validiert. Zu diesen wichtigen En-

twicklungen gehören: (i) eine Rekonstruktionsmethode, die beschleunigte Gehirn MRSI

mit verbesserter Signalqualität und reduzierten Artefakten ermöglichte, die in Standard

MR Systemen (3 Tesla) innerhalb einer klinisch relevanten Zeit gemessen wurden, (ii)

eine MRSI Methodologie, die für ultrahohe Magnetfelder (7 Tesla) optimiert wurde und

hochauflösende MRSI Bilder ermöglichte, und (iii) Maschinenlernalgorithmen, die die

Quantifizierung von Metaboliten und Gewebe in MRS und MRSI verbessern können.
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1. Introduction

In the last century, developments in medical imaging technologies have improved patient-

specific health care, positively impacting the diagnosis, monitoring, and treatment of

diseases. Yet, one of the major challenges in this field is to obtain the most amount of diag-

nostic information in a clinically relevant time and with sufficient quality to get meaningful

conclusions out of it. Among a wide variety of technologies used every day in a clinical

environment, magnetic resonance (MR) imaging gained special attention in radiology due

to their versatility and the wide variety of applications where it provides quantitative

anatomical and functional information. However, access to this technology is still limited

due to its cost and the relatively long time that MR scans take.

In this field, MR spectroscopy (MRS) and spectroscopic imaging (MRSI) are unique

modalities that provide a quantitative measurement of the metabolic composition of tissues

and its spatial distribution. These technologies allow measuring changes in the chemical

components of tissues with high specificity, which is of great interest in many clinical

applications [7], like breast [41], prostate [58] and central nervous system (CNS) disorders

[80, 112]. Furthermore, its clinical value has been shown with studies in oncology, neurode-

generative diseases, psychiatric disorders, ischemia, and traumatic brain injury, among

others.

Nevertheless, the fundamentally low concentration of metabolites in the brain results

in a low sensitivity limiting the maximum spatial resolution and minimum acquisition

time in this type of examinations. Despite the clinical interest and the availability of this

modality in clinical systems for more than a decade, its adoption as a diagnostic tool has
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1. Introduction

been slow due to its complexity. Moreover, the adoption of more sensitive modalities such

as positron emission tomography (PET) partially replaced MRSI as a metabolic diagnostic

tool for some metabolic diseases. Yet, proton MRS and MRSI remain of great interest due to

its non-invasive nature, flexibility, and diagnostic potential.

Achieving high-resolution distribution of metabolic information within a clinically rele-

vant time remains one of the major challenges of MRSI. Furthermore, the complex of the

spectro-spatial information acquired has typically low signal to noise ratio (SNR) and the

potential presence of nuisance signals and artifacts. For this reason, a robust framework

that includes accelerated acquisitions, advanced signal processing, accurate quantification,

and an intuitive visualization needs to be properly implemented to allow technologists and

radiologists to obtain meaningful scans that can be used for diagnostic purposes.

1.1. Thesis Description

In the present dissertation, contributions in Magnetic Resonance Spectroscopy and Spec-

troscopic Imaging are described. The main challenges of these technologies slowing their

effective translation into clinics are addressed. First, the basic physical principles and

clinical applications of MRS and MRSI are introduced in Chapter 2. Then the main body of

this work is described, which has been divided into four major contributions:

• Chapter 3. A novel reconstruction method combined with accelerated acquisitions

was developed to improve the spatial and spectral quality of MRSI. The methodology

included the development of a robust framework that minimized system instabilities

patient motion and artifacts. Moreover, an automatic measurement, estimation, and

correction of physical disturbances were performed.

• Chapter 4. A fast MRSI acquisition method optimized for ultra-high magnetic fields

(7T) was developed and evaluated. This enabled high-resolution metabolite mapping

of the in a clinically relevant time and showing a high correlation with anatomical

structures.

4



1.1. Thesis Description

• Chapter 5. A machine learning methodology for the estimation of tissue composition

in an MRS volume was trained and evaluated, reducing the variability and improving

voxel placement accuracy compared to manually placed voxels.

• Chapter 6. A methodology for the absolute quantification of low-concentration

molecules that have downfield resonances using standard widely available pulse

sequences was developed. The method was implemented to measure primarily the

concentration of cerebral phenylalanine accumulation in the brain in a population of

patients with phenylketonuria.

5
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2. Theoretical Background

This chapter presents a general introduction of the physical principles of nuclear magnetic

resonance (NMR), MR spectroscopy (MRS) and spectroscopic imaging (MRSI). Additionally,

the description of standard acquisition and reconstruction techniques used in clinical

examinations is presented. Although similar methodologies are applicable for different

nuclei, such as Carbon-13 (13C), Phosphorus-31 (31P), Fluorine-19 (19F) and Sodium-23

(23Na), the main application of this work is in-vivo proton (1H) MRS and MRSI.

2.1. Principles of Magnetic Resonance Spectroscopy

2.1.1. Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is the study of magnetic properties of nuclei with

a nuclear spin I > 0 [20]. The nuclear spin is a quantum mechanical entity, that can

be conceptualized as a magnetic moment ~µ that spins around its own axis (Figure 2.1).

When this spin is placed under a magnetic field ~B0, it starts oscillating or precessing in a

three-dimensional cone at a frequency known as the Larmor frequency, given by

ω0 = γ ~B0. (2.1)

where γ denotes the gyromagnetic ratio (for protons γ ≈ 26.75 · 107 radT−1 s−1). This

frequency is typically in the mega Hertz regime (MHz) and is directly proportional to the

external magnetic field B0 expressed in Tesla (T) and the gyro-magnetic ratio.

7



2. Theoretical Background

Figure 2.1.: The magnetic moment ~µ precesses about the static magnetic field Bz with

the Larmor frequency ω0. Modified from [23].

In order to model the effects of the spins in a larger scale, the signal can be defined as the

sum of all nuclear magnetic moments, or the magnetization ~M , defined as

~M = (Mxy0 cos (γBz0t+ ϕ) ,−Mxy0 sin (γBz0t+ ϕ) ,Mz0)T , (2.2)

In thermal equilibrium the transverse magnetization Mxy(t) cancels out due to the ran-

domly distributed phase ϕ. At this point, the quantum mechanical argumentation is needed.

In classical physics, the potential energy Epot = −~µ · ~B0 could take any value between

−µB0 and +µB0 [20]. However, the quantum theory postulates that the angular frequency

is quantized to discrete values. Generally, the corresponding quantum number m can have

2I + 1 values. In case of protons, the spin is I = 1
2 and thus two orientations between ~µ and

B0 and accordingly two energy states are allowed (Figure 2.2.b). The splitting of the states

is called the Zeeman effect and increases linearly with the magnetic field strength. Thus,

the NMR signal generated from the net magnetization is proportional to the difference of

the population of both states

nL − nH ≈
n~ · γ · B0

2 · kB · T
, (2.3)

with nL and nH indicating population of low and high energy states respectively, n is the

total number of spins inside the sample, kB the Boltzmann constant and T the temperature

8



2.1. Principles of Magnetic Resonance Spectroscopy

in Kelvin (K) [20].

Figure 2.2.: Inside an external magnetic field, energy states split proportional to the

field strength. Modified from [23].

Generally, the direct detection of this longitudinal magnetization is not feasible because

its relatively small magnitude is overwhelmed by the larger magnetization contributions

from electron current. Hence, to perform an NMR measurement, the magnetization is

taken into the transverse plane via an oscillating magnetic field ~B1(t). In this way, the

spins precessing at the range of the specific Larmor frequency (for protons at B0 = 3 T,

f0 = 127.7 MHz) induce a current in a receiver coil, which records the signal. The strength

of the induced NMR signal, proportional to the number of spins in the orientation parallel

to the external magnetic field with respect to the spins in anti-parallel orientation.

2.1.2. Radio-Frequency Pulses

The measurement of the net macroscopic magnetization ~M0 requires a second oscillating

magnetic field called ~B1(t) field, which is much smaller in magnitude than B0. The effect

of this field, applied as a radio-frequency pulse and following the resonance condition

ωRF = ω0, causes the magnetization to be flipped into the transverse plane. The time-

dependent motion of the magnetization is fully described by the Bloch equations [20]

9
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−̇→
M(t) =

â
− 1
T2

γB0 −γB1y

−γB0 − 1
T2

γB1x

γB1y −γB1x − 1
T1

ì
−→
M(t) +

â
0

0

M0
T1

ì
(2.4)

where T1 denotes the longitudinal relaxation time or spin-lattice relaxation, T2 denotes the

transverse relaxation time or spin-spin relaxation.

The rotating magnetization is detected by a receiving coil in the transverse plane, where

the change of magnetic flux induces a voltage according to Faraday’s law of induction. Due

to transverse relaxation, the measured signal shows an exponential decay, also known as

free induction decay (FID). Finally, the frequency components of the signal, i.e. the spectrum,

are obtained from the 1D Fourier transform of the FID, following the reconstruction pipeline

that will be described later in this chapter.

Adiabatic Condition

An effective method for inverting nuclear spins over a wide frequency band is adiabatic

fast passage [57]. To achieve this, the following adiabatic condition need to be satisfied

| dθ
dt
|� ωeff (2.5)

where ωeff = γBeff is the angular frequency of the effective field that results from the applied

RF field ω1 = γB1 and the resonance offset ∆ω, and where ω is the angle of Beff with respect

to the +x axis.

2.1.3. MR Relaxometry

Following the RF excitation, the net magnetization will return to thermal equilibrium fol-

lowing tissue-specific time constants, namely T1 and T1 relaxation, which represent perhaps

of the most important source of contrast in MR imaging and are of special interest for

quantitative MRI. Quantitative relaxometry aims to map the properties of tissue (T1, T2,

T∗2) in absolute units that are independent of the MR systems and protocols, providing a

metric for the objective study of physiological and pathological conditions in a non-invasive
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2.1. Principles of Magnetic Resonance Spectroscopy

manner [64, 12].
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Figure 2.3.: (a) Characteristic curve for the longitudinal magnetization recovering

that follows the T1 relaxation constant. Relaxation curves are shown for different T1

values and the threshold from which the value is calculated (∼63% of the normalized

signal magnitude) (b) Exponential decay of the transverse magnetization following T2

relaxation constant. Curves for different T2 values showing the threshold from which

the T2 value is determined (∼37% of the normalized signal). Adapted from [22]

T1 Relaxation (Spin-Lattice)

T1 relaxation, originated by the interaction of the spins with surrounding molecules, result-

ing in a loss of energy. The T1 relaxation is defined by the Block equation

δMz(t)

δt
=
M0 +Mz(t)

T1
(2.6)

In the case of protons (1H), T1 relaxation involves an exchange of energy between water

protons and the surrounding lipids, proteins, and macromolecules also referred to as lattice

(Figure 2.3.a).

T2 Relaxation (Spin-Spin)

In an MR experiment, the measured transverse component of the magnetization decays

following T2 relaxation, caused by phase incoherence due to spin-spin interactions. It is
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2. Theoretical Background

described by the following equation

δMxy(t)

δt
= −Mxy(t)

T2
(2.7)

T2 relaxation in the 1H case is originated by the interactions protons, mainly in the water

molecules. Each individual spin will experience a slightly different local magnetic field due

to the close presence of other spins, this changes the precessing frequency and ultimately

cause them to dephase. Figure2.3.b shows decay in the magnetization for different T2

values.

T∗2 Relaxation

Along with spin-spin interactions, dephasing may also be induced by the local B0-field

inhomogeneities. This effect, combined with the T∗2 known as T∗2 relaxation, generates

a faster signal decay due to an additional term T
′
2 that represents the irrecoverable loss

of the transverse magnetization. The combination of T2 and T
′
2 is defined as T∗2, where

1/T ∗2 = 1/T2 + 1/T
′
2 [22].

2.1.4. Chemical Shift

Shielding effects that are caused by the magnetic moment associated with the electrons in

the atomic shell reduce the effective magnetic field seen by the nucleus. This magnetization

is usually opposed to the external static field, hence the magnetic field strength becomes

B = B0(1− σ), with shielding constant σ. As a result, the resonance frequency of protons

will slightly change, shifting the resonance peaks of that specific nucleus, in the spectrum.

To make the chemical shift independent of the magnetic field strength, it is calculated

relative to a reference substance

δ =
ω − ωref

ωref
× 106 (2.8)

which corresponds to a scalar given in parts-per-million (ppm). Tetramethylsilane (TMS) is

commonly used as a reference compound with a resonance peak defined at 0 ppm, allowing
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2.1. Principles of Magnetic Resonance Spectroscopy

the chemical shift of most molecules to be positive. Proton MRS and MRSI, also known as

chemical shift imaging (CSI), exploit the chemical shift phenomenon to separate metabolic

compounds that contain protons from the water signal.

2.1.5. MR Spatial Encoding

In MR imaging, the spatial distribution of spins is measured using spatially-varying mag-

netic field gradients that induce a change in the magnetic field, hence changing the reso-

nance frequency of spins. The resulting field is denoted as

Bz (~r) = B0 + ~G (t) · ~r where ~G =

Å
∂B

∂x
,
∂B

∂y
,
∂B

∂z

ãT
. (2.9)

Slice Selection

By inducing an additional component in the magnetic field through a spatially varying

magnetic gradient, the selection of a slice in one of the main image axis or an arbitrary

plane. Then the Larmor frequency is modified as follows

ω(z) = ω0 + γGz(z). (2.10)

By application of simultaneously switched on sinc-shaped RF-pulse and slice gradient Gz ,

only the spins with resonance frequencies inside this bandwidth are excited, therefore a

slice along z-direction is selected. A sinc RF excitation pulse is chosen as it corresponds to a

rectangle in the Fourier domain, ideally exciting a rectangular profile (Figure 2.4.a).

Phase Encoding

For the second image dimension, a perpendicular gradient Gy is applied after the slice

selection.Before switching on Gy, the spins precess with Larmor frequency. As it is switched

on for a time period τ , they start to precess with different angular frequencies. Hence, they

gain an extra phase

ϕ (y) = γ

∫ τ

0
Gy (t) y dt (2.11)
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that is characteristic for the local position along the gradient axis. Therefore in order to cover

the whole k-space, Ny repetitions of the slice excitation are needed for the measurement.

This process is depicted in Figure 2.4.c.

Frequency Encoding

Similarly, a frequency encoding along the x-axis is performed to using a gradient Gx. This

gradient is active during the whole sampling of the signal, also known as the readout

gradient. As a result, the spins precess locally with a varying frequency accross the x-axis

ω(x) = ω0 + γGx(x). (2.12)

Hence, each frequency is characteristic for the location along the gradient dimension. Since

local information is contained in the frequency spectrum, it can be retrieved by the inverse

Fourier transform (FT).

ky

kx

kz

a b

y

x

z
w0 + gGz z

zDz

Dw

w(z)

c

Figure 2.4.: (a) Slice selection principle. Spins in a single slice are excited by simulta-

neous application of an RF-pulse and a gradient modulation. The center frequency

determines the position and the bandwidth determines the slice thickness. Adapted

from [23]. (b) Image space showing selected slice (blue) in the z-axis. (c) Measured

k-space using spatial encoding in-plane. This is done via frequency-encoding along the

x-axis and phase-encoding along the y-axis.
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2.2. Single Voxel Spectroscopy

Chemical Shift Displacement Error

A wrong mapping of two substances with different chemical shift might occur since the

frequency encoding will fail. In imaging, this is usually visible for water and lipid signals

and called chemical shift artifact or chemical shift displacement error (CSDE). The fat

appears shifted along the frequency encoding direction. Since slice selection also depends

on the frequency, it is also affected by this artifact. Using a high transmitter and receiver

bandwidth minimizes the displacement.

The CSDE is proportional to the magnitude of the magnetic field and inversely propor-

tional to the bandwidth of the RF pulse:

CSDE(δ) =
∆δB0

BW
. (2.13)

where ∆δ is the chemical shift difference in ppm between the metabolite component and

the carrier frequency of the RF field, B0 represents the frequency of the main magnetic field

and BW is the bandwidth of the RF pulse [4].

2.2. Single Voxel Spectroscopy

In Figure 2.5, an exemplary human brain spectrum is shown. It contains signals of the

most predominant metabolites present in the human brain. It is solely intended to give

a short overview of the spectral positions of the major contributions of these metabolites.

For a more detailed description of their meaning to spectroscopy and physiology, see

[31, 20]. The focus in this work lies on the three major metabolite resonances, namely

N -acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). Other metabolites that can

be detected in proton spectroscopy, namely myo-inositol (Ins), glutamate (Glu), glutamine

(Gln), and γ-aminobutyric acid (GABA). Macromolecules (MM) are also visible in spectra

and contribute to a broad baseline. In the presence of lipids appear in the spectrum as a

broad resonance peak.

15



2. Theoretical Background

4 3 2 1
Frequency (ppm)

a b

Figure 2.5.: Exemplary brain spectrum of a 8 cm3 voxel inside the occipital lobe pub-

lished by Öz et al [80]. The single-voxel spectrum is acquired with TE/TR = 8/5000

ms and 128 repetitions. It shows signal of the main metabolites present in the human

brain.

2.3. Brain Metabolites

In organic molecules, the abundance of hydrogen (1H) and its relatively high NMR signal,

enables the detection of resonances of interest for the study of the central nervous system

(CNS). However, the detection of these neuro-metabolites has some limitations and depends

on the magnetic field strength, hardware sensitivity, spectral overlap, artifacts, and patient

motion. Here, the most relevant brain metabolites that can be measured and quantified

under healthy and disease conditions using clinical MR scanners, typically at 3T, are

introduced. In Figure 2.5, a representative 1H MRS examination is shown together with the

measured spectrum and the different metabolic components present in it.

N-acetyl aspartate (NAA)

NAA is a metabolite synthesized in neurons [73]. It is considered a marker of metabolic

health of neurons, axons, and dendrites [111], and the concentration of NAA has been cor-
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2.3. Brain Metabolites

related with the number of neurons, however, the main role of NAA in the central nervous

system is not yet fully understood [6]. Under healthy conditions, the main resonance of

NAA, located at 2.02 ppm, corresponds to the typically largest peak in the spectrum. Its

diagnostic value is well known in MRS, identifying conditions by either comparing the

numeric values of NAA concentrations or by recognizing abnormal patterns of peaks in the

spectra [61, 36, 74].

Creatine (Cr)

Creatine (Cr) is a metabolite that shows the main resonance at 3.02 ppm. The metabolism of

Cr and phospho-creatine (PCr) provides insight into energy metabolism in the brain, where

Cr phosphorylation is performed by the enzyme creatine kinase and adenosine triphosphate

(ATP) to form PCr [98]. The ratio to Cr is typically used to report normalized concentrations

as Cr concentration has a low variation in different areas of the brain. However, it is

important to keep in mind that under specific conditions, like mitochondrial dysfunction,

energy metabolism may change, impacting the reliability of concentration ratios. Changes

in Cr and PCr and have been reported in neuropsychiatric diseases including schizophrenia

and bipolar disorders [93].

Choline (Cho)

Molecules containing choline (Cho), also referred to as total Cho (tCho), include different

metabolites, mainly: choline, phosphorylcholine (PC), and glycerophosphorylcholine (GPC)

as well as, phosphorylethanolamine (PE) and glycerophosphorylethanolamine, to a lesser

extent [20]. The largest resonance peak is a singlet at 3.2 ppm. These molecules are

components of myelin, important for the propagation of neuronal signals. For this reason,

high Cho levels are found in the white matter. Moreover, PC and GPC are involved in

the metabolism of membrane phospholipids. Thus, it is a sensitive marker of membrane

condition, due to the involvement of Cho in both membrane turnover and degradation.

Recent reports on Cho levels in conditions like schizophrenia [51], Alzheimer’s disease [43],
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and depression [16] have not shown consistent results. However, consistently elevated

tCho in the basal ganglia in bipolar disorder has been published [63]. A reason for these

conflicting findings even within the same disease could be to the sensitivity of Cho to the

proportion of gray and white matter tissue in the measured MRS voxel. A solution to this

problem is to account for the relative contributions of gray and white within the voxel of

interest for MRS matter. This concept will be described in Chapter 5 and an alternative

method for this calculation will be presented.

Glutamate (Glu)

Glutamate (Glu) is an amino acid with important functions in the brain and it is the most

abundant excitatory neurotransmitter. High concentrations of Glu result in and are an

indication of neuronal dysfunction. Additionally, Glu is a key element in the citric acid cycle

important for the energy metabolism of the brain. Astrocytes uptake most extracellular

Glu and regulate the low extracellular concentration needed for proper receptor-mediated

functions [104, 103]. Glu is stored as glutamine (Gln) in the glial cells, and the cycle between

these two neuro-metabolites is crucial for the correct functioning of the brain [33, 66].

Glutamine (Gln)

Glutamine (Gln) is the main precursor of Glu and GABA within the brain [38]. It has been

reported that more than 80% of the cerebral glucose consumption is originated from the

cycling between Gln and Glu [105, 82]. The structures, and consequently MR spectra, of

Glu and Gln are very similar [31], and although Glu has a relatively higher concentration

in the brain, its major resonances usually overlap with contributions from Gln, GABA,

GSH, and NAA. For this reason, a more reliable measurement is provided by the combined

concentrations of Glu and Gln, known as Glx.
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γ-Amino Butyric Acid (GABA)

GABA is an inhibitory neurotransmitter interesting for the study of a broad range of

psychiatric conditions like anxiety, memory changes, pain, and depression. The detection of

GABA with MRS is challenging due to its relatively low concentration in the brain, between

1.3 â 1.9 mM [31], therefore it is difficult to quantify it accurately. Moreover, GABA spins

couple with other neighboring spins, originating multiple resonances around 1.9 ppm,

2.28 ppm, and 3.0 ppm, that overlap with other resonances such as NAA, Glu, and Cr,

respectively. Therefore, specialized sequences, such as spectral editing or 2D spectroscopy,

are needed to reliably measure GABA concentrations in vivo.

Myo-inositol (mI)

Myo-inositol (mI) is a cyclic sugar-alcohol with the main resonance peak at 3.52 ppm.

mI is involved in different metabolic processes [97], from cerebral osmotic regulation to

demyelination. mI has been found to be highly specific and sensitive in disease diagnosis

of patients when compared with healthy controls. Studies of dementia have highlighted

the importance of mI being highly sensitive and specific in the diagnosis of Alzheimer’s

disease [80]. In mild cognitive impairment (MCI), an early stage of dementia, mI is elevated

before symptoms are obvious [44]. Moreover, in combination with NAA, mI predicts the

outcome of MCI patients.

Glutathione (GSH)

Glutathione (GSH) is an antioxidant that plays a major role in oxidative stress [24], from

which the brain is especially vulnerable and can cause DNA damage, lipid peroxidation,

and protein modification. Oxidative stress is also strongly associated with neuroinflam-

matory processes [2, 75]. Therefore, GSH metabolism is involved in the pathogenesis of

neurodegenerative disorders as well as psychiatric disorders. GSH provides an interesting

cellular specificity to inflammatory processes as it is synthesized differently between neu-

rons, astrocytes, and glial cells. GSH is composed of Glu, cysteine, and glycine, therefore its

19



2. Theoretical Background

spectrum highly overlaps with all three of those metabolites [68]. 2D spectroscopy methods

and spectral editing can be implemented to effectively measure the resonances of GSH.

2.4. MR Spectroscopic Imaging

2.4.1. Signal Model

The general MRSI experiment consist in acquiring the signal mγ(k, t) for every coil element

γ, at a k-space position k and the temporal point t. This signal is modeled as follows

mγ(k, t) =

∫ ∫
FOV

p(r, f) · sγ(r) · e−i2πkκ·r · e−i2π(f+∆f(r))·tdr dt, (2.14)

where p(r, f) corresponds to the signal of interest at the spatial position r and resonance

frequency f . The signal is spectrally (e−i2π(f+∆f(r))·t) and spatially (e−i2πkκ·r) encoded

and weighted by the complex sensitivity operator sγ(r) of each receiver coil γ. For spins

precessing at frequency f , Eq. 2.14 can be expressed as

mγ(k, t) =

∫ ∫
FOV

p(r, f) · sγ(r) · e−i2πkκ·r · e−i2π∆f(r)·tdr dt, (2.15)

and reduced to

mγ(k, t) =

∫ ∫
FOV

p(r, f) · eγ,κ(r) · e−i2π∆f(r)·tdr dt, (2.16)

where eγ,κ(r) is the spatial and sensitivity encoding term. Thus, an encoding matrix, which

includes the spatial Fourier encoding term and the coil sensitivity information sγ(r), can be

built as follows

E(γ,κ), ρ = sγ(r) · e−i2πkκ·r. (2.17)

This encoding operator allows to state, for a single time point, the reconstruction problem

in matrix form as follows

m = Ep + η, (2.18)

where m corresponds to the measurements in vector form, E corresponds to the encoding

matrix and p the spatial distribution of the spin density.
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Figure 2.6.: Exemplary brain MRSI examination showing the (a) prescribed volume of

interest (VOI) displayed using the anatomical images, an exemplary grid representing

the voxel size of the reconstructed data and the spectrum of a representative white mat-

ter voxel. (b) Reconstructed metabolite ratio maps showing the contrast in composition

between gray and white matter anatomical structures.

2.5. MRS / MRSI Acquisition

A typical MRS / MRSI acquisition sequence consists of magnetization preparation, ex-

citation, and signal readout through spectro-spatial encoding. In principle, each part is

independent of the other and thus the pulse sequence can be designed according to the

application. Preparative techniques include signal saturation, inversion recovery, and outer

volume suppression (OVS).

Another important factor in MRS is an excited ROI. In single voxel spectroscopy, in

particular, a localization technique that ensures that exclusively the desired voxel is excited

is needed. Localization is not only restricted to single voxel spectroscopy but can also be
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applied in CSI. Exciting any lipids are often carefully avoided in order to prevent distortions

in the wanted signal.

2.5.1. Spatial Localization

Spatial localization modules are pulse sequences that selectively excite a given volume

of tissue V . This allows getting rid of nuisance signals surrounding the tissue of interest.

Moreover, B0-field inhomogeneity can be further optimized for the selected area using shim

coils, thus improving the spectral line width and the quality of the measurement. Note that

the spatially localized volume is often improved by additional OVS bands around the ROI.

Point-Resolved Spectroscopy (PRESS)

Point-resolved spectroscopy (PRESS) is a localization pulse sequence that consists of a slice

selective 90° pulse followed by two slice selective refocusing 180° pulses [14][50]. Each

pulse is applied in conjunction with an orthogonal gradient (Gz, Gy, Gx) turned on (Figure

2.7.a). The first pulse excites an axial slice ∆z, whereas the other two pulses only refocus

the proton spins inside the intersection of these three perpendicular slices.

Gy

Gz

Gx

RF

90°
180° 180°

90°
AFP AFP AFP AFP

Gy

Gz

Gx

RF

a b
Figure 2.7.: (a) PRESS localization sequence diagram. (b) Semi-LASER localization

pulse sequence diagram. A 90°excitation pulse followed by a pair of adiabatic full

passage (AFP) refocusing pulses used in combination with gradient modulations. The

high bandwidth of AFP pulses allows to substantially reduce the CSDE in-plane.
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Semi-Localization by Adiabatic Selective Refocusing (semi-LASER)

Semi-LASER is an improved localization method that makes use of amplitude and fre-

quency modulated adiabatic full passage (AFP) refocusing pulses. The sequence diagram is

depicted in Figure 2.7.b. A Shinnar-Le-Roux optimized 90° slice selective pulse is followed

by a pair of 180° adiabatic hyperbolic secant slice selective refocusing pulses [101, 102]. In

order to prevent spurious echoes, crusher gradients are turned on before and after the slice

selective pulses. Thanks to the adiabatic pulses, slice excitation is less sensitive to B+
1 -field

inhomogeneities, resulting in the advantage of more accurate localization over a greater

volume of interest. Due to higher energy deposition, SAR limits need to be considered.

2.5.2. Water Suppression

In MRS, suppressing the overwhelming water signal prior to the excitation of the metabo-

lites is designed. Without water suppression, the water signal would introduce artifacts such

as a complex baseline into the metabolite signal, which hinders the reliable quantification

of low concentration metabolites.

Chemical Shift Selective Saturation (CHESS)

CHESS is a magnetization preparation method for signal saturation. Its core consists of a

tissue-selective 90°-pulse that is followed by strong crusher gradients. The crusher gradients

dephase the magnetization and consequently, the unwanted net magnetization is destroyed.

The selective pulse ensures that only the unwanted signal is affected and the remaining

signal is retained [34]. In principle, the selective pulse can be tuned to any resonance

frequency, but here it is used for suppression of water. In order to achieve higher signal

suppression, subsequent CHESS pulses are applied. The schematic sequence diagram is

depicted in Figure 2.8.a.
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Variable Power and Optimized Relaxation Delays (VAPOR)

There are other water suppression techniques besides the ones mentioned above. One of

them is called VAPOR and is based on the same idea as CHESS. Its core consists of 8 CHESS

pulses with variable RF power and optimized time delays between the pulses, in contrast

to CHESS, where both are constant. For efficient signal suppression, the initial flip angle

can be calibrated. An advantage over CHESS is increased B1 and T1 insensitivity [110].

On the other hand, at 800 ms, the VAPOR technique demands a considerably longer time

frame than CHESS, which increases the minimum TR of the sequence. Also, higher exposure

to RF energy in comparison to CHESS might limit usage at higher field strengths.The

sequence diagram is shown in Figure 2.8.b.

OVS is also based on the same idea as CHESS. Instead of a chemical shift selective pulse,

it functions selectively in space. Hence, the signal is eliminated inside the entire spatial

band. Several saturation bands can be placed around the skull in order to suppress lipid

regions. However, placing them can be time-consuming and difficult to realize in practice,

especially in three-dimensional scans.

a b

OVSOVSOVS OVS

Gy

Gz

Gx

RF
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Gz

Gx

RF

90° 90° 90°

Figure 2.8.: Water suppression using (a) CHESS sequence with 3× pulses and (b)

VAPOR combined with 8×OVS bands for a better selection profile.

2.5.3. Spectro-Spatial Encoding

In MRSI, numerous spectro-spatial readout methods with differences in k-space sampling

trajectories have been proposed. These present differences in encoding efficiency, speed,
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and SNR. Hence, the selection of the readout methodology is highly dependent on the

application. Here, two well-known techniques will be described to give insight into the

range of possibilities when selecting the encoding strategy.
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Figure 2.9.: Spectro-spatial encoding techniques showing the signal readout in blue

and the each excitation block in gray, which corresponds to a TR. (a) Standard PE MRSI,

(b) EPSI with a symmetric readout trajectory and (c) spiral MRSI.

Phase Encoded MR Spectroscopic Imaging (PE MRSI)

Phase Encoded MRSI (PE MRSI), is a standard technique where one echo or FID is sampled

at every TR, sampling one point in k-space at a time (Figure 2.9.a). Phase encoding gradients

localize the signal in k-space and no gradients are used during the readout. As this sequence

requires one phase encoding step for all spatial dimensions, its encoding efficiency is very

low, making this readout method inherently slow. As an example, a 2D PE MRSI scan

with a matrix size of 32× 32 and a TR of 1 s would require 17 min 4 s, and a 3D scan would

require nz times longer, with nz being the number of phase encodes in z−direction. This

is at the limit of clinically feasible times, which is the major limitation of PE MRSI. Recent

methods have been proposed to use ultra-short TR PE MRSI accelerated with parallel

imaging [35, 78], which allows for 3D scans in a feasible time (Γ30min).
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Echo Planar Spectroscopic Imaging (EPSI)

Echo Planar Spectroscopic Imaging (EPSI) is an encoding-efficient MRSI technique that

achieves a significant acceleration compared to standard PE MRSI. EPSI enables the simulta-

neous acquisition of one spatial dimension and the time signal in one TR. EPSI is based on

the same principle as echo-planar imaging (EPI), where a full plane in k-space is encoded

after a single excitation module. The spectro-spatial encoding is performed by an oscillating

gradient sampling the echo or FID during the readout. In EPSI, the kx-t-plane or kx-t-plane

is sampled analogous to the kx-ky-plane in echo-planar imaging (Figure 2.9.b).

EPSI sequences are typically implemented using two types of k-space trajectories, namely,

symmetric and flyback readouts. Flyback EPSI samples the signal exclusively during

positive lobes of the readout gradient. This has the advantage of being more robust to

system imperfections and timing errors since the flyback gradient causes the sampling

points to be well aligned. Nevertheless, the dead time spent in the flyback portion of the

trajectory reduces the encoding efficiency. Moreover, for high-resolution or high-bandwidth

acquisitions, the gradient requirements are usually not met by standard MRI gradients,

thus interleaved acquisitions are required, increasing scanning time. Symmetric EPSI, on

the other hand, samples the signal during both positive and negative gradient lobes. This

improves the encoding efficiency. However, inconsistencies in odd and even k-space lines

[30] of the symmetric trajectory, cause phase differences and ghosting artifacts that need to

be corrected in an additional step. Chapter 4 presents a method to perform this correction

between even and odd lines, enabling high-resolution and high-bandwidth MRSI at 7T.

Spiral Spectroscopic Imaging (Spiral MRSI)

Spiral MRSI uses the interleaving of spiral encoding in 2D and 3D for the acquisition (Figure

2.9.c). This approach offers a higher acceleration and more an encoding-efficient readout

than EPSI [27]. Furthermore, it provides the flexibility to shape the point spread function.

Nevertheless, data reconstruction is computationally demanding due to the non-cartesian

spatial encoding and more sensitive to off-resonance effects which require additional
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corrections. Additionally, as it also occurs with EPSI, the encoding of a large k-space

coverage is limited by the gradient maximum gradient performance [87].

2.6. MRS / MRSI Reconstruction

MR data reconstruction, depending on the modality, has specific and flexible processing

pipelines that need to be executed to obtain a meaningful physical measure from the raw

data. In this section, a standard generic pipeline for MRS and MRSI is described (Figure

2.10). This pipeline should serve as a reference to understand the improved methods

developed as part of this work. Typically, a main water-suppressed scan is acquired and a

supplementary water-reference scan serves as the calibration data that allows correcting

for signal disturbances, such as Eddy currents, and also to properly scale the spectrum to

perform absolute metabolite quantification.

Reconstructed Spectra

Water Reference 

(MRS/MRSI)

Water-Suppressed 

(MRS/MRSI)

Zero filling / Apodization

Coil Combination

Spatial Fourier Trasform

Eddy Current Correction (ECC)

Water Removal

Temporal Fourier Trasform

Spectral Quantification

Figure 2.10.: Generic reconstruction pipeline for MRS and MRSI reconstruction of raw

data. The main difference between the single voxel MRS and MRSI processing is the

additional spatial Fourier transform that retrieves the spatial distribution from the

encoded signal in k-space.
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2.6.1. Zero Filling and Apodization

The most common interpolation method in both spectral and spatial domain is based on the

FT. This is performed by zero-filling the higher-order Fourier coefficients of the signal prior

to the FT. This originates a virtually higher spectral and spatial resolution but no actual

information is added to the data [9, 25]. Furthermore, spectral and spatial apodization

allows weighting the frequency components of the signal using different filter functions,

e.g. Hamming or Gaussian windows, to improve SNR [40]. Chapter 3 presents a novel

methodology to interpolate the MRSI signal into a higher resolution to correct for magnetic

field inhomogeneities, phase disturbances and reduce the spatial response function of the

acquisition, overall improving signal quality and measurement robustness.

2.6.2. Multi-Channel Signal Combination

There are different designs of receiver coils. State-of-the-art coil systems are built as phased

arrays, where several coils overlap and each coil is associated with its own channel [96].

Multi-channel receiver coils achieve a higher sensitivity. In this type of hardware, the

signal is pre-amplified individually to minimize noise correlation. The combination of a

multi-channel signal can be then performed by measuring the complex sensitivity profile of

each element and include this term in the encoding operator (Eq. 2.17).

In the absence of sensitivity information, the signal of multi-element receiver coils can

be combined by phasing the signal of each coil element and adding the signal coherently

using weights from the maximum averaged magnitude [99, 94]. Given the time-domain

signal yγ(t, r) at voxel position r measured with the γ-th coil element, singular value

decomposition (SVD) is computed for the maximum temporal signal at each voxel position

r, obtaining Y = UΣV∗. The weight wγ for each coil element is then estimated from the

normalized singular vector in V corresponding to the largest singular value

wγ(r) =
v∗γ,σ1∑
γ | v∗γ,σ1 |

, (2.19)

where ∗ denotes the complex conjugate and σ1 the largest singular value. The term wγ(r)

contains the relative phase and scaling information for each coil. Finally, the combined
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2.6. MRS / MRSI Reconstruction

temporal signal S(t, r) at voxel position r is obtained as follows

S(t, r) =
∑
γ

wγ(r) · yγ(t, r). (2.20)

Acquisition in multiple independent channels cannot only be used for SNR-enhancement,

but also for reduction of acquisition time, as it is done parallel imaging methodologies, e.g.

SENSE [92], GRAPPA [32] and SPIRiT [62].

a

b

a

b

C11C10C9C8C7

C6C5C4C3C2C1

C12

T1w

Figure 2.11.: Coil sensitivity profiles (magnitude) of a 12-channel coil. (a) Measured

sensitivity using standard sequence (ASSET) and (b) estimated sensitivity from a

reference water signal using SVD phasing and weight estimation for every voxel.

2.6.3. Eddy Current Correction

During the MR acquisition experiments, the hardware interaction with the changes in the

magnetic field originated mainly by the gradients, generate Eddy currents that introduce

disturbances in the phase component of the measured signal. In the case of MRS and

MRSI, these effects could be very harmful as the disturbances in the large water signal may

propagate to regions where resonances of important metabolites are located, affecting their

correct quantification. The widely used Eddy current correction (ECC) method in MRS and

MRSI [49], uses a water reference scan (Wref), i.e. an acquisition with identical scanning
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settings but without water suppression, to estimate the phase of this signal the time domain

and subtract it from the water-suppressed scan (Wsup) as follows

SECC (t) = S (t) · eiϕWsup · e−iϕWref . (2.21)

A major limitation of this method occurs in the presence of lipids or any large nuisance

signal. As this phase estimation relies on a water reference with only one component and

negligible contributions form metabolite, lipids, and macromolecules.

2.6.4. Residual Water Removal

Water suppression modules are routinely used as a standard element of the MRS and MRSI

acquisition sequences to substantially reduce the magnitude of the water signal, which is

around 3 to 4 orders of magnitude higher than the metabolites. However, the resulting

spectrum contains inevitably a residual contribution of water that may corrupt the baseline

and metabolite signals. For this reason, further removal of the water signal needs to be

performed by signal decomposition of the spectrum. The most widely used method to

remove residual water is Hankel singular value decomposition (HSVD) [8, 40], which

decomposes the time domain signal into decaying sinusoidal signals and removes the

coefficients that correspond to a specific spectral range. Then a temporal Fourier transform

retrieves the water-subtracted spectrum. Alternative approaches for water removal are

based on solving an optimization problem to separate metabolite and water signals [10].

2.7. MRS / MRSI Quantification

Quantitative MRS and MRSI require estimating the relative area of the resonance peaks,

which are proportional to their concentration in tissue [20].

Fitting algorithms based prior knowledge have shown superior robustness to non-linear

distortions present in the spectra, such as Eddy currents, baseline, linear and zero-phase

effects. Most widely used commercially available software are jMRUI [76], AMARES [113],

Tarquin [65] and LCModel [91]. These tools are based on modeling a linear combination of
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2.7. MRS / MRSI Quantification

metabolite spectra, which are generated via simulations, signal models, or measured with

high quality under identical experimental conditions.

For the purpose of the present thesis, LCModel has been the standard quantification

methodology using simulated datasets for short TE PRESS and semi-LASER sequences at

two different field strengths (3T and 7T). Figure 2.12 shows a representative report gener-

ated from LCModel. The fitting algorithm estimates and separates the metabolite signal

from the estimated baseline component and the noise. Moreover, a list of the absolute

and relative concentrations and Cramer-Rao Lower Bound (CRLB) is computed for each

metabolite component that was simulated and included in the analysis.

Chemical Shift (ppm)

3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0 0.4

Figure 2.12.: Spectral quantification output obtained using LCModel [91]. The spectral

fit using a simulated metabolite basis set estimates the baseline, noise and the zero- and

first order phase of the signal. Moreover, the concentration values, relative concentra-

tions (i.e. Cr ratio) and the Cramer-Rao Lower Bound (CRLB) is computed for each

metabolite component
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3. Overdiscrete Spectroscopic Imaging with

High-Resolution Corrections

In this chapter, a novel reconstruction method combined with accelerated acquisitions was

developed to achieve fast MRSI of the brain with improved signal to noise ratio (SNR). The

methodology included the development of a robust framework that minimized instabilities

such as B0 drift and patient motion. Moreover, the acquisition of a water reference scan,

allowed to estimate and correct for physical disturbances avoiding the need for additional

scans.

A manuscript of the present work has been published in the Journal of Magnetic Reso-

nance in Medicine (MRM), entitled ”Overdiscrete Echo-Planar Spectroscopic Imaging with

Correlated Higher-Order Phase Correction”. These results have been also presented at

the 24th and 25th annual meetings of the International Society of Magnetic Resonance

in Medicine (ISMRM) in the abstracts entitled ”Overdiscrete Reconstruction in Echo-

Planar Spectroscopic Imaging with Auto-Calibrated B0-Field Map Estimation” and ”High-

Resolution Phase Correction in Overdiscrete Spectroscopic Imaging Reconstruction using

Piecewise Polynomial Interpolation”, respectively.

3.1. Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI) allows determining the spatial distri-

bution of the metabolic components of brain tissue, which is of interest to a wide range

35



3. Overdiscrete Spectroscopic Imaging with High-Resolution Corrections

of clinical applications, especially for studying the central nervous system [80]. However,

clinical MRSI scans suffer from low signal to noise ratio (SNR), limiting the minimum scan

duration and maximum spatial resolution. Therefore, shorter acquisitions with higher SNR

are desired to improve reproducibility, increase patient comfort, reduce motion artifacts,

and minimize the instabilities in the MR system that take place during the examination and

reduces the robustness of the technology.

The different acquisition elements that can affect the signal quality and introduce dis-

tortions can be classified into phase components and system instabilities. Phase-related

distortions have different sources and generate specific effects in the MRSI signal. B0-field

inhomogeneity reduces the spectral resolution due to the intravoxel spectral shifts. Eddy

currents [49] and system vibrations induce phase disturbances that can be especially harm-

ful when residual water signal is strong, causing sidebands beyond the resonance frequency

of water that hinder the detection of certain in specific spectral regions. Patient motion and

B0 drift [26], typically observed in long acquisitions are common instabilities that cause

spatial distortions, affecting the reliability of the measurement.

Linear and high order shim coils allow to reduce the effects of spectral shifts and improve

the linewidth of the metabolite peaks by minimizing the B0 inhomogeneity [77, 17]. The

correction of eddy currents and high order phase distortions is performed using a full

water-unsuppressed scan and subtracting the phase of this reference scan from the water-

suppressed metabolite signal [95, 69]. Nevertheless, an extra acquisition of the water signal

is required, extending the acquisition duration, increasing energy deposition in the subject

and for large matrix sizes, it could be unfeasible to acquire at the full resolution that the

water-suppressed scan. Moreover, the reference scan is acquired at a different time during

the examination potentially reducing the correlation of both datasets.

Short acquisitions reduce time-dependent system instabilities, as they allow to assume

that the B0-field and patient position remain stable during short time intervals. Short TR

phase-encoded MRSI (PE MRSI) methods [78, 11, 35, 89] acquire large matrix sizes in a

clinically feasible time. Although acceleration effectively reduces the overall acquisition

time, this acquisition only samples one full k-space throughout the total scan duration.

36



3.1. Introduction

This relies on the system being stable during the full exam duration. Parallel imaging

methods [92, 32, 62, 48] retrieve undersampled scans using information from multi-element

receiver coils. In MRSI, however, parallel imaging with large acceleration factors (R>4) is

challenging. The inherent low resolution of MRSI makes the solution of the reconstruction

problem ill-posed, mainly because of intravoxel variations in the sensitivity. This may cause

incorrect signal unfolding and potential contamination from residual lipid signals.

To address the challenges of parallel imaging in MRSI, an overdiscrete reconstruction

framework has been proposed [47, 46]. This method was successfully applied at 7T, im-

proving spatial resolution via spatial response function optimization. Moreover, correcting

for B0-field variations effectively improved the spectral resolution and SNR. Yet, some

methodological details remain challenging. First, the correlation of these datasets strongly

depends on the stability of the measurement, because the water-suppressed MRSI, the water

reference scan, and the B0-field map are acquired separately and at different resolutions.

Therefore, with long scans, the temporal and spatial correlation of the correction factors can

be lost.

An alternative to achieve accelerated MRSI acquisitions is echo-planar spectroscopic

imaging (EPSI) [86, 88, 79, 19, 117], which simultaneously encodes one spectral and one

spatial dimension. This technique samples the full k-space with high acceleration, however,

signal averaging is usually required to improve SNR. Moreover, rapid gradient switching of

the EPSI trajectories leads to eddy currents and system vibrations that affect the measured

signal.

This work describes a robust methodology for fast MRSI of the brain that combines EPSI

acquisitions with the overdiscrete reconstruction. The method achieves improved stability

via the simultaneous acquisition of a fully-correlated water reference scan at every phase

encoding, allowing to dynamically correct for phase distortions. Furthermore, high-order

phase correction is proposed as the generalization of the B0 correction originally proposed.

In a single correction step, phase distortions from B0 inhomogeneity, eddy currents, B0 drifts,

and vibrations, are effectively corrected without requiring additional measurements. High

SNR spectra were obtained with a simplified acquisition and reconstruction procedure.
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3.2. Theory

3.2.1. Overdiscrete Reconstruction

The overdiscrete reconstruction [47, 46], consist in finding a reconstruction matrix F that

solves the spatial reconstruction problem

p = Fm, (3.1)

where p corresponds to the reconstructed image and m corresponds to the measurements

acquired with a multi channel receiver coil. F can be found by solving for each voxel the

following optimization

arg min
F

||(FE − T )A||22 + α(FΨFH) (3.2)

where FE represents the spatial response function (SRF) of the measurement, Ψ corresponds

to the noise covariance matrix and A is a spatial weighting factor.

In MRSI, the spectro-spatial data in the overdiscrete space can be reconstructed by

applying the intermediate reconstruction operator F ′ to every temporal point of the k-t

signal. The intermediate reconstruction operator is obtained by

F ′ = ΘEH(EΘEH + αΨ)+, (3.3)

where E represents the encoding matrix, expressed at ζ2-fold of the nominal resolution, Ψ

corresponds the noise covariance matrix, Θ is a spatial weighting factor where Θ = AAH ,

and + denotes the pseudo-inverse. The regularization parameter α controls the noise

optimization (Figure 3.1).

In the obtained dataset that is discretized at a higher resolution, spatial distortions that

vary smoothly (e.g. the B0 field inhomogeneity) can be corrected. Finally, an optimized SRF

function, typically a Gaussian function, is chosen to return the data to the nominal resolution

by applying the Target matrix T . This last step benefit for coherent signal averaging of the

corrected subvoxel spectra (Figure 3.2).

The detailed algorithm for the implementation of the overdiscrete reconstruction with

high-order phase correction is described in Table 3.1. Additionally, Figure 3.2 explain the
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Figure 3.1.: Effect of noise regularization for different values of the parameter α. The

parameter ε is computed from the data as ε = mean(EΘEH)/mean(Ψ). For the present

work a regularization of α = 103 · ε was chosen.

different elements of the overdiscrete reconstruction and their impact on the noise enhance-

ment.

3.2.2. High-Order Phase Correction

The correction for signal dephasing due to B0-field inhomogeneities is applied in an inter-

mediate step, obtaining

hcorr(r, t) = h(r, t) · e−i2π∆f0(r)·t, (3.4)

where h(r, t) represents signal at the overdiscrete location r and time t, and ∆f0(r) to the

local frequency shift in Hz. The final corrected signal can be generalized to

hcorr(r, t) = h(r, t) · e−i2πϕ(r,t), (3.5)

where the polynomial phase term ϕ(r, t) contains the zero-, first- and higher order spatial

and temporal phase components. Estimation these phase distortions correspond allow to

correct for off-resonance and eddy currents effects among other system instabilities.

3.2.3. Polynomial Phase Interpolation

The coefficients of the polynomial term are obtained from the simultaneously acquired

water unsuppressed signal solving the weighted least squares problem

p = (ATW 2A)−1ATW 2y (3.6)
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Table 3.1.: Overdiscrete reconstruction algorithm with high-order phase correction.
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a

Figure 3.2.: Simulation of noise decorrelation by applying the B0 correction. (a) Re-

constructed spectrum with (black) and without (blue) B0 correction for the case with

uncorrelated noise (R=0) and highly correlated noise (R=0.9). Noticeable improvements

in linewidth are observed for the up-field spectrum in both cases with an additional

noise reduction in the case with high noise correlation. (b) Correlation between the

spectral points of two subvoxels (S1 and S2) in the range from 10 to 20 ppm shown

before and after B0 correction.

where y corresponds to the unwrapped phase of the measured water reference and W to

the weight matrix extracted from the magnitude of the reference signal.

3.3. Methods

3.3.1. EPSI with Simultaneous Water Reference Acquisition

The proposed MRSI sequence (Figure 3.3) combines CHESS water suppression and PRESS

spatial localization a flyback EPSI readout, which requires fewer repetitions to acquire a full

k-space, thus reducing the scan time. Outer volume suppression (OVS) pulses are used prior

to the excitation to destroy magnetization outside of the volume of interest. An effective

repetition time involves the acquisition of two signals, namely the water-suppressed (Wsup)

and the water reference (Wref ) data. The first excitation suppresses water using the CHESS
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3. Overdiscrete Spectroscopic Imaging with High-Resolution Corrections

module and excites the selected volume with a 90°flip angle. In the second excitation,

CHESS is disabled and a low flip angle α used to excite the sample and acquire a water

reference. The low flip angle excitation let the metabolite components relax while acquiring

sufficient water signal, thus avoiding extending the effective TR of the acquisition.

All the MR experiments in the present work were conducted on a GE 3T MR750w (GE

Healthcare, Waukesha, WI, USA) using a 12 channel receive array with a volume transmit

body coil (GE Healthcare, Waukesha, WI, USA). The gradient system used had the follow-

ing a maximum gradient strength of 33 mTm−1 and a slew rate of 120 T m−1 s−1 in each

direction.
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Figure 3.3.: Sequence diagram of the proposed acquisition which performs an inter-

leaved acquisition of a water-unsuppressed reference scan in an effective TR of 1100

ms. First, (a) a water suppressed phase encode is acquired using CHESS and a 90◦ exci-

tation pulse. Subsequently, (b) a low flip angle excitation without water suppression is

performed to acquire the water reference.

3.3.2. Simulation Experiments

A simulation was implemented to show the different elements of the overdiscrete recon-

struction and their effects in the spatial domain. This experiment was used to determine

the optimal parameters for the algorithm. A high-resolution synthetic brain was created

and the measurements using multi-element receiver coil were simulated (Figure 3.4. The
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MRSI raw dataset was reconstructed using the following methods for comparison: (i) a

Fourier transform at nominal resolution (FT Nominal), (ii) an FT at a higher resolution

(FT Zero-Filled), and (iii) the overdiscrete reconstruction with different correction factors

(Figure 3.2).

a

Reference ROI MRSI

Figure 3.4.: Simulation of intravoxel spectra in the intermediate overdiscrete image. (a)

Synthetic MRSI phantom and an ROI of simulated spectra representing the subvoxels

in the intermediate overdiscrete reconstruction. (b) Simulated B0 inhomogeneity (left)

and the effect of the B0 inhomogeneity in the subvoxel spectra (right).

3.3.3. Phantom Experiments

A 3D printed spherical phantom was built to validate MRSI measurements (Figure 3.5). The

phantom was filled with distilled water and doped with gadolinium solution (Dotarem).

Two 10 mL spheres (I and II) and a 60 mL sphere (III) made of glass were filled with

metabolite solutions, containing myo-inositol (mI), choline (Cho), creatine (Cr) and N acetyl

aspartate (NAA) with physiological concentration levels [91]. Cr and mI were mixed in

a 1:1 ratio in all spheres with 10 mM concentration. NAA concentration was varied to

approximately achieve a ratio to Cr of 1, 2, and 1.5 for spheres I, II, and III respectively

(10-20 mM). Cho to Cr ratio was chosen from approximately 0.2, 0.3, and 0.4 for spheres

I, II, and III respectively (2-4 mM). The ground truth for the metabolite concentrations in

every sphere was determined from high SNR single voxel spectroscopy measurements

and quantified using LCModel. The scans were obtained by localization of a 2×2×2 cm3
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Reference

Table 3.2.: Simulation experiment showing the components of the overdiscrete recon-

struction. (a) Spatial reconstruction showing the results of standard Fourier Transform

(FT), zero-filled FT, the overdicrete at nominal resolution, and the intermediate high

resolution overdiscrete image. (b) Effect of the SRF optimization in image domain

using Gaussian functions with different σ values, which control the spatial resolution

of the final image. (c) Plots of the SRF for different sigma values showing a reduction

of the side-bands in the nominal resolution via SRF optimization
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volume using PRESS, CHESS water suppression, TE/TR=35/1500 ms and 128 averages.

MRSI EPSI scans were acquired for two different spatial resolutions by reducing the field of

view (FOV) keeping the matrix size fixed.

4 3 2 1
ppm

4 3 2 1
ppm

4 3 2 1
ppm

a c

b

III

I II

I II III

Figure 3.5.: Phantom designed for MRSI scans. (a) T2w image compared to a (b)

maximum of the water signal acquired using EPSI and (c) maximum of the water signal

acquired using PE MRSI with a 64×64 matrix size measured within 46 min. Noticeable

spatial distortions can be observed due to instabilities in the system even in the absence

of motion, caused mainly by B0 drift.

3.3.4. In Vivo Experiments

Single slice MRSI measurements of four healthy volunteers (V1-V4) were acquired with the

following protocol: (i) 16 average EPSI scan using the proposed acquisition sequence with

an interleaved water reference scan acquired for every average, (ii) acquisition of sensitivity

maps using a standard product sequence and (iii) reference B0-field map measurement

using a dual TE gradient echo sequence with TE1/TE2 = 10/12 ms. The acquisition settings
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b

a

Figure 3.6.: Overdiscrete reconstruction pipeline with phase correction performed at

high resolution. The framework only requires the acquisition of (a) coil sensitivities

and (b) MRSI dataset with interleaved water reference.

for EPSI were the following: matrix size 24×24, FOV 24×24 cm2, slice thickness 1.5 cm,

TE/TR=35/1500 ms, and 34 seconds per average, i.e. a total scan duration of 8 minutes.

3.3.5. Reconstruction and Data Processing

The reconstruction pipeline showed in Figure 3.6 was used to process the EPSI datasets after

reshaping the raw data into a k-t space. The intermediate reconstruction operator F was

obtained from the measured sensitivity information (Fig. 3.6.a), no spatial weighting was

used and uncorrelated noise was assumed. F was applied to each time point of the signal.

The Spatial Fourier transform (FT) was computed followed by a channel combination as

described in the theory section, zero-order phase subtraction, and temporal FT.

3.4. Results

3.4.1. Phase Estimation

The estimation of the phase correction term was evaluated for different orders of polynomi-

als. The temporal (Fig. 3.7) and spatial fit (Fig. 3.8) are shown for the in vivo datasets at
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Figure 3.7.: (a) Prescribed PRESS volume, (b) magnitude and (c) phase of the temporal

signals for all voxels inside the localized volume. A comparison is shown between the

phase term (d) after phase unwrapping (e) after the fit using a polynomial basis and (f)

the phase term corresponding to the B0 correction term.

nominal and high resolution. Fitted third-order polynomials showed a negligible phase

difference compared to the measured signal. Similarly, B0-field inhomogeneity information

was retrieved from the MRSI data by fitting a linear temporal function (Fig. 3.8b and 3.8c).

The estimated map showed a good agreement with the measured B0 map both visually and

quantitatively, with a mean absolute difference of 3.54 Hz.

3.4.2. Phantom Quantification

A qualitative comparison between the standard processing pipeline and the proposed

reconstruction method is shown in Figure 3.9 for all the compartments in the phantom. The

spectra shown correspond to the sum of a 2.0×2.0×1.0 cm3 region inside each sphere.

In Figure 3.9 the spatial distribution of the measured MRSI phantom is shown. The

SNRNAA map was reconstructed to visualize the effect of the proposed reconstruction

and compare it to ECC and spatial apodization. For each compartment in the MRSI
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Figure 3.8.: Visualization of the spatial distribution of phase disturbances and esti-

mation of the correction terms. (a) T1w image of the prescribed PRESS volume, (b)

measured B0 field map obtained with a dual gradient-echo acquisition, (c) comparison

between the measured B0 map within the localized volume and the B0 estimated from

the water reference acquisition, and (d) comparison between measured and fitted

spatial phase term using increasing degrees of polynomials. Good agreement is shown

with the advantage of a better correlation of the estimated terms.

phantom (I, II, and III), the SNRNAA and SNRCre were plotted against the number of signal

averages to assess the acceleration. Moreover, a quantitative analysis of the accuracy of the

measurement is presented in Figure 3.9.d using the SNRNAA/SNRCre ratio which is known

for the compartments.

3.4.3. Higher-Order Phase Correction

Figure 3.10 shows the benefits of ECC and phase correction. The displayed spectra cor-

respond to the mean and standard deviation (in blue) of all the voxels. The analysis of
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Figure 3.9.: Phantom MRSI experiments acquired with the proposed acquisition se-

quence. The datasets were reconstructed using standard FT with ECC, standard FT

with ECC and spatial apodization (FT + ECC + Ap.) and the overdiscrete reconstruc-

tion with phase correction (OD + ϕ Corr.). (a) SNRNAA maps of the reconstructed

MRSI datasets scaled to the same range. Mean (b) SNRNAA and (c) SNRCre of each

compartment plotted for the acquired signal averages. (d) Mean SNRNAA / SNRCre

and standard deviation of each compartment plotted for all signal averages. Ground

truth value obtained with SVS is displayed for reference.
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spectral data shows substantial improvements in line width and noise using the proposed

overdiscrete reconstruction approach with phase correction achieves comparable results

to the state of the art pipeline (B0+ECC). The correction of phase distortion achieved a

noticeable removal of spectral artifacts, observed in the region between 4.5 to 3.5 ppm

where metabolites of interest can be found.

V2

V3

V1
FT B0 B0 + ECCFT+ECC+Ap

Figure 3.10.: Comparison of spectra obtained with standard FT and overdiscrete re-

construction. The mean spectrum of all voxels inside the volume selected with PRESS

is presented and the standard deviation is displayed in blue. The effect of different

correction steps is shown.

3.4.4. SNR Enhancement and Acceleration

A comparison between different correction approaches is presented in Figure 3.12 for all

the measured volunteers (V1-V4). Improvements in spectral quality and SNR enhancement

was evaluated qualitatively (3.12b) and quantitatively (3.12 c and d). For the quantitative
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analysis, the mean SNRNAA of all the voxels within the PRESS volume was analyzed. Sub-

stantial signal enhancement was achieved using the overdiscrete reconstruction with phase

correction (OD + ϕ) and was comparable to the B0 correction (OD + B0). Moreover, no sig-

nificant change in FWHM is observed while SNR increased with the proposed methodology.

C11C10C9C8C7C6C5C4C3C2C1 C12

a

bV1

V4

a

b

V3

a

b

a

bV2

T1w

Figure 3.11.: Coil sensitivity maps (a) measured and (b) estimated from the water

reference acquisition.

3.5. Discussion

The goal of the methodology described in this work is to achieve robust MRSI scans with

high SNR and minimal instability effects such as B0 drifts, patient motion, and eddy currents.

EPSI acquisition sequence with interleaved water referencing measures a full slice in 36

seconds. In this interval, it is feasible to assume that the system is stable. Moreover, the

correlation of the correction terms is maximized for every slice acquired. This approach
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Figure 3.12.: In vivo MRSI datasets of the measured volunteers (V1-V4). (a) T1w

anatomical images showing the location of the PRESS volume and an ROI (3×4 voxels).

(b) The spectra in the ROI are shown for the FT reconstruction with ECC and the

proposed overdiscrete reconstruction with phase correction (OD + ϕ Corr.). (c) Mean

SNRNAA computed for all voxels in the volume selected with PRESS and (d) FWHMNAA

for the datasets with 16 averages between the different reconstructions and corrections

schemes is shown. No significant change in FWHM is observed while SNR increased

with the proposed methodology.
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could also enable motion estimation and correction avoiding reacquiring the full dataset

after in the presence of patient motion.

The flyback EPSI trajectory was optimized to encode the k-t space with an in-plane

resolution of 10×10 mm2 with a bandwidth of 1200 Hz in a single interleave (max. gradient

strength 33 mTm−1, slew rate 120 T m−1 s−1 ). Higher spatial resolutions and higher

bandwidth could be achieved by interleaved EPSI acquisitions at the cost of additional

excitations. Alternatively, symmetric EPSI acquisitions [117], which are less gradient intense,

can equally benefit from overdiscrete reconstruction and interleaved water referencing.

The proposed sequence acquires a fully correlated water reference for every EPSI readout

without increasing the scan duration. This allows extracting phase distortions from the

water reference and corrects them in the water-suppressed scans. Moreover, by performing

a piecewise polynomial fit, an overdiscrete phase correction term can be obtained. This

achieves comparable results to B0 correction with a more general and simplified methodol-

ogy.

In EPSI acquisitions, signal averaging is commonly used to obtain enough signal quality

for reliable metabolite quantification. SNR enhancement obtained with the overdiscrete

reconstruction reduced the number of signal averages required for this purpose. The

equivalent acceleration factor of this approach was R=6–8 with an SNR gain of 2.3. This

allows taking full advantage of the acceleration provided by EPSI readouts. Moreover,

artifacts and inconsistencies in the direction of the readout gradients were eliminated with

the proposed phase correction.

Through polynomial interpolation eddy currents and complex measurement disturbances

that have hard to model temporal and spatial distributions can be adaptively estimated and

corrected. If all this phase effects occur smoothly in the r-t space. It has been reported that

eddy currents occur can be modeled with different time intervals as the residual. The degree

of temporal polynomials and the temporal window size showed no significant effect in the

phase residual. Nevertheless, this ensured smoothness of the fit and avoid discontinuities

that could potentially appear in noisy datasets. Low degree polynomials and a reduced

temporal window were chosen for the temporal basis to ensure correspondence to the
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3. Overdiscrete Spectroscopic Imaging with High-Resolution Corrections

phase measured. At higher field strengths, spatial variations of the B0-field might require

higher-order spatial polynomials to reliably correct for this effect.

3.6. Limitations

A limitation of this methodology is the computational cost that the computation of the

reconstruction operator has. This is achieved by the inversion of the encoding matrix E

which size scales with the over discretization factor ζ2 and the number of coil elements.

Therefore, for large MRSI matrix sizes, the implementation of the reconstruction problem

needs to be done iteratively at the cost of computation time. Additionally, during the

measurement of the coil sensitivity profiles, a potential misalignment with the MRSI dataset

could result in a suboptimal reconstruction. Finally, the gain in SNR would allow increasing

the resolution of the acquisition. However, for high-resolution spatial encoding, the limit of

the gradient performance might be reached, requiring interleaved EPSI acquisitions that

could increase the complexity of the reconstruction and introduce undesired effects.
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4. High-Resolution Echo-Planar

Spectroscopic Imaging at Ultra-High Field

MR spectroscopic imaging (MRSI) at ultra-high field allows for the detection of low-

concentration metabolites in the brain, thanks to the improved sensitivity. Nevertheless,

optimized acquisition techniques are still required to address specific limitations of MRSI at

ultra-high field. In this chapter, a methodology to achieve fast 1H MRSI at 7T is detailed.

The proposed acquisition sequence combines semi-localized by adiabatic selective refocus-

ing (semi-LASER) for localization, symmetric echo-planar spectroscopic imaging (EPSI) for

fast spatial encoding at high bandwidth, and an improved water suppression with variable

power and optimized relaxation delays (VAPOR). Furthermore, the correction of phase

inconsistencies in the symmetric EPSI trajectory enabled MRSI measurements at 7T with

high-bandwidth.

The content of this work has been published in the Journal of NMR in Biomedicine under

the title ”High-Resolution Echo-Planar Spectroscopic Imaging at Ultra-High Field”.

4.1. Introduction

Proton MR Spectroscopic Imaging (1H MRSI) at ultra-high field (>7T) allows the detection

of low concentration metabolites in the brain with a larger chemical shift dispersion and

improved signal to noise ratio (SNR). However, challenges need to be addressed to obtain
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the theoretical signal improvements at high field strengths. The presence of strong B0

and B+
1 inhomogeneities degrades signal quality and spectral resolution. Long repetition

times (TR) are often required due to specific absorption rate (SAR) limitations, extending

the acquisition duration. Moreover, nuisance signal contributions from water and lipids

introduce artifacts that hinder the reliable quantification of metabolites.

Acquisition methods based on free induction decay (FID) have been proposed for ultra-

high field MRSI. In these experiments, lipid contamination from the skull is reduced by

either acquiring large matrix sizes at short TR, thus improving the point-spread function

[11, 35, 89, 78], or using outer volume suppression (OVS) RF pulses around the volume of

interest (VOI) [37].

Alternatively, techniques based on volume localization, such as point-resolved spec-

troscopy (PRESS) [13] and stimulated echo acquisition mode (STEAM) [28] remove the

lipid signals originated from the skull by selectively exciting a VOI within the brain. How-

ever, the relatively low bandwidth of the excitation and refocusing pulses in the PRESS

sequences causes chemical shift displacement errors (CSDE), which are proportional to

the field strength [4]. The inaccurate volume selection can potentially introduce unwanted

signals from the skull into the measurements. On the other hand, STEAM is less affected by

CSDE but achieves only half of the SNR of PRESS. Semi-localization by adiabatic selective

refocusing (semi-LASER) [102, 101] uses adiabatic refocusing pulses to effectively reduce

the CSDE in-plane enabling precise volume localization at higher fields. Nevertheless, the

main drawback of semi LASER is the high SAR introduced, which limits the minimum TR

of the sequence. Therefore, the matrix size that can be acquired within a clinically feasible

time is restricted, especially in standard phase-encoded MRSI (PE MRSI).

Echo planar spectroscopic imaging (EPSI) [86, 88, 79], is a fast encoding technique capable

of encoding one spatial and one spectral dimension in a single TR, as a result, speed is

achieved at the cost of SNR. An implementation of this encoding technique is flyback EPSI

[19], which is relatively insensitive to timing errors and requires a simple reconstruction

process. However, a high gradient performance is needed, limiting the maximum spatial

resolution and spectral bandwidth. Moreover, as the signal is not sampled during the
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flyback portion of the trajectory its encoding efficiency is substantially reduced. Although

interleaved trajectories may overcome these limitations, they require a longer acquisition

time and complex processing to avoid aliasing and artifacts.

The SNR efficiency of EPSI could be improved using a symmetric EPSI readout [117].

However, symmetric EPSI presents a miss-match between even and odd lines of the k-t

space causing spectral ghosting. To avoid these artifacts, the even and odd lines can be

processed separately, with the downside of reducing the effective spectral bandwidth by

a factor of two and potentially exceeding the gradient performance needed at high field

strengths. The interlaced Fourier transform [72] has been proposed to jointly reconstruct

even and odd echoes without sacrificing spectral bandwidth but requiring calibration of

the k-space trajectory to correct for eddy current effects and get robust results. Similarly, a

postprocessing approach using echo shifts and zero-order phase correction to remove in-

consistencies was introduced and demonstrated for EPSI scans of water and fat resonances

[1]. In recent approaches, the spectral bandwidth was substantially increased using phase

and time shifts at 3T [59] and with a dual readout EPSI at 7T [3]. Conversely, the correction

of ghost artifacts in the phase-encode dimension is routinely performed in echo-planar

imaging (EPI) [39, 30]. The method consists of estimating constant and linear phase correc-

tion terms from a reference scan measured without phase encoding gradients and applying

these terms to each phase encoding, i.e. line of k-space.

Water suppression is also necessary to avoid artifacts, baseline distortions, and to reli-

ably quantify metabolites. An effective method based on variable power and optimized

relaxation delays (VAPOR) [110], initially implemented in single voxel spectroscopy scans

at ultra-high field [81], has been proposed as an alternative to chemical shift selective

saturation (CHESS) suppression [34]. VAPOR achieves a reduction in the water signal to

the order of magnitude of the metabolites, allowing consistent detection of metabolites

close to the water resonance.

This work presents a framework for high-resolution 1H MRSI that enables fast acqui-

sitions with high spectral quality at 7T. The method significantly reduces the acquisition

time by implementing a high-bandwidth symmetric EPSI readout in combination with
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semi-LASER localization and VAPOR water suppression. Furthermore, an effective phase

correction for symmetric EPSI using a single shot water reference scan is introduced to

remove spectral ghosting.

4.2. Theory

4.2.1. Phase Correction for Symmetric EPSI

Inconsistencies between even and odd lines in the EPSI trajectory were corrected by adapt-

ing the method that has been described for k-space alignment in EPI [117]. The phase

correction (PC) term for the k-t space was estimated from a water reference scan measured

with the same acquisition settings but without phase encoding gradients.

First, the reference signal Sref was interpolated into k-t space and the phase difference

ϕdiff between adjacent temporal points was calculated using the following equation

ϕtdiff(k) = arg[Stref(k) · St+1
ref (k)∗], (4.1)

where t represents the temporal location, k the k-space location in the EPSI direction and ∗

denotes the complex conjugate of the signal. Then, a weighted least-squares first-order fit

was performed to retrieve the phase correction term

ϕtcorr(k) = at · k + bt ≈ ϕtdiff(k), (4.2)

where at and bt correspond to the linear and constant phase correction coefficients. Finally,

the term was applied to each phase encode and channel of the water-suppressed signal Ssup

Stcorr(k) = Stsup(k) · exp(−i · ϕtcorr(k)). (4.3)

For validation, the estimated term can be applied to the water reference to visualize the

effect of the alignment (Fig. 4.3 c and d). Alternatively, an eddy current correction (ECC) can

be performed using a fully-encoded water reference [3]. This method extracts the phase of

the reference scan and subtracts it directly from the water suppressed signal. The subtracted
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term is assumed to contain all phase effects that are specific to the acquisition e.g., eddy

currents, B0 inhomogeneity, vibrations and gradient imperfections.

4.2.2. Multi-Channel Signal Combination

In the absence of sensitivity information, the signal of multi-element receiver coils can

be combined by phasing the signal of each coil element and adding the signal coherently

using weights from the maximum averaged magnitude [99, 94]. Given the time-domain

signal yγ(t, r) at voxel position r measured with the γ-th coil element, singular value

decomposition (SVD) is computed for the maximum temporal signal at each voxel position

r, obtaining Y = UΣV∗. The weight wγ for each coil element is then estimated from the

normalized singular vector in V corresponding to the largest singular value

wγ(r) =
v∗γ,σ1∑
γ | v∗γ,σ1 |

, (4.4)

where ∗ denotes the complex conjugate and σ1 the largest singular value. The term wγ(r)

contains the relative phase and scaling information for each coil. Finally, the combined

temporal signal S(t, r) at voxel position r is obtained as follows

S(t, r) =
∑
γ

wγ(r) · yγ(t, r). (4.5)

4.3. Methods

4.3.1. Localized Symmetric EPSI using Semi-LASER

The proposed MRSI sequence (Fig. 4.1) combines VAPOR water suppression and semi-

LASER spatial localization with a ramp-sampled symmetric EPSI readout, which requires

fewer repetitions to acquire a full k-space, thus reducing the scan time and keeping the total

acquisition within the SAR limits. GOIA WURST adiabatic full passage (AFP) RF pulses

were used with a duration 4.5 ms, a bandwidth of 10 kHz, 16th order hyperbolic secant

(HS) modulation (B1) and a 4th order gradient modulation [4, 21]. For the slice-selective

excitation, an asymmetric sinc pulse was used with a duration of 4.2 ms and a bandwidth
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of 3.7 kHz. GOIA-WURST pulses were selected as they have exhibited robust performance

with reduced CSDE and a substantial reduction of SAR per excitation, high SNR, and a

better volume selection profile.

4.3.2. In Vivo Experiments

MR experiments were conducted on a GE 7T MR950 scanner using a 32 channel receive

coil with a volume transmit head coil (NOVA Medical, Wilmington, MA, USA) and a

GE 3T MR750w (GE Healthcare, Waukesha, WI, USA) using a 12 channel receive array

with a volume transmit body coil (GE Healthcare, Waukesha, WI, USA). The gradient

system present at 7T had a maximum gradient strength of 50 mTm−1 and a slew rate of

200 Tm−1s−1 in each direction. The 3T scanner had a gradient system with a maximum

gradient strength of 33 mTm−1 and a slew rate of 120 Tm−1s−1 in each direction.

Anatomical imaging at 7T consisted of a 3D T1 weighted (T1w) inversion recovery-

prepared spoiled gradient echo (IR SPGR) acquisition with the following parameters:

TR=3.9 ms, TE=1.8 ms, TI=1350 ms, matrix size 256×256×176 and field of view (FOV)

256×256×176 mm3. At 3T same sequence was used with the following parameters: TR=7.4

ms, TE=2.1 ms, TI=400 ms, matrix size 256×256×200 and field of view (FOV) 240×240×320

mm3.

Single slice MRSI measurements of three healthy volunteers were acquired at 7T (7TV1–

7TV3) with a 6-minute protocol that included: (i) a water suppressed semi-LASER EPSI

scan with four averages and a total duration of 4.8 minutes; (ii) a 3-second water unsup-

pressed semi-LASER EPSI reference scan with the same sequence parameters but no phase

encoding gradients, required for PC; and (iii) a 1.2 minute fully encoded water reference,

required for ECC. Prior to the MRSI acquisition, power calibration of VAPOR was per-

formed for each subject to improve water suppression. The following parameters were

used: TR/TE=3000/35 ms, matrix size 24×24, FOV 12×12 cm2, slice thickness 15 mm

(7TV1 and 7TV2) and 10 mm (7TV3), spectral points 512, spectral bandwidth 2500 Hz and

anterior-posterior (AP) direction for the EPSI readout gradient.

Three additional healthy volunteers (3TV1–3TV3) were measured at 3T with a shorter

60



4.3. Methods
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Figure 4.1.: (a) Pulse sequence diagram used for the high-resolution MRSI protocol. The

sequence consists of (b) VAPOR water suppression interleaved with outer-volume sup-

pression (OVS) pulses, followed by (c) semi-LASER localization using GOIA WURST

adiabatic full passage (AFP) refocusing pulses and (d) ramp-sampled symmetric EPSI

readout.
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TR of 1500 ms, reducing the total acquisition time of the MRSI protocol (i, ii and iii) to

3 minutes. The slice thickness was 15 mm, the spectral bandwidth 1200 Hz, and TE=35

ms for all cases. At 3T, a lower resolution (1.5 mL), obtained by increasing the FOV to

24×24 cm2, was chosen to achieve enough spectral quality needed for a reliable metabolite

quantification, allowing a consistent comparison to 7T scans.

For comparison, PE MRSI measurements were also acquired at 3T for the same subjects

(3TV1–3TV3) using the identical settings. To shorten the acquisition time of PE MRSI, the

matrix size was reduced to 20×20, the FOV to 20×20 cm2 and elliptical k-space sampling

was selected, thus retaining the same volume size (1.5 mL) as in EPSI acquisition. Table 1

shows a list of the volunteer scans measured with different field strengths and voxel sizes.

Dataset
FOV

(mm2)

Voxel size

(mm3)

Volume

(ml)

Acq. Time

(min)
a Mean SNR Mean SNR�,�

bMean FWHM

(Hz)

EPSI

7TV1 120×120 5×5×15 0.375 5 13.9 ± 1.7 16.6± 2.0 21.5 ±3.26

7TV2 120×120 5×5×15 0.375 5 16.2 ± 2.6 19.3± 3.1 20.2 ±3.16

7TV3 120×120 5×5×10 0.25 5 11.6 ± 1.5 20.7± 2.8 18.8 ±3.01

3TV1 240×240 10×10×15 1.5 2.5 27.1 ± 3.3 11.4± 1.4 14.9 ±1.24

3TV2 240×240 10×10×15 1.5 2.5 26.3 ± 4.4 11.1± 1.9 15.0 ±1.81

3TV3 240×240 10×10×15 1.5 2.5 32.1 ± 3.8 13.5± 1.6 14.6 ±1.23

PE-MRSI

3TV1 200×200 10×10×15 1.5 8 47.4 ±5.3 11.2 ±1.2 13.9 ±0.51

3TV2 200×200 10×10×15 1.5 8 48.2 ±12 11.4 ±2.8 20.5 ±12.8

3TV3 200×200 10×10×15 1.5 8 77.0±5.1 18.1±1.2 15.2±1.91

Table 4.1.: List of volunteer scans measured with the presented methodology and

comparison of SNR and FWHM for different voxel sizes and field strengths.

aMean estimated SNRpeak (a.u.) of the NAA singlet at 2.01 ppm. Calculated as the

maximum amplitude of the real-valued metabolite peak, divided by the standard

deviation of the noise computed for all voxels in the range from 6.0 to 8.0 ppm.

bMean FWHM of the NAA singlet at 2.01 ppm.
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4.3.3. Reconstruction and Data Processing

The symmetric EPSI data were reshaped and interpolated into k-t space. Even lines,

corresponding to the negative lobes of the trajectory, were reversed and an 8-Hz Gaussian

temporal apodization was applied. Subsequently, PC was performed as described in the

previous section using the Orchestra reconstruction toolbox (GE Healthcare) to perform

the least-squares fit in Eq. 2. For comparison, ECC was applied to the data using the fully

encoded water reference scan. Spatial FT was computed followed by a channel combination,

residual water removal using Hankel singular value decomposition (HSVD) [8], zero-order

phase subtraction at each voxel and temporal FT.

The percentage of aliasing was quantified using the ratio between the integral of the

aliased and the real NAA singlet at 2.01 ppm. The aliased NAA peak is found displaced

by half bandwidth from the 2.01 ppm location. The SNR per unit volume and unit time

(SNRV,t) [79] was also computed to compare signal quality between the acquired datasets

with different resolution and duration. The SNRV,t is defined as follows

SNRV,t =
SNRpeak

V ·√tacq
, (4.6)

where V corresponds to the voxel size (cm3), tacq to the acquisition time (min), and SNRpeak

represents the ratio between the peak amplitude of the metabolite of interest, namely the

main NAA singlet at 2.01 ppm, and the standard deviation of the noise computed for all

voxels in the range from 6.0 to 8.0 ppm. Additionally, the full width at half maximum

(FWHM) was calculated from the local maximum around 2.01 ppm using Matlab (Math-

Works, Natick, MA, USA). The analysis included all the voxels within the semi-LASER

volume in the scans at 3T and in a region of equivalent size in the scans at 7T. This allowed

having comparable shim variations between both field strengths.

4.3.4. Spectral Quantification

The reconstructed spectra were quantified with LCModel [91] using a basis set consisting of

19 metabolites (GPC, Ala, Tau, Lac, Gln, Glc, GABA, Cr, Asc, mI, NAA, Asp, NAAG, GSH,
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Scyllo, PCh, 2HG, PE, and Glu) simulated using the GAMMA library. The range from 0.6 to

4.3 ppm was chosen for the analysis.

A quantitative comparison of metabolite concentration ratios and CRLB values obtained

from LCModel was performed. All the voxels inside the area of interest were analyzed,

independently of the volunteer, and the different acquisition sequences (7T EPSI, 3T EPSI,

and 3T PE MRSI) were compared. This included 243 voxels for 7T EPSI, 75 voxels for

3T EPSI, and 75 voxels for 3T PE MRSI. The reported metabolites included creatine (Cr),

myo-inositol (mI), total choline (tCho), N acetyl aspartate (NAA) and glutamate-glutamine

(Glx). Additionally, glutamate (Glu) and glutamine (Gln) were included separately in the

analysis to show the potential separation of these metabolites at 7T.

Metabolite ratio maps were generated for mI, tCho, Cr, Glx, and NAA. The reconstructed

maps were interpolated and visualized together with anatomical information, obtained by

integrating axial T1w images over the thickness of the volume selected with semi LASER.

To quantify the spatial correlation between metabolite maps and anatomical images, the

structural similarity index (SSIM) [116] was computed between the volume selected with

semi LASER and the corresponding region in the T1w slice. Additionally, edge maps were

extracted using Canny edge detection [15] and overlaid on the maps for a better delineation

of gray matter (GM) and white matter (WM) structures.

4.4. Results

The prescription of the water suppressed MRSI scan of one subject (7TV1) and a qualitative

comparison between uncorrected, PC, and ECC spectra of two representative voxels (I and

II) is shown in Fig. 4.2. The alignment of k-t space in a high SNR PC scan is presented

using the original water reference signal (Fig. 4.3 c and d). The correction of the mismatch

between even and odd lines in the spatiotemporal signal minimized the ghosts generated

by the modulation of the temporal signal. The percentage of aliasing quantified using the

real NAA singlet at 2.01 ppm is shown in Fig. 4.3. The spatial distribution of this effect (Fig.

4.3 a and b) showed that ghosting increased with distance to the isocenter in the direction
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of the EPSI readout gradient.
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Figure 4.2.: Prescription of (a) the water suppressed MRSI acquisition and (b) the

water unsuppressed reference signal acquired with a single phase encoding. For

two representative voxels (I and II), uncorrected spectra are presented and the effect

of phase correction (PC) is compared to eddy current correction (ECC). PC showed

comparable results to ECC but with a negligible increase in acquisition time and a

significant reduction in the energy deposition in the subject i.e., total SAR.

The spectral quality was compared qualitatively between acquisitions at 7T (Fig. 4.4) and

3T (Fig. 4.5). The prescribed volume overlaid with the anatomical image and the spectra

over a region of interest is shown. Representative spectra of GM and WM voxels showing

distinctive features of each tissue type are also presented. The reconstructed 7T dataset was

measured with a 4-fold smaller nominal voxel size than the acquisition at 3T.

In Fig. 4.7, the distribution of metabolite concentration ratios and CRLB values obtained

from LCModel is shown for all datasets. The expected range of concentration ratios,

obtained from literature [91], is displayed in gray. In all cases, the median CRLB was

below 20% except for Gln (36%). The metabolite ratio maps computed after LCModel

quantification are presented for all the volunteer datasets acquired at 7T (Fig. 4.7). The

location and size of the volume prescribed with semi-LASER are presented in the T1w
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Figure 4.3.: Quantification of the spectral ghosting shown for (a) the uncorrected and (b)

the phase-corrected (PC) data. The percentage of aliasing was quantified by NAA-peak

integration at the expected ppm location and at the half-bandwidth distance, where

aliasing occurred. The effect on the acquired k-t signal in one symmetric EPSI readout

is presented for (c) the uncorrected data and (d) after PC. (e) The mean residual aliasing

over all voxels in the selected volume is shown for the three volunteers. Quantitative

results showed that aliasing removal comparable to ECC could be achieved with PC

with reduced acquisition time and SAR.

anatomical images. A noticeable contrast between gray and white matter structures and

correlation with anatomical structures were observed in the reconstructed maps. All

the volunteer scans measured with the proposed protocol are listed in Table 4.1 and a

comparison between volume size, acquisition time, SNRpeak, SNRV,t, and FWHM of NAA

is reported.

4.5. Discussion

Practical considerations for implementing semi-LASER with symmetric EPSI at ultra-high

field were presented in this work. An increased resolution with minimal partial volume

66



4.5. Discussion

a b

c

WM

GM

Figure 4.4.: In vivo MRSI dataset (V1) using the proposed protocol at 7T with a voxel

size of 0.5×0.5×1.5 cm3 (0.375 mL). The prescribed volume overlaid with the anatomical

image is shown to correlate the spectra with gray and white matter structures (a and

b). Spectra over a region of interest and representative white matter (WM) and gray

matter (GM) voxels are also presented.

effects was achieved while preserving signal quality. Although this methodology is equally

applicable to 3T acquisitions, this method focused on the limitation of MRSI at ultra-

high field, namely the increased SAR, increased CSDE, and limitations regarding spectral

bandwidth.

The comparison between data acquired at different resolutions, field strengths, and TR

was done relative to the SNR per unit volume and unit time. The mean SNR gain at 7T
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Figure 4.5.: In vivo MRSI data sets acquired using the proposed protocol at 3T with

a voxel size of 1.0×1.0×1.5 cm3 (1.5 mL). The prescribed volume overlaid with the

anatomical image allows to correlate the spectra with gray and white matter structures.

achieved of 1.57 (57%) is consistent with previous reports in single voxel spectroscopy

[79, 90, 108]. A decrease in the expected signal gain could be explained by the signal decay

due to shorter T2 at 7T, the use of different hardware, and variations in the B0 and B+
1 fields.

Mild T1 saturation effects are expected due to the longer T1 of the metabolites, although

the measurements at 7T were performed with long TR to reduce SAR. Furthermore, a

comparable FWHM, i.e. spectral resolution, of the metabolite peaks in ppm was observed.

This indicated that the effect of higher B0-field variations at 7T was compensated by the

reduction of the voxel size in plane. The SNR gain has been previously investigated [60],

reporting an average SNR ratio of 1.6 between 7T and 3T. Additionally, the expected

linear SNR gain (2.33 at 7T) with respect to the field strength was limited by differences in

linewidth, T1 and T2 at high field strengths.

The PC method introduced here removed ghosting (Fig. 4.3 a, b and e) with a negligible
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Figure 4.6.: Spectra over the region of interest and the LCModel fit is shown for (a)

semi LASER EPSI at 7T, (b) semi LASER EPSI at 3T and (c) phase-encoded MRSI at 3T.

For each data set, representative white matter (WM) and gray matter (GM) voxels are

presented together with the spectral fit obtained with LCModel. With reduced voxel

size, partial volume effects were minimized allowing to better identify spectral features

characteristic of each tissue type [91], such as larger choline to creatine ratio (Cho/Cr)

in WM compared to GM.
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Figure 4.7.: LCModel results comparing (a) the concentration ratios to Cr and (b)

the Cramer-Rao lower bounds (CRLB) for all the voxels in the analyzed region of

interest with EPSI 7T (N=243), EPSI 3T (N=75) and PE MRSI 3T (N=75). The range of

concentration ratios values that has been reported in literature [91] is shown in gray.

The distribution of CRLB values shows that fit quality achieved with high-resolution

measurements is comparable to lower resolution scans at 3T. The median CRLB was

below 20% for all the reported metabolites except glutamine (Gln) measured with EPSI

at 7T.

cost in acquisition time using a single shot water reference. As a sufficient spatial resolution

(up to 3 mm in EPSI direction) and the spectral bandwidth required at 7T can be achieved

with the gradient system (maximum gradient strength 50 mT m−1 and slew rate 200 T m−1

s−1) in a single shot, interleaved acquisitions were not explored in this work. However,

comparable results are expected when applying PC for interleaved scans.

The ECC method, widely used in single voxel and multi-voxel acquisitions [95], was

shown here as an effective alternative to correct for inconsistencies in symmetric EPSI,
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Figure 4.8.: Reconstructed metabolite ratio maps of choline to creatine (Cho/Cr), myo-

inositol to creatine (Ins/Cr), and glutamate-glutamine to N acetyl aspartate (Glx/NAA).

The maps were computed using LCModel and mapped into the same scale for the

three volunteers. Structural features are shown in T1w images integrated over the slice

thickness selected with semi-LASER. Edge maps were extracted from the anatomical

image and overlaid on the reconstructed maps. The resolution achieved allowed

identifying differences in signal intensity expected for WM and GM for the mapped

metabolite ratios. The effect of the CSDE was minimal as adjacent metabolites were

considered for the computation of the ratios.
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Figure 4.9.: Quantification of the spatial correlation between anatomical (T1w) images

and the reconstructed concentration ratio maps using the structural similarity index

(SSIM). The SSIM value was computed for all slices in the T1w volume showing the

highest correlation at the location of the MRSI measurement.

simultaneously removing phase distortions such as B0-inhomogeneity, eddy currents, and

systems vibrations. Yet, ECC represents less time- and SAR-efficient alternative as it relies

on the acquisition of a fully-encoded water reference scan. As the OVS and AFP pulses

involved in the sequence account for most of the energy deposited in the subject, the

reference measurement may potentially exceed the SAR limits, especially at high fields.

High-resolution scans were achieved without extending the scan duration by reducing

the FOV while keeping the matrix size small. This reduced the number of excitations

required and kept total energy deposition in the subject under SAR limitations. However,

as the selected FOV may not be sufficient to cover the full head, OVS pulses are required to

suppress signals outside the volume of interest and avoid spatial aliasing. Alternatively,

scans with a larger FOV could be acquired keeping the same nominal resolution and
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duration. This could be realized by removing the single pairs of OVS pulses in-plane, thus

reducing the SAR per excitation and allowing the shortening of the TR. Nevertheless, as the

lower bandwidth excitation pulse produced a larger CSDE, the three pairs of OVS pulses

applied in the slice selection dimension could not be removed. Accelerated acquisition

sequences have been recently proposed and compared [107], which included encoding

efficient sequences using spiral readouts [45] and concentric circle echo-planar trajectories

(CONCEPT) [29, 18] capable of acquiring large matrix sizes with high bandwidth. However,

in the presence of B0 inhomogeneity, non-cartesian reconstruction may introduce artifacts

that are difficult to correct.

4.6. Limitations

Although the T1w images showed the anatomical context, full comparability with the

MRSI scans is still limited with the current slice thickness as partial volume effects and

signal bleeding may appear. Additionally, a more extensive study should be performed

to study and separate the effects that factors like T2, T∗2, T1, B0, and B+
1 , have in the

reconstructed spectra. Symmetric EPSI with PC achieves a comparable resolution with a

robust implementation, nevertheless, whole-brain coverage remains the major challenge for

this technique. Both ECC and PC may fail in non-localized 1H MRSI acquisitions due to the

presence of strong lipid signals that corrupt the phase estimation from the water reference

acquisition.
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5. Quantification of Tissue Composition in

MR Spectroscopy using Neural Networks

This chapter presents machine learning methods for the analysis, signal enhancement,

and quantification of spectra obtained from MRS and MRSI acquisitions. Specifically,

methodologies based on Neural Networks (NN) were designed to estimate the tissue partial

volumes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), present in

an acquired MRS voxel, providing an alternative method to the standard time-intensive

MRI segmentation pipeline. The tissue composition was determined from quantified

metabolic concentrations using a NN regression model. Moreover, a classification model

was generated to determine the specific brain region corresponding to a measured spectrum

from both metabolic and tissue components.

The content of this chapter is based on the abstract presented at the 27th annual meetings

of the International Society of Magnetic Resonance in Medicine (ISMRM) entitled ”Estima-

tion of Brain Tissue Composition and Voxel Location in MR Spectroscopy Using Neural

Networks”.

5.1. Introduction

Proton MR spectroscopy (MRS) is a quantitative non-invasive modality capable of mea-

suring the metabolic composition of brain tissue quantitatively. However, obtaining a

truly quantitative MRS measurement requires a considerable amount of steps added to the
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MR acquisition. In clinical MRS, the brain locations that are commonly scanned are the

parietal white matter (PWM), posterior cingulate gyrus (PCG), anterior cingulate gyrus

(ACG), and left temporal lobe (LTEMP), among others. However, a relatively large tissue

volume is excited to achieve good signal quality and high sensitivity, typically between

6mL–10mL. This large volume leads to tissue heterogeneity in the selected voxel, and as a

result, the measured spectrum would contain contributions from the different tissue types

in the brain: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It is well

known that these different compartments present distinctive metabolic signatures due to

the tissue structure and cellular composition [115]. Therefore, in order to obtain a reliable

metabolite quantification and perform an accurate diagnosis of the results, insight about the

tissue composition and brain location is necessary to correct for voxel placement variability,

anatomical differences, and partial volume effects.

T1w

WM

GM

CSF

pWM

pGM

pCSF 

Figure 5.1.: Anatomical T1-weighted image showing the output of the segmentation

algorithms where the spatial distribution of brain tissue types is extracted. A typical

MRS voxel located in the posterior cingulate gyrus (PCG), is displayed in blue. In-

evitably, the scanned volume will contain contributions of all tissue compartments,

denoted as the partial volume of gray matter, white matter, and cerebrospinal fluid,

respectively pGM ,pWM , and pCSF
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Nevertheless, the procedure to obtain this tissue information, shown in Figure 5.2, is time-

consuming and difficult to integrate into a clinical setting, mainly because it involves the

acquisition of a T1-weighted (T1w) MR volume, the use specialized segmentation software

(e.g. FSL [42]), and the extraction of metadata containing the position and orientation of the

MRS volume.

This work proposes the use of supervised machine learning algorithms, specifically neural

networks (NN), to estimate the partial volume of GM, WM, and CSF, which contribute

to the MRS signal directly using the relative concentrations of brain metabolites obtained

from the spectral quantification. Additionally, NN-based classification models were used to

determine the brain location of an MRS scan using the metabolites and tissue heterogeneity

information.

5.2. Theory

5.2.1. Absolute Metabolite Quantification

Absolute metabolite concentrations are calculated from the output of the spectral fitting

software when a water reference is used to properly scale the metabolite signal. To obtain

proper concentrations in mmol per volume of tissue (mmol/L) or mmol per mass of tissue

(mmol/Kg), it is necessary to correct for different effects that include: water content in

the sample, T2 relaxation of both water and metabolite signals (hT2), scanner specific gain

calibrations and partial volume fractions (PVF) of the different tissues contained in the

sample. For simplicity, T1 effects of water and metabolites are typically assumed to be

equivalent and therefore not included in the correction factors.

Tissue fractions correspond to the partial volume of gray matter (pGM ), white matter

(pWM ) and cerebrospinal fluid (pCSF ), in the measured volume and were computed from

the segmented of the T1 weighted (T1w) anatomical volume at the MRS voxel location.

The absolute metabolite concentrations per total volume of brain tissue CVtotal
met (mol/L) are

calculated as follows:

C
Vtotal
met = CLCM

met × hTissue, (5.1)
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Figure 5.2.: Standard pipeline used to compute tissue partial volumes ( pGM ,pWM ,

and pCSF ) from the MRS and MRI datasets. First, the measured MRS spectrum is

quantified with LCModel to obtain the metabolite concentration ratios (Cm), that need

to be corrected for tissue composition. To achieve this, a T1-weighted (T1w) volume is

segmented to obtain the volume probability map of each tissue type at a high resolution

( 1 mm3). Then, a mask of the MRS volume is generated from the metadata and applied

to the segmented volume. The values of partial volume are calculated from the sum of

each tissue class in the masked volume.

where CLCM
m corresponds to the ratio between the area of the metabolite fit and the water

reference signal obtained from LCModel. The tissue correction factor hTissue is computed as:

hTissue = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ) (5.2)

where hT2Tissue is the correction factor for the T2 decay of water in the corresponding tissue

type (hT2GM = hT2WM = hT2CSF = 0.646).

The absolute metabolite concentration per volume of brain tissue CVBrain
met (mol/L) is

computed by only including the contribution of the brain tissue volume (VBrain = 1− pCSF):

CVBrain
met = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ) (5.3)
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Finally, the absolute concentration values per mass of brain tissue CmBrain
met (mol/kg) are

computed from the concentration per volume of brain tissue divided by the brain tissue

density (Brain = 1.05kg/L):

hTissue = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ). (5.4)

5.3. Methods

Based on the fact that brain tissue types have characteristic metabolic compositions (Fig. 5.3),

the partial volumes of GM, WM, and CSF (pGM , pWM , and pCSF ) were determined from the

metabolite concentrations (Cm) of a given spectrum using a regression model. In a similar

way, as anatomical brain regions are metabolically and structurally different, the region

corresponding to a given spectrum could be determined using a classification model. Figure

5.2 shows the standard procedure to determine the tissue partial volume fractions from

T1-weighted scans and the MRS voxel location using segmentation algorithms. Figure 5.5

shows the proposed pipeline that estimates the tissue partial volumes from the quantified

metabolite concentrations.

5.3.1. Data collection and Processing

This study presents a meta-analysis of 745 spectra obtained from 272 subjects measured at 4

brain regions (PCG=198, PWM=200, ACG=180, LTEMP=167). The scans were performed at

3T using PRESS localization and the following scanning settings: TR=2000 ms, TE=30 ms,

voxel size 20×20×20 mm3, number of averages=128. The voxel location and orientation

were extracted from the metadata on the header of the MRS acquisitions. T1w volumes of

all the subjects were collected using MPRAGE at 1 mm3 isotropic resolution. For all the

MRS scans, a mask of the measured volume was generated from the metadata and applied

to the segmented anatomical volume. Finally, the partial volume fractions were calculated

from the sum of the probability of each tissue class within the masked volume.

MRS and MRI datasets were processed following the standard pipeline detailed in Figure

81



5. Quantification of Tissue Composition in MR Spectroscopy using Neural Networks

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

pWM

p
G
M

Figure 5.3.: Analysis of the data used to train the NN classification and regression

models. The partial volume of GM is plotted against the partial volume of WM

for individual voxels acquired at 4 brain locations (PCG, PWM, ACG, and LTEMP).

The degree of variability in the composition due to differences in voxel size, voxel

placement, and anatomy are observed. Up to a 40% variation are evident for voxels

that correspond to gray matter structures, i.e. ACG and PCG.

5.2. The MRS datasets were reconstructed with an in-house Python-based pipeline using

OpenMRSLab [5] and quantified with LCModel [91]. Metabolite ratios were used to account

for scanner and subject variability. The brain segmentation process was performed on the

T1w anatomical volumes using the FSL software library [42] after skull removal.

5.3.2. Regression Model for Tissue Composition

The neural network regression model was trained in Matlab (MathWorks) using the cre-

atine ratios of 18 metabolites (GPC, Ala, Tau, Lac, Gln, Glc, GABA, Cr, Asc, mI, NAA,

Asp, NAAG, GSH, Scyllo, PCh, PE and Glu) and 9 macromolecular and lipid components

as features. From the whole labeled dataset, 70% of the scans, randomly selected, were

used for training, 15% for testing, and 15% for validation. The trained NN consisted of 20

hidden layers. Moreover, 10-fold cross-validation was implemented to obtain the average
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Figure 5.4.: The scatter plots show 2D projections of the high dimensional feature space,

which include the quantified metabolite concentrations (Cm) and the partial volumes

of WM, GM, and CSF (pGM ,pWM , and pCSF ). In some projections, a clear separation

of the brain regions was observed, suggesting that the metabolite ratios and tissue

volumes can be used as features to create a regression model.

83



5. Quantification of Tissue Composition in MR Spectroscopy using Neural Networks

performance of the network.
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Figure 5.5.: Proposed neural network regression pipeline to estimate the tissue partial

volumes from the metabolite concentration ratios.

5.3.3. Classification Model for Voxel Location

In a similar way, the NN classification model was trained in Matlab (MathWorks) using the

18 metabolite rations and 9 macromolecular and lipid components extracted with LCModel.

Additionally, the partial volumes of GM, WM, and CSF extracted from anatomical T1w

volumes and FSL were included as features. The training dataset was build from 80% of the

labeled spectra, the testing and validation sets included 10% of the remaining data. The

network architecture had 100 hidden layers and was trained with 10-fold cross-validation.
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Figure 5.6.: Proposed neural network pipeline for the classification of brain location

from the estimated tissue partial volumes ( pGM ,pWM , and pCSF ) and metabolite

concentration ratios (Cm).
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5.4. Results

The training performance of the regression model for tissue volume estimation was eval-

uated and is shown in Figure 5.7. The optimal learning performance was obtained with

a mean squared error (MSE) of 0.013. This value can be considered proportional to the

magnitude of the error in the partial volume obtained with the segmentation. A correlation

coefficient between the ground truth and the predicted tissue compositions of R=0.92 and

R=0.89 was achieved for the training (70%) and the testing (15%), respectively. Finally, a

mean absolute error (MAE) of 0.114 was obtained, which corresponded to an 11.4% vari-

ability in the voxel composition of an MRS measurement. Given the low concentration of

metabolites present in the CSF compartment of the measurement, it was observed that this

compartment introduced uncertainty of the partial volumes. This could explain the limit

in the minimum MSE and MAE obtained with the current approach. Nevertheless, the

correction of CSF in quantitative MRS corresponds to a scaling factor in the concentrations,

which could be obtained from the magnitude of the water signal.
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Figure 5.7.: Regression of tissue partial volumes from metabolite concentrations. (a)

Training performance showing the optimal mean squared error (MSE=0.013) achieved

in the validation set. (b) Correlation (R=0.92) of the predicted partial volume and the

true values in the training set (70%) and (c) correlation (R=0.89) of the predicted partial

volume and the true values in the test set (15%).
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The model for classification of Figure 5.8 presents the results of the brain region clas-

sification. High classification accuracy (>0.94) for all regions was achieved. In terms of

the importance of features, the metabolite ratios of total N-acetyl aspartate (tNAA), total

choline (tCho), and glutamate+glutamine (Glx) to creatine (Cr) were strongly weighted by

the regression model. This result is consistent with the fact that these metabolites have a

low quantification error (CRLB10) and previous analysis of different tissue composition

obtained by biopsies have shown significant differences of these metabolites in gray and

white matter [115].
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Figure 5.8.: Classification of brain location using neural networks. (a) Training perfor-

mance showing the optimal mean squared error (MSE=0.018) achieved in the validation

set consisting of 10% of the data points. (b) Confusion matrix of the training set (80%)

showing high classification accuracy for the 4 different brain locations. (c) Confusion

matrix of the test set (10%) showing the classification accuracy.

5.5. Discussion

This work presented a machine learning approach for the estimation of tissue partial

volumes and brain location of MRS acquisitions. From the analyzed datasets, the variability

of the voxel composition was analyzed. This variability in the tissue composition could

be up to 40 percent in brain locations where the gray matter is prominent, such as ACG
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and PCG. This not only has to do with the operator-dependent voxel placement variability,

but also with the anatomy of the patient and voxel size. High accuracy was achieved for

the classification of very distinctive brain regions such as temporal lobe and white matter,

and slightly lower for ACG and PCG that are very similar in structure and composition.

Additionally, a higher false-positive rate for ACG and PCG was obtained in the classification

task (Fig. 5.8) due to potential structural and metabolic similarities between these brain

locations.

The proposed method represents an alternative to tissue segmentation algorithms. These

require specific anatomical volumes and voxel metadata that are not standardized across

vendors. Standard algorithms can also be computationally expensive and sensitive to image

properties such as contrast differences, SNR, and resolution. Finally, in the presence of

artifacts or inhomogeneities, these methods are prone to errors. Moreover, the trained

NN model allows for fast computation of tissue partial volumes in a compact pipeline.

This can be potentially implemented to run in real-time at the scanner to navigate the

positioning of the voxel prior to the acquisition, which is of special interest in longitudinal

examinations. In this way, an improved the reproducibility of MRS and reliability of the

metabolite quantification would facilitate the integration and use of this technology in a

clinical context.

5.6. Limitations

In the field of supervised machine learning, the proper generalization of the model is very

important to reliably apply the trained models in a clinical setting. First, visual inspection

of automatically segmented anatomical volumes is necessary to remove cases where the

algorithms fail. Also, the data points used for training need to capture the variability of the

studied population in terms of age, demographics, sex, among others, for both health and

disease conditions. Therefore a very extensive curated database needs to be collected to

train and validate the NN models. For the case of MR spectroscopy, such a large number

of scans can only be obtained with a multi-site collaboration, initially focused on specific
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diseases, and gradually validate it for more applications. Additionally, data harmonization

and calibration methods need to be implemented to remove biases in the data and achieve

robust machine learning models.
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6. In-Vivo Quantitation of Down-Field

Metabolites using MR Spectroscopy

This chapter describes a methodology for the measurement of down-field resonances in

the brain using standard localized magnetic resonance spectroscopy (MRS) sequences and

LCModel regression for quantification. This approach models the metabolite components

up-field from the water signal using nuclear magnetic resonance (NMR) simulations to

create an accurate representation of the metabolite signal, effectively incorporating prior

knowledge to the quantification. A calibration phantom with known metabolic concen-

trations was developed to perform scanner specific calibrations of the measurement. This

accounts for acquisition imperfections that typically lead to inaccurate or unreliable mea-

surements. The content of this chapter is based on the abstract presented at the 27th annual

meetings of the International Society of Magnetic Resonance in Medicine (ISMRM) entitled

”Regional Differences in Cerebral Phenylalanine Measured with Single Voxel Spectroscopy

using PRESS Localization and LCModel Quantification”.

6.1. Introduction

Single voxel spectroscopy (SVS) allows for a direct measurement of metabolite levels in

the brain non-invasively. However, the quantification of some metabolites, such as the

resonances down-field from the water signal, is substantially more challenging due to their

relatively low concentration and the limited sensitivity of the technique in that regime. For a
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reliable detection of these metabolites in the brain using SVS, some important considerations

have to be taken into account [52]. These include: to incorporate accurate prior knowledge

to fit the spectral signal using metabolite basis functions and baseline components, to correct

potential chemical shift displacement error (CSDE) of the acquisition, and to account for

differences in the frequency profile of the RF excitation and refocusing pulses. Considering

these factors, a range for the ratio between the Phe concentration in blood and the Phe

concentration in brain tissue in the order of 2- to 4-fold has been reported. An example

of these down-field resonances is Phenylalanine (Phe), an essential amino acid acquired

through diet and metabolized in the liver to tyrosine (Tyr) by the enzyme phenylalanine

hydroxylase. Under normal conditions, the concentration of Phe ranges between 0.07–0.30

µmol/ml in blood, and 0.05–0.30 µmol/g in brain tissue [71, 84, 83]. Phenylketonurea (PKU)

is a rare genetic condition where the absence of the enzyme phenylalanine hydroxylase

causes high Phe levels in blood and consequently its accumulation in tissues [70]. A high

concentration of this metabolite in the brain leads to significant neurological and neuropsy-

chological problems and hinders the intellectual and behavioral development. Although

newborn screening guarantees an early detection this disease, methods to monitor PKU are

limited, particularly in older children and adults who struggle with dietary compliance.

The quantification of Phe has been explored in previous studies [54, 85, 56], mainly at

low magnetic fields (1.5T), using STEAM localization [13] and measuring relatively large

volumes (8-70 mL) in order to obtain reasonable SNR and sensitivity. Although these

techniques showed to be effective modeling the down-field spectrum, the large measured

volume eliminates the spatial context of the signal, which is of interest to study regional

differences, such as white matter abnormalities caused by the accumulation of Phe in the

brain of PKU patients [67]. Moreover, the fitting algorithms used to estimate the concen-

tration values are not widely available. The advantages in the detection of Phe using 3T

scanners have been recently shown [100]. First, a higher SNR can be achieved at 3T and

PRESS localization [28], when compared to STEAM at 1.5T. Consequently, measurement of

smaller volumes is possible, enabling localized tissue analysis. Furthermore, the intrinsic

lower T2 at high field strengths causes the macromolecular components of the baseline
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down-field from the water resonance to decay faster than the metabolites of interest. This

partially eliminates the dependency of the quantification on the macromolecular baseline

model that could potentially lead to a significant over- or underestimation of the Phe con-

centration. Nevertheless, some of the previously described technical challenges are still to

be properly addressed to obtain reliable Phe measurements. Specifically, the substantial

CSDE of PRESS at 3T that reduces the effective excitation volume for the Phe resonance

frequencies at 7.4 ppm. This CSDE, which can be in the order of 50% given the bandwidth

of standard refocusing pulses ( 1.4 kHz) and the chemical shift difference between the Cr

singlet at 3.0 ppm and the main Phe resonances at 7.4 ppm [4], needs to be considered

when modeling the basis sets used by LCModel. Furthermore, the RF pulse profile of the

excitation and refocusing pulses is not homogeneous throughout the frequency range of

interest and is difficult to determine. Alternatively, 2D spectroscopic approaches such as

localized Correlation Spectroscopy (COSY) [109], have shown to be useful for the detection

of this metabolite [114]. Although, an improved spectral dispersion of coupled metabolites

like Phe or tyrosine (Tyr) is achieved, the quantification of 2D spectroscopic methods is not

well stablished and the availability of COSY sequences is limited in clinical scanners. This

work describes a methodology for the quantification of Phe in the brain using SVS with

the standard SNR-efficient PRESS localization and LCModel quantification [91], measured

at 3T. This approach models the metabolite components up-field from the water signal

incorporating prior knowledge to the quantification. Moreover, this method incorporates

a calibration step that accounts for the main acquisition imperfections that may lead to

inaccurate or unreliable Phe measurements, namely the relatively large CSDE of Phe and

the inhomogeneous excitation profile of the PRESS RF pulses.

6.2. Methods

6.2.1. Signal Model and Basis Set Simulation

Basis functions for the down-field and up-field metabolite components were generated with

the Vespa Simulation and Priorset software [106] using chemical shift values and J-coupling
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constants from the literature [31]. The relevant metabolites added to the standard basis set

were: phenylalanine (Phe), tyrosine (Tyr), homocarnosine (Hcar), and broad amide (NH)

resonances from NAA (lNAA) and creatine (lCr) at 7.8 ppm and 6.6 ppm, respectively. For

Phe and Tyr, a separate model for the down-field (lPhe and lTyr) and up-field (rPhe and rTyr)

spectral portions of the metabolites was created to account for the uneven excitation of these

resonances. Similarly, a set of the standard brain metabolites was simulated. These included:

glycerophosphocholine (GPC), alanine (Ala), taurine (Tau), lactate (Lac), glutamine (Gln),

glucose (Glc), GABA, ascorbate (Asc), myo-inositol (mI), aspartate (Asp), N-acetyl-aspartyl

glutamate (NAAG), glutathione (GSH), scyllo inositol (Scyllo), phosphorylcholine (PCh),

phosphoryl ethanolamine (PE) and glutamate (Glu).

6.2.2. MR Acquisition Sequence and In-vivo Experiments

MR spectra of the posterior cingulate gyrus (PCG) and parietal white matter (PWM) were

acquired for three groups of PKU subjects (N=25) and one control group (N=9). The scans

were performed at two different 3T scanners (Trio and Skyra; Siemens, Erlangen, Germany)

using a 32-channel receiver coil. The single voxel spectroscopy (SVS) sequence incorporated

water suppression, outer volume suppression, and PRESS localization with the following

parameters: TE/TR = 35/2000 ms, 32 signal averages, the center frequency of the excitation

pulse at 2.4 ppm, and a voxel size of 30×30×30 mm3 (27 mL) and 40×20×30 mm3 (24

mL) for the PCG and PWM voxels, respectively. The protocol included one acquisition

with water suppression (SVSWsup) and one without water suppression (SVSWref) used for

absolute quantification. Anatomical MRI measurements were also acquired using a T1-

weighted (T1w) 3D magnetization prepared rapid gradient echo (MPRAGE) sequence with

a slice thickness of 2.5 mm and a field of view (FOV) of 20×25 cm. These MRI scans were

used to correct for tissue composition and to prescribe the voxel location of the SVS scans.
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Figure 6.1.: (a) LCModel fit performed on the sum of all in-vivo spectra (N=68) to

achieve a high SNR for the down-field metabolites. (b) A subset of the simulated

metabolite basis functions used to model the spectrum down-field from the water peak

and quantify phenylalanine (Phe). The resonances added to the standard brain basis

set were phenylalanine (Phe), tyrosine (Tyr), and homocarnosine (Hcar).
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6.2.3. Phantom Calibration

A calibration phantom with known metabolic concentrations was developed to determine

correction factors related to (i) the inhomogeneous profile of the excitation and refocusing

pulses, (ii) the reduction of the effective excited volume of individual metabolites caused

by the CSDE, and (iii) the scanner specific gain. Moreover, it helped to validate the fitting

routine with high SNR spectra.
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Figure 6.2.: Phantom experiments performed using PRESS with a voxel size of

30×30×30mm3 (27mL) and the same scan parameters as the in vivo experiments.

(a) Phantom and prescribed volume location. (b) Measured spectra of the calibration

phantom. The result of the LCModel fit is shown in red for both down-field (Left Fit)

and up-field (Right Fit) from the water peak.

The phantom containing NAA, Cr, Phe, and Tyr, with concentrations in the physiological

range was scanned using the same acquisition protocol (Fig. 6.2). The acquired spectrum
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was quantified using LCModel assuming the specific T1, T2 and water concentration

values of a solution phantom (ATTMET=1.0, ATTH20=exp(TE/80)=0.646, WCONC=55556).

Finally, a mean correction factor that includes all the effects listed above was then calculated

to match the ground truth concentration, i.e. the actual amount mixed in the phantom.

6.2.4. Spectral Processing

The MRS spectrum was reconstructed using OpenMRSLab [5], a Python-based software

package. The processing pipeline included the following steps: (1) signal combination of

multi-channel receiver coil, (2) correction of the frequency misalignment between signal

averages, (3) coherent signal averaging, (4) eddy current correction, (5) removal of the

residual water signal, and (6) removal of the phase offset in the spectrum. All processing

steps were applied to both the SVSWsup and SVSWref datasets except for (5) which was only

applied to SVSWsup.

The processed spectrum was then quantified with LCModel [91] using the complete

simulated basis set. The fitting process required the following non-standard parameters: (i)

a frequency range of 0.2-4.0 ppm for the right fit and 6.4-7.6 ppm for the left fit (PPMST=8.5,

PPMEND=0.2, PPMGAP=[6.5, 4.0]), (ii) negligible water attenuation due to T2 effects

(ATTH2O=1.0, ATTMET=1.0) as it was considered in a later point for the absolute concentra-

tion calculations, (iii) full water concentration in the volume (WCONC=55556), and (iv) two

soft constraints (NRATIO=2) based on the ratio between right and left resonances of Phe

and Tyr obtained from the phantom calibrations. T1 effects of both water and metabolites

were assumed to be equivalent and therefore were not included in the correction factors.

6.2.5. Calibration and Absolute Quantification

Absolute concentration values were calculated from the quantified spectrum after correction

of water content, T2 relaxation of both water and metabolite signals (hT2), scanner specific

gain calibrations and tissue fractions in the scanned volume. T1 effects of water and

metabolites were assumed to be equivalent and therefore were not included in the correction
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factors. Tissue fractions corresponded to the partial volume of gray matter (pGM ), white

matter (pWM ) and cerebrospinal fluid (pCSF ), in the measured volume and were computed

from the segmented of the T1 weighted (T1w) anatomical volume at the MRS voxel location.

The segmentation process was performed using the FSL software library [42] after skull

removal from the T1w volume. Mean values of all the cohorts were used to correct for the

water content in PCG (pGM = 0.532 ± 0.073, pWM = 0.345 ± 0.067, pCSF = 0.124 ± 0.066)

and PWM (pGM = 0.194 ± 0.09, pWM = 0.774 ± 0.11, pCSF = 0.032 ± 0.025).

The absolute metabolite concentrations per total volume of brain tissue CVtotal
met (mol/L)

were obtained from the following expression:

C
Vtotal
met = RLCM

met × hTissue × hCal
met, (6.1)

where RLCM
met corresponds to the ratio between the area of the metabolite fit and the water

reference signal obtained from LCModel, and hCal
met represents the metabolite specific cor-

rection factor obtained from the calibration scan. The tissue correction factor hTissue was

calculated as follows:

hTissue = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ) (6.2)

where hT2Tissue is the correction factor for the T2 decay of water in the corresponding tissue

type (hT2GM = hT2WM = hT2CSF = 0.646).

The absolute metabolite concentration per volume of brain tissue CVBrain
met (mol/L) was

computed by only including the contribution of the brain tissue volume (VBrain = 1− pCSF):

CVBrain
met = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ) (6.3)

To obtain absolute concentration values per mass of brain tissue CmBrain
met (mol/kg), the

concentration per volume of brain tissue is divided by the brain tissue density (Brain =

1.05kg/L):

hTissue = (0.78 · hT2GM · pGM ) + (0.65 · hT2WM · pWM ) + (1.0 · hT2CSF · pCSF ) (6.4)
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Finally, the residual baseline component from macromolecules and other low concentra-

tion metabolites that contribute toCmBrain
Phe were subtracted from the estimated concentrations.

The offset values were individually computed for PCG and PWM from the difference be-

tween the mean Phe concentration obtained from this technique and the expected mean

concentration of Phe published in the literature [84, 83, 70], obtained from biopsy and

autopsy samples of healthy controls.

6.3. Results

The quantification approach was tested on 68 spectra acquired from PKU subjects and

controls measured at the posterior cingulate gyrus (PCG) and parietal white matter (PWM)

locations. A single spectrum with high SNR and relatively high Phe was generated by aver-

aging all the spectra included in the study after proper phasing and frequency alignment

(Fig. 6.1). This qualitatively showed the performance of the fit and the detection of the

down-field resonances, specifically Phe, NAA and Hcar. The phantom experiments were

performed to obtain calibration factors at both scanners considered for the calculation of

absolute concentrations (Fig. 6.2). The average volume and gain correction factors related

to the specific excitation and refocusing pulses in the sequence and B1+ robustness were

calculated for the four different phantoms. The mean correction factors obtained from the

four acquisitions at each scanner were 1.73 for the Trio measurements and 2.04 for the Skyra

measurements. The fitting results for the up-field and down-field spectra were qualitatively

assessed and compared between PKU subjects and controls (Fig. 6.3). Reduced baseline

influence and relatively flat residuals were observed consistently throughout the cohorts

even for low Phe levels. Moreover, this comparison showed a noticeable increase in the Phe

peak located at 7.4 ppm in PKU subjects compared to controls.

Absolute metabolite concentrations per mass of brain tissue (µmol/kg) were calculated

following the previously described methodology. As a validation step for the quantification

of absolute concentrations, the correction factors were also applied to Cr and NAA, which

are assumed to be stable in this condition. The results were compared to values previously
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Figure 6.3.: Fitting results of the in vivo measurements shown for a PKU subject (left)

and a healthy control (right) at two brain locations, namely the parietal white matter

(PWM) and the posterior cingulate gyrus (PCG). The result of the LCModel fit and the

residuals for both the down-field (Left Fit) and the up-field (Right Fit) signals is shown.

The signal amplitude was normalized to the maximum of the NAA peak and presented

in arbitrary units (a.u.) to allow for comparison between the left and right fits.

reported in the literature [53]. The mean absolute concentration of total NAA was 10.5 ±

0.9 mmol/kg in gray matter and 8.2 ± 0.6 mmol/kg in white matter. For total Cr, a mean

absolute concentration of 7.0 ± 0.5 mmol/kg in gray matter and 4.7 ± 0.3 mmol/kg in

white matter was found for the analyzed subjects.

A sensitivity analysis for the proposed Phe quantification method was performed using

all the 68 acquired spectra (Fig. 6.4). The absolute concentrations ranged between 21 and 728

µmol/kg. Additionally, a mean absolute error of 87 µmol/kg was calculated from the data.

Furthermore, CRLB values were used to define three different categories to standardize

the data analysis and identify outliers without excluding them from the analysis [55]. The
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Figure 6.4.: Sensitivity analysis for the Phe quantification technique shown for all PKU

cohorts and the control group at both PCG (diamond) and PWM (circle) locations.

A total of 68 data points ranging from concentrations below the detection limit (100

µmol/kg) to reliably quantified concentrations up to 700 µmol/kg. (a) Cramer Rao

lower bounds (CRLB) shown relative to the Phe absolute concentration. Three different

CRLB ranges were empirically defined to standardize the analysis of without excluding

data points: (I) reliable quantification of Phe, (II) reliable metabolite detection but unre-

liable quantification and (III) unreliable detection of Phe. (b) Absolute quantification

error measured from the measured value and the CRLB. The plot shows the mean

absolute error and the 2σ limit interval that contains most of the values.
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samples were classified in the following groups: (I) samples with a reliable quantification

of Phe, (II) samples with a reliable detection of Phe but an unreliable quantification and (III)

samples for which both the detection and quantification of Phe was unreliable.

6.4. Discussion

This work presented a methodology to measure Phe in the brain using standard and widely

available methods, namely, PRESS localized sequences and LCModel quantification. The

approach modeled the metabolite components up-field from the water signal using nuclear

magnetic resonance (NMR) simulations to create an accurate representation of the metabo-

lite signal, effectively incorporating prior knowledge to the quantification. The residuals

down-field from the water signal were in the same order of magnitude as the upstream

residuals, showing a relatively small contribution of baseline effects or macromolecules.

The use of independent basis functions for down-field and up-field resonances of Phe

and Tyr avoided errors caused by highly overlapping frequencies up-field from the water

signal that could lead to wrong metabolite concentration estimates. Phe quantification

using LCModel showed to be advantageous as it provides quality measures, i.e. CRLB,

of the reliability and confidence intervals for all quantified metabolite, allowing to get an

objective measure of the sensitivity of this technique. A calibration phantom with known

metabolic concentrations was developed to perform scanner specific calibrations of the

measurement. Despite the phantom calibrations performed and the corrections applied to

the data accounted for the main differences expected in datasets, achieving highly consistent

in absolute concentrations of Phe remains challenging in multi-site studies due to potential

variability of the sequences and MR systems. With the present analysis, a range for the

sensitivity of this quantification technique was determined from absolute concentrations.

A 100% uncertainty in concentration values, which corresponds to a CRLB of 50%, was

assumed to be the detection limit of the technique (Fig. 4, group III). In general, the detec-

tion limit was 100 µmol/kg and only concentrations over 400 µmol/kg could be reliably

quantified. The measured values agree with literature biopsies and autopsy results for both
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controls and PKU subjects [84, 83, 70]. From all the samples analyzed, a mean absolute

error of 87 µmol/kg for volumes of 24 and 27 mL. The scanned volumes corresponded to an

effective excited volume of in the range of 12 to 15.9 mL for the Phe down-field resonances.

Given the reduced Tyr expected in PKU and the low concentration of Tyr in the brain

under normal conditions, reported in the range of 100 to 200 µmol/kg [84, 83, 70], a reliable

detection of this metabolite was not possible with the current methodology. Measurements

of spatial variations of Phe over small volumes can be performed using spatial encoding, i.e.

MR spectroscopic imaging (MRSI) approaches. Moreover, the acquisition presented here,

achieved in a 32-average scan ( 1 min), would allow for reliable dynamic measurements of

Phe concentrations in the brain.

6.5. Limitations

Improvements in the sensitivity of this methodology can be achieved through different

approaches that remain to be explored. First, the measurement of larger volume sizes with

more signal averages can be performed and has shown to be effective for the detection of

Phe [54, 56], however, this reduces the local tissue information and temporal context that

is of interest in PKU studies. Furthermore, up to 2-fold signal increase, can be potentially

achieved by shifting the center frequency of the RF pulses, typically at 2.4 ppm, closer to the

Phe resonance, improving the excitation and refocusing of the down-field resonances. For

sequences that incorporate RF pulses with limited bandwidth, a more robust localization

could be achieved via an interleaved acquisition of one excitation with center frequency

at 3.0 ppm (Cr) followed by one at 7.4 ppm (Phe). Similarly, acquisition sequences that

incorporate adiabatic pulses, such as semi LASER [4, 102, 101], can improve the localization

and measurement of down-field resonances by reducing the CSDE with no SNR loss. Finally,

Phe quantification at higher magnetic fields, e.g. 7T, would benefit from higher SNR and

spectral dispersion, allowing to decouple specific metabolites from the baseline.
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7. Conclusion

In the work described in this thesis, scientific contributions in Magnetic Resonance Spec-

troscopy (MRS) and Spectroscopic Imaging (MRSI) were presented. As described in the ini-

tial chapters, the physical principles, hardware and clinical applications of these techniques

have fundamental challenges that may benefit from novel methodologies and algorithms.

Mainly, both present a potential clinical value, which motivates for developments that

facilitate and broaden their use in the medical practice. Moreover, these modalities face

some of the common challenges of medical imaging technologies, such as the need for faster

more robust acquisitions with improved sensitivity that can give meaningful diagnostic

insight to clinicians.

In the field of MRSI, developments presented in this work addressed the main limitations

of the modality in three major categories: (i) improving SNR and spectral quality through

novel reconstruction and processing techniques, (ii) achieving highly accelerated scans with

robust acquisition techniques and (iii) enabling high-resolution examinations exploiting the

increased sensitivity at ultra-high magnetic fields.

First, a methodology for fast 1H MRSI of the brain with improved stability, enhanced

SNR, and reduced spectral artifacts was designed (Chapter 3). The method achieved high

acceleration factors (R>5) using echo-planar spectroscopic imaging (EPSI). Furthermore, a

reconstruction framework with high-order phase correction allowed to effectively correct for

phase distortions, caused mainly by B0 inhomogeneities, B0 drift, eddy currents, and system
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vibrations. The proposed acquisition sequence measured a water-unsuppressed reference

scan interleaved and the metabolite signal (i.e. water suppressed) in each phase encoding.

This maximized the temporal and spatial correlation between both MRSI datasets, thus

improving robustness to instabilities and motion. The described approach demonstrated

substantial SNR enhancement (3-4 fold), spectral linewidth improvements, and an effective

artifact removal with a single correction step without requiring extra measurements. More-

over, the acceleration factors achieved were comparable to undersampled acquisitions and

parallel imaging reconstructions. In this way, smaller voxel sizes with improved metabolite

signal can be achieved in a short acquisition (<5 min), enabling reliable metabolite mapping

at 3T.

Second, a method for robust high-resolution 1H MRSI scans optimized for ultra-high field

(7T) was introduced (Chapter 4). Brain MRSI measurements with high spectral quality were

acquired in clinically feasible scan times (5 min) and within SAR limits. Moreover, a phase

correction (PC) algorithm for symmetric EPSI enabled high bandwidth scans avoiding the

need for a separate reconstruction of the even and odd lines of the trajectory. Spectral

ghosting was effectively removed with results comparable to performing eddy current cor-

rection (ECC), which requires a longer fully-encoded water reference scan. High-resolution

(0.25–0.375 mL) metabolite ratio maps were obtained with the presented methodology. The

correlation of the reconstructed maps with anatomical structures demonstrated the diagnos-

tic potential of the technique to differentiate tissues based on their metabolic composition.

Finally, advances towards an improved quantification of the metabolic composition

of brain tissue in MRS have been presented. On one side, machine learning algorithms

were implemented (Chapter 5) to achieve scans with high accuracy, reproducibility, and

reduced human errors. The method estimated the partial volume of tissues present in

an MRS scan, which is crucial for proper correction of the concentrations measured at

different brain regions. The proposed simplified pipeline showed its potential to scale

the use of reliable MRS scans. On the other side, the measurement and quantification of

low-concentration downfield metabolites present in a proton spectrum were demonstrated

using standard sequences and widely available software (Chapter 6). This methodology
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was validated in the specific field of metabolic disorders, specifically for the monitoring of

brain phenylalanine in subjects with phenylketonuria.

This work described solutions to current clinical challenges and demonstrated how

established applications, like MRS and MRSI, can benefit from novel hardware and software

technologies. The ultimate goal is to push forward the use of these modalities in clinical

applications where they can provide value and positively impact patient care.
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[80] Gülin Öz, Jeffry R. Alger, Peter B. Barker, Robert Bartha, Alberto Bizzi, Chris Boesch,

Patrick J. Bolan, Kevin M. Brindle, Cristina Cudalbu, Alp Dinçer, Ulrike Dydak,
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Franklyn A. Howe, Petra S. Hüppi, Ralph E. Hurd, Kejal Kantarci, Dennis W. J.

118



Bibliography

Klomp, Roland Kreis, Marijn J. Kruiskamp, Martin O. Leach, Alexander P. Lin, Pe-
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