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Abstract

Physical human-robot interaction plays a key role in many envisioned future applications,
e.g., in industrial and medical domains. In industrial domains, it can facilitate cooperative
manipulation tasks, in which humans and robots cooperate in the joint manipulation of
heavy objects. In the medical domain, robotic assistance can reduce the effort of strenuous
and repetitive activities during rehabilitation and care. Not only does this decrease the
physical stress of the physiotherapist or the caretaker, systematic variation of the effort
distribution can provide assist-as-needed support to facilitate learning. Immediate human
feedback behavior in response to unknown dynamics, e.g., due to physical interaction with a
robotic partner, is embodied by human impedance control. The respective feedback dynamics
are defined by the linear impedance components of inertia, damping, and stiffness, which
guide the limbs back towards the unperturbed states. Knowledge of impedance components
is crucial for stability assessment, based on which the robot behavior can be defined to
guarantee safety and comfort of the human. Furthermore, it allows for the approximation of
the desired kinematic state, which can be used to define anticipatory control strategies that
provide intuitive and efficient physical human-robot interaction.

The present thesis provides a comprehensive composition of instruments and insights to
facilitate the inclusion of human impedance characteristics in the control design process for
physical human-robot interaction. It focuses on three relevant open challenges in regard to
impedance information. First, it addresses the information exploitation, which requires a
model that is able to utilize a priori impedance knowledge to produce reliable predictions of
the interaction dynamics. Second, it approaches the information acquisition, which requires
an impedance estimation method that is compatible with constraints common to realistic
physical human-robot interaction scenarios. Third, it investigates the information alteration
by analyzing impedance modulation strategies of physically interacting individuals in human
dyads that cooperate in the execution of a shared task.

The major contributions of this thesis address the mentioned challenges. Regarding the
information exploitation, we derive a human motor behavior model that explicitly includes
an impedance control structure. By assuming Gaussian Process priors for the underlying
desired trajectory and the impedance components, we are able to construct compound kernels
of a multi-layered Bayesian model that allow for exploitation of a priori knowledge of human
impedance characteristics for regression of human motor behavior based on inference of
human motor intention. Regarding the information acquisition, we apply dynamic regressor
representation and a limited estimation interval duration to obtain an impedance estimation
method that does not include voluntary feedback behavior common to realistic physical
human-robot interaction scenarios. We apply force perturbations that are designed such that
the respective unperturbed states can be estimated through isolation of the evoked feedback
jerk frequency content with a high pass filter. With respect to the information alteration,
we demonstrate that physically interacting individuals that cooperate in the execution of
a shared task modulate muscle coactivation based on their respective levels of uncertainty
regarding the shared task and the partner. We describe the motor behaviors of the two
individuals, both during individual and dyadic task execution, with a neuromechanical model
that includes a coactivation modulation model. In this thesis, all derived methods and models
are validated in simulations and experiments carried out with human participants.
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Zusammenfassung

Physische Mensch-Roboter Interaktion spielt in vielen zukunftsrelevanten Anwendungen eine
essentiell wichtige Rolle, z.B. im industriellen und im medizinischen Bereich. Im industriellen
Bereich konnen kooperative Manipulationsaufgaben, welche die gemeinsame Manipulation
von Objekten durch Mensch und Roboter beinhalten, ermoglicht werden. Im medizinischen
Bereich kann der Aufwand fir korperlich anstrengende, repetitive Tatigkeiten im Kontext
von Rehabilitation und Pflege reduziert werden. Hierdurch wird nicht nur die kérperliche
Beanspruchung des Physiotherapeuten bzw. der Pflegekraft reduziert, durch systematische
Variation der Aufwandsverteilung kann zusétzlich bedarfsgerechte Patientenunterstiitzung
ermoglicht werden. Die unmittelbare menschliche Reaktion auf unbekanntes Verhalten, z.B.
aufgrund von physischer Interaktion mit einem Roboter, wird durch menschliche Impedanz-
regelung verkorpert. Die zugehorigen linearen Impedanzkomponenten Masse, Démpfung und
Steifigkeit bewirken, dass die Bewegung zurtick in Richtung des ungestorten Zustands gelenkt
wird. Die Kenntnis dieser Komponenten ist Voraussetzung fiir Stabilitdtsanalysen, auf Basis
welcher das Roboterverhalten so definiert werden kann, dass die Sicherheit des Menschen
garantiert wird. Zuséatzlich kann der gewiinschte kinematische Zustand approximiert werden,
welcher mit antizipierenden Roboterregelungen kombiniert werden kann, um intuitive und
effiziente physische Mensch-Roboter Interaktion zu gewahrleisten.

Diese Thesis beinhaltet Methoden und Erkenntnisse, die die Inklusion von menschlichen
Impedanzeigenschaften im Kontext der Reglerentwicklung fiir physische Mensch-Roboter
Interaktion ermoglichen. Es werden drei relevante offene Herausforderungen in Bezug auf die
Impedanzeigenschaften behandelt. Zunéchst wird die Informationsverwertung thematisiert,
fiir die ein Modell benotigt wird, welches mittels a priori Impedanzkenntnissen zuverlédssige
Préadiktionen der Interaktionsdynamik liefern kann. Anschlieend wird die Informations-
gewinnung behandelt, fiir die eine Impedanzschétzungsmethode benotigt wird, die mit den
Randbedingungen von realistischer physischer Mensch-Roboter Interaktion kompatibel ist.
Zuletzt wird die Verdnderung der Informationen anhand der Impedanzmodulation wahrend
physischer Interaktion von kooperierenden menschlichen Dyaden untersucht.

Die Hauptbeitrage dieser Thesis beziehen sich auf die drei genannten Herausforderungen.
Fir die Informationsverwertung wird ein Verhaltensmodell inklusive expliziter Impedanz-
regelungsstruktur entwickelt. Die Impedanzkomponenten und die Wunschtrajektorie werden
durch Gaufprozesse modelliert, welche die Grundlage fiir ein mehrschichtiges Bayes’sches
Modell bilden. Dieses Modell integriert a priori Impedanzkenntnisse um Verhaltensregression
basierend auf Intentionsinferenz zu ermoglichen. Fiir die Informationsgewinnung wird mittels
dynamischem Regressor und begrenztem Schétzintervall eine Impedanzschétzungsmethode
entwickelt, welche den Ausschluss von freiwilligem Feedbackverhalten garantiert. Es werden
Kraftstorungen verwendet, die so konzipiert sind, dass die zugehorigen ungestorten Zustande
durch Isolation der resultierenden Feedback Jerk Frequenzinhalte geschatzt werden konnen.
Beziiglich der Informationsverdnderung wird gezeigt, dass physisch kooperierende Menschen
ihre Muskelkokontraktionen entsprechend der Unsicherheit hinsichtlich der gemeinsam zu
bewiltigenden Aufgabe und des Partners modulieren. Das Verhalten der Kooperierenden,
sowohl wahrend einzelner als auch gemeinsamer Ausfithrung der Aufgabe, wird mittels eines
neuromechanischen Modells beschrieben, welches ein Modell der Kokontraktionsmodulation
enthélt. Alle in dieser Thesis entwickelten Methoden und Modelle werden in Simulationen
validiert und in Experimenten mit menschlichen Teilnehmern evaluiert.
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Notation

In this work, explicit function dependencies are omitted whenever clear from the context in
order to improve readability.

Acronyms and Abbreviations

AIC Akaike information criterion
BIC Bayesian information criterion
BIP base inertial parameter

CNS central nervous system

DoF degrees of freedom

ECRL extensor carpi radialis longus

EMG electromyography
EMV expected mean value
ERD Erden and Billard

ESD energy spectral density
FCR flexor carpi radialis
FJI feedback jerk isolation

GOM Gomi and Kawato

GP Gaussian process

HHI human-human interaction
HRI human-robot interaction
LQR linear quadratic regulator

MSLL mean standardized log loss
NAE normalized absolute error
NRMSE normalized root mean square error

PD proportional derivative
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Notation

RMSE  root mean square error

RSS residual sum of squares

SD standard deviation

SE squared exponential

SEM standard error of the mean
SMSE standardized mean square error

Experimental Conditions

CcC subject clean - partner clean condition
CN subject clean - partner noisy condition
NC subject noisy - partner clean condition
NN subject noisy - partner noisy condition
S1 solo condition before interaction trials
S2 solo condition after interaction trials
SC solo clean condition

SN solo noisy condition

Mathematical Conventions

Indices as well as scalar variables and functions are denoted by lower case italic characters,
while vector-valued variables and functions are denoted by lower case bold italic characters.
Matrices are denoted by capital italic characters.

Operators

estimated value

partner value

second time derivative

(-
(-
(-
(-

)
)
) first time derivative
)

(+) third time derivative
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Notation

inverse
transpose
unperturbed value

test value

|A] absolute value

[|All norm

Cov[] covariance

A(Y) variational variable
diag{-} diagonal matrix
E[] expectation

GP(-) Gaussian process
N() Gaussian distribution
o) complexity

P(-) probability

Var|:]| variance
Subscripts

)o

CA
d

ext

FBi
FBm
FBr
FBv

(.
()
()
()
()
()rB
()
()
()
()
()

FF

initial value

associated with admittance control

associated with muscle coactivation

desired value

associated with external dynamics

associated with feedback behavior

associated with involuntary feedback behavior
associated with mechanical feedback behavior
associated with reflexive feedback behavior
associated with voluntary feedback behavior

associated with feedforward behavior

X



Notation

h associated with haptic information
HP associated with high pass filter

hu associated with human dynamics

imp associated with impedance control
int associated with interaction dynamics
A variable in muscle space

max maximum value

0 normalized value

q variable in joint space

RA associated with reciprocal muscle activation
SE associated with squared exponential kernel
sim associated with simulation implementation
¢ associated with target dynamics

v associated with visual information

Ve associated with virtual coupling

W associated with wrist dynamics

()
()
()
()
()
()
()
()
(*)pert associated with perturbation
()
()
()
()
()
()
()
()
()

w variable in Cartesian space

Sets

r set of task-specific input parameters
) set of perturbation angles

v set of energy spectral densities

Uit set of interaction force observations
E,2 set of input points

y set of noisy output observations

N+ set of positive natural numbers

R set of real numbers



Notation

Variables and Functions

a muscle activations

A regression matrix (Chapter 4), state matrix (Chapter 5)
« parameter

b input vector

153 parameter

C Coriolis/centrifugal matrix

d damping

D damping matrix

D damping parameter matrix

) delay

e error

Eest estimation discrepancies

€dyn dynamic discrepancies

f frequency

fe cut-off frequency

fs sample frequency

G Kalman gain matrix

0% task-specific input parameters
h number of points / samples
H observation matrix

Terr kinematic error function

Mint physical interaction function
0 tracking task angle

1 index

I identity matrix

L moment of inertia

T moment of inertia with parallel axis component

el



Notation

Jj index

J Jacobian matrix

k stiffness

K stiffness matrix

K stiffness parameter matrix

K covariance function (Chapter 3), sample index (Chapter 5)
l length of limb

le length to center of gravity of limb

L lower triangular matrix

A muscle lengths (Chapters 3 and 4), control gain vector (Chapter 5)
A length scale matrix

m inertia

M inertia matrix

I mean function / expected mean value

n number of dimensions

N observation noise covariance matrix

v observation noise

£, & input states

P number of parameters

P, D unknown parameter vector for linear least squares

Pu1s Pu unknown parameter vector for non-linear least squares
P estimate covariance matrix

7y standard inertial parameter vector

T base inertial parameter vector

e reduced inertial parameter vector

q arm configuration in joint space

Q state weight matrix

r input weight

Xii



Notation

r,r output vector

P perturbation function (Chapter 4), cost function (Chapter 5)
o standard deviation

o? variance

t time

ts sample time

Test duration of estimation interval

Troov duration of movement

Thert duration of perturbation

T torques

u forces

v neural noise

w process noise

Q process noise covariance matrix

0] perturbation angle

T arm configuration in Cartesian space

X, X independent variable matrix

X muscle tensions (Chapters 3 and 4), state vector (Chapter 5)
Y noisy output observation

Y standard regressor matrix

Y base regressor matrix

Y, reduced regressor matrix

(7 energy spectral densities

VYpp energy spectral densities of feedback behavior

VYp energy spectral densities of perturbed movements
Yup energy spectral densities of unperturbed movements
z noisy state observation
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1.

Introduction

Technological advancements and current developments in robotics research can provide
direct assistance through the physical interaction of humans and robotic systems. Due to the
versatile characteristics and capabilities of state-of-the-art robotic systems, the incorporation
of physical human-robot interaction (HRI) can have beneficial implications on a multitude
of application domains, ranging from agricultural and industrial manufacturing domains to
medical and domestic service domains. In industrial manufacturing domains, the advantages
of physical HRI can be exploited in cooperative manipulation tasks, in which humans and
robots cooperate in the joint manipulation of an object, e.g., large construction equipment
or heavy cargo material. In this type of application, the robot can account for the bulk of
the necessary effort, allowing the human to focus on his cognitive capabilities and adopt a
guiding role within the human-robot team [I,2]. In the medical domain, the incorporation
of physical HRI in rehabilitation and physical training results in similar scenarios. In these
types of applications, systematic variations of the effort distribution between the human
and the robot can be used to adapt the amount of assistance during rehabilitation routines
and to execute individual configurations of physical training protocols [3,4]. Furthermore,
with the robot accounting for the effort of assistance in strenuous and repetitive activities,
physical stress and fatigue of the physiotherapist or the trainer are substantially decreased.
In domestic service domains, the advantages of physical HRI can be exploited in a variety
of applications, e.g., in the form of mobility assistance robots that facilitate movements of
elderly and physically impaired individuals [5,[6] or in the form of personal support robots
that execute routine tasks and mundane chores in domestic environments [7,[8]. All of these
examples of physical HRI have in common that the respective control strategies are designed
to provide efficient and intuitive interaction, during which instabilities must be avoided to
guarantee safety and comfort of the human. Due to the physical coupling, fulfillment of these
objectives requires consideration of human motor control, especially the immediate feedback
response to the robot behavior, in the control design process.

In general, human motor behavior is controlled by the central nervous system (CNS), which
instantiates desired motor behavior through neural signals that regulate muscle activations
at the limb joints [9]. During execution of a desired motor task, the joint torques produced
by the neuromuscular system are composed of a feedforward and a feedback component [10].
A commonly accepted theory of sensory-motor control proposes that the motor commands
responsible for the generation of the feedforward component are appropriately scaled by the
CNS using internal models [11]. These internal models are acquired through experience and
contain inverse dynamics representations of the musculoskeletal system and the interaction
with the external environment [I2]. As the feedforward component is calculated a priori,
i.e., before the initialization of the desired motor behavior, it cannot account for unknown
dynamics that arise during the execution of the desired motor task, e.g., due to incomplete or
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| Deviations due to unknown dynamics |

v Y v
Mechanical Reflexive Cognitive
l j—
=
Involuntary Voluntary

v v

| Feedback torques in response to unknown dynamics |

Figure 1.1.: Classification of mechanical, reflexive, and cognitive feedback in response to
deviations due to unknown dynamics in involuntary and voluntary feedback.

incorrect internal models [I3[14], inherent neural noise in the sensory-motor system [I5,[16],
or unexpected external perturbations [17,18]. Therefore, the occurrence of such unknown
dynamics results in deviations from the desired kinematic state [19]. In addition to effects
of the inertial properties of the limbs, these deviations are accompanied by restoring torques
that are directed towards the unperturbed trajectory and are generated by a combination of
peripheral neuromuscular properties of the limbs and motor commands from the CNS [20].
These restoring torques represent the previously mentioned feedback component and can
be separated into effects of mechanical viscoelastic properties of the muscles (mechanical
feedback), reflexive feedback, and cognitive feedback [2I]. Apart from mechanical feedback,
the respective torques are produced at different task-dependent delays. As cognitive feedback
possesses the longest delays (in the order of 100 ms [22]), it may be too slow to ensure proper
compensation of unknown dynamics [23]. Therefore, in unknown or unpredictable situations
such as the physical interaction with a robotic system or a human partner, the CNS relies on
mechanical and reflexive feedback to guarantee stable and accurate execution of the desired
motor task [24]. In this work, all cognitive feedback at supraspinal level is referred to as
voluntary feedback and the combined effects of all feedbacks that possess shorter delays than
voluntary feedback are grouped into involuntary feedback (see Fig. [LT]).

A large body of evidence suggests that the restoring torques due to involuntary feedback
are well-described by a linear system composed of joint damping and joint stiffness [25H27].
The dynamics defined by these two components combined with the inertial properties of the
limbs represent those of an impedance control model, in which an impedance that consists
of inertia, damping, and stiffness elements tracks the unperturbed trajectory [28]. Due to
cross-bridge muscle mechanics, both joint damping and stiffness depend on joint angles and
angular velocities. In addition to these two kinematic dependencies, the CNS is able to
actively modulate the viscoelasticity of the limb through coactivation of antagonistic pairs
of muscles at the respective limb joints [29,30]. Multiple studies show that kinematic errors
due to unknown dynamics that are not accounted for by the feedforward component are
counteracted by increases in joint stiffness, which are achieved through suitable increases in
agonist-antagonist muscle coactivation [31,132]. If these unknown dynamics are predictable
and therefore also learnable, they can be incorporated in the inverse dynamics representations
of the internal models and the corresponding motor commands that are responsible for the
generation of the feedforward component [33,34]. As this continuous adaptation of the



Figure 1.2.: Examples of active exoskeletons: a) shoulder-elbow exoskeleton for upper-limb
neurological rehabilitation in [43], b) anthropomorphic, seven degrees of freedom,
powered arm exoskeleton in [44], ¢) upper-body rehabilitation exoskeleton with
an anatomical shoulder mechanism in [45].

internal models progresses and kinematic errors due to unknown dynamics decrease, muscle
coactivation is gradually decreased to minimize metabolic cost [35,[36]. If the unknown
dynamics are unpredictable and therefore also unlearnable, muscle coactivation remains at
an increased level [3738]. This correlation also applies to the unpredictable effects of inherent
neural noise in the sensory-motor system [39,[40]. As the increase in muscle coactivation is
positively correlated with the kinematic error, desired motor behaviors with higher accuracy
requirements are accompanied by larger increases in muscle coactivation [41}[42].

Human impedance control plays a key part in the control of human motor behavior, as it
defines the immediate feedback behavior to dynamics that cannot be explicitly considered in
the a priori optimization of the desired motor behavior. During physical HRI, the impedance
components define the immediate feedback behavior to unknown or unpredictable robot
behavior and therefore represent an essential element for the control design process.

Knowledge of the impedance components is crucial for the assessment of stability, based
on which the robot behavior can be adapted to guarantee safety and comfort of the human.
Assessment of stability is especially relevant for active exoskeletons, which can be used for
neuromuscular rehabilitation as well as general assistance in the performance of strenuous,
physically demanding tasks. Figure shows three examples of the multitude of active
exoskeletons that are currently in development. As these systems are directly connected to
the limbs, instabilities and ill-matched movements must be avoided at all costs. Due to the
direct physical coupling, the necessary assessment of stability must take into account both
the dynamics of the active exoskeleton as well as the interaction behavior of the limbs, which
includes the immediate feedback behavior defined by the impedance components.

In addition to this important aspect for HRI control design, knowledge of the impedance
components also enables the approximation of the desired kinematic state, which represents
the human motor intention. Based on this information, the performance of the interaction
can be improved through the calculation of anticipatory control signals. Figure shows
two examples of physical HRI scenarios, which would greatly benefit from such anticipatory
control signals. Both during the joint manipulation of an object as well as during the joint
employment of a tool, planning the robot behavior in accordance with the desired movement
of the human partner can lead to substantial improvements in efficiency and intuitiveness of
the interaction. Thus, the estimation of the human motor intention based on the impedance
components would represent a great step towards seamless physical HRI.
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Figure 1.3.: Examples of physical collaboration of human and robot: a) joint manipulation
of an object b) joint employment of a tool in a dyadic sawing task in [46].

The CNS is able to simultaneously modulate the impedance components joint damping and
stiffness through appropriate coactivation of antagonistic pairs of muscles at the respective
limb joints. By exploiting this capability, humans are able to adapt their motor behavior
during physical cooperation to efficiently achieve shared objectives, independent of whether
they are interacting with an inferior or a superior partner. Therefore, the investigation
of impedance modulation strategies during physical human-human interaction (HHI) can
provide novel insights for optimal control of impedance components during physical HRI.
When transferred to the development of impedance control schemes for robotic end-effectors,
these insights are valuable in two regards. Firstly, they will allow for anticipation of changes
in impedance components on the side of the human partner. Secondly, they will allow for an
interpretation of what this change in impedance means in terms of the understanding that
the human partner has of his/her contribution to the interaction with the robot.

The advantageous aspects of the consideration of human impedance characteristics in the
control design process for physical HRI are accompanied by multiple relevant open challenges,
some of which are addressed in this thesis and introduced in detail in the following section.

1.1. Challenges

In the present thesis, we address three crucial open challenges in regard to the consideration
of human impedance characteristics in the control design process for physical HRI. First of all,
we focus on the information exploitation, i.e, the development of a means to enable effective
utilization of a priori impedance knowledge and exploitation of its advantageous aspects.
Secondly, we approach the information acquisition, i.e., the development of a method that can
provide us with suitable impedance knowledge for realistic physical HRI scenarios. Lastly,
we analyze the information alteration by investigating the open research question of how
humans naturally modulate their impedance when interacting with a partner in a shared
cooperative task. The novelties and open problems that characterize each of these three
challenges are discussed in detail in the following paragraphs.

Effective exploitation of impedance information

Due to the complexity of human motor behavior, i.a., caused by the ambiguity in sensory
processing, the redundancy of the musculoskeletal system, and the inherent neural noise,
in human motor behavior modeling for HRI applications, sensory-motor control is generally
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treated as a “black box” system [47]. For this system, inputs (e.g., limb configurations
and task-specific parameters) and outputs (e.g., interaction torques) are deterministically
or stochastically mapped onto a model without additional constraints. Due to the lack
of system structure, the resulting models cannot provide information on intrinsic states.
The incorporation of impedance knowledge could provide insights on such an intrinsic state.
Specifically, it could allow for approximation of the human motor intention in the form
of the desired kinematic state. Despite this immense potential, the exploitation of a priori
knowledge about the impedance control model and the corresponding impedance components
in human motor behavior modeling as well as the approximation of the desired kinematic
state remains a significant open challenge.

Acquisition of suitable impedance information

While the involuntary feedback torques are well-described by a linear system composed of
the impedance components joint damping and stiffness [26], the voluntary feedback torques,
which are generated based on higher-order cognitive processes, may take on more complex
task-specific forms that cannot be accurately represented by such a general formulation [22].
Consequently, accurate estimation of the impedance components requires separation of
involuntary and voluntary feedback. Furthermore, a suitable estimation method must also
provide accurate isolation of feedback behavior from feedforward behavior, as estimation
errors in the feedback behavior directly influence the estimation accuracy. To the best of
the author’s knowledge, existing estimation methods are not suitable for the estimation of
impedance components in experiments that emulate realistic physical HRI scenarios, either
due to inappropriate assumptions or methodological limitations. Thus, the development of
a suitable impedance estimation method remains a significant open challenge.

Investigation of impedance information alteration

Humans are capable of adapting their motor behavior during physical HHI to efficiently
achieve shared objectives. From carefully supporting a child in its first steps to seamlessly
coordinating such complex interactions as acrobatics, humans precisely regulate exchanged
forces and skillfully modulate limb dynamics to enable intuitive and efficient cooperation.
Modulation of limb dynamics, more specifically, modulation of the impedance component
joint stiffness, is achieved through modulation of muscle coactivation [25,29]. Despite the
existence of comprehensive insights concerning non-physical and physical interaction with
the environment [35,/48], little is currently known about modulation of muscle coactivation
during physical HHI. A previous study investigated muscle effort adaptation to modified
connection rigidity between two physically interacting partners, but did not study how muscle
effort changes with the sensory information perceived by each partner. Furthermore, it did
not differentiate between reciprocal muscle activation and muscle coactivation [49]. Thus,
the analysis of muscle coactivation modulation strategies during physical HHI remains an
open and challenging research question.



1 Introduction

1.2. Main Contributions and Outline

The present thesis provides essential instruments and insights for systematic and efficient
inclusion of human impedance characteristics in the control design process for physical HRI.
The structure of the thesis is as follows:

Chapter 2l introduces related background information and establishes relevant correlations
of neuromechanics and motor control by deriving a general model of human motor behavior
that incorporates an impedance control model. In order to optimally tailor the introduction
of this related background information to the contents of the following chapters, this general
model is formulated for the multi-joint human arm, which consists of the complete upper
limb including the shoulder joint. The following three chapters each individually address
one of the three challenges discussed in Section [LII In Chapter Bl we present a novel
method for modeling human motor behavior of the multi-joint human arm that explicitly
incorporates an impedance control model. By adopting a Bayesian setting and assuming
Gaussian process (GP) priors for the impedance components and the desired trajectory,
we are able to exploit a priori impedance knowledge for the regression of human motor
behavior and the estimation of human motor intention. In Chapter [, we present a novel
method for the estimation of the impedance components of the multi-joint human arm during
movement. By limiting the duration of the estimation interval to guarantee the exclusion
of voluntary feedback and estimating the feedback behavior via feedback jerk isolation, we
ensure that the method can be applied to realistic physical HRI scenarios. In Chapter [, we
analyze muscle coactivation modulation strategies in cooperative physical HHI. We conduct
an experiment to observe how different levels of tracking performance affect modulation of
muscle coactivation in two physically coupled individuals that cooperate on a shared tracking
task and evaluate multiple variations of a muscle coactivation modulation model. Chapter
concludes this thesis and discusses possible future works and research directions.

At the beginning of each chapter, the related work and open problems are presented.
At the end of each chapter, the obtained results and developed methods are discussed and
summarized. In the remainder of this section, the contributions of each individual chapter,
with respect to the challenges presented in Section [T are outlined in more detail.

Chapter 3: Bayesian Impedance Model for Human Motor Behavior Prediction

In this chapter, we present a method for modeling human motor behavior in physical and
non-physical HRI that explicitly incorporates an impedance control model. Without loss
of generality, particular focus is placed on the derivation of a model for physical HRI, as it
represents the more challenging problem. We consider complex movements of the multi-joint
human arm along a given trajectory and approximate the lower dimensional manifolds of
human motor behavior by an impedance control model that counteracts deviations from a
desired trajectory. We adopt a Bayesian setting by assuming GP priors for the impedance
components and the desired trajectory. This enables the exploitation of a priori human arm
impedance knowledge for the regression of human motor behavior. Moreover, it enables the
estimation of human motor intention in the form of a desired trajectory and corresponding
confidence levels. We present an overview of estimated human arm impedance characteristics
in the literature and discuss proper parameterization of the GP priors. The model is validated
with simulated data of a neuromechanical model of the human arm. The direct control over
simulated intrinsic states, namely the impedance components and the desired trajectory,
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enables both validation of intention estimation capabilities as well as assessment of effects of
GP prior parameterization. Superior prediction performance is demonstrated with respect
to a naive GP prior. An experiment with human participants is conducted to analyze effects
of training data sparsity and demonstrate generalization capabilities.

The results in this chapter have partially been published in [50,51]. The contents of [50],
which was authored by J.R. Medina, S. Endo, and S. Hirche, represent a preliminary and
particulate variation of the more comprehensive results in [51], which was authored by
J.R. Medina, H. Borner, S. Endo, and S. Hirche, and to which J.R. Medina and H. Borner
contributed equally. In [51] and in this thesis, we demonstrate advanced theory by refining
the derivation of the general model of human motor behavior, elaborating the construction
of the compound kernels of the Bayesian model, and generalizing the obtained results to
non-physical HRI. We facilitate proper application of the model by presenting application
guidelines, which include an overview of estimated human arm impedance characteristics
in the literature, implications for the parameterization of the GP priors, and pseudocode
application instructions. In order to consider the highly task-specific nature of human motor
behavior, we complement a validation of a time-dependent desired trajectory. Furthermore,
an experiment with human participants is performed to assess the applicability to real data,
the generalization capabilities of the model, and the effects of training data sparsity.

For copyright reasons, all of the figures and tables of [51] include the IEEE copyright line
(© 2019 IEEE) and the publication details of [51] are listed here in their entirety:

[51] J. R. Medina*, H. Borner*, S. Endo, and S. Hirche, “Impedance-based gaussian
processes for modeling human motor behavior in physical and non-physical interaction,”
IEEE Transactions on Biomedical Engineering, vol. 66, no. 9, pp. 2499-2511, 2019.
(*these authors contributed equally to this work)((© 2019 IEEE)

Chapter 4: Impedance Estimation for physical HRI via Feedback Jerk Isolation

In this chapter, we present a method for the estimation of the impedance components of the
multi-joint human arm during movement. We apply force perturbations in order to evoke
deviations during two-dimensional point to point arm movements. These perturbations are
designed such that the dominant frequencies of the jerk in the evoked feedback behavior lie
above those of the unperturbed movements. Thus, the feedback behavior can be isolated by a
high pass filter. The duration of the estimation interval is limited to guarantee the exclusion
of voluntary feedback. Dynamic regressor representation of the rigid body dynamics yields
a model that is linear in the impedance components in joint space. The constant values of
the inertial parameters are estimated in a static posture maintenance task and subsequently
used in order to estimate the remaining impedance components in a dynamic movement task.
Both the feedback jerk isolation and the impedance estimation are validated with simulated
data of a neuromechanical model of the human arm. We compare the validation results to
those obtained by application of the methods presented in [52] and [53]. In the validation
of the feedback jerk isolation, we additionally analyze the effects of different movement
velocities as well as different frequencies and amplitudes of neural noise. Finally, we perform
an extensive evaluation of the applicability of the method to real data based on an experiment
with human participants. It includes an analysis of the effects of different durations of the
estimation interval. The results in this chapter have partially been published in [54,[55].
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Chapter 5: Coactivation Modulation Model for Cooperative Physical HHI

In this chapter, we reveal novel insights regarding modulation of muscle coactivation in
cooperative physical HHI. We perform an experiment, in which two individuals use wrist
movements to track pseudo-random movements of a shared target, while physically coupled
by a virtual spring. Each individual is provided with distinct visual feedback and cannot
see the visual feedback of the partner. During the course of the experiment, the individuals
each experience two different levels of visual noise in their respective visual feedback. Thus,
we are able to observe how different levels of tracking performance due to different levels
of visual noise, affect modulation of muscle coactivation. In order to describe the motor
behavior adaptation of the individuals, both during individual and dyadic task execution,
we extend the physiological representativeness of the neuromechanical goal sharing model
of [49] and propose three different variations of a muscle coactivation modulation model.
We compare the functionality of the three different variations by implementing a simulation
of the conditions in our experiment. The evaluation of the experiment shows that, when the
individual experiences low quality visual feedback with visual noise, there is little difference
in muscle coactivation between the interactions with different partners. In contrast, when the
individual experiences high quality visual feedback without visual noise, muscle coactivation
is significantly larger in the interaction with an inferior partner than in the interaction with
an equal partner. The evaluation of the simulated data demonstrates that the coactivation
modulation model is able to accurately reproduce modulation of coactivation, both during
individual as well as dyadic task execution. Furthermore, the analysis of the interaction trials
demonstrates that proper functionality of the model requires the inclusion of an interaction
function that models the explicit change in coactivation due to physical interaction with the
partner. Correlation of this interaction function with the amount of visual noise in the visual
feedback of the individual, i.e., the uncertainty with respect to the tracking task, allows for
accurate representation of the experimental results. The results in this chapter were partially
elaborated in cooperation with S. Endo and S. Hirche (Chair of Information-oriented Control,
Department of Electrical and Computer Engineering, Technical University of Munich,
Munich, Germany), G. Carboni, X. Cheng, and E. Burdet (Human Robotics Group,
Department of Bioengineering, Imperial College London, London, United Kingdom), and
A. Takagi (NTT Communication Science Laboratories, Kyoto, Japan). A publication that
includes the results in this chapter has recently been submitted [56].
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The provision of a comprehensive composition of instruments and insights that facilitate
systematic and efficient consideration of human impedance characteristics in the control
design process for physical HRI requires suitable models of human motor behavior that place
specific emphasis on the impedance control model and the associated impedance components.
This chapter introduces the necessary background information and establishes the relevant
neuromechanical correlations for the development of such models of human motor behavior.
In order to optimally tailor the presentation of the necessary background information and
the relevant neuromechanical correlations to the contents of the subsequent chapters, the
developed models are derived for the multi-joint human arm, which consists of the complete
upper limb including the shoulder joint. Moreover, it is assumed that during physical HRI
the robot directly assists the human as he/she tightly grasps the robot end-effector and
executes a desired motor behavior, e.g., for upper limb rehabilitation [57H59)].

This chapter is structured as follows: In Section 2], we present the neuromuscular rigid
body dynamics of the multi-joint human arm. Specific focus is placed on the composition of
the muscle activities and the internally generated joint torques that instantiate the desired
motor behavior. In Section 2.2 we focus on the involuntary feedback torques and derive an
impedance control model that explicitly contains the impedance components joint damping
and joint stiffness. This model serves as the basis for the estimation of impedance components
for realistic physical HRI in Chapter[dl In Section[2.3] we shift focus towards the feedforward
torques and use internal models to obtain a general model of human motor behavior during
physical HRI. Additionally, we describe adjustments for non-physical HRI. In Section 2.4]
we transform the two model variations to Cartesian space. The resulting Cartesian space
representations serve as the basis for the inclusion of impedance knowledge in human motor
behavior modeling in Chapter The necessary background information and the relevant
neuromechanical correlations for the analysis of impedance modulation strategies during
physical HHI in Chapter [l are presented within the respective chapter, as the developed
model specifically describes the human motor behavior during an experiment, in which two
individuals use wrist flexion/extension movements to track pseudo-random movements of a
shared target, and is thus only pertinent to the contents of the respective chapter.

2.1. Neuromuscular Rigid Body Dynamics

The human arm is modeled as a two-joint two-link system. In order to reduce complexity
and neglect gravity, possible movements are constrained to the horizontal plane. Thus, the
rigid body dynamics, when tightly grasping the robot end-effector, is given by

Thy + Text = Mq(q)q + Cq(q7 q)q ; (21)
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where ¢ = [q1,q2]" is the 2 degree of freedom (DoF) configuration of the human arm in
joint space, in which ¢; is the shoulder angle and ¢, is the elbow angle, M, is the positive
definite and symmetric inertia matrix [25], C, is the Coriolis/centrifugal matrix, 7, are the
internally generated joint torques, and T4 are the external torques [52].

The internally generated joint torques 7y, that evoke the desired motor behavior are
produced by the muscle tensions x that act on the musculoskeletal system:

Thu = J;I\—()‘)X(}‘a }‘7 a’) ) (2'2)

where A are the muscle lengths, X are the respective derivatives, a are the muscle activations,
and Jy is the muscle Jacobian that contains the muscle moment arms for the transformation
to joint space [60]. During execution of a desired motor task, the muscle activations a consist
of a feedforward term apr, a feedback term app, and a neural noise term v, [35]:

a = aff + app + v, . (23)

The feedforward term app is calculated by the CNS through a priori optimization of the
statistics of the desired motor behavior with respect to costs defined by the task-specific
input parameters «, which depend on factors such as environmental constraints and task
requirements [15]. The neural noise term v, represents the effects of inherent neural noise
within the sensory-motor system [61]. Deviations caused by unpredictable dynamics are
compensated by the feedback term apg, which consists of multiple components that depend
on delayed afferent sensory information and are produced at different delays [22]:

0 v trg € [0, 5FBr]
arp = § appr(A, >\) V trg € |0rBr,; OFBy] (2.4)
arpr (A, A) + appy(Y) VYV tre > Oppy

where app, and apg, are reflexive and voluntary feedback muscle activations, respectively.
The variables dpp, and dpp, are the associated delays and tpp = t — tpp is the time after
the onset of the unpredictable dynamics at tpgo. During the interval [0, dpp,|, immediately
after the onset of the unpredictable dynamics, the feedback behavior is governed exclusively
by effects of muscle mechanical viscoelastic properties. Consequently, the feedback muscle
activations app in response to the unpredictable dynamics are zero. During the subsequent
interval |dpp;, Oppy], the feedback muscle activations app only consist of reflexive feedback
muscle activations apg,;, which are affected by neural conduction delays that depend on
the length and type of the nerve fiber. As the feedback behavior in this interval does not
recruit higher-order cognitive processes at supraspinal level, the reflexive feedback muscle
activations app, only depend on the muscle lengths A and the respective derivatives A.

Remark 2.1. The fastest reflexive feedback is produced by the short-latency monosynaptic
stretch reflex, with a delay in the order of 10 — 40 ms [62]. Slightly slower reflexive feedback
is produced by the cortical component of the long-latency stretch reflex, with a delay in the
order of 30 — 70 ms [63].

For all tpg > dppy, the voluntary feedback muscle activations agg,, which are, analogous to

the feedforward muscle activations arp, also defined by the task-specific input parameters =,
additionally contribute to the feedback muscle activations apg.

10
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Unpredictable dynamics
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Figure 2.1.: Feedback torques Tpp elicited by deviations due to unpredictable dynamics.

Remark 2.2. For voluntary feedback due to haptic motion perception, the transmission of
proprioceptive sensory information to the CNS is subject to delays in the order of 100 ms.
Conduction delays of descending motor commands from the motor cortex to the muscles of
the upper arm and the forearm are approximately 15 ms [64]. Consequently, the minimum
delay dpp, of the voluntary feedback muscle activations apg, is in the order of 115 ms.

Replacing the feedback muscle activations app in (2.3]) by the reflexive and voluntary
contributions in (2.4)) yields the muscle activations a for all ¢t > dpp,:

a(A A7) = app(y) + aps: (A, X) + appy () + v - (2.5)

During execution of a desired motor task, the internal torques 7y, are also composed of
a feedforward term 7pp, a feedback term 7pp, and a neural noise term v,, which represent
the joint torque equivalents to the respective muscle activation terms in (2.3)):

Thu = TFF + TFB + Uy - (2.6)

Analogous to the feedback muscle activations app in (2.4)), the feedback torques Tgp are
composed of multiple components that are produced at different delays [65]:

TFB = TFBm()\, }\a a’()\a }‘7 ’Y))

0 V trp € [0, Op,]
+ ¢ Trpre(@rBr (A, )\)) V trg € |0rBr; OFBy] (2.7)
TrBr (@B (A, X)) + Trpv(arsy(Y)) VY trs > dppy

where Tgpm, TFBr, and Tggy are the mechanical, reflexive, and voluntary contributions to the
feedback torques 7Tpg, respectively. The consecutive occurrences of these feedback torque
contributions after the respective delays are illustrated schematically in Fig. 21l In the
interval [0, 0pp,], the feedback torques Tgp only consist of mechanical feedback torques Tgpp,
which result from muscle mechanical viscoelastic properties and are thus not affected by any
delays [I0]. Due to cross-bridge muscle mechanics, the mechanical feedback torques Trpp,
depend on the muscle lengths A and the respective derivatives A. Furthermore, the muscle
mechanical viscoelastic properties also depend on the muscle activations a, both in terms of

11
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reciprocal muscle activation [66L[67] as well as muscle coactivation [39,40]. In the subsequent
interval |Opp;, drpy| and for all tpg > dpp,, the feedback torques Trp additionally consist of
reflexive feedback torques 7pg, and voluntary feedback torques 7Tgp,, which represent the
joint torque equivalents to the respective feedback muscle activations in (2.4]).

Replacing the feedback torques 7pp in (2.6]) by the mechanical, reflexive, and voluntary
contributions in (2.7)) yields the internal torques 7y, for all ¢t > dpp,:

Taa A X, @M X, 7)) = Ter(are(Y)) + Trem (A, A, a(X, A, 7))
+ TFBr(apBr(A, A)) + TFBv(a'FBV('Y)) + ’Uq . (28)

This compositional model of the internal torques 7, for all ¢ > dpp, in combination with the
rigid body dynamics (21]) represents the basis for the derivation of the impedance control
model as well as the general model of human motor behavior during physical HRI.

2.2. Feedback Torques and Impedance Components

While the combination of the mechanical feedback torques Tgp, and the reflexive feedback
torques Tpg, is well-described by a linear system composed of the impedance components
joint damping and stiffness [26], the voluntary feedback torques Tpp,, which are generated
based on higher-order cognitive processes, may take on more complex task-specific forms that
cannot be accurately represented by such a general formulation [22]. Thus, in the following
derivation of the impedance control model, we only consider the interval [0, dgp,]| after the
onset of the unpredictable dynamics, i.e., we only consider those feedback torques Tgg that
are generated before the occurrence of voluntary feedback torques Tgg,.

Due to the short latency and the variable delays of the reflexive feedback, separation of
the mechanical and the reflexive contributions in the feedback torques 7pp is difficult [24].
Thus, we summate the contributions in the involuntary feedback torques

) ) (2.9)
TrBr(@rpr (A, A)) VY tpg € |0pBr, OFBy]

TFBi — TFBm(A, X, G(A, A, ’7)) + {0 v frs € [O’ 5FBr]
For small deviations, the involuntary feedback behavior in the interval [0, dpp,] after the
onset of the unpredictable dynamics is well-described by a linearized model, which can be
obtained by first order Taylor series expansion of the compositional model (2.8]) about the
states of the unperturbed dynamics. According to (2.8]), the variations in internal torques 7,
in response to the occurrence of the unpredictable dynamics depend on the muscle lengths A,
the respective derivatives A, and the muscle activations a. Due to the confinement to the
interval [0, d0ppy], according to (Z3]), the variations in muscle activations @ can only consist
of reflexive feedback muscle activations agg,, which only depend on the muscle lengths A
and the respective derivatives A. Therefore, considering that the muscle Jacobian .J, can be
used to transform the kinematic states from muscle space to joint space, i.e., A = Jy(A)g
and A = J A(A)q, linearization of the internal torques 7y, for tpg € [0, dpp,] yields

dThu(q7 q7 a’<q7 q7 7)) Aq + dThu<q7 q7 a’<q7 q7 ’7)) A

A u — 5
h dq dq 1

(2.10)
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in which all variational variables A(-) represent the evoked deviations from the respective
unperturbed states (-)* due to the unpredictable dynamics, e.g., Ag = g — g*. The total
derivative with respect to the arm configuration ¢ in (2.I0) is defined as

dThu(q7 (:L a’(qa Q7 7)) _ a'-’-hll(q’ Q7 a’(qv Q7 7))
dg oq

a‘l'hu(q, Qa a’(Qa Q> 7)) aa’(qv Q7 7)
+ 5a 9 (2.11)

and the total derivative with respect to the respective derivative q is defined as

dThu<q7 q7 a’<q7 q7 7)) _ a)7-hu<q7 q7 a’<q7 q7 7))

dg oq
L 9mm(2,4,9(9,4.7)) 9a(9.4.7) (2.12)
da oq
Inserting the compositional model (28] for tgp € [0, dppy] and (Z9) into (2I0) yields
AThu = _Dq<q7 Q7 a'<q7 Q7 ’7))Aq - KQ<q7 qu a’<q7 qu 7))Aq . (213>

In this linearized model of the involuntary feedback behavior due to unpredictable dynamics,
the impedance components joint damping D, and joint stiffness K, are defined as

_dTFBi<q7qua’<q7Q77>>

Dy(q,q,a(q,q,7)) = a4 : (2.14)
. . dr ild, qu a\q, Q7
K(a, & a(g, &) = — 278 dq< 7)) (2.15)

Remark 2.3. Due to the inclusion of reflexive feedback, according to the terminology
in [68H70], the matrices D, and K, represent apparent impedance components. In this work,
for simplicity, we refer to them simply as impedance components. Furthermore, from this
point on, we refer to the individual matrices D, and K, simply as damping and stiffness.

In addition to the damping D, and the stiffness K, the dynamics of the impedance control
model are also determined by the inertial properties of the limbs. Expressing the variational
internal torques ATy, in terms of the rigid body dynamics (2.1]) results in

AThu - Mq(q)q + Cq(qa q)q - Mq(q*)q* - Cq(q*a q*)q* - AText . (216)

Combining this expression of the variational internal torques A7y, with the linearized model
of the involuntary feedback behavior due to unpredictable dynamics (213 yields

ATexy = M(I(q)q + Cq(qv q)q - Mq(q*)q* - C(I(q*u q*)q*

This impedance control model describes the variational behavior in the interval [0, dpp,] after
the onset of the unpredictable dynamics and includes the impedance components damping D,

13
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and stiffness K, as well as the inertial properties of the limbs in the inertia matrix M, and
the Coriolis/centrifugal matrix C,. It represents the basis for the impedance estimation in
Chapter ], in which we apply dynamic regressor representation of the rigid body dynamics in
order to express the inertial properties of the limbs with a minimal set of inertial parameters
and obtain a completely linear model.

Remark 2.4. For simplicity, in the impedance control model (2I7) as well as in the
remainder of this thesis, the intermediate dependency on the muscle activations a of the
damping D, and the stiffness K, is not explicitly specified and instead replaced by the
resulting dependency on the task-specific input parameters .

2.3. Feedforward Torques and Internal Models

While the description of the variational behavior in the interval [0, dppy] after the onset of the
unpredictable dynamics in the impedance control model (ZI7) allows for the estimation of
the impedance components, it does not allow for the full description and prediction of human
motor behavior during physical HRI. In order to derive a more general model with these
capabilities, we assume that the unperturbed states, towards which the restoring torques
of the impedance control model are directed, represent the desired kinematic states of the
desired motor behavior. Furthermore, we assume that these desired kinematic states are
given by a desired trajectory q,, which is a well-defined, twice differentiable (with respect
to time) function g4(y) that depends on the task-specific input parameters -.

Remark 2.5. The task-specific input parameters v depend on factors such as environmental
constraints and task requirements. Thus, they can be defined by a variety of different
parameters, e.g, the arm configuration g, the angular velocities g, or the time ¢. In order
to provide a comprehensive formulation, the general model of human motor behavior during
physical HRI is first derived for a general desired trajectory g4 in this chapter and later
analyzed in more detail for different parameterizations in Chapter

Replacing the unperturbed arm configuration ¢* in (ZI3)) by the desired trajectory g4 and

inserting (Z8)) and (ZI3)) into (ZT)) yields

_Text(qv Q7 (.17 7) = TFF(7) + Dq(qv Q7 V)BQ(’Y) + Kq(‘]a (:L 7)611(7)

+7esy(Y) — My(9)q — Cy(a,9)q + vy (2.18)

where the joint error e (v) = q4(v) — q. According to a commonly accepted theory of
sensory-motor control the feedforward torques Tpp, which are necessary to attain the desired
trajectory g, are appropriately scaled by the CNS using internal models [11]. These internal
models are acquired through experience and contain inverse dynamics representations of the
musculoskeletal system and the interaction with the external environment [12]:

Trr(7) = My(aa(7)d@a(v) + Co(aa(v). @a(7))aa(v)

— Toxt(@a(7): 4a(7), 4a (7)) (2.19)
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where the variables 7o, Mq, and C’q are the estimated internal model counterparts to the
respective variables in (2.1]). Inserting these feedforward torques 7gp in (2I8) yields

T @ @, @,77) = My(qa(7)da(7) — My(@)d + Cy(qa(¥), aa(¥))aa(v)
- Cq(‘]a q)q + Dq(‘]a q, 'Y)éq('Y) + Kq(‘]a q, V)eq(V)

+ 7TEBv(Y) = Tt (€a(7), 4a(7), @a(¥)) + vy - (2.20)

Summarizing the discrepancies between the inertia and Coriolis/centrifugal terms in (2.1])
and the estimated counterparts in (2.I9) in the estimation discrepancies ey, yields

_Text(qv Q7 (:.Ia 7) = Mq(q)eq(q/) + Cq(q7 q)eq(’)/) + 8est,q(q> (:L Q7 7)
+ Do(a. @, 7)eq(v) + Ko(q, @, 7)eq(v) + TrBv (V)

— Text(9a(7), 9a(7), 4a(7) + vy (2.21)

As the term C,(q, g)e,(v) is characterized by complexity O(g?), its contributions are small
compared to those of the other terms. Thus, we add it to the estimation discrepancies €egt 4
and define the dynamic discrepancies €ayn (g, q,q,7) = Cy(q,q)é,(7Y) + €esto(q, @, G, 7).
Furthermore, in order to limit the complexity of the derived model and place specific focus
on the impedance characteristics, we assume the contributions of the voluntary feedback
torques Tppy to be small compared to those of the impedance components damping D,
and stiffness K,. In order to consider these comparatively small contributions without the
need to formulate an explicit model of voluntary feedback behavior, we replace the fully
feedforward term Fext(qq(7), @q(7Y),@q(v)) by the term 7y rpv(q, g, q,y), which depends
on the kinematics {g, q, g} and the task-specific input parameters . With these changes,
we obtain the following general model of human motor behavior during physical HRI:

—Text(q,9,q,7) = My(@)é,(v) + Dy(q,q,7v)es(v) + Ky, g, v)eq(v)

— 'f-ext,FBv(q, Q7 Q7 7) + Ejdyn,q(qa q7 (L 7) + Uq . (2'22>

In non-physical HRI, there are no external torques 7.y and consequently also no estimated
external torques 7. Without physical interaction with the environment, the only source of
unpredictable dynamics consists of the neural noise v,, which, due to its stochastic nature,
cannot be compensated by voluntary feedback torques 7Tgg,. As there are no estimated
external torques 7.y, and no voluntary feedback torques Tgpy, the term Ty ppy is also zero.
Consideration of these correlations yields a simplified variation of the general model:

0 = M,(q)éq(v) + Do(q,q,v)éq(v) + Kq(q, q,7v)eq(y)

+ €ayna(q, 4. 4,7) + Vg - (2.23)

In the following section, both variations of this general model of human motor behavior,
for physical HRI as well as for non-physical HRI, are transformed to Cartesian space.
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2.4. Cartesian Space Representations

In most realistic physical HRI scenarios, measurements are obtained at the robot end-effector
in Cartesian space. If the upper limb dimensions of the human with whom the robot is
interacting are known, the arm configuration q in joint space can be calculated from the
arm configuration x in Cartesian space with the inverse kinematics

q1 = tan™" <ﬁ> — tan™! (_lgsin((h) ) , (2.24)

T l1 + lzcos(qz)

2 2 _ l2 _ l2
qa = cos™ S Sl ) (2.25)
20115

where [y is the length of the upper arm, [, is the length of the forearm, and the origin of the
Cartesian coordinate system is located in the shoulder joint. Furthermore, the Jacobian J,
can be used to transform the external forces w.. to the external torques

Text = J;(q)uext . (226)

However, in many realistic physical HRI scenarios, the upper limb dimensions of the human
are unknown. Therefore, in order to avoid the dependency on the lengths of the upper arm [y
and the forearm [, and enable transferability to a broad selection of physical HRI scenarios,
we express the general models (Z22) and (Z23) in Cartesian space representation.

Firstly, we transform the external torques Tex and the term 7oy ey to Cartesian space,
including a change in algebraic sign to account for the fact that the measurements are
obtained by a force sensor situated at the robot end-effector:

uint<w7:tafi7'7) - _J$<q)7TTeXt<q7q7Q7’7) Y (227)

’&'int,FBv(ma ia d"a 7) = _Jx(q)_T+ext,FBv(qa Q7 iL 7) . (228)

We refer to w;,, as the interaction forces and ;. ppy as the estimated interaction forces.
Secondly, we transform the inertia M,, the damping D,, and the stiffness K, as well as the
dynamic discrepancies €q4yn 4 and the neural noise v, to Cartesian space:

M,(z) = J.(q)” "My(q)Jo(q)"" , (2:29)
D,(z,&,v) = J.(@)” " Dy(q,4.7)J(a) ™", (230)

Ko (z,&,7) = J.(@)” " K(a.q.7)To(a) " (2.31)
Eayne (T, &, 8, 7) = Jo(@)” T€ayna(@ -4, Y) (2.32)
ve = J(a) T, | (2.33)

where M,, D,, K;, €dynz, and v, are the Cartesian space counterparts of the respective
matrices and vectors. By inserting (2.27) - (2.33) into (222)), we obtain the Cartesian space
representation of the general model of human motor behavior during physical HRI:

Uini (§) = Wimp (&) + Wint.(§) + Vs (2.34)
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2.5 Summary

where the error e, () = x4(7y)—x, in which x4 is the desired trajectory, and & = [2", &', "],
E=1z", 2", &7, 4", and @i (&) = UinerBv(€) + Edyn(€) are defined to increase clarity.
We refer to wimp as the impedance forces and, for simplicity, despite the combination with
the dynamic discrepancies €qyn 5, we still refer to @iy . as the estimated interaction forces.
By inserting (2.29) - (2.33) into (2.23), we obtain the Cartesian space representation of the

simplified variation of the general model, which applies to non-physical HRI:

0 = Uimp(§) + €dyn,2(§) + Vs - (2.36)

Remark 2.6. As there are no interaction forces w;,; during non-physical HRI, this simplified
variation of the general model of human motor behavior is based exclusively on position
measurements of the human hand in Cartesian space.

The general model (Z:34]) represents the basis for the derivation of the Bayesian impedance
model for human motor behavior prediction in Chapter 3], in which, without loss of generality,
particular focus is placed on the derivation of a Bayesian human motor behavior model for
physical HRI. As (2.36]) is a simplification of (2.34]), the derived Bayesian model includes a
simplified variation that applies to non-physical HRI.

2.5. Summary

In this chapter, we introduced the necessary background information and established the
relevant neuromechanical correlations for the development of human motor behavior models
that place specific emphasis on the impedance control model and the impedance components.
In order to optimally preface the contents of the subsequent chapters, we focused on the
multi-joint human arm, i.e., the complete upper limb including the shoulder joint. We began
by presenting the neuromuscular rigid body dynamics of the multi-joint human arm, with
specific focus placed on the muscle activities and the internally generated joint torques that
instantiate the desired motor behavior. Subsequently, we derived an impedance control
model that represents the effects of the involuntary feedback behavior in the form of the
impedance components joint damping and joint stiffness. In order to obtain a more general
model that allows for the full description and prediction of human motor behavior, we
shifted focus towards the feedforward torques and the internal models. By assuming that the
unperturbed states are representations of the desired kinematic states of the desired motor
behavior, which are given by a desired trajectory, we were able to derive a general model of
human motor behavior, which we formulated both for physical as well as non-physical HRI.
Furthermore, we transformed both model variations to Cartesian space. The models that
are derived in this chapter represent the bases for the derivation of models that facilitate
consideration of human impedance characteristics in the control design process for physical
HRI within the following chapters.
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Bayesian Impedance Model for Human 3
Motor Behavior Prediction :

In the previous chapter, we formulated a general model of human motor behavior during
physical HRI. In this chapter, we address the first of the three previously summarized crucial
open challenges in the consideration of human impedance characteristics in the control design
process for physical HRI by focusing on the information exploitation, i.e, the inclusion of
a priori impedance knowledge in human motor behavior modeling. In the derivation of the
general model in the previous chapter, we incorporated an underlying behavioral structure by
approximating the lower dimensional manifolds of human motor behavior by an impedance
control model that counteracts deviations from a desired trajectory. In this chapter, in order
to enable the integration of a priori knowledge about this underlying behavioral structure,
we adopt a Bayesian setting by assuming GP priors for the impedance components and the
desired trajectory. The resulting Bayesian model enables exploitation of a priori human arm
impedance knowledge for the regression of human motor behavior. As the integration of
the underlying behavioral structure in the form of the impedance control model guarantees
that all correlations of the Bayesian model are inherently consistent with the structural
constraints, it not only enables regression of human motor behavior, but also leads to superior
prediction performance and generalization capabilities. Furthermore, it provides insights on
otherwise unobservable intrinsic states. In the context of the impedance control model and
the corresponding impedance components, it specifically enables the estimation of the human
motor intention in the form of the desired trajectory and corresponding confidence levels.
In this chapter, without loss of generality, we place particular focus on the derivation of a
Bayesian impedance model for physical HRI, as it represents the more challenging problem.
However, we additionally describe necessary adjustments for non-physical HRI.

The remainder of this chapter is structured as follows: related work and open problems
are reviewed in Section [3.Jl An introduction to GPs and multivariate Gaussian conditioning
is presented in Section [3.2 Subsequently, in Section [3.3] we derive the GP-based Bayesian
model, which addresses the considered problem of human motor behavior regression via
human motor intention inference. In Section[3.4], we facilitate proper application of the model
by presenting application guidelines, which include an overview of estimated human arm
impedance characteristics in the literature, implications for GP prior parameterization, and
pseudocode application instructions. In Section B3 the model is validated with simulated
data of a neuromechanical model of the human arm. The direct control over the simulated
intrinsic states enables both validation of the intention estimation capabilities as well as
assessment of the effects of GP prior parameterization. Superior prediction performance is
demonstrated with respect to a naive GP prior. In Section .6 an experiment with human
participants is conducted to evaluate the model with experimental data, analyze effects of
training data sparsity, and demonstrate generalization capabilities. The obtained results are
discussed in Section [3.7] and summarized in Section [3.8.
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3 Bayesian Impedance Model for Human Motor Behavior Prediction

3.1. Related Work and Open Problems

In current HRI research, human motor behavior is modeled in different ways. The authors
of [T1] propose a method for short-term motor behavior predictions based on observed forces
and respective derivatives. Others transfer the minimum jerk principle [72] to HRI scenarios
(e.g., [73] and [74]) for both short- and long-term predictions, depending on the task type.
For tasks with increased complexity, methods based on the minimum jerk principle are
outperformed by a combination of judiciously defined polynomials that allow for increased
flexibility in the approximation of the dynamics [75]. In contrast to dynamics level methods,
the programming by demonstration paradigm is applied for the derivation of long-term
motor behavior predictions at task level. The required demonstrations of task-specific HRI
behavior are obtained through direct physical interaction [47] or teleoperation [76] and are
encoded in probabilistic models that capture the joint statistics of the observed trajectories
and forces [77]. These models are naive in the sense that they do not incorporate a priori
knowledge on the system. However, the inclusion of such knowledge can provide insights on
unobservable intrinsic states and lead to superior prediction performance and generalization
capabilities. GP-based models are a powerful, non-parametric approach that allows for the
integration of a priori knowledge and only requires the definition of second-order statistics
between function values to efficiently approximate continuous functions from data [78}[79].
They are well-suited for human motor behavior modeling, due to their desirable smoothness
properties and their ability to accurately model non-linear correlations [80].

GP-based models for regression were first described in a machine learning context by
Williams and Rasmussen in [78]. These authors were partly inspired by the work of Neal,
who had shown that a Bayesian neural network converges towards a GP as the number of
hidden layers within the network approaches infinity [81]. The benefits of GPs for system
identification are exploited for example in [82H87]. In [83], a GP is used to approximate
a non-linear state vector field. In [84], an additional GP is used to model the non-linear
mapping from the observation space to a latent state space. The model is extended in [85],
where human motion is modeled by explicitly incorporating an intention function into the
latent state space transition function, which is also modeled by a set of GPs. Second order
interaction dynamics are explored in [86], where observed trajectories are considered to be
driven by latent forces. In [87], a dynamic lower-dimensional representation of human finger
motion is obtained by decomposing variations in reach-and-grasp motions and modeling
respective primitives with a multivariate GP model. GPs define input space correlations
and derive predictions analytically by applying Bayes’ rule, which yields confidence bounds
of the results. These bounds are particularly interesting for control design, as they enable
control adaptation according to the prediction confidence [88,[89]. The performance of GPs
depends on an appropriate kernel structure. If the structure of the covariance function is not
defined in accordance with the real function, the convergence rate of the former towards the
latter may increase exponentially. This leads to a decrease of the generalization capabilities
in previously unobserved regions of the input space. The validity of the prediction covariance
as an indicator of the reliability decreases with increasing distance to the training data [90].
This dependency can be overcome by inclusion of a priori knowledge in the definition of
the GP prior structure. In this chapter, we construct a GP-based human motor behavior
model that incorporates an impedance control model and enable the integration of a priori
knowledge by assuming GP priors for the impedance components and the desired trajectory.
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3.2 Gaussian Process Priors

3.2. Gaussian Process Priors

A GP g(&) : R™ — R at input points £ € R" is a statistical distribution over function values,
wherein any finite collection of samples {g(&,) --- g(&,)} with sample number h € N* forms

a multivariate Gaussian random variable. A GP ¢(&) ~ GP (,LL(&), k(E, f/)) is fully defined

by its mean function u(€) = E {g(E)} and its covariance function

k(€ €) = Cov|g(€),9(€)| = E[(9(&) — n(&))(9(&) — n(&)T] (3.1)

which represents the correlation of two input points € and & in terms of the statistical
relationship of the respective GP values g(&) and g¢(¢') and is also referred to as kernel.
Selecting an appropriate mean function p and covariance function « is key for acquiring high
generalization capabilities, as they define the overall properties of the GP.

GPs possess the desirable properties of multivariate normal distributions, which enable the
computation of conditional posterior distributions from joint prior distributions. The joint
prior distribution P (y RTRICH ﬁ*) of a given training set of noisy observations Y = {y; }?:1 at

inputs = = {& j}?zl and predictive output y, at test input &, is defined as

_ VI |[wE)]| |K+old k.
P (yuy*|:7£*) =N ( ) ) 7 ’ (32)

Yol | [1(€) KD K to

where K = k(Z,2), ke = k(€,,Z), and k.. = k(&,,&,) represent the covariances of the
training inputs = and the test input €,. The matrix I is the identity matrix and o2 is the
observation noise variance. By means of multivariate Gaussian conditioning, i.e., application
of Bayes’ rule, the conditional (predictive) posterior P (y*|:)7, E,ﬁ*) is computed as

Fuw + 02 — k(K +021)7 'K, , (3.3)

Remark 3.1. The computation of the conditional (predictive) posterior P (y*|:)7, E,ﬁ*) is

governed by matrix inversion (K +021)~! with complexity O(h?). If necessary, multi-output
GPs, in which the covariance function is defined to capture the dependencies between all
input points as well as non-trivial correlations across all outputs, offer output correlations,
but at the cost of higher computational complexity [91].

3.3. Bayesian Impedance Model

The problem considered in this chapter consists of the prediction of human motor behavior,
represented by the interaction forces wui, in the interaction dynamics (2:34]), through the
estimation of the human motor intention, represented by the desired trajectory aq in the
impedance dynamics (2.35). This is to be achieved by means of regression analysis, given the
input-output pairs {€, uiy (€)}, which are obtained through sensors at the robot end-effector.
Therefore, in this section, we derive a multi-layered Bayesian model, which is presented
schematically in Fig. B.Il The lowest layer of the model is composed of the latent variables
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3 Bayesian Impedance Model for Human Motor Behavior Prediction

Training set {wine ;(€;), &,
uint(g) = Uint,*(g*)

——— @3) —

Test = — = Predictive
lnPUt é* —— uimp(&) + uint,e(é) + vy outputs
(with v,) 1

— ) ————

My (®)éx(v) + Da(§)éx(v) + Ku(§)ea(v) | | | Zax(7.)

Figure 3.1.: Schematic block diagram of the Bayesian model. The transitions between the
layers correspond to (2.34) and (Z.30). (© 2019 IEEE)

M,, D,, K,, and 4. By assuming prior distributions on these latent variables, we construct
a compound kernel for the impedance forces wi,,. It is part of the middle layer of the model,
which additionally contains the neural noise v, and the estimated interaction forces i .
By again assuming prior distributions, we combine all of the middle layer components to
construct a compound kernel for the interaction forces wiy. It constitutes the top layer
of the model and is able to account for predictable (@) as well as unpredictable (iy)
interaction dynamics. Due to dependency on €, both components can be adapted during
task execution. Given a training set {wine ;(€;}), €;}"_;, the model provides predictions win .
at test inputs £, and infers the desired trajectory @q . at test input ,. The inclusion of the
latter requires that the desired motor behavior can be described by a twice differentiable,
well-defined function q4(«), which is defined by suitable, task-specific input parameters ~.

In this chapter, we approximate the inertia M,, the damping D,, and the stiffness K, in
the impedance dynamics (Z38) by diagonal matrices. Thus, the interaction dynamics (2:34))
and the impedance dynamics (Z35) in the -th dimension can be expressed as

uint,i(g) - uimp,i(g) + ﬂint,a,i(g) + (O (34)
uimp,i(g) = My i€ri(Y) + dei(€)eri(y) + kei(€)eai(y) (3.5)

where m,; is a one-dimensional variable, Uint i, Uimp,is Uinte,is Azir Kais €24, Tdi, and x; are

one-dimensional functions, and the neural noise v, is defined as v, ~ N (Um ‘ 0, ag), in which

o2 is the respective neural noise variance. For notational convenience, from this point on,
we omit the subscript (-), in the one-dimensional counterparts my ;, d,;, ki, and e, ; to the

respective two-dimensional variables M., D,, K., and e,.

Remark 3.2. Veridical biomechanical modeling would require inclusion of the non-diagonal
elements of the inertia M,, the damping D,, and the stiffness K,. Although this would in
principle be possible within the context of the Bayesian impedance model, we nonetheless
approximate these three matrices by diagonal matrices. This approximation is motivated by
multiple reasons: 1) Of the few quantitative Cartesian space results of human arm impedance
estimation during movement, most are one-dimensional [92,[93] or assume decoupled arm
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3.3 Bayesian Impedance Model

dynamics [53,94,95]. 2) Non-diagonal elements would require convolved multi-output GPs
with output correlations, which possess substantially higher computational complexity [96].
3) These output correlations would greatly diminish the comprehensibility of the derivations
of the compound kernels as well as the analyses of the effects of GP prior parameterization.
For completeness, we discuss adjustments for multi-dimensional treatment in Section [3.7]

3.3.1. Impedance Model Priors

For statistical analysis of the one-dimensional formulation of the general model of human
motor behavior during physical HRI, we assume that variable m; and functionals d;, k;, x4,
and iy - ; are all statistically independent and possess prior distributions

mi ~ N (mi | pom i, 0%,) (3.6)
di(€) ~ GP (pa kal€,€)) (3.7)
ki(€) ~ GP (iis ik (€,€)) (3:8)
2ai(¥) ~ GP (Jawis ea (1Y) (3.9)
ting4(&) ~ GP(0, kg, . (€,E)) (3.10)

where fiy, i, fai, fki, and fi,; are the expected mean values (EMVs) of inertia, damping,
stiffness, and desired trajectory, respectively, and crfm- is the inertia variance. The prior
distributions d;, k;, x4;, and Ui, are defined by the covariance functions k4, Ky, Kag,
and kg, ., respectively. The covariance function of the desired trajectory k,, is given by a

twice differentiable function (with respect to the task-specific input parameters =y).

Remark 3.3. Due to the statistical independence, positive correlation of damping d; and
stiffness k; [10] is not directly included in the priors. However, it can be partially incorporated
by suitable definition of the respective EMVs 11, and fu ;.

Remark 3.4. Positivity of damping d; and stiffness k; can be strictly ensured by warped GP
priors [97], in which the priors are transformed to log(d;(£)) ~ GP(log(ay), ka(€, €')) and
log(ki(€)) ~ GP(log(pux.q), ki (€, €')). Application of these warped GP priors would require all
compound kernel derivations to consider the log formulations and the respective derivatives.
For better comprehensibility of the derivations, we instead assume that the corresponding
variances only assign high probabilities to appropriate regions within the positive domain.

3.3.2. Impedance, PD, and Interaction Kernels

Given the GP prior definitions (B.7) - (39), the terms d;(§)é;(vy) and k;(&)e;(y) in the
impedance dynamics (3.0]) are products of statistically independent Gaussian distributions.
Consequently, the impedance force winyp, ; is a combination of both Gaussian and chi-squared
distributions and possesses non-central chi-squared terms. Nonetheless, the computation of
its expected value and covariance function enables its approximation as a GP:

i (€) ~ GP (E [tinpi(€)] . e (€. E)) - (3.11)
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3 Bayesian Impedance Model for Human Motor Behavior Prediction

Remark 3.5. The loss of accuracy due to the negligence of the non-central chi-squared
terms increases with the variances of the damping d; and the stiffness k;. If both functionals
were deterministic, second order statistical characterization of the impedance force uimp,;
would not imply any loss of accuracy. Consequently, by considering low variances due to
proper parameterization, we are able to approximate the impedance force iy, as a GP.

The expected value of the impedance force y,; is calculated by insertion of the GP prior
definitions (B.6) - (3.9) into the impedance dynamics (3.5]), which yields

E {uimp,i(g)} = fmi(flaai — Ti) + Hai(flzai — Bi) + fi(Bagi — i) - (3.12)

The covariance function of the impedance force k., is defined as

Ky (€, € ) = Cov [mz‘éi(’)’) + di(§)éi(y) + ki(€)ei(),
miti(y') + di(€)e(') + ki(€)ei () (3.13)

and is more involved due to the correlations with the desired trajectory zq4,; and the respective
derivatives 4, and #4;. As differentiation is a linear operator, the derivatives @4, and &4,
are also GPs that possess derivative covariance functions [83]. Based on the covariance of
sums and the covariance of products [98], the impedance kernel &, can be derived by
calculating the sum of the covariances of all possible product term combinations.

For simplicity, we first derive a partial kernel variation that only considers those terms
that include the damping d; and the stiffness k;. From a control perspective, the limitation to
these terms corresponds to proportional derivative (PD) control. Consequently, the resulting
partial kernel variation represents the covariance function of the PD force

upp,i(§) = di(§)éi () + ki(€)ei(v) - (3.14)
Based on the impedance kernel x,,,, in (3.13), the PD kernel £, is defined as
unn (6:€) = Cov[di(€)6:(7) + k(€)es(7), di(€)és() + ka(€)es(y)] - (3.15)

According to the covariance of sums, the definition of the PD kernel x,,, can be separated
into individual covariances of all possible product term combinations

Kupp (&, 8') = Cov[d;(§)éi(v), di(&§)é:(v)] + Cov[di(§)éi(), ki(€)ei(v')]
+ Cov[ki(€)ei(v), di(§)é:(v)] + Covlki(€)ei(), ki(€)ei(v)] - (3.16)

Application of the covariance of products and omission of zero covariances yields

Fupn (€, €) = (E |[di(€)] E |di(€)] + Cov[di(€), di(&))]) Cov]e:(v), é:(v)]
+ E|ei(m)] E[e(v)] Covldi(€), di(€)]
+E [di(&)] E [ki(&)] Covléei(v), ei(7)]
+E [ki(€)| E |di(€)] Covlei(v),é:(v")]
+ (E [k:(©)] E [ki(&))] + Cov[ki(€), ki(€))]) Covlei(v), ei(v)]
+E |ei(7)] E [es(7)] Covlki(€), ki(€))] - (3.17)
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3.3 Bayesian Impedance Model

Finally, inclusion of the GP prior definitions in ([B.7) - (8:9) and the derivative covariance
function of the desired trajectory derivative @4, yields

(€€ = w2 ) G 6. €)

a"{xd ) ! a’%‘l‘d ) ! /
b g (P2 BTN | (6 € r,7)

+ (Haai = i) (Hagi — 77) Rk (€, §) (3.18)

where ¢t and ¢’ are the time variables that belong to the observations v and «/, respectively.

Additionally including the inertia m; yields the impedance kernel &, . According to the
covariance of sums, analogous to (3.16), the definition of the impedance kernel &, can be
separated into individual covariances of all possible product term combinations

Ky (€, € ) = Covlmaé; (), miéi(y)] + Covlmiéi(v), di(€) e ()]
+ Cov[myé; (7). ki(§)ei(v)] + Cov[di(§)é: (), miéi(Y)]
+ Cov[ki(&)ei(7), mi€i(V)] + Kupp, (€, ) - (3.19)
Application of the covariance of products and omission of zero covariances yields
R (€ €) = (E [mi] E [mi] + Covlmi,mi]) Covléi(y), &(7')]
+E [&(9)] E [&(+)] Covlmi, mi]

+E m,} [ )| Cov[é; (), &:()]

d;(& } E [m, Cov|eé (4]

{
| )
+E [mi] E [k:(&)] Covléi(y), ei(7)]
4:(¢)] E [mi]
()] E [mi

+E [ki(&)] E [mi] Covle AN + Foupp, (€, €) . (3.20)

Finally, inclusion of the GP prior definitions in (8.6]) - (89) and the derivative covariance
functions of the desired trajectory derivatives 4, and iq,; yields

= = 8 Ry (7 7) . .
g (€ 8) = (12,4 02, ) (= ) s — )02,

Friag(, ) | Phias(7, )
+tmatas (=55 o)
ks (v, 7)) Pk, (v,
(LT VTN eg). ()
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3 Bayesian Impedance Model for Human Motor Behavior Prediction

Remark 3.6. If the desired trajectory xq; is a function of time (v = t), the computation of
the derivatives of the respective covariance function &, is straightforward. For all remaining
parameterizations, the derivatives are computed in terms of partial derivatives

Oy (V,7) (8% (v, 7) ) Tovy
— 22
ot o' ot ’ (3.22)

Py (7,7') <3_7’ )Ta%xd(%v')al/ +<8“md(”/,7’)>T827’

o \ ot oy? ot v’ ot2 (3:23)

Proposition 3.1. Assume the kernels kq, ki, and k., in B1) - B9) are symmetric and
positive semi-definite and the desired trajectory kernel k,, is a twice differentiable function
(with respect to the task-specific input parameters ~v). Then, the PD kernel k.., in (3.18)
and the impedance kernel k,,,, in B.2I) are valid kernels.

Proof. A symmetric, positive semi-definite function g(&,¢’) is a valid kernel function [99].
Thus, given the assumptions in the proposition, the kernels x4, ki, and &, are valid kernels.
Given the desired trajectory kernel s, is a twice differentiable function, the PD kernel x,,,
and the impedance kernel ,,,  are defined by the covariance functions (3.I8) and (3.21]),
respectively. If a compound kernel is fully defined by affine transformations of valid kernels,
it itself is also a valid kernel [I00]. As the covariance functions (3.18) and (3:21]) are only
defined by affine transformations of the kernels x4, ki, and &, , the PD kernel &, and the
impedance kernel k., are valid kernels. 0

With the interaction dynamics (8.4) and the GP prior definitions (3.6]) - (8.10)), the a priori
statistical characterization of the interaction force uiy; is given by

uint,i(E) ~ gP<E [uimp,i (E)} 7/{Uint (Ea E/)) 9 (324)
where E[uin:i(€)] = E[timp.i(€)], because the EMV of the estimated interaction force @iy .
in the GP prior definition (3.I0) is zero. The interaction kernel k,,,, is defined as

Fins (€,€) = Ky (€,€) + g, (6.€) + 07 (3.25)

Remark 3.7. Proper parameterization of the GP prior of the desired trajectory zq; is key,
as it affects all impedance terms. Given a priori task-specific information, its EMV p,, ; may
be defined as a function of time ¢ or other task-specific input parameters <. As deviations
from the desired trajectory zq,; are compensated by impedance control, the overall mean of
the state z; approximates the desired trajectory state x4, i.e., the steady state, in which the
human is at “equilibrium”. In HRI scenarios that lack a priori task-specific information, this
relationship can be included by defining the desired trajectory EMV p,, ; by the state x;.
With this definition, the GP prior of the desired trajectory x4, is given by

zai(y) ~ GP (w1, b0y (7,7)) - (3.26)

Inserting this equilibrium definition of the GP prior of the desired trajectory zq, in (B.12)
results in E [uimp,i(é)} = 0, which, when inserted in (8:24]), results in E {umm(g)} = 0.
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3.3 Bayesian Impedance Model
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Figure 3.2.: Covariance functions for the one-dimensional case of a time-dependent desired
trajectory (v = t). (a) Impedance, PD, and SE kernels with hyperparameters
{0.1,(0.2) }.,, {0.1,(0.1 0.1)}4, {0.1,(0.1 0.1) }4, and o2, = 0.1. The EMVs are
pm = 1 kg, pg = 10 Ns/m, gy = 100 Nm, p,, = 0 m. (b) Impedance kernel
with different values of the EMVs g and py. (© 2019 IEEE)

The derived Bayesian model includes a non-physical HRI variation that corresponds to the
simplification of the general model of human motor behavior in (Z36). For this variation,
the GP prior of the estimated interaction force @iy ¢ ; is not necessary and is replaced by the
definition of the prior distribution of the dynamic discrepancies €gyn o ~ N (Edyn,x ‘ 0,02 dyn).
As a result of this substitution, the interaction kernel &, , is replaced by

Euint (Ea E/) = ’%Uimp (E’ E/) + o.gdyn + 0121 ) (327)

where afdyn is the dynamic discrepancy variance. Apart from these differences, all derivations,
including the covariance functions (BI8) and ([BZ1]), are identical and equally valid.
For illustrative purposes, from this point on, let the kernels kg, ki, Kzy, and kg, . in the

GP priors (37) - (B10) be defined as squared exponential (SE) kernels
kse(€, &) = odp exp{—(& — &) Age; (€ - &)} (3.28)

with hyperparameters {o?, A;}sg, in which Agg; contains the length scales of the n input
dimensions and 0§y, is the variance. The SE kernel is the most common kernel due to its
desirable smoothness and convergence properties. As it is both infinitely differentiable and
a valid kernel [90], it satisfies all of the prerequisites listed in Proposition 3.1.

The most relevant characteristic of the PD and impedance kernels is the presence of terms
comprising time derivatives of the desired trajectory. Thus, in the following, the effects
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Figure 3.3.: Covariance functions for the one-dimensional case of a configuration-dependent
desired trajectory (v = z). The PD kernel hyperparameters are {1, (0.2)}.,,
{0.1,(0.1 0.1) }4, and {0.1,(0.1 0.1)}x. The corresponding PD kernel EMVs are
pa = 1.5 Ns/m, p, = 1 Nm, and p,, =0 m. (© 2019 IEEE)

of these terms on the correlations are analyzed for different task-specific input parameters.
Fig. shows covariance functions of a naive SE, a PD, and an impedance kernel for the
one-dimensional case of a time-dependent desired trajectory, i.e., v = t. The PD kernel
considers the derivative of the SE kernel as an additive term. Similarly, the profile of the
impedance kernel is governed by the inertia term. The effects of the stiffness, damping, and
inertia terms on the profiles of the respective kernels are substantially influenced by their
respective EMVs. This dependency is illustrated in Fig. 3.2b, which shows several impedance
covariance functions with different EMVs. As the stiffness term is governed by a SE kernel,
it solely adds positive values with unnormalized Gaussian shape. Therefore, the higher the
stiffness EMV, the higher the overall correlation. In contrast, increasing the damping or
inertia EMVs emphasizes the profiles of the first or second derivative, respectively.

In order to illustrate these effects for a model with a desired trajectory that is not defined
by time, Fig. shows covariance functions of a PD kernel for the one-dimensional case
of a configuration-dependent desired trajectory, i.e., v = x. When the input point velocity
is zero, the damping term is nullified, as the derivative of the error is also zero. Thus,
the correlation is limited to the SE kernel of the stiffness term, as illustrated in Fig. 3.3k.
When the input point velocity is not zero, damping term correlations arise. Figs. 3.3h, 3.3b,
and B.3d, B3k show both negative and positive values of &, which determine the slope of the
correlation around = — 2’ = 0, as the derivative of the error is proportional to 7.
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3.3.3. Conditional Distributions of Latent Functionals

The probabilistic nature of the derived Bayesian model, paired with the desirable properties
of multivariate normal distributions, enables the computation of conditional distributions of
the latent variables. In the case of multivariate normality, conditional distributions are also
Gaussian distributions and computed in closed form. In this chapter and in HRI scenarios
in general, the human motor intention, i.e., the desired trajectory x4, represents especially

relevant information. From (3:9) and (3:24)), the joint prior distribution P (Z/{int, Tail=, 'y*)
of observations of the interaction force Uiy = {uinei,;(€;) Y-, at inputs 2 = {€;})_, and the
desired trajectory zq.; at test input ~, is given by

— Z/{in E |:uin:| Kuin K’Uin Zd,*
P (Z/[int7 xd7*,i|E7 7*) - N( ' ' ) T ' o ) (329)
xd?*vi de7'i Huinhxdv* K$d7**
where K. = k., (5,2, K ox = Kag (Vs Ys)s a0d Ky 2.+ 18 defined as
Rougng,wa,x = COV[Z/[int, xch*,i] = Cov[xd,*,iauint]-r (330)
82"{‘:13( <F7 ’Y*) aK‘:B( (F7 7*)
= Mm,iT + Md,iT + g ifizg (U5 7.) (3.31)

with the task-specific input parameters I' = {~; ?:1. Multivariate Gaussian conditioning,

i.e., the application of Bayes’ rule, yields the conditional posterior

P (SUd,*,z'Wint’E, ’7*) =N (SL’d,*,z’ E [xd,*,z} s Kagas — Elint7$d7*K7;ir1)cnuinhxdv*) (3.32)
with
E [xd,*ﬂ} = Pagi + ’{Zim,a:d,*Ku_irl,t (uint —E {uintb . (333)

The computation of conditional posteriors of alternative latent functionals, e.g. damping d;
or stiffness k;, is performed analogously. In the non-physical HRI variation, K, . is replaced

by Fuim = Ry (E, El) with kernel &, , of (8.27) and E [Llint} = Uy = 0.

int

3.4. Application Guidelines

In order to facilitate proper application of the derived Bayesian human motor behavior model,
in this section, we present application guidelines that include prior parameterization as well
as pseudocode application instructions. The prior parameters of the priors in (3.6]) - (310)
are composed of the EMVs 1i(); and the hyperparameters of the SE kernels ([3.28), i.e., the
variances 0(2_)71- and the length scales A ;. Only the variable m; poses an exception. Due to
the lack of a covariance function, it is defined only by the EMV i, ; and the variance o7, ;.
The parameters of prior iy . ; do not require manual definition, as its EMV is zero and its
hyperparameters are trained by maximizing the log-likelihood function of a naive GP prior.
In order to facilitate parameterization of the remaining priors in (3.6) - (8.9), the following
section contains an overview of estimated human arm impedance characteristics as well as
a discussion of implications for prior parameterization. Subsequently, the general algorithm
structure of the Bayesian model is presented via pseudocode application instructions.
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Table 3.1.: Human arm impedance characteristics in mean (SD). Postural: x;, 25, and x3 are
sagittal, transversal, and vertical axes. Non-postural: x, x3, and 3 are principal
movement, lateral, and vertical axes. ((©) 2019 IEEE)

Inertia [kg]

Study description 1 To T3

[101] postural 1.54 (0.07) 100 (0.08)] - -

[102] postural 0.28 (0.15)]0.39 (0.21)]0.25 (0.13)

[103] postural 0.99 (0.07)|1.42 (0.20) - -

[104] postural 2.02 (0.39)]1.60 (0.33)| - -

[105] postural 0.75 (0.15) | 0.40 (0.10) - -

[53] welding - novice | 0.70 (0.30) | 2.40 (0.60) | 0.90 (0.40)

[53] welding - expert | 0.60 (0.20)|2.80 (0.80) | 0.70 (0.20)

[92] catching - static | 1.36 (0.09) - - - -

[92] catching - ready |1.44 (0.18) - - - -

[94] teleoperation 0.85 -1 4.03 -10.68 -

[95] stylus grasping |0.32 (0.15){0.48 (0.15)|0.24 (0.13)

[93] tennis - static 1.79 (0.10) - - - -

[93] tennis - ready 1.84 (0.11) - - - -

Damping [Ns/m)] Stiffness [N/m]

Study description T To T3 T To T3
[101] postural 107 (0.9)]133 (12)] - 7 aa)]ese en| - -
[102] postural 35.3 (23.8) | 84.1 (52.2)|40.1 (21.4)|337 (190)|748 (281) 303 (209)
[103] postural 6.8 (0.8)]14.3 (1.4) - -2t (4| 91 (6) - -
[104] postural 6.6 (1.6)|253 (7.3)] - 189 (24)]264 (92)| - -
[105] postural 9.9 (26)]535 (85)] - S| 40 (16)]346  (68)| - -
53] welding - novice |15.0 (8.0)|32.0 (13.0)|12.0 (8.0)|341 (67)|411 (188)]280 (108)
53] welding - expert |19.0  (5.0) | 44.0 (14.0)|17.0 (5.0) | 423 (232)|539 (200)|315 (150)
[92] catching - static |20.6 (2.1) - - - -1 67 (34) - - - -
[92] catching - ready |23.0 (2.9) - - - - 1116 (60) - - - -
[94] teleoperation 12.9 -1 9.2 -117.6 - 122 - | 108 -] 81 -
[05] stylus grasping | 5.9 (22)] 5.9 (L.4)[20.1 (5.1)|105 (28)|133 (29)|366 (106)
[93] tennis - static 19.8  (1.7) - - - - 1116 (44) - - - -
[93] tennis - ready 216 (2.1) - - - - 1158 (49) - - - -

3.4.1. Prior Parameterization

While there is a large body of work on estimation of human arm impedance, the results are
often presented qualitatively or graphically using inertia, damping, and stiffness ellipses [72].
Of the few studies that present quantitative results, many estimate in joint space in order to
address joint-specific impedance control by the CNS [21]. In this chapter, in order to enable
transferability to a broad selection of realistic physical HRI scenarios, we instead focus
on the Cartesian space representation. Table [3.1] shows an overview of estimated human
arm impedance characteristics in postural and non-postural tasks. In the former, a desired
posture is maintained and in the latter, a desired movement is performed. The stiffness,
damping, and inertia values lie in the approximate ranges of 10 — 1000 N/m, 5 — 100 Ns/m,
and 0.05 — 4 kg, respectively. The EMVs fi,, 4, 14,4, and g, ; should be defined based on the
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values in Table 3.1l While the inertia EMV p,; only depends on the limb kinematics, for
the EMVs 4, and 4, the task description should be considered. Furthermore, attention
should be paid to correct definition of the principal movement axis.

Remark 3.8. The positive correlation between joint damping and joint stiffness is visible
in the values in Table 3.1 which supports the statement that its effects can be partially
incorporated by suitable definition of the EMVs 4, and py ;.

Remark 3.9. The low standard deviations (SDs) of the non-postural values in Table 3]
(except the values of [53], which, due to the welding accuracy requirements, is similar to a
postural task) support the consideration of low variances for the approximation in (BI1]).

Due to the dependence of the hyperparameters of the SE kernel on the task type and
dimensions, only qualitative recommendations can be given for the length scales A(; and
the variances 0(2.)71-. In general, the larger a length scale, the smaller the variation of the
mean in the GP posterior. Consequently, the expectation of a certain degree of smoothness
of the desired trajectory x4 ; implies comparatively large length scales A, ;. As the feedback
torques generated by the damping d; and the stiffness k; compensate deviations from the
desired trajectory x4, the respective length scales A;; and Ay, should be smaller than A, ;.
Otherwise, the model would misinterpret deviations as part of the desired trajectory zq;.
The hyperparameters of prior @iy ., which are obtained by maximizing the log-likelihood
function of a naive GP prior, can serve as reference points: length scales A, ; should be
larger and length scales Ag; and Ay ; should be smaller in comparison.

For the definition of the variance o7 ;, it should be considered that (3.2I)) does not only
contain the desired trajectory x4, but also the corresponding derivatives. As the variance
increases with differentiation, a large variance aiw would result in considerable variance for
the overall model. Thus, the impedance contributions would “disappear” in the variance.

In order to avoid this, the variance o2 ; should be sufficiently small. Due to similar reasons

Zq,?

and the loss of accuracy related to the negligence of the non-central chi-squared terms in the
GP approximation (B.II)), the variances oj; and o7 ; should also be sufficiently small.

Remark 3.10. Application of GP priors with SE covariance functions allows for derivation
of theory concerning upper bounds of prediction errors. In [106], a probability bound for
an upper bound of the prediction error is derived using the reproducing kernel Hilbert
space norm. In [107], an upper bound for the mean square prediction error of misspecified
GP models is derived by solving a pseudo-concave optimization problem. As an in-depth
discussion of such theories lies outside the scope of this thesis, we instead provide quantitative
examples for the qualitative prior parameter recommendations. Their impact on the results
can be inferred from the validation with simulated data, which is presented in Section 3.5l

3.4.2. Pseudocode Application Instructions

The pseudocode in Algorithm 3.1. shows the algorithm structure and necessary definitions.
For the application of the Bayesian human motor behavior model for non-physical HRI,
the inputs consist of the training set {O,Ej }?:1 and the test input ~, and the outputs only
consist of the predictive output zq.,. Steps 1,2,3, and 7 are omitted and in step 6, the
covariance function r,,, of (8:23) is replaced by the covariance function %, , of (3:27).
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Algorithm 3.1. Bayesian model for physical HRI

Given: Suitable, task-specific input parameters
Require: Training set {uinti ; (Ej),Ej}?zl, test input &,
Ensure: Predictive outputs wing i, Td «
1: Define naive GP prior wins naive.i(€) ~ GP(0, ksr(E, E’))
2: Train hyperparameters of naive GP prior tins naive.i(€)
(by maximizing the log-likelihood function)
3: Copy trained hyperparameters to prior @y ;(€) in (BI0)
4: Define EMV p,,; with a priori task-specific information
or alternatively use equilibrium definition (B3.26])
5. Parameterize remaining priors in (3.0]) - (8.9) based on
empirical values and implications in Section B.4.1]

6: Infer desired trajectory xq.; with (3:32) and (325
7: Predict interaction force wiy .; with (3:24) and (3:25)

3.5. Simulation

In this section, the Bayesian model is validated using a simulated model of the human arm.
The simulated desired trajectory enables validation of the intention estimation capabilities
and direct control over the simulated impedance characteristics allows for assessment of the
effects of prior parameterization. In order to analyze how differences between the simulated
impedance characteristics and the prior parameters influence the prediction performance,
the damping and stiffness EMVs are varied within plausible intervals. In order to consider
the highly task-specific nature of human motor behavior during realistic physical HRI and
demonstrate the versatility and adaptability of the Bayesian model, it is validated both for a
time-dependent (v = t) and a configuration-dependent (v = ) desired trajectory. All priors
in (B.7) - (3I0) are defined by SE kernels. The prediction performance is assessed with the
standardized mean squared error (SMSE) and the mean standardized log loss (MSLL).

In the SMSE, the squared residuals of the predicted interaction forces wins «; ; and the real

interaction forces iy ; are averaged over the test inputs =, = {€, ; ?:1 and normalized

h

with the variance of the respective test outputs U, = = {tinsi;(&. ;) }j=1:

1

SMSE — - 3° F g (intri(§1) = Uineig @w”?} _ (3.34)

niz |h j=1 Var {uint,i*}
The MSLL is obtained from the negative log probability, standardized by the log probability
of a Gaussian with mean and variance of the training data U, = = {tin,i;(§;) }]_1:
JRR [ G -
MSLL = — Z E Z |: — log P (uint,*ﬂ-,j (E*J)\Uim,g)
nis LS
—log N (tint, i (&, ))|E Uy z] , Var Uy, =] )H : (3.35)
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in which the negative log probability —log P (uint,*,z,j (E*,j)WmtE) is defined as

108 P (i (€. Wy =) = 5108 (2 Var [ E..)])

n (Ulnt,*ﬂ,j(s*,]) umt_mj (6*7])) . (336)
2 Var [uint,*,i,j<£*,j)}

Analogous to the SMSE, the MSLL is determined by averaging over the test inputs =, [79].

3.5.1. Implementation

We validate the model with simulated data of a neuromechanical model of the human arm,
which generates transversal movements of a two-link, six-muscle arm through calculation
of muscle activities [35]. The model is selected, because it is structurally more complex
than our Bayesian model and derives a two-dimensional trajectory from simulated muscle
activities that provide physiologically plausible impedance characteristics.

The rigid body dynamics of the neuromechanical model are determined by (Z]) and the
torque generation is determined by (Z2). The muscle tensions x are defined as

X = Xa + Ximp ) (337>

where x, are the muscle tensions due to muscle activation and x;,,, are the muscle tensions
due to impedance control. In the neuromechanical model, the muscle tensions due to muscle
activation x, are assumed to be identical to the muscle activations a in (2.3)) and the muscle
tensions due to impedance control Xx;,,, are defined as

Ximp = D)\é)\ + K)\E)\ s (338)
Dy=K,/12, K, =ag(I+0.035diag{a}), (3.39)

where Dy, K, and e, represent damping, stiffness, and tracking error with respect to the
desired trajectory at muscle level, respectively, and ak is an intrinsic stiffness parameter.
The feedforward muscle activations app are calculated a priori with the inverse kinematics
and dynamics of the desired movement. The feedback muscle activations arg are modeled
by PD control that is determined by the tracking error e,, the respective derivative éj,
and a simulated feedback delay d4, = 60 ms. The signal-dependent noise v, is calculated
with zero mean Brownian motion, which provides movements similar to those observed in
previous experiments [37]. It is generated by a normally distributed random variable, which
is amplified by a parameter o, = 12.5 and filtered by a fifth order low pass Butterworth
filter with a cut-off frequency f., = 2 Hz. The simulation sample rate is set to 500 Hz.

3.5.2. Simulation Design

In the simulation, the neuromechanical model of the human arm performs two-dimensional
movements along the reference trajectory displayed in Fig. 3.4l It consists of a circle with
radius 0.04 m and four attached arcs that each subtend 270 degrees. The feedforward
muscle activations app are calculated a priori with the inverse kinematics and dynamics of
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Figure 3.4.: Reference trajectory. Starting at the black dot, the arrows and numbers indicate
movement direction and execution order, respectively. ((© 2019 IEEE)
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Table 3.2.: Simulated damping and stiffness in mean (SD). (© 2019 IEEE)

Simulation Damping [Ns/m)] Stiffness [N/m]

X1 | X9 X1 | i)
Low stiffness | 9.89 (1.47)|12.40 (0.73)|118.7 (17.6) | 148.4 (20.7)
High stiffness | 48.07 (6.20) | 60.29 (7.55) | 576.8 (74.4) | 723.5 (90.6)

the positional data of the reference trajectory. In order to allow for assessment of the effects
of prior parameterization, we simulate two different stiffness profiles with ax = 3360 for low
stiffness and ax = 16800 for high stiffness. The resulting values of the simulated damping
and stiffness are presented in mean (SD) in Table B2l For each of the two stiffness profiles,
the same reference trajectory is repeated three times without pause at a rate of 2.618 rad/s
to form the complete data set. As the reference trajectory in Fig. B.4] does not possess a
distinct principal movement axis, the coordinates x; and x5 in Table as well as in the
remainder of this chapter refer to the sagittal and coronal planes, respectively. Furthermore,
from this point on and without loss of generality, the impedance matrices M,, D,, and K,
are defined to be isotropic. For clarity, the index ¢ of priors m;, dz, and k; in (3.0) - (3.8)
and the associated EMVs () ;, length scales A, ;, and variances a() is omitted.

3.5.3. Configuration-dependent Desired Trajectory

We consider ([3:24) with a configuration-dependent desired trajectory (v = @) and a priori
equilibrium definition (3.26). For simplicity, priors m, d, and k are defined constant and
deterministic (02, = 03 = o7 = 0). The prediction performance of the model is evaluated
with respect to a naive GP prior U naivei(§) ~ GP(0, ksr(€, €)). The training sets are
obtained by downsampling the simulated trajectories to 0.2 Hz and the validation sets are
obtained by downsampling the same trajectories to 10 Hz. The hyperparameters of the
naive model are trained by maximizing the log-likelihood and the resulting length scales
and variances are also used to parameterize prior ﬁim,e’i(g). The inertia EMV pu,, = 3 kg,
the damping EMVs pg € [5,50] Ns/m, and the stiffness EMVs p;, € [100,1000] N/m.
The hyperparameters of the desired trajectory are {107¢ (0.2 0.2)},, and o2 = 107
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Low stiffness simulation High stiffness simulation
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Figure 3.5.: Prediction performance with v = x. The red lines indicate the mean values of
the simulated x; impedance values and the grey grid represents the performance

of the naive GP prior. ((© 2019 IEEE)

0.4r i — xq(x) — x with
pr, = 800 N/m, pg = 40 Ns/m
0.35¢ — x4(x) —  with
pr, =100 N/m, yg = 5 Ns/m
= L
— 0.3r: 1 —
: LSRG 3
ol
0251 A
0.2

0.2 0.55 OI3 O.é5 0.4
x1 [m]

Figure 3.6.: Inference of desired trajectory x4 with v = x for the high stiffness simulation.
The arrows represent length and orientation of x4 — . ((© 2019 IEEE)

In the second half of the analysis, the intention estimation capabilities are evaluated via
the inferred desired trajectory. The evaluation is conducted for the simulated trajectory of
the high stiffness simulation, downsampled to 25 Hz, and the results are presented for sets
of low (ux = 100 N/m, g = 5 Ns/m) and high (ux = 800 N/m, 1y = 40 Ns/m) EMVs.

Fig. presents the prediction performance results with respect to the naive model
in terms of SMSE and MSLL. The SMSE for the low stiffness simulation shows that the
Bayesian human motor behavior model outperforms the naive model over the low stiffness
and low damping ranges, where the EMVs are close to the simulated values in Table 3.2
The prediction performance is decreased in the high stiffness and high damping ranges.
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In terms of MSLL, the prediction performance increases throughout the whole stiffness and
damping ranges and it reaches its maximum in the low stiffness and low damping ranges.
The SMSE for the high stiffness simulation displays overall improved performance, especially
for stiffness EMVs in the mid-range and a high damping EMV that is close to the simulated
values in Table A similar dependency is found in the MSLL. For low stiffness values, the
Bayesian human motor behavior model still outperforms the naive model, but performance
is reduced due to high variance, which is considered in the calculation of the MSLL.

Fig. demonstrates the inference of the latent desired trajectory, as defined in (332)).
The arrows represent length and orientation of the differences between the input states & and
the inferred states of the desired trajectory x4. The model with high EMVs expects lower
deviations due to higher tracking accuracy. Thus, the inferred state is persistently located in
the proximity of the associated input state. In contrast, the model with low EMVs expects
higher deviations due to lower tracking accuracy, which results in larger differences.

3.5.4. Time-dependent Desired Trajectory

In this section, we consider (3.:24]) with a time-dependent desired trajectory (v = t) and
a priori equilibrium definition (3:26). Analogous to the configuration-dependent model in
the previous section, for simplicity, priors m, d, and k are assumed constant and deterministic
(02, = 0% = 07 = 0). The error ¢;(t) as well as the respective derivatives ¢é;(t) and é;(t) and
the estimated interaction force Gy . ;(t) are defined as functions of time, such that, according

to (B.4), the interaction force wiyi(t) ~ GP (0, Koy, (£, 1 )) The prediction performance of

the model is evaluated with respect to a naive GP prior int naive,i(t) ~ GP (0, ksg(t,t’ ))
The training sets are obtained by downsampling the simulated trajectories to 3 Hz and the
validation sets are identical to those in the previous section. The hyperparameters of the
naive model are trained by maximizing the log-likelihood and the resulting length scales
and variances are also used to parameterize prior Ui ;(t). The EMVs of the impedance
components are the same as in the configuration-dependent analysis. The hyperparameters
of the desired trajectory are {107%,(0.3)},, and 02 = 10™*. In the second half of the analysis,
the intention estimation capabilities are again evaluated via the inferred desired trajectory,
based on the same simulated trajectory of the high stiffness simulation as well as the same
sets of low and high stiffness and damping EMVs as in the previous section.

Fig. B.7 presents the prediction performance results. The SMSE for the low stiffness
simulation shows that the Bayesian human motor behavior model outperforms the naive
model over the whole stiffness and damping ranges, with the difference in performance
being especially large for low stiffness and damping EMVs, which are close to the simulated
values in Table B2l In terms of MSLL, the prediction performance increases throughout
the whole stiffness and damping ranges and it reaches its maximum in the mid-stiffness and
low damping ranges. The SMSE for the high stiffness simulation displays overall improved
performance, especially for the high damping and high stiffness ranges, when the EMVs are
close to the simulated values in Table 3.2l A similar dependency is found in the MSLL.

Fig. demonstrates the inference of the latent desired trajectory, as defined in (3:32]).
It contains the inferred desired trajectories, the corresponding confidence levels, and the
reference trajectory. The model with high EMVs expects lower deviations due to higher
tracking accuracy. Thus, the inferred desired trajectory possesses low variance. As the
EMVs are close to the simulated values of the high stiffness simulation, the model represents
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Low stiffness simulation High stiffness simulation
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Figure 3.7.: Prediction performance with v = t. The red lines indicate the mean values of
the simulated x; impedance values and the grey grid represents the performance
of the naive GP prior. The naive GP prior MSLL in the low stiffness simulation
is 14.14 and thus omitted for clarity. (© 2019 IEEE)
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Figure 3.8.: Inference of desired trajectory x4 with v = t for the high stiffness simulation.
The shaded areas represent the confidence levels in the form of the SDs of the

desired trajectory x4 and are amplified for clarity (£ 5 SD for low EMV values,
+ 10 SD for high EMV values). ((© 2019 IEEE)

the simulated dynamics with high accuracy. The model with low EMVs expects higher
deviations due to lower tracking accuracy. As the EMVs are not close to the simulated values,
the simulated dynamics are represented with less accuracy. The inferred desired trajectory
possesses higher variance and deviates substantially more from the reference trajectory.

The analyses of the configuration- and time-dependent models in this section validate the
intention estimation capabilities and the superior prediction performance of the model in
comparison to the naive GP prior. In addition to being a positive result, the latter represents
a secondary means of validation for the inferred desired trajectories. Additionally, the impact
of proper prior parameterization on the prediction performance is demonstrated.
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Figure 3.9.: Participant interacting with the apparatus. (© 2019 IEEE)

3.6. Experiment

In order to assess the prediction performance of the model with real data, an experiment with
human participants is performed. The experiment design is based on the simulation design.
However, the impedance priors are not defined constant and deterministic and the EMVs
are not varied within plausible intervals. Instead, the number of training points is decreased
to determine the effects of training data sparsity. In order to assess the generalization
capabilities of the model, two different scenarios are evaluated, in which the training and
validation sets are located in identical or different regions of the workspace. The prediction
performance is quantified by the SMSE. In order to demonstrate the versatility of the model,
it is evaluated for a configuration- and velocity-dependent desired trajectory.

3.6.1. Apparatus

The apparatus is presented in Fig. It consists of two linear servo motor driven single
rail stages (Copley Controls Thrusttube Module) that are mounted on top of each other in
orthogonal orientation. The two single rail stages span a 2-DoF workspace of +0.20 m
and are each equipped with an encoder that yields position data with a precision of 1 pum.
A vertical handle and a 6-DoF force-torque sensor (JR3-67M25) are mounted on top of the
upper servo motor driven cart to measure the forces in the horizontal plane. A sling attached
to the ceiling is available for limitation of participant movements to the horizontal plane.
Visual feedback is provided on a screen behind the apparatus at participant eye level and
implemented with the Psychophysics Toolbox [I08]. The position of the cart is visualized
by a dot and the workspace safety boundaries are visualized in the form of a boundary box.

Haptic interaction with the apparatus by means of participant force input is enabled by
the admittance control scheme, which is defined by

Uadm = Mm,admd‘: + Dx,adm$ 5 (340)

where w,qm is the admittance force, which corresponds to the interaction force u;,; that is
measured at the end-effector, and M, 44 = diag{5,5} kg and D, n4m = diag{15,15} Ns/m
are the admittance inertia and damping, respectively. The characteristics of the admittance

38



3.6 Experiment

— Training trajectories ~~ Validation trajectories

a) * Training data points b) Validation data points

-0.05+

~0.10} . f
-0.10 -0.05 0 0.05 0.10 -0.10 -0.05 0 0.05 0.10
x1 [m] z1 [m]

Figure 3.10.: Participant data. (a) Identical workspace regions with exemplary 30 point
training set. (b) Different workspace regions with exemplary 30 point training
and validation sets (validation points reduced for clarity). ((© 2019 IEEE)

control scheme are chosen to guarantee natural interaction with the apparatus and sufficient
attenuation of force-torque sensor noise. Precise position rendering is provided by high gain
PD control, which is implemented in Matlab/Simulink, exported for an embedded real-time
Linuzx target, and executed on an external RT-preempt Linux system with a real-time kernel
(Ubuntu 14.04, 8.14.3-rt4-prt). The sample rate is set to 4 kHz and inputs to the Thrusttube
Modules are downsampled to 2 kHz due to hardware limitations. The signals are filtered
using a fifth order Savitzky-Golay filter with a cut-off frequency of 20 Hz [109].

3.6.2. Experiment Design

In order to consider the highly task-specific nature of human motor behavior during realistic
physical HRI, in this section, we consider (8.24]) with a configuration and velocity-dependent
desired trajectory (v = [x£',2"]") and a priori equilibrium definition (3.26]). For feasibility,
we set all jerk-related terms in (B.2I)) to zero. The hyperparameters of prior .. ;(€) are
defined by maximum log-likelihood training of a naive GP prior. The EMVs of the impedance
components are f,, = 2 kg, g = 20 Ns/m, and g = 100 N/m. They are defined based on
the principal movement axis values in Table 3.1k p4 is the approximate mean of the damping
values and py is based on the lower stiffness values, as they represent the most plausible
values for the observed dynamics. The hyperparameters are {107 (0.4 0.4 0.2 0.2)},,,
{5%,(0.2 0.2 0.1 0.1)}4, and {50% (0.2 0.2 0.1 0.1)},, and o2 = 10~*.

The training sets are obtained from data of repetitions 6 — 10. It is assumed that after
five repetitions the participants have had enough time to familiarize with the apparatus.
The validation sets are obtained from data of repetitions 11 —15. In order to ensure sufficient
coverage of the workspace, each repetition is validated separately. The number of training
points is increased from 2 to 50 and there are 200 validation points. Before the evaluation, the
training and validation points are uniformly distributed among the sets. In each evaluation,
one of these uniformly distributed training points is randomly selected and added to the
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Figure 3.11.: Averaged SMSE results. The error bars indicate +5 SD. (© 2019 IEEE)

existing training set. The evaluations are repeated 100 times for each of the five validation
repetitions (11 — 15) and the results are averaged. Figs. B.I0h and B.I0b show the data of
a single participant for the identical and different workspace regions scenarios, respectively.
In the former, all sets contain data from all workspace quadrants. In the latter, training sets
contain data from Quadrant 2 and validation sets contain data from Quadrant 4.

3.6.3. Participants & Procedure

A total of 20 participants (16 male and 4 female) volunteered to take part in this experiment.
The mean (SD) age at the time of the experiment was 26.95 (4.41) years. All participants
had normal or corrected-to-normal vision and were right-handed. Informed written consent
was obtained from all participants before the experiment. The research ethics were obtained
from the ethics committee at the Technical University of Munich (project no. 205/14).

The participants were seated in front of the apparatus and instructed to grasp the handle
with their right hand. Their arm was constrained to horizontal movements by a sling attached
to the ceiling. The reference trajectory and the current position of the cart were visualized
on the screen behind the apparatus (Fig. B.9). The participants were instructed to move
to the starting point and then follow the reference trajectory at their own pace (Fig. B.4).
Each participant completed 15 repetitions of the reference trajectory without pause.

3.6.4. Evaluation

Fig. 311 shows the averaged SMSE results including error bars that each indicate +5 SD
over the number of training points h. The results show that the mean SMSEs rapidly
decrease with an increase of h. Although the initial value for different workspace regions
is substantially increased, the values for large h are almost identical. The mean SMSE
converges to zero for identical workspace regions and to a marginally larger value for different
workspace regions. This difference in prediction performance is plausible, as the validation
points are located in previously unobserved regions of the input space.

The results show that decreased prediction performance due to training data sparsity only
arises for very small numbers of training points h. Although this difference increases with
the distance between training and validation points, given a reasonable number of training
points, the model nonetheless provides reliable predictions in previously unobserved regions
of the input space. This reliable prediction performance of the model for real data also serves
as an indirect means of validation for its intention estimation capabilities.
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3.7. Discussion

In this chapter, we derive an impedance-based GP model. The model derivation is based
on the assumption that the unperturbed states represent the desired kinematic states of
the desired motor behavior, which can be described by a twice differentiable, well-defined
function q4(v). The parameters v are defined by task-specific input parameters such as
~ =t for a transient desired trajectory g4(t). We demonstrate desirable intention estimation
capabilities and superior prediction performance for different parameterizations of the desired
trajectory g4(7y). In the experiment, we consider a configuration and velocity-dependent
desired trajectory with v = [£T,&"]T. We exclude repetitions 1 — 5 from the data, assuming
that after five repetitions participants have had enough time to familiarize with the apparatus
and possess a desired trajectory xq(x,x). It should be noted that this trajectory does
not have to be identical to the visual reference trajectory. Nonetheless, our assumption is
supported by desirable prediction performance, indicated by low averaged SMSE results,
both for previously observed and unobserved regions of the input space.

The results obtained with simulated and real physical HRI data also support the general
applicability of the approximation of diagonality for impedance matrices M,, D,, and K,.
Nonetheless, in future work, we aim to extend the methodology to physiologically accurate
multi-dimensional treatment of (2.35]), which would require definition of the non-diagonal
elements by additional GPs. Each of these additional GPs would require suitable prior
parameterization, including the respective EMVs, for which empirically determined data
would need to be obtained. The additional product terms would need to be incorporated
in (312) and (3I3). More importantly, symmetry properties of the matrices would require
definition of an additional covariance function that correlates the respective GP with the
interaction forces along the z;- and x,-axes.

The physiological plausibility of the Bayesian human motor behavior model is also slightly
reduced by the omission of the positive correlation of damping d; and stiffness k; in the
GP prior definitions in (37) and (3.8). It can however be partially included in the model
through suitable definition of the EMVs p4; and ;. In the evaluation of the experiment,
we define both EMVs p4; and p; based on the estimated impedance characteristics for
non-postural tasks in Table 3.l Thus, if the observed behavior is in the proximity of the
expected behavior, correlational characteristics of the conditional posteriors of d; and k; are
to be expected. If the observed behavior deviates greatly from the expected behavior, the
conditional posteriors may lose correlation, which may result in reduced accuracy of the
inferred desired trajectory 4. and predicted interaction forces iy .. Such behavioral and
correlational deviations are indicated by decreased model confidence levels.

3.8. Summary

In this chapter, we present a method for modeling human motor behavior during physical
and non-physical HRI that explicitly includes an impedance control model. Without loss of
generality, particular focus is placed on the derivation of a human motor behavior model for
physical HRI, as it represents the more challenging problem and also comprises a model for
non-physical HRI. The dynamics of the human arm are modeled by an impedance control
scheme that tracks a desired trajectory. We adopt a Bayesian perspective by assuming GP
priors for the desired trajectory and the impedance components. By doing this, we are able to
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derive covariance functions of an impedance control structure that accurately represents
human motor behavior during physical and non-physical HRI through the exploitation of
a priori knowledge of human impedance characteristics. Regression of the desired human
motor behavior necessitates the inference of the human motor intention, which is represented
by the desired trajectory. Thus, the impedance-based GP model is both a predictor of human
motor behavior as well as an observer of human motor intention. The latter is validated in
simulation with a neuromechanical model of the human arm. Different parameterizations of
the desired trajectory are evaluated to show superior prediction performance with respect to
a naive GP prior and demonstrate versatility and adaptability of the model. As the validation
in simulation reveals a dependency between prediction performance and the parameters of
the GP priors, an overview of estimated human arm impedance characteristics is presented
and implications for proper prior parameterization are discussed. In order to evaluate the
prediction performance of the model with real data similar to that of envisaged HRI scenarios,
an experiment with 20 participants is performed. The effects of training data sparsity are
analyzed and it is demonstrated that the generalization capabilities of the model allow for
reliable motor behavior predictions in previously unobserved regions of the input space.
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Impedance Estimation for Physical HRI 4
via Feedback Jerk Isolation :

In the previous chapter, we addressed the information exploitation by formulating a Bayesian
human motor behavior model for physical and non-physical HRI that explicitly incorporates
an impedance control model and allows for the inclusion of a priori impedance knowledge.
In this chapter, we focus on the information acquisition. More specifically, we enable the
acquisition of comprehensive knowledge about the human arm impedance characteristics
by presenting a method for the estimation of impedance components in experiments that
emulate realistic physical HRI scenarios. As voluntary feedback torques may take on complex
task-specific forms that require more sophisticated models than the general formulation of
the impedance control model for the involuntary feedback torques, accurate estimation of
the impedance components necessitates separation of involuntary and voluntary feedback.
In addition to exclusion of voluntary feedback, a suitable impedance estimation method must
also provide accurate isolation of feedback behavior in response to external perturbations
from feedforward behavior, as estimation errors in the feedback behavior directly influence
the estimation accuracy of the impedance components. In this chapter, we present a method
for the estimation of the impedance components during multi-joint human arm movements.
We apply force perturbations that are designed such that the feedback behavior can be
isolated by a high pass filter, as the dominant frequencies of the jerks of the evoked feedback
behavior lie above those of the unperturbed movements. Furthermore, we limit the duration
of the estimation interval in order to guarantee the exclusion of voluntary feedback. Here, we
do not require the assumption that the unperturbed states represent the desired kinematic
states and thus only differentiate between perturbed and unperturbed movements. We use
dynamic regressor representation of the rigid body dynamics to obtain a linear model of the
impedance components in joint space. Thus, we are able to estimate the constant values of
the inertial parameters in a static posture maintenance task and subsequently insert them
to estimate the remaining impedance components in a dynamic movement task.

The remainder of this chapter is structured as follows: related work and open problems are
reviewed in Section [£.1l The dynamic regressor representation is introduced in Section (4.2
The feedback jerk isolation and the perturbation design are presented in Section [4.3] and
the impedance estimation is presented in Section [£.4l Both the feedback jerk isolation and
the impedance estimation are validated with simulated data of a neuromechanical model
of the human arm in Section We compare the validation results to those obtained by
application of the methods presented in [52] and [53]. In the validation of the feedback
jerk isolation, we additionally analyze the effects of different movement velocities as well as
different frequencies and amplitudes of neural noise. In Section [4.6] we perform an extensive
evaluation of the applicability to real data based on an experiment with human participants.
It also includes an analysis of the effects of different durations of the estimation interval.
The obtained results are discussed in Section [4.7] and summarized in Section [L.§
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4.1. Related Work and Open Problems

Estimation of multi-joint arm impedance is generally either performed by application of a
perturbation paradigm, in which perturbations evoke deviations from unperturbed states
to measure variational dynamics, or by combining electromyographic (EMG) measurements
with appropriate impedance models. In the latter category of approaches, multiple studies
combine EMG measurements with parametric muscle models, e.g., linear models of muscle
stiffness [110], quadratic models of muscle tension [60], or models of musculotendon unit
forces [I11]. In [I12], an artificial neural network produces a mapping between EMG data
and stiffness estimates, that are obtained from measured joint torques and an empirically
determined linear stiffness model. In [IT13] and [114], similar mappings are produced by
pairing stiffness estimates obtained by application of the perturbation paradigm with EMG
data. All of these EMG approaches have in common that they exclusively estimate stiffness.

Estimation of multi-joint arm impedance by application of the perturbation paradigm can
generally be divided into two main categories: estimation in static posture maintenance tasks
and in dynamic movement tasks. In both categories, perturbations evoke deviations from
unperturbed states and impedance is estimated based on the resulting variational dynamics.
Impedance estimation in static posture maintenance tasks is substantially less complex, as it
does not require estimation of unperturbed states of underlying movements. Furthermore, it
allows for application of position perturbations, which are executed by moving the hand along
a perturbation trajectory and thus enable a priori definition of the variational kinematics.
Some studies exploit this advantage by using perturbation trajectories with plateau phases,
during which the deviation remains constant [21,28,29/[1T5,1T6]. During the plateau phase,
variational velocities and accelerations are zero. Thus, the respective variational forces can
be used to exclusively estimate stiffness. Some studies use position perturbations defined
by third [102,[117] or fifth degree polynomials [65,113], which are specifically designed to
improve the conditioning of the estimation. Other studies use stochastic position [114[118]
or force perturbations [I19] in combination with substantially longer estimation intervals to
estimate frequency domain impedance transfer functions.

Impedance estimation during dynamic movement tasks is substantially more challenging
than during static posture maintenance tasks, as it requires estimation of the unperturbed
states of the underlying movement. In [120], impedance is solely estimated in terms of
evoked feedback forces. In [121], it is represented by the ratio of frequency domain forces
and velocities. In [122], position perturbations with plateau phases are used to exclusively
estimate stiffness in a 60 ms interval that starts 120 ms after perturbation onset. In [123]
and [124], similar methods are used to exclusively estimate stiffness in a 50 ms interval that
starts 250 ms after perturbation onset. In [I125], force perturbations and time-frequency
analysis are used to estimate impedance 135 ms after perturbation onset. Due to reliance
on vibrational energy, this method is only applicable to free, unfettered movements without
any kind of physical interaction. In [52], force perturbations are used to estimate impedance
during multi-joint arm movements by least squares estimation in a 280 ms interval. In [53],
similar methods are used to estimate impedance in a 250 ms interval. To the best of the
author’s knowledge, among existing methods in the literature, only those in [52] and [53] are
designed to estimate inertial characteristics, damping, and stiffness during multi-joint arm
movements that include some kind of physical interaction.
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In [52], participants perform transversal and longitudinal point to point movements, which
are guided by a target position that moves along a reference trajectory and is displayed on a
computer monitor. First order Taylor series expansion is used to obtain a linearized model
of the rigid body dynamics and the feedback behavior in joint space. Inertial parameters
are estimated a priori in a static posture maintenance task and subsequently inserted for the
estimation of damping and stiffness in the dynamic movement task. Variational dynamics
are obtained by calculating the difference to the averaged unbiased dynamics of all perturbed
movements, which are calculated by subtracting the offsets at perturbation onset.

In [53], participants perform a manual tungsten inert gas welding task in cooperation
with a robot. The welding movements are guided by a straight reference trajectory and
the participants are instructed “to do their best to achieve a good welding”. Variational
behavior is described by a linear model of diagonal inertia, damping, and stiffness matrices
in Cartesian space, which are estimated simultaneously during the welding task. Variational
positions and forces are obtained by subtraction of the offsets at perturbation onset and
variational velocities and accelerations are obtained by differentiation.

Both [52] and [53] are unable to guarantee exclusion of voluntary feedback, because the
respective estimation intervals are substantially longer than the delay of voluntary feedback.
In [52], this is compensated by application of the do-not-intervene-voluntarily paradigm,
i.e., participants are instructed to not intervene voluntarily in response to the perturbation.
While this paradigm is not able to guarantee exclusion of voluntary feedback [126], it is
widely accepted as a plausible approximation [29/[110]. During static posture maintenance
tasks, the avoidance of voluntary feedback does not have any major implications on the
execution of desired motor behavior, as there is no underlying movement. However, during
dynamic movement tasks, where there is an underlying movement, it substantially influences
the successful execution of desired motor behavior. Thus, instructing the participants to not
intervene voluntarily substantially limits the number of realistic physical HRI scenarios.

4.2. Dynamic Regressor Representation

The estimation of the impedance components within a limited estimation interval requires
a maximally accurate formulation of the impedance control model. Thus, in this chapter,
in order to avoid assumptions concerning negligibility of inertia and Coriolis terms that are
necessary to obtain a linear second order system in Cartesian space, we use the impedance
control model (2.I7)) in joint space as the basis for the impedance estimation. Furthermore,
in this chapter, we do not require the assumption that the unperturbed states represent
the desired kinematic states and thus only differentiate between perturbed and unperturbed
movements. In the impedance control model (ZI7), the inertial properties of the limbs are
described by the Coriolis/centrifugal matrix C,, and the inertia matrix M,. In order to obtain
a fully linear model that allows for the estimation of the inertial characteristics of the limbs,
we apply dynamic regressor representation.

The rigid body dynamics (Z1) is non-linear with respect to the arm configuration g and
the respective derivatives ¢ and ¢. For a two-joint two-link system in the horizontal plane,
the inertia matrix M, and Coriolis/centrifugal matrix C, are defined as follows:

Ty + To + 21y cos (qa)males + Bmy  To + 15 cos (g2)maleo
Ty + 1y cos (g2)moalc o Lo

My(q) = : (4.1)
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| —G@elisin(g)males  — (G1 + o) Ly sin (g2)mal. o
C(I(q7 q) - (jlll Sin (q2)m2lc72 O . (42)

In the definition of the inertia matrix M,, according to the parallel axis theorem,

Thus, the inertial properties are defined by the moments of inertia ¢;, the masses m;,
the lengths [;, and the distances from the joints to the centers of gravity [ ;.

The Lagrangian formalism enables the derivation of the dynamic regressor representation,
which is linear with respect to the standard inertial parameters of the system:

Thu + Text = Y<q7 q7 q)ﬂ- ) (44)
Y(q,4.4) = 8(Mq(Q)qg‘WCq<qaiI)Q) : (4.5)

where Y is the regressor matrix and w = [w{, |7 is the standard inertial parameter vector,
which is composed of the inertial parameters of the upper arm 7y and the forearm o [127].
In general, the inertial parameters consist of the masses and the mass moments of first and
second order [128]. However, as can be seen in the inertia matrix A, and Coriolis/centrifugal
matrix C, in (A1) and (£2), some parameters do not have any effect on the system dynamics
which corresponds to a zero column in the regressor matrix Y. For the multi-joint arm,
omission of these parameters yields the reduced inertial parameter vector

™ = [Zla 227 m2lc,27 mQ]T . (46)

Comprehensive analysis of the corresponding reduced regressor matrix Y; reveals that further
reduction of inertial parameters is possible [129]. Application of appropriate transformations
yields the base inertial parameter (BIP) vector 7, which contains the minimal set of inertial
parameters, and the corresponding base regressor matrix Y of the multi-joint arm:

N

™= [21 +mal}, g, m2lc72l1} ) (4.7)

— .. G G1+ G Yis

% | TR T 48
R (49

Yis = (261 + Ga)cos(g2) — (241G2 + ¢3)sin(ge) |

Va3 = Grcos(g2) + gisin(gz) -

Using the linear model (4.4]) in combination with the BIP vector 7 of (A7) and the base
regressor matrix Y of (A8)) to calculate the variational internal torques Ay, yields

ATy, = (V(q7 q, q) - ?<q*7 q*7 q*))f — ATy
=AY (9,434,944, §)T — ATy - (4.9)
Subsequently inserting (Z.13)) in (£9]) yields the impedance estimation model

ATy =AY (q,¢",4,4",q4,4°)7 + D,(q,q,a)Aqg + K,(q,q,a)Aq , (4.10)
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which, in contrast to the formulation of the impedance control model in (ZI7) is linear with
respect to all impedance components, i.e., BIP vector 7, damping D,, and stiffness K.

In order to guarantee the exclusion of voluntary feedback, we limit the duration T} of the
estimation interval, in which we apply this impedance estimation model, to the minimum
delay of voluntary feedback dgg,. Considering the delays of voluntary feedback in response to
haptic motion perception as well as conduction delays of descending motor commands, this
means that the duration of the estimation interval Ty = dpgy = 115 ms (see Section 2.1]).
Thus, the problem considered in this chapter consists of the estimation of the impedance
components, i.e, BIP vector 7, damping D,, and stiffness K, in the interval [0, Tty with
the limited duration T,y = dpgy = 115 ms. This is to be achieved given the perturbed
observations {&, Uy }, which result from application of force perturbations during multi-joint
arm movements, and requires estimation of the unperturbed dynamics {q*, ¢*,¢*, 7%}

4.3. Unperturbed Dynamics Estimation

In order to obtain the unperturbed and variational dynamics necessary for the estimation
of the impedance components, we apply force perturbations that are designed such that the
feedback behavior can be isolated by a high pass filter, as the dominant frequencies of the
jerks of the evoked feedback behavior are located above those of the unperturbed movements.
In this section, we introduce the two major elements of the estimation of the unperturbed
and variational dynamics. First, we discuss the configuration and application of the feedback
jerk isolation and subsequently we present the design of the external force perturbations.

4.3.1. Feedback Jerk Isolation

According to the minimum jerk principle [72], the CNS optimizes the arm endpoint trajectory
in a point to point movement through minimization of the endpoint jerk. We take advantage
of this by designing the perturbation such that the dominant frequencies of the jerks of the
evoked feedback behavior lie above those of the unperturbed movements. Due to this design,
we are able to estimate the evoked feedback behavior in the form of the variational jerks A%
through application of a high pass filter to the jerks & of the perturbed movement.

Remark 4.1. In order to achieve maximum pass band flatness and fast stop band roll-off,
we perform the feedback jerk isolation with a Butterworth filter that is implemented as a
tenth-order digital biquad filter. It is applied bi-directionally for zero phase distortion.

The cut-off frequencies f . yp of the high pass filter are defined based on the energy spectral
densities (ESDs) 1 of the jerks & of the unperturbed and perturbed movements [130]:

W(f) = ’/_O:O et (| (4.11)

In order to configure the high pass filter, we use the set ¥, which contains the ESDs 1 of
the jerks & of all unperturbed and perturbed movements, to calculate the averaged ESDs of
the unperturbed movements 1 ;p, the averaged ESDs of the perturbed movements 1, and
the averaged ESDs of the feedback behavior 1pg = 1pp —yp. The cut-off frequencies f. yp
of the filter are defined as the frequencies f at which ¥pg > Yyp, i.e., the averaged ESDs of
the feedback behavior 1y become larger than those of the unperturbed movements ) p.
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Figure 4.1.: Block diagram of the feedback jerk isolation. For every variational variable A(-),
the respective unperturbed variable (:)* = A(:) 4 (-) is calculated with the
respective perturbed variable (-), and vice versa.

The high pass filtered jerks @ yp provide the estimated variational jerks A%, which yield the
estimated unperturbed jerks " Subsequently, integration yields the estimated variational
kinematics {AZ, Ak, A?E} and unperturbed kinematics {&", x* :%*} For convenience, from
this point on, we refer to the averaged ESDs ¥p, ¥p, and ¢pp simply as ESDs.

The apparatus in our experiments is controlled by means of an admittance control scheme.
Therefore, the external forces ue, can be calculated according to

Uext = Upert — Uadm — Mm,handlei‘ ) (412)

where w,qp, is the admittance force, as defined in (B:40), wper is the perturbation force, and
M nandle 1s the handle inertia. Inserting the estimated unperturbed kinematics Z* and &* as
well as Upere = 0 in (AI12) and (B.40) yields the estimated unperturbed external forces 4.,
and variational external forces Afie. The estimated unperturbed arm configuration ¢*
and the respective derivatives ¢* and ¢* are calculated using the inverse kinematics (2.24)
and (225)) and the estimated unperturbed external torques 7., are calculated using the
transformation (Z26). Finally, the estimated unperturbed dynamics {g*, ¢*, ¢*, 7o) yield
the estimated variational dynamics {Aq, Ag, Aq, AT e }. Fig. 1 presents a block diagram
that displays the procedure of the feedback jerk isolation, separated into the calculation of

the cut-off frequencies f_yp and the estimated variational dynamics {Aq, Aq, Ag, AT et }-

4.3.2. Perturbation Design

The perturbation is designed to meet two essential criteria. First, the dominant frequencies
of the jerks of the evoked feedback behavior should be located above those of the jerks of the
unperturbed movements. Second, in order to minimize movement interference and corrective
oscillations, it should not only produce deviations, but also move the hand back towards the
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Figure 4.2.: Normalized perturbation force profile uper, and resulting kinematics profiles
{Zpert.ns Tpert.ns Tpertns Lpert.nf Of the dynamic movement task. The first part
of the perturbation with duration 7}, ; is responsible for the deviation from the
unperturbed states and the second part with duration T}, » supplies the retracting

movement back towards the unperturbed states.

unperturbed states. In order to fulfill these two essential criteria, we design the perturbation
acceleration profile Zpe¢ through concatenation of two sinusoidal functions

B la (sin(MjLB—”)—l—l) Y toert € [()7&]
o~ Phuton (o 4y VS @13

The first of the two functions p; with amplitude a,; and duration 7},; is responsible for
the deviation from the unperturbed states. The second function p, with amplitude
and duration T, supplies the retracting movement back towards the unperturbed states.
In order to minimize hardware oscillations due to the perturbation, we define 7, , = (3/2)7,;
and scale a2 such that all perturbation profiles are zero at the end of the perturbation.
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Lastly, we combine the perturbation acceleration profile &,e and velocity profile @pe with
the admittance inertia M, ,qm and damping D, ,qm of our admittance control scheme, as
defined in (3:400), in order to obtain the perturbation force profile wpey. It is defined by the
amplitude of its first peak apere and its combined duration Ty = T),1 + T} 2.

Remark 4.2. In the dynamic movement task in this work, apes = 40 N, T,,; = 70 ms,
and T,e¢ = 175 ms. The resulting normalized perturbation force profile upen and the
corresponding kinematics profiles {Zpertns Tpertins Tpertms L pertn ) are illustrated in Fig.

Given the normalized perturbation force profile wpern, Which is obtained by normalizing
with the amplitude of the first peak aper, the perturbation force wper is given by

upert = Oépertupert,n[cos (bperta SiIl (bpert]T 9 (414>

in which the perturbation angle ¢,e+ is defined by the set of perturbation angles ®pe.

4.4. Impedance Estimation

In this section, we present the least squares estimation of the impedance components with the
impedance estimation model (@I0), the estimated unperturbed dynamics {g*, ¢*, ¢*, 7.},
and the estimated variational dynamics {Agq, Ag, Ag, ATt }. Due to the limited duration
of the estimation interval Ty, we assume that the impedance components D, and K, are
constant for t,e € [0, Test) and approximate them by the impedance parameters Eq and ?q.
We first introduce the linear least squares analysis of the impedance estimation in the static
postural task and the dynamic movement task. Subsequently, we discuss symmetry and

positive definiteness assumptions and the resulting non-linear least squares analysis.

4.4.1. Linear Least Squares Analysis

In order to calculate the linear least squares solution, we concatenate the elements of the
BIP vector 7, damping D,, and stiffness K, in the unknown parameter vector

_ = = = = = = 4T
p= 717727737Dq,117Dq,127Dq,21,Dq,22,Kq,n,Kq,lz,Kq,m,Kq,m} ) (4.15)

which allows for expression of (£I0) by the identification model
Ap=r, (4.16)

where A is the regression matrix and r is the output vector. For an interval with h samples,
the regression matrix A and the output vector r are defined as

A=[xT1).XT@2), ... X)) (4.17)

r= {A%T

ext

(1), A#5,(2), ... ,AFL (M), (4.18)

ext ext

in which the independent variable matrix X is defined as

0(AY (q,4",4,4", 4, 4")7 + DAq + K,Aq)
op

X = . (4.19)

50



4.4 Impedance Estimation

Based on (4I3)) - (AI9), minimization of the sum of squared residuals through linear least
squares analysis yields a closed-form expression for the estimated parameter vector

p=(ATA) ATy (4.20)

Remark 4.3. Due to the limited duration of the estimation interval T,, which implies
the likewise limited duration of the perturbation Tyet, the perturbation in (4.I4]) does not
possess sufficient richness of frequency components to guarantee persistent excitation [131].
A common approach for the compensation of such limitations is the a priori estimation of the
inertial parameters [52,123,[124,132] which only marginally influences the overall accuracy
of the estimated impedance parameters [21].

As the inertial parameters possess constant values that are independent of the dynamics,
the BIP vector 7 can be estimated a priori in a static postural task. Consequently, in the
dynamic movement task, due to the insertion of the resulting estimated BIP vector 7 in the
identification model, the unknown parameter vector p reduces to

— — — — — — — — T
Z_) = |:Dq,117 Dq,127 Dq7217 Dq,227 Kq,lla Kq,127 Kq,217 Kq,22 (421)

and the independent variable matrix X and the output vector r change to

- 9D,Aq+K,Aq
op
r= A'-’A-ext - A?(qa q*a Q7 él*a Q7 (A]*)% ’ (423)

where, for simplicity, the dynamic output vector 7 is formulated for a single data sample.
Inserting the dynamic independent variable matrix X and the corresponding output vector 7
in (@I7) and (£20) yields the estimated dynamic unknown parameter vector p.

4.4.2. Non-linear Least Squares Analysis

In order to further reduce the number of unknown parameters in the impedance estimation,
both for the static postural task as well as for the dynamic movement task, we examine the
symmetry and positive definiteness properties of the stiffness K,,.

The mechanical feedback behavior is governed by spring-like characteristics that result
from the elastic properties of the individual muscles. Thus, the mechanical feedback forces
possess zero curl and the mechanical stiffness is symmetric [133]. The reflexive feedback forces
may possess non-zero curl which can only result from heteronymous inter-muscular reflex arcs
with unequal activation gains [25]. However, as the resulting antisymmetric stiffness elements
are substantially smaller than the corresponding symmetric ones, the reflexive feedback
behavior is nonetheless characterized by predominantly spring-like characteristics [29,[102].
As the estimation interval in this work is substantially shorter than the ones in [29] and [102],
we assume that the stiffness K, is symmetric for tper € [0, Tog)-

As the potential energy of the vector field of the involuntary feedback forces must increase
in response to deviations from the unperturbed states, the symmetric stiffness K, must also
be positive definite. In order to incorporate both symmetry and positive definiteness of
the stiffness K, in the estimation, we apply the Cholesky decomposition K, = LLT, where
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4 Impedance Estimation for Physical HRI via Feedback Jerk Isolation

the stiffness K, is expressed by the matrix product of the lower triangular matrix L [T34].
With this decomposition, the unknown parameter vectors p and p of the static postural task
and the dynamic movement task, respectively, are transformed to

— — T
Dn = [717727737Dq,llaDq,12aDq,217Dq,22aL117L127L22} ’ (424>

— T
ﬁnl - |:Dq,117Dq,lZaDqu)Dq,ZQaL117L127L22:| . (425)

Due to the non-linearity of K, = LLT, we can no longer use the identification model ([Z.I6).
Instead, we apply non-linear least squares analysis to minimize ||g(p,)||* and ||g(B,,)||° for
the static postural task and the dynamic movement task, respectively:

9(p) = AY(q,4",4, 4", 4,4 )7 + DyAq+ LLTAg — 7, (4.26)

G®@,) = D,Aq+ LLTAG —7 . (4.27)
By calculating the non-linear least squares solutions of (£26]) and (£27) we are able to
obtain the estimated impedance parameters, which consist of the individual elements of the

estimated BIP vector 7, the estimated damping D, and the estimated stiffness K,.

4.5. Simulation

Both the feedback jerk isolation and the impedance estimation are validated with simulated
data of the neuromechanical model of the human arm [35], which we use in Section to
validate the Bayesian human motor behavior model. By simulating each movement twice,
once with and once without perturbation, we are able to validate the estimation of the
unperturbed dynamics based on the feedback jerk isolation. Furthermore, we are able to use
the simulated inertial characteristics and impedance components to validate the estimation
of the impedance parameters. We compare the results of the validation to those obtained
by application of the methods presented in [52] and [53]. In the validation of the feedback
jerk isolation, we additionally analyze the effects of different movement velocities as well as
different frequencies and amplitudes of neural noise. Fig. 43 contains a schematic diagram
that lists the major elements of the method and the validation with simulated data.

We use the neuromechanical model of the human arm to simulate a static postural task
and a dynamic movement task. As the static postural task does not include any kind
of underlying movement, we are able to apply the do-not-intervene-voluntarily paradigm.
While the do-not-intervene-voluntarily paradigm does not guarantee exclusion of voluntary
feedback or constant unperturbed states [126], it is widely used and accepted as a plausible
approximation of both of these assumptions [29,52,110]. Thus, given the absence of an
underlying movement, and the fact that the elements of the BIP vector 7r are all constant,
we are able to use an estimation interval duration T, that is longer than the delay of
voluntary feedback dpg, in the static postural task. As the dynamic movement task does
include an underlying movement, it is performed without the do-not-intervene-voluntarily
paradigm and we use the limited estimation interval duration T.y; = dpgy = 115 ms.
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Data acquisition

Simulation of neuromechanical human arm model

[[] Static postural task
(with original simulation configuration)

I Dynamic movement task
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[ Dynamic movement task
(with alternative simulation configurations:
movement velocities, neural noise parameters)

v

Estimation of variational behavior for dynamic task

Feedback jerk isolation

High pass filter configuration [

Analysis of variational behavior B

Comparison of estimation methods RN

v

Static task variational behavior: inertial parameters

Impedance estimation

Dynamic task variational behavior: damping, stiffness

Analysis of impedance components . |:|

Comparison of estimation methods RN

Figure 4.3.: Schematic diagram of the major elements of the method and the validation with
simulated data. The colored boxes indicate which sets of simulated data are
generated, applied, and analyzed in which phases of the validation.

4.5.1. Implementation

The implementation of the neuromechanical model is presented in detail in Section B.5.11
In the implementation, there is no distinction between reflexive and voluntary feedback.
Instead, both feedback mechanisms are combined and the simulated feedback delay dg;py,
is defined to lie between the respective delays dpp, and dpg,. As the simulated feedback
delay dgjy, is shorter than the duration of our estimation interval 7.y, the feedback behavior
within the estimation interval is influenced by voluntary contributions. In order to avoid

this and enable the validation of the estimated impedance parameters D and K through
the simulated impedance components, we use a variation of the original 1mplementat1on, in
which the simulated feedback delay dg;y, is equal to the delay dgp, of voluntary feedback, i.e.,
dsim = Oy = 115 ms. In order to represent the effects of the do-not-intervene-voluntarily
paradigm, voluntary feedback is removed in the simulations of the static postural task.
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Figure 4.4.: Schematic representation of the human arm task space, the static task, and the
dynamic task. In the static task, the arm maintains a total of five different
positions that are spread out across the horizontal plane. In the dynamic task,
it performs point to point movements along the sagittal axis.

Remark 4.4. Although the physiological correctness of the modified implementation with
the simulated feedback delay dg, = 115 ms is slightly reduced compared to the original
implementation, it nonetheless represents a plausible simulation of human motor behavior.
More importantly, it represents a means for validation of our method and for comparison of
its performance to those of the existing methods presented in [52] and [53].

4.5.2. Simulation Design

As the definition of the signal-dependent noise v, in the neuromechanical model is based
on a normally distributed random variable, the static task and the dynamic task are each
simulated ten times and the respective results are averaged. In order to achieve maximum
possible similarity of the simulated and the experimental data, the simulated manipulandum
inertia and damping are defined in accordance with the inertia M, .4, = diag{5,5} kg and
damping D, ,am = diag{20,20} Ns/m of the admittance control scheme of our apparatus.

Remark 4.5. The results of the simulation are either presented in within-, between-, or
cross-simulation mean (SD). The cross-simulation mean (SD) is obtained by calculating the
mean of the within-simulation means and the mean of the within-simulation SDs. As the
majority of the results are cross-simulation mean (SD) results, for convenience, from this
point on, the respective results are referred to simply as mean (SD) results.

Static task

In the static task, the arm maintains a total of five different positions that are spread out
across the horizontal plane: @s; = [0,0.35]T m, gy = [—10,0.45]T m, xg3 = [0,0.55]" m,
xsy = [10,0.45]" m, and xg5 = [0,0.45]" m (see Fig. @4). In order to obtain perturbations
that are similar to those of the static estimations in [52], we define the perturbation profile
duration 7,; = 160 ms which results in a total perturbation duration Tpe¢ = 400 ms.
We change the interaction mode from closed-loop to open-loop which means that applied
forces do not contribute to the movement of the manipulandum. As this means that we
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4.5 Simulation

are essentially applying a position perturbation, we are able to define the amplitude of the
perturbation position profile e, which we set to 8 mm. The perturbation angles ¢per are
defined by the set ®pey = {(7/12)k | K =1—24\ {6,12,18,24}}, which contains a total of
20 angles. Each perturbation angle ¢pe is executed once in every position and the order of
the resulting perturbations is randomized. Single execution of each of the 20 perturbation
angles ¢,e in each of the five positions results in a total of 100 trials. The duration of the
estimation interval T,y = 400 ms and the estimated BIP vector 7 is obtained by calculating
the non-linear least squares solution for the complete data set of all 100 trials.

Dynamic task

In the dynamic task, the arm performs two-dimensional point to point movements along the
sagittal axis from xp; = [0,0.30]"m to xpy = [0,0.55]Tm (see Fig. d4). The duration of the
movements Ty, is set to 2's. The perturbations are designed to generate sufficiently large
deviations in as short a time frame as possible, but nonetheless be kinesthetically renderable
under hardware limitations. The perturbation amplitude ey = 40 N and the perturbation
profile duration 7,; = 70 ms which yields a total perturbation duration T, = 175 ms.
The perturbation is initiated when the hand reaches zo = 0.4 m which equals a traveled
distance of 0.1 m along the axis of the principal movement. The perturbation angles ¢per
are defined by ®,e, which is identical to the static task. Each perturbation angle ¢pe is
executed three times and the order of the perturbations is randomized. Three repetitions of
each of the 20 perturbation angles ¢per result in a total of 60 trials. Each of these 60 trials
consists of an unperturbed and a perturbed movement. The duration of the estimation

interval T,y = 115 ms and the estimated damping ﬁq and stiffness Fq are obtained by
calculating the non-linear least squares solutions for data sets of 20 trials each. Grouping the
complete data set of all 60 trials into smaller data sets of 20 trials each, starting from the
first 20 trials, and moving the respective data set “window” along trial by trial until the last
20 trials are reached, provides a total of 41 individual non-linear least squares solutions.

Remark 4.6. The feedforward muscle activations app for the dynamic task are calculated
with the inverse kinematics and dynamics of a positional data set, which is provided by
the authors of [35]. It contains positional data of 50 two-dimensional point to point arm
movements, which possess identical start and goal positions as the movements in our task.

4.5.3. Feedback Jerk Isolation

We validate the estimation of the unperturbed dynamics {q*, g%, ¢*, 75} via feedback jerk
isolation by analyzing the estimated variational dynamics {AZ, Az, Az, Aoy } for different
movement velocities and variations of neural noise. The validation is based on the normalized
root mean square errors (NRMSEs) in the estimation interval [0, Teg:

A 2
1 & (9 — 9
NRMSE = —Z(l ) : (4.28)

n i=1 ﬁmax,i

where 9., is the normalizing value, ¥ is the real value, J is the estimated value, and n = 2
is the dimensionality. The normalizing value ¥,,.« is given by the maximum real value.
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Figure 4.5.: High pass filter configuration based on simulated data. a) Mean results of the
ESDs vyp and p. b) Calculation of the cut-off frequencies f, yp (indicated by
vertical lines). For clarity, the results are shown for a single simulation.

In order to analyze the performance for different movement velocities, the duration of the
movements T}, is changed (1, 3s). For analysis of the performance for different variations
of neural noise, the parameterization of the zero mean Brownian motion is changed in terms
of the cut-off frequency f., (1 Hz, 3 Hz) and the amplitude «,, (5, 20). We compare the
results to those obtained with the methods in [52] and [53]. In order to enable performance
comparisons without effects of voluntary feedback, all methodologies are applied to the same
sets of simulated data and use the same duration of the estimation interval T, = 115 ms.

Filter configuration

Fig. 4.5k shows the mean results of the ESDs 1p and 1p. In the unperturbed movements,
the energy of the principal movement along the x5 axis is distinguishable by a peak in the
respective ESD ypo. A secondary, notably lower peak represents effects of neural noise.
As the point to point movements do not require movements along the x; axis, the respective
ESD vyp, is substantially lower and represents effects of neural noise. The energy of both
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Figure 4.6.: Validation of feedback jerk isolation with simulated data. Mean results of the
NRMSEs of the estimated variational dynamics {AZ, Az, A%, Aty }-

axes of the unperturbed movements decreases to marginally low values for high frequencies.
The opposite applies for the energy of the perturbed movements, which increases to much
higher values for high frequencies. The respective ESDs 1)p are much higher than those of
the unperturbed movements and have multiple peaks in the high frequency range.

Fig. shows the ESDs ¥yp, ¥p, and 9pg of a single simulation in two axis-specific
graphs in order to demonstrate the calculation of the cut-off frequencies f_ yp, defined as the
frequencies f at which 1pg > ¥yp. The cut-off frequency f.up o of the xo axis is sufficiently
high to lie above the energy of the principal movement. Concurrently, it is sufficiently low to
lie below the energy of the feedback behavior. Due to the absence of movements along the
xy axis, the cut-off frequency f.up, is slightly lower. The between-simulation mean (SD)
results of all ten simulations are f_yp = [1.89 (0.08),2.24 (0.04)] Hz.

Results

The mean results of the NRMSEs in Fig. show that the NRMSEs all increase with #per¢.
The gradual increase of the NRMSEs of the estimated variational accelerations A& results
from the integration of the estimated variational jerks A&, which include estimation errors
that originate from the calculation of the high pass filtered jerks Zyp, i.e., the separation
of unperturbed and variational behavior. The increases of the NRMSEs of the estimated
variational velocities A% and positions A& result from the consecutive integrations of the
estimated variational accelerations Az. The slightly increased NRMSEs of the estimated
variational external forces A, are caused by the estimation errors that are introduced into
the calculation via the admittance control scheme by the estimated unperturbed velocities x*
and accelerations z*. Despite the increase of the NRMSEs with #,er, the maximum values
of the estimated variational kinematics { A&, A%, Az} are all below 6 % and the maximum
value of the NRMSE of the estimated variational external forces Aiey; is below 8 %.

Remark 4.7. In order to compare the results to those of the methods in [52] and [53], we
average the NRMSEs within the estimation interval [0, Tes]. For simplicity, from this point
on, we refer to the resulting averaged NRMSEs simply as NRMSEs. The mean (SD) results
of the NRMSEs for the original simulation are listed in Table L] and those for alternative
simulation configurations are listed in Tables[Z.Zh-c. The abbreviations FJI, GOM, and ERD
represent our feedback jerk isolation and the methods in [52] and [53], respectively.
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Table 4.1.: Validation of feedback jerk isolation with simulated data generated by using
the original simulation. Mean (SD) results of averaged NRMSEs of estimated
variational dynamics {AZ, A%, AZ, Alley }-

Method Az [%) Az [%) Az [%) Aoy [%0)]
FJI 1.33  (1.16) | 1.60  (1.42) |0.71 (0.62) | 3.04 (2.91)
GOM | 29.65 (27.04)| 6.47  (6.04)|1.26 (1.18)| 4.96 (4.97)
ERD |911.10 (750.51) |551.24 (468.13) [5.31 (3.96) | 17.77 (15.03)

Comparison - Original Simulation

The NRMSEs in Table [4.1] demonstrate that FJI achieves high estimation accuracy and
outperforms both GOM and ERD. The magnitudes and differences of the NRMSEs of FJI
are in accordance with those presented in Fig. [£.6l The performance difference of FJI and
GOM increases from a small difference in AZ to a large difference in A& and the performance
difference in Adiey is marginally larger than that of AZ. These correlations are plausible,
due to the dependency on the averaged unbiased dynamics of all perturbed movements.
While forces and accelerations are of similar magnitude, velocities and especially positions
vary between movements. Consequently, the accuracy of the averaged unbiased dynamics
decreases substantially from accelerations to positions. Similar correlations apply to the
performance difference of FJI and ERD, but with substantially larger differences, especially
for Az and A&. The substantially larger magnitudes of the NRMSEs of ERD are plausible,
due to the dependency on the constant offset values at perturbation onset. While these
constant offset values represent accurate approximations of the unperturbed states of the
quasi-static movements of the manual welding task in [53], they are incapable of accurately
representing the kinematics of the unperturbed states of dynamic point to point movements.
For this reason, we exclude this method from the remainder of the validation.

Remark 4.8. In the discussion of the NRMSEs of the alternative simulations, the changes
in configurations and results are evaluated relative to the original simulation. In order to
facilitate the comparisons, Tables[4.2h-c also include the NRMSEs of the original simulation.
Furthermore, the results are additionally illustrated with intermediate values in Fig. [4.7]

Comparison - Movement Durations

The NRMSEs in Table [4.2h show that the performance of FIJI is decreased for a higher
movement velocity (resulting from a shorter duration of the movement) and is marginally
increased for a lower movement velocity (resulting from a longer duration of the movement).
A higher movement velocity results in an increased cut-off frequency of the high pass filter
which causes an increased information loss in the isolation of the feedback jerk. As a result,
the estimation accuracy is decreased. The marginal increase in performance for a lower
movement velocity suggests that the corresponding NRMSEs are in the proximity of the
smallest possible errors, which are caused by unavoidable frequency overlap of unperturbed
movements and feedback behavior, neural noise, and imperfect properties of a non-ideal high
pass filter. The performance of GOM is slightly increased for a higher movement velocity and
slightly decreased for a lower movement velocity. As the accumulated influence of the neural
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Table 4.2.: Validation of feedback jerk isolation with simulated data generated using the
alternative simulations. Mean (SD) results of averaged NRMSEs of estimated
variational dynamics {A&, A&, AZ, Adley }. Alternative simulations defined by
a) Movement duration T,,0yv, b) Cut-off frequency f. ., ¢) Amplitude a,,.

a) | Method | Thov [s] Az [%] Az [%] AZ [%] Adtey [%0)]
FJI 1.0 9.67 (6.50) [10.05 (6.56) | 3.75 (2.30) | 14.38 (10.12)
FJI 2.0 1.33  (1.16)| 1.60 (1.42)]0.71 (0.62)| 3.04 (2.91)
FJI 3.0 1.29 (1.11)| 1.47 (1.32)]0.62 (0.57)| 2.74 (3.04)
GOM 1.0 |23.06 (20.53)| 4.68 (3.93)]0.84 (0.77)| 3.24 (3.31)
GOM | 2.0 [29.65 (27.04)| 6.47 (6.04)|1.26 (1.18)| 4.96 (4.97)
GOM | 3.0 [32.64 (29.79)| 7.82 (7.36)|1.33 (1.29)| 5.00 (5.24)

b) | Method | fe.., [Hz] Az [%] Az [%] Az (%] Aoy [%0)]
FJI 1.0 2.67 (2.17)| 2.92 (2.42)]1.15 (0.98) |4.51 (3.79)
FJI 2.0 1.33  (1.16)| 1.60 (1.42)]0.71 (0.62)|3.04 (2.91)
FJI 3.0 3.66 (2.75)| 4.12 (3.22)|1.68 (1.35)|7.68 (7.42)
GOM 1.0 |11.58 (10.30)| 1.52 (1.41)|0.19 (0.16) | 0.84 (0.81)
GOM 2.0 [29.65 (27.04)| 6.47 (6.04)|1.26 (1.18)|4.96 (4.97)
GOM 3.0 [34.39 (32.82)]10.37 (8.73)|2.35 (2.21)|8.80 (8.75)

¢) | Method | v, [—] Az (%] Az [%) Az [%) Aoy (%]

FIJI 5.0 2.54 (2.09) 2.74 (2.32) 1.07 (0.93) 4.21 (3.59)
FJI 125 | 1.33 (1.16)| 1.60 (1.42)]0.71 (0.62)|3.04 (2.91)
FJI | 200 | 1.79 (1.50)| 2.05 (1.79)]0.85 (0.75)|3.71 (4.03)
GOM | 5.0 |11.14 (9.73)| 2.68 (2.73)|0.48 (0.40) [1.99 (1.99)
GOM | 125 [29.65 (27.04)| 6.47 (6.04)|1.26 (1.18)|4.96 (4.97)
GOM | 20.0 [50.18 (49.74)|10.65 (9.51)|2.18 (2.11)|8.25 (8.33)

noise at the onset of the perturbation is negatively correlated with the movement velocity,
the deviations from the averaged unbiased dynamics are larger for slow movements than
they are for fast movements. As the performance of GOM is directly influenced by these
deviations, the estimation accuracy is positively correlated with the different movement
velocities. For Tp,,v = 18, GOM outperforms FJI in all NRMSEs except AZ, for which the
performance difference is decreased compared to Table [4.1l For T,,,, = 3s, FJI outperforms
GOM with slightly increased performance differences compared to Table @11

Comparison - Neural Noise Cut-off Frequencies

The NRMSEs in Table show that the performance of FJI is slightly decreased for
lower and higher cut-off frequencies of the noise, with the latter resulting in slightly larger
performance differences than the former. It seems that the lower cut-off frequency of the
noise results in such a decreased cut-off frequency of the high pass filter, that it is too close
to the frequency content of the unperturbed dynamics. For the higher cut-off frequency
of the noise, the increased cut-off frequency of the high pass filter results in an increased
information loss in the isolation of the feedback jerk. Despite these slight decreases in
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Figure 4.7.: Validation of feedback jerk isolation with simulated data. Mean results of the
averaged NRMSEs of the estimated variational dynamics {Az, Az, Az, Aoy }
for alternative simulation configurations defined by movement durations Ty,
cut-off frequencies f.,,, and amplitudes a,.

performance, FJI still achieves high estimation accuracy for both alternative simulations.
The performance of GOM is increased/decreased for lower/higher cut-off frequencies of the
noise due to smaller/larger deviations from the averaged unbiased dynamics. For f., = 1 Hz,
GOM outperforms FJI in all NRMSEs except Az, for which the performance difference is
decreased compared to Table BIl For f., = 3 Hz, FJI outperforms GOM with slightly
increased performance differences compared to Table [4.11

Comparison - Neural Noise Amplitudes

The NRMSEs in Table E2k illustrate that a lower amplitude of the noise has an almost
identical effect on the performance as a lower cut-off frequency of the noise in Table [£2b.
In contrast, a higher amplitude has very different effects. For FJI, a higher amplitude only
leads to a marginal performance decrease, much smaller than that in Table £2b. For GOM,
it leads to a similar performance decrease as in Table [4.2b, except for A&, for which the
decrease is much larger. For a,, = 5, the performance difference of FJI and GOM is almost
identical to that of f., = 1 Hz in Table &2b. For o, = 20, FJI outperforms GOM with
increased performance differences compared to Table [I1] especially for A.

60



4.5 Simulation

Table 4.3.: Validation of impedance estimation with simulated data. Mean (SD) results of
the NAEs of the estimated BIP vector 7, damping D,, and stiffness K.

Method | 71 [%] | %2 (%] | 75 (%] | Dyr (%) | Dz %) | Deor (%] | Dyoo (%]
FJI | 094 | 1.44 | 1.79 [9.91 (1.48)]3.59 (1.29)|3.99 (1.03)|4.64 (0.91)
GOM | 095 | 1.43 | 1.76 [9.27 (1.99)|3.56 (1.52)|3.53 (1.43)|3.45 (1.05)

Method | K,u1 [%] | Keiz [%] | Koo (%] | Kooo [%)

FJI 1021 (6.30)| 6.23 (4.17)| 6.23 (4.17)| 6.21 (3.82)

GOM [20.22 (9.76) [ 12.53 (6.23) | 11.97 (7.01)|11.94 (5.57)

Remark 4.9. The differences emphasize three issues: 1) For GOM, the estimation accuracy
strongly depends on the similarity to the averaged unbiased dynamics. 2) For FJI, it depends
more strongly on the frequency of the noise than it does on the amplitude, because of the
influence on the cut-off frequency for the isolation of the feedback jerk by the high pass filter.
3) The performance difference in GOM due to a higher amplitude of the noise is larger than
the performance difference in FJI due to a higher frequency of the noise, especially for Az.

4.5.4. Impedance Estimation

The estimation accuracy of the impedance estimation is quantified using the normalized
absolute errors (NAEs) of the estimated values. The normalizing values for the NAEs are
either given by the real values of the elements of the BIP vector 7 or the maximum real
values of the elements of the damping D, and stiffness K, which are obtained by averaging
the respective elements for the estimation interval [0, Tes]. For comparability of the results,
we transform the inertial parameters in [52] to the elements of the BIP vector 7.

In order to obtain additional means of comparing the overall performance of the methods,
we calculate two additional performance criteria that are based on the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). When comparing least squares
fitted models (linear and non-linear), the AIC and the BIC are defined by the residual sum
of squares (RSS) of the real values and the estimated model outputs:

AIC =2p+ hIn(RSS) , (4.29)
BIC =1In (h)p + hIn (RSS) , (4.30)
1 h . 9
RSS = - > < > (191',]' - ﬁi,j) ) ; (4.31)
i=1 \ j=1

where ¢ is the real value, ? is the estimated model output, p is the number of parameters,
h is the number of data points, and n = 2 is the dimensionality [135]. As we aim to compare
the overall performance, we define the estimated model output D to lze the simulation output
that is obtained by inserting the estimated BIP vector 7r, damping D, and stiffness K, into
the neuromechanical model of the human arm (within the estimation interval [0, Tog]), and
the real value ¥ to be the corresponding simulation output of the original simulation.
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Table 4.4.: Validation of impedance estimation with simulated data. Mean (SD) results of
the RSSs, AICs, and BICs of the variational external torques AT .

Method | RSS [Nm?] AIC [-] BIC [-]
FJI 8.10 (5.19) |16.38-10% (6.13-10°%) | 16.45-10% (6.13-10%)
CGOM |17.31 (10.00) | 23.58-10% (5.90-10%) | 23.66 - 10> (5.90 - 10%)

Results

A

Table A J contains the mean (SD) results of the NAEs of the estimated BIP vector 7,

dampmg Dq, and stiffness K The NAEs of the elements of the estimated BIP vector 7 do
not possess SDs, because they are estimated with the complete data set of the static task.
The NAEs of the three elements are all below 2% which indicates high estimation accuracy
of the combination of the dynamic regressor representation with the data of the static task.

The NAEs of the elements of the estimated damping D and stiffness K are approximately
equal to or below 10% and demonstrate high estlmatlon accuracy of the non-linear least

squares estimation with the data of the dynamic task. The elements ﬁ%u and Fq,n possess
slightly larger NAEs than the remaining elements of the respective matrices. This slight
increase is plausible, as these two elements represent the contributions of the single-joint
shoulder muscles, which are less involved due to less movement of the shoulder joint.

Comparison

The NAEs of the elements of the estimated BIP vector 7™ of GOM are almost identical to
those of FJI. The mean NAEs of the elements of the estimated damping D, of GOM are
marginally smaller than those of FJI and the opposite applies to the corresponding SDs which
essentially makes these NAEs almost identical as well. In contrast, a considerable difference

in estimation accuracy is found in the elements of the estimated stiffness K, for which both
the mean NAEs and the SDs of GOM are larger than those of FJI, with the mean NAEs
being approximately twice as large for GOM as they are for FJI. These results are plausible,
as the difference in estimation accuracy of the variational dynamics {Ax, Ak, A%, Atey }
is largest for the variational positions Az. Due to the correlations within the iHAlpedance
estimation model (I0), this difference directly influences the estimated stiffness K,,.

The mean (SD) results of the RSSs, AICs, and BICs are presented for the variational
external torques AT in Table[d4l FJI outperforms GOM in all three performance criteria.
The difference in RSS is especially relevant, as it demonstrates, that the differences in AIC
and BIC do not arise solely due to differences in the number of parameters p. Similar to the

mean NAEs of the elements of the estimated stiffness ?q in Table 4.3] the mean RSSs are
approximately twice as large for GOM as they are for FJL.

Remark 4.10. The differences in RSSs, AICs, and BICs demonstrate that 1) the differences

in the estimated BIP vector 7, damping D, and stiffness K, represented by the respective
NAEs in Table[4.3] have a substantial effect on the replicability of the real simulation output
and that 2) the impedance estimation results of FJI yield a more accurate replication of the
real simulation output than those of GOM.
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Figure 4.8.: Reenactment of an individual interacting with the apparatus during one of the
three blocks of the dynamic task of the experiment. Informed written consent
for the publication of this image was obtained from the individual.

4.6. Experiment

We conduct an experiment with 12 participants, in order to evaluate the performance of the
proposed method on real data. The design of the experiment is almost identical to that of the
simulation. However, in order to avoid predictability of the perturbations and adaptation of
the participants, a randomized time interval is added before the onset of the perturbation in
the static task. For the same reasons, the perturbed trials in the dynamic task are uniformly
randomly distributed among the unperturbed trials. We evaluate the feedback jerk isolation
in the form of the high pass filter configuration and the impedance estimation in the form
of the estimated impedance components. Furthermore, we investigate the effects of different
durations of the estimation interval on the estimated impedance components.

4.6.1. Apparatus

The apparatus is almost identical to the apparatus, which is presented in Section B.6.1] and
used to evaluate the Bayesian human motor behavior model in Section B.6.4. The adapted
variation of the apparatus, which is displayed in Fig. [4.8 contains multiple modifications.
Six motion capture cameras (Qualisys Miqus) are available for tracking of passive markers.
Additionally, a custom-built seat with shoulder belts, a novel sling attached to the ceiling,
and a wrist orthosis are available to limit participant movements. Haptic interaction by
means of participant force input is still enabled by the admittance control scheme defined
in (3.40), but the values of the admittance inertia M, ,am and damping D, .qm are slightly
adjusted to M, aam = diag{5,5} kg and D, aam = diag{20,20} Ns/m. Due to the increased
high frequency precision requirements in terms of data processing, the signals are filtered
using a seventh order Savitzky-Golay filter with a cut-off frequency of 50 Hz [109).
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4.6.2. Experiment Design

The experiment design is almost identical to the simulation design. However, in order to
avoid predictability of the perturbations, a randomized time interval with Tiangom € [1, 3]s is
included before the onset of the perturbations in the static task. For the same reasons and
to obtain both unperturbed and perturbed movements, the ratio of perturbed trials to total
trials is set to 33 % and the perturbed trials are uniformly randomly distributed among the
unperturbed trials in the dynamic task. In order to avoid effects of fatigue, the resulting
180 trials are performed in three consecutive blocks. Each of these blocks contains a total
of 60 trials that consist of 20 perturbed and 40 unperturbed trials. In both tasks, the visual
feedback of the position of the cart is deactivated during the perturbations.

Remark 4.11. Analogous to the results of the simulation, the results of the experiment are
presented in within-, between-, or cross-subject mean (SD). As the majority of the results are
cross-subject mean (SD) results, for simplicity, from this point on, these results are referred
to simply as mean (SD) results.

4.6.3. Participants & Procedure

A total of 12 participants (9 male and 3 female) with between-subject mean (SD) age of
26.92 (3.40) years, height of 174.83 (7.38) cm, and weight of 69.43 (9.82) kg volunteered to
participate in the experiment. All participants had normal or corrected-to-normal vision.
All participants carried out the experiment with the right hand. One of the participants was
left-handed and the remaining 11 participants were right-handed. Informed written consent
was obtained from all participants before the experiment, which was conducted according
to the principles in the Declaration of Helsinki. The research ethics were obtained from the
ethics committee at the Technical University of Munich.

The participants were seated in front of the apparatus on a custom-built seat and their
upper body was restrained by two shoulder belts in order to fix the position of the shoulder.
Their upper arm was supported by a sling attached to the ceiling to constrain all motions
to the horizontal plane and reduce effects of fatigue. In order to avoid wrist motions, the
participants were wearing a wrist orthosis. Two passive motion capture markers were placed
on shoulder and elbow to measure the lengths of the upper arm and the forearm.

In the beginning of the static task, the cart automatically moved to the first position at
the bottom of the workspace. After the application of all 20 perturbations, it automatically
moved to the next position, until all 100 perturbations were completed. Analogous to the
simulation, each perturbation angle ¢, Was executed once in each of the positions and
the order was randomized. The participants were informed about the procedure, including
the perturbations and the randomized time interval before the onset of the perturbation.
They were told that their objective was to naturally grasp the handle on top of the cart.
Additionally, they were instructed to not voluntarily react to the perturbations in any way
and not prepare for them in any kind of preemptive manner, e.g., by co-contraction.

In the beginning of the dynamic task, the cart automatically moved to the start position at
the bottom of the workspace. As soon as it reached the bottom, the admittance turned on.
As soon as the participants reached the goal position, represented by a dot at the top of the
workspace, the admittance turned off and the cart automatically moved back down to the
start position. This procedure was repeated until all 60 trials with 20 uniformly randomly
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Figure 4.9.: High pass filter configuration based on experimental data. Mean results of the
ESDs ¥yp and 9p of the unperturbed and perturbed movements.

distributed perturbed trials were completed. In total, three of these blocks of trials were
completed for a total of 180 trials. Analogous to the simulation, each perturbation angle ¢per
was executed three times and the order was randomized. The participants were informed
about the procedure, including the perturbations and their random distribution. They were
told that their objective was to naturally grasp the handle on top of the cart and move it from
the start position to the goal position. They were told that the duration of the movement
should be approximately 2s. In order to help them properly adjust their movement velocity,
a beep sound occurred after 2 s. The participants were informed that they were allowed to
voluntarily react to the perturbations. Additionally, they were instructed to not prepare for
the perturbations in any kind of preemptive manner, e.g., by co-contraction.

4.6.4. Evaluation

In the experiment, every trial is either unperturbed or perturbed. Consequently, we do
not possess unperturbed ground truth for the perturbed movements and can not evaluate
the estimation accuracy of the variational dynamics {Aqg, Ag, Aq, AT }. Thus, we only
evaluate the feedback jerk isolation in terms of the cut-off frequencies f.yp of the high pass
filter. Additionally, we evaluate the applicability to real data of the impedance estimation
in terms of the estimated impedance parameters 7r, D,, and K, and analyze the effects of
different durations of the estimation interval T, . For simplicity, from this point on, we omit
the term estimated when referring to the results of the impedance estimation.

Evaluation Feedback Jerk Isolation

Fig. 4.9 shows the mean results of the ESDs 1p and 4p, which look very similar to those
of the simulation presented in Fig. [4.5h. In the unperturbed movements, the energy of the
principal movement along the x5 axis is more widespread than in the simulation. However,
the respective ESD 1yp » nonetheless possesses a peak at a similar frequency. The ESD ¢uyp 4
is substantially lower, due to the absence of movements along the z; axis. Due to hardware
noise, the energy of both axes of the unperturbed movements does not decrease to values
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Figure 4.10.: Evaluation of impedance estimation with experimental data. Endpoint ellipses
of the mean Cartesian inertia M, damping D,, and stiffness K, derived from

the mean BIP vector 7, damping D, and stiffness K, respectively.

as low as those of the simulation for high frequencies. However, the respective values are
nonetheless substantially smaller than those of the perturbed movements, for which the
energy increases to substantially higher values for high frequencies. The respective ESDs 1,
are substantially higher than those of the unperturbed movements and possess multiple
peaks in the high frequency range. The between-subject mean (SD) results of the cut-off
frequencies f.yp = [1.45 (0.30),2.09 (0.24)] Hz are very similar to those of the simulation.
Thus, analogous to the results of the simulation, the cut-oft frequency f. upo is sufficiently
high to lie above the energy of the principal movement.

Remark 4.12. While the overall energy of the unperturbed movements in the experiment is
slightly decreased compared to the simulation, the overall energy of the perturbed movements
is increased. This difference is largely caused by high frequency oscillations in the jerks @
of the perturbed movements, which result from oscillations due to perturbations paired with
sensor noise and high gain PD control.

Evaluation Impedance Estimation

Table lists the within- and cross-subject mean (SD) results of the impedance estimation.
Analogous to the estimation results with simulated data in Table 3] the elements of the
BIP vector 7 do not possess SDs, because they are estimated with the complete data set of
the static task. The elements of the mean BIP vector 7r are similar to the respective values
in the simulation 7rg, = [0.1945,0.0737,0.0838]. The first element 7 is decreased compared
to the respective value in the simulation. As this element largely depends on the inertial
characteristics of the upper arm, the difference could be caused by the comparatively little
movement of the shoulder joint which results in less involvement of the upper arm. As the
inertial parameters in [52] are defined by the linearized rigid body dynamics, the respective
estimation results can not be used for comparison. Thus, we insert the elements of Ehe

mean BIP vector 7 and the arm configuration g in (&I to calculate the mean inertia M,.
Subsequently, we transform the mean inertia M, to Cartesian space using (Z29) and the

Jacobian matrix .J,. The elements of the resulting mean Cartesian inertia M, are similar
to those reported in existing studies [T01,[103,T104]. Consequently, the same applies to the
corresponding endpoint ellipse, which is illustrated in Fig. E10l
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Table 4.5.: Evaluation of impedance estimation with experimental data. Within-subject

mean (SD) results of the BIP vector 7r, damping D,, and stiffness K.

# T T2 T3 ﬁq,11 ﬁq,12 ﬁq,21 ﬁq,22

[kgm?] | [kgm?] | [kgm?] | [Nms/rad] | [Nms/rad] | [Nms/rad] | [Nms/rad]
01 |0.0817|0.0582{0.0581| 9.00 (0.19)|1.97 (0.08)|2.09 (0.13)|1.18 (0.16)
02 | 0.0890 | 0.0787 | 0.0780 | 8.68 (0.25)]2.19 (0.11)|2.47 (0.05)|1.92 (0.11)
03 | 0.1648 | 0.1021 | 0.0938 | 12.64 (0.23) | 2.43 (0.12) | 2.87 (0.06) |2.49 (0.04)
04 |0.1074 | 0.0751 | 0.0714 | 9.08 (0.27) [2.01 (0.09) | 2.10 (0.04) | 1.56 (0.08)
05 | 0.0759 | 0.0877 | 0.0734 | 10.44 (1.01)|3.11 (0.36) | 3.30 (0.20) [2.30 (0.14)
06 | 0.2099 | 0.0923 | 0.1076 | 12.70 (0.24) | 2.14 (0.21) | 2.86 (0.10) [ 1.98 (0.08)
07 |0.1207 | 0.0677 | 0.0613 | 9.24 (0.21) | 2.44 (0.26) | 2.39 (0.10) | 1.58 (0.07)
08 |0.0887|0.0671 | 0.0692 | 8.07 (0.21) |2.08 (0.08)|2.13 (0.05) | 1.72 (0.08)
09 |0.2229 | 0.0838 | 0.1073 | 9.27 (0.55) |1.29 (0.19)|1.84 (0.12) | 1.86 (0.05)
10 | 0.0777 | 0.0501 | 0.0509 | 6.61 (0.11)|1.28 (0.06) | 1.28 (0.07) | 1.03 (0.03)
11 |0.1164 | 0.0918 | 0.0894 | 10.15 (0.35) | 2.15 (0.04) | 2.73 (0.02) | 2.35 (0.05)
12 | 0.1558 | 0.0646 | 0.0702 | 8.15 (0.11)|1.32 (0.07)|1.74 (0.06) | 1.34 (0.05)
Mean | 0.1259 | 0.0766 | 0.0776 | 9.50 (0.31) | 2.03 (0.14) | 2.32 (0.08) | 1.78 (0.08)

# Kgn Kg12/21 K22

[Nm/rad] [Nm /rad] [Nm /rad]

01 | 277 (1.92
02 [33.66 (6.23
03 [38.30 (11.12
04 [12.46 (2.96
05 |[36.84 (23.14)|14.87 20.00
06 |67.15 (15.12)|18.19 17.62

)| 454 (2.61) )
) (2.19) (3.90)
) (2.99) (4.17)
) (1.67) (2.10)
) (4.28) (3.95)
) (4.11) (1.95)
07 |19.02 (10.65) [11.78 (8.73)|19.06 (5.76)
) (1.40) (2.25)
) (0.00) (1.04)
) (1.81) (2.57)
) (1.37) (1.35)
) (2.31) (2.19)
) (2.79) (2.94)

1.24
6.82
13.43

775 (4.03
16.34
13.88
15.40

08 |30.30 (8.02 1.04 7.60
09 |47.23 (34.71)| 0.00 6.63
10 250 (1.24)| 4.68 8.96
11 | 34.84 (7.62 1.27 17.24
12 | 14.58 (4.91 7.31 10.55
Mean | 28.30 (10.64) | 7.10 13.42

The elements of the mean damping D,, are similar to the respective averaged values in the
simulation D, gm = [2.42,1.20,1.20, 1.42], with the exception of the element D, 11, which is
comparatively large. As this element represents the contributions of the single-joint shoulder
muscles, which are less involved due to less movement of the shoulder joint, it is more difficult
to estimate. This correlation is also visible in the increased estimation error in the validation
with simulated data (see Table [L3]). As the remaining elements are decreased compared to
the respective values in the simulautionl it is possible that some of the contributions of these

elements are allocated to the element D, ;. As the damping results of [52] are not reported,
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Figure 4.11.: Evaluation of impedance estimation with experimental data. Between-subject

mean (SD) results of the BIP vector 7,
different durations of the estimation interval T..
=+ 0.5 between-subject SD. The solid vertical lines indicate the durations of the
estimation intervals (static task: T = 400 ms, dynamic task: T = 115ms).
The dashed vertical lines represent the ends of the perturbations.

damping D, and stiffness K, for
The error bars represent

static task, the solid and the dashed line coincide.

we can not use them for comparison. However, the elements of the mean damping D, are
of similar order of magnitude as the estimation results reported for static tasks [65]101].
The overall increase in magnitude compared to the estimation results of these static tasks is
to be expected, as similar correlations are observed for estimates of stiffness [52].

The elements of the mean stiffness ?q are similar to the respective averaged values in
29.05, 14.37,14.37,17.08], with the elements K 15/21 being slightly

decreased in comparison. Consequently, the elements of the mean stiffness K, are also similar
to those reported for comparable dynamic tasks [122H124], including those reported for the

the simulation K gm =
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dynamic task in [52]. The difference in SDs of the stiffness K, and the damping D, fits
to the difference in estimation errors in the validation with simulated data (see Table E.3)).
It could however also indicate that variations in damping during the course of the experiment
are generally lower than those in stiffness or that some variations in damping are incorrectly
interpreted as variations in stiffness by the non-linear least squares estlmatlon

Fig. m shows the endpoint ellipses of the mean Cartesian inertia M «, damping Dx, and

stiffness K . The shapes and orientations of the ellipses are similar to those in existing
studies [2I,10T,123]. Similar to the results for the movements along the sagittal axis in [52],

the major axis of the endpoint ellipse of the mean Cartesian stiffness K, is oriented slightly
more parallel to the z, axis, i.e., the axis of the principal movement.

Fig. 1T shows the between-subject mean (SD) results of the BIP vector 7, damping ﬁq,

and stiffness ?q for different durations of the estimation interval T.i. In the static task,
the elements of the BIP vector 7 converge to constant values for durations Ths > 400 ms.

Similar behavior is observable in the dynamic task for the elements of the damping D,, with

a slight decrease for durations T.s; > 115 ms. In comparison, the elements of the stiffness Fq
converge at a slower rate and require a longer estimation interval duration T4 in order to
reach plausible values. Furthermore, the decrease for durations T, > 115 ms is larger for

the elements of the stiffness ?q than for the elements of the damping ﬁq.

Remark 4.13. The decrease of the elements of the stiffness Fq for durations T.s > 115 ms
could be caused by the return to the unperturbed states. The longer the estimation interval,
the larger the percentage of the variational data with small deviations from the unpefturbed
states, i.e., the more influence the respective values of the elements of the stiffness K, have
on the non-linear least squares solution. The decrease could however also be caused by the
activation of voluntary feedback contributions.

4.7. Discussion

The mean results of the 1mpedance estimation for different durations T in Fig. [4.11] show
that the elements of the damping D and stiffness K reach plausible values for the estlmatlon

interval with duration T.s = dpg, = 115 ms. While the elements of the damping Dq already
reach plausible values at T, & 75 ms, the information necessary for estimation of plausible

values of the elements of the stiffness Fq is not reached until T, =~ 110 ms. The mean
results in Fig. EEIT] also show that the elements of the BIP vector 7 converge to plausible
values for the estimation interval with duration T, = 400 ms. These results, in combination
with the mean (SD) results in Table 4.5, which are similar to those reported for comparable
dynamic tasks, successfully demonstrate the applicability of our method to real data.

We model the involuntary feedback behavior by a linearized model. This approximation
is analogously applied in comparable studies [28][122],123] that include deviations of similar
size or larger than the ones in this work. In our static task, the position perturbations with
amplitudes of 8 mm result in mean (SD) maximum external force deviations of 4.75 (1.80) N.
In our dynamic task, the force perturbations evoke mean (SD) maximum position deviations
of 3.53 (0.34) mm and external force deviations of 9.48 (3.05) N. The mean (SD) results of
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the NAEs in Table show that the estimation errors of the elements of the BIP vector 7
are almost identical for the dynamic regressor representation and the linearized rigid body
dynamics of [52]. This indicates that the variational dynamics {Aq, Aq, Aq, AT} of the
static task are sufficiently small to enable linearization of the rigid body dynamics without
loss of estimation accuracy and thus supports the assumption that the involuntary feedback
behavior evoked by the force perturbations can be approximated by a linearized model.

The mean (SD) results of the NRMSEs in Table 4.1 show that our feedback jerk isolation
achieves higher estimation accuracy for the variational dynamics {AZ, Az, Az, Aey } than
the methods reported in [52] and [53]. The difference in estimation accuracy is especially
large for the variational positions AZ. As a consequence, the estimation performance of the

impedance estimation is increased for the elements of the stiffness K, which is shown by
the mean (SD) results of the NAEs in Table 3. The mean (SD) results of the NRMSEs for
different simulation configurations in Tables .2k - 1.2 show that the estimation accuracy
of the feedback jerk isolation is decreased for a higher movement velocity. This is plausible,
as a higher movement velocity coincides with an increased cut-off frequency of the high
pass filter which causes an increased information loss in the isolation of the feedback jerk.
Due to similar reasons, a higher cut-off frequency of the neural noise also leads to a decrease
of the estimation accuracy. For all of the remaining simulation configurations, changes in
the estimation accuracy are marginal. While the estimation accuracy of the method in [52]
is similarly decreased for a higher neural noise cut-off frequency, it is contrastingly increased
for a higher movement velocity. As this method depends on the similarity of the movement
to the averaged unbiased dynamics, an increase of the amplitude of the neural noise leads
to a significant decrease of estimation accuracy, especially in the variational positions Aa.
In summary, while the feedback jerk isolation is outperformed by the method in [52] for
movements with high velocity and low movement variance, it provides superior estimation
performance for movements with moderate to low velocity and moderate to high movement
variability, as it is much less affected by a decrease in the similarity of the movements.

According to the main ISO safety standard DIN EN ISO 10218-1:2011 for robots and
robotic devices, the maximum robot end-effector velocity during collaboration with a human
must not exceed 250 mm/s [136]. Some studies on safe physical human-robot collaboration
use more conservative values for the maximum robot end-effector velocity, e.g., 150 mm/s
in [I37] and 100 mm/s in [I3§]. In the original configuration simulation used to obtain the
NRMSEs in Table @2k, the mean (SD) peak velocities @,y that correspond to the different
durations of the movements T, are 747.8 (6.3) mm/s for Ty, = 1s, 377.6 (8.9) mm/s
for Thoy = 28, and 254.0 (9.8) mm/s for Ty, = 3 s. Thus, the peak velocities Zyayx of
those movements, for which the method in [52] outperforms the feedback jerk isolation,
are much higher than the current constraints for safe physical HRI. For those movements
with peak velocities . that are either similar to or moderately increased compared to the
current constraints, the feedback jerk isolation achieves superior estimation performance.
As the neural noise parameters in the simulation are defined to yield movement variability
similar to that observed in repetitive, straight reaching movements [37] and both neural
and kinematic variability are shown to be interrelated individual characteristics [139)], it is
unlikely that realistic physical HRI scenarios possess a lower amount of movement variability.
Thus, based on these circumstances, we conclude that the feedback jerk isolation is well suited
for our envisaged application in experiments that emulate realistic physical HRI.
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4.8 Summary

Multiple studies present impedance estimation methods based on Kalman filters [140,141]
or extended Kalman filters [142]. The advantage of these filters is that, given continuous
observations of the relevant variables, they allow for estimation of time-varying values of
damping and stiffness. However, their application requires a model of the complete system
dynamics, including feedforward and voluntary feedback behavior (if the respective method
is used for a duration that is longer than the delay of voluntary feedback). Some studies avoid
these limitations by assuming that the combination of feedforward and feedback behavior
can be modeled by the sum of damping and stiffness [I41] or just stiffness [142]. In [140], the
authors assume that effects of feedforward and voluntary feedback behavior are neglectable
due to application of pseudo-random perturbations in combination with a band pass filter.
However, the plausibility of these assumptions in regard to realistic human motor behavior
is not validated, as the method is only applied to a simulation that models the combination
of feedforward and feedback behavior by the sum of damping and stiffness. Thus, existing
impedance estimation methods based on Kalman filters are extremely limited in possible
application scenarios and the application to realistic physical HRI would require substantially
more complex models. While our method is not able to provide time-varying values of
damping and stiffness, it is able to provide accurate estimates within a limited interval
without the need for modeling feedforward and voluntary feedback behavior.

4.8. Summary

In this chapter, we present a method for the estimation of the impedance components in
experiments that emulate realistic physical HRI scenarios. We apply force perturbations
during multi-joint human arm movements that are designed such that the evoked feedback
jerk frequency content can be isolated with a high pass filter. We limit the duration of the
estimation interval to 115 ms to guarantee exclusion of voluntary feedback. We estimate
the inertial parameters in a static postural task and subsequently insert them to estimate
the damping and stiffness in a dynamic movement task. The evaluation of the experimental
data shows that our method is able to provide plausible impedance estimates within the
limited estimation interval that guarantees exclusion of voluntary feedback. Furthermore,
the validation with simulated data shows that it provides superior estimation performance
compared to the results obtained by application of existing impedance estimation methods
within identical conditions. As the difference in estimation accuracy is especially large for the
variational positions, the estimation performance is increased for the elements of the stiffness.
The analysis of different movement velocities and variations of neural noise shows that the
feedback jerk isolation is able to provide superior estimation performance for movements with
moderate to low velocity and is much less affected by an increase in movement variability.
We conclude that our method allows for impedance estimation in experiments that emulate
realistic physical HRI scenarios, without the need for assumptions concerning voluntary
feedback behavior or inclusion of the do-not-intervene-voluntarily paradigm or comparable
constraints within the respective dynamic movement tasks. This facilitates the envisaged
acquisition of comprehensive knowledge of human arm impedance characteristics.
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Coactivation Modulation Model for 5
Cooperative Physical HHI :

Humans are capable of adapting their motor behavior during physical interaction with a
human partner to accomplish shared objectives. From carefully supporting a child in its first
steps to seamlessly coordinating such complex interactions as acrobatics, humans achieve
intuitive and efficient cooperation through precise regulation of exchanged forces and skillful
modulation of muscle coactivation. The analysis of such muscle coactivation modulation
strategies enables the design of optimal control strategies for physical HRI that maximize
intuitiveness and efficiency. However, despite the availability of comprehensive knowledge
concerning non-physical and physical interaction with the environment, little is currently
known about modulation of muscle coactivation during physical HHI. Therefore, in this
chapter, we address the third of the crucial open challenges in the consideration of human
impedance characteristics in the control design process for physical HRI by focusing on the
information alteration. More specifically, we analyze impedance modulation strategies of
human dyads during physical interaction by investigating and modeling the modulation of
muscle coactivation during cooperative physical HHI. We perform an experiment, in which
two individuals track pseudo-random movements of a shared target, while being physically
coupled by a virtual spring. As we aim to investigate qualitative correlations of modulation
of muscle coactivation, in order to avoid confounds due to multi-joint muscle interactions,
instead of focusing on the complete upper limb, we constrain the possible movements to wrist
flexion/extension movements. Each individual is provided with distinct visual feedback of
his/her wrist position and the target position and cannot see the visual feedback of the
partner. During the course of the experiment, the individuals each experience two different
levels of visual noise in their respective visual feedback of the target position. Due to this
difference, we are able to observe how the resulting different levels of tracking performance
affect modulation of muscle coactivation in both individuals. In order to describe the motor
behavior adaptation of the individuals, both during individual and dyadic task execution,
we extend the physiological representativeness of the neuromechanical goal sharing model
of [49] by separating reciprocal muscle activation and muscle coactivation and proposing
three different variations of a muscle coactivation modulation model. In order to evaluate
the functionality of the three different variations of the muscle coactivation modulation
model, we implement a simulation that emulates the conditions in our experiment.

The remainder of this chapter is structured as follows: related work and open problems
are reviewed in Section L.l The neuromechanical modeling is performed in Section (.2
The three variations of the coactivation modulation model are introduced in Section (.3
The details of the experiment as well as the obtained results and the corresponding statistics
are presented in Section (.4l The details of the simulation and the obtained results are
presented in Section The plausibility and the limitations of the coactivation modulation
model are discussed in Section and the results are summarized in Section B.71
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5.1. Related Work and Open Problems

During the execution and the simultaneous motor learning of a desired motor behavior,
kinematic errors due to effects that are not accounted for by the feedforward component
are counteracted by increases in limb stiffness [31,132]. If these unaccounted effects are
predictable and therefore also learnable, they can be incorporated into the internal models
and the corresponding feedforward component [331[34]. As this motor adaptation progresses
and the kinematic errors decrease, muscle coactivation is gradually decreased to minimize
metabolic cost [3536]. If the effects are unpredictable and therefore also unlearnable, muscle
coactivation remains at an increased level [37,[38]. As the increase in muscle coactivation is
positively correlated with the kinematic error, motor behaviors with high accuracy demands
result in larger increases in muscle coactivation [41]42].

Multiple studies provide modeling approaches that characterize these motor adaptation
correlations. In [35], modulation of muscle coactivation is modeled to depend on changes
in muscle length, and the correlation characteristics are defined by a continuous piecewise
linear function. This function depends on the kinematic error, consists of two segments with
positive slopes, one for negative and one for positive kinematic errors, and includes a negative
intercept to incorporate the minimization of metabolic cost. In [143], the interdependencies
are modeled as a greedy optimization process that minimizes a cost function that is defined
by the weighted sum of kinematic error and metabolic cost. In [4§], modulation of muscle
coactivation is modeled as a stochastic optimization process that minimizes internal model
prediction uncertainties, in combination with kinematic error and metabolic cost demands.
While providing general models for modulation of muscle coactivation during non-physical
and physical interaction with the environment, these studies do not investigate how and to
which extent physically interacting individuals modulate muscle coactivation.

The authors of [I44] investigate motor behavior adaptation during cooperative physical
HHI by performing an experiment, in which two individuals track pseudo-random movements
of a shared target, both individually and while physically coupled by a virtual elastic band.
The experimental data shows the motor behavior adaptations to be mutually beneficial,
meaning that the tracking performance improves for both the superior and the inferior
of the two individuals. The authors of [145] demonstrate that these mutual performance
improvements can be explained by the interpersonal goal integration model. It assumes that
physically interacting individuals are able to estimate the partner’s desired position, i.e., the
partner’s estimate of the target position, based on a spontaneously formed internal model of
the partner’s motor behavior and exchanged haptic information. By exploiting the respective
estimation uncertainties to optimally combine this estimate with their own estimate of the
target position, both of the two individuals are able to derive an improved overall estimate
of the target position that allows for improvement in tracking performance. While these two
studies investigate and model behavior adaptation during cooperative physical HHI, they do
not examine the corresponding modulation of muscle coactivation.

In order to examine how the compliance of the coupling mechanics influences the exchange
of haptic information between the physically interacting individuals, the authors of [49]
perform a variation of the previous experiment [145], in which the stiffness of the virtual
band is modified. The experimental data shows the improvement in tracking performance to
be negatively correlated with the compliance of the coupling mechanics. The interpersonal
goal integration model is modified to obtain the neuromechanical goal sharing model, which
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incorporates the additional tracking error due to the compliance of the coupling mechanics
in the form of additional estimation uncertainty in the estimate of the partner’s desired
position. Surface EMG data from wrist flexion/extension muscle pairs is used to measure
muscular effort. For a hard virtual coupling with low coupling compliance, muscular effort
is increased, with the increase being larger for the superior partner than for the inferior.
Similar correlations apply for medium and soft virtual couplings, with the increase being
negatively correlated with the coupling compliance. The neuromechanical goal sharing model
is able to reproduce these changes in muscular effort. However, both the analysis of the
experimental data as well as the simulated model do not differentiate between reciprocal
muscle activation and muscle coactivation and therefore do not provide explicit information
regarding modulation of muscle coactivation during cooperative physical HHI. Furthermore,
the study does not examine how muscular effort is modulated depending on the sensory
information perceived by each partner, i.e., the level of uncertainty in each partner.

In a recent study [146], variations of the previous experiments [49,[145] are performed, in
which individuals are able to exploit a novel control mechanism to modulate the stiffness
of the virtual elastic band while physically interacting with a robotic partner. This control
mechanism implements a negatively correlated functional dependency of muscle coactivation
and the compliance of the coupling mechanics. The experiment contains multiple conditions
with different levels of visual noise in the visual feedback of the tracking task and different
levels of haptic noise in the haptic behavior of the robotic partner. The experimental data
demonstrates that individuals learn to use the novel control mechanism to modulate the
coupling compliance such that the adverse effects of perturbations are minimized and the
beneficial effects of information are maximized. In conditions with visual noise, individuals
increase muscle coactivation in order to decrease the coupling compliance and maximize the
beneficial effects of haptic information. In conditions with haptic noise, individuals decrease
muscle coactivation in order to increase the coupling compliance and minimize the adverse
effects of haptic perturbations. While this study provides valuable insights on modulation
of muscle coactivation when it is directly linked to the compliance of the coupling mechanics
with a robotic partner, it remains unknown whether similar correlations apply during dyadic
physical interaction without this control mechanism with a human partner. Therefore, in
this chapter, we perform an experiment without this novel control mechanism, in which the
physically interacting individuals experience two different levels of visual noise and place
specific focus on analyzing and modeling modulation of muscle coactivation. Due to the
difference in visual noise, we are able to observe how the resulting difference in tracking
performance affects modulation of muscle coactivation in both individuals.

5.2. Tracking Task Dynamics

In this section and the following section, we present a neuromechanical model that describes
the respective motor behavior adaptations of two individuals that use wrist flexion/extension
movements to track random movements of a shared target, both individually and while being
physically coupled by a virtual spring.

Remark 5.1. The neuromechanical model represents the motor behavior in the form of
a one dimensional discrete-time system and is based on the neuromechanical goal sharing
model presented in [49], with the novelty lying in the differentiation of reciprocal activation
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and coactivation as well as the introduction of three different variations of the associated
coactivation modulation model.

The dynamics of the tracking task are modeled as a one dimensional discrete-time system
with t = kts, Kk = 1,2,...,h, where t is the time, t5 is the sample time, k is the sample
index, and h is the maximum number of samples. The random movements of the target are
assumed to be caused by zero mean Gaussian white noise in its angular acceleration and the
target dynamics are modeled as a first order system:

Ot,nﬂ = AHW + Wy (51)
with
w, €N (w | O,Q) , Q=E [wwq (5.2)
and
1t | o

where 6; is the target angle and 6; is the target angular velocity. The variables w and €2
are the process noise vector and covariance matrix, respectively. Given the corresponding
process noise variance o2, the process noise covariance matrix 2 is given by

th/a 3/2
2 s s
Q=0 l B2 g ) (5.4)

Analogous to the target dynamics (5.00), the wrist dynamics of the wrist flexion/extension
movements are likewise modeled as a first order system:

0w,n+1 = Aew,n + b (TRA,/@ + TCA,k + TVC,R) (55>

with

b:lt:”, owzlgﬂ, (5.6)

where 6, is the wrist angle, 0, is the wrist angular velocity, ¢ is the moment of inertia,
and Tyc is the torque due to the virtual coupling. In contrast to the model presented in [49],
the muscle activation torques are split up into the torque due to reciprocal activation 7ga
and the torque due to coactivation 7cs. Subtracting the target dynamics (B.)) from the
wrist dynamics (5.5) yields the full state equation of the tracking dynamics:

Xpt1 = AXw + 0 (TrAx + Teak + Tves) — W (5.7)

which is defined based on the corresponding state vector x = [0, — 6, éw — ét]T.
Accurately tracking the random movements of the target by suitably scaling the reciprocal

activation torque Tga and the coactivation torque 7¢pa, requires the estimation of the state

vector x. This estimation is based on multiple noisy observations z, which are acquired
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5.2 Tracking Task Dynamics

through the sensory modalities of vision, touch, and proprioception. These observations z
are encompassed in the observation vector z, which can be described by

ze = H.x,. + Ve , (5.8)

where H is the observation matrix. The observation noise v, which represents all involved
sources of noise, is modeled by zero mean Gaussian white noise:

ve €N (1/ | 0,03) , o2=E {1/2} , (5.9)

where o2 is the observation noise variance. The knowledge of the full state equation (5.7))
paired with the acquisition of the observation vector z allows for linear quadratic estimation
of the state vector x by application of an iterative Kalman filter:

X1 = Xetifs T Grr1(Zr41 — H?Znﬂm) J (5.10)
Gri1 = Poy1jnH (HP1)sH' + Nojr) ', (5.11)
Poy = ([ - GnJrlH)Pn-l-l\m ) (5-12>
Xit1ls = AX + 0 (TRA L + Toa s + Tvek) (5.13)
P = AP AT +Q | (5.14)

where x is the estimated state vector, G is the Kalman gain matrix, P is the estimate
covariance matrix, and [ is the identity matrix. The observation vector z, the observation
matrix H, and the observation noise covariance matrix N for individual and dyadic task
execution are introduced in Section B.2.1] and Section (£.2.2] respectively.

Remark 5.2. The effects of sensory delay ¢ can be incorporated into the model by firstly
obtaining the estimated state vector x at time step x — 0 and subsequently using a forward
model of the full state equation (B.7) to predict the estimated state vector x at time step k.
For simplicity, we do not use such a forward model, but instead assume that the effects of
sensory delay ¢ are sufficiently represented by the observation noise covariance matrix V.

During dyadic task execution, the two physically interacting individuals are connected by
a virtual spring. Thus, the respective virtual spring torque 7y¢ is given by

VCkr = kVC(ew,n - ew,/@) 5 (515)

where 0, is the partner’s wrist angle and kyc is the virtual spring stiffness. When both
individuals perform the tracking task individually, i.e., without being physically coupled,
the virtual spring torque 7y¢ is zero. The effects of reciprocal activation are modeled by full
state feedback control. Thus, the reciprocal activation torque mra is given by

TRA L = —AXj - (5.16)

The elements of the full state feedback control gain vector A are determined by designing a
linear quadratic regulator (LQR) that minimizes the cost function

p=3 (X1 QX + TA) (5.17)

xk=0
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5 Coactivation Modulation Model for Cooperative Physical HHI

where () is the positive semi-definite state weight matrix and r is the positive input weight.

As modulation of coactivation results in modulation of impedance components, the effects
of coactivation are modeled by impedance control. For simplicity, in this chapter, we only
consider the stiffness component. Thus, the coactivation torque 7¢a is given by

TCAk — kw,néG,n s (518)

where k, is the wrist stiffness and éy is the estimate of the kinematic error ¢y = 6; —0, = —x1
between the target angle 6; and the wrist angle 6,,. The wrist stiffness k,, is modulated during
the course of the tracking task according to the coactivation modulation model. Before we
derive this model, we present the observation vector z, the observation matrix H, and the
observation noise covariance matrix /N for individual and dyadic task execution.

5.2.1. Individual Task Execution

The estimation of the state vector x is based on multiple noisy observations z, which are
appropriated through the sensory modalities of vision, touch, and proprioception. During
individual task execution, the acquirable information consists only of the visual information
that is provided by the visual feedback. Therefore, the observations z consist only of visual
observations z,, which are modeled as

Zvk = ew,n - et,li + Vyik s (519>

where v, is the visual observation noise. It includes the noise that is inherent to the visual
information as well as the noise that is involved in the acquisition of the visual information
and is modeled by zero mean Gaussian white noise:

Vyw EN (VV | O,GEV) , oo =E {1/3} , (5.20)

where a?,v is the visual observation noise variance. For simplicity, in this work, we assume
that the visual observation noise variance o2 is known from experience.

During individual task execution, based on (5.19) and (5.20), the individual observation
vector z is given by z, = z,, and the individual observation matrix H and the individual
observation noise covariance matrix /N are defined as

H=[10], N=d . (5.21)

Inclusion of these definitions in the iterative Kalman filter algorithm (510) - (5.14) allows
for linear quadratic estimation of the state vector x based on visual information.

5.2.2. Dyadic Task Execution

During dyadic task execution, the physical coupling with the partner represents a second
source of information that both of the individuals are able to use to improve their respective
estimation of the state vector ). Consequently, the acquirable information consists both of
the visual information that is provided by the visual feedback and the haptic information that
is provided by the haptic interaction. This haptic information, paired with a spontaneously
formed internal model of the partner’s motor behavior, can be used by each individual to
obtain an estimate of the partner’s estimate of the target angle 6;.
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Remark 5.3. The spontaneous formation and continuous adaptation of the internal model
of the partner’s motor behavior as well as the exploitation of this knowledge to obtain the
estimate of the partner’s estimate of the target angle #; can be accomplished by application
of an iterative extended Kalman filter [145]. For simplicity, in this work, we do not include
this Kalman filter, but instead directly model the resulting haptic observations z,.

Analogous to the model presented in [49], the haptic observations z, which are obtained
through the internal model of the partner’s motor behavior, are modeled as

Zhk = HW,H - 91:,/{ + Yk (522>

where 14, is the haptic observation noise. It includes the noise that is inherent to the haptic
information, the noise that is involved in the acquisition of the haptic information, and
the noise due to the internal model of the partner’s motor behavior. Similar to the visual
observation noise v, it is modeled by zero mean Gaussian white noise:

Ve EN (l/h | 0,afh) , o =E [1/}21} : (5.23)

The corresponding haptic observation noise variance alz,h is modeled as

oo =0. + ove (5.24)

where 6§V is the partner’s visual observation noise variance. The virtual spring observation

noise variance 0% represents the detrimental effects that the compliance of the coupling
mechanics has on the quality of the exchanged haptic information.

During dyadic task execution, based on (5.19]) and (£.20) as well as (5.22)) and (5.23)), the
dyadic observation vector z is given by z, = [zy 4, zh,H]T and the dyadic observation matrix H
and the dyadic observation noise covariance matrix N are defined as

10 o> 0
w1 0] w7 2] 55

Vh

Inclusion of these definitions in the iterative Kalman filter algorithm (5.10) - (514)) allows
for linear quadratic estimation of the state vector x based on visual and haptic information.

5.3. Coactivation Modulation Model

During the course of the tracking task, the discrete-time evolution of the wrist stiffness k£,
from time step k to time step k + 1 is described by the difference equation

kw,n+1 = kw,n + kW,HtS 5 (526>

where k., is the respective derivative of the wrist stiffness. It characterizes the modulation
of the wrist stiffness k,, and is modeled by the coactivation modulation model

j{:w,n = Terr,x + Tint,kx — Ometa (527)

where the functions 7, and 7y, which will be defined and explained in more detail in
the following sections, represent the influences of the kinematic error ey and the physical
interaction with the partner, respectively, and the parameter a,e, embodies the influence
of the desire to reduce coactivation in order to minimize metabolic cost.
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5.3.1. Kinematic Error Function

Increasing coactivation is known to serve as a means of reducing the kinematic error ey,
with the increase being positively correlated with the respective absolute value |eg| [35].
The increase is also known to be positively correlated with the accuracy requirements [41].
In order to incorporate these insights, the error function 7, is modeled as

0, |ée| < Berro-ég
_ ) ; 5.28
Herny { ey (|€€| - 6err0'é9> ) ‘69‘ > Berro-ée ’ ( )

where éy is the estimated kinematic error, e, is the correlation parameter, (. is the
parameter that scales the size of the interval Be.0e,, Which represents the influence of the
error estimate uncertainty, and o, is the error estimate SD.

Remark 5.4. As long as the absolute value of the estimated kinematic error éy lies inside
the interval fe;,04,, it does not result in a change in coactivation. As soon as it lies on or
outside the bounds of this interval, it results in an increase in coactivation that is scaled by
the correlation parameter oe,,. Thus, the larger the error estimate SD o¢,, the smaller the
evoked increase in coactivation for a given estimated kinematic error é.

During individual task execution with estimation of the state vector x based on visual
information only, the individual error estimate SD o, is defined by

Ogy = Ouy (5.29)
where 0, is the visual observation noise SD. During dyadic task execution with estimation of
the state vector x based on both visual and haptic information due to the physical coupling

with the partner, the dyadic error estimate SD o, is defined by

2 42
oo = | —2wTm_ (5.30)

0 )
oy, + o,
which additionally includes the haptic observation noise SD o,, .

Remark 5.5. The inclusion of the error estimate SD o, in the error function 7, ensures
that not only the value of the estimated kinematic error éy, but also the corresponding
level of uncertainty are incorporated. Furthermore, it ensures that the error function 7, is
adapted to the decrease in uncertainty that results from the improvement in the estimation
of the state vector x due to the exchange of haptic information with the partner.

5.3.2. Physical Interaction Function

For the interaction function 7., we propose three different models. The first model assumes
that, apart from its influence on the estimation of the state vector x and the implications
on the error function 7., the physical interaction with the partner does not result in any
explicit change in coactivation. Thus, the interaction function 7, ; is given by

Thint, 1,k = 0. (531)
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Remark 5.6. With this model, the influence of the physical interaction with the partner is
limited to the improvements in error estimate SD o4, and estimated kinematic error éy.

The second model assumes that the interaction function n, is correlated with the absolute
value of the wrist angle difference 0y, — 6y, which quantifies the exchange of interaction torque
between the individuals. For this model, we evaluate two different variations. The respective
interaction functions 7ing 2, and ning 2y are given by

Tint,2a,k = aint,2a|§w,/@ - 0w,n| > (532)

Tint,2b,x = _aint,2b|§w,/i - 9w,n| ) (533>

where qin 24 and iy on are the correlation parameters of the respective variations.

Remark 5.7. In the first variation (5.32]), the exchange of interaction torque between
the individuals results in a general increase in coactivation. In the second variation (5.33)),
it results in a general decrease in coactivation. Thus, with this model, the interaction
behavior of the individuals is either governed by a general increase or a general decrease of
the resistance towards the effects of the physical interaction with the partner.

The third model is similar to the second model in that it also assumes that the interaction
function 7, is correlated with the absolute value of the wrist angle difference 0, — 6,.
However, in this model, the algebraic sign and the magnitude of the correlation coefficient
are influenced by the visual observation noise SD o, , which, in the context of the experiment,
is defined by the visual feedback scenario and correlates with the tracking task performance.
Thus, the respective interaction function 7y 3 is given by

771nt,3,/i = (_aint,Bqu + Bint,?;) ‘éw,n - HW,H‘ ) (534>

where iy 3 and Sy 3 are slope and intercept of the correlation characteristics, respectively.

Remark 5.8. In this model, an increase of the visual observation noise SD o, results in a
decrease of the correlation coefficient. This means that above a certain threshold of the visual
observation noise SD o,,,, which depends on the parameters ain 3 and Bin 3, the algebraic
sign of the correlation coefficient becomes negative. Thus, with this model, the change in
resistance towards the effects of the physical interaction with the partner is influenced by the
confidence in the individual contribution, which is assumed to be negatively correlated with
the amount of visual noise in the visual feedback and the resulting tracking task performance.
For increasing visual noise in the visual feedback, the change in coactivation decreases,
ultimately yielding large decreases in coactivation for large amounts of visual noise.

5.4. Experiment

In this section, we focus on the experiment, in which two participants track pseudo-random
movements of a shared target, either individually or while being physically coupled by a
virtual spring, using wrist flexion/extension movements. Each participant is provided with
distinct visual feedback, which includes the current wrist and target positions, and cannot
see the partner’s visual feedback. During the course of the experiment, the participants each
experience two different levels of visual noise in their respective visual feedback.
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Figure 5.1.: Schematic representation of the dual robotic interface. It consists of two 1-DoF
wrist interfaces, on which the participants can place their forearms to perform
wrist flexion/extension movements. The participants can either perform the
experiment individually or physically coupled by a virtual spring.

5.4.1. Apparatus

The apparatus comprises a 1-DoF dual robotic interface [147], which is shown schematically
in Fig. 6.1l It consists of two wrist interfaces, on which the participants place their forearms
in order to grasp a concavely shaped handle and perform wrist flexion/extension movements.
Each interface is equipped with a DC motor that allows for application of external torques,
e.g., in order to render a virtual coupling between the participants. The apparatus includes
two monitors, each mounted in front of one of the interfaces, that enable presentation of
distinct visual feedback. A curtain is drawn between the participants in order to prevent
possible confounds from insights into the partner’s visual feedback [148].

Each interface is equipped with a 5000 cpr differential encoder (RI 58-0, Hengstler) and a
torque sensor (TRT-100, Transducer Technologies) with measurement range of [0, 11.29] Nm.
The DC motor (MSS8, Mavilor) can produce peak torque of 15 Nm and is current-controlled
by a DC brush motor amplifier (413C, Copley). The muscle activation data of the wrist
flexion /extension muscle pairs is obtained using a medically certified non-invasive 16-channel
surface EMG device (g.LADYBird, g. GAMMABozx, g.BSamp, g.Tec). The real-time system
is run at a sample rate of 1 kHz using Labview Real-time v10.0 (National Instruments) and
the data is collected with a data acquisition card (DAQ-PCI-6221, National Instruments) at
a downsampled rate of 0.1 kHz. All collected signals, including the surface EMG data, are
filtered by a fifth order Savitzky-Golay filter with a cut-off frequency of 10 Hz [109].

5.4.2. Experiment Design

The experiment consists of a tracking task, in which the participants have to use wrist
flexion/extension movements to follow the pseudo-random movements of a shared target as
accurately as possible. The tracking task is either performed individually ("solo trials") or
while being physically coupled with the partner by a virtual spring ("interaction trials").
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Task Configuration

In order to achieve a hard virtual coupling, the virtual spring stiffness kv is set to a fixed
value of 17.2 Nm/rad. The target trajectories are defined by a multi-sine function:

0;(t) = 0.3229sin(0.64647t,) sin(0.3478xt,) [rad] , (5.35)

with ¢, = ;o + ¢, where t;( is the starting time. In order to prevent the participants from
learning and adapting to the target movements, the starting time ¢; o is selected randomly
from {t,0 € [0,20]s | O;(ts0) = 0 rad} according to a uniform distribution.

In order to enable the participants to accurately quantify their tracking performance, the
root mean squared value of their kinematic error ey, which from this point on is referred to
as tracking error ey, is presented to them on their respective monitor after each trial:

(5.36)

where h is the number of samples within the trial and the RMSE is presented in degrees.

Visual Feedback

The visual feedback includes the wrist angle 6, and the target angle 6;, but does not include
the partner’s wrist angle 0. It is presented on a black background that includes a grey dashed
arc that indicates the possible 1-DoF wrist flexion/extension movements. The wrist angle 6,
is displayed in the form of a blue line cursor. The target angle 6; is either displayed without
visual noise ("clean scenario") or with visual noise ('noisy scenario"). In the clean scenario,
it is displayed by a single red dot, and in the noisy scenario, it is displayed by a cloud of eight
normally distributed red dots. Each of these dots is defined by three parameters, which are
all randomly selected from independent Gaussian distributions: radial distance to the target
position 1 ~ N (771 ‘ O,am), angular distance to the target position 1y ~ N (772 ‘ O,am),
and angular velocity ns ~ N (ng ‘ 0, 0,73). The respective standard deviations o,, = 0.015 m,
o,, = 0.080 rad, and o,, = 0.070 rad/s are all constant and identical for all participants.
In order to continuously change the shape of the cloud, every 100 ms one of the eight dots

is replaced by a new dot. This means that each dot is visible for 800 ms. Fig. shows
exemplary illustrations of each of the two visual feedback scenarios.

EMG Calibration

Surface EMG data of the wrist flexion/extension muscle pairs is collected from the flexor
carpi radialis (FCR) and extensor carpi radialis longus (ECRL) muscles. In order to be able
to calibrate the obtained EMG data based on relationships between muscle activations and
associated torques, an EMG calibration routine is performed. During this calibration routine,
the participants are instructed to consecutively flex/extend their wrist in order to produce
certain flexion/extension torques, which are indicated to them by a yellow target dot on
their respective monitor. Each muscle activation lasts for 4 s and is followed by a 5s rest
period in order to avoid effects of muscle fatigue. The calibration procedure consists of four
repetitions with flexion/extension torques of 1, 2, 3, and 4 Nm, respectively.
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Figure 5.2.: Exemplary illustrations of the visual feedback scenarios. The grey dashed arc
indicates the 1-DoF movements. The blue line cursor shows the wrist angle 6,,.
The single red dot in the clean scenario and the cloud of red dots in the noisy
scenario show the target angle 6;. For clarity, the black background, on which
the visual feedback is presented during the experiment, is omitted.

Linear regression of the measurements of the calibration routine yields the relationships
between the muscle activations and the associated torques. These relationships are used
to calculate the torque-calibrated muscle activations that correspond to the experimental
EMG data [I49]. Based on the resulting torque-calibrated muscle activations, the reciprocal
activation aga and the coactivation aca are calculated as

ARA = AFCR + UECRL ; (5.37)

aca = min (|apcr|, |apcrL]) (5.38)

where apcr and agcgry, are the torque-calibrated muscle activations that correspond to the
measurements obtained from the FCR muscle and the ECRL muscle, respectively.

5.4.3. Participants & Procedure

A total of 48 participants (14 male-male and 10 female-female pairs) with mean (SD) age
of 25.29 (4.14) years volunteered to participate in this experiment. All participants were
informed about the objectives and the procedure of the experiment, and provided written
consent prior to participation. Handedness of the participants was assessed according to the
Edinburgh Handedness Inventory [I50]: 6 participants were left-handed, 40 participants were
right-handed, and 2 participants did not specify handedness. The experiment was performed
in the Human Robotics Group of Imperial College London according to the principles in the
Declaration of Helsinki and approved by the institutional research ethics committee.

Remark 5.9. Due to torque sensor malfunctions, two of the acquired data sets needed to be
removed from the analysis (dyad 1 and dyad 5). In the case of dyad 1, the torque sensor of
the left participant provided implausibly large values that did not correlate properly with the
corresponding kinematics. In the case of dyad 5, the torque sensor of the right participant
completely stopped functioning. Due to the removal of these two data sets, the analysis of
the experiment and the corresponding results include a total of 44 participants (14 male-male
and 8 female-female pairs) with mean (SD) age of 25.41 (4.26) years. Of these remaining
participants, 5 were left-handed, 37 were right-handed, and 2 did not specify handedness.
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5.4 Experiment

The experiment consists of 50 trials that each last 20 s. The first 5 trials are solo trials,
in which the participants perform the tracking task individually and do not experience any
visual noise in their visual feedback. These trials allow for familiarization with the apparatus
and provide information on the individual motor behaviors. The following 40 trials are
interaction trials, in which the participants perform the tracking task while being physically
coupled with the partner. These 40 trials are divided into 4 blocks of 10 trials each, among
which the 4 combinations of visual feedback scenarios are uniformly randomly distributed:

1) left clean - right clean ,
2) left clean - right noisy ,
3) left noisy - right clean ,

4) left noisy - right noisy .

These combinations of visual feedback scenarios provide information on how the different
levels of visual noise, which correspond to different levels of tracking performance, influence
the interaction behavior of the two participants. The last 5 trials are solo trials, which
are identical to the first 5 trials. These trials provide information on the changes in the
individual motor behaviors compared to the beginning of the experiment.

The participants were seated next to the interfaces, and instructed to place their right
forearm on the interface and grasp the concavely shaped handle with their right hand.
The forearm and the fingers were restrained by elastic straps in order to limit all possible
movements to those of the wrist. The EMG electrodes were positioned on the FCR and
ECRL muscles and tested for proper functionality. The participants were presented with
exemplary illustrations of the different visual feedback scenarios, and were informed of the
resulting possible combinations. Before the initialization of the encoders and torque sensors,
the participants were asked to move their wrist to the position, in which they felt most
relaxed and comfortable. After completion of these preparations, the curtain was drawn
between the participants and they were instructed to not communicate verbally. The EMG
calibration routine was performed and after its completion, the experiment was started.
Verbal cues were provided by the experimenter, when the trial configuration changed from
solo to interaction and vice versa. Visual cues were provided on the monitors, when the
visual feedback scenarios changed betweens blocks of interaction trials. These visual cues
indicated that a change would take place, but did not inform of the type of change.

5.4.4. Evaluation

The evaluation of the experiment is centered around the tracking error ey, the reciprocal
activation ara, and the coactivation acp, with specific focus placed on relative within-subject
differences in the coactivation aca between the different conditions. In order to be able to
average and analyze these relative within-subject differences of the EMG data, we normalize
the reciprocal activation agra and the coactivation aca for each participant:

AGRAn = aRA/ ARA,max >

ACAn = aCA/ ACA,max 5

where aga y is the normalized reciprocal activation and aca » is the normalized coactivation.
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Figure 5.3.: Mean results of the absolute tracking error |ey|, averaged over trials within
conditions and participants (solo: 5 trials, interaction: 10 trials).

The corresponding normalizing values ara max and aca max are determined by first averaging
the respective variables over time within trials and subsequently calculating the maximum
values of the obtained averages. For simplicity, from this point on, we refer to the normalized
variables ara , and acan simply as reciprocal activation aga , and coactivation aca .

In order to be able to present the obtained results from a participant-specific perspective,
the experimental conditions are converted into participant-specific conditions:

1) subject clean - partner clean (CC) ,
2) subject clean - partner noisy (CN) ,
3) subject noisy - partner clean (NC) ,
4) subject noisy - partner noisy (NN)

Remark 5.10. During an experimental condition with different visual feedback scenarios,
the participants are performing in different participant-specific conditions. For example,
during the experimental condition left clean - right noisy, the left participant is performing
in the participant-specific condition subject clean - partner noisy and the right participant
is performing in the participant-specific condition subject noisy - partner clean.

For notational convenience, we define abbreviations for the participant-specific conditions
that are listed in the enumeration above. Furthermore, we define abbreviations for the solo
condition before interaction trials (S1) and the solo condition after interaction trials (S2).
In the remainder of this section, we first analyze the absolute tracking error |es| and then
focus on the absolute reciprocal activation |agra .|, and the coactivation aca .

Tracking Error

The absolute tracking error, averaged over trials within solo and interaction conditions and
participants, is presented in Fig. 5.3l The temporal evolutions are similar for all conditions.
At the beginning of the trial, the absolute tracking error rapidly increases and decreases to
form a prominent spike with a substantially increased amplitude compared to the remainder
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Figure 5.4.: Mean results of the absolute tracking error |ey|, averaged over time within trials
and participants (¢ > 10s to avoid transient behavior).

of the trial. This sudden but short increase in amplitude could be caused by sensory delays of
the participants. It could however also be caused by an adaptation process that takes place
at the beginning of the trial. During the remainder of the trial, the absolute tracking error
oscillates at a much lower level, inbetween condition-dependent lower and upper bounds.
In order to allow for quantitative assessment of these condition-dependent differences,
Fig. 5.4l shows the absolute tracking error averaged over time within trials and participants.
In order to avoid transient behavior during the first halves of the trials and only base the
analysis on the steady-state behavior during the second halves of the trials, the averages
are calculated for t > 10 s. In this figure, the differences between the conditions are more
apparent. The absolute tracking error is the smallest in CC and by far the largest in NN.
The mixed conditions lie inbetween, with the absolute tracking errors being slightly larger
in NC than in CN. This small difference between the mixed conditions is caused by the
fact that the virtual coupling is not rigid, i.e., the difference represents the deflection of the
virtual spring. The differences in absolute tracking errors between the different conditions
clearly illustrate the negative correlation between visual noise and tracking performance.
The absolute tracking error in S1 shows a steep learning curve that converges to absolute
tracking errors similar to those in the mixed conditions. It seems that after completion
of these solo trials, the participants are familiarized with the tracking task. The absolute
tracking errors in S2 show no improvement compared to those in the last two trials of S1.
This suggests that the physical interaction with the partner during the interaction trials does
not results in perseverative improvement of the individual tracking performance.
Comparison of the absolute tracking errors in the last two trials of S1, i.e., after completion
of familiarization with the tracking task, with those of CC shows that physical interaction
with an equal partner results in mutual improvement of tracking performance. Comparison
with the absolute tracking errors of CN demonstrates that even during physical interaction
with an inferior partner, participants are able to adapt their motor behavior such that they
achieve similar tracking performance as during individual task execution. These insights are
similar to those observed in previous experiments [49}144]145].
The statistical analysis of the condition-dependent differences is performed based on the
absolute tracking error averaged over time within conditions and participants, which is
presented in Fig. Analogous to the contents of Fig. 0.4 and for the same reasons,
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Figure 5.5.: Mean results of the absolute tracking error |ey|, averaged over time within
conditions and participants (¢ > 10 s to avoid transient behavior). Error bars
represent + standard error of the mean (SEM).

the averages presented in Fig. are also calculated for ¢ > 10s. The statistical analysis
of the differences between the interaction conditions is performed using a two-way repeated
measures ANOVA with a 2x2 within-subject design, in which the independent variables
are defined to be the subject’s visual noise scenario (clean, noisy) and the partner’s visual
noise scenario (clean, noisy). Mauchly’s test for sphericity indicates violation of the sphericity
assumption (x2(5) = 20.68, p < 1073). Thus, the results of the two-way repeated measures
ANOVA are corrected using the Huynh-Feldt correction (¢ = 0.808). The corrected results
indicate main effects of the subject’s visual noise scenario (F(1,43) = 100.33, p < 107'2)
and the partner’s visual noise scenario (F'(1,43) = 103.98, p < 107'?). The interaction
effect between the subject’s visual noise scenario and the partner’s visual noise scenario is
also statistically significant (F(1,43) = 16.75, p < 1073). Post-hoc Bonferroni tests reveal
the absolute tracking error to be significantly affected by the partner’s visual noise scenario,
independent of whether the subject is experiencing the clean scenario (p < 107%) or the
noisy scenario (p < 10712). In summary, the results of the statistical analysis support the
interpretations derived from the contents of Fig.[5.4land Fig. The absolute tracking error
is not only significantly influenced by the subject’s visual noise scenario and the partner’s
visual noise scenario, but also by the interaction between these two scenarios.

Muscle Activations

The absolute reciprocal activation and the coactivation, averaged over trials within solo and
interaction conditions and participants, are presented in Fig. and Fig. B.7] respectively.
At the beginning of the trial, the temporal evolutions are similar, with the absolute reciprocal
activation and the coactivation increasing rapidly at similar rates. During the remainder of
the trial, however, the temporal evolutions differ substantially.

While the absolute reciprocal activation shows only minor differences in average levels,
the coactivation is governed by substantial differences, both in levels and convergence rates.
Upon closer inspection, the levels in the absolute reciprocal activation are governed by
similar tendencies to those in the coactivation. However, the differences are substantially
less pronounced. This is partially due to the fact that the oscillation amplitudes are much
larger in the absolute reciprocal activation than in the coactivation. The convergence rates
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Figure 5.6.: Mean results of the absolute reciprocal activation |aga .|, averaged over trials
within conditions and participants (solo: 5 trials, interaction: 10 trials).
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Figure 5.7.: Mean results of the coactivation aca n, averaged over trials within conditions
and participants (solo: 5 trials, interaction: 10 trials).

of the coactivation seem to be negatively correlated with the respective levels. This could
be the result of an analogous correlation with the occurrence of effects that are intended to
be compensated by an increase in coactivation. These insights suggest that the differences
in muscular effort observed in a previous experiment [49] largely originate from differences
in coactivation, instead of reciprocal activation. Thus, for the remainder of this analysis,
specific focus is placed on the condition-dependent differences in the coactivation.

In order to allow for quantitative assessment of these condition-dependent differences,
Fig. 5.8 shows the coactivation averaged over time within trials and participants. In order
to avoid transient behavior during the first halves of the trials and only base the analysis on
the steady-state behavior during the second halves of the trials, the averages are calculated
for ¢ > 10s. The differences between the conditions closely resemble the differences observed
in Fig. .7 The coactivation is the largest in CN, followed by CC, and it is the smallest
and similar in NC and NN. In the first two trials of NC, it is slightly larger than in NN.
The differences between the conditions show that the coactivation is generally larger in
subject clean conditions than in subject noisy conditions. In the subject noisy conditions,
there is little difference between the interaction with a clean partner and the interaction with
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Figure 5.8.: Mean results of the coactivation acan, averaged over time within trials and
participants (£ > 10s to avoid transient behavior).

a noisy partner. In contrast, in the subject clean conditions, the coactivation is substantially
larger in the interaction with a noisy partner than it is in the interaction with a clean partner.
The decrease in coactivation during the course of the conditions is largest and similar in the
subject clean conditions and smallest and similar in the subject noisy conditions.

The coactivation in S1 is similar to that in CC, and the coactivation in S2 is similar to that
in NC. The decrease in coactivation during the course of the solo trials is generally similar
to the subject clean conditions and does not differ between S1 and S2. These correlations,
in combination with the differences in decrease between the interaction conditions, suggest
that the decrease is not only the result of effects of fatigue, but also results from effects of
motor learning. During the first two trials of the subject noisy conditions, the coactivation
and the decrease are larger for the condition with the clean partner than for the condition
with the noisy partner. This indicates a more elaborate motor learning process at the
beginning of these two conditions for the interaction with the clean partner.

The statistical analysis of the condition-dependent differences is conducted based on
the coactivation averaged over time within conditions and participants, which is presented
in Fig. 5.9 Analogous to the contents of Fig. 5.8, and for the same reasons, the averages
presented in Fig. are also calculated for t > 10s. The statistical analysis of the differences
between the interaction conditions is performed using a two-way repeated measures ANOVA
with identical design to that of the absolute tracking error. Mauchly’s test for sphericity does
not indicate violation of the sphericity assumption (x?(5) = 8.66, p = 0.123). The results
indicate main effects of the subject’s visual noise scenario (F(1,43) = 85.98, p < 107!1)
and the partner’s visual noise scenario (F'(1,43) = 7.31, p = 0.010). The interaction effect
between the subject’s visual noise scenario and the partner’s visual noise scenario is also
statistically significant (F'(1,43) = 5.51, p = 0.024). Post-hoc Bonferroni tests reveal that
the coactivation is significantly affected by the partner’s visual noise scenario, when the
subject is experiencing the clean scenario (p = 0.003). In contrast, it is not significantly
affected when the subject is experiencing the noisy scenario (p = 0.980). In summary,
the results of the statistical analysis support the interpretations derived from the contents
of Fig. and Fig. 5.9 Most notably, the statistically significant interaction effect shows a
significant correlation between the coactivation and the partner’s visual noise scenario during
execution of the clean scenario, but not during execution of the noisy scenario.
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Figure 5.9.: Mean results of the coactivation acan, averaged over time within conditions
and participants (¢ > 10 s to avoid transient behavior). Error bars represent
+ standard error of the mean (SEM).

5.5. Simulation

In this section, we focus on the simulation, which we use to evaluate the different variations
of the coactivation modulation model. In order to allow for more comprehensive evaluation,
we additionally simulate solo trials with visual noise. The corresponding experimental data
is generated based on the results of the visual tracking task control experiment in [146].
Analogous to the neuromechanical model presented in Section (.2, the simulation is based
on the simulation presented in [49], with the novelty lying in the differentiation of reciprocal
activation and coactivation as well as the inclusion of the coactivation modulation model.

5.5.1. Implementation

The simulation is implemented according to the models in Section and Section (.3
It simulates individual and dyadic task execution, i.e., solo and interaction trials, with a
sample rate of 200 Hz. In order to obtain similar tracking errors ey as in the experiment,
the visual observation noise variances o of the clean and noisy scenarios are defined based
on a second order polynomial fit that describes the relationship between root mean squared
values of tracking errors ey and respective visual observation noise SDs o, in solo trials.
This polynomial fit is also used to define the virtual spring observation noise variance o2,
which represents the effects of the compliance of the coupling mechanics on the exchange of
haptic information. The corresponding input value for the polynomial fit is set to 0.00763 rad,
as determined in the analysis of the haptic tracking task experiment in [49)].

The simulated data, which is used for the calculation of the polynomial fit, is generated
by simulating a total of 50 solo trials with different visual observation noise SDs o, that
are defined randomly within the interval [0,0.14] rad according to a uniform distribution.
With the polynomial fit, the visual observation noise variances agv of the clean and noisy
scenarios are determined based on the root mean squared values of the tracking errors ey of
the respective solo trials in the experiment. The solo trials for the clean scenario are given
by the combination of the solo trials before and after interaction. As our experiment does
not include solo trials with visual noise for the noisy scenario, we generate the corresponding

experimental data based on the results of the visual control experiment in [146].
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The design of the visual control experiment in [146] is similar to that of our experiment.
However, instead of multiple interaction conditions, it contains multiple solo conditions with
different levels of visual noise. In one of these conditions, the parameterization of the visual
noise is identical to that in our experiment. Thus, we calculate the ratio between the
tracking errors ey of this condition and those of the condition without visual noise and use
this ratio to generate the noisy scenario equivalents of the clean scenario tracking errors ey
of our experiment. This procedure is executed analogously in order to obtain the noisy
scenario equivalents of the clean scenario coactivation aca n of our experiment.

The moment of inertia ¢ in the simulation, which represents the combined effects of the
hand and the manipulandum of the wrist interface in our experiment, is set to 0.005 kgm?,
based on empirical values from the literature [I51H154]. In order to ensure physiological
plausibility of the motor behavior in our simulated data, we include a lower bound of the
wrist stiffness &, in the implementation of the coactivation modulation model. Based on
empirical values of passive flexion/extension wrist stiffness from the literature, this lower
bound of the wrist stiffness ky, is set to 2.0 Nm/rad [I55HI58].

Remark 5.11. In [I51], the dynamics of the wrist are modeled as a second order system
and the moment of inertia of the hand and the manipulandum is set to 0.005 kgm?, based
on experimental observations. In [I52], the moment of inertia of the hand is reported to lie
in the range of 0.0031 — 0.0037 kgm?. In [I53], it is reported to be 0.0039 kgm?. In [154],
the moment of inertia of the hand and the manipulandum is reported to lie in the range of
0.0032 — 0.0054 kgm?, with an average value of 0.0047 kgm?, of which the contribution of
the manipulandum is reported to be 0.0013 kgm?.

Remark 5.12. In [I55] and [I56], passive flexion/extension wrist stiffness is reported to
lie in the approximate ranges of 0.7 — 1.2 Nm/rad and 0.8 — 1.1 Nm/rad, respectively.
In [157], it is repeatedly estimated over a period of 11 days and continuously reported to be
approximately 2.0 Nm/rad. In [I58], passive flexion/extension wrist stiffness is estimated in
constant load conditions and reported to lie in the approximate range of 2.0 — 3.0 Nm/rad.

5.5.2. Simulation Design

The simulation is designed based on the design of our experiment presented in Section (H.4.2]
The virtual spring stiffness kv is set to a fixed value of 17.2 Nm/rad. The target trajectories
are defined by the multi-sine function (5.35) and the procedure for the random selection of
the starting times ;o is identical to that in our experiment. The visual observation noise vy
and the haptic observation noise 14, are generated by normally distributed random variables.
In order to avoid bias due to these random definitions, each condition contains 50 trials.
Analogous to the trials in our experiment, each of these 50 trials lasts 20 s.

According to a parameter sensitivity analysis conducted in [49], the predictive power of
the simulation is relatively insensitive to changes in the process noise variance o2 and the
configuration of the LQR that determines the reciprocal activation torque Tra, i.e., the state
weight matrix () and the input weight r. In order to avoid increased spectral content for
high frequencies, i.e., decreased physiological plausibility of the wrist movements, we define
the process noise variance o2 = 10 rad?/s*. In order for the LQR to generate reciprocal
activation torques Tra that are sufficiently small to necessitate contributions by coactivation
torques Toa, the state weight matrix () = diag{1, 1} and the input weight r = 10.
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The parameters of the coactivation modulation model are defined heuristically to obtain
values of the wrist stiffness k,, that are both similar to the results obtained in our experiment
as well as plausible with respect to empirical values from the literature. For the model of the
error function 7., the correlation parameter ae, = 2.5 - 10®> Nm/rad?s and the interval size
parameter [, = 0.2. The metabolic cost parameter aye, = 3 Nm/rads. The parameters
of the different models of the interaction function 7, only influence the wrist stiffness ki
during interaction conditions. For the second model, the correlation parameters of the two
model variations cps 2, = 100 Nm/ rad?s and Qing,2b = 500 Nm/ rad?s. For the third model,
the correlation characteristics slope parameter a3 = 12 - 10> Nm/rad®s and the intercept
parameter i3 = 1.1- 10 Nm/rad?®s. The plausibility of the obtained values of the wrist
stiffness k,, with respect to empirical values from the literature is discussed in Section

Remark 5.13. In order to exclude adaptation processes at the beginning of the experimental
conditions, especially with respect to the solo trials before interaction, the first two trials of
each condition are excluded in the calculation of the experimental data that is used for the
comparison with the simulated data.

5.5.3. Evaluation

The evaluation of the simulated data is centered around the tracking error ey and the
wrist stiffness k,, with specific focus placed on the relative within-subject differences in
the modulation of the wrist stiffness k,, and the comparison to the respective differences in
the modulation of the coactivation aca, in the experimental data. In order to be able to
compare the data of the simulation and the experiment, we normalize the wrist stiffness &,
with the respective results of the clean scenario solo conditions:

kw,n - (kW/EW) ECA,n >

where ky, , is the normalized wrist stiffness, ky is the overall mean of the wrist stiffness in
the clean scenario solo condition in the simulated data, and Gca , is the overall mean of the
coactivation in the clean scenario solo condition in the experimental data. For simplicity,
we refer to the resulting normalized wrist stiffness k, , simply as wrist stiffness ky .

Remark 5.14. The analysis of the simulation is based on mean results of the variables, either
averaged over 1) trials within conditions, or 2) time within conditions. The corresponding
experimental data is given by the mean results of the relevant variables, either averaged over
1) trials within conditions and participants, or 2) time within conditions and participants.
For simplicity, from this point on, we refer to these mean results of the simulated and the
experimental data simply as 1) temporal mean results and 2) overall mean results.

Remark 5.15. For clarity, the abbreviations for the conditions defined in Section [5.4.4]
are extended by a subscript that indicates whether the abbreviation refers to the condition
in the simulated data (S) or the experimental data (E), e.g., the abbreviation CCg refers
to the subject clean - partner clean condition in the simulated data. Furthermore, as we
are not differentiating between solo trials before and after interaction anymore, but instead
additionally considering the data of solo trials with visual noise, the conditions and respective
abbreviations for the solo trials before interaction (S1) and after interaction (S2) are replaced
by the solo clean trials (SC) and the solo noisy trials (SN).
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Figure 5.10.: Mean results of coactivation modulation model in solo conditions. Comparison
of absolute tracking error |eg| in simulation and experiment data: a) temporal
mean results, b) overall mean results.

In the remainder of this section, we first analyze the absolute tracking error |ey| and the
wrist stiffness &y, produced by the coactivation modulation model for the solo conditions
and subsequently we proceed analogously for the interaction conditions.

Solo conditions

In this section, we evaluate the coactivation modulation model by analyzing the results of
the solo conditions in the simulated data and comparing them to the respective results in the
experimental data. As the interaction function in the coactivation modulation model only
contributes to the modulation of wrist stiffness during physical interaction with the partner,
the results are presented without focus on the variations of the interaction model.

Fig. 510 shows the temporal and overall mean results of the absolute tracking error in the
solo conditions. The temporal mean results in Fig. 5.10h show similar temporal evolutions
for the simulated and the experimental data. In both conditions, the amplitude of the
prominent spike at the beginning of the trial is substantially lower in the simulated data
than it is in the experimental data. In the simulated data, the sudden but short increase in
amplitude at the beginning of the trial is caused by the fact that it takes a certain amount
of time for the wrist stiffness to be sufficiently large to allow for accurate tracking of the
movements of the target. Once this sufficiently large wrist stiffness is reached, analogous
to the experimental data, the absolute tracking error oscillates at a lower level, inbetween
condition-dependent lower and upper bounds. Thus, this difference between the simulated
and the experimental data suggests that the increase in amplitude at the beginning of the
trial is not entirely caused by an adaptation process, but also partially caused by sensory
delays of the participants, which are not explicitly incorporated in our implementation.
The overall mean results in Fig. 5.10b demonstrate that, despite these minor differences,
the definition of the visual observation noise variances based on the polynomial fit described
in Section [B.5.7] produces absolute tracking errors in the simulated data that are extremely
similar to those in the experimental data.

Remark 5.16. It should be noted, that the increased amplitude of the prominent spike
in SNg compared to that in SCg could be an erroneous byproduct of the generation of the
respective experimental data based on the results of the visual control experiment in [146].
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Figure 5.11.: Mean results of coactivation modulation model in solo conditions. Comparison
of wrist stiffness ky , in simulation data and coactivation aca , in experiment
data: a) temporal mean results, b) overall mean results.

Fig. 611 presents the temporal and overall mean results of the wrist stiffness and the
coactivation in the solo conditions. The temporal mean results in Fig. 5. 1Th show similar
temporal evolutions for the simulated and the experimental data, with slightly increased
amounts of noise in the experimental data of both conditions due to the generally noisy nature
of EMG data. The temporal mean results demonstrate that the coactivation modulation
model is able to reproduce the rapid increase at the beginning of the trial and the difference
in levels between the two conditions. The rapid increase of the wrist stiffness at the beginning
of the trial is caused by the large absolute tracking errors that are observable in the respective
temporal mean results in Fig. B.10h. With the increase in wrist stiffness, the absolute
tracking errors decrease, until the interdependency of the effects of the tracking error and
the minimization of the metabolic cost ultimately result in the convergence of the wrist
stiffness to an approximately constant level. Due to the inclusion of the error estimate SD
in the error function of the coactivation modulation model, this approximately constant
level of convergence is influenced by the visual noise scenario. This influence is also clearly
visible in the overall mean results in Fig. 5. 11b, which demonstrate that the coactivation
modulation model produces differences in levels of the wrist stiffness in the simulated data
that are extremely similar to those of the coactivation in the experimental data.

Interaction conditions

In this section, we evaluate the coactivation modulation model by analyzing the results of the
interaction conditions in the simulated data and comparing them to the respective results
in the experimental data. As the interaction function in the coactivation modulation model
now contributes to the modulation of wrist stiffness, the results are presented and evaluated
individually for each of the different variations of the interaction model.

Fig. shows the temporal and overall mean results of the absolute tracking error in
the interaction conditions with interaction model 1. The general temporal characteristics in
the temporal mean results in Fig. are similar to those in the solo conditions, which
are presented in Fig. [5.10h. However, in the interaction conditions, there are differences in
levels between the simulated and the experimental data. These differences in levels are more
apparent in the respective overall mean results in Fig. 5.12b, which show that the absolute
tracking errors in the simulated data are generally decreased in comparison to those in the
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Figure 5.12.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7y:;. Comparison of absolute tracking error |eg| in
simulation and experiment data: a) temporal mean results, b) overall mean
results (for comparison, including respective solo conditions).

experimental data. Despite this general decrease, the relative differences in levels between
the different interaction conditions in the simulated data are nonetheless similar to those
in the experimental data. Thus, while the general effect of mutual tracking performance
improvement due to physical interaction with the partner is being simulated correctly, the
extent of the improvement is being simulated incorrectly, resulting in larger improvement in
the simulated data than in the experimental data.

Remark 5.17. The reason for this discrepancy is that the virtual spring observation noise
variance is generated based on the analysis of the haptic tracking task experiment in [49].
This experiment does not contain the same target trajectories as our experiment and more
importantly, the implementation of the simulation that is used in the analysis is not the same
as our implementation. Thus, the resulting input value for the polynomial fit that generates
the virtual spring observation noise variance is not equally valid for our implementation.
The effects of a larger input value and virtual spring observation noise variance are analyzed
and discussed in Section 0.6l For the remainder of this section, we focus on the modulation
of the wrist stiffness in the different variations of the interaction model.

Fig. presents the temporal and overall mean results of the wrist stiffness and the
coactivation in the interaction conditions with interaction model 1. The general temporal
characteristics in the temporal mean results in Fig. are similar to those in the solo
conditions, which are presented in Fig. 6.1Th. However, in the interaction conditions, there
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Figure 5.13.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7, 1. Comparison of wrist stiffness k,, , in simulation data
and coactivation aca , in experiment data: a) temporal mean results, b) overall
mean results (for comparison, including respective solo conditions).

are significant differences in levels between the simulated and the experimental data. In CN;,
the wrist stiffness in the simulated data is decreased compared to the coactivation in the
experimental data. In NC and NN, the wrist stiffness in the simulated data is substantially
increased compared to the coactivation in the experimental data. CC is the only condition
without significant differences in levels between the simulated and the experimental data.
The overall mean results in Fig. show that, in the simulated data, the wrist stiffness is
generally increased in the interaction conditions compared to the respective solo conditions,
i.e., it is increased both in CCgq and CNg compared to SCg as well as in NCg and NNg
compared to SNg.

Remark 5.18. The physical interaction with the partner results in an improved error
estimate with decreased error estimate SD. The improved error estimate allows for mutual
tracking performance improvement with decreased tracking errors, which are observable in
the overall mean results in Fig. 5.12b. However, while decreased distance between estimated
target angle and target angle results in similarly decreased tracking error, i.e., distance
between wrist angle and target angle, it does not necessarily result in similarly decreased
estimated tracking error, i.e., distance between wrist angle and estimated target angle. Thus,
the combination of estimated tracking error and error estimate SD in the error function of the
coactivation modulation model leads to a general increase in wrist stiffness due to physical
interaction with the partner.
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Figure 5.14.: Mean results of coactivation modulation model in interaction conditions with
interaction function kin 2. Comparison of wrist stiffness £, in simulation data
and coactivation aca, in experiment data: a) variation 2a with interaction
function Kint 2a, b) variation 2b with interaction function in op.

The temporal and overall mean results in Fig. show that the coactivation modulation
model with interaction model 1, i.e., without an explicit change in wrist stiffness due to
physical interaction with the partner, is not able to accurately reproduce the modulation of
the coactivation in the experimental data.

Fig. B.14h presents the temporal mean results of the wrist stiffness and the coactivation
in the interaction conditions with interaction model 2a (the respective overall mean results
are omitted for brevity). The temporal mean results show that, compared to the respective
results of interaction model 1 in Fig. B.13h, CN is the only condition, in which a general
increase in wrist stiffness results in a more accurate representation of the coactivation in
the experimental data. In CC, the wrist stiffness in the simulated data is now increased
compared to the coactivation in the experimental data. In NC and NN, the wrist stiffness in
the simulated data is still increased compared to the coactivation in the experimental data,
but with increased differences in levels.

The temporal mean results with interaction model 2b in Fig.[5.14b show that, compared to
the respective results of interaction model 1 in Fig. 513k, NC and NN are the only conditions,
in which a general decrease in wrist stiffness results in a more accurate representation of the
coactivation in the experimental data. In CC and CN, the wrist stiffness in the simulated
data is now substantially decreased compared to the coactivation in the experimental data.
Thus, the temporal mean results in Fig. 5.14h and Fig. [5.14b show that the coactivation
modulation model with interaction model 2a or model 2b, i.e., with a general increase or
decrease in wrist stiffness due to physical interaction with the partner, are also not able to
accurately reproduce the modulation of the coactivation in the experimental data.
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Figure 5.15.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7, 3. Comparison of wrist stiffness k., , in simulation data
and coactivation aca , in experiment data: a) temporal mean results, b) overall
mean results (for comparison, including respective solo conditions).

Fig. presents the temporal and overall mean results of the wrist stiffness and the
coactivation in the interaction conditions with interaction model 3. The results show that,
compared to the respective results of interaction model 1 in Fig. 513, the representation of
the coactivation in the experimental data is either similarly accurate (CC) or substantially
more accurate (CN, NC, NN). Apart from NC, the temporal mean results in Fig. show
extremely similar temporal evolutions for the simulated and the experimental data.

Remark 5.19. In NCg and NNg, the large amount of visual noise in the visual feedback,
which corresponds to low confidence in the individual contribution, results in a decrease in
wrist stiffness due to the physical interaction with the partner. As this decrease in wrist
stiffness in NCg does not only resemble a decrease in resistance towards the effects of the
physical interaction with the partner, but also a decrease in contribution to the overall
movement torque of the dyad, it is compensated by an increase in wrist stiffness in CNg.
The interdependency of these two effects is also the cause for the slight decrease in wrist
stiffness after the rapid increase at the beginning of the trial in NCg.

The overall mean results in Fig. show that, despite these minor differences between
NCg and NCg, the coactivation modulation model with interaction model 3, i.e., with a
change in wrist stiffness due to physical interaction with the partner that is correlated with
the visual noise in the visual feedback, is able to accurately reproduce the modulation of the
coactivation in the experimental data.
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Figure 5.16.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7y 3. Comparison of absolute tracking error |eg| in
simulation and experiment data: a) temporal mean results, b) overall mean
results (for comparison, including respective solo conditions).

Fig. shows the temporal and overall mean results of the absolute tracking error in
the interaction conditions with interaction model 3. The results look similar to those of
interaction model 1 in Fig. 6120 The only difference between the results is that the
differences in levels between the simulated and the experimental data in NC and NN are
marginally decreased. The corresponding increases in absolute tracking errors are caused
by the decreases in wrist stiffness in NCg and NNg. These minor differences between the
results show that the extent of the mutual tracking performance improvement is only slightly
influenced by the wrist stiffness and predominantly depends on the definition of the virtual
spring observation noise variance. Therefore, the effects of a larger virtual spring observation
noise variance are analyzed and discussed in the next section.

5.6. Discussion

In order to analyze the effects of an increase of the virtual spring observation noise variance on
the mutual tracking performance improvement due to physical interaction with the partner,
we increase the associated input value for the second order polynomial fit to approximately
three times its original value (from 0.4372 deg | 0.00763 rad to 1.50 deg | 0.02618 rad).
The resulting temporal and overall mean results of the absolute tracking error for interaction
model 3 in Fig. 517 show that the increase of the virtual spring observation noise variance
results in substantially more accurate representations of the absolute tracking errors in the
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Figure 5.17.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7,3 and increased value of virtual spring variance o%.
Comparison of absolute tracking error |eq| in simulation and experiment data:
a) temporal mean results, b) overall mean results (for comparison, including
respective solo conditions).

experimental data. Fig. 5.8 shows the corresponding temporal and overall mean results of
the wrist stiffness and the coactivation for interaction model 3. Compared to the respective
results for interaction model 3 without increased virtual spring observation noise variance
in Fig. 6.15 the wrist stiffness is similar in CCg and NNg, slightly increased in CNg, and
slightly decreased in NCg. In CNg and NCg, the decrease in quality of the exchanged haptic
information in the form of the increased uncertainty results in differently large increases of
error estimate variance for the noisy participant and the clean participant. The increase of
error estimate variance in NCg is apparently so large, that the corresponding decrease in
wrist stiffness requires compensation by an increase in wrist stiffness in CNyg.

The analysis of the effects of an increase of the virtual spring observation noise variance
illustrates that the inclusion of the coactivation modulation model does not contradict the
accurate representation of the mutual tracking performance improvement due to physical
interaction with the partner. However, appropriate definition of the associated input value
for the second order polynomial fit requires further analyses based on more comprehensive
experimental data. This also applies to a more general definition of the parameters of
the coactivation modulation model, which, in this work, are defined based on heuristics to
obtain values of the wrist stiffness that are both similar to the results of the experiment and
plausible with respect to empirical values from the literature. In future work, we aim to
acquire more comprehensive experimental data that will allow for more general analysis and
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Figure 5.18.: Mean results of coactivation modulation model in interaction conditions with
interaction function 7,3 and increased value of virtual spring variance o2.
Comparison of wrist stiffness ky,, in simulation data and coactivation acan
in experiment data: a) temporal mean results, b) overall mean results
(for comparison, including respective solo conditions).

parameterization based on solo and interaction trials with multiple levels of visual noise in
the visual feedback of the participants. This experimental data will also allow for elimination
of the approximation of the noisy scenario solo trial data via calculation of equivalents of
the clean scenario solo trial data based on the results of existing studies.

Despite the necessity of further analyses based on more comprehensive experimental data,
we are able to demonstrate that the coactivation modulation model is capable of accurately
reproducing modulation of coactivation, both during individual and dyadic execution of
a shared tracking task. The analysis of the solo trials demonstrates that the inclusion
of the error estimate variance in the error function of the coactivation modulation model
provides accurate representations of the differences in levels between the different visual
noise scenarios. The analysis of the interaction trials demonstrates that proper functionality
of the coactivation modulation model requires the inclusion of an interaction function that
models the explicit change in coactivation due to physical interaction with the partner and
that correlation of this change with the visual noise in the visual feedback yields accurate
representations of the modulation of the coactivation in the experimental data.

In order to assess the plausibility of the values of the wrist stiffness, we calculate the
maximum values of the temporal mean results of the wrist stiffness in the simulated data

of the coactivation modulation model with interaction model 3. The resulting maximum
values range between 17.19 Nm/rad (SN) and 20.13 Nm/rad (SC) in the solo conditions
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and 14.24 Nm/rad (NC) and 28.60 Nm/rad (CN) in the interaction conditions and are
plausible with respect to empirical values from the literature. In [I59], wrist stiffness is
estimated during coactivation in an experiment, in which participants have to stabilize a
mechanically unstable load with the characteristics of a negative spring. The resulting
estimates of the wrist stiffness during coactivation are reported to lie in the approximate
range of 8.0 —32.0 Nm/rad. In [I60], wrist stiffness is estimated in non-ischaemic conditions
with intact stretch reflex and in ischaemic conditions with abolished stretch reflex and the
resulting estimates of the wrist stiffness are reported to be 12.0 Nm/rad with abolished
stretch reflex and 25.8 Nm/rad with intact stretch reflex. In [161], wrist stiffness during
flexion and extension is estimated in healthy sedentary subjects and in volleyball players.
The resulting wrist stiffness estimates during flexion are reported in the approximate range
of 4.0 — 37.0 Nm/rad and the wrist stiffness estimates during extension are reported in the
approximate range of 5.0 — 23.0 Nm/rad. In [162], a realistic musculoskeletal model is used
to simulate and investigate the change in wrist stiffness due to coactivation. The wrist
stiffness simulated by the musculoskeletal model during coactivation is reported to lie in the
approximate range of 5.0 — 42.0 Nm/rad, with an average value of 28.7 Nm/rad.

The analysis of the absolute tracking error in the temporal mean results of the solo and the
interaction conditions suggests that the increase in amplitude at the beginning of the trial is
not entirely caused by an adaptation process of the wrist stiffness, but also partially caused
by sensory delays of the participants. The effects of such sensory delays can be incorporated
into the neuromechanical model and the corresponding implementation by firstly obtaining
the estimated state vector for a delayed time step and subsequently using a forward model of
the full state equation of the tracking dynamics to predict the estimated state vector for the
current time step. For simplicity, in this work, we instead assume that the effects of sensory
delays are sufficiently represented by the contents of the observation noise covariance matrix.
In future work, we aim to explicitly incorporate sensory delays and examine their effects on
the interaction behavior. Specifically, we aim to investigate the effects of physiologically
accurate definitions of different sensory delays for the full state feedback control of the
reciprocal activation and the impedance control of the coactivation, both on the mutual
improvement of the tracking performance and on the modulation of the coactivation.

5.7. Summary

In this chapter, we examine modulation of muscle coactivation in cooperative physical HHI.
We perform an experiment, in which two individuals use wrist flexion/extension movements
to track pseudo-random movements of a shared target, while being physically coupled by a
virtual spring and each experiencing two different levels of visual noise in their respective
visual feedback. Consequently, we are able to observe how different levels of visual noise,
which correspond to different levels of tracking performance, affect motor adaptation in the
form of modulation of muscle coactivation in both individuals. In order to describe the
motor behaviors of the two individuals, both during individual and dyadic task execution,
we formulate a neuromechanical model that is based on the neuromechanical goal sharing
model presented in [49], with the novelty lying in the differentiation of reciprocal activation
and coactivation as well as the inclusion of a coactivation modulation model. We propose
three different variations of the coactivation modulation model that differ in the definition of
the interaction function. In order to enable functional assessment of the different variations,
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we implement a simulation that emulates the conditions in our experiment. The evaluation
of the experimental data demonstrates that the coactivation is generally larger in subject
clean conditions than it is in subject noisy conditions. In the subject noisy conditions,
there is little difference in coactivation between the interaction with a clean partner and the
interaction with a noisy partner. In contrast, in the subject clean conditions, the coactivation
is significantly larger in the interaction with a noisy partner than it is in the interaction with
a clean partner. The evaluation of the simulated data demonstrates that the coactivation
modulation model is able to accurately reproduce modulation of coactivation, both during
individual and dyadic task execution. The analysis of the interaction trials demonstrates
that proper functionality of the model requires the inclusion of an interaction function that
models the explicit change in coactivation due to physical interaction with the partner and
that correlation of this change with the amount of visual noise in the visual feedback yields
accurate representations of the modulation of the coactivation in the experimental data.
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6.

Conclusions and Future Directions

Immediate robotic assistance through physical HRI necessitates control strategies that are
designed to provide efficient and intuitive interaction. Furthermore, these control strategies
must avoid instability, ill-defined robot behavior, and mismatched interaction behavior
in order to guarantee safety and comfort of the human. The relevance of this scenario,
today and in the near future, is motivated by the versatile capabilities of state-of-the-art
robotics technology and substantiated by the numerous application domains, which range
from agricultural and industrial manufacturing to medical and domestic service domains.
All of these application domains of physical HRI have in common that due to the direct
physical coupling of human and robot, development of suitable control strategies requires
consideration of human motor behavior, especially the immediate feedback behavior in
response to robot behavior. As this immediate feedback behavior is instantiated by human
impedance control, the corresponding impedance characteristics represent an instrumental
contribution for the control design process. The present thesis provides a comprehensive
composition of instruments and insights to facilitate systematic and efficient consideration
of human impedance characteristics in the control design process for physical HRI.

Summary of Contributions

In this thesis, we provide contributions for three crucial open challenges in the inclusion
of human impedance control research in the development of safe and efficient physical HRI
control strategies. We begin by enabling the information exploitation, i.e, the inclusion
of a priori impedance knowledge within the context of human motor behavior modeling.
Subsequently, we facilitate the information acquisition, i.e., the estimation of impedance
components for realistic physical HRI. Finally, we investigate the information alteration,
i.e., the impedance modulation strategies of human dyads during cooperative physical HHI.

Inclusion of impedance knowledge in human motor behavior modeling

In Chapter [3] we enable the information exploitation by presenting a method for modeling
human motor behavior during physical and non-physical HRI that explicitly includes an
impedance control model that compensates deviations from a desired trajectory. We adopt
a Bayesian perspective by assuming GP priors for the desired trajectory as well as the
impedance components. Based on these GP prior definitions, we derive compound kernels
for the impedance and the interaction force. Together, these compound kernels form a
multi-layered Bayesian human motor behavior model, which allows for the exploitation of
a priori knowledge of human impedance characteristics for the regression of human motor
behavior during physical and non-physical HRI. The regression of the human motor behavior
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necessitates the inference of the human motor intention in the form of the desired trajectory.
Consequently, the multi-layered Bayesian human motor behavior model is both a predictor
of human motor behavior as well as an observer of human motor intention. Validation of the
method with simulated data demonstrates superior prediction performance with respect to a
naive GP prior for multiple parameterizations of the desired trajectory. As the validation in
simulation reveals a dependency between prediction performance and the parameters of the
GP priors, an overview of estimated human arm impedance characteristics is presented and
implications for proper prior parameterization are discussed. Applicability of the method to
real data as well as effects of training data sparsity are evaluated with experimental data.
The results demonstrate that the generalization capabilities of the model allow for reliable
human motor behavior predictions in previously unobserved regions of the input space.

Estimation of impedance components for realistic physical HRI

In Chapter [, in order to facilitate the information acquisition, we present a method for
the estimation of the impedance components in experiments that emulate realistic physical
HRI scenarios. By incorporating dynamic regressor representation, we are able to formulate
an impedance control model that is linear in all impedance components. By limiting the
duration of the estimation interval to the minimum delay of voluntary feedback, we are
able to ensure that the estimated impedance components do not contain contributions
from voluntary feedback. In order to obtain estimates of the unperturbed states, we apply
force perturbations that are designed such that the evoked feedback jerk frequency content
can be isolated with a high pass filter. The impedance components are estimated in two
separate tasks. We begin by estimating the inertial parameters in a static postural task and
subsequently use them to estimate the damping and stiffness in a dynamic movement task.
Validation of the method with simulated data shows that it provides superior estimation
performance in comparison to the results obtained by application of existing impedance
estimation methods within identical conditions. Analysis of the feedback jerk isolation for
different movement velocities and variations of neural noise shows that it is able to provide
superior estimation performance for movements with moderate to low velocities and is much
less affected by an increase in movement variability. Applicability of the method to real data
and plausibility of the estimation interval duration are evaluated with experimental data.
The results demonstrate that the method allows for impedance estimation in experiments
that emulate realistic physical HRI scenarios, without the need for assumptions concerning
voluntary feedback behavior or inclusion of the do-not-intervene-voluntarily paradigm or
comparable constraints within the respective dynamic movement tasks.

Analysis of impedance modulation strategies during physical HHI

In Chapter Bl we focus on the information alteration by investigating modulation of muscle
coactivation during cooperative physical HHI. We perform an experiment, in which two
individuals perform a tracking task, either individually or while being physically coupled.
By including two different levels of visual noise in the respective visual feedbacks, we are
able to observe how different levels of tracking performance affect motor adaptation in the
form of modulation of muscle coactivation in both individuals. We describe the motor
behaviors of the two individuals, both during individual and dyadic task execution, with a
neuromechanical model that differentiates between reciprocal activation and coactivation.
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It includes a coactivation modulation model, for which we propose three different variations
that differ in the definition of the interaction function. The evaluation of the experimental
data demonstrates that the coactivation is generally negatively correlated with the amount
of visual noise in the visual feedback of the individual. Furthermore, it shows that, when the
individual is not experiencing visual noise, the coactivation is significantly increased for the
interaction with an equal partner without noise compared to an inferior partner with noise.
The evaluation of the simulated data demonstrates that the coactivation modulation model
is able to accurately reproduce modulation of coactivation, both during individual as well
as dyadic task execution. Furthermore, the analysis of the interaction trials demonstrates
that proper functionality of the model requires the inclusion of an interaction function that
models the explicit change in coactivation due to physical interaction with the partner.
Correlation of this interaction function with the amount of visual noise in the visual feedback
of the individual allows for accurate representation of the experimental results. In summary,
in this chapter, we present novel insights on modulation of coactivation during cooperative
physical HHI and demonstrate that the involved uncertainties play essential roles in modeling
modulation of coactivation during individual and dyadic task execution.

Outlook

Human impedance control plays an integral part in the control of motor behaviors and
should play an equally integral part in the development of safe, intuitive, and efficient
control strategies for physical HRI. Knowledge of the impedance components is not only
crucial for stability assessment, it also enables approximation of the desired kinematic state,
which represents the human motor intention and allows for improvement of performance
through calculation of anticipatory control signals. In order to enable the exploitation of
these advantageous aspects, this thesis provides a comprehensive composition of instruments
and insights to facilitate systematic consideration of human impedance characteristics in
the control design process for physical HRI. Although multiple challenges regarding human
impedance control during physical interaction are addressed, several open research problems
remain to be investigated in future works.

Online inference of human motor intention

In this thesis, the human motor behavior regression and intention inference capabilities of
the Bayesian human motor behavior model in Chapter [3 are only applied offline. While an
offline variation of the model is able to provide valuable insights and general predictions
that can be incorporated in the design of future control strategies, it would nonetheless be
beneficial to formulate an online variation of the model. Such a variation would be able to
provide online estimations of the desired trajectory, which could be used to immediately and
continuously adapt the robot behavior. Due to the computational complexity of the model,
an online variation would likely require the integration of sparse or local approximations.
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Impedance mappings including EMG capabilities

In Chapter d], we assume the impedance components to be constant for the duration of the
estimation interval. While this represents a valid approximation for the limited duration
of the estimation interval, it would be beneficial to instead estimate general non-constant
impedance functionals. With sufficient data, this would allow for the derivation of impedance
mappings that span the entire workspace and provide estimates for different kinematic states.
Such mappings could potentially be obtained by a variation of the Bayesian human motor
behavior model in Chapter [l Instead of including a priori impedance knowledge, one could
include obtained estimates of the unperturbed states in order to estimate the conditional
distributions of the impedance functionals. In addition to providing impedance estimations
for previously unobserved regions of the input space and corresponding confidence levels,
such an approach would also allow for the inclusion of EMG data. Therefore, the resulting
impedance mappings would be able to provide impedance estimates for different kinematic
states and also for different levels of muscle activation.

Optimal combination of error and interaction function

In Chapter B, we demonstrate that, in order to accurately represent the modulation of
the coactivation in the experimental data, the coactivation modulation model must include
an interaction function that models the explicit change in coactivation due to the physical
interaction with the partner. This represents an important insight into human motor control
during physical HHI that lays the foundation for further research in this direction and more
complex approaches to the coactivation modulation model. For example, it could be that
the error function and the interaction function are in reality more interconnected than in
the current model. Although they are not completely independent due to the inclusion
of the error estimate SD and therefore also the influence of the physical interaction with
the partner in the error function, they are currently not weighted in any way. It would be
conceivable, that the contributions by these two functions are in reality combined in a similar
way as the optimal combination of the visual and the haptic information in the iterative
Kalman filter algorithm that is used to estimate the target position. Further analysis of
these interdependencies requires additional experiments that provide more comprehensive
data with multiple different levels of visual noise, both during solo and interaction trials.
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Appendix

A.1. Experiment Instructions

You will see the following image displayed on the screen in front of you during the experiment:

Your current position will be represented by the green dot. By moving the vertical handle on
the cart in front of you, you are able to move the cart / the green dot in the 2D workspace.

Experimental procedure:

1) Move the green dot to the starting point, indicated by the black dot on the central circle.

2) Follow the reference trajectory at your own pace. The reference direction is indicated
by the arrows and the reference execution order is indicated by the numbers 1-5.

3) Complete 15 repetitions of the reference trajectory without pause.

Figure A.1.: Experiment instructions for the experiment in Section
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Dear participants,

In this experiment, you will be interacting with the linear axes setup. You will be able to move the
cart around in the two-dimensional workspace by applying horizontal forces to the vertical handle
mounted on top of the cart. The dynamics of the cart will be rendered by an admittance that
simulates a mass damper system. The position of the cart in the workspace is visualized by a dot on
the screen behind the setup. During the experiment, the color of the dot will change: orange means
the setup is turned off, red means the setup is turned on and the admittance is turned off (i.e. you are
not able to move the cart), and green means the setup and the admittance are turned on (i.e. you are
able to move the cart). Additionally, the workspace safety boundaries are visualized in the form of a
boundary box. If you move across any of the four boundaries, the linear axes setup will immediately
shut off. The same can be achieved by pushing the emergency shut off button, which will be located
in the proximity of your left hand. In order to avoid misconfiguration of the force sensor, please do
not grab the handle before the color of the dot has changed from orange to red. Furthermore, in order
to minimize torques, please grab the handle at the lowest possible point.

During the experiment, in order to fix your shoulder position and limit all possible motions to those
of your right arm, you will be sitting in a seat and your upper body will be restrained by a seat belt.
Furthermore, in order to avoid any kind of wrist motion during the experiment, you will be wearing
a wrist orthosis on your right hand. Finally, in order to constrain all possible motions to the
horizontal plane and reduce effects of fatigue, your upper arm will be supported by a sling attached
to the ceiling. Two passive motion tracking markers will be placed on your shoulder and elbow for
measurement of position data.

Static Task

In the first part of the experiment, you will be performing a two-dimensional arm posture
maintenance task. In this task, your objective is to maintain a defined arm posture within the two-
dimensional workspace by naturally grasping the handle on top of the cart. As soon as the linear axes
setup turns on (i.e. the color of the dot changes to red), the cart will automatically move to the first
defined position, which is located at the bottom of the workspace. Once it has arrived there, please
naturally grasp the handle. After a certain duration, a perturbation will deviate you from and return
you to this position. During the perturbation, visualization of the current position will be deactivated
(i.e. you will not see the red dot). After the perturbation, once the cart has returned to the defined
position, the next trial will be initiated. After 20 trials, the defined position will be changed and the
cart will automatically move to the next position. There are 5 positions (bottom, left, top, right, and
center of the workspace) with 20 trials each. During this part of the experiment, the color of the dot
will always be red, i.e., the admittance will always remain off and you will not be able to move the
cart by applying forces to the handle. Your only objective in this task is to naturally grasp the handle
on top of the cart. Please do not voluntarily react to the perturbations in any way. Furthermore,
please do not prepare for the perturbations in any kind of preemptive manner.

Figure A.2.: Experiment instructions for the experiment in Section (part 1).
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Dynamic Task

In the second part of the experiment, you will be performing a two-dimensional point to point
movement task. In this task, your objective is to move the cart from a defined starting position to a
defined goal position in the two-dimensional workspace. This defined goal position will be displayed
on the screen in front of you in the form of a gray dot, which will be located at the top of the
workspace. In the beginning of the experiment, & soon as the linear axes setup turns on (i.e. the
color of the dot changes to red), the cart will automatically move to the starting position, which is
located at the bottom of the workspace. Once it has arrived there, please naturally grasp the handle.
After a certain duration, the color of the dot will change to green. Once it is green, i.e., the
admittance is turned on, your objective is to move the cart to the defined goal position. The duration
of the movement should be approximately 2 seconds. In order to help you adjust your movement
velocity accordingly, a beep sound will occur after 2 seconds. Once you have reached the goal
position, the dot will turn back to red, the cart will automatically move back down to the starting
position, and the next trial will be initiated. During some of the movements, a perturbation will
deviate you from and return you to your trajectory. During the perturbation, visualization of your
current position will be deactivated (i.e. you will not see the green dot).There are 60 trials and the
perturbations are randomly distributed. This part of the experiment will be repeated 3 times. In this
task, you are allowed to voluntarily react to the perturbations. However, analogous to the static task,
please do not prepare for the perturbations in any kind of preemptive manner.

Figure A.3.: Experiment instructions for the experiment in Section (part 2).
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Experiment Instructions

In this experiment, you will be physically coupled and interacting with a human partner through wrist flexion and
extension movements. You will be performing a trajectory tracking task, in which your shared goal consists of
tracking a moving target as precisely as possible, i.e., minimizing the tracking error. In order to enable the
assessment of your tracking performance, the tracking error will be displayed on screen at the end of each trial.

There will be two types of visual feedback: without noise and with noise. In the first scenario, the position of the
tracking target is clearly visible, portrayed by a single red dot. In the second scenario, the position of the tracking
target is not clearly visible, but approximated by a cloud of red dots.

It is important to note that in the scenario with visual noise: 1) none of the displayed dots represents the actual
tracking target and 2) the mean of all displayed dots does not have to be identical to the actual tracking target.

Without visual noise

With visual noise

The experiment consists of four consecutive blocks of ten trials each. In each of these blocks, the two visual
feedback conditions will be randomly distributed between you and your partner. This means that each of these
four blocks will contain one of the following four scenarios:

Scenario

Participant 1 ( You)

Participant 2 ( Your Partner)

You: without visual noise

. . . re. @. .
Your partner: without visual noise Tl
. . . o I R
You: with visual noise ® o V- g0 .
Your partner: without visual noise - IRR IO
e - e,
. ) . B - S [
You: without visual noise Telle ® o T g0
Your partner: with visual noise IR e
o
N . R ° sl °
You: with visual noise o g L0 o g g0
Your partner: with visual noise - e
o ®-

In each scenario, your only objective is to optimally cooperate with your partner in tracking
the shared moving target as precisely as possible, i.e., minimizing the shared tracking error.

At the beginning of the experiment, you will perform an EMG calibration routine. Afterwards, you will perform
five solo trials, in which you are not coupled to your partner, to familiarize yourself with the experimental setup.
Next, you will experience the four consecutive physical interaction blocks. Finally, at the end of the experiment,
you will perform another set of five solo trials. Thank you very much for participating in the experiment!

Figure A.4.: Experiment instructions for the experiment in Section [(.4]
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