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Abstract 

Urban Traffic Control Systems are an essential part of Dynamic Traffic Management, and vital 

to the success of future Smart City concepts. Current systems rely heavily on  

infrastructure-based sensors, such as inductive loop detectors, to adjust signal timings. The 

emergence of connected vehicles, with the ability to communicate with traffic signals, opens 

new sensing possibilities. However, measurements from isolated connected vehicles, such as 

vehicle speed and positioning, are currently sporadic, and thus difficult to exploit by existing 

systems. In this thesis, a methodology that enables cycle-to-cycle traffic data fusion of diverse 

measurements is presented. Overall, this dissertation sheds light on the potential benefits from 

enhancing limited measurements from connected vehicles, to contribute immediately to current 

systems and accelerate their transition to fully connected Urban Traffic Control Systems.  

To achieve that goal, a prototypical data fusion module for state estimation and prediction at 

signalized intersections is introduced. The developed Extended Observer is a discrete-time, 

variable-dimension, implementation of multiple Extended Kalman Filters. It is independent of 

the type of signal control and does not require infrastructure sensors. Furthermore, it allows 

the fusion of diverse measurements from connected vehicles, such as instant vehicle speed, 

vehicle positioning, average section speeds and travel times. An adaptive fusion, according to 

the estimated penetration rate of connected vehicles and the respective queue length at the 

traffic signal, is proposed. The developed algorithms are analyzed and evaluated with the help 

of microscopic traffic flow simulations under different low penetration rates. Moreover, the 

Extended Observer is validated for its real-world applicability as a Proof of Concept with a 

state-of-the-art Urban Traffic Control System.  

The simulation results show that, in oversaturated conditions, the proposed formulation 

improves the measurements from connected vehicles for all penetration rates. The highest 

benefit is observed for the lowest penetration rates. For low penetration rates (2-20%), isolated 

connected vehicles show their largest errors and therefore the potential for improvements in 

queue length estimation through fusion is the highest (16-30%). The fusion with aggregated 

section data from connected vehicles, such as section speeds and travel times improves the 

estimation even further. This leads to respective reduction of average vehicle delays (23-34%) 

and number of stops (19-45%), in comparison to signal control based solely on measurements 

from isolated connected vehicles. The impact of the enhanced fusion on the traffic flow starts 

from very low penetration rates, by recognizing oversaturation. The Extended Observer 

facilitates faster clearing of queues, in comparison to infrastructure-based detection.  

The results of this thesis indicate that data fusion techniques capture long queues consistently, 

even in low penetration rates. The regular correction of the traffic state estimation, at the 

beginning of every signal cycle, has the potential to improve traffic signal control in 

oversaturation immediately, even with scarce measurements from connected vehicles.
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1. Introduction 

As urbanization continues to grow radically, traffic congestion and its several negative impacts 

remain one of the biggest challenges for cities all over the world. Intelligent Transportation 

Systems (ITS) help cities become more efficient, safer and environmentally friendly by applying 

various Information and Communication Technologies (ICT) [EUROPEAN COMMISSION, 2019B]. 

The latest developments in ICT, in terms of computational and communication capabilities (e.g. 

Big Data, Artificial Intelligence, Internet of Things and 5G), present new opportunities to build 

a smarter transportation network and therefore set the foundation for the Smart City of the 

future.  

This thesis aims to contribute towards smarter infrastructure in traffic signal control and thus 

towards the vision of Smart City. Section 1.1  draws the general setting of the dissertation with 

some key statements and facts. The motivation of this work is presented in section 1.2. In 

section 1.3, the main goal and the research questions are stated. A brief description of the 

research approach is given in section 1.4, based on the typical control loop for signalized 

intersections (Figure 1.1). The structure of the thesis along with the main objectives of each 

chapter are described in section 1.5 (Figure 1.2). 

1.1 Urban Environments 

Urbanisation and Congestion 

Urbanization is an unquestionable megatrend that affects the sustainability of cities worldwide. 

It refers both to the growth in the number of urban dwellers and the size of the cities and affects 

therefore greatly the urban mobility. The percentage of people living in areas globally was 55% 

in 2018 and is expected to reach 68% by 2050 with almost 90% of this growth in Asia and 

Africa. In Europe, the proportion of urban population will rise from 74.5% in 2018 to more than 

80% in 2050. In North America, this percentage is projected to exceed 85% in 2050 from 80.7% 

in 2018 [UNITED NATIONS, 2019].  

Congestion is likewise an undisputable global phenomenon. The INRIX 2018 Global Traffic 

Scoreboard [2019] lists the most congested cities in the world and the estimated associated 

costs per city and per citizen. Boston ranks first as the most congested city in the U.S. with 

164 total number of hours lost in congestion during peak hours in 2018. The estimated cost of 

this congestion for the city is 4.1B$ and 2,291$ per driver. In London, which ranks third in 

Europe, the number of hours lost reached 227 with total cost for the city of 4.9B£ and 1,680£ 

per driver. In Munich, that ranks third in Germany, drivers experienced 140 lost hours in 

congestion. The total cost for the city was estimated to 618.5M€.  
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Dynamic Traffic Management and Urban Traffic Control Systems 

Traffic Management aims to balance transport supply and traffic demand according to the city’s 

goals and objectives with appropriate sets of measures at an operational, tactical and strategic 

level [FGSV, 2003; FGSV, 2011]. Dynamic Traffic Management (DTM) performs the tasks of 

traffic management in real-time based on all currently available information from sensors. 

Typically, traffic flow models are an essential part of these systems and facilitate traffic data 

fusion. Traffic state estimation and prediction precedes the optimization based on the goals of 

the objective function [LINT & DJUKIC, 2012]. The term Adaptive Traffic Management Systems 

(ATMS) refers to systems that apply the concept of DTM.  

Adaptive Traffic Control Systems (ATCS) or Urban Traffic Control Systems (UTCS), adjust 

signal timings of traffic lights in real-time, based on current traffic conditions, traffic demand 

and system capacity [STEVANOVIC, 2010]. UTCS, as an essential part of ATMS, increase traffic 

safety and efficiency of the road network by optimizing signal timings at intersections, while at 

the same time aim to mitigate the environmental impacts of congestion [BUSCH & KRUSE, 2001; 

BRAUN ET AL., 2009].  

The observed benefits from UTCS vary naturally between studies, since deployment sites and 

implementations are unique. Stevanovic [2010] reports, in his study “Adaptive Traffic Control 

Systems: Domestic and Foreign State of Practice”, that 60% of operators observed a reduction 

in travel times after the deployment of the system, and 70% of users found that the UTCS is 

better than the previous traffic control. Additionally, 59% of the participants in the study report 

that the UTCS reduced the extent of the oversaturation period. Interestingly, only 3% state that 

the UTCS eliminated oversaturation completely. This shows that UTCS can only be one part 

of a holistic solution for smart urban mobility. 

Cities and traffic operators invest in UTCS to deal with the increasing congestion in urban 

areas during peak hours. According to the Standing Committee on Traffic Signal Systems of 

the Transportation Research Board (TRB) [2019], the number of UTCS increased from 25 in 

2009 to more than 350 systems in 2019, with more than 20 brands (15 commercially available) 

in North America. Considering that only less than 3% (around 11,200) of all traffic signals in 

the U.S. are controlled by UTCS, the potential for further implementations is considered high. 

Of course, the interest for UTCS differs from country to county, but the increasing data 

availability and technological developments raise the expectations worldwide for further 

developments and deployments.  

Smart City  

The term Smart City has been widely used the last years in scientific and business studies 

[ALBINO ET AL., 2015]. According to RUSSO ET AL. [2014] the term was introduced firstly by 

GIFFINGER ET AL. [2007], where “Smart City generally refers to the search and identification of 

intelligent solutions which allow modern cities to enhance the quality of the services provided 
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to citizens”. The definition of Smart City has been extended, since its first introduction, to 

include the latest technological trends and typically varies slightly according to the audience.  

However, there is complete consensus on the significance of smart urban transport systems 

in Smart City concepts. For the European Commission [EUROPEAN COMMISSION, 2019A] “Smart 

City […] means smarter urban transport networks, upgraded water supply and waste disposal 

facilities and more efficient ways to light and heat buildings”. IBM urges cities to focus on four 

high-impact areas: reduce congestion, create education services, improve public safety and 

healthcare [IBM GLOBAL BUSINESS SERVICES, 2010]. Intel and Juniper Research [JUNIPER 

RESEARCH FOR INTEL, 2017] identify mobility as one of the 4 key indices to evaluate the quality 

of life for citizens, together with healthcare, public safety and productivity. The report makes 

the benefits of smart city technologies and services measurable by estimating the “time given 

back” to the citizens. The potential of ITS (including advanced UTCS) is estimated to 19.4 

hours per year per citizen and the overall potential of Smart Mobility projects is estimated to 

59.5 hours. 

1.2 Motivation 

UTCS help cities deal with their persistent congestion problems and contribute to smarter 

infrastructure along the path towards Smart Cities with the real-time sensor and signal data. 

The potential of the emerging technologies seems enormous for further development of these 

systems. This potential is however currently neutralized by the rigidness of legacy UTCS that 

are mainly built to rely on one type of sensor or data source (e.g. inductive loop detectors or 

cameras). 

Emerging Technologies 

The radical advancements in sensing, communication, and processing technologies, in 

combination with the hype on Smart Cities, has opened the traffic signal control sector to new 

players without the traditional traffic engineering background. Traffic signal control can be 

viewed as an ideal business case for many of these new technologies. Consequently, the 

terminology and technology around UTCS has grown accordingly. For example, edge 

computing can improve the local processing capabilities and relocate the intelligence from a 

central system to the field sensors. At the same time, Big Data (BD) enables the central 

processing of high volume and various data sets, while generating value in high velocity. 

Machine Learning (ML), as subset of Artificial Intelligence (AI), opens new horizons in pattern 

recognition that can boost image, video and data processing for monitoring and control. The 

convergence of these technologies will lead to the realization of the Internet of Things (IoT) at 

signalized intersections. This will result into a completely new data set for UTCS, with 

potentially contradicting measurements.  

The transition to next generation traffic control systems is expected to bring together 

Connected Vehicles (CV) and Automated Vehicles (AV) and lead eventually to signal-free 
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intersections through infrastructure adaption [LIU, 2016]. But before the realization of a fully 

IoT-based UTCS, there is a need for extension of the current signal control systems. More 

specifically, the emergence of vehicle connectivity and automation is expected to revolutionize 

the future motorway and urban traffic systems. Connected and Automated Vehicles (CAV) 

become potentially new data sources that can deliver new measurements of high quality, such 

as individual speeds, accelerations, gaps between vehicles and their interaction with the 

surrounding environment. At the same time, these vehicles become potentially also new 

actuators considering the possibility to inform or even control the speed of individual vehicles 

[KATHS, 2017]. The communication between vehicles and infrastructure can be divided in two 

main categories: short-range communication based on Wireless Local Area Network (WLAN) 

and long-range communication based on mobile telecommunication. For the short-range 

communication, the installation of a roadside unit (RSU) is required to establish the connection 

between CV and Traffic Light Controller (TLC) and consequently between CV and the Traffic 

Light (TL) (Figure 1.1). 

Without underestimating the power and momentum of these technologies, their application on 

UTCS has been until now limited and fragmented. The high software and hardware costs 

prevent cities from investing to completely new systems. Furthermore, these technologies 

typically do not offer the level of transparency that is expected in traffic signal control. Cities 

look for ways to make their legacy UTCS smarter, but there is currently limited understanding 

of the benefits and accuracy with current data availability.  

Transition Phase 

In contrast to the radical ICT developments, UTCS are systems with extremely longer life 

cycles. Each UTCS typically relies on specific infrastructure sensors, detection layouts (e.g. 

inductive loop detectors) and algorithms [STEVANOVIC, 2010]. This lack of flexibility makes the 

integration of UTCS in an ecosystem of a Smart City particularly challenging. Moreover, traffic 

operators search for alternative ways to obtain real-time measurements, to replace loop 

detectors and reduce the associated installation, operational and maintenance costs. The 

installation costs of an UTCS ranges approximately between 20,000$ and 60,000$ per 

intersection [STEVANOVIC, 2010]. Additionally, the average RSU equipment and installation 

cost per site, in order to facilitate short-range communication between CV and infrastructure, 

is estimated from the Federal Highway Administration of the U.S. Department of Transportation 

to be around 17,600$ [WRIGHT ET AL., 2014]. 

Besides, as the number of CV on the streets increases day by day, new players already 

emerge as possible traffic data providers for UTCS. For example, fleet operators find 

themselves owning historical and real-time Probe Vehicle Data (PVD) for many urban routes. 

Similarly, companies originally specialized in digital maps and route recommendations, own 

historical databases and real-time travel time information for large parts of the urban road 

network, through partnerships with the mobile and automobile industry. In many cases, this 
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traffic dataset can be used from third parties through an Application Programming Interface 

(API) to develop new services [NOACK ET AL., 2019].  

Therefore, before reaching complete connectivity and automation at signalized intersections, 

a transition phase is expected where current UTCS should demonstrate benefits from the 

emerging connectivity. On one hand, methods that allow the integration of limited number of 

CV in current systems are needed. On the other hand, these new methods should be able to 

work with other potential sources as input. This twofold challenge motivates this thesis. 

1.3 Goal and Research Questions 

The role of UTCS as vital part of a Smart City ecosystem is expected to be boosted by the 

emergence of new technologies. The ability of UTCS to utilize new input data is considered of 

vital importance for their further evolution. The following sentence epitomizes the overarching 

goal of the thesis: 

Goal of the thesis is, to analyze the potential of the combination of new data sources 

and emerging technologies, in current urban environments, for traffic signal control. 

To reach that goal, this thesis needs to answer the following main research questions: 

How to utilize diverse measurements from different types of sensors with a practical 

and adaptive formulation? 

What is the accuracy of the enhanced traffic state estimation, and what is the possible 

benefit for Urban Traffic Control Systems? 

1.4 Research Approach 

To reach the above stated goal and answer the research questions, the influence of the 

emerging connectivity on the typical control loop for Urban Traffic Control (UTC) is examined. 

Figure 1.1 shows how the typical control loop [PAPAGEORGIOU, 1998A] changes in the 

examined transition phase, where emerging technologies will have to work together with 

legacy systems. In the traditional UTC loop, inductive loop detectors are used as data sources. 

Typical traffic measurements consist of vehicle presence, vehicle counts, detector 

occupancies and time gaps between detector activations. In the future, traffic measurements 

are expected to come from Connected Environments, with varying availability and accuracy. 

The traffic disturbances (e.g. accidents, weather conditions) in the control loop can be 

measured but cannot be controlled. Their measurements are also expected to be enriched 

with the inclusion of new data in the UTC loop. The data fusion module allows for traffic state 

estimation and prediction at the signalized intersections, based on the new measurements. 

The signal control decides on the optimal signal timings, based on the policy goals, and 

communicates the control actions to the traffic light, through the TLC. 
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Figure 1.1 Connected Environments and the Extended Observer in the Urban Traffic Control loop 

The development of new control and optimization algorithms is not in the scope of this thesis. 

However, the potential benefits from the enhanced estimation and prediction are examined by 

feeding two different control approaches: an example of rule-based intersection control and an 

example of model-based intersection control.  

To examine and capitalize on the new data sources for adaptive traffic control, research 

approaches that consider dissimilar, contradictory, and faulty measurements from both 

infrastructure and mobile sensors, are necessary. In this thesis, a data fusion module that is 

called Extended Observer (EO) is proposed. The Extended Observer is the main development 

of this thesis. The typical UTC loop, as shown in Figure 1.1, is used as the basis for the 

technical and functional architecture. The algorithms of the well-established Extended Kalman 

Filter (EKF) are used as the foundation for the mathematical formulation. Traffic parameters 

that are considered essential in traffic signal control are estimated, such as queue length, 

departure rate, arrival rate, turning rates, and penetration rate. 

1.5 Thesis Structure 

Chapter 1 started by briefly presenting the urban congestion problems and the potential of 

UTCS, as part of the solution in a Smart City ecosystem. Then, the motivation to accelerate 

the anticipated transition phase, where emerging technologies must be integrated with legacy 

systems, is stated. The goal of analyzing the potential of the new data availability and 

connectivity, led to the selected research approach, as shown schematically in Figure 1.1. It 

shows how the main development of the thesis, a data fusion module that is called Extended 

Observer, fits in the UTC loop. Figure 1.2 gives an overview of the thesis structure, with the 

main objectives of each chapter.  
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Figure 1.2 Thesis structure and main objectives of each chapter 

Chapter 2 contains the state-of-the-art and the literature review, regarding Connected 

Environments, the respective traffic measurements, and data fusion methods. This chapter 

aims to highlight the different data availability possibilities, the research trends, and the 

emerging technologies for current and future UTCS. In chapter 3, the mathematical formulation 

of the Extended Observer is presented in detail, on a cycle-to-cycle basis for UTCS. The 

predictor-corrector type of filtering, based on the EKF, is presented. Traffic measurement 

equations for different types of data sources are exemplified. This chapter concludes by 

highlighting the adaptive fusion capabilities of the proposed methodology. Chapter 4 

showcases the working principles of the developed algorithms. The analysis is done, based 

on microscopic simulations of a test intersection, with different signal control methods. The 

complete statistical evaluation of various scenarios is presented in chapter 5. In addition to the 

test intersection, the microscopic simulation of a real-world intersection aims to evaluate the 

algorithms in conditions closer to reality. Moreover, the prototypical developments are 

validated in the case of the UTCS Spot/Utopia. Chapter 6 summarizes the main contributions 

and limitations of the presented methodology and closes with the outlook of the thesis.  
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2. State-of-the-Art 

ITS aim to utilize ICT to balance the demand and supply of the traffic network.  UTCS is one 

of the most effective, prominent, and complex ITS applications. With the rapid increase of data 

diversity, complexity, and connectivity, the UTCS have a wide range of new data input 

possibilities at their disposal. In this thesis, the term Connected Environments is used to 

describe all the various connected sensors that are possibly available to UTCS.         

Section 2.1 presents the most typical and the newest data sources that can be utilized in traffic 

signal control. Section 2.2 gives an overview of the data fusion methodologies in relation to 

UTCS. In section 2.3, the gap between research and practice in signal control is highlighted.  

2.1 Connected Environments 

As shown in Figure 1.1, Connected Environments can give traffic measurements and traffic 

disturbances. Both can be sensed (measured) but in terms of traffic control, they are 

fundamentally different. Traffic measurements give the output of the controlled process and 

therefore are directly affected from any change in the control. On the other hand, traffic 

disturbances are external factors that influence traffic flow but cannot be controlled by the 

traffic signals. 

Figure 2.1 shows the range of sensors for traffic measurements and disturbances for traffic 

signal control, with the emerging sensing and communication technologies. This is a functional 

mapping of the data sources from the signal control perspective. It does not aim to provide an 

exhaustive list of all possibilities. The purpose is to give an overview of the types of sensors, 

that can provide certain type of data in the case of signal control. In Figure 2.1, the complexity 

of the algorithms for data fusion, increases generally from lower blocks to the upper ones per 

column. This is a qualitative assessment for a general overview. The complexity of each 

algorithm varies between implementations and use cases.  

In the following, it is described, how mobile sensors are scarcely used in UTCS due to low 

penetration rates. They are considered key for accelerating the transition phase for UTCS from 

infrastructure sensors to mobile sensors. Algorithms are presented for Connected Sections, 

Connected Vehicles and Aggregated Section data in chapter 3, since they are considered 

crucial for the examined transition phase of UTCS.  

Infrastructure sensors 

Typically, infrastructure sensors are divided in intrusive and non-intrusive sensors, according 

to their placement in relation to the pavement (on the ground or over-head) [KLEIN, 2018]. In 

Figure 2.1, the infrastructure sensors are divided in point, point-to-point and area sensors that 

cover a complete section of the signalized approach.  
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Figure 2.1 Data sources for Urban Traffic Control Systems 

Some typical sensors used in UTCS are inductive loop detectors, magnetic sensors, cameras, 

microwave radar sensors, infrared sensors and lidar sensors. Overall, they can provide many 

data types with high accuracy such as counting, presence, classification, time gap, occupancy, 

density, arrival rate, turning rate, departure rate, queue length, number of stops, travel time 

and speed. Video Detection Systems (VDS) with the latest image processing technologies 

(e.g. see [SWARM ANALYTICS, 2020]), can be used for tracking vehicle trajectories and thus for 

enhanced data extraction. Point-to-point sensors on routes or sections allow the extraction of 

traffic information, such as travel times, delays, Origin-Destination (OD) matrices, turning rates 

etc. For example, Bluetooth readers and Automatic Number Plate Recognition (ANPR) 

cameras can be used for capturing travel time, and extract also average speed, and delay. A 

very detailed description of all types of ITS sensors can be found in the work of Klein [FHWA, 

2006; KLEIN, 2018]. 
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Mobile Sensors 

The second part of the traffic measurements in the new era of connectivity consists of the 

mobile sensors. In Figure 2.1, they are divided in Connected Vehicles and Aggregated Section 

data. The former is used to describe measurements from individual CV and the latter to 

describe measurements from aggregated Floating Car Data (FCD). Theoretically, the sensors 

that provide this data are the same, namely ego vehicle data, in-vehicle sensors or retrofit 

sensors. However, the hands-on data analysis from traffic data and fleet providers shows that 

the format, data type and accuracy are quite different, due to low penetration rates, data 

privacy, data ownership. Moreover, they are fundamentally different in terms of resolution and 

coverage.  

i) Connected Vehicles 

The emerging Connected Vehicles environment promises transformation of mobility through 

wireless communication among vehicles and infrastructure [KLEIN, 2018]. In this thesis, the 

focus lies on the potential benefit for legacy UTCS systems from limited number of CV. The 

term CV is used in this thesis to describe vehicles that can send information to the UTCS in 

real-time (1-3 seconds) through Vehicle-to-Infrastructure (V2I) communication. This is a non-

safety-critical application and therefore the technology and latency are not considered crucial. 

The transmission can be either from an onboard unit or from a mobile device. The 

communication can be either through a roadside unit or through the cellular network. Two main 

functionalities are vital for processing such geo-referenced data: the communication and the 

map matching.  

The following standardized messages enable the integration of geo-location data from CV to 

the UTCS: the Basic Safety Message (BSM), the Cooperative Awareness Message (CAM) 

[ETSI, 2009A] and the Decentralized Environmental Message (DENM) [ETSI, 2009B]. BSM 

and CAM are the standards for continuous information through V2I for US and EU respectively. 

The second international Harmonization Task Group (HTG2) had the task to harmonize the 

two messages and allow sufficient cross-compatibility [FISCHER, 2015]. BAM and CAM are 

broadcasted continuously (multiple times per sec), as opposed to the DENM that is 

broadcasted only in case of an event (warning). 

The Signal Phase And Timing (SPAT) and the MAP provide data towards the vehicle [ISO, 

2017]. The SPAT message contains the (predicted) signal status, while the MAP provides 

detailed information about the intersection topology [MIUCIC, 2018]. The two messages are 

typically referred to as one service (SPAT/MAP) coming from intelligent Traffic Light 

Controllers.  

The possible data available from individual CV, contain theoretically all the attributes from the 

ego vehicle and its surrounding in-range environment. Figure 2.1 indicates some of the 

possible data that can be extracted. In addition to all the conventional ego vehicle information 

(e.g. coordinates, speed, acceleration), the latest image processing advancements allow 
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moving vehicles to extract information from the surrounding environment, such as headways, 

time to collision, and Vulnerable Road Users (VRU) detection (e.g. see [MOBILEYE, 2020]). This 

kind of technology is certainly the forerunner of CAV integration in UTCS.  

ii) Aggregated Section 

In contrast to raw CV data, aggregated FCD are updated in longer intervals (30-60 seconds) 

and refer to sections (link-based or lane-based) of certain length ranging from 50 to 1000m. 

The currently available real-time traffic data providers differ in data format, location referencing 

methods, road coverage, accuracy, data collection and fusion methods. Accuracy varies not 

only between providers, but also between intersections within the same provider [NOACK, 2018; 

NOACK ET AL., 2019]. Like the raw CV, the two aspects that must be tackled are the 

communication and the map matching.   

Most of the traffic data providers offer Representational State Transfer (REST) Application 

Programing Interfaces (API) for getting the traffic data. They are typically updated every 

minute, even though the values might remain unchanged for longer intervals where no vehicle 

information is available, depending on each proprietary underlying algorithm (that is not 

published). Typical data formats for the response are: Extensible Markup Language (.xml), 

JavaScript Object Notation (.json) and Protocol Buffers (.proto). The protocol buffers are a fast 

and efficient method developed by google for serializing structured data [GOOGLE 

DEVELOPERS, 2020].  

Regarding the location referencing, even though Traffic Message Channel (TMC) is supported 

typically from all vendors, more detailed map location methods are needed. OpenLR is a 

method for map agnostic dynamic location referencing and enables systems with dissimilar 

maps to communicate independent of the channel, with minimum bandwidth. It was designed 

for information exchange between Traffic Management Centers and in-vehicle devices 

[TOMTOM INTERNATIONAL B.V., 2012]. Another emerging format for representing features and 

their spatial extent is GeoJSON [IETF, 2016]. Many traffic data providers, offer their data in 

GeoJSON format. 

The basis for all traffic data provided is the travel time. Based on this, the free flow travel time, 

the free flow speed, the average current speed etc. are calculated. In some cases, even queue 

length, traffic flow (arrival) and stops are provided. In other cases, an estimation of the 

accuracy of these measurements is delivered from the traffic data providers. Furthermore, 

there is rarely an indication of the penetration rate (or number of probes) used for these 

measurements. Generally, it can be observed in the datasets that historical values are used 

when no probe vehicle is providing real-time information. 

Usually, there are two approaches followed by the traffic data providers [JOHNSTON, 2017]: 

Publishing data after a certain number of probe vehicles available (e.g. >3) or publishing data 

even for lower number of vehicles. Even though the first approach is reasonable for consumer 

Cooperative ITS (C-ITS) applications, the second approach increases the spatial coverage. 
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Combined with transparent information of probe vehicle numbers, the second approach should 

be preferred for traffic management purposes. 

Disturbances 

Traffic disturbances influence greatly the urban traffic flow but are not controlled by the traffic 

signals. In Figure 2.1, two main sensor/data categories for disturbances are identified: data 

concerning events and the environment. They affect both traffic supply and traffic demand in 

the urban networks. Ideally, they must be included in the data fusion for UTCS but in practice, 

their inclusion in overarching ATMS is a priority. The state-of-the-art report for mobility 

platforms and ecosystems [PROJECT CONSORTIUM TUM LIVING LAB CONNECTED MOBILITY, 

2016] underlines the importance of eco-sensitive traffic management [CELIKKAYA ET AL., 2016] 

and traffic management for major events [AMINI ET AL., 2016], as two of the four use cases 

examined. New low cost environmental sensors are lately gaining attention in the research and 

market community [BARTONOVA ET AL., 2019; CELIKKAYA ET AL., 2019]. Textual data extraction 

techniques [KINRA ET AL., 2019] and model-based Machine Learning approaches [PELED ET 

AL., 2019] start to enter the transportation field. Traffic disturbances are mainly exploited in 

UTCS in the form of reports (e.g. weather, roadworks) and predefined strategic plans (e.g. 

planned events) and are therefore not in the scope of this thesis.  

2.2 Data Fusion 

Data fusion has been a fundamental element of many applications for more than two decades. 

Nevertheless, it is still an emerging field in daily DTM operations [FAOUZI & KLEIN, 2016]. Data 

fusion is also a core function of the UTC control loop, as shown in Figure 1.1. Depending on 

the application and the exact input, the terms data fusion and sensor fusion are used in the 

literature for ITS [KLEIN, 2018]. Their difference lies on the level where the fusion takes place. 

At the device level, the term sensor fusion is used (e.g. vehicle classification, image 

processing, object tracking). At the central level, the term data fusion is more appropriate (e.g. 

Automatic Incident Detection, traffic flow prediction, decision support tools). This central fusion 

can be in a sub-center integrated in an overarching central traffic management system. Data 

fusion modules can be combined together, depending on the chosen ITS system architecture 

[VELOSO ET AL., 2009].  

2.2.1 Data Fusion Levels 

Fusion is always the means to an end, and not the end application. However, every ITS 

application needs almost certainly some level of data fusion. In DTM, fusion can support 

decision making for improved efficiency, safety, and sustainability of the transportation system 

through ITS applications at strategic, tactical, and operational level. The variety of definitions 

for data fusion stems naturally from the variety of applications that rely on it. One of the most 

highly cited definitions [KLEIN, 2018; UNIVERSITÄT BONN, 2020] is given by the Joint Directors 



14   Data Fusion in Sporadic Connected Environments 

of Laboratories (JDL) from the U.S. Department of Defense. Data fusion is defined as: “a 

multilevel, multifaceted process dealing with the automatic detection, association, correlation, 

estimation, and combination of data and information from single and multiple sources to 

achieve refined position and identity estimates, and complete and timely assessments of 

situations and threats and their significance” [U.S. DEPARTMENT OF DEFENCE, 1991]. 

In [FAOUZI & KLEIN, 2016], the authors build on the six levels (Level 0 - Level 5) from the JDL 

to suggest the levels of data fusion in ITS. The fusion process extracts value from one or 

various data sources, refines the traffic situation, and gives insights about the possible causes 

and impacts of the observed events. The six levels are not supposed to describe a sequential 

process but provide a categorization of data fusion functions [KLEIN, 2018]. In Tab. 2.1, the six 

levels of data fusion are described for UTCS, with some input-output examples.  

 

Tab. 2.1 Levels of data fusion for Urban Traffic Control Systems  

STEINBERG revised the JDL model and proposed a shorter definition: “Data fusion is the 

process of combining data or information to estimate or predict entity states” [STEINBERG & 

BOWMAN, 2001]. In the domain of Urban Traffic Control, this can be formulated as follows:  

Data fusion in Urban Traffic Control is the process of combining traffic data or 

information to estimate and predict the traffic state at signalized intersections.  
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This definition is in principle describing the Level 1 data fusion for UTCS and is in the scope of 

this thesis.  

2.2.2 Data Fusion Requirements 

The new data types from Connected Vehicles, Floating Car Data, in-vehicle sensors, Bluetooth 

readers, ANPR cameras, radar sensors and cameras promise to wider the short view of point 

sensors [FAOUZI & KLEIN, 2016].  Clearly, in such a complex environment, most of the traffic 

engineering challenges are a data fusion problem. KLEIN highlights the potential benefits from 

sensor fusion and the importance of complementing typical traffic flow sensors with additional 

data sources for DTM strategies. Especially for inductive loop detectors, that are predominately 

used for gathering point traffic flow data, two main challenges should be considered [KLEIN, 

2018]:  

• the high deployment and maintenance costs, especially for large scale UTCS 

• the inability to capture spatial behavior of traffic flow 

JOHNSTON reports the comparison of speed data from point sensors, point-to-point sensors, 

and GPS-tracked vehicles (in other words FCD or PVD) and shows that the there is no single 

ideal sensor for all traffic situations. Real data from a freeway section are collected and 

compared. The results indicate that the point measurements outperform all the others in no 

traffic and low traffic conditions. The FCD outperforms the others in heavy, jammed, and 

varying traffic conditions. The author suggests that each source has an inherent bias that 

stems from its measurement technology and the best estimate can only come from the fusion 

of multiple data sources of different type [JOHNSTON, 2017].  

The optimal solution for the traffic management authority is to choose a combination of data 

sources to achieve the required accuracy and coverage with the available budget. Key factors 

for the selection of the data sources from the perspective of the traffic manager are [JOHNSTON, 

2017]: 

• Accuracy of the traffic measurements 

• Spatial coverage of the traffic measurements 

• Temporal coverage of the traffic measurements 

• Latency of the data communication  

• Quality index of the traffic measurements 

• Transparency of the algorithms and technology behind the measurements 

Detailed comparison of the advantages and disadvantages, in terms of traffic management 

operation, for different infrastructure-based sensor and emerging sensor technologies can be 

found in [KLEIN, 2018; JOHNSTON, 2017].  
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2.2.3 Data Fusion Methods 

Data fusion can be utilized to create (or improve) a model of traffic parameters that describes 

the traffic phenomena of interest. In that sense, the state vector of the model might consist of 

a wide range of relevant traffic parameters, such as speeds, travel times, road surface state, 

weather state etc. [KLEIN, 2018]. If this model is updated in real-time, it can be the basis for 

dynamic traffic management and control applications [LINT & DJUKIC, 2012].  In the domain of 

UTCS, the underlying model for the data fusion might be an online traffic flow model. 

Microscopic traffic simulations have been used lately to play the role of the online traffic flow 

model. In that regard, they can also be used for data fusion. 

Some examples for Level 1 central fusion algorithms that are used in DTM are: Fuzzy logic, 

Kalman Filter, Extended Kalman Filter, Kernel estimator, and Particle Filter.  Data fusion 

algorithms originate from a variety of domains such as pattern recognition, statistical 

estimation, state estimation, artificial intelligence, and others [FAOUZI ET AL., 2011].  

In the research community, the non-linear variations of Kalman filtering (Extended, Ensemble, 

Unscented) and particle filters have shown promising results in freeways, where the definition 

of a macroscopic traffic flow model is more convenient in comparison to urban networks. A 

great overview and introduction in Kalman filtering for DTM for freeways can be found in [LINT 

& DJUKIC, 2012].  

For UTC however, the research community has put the focus on comparing new control 

methods based on Connected Vehicles and not so much on the fusion aspect of the UTC loop. 

Some examples of data fusion research approaches for UTC are: Probabilistic Methods 

[ROSTAMI SHAHRBABAKI ET AL., 2018], Kalman Filter [VIGOS ET AL., 2008] and Extended Kalman 

Filter [FRIEDRICH ET AL., 2002]. ROSTAMI utilizes input flow from single point measurements, 

speed, and location from connected vehicles. The output is a second-by-second estimation of 

queue length, vehicle accumulation and outflow [2018]. VIGOS utilizes the flow and occupancy 

from three loop detectors to estimate number of vehicles in the queue [2008]. FRIEDRICH 

utilizes MÜCK’s loop-based queue length estimation [MÜCK, 2002] to estimate the average and 

maximum queue length [1999]. In [PAPAPANAGIOTOU & BUSCH, 2020], a data fusion method to 

estimate the cycle-to-cycle queue length is proposed, based on limited number of CV without 

any required loop detectors. The benefit from fusion of CV measurements in low penetration 

rates is demonstrated, as well as the benefit from fusion of CV and camera measurements. 

The proposed Extended Observer is presented in detail in this thesis and extended for adaptive 

data fusion and fusion with aggregated FCD.  

FAOUZI proposes three major categories for data fusion techniques for ITS, from the traffic 

engineering perspective: statistical methods (e.g. weighted average), probabilistic methods 

(e.g. Bayesian approaches, state-space models) and artificial intelligence (e.g. genetic 

algorithms, neural networks)  [2011]. KLEIN proposes that the Level 1 data fusion models for 

ITS can be generally divided in physical models (e.g. Kalman filtering), feature-based models 

(e.g. Bayesian inference, artificial neural networks, pattern recognition), and cognitive models 
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(e.g. knowledge-based expert systems, fuzzy logic) [2018]. Here the physical models refer to 

the modelling of the movement of an object (e.g. vehicle) and mainly to its identification, 

tracking and classification.  

The domain of UTC is highly interconnected with many complex fields such as control theory, 

optimization algorithms, traffic flow models and traffic simulation. In addition, it is a very 

practical field that requires in many cases easy techniques and the knowledge of experts. In 

practice, a combination of techniques is used (e.g. weighted averages and if-then rules). The 

physical model in the case of signalized intersections can be formulated as state-space model, 

traffic flow model or simulation model (micro, meso or macro).  

Each approach comes with an inherent bias. The estimation accuracy from the state-space 

model depends on the bias from the a priori estimation, while the accuracy from the traffic flow 

model is directly connected with the model assumptions. For the simulation models, the 

performance of the fusion relies on the online calibration of the simulation environment. The 

data fusion model for the UTCS can theoretically just be a feature-based model with no traffic 

(physical) relationship between the features (e.g. Deep Learning). The performance of the 

fusion lies in this case greatly on the quality of the training data. 

To assist the selection of the data fusion method(s) in ITS, the following criteria are suggested 

[KLEIN, 2018]:  

• Maximum effectiveness: maximum performance in presence of uncertainty or missing 

data. 

• Resource efficiency: minimize computation resources 

• Operational constraints: meet expectations from the operator(s) within time and budget 

constraints 

• Operational flexibility: potential to include different needs, applications, sensor types 

• Functional growth: functionalities of interfaces and algorithms must increase as system 

evolves 

2.3 Urban Traffic Control Systems 

Traffic signal control operations and guidelines are thoroughly defined all around the world due 

to the importance in efficiency and above all safety at urban intersections [FHWA, 2006; 

FHWA, 2015; FGSV, 2015]. In addition to the definitions found there, many researchers have 

proposed various valuable categorizations and descriptions of the existing UTCS, according 

to their data input and algorithmic principles. KATHS proposes a three dimension categorization 

based on the focus of the optimization (central or intersection), the degree of freedom of the 

phase sequence (free or fixed) and the logic behind the decision making (rule-based or model-

based) [2017]. TISCHLER divides the UTCS in local responsive (rule-based or model-based) 

and network control (central, decentral or with two-level hierarchy) [2016]. LÄMMER focuses on 
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the optimization technique and divides the UTCS in incremental, rolling horizon approaches 

and two-level hierarchies [2007].  

Examples of UTCS with intersection focus are: Ring-and-Barrier [FHWA, 2015], RiLSA [FGSV, 

2015], LHOVRA [PETERSON ET AL., 1986], VS-PLUS [VERKEHRS-SYSTEME AG, 2020], Epics 

[MERTZ, 2001], Selbst-Steuerung [LÄMMER, 2007], Spot/Utopia [MAURO & TARANTO, 1989]. 

Spot is used as an UTCS example in this thesis for testing the proposed methodology. In 

combination with the area level control from Utopia offers a decentralized, model-based, rolling 

horizon, network control. Examples of network UTCS are: SCATS [SIMS & DOBINSON, 1980], 

SCOOT [ROBERTSON, 1886], RHODES [MIRCHANDANI & HEAD, 2001], MOTION [BUSCH & 

KRUSE, 2001], BALANCE [FRIEDRICH, 1999], ImFlow [DYNNIQ, 2020] and InSync [CHANDRA & 

GREGORY, 2011].  

In this thesis, the term Urban Traffic Control System (UTCS) is used to simply describe 

systems that deal with the problem of adjusting signal timings to balance supply and demand 

at intersections without making any distinction between the typical classifications. Regarding 

data fusion for UTCS, the sensor type and the respective traffic data collected are mainly of 

interest. STEVANOVIC provides a detailed description of the different detection topologies and 

traffic data calculated for the most prominent UTCS in the world, while KLEIN focuses on the 

US market.  

All known UTCS rely still on infrastructure-based sensors [STEVANOVIC, 2010; KLEIN, 2018] and 

particularly on point and area-wide sensors (see also Figure 2.1). The Inductive loop detectors 

are dominating the market with various topologies according to the needs of the specific 

system. Cameras and radars are used as point sensors increasingly in the last years. 

STEVANOVIC reports that 93% of the agencies that took part in his survey use loop detectors 

with an average of around 8-12 detectors per intersection [STEVANOVIC, 2010]. Typical traffic 

data measurements are vehicle counts, occupancy, speed, stops, queue length, and delays. 

The first two levels of data fusion, Level 0 and Level 1, are typical for all systems. They are 

used however mostly for measurements from individual sensors and not for multi-sensor 

fusion. A bright exception to the rule of point detection and absence of multi-sensor data fusion 

is InSync. InSync takes fully advantage of image processing and artificial intelligence 

advancements by using video cameras to capture the area in front of the stop-line (~75m) to 

derive queues and delays and optimize signal timings. Insync is the only UTCS that allows the 

real fusion of point detectors (inductive loops, radars) and area detectors (cameras) with a 

dedicated module (InSync:Fusion). 

Even though existing (legacy) UTC systems were designed to utilize measurements coming 

mainly from point sensors, traffic operators search for alternative ways to obtain real-time 

measurements to avoid their high installation and maintenance costs [STEVANOVIC, 2010; 

KLEIN, 2018]. However, point-to-point (e.g. re-identification technology), aggregated FCD (e.g. 

aggregated section speeds) and raw CV (e.g. GPS probe vehicles) are mainly used for 

evaluation of the output of the signal control with Measures of Performance (MOP) or 



State-of-the-Art   19 

Measures of Effectiveness (MOE). GPS probes have the advantage to provide link-specific 

data in comparison to point-to-point sensors. In addition the GPS probes have the advantage 

against aggregated FCD and point-to-point sensors in identifying more accurately incident 

locations [KLEIN, 2018]. For evaluating the traffic flow and the travel time reliability, the route 

and link travel time, delay, speed and number of stops can be used with GPS, tags and 

Bluetooth technology [FHWA, 2013]. 

2.3.1 Research Trends 

Despite the limited practical applications of CV as new data sources for UTCS, there have 

been many simulation studies on the topic and several real-field demonstrations. Some 

common key points emerge from the existing work, such as the importance of the penetration 

rate in the effectiveness of the developed algorithms [ILGIN GULER ET AL., 2014; JING ET AL., 

2017], the importance in estimating the position of unequipped vehicles [FENG ET AL., 2015], 

the significance of cycle-to-cycle queue length estimation [CHENG ET AL., 2011; 

PAPAPANAGIOTOU & BUSCH, 2020] and the implications from the coordination and public 

transport prioritization [HE ET AL., 2014; HEAD, 2016]. The benefits for traffic signal control start 

after the threshold of 25-40% of penetration rate and for queue length estimation above 30% 

[GOODALL, 2013; JING ET AL., 2017; ILGIN GULER ET AL., 2014]. For the calculation of MOP on 

an arterial the threshold of minimum penetration rate is typically around 10-50% [GOODALL, 

2013] and can go as low as 1% [ARGOTE-CABAÑERO ET AL., 2015] for highly oversaturated 

conditions, where the number of available measurements increases.  

Regarding queue length estimation, recent studies demonstrate the great potential of CV as 

new data source for improving the accuracy of established methodologies, such as shockwave 

theory and input-output (i.e. vehicle accumulation) models. In [CHENG ET AL., 2011], a method 

for cycle-to-cycle estimation is presented, which utilizes trajectory data to identify Critical 

Points on the time-space diagram, to reconstruct the queue dynamics based on shockwave 

theory. In [RAMEZANI & GEROLIMINIS, 2015], a method for cycle-to-cycle queue profile 

estimation is proposed based on shockwave theory and data mining of probe vehicle data. In 

[ROSTAMI SHAHRBABAKI ET AL., 2018], location and speed from CV are used to provide second-

by-second estimations of the queue back-end with a probability-based error compensation to 

account for errors, especially in low penetration rates. COMERT [2013, 2016], presents 

analytical, cycle-to-cycle Queue Length Estimators (QLE), based on location and speed of CV, 

that perform very well in steady-state conditions. 

Research Gap Statement 

For low penetration rates and long periods of oversaturation, there might be several 

consequent cycles with no presence of CV that can lead to high estimation errors if no other 

sensor is available. Therefore, there is a need for robust data fusion methods that facilitate 

estimation and prediction to support UTC systems, even when no CV or other sensors are 
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present at the intersection, especially in varying saturation conditions and low penetration 

rates. 

2.3.2 Industry Trends 

Furthermore, the industry experts of traffic signal control see the fusion of aggregated FCD 

from low penetration data with inductive loop detectors as more realistic, as opposed to an 

abrupt change to full connectivity. Wide-range infrastructure sensors (e.g. cameras, radar), are 

already in use but are used mainly for conventional counting and classification measurements. 

Their role is expected to grow in the next future [SWARCO INTERNAL WORKSHOP, 2020].  

Connected Vehicles (e.g. V2I with CAM messages) are expected to play a big role in the future 

UTCS independent of the communication technology. BRIGNOLO proposes a hybrid 

communication for C-ITS and places cooperative traffic lights in the middle of the spectrum 

between cellular (e.g. 4G/5G) and ad-hoc communication (e.g. ITS G5, DSRC) [2014]. 

However, the current very low penetration rates and limited deployments restrict their roll-out. 

CV data should enter the UTCS market faster in the next years with the introduction of C-ITS 

Day 1 and Day 1.5 services. Examples of C-ITS services that can boost the availability of CV 

measurements for UTCS based on V2I technology are: Traffic Jam ahead Warning (TJW), 

improved traffic state estimation from Probe Vehicle Data (PVD), Green Light Optimal Speed 

Advisory (GLOSA), Time To Green (TTG), Traffic Signal Priority Request (TSPR) [EUROPEAN 

COMMISSION, 2016].  

Figure A.1, in the Appendix, presents the hype cycle of innovation drivers for UTCS based on 

relevant Gartner hype cycles [GARTNER, 2020], UTCS research trends, and UTCS industry 

trends. There are obviously numerous exciting R&D trends in UTCS that are not covered in 

this thesis, such as Automated Vehicles, multimodality, sustainability, smart city integration, 

deep learning, optimization, prescriptive analytics, micromobility and many more. Their 

significance is not underestimated by the focus of this thesis in data fusion. In fact, this 

multidimensionality of UTCS emphasizes the need for further research in multiple levels of 

data fusion.     

Industry Gap Statement 

For current and future UTCS, there might be several new sources available that can be used 

for improved signal control performance. Therefore, there is a need for robust data fusion 

methods that facilitate estimation and prediction to support UTC systems, independent of data 

availability and communication technology, especially in varying saturation conditions and low 

penetration rates. 
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2.4 Summary 

Infrastructure sensors, and particularly inductive loop detectors, are the main source of 

information for UTCS. Mobile sensors are scarcely used in the control but mainly support the 

evaluation of UTCS or other C-ITS applications. The distinction between CV and Aggregated 

Section data from mobile sensors is necessary. These two types are fundamentally different 

and pinpoint the discrepancy between potential and real data availability. Moreover, low 

penetration rates are currently prohibiting the paradigm shift from legacy UTCS. The fusion of 

these profoundly different data sources should improve the traffic state estimation accuracy 

(section 2.1).  

The different levels and definitions of data fusion are presented. The prototypical module of 

this thesis, the Extended Observer, covers the Level 1 data fusion, for traffic state estimation 

and prediction, from multiple sensors at signalized intersections. Criteria for selection of 

sensors and data fusion methods are presented to assist researchers and practitioners. The 

latter, emphasize the need not only for accuracy and coverage, but also for transparency and 

flexibility (section 2.2). 

Legacy UTCS are hesitant to invest in algorithms that utilize CV, while the sensing possibilities 

from emerging technologies keep growing. Most research studies show that at least 25-40% 

penetration rates are needed, for improvements in traffic state estimation and traffic signal 

control. The gap between research and practice will grow, if the transition phase from legacy 

UTCS to connected UTCS is not accelerated (section 2.3).  

To fill the research and industry gap, data fusion methods for varying penetration rates and 

traffic conditions are required. At the same time, the data and operational restrictions, as well 

as the future trends, must be taken into account. The widely used EKF is selected for the 

detailed formulation of the Extended Observer and is presented in chapter 3.  
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3. Methodology: The Extended Observer 

The introduction of Connected Environments in the UTC loop calls for methodologies that can 

handle the variety of new traffic measurements. To answer that call, a module called Extended 

Observer is developed and proposed in this thesis for analysis, evaluation, and prototypical 

development. The Extended Observer aims for optimal traffic state estimation and prediction 

for traffic signal control by capitalizing on new data sources that might be faulty and sporadic.  

A robust sensor and data fusion methodology is needed that offers the mathematical flexibility 

for extensions but is at the same time relatively easy to formulate for real world UTCS. The 

established Kalman filter is selected to be the foundation of the developed methodology and 

in particular its non-linear version, the EKF, that has found many applications in the field of 

dynamic traffic management and control [LINT & DJUKIC, 2012; LIU ET AL., 2006; LEE ET AL., 

2015; LEE, 2013; TAMPÈRE & IMMERS, 2007].  

One can certainly argue that different algorithms or methodologies, other than the EKF, could 

be used as foundation to answer the research questions and achieve the goal of the thesis. 

The decision to build on the EKF is principally justified by the consideration that the 

methodology should:   

• utilize various types of measurements and ranges of measurement errors,  

• exploit indirect measurements that come in different time intervals and 

• take advantage of the system knowledge (i.e. signal timings). 

These desired characteristics are covered in theory by the EKF algorithms, as is demonstrated 

in the rest of the chapter. They become however more evident in practice after the analysis 

and evaluation of the algorithms that are presented in chapter 4 and chapter 5 respectively. 

The rest of the chapter is structured as follows. Section 3.1 introduces the terminology and the 

algorithms of the EKF (Figure 3.1). It describes the general formulation of the Extended 

Observer and its role in the UTC loop with Connected Environments (Figure 3.2). The process 

and measurement equations are presented in detail in sections 3.2 and 3.3 respectively. 

Furthermore, measurement equations are proposed for different sensors based on the type of 

the incoming data. The ability to fuse measurements according to their error is highlighted in 

section 3.4. 

3.1 Algorithmic Origins 

State-Space Models 

To describe dynamic controlled systems, state-space models are often used. According to 

ASTROM & MURRAY, the term state-space originates from mechanics and the attempts to 

describe planetary motions [2010]. The state of a dynamical system is defined as “a collection 
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of variables that completely characterizes the motion of a system for the purpose of predicting 

future motion”. The set of all possible states is called state-space. Control theory further 

developed state-space models to include the input-output view of a dynamic system that 

resulted from the emergence of electrical engineering [ASTROM & MURRAY, 2010].  

Kalman Filter 

The state of a physical system can be described with a set of state variables that are linearly 

related to a set of inputs and outputs [MAU, 2005]. The Kalman filter addresses the general 

problem of trying to estimate the state of a controlled process that is governed by a linear 

stochastic difference equation. Kalman filter is an optimal recursive data processing algorithm 

[MAYBECK, 1979], named after Rudolph E. Kalman [KALMAN, 1960]. The term “filter” perhaps 

underestimates its capabilities and its wide-range applicability. It is one of the most widely used 

tools for stochastic estimation from noisy measurements. It has been used in many 

applications such as vision-based object tracking and vehicle navigation systems. The term 

recursive refers to the fact that there is no need to store and reprocess all previous data as 

new measurements become available. The Kalman filter in its linear, basic version provides 

an optimal estimator in the sense that it minimizes the estimated error covariance when some 

preconditions are met. Even though these preconditions are practically rarely met, the filter 

has found successful applications in many fields [WELCH & BISHOP, 2001; FARAGHER, 2012; 

MAU, 2005]. 

Extended Kalman Filter 

The EKF is typically used if the process to be estimated and/or the measurement relationship 

to the process is non-linear. The EKF linearizes around the current mean and covariance and 

consequently the convergence to an optimal estimation is not guaranteed [WELCH & BISHOP, 

2001]. Despite the loss of optimality, due to the local approximation, EKF has proven to work 

well in many applications in the field of dynamic traffic management and control [LINT & DJUKIC, 

2012]. Figure 3.1 gives an overview of the operation and terminology of the EKF. The 

description and explanation of the algorithms in the rest of this chapter are based on the 

inspirational paper of WELCH & BISHOP [2001]. 

The filter applies each time step 𝑘 a predictor-corrector type estimator. The result of the time 

update (“predict”) is called a priori estimate (𝑥𝑘
−) and the result of the measurement update 

(“correct”) is called a posteriori estimate (𝑥𝑘). Both estimates are in fact vectors that contain 

the variables to be estimated, but for the sake of simplicity and readability, the vector notation 

(e.g. 𝑥𝑘
−⃗⃗⃗⃗  ⃗, 𝑥𝑘

⃗⃗⃗⃗ ) is skipped in the formulas and figures. If 𝑛 is the number of state variables that 

define that state to be estimated, then 𝑥𝑘
− and 𝑥𝑘 are vectors of size 𝑛. 

Two equations are needed in KF to define the mathematical models of the controlled process 

to be estimated: the process equation that defines the process model and the measurement 



Methodology: The Extended Observer 25 

equation that defines the measurement model. In the case of EKF these two equations take 

the general form as shown in equations (3.1) and (3.2). 

 

 

Figure 3.1 Step-by-step operation and equations of the Extended Kalman Filter 

Process equation of EKF: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘, 𝑤𝑘−1) (3.1) 

Measurement equation of EKF: 

𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘)  (3.2) 

The vector 𝑥𝑘 and vector 𝑧𝑘 are the actual state and measurement vectors. That means that 

𝑥𝑘 is the number one is trying to estimate with the calculation of 𝑥𝑘. In practice, one does not 

have access to the actual 𝑥𝑘. The vector 𝑧𝑘 gives however the actual measurement that is 

used to estimate 𝑥𝑘 (i.e. calculate 𝑥𝑘). In practice, one indeed has access to 𝑧𝑘 . 

The non-linear function 𝑓() relates the state at the previous time step 𝑘 (𝑥𝑘−1) to the state at 

the current time step 𝑘 (𝑥𝑘). The vector 𝑢𝑘 is the (optional) control input and 𝑤𝑘−1 is the zero-

mean process noise (error in the model) with covariance 𝑄𝑘.  

The non-linear function ℎ() relates the vector of the measurements (𝑧𝑘) at the current time step 

𝑘 to the state at the current time step 𝑘 with 𝑣𝑘 being the zero-mean measurement noise (error 

in the measurement) with covariance 𝑅𝑘. If 𝑚 is the number of currently available 

measurements from the different sensors, the size of vector 𝑧𝑘 is consequently 𝑚. In simple 

implementations, the 𝑚 remains constant between filter steps. However, the number of 

available measurements might change every time step, because of different update intervals 

from sensors or possible loss of communication. To deal with the changing number of available 
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measurements, the filter must resize the vectors and matrices accordingly. In that case the 

filter can be characterized as a variable-dimension EKF.  

The EKF needs the calculation of the Jacobians 𝐴𝑘, 𝑊𝑘, 𝐻𝑘 and 𝑉𝑘 to complete the update and 

correct steps (Figure 3.1). 𝐴𝑘 is the Jacobian matrix of 𝑓() with respect to 𝑥, whereas 𝑊𝑘 is the 

Jacobian matrix of 𝑓() with respect to 𝑤. 𝐻𝑘 is the Jacobian matrix of ℎ()  with respect to 𝑥 and 

𝑉𝑘 is the Jacobian matrix of ℎ() with respect to 𝑣. The subscript 𝑘 indicates that the Jacobians 

must be recomputed every time step. The subscript [𝑖, 𝑗] indicates the position of each 

calculated value in the matrix, where 𝑖 and 𝑗 indicate the respective elements of the vectors. 

𝐴𝑘[𝑖,𝑗] =
𝜕𝑓[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘−1, 𝑢𝑘, 0) (3.3) 

𝑊𝑘[𝑖,𝑗] =
𝜕𝑓[𝑖]

𝜕𝑤[𝑗]
(𝑥𝑘−1, 𝑢𝑘 , 0) (3.4) 

𝐻𝑘[𝑖,𝑗] =
𝜕ℎ[𝑖]

𝜕𝑥[𝑗]
(𝑥𝑘

−, 0) (3.5) 

𝑉𝑘[𝑖,𝑗] =
𝜕ℎ[𝑖]

𝜕𝑣[𝑗]
(𝑥𝑘

−, 0) (3.6) 

𝑄𝑘 and 𝑅𝑘 are the process noise covariance and the measurement noise covariance, 

respectively. The subscript 𝑘 indicates that 𝑄𝑘 and 𝑅𝑘 can be updated every step. In that case, 

the filter can be characterized as an adaptive EKF. In usual implementations, 𝑄𝑘 and 𝑅𝑘 remain 

constant after initial tuning of the filter. Regarding the tuning requirements of the filter, the initial 

choices of 𝑥0 and 𝑃0 should influence the performance only in the first filter steps and are thus 

not very critical for the overall performance. However, the initial choice and the possible 

adaptation of 𝑄𝑘 and 𝑅𝑘 is decisive for the performance of the filter. They must be tuned before 

real-world implementations. More specifically, the ratio 𝑄𝑘/𝑅𝑘 determines practically if the filter 

trusts the measurements or the process model more, since they are critical in the computations 

of the Kalman gain (𝐾𝑘) at every filter step. 

The role of 𝐾𝑘 is to weight the difference (𝑧𝑘 − ℎ(𝑥𝑘
−, 0)) for the calculation of the a posteriori 

state estimate (𝑥𝑘) during the correction step (Figure 3.1). This difference is called the 

measurement innovation or the residual and gives the difference between the predicted 

estimation ℎ(𝑥𝑘
−, 0), assuming zero measurement error, and the incoming measurement (𝑧𝑘). 

If the a priori estimate error covariance (𝑃𝑘
−) approaches zero, the Kalman gain also 

approaches zero, as shown in the computation of 𝐾𝑘 in Figure 3.1. This means that the 

“corrected” estimate (𝑥𝑘) essentially ignores the measurement and trusts the “predicted” 

estimate (𝑥𝑘
−). Conversely, if the measurement noise covariance 𝑅𝑘 approaches zero, 𝐾𝑘 

weights the residuals more heavily. In brief, the lower the expected error of a measurement, 

the more the filter trusts the specific measurement. This makes the filter particularly attractive 

for adaptive fusion of measurements with varying errors. 
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The Extended Observer is a predictor-corrector type estimator that enables fusion of a variable 

number of measurements depending on their error. Its algorithms are based on the algorithms 

of the EKF. Hence, it inherits the characteristics of EKF. More specifically, it is an 

implementation of multiple, variable-dimension, adaptive EKFs. Figure 3.2 illustrates the basic 

input-output variables.  

The new data sources, be it infrastructure sensors or mobile sensors, allow a wide range of 

traffic measurements. In addition, a specific sensor can be the source for one or more 

measurements. For example, a camera could give a measurement of the turning rates and the 

departure rate. Or a traffic data provider might give an aggregated travel time measurement 

for the same road section. Furthermore, the update intervals of the incoming measurements 

can vary. In that case, as soon as a new measurement becomes available (i.e. every time step, 

i.e. every cycle), the size and the elements of the measurement vector are updated. 

During the time update, the Extended Observer predicts the traffic state (e.g. 𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

) 

based on the defined process equations. The process equations, in the form shown in equation 

(3.1), aim to capture the expected changes from the previous filter step to the next one. During 

the measurement update, the filter takes into account all available measurements in order to 

correct the prediction and estimate the new traffic state (e.g. 𝑥𝑘
𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

).  

The output of the Extended Observer for every signal at an intersection consists of queue 

length, arrival rate, departure rate, turning rate and penetration rate (Figure 3.2). The 

implementation is not one single filter but the parallel running of filters for each traffic state 

variable to be estimated. This makes tracking the performance for each state variable easier 

and therefore the analysis and evaluation more transparent. Additionally, this allows each filter 

to run independently in case only specific variables of the state vector are of interest for specific 

UTCS.  

The theoretical disadvantage of this partition of the state vector is that the influence of one 

state variable to another is not modelled in one combined process equation. However, this is 

avoided by running the filters in parallel (i.e. consecutively in the same second) and feeding 

the relevant output of one filter to the appropriate next filter as input. For example, the process 

equation of the filter for the queue length utilizes the estimations from the filters for the arrival 

and departure rate as input (see also section 3.2 and Figure 3.3).  

The filters for queue length, departure and arrival rate consist of the basic implementation of 

the Extended Observer for cycle-to-cycle traffic state estimation. They are introduced in 

[PAPAPANAGIOTOU & BUSCH, 2020]. The penetration and turning rate filters are additional filters 

for enhanced state estimation. Tab. 3.1 introduces the terminology for the elements of the state 

vector as possible output from the Extended Observer.  
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Figure 3.2 Overview of operation of the Extended Observer 

Tab. 3.2 gives an overview of the examined input data and the notations that are used in the 

rest of the thesis (see also Tab. A.1). The potential of the proposed methodology is 

demonstrated by covering the types of data sources that are considered relevant to accelerate 

UTCS transition phase:  

• Infrastructure sensors that can track vehicles for a certain “Connected Section” (𝑧𝑘
𝐶𝑆) 

• Mobile sensors that send individual trajectory information (Connected Vehicles). The 

measurements (𝑧𝑘
𝐶𝑉) become immediately (1-3 sec) available. 

• Mobile sensors that deliver aggregated section data from FCD. The measurements 

become available in 1-minute aggregation intervals. Two options are examined: 

information on travel time (𝑧𝑘
𝑇𝑇) and location of notable speed drops (𝑧𝑘

𝐷𝑉). 𝐷𝑉 stands for 

“Difference in Velocities”. 
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Notation State to be estimated Short description 

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

 Queue length (veh) 
The theoretical space between the back-end of the queue and the 

stop-line in number of vehicles. 

𝑥𝑘
𝑎𝑟𝑟 Arrival rate (veh/s) The number of vehicles that join the queue per second. 

𝑥𝑘
𝑑𝑒𝑝

 Departure rate (veh/s) The number of vehicles that leave the queue per second.  

𝑥𝑘
𝑡𝑢𝑟𝑛 Turning rate (%) 

Percentage of queued vehicles that choose a specific turning 

movement.  

𝑥𝑘
𝑝𝑒𝑛

 Penetration rate (%) 
Percentage of queued vehicles that can communicate their 

trajectory information.  

Tab. 3.1 Output overview of the Extended Observer - state vector 

 

Tab. 3.2 Input overview of the Extended Observer - measurement vector 

The rows of Tab. 3.2 give the measurements from each examined type of data source. The 

columns give the measurement vectors for each state to be estimated and thus the 

measurement vectors that are used from the respective filters. Different data availability 

scenarios result into different measurement vectors for each state to be estimated. Detailed 

explanation of each element of the state and measurement vectors, as well as the respective 

process and measurement equations, are given in sections 3.2 and 3.3. 
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3.2 Process Vector and Equations 

For the sake of simplicity, the algorithms are presented based on one signal group that serves 

one lane. There is no assumption of fixed-time control. The green and cycle time may vary 

between cycles without restrictions. Each filter step 𝑘 represents one signal cycle that begins 

with the start of the green phase of the relevant signal group and ends with the end of the red 

phase. The Extended Observer runs in discrete time steps, once per cycle. Since the control 

is adaptive, the time (in seconds) between consecutive filter steps varies accordingly. The 

complete state vector is: 

𝑥𝑘 = [𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

, 𝑥𝑘
𝑎𝑟𝑟, 𝑥𝑘

𝑑𝑒𝑝
, 𝑥𝑘

𝑡𝑢𝑟𝑛 , 𝑥𝑘
𝑝𝑒𝑛

 ]
𝑇
 (3.7) 

with:  

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

: queued vehicles at the end of red time of signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑥𝑘
𝑎𝑟𝑟: vehicles that join the queue per second during signal cycle 𝑘 (𝑣𝑒ℎ/𝑠) 

𝑥𝑘
𝑑𝑒𝑝

: vehicles that leave the queue per second during signal cycle 𝑘 (𝑣𝑒ℎ/𝑠) 

𝑥𝑘
𝑡𝑢𝑟𝑛: percentage of vehicles that turn during signal cycle 𝑘 (%) 

𝑥𝑘
𝑝
: percentage of queued Connected Vehicles (%) 

The process equations for each element of the state vector are presented separately.  

Departure rate (𝒙𝒌
𝒅𝒆𝒑

) 

To model the cycle-to-cycle process of the departure rate, two main assumptions are made. 

The change between two consecutive cycles might be random and that during the day there 

might be an underlying daily traffic pattern. The process equation for the departure rate can be 

modelled by means of a random walk or with the consideration of a historical model. 

Process equation of departure rate: 

Random walk: 

𝑥𝑘
𝑑𝑒𝑝

= 𝑥𝑘−1
𝑑𝑒𝑝

+ 𝑤𝑘−1
𝑑𝑒𝑝

 (3.8) 

Historical model: 

𝑥𝑘
𝑑𝑒𝑝

= 𝑎𝑘−1
𝑑𝑒𝑝

× 𝑥𝑘−1
𝑑𝑒𝑝

+ 𝑤𝑘−1
𝑑𝑒𝑝

 (3.9) 

with:  
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𝑎𝑘−1
𝑑𝑒𝑝

=
𝑥𝑘

𝑑𝑒𝑝_ℎ𝑖𝑠𝑡

𝑥𝑘−1
𝑑𝑒𝑝  

𝑥𝑘
𝑑𝑒𝑝

: queued vehicles that cross the stop line per second after the start of the green 

time of signal cycle 𝑘 (𝑣𝑒ℎ/𝑠). 

𝑥𝑘−1
𝑑𝑒𝑝

: queued vehicles that cross the stop line per second after the start of the green 

time of signal cycle 𝑘 − 1 (𝑣𝑒ℎ/𝑠). 

𝑎𝑘−1
𝑑𝑒𝑝

: scaling factor according to the underlying historical model. 

𝑥𝑘
𝑑𝑒𝑝_ℎ𝑖𝑠𝑡

: expected departure rate according to the historical profile (𝑣𝑒ℎ/𝑠). 

𝑤𝑘−1
𝑑𝑒𝑝

: departure process noise (𝑣𝑒ℎ/𝑠).  

The scaling factor 𝑎𝑘−1
𝑑𝑒𝑝

 simply converts the last state (𝑥𝑘−1
𝑑𝑒𝑝

) to the expected historical value 

(𝑥𝑘
𝑑𝑒𝑝_ℎ𝑖𝑠𝑡

), since the EKF model formulation demands that the current state is related to the 

previous state. In practice, the historical values might come from previous daily or peak hour 

observations. The process equation is not linear because 𝑎𝑘−1
𝑑𝑒𝑝

 changes every time step. The 

departure process noise (𝑤𝑘−1
𝑑𝑒𝑝

) refers to the expected error in the assumed process, be it the 

random walk or the historical model. It is defined by the process noise covariance for the 

departure rate (𝑄𝑘−1
𝑑𝑒𝑝

). It’s tuning and role in the performance of the filter is explained in section 

3.4 and becomes evident in the analysis (chapter 4). 

Arrival rate (𝒙𝒌
𝒂𝒓𝒓) 

Similarly, the arrival rate can be modelled by means of a random walk or with the help of a 

historical model. 

Process equation of arrival rate: 

Random walk: 

𝑥𝑘
𝑎𝑟𝑟 = 𝑥𝑘−1

𝑎𝑟𝑟 + 𝑤𝑘−1
𝑎𝑟𝑟  (3.10) 

Historical model: 

𝑥𝑘
𝑎𝑟𝑟 = 𝑎𝑘−1

𝑎𝑟𝑟 × 𝑥𝑘−1
𝑎𝑟𝑟 + 𝑤𝑘−1

𝑎𝑟𝑟  (3.11) 

with:  

𝑎𝑘−1
𝑎𝑟𝑟 =

𝑥𝑘
𝑎𝑟𝑟_ℎ𝑖𝑠𝑡

𝑥𝑘−1
𝑎𝑟𝑟  
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𝑥𝑘
𝑎𝑟𝑟: vehicles that join the queue per second during signal cycle 𝑘 (𝑣𝑒ℎ/𝑠). 

𝑥𝑘−1
𝑎𝑟𝑟 : vehicles that join the queue per second signal cycle 𝑘 − 1 (𝑣𝑒ℎ/𝑠). 

𝑎𝑘−1
𝑎𝑟𝑟 : scaling factor according to the underlying historical model. 

𝑥𝑘
𝑎𝑟𝑟_ℎ𝑖𝑠𝑡: expected arrival rate according to the historical profile (𝑣𝑒ℎ/𝑠). 

𝑤𝑘−1
𝑎𝑟𝑟 : arrival process noise (𝑣𝑒ℎ/𝑠).  

As in the case of the departure rate, the scaling factor for arrival rate (𝑎𝑘−1
𝑎𝑟𝑟 ) simply converts 

the last state (𝑥𝑘−1
𝑎𝑟𝑟 ) to the expected historical value (𝑥𝑘

arr_ℎ𝑖𝑠𝑡). Again, the historical values might 

come from previous historical observations. The arrival process noise (𝑤𝑘−1
𝑎𝑟𝑟 ) refers to the 

expected error in the assumed process and is defined by the process noise covariance for the 

arrival rate (𝑄𝑘−1
𝑎𝑟𝑟 ) (see also sections 3.4 and 4). 

Queue (𝒙𝒌
𝒒𝒖𝒆𝒖𝒆

)  

Due to the stochastic nature and dynamics of queue length at signalized intersections, a 

random walk or a historical model are not appropriate as process equations. To describe the 

queue formation at traffic signals, various approaches have been used, ranging from analytical 

formulas and shockwave theory for fixed-time control [MILLER, 1963; AKCELIK, 1980; ROUPHAIL 

ET AL., 2001; KUHNE & MICHALOPOULOS, 2001] to probabilistic approaches for actuated control 

[VITI, 2006; VITI & VAN ZUYLEN, 2009; VITI & VAN ZUYLEN, 2004].  

Many methods build on the fundamental conservation equation [LINDLEY, 1952] for real-time 

queue length estimation [FU ET AL., 2001] in adaptive traffic signal control [MIRCHANDANI & 

HEAD, 2001]. The simplicity, applicability and robustness of the conservation equation make it 

very attractive for UTCS [LEE ET AL., 2015]. Moreover, according to PAPAGEORGIOU, the 

conservation equation is the only exact equation in traffic flow theory [1998B].  

The Extended Observer builds on the conservation equation and the system knowledge (signal 

timings) to formulate the required process equation. The queue length at the end of red time 

of the current cycle is related to the queue length of the previous cycle. It considers the number 

of vehicles that enter and leave the queue during the examined cycle. The signal timings, as 

well as the arrival and departure rate estimation are utilized. Equation (3.12) gives the process 

equation for cycle-to-cycle queue length estimation.  

Process equation of queue length: 

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑘
𝑑𝑒𝑝

+ 𝑢𝑘
𝑎𝑟𝑟 + 𝑤𝑘−1

𝑞𝑢𝑒𝑢𝑒
 (3.12) 

with: 
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𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

: queued vehicles at the end of red time of signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

 queued vehicles at the end of red time of signal cycle 𝑘 − 1 (𝑣𝑒ℎ) 

𝑢𝑘
𝑑𝑒𝑝

: vehicles that departed during signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑢𝑘
𝑎𝑟𝑟: vehicles that arrived during signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑤𝑘−1
𝑞𝑢𝑒𝑢𝑒

: queue process noise (𝑣𝑒ℎ).  

The equation covers both undersaturated and oversaturated cycles. To calculate the number 

of vehicles that departed the queue during cycle 𝑘, the departure rate and the green time that 

is utilized from the queue are required. The vehicles that join the queue during signal cycle 𝑘 

are calculated using the red time and the arrival rate.  

𝑢𝑘
𝑑𝑒𝑝

= 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

× 𝑥𝑘
𝑑𝑒𝑝

 (3.13) 

𝑢𝑘
𝑎𝑟𝑟 = 𝑢𝑘

𝑟𝑒𝑑 × 𝑥𝑘
𝑎𝑟𝑟 (3.14) 

𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

= min (
𝑥𝑘−1

𝑞𝑢𝑒𝑢𝑒

𝑥𝑘
𝑑𝑒𝑝 , 𝑢𝑘

𝑔𝑟𝑒𝑒𝑛
) (3.15) 

Using equations (3.13), (3.14) and (3.15), equation (3.12) becomes:  

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

× 𝑥𝑘
𝑑𝑒𝑝

+ 𝑢𝑘
𝑟𝑒𝑑 × 𝑥𝑘

𝑎𝑟𝑟 + 𝑤𝑘−1
𝑞𝑢𝑒𝑢𝑒

 (3.16) 

The term 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

 refers to the green time that is utilized by the queued vehicles. It 

depends on the queued vehicles at the end of cycle 𝑘 − 1 (𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

) and the departure rate 

during cycle 𝑘 (𝑥𝑘
𝑑𝑒𝑝

). Its upper bound is the actual green time applied during signal cycle 𝑘 

(𝑢𝑘
𝑔𝑟𝑒𝑒𝑛

). For high queues that cannot be dissolved during the green time, 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

 equals 

𝑢𝑘
𝑔𝑟𝑒𝑒𝑛

. For low queues that are completely dissolved, 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

 becomes  
𝑥𝑘−1

𝑞𝑢𝑒𝑢𝑒

𝑥𝑘
𝑑𝑒𝑝 . In 

practice, this prevents negative queue values at the end of green time. It models the fact that 

low queues need only a fraction of the green time. The remaining green time (𝑢𝑘
𝑔𝑟𝑒𝑒𝑛

−

𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

) has no effect on the queue. The queue formation starts again with the beginning 

of the red time. 

The knowledge of the departure (𝑥𝑘
𝑑𝑒𝑝

) and arrival rate (𝑥𝑘
𝑎𝑟𝑟) of the current signal cycle is 

needed to get the queue length from the process equation (3.16). This issue is solved by 

running the prediction-correction filtering approach for the three parameters in parallel for 

signal cycle 𝑘. Additionally, the knowledge of the implemented signal timing (𝑢𝑘
𝑔𝑟𝑒𝑒𝑛

, 𝑢𝑘
𝑟𝑒𝑑) is 
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required. Since the Extended Observer is designed to be integrated within UTCS, it is assumed 

that this information becomes available immediately after the signal timing implementation. 

Figure 3.3 shows how the three basic filters work together based on the process models and 

the incoming measurements (𝑧𝑘
𝑑𝑒𝑝

, 𝑧𝑘
𝑎𝑟𝑟, 𝑧𝑘

𝑞𝑢𝑒𝑢𝑒
) in order to get the corrected estimations 

(𝑥𝑘
𝑑𝑒𝑝

, 𝑥𝑘
𝑎𝑟𝑟, 𝑥𝑘

𝑞𝑢𝑒𝑢𝑒
). 

 

 

Figure 3.3 Queue process equation of the Extended Observer 

The outcome of the filters for the departure and arrival rate can be used for the “predict” step 

for the queue. Based on the departure rate estimation (𝑥𝑘
𝑑𝑒𝑝

) and the previous queue length 

estimation (𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

), the utilized green (𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

) can be calculated based on equation 

(3.15). The “predict” step for the queue filter can run at the end of signal cycle 𝑘 by taking into 

account the signal timings (𝑢𝑘
𝑔𝑟𝑒𝑒𝑛

, 𝑢𝑘
𝑟𝑒𝑑). The queue measurements are used to “correct” the 

estimation. The corrected queue length estimation is used for the next signal cycle 𝑘 − 1. 
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During signal cycle 𝑘, measurements for the departure, arrival and queue are gathered every 

second, to update the measurement vectors 𝑧𝑘
𝑑𝑒𝑝

, 𝑧𝑘
𝑎𝑟𝑟 and 𝑧𝑘

𝑞𝑢𝑒𝑢𝑒
. At the end of signal cycle 

𝑘, the three filters run successively. The computational time for each filter is trivial (<1 sec). 

The biggest computational effort (in the simulation environment) is updating the measurement 

vectors every second. If for one filter there is no new measurement for the current cycle, the 

“correct” step is skipped, and the updated estimation comes solely from the “predict” step. 

Prediction 

One of the main advantages of using the algorithms of the EKF is the inherent ability for 

prediction. The queue length “predict” step, as shown in Figure 3.3, takes place at the end of 

the signal cycle 𝑘 and calculates the queued vehicles at the end of signal cycle 𝑘 (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

). It 

takes advantage of the system knowledge (i.e. signal timings) and the process equation (i.e. 

conservation equation). Adding reliable measurements at the end of the cycle during the 

“correct” step allows for robust cycle-to-cycle estimation of the queue length. 

Let 𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

 be the prediction of the queue at the end of signal cycle 𝑘 that can only be based 

on information available at the beginning of signal cycle k (i.e. end of signal cycle 𝑘 − 1). At 

the beginning of signal cycle 𝑘 there are no measurements available yet. Therefore, only the 

predicted (and not the corrected) arrivals and departures can be used (𝑥𝑘
−𝑑𝑒𝑝

, 𝑥𝑘
−𝑎𝑟𝑟) in equation 

(3.16) (see also Figure 3.3). The queue length prediction 𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

 can be then calculated with 

the following formula: 

𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑘
−𝑑𝑒𝑝

+ 𝑢𝑘
−𝑎𝑟𝑟 (3.17) 

with: 

𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

: queued vehicles at the end of red time of signal cycle 𝑘, based on information 

only available at the end of signal cycle 𝑘 − 1 (𝑣𝑒ℎ) 

𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

 queued vehicles at the end of red time of signal cycle 𝑘 − 1 (𝑣𝑒ℎ) 

𝑢𝑘
−𝑑𝑒𝑝

: predicted number of vehicles that will depart during signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑢𝑘
−𝑎𝑟𝑟: predicted number of vehicles that will arrive during signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑢𝑘
−𝑑𝑒𝑝

= 𝑢𝑘
−𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

× 𝑥𝑘
−𝑑𝑒𝑝

 (3.18) 

𝑢𝑘
−𝑎𝑟𝑟 = 𝑢𝑘

−𝑟𝑒𝑑 × 𝑥𝑘
−𝑎𝑟𝑟 (3.19) 

𝑢𝑘
−𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

= min (
𝑥𝑘−1

𝑞𝑢𝑒𝑢𝑒

𝑥𝑘
−𝑑𝑒𝑝 , 𝑢𝑘

−𝑔𝑟𝑒𝑒𝑛
) (3.20) 
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𝑥𝑘
−𝑑𝑒𝑝

: predicted departure rate for signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑥𝑘
−𝑎𝑟𝑟: predicted arrival rate for signal cycle 𝑘 (𝑣𝑒ℎ) 

𝑢𝑘
−𝑔𝑟𝑒𝑒𝑛

 predicted green time for signal cycle 𝑘 (𝑠𝑒𝑐) 

𝑢𝑘
−𝑟𝑒𝑑 predicted red time for signal cycle 𝑘 (𝑠𝑒𝑐) 

Clearly, the total applied green and red time during cycle 𝑘 are not known in the beginning of 

cycle 𝑘. In the case of fixed-time control, signal timings are known, and the predicted queue 

can be directly calculated with equation (3.21). Model-based adaptive traffic signal control 

systems have typically internal predictions for the green and red time of the cycle that has 

started. Rule-based signal control systems are sometimes more difficult to predict depending 

on the complexity of the control logic. Nevertheless, it can be assumed that even these 

systems have a certain knowledge of the signal timings (e.g. cycle time range, minimum and 

maximum green time). Prediction of signal timings in the case of UTCS (model-based or rule-

based) is beyond the scope of this thesis. For the predicted red and green times, the signal 

timings of the previous cycle are used as simplification. In chapter 5 (section 5.2.1), it is shown 

that there is no statistically significant difference between prediction (𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

) and a priori 

estimation (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

). The a priori estimation (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

) can be viewed as the best possible 

queue prediction (𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

) with the Extended Observer. It must be emphasized that the 

accuracy of the filtered estimations (𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

) are not influenced by the prediction of the signal 

timings, since the applied signal timings of the current cycle are used.  

Second-by-second implementation 

The basic formulation of the Extended Observer considers cycle-to-cycle estimation and 

prediction. However, the developed algorithms are not limited to cycle-to-cycle implementation. 

Especially for the case of queue length, a second-by-second estimation could be considered 

of great value if the focus shifts from the beginning of the transition phase with low penetration 

rates to Connected Environments with high penetration rates. A slight adjustment of the 

process equation for the queue length allows a sec-by-second formulation. 

The duration of each step becomes one second instead of the complete signal cycle. The 

green and red time are not referring to the complete cycle, but to the status of the signal during 

that second. The subscript 𝑡 is used to indicate the second-by-second operation. Equation 

(3.12) becomes: 

𝑥𝑡
𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑡−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑡
𝑑𝑒𝑝

+ 𝑢𝑡
𝑎𝑟𝑟 + 𝑤𝑡−1

𝑞𝑢𝑒𝑢𝑒
 (3.21) 

with: 

𝑥𝑡
𝑞𝑢𝑒𝑢𝑒

: queued vehicles at second 𝑡 (𝑣𝑒ℎ) 
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𝑥𝑡−1
𝑞𝑢𝑒𝑢𝑒

 queued vehicles at second 𝑡 − 1 (𝑣𝑒ℎ) 

𝑢𝑡
𝑑𝑒𝑝

: vehicles that departed during second 𝑡 (𝑣𝑒ℎ) 

𝑢𝑡
𝑑𝑒𝑝

: vehicles that arrived during second 𝑡 (𝑣𝑒ℎ) 

𝑤𝑡−1
𝑞𝑢𝑒𝑢𝑒

: queue process noise (𝑣𝑒ℎ).  

The term 𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

 from equation (3.15), for avoiding negative values and distinguishing 

between undersaturated and oversaturated cycles, becomes obsolete. To avoid negative 

queue values during green in cases of undersaturation, a lower limit of zero for the estimated 

queue (𝑥𝑡
𝑞𝑢𝑒𝑢𝑒

) is set. The arrival and departure process equations from equations (3.8), (3.9), 

(3.10) and (3.11) can be used without any changes for the second-by-second implementation. 

The subscript 𝑡 is used as well to indicate their second-by-second implementation (𝑥𝑡
𝑑𝑒𝑝

, 𝑥𝑡
𝑎𝑟𝑟). 

Equations (3.13) and (3.14) become: 

𝑢𝑡
𝑑𝑒𝑝

= 𝑢𝑡
𝑔𝑟𝑒𝑒𝑛

× 𝑥𝑡
𝑑𝑒𝑝

 𝑤𝑖𝑡ℎ {

𝑢𝑡
𝑔𝑟𝑒𝑒𝑛

= 1 

𝑢𝑡
𝑔𝑟𝑒𝑒𝑛

= 0

, 𝑖𝑓 𝑔𝑟𝑒𝑒𝑛

, 𝑖𝑓 𝑟𝑒𝑑

  (3.22) 

𝑢𝑡
𝑎𝑟𝑟 = 𝑢𝑡

𝑟𝑒𝑑 × 𝑥𝑡
𝑎𝑟𝑟 𝑤𝑖𝑡ℎ {

𝑢𝑡
𝑟𝑒𝑑 = 0 

𝑢𝑡
𝑟𝑒𝑑 = 1

, 𝑖𝑓 𝑔𝑟𝑒𝑒𝑛

, 𝑖𝑓 𝑟𝑒𝑑

  (3.23) 

The process equation (3.16) becomes:  

𝑥𝑡
𝑞𝑢𝑒𝑢𝑒

= max(𝑥𝑡−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑡
𝑔𝑟𝑒𝑒𝑛

× 𝑥𝑘
𝑑𝑒𝑝

+ 𝑢𝑘
𝑟𝑒𝑑 × 𝑥𝑘

𝑎𝑟𝑟 + 𝑤𝑘−1
𝑞𝑢𝑒𝑢𝑒

, 0) (3.24) 

The second-by-second formulation does not give any added value for low penetration rates, 

where aggregated FCD and CV are only available sporadically. The analysis and evaluation 

focus therefore in the cycle-to-cycle formulation. 

Turning rate (𝒙𝒌
𝒕𝒖𝒓𝒏) and penetration rate (𝒙𝒌

𝒑𝒆𝒏
) 

To expand the applicability of the Extended Observer, the estimation of the turning (𝑥𝑘
𝑡𝑢𝑟𝑛) and 

penetration (𝑥𝑘
𝑝𝑒𝑛

) rate can be added. There are two things to consider; how these new 

variables are estimated and how they influence the other states.  

The process equations are similar to the arrival and departure rate process equations as 

described with (3.8), (3.9), (3.10) and (3.11). That means, the change from one cycle to the 

next is modelled with either a random walk or with the assistance of a historical model. The 
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repetition of the same equations for a different variable is considered redundant and is 

therefore skipped. The measurement equations are shown in section 3.3 

Figure 3.4 shows schematically an example of the influence of the turning rate estimation on 

the arrival rate estimation. The left part of the figure shows that in case of a considerable 

number of “free” right-turners, the arrival rate at the back-end of the queue should be reduced 

accordingly. The right part shows that for queues that block the right-turning lane, the arrival 

at the back-end of the queue consists of the arrival for both turning movements. This can be 

expressed with the following equation: 

𝑥𝑘
𝑎𝑟𝑟|𝑡𝑢𝑟𝑛

= {

𝑥𝑘
𝑎𝑟𝑟 × (1 − 𝑥𝑘

𝑡𝑢𝑟𝑛) 

𝑥𝑘
𝑎𝑟𝑟

, 𝑖𝑓 𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

< 𝑁𝑏𝑙𝑜𝑐𝑘

, 𝑒𝑙𝑠𝑒

  (3.25) 

 

Figure 3.4 Extension of the Extended Observer for considering the influence of turning rates 

The above consideration is not relevant for the simplified test intersection (section 5.2) but is 

included in the real-world intersection (section 5.3).  

The percentage of CV currently at the queue (𝑥𝑘
𝑝𝑒𝑛

) is used to adjust the weighting of the 

measurement from CV. The basic principle for the penetration rate consideration in the 

Extended Observer is the following: for high penetration rates, the measurements from CV are 

expected to be more accurate. This intuitive principle can is included in the formulation, by 

adjusting the respective measurement error covariance (see also section 4.3.1) 

3.3 Measurement Vector and Equations 

After the definition of the state vector and process equations, the measurement vector and the 

measurement equations must be defined. The size of the measurement vector (𝑧𝑘), unlike the 

state vector (𝑥𝑘), varies depending on the availability of the data sources (see Tab. 3.2). 

Assuming that all the types of data sources shown in Tab. 3.2 are available, the measurement 

vector from all available Connected Environments (CE) becomes:  
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𝑧𝑘 = 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

+ 𝑧𝑘
𝑎𝑟𝑟|𝐶𝐸

+ 𝑧𝑘
𝑑𝑒𝑝|𝐶𝐸

+ 𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝐸

+ 𝑧𝑘
𝑝𝑒𝑛|𝐶𝐸

 (3.26) 

with:  

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

: queue measurements for signal cycle 𝑘 coming from all 𝐶𝐸 (𝑣𝑒ℎ) 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝐸

: arrival measurements for signal cycle 𝑘 coming from all CE (𝑣𝑒ℎ/𝑠) 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝐸

: departure measurements for signal cycle 𝑘 coming from all 𝐶𝐸 (𝑣𝑒ℎ/𝑠) 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝐸

: turning measurements for signal cycle 𝑘 coming from all 𝐶𝐸 (%) 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝐸

: penetration measurements for signal cycle 𝑘 coming from all 𝐶𝐸 (%) 

The rows of Tab. 3.2 give the measurements from each examined type of data source. For 

example, assuming that the only available data source is CV, the measurement vector 

becomes: 

𝑧𝑘
𝐶𝑉 = [𝑧𝑘

𝑞𝑢𝑒𝑢𝑒|𝐶𝑉
, 𝑧𝑘

𝑎𝑟𝑟|𝐶𝑉
, 𝑧𝑘

𝑑𝑒𝑝|𝐶𝑉
, 𝑧𝑘

𝑡𝑢𝑟𝑛|𝐶𝑉
, 𝑧𝑘

𝑝𝑒𝑛|𝐶𝑉
 ]

𝑇
 (3.27) 

with: 

𝑧𝑘
𝐶𝑉: all measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (𝑣𝑒ℎ) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

: queue measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (𝑣𝑒ℎ) 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

: arrival measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (𝑣𝑒ℎ/𝑠) 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

: departure measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (𝑣𝑒ℎ/𝑠) 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑉

: turning measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (%) 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

: penetration measurements for signal cycle 𝑘 coming only from 𝐶𝑉 (%) 

The columns of Tab. 3.2 represent the measurement vectors for each state to be estimated 

and thus the measurement vectors that are used from the respective filters. For example, 

assuming that all sources indicated in Tab. 3.2 are available, the measurement vector for the 

queue length estimation becomes: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

= [𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

, 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

, 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

, 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

 ]
𝑇
 (3.28) 

with: 
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𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

: queue measurements for signal cycle 𝑘 coming from all 𝐶𝐸 (𝑣𝑒ℎ) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

: queue measurements for signal cycle 𝑘 coming from 𝐶𝑆 (𝑣𝑒ℎ) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

: queue measurements for signal cycle 𝑘 coming from 𝐶𝑉 (𝑣𝑒ℎ) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

: travel time measurements for signal cycle 𝑘 coming from 𝑇𝑇 (𝑠𝑒𝑐) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

: queue measurements for signal cycle 𝑘 coming from 𝐷𝑉 (𝑣𝑒ℎ) 

If a data source directly measures the state to be estimated, it is considered to give a direct 

measurement. An example of a direct measurement is, if a camera gives a measurement for 

queue length (𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

) in vehicles (i.e. as expected from the state to be estimated). In that 

case, the ℎ() function (3.2) that relates the single measurement to the specific state is 𝐼 = [1]. 

For example:  

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

= 𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

+ 𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

 (3.29) 

with: 

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

: queue measurement noise from 𝐶𝑆 with covariance 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

 (𝑣𝑒ℎ) 

On the other hand, if a data source measures another variable, it is said to give an indirect 

measurement. In that case, ℎ() (3.2) needs to be defined for the specific measurement and 

respective state. An example of indirect measurement for queue is the travel time for the 

relevant road section. The rest of the chapter examines the individual elements of the 

measurement vector and the respective measurement equations for every type of data source. 

Measurements from Connected Vehicles (𝒛𝒌
𝑪𝑽) 

To formulate measurement equations from CV that could be immediately used in practice from 

UTCS, it is assumed that only basic information is available. Each CV 𝑖 that is in queue during 

signal cycle 𝑘 (𝐶𝑉𝑘
𝑖) communicates the timestamp (𝑇𝑘

𝑖), its location (𝑆𝑘
𝑖 ) and its instant speed 

(𝑉𝑘
𝑖). It is distinguished between CV that are in the queue during cycle 𝑘 (𝐶𝑉𝑘

𝑞
) and CV that are 

joining the queue during cycle 𝑘 (𝐶𝑉𝑘
𝑗
). Figure 3.5 shows how the CV measurements 

(𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

, 𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

, 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

) are correcting the predicted estimation. The information from the CV 

is communicated every second but the filters run once per cycle. 
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Figure 3.5 Measurements from Connected Vehicles 

From this basic trajectory information, the time (𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

) that the last queued CV (𝐶𝑉𝑘
𝑞
) 

crosses the stop-line, as well as the time (𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

) that the last CV (𝐶𝑉𝑘
𝑗
) joined the queue 

can be calculated. The speeds (𝑉𝑘
𝑞
, 𝑉𝑘

𝑗
 ) are used to determine if the CV is in queue or not. In 

the presented formulation, a vehicle is considered entering the queue if its speed is lower than 

5 km/h and is considered leaving the queue if its speed becomes greater than 10 km/h. The 

speed (𝑉𝑘
𝑗
) is used to determine the exact time joining the queue. In addition, the position in 

the queue (𝐿𝑘
𝑞
, 𝐿𝑘

𝑗
) is calculated from the location (𝑆𝑘

𝑞
, 𝑆𝑘

𝑗
) and the known location of the stop-

line. An assumed average vehicle length of 6 meters is used for the conversion of meters to 

number of vehicles. The total number of CV in the queue (𝑀𝑘
𝑞
, 𝑀𝑘

𝑗
) can be easily calculated 

assuming a working V2I communication. 
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The formulas for the measurements for arrival rate, penetration rate and queue length are 

based on the work of COMERT [2013, 2016]. In his work, expected values and estimation errors 

are presented in form of analytical expressions for different penetration rates and saturation 

degrees. COMERT proposes and analyses five penetration rate estimators, six arrival rate 

estimators and eight Queue Length Estimators (QLE). Two equations for each of these three 

variables (arrival rate, penetration rate and queue length) are selected for analysis with the 

Extended Observer. The detailed derivation of the formulas can be found in [COMERT, 2013; 

COMERT, 2016]. For the measurement equations of departure and turning rate, one new 

formula per variable is presented. Their derivation is based also only on basic trajectory 

information. 

i. Departure rate (𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

) 

For the calculation of the departure rate measurement (𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

), the position (𝐿𝑘
𝑞

) of the last 

queued CV and the time needed to cross the stop-line (𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

) are used: 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

= 
𝐿𝑘
𝑞

𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

 (𝑣𝑒ℎ/𝑠) (3.30) 

In the example of Figure 3.5, the 𝐶𝑉𝑘
𝑞
 is 5th in the queue. If after 10 seconds the position (𝑆𝑘

𝑞
) 

shows that the 𝐶𝑉𝑘
𝑞
 has crossed the stop-line, then the departure rate measurement is: 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

= 
5

10
= 0.5 𝑣𝑒ℎ/𝑠.  

Remember that 𝐶𝑉𝑘
𝑞
 refers to the last queued CV. That means that if there are more than one 

CV in the queue, the last one is used for the measurement calculation of the departure rate. 

The measurement is valid only if it comes from a vehicle that is at least 4th in the queue for 

more representative measurements [HAMAD & ABUHAMDA, 2015].  

ii. Arrival rate (𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

) 

For the arrival rate measurements (𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

), two equations could be used based on information 

from the last CV that joined the queue (𝐶𝑉𝑘
𝑗
). The first one uses only the position (𝐿𝑘

𝑗
) and the 

time joining the queue (𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

). The second variation uses in addition the total number of 

queued CV (𝑀𝑘
𝑗
).  

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

= 
𝐿𝑘
𝑗

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

 (𝑣𝑒ℎ/𝑠) (3.31) 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

= 
𝐿𝑘
𝑗

− 𝑀𝑘
𝑗

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

+
𝑀𝑘

𝑗

𝑢𝑘
𝑟𝑒𝑑  (𝑣𝑒ℎ/𝑠) (3.32) 
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In the example of Figure 3.5, the 𝐶𝑉𝑘
𝑗
 is 4th in the queue (i.e. 𝐿𝑘

𝑗
= 4) and there are two CV in 

the queue (i.e. 𝑀𝑘
𝑗
= 2). Assuming that the total red time (𝑢𝑘

𝑟𝑒𝑑) is 40 seconds and the CV 

joined the queue 30 seconds after red time started (𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

), then the arrival rate 

measurement based on equation (3.31) is: 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

=
𝐿𝑘
𝑗

30
=

4

30
= 0.13 𝑣𝑒ℎ/𝑠.  

Using equation (3.32) for the same example, the arrival rate measurement is: 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

=
4−2

30
+

2

40
= 0.117 𝑣𝑒ℎ/𝑠.  

Equation (3.31) gives a good approximation in cases where the CV arrives close the end of 

red time. Equation (3.32) performs theoretically better by taking also into account the red 

duration and the total number of CV in the queue. 

iii. Penetration rate (𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

) 

For the penetration rate (𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

), two equations are examined, as possible measurement 

equations. The first one uses the number of CV in the queue (𝑀𝑘
𝑗
) and the position (𝐿𝑘

𝑗
) of the 

last CV. The second uses additionally the time joining the queue (𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

) and the red time 

(𝑢𝑘
𝑟𝑒𝑑).  

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

= 
𝑀𝑘

𝑗

𝐿𝑘
𝑗

 (%) (3.33) 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

= 
𝑀𝑘

𝑗
× 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔

𝑀𝑘
𝑗
× 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
+ (𝐿𝑘

𝑗
− 𝑀𝑘

𝑗
) × 𝑢𝑘

𝑟𝑒𝑑
 (%) (3.34) 

In the example of Figure 3.5, the penetration rate measurement based on equation (3.33) is:  

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

=
2

4
= 50 %.  

Using equation (3.34), the penetration rate measurement is: 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

=
2×30

2×30+(4−2)×40
= 43 %. 

Equation (3.33) ignores the possibility that unequipped vehicles join the queue after the last 

CV. Equation (3.34) performs theoretically better by taking into account the timing information 

of 𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

 and 𝑢𝑘
𝑟𝑒𝑑. 
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iv. Queue length (𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

) 

The queue length can be calculated from CV based on the position of the last CV and the 

expected queue formation depending on the expected arrival and penetration rate [COMERT, 

2016]. The queue grows theoretically after the last known CV joins the queue for 

(𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) seconds. 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝐿𝑘
𝑗

+ (1 − 𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

) × 𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

× (𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) (3.35) 

Depending on which pair of the previously presented equations (equation (3.31) and (3.33) or 

(3.32) and (3.34)) is used for calculating the arrival and penetration rate, equation (3.35) can 

take the following forms: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝐿𝑘
𝑗

+ (1 −
𝑀𝑘

𝑗

𝐿𝑘
𝑗
) ×

𝐿𝑘
𝑗

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

 × (𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) (3.36) 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝐿𝑘
𝑗

+ (1 −
𝑀𝑘

𝑗
× 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔

𝑀𝑘
𝑗
× 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
+ (𝐿𝑘

𝑗
− 𝑀𝑘

𝑗
) × 𝑢𝑘

𝑟𝑒𝑑
) × (

𝐿𝑘
𝑗

− 𝑀𝑘
𝑗

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

+
𝑀𝑘

𝑗

𝑢𝑘
𝑟𝑒𝑑

) × (𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) (3.37) 

Equation (3.36) uses equations (3.31) and (3.33). Equation (3.37) uses the more elaborate 

equations (3.32) and (3.34). In any case, the queue length calculation requires in addition to 

the position of the CV (𝐿𝑘
𝑗
) in the queue also the knowledge of the time joining the queue 

(𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

) and the red time (𝑢𝑘
𝑟𝑒𝑑).  

In the example of Figure 3.5, the queue length measurement based on (3.36) is: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

=  4 + (1 − 0.5) × 0.13 × (40 − 30) = 4.5 𝑣𝑒ℎ 

The queue length measurement based on (3.37) is: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

=  4 + (1 − 0.43) × 0.117 × (40 − 30) = 4.67 𝑣𝑒ℎ 

One can use only the position of the CV (𝐿𝑘
𝑗

= 4) as queue length measurement. For the simple 

example of Figure 3.5 the differences are obviously insignificant. However, for high queues 

and low penetration rates, using only the position of the CV might lead to low quality queue 

measurements. The example of Figure 3.5 is only used for demonstration of main concepts of 

the algorithms. 

v. Turning rate (𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑉

) 

The measurements for the turning rates use the basic information from each CV (𝐶𝑉𝑘
𝑖) that 

passes through the relevant signal to identify which turning movement is selected by the CV. 

Assuming that there are only two possible turning movements (e.g. right turn and straight), the 

tuning rate measurement is: 
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𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑉

= 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑉 𝑡ℎ𝑎𝑡 𝑡𝑢𝑟𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑉 
 (%) (3.38) 

To avoid low quality measurements in cases of very low penetration rates and traffic volumes, 

the number of CV are summed not in a cycle-to-cycle basis but in bigger intervals (e.g. 5-15 

minutes). For example, if only one CV passes through the intersection during cycle 𝑘 und turns 

right, the measurement equation gives a value of 100% for right-turners in case the 

measurements are updated every cycle. If during the next cycle 𝑘 + 1 two CV go straight, the 

right-turners measurement would be 0%. Using the combined measurements from the two 

cycles gives a more moderate measurement calculation of 33% right-turners. This example 

does not prove the correctness of the one or the other possible measurement calculation, but 

it demonstrates the thought process behind choosing larger update intervals, especially for low 

penetration rates and low volumes. 

It must be mentioned that the filter for the turning rate runs still every cycle (e.g. ca. every 60 

seconds). The difference is that the measurement vector is updated in larger intervals (e.g. ca. 

every 300 seconds). For the cycles that have no new updated measurements, the filter uses 

only the process model and ignores the “correct” step. In other words, it is chosen to update 

the turning measurements less often, to avoid extreme values due to extremely low sample 

sizes.  

The turning measurement is calculated only after crossing the stop-line and entering the next 

road section. One could include the intention of the driver (e.g. via activation of the turning 

signal or via chosen route in navigation device) to get the measurements earlier.  

Measurements from Connected Section (𝒛𝒌
𝑪𝑺) 

With the latest advancements in video analytics and computer vision, it is possible to track the 

trajectories of vehicles in real-time without the need of V2I communication. Hence, the thought 

process behind the formulation of the measurement equations from a Connected Section (e.g. 

camera) is equivalent to those from CV. However, there is a fundamental difference; the 

Connected Section is not limited by the penetration rate but it is limited by a certain detection 

range (Figure 3.6).  

It is assumed that vehicles that are in range of the Connected Section can be tracked. From 

the trajectory information, the number of vehicles in the queue at the beginning of the signal 

cycle 𝑘 (𝐷𝑘
𝐶𝑆) and the number of queued vehicles that joined the queue during cycle 𝑘 (𝐴𝑘

𝐶𝑆) 

can be calculated. They are both limited by the maximum coverage (𝐶𝑘
𝐶𝑆) of the Connected 

Section. Moreover, the time that the last queued vehicle (𝐶𝑆𝑉𝑘
𝑞
) crossed the stop-line 

(𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

) and the time that the last vehicle (𝐶𝑆𝑉𝑘
𝑗
) joined the queue (𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
)  can be derived. 

With this information, it is possible to formulate the necessary measurement equations.  
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Figure 3.6 Measurements from Connected Section 

i. Departure rate (𝑧𝑘
𝑑𝑒𝑝|𝐶𝑆

) 

The departure rate measurement (𝑧𝑘
𝑑𝑒𝑝|𝐶𝑆

) uses the number of queued vehicles (𝐷𝑘
𝐶𝑆) detected 

and the time needed for the last detected vehicle to cross the stop-line (𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

): 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑆

= 
𝐷𝑘

𝐶𝑆

𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

 (𝑣𝑒ℎ/𝑠) (3.39) 

ii. Arrival rate (𝑧𝑘
𝑎𝑟𝑟|𝐶𝑆

) 

The arrival rate measurement (𝑧𝑘
𝑎𝑟𝑟|𝐶𝑆

), uses the number of vehicles that joined the queue (𝐴𝑘
𝐶𝑆) 

and the time that the last vehicle joined the queue (𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

): 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑆

= 
𝐴𝑘

𝐶𝑆

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

 (𝑣𝑒ℎ/𝑠) (3.40) 

iii. Queue length (𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

) 
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Similarly to the queue measurement from CV, the queue length from CS can be calculated 

based on the position of the last detected vehicle (𝐶𝑆𝑉𝑘
𝑗
) and the expected queue formation for 

the remaining (𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) seconds of the cycle 𝑘: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

= 𝐴𝑘
𝐶𝑆 +

𝐴𝑘
𝐶𝑆

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

× (𝑢𝑘
𝑟𝑒𝑑 − 𝑇𝑘

𝑗𝑜𝑖𝑛𝑖𝑛𝑔
) (3.41) 

iv. Turning rate (𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑆

) 

For the turning measurements it is assumed that the detection area covers also the beginning 

of the outgoing road section (i.e. after the stop-line) in order to distinguish between the turning 

movements of the vehicles. Practically, this can also be done by re-identification of the vehicles 

that enter the next road section if the next intersection is also equipped with similar sensors. 

Hence, the calculation of the turning measurement is simply: 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑆

= 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 𝑡𝑢𝑟𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 
 (%) (3.42) 

Measurements from Aggregated Section (𝒛𝒌
𝒒𝒖𝒆𝒖𝒆|𝑫𝑽

, 𝒛𝒌
𝒒𝒖𝒆𝒖𝒆|𝑻𝑻

) 

In this thesis, the term Connected Vehicles refers to vehicles that can communicate their 

individual trajectory information to the infrastructure (traffic signal) in real-time. Traffic data 

providers (e.g. TomTom, Inrix, Here) do not offer individual trajectory information due to privacy 

or data ownership issues. Instead, only Aggregated Section measurements, such as travel 

times and speeds are available. Measurements for road sections und sub-sections are usually 

attainable through dedicated interfaces. This information can be considered of low resolution 

and in some cases even of low quality. However, both speeds and travel times can be used 

as indicators for congestion and therefore as rough measurements for queue length at 

intersections. The measurement equation based on difference in velocities (𝐷𝑉) between 

adjacent subsections is indicated with 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

and the one based on travel times (𝑇𝑇) with 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

 (Figure 3.7). 

The left part of Figure 3.7 depicts how from the aggregated speed information, a measurement 

for the queue length can be derived. Typically, traffic data providers, divide the road sections 

into subsections according to the speeds observed. The red subsection indicates very low 

speeds and thus congested sections. The green subsection indicates free flow speeds and 

thus sections that are unaffected from the congestion. Usually, between the green and the red 

subsections there can be one or two more shades of colouring that indicate congestion levels 

between complete congestion and free flow. This can vary between traffic providers but the 

main concept of red sections indicating congested areas is universal. The simple measurement 

equation for extracting a rough measurement of the queue length is in this case: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

= 𝐿𝑘
𝐷𝑉 , 𝑖𝑓 𝑉𝑘

𝑠𝑢𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛 1 < 𝑎𝑘
𝐷𝑉 × 𝑉𝑘

𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤
  (3.43) 
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Figure 3.7 Measurements from Aggregated Section 

The number of vehicles in queue (𝐿𝑘
𝐷𝑉) is calculated from the distance (𝑆𝑘

𝐷𝑉) between the end 

of the congested section and the stop line, assuming an average vehicle length of 6 meters. 

The parameter 𝑎𝑘
𝐷𝑉 can be adjusted according to the data provider and/or the specific 

intersection. A typical value for 𝑎𝑘
𝐷𝑉 is for example 0.65. That means, subsections with speed 

lower than 65% of the observed free flow speed are considered congested. The value for the 

free flow speed is given from all traffic data providers. 

The most usual information from aggregated traffic data providers is the travel time. The travel 

time of a section is expected to variate even in free flow conditions. However, in highly 

congested signalized sections, high travel times can be related to the increase in queue. 

Hence, only travel times that are significantly higher than typical free flow travel times are 

considered: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

= 𝑇𝑇𝑘
𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 𝑖𝑓 𝑇𝑇𝑘

𝑠𝑒𝑐𝑡𝑖𝑜𝑛 > 𝑎𝑇𝑇 × 𝑇𝑇𝑘
𝑓𝑟𝑒𝑒𝑓𝑙𝑜𝑤

  (3.44) 

The factor 𝑎𝑇𝑇 can be set depending on the intersection and the road section. For example, it 

can be set to include the typical free flow travel time plus the typical red time. Assuming 30 

seconds typical red time and 30 seconds typical travel time, factor 𝑎𝑇𝑇 can be set to 2. That 

means, according to (3.44), that only travel times higher than 60 seconds are considered. 

Since this measurement is not a direct measurement, the definition of a the appropriate ℎ() is 

needed to relate the travel time to the queue length (3.2). For that, a simple power function is 

used: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

=  𝛼 × (𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

)𝛽  (3.45) 

The factors 𝛼 and 𝛽 of equation (3.45) can be set according to real observations, simulations 

or even by experience (see also chapter 4).  

The measurements coming from aggregated traffic data are not expected to be very accurate, 

but they are a reliable indicator of congestion in urban areas. Especially in oversaturated 

conditions, these measurements give the possibility to detect very long queues that cannot be 
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detected by infrastructure sensors. The obvious drawback is that these measurements 

become available only after the congestion has occurred. Including late important information 

is considered in this thesis however better than ignoring the information. The key is to fuse all 

available information in a transparent and adaptive way.  

3.4 Adaptive Fusion  

Integrating all measurements in one variable-dimension vector is only the first step of the fusion 

process. The next crucial step is the “weighting” of each measurement according to how much 

each measurement should be “trusted” for the specific implementation. This “trust” is 

determined by choosing the appropriate measurement noise covariance (𝑅𝑘) and process 

noise covariance (𝑄𝑘). If 𝑄 and 𝑅 are constant and they refer to a steady-state process, the 

Kalman gain (𝐾𝑘) and estimation error covariance (𝑃𝑘) stabilize quickly. In this case, 𝑄 and 𝑅 

could be calculated off-line. Generally, the measurement noise covariance can be calculated 

easier by taking some sample off-line measurements. The process noise covariance is more 

difficult to define, since directly observing the actual process is not possible (the observation 

of the ground truth is in fact another measurement). However, in many real-world applications, 

neither the errors of the measurements nor of the process remain constant. Tuning a Kalman 

filter means mainly choosing the parameters 𝑄 and 𝑅. A first initial rational choice should be 

followed with off-line tuning before the real-time implementation [WELCH & BISHOP, 2001]. 

The Extended Observer deals with a process in which both the measurement and the process 

error change dynamically. For example, the measurement error from CV is expected to reduce 

for higher penetration rates. At the same time, the process error for the queue length is 

expected to increase for higher queues. The proposed formulation allows the updating and 

resizing of the measurement vector, for each filter step, depending on the data availability. It 

allows additionally the recalculation of the process and measurement error covariance (𝑄𝑘 , 𝑅𝑘) 

at every filter step. Figure 3.8 shows how the adaptive fusion takes place in the operational 

diagram of the EKF algorithms. The adaptive fusion is described in detail only for the case of 

the queue length, which is the most challenging. The approach can be summarized with the 

following steps: 

• Update the process error covariance 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

 based on the last state estimation 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

, 

before the calculation of the a priori estimate error covariance 𝑃𝑘
−𝑞𝑢𝑒𝑢𝑒

. 

• Check the data availability from the Connected Environments for current filter step 𝑘 

before computing the Kalman gain 𝐾𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

.  

• Resize the matrices 𝐻𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

, 𝑉𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

, 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 according to the number of 

measurements 𝑚 from the Connected Environments.  

• Update the measurement error covariance 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 based on the available 

measurements 𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 and the a priori state estimation 𝑥𝑘−1
−𝑞𝑢𝑒𝑢𝑒

. 
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Figure 3.8 Adaptive traffic data fusion with the Extended Observer  

Based on equations (3.2), (3.28), (3.29) and (3.44), the complete measurement equation for 

the queue length is: 

Measurement equation for queue: 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

=

[
 
 
 
 
 
 
 𝑧𝑘

𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

𝛼 × (𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

)𝛽]
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 𝑣𝑘

𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

]
 
 
 
 
 
 
 

 (3.46) 

with: 

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

: queue measurement noise from 𝐶𝑆 (𝑣𝑒ℎ) 

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

: queue measurement noise from 𝐶𝑉 (𝑣𝑒ℎ) 

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

: queue measurement for noise from 𝐷𝑉 (𝑣𝑒ℎ) 

𝑣𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

: travel time measurement noise from 𝑇𝑇 (𝑠𝑒𝑐) 

Each measurement noise has its own error covariance. The complete measurement noise 

covariance 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 is therefore a diagonal matrix of 𝑚 × 𝑚 dimensions, where 𝑚 is the 

number of measurements.  
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𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

=

[
 
 
 𝑅𝑘

𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

0
0
0

0

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

0
0

0
0

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

0

0
0
0

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

]
 
 
 
 (3.47) 

with: 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

: queue measurement noise covariance from 𝐶𝑆 (𝑣𝑒ℎ) 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

: queue measurement noise covariance from 𝐶𝑉 (𝑣𝑒ℎ) 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

: queue measurement for noise covariance from 𝐷𝑉 (𝑣𝑒ℎ) 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

: travel time measurement noise covariance from 𝑇𝑇 (𝑠𝑒𝑐) 

The matrix is diagonal with the assumption that the measurement noises of the individual 

measurements are not correlated. The calculation of 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 should involve off-line 

measurements for tuning of the filter. This effort however might be considered expensive for 

large scale deployments and might limit the real-world attractiveness of the proposed 

methodology. To avoid this limitation, the proposed algorithms allow the immediate 

implementation, without the need for extensive, off-line tuning. It must be however stressed 

that an optimal (in terms of minimum error) estimation can only be achieved with respective 

tuning efforts. On the other hand, for traffic engineers and operators of real-world systems, a 

less than optimal estimation might suffice, if the method is relatively easy to understand, 

implement and fine-tune.   

3.5 Summary  

EKF offers a robust and transparent data fusion method that exploits multiple direct and indirect 

measurements, with different errors, that arrive at different times. The Extended Observer uses 

multiple, variable-dimension, adaptive EKFs, to estimate the queue length, arrival, departure, 

turning and penetration rate. The process equation for the queue length utilizes the 

conservation law and the signal timings. It is presented in detail, with the help of Figure 3.3. In 

addition, the formulas for prediction and second-by-second formulation are presented for the 

queue length. The other states can be modeled with a random walk or with the help of a 

historical model.   

Measurement equations are presented in detail for Connected Sections, Connected Vehicles 

and Aggregated Sections. The measurements for CV (Figure 3.5) build mostly on the 

algorithms of COMERT [2013, 2016], for steady state estimation in longer intervals. The 

proposed algorithms for Connected Section (Figure 3.6) and Aggregated Section (Figure 3.7) 
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are simple formulations with realistic assumptions. The information needed for all algorithms 

is basic trajectory information.   

The adaptive formulation of the Extended Observer allows the update of number of 

measurements, the measurement errors, and the process error at every filter step. Figure 3.8 

depicts the step-by-step formulation, based on the basic EKF formulation (Figure 3.1). The 

importance of the adaptive formulation, in the case of UTCS, is highlighted in the state-of the-

art (chapter 2), and becomes even more evident in the analysis (chapter 4).  
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4. Analysis 

The algorithms of the Extended Observer deal with queue dynamics at signalized 

intersections. Before evaluating the results of the developed module, it is important to analyze 

in detail the behavior of the filter in these highly unstable conditions. This chapter, combined 

with the methodology, aims to answer the first research question regarding the ability to use 

diverse measurements in a practical and adaptive way. The analysis aims to demonstrate: 

• the traffic state and traffic measurements variability at signalized intersections  

• the principles and limitations of the presented methodology 

For that, time series diagrams on a cycle-to-cycle basis are mainly used for clarifications. The 

focus is on queue length which is the hardest to estimate and the easiest to relate. Example 

diagrams for arrival and departure rate are also provided. The diagrams represent typically 2-

hour simulation runs, where the ground truth, the measurements, and the fused estimation can 

be compared. The current chapter is not aiming to examine different scenarios (e.g. increasing 

penetration rates) and perform sensitivity analysis (e.g. reduction in delays). This will take 

place in chapter 5. However, some statistical values, such as Root Mean Square Error (RMSE) 

are also here indicated to complement the diagrams of the analysis. Figure 4.1 shows the 

concept and structure of the analysis.  

 

Figure 4.1 Analysis approach overview 
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First, the test intersection is introduced in order to cover not only the traffic demand variability 

but also the interaction with the signal control (section 4.1). In section 4.2, the impact of variable 

demand and control on the queue process is shown. Moreover, this section illustrates that the 

chosen simulation settings cover a wide range of traffic state dynamics for the analysis and 

later for the evaluation. The diversity of the measurements from Connected Vehicles, 

Aggregated Sections and Connected Sections are examined in 4.3. Some key elements of the 

of the proposed data fusion, considering the practical applicability are demonstrated in section 

4.4. 

4.1 Simulation Settings 

A robust estimation should work not only independent of the traffic demand, but also 

independent of the underlying signal control and resulting saturation degree. Fixed-time control 

and steady traffic demand patterns are avoided for the analysis and evaluation. A simple four-

legged intersection (one lane per leg) with two stages separating the conflicting streams is 

used as a test intersection for transparency. Figure 4.2 illustrates the traffic demand patterns, 

the traffic signal control configuration and the detector topology.  

The traffic demands on the respective signals are chosen to cover different and changing 

saturation degrees to emulate the (transition to and from) peak hour. Signal Groups (SG) SG 

1 and SG 3 are controlling the traffic streams in the minor traffic direction, with low traffic 

demand and reduced green split. SG 2 and SG 4 are controlling the traffic streams in the major 

traffic direction, with high traffic demand and higher green time share. Notice that for SG 4 

there are two different traffic demand scenarios. A normal oversaturated peak and an extended 

oversaturated peak. The traffic demand from each direction is variable and stochastic around 

the values depicted in Figure 4.2.  

The rule-based control is a simple second-by-second, time-gap control that uses detectors, 

placed approximately 50 meters away from the stop line. The model-based control 

(Spot/Utopia) uses the entry and exit detectors to update the queues for each signal every 3 

seconds. The entry detectors are placed far away from the stop-line (300m) and provide very 

accurate queue length estimations.  

4.2 Process  

The queue process to be estimated is modelled with the help of equation (3.12). As described 

in section 3.4, the process noise covariance 𝑄𝑘
𝑞𝑢𝑒𝑢𝑒

 is generally difficult to calculate. This 

becomes even more challenging in the case of queue length estimation, due to the stochastic 

nature of queues at signalized intersections. Figure 4.3 shows the queue length (average value 

vs. standard deviation) for multiple simulation runs of the test intersection with different control 

methods (fixed-time, rule-based, model-based). The fixed-time control is used to emulate 

adaptive control that has been outdated and runs constantly with maximum green times. It is 
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evident that the queue variance differs significantly between simulation runs because of 

stochastic arrivals and the influence from the signal control. For example, the standard 

deviation of the queue for SG 4 with identical rule-based control ranges between 5 and 50 

vehicles between simulation runs.    

 

 

Figure 4.2 Traffic demand and traffic control settings for analysis and evaluation 
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Figure 4.3 Average queue length and average standard deviation for multiple simulation runs 

For mostly undersaturated conditions (see zoomed area in Figure 4.3 for SG1 and SG3), the 

standard deviation of the queue ranges from around 3 vehicles to 7 vehicles, whereas the 

average queue ranges from 4 to 8 vehicles for all signal control methods. Naturally, the 

average queue length is higher for fixed-time control than for rule-based and model-based 

control.  

For mostly oversaturated conditions, the queue variance and average queue length ranges 

between from 10 to 70 vehicles. In general, oversaturation leads to larger variance. In addition, 

the model-based control leads to lower average queue but cannot limit so much the queue 

variance from the oversaturation. This shows that the process noise covariance for modelling 

the queue length should not be a constant value, even for this simple simulated test 

intersection.  

The purpose of Figure 4.3 is not to derive one formula for correlating the average queue length 

and the standard deviation. However, it highlights the challenges when dealing with the queue 

process at signalised intersections. Furthermore, it suggests that the variance increases as 

the queue increases. Moreover, it shows that the chosen simulation configurations with 

different traffic demands for conflicting signals cover a wide range of traffic states and are 

therefore suitable for fundamental analysis of the algorithms.  

In order to solve the issue of the high variability of the process error (and the difficulty of its 

calculation) the Extended Observer allows an adaptive calculation of 𝑄𝑘
𝑞𝑢𝑒𝑢𝑒

 based on the 

following intuitive assumption: higher expected queue means higher expected uncertainty of 

the queue model. To avoid overfitting a formula to a simple test intersection and dismiss any 

need for extra tuning or calibration, it is assumed that the expected process error would be 

equal to the estimated queue. The following formula is used to update the queue process noise 

covariance: 
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𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

  (4.1) 

This assumption can be easily integrated in the step-by-step formulation, by updating the 

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

 during the prediction step (Figure 3.8). Figure 4.4 shows schematically the concept of 

using an adaptive process noise covariance based on equation (4.1) instead of a constant 

process noise covariance based on average observed values. A constant error assumption 

means for example that the same error is expected in the estimation for 5 or 50 queued 

vehicles.  

As discussed in chapter 3, the ratio 𝑄/𝑅 defines the performance of the filter and not the 

actual 𝑄 and 𝑅 values. The use of simple equality in (4.1) is not affecting the performance of 

the filter, if the measurement noise covariance 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒

 is calculated based on 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

, without 

changing the 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒

/𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

 ratio (see also next section). The rest of the state variables are 

modelled either with a random walk or based on a historical model. Therefore, a constant 

process noise covariance from experience is considered sufficient for this thesis. 

 

Figure 4.4 Adaptive and constant process noise covariance - schematic clarification 

4.3 Measurements  

The Extended Observer enables sensor and data fusion according to the expected 

measurement error, which is depicted with the measurement noise covariance matrix 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

, as shown in equation (3.47). If the ground truth can be observed, calculating the 

measurement noise covariance for a certain time is straightforward; it equals the Mean Square 

Error (MSE) of the measurement. In theory, the specifications of sensors (such as cameras) 

would give values for the expected errors. However, expected errors from Connected Vehicles 

or Aggregated Section data are in practice very hard to get. In addition, the errors vary greatly 

depending on the data provider, the city, the topology of the intersection and other external 

factors (i.e. disturbances).  
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The process noise covariance (𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

) is updated at every filter step, based on the last queue 

estimation (see section 4.2), during the “predict” step of the filter (Figure 3.8). During the 

“correct” step of the filter, the measurement noise covariance comes into play to compute the 

Kalman gain, that ultimately decides on the weighting between measurements and model. 

Instead of defining the measurement noise covariance (𝑅𝑘−1
𝑞𝑢𝑒𝑢𝑒

), it is proposed to define the 

noise covariance ratio 
𝑅𝑘

𝑞𝑢𝑒𝑢𝑒

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒. This allows a very straight forward tuning of the filter: increasing 

the noise ratio for one measurement means that this measurement is trusted less and therefore 

its impact on the estimation is lower.  

Section 4.3.1 starts with the analysis for CV measurements. First, the process and noise 

covariance for different penetration rates is examined. The analysis of the measurement and 

estimation accuracy is presented with the help of cycle-to-cycle queue diagrams. The impact 

of the penetration rate and saturation degree is highlighted. The effect of changing the noise 

covariance ratio (
𝑅𝑘

𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒 ) is also demonstrated. Section 4.3.2 examines the utilization of travel 

time and speeds from Aggregated Sections for queue estimation. Section 4.3.3 examines the 

use of cameras for arrival and departure rate estimation.  

The underlying signal control for the diagrams presented in the following sections of this 

chapter is a rule-based control to enable one to one comparison between diagrams. The 

reason is that a simulation run with rule-based control can be precisely repeated. A simulation 

run with model-based control cannot be perfectly duplicated, due to certain stochastic 

characteristics of the control (e.g. random arrivals before reaching the detector). The analysis 

focuses on mainly on signal groups SG 2 and SG 4 of the major direction (Figure 4.2). 

4.3.1 Connected Vehicles  

Using the simulation environment of the test intersection, the average RMSE of the CV 

measurements is calculated for different penetration rates and multiple simulation runs, to 

obtain the measurement noise covariance. In addition, the process noise covariance is 

calculated based on the cycle-to-cycle variance of the ground truth for the queue length. Figure 

4.5 presents the ratio results for signals SG 1 (lowest demand) and SG 4 (highest demand). 

The 2-hour simulation runs shown in Figure 4.2 are repeated 10 times with different random 

seeds. 

The results indicate a trend for the noise covariance ratio below one for low demand and above 

one for high demand. The higher error for higher demand (and consequently higher saturation 

degrees) can be explained by the higher queues and by the stop-and-go behaviour in 

oversaturation, that leads to slow-moving vehicles being recognized in and out of the queue in 

consecutive cycles. Moreover, the results, especially for low demands, indicate a reduction of 

the noise covariance ratio as the penetration rate increases. This is expected due to the higher 

possibility for the CV to be on the “write place” (i.e. close to queue back-end).  
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Figure 4.5 Ratio of measurement to process noise covariance for queue length 

To capture these intuitive sensitivities of CV measurements, the 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

 is updated at every 

filter step (i.e. every cycle), based on the formula:  

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= {

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

(1 − 𝑥𝑘−1
𝑝𝑒𝑛

)

, 𝐸𝑂 𝑏𝑎𝑠𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

, 𝐸𝑂 𝑤𝑖𝑡ℎ 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

 (4.2) 

For very low (estimated) penetration rates, the ratio remains close to one and the filter trusts 

the CV measurements and the model equally. For high (estimated) penetration rates, the 

measurement error is reduced and thus the CV measurements are considered more 

trustworthy.  

The analysis focuses mainly on demonstrating the filter in the challenging case of 

oversaturation with low penetration rates. Thus, signals SG 2 and SG 4 are mostly presented. 

A moderate filter tuning with constant and equal process and measurement noise covariance 

(𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

=  10.00, 𝑄𝑘
𝑞𝑢𝑒𝑢𝑒

=  10.00) is used. This reduces the performance of the filter, (as 

shown in the following sections) but makes the analysis easier to follow. A total number of 100 

cycles (𝑘 = 100) is demonstrated in each diagram. The average penetration rate for the 

examined simulation run is 5 %.  

First, the impact of variable traffic demand and saturation degree on the measurements is 

demonstrated with the help of Figure 4.6. Then, the impact of increased penetration rate is 

explained with the help of Figure 4.7. Figure 4.8 and Figure 4.9 showcase the impact of 

measurement noise on the estimation accuracy. 

Impact of variable traffic demand and saturation degree on measurement accuracy 

Traffic demand and thus saturation degree (i.e. volume to capacity ratio) can vary greatly 

during the day and even more importantly the changes might occur sharply. The ability to follow 

changes might be considered more essential than the estimation of a steady state in the case 
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of filtering for signal control. Hence, varying traffic demand scenarios are simulated for the 

analysis.  

Figure 4.2 shows the configured inflows for the examined signals. The arrivals per cycle in the 

simulation vary around these values due to the stochastic nature of the simulation. The arrival 

and departure rate process equations follow a random walk. The parameters for the presented 

simulation run are shown in Tab. 4.1.  

EKF 

Parameter 

EO parameters for Figure 4.6 and Figure 4.7 

Departure Rate 

(vehicles/sec) 

Arrival Rate 

(vehicles/sec) 

Queue Length 

(vehicles) 

𝑥̂0 0.50 0.20 3.00 

𝑃0 0.102 0.102 1.002 

𝑄𝑘 0.102 0.102 10.002 

𝑅𝑘 0.102 0.102 10.002 

Tab. 4.1 Intuitive tuning of the Extended Observer for chapter 4  

An indicative simulation run of mostly undersaturated cycles (i.e. queue lower than 12 vehicles 

for SG 2) is presented in Figure 4.6. The crosses (x) indicate the ground truth, the blue circles 

(o) indicate the measurements coming from the CV and the filled gold circles (•) indicate the 

estimation coming from the Extended Observer. Cycles with no information from CV are 

depicted below the zero line. In other words, missing cycle measurements are plotted as circles 

with the value -1. Obviously, these values are excluded from the calculation of the RMSE from 

the CV. The queue measurement is calculated with equation (3.37) and is generally very close 

to the ground truth considering the average queue length and its standard deviation.  

In Figure 4.6.a, two wrong low measurements jump out from the plots between simulation 

second 4000-5000, where oversaturated cycles with stop-and-go behavior appear. The 

incorrect measurements appear, because the CV is first in the queue and at the same time the 

arrival measurement part from equation (3.37) gives extremely low values.  

Figure 4.6(b) shows however that the CV measurements might capture sudden peaks of queue 

length even for low penetration rates. Nevertheless, Figure 4.6.c shows clearly that the CV 

measurements in cases of oversaturation cannot be trusted uncritically. The large 

measurement errors appear where the number of oversaturated cycles increases. This can be 

explained by the stop-and-go behavior of the queued vehicles. For example, a slowly moving 

CV might not be viewed as queued vehicle depending on its speed at the end of red time. At 

the same time, another CV closer to the stop-line might be recognized as the last queued CV 

and thus trigger a wrong queue measurement calculation.  
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Figure 4.6 Impact of traffic demand on measurement accuracy 
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Figure 4.7 Impact of penetration rate on measurement accuracy 
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Impact of penetration rate on measurement accuracy 

One might jump into the conclusion that the issue of large CV measurement errors is only due 

to the limited penetration rate of the presented example. This is partially true. For 

undersaturated conditions increasing penetration rates decrease the errors, since the 

probability of CV to be at the back-end of the queue is higher. However, in cases of 

oversaturation, the issue of stop-and-go is the main source of errors. Therefore, even 

extremely high penetration rates are bound to provide incorrect cycle-to-cycle measurements.  

Figure 4.7 shows the results for the same random seed, traffic demand and control as before, 

but for 50% penetration rate of CV. Clearly, based on Figure 4.7.a and Figure 4.7.b, such a 

high penetration rate reduces dramatically the measurement and estimation error. However, 

Figure 4.7.c shows that the errors remain high during the long oversaturation period due to the 

instability of the CV measurements. Figure 4.6 and Figure 4.7 show that for the same random 

seed, the error from CV measurements can change drastically depending on saturation degree 

and penetration rate. This suggests the need for filtering even in high penetration rates.  

 

Figure 4.8 Impact of measurement noise on estimation accuracy - SG4 normal oversaturated peak 
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Impact of measurement noise covariance on estimation accuracy 

The instability of the error of CV measurements makes choosing the measurement noise 

covariance very difficult. At the same time, the selected noise covariance ratio defines the 

behavior of the filter. To illustrate this change of behavior, Figure 4.9.a and Figure 4.9.b 

illustrate the results with different measurement noise covariance, for the same simulation run 

as shown in Figure 4.6.b and Figure 4.6.c.  Figure 4.9 shows how the reduced noise covariance 

ratio allows the filter to follow the measurements extremely closely. The quality of the 

measurements remains the same, since the measurements are identical. On the one hand, 

the oversaturation peak in Figure 4.9.a is better captured by the filter with lower measurement 

noise covariance. On the other hand, the extended oversaturation peak in Figure 4.9.a leads 

to very unstable estimations. One way to deal with the instability of CV measurements is to 

include other types of measurements from Connected Environments in the fusion process, 

such as Aggregated Section data. 

 

Figure 4.9 Impact of measurement noise on estimation accuracy - SG4 extended oversaturated peak 
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4.3.2 Aggregated Section  

Traffic data providers typically do not give information from individual vehicles, but they provide 

instead aggregated traffic data, such as travel times for complete sections and speeds of sub-

sections. This information is a rather macroscopic view of the traffic situation. These data 

sources have been ignored from UTCS due to their reduced granularity and questionable 

quality.  

Despite the undeniable uncertainty of Aggregated Section data quality in comparison to 

infrastructure sensors, this dataset has certain valuable characteristics for UTCS: 

• Aggregated Section data is available constantly and thus there are no signal cycles 

without information.  

• Aggregated Section data is available from many data providers that have already large 

historical data bases and can be therefore used for identifying traffic patterns and 

abnormalities.  

In addition to the uncertain quality, there are some other characteristics that make their 

integration in signal control challenging: 

• No information about the real-time penetration rate. 

• No information about the algorithms used for the calculations.  

To emulate Aggregated Section data in the simulation environment, the travel time and speed 

measurements are not derived from the complete vehicle population, but instead only from the 

simulated CV according to the simulated penetration rate scenario.  

Figure A.2.a shows the simulation results for the travel time and queue length for SG 4 

(extended oversaturated peak). The travel time measurements (cyan squares) come from 5 % 

of CV and the ground truth comes from all vehicles (blue crosses). The ground truth of the 

queue length is also plotted (brown crosses). The (ground truth) travel time peaks follow the 

(ground truth) queue length peaks. In addition, the travel time measurements are very 

consistent with the ground truth travel time, despite the low penetration rate. 

As mentioned in the methodology, a simple power function (3.45) is used to convert the 

measured travel times to queue length measurements. The calculation of the scaling factor (𝛼) 

and exponent (𝛽) can be done in simulations or real-world observations by measuring for 

certain period the travel time and the queue length. For real implementations, the related effort 

might be a prohibiting factor for the testing of new algorithms. Hence, a simple way to define 

the needed factors (𝛼 and 𝑏) based only on limited travel time measurements, which are 

nowadays easily obtainable from different data providers, is given here and used in the thesis.  

Figure A.2(b) (see Appendix) depicts how an approximate power function can be obtained 

based on plain travel time measurements for the specific test intersection. The same simplified 

calculation can be used for any signalized approach based on limited travel time 
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measurements to avoid cumbersome tuning and overfitting. In any case, this function gives 

just an approximation of the queue length.  

The free flow travel time is defined as the minimum observed travel time (in this case 60 

seconds). For this travel time a minimum queue length is defined (in this case, 1 vehicle). This 

gives the first point to draw the power function. The scaling factor equals thus the free flow 

travel time (in this case, 𝛼 = 60). The maximum observed travel time (in this case, 160 

seconds) and the maximum possible queue length (in this case, 150 vehicles) give the second 

point. With two points and scaling factor (𝛼), the exponent (𝛽) can be calculated (in this case, 

𝛽 = 0.20). This set of parameters means for example that an aggregated travel time 

measurement of around 100 seconds is converted to around 14 vehicles and aggregated travel 

time measurement of around 130 seconds is converted to around 50 vehicles.  

This function naturally is not expected to be accurate, but it improves the overall estimation 

ability and stability, especially in oversaturated conditions. The filter takes advantage of the 

fact thar persistently high travel times (in comparison to free flow travel times) are very likely 

to be the result of oversaturation in front of the signal. To avoid that very low travel time 

measurements (just above free flow travel time) could pull the estimations unnecessarily down 

to low values, an extra limit can be defined as “minimum significant travel time” (Figure A.2(b)). 

For travel times below this value, the 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

is set to a high value (square of the maximum 

queue length) to reduce the influence of the travel times in the estimation.  

For the measurements based on speeds (and more precisely based on speed differences) 

according to equation (3.43), a factor of 𝑎𝑘
𝐷𝑉 = 0.65 is used. This value is typical for real-world 

traffic data providers. 

Figure 4.10 shows all measurements from CV and Aggregated Section for the same simulation 

run as before. The queue length measurements based on the travel time are indicated with 

squares and the queue length measurements based on speed drops are indicated with 

triangles. Notice that in many cases, the Aggregated Section measurements are repeated for 

some cycles. This happens when no new measurement is available, to emulate the experience 

from real-world traffic data providers.  

In Figure 4.10.a it is interesting to notice how the very high incorrect measurement (after 

second 4000) does not pull the estimation accordingly, due to the presence of the other 

measurements and the process model. In Figure 4.10(b) and Figure 4.10(c), the Aggregated 

Section recognize the queue peaks also in cases where the CV failed. As expected, there is a 

lag in the measurements that leads to overestimation of the duration of the oversaturation.  

Overall, the estimation accuracy improves in all cases and especially in oversaturation 

(compare Figure 4.10 and Figure 4.6). For the fusion, the same measurement noise covariance 

is used for all measurements (𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

= 𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

=  10.00).  
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Figure 4.10 Measurements from Aggregated Section measurements  
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4.3.3 Connected Section  

The Connected Section (CS) data is fundamentally different from the aggregated data 

presented before, in terms of granularity, accuracy and range. It is a microscopic point of view 

of the intersection that has the potential to give detailed information but for limited range. The 

ability to detect queues is limited to its line of sight (e.g. camera range).  Arrival and departure 

rate can be accurately observed with the installation of wide-area sensors, such as cameras 

and radars. 

Figure 4.11 and Figure 4.12 show the resulting measurements and estimation for the arrival 

rate and departure rate respectively. The CS measurements are indicated with a diamond 

shape and the CV measurements again with a circle. None of the previous results of this 

chapter assumed any camera measurements. The CV measurements in Figure 4.11 and 

Figure 4.12 are identical as in the previous presented results. The estimation results are 

however different, since now the CS and CV measurements are fused. For the fusion, the 

same measurement noise covariance (0.10) is used for all measurements for both CS and CV. 

The initial values for the arrival rate and departure rate estimation are 0.2 and 0.5, respectively. 

Figure 4.11 shows that the CS measurements are more accurate than the CV measurements, 

using equation (3.40). This is expected, as the CS data is including the trajectories of all the 

incoming vehicles in its range. The range for the test intersection is set to 10 vehicles for the 

arrival rate. In Figure 4.11(b) and Figure 4.11(c), the maximum accepted measurement set in 

the simulation can be recognized in oversaturation. A value of 1500 vehicles per hour (0.42 

vehicles/sec) is chosen as maximum value for the test intersection.  

Figure 4.12 shows the results for the departure rate measurements for SG4 in normal 

oversaturated peak. To obtain a meaningful departure rate (measurements and estimations) a 

calculation is made only if there are more than 3 vehicles in the queue that are departing in the 

examined signal cycle. That means, that even though the CS data are delivering information 

every cycle, measurements are only valid if more than 3 vehicles are recognized. This explains 

also the partially steady estimation in the first 2000 seconds in Figure 4.12. Between the valid 

measurements (CV or CS) only the process model is in use. The random walk of equations 

(3.8) and (3.10) are used. 

Keep in mind that the arrival and departure rate filters are running always in parallel and are 

feeding the queue length filter. In all previous results, the arrival and departure rate filters are 

running with random walk and only with the limited CV measurements. In the next section, the 

possibility to integrate historical models and use equations (3.9) and (3.11) is explained. 

However, the analysis and evaluation generally do not use the historical models, if not explicitly 

stated. The CS measurements have always lower error than the CV measurements. In the 

simple test intersection, the estimated departure rate is quite stable (low standard deviation) 

around 0.5-0.6 vehicles/sec, as expected. 
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Figure 4.11 Arrival measurements from Connected Section and Connected Vehicles 
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Figure 4.12 Departure measurements from Connected Section and Connected Vehicles 

4.4 Data Fusion 

The possible wide range of measurement errors from Connected Environments and the 

volatility of traffic flow at signalized intersections, call for flexible and adaptive fusion 

approaches. In case of EKF algorithms, this means a variable dimension measurement vector 

and an adaptive process and measurement noise covariance calculation. However, for UTCS, 

adaptivity needs to consider the operational requirements of applied traffic engineering. The 

term adaptive should refer also to the ability to switch easily between an automated fusion and 

a rather controlled fusion (e.g. including historical values). This is considered important for the 

method’s applicability, due to two main traffic engineering aspects: 

• The need of traffic engineers to understand and adjust their systems.  

• The irregularity of new data from mobile sensors.  

The prototypical formulation suggests intuitive starting values for the filtering that are updated 

automatically but can be also specified by the traffic engineers at any time. For example, if at 

a specific area of the city, the quality of data from Aggregated Section is considered very 

reliable (through observations, or experience), it should be easy to determine a higher weight 

on these measurements. On the other side, it should be possible to reduce the weighting of 

CV measurements if for example a city has low penetration rates.  

4.4.1 Inclusion of Historical Data 

There are many cases where a certain historical pattern of the traffic demand might be 

recognized at urban intersections. The proposed formulation allows the integration of historical 

data for the arrival and the departure rate by using the corresponding process equations (3.9) 

and (3.11). This might be useful in cases of very low penetration rates when for many cycles 
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no new information is coming. Because of the queue dynamics, there is no historical model 

consideration for the queue length process equation. 

Figure 4.13 shows the results for SG 4 (normal oversaturated peak) with and without a 

historical model consideration. The historical model can be viewed as “perfect knowledge” of 

the historical pattern of the arrivals, as it fits the demand shown in Figure 4.2. Since the 

departure rate remains practically constant, only the impact of the historical model on the 

arrival rate estimation is shown. The CV measurements are the same but the underlying model 

for the arrival rate is different. The resulting filtered estimations differ because of the 

implemented process model. The error of the CV measurements remains naturally the same 

as in Figure 4.11(b). There are no CS (camera) measurements included but only CV.  

 

Figure 4.13 Arrival rate estimation - historical model and random walk 

Notice how the behavior of the filter changes with the different process models. In the case of 

a random walk (𝑥𝑘
𝑎𝑟𝑟𝑖𝑣𝑎𝑙|𝑟𝑎𝑛𝑑𝑜𝑚

), the estimation remains constant between CV measurements. 

If no measurement is available, the “time update” of the EKF algorithms is skipped and the 

predicted value (a priori estimation) is the final estimation (a posteriori). This explains the 

stepwise changes in the estimations as a measurement arrives. On the contrary, in the case 

of a historical model (𝑥𝑘
𝑎𝑟𝑟𝑖𝑣𝑎𝑙|ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐

), the historical demand (𝑑𝑘
ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐) pulls the estimations 

between the sporadic CV measurements. The latest a posteriori estimation is used as a quasi-

measurement and is fused with the historical demand. Consequently, the estimations between 

CV measurements shape a curve that is trying to “touch” the historical demand.  

The performance of the arrival rate filter, in terms of reduced error, increases naturally with the 

inclusion of the historical model. It should be stressed though, that a historical model reduces 

the ability of the filter to follow sudden changes that go against the historical pattern. 
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Furthermore, a random walk process model is very attractive for intersections with no historical 

data or for the first implementation phase. The prior knowledge of historical patterns, process 

and measurement errors is expected to improve the performance. However, the basic 

formulation of the Extended Observer allows for a general and at the same time robust fusion, 

estimation, and prediction technique, with low necessity for tuning and maintenance.   

Figure 4.14 shows the results for SG 4 (oversaturated extended peak hour). An overview of 

the used filter parameters is given in Tab. 4.2. The arrival and departure rate follow a random 

walk process. Only sporadic (5 %) CV measurements are available.  

EKF 

Parameter 

EO Parameters with Minimum Assumptions (Figure 4.14) 

Departure Rate 

(vehicles/sec) 

Arrival Rate 

(vehicles/sec) 
Queue Length (vehicles) 

 Figure 4.14(a)(b)(c) Figure 4.14(a)(b)(c) Figure 4.14(a)(b)(c) 

𝑥̂0 0.50 0.20 3.00 

𝑃0 0.102 0.102 1.002 

𝑥̂𝑘 𝑥̂𝑘−1 𝑥̂𝑘−1 𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

= 𝑥𝑘−1
𝑞𝑢𝑒𝑢𝑒

− 𝑢𝑘
𝑑𝑒𝑝

+ 𝑢𝑘
𝑎𝑟𝑟 

𝑄𝑘 0.102 0.102 𝑥̂𝑘 

𝑅𝑘 0.102 0.102 𝑄𝑘 

Tab. 4.2 Intuitive tuning of the Extended Observer with minimum assumptions  

Figure 4.14 shows the potential of the Extended Observer even with limited input. The 

estimations follow the CV measurements, that point to the sudden (upward) jumps in the 

queue. A possible moderate behavior of the filter is avoided (compare with Figure 4.9.a). At 

the same time, the estimations in Figure 4.14 mitigate the possible unstable behavior of the 

filter (compare with Figure 4.9.b). This is possible due to the inherent step-by-step prediction.  

4.4.2 Inherent Prediction 

Figure 4.14 depicts in detail the a priori estimations from the Extended Observer. The 

prediction values are responsible for not following uncritically the CV measurements and for 

providing an estimation even when no CV measurements are available.  

If there is a new measurement (𝑧69
𝑞𝑢𝑒𝑢𝑒

= 103), the estimation (𝑥69
𝑞𝑢𝑒𝑢𝑒

= 98) lays between the 

prediction (𝑥69
−𝑞𝑢𝑒𝑢𝑒

= 7) and the measurement, according to the measurement to noise 

covariance ratio. In cases where no new measurements are available (𝑧70
𝑞𝑢𝑒𝑢𝑒

), the prediction 

(𝑥70
−𝑞𝑢𝑒𝑢𝑒

= 72) equals the estimation (𝑥70
𝑞𝑢𝑒𝑢𝑒

= 72), since the measurement update of the EKF 

is skipped. Typically, the prediction has higher error than the estimation after the correction 

from the measurement. However, in some cases, the prediction might have lower error than 
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the “corrected” estimation, when a measurement with high error “misguides” the estimation. 

For example, the process equation predicts that the queue at the end of signal cycle 84 

(𝑥84
−𝑞𝑢𝑒𝑢𝑒

) will be 104 vehicles. However, because of the measurement (𝑧84
𝑞𝑢𝑒𝑢𝑒

) that identifies 

only 12 queued vehicles, the corrected final estimation (𝑥84
𝑞𝑢𝑒𝑢𝑒

) is 55 vehicles. The ground 

truth (𝑔84
𝑞𝑢𝑒𝑢𝑒

) according to the simulation is 146 vehicles.  

 

Figure 4.14 Inherent prediction in the Extended Observer 

This indicates the instability of the measurements and the high need for filtering in cases of 

oversaturation. The difference between queue estimation at the end of cycle 𝑘 and the 

prediction at the end of cycle 𝑘 comes from the new measurement during cycle 𝑘. The 

prediction or the a priori estimation (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

) at the end of cycle 𝑘 is not the same value that 

could be possibly available to the UTCS one step ahead (𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

), as described with equation 

(3.17).  

4.4.3 Additional Measurements  

The process model facilitates the filtering of error-prone and sporadic CV measurements, but 

has its limitations, independent of possible tuning efforts. For example, the first peak in Figure 

4.14 is not detected by the process model alone, because the limited CV measurements are 

observing very low queues not only for the queues but also for the arrival measurements. As 

shown in Figure 4.10, additional measurements from other sources can be useful in such 

circumstances. The abundance of measurements means that the influence of the process 

model in the fusion process can be relaxed accordingly.  
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Figure 4.15 Additional measurements in the Extended Observer 

Figure 4.15 shows the results of the Extended Observer by including measurements from 

Aggregated Section data. The process noise covariance is updated every filter step and the 

CV measurement noise covariance is updated according to equation (4.2). In addition, the 

noise covariance ratios for the Aggregated Section data is set to a lower value (0.10), in order 

to rely more on the variety of the measurements in oversaturated conditions (equation (4.3) 

and equation (4.4)). The Extended Observer can detect now the first peak and handle the 

errors from the stop-and-go during the second peak. A quick comparison with Figure 4.10, 

where constant and equal measurement and process noise covariances are implemented, 

shows the change of performance of the filter. 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

𝑄
𝑘−1
𝑞𝑢𝑒𝑢𝑒 =

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

𝑄
𝑘−1
𝑞𝑢𝑒𝑢𝑒 = 0.10  (4.3) 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒 = 1.0 (4.4) 

4.5 Summary 

Chapter 4, in combination with chapter 3, answers mainly the first research question, regarding 

the methodology for diverse measurements with an adaptive formulation. The test intersection 

is analyzed for various traffic demand and saturation levels, to cover the dynamic traffic flow 

process at signalized intersections. The wide ranges of queue length, and queue length 

variance, highlights the need for adaptive process noise covariance (section 4.2).  
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The magnitude and variance of measurements errors from CV reduces for increasing 

penetration rates, especially in undersaturated conditions. For mainly oversaturated 

conditions, the measurement noise covariance remains close to the process noise covariance.  

Depending on the traffic demand, and resulting saturation degree, the error of the CV 

measurements fluctuates between cycles. In addition, the average RMSE varies from 5 to 55 

vehicles. The choice of measurement noise covariance influences the estimation accuracy. 

Measurement errors from Aggregated Sections are naturally error-prone for cycle-to-cycle 

estimation. They depend mainly on the underlying approximate measurement equations and 

cannot improve greatly for increasing penetration rates. Their error decreases for long 

oversaturated conditions. Measurement errors from Connected Sections are low, in the range 

of their line of sight. The instability of measurement errors calls for adaptive calculation of the 

process and measurement noise variance ratio. 

Data fusion methods for UTCS must consider the operational challenges and requirements. 

The inclusion of historical models increases the accuracy but introduces a bias in the 

estimation and reduces the ability to react to unexpected changes. The inherent prediction of 

the Extended Observer can be used when no measurements are available. It reduces the CV 

measurement errors in cases of oversaturation. The combination of different measurements 

has the potential to mitigate their individual disadvantages and utilize their advantages.  

The proposed formulation avoids a cumbersome tuning effort and allows an intuitive 

formulation of fusion for UTCS. It tries to find the balance between correcting the wrong 

measurements and not discarding the accurate ones, without the need for many ad-hoc rules.   
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5. Evaluation 

The algorithms of the Extended Observer are introduced in chapter 3 and analyzed in chapter 

4, with the help of detailed equations and output diagrams. Now the attention is shifted from 

cycle-to-cycle analysis to a statistical evaluation of the results from multiple simulation runs. In 

that sense, chapter 5 tries to answer mainly the second research question, regarding the 

accuracy and potential benefit from the fusion.  

Different penetration rates and various data availability scenarios are examined, with the focus 

on low penetration rates and realistic data availability. This supports a better understanding of 

the adaptive formulation and robustness of the presented methodology. Two different 

simulation environments are used. The test intersection, as described in section 4.1, and a 

real-world intersection from the city of Verona, Italy. The former is used for various simulation 

scenarios (section 5.2) and the latter for the evaluation of the algorithms under real-world 

conditions (section 5.3). In section 5.1, the statistical tools are presented. 

The evaluation is done in isolated intersections, even though the enhanced traffic estimation 

is designed to assist UTCS, that typically operate on a network scale. This choice is made to 

allow a controlled simulation environment for an in-depth analysis and evaluation. In all 

scenarios, the randomness of the traffic state and signal control is guaranteed by the simulation 

settings. The Extended Observer works in the same way, independent if the UTCS is working 

on isolated intersections with a decentralized approach or on a network scale with a centralized 

configuration, as long as the required input data for each intersection is available. The 

proposed methodology aims to be applicable with low calibration efforts in all traffic and control 

conditions, independent of underlying UTCS.  

Generally, five main evaluation scenarios can be identified, based on the typical operational 

states for network applications [PAPAGEORGIOU, 1998A]: 

• Low demand (e.g. off-peak). 

• Expected, high demand (e.g. peak hour). 

• Unexpected, high demand (e.g. unplanned events). 

• Unexpected, reduced capacity (e.g. lane blocking). 

• Local device failures (e.g. sensor disconnection). 

The evaluation under all conditions is practically impossible, even in simple simulation 

environments for such a dynamic application area, as traffic signal control. To reach a certain 

level of confidence in the developed formulation, the following simulation scenarios cover all 

these operational states.  

Checking different levels of demands for the different signals (see also Figure 4.2) covers the 

first three operational states listed above. The unexpected, reduced capacity is simulated in 

the real-world intersection, with simulation of high percentages of Heavy Good Vehicles (HGV). 
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They reduce the capacity of the intersection drastically due to lower departure rates and 

blocking of the right turning lanes. The local device failure is included in all simulated scenarios, 

with the inclusion of errors in the measurements. Additionally, the examination of very low 

penetration rates means that for many cycles there is no traffic data communication.   

Furthermore, the proposed module is evaluated as part of the UTC loop (see also Figure 1.1). 

Tab. 5.1 shows the two main parts of the evaluation concept: 

• The Extended Observer is evaluated for its data fusion ability by checking the accuracy 

of the measurements, estimations, and predictions.  

• The Extended Observer is evaluated for its ability to support legacy signal control by 

checking the signal timings and the resulting traffic flow. 

 

Evaluation structure 

Part of the UTC Loop Input - Output Key Performance Indicators 

Data Fusion 

Extended Observer Input RMSE Measurements 

Extended Observer Output RMSE Estimation, RMSE Prediction 

Signal Control 

Signal Control Input (Signal Timings) Green Time, Cycle Time, Green Split 

Signal Control Output (Traffic Flow) Delays, Stops, Clearing Time 

Tab. 5.1 Evaluation overview  

Data Fusion 

The measurements (𝑧𝑛) from the Connected Environments and the output of the Extended 

Observer are evaluated, by comparing the Root Mean Square Error (RMSE) of the different 

simulation scenarios. The RMSE of the measurements (𝑅𝑀𝑆𝐸|𝑧𝑛) and the RMSE of the 

Extended Observer (𝑅𝑀𝑆𝐸|𝑥𝑘) are calculated with the following formulas: 

𝑅𝑀𝑆𝐸|𝑧𝑛 = √
∑ (𝑧𝑛 − 𝑔𝑛)2𝑛

𝑖=1

𝑛
 (5.1) 

𝑅𝑀𝑆𝐸|𝑥𝑘  =  √
∑ (𝑥𝑘 − 𝑔𝑘)2𝑘

𝑖=1

𝑘
 (5.2) 

with: 

𝑅𝑀𝑆𝐸|𝑧𝑛: RMSE from measurements  

𝑅𝑀𝑆𝐸|𝑥𝑘: RMSE from Extended Observer 

𝑧𝑛: measurement for signal cycle 𝑘 
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𝑛: the total number of signal cycles with available measurements 

𝑥𝑘: Extended Observer estimation for signal cycle k 

𝑘: the total number of signal cycles 

𝑔𝑛, 𝑔𝑘: ground truth according to the simulation for cycles with measurements, and for 

all cycles respectively 

The ground truth comes from the simulation environment (PTV Vissim, COM interface), by 

reading the relevant values at the start of green of the relevant signal group. The evaluation 

focuses on the queue length estimation. It is the most challenging to estimate, due to its 

instability and signal control-dependency. Moreover, it is calculated based on the parallel 

estimation of the other state variables. Thus, it can be used as overall performance indicator 

of the presented methodology. The ground truth of the queue length is calculated by reading 

the relevant queue counter at the start of green of the relevant signal group.  This gives the 

ground truth of the back-end of the queue at the start of the green. 

The RMSE is in the same units as the parameter to be evaluated. It is used typically as an 

indicator of the accuracy of measurements and estimators. It gives the distance between 

estimated (or observed) values and the true value. Generally, the accuracy of an estimator 

includes two main elements: the bias (i.e. systematic error) and the precision (i.e. random 

error) [EUROPEAN COMMISSION, 2020; WALTHER & MOORE, 2005]. This thesis focuses only on 

the comparison of the resulting accuracy of the measurements and estimations from the 

simulations. The theoretical calculation of the bias and precision is not in the scope of this 

thesis. The presented methodology has no knowledge of the accuracy from the incoming 

measurements.  

Signal Control 

To evaluate the influence of the fusion on legacy control systems, two aspects are examined: 

the utilization and the effectiveness of the legacy signal control, with the replacement of 

detectors. For the evaluation of the signal control utilization, the green time (𝐺), the cycle time 

(𝐶), and the green split (𝐺/𝐶) are used. The green split is defined as the green to cycle time 

ratio. For the evaluation of the signal control effectiveness, the average vehicle delay (𝐷), the 

average number of stops per vehicle (𝑆) and the time that is required to clear all queues are 

used. For the latter, the term Queue Clearing Time is used (𝑄𝐶𝑇). It is calculated as the time 

between the last added vehicle in the simulation and the start of the last signal cycle with no 

queued vehicles. 
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5.1 Statistical Considerations 

Microscopic simulations are increasingly used for evaluation of new algorithms and 

comparison of traffic scenarios. The significance of careful design and even more thorough 

statistical analysis has been well documented and stressed by the research community [FGSV, 

2006; DOWLING ET AL., 2004]. In the context of this thesis, extra attention must be drawn to the 

challenge of evaluating oversaturated traffic conditions. They show an instability during the 

transition from undersaturation to oversaturation, and vice versa. In addition, comparing 

different traffic control methods (fixed-time, rule-based, model-based) adds to the variability 

between simulation scenarios. In the following, the most important statistical considerations for 

the simulation set-up are presented. They are divided in two main areas: simulation settings 

and simulation results.  

5.1.1 Number of Simulation Runs 

The calculation of the minimum number of simulation runs, in order to achieve a certain 

confidence level of the results, is done based on the recommendations of the German Road 

and Transportation Research Association [FGSV, 2006] and the U.S. Federal Highway 

Administration [DOWLING ET AL., 2004]. The average vehicle delay (𝐷) is selected as the 

parameter to define the minimum number of required simulations runs. After a first series of 

simulation runs, the sample standard deviation of the average vehicle delay is calculated. The 

typical 95-perecent level of confidence is then chosen. The desired range is defined as the 

ratio of the desired confidence interval (𝐶𝐼) divided by the standard deviation of the related 

parameter. In this thesis we strive to achieve a desired range of 2, with a desired confidence 

of 95%. This results in a minimum number of simulations runs of 8. The exact calculation is 

given in [DOWLING ET AL., 2004]: 

𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% =  2 × 𝑡(1−𝑎𝑙𝑝ℎ𝑎/2),𝑁−1 ×
𝑠

√𝑁
 

(5.3) 

with: 

𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)%: (1 − 𝑎𝑙𝑝ℎ𝑎)% confidence interval for the true mean, where alpha equals 

the probability of the true mean not lying within the confidence interval. 

𝑡(1−𝑎𝑙𝑝ℎ𝑎/2),𝑁−1: Student’s t-statistic for the probability of a two-sided error summing to 

alpha with N-1 degrees of freedom, where N equals the number of 

repetitions.  

𝑠: Standard deviation of the simulation results 

To be on the safe side, all simulation results stem from 12 simulation runs per scenario. The 

standard deviation of average vehicle delays (𝑠𝑑) is chosen as examined simulated output. 

Practically, this gives an indication of the stability between the different random seeds. High 

standard deviations of delays are normal in cases of adaptive signal control, especially in 



Evaluation   81 

oversaturation. Therefore, it is decided, to fix the level of confidence (1 − 𝑎𝑙𝑝ℎ𝑎 = 0.95), the 

number of runs (𝑁 = 12), the desired range (
𝐶𝐼

𝑠
= 2) and state the resulting standard deviation 

of average delays in the detailed evaluation tables.  

5.1.2 Statistical Significance  

The statistical analysis and graphical presentation of the results is done with RStudio, an 

integrated development environment (IDE) for R [RSTUDIO, 2020]. R is a free software for 

statistical computing and graphics [THE R FOUNDATION, 2020]. The chosen statistical tests are 

typical hypothesis tests, where the null hypothesis describes the case of no difference between 

the scenarios examined. Paired, one-tailed, t-tests are used in this thesis as statistical test for 

rejecting or accepting the null hypothesis. The calculated p-value is compared with the 

predefined 𝑎𝑙𝑝ℎ𝑎 value. The typical value of 0.05 is used. If the p-value is lower than 0.05, the 

null hypothesis is rejected and the difference between the two datasets is considered 

significant. The p-value is defined as the probability of obtaining a result equal to or more 

extreme than what was observed in the data [MANGIAFICO, 2020]. The statistical significance 

(or not) is indicated together with the exact p-value for more transparency in the evaluation 

tables. The Shapiro-Wilk test is used to test if the distribution of the differences of the paired 

measurements is normally distributed to confirm the suitability of the paired t-test. If the 

differences are not normally distributed, the Wilcoxon–Mann–Whitney test is used to reject or 

accept the null hypothesis.  

For example, to evaluate the statistical significance of the difference between 𝑅𝑀𝑆𝐸|𝑧𝑛 and 

𝑅𝑀𝑆𝐸|𝑥𝑘, a paired t-test is conducted that compares the averages of 12 simulation runs (i.e. 

12 pairs of results). In addition, the difference of the averages from all simulation runs is 

calculated and given along with the results of the hypothesis testing with the following formula: 

∆𝑅𝑀𝑆𝐸% =  
𝑅𝑀𝑆𝐸|𝑥𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑅𝑀𝑆𝐸|𝑧𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑅𝑀𝑆𝐸|𝑧𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

× 100% (5.4) 

5.2 Test Intersection 

The simulation settings of the test intersection remain as are presented in section 4.1. Every 

simulation scenario assures 𝑠𝑑 below 5 seconds. In section 5.2.1, the data fusion ability of the 

Extended Observer is evaluated.  In section 5.2.2, the influence on the legacy signal control is 

evaluated. 

5.2.1 Data Fusion 

In Part I, the data availability scenario with only CV measurements is examined. In Part II, the 

combination of multiple data sources is evaluated.  



82   Data Fusion in Sporadic Connected Environments 

Part I. Connected Vehicles as Single Data Input 

In this part, the second research question, regarding the benefits and accuracy of data fusion 

is answered. The following table gives an overview of the examined research question, the key 

findings, and the practical interpretation of this part of the evaluation.  

Research Question: What is the benefit and accuracy of the data fusion, when only Connected Vehicles are available as data 

input? 

Key findings (benefits) Practical interpretation (accuracy) 

A.  The Extended Observer reduces high CV 

measurement errors in oversaturation.  

The Extended Observer can be used to 

improve error-prone and sporadic CV 

measurements through system knowledge. 

• As penetration rate increases, the fused estimations and the CV 

measurements become more accurate. 

• Fused estimations have lower RMSE (5-30% RMSE reduction) than 

the CV measurements for all penetration rates. 

• The highest and most significant RMSE reduction is observed in the 

lowest penetration rates (p<20%). 

B.  The Extended Observer retains low CV 

measurement errors in undersaturation. 

The Extended Observer can be used to keep 

the information between cycles with good 

CV measurements through system 

knowledge.  

• Higher penetration rates (p>20%) result in systematic and accurate 

CV measurements. In these cases, direct CV measurements can be 

used. 

• RMSE and RMSE reduction is highly related to the number of 

undersaturated/oversaturated cycles. 

C.  The Extended Observer retains its 

performance for various measurement 

errors, measurement equations and signal 

control methods. 

 

• Improvements from the fusion are independent of measurement 

equations. 

• Simple measurement equations are sufficient. 

• The presented formulation allows comparison of various 

measurement equations. 

• Accuracy of the fusion remains the same for different control 

methods. 

D.  The Extended Observer allows inclusion of 

expected traffic patterns. 

 

• An accurate historical model could improve drastically (35-53% 

RMSE reduction) the estimations of arrival rate. 

• There is no statistically significant influence in the estimation of the 

queue length. Random walk for arrivals is sufficient for queue length 

estimation. 

• A historical model introduces a bias and makes the filtering less 

sensitive to sudden changes.  

Tab. 5.2 Key findings and practical interpretation of the evaluation - Part I  

A. The Extended Observer reduces high CV measurement errors in oversaturation 

As discussed in chapter 4, in cases of oversaturation, measurements from CV are error prone, 

especially in low penetration rates (see also section 4.3.1, Figure 4.6). It is therefore essential 

to examine if the Extended Observer can use the error-prone measurements and improve the 

estimation for various penetration rates with statistical significance. Figure 5.1 shows the 

RMSE from the CV measurements (𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝑐𝑣

) and the fused estimations (𝑅𝑀𝑆𝐸|𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

). 

Tab. 5.3 presents the statistical evaluation.  
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Figure 5.1 Errors in oversaturation - measurements from Connected Vehicles and estimations from 
the Extended Observer 

 

Penetration 

rate of CV 

(p) 

RMSE (veh) Error Reduction 

𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝑐𝑣̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑅𝑀𝑆𝐸|𝑥̂𝑘
𝑞𝑢𝑒𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 22.51 16.92 *-24.84% *-5.59 0.03051 

p = 0.05 23.08 16.13 *-30.09% -6.94 0.00598 

p = 0.10 20.21 15.20 *-24.77% *-5.01 0.00115 

p = 0.20 18.15 15.22 *-16.13% *-2.93 0.00168 

p = 0.30 15.87 14.51 *-8.55% *-1.36 0.00789 

p = 0.40 13.86 13.16 -5.12% -0.71 0.07164 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. 5.3 Error reduction in oversaturation - measurements from Connected Vehicles and 
estimations from the Extended Observer 

The Extended Observer can utilize the CV measurements and reduce their errors by utilizing 

the process equation (3.12), providing an improved estimation. Both the CV measurements 

and the fused estimations improve naturally as the penetration rate increases. The fusion 

outperforms the CV measurements for all penetration rates. The improvement from the fusion 

is statistically significant for all penetration rates except for p=0.40. This is an indication that 
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for penetration rates above 30-40%, the CV measurements start to be reliable and 

representative of the overall traffic flow. This is consistent with all existing literature on the topic 

of connected vehicles in signal control. Hence, the rest of the evaluation will focus on the lower 

penetration rates. The potential improvement is higher for lower penetration rates. Moreover, 

the fusion avoids, as expected from any filtering method, the extreme errors. Interestingly, for 

p=0.02, there are simulation runs with very low CV errors, when the scarce CV measurements 

are representative of the ground truth.  

B. The Extended Observer retains low CV measurement errors in undersaturation 

In contrast, in cases of mainly undersaturated conditions, the RMSE from the CV 

measurements remain low because of the low and stable queues. In these cases, it is 

important that the fusion retains also low errors. Figure A.3 shows how the high errors for the 

mainly oversaturated signal (SG 4) are reduced. At the same time, the low measurement errors 

for the mainly undersaturated signal (SG 2) are maintained. Both signals use the same fusion 

formulation without any prior knowledge or assumptions for the traffic demand. Generally, 

filtering of good measurements, will slightly reduce the quality. In the case of traffic signal 

control, good measurements are mostly possible in undersaturation. 

C. The Extended Observer retains its performance for various measurement errors, 

measurement equations and signal control methods   

The results in Figure 5.1 and Tab. 5.3 come from simulation with no location error from map 

matching of the Connected Vehicles. The large errors are due to the stop and go behavior and 

low penetration rates. A critical point for the robustness of the developed methodology is the 

ability to deal with various and most importantly unknown errors. Figure A.4 shows the RMSE 

of the CV measurements for increasing location error (𝜀 = 1.50𝑚, 6.00𝑚, 12.00𝑚) and the 

resulting RMSE.  

The Extended Observer improves the CV measurements for all penetration rates and 

measurement errors in terms of RMSE reduction as before. The evaluation of the results from 

Figure A.4, showed no statistically significant dependency between the location error and the 

performance of the filter regarding RMSE reduction (i.e. with low location error vs. high location 

error). For the rest of the thesis, a location error of 6 meters is used to emulate a moderate but 

realistic, for real-world applications, error. 

The clear separation of the measurement and process equations allows the integration of 

different QLE as incoming measurement equations. The evaluation shows that the 

measurement equation (3.37) performs better than the simpler measurement equation (3.36), 

especially for lower penetration rates. This is consistent with the results from [COMERT, 2013; 

COMERT, 2016]. However, the straightforwardness and simplicity of (3.36) is very attractive for 

real-world implementations. The Extended Observer can utilize any of the measurement 

variations, for all penetration rates. It reduces the RMSE in both cases, consistently 

[PAPAPANAGIOTOU & BUSCH, 2020]. This flexibility can be advantageous for testing different 
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algorithms for CV measurements in real-world applications. In this thesis the measurement 

equation (3.37) is used for all scenarios to obtain the queue measurement equations from CV.  

Furthermore, in [PAPAPANAGIOTOU & BUSCH, 2020], the algorithms are evaluated with fixed-

time control, rule-based and model-based control. The fusion reduces the RMSE for all control 

methods, as expected, since the formulation includes the signal timings of the current signal 

cycle and not aggregated or average signal timings. However, the performance in terms of 

error reduction, is even higher for fixed-time control. The reason is, that there are more 

oversaturated cycles and thus higher measurement errors. Practically, the measurements are 

of lower quality and thus the potential of improvement is higher.  

D. The Extended Observer allows inclusion of expected traffic patterns despite cycle-to-

cycle formulation 

There are many cases where a certain historical pattern of the traffic demand might be 

recognized at signalized intersections. The integration of historical models for the arrival, 

turning, departure and penetration rate is possible with the respective process equations. 

Because of the queue dynamics, there is no historical model consideration for the queue length 

process equation. Theoretically, the historical model adds a historical bias to the estimation 

that should be avoided. Practically, this might be useful in cases of very low penetration rates 

when for many cycles no new information (measurements) is coming. The integration of the 

historical pattern allows the improvements of the CV measurements significantly (35-53%) 

[PAPAPANAGIOTOU & BUSCH, 2020]. The big improvements should be however attributed to the 

assumed accurate knowledge of the historical pattern and the high measurement errors for 

low penetration rates.  

Nonetheless, the improvements in the arrival rate estimation resulted in no significant change 

in the respective average RMSE of the queue length estimations. That means that if only the 

queue length estimation is of interest, a simple random walk implementation for the arrivals 

with no knowledge of historical patterns might be sufficient. In fact, the inclusion of a historical 

model reduces naturally the ability of the filter to react to sudden changes. All presented 

evaluation results in this thesis use typical random walk processes with no assumption of 

previous knowledge of traffic patterns for all parallel filters.  

Part II. Connected Environments as Multiple Data Input 

In the following, different data availability scenarios are examined. The following table gives 

an overview of the specific research question, the key findings, and the practical interpretation 

of the second part of the evaluation. 
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Research Question: What is the benefit and accuracy of the data fusion, when multiple Connected Environments are 

available as data input? 

Key findings - benefits Practical interpretation - accuracy 

A.  The fused estimations outperform mobile 

sensors for all penetration rates.  

The Extended Observer can be used to 

improve sporadic CV measurements through 

the inclusion of Aggregated Section data.  

• Fused estimation reduces the average RMSE from CV 

measurement from 16-26 vehicles to 10-15 vehicles.  

• In cases of very low queues and high penetration rates (p>20), the 

CV measurements remain slightly better than the fusion (ΔRMSE<1 

vehicle). 

• Measurements based on speed differences (RMSE=15-20) 

outperform measurements from travel times (RMSE=12-17) in 

oversaturation for all penetration rates.  

• The prediction errors are marginally higher than the estimation 

errors for all penetration rates (<0.5 vehicles difference). 

• The prediction accuracy stems from the inclusion of the signal 

timings in the process equation and the cycle-to-cycle correction. 

B.  The fused estimations outperform 

infrastructure-based sensors if the queue 

extends beyond their range.  

The Extended Observer can be used to 

improve infrastructure-based sensors 

through the inclusion of Aggregated Section 

data.  

• For oversaturation, fusion (RMSE=10-15) outperforms the loop-

based detection (RMSE=18-28) for all penetration rates. 

• For low queues, infrastructure-based sensors (RMSE<1 vehicle) 

outperform the fused estimation (RMSE<5 vehicles). 

• For oversaturation, fusion can improve camera measurements even 

for very low penetration rates (ΔRMSE= 5 vehicles). 

Tab. 5.4 Key findings and practical interpretation of the evaluation - Part II 

A. The Extended Observer improves CV measurements through Aggregated Section 

measurements 

In the case of low penetration rates, that is the focus of this thesis, it must be guaranteed that 

the traffic state estimation avoids high errors and sporadic information. The Extended Observer 

can fuse CV and Aggregated Section measurements to provide an enhanced traffic state 

estimation. Figure 5.2 shows the RMSE from the individual data inputs (measurements) and 

the respective fused estimation for the extended oversaturated peak (SG 4).  

The estimation and all measurements improve for increasing penetration rates. The 

measurements based on the travel time (𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

) are improving only slightly with increasing 

penetration rates. This is expected, as the errors from the travel times are mostly due to 

approximate calculation of the queue based on (3.45). The measurements based on the 

difference in velocities (𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

) gives measurements with low RMSE. This shows that 

simplified formulas for measurements without sophisticated analytical methods can be useful 

in data fusion for signal control with a predict and correct formulation.  

The fusion outperforms the measurements for all penetration rates. Tab. 5.5 shows the 

statistical evaluation of the estimation in comparison to the initial CV measurements. The 

reduction is statistically significant for all penetration rates and more drastic in comparison to 

Tab. 5.3. This is due to the correction from the added measurements from the Aggregated 
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Section data. For penetration rates p=0.05 and p=0.30 the differences are not normally 

distributed and therefore the Wilcoxon–Mann–Whitney is used for the calculation of the p-

value.  

 

Figure 5.2 Fused estimations from the Extended Observer for various penetration rates - SG 4 
extended oversaturated peak 

 

Penetration 

rate of CV 

(p) 

RMSE (veh) Error Reduction 

𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑅𝑀𝑆𝐸|𝑥̂𝑘
𝑞𝑢𝑒𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 25.80 15.47 *-40.04% *-10.33 0.00568 

p = 0.05 23.71 14.12 *-40.45% *-9.59 0.00049 

p = 0.10 19.69 11.00 *-44.15% *-8.69 0.00364 

p = 0.20 18.56 9.98 *-46.23% *-8.58 0.00407 

p = 0.30 17.00 10.27 *-39.61% *-6.73 0.00073 

p = 0.40 16.47 10.34 *-37.25% *-6.14 0.00369 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. 5.5 Error reduction in oversaturation - Measurements from Connected Vehicles and fused 
estimations from the Extended Observer 

For the same simulation scenario, the evaluation of SG 1 (Figure A.5) shows that for low 

demand and undersaturation, CV measurements have the lowest errors and Aggregated 
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Section measurements have now the higher errors. This shows clearly that a formulation is 

needed with no predefined measurement errors. The fused estimation remains very close to 

the very accurate CV measurements for all penetration rates. For high penetration rates 

(p>0.20), the fusion shows slightly higher error (around 0.5 vehicles) than the CV 

measurements.   

This indicates that the decision to set the noise covariance ratios for the Aggregated Section 

data to a lower value (equation (4.3)), in comparison to the noise covariance ratio for the CV 

data (equation (4.4)) as described in section 4.4.3 has the desired influence. In practice, this 

can be explained as a decision to potentially lose a 𝐷𝑅𝑀𝑆𝐸 of 0.5-1.0 vehicles in 

undersaturation and potentially gain a 𝐷𝑅𝑀𝑆𝐸 of 5.0-10.0 vehicles in oversaturation.  

The presented formulation has the advantage of the inherent prediction (a priori estimation) 

that comes along with any Kalman filter implementation (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

). The difference between the 

a priori estimation and the a posteriori estimation (𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

) in the cycle-to-cycle formulation 

remains always below 1 vehicle [PAPAPANAGIOTOU & BUSCH, 2020]. This is due to the 

knowledge of the signal timings (𝑢𝑘
𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑔𝑟𝑒𝑒𝑛

, 𝑢𝑘
𝑟𝑒𝑑) and the low possible state changes 

between signal cycles. The a priori estimation has typically larger RMSE than the a posteriori 

estimation for all penetration rates. The difference between queue estimation for cycle 𝑘 

(𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

) and prediction for cycle 𝑘 (𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

) stems from the new measurement during cycle 𝑘 

(𝑧𝑘
𝑞𝑢𝑒𝑢𝑒

). 

In practice, only the prediction (𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

) that is known one cycle in advance can potentially be 

used to feed an UTCS. This has naturally a larger uncertainty (see also equation (3.17)). The 

evaluation shows that there is no statistically significant difference between 𝑥𝑘|𝑘−1
−𝑞𝑢𝑒𝑢𝑒

 and 

𝑥𝑘
−𝑞𝑢𝑒𝑢𝑒

. The absolute difference remains below 0.5 vehicles with no statistically significant 

difference for all penetration rates. That is because the formulation of the arrival and departure 

filters follows a random walk and the signal timings do not present huge jumps between cycles.  

A reduction of the prediction accuracy is expected if the signal control is forced to have 

consecutives cycles with large signal timing and traffic demand differences. A typical example 

is absolute public transport prioritization in short intervals that are conflicting and interrupting 

the major flows. The a posteriori estimation however is not expected to be influenced by this, 

since the measurements are correcting the predictions at the beginning of the current signal 

cycle (i.e. the signal timings that were applied are known). The confirmation of this needs 

however further thorough analysis and goes beyond the scope of this thesis.   

B. The Extended Observer outperforms infrastructure-based sensors in cases of 

oversaturation 

Figure 5.2 shows also the RMSE from the model-based UTCS Spot/Utopia with the horizontal 

light grey lines (median and lower/upper quantiles). The fusion outperforms the loop detectors 

when the queue extends beyond the fixed-location detection point. In all other cases (i.e. SG1, 
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SG2, SG3) the queue length estimation from Spot outperforms all measurements and the 

estimation. The detectors are placed 300m away from the stop-line and can capture the 

complete queue for the other signals. A less ideal distance (i.e. 100m) would result naturally 

to reduced performance of the loop-based estimation.  

Figure A.6, Tab. A.3, Tab. A.4 of the Appendix show the difference between the queue length 

estimation from Spot (𝑆𝑘
𝑞𝑢𝑒𝑢𝑒

) based on loop detectors and the fused estimation (𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

). The 

fusion outperforms Spot for the extended oversaturated peak of SG 4 for all penetration rates. 

The average RMSE of the Extended Observer ranges around 16-18 vehicles, while the 

average RMSE from Spot is around 21-28 vehicles.  Spot outperforms the fusion consistently 

for SG 2. The average RMSE of Spot is around 2.0 vehicles while the average RMSE of the 

fusion of mobile sensors is around 5.0 vehicles, for all penetration rates. The results are 

statistically significant for all penetration rates.  

Figure A.7 and Figure A.8 in the Appendix show two cycle-to-cycle simulation runs for SG 4 

and SG 2. The main advantages of the Spot measurements are the high accuracy in low 

queues and the ability to capture zero queues perfectly. The main disadvantage is the inability 

to capture high queues beyond its range. These characteristics are valid for any infrastructure-

based estimation.  

In contrast, the main advantage of the Extended Observer is the ability to capture long queues 

and avoid extreme errors. The main disadvantage is the inability to capture zero queues if no 

infrastructure-based sensors are used.  

This limitation can be overcome by including infrastructure-based sensors in the Extended 

Observer. Figure A.9 in the Appendix shows an indicative simulation run where Connected 

Section (CS) data are fused with Aggregated Section data (only travel times). The Extended 

Observer utilizes the accuracy of the camera measurements in low queues and the ability of 

the travel times to correct the estimation in cases of oversaturation. On one hand, the Extended 

Observe practically extends the range of the camera. On the other hand, the Extended 

Observe can still capture the zero queues through the camera measurements.  

Figure 5.3 shows the RMSE for CS measurements, Aggregated Section measurements and 

fused estimations. For all penetration rates, the fused estimations have lower error as 

expected. Tab. 5.6 shows the statistical evaluation that confirms the significant reduction of 

the camera errors through the fusion with travel times. The evaluation for the other signals 

shows no statistically significant difference between the camera measurements and the fusion. 

This confirms that the fusion manages to retain the extremely low measurement errors from 

the camera. Both RMSE remain below 1 vehicle independent of penetration rates.   

The different RMSE for the cameras for different penetration rates is only a result of 

stochasticity from the microscopic simulation environment. The cameras are simulated to 

capture all vehicles in their range (10 vehicles) with stochastic error (standard deviation of 1 

vehicle). 
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Figure 5.3 Fused estimations from the Extended Observer with camera and travel times 

 

Penetration 

rate of CV 

(p) 

RMSE (veh) Error Reduction 

𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑅𝑀𝑆𝐸|𝑥̂𝑘
𝑞𝑢𝑒𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 19.66 16.80 *-14.57% *-2.86 0.04614 

p = 0.05 20.40 15.21 *-25.43% *-5.19 0.00024 

p = 0.10 19.90 14.46 *-27.34% *-5.44 0.01050 

p = 0.20 21.85 15.45 *-29.25% *-6.39 0.00049 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. 5.6 Error reduction in oversaturation - Measurements Connected Vehicles and fused 
estimations EO 

5.2.2 Signal Control 

Part III. Feeding the test intersection with the Extended Observer 

After the evaluation of the data fusion, the focus moves to the potential influence on the existing 

signal control. Tab. 5.7 gives the overview of Part III of the evaluation. The key benefits and 

indicative numbers try to give some answers to the respective research question. Detailed 

evaluation is presented after the overview table for each finding.   
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Research Question: What is the benefit and accuracy of the data fusion when it feeds an existing signal control? 

Key findings - benefits Practical interpretation - accuracy 

A.  The improved estimation results in improved 

signal control input (i.e. signal timings), by 

recognizing oversaturation. 

• The fused estimation (CV and Aggregated Section) results in signal 

timings closer to the legacy control with full detection, in comparison 

to estimation only based on CV measurements (delay reduction 23-

34% and stop reduction 19-45%). 

• The higher the penetration rate, the higher the green and cycle 

times: i.e. tendency to serve oversaturated streams.  

• For low penetration rates (p<0.20), relying solely on CV 

measurements results in lower green times, cycle times and green 

splits.   

B.  The impact of the Extended Observer on the 

signal control output (i.e. traffic flow) starts 

from very low penetration rates, by 

recognizing oversaturation and facilitating its 

clearance. 

• Fused estimations (CV and Aggregated Section) result in reduced 

delays and stops for all penetration rates and control methods, in 

comparison to using the Extended Observer only with CV 

measurements. 

• Already for extremely low penetration rates (p=0.2), the Extended 

Observer reduces the delays from 66 to 32 seconds, in comparison 

to fixed-time control.  

• For extremely low penetration rates (p=0.2), the Extended Observer 

increases the delays from 25 to 32 in comparison to legacy control 

with full detection. 

• Better queue estimation cannot guarantee reduction of delays or 

stops for the complete intersection.  

• The potential improvements on the signal control output (i.e. traffic 

flow) depends on the underlying signal control method.  

• The benefits from the fusion are higher for model-based control 

than for rule-based control. They start additionally from low 

penetration rates. 

Tab. 5.7 Key findings and practical interpretation of evaluation - Part III 

The set-up of the simulation environment allows the communication between the fusion and 

the signal control. The Extended Observer can feed two implemented signal control methods. 

A rule-based control that measures the time gaps at all approaches and a fully adaptive model-

based control (Spot/Utopia). When the feeding is activated, the signal control ignores all loop 

detectors and gets only information from the fusion, which in turn also ignores all loop 

detectors. The rule-based control simple extends the green time to cover the estimated 

queues. The model-based control uses all estimations: turning rates, (predicted) arrivals, 

departure rates and the queue length estimations. In practice, all detectors are deleted from 

the simulation environment and Spot gets values only from the Extended Observer.   

A. The improved estimation from the Extended Observer results in improved signal control 

input 

Figure 5.4 shows how the green time, cycle time and green split change for the with increasing 

penetration rates in comparison to the rule-based legacy control with full loop detection 

coverage (𝐺𝐿 , 𝐶𝐿 , (𝐺/𝐶)𝐿). Firstly, only CV measurements are used for the queue length 

estimation (𝐺𝐸𝑂
𝐶𝑉, 𝐶𝐸𝑂

𝐶𝑉 , (𝐺/𝐶)𝐸𝑂
𝐶𝑉 ). Then, additional Aggregated Section measurements are 
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included to evaluate if the improvements in estimation shown in the previous section turn into 

improvements in signal control input (𝐺𝐸𝑂
𝐶𝑉+𝐴𝑆, 𝐶𝐸𝑂

𝐶𝑉+𝐴𝑆, (𝐺/𝐶)𝐸𝑂
𝐶𝑉+𝐴𝑆) and output (Figure 5.5).  

The reference point for the evaluation is the signal timings from the legacy control: i.e. the 

difference between the resulting timings and the baseline is evaluated. The fused estimation 

results into statistically significant higher green times and green splits that are closer to the 

ones from the control with full detection (see also Figure 5.4.a, Figure 5.4.c and Tab. A.5). 

However, the enhanced estimation results also into higher cycles times that are drifting further 

away from the reference point (Figure 5.4.b). This behavior has been observed for both rule-

based and model-based control.  

 

Figure 5.4 Legacy signal control input with fused estimations from the Extended Observer 
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B. The impact of the Extended Observer on the signal control output starts from very low 

penetration rates 

Figure 5.5 and shows what is the resulting signal control output (i.e. traffic flow) in terms of 

average vehicle delays. On the left side of the diagram, the light grey boxplot (Spot) gives the 

lower reference point for the delays and the dark grey boxplot (fixed-time) gives an indication 

of the higher reference point. The fixed-time control is as shown in Figure 4.2 ,with green times 

that would theoretically cover the saturated peaks of both signal stages (i.e. calculation based 

on peak arrivals). Tab. A.6-Tab. A.11 of the Appendix show the complete statistical evaluation 

of the average number of stops and average vehicle delays.  

 

Figure 5.5 Legacy signal control output with fused estimations from the Extended Observer  
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The fusion reduces the average delays (6-22 seconds) and stops (0.60-2.10) for all penetration 

rates (Figure 5.5.a, Tab. A.6, Tab. A.7) consistently (i.e. with statistical significance). The 

biggest improvements are observed for the lower penetration rates. Figure 5.5.b shows how 

the fused estimation (dark-gold boxplot) gets much closer to the respective legacy control in 

comparison to Figure 5.5.b. This is expected, since the model-based control can utilize easier 

the state estimation. The delays from the EO-based control are 1-7 seconds higher (Tab. A.8) 

than the one from the legacy control, whereas the stops are only 0.05-0.5 higher (Tab. A.9). 

The respective difference from the EO-based control and the fixed-time control is considerably 

higher. The delays fall from 66 seconds to 26-32 seconds (Tab. A.10) and the stops from 4.7 

to 1.0 (Tab. A.11).  

This indicates that low penetration rates might never outperform full loop detection but can 

provide an alternative to traffic-dependent signal plan selection that usually takes place in real-

systems in longer intervals (e.g. 30-120 minutes). This needs further investigation and goes 

beyond the scope of this thesis. The dark-grey boxplot shows a test scenario where the model-

based control runs with full loop detection and just uses the queue estimation from the 

Extended Observer for queue correction. Even though the provided queue estimation is more 

accurate in comparison to only loop detection, there is no improvement in the control output. 

In fact, the performance of the control slightly decreases. This shows that queue correction 

towards the ground truth does not guarantee optimal control overall. However, it can be 

effectively used for targeted improvements of oversaturated approaches, especially in cases 

of missing or faulty detection. 

In [PAPAPANAGIOTOU & BUSCH, 2020] the queue correction from the Extended Observer has 

shown to reduce the delays (15-27%) for the oversaturated signal and the overall intersection 

(2-15%), in comparison to legacy control with one missing detector on the main oversaturated 

approach. Furthermore, in [PAPAPANAGIOTOU & BUSCH, 2020], camera measurements are 

utilized for low queues and CV for higher queue values. The improvements in the control are 

not as big as the improvements in queue length estimation. The controller is limited by 

maximum green times and must consider the other directions too. Hence, it cannot always fully 

serve very long queues, even if they are correctly estimated. 

5.3 Real-world Intersection 

In this section the performance of the Extended Observer is evaluated with the help of 

microscopic simulations of an intersection in the city of Verona, Italy, where the UTCS 

Spot/Utopia is operating (Figure A.11). First the simulation settings are presented with brief 

description of the implementation, calibration, and validation efforts. Then, the evaluation 

results are presented for realistic low penetration rates. In section 5.4, it is described how the 

formulation is validated as a Proof of Concept (PoC) for real-world implementation. The 

developed technical architecture in the case of feeding Spot/Utopia is presented and some 

recommendations for potential future implementations are given. 
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5.3.1 Settings 

Implementation 

The Extended Observer gets the measurements from the simulation environment through 

COM API and feeds the simulated Spot controller through the Spot/Utopia communication 

protocol. All algorithms are developed in C++ based on a free variable-dimension EKF library 

[ZALZAL, 2006] and run parallel with the simulation (runtime always below 1 sec). Even though 

the development is purely scientific, it’s applicability has been proven in real-world conditions 

(see section 5.4).  

The duration of each simulation run is 2 hours with 12 simulation runs per scenario and cool 

down phase until all vehicles leave the network (at least 15 minutes). Four days (Monday-

Thursday) of a typical week (April 2017) are taken and each is repeated with three different 

random seeds to reach 12 simulation runs that cover sufficiently stochastic variations. The 

fusion ignores all loop detectors and makes no use of historical traffic patterns. There is no 

tuning of the algorithms in comparison to the test intersection implementation described before.  

The only needed recalculation is the parameters 𝛼 and 𝛽 of the approximate power function 

for the travel time measurements, exactly as described for the test intersection  

(see also Figure A.2). To calculate 𝛼 and 𝛽 two random historical days (March 2017) were 

simulated to get the minimum travel time (approximates the free flow travel), maximum travel 

times and maximum queue length. The power function gives only an approximation of the 

congestion and hence there is no need for extra tuning efforts. In fact, these random days are 

simulated with a different control method (rule-based) to guarantee no fitting of the power 

function to the Spot control. The travel time measurement locations are identical to the real 

road sections of a certain traffic data provider.  

Calibration and Validation 

For the calibration, real detector data from Spot/Utopia are used to get the traffic demand and 

the turning movements. The traffic signal control is emulated in the microscopic simulation by 

running Spot/Utopia locally and communicating with the simulation environment (PTV Vissim) 

in real-time. The validation is done by comparing the average travel times from the simulation 

with data from traffic data providers. The validation is by no means perfect but is considered 

sufficient for the comparative evaluation of scenarios that is aimed here. Figure A.12 shows 

indicative datasets used for the calibration and validation.   

Many traffic data providers have been examined in the scope of this work for the specific 

intersection and in general, regarding traffic data format, coverage, and resolution. The exact 

penetration rate of Connected Vehicles is not published, and varies greatly between countries, 

cities and even intersections. A real-world penetration rate of 5-15% is considered realistic 

from all traffic data experts that were interviewed for this thesis. However, the hands-on data 

analysis indicated much lower penetration rates.  
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5.3.2 Results 

Part IV. Feeding the real-world intersection with the Extended Observer 

The results of this section focus on the signal control output. The data fusion evaluation shows 

that all key findings remain valid for multiple lanes and signal stages and is therefore not 

repeated here. Tab. 5.8 gives the overview of the last part of the evaluation that examines the 

performance of the EO-based control under realistic conditions.  

Research Question: What is the benefit and accuracy of the data fusion when it feeds a real-world signal control? 

Key findings - benefits Practical interpretation - accuracy 

A.  The Extended Observer provides a reliable 

alternative to loop detectors.  

• The Extended Observer can accelerate the clearing of the queues 

up to 41% in comparison to model-based control. 

• The Extended Observer retains similar level of performance 

regarding delays and stops, in comparison to loop detectors, with 

slight decrease of delays (-4 seconds) and insignificant increase of 

stops.  

• The benefits start from very low penetration rates 2-5%. 

• The benefits do not increase significantly as the penetration rate 

increases.  

B.  The Extended Observer is robust against 

unexpected extreme changes in demand 

and capacity.  

• As duration of oversaturation increases, the reduction of the 

clearing time increases too. 

• The Extended Observer can be used with minimum filter tuning to 

improve any fixed-time control.  

• The Extended Observer can be used as basis for adaptive control 

with minimum signal configuration efforts 

• Adaptive control with ideal loop detection topology and good signal 

configuration is always superior in low penetration rates. 

Tab. 5.8 Key findings and practical interpretation of evaluation - Part IV 

A. The Extended Observer provides a reliable alternative to loop detectors 

Figure 5.6 and Tab. 5.9 depict the evaluation results for penetration rate p=0.05 for the early 

morning peak 06:15-08:00. An overview of all parameters are contained in Tab. A.12. Four 

control scenarios are presented: 

• Fixed-time: The fixed-time control that is based on the maximum configured green 

times for all signals.  

• Spot-faulty detection: The real Spot as runs on the field, where the entry detector for 

SG-3050-1 and the exit detector for the respective free right turners are not working.  

• Spot-full detection: The planned Spot as if the two detectors were working. 

• Spot-EO: The control where the Extended Observer feeds Spot with turnings, 

departures, arrivals, and queue length estimation.  
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Figure 5.6 Signal control output for real-world intersection, Spot with Extended Observer.  

 

p=0.05, 06:15-08:00 
Spot with EO vs. Spot with faulty 

detection 

Spot with EO vs. Spot with full 

detection 

Delay (sec) Delay reduction Delay reduction 

𝐷𝑆𝑝𝑜𝑡
𝑓𝑎𝑢𝑙𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 𝐷𝑆𝑝𝑜𝑡
𝑓𝑢𝑙𝑙̅̅ ̅̅ ̅̅ ̅

 𝐷𝑆𝑝𝑜𝑡
𝐸𝑂̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

34.87 31.59 30.55 *-12.38% *-4.32 6.3e-05 -3.29% -1.04 0.1101 

Stops Stops increase Stops increase 

𝑆𝑆𝑝𝑜𝑡
𝑓𝑎𝑢𝑙𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑆𝑆𝑝𝑜𝑡
𝑓𝑢𝑙𝑙̅̅ ̅̅ ̅̅ ̅

 𝑆𝑆𝑝𝑜𝑡
𝐸𝑂̅̅ ̅̅ ̅̅ ̅ 𝛥𝑆%̅̅ ̅̅ ̅̅  𝛥𝑆̅̅̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 𝛥𝑆%̅̅ ̅̅ ̅̅  𝛥𝑆̅̅̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

0.66 0.65 0.67 +0.75% +0.005 0.2895 *+2.69% *+0.0175 0.0361 

Queue Clearing time (min) Queue Clearing time reduction Queue Clearing time reduction 

𝑄𝐶𝑇𝑆𝑝𝑜𝑡
𝑓𝑎𝑢𝑙𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑄𝐶𝑇𝑆𝑝𝑜𝑡
𝑓𝑢𝑙𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑄𝐶𝑇𝑆𝑝𝑜𝑡
𝐸𝑂̅̅ ̅̅ ̅̅ ̅̅  𝛥𝑄𝐶𝑇%̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝛥𝑄𝐶𝑇̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 𝛥𝑄𝐶𝑇%̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝛥𝐶𝑇̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

8.6 6.3 5.1 *-41.02% *-3.5 3.3e-06 *-19.45% *-1.2 0.0145 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. 5.9 Signal control output for Verona intersection, Spot with and without Extended Observer 
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The signal control configuration (i.e. stage sequence, minimum and maximum stage duration) 

remains identical for all above scenarios. In the highest demand peak, the maximum green 

times are reached for all controls. 

In comparison to the fixed-time control, the Extended Observer reduces the average vehicle 

delay to 30 seconds (from 75 seconds), the average number of stops to 0.67 (from 1.18) and 

the clearing time to 5 minutes (from 12 minutes). In comparison to the real Spot control, the 

delay reduction from the fusion is -12% and the clearing time reduction reaches -41% (both 

statistically significant). The increase in stops is trivial and not statistically significant. In 

comparison to the planned Spot control, the delay and clearing time reduction are -3% and -

19% respectively (both statistically significant). The increase in stops is +3% and statistically 

significant with p=0.0361.  

Overall, the Spot-EO achieves lower delays and faster clearing of the queue, in comparison to 

both the real (i.e. faulty detection) and planned (i.e. full detection) control. The slight increase 

in terms of stops and the high reduction in terms of clearing time indicates the change in 

behaviour of Spot through the feeding of the Extended Observer. The lack of knowledge of 

exact individual vehicle arrivals is balanced out by the recognition of the oversaturation. Note 

that the planned Spot-control (detector distance from stop line around 100m) is not an ideal 

topology, where longer distances are needed. This lower than optimal distance is however 

extremely typical for real-world implementations for reduction of cabling and digging costs.  

B. The Extended Observer is robust against unexpected extreme changes in demand and 

capacity 

The following simulation results aim to test the robustness of the filtering. It is examined if the 

influence on the control remains the same in extreme demand, and capacity discrepancies, 

even if the signal configuration is of low quality. For that, an even lower penetration rate is 

chosen (p=0.02). Moreover, the simulation starts directly in the peak hour (7:00-09:00 and 

17:00-19:00). This adds an extra challenge, because of the abrupt and lengthy oversaturation. 

Furthermore, extreme percentage of HGV (20%) is introduced. In the previous presented 

results (Part V-A), an assumption of a moderate 5% HGV is made due to the lack of detailed 

classification data for the specific intersection. 

Another configuration is introduced for the following results (Part IV-B): Spot*-EO. Here, the 

control is configured with increased maximum stage length for serving SG-3050-7 

(south→west movement). To put this in perspective, the Spot-loops (full detection) allows 

green times for SG-30-50-7 between 12-21 seconds that fit greatly the traffic demand, whereas 

the Spot*-EO is configured to allow green times for SG-30-50-7 between 12-48 seconds. This 

way, any overestimation would lead to extreme reduction of performance. The maximum signal 

timings for the other decisive signal groups (SG-30-50-1 and SG-30-50-2) remain the same 

for both Spot*-EO and Spot-loops. Their range is already high (27-63 seconds and 36-72 

seconds respectively). Spot*-EO should be regarded as a control that has very low need for 

configuration and allows high signal timing variations (or degraded adaptive control).  
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Figure A.13 and Tab. A.13 show the results of the described extreme scenario. The jump in 

delays, stops and clearing time is observed for all signal control methods due to the reduction 

of capacity from the high number of HGV. As before, the Spot*-EO results in increased delays 

(from 43-56 sec to 46-67 sec) and stops (from 0.75-0.85 to 0.83-1.0), in comparison to the full 

detection. They both remain much lower than the respective delays (142-161 sec) and stops 

(2.0-2.15) of the fixed-time control. The Spot*-EO achieves again lower clearing times (5.8-

18.9 minutes) in comparison to the full detection (6.8-20.7 minutes). This shows that the 

Extended Observer supports a faster clearing of the queues in extreme conditions even if the 

configuration is far from optimal. The results were confirmed for both peak hours. Figure A.14 

shows additionally the results for the moderate HGV percentage (5%) for both peak hours. The 

performance of the fusion remains similar for both peak hours despite the different traffic 

demand combination.  

5.4 Proof of Concept 

Technical Architecture 

The algorithms of the Extended Observer do not require microscopic simulations. Microscopic 

simulations (PTV Vissim) are used in this thesis for systematic analysis and evaluation 

(chapters 4 and 5 respectively) in absence of enough real-world Connected Vehicles. At the 

same time, a Proof of Concept (PoC) is developed for verification of the applicability of the 

Extended Observer in a real-world environment. Figure 5.7 illustrates all the necessary 

modules and interfaces that are developed and tested in the scope of this thesis.  

The Extended Observer is extended with an interface that fetches the Connected 

Environments data. The most prominent traffic data providers (Here, Inrix, TomTom) are 

integrated thought REST API and provide the Aggregated Section (AS Server-Client) 

measurements. A mobile app is developed to provide Connected Vehicle (CV Server-Client) 

measurements through AMQP (Advanced Message Queuing Protocol). The Connected 

Environments Interface is part of the Extended Observer but can be used without the data 

fusion just for monitoring purposes. The last part to complete the PoC is the remote 

communication with the existing traffic signal control (Spot client-server communication). This 

is developed and tested in the chair of Traffic Engineering and Control with the support of 

Swarco AG.   

Recommendations 

The PoC is completely developed and validated but not tested on the field. The minimum input 

requirements are typical real-time signal data and real-time traffic data. The signal data must 

be available at least every cycle, optimally every 1-3 seconds. The minimum traffic data 

required are aggregated travel times and/or speeds. Optimally, individual Connected Vehicles 

should be available. Of course, the available loop detectors can be integrated to the fusion. 
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The Extended Observer integrates measurements for each intersection separately. Therefore, 

it can be used to feed adaptive intersections locally or centrally. It is tested in this thesis at 

isolated intersections to examine in detail its data fusion potential and influence on the control. 

However, if in the real-world the incoming data are predominately Aggregated Section data (as 

expected in the transition phase with low penetration rates), it is reasonable to consider the 

data fusion as part of an UTCS that uses a macroscopic view of the traffic flow. In that case, 

the Extended Observer can provide enhanced traffic state estimation and prediction both at 

the intersection level and at the link level. The output of the data fusion can easily find 

implementations in many traffic flow modelling approaches.  

 

Figure 5.7 Extended Observer Proof of Concept - backend developments  

Even though the Extended Observer is designed to work without any knowledge of the 

accuracy of the measurements, it is vital to provide transparency to the cities before, during 

and after the implementation. The quality of the measurements from low penetration rates not 

only varies greatly between intersections, cities, and countries, but also varies during the day. 

The analysis of the input (measurements) and output (estimations, predictions) should not be 

underestimated for real-world implementations. This should allow clear Service Level 

Agreements (SLA) between traffic data providers, traffic signal control providers and cities. 

Figure 5.8 illustrates the developed software modules for the PoC. In the scope of this work a 

web-application is also developed, to assist the state-of-the-art analysis, the developments 

and the implementation of the PoC [NOACK, 2018; NOACK ET AL., 2019]. The algorithms of the 
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PoC are the same as the algorithms analyzed and evaluated in the simulation environment 

(chapters 4 and 5 respectively). The input can be switched from simulation input to real-world 

input, or use both at the same time. Furthermore, the Extended Observer can use for example 

Aggregated Section measurements from the real-world and CV measurements from the 

simulation environments as input. This flexibility opens additionally the possibility to tune the 

algorithms based on simulations before implementation.  

 

Figure 5.8 Extended Observer Proof of Concept - frontend developments 
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5.5 Summary 

The Extended Observer combines the sporadic measurements from Connected Vehicles with 

the process equation to keep a robust estimation, under varying traffic conditions. In 

oversaturation, the fusion reduces the high CV measurements errors, while in undersaturation 

avoids filter deviations. The highest benefit is observed for lower penetration rates (p<20%) 

and oversaturation. For higher penetration rates in undersaturation, the fusion cannot improve 

the already very good CV measurements but keeps the quality until the next measurement is 

available. The performance of the data fusion module is independent of the signal control 

method, measurement errors and underlying measurement equations. Simple formulas can 

be used and compared easily through the predictor-corrector formulation. In addition, historical 

models can be utilized to improve arrival rate estimation. This however introduces a bias to the 

estimation and reduces the ability to adapt to abrupt changes (Tab. 5.2 - Part I).  

Introducing multiple measurements allows the Extended Observer to improve its performance. 

Aggregated Section data (travel times and speeds) can be used to improve CV measurements 

in oversaturation even further. The fusion outperforms infrastructure-based sensors for 

oversaturation that extends beyond their range. The example of fusion from camera and travel 

time measurements shows the potential of combining infrastructure and mobile sensors  

(Tab. 5.4 - Part II). 

The enhanced fused estimation, with Aggregated Section data, results in an improved signal 

control, in comparison to a control based solely on filtering of CV. The fused estimation pushes 

the legacy control to account for the oversaturated approaches. This however leads to higher 

green and cycle times. The improvements from the fusion can be seen also in the resulting 

traffic flow. The Extended Observer not only recognizes congestion but accelerates its 

clearance too. The effects are significant even for very low penetration rates, where delays 

and stops are reduced in comparison to fixed time drastically. As expected, mobile sensors 

cannot make the legacy control work better than it is configured for. The model-based legacy 

control can utilize the fusion significantly better than the rule-based control, as it utilizes more 

information from it, such as arrivals and departures (Tab. 5.7 - Part III). 

The evaluation of the real-world intersection shows that the Extended Observer can easily be 

used for topologies with multiple lanes, more complicated signal group stages, real traffic 

demand, and typical signal configuration. The control based on the Extended Observer 

outperforms the legacy control in terms of queue clearing time for realistic low penetration rates 

(5%). The fusion reduces slightly the delays, while the stops increase marginally. Furthermore, 

the fusion shows robustness when tested with extreme demand and supply unpredictability 

(Tab. 5.8 - Part IV).  

The applicability in the real-world has been validated with the development of a PoC for the 

UTCS Spot/Utopia for the same intersection that is used for the simulations in Verona, Italy. 
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6. Conclusions and Outlook 

The term adaptive has been established in the domain of signal control to describe different 

levels of Urban Traffic Control Systems. It refers to adapting signal timings, based on real-time 

measurements. This thesis suggests that the notion of adaptivity should not be restricted to 

signal timings. In future urban environments, it will be essential to adapt the data input, based 

on diverse sensors and communication technologies.  

The emerging Connected Environments in urban areas promise great benefits for Urban Traffic 

Control Systems. However, the available data vary greatly in resolution and accuracy, 

especially for the currently low penetration rates (1-15%). Trajectories of individual Connected 

Vehicles are very scarce. Typically, only Aggregated Section measurements, such as travel 

times, speeds, and delays from Floating Car Data are available. According to simulation 

studies, higher penetration rates (25-40%) are needed to achieve tangible benefits for the state 

estimation and control. Current Urban Traffic Control Systems are designed to work with 

measurements from all incoming vehicles and not only from a small sample size. Therefore, 

uncertain measurements from Connected Vehicles are hard to integrate in the control. This 

leaves a new range of sensors outside of the perspective of the signal control.  

The analysis of different data sources shows that Connected Vehicles measurements vary 

greatly in different locations and times of the day. Especially in low penetration rates, their 

potential lies in their range, and not in their accuracy. Data fusion methods facilitate enhanced 

traffic state estimation from multiple sensors, and can accelerate the integration of Connected 

Environments in Urban Traffic Control Systems. Therefore, a module for sensor and data 

fusion for signal control is introduced in this thesis. Its development builds on robust algorithms, 

that capture the highly dynamic problem of traffic state estimation and control. The goal is to 

provide a formulation that is not only independent of the varying data availability, but also 

independent of the underlying signal control method. 

State-space formulation of dynamic controlled systems allows a straightforward and 

extendable problem formulation. The Extended Kalman Filter estimates the state of a 

controlled process and allows the integration of measurements from multiple sensors. Direct 

and indirect measurements, with different errors, are fused via a predictor-corrector 

formulation. The prototypical data fusion module developed in this thesis, the Extended 

Observer, builds on the Extended Kalman Filter, to estimate the queue length, arrival, 

departure, turning and penetration rate. The main process equation for queue length 

estimation is developed based on the conservation law and the signal timings. The design of 

the Extended Observer allows the combination of multiple filters for robust estimation. Practical 

measurement equations for various sensor types, that can be used for cycle-to-cycle correction 

of the a priori estimation, are presented. Furthermore, a detailed description of the adaptive 

formulation shows how to update the measurement vector and measurement noise covariance 
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at every filter step. This allows a generic formulation with variable-dimension measurement 

vector and adaptive noise covariances.  

The cycle-to-cycle analysis confirms the high instability of queues around saturation. It also 

validates the increasing queue variance for increasing queues. This emphasizes the need for 

a dynamic calculation of the process noise covariance. Regarding the measurement errors, 

the penetration rate is shown to influence the errors from Connected Vehicles, mainly for 

undersaturated conditions. In oversaturated conditions, the main source of uncertainty is the 

stop-and-go behavior of the vehicles and therefore the measurement errors are significantly 

higher for all penetration rates. This high variability of the measurement errors indicates that 

the measurement noise covariance from mobile sensors should not be set as a fixed value. It 

is proposed to reduce the measurement noise covariance for increasing penetration rates. At 

the same time, it is proposed to increase the measurement noise covariance for higher queues. 

Aggregated Section measurements recognize oversaturated conditions, even though they can 

only offer a rough approximation of the queue.  Connected Section measurements from 

cameras are very good in their range, but unable to capture longer queues. Overall, this 

variability und unpredictability of measurement and process errors confirms the need for 

adaptive data fusion formulation.  

The suggested formulation of the Extended Observer considers additionally the operational 

requirements. The operators emphasize the need not only for accuracy and coverage, but also 

for transparency, simplicity, and flexibility. The proposed algorithms are designed to work with 

uncertainty in measurement errors. Moreover, the Extended Observer requires low 

computational resources, without the need to store historical data. Nevertheless, the possibility 

of historical data inclusion is also given with the proposed formulation. Furthermore, the 

Extended Observer supports an intuitive tuning, by adjusting only the measurement to process 

covariance ratio. This should allow the operators to adjust the weighting of the measurements, 

depending on the local availability and accuracy. This way, the Extended Observer can be 

used to enhance existing infrastructure sensors in oversaturation or even replace them. The 

Proof of Concept developments for the state-of-the-art Urban Traffic Control System 

Spot/Utopia validate the feasibility of the prototypical module. 

The evaluation results from the test intersection show that the highest benefit from the fusion 

of isolated measurements from Connected Vehicles occurs for oversaturated conditions for 

low penetration rates (<20%). The fusion reduces the high Root Mean Square Error from the 

measurements between 16-30%. The measurements are combined with the process equation 

and improve the estimation through system knowledge. Fusion of CV measurements becomes 

obsolete in undersaturated conditions and high penetration rates (>20%). The benefit in that 

case is the retaining of the quality for cycles with no measurements. Moreover, it is shown that 

simple measurement equations are sufficient with a predictor-corrector formulation due to the 

regular updates. At the same time, the fusion performance is independent of the signal control 

and measurement error.  
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Enhanced fusion of measurements from Aggregated Section data with measurements from 

Connected Vehicles reduces the Root Mean Square Error even further (37-46%). The fused 

estimation shows lower errors than the individual data sources. In comparison to control based 

solely on Connected Vehicles, the fused estimation reduces the average delay and number of 

stops between 23-34% and 19-45% respectively. Aggregated Section data improve the 

estimations that go beyond the infrastructure range. For example, fusion of travel times with 

camera measurements improves the measurements from cameras between 14-29%. The 

results suggest that the fused estimation leads to dramatically lower average delays and 

number of stops, in comparison to fixed-time control, even for very low penetration rates (2%). 

The average delays reduce from 66 to 32 seconds and the average number of stops reduce 

from 4.7 to 1.5.  However, legacy control with full detection performs better than a control 

based on fused estimation of mobile sensors. The average delays and number of stops with 

full detection are 25 seconds and 1.0 respectively. 

The evaluation results from the real intersection indicate that replacing entirely infrastructure-

based sensors with mobile sensors in low penetration rates, changes the behavior of the 

control. The control favors oversaturated approaches, since mobile sensors observe higher 

queues than infrastructure sensors. This leads to higher green times for the oversaturated 

approach and higher cycle times. The overall performance of the control, in terms of average 

delays and number of stops, remains similar. Hence, data fusion methods are considered a 

reliable alternative to infrastructure-based sensors for oversaturated conditions.  Mobile 

sensors have the advantage to accelerate the clearance of queues even for very low 

penetration rates (<5%). It is also shown that the proposed predictor-corrector formulation is 

robust in cases of unpredictable extreme conditions. High traffic demand peaks and high truck 

rates are examined. The performance of the fusion and the control remains consistent, without 

any prior knowledge of historical demand or vehicle composition. 

The control in low penetration rates is bound to be less efficient in terms of stops and delays, 

since the exact arrival or platooning of vehicles is not known. This is the biggest shortcoming 

from low penetration rates in signal control that is not covered in this thesis. In addition, on-

demand phases cannot be served with the accuracy achieved from infrastructure-based 

sensors for low penetration rates. The detection and prediction of the exact arrival of individual 

vehicles is more important for the control, in comparison to the cycle-to-cycle estimation of 

queues and arrivals, especially in undersaturated conditions.  

To fill this gap, extending the state vector to capture vehicles in shorter segments, and following 

individual vehicles, should be further investigated. The presented second-by-second 

formulation can be the basis for such extension. Furthermore, the measurements from 

Connected Vehicles shall be expanded to include more detailed information from the ego-

vehicle (e.g. vehicle type, headways), as well as information from Vehicle-to-Vehicle 

communication (e.g. relative acceleration). The use of Extended Kalman Filter as basis, opens 

the door to tracking of Connected and Automated Vehicles. This flexibility of the Extended 
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Observer to cover a wide range of sensor types might be its greatest asset, not only for legacy 

but also for future systems.  

Even though the proposed methodology is designed for Urban Traffic Control Systems, traffic 

state estimation and prediction might be equally valuable to other Dynamic Traffic 

Management applications. For example, travel time prediction, route recommendation, signal 

performance analytics and control of individual vehicle trajectories (e.g. Green Light Optimal 

Speed Advisory, platooning of Connected and Automated Vehicles) would benefit from the 

Extended Observer. Other future work includes examining further the robustness of the fusion 

module, in relation to other critical aspects of signal control, such as Public Transport 

prioritization, vehicle fleet composition, signal coordination, pedestrians, and bicyclists. 

In the short-term, mobile sensors are expected to assist current Urban Traffic Control Systems 

to identify long queues, warn for upcoming congestion and evaluate the performance of the 

signal control.  As the penetration rates increases, strategic inductive loop detectors, that are 

utilized for macroscopic traffic flow estimation, might be gradually replaced from mobile 

sensors. In the long-term, Vehicle-to-Infrastructure and Vehicle-to-Vehicle communication 

should reduce the number of infrastructure-based sensors even further. Still, inductive loop 

detectors are considered in many cases necessary, to ensure safe intersection crossing and 

might be necessary even in very high penetration rates. The robust development of the existing 

systems, in a way that allows multiple sensor types to be integrated, is very important for safe 

and effective signalized intersections. 

Last but not least, there is an increased interest in light Urban Traffic Control Systems, with 

low installation and maintenance costs, by cities internationally. A predictor-corrector data 

fusion formulation could be used for estimation and prediction, with minimum sensor 

requirements. The expectations from the mobile sensors, in the transition phase of Urban 

Traffic Control Systems, should not be to outperform full infrastructure-based detection. Yet, 

this thesis indicates that appropriate data fusion methods will achieve stable and adequate 

level of service, even in low penetration rates.  
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𝑊𝑘[𝑖,𝑗] Jacobian matrix of 𝑓() with respect to 𝑤 matrix Equation (3.4) 
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Symbol Description Vector/Matrix/Unit: Definition in: 

𝑃𝑘
− A priori estimate error covariance matrix Figure 3.1 

𝑃𝑘 A posteriori estimate error covariance matrix Figure 3.1 

𝐾𝑘 Kalman gain matrix Figure 3.1 

𝑥𝑘
𝑞𝑢𝑒𝑢𝑒

 Actual queue length (maximum queue at 

beginning of green) 
vehicles 

Tab. 3.1 

𝑥𝑘
𝑎𝑟𝑟 Actual arrival rate vehicles/second Tab. 3.1 

𝑥𝑘
𝑑𝑒𝑝

 Actual departure rate vehicles/second Tab. 3.1 

𝑥𝑘
𝑡𝑢𝑟𝑛 Actual turning rate % Tab. 3.1 

𝑥𝑘
𝑝𝑒𝑛

 Actual penetration rate % Tab. 3.1 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝐸

 Queue measurements from all 

Connected Environments 
vector 

Tab. 3.2 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝐸

 Arrival rate measurements from all 

Connected Environments 
vector 

Tab. 3.2 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝐸

 Departure rate measurements from all 

Connected Environments 
vector 

Tab. 3.2 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝐸

 Turning rate measurements from all 

Connected Environments 
vector 

Tab. 3.2 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝐸

 Penetration rate measurements from all 

Connected Environments 
vector 

Tab. 3.2 

z𝑘
CS Measurements from Connected Section 

(e.g. camera) 
vector 

Tab. 3.2 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

 Queue measurements from Connected 

Section (e.g. camera) 
vehicles 

Tab. 3.2 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑆

 Arrival rate measurements from 

Connected Section (e.g. camera) 
vehicles/second 

Tab. 3.2 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑆

 Departure rate measurements from 

Connected Section (e.g. camera) 
vehicles/second 

Tab. 3.2 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑆

 Turning rate measurements from 

Connected Section (e.g. camera) 
% 

Tab. 3.2 
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Symbol Description Vector/Matrix/Unit: Definition in: 

z𝑘
𝐶𝑉 Measurements from Connected 

Vehicles (e.g. V2I) 
vector 

Tab. 3.2 

𝑧𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

 Queue measurements from Connected 

Vehicles (e.g. V2I) 
vehicles 

Tab. 3.2 

𝑧𝑘
𝑎𝑟𝑟|𝐶𝑉

 Arrival rate measurements from 

Connected Vehicles (e.g. V2I) 
vehicles/second 

Tab. 3.2 

𝑧𝑘
𝑑𝑒𝑝|𝐶𝑉

 Departure rate measurements from 

Connected Vehicles (e.g. V2I) 
vehicles/second 

Tab. 3.2 

𝑧𝑘
𝑡𝑢𝑟𝑛|𝐶𝑉

 Turning rate measurements from 

Connected Vehicles (e.g. V2I) 
% 

Tab. 3.2 

𝑧𝑘
𝑝𝑒𝑛|𝐶𝑉

 Penetration rate measurements from 

Connected Vehicles (e.g. V2I) 
% 

Tab. 3.2 

z𝑘
𝐷𝑉 Measurements (from Difference in 

Velocities) from Aggregated Section 

(e.g. aggregated FCD), only for queue, 

as below 

vector 

Tab. 3.2 

z𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

 Queue measurements (from Difference 

in Velocities) from Aggregated Section 

(e.g. aggregated FCD) 

vehicles 

Tab. 3.2 

z𝑘
𝑇𝑇 Measurements (from Travel Time) from 

Aggregated Section (e.g. aggregated 

FCD), only for queue, as below 

vector 

Tab. 3.2 

z𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

 Queue measurements (from Travel 

Time) from Aggregated Section (e.g. 

aggregated FCD) 

vehicles 

Tab. 3.2 

𝐶𝑉𝑘
𝑞
 Last queued Connected Vehicle at the 

start of signal cycle 𝑘 
- 

Figure 3.5 

𝑇𝑘
𝑞
 Timestamp from 𝐶𝑉𝑘

𝑞
 seconds Figure 3.5 

𝑆𝑘
𝑞
 Location of 𝐶𝑉𝑘

𝑞
 meters Figure 3.5 

𝑉𝑘
𝑞
 Speed of 𝐶𝑉𝑘

𝑞
 km/h Figure 3.5 

𝐿𝑘
𝑞
 Position of 𝐶𝑉𝑘

𝑞
 in the queue # Figure 3.5 

𝑀𝑘
𝑞
 Total number of Connected Vehicles in 

the queue at the start of signal cycle 𝑘 
# 

Figure 3.5 
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Symbol Description Vector/Matrix/Unit: Definition in: 

𝑇𝑘
𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

 Time duration from start of signal cycle 

𝑘 until 𝐶𝑉𝑘
𝑞
crosses the stop line 

seconds 
Figure 3.5 

𝐶𝑉𝑘
𝑗
 Last Connected Vehicle that joined the 

queue during signal cycle 𝑘 
- 

Figure 3.5 

𝑇𝑘
𝑗
 Timestamp from 𝐶𝑉𝑘

𝑗
 seconds Figure 3.5 

𝑆𝑘
𝑗
 Location of 𝐶𝑉𝑘

𝑗
 meters Figure 3.5 

𝑉𝑘
𝑗
 Speed of 𝐶𝑉𝑘

𝑗
 km/h Figure 3.5 

𝐿𝑘
𝑗
 Position of 𝐶𝑉𝑘

𝑗
 in the queue # Figure 3.5 

𝑀𝑘
𝑗
 Total number of Connected Vehicles in 

the queue at the end of signal cycle 𝑘 
# 

Figure 3.5 

𝑇𝑘
𝑗𝑜𝑖𝑛𝑖𝑛𝑔

 Time duration from start of red time of 

cycle 𝑘 until 𝐶𝑉𝑘
𝑗
joins the queue 

seconds 
Figure 3.5 

𝐶𝑆𝑉𝑘
𝑞
 Last queued vehicle detected by the 

Connected Section at the start of signal 

cycle 𝑘 

- 

Figure 3.6 

𝐷𝑘
𝑞
 Total number of vehicles in range 

departing the queue 
# 

Figure 3.6 

𝐶𝑘
𝐶𝑆 Coverage (range) of Connected Section # Figure 3.6 

𝐶𝑆𝑉𝑘
𝑗
 Last vehicle detected by the Connected 

Section that joined the queue during 

signal cycle 𝑘 

- 

Figure 3.6 

𝐴𝑘
𝑗
 Total number of vehicles in range, 

joining the queue 
# 

Figure 3.6 

𝑆𝑘
𝐷𝑉 The distance between the end of the 

congested section and the stop line 
meters 

Figure 3.7 

𝐿𝑘
𝐷𝑉 The number of vehicles in queue, based 

on the deviations in speed 
# 

Figure 3.7 

𝐺 Green time duration of the examined 

signal.  
seconds 

pp.78 

𝐶 Cycle time duration.  seconds pp.78 
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Symbol Description Vector/Matrix/Unit: Definition in: 

𝐺/𝐶 Green split of the examined signal: 

ration of 𝐺/𝐶 
% 

pp.78 

𝐷 Average vehicle delay seconds pp.78 

𝑆 Average number of stops # pp.78 

𝑄𝐶𝑇 Queue clearing time minutes pp.78 

𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% Confidence interval for minimum 

number of simulation runs 
% 

Equation (5.3) 

𝑠𝑑 Standard deviation of average vehicle 

delays from simulation runs 
sec 

Equation (5.3) 

𝑡(1−𝑎𝑙𝑝ℎ𝑎/2),𝑁−1 Student’s t-statistic % Equation (5.3) 

𝑁 Number of simulation runs # pp.78 

𝐶𝐼/𝑠𝑑 Desired confidence range # pp.78 

Tab. A.1 Basic notation overview  
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III. Test intersection 

EKF 

Parameter 

EO Starting values and adaptive configuration with minimum assumptions 

Departure Rate 

(vehicles/sec) 

Arrival Rate 

(vehicles/sec) 
Queue Length (vehicles) 

Turning       

Rate 

Penetratio

n Rate 

𝑥̂0 0.50 0.20 3.00 0.50 0.01 

𝑃0 0.102 0.102 1.002 0.102 0.102 

𝑥̂𝑘 Equation (3.9) Equation (3.10) Equation (3.12) 

Like 

equation 

(3.9) 

Like 

equation 

(3.9) 

𝑄𝑘 0.102 0.102 Equation (4.1): 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

= 𝑥̂𝑘−1
𝑞𝑢𝑒𝑢𝑒

(4.2) 0.102 0.102 

𝑅𝑘 0.102 0.102 

Equation (4.2): 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

(1 − 𝑥̂𝑘−1
𝑝𝑒𝑛

) 

Equation (4.3): 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

∗ 0.10 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

∗ 0.10 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

= {

1.002

𝑄𝑢𝑒𝑢𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2

, 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒

, 𝑜𝑢𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒

 

0.102 0.102 

Tab. A.2 Starting values and adaptive configuration of the EO for the test intersection  
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Figure A.2 Approximate travel time and queue length correlation 

 

 

Figure A.3 Error reduction - SG 4 extended oversaturated and SG 2 normal peak 
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Figure A.4 Error reduction - Measurements with additional errors - SG 4  

 

 

Figure A.5 Fused estimations for various penetration rates - SG 1 
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Figure A.6 Comparison of Extended Observer with estimation from inductive loop detection 

 

Penetration 

rate of CV 

(p) 

RMSE (veh) Error Reduction 

𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑅𝑀𝑆𝐸|𝑥̂𝑘
𝑞𝑢𝑒𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 21.65 18.05 *-3.60 0.00342 

p = 0.05 22.99 17.68 *-5.31 0.00583 

p = 0.10 26.75 16.42 *-10.33 0.00024 

p = 0.20 28.02 16.42 *-11.60 0.00027 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.3 Comparison of Extended Observer with inductive loop detection - SG 4 extended 
oversaturated peak 

 
 

Penetration 

rate of CV 

(p) 

RMSE (veh) Error Reduction 

𝑅𝑀𝑆𝐸|𝑧𝑛
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑅𝑀𝑆𝐸|𝑥̂𝑘
𝑞𝑢𝑒𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 1.69 5.38 *+3.68 2.16e-09 

p = 0.05 1.88 5.63 *+3.76 8.65e-10 

p = 0.10 1.50 4.90 *+3.40 1.30e-11 

p = 0.20 2.10 5.21 *+3.11 6.78e-09 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.4 Comparison of Extended Observer with inductive loop detection - SG 2 normal peak 
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Figure A.7 Fused estimation from Extended Observer, mobile measurements and loop-based 
measurements - SG 4 extended oversaturated peak 
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Figure A.8 Fused estimation from Extended Observer, mobile measurements and loop-based 
measurements - SG 2 normal peak 
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Figure A.9 Fused estimations from the Extended Observer based on camera and travel times  

 

Penetration 

rate of CV 

(p) 

Legacy signal control EO feeding the legacy signal control 
Difference from legacy signal 

control input 
𝑥̂𝑘

𝑞𝑢𝑒𝑢𝑒(𝐶𝑉)
 𝑥̂𝑘

𝑞𝑢𝑒𝑢𝑒(𝐶𝑉+𝐴𝑆)
 

(𝑠𝑒𝑐) (𝑠𝑒𝑐) (%) (𝑠𝑒𝑐) (𝑠𝑒𝑐) (%) (𝑠𝑒𝑐) (𝑠𝑒𝑐) (%) 𝑝_𝑣𝑎𝑙𝑢𝑒 

∆𝐺̅̅ ̅̅  

𝑝_𝑣𝑎𝑙𝑢𝑒 

∆𝐶̅̅̅̅  

𝑝_𝑣𝑎𝑙𝑢𝑒 

∆(𝐺/𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐺𝐿
̅̅ ̅ 𝐶𝐿

̅̅ ̅ 𝐺/𝐶𝐿
̅̅ ̅̅ ̅̅ ̅ 𝐺𝐸𝑂

𝐶𝑉̅̅ ̅̅ ̅ 𝐶𝐸𝑂
𝐶𝑉̅̅ ̅̅ ̅ (𝐺/𝐶)𝐸𝑂

𝐶𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐺𝐸𝑂
𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝐺/𝐶)𝐸𝑂
𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

p = 0.02 

42 66 63 

38 **64 57 *39 63 *60 0.0181 0.0359 3.9e-09 

p = 0.05 40 **66 59 *41 67 *61 0.0040 0.0261 7.0e-07 

p = 0.10 39 **65 59 *43 69 *61 0.0002 0.0109 1.1e-08 

p = 0.20 40 **66 60 *43 70 *61 0.0202 0.0002 2.5e-06 

*statistically significant reduction of difference to legacy: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

**statistically significant increase of difference to legacy: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.5 Improved legacy signal control input through additional measurements  
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Figure A.10 Legacy signal control output with fused estimations from the Extended Observer - stops 
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Penetration 

rate of CV 

(p) 

Delay (sec) Delay Reduction 

𝐷𝐸𝑂
𝐶𝑉̅̅ ̅̅ ̅ 𝐷𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝐷%̅̅ ̅̅ ̅̅ ̅ ∆𝐷̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 64.26 42.35 *-34.11% *-21.92 1.19e-06 

p = 0.05 57.10 38.22 *-33.06% *-18.88 1.08e-09 

p = 0.10 55.49 42.83 *-22.81% *-12.66 4.00e-07 

p = 0.20 50.47 44.07 *-22.81% *-6.40 0.00022 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.6 Signal control output with fused estimations from the Extended Observer - comparison with 
Connected Vehicles - delays  

 

Penetration 

rate of CV 

(p) 

Stops Stops Reduction 

𝑆𝐸𝑂
𝐶𝑉̅̅ ̅̅ ̅ 𝑆𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑆%̅̅ ̅̅ ̅̅  ∆𝑆̅̅̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 4.67 2.57 *-45.10% *-2.10 1.09e-06 

p = 0.05 3.98 2.15 *-46.05% *-1.83 1.09e-09 

p = 0.10 3.79 2.59 *-31.57% *-1.20 1.23e-06 

p = 0.20 3.32 2.69 *-19.11% *-0.64 0.00267 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.7 Signal control output with fused estimations from the Extended Observer - comparison with 
Connected Vehicles - stops 
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Penetration 

rate of CV 

(p) 

Delay (sec) Delay Increase 

𝐷𝐿
𝑀̅̅ ̅̅  𝐷𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝐷%̅̅ ̅̅ ̅̅ ̅ ∆𝐷̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 

25.15 

32.15 *+27.85% *+7.00 0.0005 

p = 0.05 28.38 *+12.86% *+3.32 4.711e-05 

p = 0.10 27.43 *+9.06% *+2.28 1.326e-05 

p = 0.20 26.50 *+5.40% *+1.36 0.0046 

*statistically significant increase: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.8 Signal control output with fused estimations from the Extended Observer - comparison with 
full detection model-based - delays 

 

Penetration 

rate of CV 

(p) 

Stops Stops Increase 

𝑆𝐿
𝑀̅̅ ̅̅  𝑆𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑆%̅̅ ̅̅ ̅̅  ∆𝑆̅̅̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 

1.00 

1.53 *+53.35% *+0.53 0.0064 

p = 0.05 1.19 *+19.26% *+0.19 0.0003 

p = 0.10 1.13 *+13.40% *+0.13 0.0002 

p = 0.20 1.04 *+4.94% *+0.05 0.1098 

*statistically significant increase: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.9 Signal control output with fused estimations from the Extended Observer - comparison with 
full detection model-based - stops 
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Penetration 

rate of CV 

(p) 

Delay (sec) Delay Reduction 

𝐷𝐿
𝐹̅̅ ̅̅  𝐷𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ∆𝐷%̅̅ ̅̅ ̅̅ ̅ ∆𝐷̅̅ ̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 

66.16 

32.15 *-51.41% *-34.01 2.415e-10 

p = 0.05 28.38 *-57.11% *-37.78 1.302e-12 

p = 0.10 27.43 *-58.55% *-38.74 6.563e-13 

p = 0.20 26.50 *-59.94% *-39.66 9.342e-14 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.10 Signal control output with fused estimations from the Extended Observer - comparison with 
fixed-time - delays  

 

Penetration 

rate of CV 

(p) 

Stops Stops Reduction 

𝑆𝐿
𝐹̅̅̅̅  𝑆𝐸𝑂

𝐶𝑉+𝐴𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅ ∆𝑆%̅̅ ̅̅ ̅̅  ∆𝑆̅̅̅̅  𝑝_𝑣𝑎𝑙𝑢𝑒 

p = 0.02 

4.72 

1.53 *-67.67% *-3.19 3.056e-10 

p = 0.05 1.19 *-74.86% *-3.53 2.47e-12 

p = 0.10 1.13 *-76.09% *-3.59 1.322e-12 

p = 0.20 1.04 *-77.88% *-3.68 1.307e-13 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.11 Signal control output with fused estimations from the Extended Observer - comparison with 
fixed-time - stops 
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IV. Real-world intersection 

EKF 

Parameter 

EO Starting values and adaptive configuration with minimum assumptions 

Approach 

Departure Rate 

(vehicles/sec) 

Lane Arrival 

Rate 

(vehicles/sec) 

Queue Length (vehicles) 
Turning       

Rate 

Penetration 

Rate 

𝑥̂0 0.50 0.20 3.00 0.50 0.01 

𝑃0 0.102 0.102 1.002 0.102 0.102 

𝑥̂𝑘 Equation (3.9) 

Equation (3.10) 

and         

equation (3.25) 

Equation (3.12) 
Like equation 

(3.9) 

Like equation 

(3.9) 

*𝑥𝑘
ℎ𝑖𝑠𝑡 

SG

1 

SG

2 

SG

7 

- - - - 

0.79 0.78 0.86 

𝑄𝑘 0.102 0.102 Equation (4.1): 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

= 𝑥̂𝑘−1
𝑞𝑢𝑒𝑢𝑒

(4.2) 0.102 0.102 

𝑅𝑘 0.102 0.102 

Equation (4.2): 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒|𝐶𝑉

(1 − 𝑥̂𝑘−1
𝑝𝑒𝑛

)  

Equation (4.3): 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝑇𝑇

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

∗ 0.10 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐷𝑉

= 𝑄𝑘−1
𝑞𝑢𝑒𝑢𝑒

∗ 0.10 

𝑅𝑘
𝑞𝑢𝑒𝑢𝑒|𝐶𝑆

= {

1.002

𝑄𝑢𝑒𝑢𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦2

, 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒

, 𝑜𝑢𝑡 𝑜𝑓 𝑟𝑎𝑛𝑔𝑒

 

0.102 0.102 

Tab. A.12 Starting values and adaptive configuration of the Extended Observer for real-world 
intersection.  

*𝑥𝑘
ℎ𝑖𝑠𝑡: Historical values for departure rate are according to the Spot/Utopia real configuration and only according to topology. Historical values for 

turning rates of 0.50 are used as baselines to emulate no previous knowledge of turning rates.  
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Figure A.11 Topology and configuration for real-world intersection 
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Figure A.12 Indicative data sets for the calibration and validation 

 

 

Figure A.13 Signal control output for real-world intersection - Spot with Extended Observer - extreme 
truck percentage 
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p=0.02, 07:00-8:45 Spot with full detection 

Spot with EO and 

extended maximum 

green 

Delay (sec) 
Delay increase from 

HGV 

Delay increase from 

HGV 

𝐷𝑆𝑝𝑜𝑡
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐷𝑆𝑝𝑜𝑡

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐷𝑆𝑝𝑜𝑡|𝐸𝑂
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐷𝐸𝑂

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  

43.01 55.78 45.84 67.78 *+29.68% *+12.77 *+47.88% *+21.95 

Stops 
Stops increase from 

HGV 

Stops increase from 

HGV 

𝑆𝑆𝑝𝑜𝑡
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑆𝑆𝑝𝑜𝑡

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑆𝑝𝑜𝑡|𝐸𝑂
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑆𝐸𝑂

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝛥𝑆%̅̅ ̅̅ ̅̅  𝛥𝑆̅̅̅̅  𝛥𝑆%̅̅ ̅̅ ̅̅  𝛥𝑆̅̅̅̅  

0.75 0.85 0.83 1.08 *+12.92% *+0.10 *+30.21% *+0.25 

Queue Clearing Time (min) 
Queue Clearing Time 

increase from HGV 

Queue Clearing Time 

increase from HGV 

𝐶𝑇𝑆𝑝𝑜𝑡
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝑇𝑆𝑝𝑜𝑡

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐶𝑇𝑆𝑝𝑜𝑡|𝐸𝑂
𝐻𝐺𝑉_0.001̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝑇𝐸𝑂

𝐻𝐺𝑉_0.20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  𝛥𝐷%̅̅ ̅̅ ̅̅ ̅ 𝛥𝐷̅̅ ̅̅  

6.8 20.7 5.8 18.9 *+203% 13.8 *+224% 13.1 

*statistically significant reduction: 𝑁 = 12, 𝐶𝐼(1−𝑎𝑙𝑝ℎ𝑎)% = 95%,𝐶𝐼
𝑠𝑑

⁄ = 2, 𝑠𝑑 < 11 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Tab. A.13 Signal control output for real-world intersection - Spot with Extended Observer - extreme 
truck percentage 

 

 

Figure A.14 Signal control output for real-world intersection - Spot with Extended Observer - extreme 
peaks 


