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Dimerization and Néel Order in Different
Quantum Spin Chains Through a Shared
Loop Representation

Michael Aizenman, Hugo Duminil-Copin and Simone Warzel

Abstract. The ground-states of the spin-S antiferromagnetic chain HAF

with a projection-based interaction and the spin-1/2 XXZ-chain HXXZ at
anisotropy parameter Δ = cosh(λ) share a common loop representation
in terms of a two-dimensional functional integral which is similar to the
classical planar Q-state Potts model at

√
Q = 2S + 1 = 2 cosh(λ). The

multifaceted relation is used here to directly relate the distinct forms of
translation symmetry breaking which are manifested in the ground-states
of these two models: dimerization for HAF at all S > 1/2, and Néel order
for HXXZ at λ > 0. The results presented include: (i) a translation to the
above quantum spin systems of the results which were recently proven
by Duminil–Copin–Li–Manolescu for a broad class of two-dimensional
random-cluster models, and (ii) a short proof of the symmetry breaking
in a manner similar to the recent structural proof by Ray–Spinka of the
discontinuity of the phase transition for Q > 4. Altogether, the quantum
manifestation of the change between Q = 4 and Q > 4 is a transition
from a gapless ground-state to a pair of gapped and extensively distinct
ground-states.

1. Introduction

The focus of this work is the structure of the ground-states in two families of
antiferromagnetic quantum spin chains, each of which includes the spin-1/2
Heisenberg anti-ferromagnet as a special case. In the infinite volume limit,
with the exception of their common root, in both cases the systems exhibit
symmetry breaking at the level of ground-states. The physics underlying the
phenomenon is different. In one case it is extensive quantum frustration which
causes dimerization with is expressed in spatial energy oscillations. In the
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other case, the Hamiltonian is frustration free and the symmetry breaking is
expressed in long-range Néel order. Yet, in mathematical terms both phenom-
ena are analyzable through a common random loop representation. Curiously,
a similar loop system appears also as the auxiliary scaffolding of a classical
planar Q-state Potts models for which the symmetry breaking relates to a
discontinuity in the order parameter.

The models under consideration have been studied extensively, and hence
the specific results we discuss may be regarded as known, at one level or an-
other. The techniques which have been applied for the purpose include nu-
merical works, Bethe ansatz calculations [1,9–12,27], and contour expansions
[31]. The validity of Bethe ansatz calculations for similar systems has recently
received support through a careful mathematical analysis [20]. The results pre-
sented here are based on non-perturbative structural arguments. They may be
worth presenting since in the models considered such arguments allow full
characterization of the conditions under which the symmetry breaking occurs,
as well as other qualitative features of the model’s ground-states. The relation
between the models may be of intrinsic interest. At the mathematical level
it plays an essential role in the non-perturbative proof of symmetry breaking
which is the main result presented here.

1.1. Antiferromagnetic SU(2S + 1) Invariant Spin Chains with Projection
Based Interaction

The most basic quantum object has a two-dimensional complex state space,

spanned by the two orthogonal vectors |+〉 ≡
(

1
0

)
and |−〉 ≡

(
0
1

)
. The

self-adjoint operators on this space (which has the structure of C2) are linear
combinations of the three Pauli-spin matrices τττ = (τx, τy, τz),

τx :=
(

0 1
1 0

)
, τy :=

(
0 −i
i 0

)
, τz :=

(
1 0
0 −1

)
. (1.1)

Of particular interest is the triplet of spin operators S = (Sx, Sy, Sz) with
Sα = 1

2τα, α = x, y, z. These span the Lie algebra of the group SU(2) and
satisfy the commutation relation

[Sx, Sy] = iSz . (1.2)

For higher spin systems the Hilbert spaces of states are given by C
2S+1

in which one finds the 2S + 1-dimensional representations of the Lie algebra
commutation relations (1.2), with S ∈ N ∪ (N − 1

2 ). A convenient basis is
provided by the eigenvectors of Sz, satisfying

Sz | m 〉 = m | m 〉 , m ∈ {−S,−S + 1, . . . , S}. (1.3)

In this terminology, the above binary spin system corresponds to S = 1/2, and
the states |+〉 and |−〉 are the eigenstates of Sz at values m = − 1

2 ,+ 1
2 .

Our spin chains are arrays of 2L spins indexed by ΛL := {−L+1, . . . , L}.
The corresponding state space is the tensor product Hilbert space HL =⊗

v∈ΛL
C

2S+1. The single spin operators are lifted to it by setting τττu :=
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1⊗· · ·1⊗τττ ⊗1 · · ·1, which acts non-trivially only in the tensor product’s uth
component.

Lifted to the two component product space, the above Dirac notation of
states takes the form

|m,m′〉u,v := |m〉u ⊗ |m′〉v u,v〈m,m′| := u〈m| ⊗ v〈m′| . (1.4)

Correspondingly, we shall use the following notation for operators acting in
the corresponding two-component factor of HL

(|m,m′〉〈n, n′|)u,u+1 := 1 ⊗ · · ·1 ⊗ (|m〉〈n|)u ⊗ (|m′〉〈n′|)u+1 ⊗ 1 · · · ⊗ 1

(1.5)

Our discussion will focus on different extensions of the quantum Heisen-
berg antiferromagnetic spin model, which is an array of spins with the nearest-
neighbor interaction energy proportional to Su ·Su+1. For S = 1/2 this can be
alternatively written as

H
(L)
AF :=

L−1∑
u=−L+1

[2 τττu · τττu+1 − 1/2] = −2
L−1∑

u=−L+1

P
(0)
u,u+1 . (1.6)

with τττu ·τττu+1 =
∑

α=x,y,z τα
u τα

u+1 and P
(0)
u,u+1 = (|D〉〈D|)u,u+1 the orthogonal

projection onto the state

|D〉 := (|+,−〉 − |−,+〉)/
√

2 , (1.7)

in the corresponding two-spin space. This state is of some interest: it is the only
one which is annihilated by each component of the combined spin operator Su+
Su+1, and it also maximizes the entanglement between the two components.

The two expressions of the spin 1/2 Hamiltonian which are presented in
(1.6) suggest slightly different extensions to higher values of the spin S ∈ N/2.
The one on which we focus here is

H
(L)
AF := −

L−1∑
u=−L+1

(2S + 1)P (0)
u,u+1 , (1.8)

with P
(0)
u,u+1 the rank-one projection in the two spin space C

2S+1 ⊗C
2S+1 onto

on the subspace which is invariant under rotations generated by Su + Su+1,
i.e., the joint kernel of Sα

u + Sα
u+1 (α = x, y, z). For any S ∈ N/2 this operator

is given by1

P (0)
u,v := 1 [|SSSu + SSSv| = 0]

=
1

2S + 1

S∑
m,m′=−S

(−1)m−m′
(|m,−m〉〈m′,−m′|)u,v ,

(1.9)

This model was studied by Affleck [1], Barber and Batchelor [9], Batchelor and
Barber[10], Klümper [27], Aizenman and Nachtergaele [6], and more recently
Nachtergaele and Ueltschi [31].

1The projection P
(0)
u,v can also be expressed as a polynomial of degree 2S in SSSu · SSSv , for

instance P
(0)
u,v = ((SSSu · SSSv)2 − 1)/3 for S = 1.
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Figure 1. The natural pairing in ΛL = {−L+1, . . . , L−1, L}
for L = 3 and L = 4. Notice the difference at u = 0

The classical analog of a quantum spinor with the state space C2S+1 is
a system whose states are described by a three component vector of length
S. Under this correspondence, the classical analog of the projection to the
ground-state(s) of H

(L)
AF is the restriction to configurations in which each pair of

neighboring spins points in exactly opposite directions, adding to 0. However,
unlike its classical analog, the quantum system exhibits frustration, and that
leads to the dimerization phenomenon discussed next.

Each of the two-spin interaction terms in (1.8) is minimized in the state
in which the two spins are coherently intertwined into the unique state in
which |Su + Sv| = 0. Yet, a quantum spin cannot be locked into such a state
with both its neighbors simultaneously. This effect, which results in the spin-
Peierls instability, is purely quantum as there is no such restriction for classical
spins. (Classical spin models may be driven to frustration by other means, e.g.,
when placed on a non-bipartite graph with antiferromagnetic interactions, and
also on arbitrary graphs under suitably mixed interactions. Such geometric
frustration is shared by their quantum counterparts.)

The naive pairing depicted in Fig. 1 suggests that in finite volume the
ground-states’ local energy density may not be homogeneous and have a bias
triggered by the boundary conditions, i.e., the parity of L. Indeed, through
approximations, numerical simulations, or the probabilistic representation of
[6] (our preferred method), one may see that the local energy density of the
corresponding finite-volume ground-states 〈·〉(gs)L is not homogeneous and sat-
isfies

(−1)L
[
〈P2n−1,2n〉(gs)L − 〈P2n,2n+1〉(gs)L

]
> 0 . (1.10)

An interesting question is whether this bias persists in the limit L → ∞, in
which case in the infinite-volume limit the system has (at least) two distinct
ground-states, for which the expectation values of local observables F are given
by

〈F 〉even := lim
L→∞
Leven

〈F 〉(gs)L and 〈F 〉odd := lim
L→∞
Lodd

〈F 〉(gs)L , (1.11)

where the limit is interpreted in the weak sense, i.e., with F being any (fixed)
local bounded operator. These are generated by products of spin operators

FU :=
k∏

j=1

Sαj
uj

, uj ∈ U , αj ∈ {x, y, z} (1.12)
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which are supported in some bounded set U ⊂ Z. In finite-volume, their (imag-
inary) time-evolved counterparts are given by

F
(L)
U (t) := e−tH

(L)
AF FU etH

(L)
AF .

The corresponding truncated correlations also converge, e.g., for any fixed
t ∈ R,

〈FU (t);FV 〉even := lim
L→∞
Leven

〈F (L)
U (t)FV 〉(gs)L − 〈F (L)

U (t)〉(gs)L 〈FV 〉(gs)L , (1.13)

and similarly for 〈FU (t);FV 〉odd.
The separate convergence of the limits (1.11) or (1.13) was established in

[6] through probabilistic techniques which are enabled by the loop representa-
tion presented below. This representation also led to the following dichotomy.2

Proposition 1.1. (cf. Thm. 6.1 in [6]). For each value of S ∈ N/2 one of the
following holds true:

1. The two ground-states 〈·〉even and 〈·〉odd are distinct, each invariant under
the 2-step shift, each being the 1-step shift of the other. Furthermore,
their translation symmetry breaking is manifested in energy oscillations,
namely, for every n ∈ N

〈P (0)
2n−1,2n〉even − 〈P (0)

2n,2n+1〉even > 0 . (1.14)

2. The even and odd ground-states coincide, and form a translation invari-
ant ground-state 〈·〉 with slowly decaying correlations, satisfying∑

v∈Z

|v| |〈SSS0 · SSSv〉| = ∞ . (1.15)

For S = 1/2 the second alternative is known to hold (cf. [2,21] and
references therein). In this case the model reduces to the quantum Heisenberg
antiferromagnet.3 In the converse direction, dimerization in this model was
established for S ≥ 8 [31] through a contour expansion. The gap between
these results is closed here through a structural proof that for all S > 1/2 the
first option holds (regardless of the parity of 2S).

Theorem 1.2. For all S > 1/2:
1. the even and odd ground-states, defined by (1.11), differ. They are trans-

lates of each other, and exhibit the energy oscillation (1.14).
2. there exist ξ = ξ(S) < ∞ such that for all U, V ⊂ Z with distance

dist(U, V ) and any t ∈ R:

|〈FU (t);FV 〉even| ≤ CFU
CFV

e−(dist(U,V )+|t|)/ξ , (1.16)

2This version of the AN dichotomy is a bit more carefully crafted than in the original work,
as the two options stated there need not be mutually exclusive. However, as (1.16) shows,
ipso-facto they are.
3Various features of the model are calculable through the Bethe ansatz, which was actually
developed in that context [8]. However, even aside from the extra care which is required for
rigorous results, the exact determination of the long distance asymptotic seems to require
other means (cf. [2,21,30] and references therein).
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where CFU
and CFV

are invariant under space-time translations of the
observables FU , FV .

The proof draws on the progress which was recently made in the study of
the related loop models. In [20], the loop representation of the critical Q-state
Potts model on the square lattice with Q > 4 was proved to have two distinct
infinite-volume measures under which the probability of having large loops is
decaying exponentially fast (see [28] for the case of large Q). The result was
extended in [18, Theorem 1.4] to a slightly modified version of the loop model
that will be redefined in this paper and connected to the spin chains (there,
the model is not defined in terms of loops but in terms of percolation, as in
Sect. 6). More recently, Ray and Spinka [32] provided an alternative proof of
the non-uniqueness of the infinite-volume measures on the square lattice.

In this article, the inspiring proof of Ray-Spinka is extended to our con-
text to provide a new proof of 1. We believe that this proof is more transparent
and conceptual than the one in [18] and that even though the technique does
not directly lead to 2., it illustrates perfectly the interplay between the quan-
tum and classical realms. In fact, a careful analysis of the proofs in the paper
of [18] shows that the argument there relies on two pillars: a theorem proving
a stronger form of Proposition 1.1 (see also [19,21] for versions on the square
lattice), in which 1. of Theorem 1.2 is proved to imply 2., and an argument
relying on the Bethe Ansatz showing that 1. indeed occurs. The adaptation
of the Ray-Spinka argument enables us to prove 1. directly without using the
Bethe Ansatz, so that the argument in this paper replaces half of the argument
in [18], and that combined with the other half it also implies 2.

Let us finally note that under the dimerization scenario, which is now
established for its full range (S > 1/2), other physically interesting features
follow:

1. Spectral gap: As was argued already in [6, Theorem 7.1], the exponential
decay of truncated correlations (1.16) in the t-direction implies a non-
vanishing spectral gap in the excitation spectrum above the even and
odd ground-states.

2. Excess spin operators: When the decay of correlations is fast enough so
that (1.15) does not hold, in particular under (1.16), in the even/odd
states the spins are organized into tight neutral clusters. That is man-
ifested in the tightness of the distribution of the block spins Sz

[a,b] =∑
u∈[a,b] S

z
u (in a sense elaborated in [5]). That is equivalent to the exis-

tence of the excess spin operators Ŝz
u with which

u∑
v=1

Sz
v = Ŝz

0 − Ŝz
u (1.17)

and such that Ŝz
u commutes with the spins in (−∞, u]. The quantity

Ŝz
u can be interpreted as the total spin in (u,∞), and constructed as

limε↓0

∑
v>u e−ε|u−v|Sz

v (in the strong-resolvent sense), cf. [6, Sec. 6]. As
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was further discussed in [7], the excess spins play a role in the classifica-
tion of the topological properties of the gapped ground-state phases.

3. Entanglement entropy: Another general implication of the exponential
decay of correlations is a so-called area law (which for chains equates to
the boundedness) of the entanglement entropy of the ground-states, see
[14] for details.

1.2. The S = 1/2 Antiferromagnetic XXZ Spin Chain

The second model discussed in this paper is the anisotropic XXZ spin-1/2
chain with the Hamiltonian

H
(L)
XXZ := −1

2

L−1∑
v=−L+1

[τx
v τx

v+1 + τy
v τy

v+1 − Δ (τz
v τz

v+1 − 1)] (1.18)

acting on the Hilbert space HL =
⊗L

v=−L+1 C
2. It consists of Pauli spin ma-

trices (1.1) on C
2. It is convenient to present the anisotropy parameter as

Δ := cosh(λ) > 1 . (1.19)

Throughout the paper and unless stated otherwise explicitly, we will take λ ≥ 0
the non-negative solution of (1.19).

The sign and the magnitude of Δ > 1 favor antiferromagnetic order in
the ground-state. The negative sign in front of the terms involving the x- and
y-component of the Pauli spin matrices can be flipped through the unitary
transformation UL = exp

(
iπ
4

∑
u(−1)uτz

u

)
. It renders the Hamiltonian in the

manifestly antiferromagnetic form

ULH
(L)
XXZU∗

L =
1
2

L−1∑
v=−L+1

[
τττv · τττv+1 + (Δ − 1) τz

v τz
v+1 − Δ

]
. (1.20)

The antiferromagnetic XXZ chain has been the subject of many works. Follow-
ing Lieb’s work on interacting Bose gas [29], Yang and Yang gave a justification
for the Bethe Ansatz solution of the ground-state in a series of papers [37,38]
in 1966. The ground-state has long-range order with two period-2 states in the
thermodynamic limit, each with mean magnetization of alternating direction.
The corresponding Néel order parameter (MNéel of (1.22)) vanishes in the limit
Δ ↓ 1. Since the exact solution is not very transparent, there has been inter-
est in obtaining qualitative information by other means, e.g., expansions and
other rigorous methods. These typically apply only for large Δ.

Our motivation for returning to the XXZ spin chain is that it emerges very
naturally in the analysis of the thermal and ground-states of the model HAF.
Furthermore, the relation between the two facilitates the proof of the symmetry
breaking stated in Theorem 1.2. In the converse relation, this relation is used
here to establish symmetry breakdown in the form of Néel order of the XXZ
ground-state(s) for all Δ > 1.

To prove the translation symmetry breaking we consider the pair of finite-
volume ground-states for the Hamiltonian (1.18) with an added boundary



2744 M. Aizenman et al. Ann. Henri Poincaré

field,4 i.e.,

H
(L,bc)
XXZ := H

(L)
XXZ + sinh(λ)(−1)L τz

−L+1 − τz
L

2

×
{

+1 for bc = +
−1 for bc = −

.
(1.21)

As a preparatory statement let us state:

Proposition 1.3. For any Δ ≥ 1, in the limit L → ∞ with L even, the finite-
volume ground-states of the XXZ-spin system with the above boundary terms
converge to states 〈·〉+ and 〈·〉−. Regardless of whether the two agree, each is
a one-step shift of the other. The two states are different if and only if they
exhibit Néel order, in the sense for all n:

(−1)n〈τz
n〉+ = −(−1)n〈τz

n〉− = MNéel (1.22)

at some MNéel �= 0.

Let us emphasize that the system’s size is even regardless of the parity
of L (the size being equal to 2L). The restriction in this theorem to sequences
of constant parity is required for the consistency of the effect of the boundary
conditions which are specified in (1.21).

Similarly to Proposition 1.1, this statement is proven here through the
FKG inequality which is made applicable in a suitable loop representation. We
postpone its proof to Sect. 6, next to the place where it is applied. Following
is the XXZ-version of the symmetry breaking statement.

Theorem 1.4. For any Δ > 1 the construction described in Proposition 1.3
yields two different ground states of infinite XXZ-spin chain which differ by a
one step shift and satisfy (1.22).

Theorem 1.4 is proven in Sect. 6 together with Theorem 1.2. In each case
the symmetry breaking is initially established through the expectation value of
a conveniently defined quasi-local observable. The conclusion is then boosted
to the more easily recognizable statements presented in the theorems through
the preparatory statements of Proposition 1.3 and respectively Proposition 1.1.

1.3. Seeding the Ground-States

Infinite-volume ground-states can be approached through their intrinsic prop-
erties (such as the energy-minimizing criterion) or, constructively, as limits
of finite-volume ground-state expectation value functionals. To establish their
non-uniqueness, we shall consider different sequences of finite volume ground-
states, and establish convergence of the expectation value functionals to limits
which are extensively different. Equivalently, it suffices to construct a sin-
gle limiting ground-state which does not have the Hamiltonian’s translation

4One may expect that in case there is Néel order any antisymmetric boundary field would
flip the ground-state into one of the extremal states. However the proof of that is simpler
for the case the field’s magnitude is at least | sinh(λ)|.
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symmetry. A shift (or another symmetry operation) produces then another
ground-state. We shall take that path in the discussion of both models.

The finite-volume ground-states will be constructed through limits of the
form

〈F 〉(gs)L = lim
β→∞

〈ΨL|e−βHL/2Fe−βHL/2|ΨL〉
〈ΨL|e−βHL |ΨL〉 . (1.23)

with |ΨL〉 a convenient seeding vector. To assure that the limiting functional
corresponds to a ground-state (or the ground-state if it is unique) one needs
to verity that this vector is not annihilated by the ground-state projection
operator P

(gs)
L . That will be established by verifying that

〈ΨL|P (gs)
L |ΨL〉

dim P
(gs)
L

= lim
β→∞

〈ΨL|e−βHL |ΨL〉
tre−βHL

> 0 . (1.24)

Our choice of the seeding vectors is primarily guided not by the condition
(1.24), which is generically satisfied, but rather by the goal of a transparent
expression for the expectation value functional.

In view of the quantum frustration effect, a natural seed vector for the
construction of a ground-state for the Hamiltonian H

(L)
AF on an even collection

of spins in ΛL = {−L + 1, . . . , L} is the dimerized state

|DL〉 :=
L⊗

j=1

( S∑
m=−S

(−1)m |m,−m〉−L+2j−1,−L+2j

)

= UL

L⊗
j=1

( S∑
m=−S

|m,−m〉−L+2j−1,−L+2j

)
. (1.25)

The subscripts on the vectors indicate on which tensor component of HL they
act. The role of the gauge transformation

UL := exp
(
iπ
2

∑
u

(−1)uSz
u

)
, (1.26)

expressed in the standard z-basis of the joint eigenstates of Sz
u, u ∈ ΛL, is to

ensure non-negativity of the matrix-elements of U∗
Le−βH

(L)
AF UL in the z-basis.

This will enable a probabilistic loop representation of this semigroup presented
in Sect. 2. From this representation, we will also see that (1.24) is valid for the
seed state ΨL = DL at any finite L, cf. (3.10). The standard Perron–Frobenius
argument is not applicable in this case.

Applying the semigroup operator e−βHL/2 to |DL〉, one gets the expectation-
value functional which assigns to each local observable F the value

〈F 〉(AF)
L,β :=

〈DL|e−βH
(L)
AF /2Fe−βH

(L)
AF /2|DL〉

〈DL|e−βH
(L)
AF |DL〉

, (1.27)

and which converges as β → ∞ to a ground-state expectation 〈F 〉(gs)L . It is the
above expectation-value functional which we study in the proof of Theorem 1.2
by probabilistic means.
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To study the Néel order of the XXZ-Hamiltonian we find it convenient to
focus on the sequence of constant parity, say even L, and use as seed in (1.23)
the vector

|N (L)
λ 〉 =

L⊗
j=1

(
e−λ/2|+,−〉−L+2j−1,−L+2j + eλ/2|−,+〉−L+2j−1,−L+2j

)

(1.28)

which is indexed by λ. Using it, the state 〈·〉+ of Proposition 1.3 is presentable
as the double limit

〈F 〉(XXZ)
+ = lim

L→∞
Leven

lim
β→∞

〈F 〉(XXZ,+)
L,β,λ (1.29)

of

〈F 〉(XXZ,+)
L,β,λ :=

〈N (L)
λ |e−βH

(L,+)
XXZ /2 F e−βH

(L,+)
XXZ /2|N (L)

λ 〉
〈N (L)

λ |e−βH
(L,+)
XXZ |N (L)

λ 〉
. (1.30)

For the state 〈·〉(XXZ)
− , we reverse the sign in front of λ in (1.28), and apply

the operator H
(L,−)
XXZ .

Note that for fixed L ∈ 2N, the limit β → ∞ in (1.29) converges to the
finite-volume ground-state of H

(L,+)
XXZ , which is found in the subspace

Sz
tot :=

L∑
u=−L+1

τz
u/2 = 0 (1.31)

where it is unique. This follows from a standard Perron–Frobenius argument,
which is enabled here by the positivity and transitivity of the semigroup on that
subspace. As a consequence, the finite-volume ground-state can be construction
through the limit β → ∞ starting from any non-negative seed vector with
Sz

tot = 0. The vectors N
(L)
λ with λ ∈ R arbitrary are examples of such seed

vectors and the limit (1.29) does not depend on the choice of λ in the seed
(but still depends on λ through H

(L,+)
XXZ .)

Next we start the detailed discussion by recalling the probabilistic loop
representations of the states described above. The construction is included
here mainly to keep the paper reasonably self-contained, since it is already
contained in [6].

2. Functional Integral Representation of the Thermal States

2.1. The General Construction

Thermal states of d-dimensional quantum systems can always be expressed in
terms of a (d + 1)-dimensional functional integral. When the integrand can be
expressed in positive terms, the result is a relation with a statistic-mechanical
system in dimension d + 1. General discussion of this theme and applications
for specific purposes can be found, e.g., in [3,6,15,22,23,35,36]. Our aim in
this section is to present this relation for the models discussed here.
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As a starting point, let us note the following elementary identity, in which
the power expansion of eβK , which is valid for any bounded operator K, is
cast in probabilistic terms:

eβ(K−1) =
∞∑

n=0

e−β

∫
0<t1<···<tn<β

KtN
. . . Kt1dt1 . . . dtn

=
∫

T
(∏

t∈ω

Kt

)
ρ[0,β](dω) .

(2.1)

In the last expression, the sequence of times is presented as a random point
subset ω = (t1, . . . , tn) ⊂ [0, β] distributed as a Poisson process on [0, β] with
intensity measure dt. The Poisson probability distribution is denoted here by
ρ[0,β](dω). Attached to each point t ∈ ω is a copy of the operator K labeled by
t. The factors Kt are rearranged according to their time label, which is denoted
using the time ordering operator T . The integral reproduces the familiar power
series.

For operators which are given by sums of (local) terms, as in our case

HΛ = −
∑

b∈E(Λ)

Kb (2.2)

with Kb indexed by the edge-set E(Λ) of a graph Λ, the identity (2.1) has the
following extension

eβ
∑

b∈E(Λ)(Kb−1) =
∫

Kb|ω|,t|ω| · . . . · Kb2,t2 · Kb1,t1 ρΛ×[0,β](dω) (2.3)

where ω are the configurations of a Poisson point process over E(Λ) × [0, β],
which may be depicted as collections of rungs of a random multicolumnar
ladder net whose rungs are listed as {(bj , tj)} in increasing order of t. We
denote by ΩΛ,β the space of such configurations, and by ρΛ×[0,β](dω) the Pois-
son process with intensity measure dt along the collection of vertical columns
∪b∈E(Λ){b} × [0, β].

Given an orthonormal basis {|α〉} of the Hilbert space in which these
operators operate, one has

〈α′|T
( ∏

(b,t)∈ω

Kb,t

)
|α〉 =

∑
α̃

1[ω, α̃] 1
[

α(t|ω|)=α′

α(0)=α

]
W (α̃)

W (α̃) :=
|ω|∏
j=1

〈α(tj + 0)|Kbj ,tj
|α(tj − 0)〉

(2.4)

where α̃ is summed over functions α̃ : [0, β] �→ {|α〉} which are constant
between the transition times 0 < t1 < ... < t|ω| < β, and the consistency
constraint is expressed in the indicator function 1[ω, α̃].
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Applying this representation, one gets

treβ
∑

b∈E(Λ)(Kb−1) =
∫ ∑

α̃: α(β)=α(0)

1[ω, α̃] W (α̃) ρΛ×[0,β](dω). (2.5)

The left side is obviously non-negative. If a basis of vectors |α〉 can be found
in which also the matrix elements of Kb are all non-negative, then (2.4) yields
a functional integral for the quantum partition function in which the integra-
tion is over (ω, α̃) which resembles a “classical” statistic mechanical system in
d + 1 dimensions (with α(t) a time-dependent configuration which changes at
random times).

In that case one also gets a potentially useful decomposition of the ther-
mal state:

tre−βHΛF

tre−βHΛ
=
∫

E (F |ω)μΛ×[0,β](dω) (2.6)

with

E (F |ω) = trT
(
F

∏
(b,t)∈ω

Kb,t

)/
trT

( ∏
(b,t)∈ω

Kb,t

)

μΛ×[0,β](dω) = tr
[
T
( ∏

(b,t)∈ω

Kb,t

)]
ρΛ×[0,β](dω)

/
tre−β(HΛ+1) . (2.7)

The functional F �→ E (F |ω) was dubbed in [6] a quasi-state. It does not possess
the full positivity of a quantum state on all observables, but is a proper state
on the sub-algebra of observables which are diagonal in the basis in which the
interaction terms Kb are all non-negative.

A similar decomposition is valid for states 〈Ψ|e−βHΛ/2Fe−βHΛ/2|Ψ〉, which
are seeded by vectors Ψ with non-negative overlaps with the above base vec-
tors. For that it is pictorially convenient to cyclically shift the time interval to
[−β/2, β/2], and consider ω given by the Poisson process over the set

ΛL,β := ΛL × [−β/2, β/2], (2.8)

whose law is denoted by ρΛL,β
.

Such non-negative functional integral representations of quantum states
are associated with Gibbs states of a classical statistic mechanical systems. Un-
der this correspondence, non-uniqueness of the ground-states of a d-dimensional
quantum spin system, in the infinite-volume limit, is associated with a first-
order phase transition (at a non-zero temperature) of the corresponding d+1-
dimensional classical system.

2.2. A Potential-Like Extension

We shall also use an extension of the above expressions to operators of the
form

HΛ = −
∑

b∈E(Λ)

Kb − V (2.9)
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with V an operator which is diagonal in the basis {|α〉}, with V |α〉 = V (α)|α〉.
In a manner reminiscent of the way that potential appears in the Feynman–
Kac formula, one has

〈α′|eβ
∑

b∈E(Λ)(Kb−1)+V |α〉

=
∫ ∑

α̃: α(0)=α
α(β)=α′

1[ω, α̃] W (α(0), α(0)) e
∫ β/2

−β/2 V (α(t)) dt ρΛ×[0,β](dω). (2.10)

as can be deduced from (2.4), e.g., using the Lie-Trotter product formula.

3. Loop Measures Associated with HAF

3.1. The HAF Seeded States

The positivity assumption does hold in the case of the two families of quantum
spin chains considered here. Under the unitary (gauge) transformation UL :=
exp

(
iπ
2

∑
u(−1)vSz

u

)
, the interaction terms of H

(L)
AF acquire positive matrix

elements in the standard basis of the joint eigenstates of (Sz
u)u∈ΛL

U∗
LP (0)

uv UL =
1

2S + 1

S∑
m,m′=−S

|m,−m〉u,v〈m′,−m′| . (3.1)

In this basis, the factors Kb = (2S +1)U∗
LP

(0)
uv UL which appear in (2.3) reduce

to constraints imposing the condition that before and after each rung the
two spins at its edges add to zero. To compute the global effect of that, one
may replace each rung by a pair of “infinitesimally separated” lines, and then
decompose the graph into non-crossing loops, as indicated in Fig. 2.

By elementary considerations [6], it follows that for each rung configura-
tion ω drawn on ΛL,β :

〈DL| T
( ∏

(b,t)∈ω

Kb,t

)
|DL〉 = (2S + 1)N�(ω) , (3.2)

where N	(ω) is the number of loops into which the set of lines decomposes
when the vertical lines are turned into columns through “capping” them at
t = ±β/2 over every other column starting with the left-most, cf. Fig. 2.
Depending on the parity of L, the capping rule thus follows the two pairings
in Fig. 1.

More generally, for |mmm〉 = |m−L+1, . . . ,mL〉 ∈ HL the orthonormal eigen-
functions of {Sz

u}u∈ΛL
, the matrix elements 〈mmm′|T

(∏
(b,t)∈ω Kb,t

)
|mmm〉 are given

by the sum over configurations of the function m : ΛL,β �→ {−S,−S+1, . . . , S}
for which m(x, t) is piecewise constant in time changing only at the encounters
with the rungs of ω, subject to the constraints explained next to (3.1), and
which at t = ±β/2 agree with |mmm〉 and |mmm′〉 correspondingly.

Adapting the quasi-state decomposition to the above seeded states, one
gets:
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Figure 2. A configuration of randomly placed horizontal
rungs in case L = 5, and its collection of loops obtained from
the alternating boundary conditions at t = ±β/2. Each rung
imposes U-turns on the loops reaching it

Proposition 3.1. (cf. Prop. 2.1 in [6]). For the expectation value (1.27) corre-
sponding to the seed vector |DL〉 and any observable F :

〈F 〉L,β =
∫

E (F |ω) μL,β(dω), (3.3)

where

E (F |ω) :=
1

(2S + 1)N�(ω)
〈DL| T

( ∏
(b,t)∈ω

t∈[0,β/2)

Kb,t

)
F T

( ∏
(b,t)∈ω

t∈[−β/2,0)

Kb,t

)
|DL〉

(3.4)

and

μL,β(dω) :=
1

Norm.

√
Q

N�(ω)
ρΛL,β

(dω) at
√

Q = 2S + 1 . (3.5)

Behind the complicated looking formula (3.4) is a simple rule which is
particularly easy to describe for observables F which are functions of the spins
Sz

u. The conditional expectation conditioned on ω is obtained by averaging
the value of F over spin configurations which vary independently between the
loops of ω. On each loop the spins are constrained to assume only two values,
changing the sign upon each U-turn.

Following are some instructive examples:
1. For each ω

E (Sx
uSx

v |ω) = E (Sz
uSz

v |ω) = (−1)u−v CS 1[(u, 0) ω↔ (v, 0)] (3.6)
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where CS =
∑S

m=−S m2/(2S + 1)2 and the space-time points (u, 0) ω↔
(v, 0) denotes the condition that (u, 0) and (v, 0) lie on the same loop of
ω.

2. For the projection operator defined by (1.9)

E[(2S + 1)P (0)
u,v |ω] =

{
1 if (u, 0) ω↔ (v, 0)

(2S + 1)−1 if not

=
(
1 + 2S 1[ (u, 0) ω↔ (v, 0) ]

)
/(2S + 1) . (3.7)

3.2. The HAF Thermal Equilibrium States

The above representation has a natural extension to the thermal Gibbs states,
for which the expectation value functional is given by

trFe−βH
(L)
AF

tre−βH
(L)
AF

. (3.8)

In this case the above construction yields a representation in terms of ran-
dom loop decomposition of ΛL,β constructed with the time-periodic boundary
conditions, with loops continuing directly from t = ±β/2. And if the quan-
tum Hamiltonian H

(L)
AF is taken with periodic boundary conditions, then also

the spacial coordinate is periodic, i.e., the loops are over a torus. Similarly as
in (3.2) one gets

trT
( ∏

(b,t)∈ω

Kb,t

)
= (2S + 1)Nper

� (ω) , (3.9)

where Nper
	 (ω) is the number of loops into which the set of lines decomposes

with the time-periodic boundary condition under which t = ±β/2 are identi-
fied.

With this adjustment in the assignment of loops to rung configurations,
the state’s representation in terms of the loop system with the probability
distribution (3.5) remains valid also in the presence of periodicity of either the
temporal or spacial direction. This point should be borne in mind in the discus-
sion which follows. In the pseudo spin representation, which is described next,
a distinction will appear between the weights of winding versus contractible
loops.

From (3.9) and (3.2) we also obtain the following explicit justification
for (1.24):

〈DL|e−βH
(L)
AF |DL〉

tre−βH
(L)
AF

=

∫ √
Q

N�(ω)
ρΛL,β

(dω)∫ √
Q

Nper
� (ω)

ρΛL,β
(dω)

≥ 1
√

Q
L

. (3.10)

Indeed, for fixed rung configuration ω, the loops in the denominator are con-
structed on the time-periodic version of ΛL,β and the loops in the numerator
arise in the capped version of ΛL,β . Since the addition of a rung changes the
number of loops by ±1 (depending on whether the two points were already
connected by a loop or not), we have |N	(ω) − Nper

	 (ω)| ≤ L and hence the
lower bound in (3.10) follows.
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4. The Loop Representation of the Anisotropic XXZ-Model

4.1. A modified 4-edge presentation of the XXZ interaction

We shall now show that the loop measure which appeared quite naturally in
the representation of the ground-states of H

(L)
AF plays a similar role also for the

H
(L)
XXZ spin system. Preparing for that, we rewrite the Hamiltonian of the XXZ

chain in terms of the slightly modified local interactions consisting of the sum
of the following four rank-one operators

Kv,v+1 =
(
|−, +〉〈+, −| + |+, −〉〈−, +|

)
v,v+1

+
(
eλ |−, +〉〈−, +| + e−λ |+, −〉〈+, −|

)
v,v+1

. (4.1)

(written in the bra-ket notation of (1.5), with |±,±〉 the eigenfunctions of
(τz

v , τz
v+1)).
The action of Kv,v+1 is depicted in Fig. 3 in terms of the four edge

configurations with the weights:

Wa = 1 , Wb = 1 , Wc = e−λ , Wd = eλ . (4.2)

In this representation of H
(L)
XXZ, the local interaction terms are no longer in-

variant under spacial reflection, but their sum differs from the more symmetric
expression (1.18) only in a boundary term—in fact the one which was included
in (1.21) due to this correspondence. Furthermore, this boundary term does
not appear in the operators’ periodic version

H
(L,per)
XXZ := −1

2

L∑
v=−L+1

([
τx
v τx

v+1 + τy
v τy

v+1

]
+ cosh(λ)

(
1 − τz

v τz
v+1

))
, (4.3)

where the sum extends also to the edge connecting L and −L + 1 ≡ L + 1.
Following is the exact statement.

Lemma 4.1. For any L ∈ N and λ ∈ R:

H
(L)
XXZ + sinh(λ)

τz
−L+1 − τz

L

2
= −

L−1∑
v=−L+1

Kv,v+1 ( := K(L) ) (4.4)

Furthermore, taken with the periodic boundary conditions the two operators
agree without the boundary term:

H
(L,per)
XXZ = −

L−1∑
v=−L+1

Kv,v+1 − KL,−L+1 ( := K(L,per) ) . (4.5)

Proof. The action of the sum of the first two edges (a. and b.) agrees with that
of
[
τx
v τx

v+1 + τy
v τy

v+1

]
/2, which represent the local x- and y-terms in (1.18).

The local z-terms in (1.18) and (4.3) agree with the action of the last two
edges (c. and d.) in Fig. 3. However, their weight in (1.18) and (4.3) is cosh(λ)
for both edges c. and d. The fact that the summation over all edges in the
non-periodic box ΛL yields the same result up to a boundary term is checked
by noting that for a given spin configuration τττ the difference between these
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Figure 3. The nonzero matrix elements of the two-spin op-
erator Kv,v+1 of (4.1), with up arrows corresponding to τ = 1
and down arrows to τ = −1. These weights can be reinter-
preted as the product of eλ/2 per left U-turn and e−λ/2 per
right U-turn along the τ -oriented loop lines

two cases can be expressed in terms of the number of up- and down-turns,
n

(L)
↑ (τττ), n

(L)
↓ (τττ), over the edges of ΛL:

K(L) + H
(L)
XXZ = eλn

(L)
↑ (τττ) + e−λn

(L)
↓ (τττ) +

L−1∑
v=−L+1

cosh(λ)
τz
v τz

v+1 − 1
2

= eλn
(L)
↑ (τττ) + e−λn

(L)
↓ (τττ) − cosh(λ)

(
n

(L)
↑ (τττ) + n

(L)
↓ (τττ)

)
= sinh(λ)

(
n

(L)
↑ (τττ) − n

(L)
↓ (τττ)

)
. (4.6)

The proof of (4.4) is completed by noting that n
(L)
↑ (τττ) − n

(L)
↓ (τττ) = (τz

L −
τz
−L+1)/2. In the periodic case, this boundary term drops out. �

4.2. A Link Between the HXXZ and HAF Loop Measures

Applying the general procedure to the operator e−βH
(L,+)
XXZ /2 written as eβK(L)/2

we obtain a representation of states in terms a functional integral over config-
urations 	ω = (ω, τ) with binary-valued functions

τ : ΛL,β → {−1, 1}
whose values may change only at the rungs of ω, consistently with the edges
depicted in Fig. 3. The local condition implies that the allowed functions τ are
consistent with the loop structure of ω: Along each loop of ω the function τ
is aligned with either its clockwise of counterclockwise orientation. We denote
by 1[ω, τ ] the indicator function expressing this consistency condition.

Theorem 4.2. For λ ≥ 0, any L even and β, the expectation value of any
function of τz in the state defined in (1.29) is given by

〈f(τz)〉(XXZ,±)
L,β,±λ =

∫
E± (f |ω) μL,β(dω) (4.7)

with μL,β the measure defined in (3.5) at√
Q = eλ + e−λ (4.8)
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and the normalized expectation value

E± (f |ω) =
1

√
Q

N�(ω)

∑
τ

1[ω, τ ] W±(ω, τ) f(τ(·, 0)) (4.9)

with the weights

W±(ω, τ) :=
(∏

+	

e±λ
)(∏

−	

e∓λ
)

, (4.10)

where the product is over (+) and (−) oriented loops 
 of (ω, τ).

Proof. We spell the proof in the case +. Proceeding as described in Sect. 2,
we get

〈N (L)
+ |e−βH(L,+)

XXZ
/2 f(τz) e−βH(L,+)

XXZ
/2|N (L)

+ 〉
〈N (L)

+ |e−βH
(L,+)
XXZ |N (L)

+ 〉

=

∫ ∑
τ 1[ω, τ ]W̃+(ω, τ)f(τ(·, 0))ρΛL,β

(dω)∫ ∑
τ 1[ω, τ ]W̃+(ω, τ)ρΛL,β

(dω)
(4.11)

with weights given by the product over all rungs of ω in terms the four types
#(τ, b) ∈ {a., b., c., d.} listed in (4.2) (cf. Fig. 3):

W̃+(ω, τ) =
∏
b∈ω

W#(τ,b). (4.12)

Lumping the factors by the loops of ω, for each loop which does not reach
the upper and lower boundary of the box ΛL,β , one gets the total of e+λ per
counter-clockwise (+) and e−λ per clockwise (−) oriented loop. In that case
W̃+(ω, τ) reduces to the above defined W+(ω, τ). Furthermore, with our choice
of the seed vector |N (L)

+ 〉 that is also true of the loops which are reflected from
the upper and/or the lower boundary.

Summing over the 2N�(ω) possible loop orientations one gets, for each ω∑
τ

1[ω, τ ] W±(ω, τ) = (eλ + e−λ)N�(ω) =
√

Q
N�(ω)

. (4.13)

Thus, the average in (4.11) is over (ω, τ) with the joint distribution whose
marginal distribution of ω is the normalized probability measure

1
Norm.

(eλ + e−λ)N�(ω)ρΛL,β
(dω) = μL,β(dω) , (4.14)

with the conditional distribution of τ conditioned on ω stated in (4.9). �

It may be instructive to pause here and compare the different perspec-
tives on the above loop measure. Starting from the analysis of the two different
quantum spin chains we arrive at a common system of random rung configu-
rations ω, whose probability distribution in both models takes the form

μL,β(dω) =
√

Q
N�(ω)

ρΛL,β
(dω)/Norm.

at 2S + 1 =
√

Q = eλ + e−λ (4.15)
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with ρΛL,β
(dω) a Poisson measure of intensity one. The factor

√
Q

N�(ω), by
which the measure is tilted, appears through the summation over another
degree of freedom, at which point the models differ. More explicitly, in the
different systems this common factor is variably decomposed as√

Q
N�(ω)

=
∑
m

1[ω,m] (HAF)

=
∑

τ

1[ω, τ ]
∏
b∈ω

W#(τ,b) (HXXZ) (4.16)

where the summations are over functions

m : ΛL �→ {−S,−S + 1, . . . , S} (with (2S + 1) =
√

Q),

τ : ΛL �→ {−1,+1} (with eλ + e−λ =
√

Q). (4.17)

The indicator functions impose the consistency condition requiring m or τ to
be consistent with the loop structure of ω, i.e., a switch of signs at each U-turn
and otherwise be constant along each vertical segment.

Thus, the above system of the random oriented loop described by 	ω =
(ω, τ) can be presented in two equivalent forms:

1. Locally: as a 4-edge model of random oriented lines with the weights
listed in Fig. 3.

2. Globally: by the following two characteristics of its probability distribu-
tion μ̂L,β,λ:

(i) ω has the probability distribution μL,β which is tilted relative to the
Poisson process ρΛL,β

(dω) by the factor
√

Q
N�(ω)

(ii) conditioned on ω, the conditional distribution of τ corresponds to
independent assignments of orientation to the loops of ω, at proba-
bilities e±λ/[eλ + e−λ] depending on whether the loop is anticlock-
wise (+) or cklockwise (−) oriented.

To emphasise the fact that the measure μ̂L,β,λ changes under a change
of the sign of λ ∈ R, we keep track of it in the notation.
The above local to global relation is reminiscent of the Baxter et al. [13]

correspondence between the Q-state Potts model and the 6-vertex model,
which followed the analysis of Temperley and Lieb [34].

In the context of the XXZ-operator, the loop picture carries a particularly
simple implication for sites at the boundary of ΛL, where the relation of τ(u, t)
to loop’s helicity is unambiguous. One gets, for the finite volume ground-states:

〈τ(u, 0)〉L,β =

{
− tanh(λ) u = −L + 1,

+ tanh(λ) u = L,
(4.18)

regardless of the value of L and β > 0.

4.3. The XXZ-Hamiltonian with the Periodic Boundary Conditions

Under the joint distribution μ̂L,β,λ on oriented loops, the induced measure on
τ ’s restriction to the line t = 0 was shown to agree with the seeded expectation
value of z-spins for the XXZ-Hamiltonian with boundary term on ΛL.
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This relation takes a simpler form for the thermal state of the XXZ-
Hamiltonian taken with periodic boundary conditions (4.3). To express that,
we denote by μ̂per

L,β,λ the similarly defined the 4-edges measure on ΛL,β , taken
with periodic boundary conditions in both space and time direction.

Theorem 4.3. The marginal distribution of μ̂per
L,β,λ on orientations τ coincides

with the quantum expectation of the XXZ-model’s tracial state, i.e., for any
finite collection of space-time points (uj , tj) which are ordered t1 < t2 < · · · <
tN :

tr
(
e−(β−tN )H

(L,per)
XXZ PuN

(σN )e−(tN −tN−1)H
(L,per)
XXZ · · · Pu1(σ1) e−t1H

(L,per)
XXZ

)

tr
(
e−βH

(L,per)
XXZ

)

=
∫ N∏

j=1

1 [τ(uj , tj) = σj ] μ̂per
L,β,λ(d	ω) . (4.19)

where σj ∈ {−1, 1} are prescribed spin values and Pu(σ) := 1 [τz
u = σ] stands

for the projection operator onto states with σ as the z-component of the spin
at u.

Proof. The proof proceeds by plugging the operator K(L,per) from (4.5) into
the loop representation (2.3) for each of the factors exp[(tj − tj−1)H

(L,per)
XXZ ]

in the time-ordered product in the numerator. The operator K(L,per) pro-
duces exactly the weights of the 4-edges model with spatially periodic bound-
ary conditions. The projection operators Puj

(σj) inserted behind each factor
exp[(tj − tj−1)K(L,per)] fixes the spin-value to σj at the particular instance
(uj , tj) in space-time. Evaluating the trace in the joint eigenbasis of τz

u will
enforce periodic boundary conditions of the oriented loops also in the time
direction. �

Since the right-side in (4.19) depends on λ only through the anisotropy
parameter cosh(λ) entering the periodic XXZ-Hamiltonian, the distribution of
the pseudo-spins is easily seen to exhibit the following symmetry, which will
play a crucial role in our proof of dimerization (Theorem 1.2).

Corollary 4.4. Under μ̂per
L,β,λ, the marginal distribution of τ is a symmetric

function of λ.

4.4. Further Symmetry Considerations

As a preparatory step toward the proof of Néel order, let us discuss the symme-
tries of the oriented loop’s distribution. We start by denoting three mappings
on the space of functions τ(u, t) which are defined by

S[τ ](u, t) = τ(u − 1, t) one-step shift
F [τ ](u, t) = −τ(u, t) spin flip
R[τ ](u, t) = τ(−u + 1,−t) space × time reflection w.r.t. (1/2, 0) (4.20)

and extend the last two to a similarly defined action on the un-oriented edge
configuration ω.
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The following is a simple, but very helpful observation.

Theorem 4.5. For each finite L, β, and λ, the above joint probability distri-
bution of (ω, τ) is invariant under R ◦ F . Furthermore, in any accumulation
point of such measures (e.g., limit L → ∞ with L of a fixed parity) which is
invariant under the two-step shift (S2), the magnetization satisfies

〈τ(u, 0)〉(L,β) = (−1)uM (4.21)

for some M ∈ [−1, 1].

To avoid confusion let us stress that (4.21) does not yet establish the
existence of Néel order. For that, one needs to show that M �= 0.

Proof. The first statement follows readily from the above characterization (i)-
(ii) of the measure, as under reflections the distribution of ω is invariant, but
the loop’s orientational preference is inverted.

To prove the second statement we combine the above symmetry with the
assumed two-step shift invariance. These imply

τ(2, 0) = [S2 ◦ (R ◦ Fτ)](2, 0) = (R ◦ Fτ)](0, 0) = −τ(1, 0) . (4.22)

The full oscillation (4.21) follows by another application of invariance under
the double shift S2. �

5. The Quantum Loops System’s Critical Percolation Structure

5.1. An FKG-Type Structure

The probability distribution (3.5) is reminiscent of the loop representation of
the planar Q-state random-cluster models. For details on the random-cluster
model itself, we refer to the monograph [25] and the lecture notes [17] (for
recent developments).

As in that case, it is relevant to recognize here the presence of a self-dual
A/B-percolation model. To formulate it, we partition any rectangle ΛL,β ⊂
Z×R into a union of vertical columns of width 1 over the edges of ΛL, labeled
alternatively as A and B,

A := {(2n, 2n + 1)}n∈Z , B := {(2n − 1, 2n)}n∈Z , (5.1)

with the column over (0, 1) marked as A. Rungs ω are then distributed in the
edge columns with respect to the probability measure μL,β .

These rungs serve a dual role. We interpret each as a cut in the column
over which it lies and at the same time a bridge linking the two domains which
are touched by its endpoints. To visualize the A- and B-connected components,
also called A- and B-clusters, which result from this convention it is convenient
to think of each rung as having a small (infinitesimal) width and being bounded
by a pair of segments, as is indicated in Fig. 4.

Thus, associated with each configuration ω is a decomposition of ΛL,β

into A-clusters and B-clusters, with A-clusters bounded by B-clusters, and
vice versa. In the topological sense this percolation model is self dual. Also,
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Figure 4. The rungs of ω both connect and, in the dual
sense, disconnect: those placed over the A strips (shaded in
this picture) decrease the A connectivity; those over B strips
increase it, and vice versa. Since the complement of ΛL,β is
B-connected this picture corresponds to B-wired boundary
conditions

the probability distribution is symmetric, except possibly for asymmetry in-
troduced by boundary conditions. As is explained below, this implies that the
percolation model is at its phase transition point. The transition can be con-
tinuous, as is the case for independent percolation (Q = 1), or discontinuous
as in models with Q large enough. This distinction is tied in with the existence
or not of symmetry breaking in the ground-states of the two quantum models
discussed here.

The similarity with the random-cluster measures led [6] to introduce a
partial order (≺) on the space of rung configurations in which A-connection is
monotone increasing and B-connection is monotone decreasing. More explic-
itly, labeling the rungs as of A- or B-type: ω1 ≺ ω2 if the A-connections in
ω1 are all holding in ω2. This notion is useful since the measures μL,β satisfy
the Fortuin-Kasteleyn-Ginibre (FKG) lattice condition which enables power-
ful monotonicity arguments. The FKG structure was used in the proof of the
AN-dichotomy [6] stated in Proposition 1.1. Here, we will use the following
facts. First, it implies a FKG inequality stating, for every events E and F that
are increasing (meaning that their indicator functions are increasing for ≺):

μL,β [E ∩ F ] ≥ μL,β [E]μL,β [F ]. (5.2)

Another implication of the FKG lattice condition is the monotonicity in so-
called boundary conditions. Here, the boundary conditions are imposed by the
structure of the underlying graph ΛL,β , so we wish to draw a comparison with
the random-cluster model. The construction with rungs at the top and bottom
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capping the loops implies that when L is odd (as in Fig. 4), the complement of
the box ΛL,β is treated as B-connected, while when L is even it is A-connected.
Borrowing the language of the random-cluster model, we see that our capping
procedure used in the construction of μL,β can be understood as enforcing B-
wired or A-wired boundary conditions depending on the parity of L. To stress
the type of the boundary condition and to draw an even more direct link to
the standard theory of random-cluster models, in this section we write μ#

L,β

instead of μL,β , with # = A if L is even, and # = B if L is odd.
Now, consider L ≥ 
 with 
 even and β ≥ t. The measure μA

	,t can be seen
as the measure μ#

L,β (with # equal to A or B depending on L even or odd,
or equal to per if one wishes) in which we place the so-called A-cutter, since
either the points in Λ	,t were already A-connected within Λ	,t or, in case their
A-connection ran through the complement of Λ	,t, this will still be true due
to the fact that the boundary conditions render this complement into a single
A-cluster. The monotonicity in boundary conditions therefore implies that for
an increasing event E depending on rungs in Λ	,t only,

μ#
L,β(E) ≤ μA

	,t(E). (5.3)

Likewise, if 
 is odd and one uses a B-cutter to cut out a smaller box, one gets

μB
	,t(E) ≤ μ#

L,β(E). (5.4)

5.2. Results Based on the Percolation Analysis

By the monotonicity in the domain, the above FKG structure implies the
convergence of the extremal measures, i.e., along increasing sequences of A- or
B-wired boundary conditions:

μA := lim
L→∞
L even

lim
β→∞

μA
L,β

μB := lim
L→∞
L odd

lim
β→∞

μB
L,β , (5.5)

in the weak sense of convergence of probability measures on the configuration
spaces of rungs on Z × R.

To present the full resolution of the question posed by the dichotomy, we
start with the following preparatory statements.

Theorem 5.1. For any Q ≥ 1, and regardless of whether the infinite-volume
loop measures μA, μB coincide:

1. Each of these measures is supported on configurations with only closed
loops, i.e., there are no infinite boundary lines.

2. The convergence extends to that of the joint distribution of (ω, τ), i.e., of
the ordered loop lines.

3. The limiting measures’ conditional distribution of τ , conditioned on ω,
is given by the same rule as in finite volume: at given ω the loops are
oriented independently of each other with probabilities e±λ/[eλ + e−λ], at
λ satisfying

√
Q = eλ + e−λ, with (−) for clockwise and (+) for counter-

clockwise orientation.
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In case the measures coincide (μA = μB), then

4. the limiting state is supported on configurations in which there is no infi-
nite A-clusters or B-clusters, and instead each point is surrounded by an
infinite family of nested loops;

5. the loop measures with the periodic boundary conditions in both temporal
and spacial direction μper

L,β converge to the shared limit as L, β → ∞.

The proof of this theorem will follow standard arguments in percolation
theory that must still be adapted to the current context.

5.3. Proofs

We begin with three statements that will play important roles. The first one
deals with ergodic properties of μA and μB . Let Sx be a translation by x ∈
Z × R. This translation induces a shift Sxω and SxE of a configuration and
an event. Furthermore, an event E is invariant under translations if for any
x ∈ Z×R, SxE = E. A measure μ is invariant under translations if μ[SxE] =
μ[E] for any event E and any x ∈ Z × R. The measure is ergodic if any event
invariant under translation has probability 0 or 1.

Lemma 5.2. The measures μA and μB are invariant under spacial translations
by 2Z and any time-translation. They are ergodic separately with respect to each
of these sub-groups.

Proof. We will treat the case of μA only, as the case of μB is similar. By
inclusion-exclusion, it is sufficient to consider an increasing event E depending
on rungs in Λ	,t. Let L, k, 
 ∈ 2N with L ≥ 
+k and β ≥ t+s. The comparison
between boundary conditions implies that for x = (k, s),

μA
L+k,β+s[E] ≤ μA

L,β [SxE] ≤ μA
L−k,β−s[E].

Letting L, β tend to infinity implies the invariance under translations.
Any event can be approximated by events depending on rungs in Λ	,t for

some 
, t, hence the ergodicity follows from mixing, i.e., from the property that
for any events E and F depending on finite sets,

lim
|x|→∞

x=(k,s), k even

μA[E ∩ SxF ] = μA[E]μA[F ]. (5.6)

Observe that again by inclusion-exclusion, it is sufficient to prove the equiva-
lent result for E and F increasing. Let us give ourselves these two increasing
events E and F depending on rungs in Λ	,t only. The FKG inequality and the
invariance under translations of μA imply that for sufficiently large x = (k, s)
with k even:

μA[E ∩ SxF ] ≥ μA[E]μA[SxF ] = μA[E]μA[F ].

In the other direction, fix ε > 0 and choose L = L(ε) and β = β(ε) so
large than μA

L,β [E] ≤ μA[E] + ε and μA
L,β [F ] ≤ μA[F ] + ε. If x = (k, s) with

2
 < k < L − 
, then Λ	,t and its translate by x do not intersect. Thus, the
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FKG inequality enables to put a unique A-cluster in the complement of Λ	,t

and SxΛ	,t disconnecting the two areas so that

μA[E ∩ SxF ] ≤ μA
L,β [E ∩ SxF ] + 2ε ≤ μA

L,β [E]μA
L,β [F ] + 2ε ≤ μA[E]μA[F ] + 5ε.

The result therefore follows by taking x to infinity, and then ε to 0. �

The second statement is the following important theorem.

Theorem 5.3. For any Q ≥ 1 and # ∈ {A,B}, one of the two following prop-
erties occur:

• μ#[(1/2, 0) is A-connected to infinity] = 0 or
• μ#[∃ a unique infinite A-cluster] = 1.

Such a result was first proved in [4] for Bernoulli percolation, and was
later obtained by other means. For our needs we shall adapt the beautiful
argument of Burton and Keane [16]. In the proof given below we give only
its brief sketch, as its line of reasoning has by now been presented in many
contexts (e.g., [17]).

Proof. We present the proof for μA, since the proof for μB is the same. Let
E≤1, En (1 < n < ∞), and E≥3 be the events that there are no more than one,
exactly n, and finally at least 3 (possibly infinitely many) infinite A-clusters,
respectively. A pair of different arguments will be used to show: i) μA[En] = 0
for any 1 < n < ∞ (in particular n = 2), ii) μA[E≥3] = 0. This leaves:
μA[E≤1] = 1.

Assume that μA[En] > 0 for some 1 < n < ∞. Then there exist 
 and t
large enough so that μA[F	,t] ≥ 1

2μA[En] > 0, where F	,t is the event that all
the infinite A-clusters in (Z × R) \ Λ	,t (if there are any) intersect Λ	,t. The
event F	,t is independent of the rungs in ΛL,β and conditioned on it there is
a positive probability of the event G	,t that all the boundary vertices of ΛL,β

are A-connected in ΛL,β . Hence

μA[E≤1] ≥ μA[F	,t ∩ G	,t] > 0 . (5.7)

However, by the translation invariance of the event E≤1 and the ergodicity
of the infinite volume probability distribution, μA[E≤1] can take only the val-
ues 0 or 1. Therefore (5.7) implies that μA[E≤1] = 1, and thus μA[En = 0],
contradicting the assumption.

To prove that μA[E≥3] = 0 we consider trifurcation events, along the
lines of Burton–Keane. A trifurcation event T (	)

n,m, of scale 
, is said to occur
within the box B	

(n,m) = [n
, (n + 1)
] × [m
, (m + 1)
] ⊂ R2 if for the given
ω there exists a point within B	

(n,m) which is connected to infinity by three
paths among which there is no connection outside the box.

Assume μA[E≥3] > 0. Then for 
 large enough with positive probability
(which tends to μA[E≥3] for 
 → ∞) the box B	 = [0, 
]× [0, 
] intersects three
distinct infinite clusters.

It is easy to see that for any exterior configuration (with locally finite
edge set) for which this condition is met, there exists a non-empty open set
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of interior configurations for which there is a trifurcation within B	. Since the
conditional probability of any non-empty open set of configurations is strictly
positive (our analog of BK’s “finite energy” condition), one may conclude that
for large enough 


μA[T (	)
0,0 ] ≥ C	 μA[E≥3] (5.8)

with C	 > 0 (by further inspection that extends to all 
 ≥ 1, but this refinement
is not necessary).

By translation invariance the mean number of trifurcation events of scale

 which occur within the finite region ΛL,T = [0, L] × [0, T ] in translates of B	

by (n,m) ∈ (2
Z)2 increases in proportion to the volume:

E
A(N) ≥ μA[T (	)

0,0 ]L · T/(4
2) . (5.9)

The Burton–Keane argument is to combine this with the observation that
in any configuration with N such trifurcation events within ΛL,T there need to
be at least N distinct infinite A-clusters intersecting the boundary of that set.
However, this number cannot grow faster than the boundary. More explicitly

E
A(N) ≤ 2T E

A[N1] + 2LE
A[N2] , (5.10)

where N1 is the number of distinct A-clusters of the half space (−∞, 0] × R

reaching [0, 1]× [0, 1], N2 is the number of distinct A-clusters of the half space
R × (−∞, 0) reaching that set, and E

A(−) denotes the μA expectation value.
By elementary (local) estimates μA[Nj ] < ∞, for both j = 1, 2 (as distinct

A-clusters require the crowding of separation events). Combining (5.9) with
(5.10), and letting L and T tend to infinity at comparable speeds one learns
that for all 
 < ∞

μA[T (	)
0,0 ] = 0 . (5.11)

That is in contradiction with (5.8) (derived under the assumption that μA[E≥3] >
0), which proves our claim. �

We shall also use the following statement.

Lemma 5.4. All B-clusters are finite μA-almost surely.

By duality, μB-almost surely all the A-clusters are finite almost surely.

Proof. Assume by contradiction that μA[∃ infinite B-cluster] = 1 and fix L, β
so that

μA[ΛL,β is B-connected to infinity] ≥ 1 − 1
104 (5.12)

and the probability that the top, bottom, left and right of the boundary of ΛL,β

are B-connected to infinity in the complement of ΛL,β are the same (simply
fix L0, β0 large enough to get (5.12), and then increase L0 and/or β0 in order
to obtain L, β).
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Since a path from infinity to ΛL,β ends up either on the top, bottom,
left or right of it, the FKG inequality implies (through the square-root trick5)
that

μA[top of ΛL,β B-connected to infinity outside ΛL,β ] ≥ 1 − 1
104/4 = 1 − 1

10 ,

and similarly for the right, bottom and top. Now, assume that the top and
bottom are B-connected to infinity, and the left and right (more precisely the
A-lines on the left and right of the respective boundaries) are A-connected to
infinity (the probability of the latter is larger than the probability that there
exists a B-connection since under μA the A-clusters dominate the B-ones6).
The union bound implies that this happens with probability 1 − 4

10 > 0. Yet,
the finite-energy property also implies that conditionally on this event, the
rungs in ΛL,β are such that no boundary vertex of ΛL,β are A-connected using
paths in ΛL,β , implying that there exist two infinite A-clusters with positive
μA-probability. But this contradicts the fact, proved in the previous statement,
that there is zero or one infinite A-cluster. �

We are now in a position to prove this section’s main result.

Proof of Theorem 5.1. Property 1 is a direct consequence of the fact that μA

does not possess any infinite B-cluster. It also means that when fixing a finite
set, and taking L and β large enough, no loop intersecting the finite set reaches
the boundary of ΛL,β or winds around the vertical direction. By construction,
we deduce that all these loops are oriented in an independent fashion described
in the previous section. As a consequence, Properties 2 and 3 follow trivially.
Property 4 is a direct consequence of μA = μB , so that the distribution of the
A- and B-clusters is the same under μA. In particular, there is no infinite A- or
B-cluster, which immediately implies Property 4. Finally, if the two measures
are equal, μper

L,β stochastically dominates μB
L,β and is stochastically dominated

by μA
L,β . Since these measures converge to the same measure μA = μB , so does

μper
L,β . �

6. Proofs of Symmetry Breaking

We now have the tools for a structural proof of the different forms of sym-
metry breaking in the models considered here. We start with the translation
symmetry breaking in the limiting distribution of the random loop measure for
all Q > 4. This is then used to conclude dimerization in the ground-states of
the HAF spin chains with S > 1/2, and Néel order in the ground-states of spin
1/2 XXZ-chain at Δ > 1. These results can be obtained through the rigorous

5The square-root trick refers to the k = 2 case fo the observation that for every in-
creasing events A1, . . . , Ak, the FKG inequality implies that max{μ[Ai]|1 ≤ i ≤ k} ≥
1 − μ[(A1 ∪ · · · ∪ Ak)

c]1/k. This inequality is an improvement on the union bound, as it
shows that if the union of k increasing events has a probability close to 1, then this is also

true for at least one of these events.
6By symmetry the B-clusters under μA are distributed as the A-clusters under μB , which
by FKG is dominated by μA.
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analysis of the Bethe ansatz along the lines of Duminil-Copin et al. [20], which
also yields more quantitative information. However, for a shorter and some-
what more transparent proof we present an analog of the argument which was
recently developed by Ray and Spinka [32] in the context of the 6-vertex/Q-
state random-cluster model on Z2.

6.1. Translation Symmetry Breaking for the Loop Measure at Q > 4

As in [24,32] we shall make an essential use of a random height function
h : (R \ Z) × R �→ Z, which in our case is assigned the configurations of
	ω = (ω, τ). The function is piecewise constant with discontinuities at lines
supporting the loops of ω. Along the horizontal line t = 0 it is defined by:

h�ω(−1/2, 0) := 0, h�ω(u, 0) :=

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈(−1/2,u)∩Z

τ(n, 0) ifu ≥ 0,

∑
n∈(u,−1/2)∩Z

−τ(n, 0) ifu < −1 .
(6.1)

More generally, the value of h�ω(u, t) at any point off the loop lines of ω is the
sum of the fluxes of τ across an arbitrary simple path from (1/2, 0) to (u, t),
counted with the sign of the cross product of the direction of τ with the curve’s
tangent at the point of crossing. In this description of the height function one
may restrict the attention to paths which avoid rungs, i.e., which crosses loops
only at vertical boundaries. (To avoid misunderstanding, let us add that when
the crossing occurs at horizontal rungs of ω the h-function increases by 0 or ±2,
depending on the orientations of the two loops which cross the rung and the
direction of crossing.) An example of this construction is presented in Fig. 5.

As a random function, h(x, t) exhibits a surprising combination of prop-
erties:

1. the function’s statistical distribution is simplest to present in the language
of the loops, whose structure depends on all the loops of ω (i.e., the
erasure of any rung does change the loop structure).

2. yet, for any (ω, τ) the values of h�ω(u, t) at generic points can be read
from just the pseudo spin function τ (i.e., it does not require the full
knowledge of ω).

More explicitly, we have the following auxiliary statement. What makes it
particularly astounding is the combination of the above with the third assertion
listed below.

Lemma 6.1. For any Q > 4, let μ̂ be a probability measure on the systems
of oriented loops over Z × R, described by the variables 	ω = (ω, τ), with the
properties:

1. μ̂ almost surely the loop configurations corresponding to ω consist of only
finite loops.

2. conditioned on ω the loops are oriented independently of each other clock-
wise (−) or counterclockwise (+), which the probabilities e±λ/[e−λ+e+λ],
correspondingly,
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Figure 5. An example of the height function in relation to
a specified configuration of rungs and loop orientations (indi-
cated by the arrows). One may note that from the disconti-
nuities of the pseudo spin τ one can deduce the presence of
some of the loops of ω. However, ω also includes other rungs
(marked here in small ovals) whose presence is transparent to
τ . Their knowledge is essential for the full reconstruction of
the loops of ω, but not for the height function. An implied
combination of properties of the height function (Lemma 6.1)
plays an essential role in the analysis of the case Q > 4

3. the marginal distribution of τ variables is invariant under a global reversal
of orientation (λ �→ −λ).

Then the event

N := {(1/2, 0) is encircled by an infinite number of loops of ω} (6.2)

has zero measure.

Proof. The proof is by contradiction. Let αk = (uk, tk) be a sequence of points
with |αk| ↗ ∞ each of which lies on a level set of h�ω which includes a path
winding around (−1/2, 0). The values of h(αk) are given by the sum of loop
orientations over those loops of ω which separate αk from (−1/2, 0). For Q > 4,
these orientations are given by a sequence of iid ±1 valued random variables,
of the nonzero mean tanh(λ). It readily follows that almost surely the following
limit exists and satisfies

lim
k→∞

h�ω(αk) =

{
sign(λ)∞ (ω, τ) ∈ N
a finite value (ω, τ) /∈ N

. (6.3)
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From this one may deduce that the probability distribution of limk→∞ h(αk)
is:

lim
k→∞

h�ω(αk) =

{
sign(λ)∞ with probability μ̂(N )
a finite value with probability [1 − μ̂(N )]

. (6.4)

The level sets of h�ω can be determined from just τ (i.e., ignoring ω) and,
under the assumption made here its distribution does not change under the
flip λ → −λ. Hence (6.4) yields a contradiction unless μ̂(N ) = 0. �

From this we shall now deduce three symmetry breaking statements. The
first concerned just the loop measure, but in the statement’s proof we make
use of the measure’s significance for the two quantum spin models.

Theorem 6.2. For all Q > 4 (equivalently S > 1/2) the loop measures corre-
sponding to the even and odd ground-states 〈·〉even and 〈·〉odd of (1.11) differ.

Proof. Assume the two loop measures coincide. Then by Theorem 5.1 (4) the
event N occurs with probability 1 with respect to the common probability
measure.

However, by Theorem 5.1 (5), under the above assumption these measures
also describe the limiting distribution of ω corresponding to the ground-state
of the periodic operator H

(L,per)
XXZ in the limit L → ∞, which for concreteness

sake we take to be along 2N and with λ being the positive solution of (4.8).
However, as was noted in Corollary 4.4 the periodic boundary condition state
is actually an even function of λ. It follows that the limiting state satisfied all
the assumptions made in Lemma 6.1, and hence the event N is of probability
zero.

The contradiction between the two implications of the above assumption
implies that the measures are distinct. �

6.2. Dimerization for S > 1/2

Next, we extract from the above probabilistic statement a proof of dimerization
in the quantum HAF spin chain.

Proof of Theorem 1.2. 1. From Theorem 6.2 we already know that for any
S > 1/2 the loop measures associated with the states μA ≡ 〈·〉even and μB ≡
〈·〉odd are different. Theorem 5.3 allows to identify the difference in percolation
terms: in both cases there is almost surely a unique infinite connected cluster,
which is of type A in one and B in the other case. More explicitly,

μA [(u + 1/2, 0) ↔ ∞] = μB [(u − 1/2, 0) ↔ ∞]

=

{
0 foru odd
p∞ > 0 foru even

. (6.5)

However, that leaves still the challenge to determine whether this differ-
ence between the two measures and, in each, between the even and odd sites,
can be detected in terms of a physical observable, i.e., the expectation value
of some function of the spin degrees of freedom.
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The question was addressed in [6] where it is shown (see also the next
section for a similar reasoning) that:

(i) since the two limiting distributions of ω are related by the FKG inequality,
if they differ then the difference is also manifested in the more elementary
connectivity probability to lie on the same loop, and in particular for even
sites u = 2n:

μA [(2n, 0)↔(2n + 1, 0)]] < μA [(2n − 1, 0)↔(2n, 0)]] . (6.6)

(ii) combining (6.6) with (3.7) one learns that

〈P (0)
2n,2n+1〉even < 〈P (0)

2n−1,2n〉even (6.7)

with the opposite inequality for the odd state. Thus the differences in the
two states are detectable and extensive.

2. Theorem 7.2 of [6] bounds the truncated quantum correlations from above
in terms of the correlations

min
#∈{A,B}

μ#[(uuu, t) and (vvv, 0) belong to the same cluster] (6.8)

of the underlying loop measures for every uuu ∈ U ± 1/2 and vvv ∈ V ± 1/2. Now,
the percolation model considered in Section 1.3 of [18] corresponds exactly to
our model here.7 The fifth bullet of Theorem. 1.5 of [18] thus implies, with
the notation of our paper, that there exists c = c(q) > 0 such that for every
n ≥ 1,

μB
[(

1
2 , 0

)
belongs to aA-cluster reaching ∂Λn,n

]
≤ exp[−cn]. (6.9)

Since for uuu ∈ U ± 1/2 and vvv ∈ V ± 1/2 to be connected to each other,
there must exist a path from uuu to the translate of ∂Λn,n by uuu, where n =
max{|t|, |uuu−vvv|−1}, we deduce that all the quantities in (6.8) are smaller than
C exp[−(dist(U, V )+ |t|)/ξ] for some small enough constant ξ = ξ(q) > 0. �

6.3. Néel Order for Δ = cosh(λ) > 1

Turning to the ground-states of the XXZ-spin system, let us recall the nota-
tion. Let λ > 0 be the positive solution of (1.19), and denote by μ̂A

+λ the even
limit (cf. (5.5)) of the measure on the enhanced system of the variables (ω, τ),
in which the winding probabilities of loops of ω are e±λ/(eλ + e−λ), with (+)
winding corresponding to the counterclockwise and (−) the clockwise orienta-
tion. The corresponding state on (just) the spin variables is denoted 〈τ(u, 0)〉+.
These are to be contrasted with μ̂A

− and 〈τ(u, 0)〉−. The superscript may be
omitted, but it should be remembered that in both + and − cases, the limit
L → ∞ is taken over the even sequence.

7One may be surprised by the fact that the Poisson point process there has intensity 1 and

q depending on the column. This comes from the fact that the Radon–Nikodym derivative
is expressed in [18] as q to the number of A-clusters, which can be shown, using Euler’s
formula, to be expressed in terms of

√
q to the number of loops if one change the intensity

of the Poisson point process to 1 in every column.
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Proof of Theorem 1.4. As we saw, the probability distribution of ω under the
two measures μ̂A

±λ agree with that of the corresponding HAF system. Hence,
in both cases there is positive probability p∞ > 0 that (1/2, 0) belongs to an
infinite connected cluster. When that happens, the sign of τ(0, 0) coincides
with the winding sign of the loop which passes through (0, 0). Thus the spin
τ(0, 0) takes the values ± with probabilities e±λ/(eλ + e−λ). The same holds
true for any even site u = 2n. Consequently, for any n ∈ Z:∫

τ(2n, 0) · 1[(2n + 1/2, 0) ↔ ∞] μ̂A
+(d	ω)

= tanh(λ) p∞

= −
∫

τ(2n, 0) · 1[(2n + 1/2, 0) ↔ ∞] μ̂A
−(d	ω) . (6.10)

Since p∞ > 0, we deduce that μ̂A
+ and μ̂A

− are different.
To that let us add the observation that percolation with respect to ω

corresponds to percolation along a level set of the height function which is
readable from τ . Hence the observable which distinguishes the two states is in
principle a functional of the physically meaningful spin function. We conclude
that also the states 〈·〉+ and 〈·〉− are different, and hence the infinite XXZ-spin
system has at least two different ground-states.

A remaining challenge is to simplify the distinction between the two
states, as was done in step (ii) of the above proof of Theorem 1.2. For the
XXZ-model that can be deduced using the last statement in Proposition 1.3.
It allows to conclude from (6.10) (and the previously established fact that
p∞ > 0) that for any u ∈ Z

〈τ(u, 0)〉+ �= 〈τ(u, 0)〉− . (6.11)

This also implies the non-vanishing of the Néel order parameter M of (4.21).
�

In the last step, leading to (6.11), we invoked an “FKG boost” whose full
discussion was postponed in order to streamline the presentation of the main
results. Following is its proof.

Proof of Proposition 1.3. The convergence of each of the two finite-volume
ground-states in the limit L → ∞, with L limited to even values, is based
on the FKG monotonicity of the percolation model discussed in the previous
section, which is common to the two systems discussed here.

It remains to establish that for the XXZ system at any Δ ≥ 1, the states
〈·〉+ and 〈·〉− are either equal or of different magnetization, satisfying (6.11).
In the proof we shall again employ the FKG inequality but do so in a different
setup than used above. This time it will be in the context of an Ising-like
representation of the distribution of the staggered spins

κ(u, t) = (−1)uτ(u, t) . (6.12)

In terms of these variables the ground-states of XXZ-system take the form
of an annealed Gibbs equilibrium state of a ferromagnetic Ising model, and
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the two boundary conditions correspond to (+) and correspondingly (−) fields
applied along the “vertical” part of the boundary.

To present the ground-states in this form we start with the following
preparatory steps:
(1) Rewrite the XXZ Hamiltonian of (1.20), with the boundary term of

(1.21), as the spin-1/2 version of the HAF operator with an added anti-
ferromagnetic coupling of strength δ = Δ − 1. I.e., for any even L:

ULH
(L,±)
XXZ U∗

L =
1
2

L−1∑
v=−L+1

[
τττv · τττv+1 + ±δτz

v τz
v+1 − Δ · 1

]

+
sinh(λ)

2
[τz

−L+1 − τz
L] . (6.13)

(2) For each even L and choice of the ± sign, construct the ground-state of
this operator, applying the hybrid representation (2.10), with the δ term
treated as a potential (V ) added to the Δ = 1 operator, and starting
from the seed state |N (L)

0 〉 of (1.28) with λ = 0.
We are particularly interested in operators which arise from functionals

of τ , or equivalently of κ (the two being related by (6.12)). Taking the limits
indicated in (1.29), we get

〈F 〉± = lim
L→∞
L even

lim
β→∞

〈F 〉(XXZ,±)
L,β,0 (6.14)

with the Feynman–Kac type functional integral

〈F 〉(XXZ,±)
L,β,0 =

∫
E

±
L,β [F |ω] Z±

L,β(ω) ρL,β(dω)∫
Z±

L,β(ω) ρL,β(dω)

=:
∫

E
±
L,β [F |ω] μL,β(dω)

(6.15)

with

Z±
L,β(ω) :=

∑
κ

1[ω, κ] exp
(

−
∫ β/2

−β/2

V±(t) dt
)

,

E
±
L,β [F |ω] :=

1
Z±

L,β(ω)

∑
τ

1[ω, κ] exp
(

−
∫ β/2

−β/2

V±(t) dt
)

F [κ] , (6.16)

where, in a slight abuse of notation, we denote by 1[ω, κ] the consistency
indicator function which is inherited from 1[ω, τ ] through the correspondence
(6.12), and the potential is

V±(t) := −
L−1∑

u=−L+1

κ(u, t) κ(u + 1, t)

∓ sinh(λ)
2

[κ(−L + 1, t) + κ(L, t)] .

(6.17)

It is now important to note that in terms of κ the consistency condition
translated into the constraint that κ(u, t) is constant along each of the loops
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of ω. Thus, for a given ω the function κ(u, t) is fully characterized by the
collection of binary variables {κγ} indexed by the loops of ω. Furthermore,
the potential V±(t) is expressible as a ferromagnetic pair interaction among
the values of this collection of observables.

By the general FKG property of the ferromagnetic Ising measures, for
each ω the (+) and (−) measures E

±
L,β [·|ω] admit a monotone coupling (this

is referred to as Strassen’s theorem). That is, there exists a joint probability
distribution ν̂ω(κ+, κ−), with marginals given by the two measures E

±
L,β [·|ω]

and which is supported on pairs of configurations satisfying

κ+(u, t) ≥ κ−(u, t) ∀(u, t) ∈ ΛL,β . (6.18)

In terms of such a coupling, for any functional F [κ]:

E
+
L,β [F [κ] |ω] − E

−
L,β [F [κ] |ω] =

∑
κ+,κ−

(F [κ+] − F [κ−]) ν̂ω(κ+, κ−) . (6.19)

and for F [κ] monotone non-decreasing the terms on the right are all non-
negative.

In studying the limit L, β → ∞ it is convenient to measure the distance of
the two induced measures within rectangular space-time domains of the form
BK,T = [−K,K] × [−T, T ], through the Wasserstein-type metric

WK,T

(
〈·〉(XXZ,+)

L,β,0 , 〈·〉(XXZ,−)
L,β,0

)

=
∫ {

inf
νω

[ K∑
u=−K

∫ T

−T

|κ+(u, t) − κ−(u, t)| dt
]
νω(κ+, κ−)

}
μL,β(dω)

(6.20)

where νω ranges over couplings of the two measures E
±
L,β [·|ω].

For the monotone coupling the absolute value can be dropped, in which
case the integral reduces to the simple difference in expectation values of κ,
and thus

WK,T

(
〈·〉(XXZ,+)

L,β,0 , 〈·〉(XXZ,−)
L,β,0

)

=
K∑

u=−K

∫ T

−T

[〈κ(u, t)〉(XXZ,+)
L,β,0 − 〈κ(u, t)〉(XXZ,−)

L,β,0 ] dt . (6.21)

In the infinite volume limit, in which the mean value of κ(u, t) is trans-
lation invariant, one gets

lim
L→∞
Leven

lim
β→∞

WK,T

(
〈·〉(XXZ,+)

L,β,0 , 〈·〉(XXZ,−)
L,β,0

)
= |BK,T | [〈κ(0, 0)〉+ − 〈κ(0, 0)〉−]

= 4(2K + 1)T 〈τ(0, 0)〉+ . (6.22)

We learn that if 〈τ(0, 0)〉+ = 0 then for any K,T < ∞ the Wasserstein
distance between the restrictions of the two measures to the box BK,T tends
to zero. It follows that if the measures converge, as we know to be the case
here, then they have a common limit.
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In other words, if for some measurable functional of τ , 〈F 〉+ �= 〈F 〉−,
then we may conclude that also 〈τ(0, 0)〉+ �= 〈τ(0, 0)〉− . In view of the relation
between the two states the latter is equivalent to

〈τ(0, 0)〉+ �= 0 . (6.23)

�

Postscript—Quantum Degrees of Freedom as Emergent
Features

The analysis presented here provides another example where the categori-
cal distinction between classical and quantum physics is blurred. We started
with two quantum spin chains and moved on to their relation with a com-
mon random loop model. An alternative presentation could have started from
the random loop model, based on the random rung configurations ω, which
is of independent interest in probability theory and statistical mechanics and
then proceed by recognising that this system’s features can be best understood
through emergent quantum degrees of freedom.

The utility of such crossings of the quantum/classical divide has been
noted before: In one direction, the thermodynamic of the planar Ising model is
best explained in terms of emergent quantum degrees of freedom, among which
are Bruria Kaufmann’s spinors [26] and Lieb–Mattis–Schultz fermions [33]. In
the other direction one finds Feynman–Kac functional integral representations
for thermal states of quantum particle system in terms of classical functional
integrals, and analogous formulas for quantum spin chains, such as employed
in [3,6,15,22,23,35,36].
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