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I

Abstract

At the highest end of the energy spectrum, the universe is filled
with three types of cosmic radiation1 — cosmic rays, neutrinos, and 1 often referred to as cosmic messengers

gamma rays — of mostly unknown origin. We expect, however, that
cosmic ray acceleration is tightly connected to neutrino and gamma-
ray production. Hence, in this thesis, multi-messenger techniques are
used to search for the long-sought sources of cosmic radiation.

In 2017, the IceCube Neutrino Observatory detected a neutrino2 2 IceCube-170922A

in proximity to a flaring gamma-ray blazar, TXS 0506+056. In this
thesis, we probe their relationship in two ways: 1.) Using light curves
of 3FGL sources, we estimate the chance coincidence probability to ∼
0.1% and 2.) Through a multi-messenger dissection of the region, we
identify TXS 0506+056 as the only plausible neutrino emitter, making
it the first compelling source of cosmic neutrinos. Based on this
finding, three methods are developed to identify further candidates.

In the first step, IceCube analyses require the selection of suitable
events based on their topology. This thesis, therefore, introduces a
deep neural network (DNN) that — for the first time — classifies
events into five categories directly based on their photon hits. The
DNN is exemplarily used for a realtime selection of starting tracks
that doubles event rates compared to its predecessor.

Complementary to single high-energy events, a 9-year sample of
∼ 650, 000 neutrino-induced tracks from the Northern Hemisphere is
used to probe point-like astrophysical emission over the atmospheric
background. We present an analysis that resolves previous biases by
consistently modeling the likelihood function. A DNN further in-
creases the energy resolution by ∼ 50%. Altogether, the discovery
potential for point-like sources improves by ∼ 25%. Searching a cat-
alog of potential neutrino candidates, we detect the starburst galaxy
NGC 1068 as the first neutrino source with significance over 4σ (4.2σ).

Finally, we extend the multi-messenger dissection of TXS 0506+056

to 70 highly-energetic IceCube tracks, revealing a 3.23 σ excess of
IBL/HBL blazars with respect to random coincidence. For the future,
an automated version of the dissection pipeline is triggered with
every IceCube alert, enabling quasi-simultaneous follow-up mea-
surements of potential counterparts. Through the combination of
this pipeline and the DNN classifier, we identified the HBL 3HSP
J095507.9+355101 as a promising neutrino counterpart. Overall, we
find that IBL/HBL blazars are likely to be one population of astro-
physical neutrinos and cosmic rays.



II

Zusammenfassung

Am oberen Ende des Energiespektrums findet man im Universum
kosmische Strahlung, Neutrinos und Gammastrahlen mit ungeklär-
tem Ursprung. Es wird jedoch erwartet, dass die Produktion dieser
drei Messenger in astrophysikalischen Quellen eng verbunden ist. Da-
her werden in dieser Arbeit Multi-Messenger-Methoden verwendet,
um nach deren gemeinsamen Ursprung zu suchen.

Im Jahr 2017 entdeckte das IceCube Neutrino Observatory ein
Neutrino3 in der Nähe eines aktiven Blazars, TXS 0506+056. In die-3 IceCube-170922A

ser Arbeit evaluieren wir ihre Beziehung auf zwei Arten: 1.) Mit Hil-
fe von Lichtkurven schätzen wir die Zufallswahrscheinlichkeit auf
∼ 0.1% und 2.) Durch eine Multi-Messenger Analyse identifizieren
wir TXS 0506+056 als den einzigen plausiblen Ursprung und damit
als die erste Quelle kosmischer Neutrinos. Basierend darauf wurden
drei Methoden zur Identifizierung weiterer Quellen entwickelt.

Im ersten Schritt erfordert jede IceCube Analyse die Auswahl ge-
eigneter Ereignisse auf Basis ihrer Topologie. Diese Arbeit stellt da-
her ein Deep Neural Network (DNN) vor, das — zum ersten Mal
— Ereignisse direkt auf Grundlage ihrer Erscheinung im Detektor
in fünf Kategorien einordnet. Das DNN wird exemplarisch für eine
Echtzeit-Selektion von startenden Spuren verwendet, die, verglichen
zu ihrem Vorgänger, eine doppelt so hohe Ereignisrate hat.

Ergänzend zu einzelnen hochenergetischen Ereignissen werden
∼ 650.000 neutrino-induzierte Spuren aus der nördlichen Hemisphä-
re verwendet, um punktförmige astrophysikalische Emissionen über
dem atmosphärischen Hintergrund zu identifizieren. Unsere Ana-
lyse behebt den Bias vorheriger Methoden durch eine konsistente
Modellierung der Likelihood-Funktion. Ein DNN erhöht zudem die
Energieauflösung um ∼ 50%. Insgesamt steigt das Entdeckungspo-
tential für punktförmige Quellen um∼ 25%. In einem Katalog poten-
zieller Neutrinoquellen haben wir die Starburst-Galaxie NGC 1068

als erste Quelle mit einer Signifikanz über 4σ (4,2σ) identifiziert.
Abschließend erweitern wir die Multi-Messenger Analyse von TXS

0506+056 auf 70 hochenergetische IceCube-Spuren, wobei wir einen
3, 23 σ Überschuss an IBL/HBL-Blazaren feststellen. Zukünftig wird
mit jedem IceCube-Alert eine automatisierte Version der Analyse ge-
startet, um quasi-simultane elektromagnetische Beobachtungen von
potenziellen Quellen zu ermöglichen. Durch die Kombination die-
ser Pipeline und der DNN Klassifizierung haben wir einen weiteren
HBL4 als potenzielle Neutrinoquelle identifiziert.4

3HSP J095507.9+355101
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CHAPTER 1. INTRODUCTION 1

1 Introduction

Seeing how we and our species fit in between the big bang and the closest
science can take us to the end of time, is something that gives us deeply
illuminating context. It allows us to see the human search for meaning
and purpose in a different light, and with that to recognise that there is no
ultimate answer hovering in the depths of space awaiting discovery. Instead,
the context provided by the cosmological narrative frees us fully to develop
our own, deeply and thoroughly subjective reasons for being.

— Brian Greene, Physicist 1 1 https://www.theguardian.com/scie
nce/2020/feb/06/brian-greene-theoret
ical-physicist-interview-until-the-end
-of-time, accessed October 8th 2020

To understand how little we know about the Universe we live in,
we can take a journey to its high-energy end. There, invisible to the
human eye, the Universe is filled with various types of cosmic radi-
ation. Photons in the form of gamma rays, neutrinos, and charged
particles fill the space and continuously penetrate the Earth’s atmo-
sphere without a clear trace of their origin and production mecha-
nisms. It was in 1912 that Victor Hess discovered, for the first time,
the high-energy radiation that we nowadays call cosmic rays.2 With 2 Hess, “Über Beobachtungen der

durchdringenden Strahlung bei sieben
Freiballonfahrten”.

energies of up to 1020 eV, these charged nuclei are more than a mil-
lion times more energetic than particles produced at human-made
particle accelerators like the Large Hadron Collider (LHC) at CERN.
Despite a century of intensive research, major questions about the
high-energy cosmic radiation remain unanswered, including:

• What is the origin of high-energy cosmic radiation?

• How is high-energy cosmic radiation produced and what is the
connection between the three messengers - gamma rays, neutrinos,
and cosmic rays?

• What does high-energy cosmic radiation tell us about the cosmic
evolution?

Today, around 100 hundred years after Victor Hess’s balloon flights,
we can measure cosmic radiation with the help of enormous obser-
vatories all around the globe. One of those, the IceCube Neutrino
Observatory at the South Pole, plays a crucial role in the quest for
cosmic-ray sources. In contrast to photons, which are produced in
a large variety of electromagnetic processes, neutrinos only interact
weakly. They are therefore closely connected to the acceleration and

https://www.theguardian.com/science/2020/feb/06/brian-greene-theoretical-physicist-interview-until-the-end-of-time
https://www.theguardian.com/science/2020/feb/06/brian-greene-theoretical-physicist-interview-until-the-end-of-time
https://www.theguardian.com/science/2020/feb/06/brian-greene-theoretical-physicist-interview-until-the-end-of-time
https://www.theguardian.com/science/2020/feb/06/brian-greene-theoretical-physicist-interview-until-the-end-of-time
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interaction of cosmic rays in astrophysical environments. Unsurpris-
ingly, the first detection of astrophysical neutrinos was thus recog-
nized with the Breakthrough of the Year award of the American Physi-
cal Society in 2013

3. Despite the cubic-kilometer volume of IceCube,3 https://physicsworld.com/a/cosmic-
neutrinos-named-physics-world-2013

-breakthrough-of-the-year/, 09/2020

the number of astrophysical neutrinos detected is still pretty low.
Hence, it took another four years until the first compelling neutrino
source candidate’s observation, a flaring gamma-ray blazar 4 called4 Blazars are a rare type of elliptical

galaxy hosting a supermassive black
hole that produces a jet of particles in
the direction of the Earth. See Urry and
Padovani, “Unified schemes for radio-
loud active galactic nuclei”

TXS 0506+056
5,6,7.8 While the observation of a high-energy neu-

5 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Samarai, et al., “Neu-
trino emission from the direction of
the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.
6 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.
7 Padovani, Giommi, et al., “Dissecting
the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.
8 Glauch, Padovani, et al., “Dissecting
the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

trino, IceCube-170922A, played a crucial role as a trigger for follow-
up observations, the association of the neutrino emission with TXS
0506+056 was only possible through an interplay of more than 17

telescopes that provided broad band measurements from radio, over
optical and X-ray, up to the highest gamma-ray energies. The associ-
ation, therefore, poses a milestone for multi-messenger astronomy.

This thesis combines innovative techniques from statistics, deep
learning, and multi-messenger astronomy to provide a state of the
art data analysis and explore the origin of cosmic neutrinos —and
thereby cosmic rays.

The first three chapters comprise the introductory part of the the-
sis. Chapter 2 discusses the current knowledge of astroparticle physics,
including the production, propagation, and detection of cosmic ra-
diation. Also, the chapter characterizes atmospheric air showers as
the major background for searches of astrophysical neutrino sources.
Chapter 3 explains the fundamental detection principle of neutrinos,
and summarizes the data acquisition principles and reconstruction
algorithms of IceCube.

After the introductory part, chapter 4 discusses the multi-messenger
studies that led to the discovery of TXS 0506+056 as the compelling
counterpart to the neutrino event IceCube-170922A. It includes calcu-
lating the chance coincidence probability of observing the neutrino
coincident in space and time with an extragalactic flaring gamma-
ray source,9 as well as a comprehensive multi-frequency study of the9 IceCube Collaboration, M. G. Aartsen,

Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Samarai, et al., “Neu-
trino emission from the direction of
the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.

sky region around it.10 While this observation sheds first light on the

10 Padovani, Giommi, et al., “Dissecting
the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

origin of astrophysical neutrinos, further associations are required to
complete the picture. Consequently, the following chapters present
methods and analyses aiming to identify further source candidates.

A major challenge for any IceCube analysis is the selection of suit-
able events from the 2.6 kHz stream passing the hardware trigger of
the detector.11 In many cases, it can be advantageous to perform this11 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”.

selection based on the event’s topology in the detector. Chapter 5
therefore introduces a deep neural network (DNN) that can classify
events directly based on their hits in the detector into five classes.1212 Kronmueller and Glauch, “Applica-

tion of Deep Neural Networks to Event
Type Classification in IceCube”.

Despite the importance of the topology, IceCube currently does not
have any comparable event classifier in place. Consequently, it is
sometimes unclear which reconstruction algorithm is optimal for a
given event, leading to mis-reconstructions. The DNN poses a so-
lution for this dilemma, as it is sufficiently fast to be run very early
in the data processing pipeline while also having a high prediction

https://physicsworld.com/a/cosmic-neutrinos-named-physics-world-2013-breakthrough-of-the-year/
https://physicsworld.com/a/cosmic-neutrinos-named-physics-world-2013-breakthrough-of-the-year/
https://physicsworld.com/a/cosmic-neutrinos-named-physics-world-2013-breakthrough-of-the-year/
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accuracy. As an exemplary application, chapter 6 presents a new re-
altime selection of high-energy starting tracks of likely astrophysical
origin. This new selection outperforms the previous version by a fac-
tor of more than two in rate while having an equal or better purity
of astrophysical events.

Overall, IceCube measures neutrino events in a range between 100

GeV and several PeV. The largest fraction of these events originates
from the interaction of cosmic rays in the atmosphere. Thus, astro-
physical neutrinos are usually not identifiable on an event-to-event
basis. However, emission from astrophysical neutrino point sources
can still be identified through the clustering of events in space (and
time). While this search strategy has a long tradition, previous im-
plementations have suffered from biases caused by the mismodeling
of the likelihood function. In contrast, the new analysis presented
in chapter 7 of this thesis follows a stringent statistical treatment to
construct the point source likelihood from first principles. Instead of
using analytical approximations, the underlying probability density
functions are generated directly from Monte Carlo simulations, us-
ing kernel density estimation. Besides, a novel deep learning-based
energy reconstruction algorithm improves the energy resolution by
up to 50%. Overall, biases are resolved, the variance in the fit pa-
rameters is reduced, and the discovery potential is improved. After
a detailed discussion of the methodology and the resulting improve-
ments, 9 years of experimental data are analyzed using two search
strategies: a sky scan of the Northern Hemisphere and a search in a
gamma-ray based catalog of 110 potential source candidates.

From a multi-wavelength perspective, interactions of cosmic rays
in astrophysical sources provide a natural connection between elec-
tromagnetic radiation and neutrinos through synchrotron emission
of accelerated primary particles and the subsequent production of
neutrinos and gamma rays through pion decays. Unambiguous iden-
tification of a neutrino source therefore, necessarily also requires a
multi-wavelength counterpart. To facilitate the search for plausible
counterparts, chapter 8 presents a multi-frequency pipeline that dis-
sects interesting sky regions, searching for blazar-like objects in a
similar way as for the case of IceCube-170922A. Using tools from
the United Nations OpenUniverse initiative, 13 the pipeline identifies 13 https://openuniverse.asi.it/

counterpart candidates in radio, optical and X-ray, before running
an automated gamma-ray analysis using data from the Fermi-LAT
satellite. Finally, a machine-learning based algorithm analyses the
multi-frequency emission measurements to classify the object auto-
matically. In addition to the methodology, two applications are pre-
sented. Firstly, the multi-frequency analysis of chapter 4 is extended
to all the well-reconstructed IceCube tracks to search for a statistical
excess of blazars.14 Secondly, the new analysis pipeline’s full poten- 14 Giommi, Glauch, et al., “Dissect-

ing the regions around IceCube high-
energy neutrinos: growing evidence for
the blazar connection”.

tial is discussed using the example of the event IceCube-200107A, for
which a potential counterpart, 3HSP J095507.9+355101, was found.15

15 Giommi, Padovani, Oikonomou, et
al., “3HSP J095507.9+355101: a flaring
extreme blazar coincident in space and
time with IceCube-200107A”.

https://openuniverse.asi.it/
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Finally, in Chapter 9, the results of the thesis are summarized
and discussed in the light of future developments. Supplementary
material can be found in the appendix.
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2 Highly-Energetic Cosmic Particles

The quest for the origin and production of highly-energetic cosmic
particles is one of the main outstanding challenges of modern as-
trophysics, which began with the first detection of cosmic rays in
1912.1 Subsequent measurements of the sky have revealed that the 1 Hess, “Über Beobachtungen der

durchdringenden Strahlung bei sieben
Freiballonfahrten”.

high-energy cosmos is additionally filled with gamma rays2 and neu-
2 Morrison, “On gamma-ray astron-
omy”.

trinos.3 In fact, it is probable that there is a tight connection between

3 M. Aartsen et al., “Evidence for High-
Energy Extraterrestrial Neutrinos at the
IceCube Detector”.

the origin of these particles. The first evidence for this connection
was the compelling multi-frequency detection of TXS 0506+056 as a
common source of broad band electromagnetic radiation and neutri-
nos. While cosmic rays couldn’t be observed directly, the detection of
astrophysical neutrinos from a source provides clear evidence for the
acceleration of protons and heavier nuclei. In general, the combina-
tion of cosmic rays, neutrinos, and the full electromagnetic spectrum
lays the foundation for multi-messenger astronomy, a research area that
strives for a more comprehensive understanding of the processes and
particles that are shaping the universe. This chapter reviews the cur-
rent knowledge and challenges in the field and introduces the most
relevant observatories for this thesis.

2.1 Characterisation of the High-Energy Universe

While there is good reason to believe that there is a tight connec-
tion between neutrinos, gamma rays, and cosmic rays, each of their
fluxes shows specific features connected to their underlying physical
properties and production mechanisms. Before discussing the con-
nection of the messenger in astrophysical source environments, we
will, therefore, first discuss the production, propagation, and detec-
tion of the messengers separately.

2.1.1 Cosmic Rays

The term cosmic rays usually refers to any type of highly-energetic
charged particles reaching the Earth’s atmosphere from outer space.
In a more narrow definition, it specifically describes the flux of hadronic
particles, i.e., protons and heavier nuclei. In Figure 2.1 an overview
over the most recent cosmic-ray flux measurements is shown. The
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plot combines data from several observatories, thereby spanning sev-
eral orders of magnitude, from around 40 GeV up to the most ener-
getic cosmic particles at 300 EeV. While at the lower end of the spec-
trum balloon/satellite-borne experiments as the Alpha Magnetic Spec-
trometer (AMS) are used, event statistics quickly decrease to higher-
energies requiring larger detection areas to perform precise measure-
ments. For this reason, the largest cosmic-ray detector, the Pierre-
Auger Observatory, covers an area of around 3000 km2 with 1660 sur-
face detectors in the Pampa of Argentina. In contrast to space-borne
experiments, ground-based observatories can not directly measure
the cosmic-rays but rely on the atmosphere as a calorimeter. Conse-
quently, these detectors can not directly address the composition of
the cosmic rays, but use models of the induced air showers to deduce
information about the primary particle.

One of the remarkable features of the cosmic-ray flux is its sim-
plicity over a large energy range. Despite a softening at PeV energies
(the knee) and a re-hardening at EeV energies (the ankle) it can be de-
scribed by simple power laws. Overall, the shape of the spectrum is
inconsistent with black body radiation, which leads to the conclusion
that cosmic-rays are not produced in thermal processes but rather
actively accelerated in astrophysical source environments. While the
origin of knee and ankle is still a matter of debate, there is a wide
consensus that the flux below the knee is dominated by cosmic rays
produced in our Galaxy, most likely through diffuse shock acceler-
ation in supernova remnants (SNRs).4 Early works have shown, in4 Blasi, “The Origin of Galactic Cosmic

Rays”. fact, that from simple energetic considerations one supernova every
30 years would be sufficient to provide the required energy output of
Galactic cosmic-rays.5 More sophisticated simulations show that the5 Ginzburg and Syrovatskii, The Origin

of Cosmic Rays. combination of hadrons accelerated in the magnetic fields of SNRs
with standard diffusion models of the Galactic plane can provide a
good description of the cosmic-ray energy spectrum up to energies
of 107− 109 GeV.6 The major uncertainty in these models is the com-6 Ptuskin, Zirakashvili, and Seo, “Spec-

trum of Galactic Cosmic Rays Acceler-
ated in Supernova Remnants”.

plex magnetohydrodynamic structure of the Galaxy itself. For a sim-
ple approximation one can consider the larmor radius of a charged
particle moving in a perpendicular and uniform magnetic field. In
convenient units it can be written as

rL = 33.6 km
( pc

GeV

)( 1
Z

)(
G
B

)
(2.1)

with momentum p, charge Z and the magnetic field strength B. Eq.
(2.1) can be further simplified by defining the rigidity R, i.e the resis-
tance of a particle against deflection in a magnetic field via

R =
pc
eZ

(2.2)

and hence

rL = 33.6 km
(

R
GV

)(
G
B

)
(2.3)

with, for example, the rigidity of a 10 GeV proton being equivalent to
10 GV. Consequently, the larmor radius for a 3 PeV proton in a homo-
geneous magnetic field with the strength of the milky way (6 µG7) is7 Haverkorn, “Magnetic Fields in the

Milky Way”.
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given by 0.54 pc, which is approximately the thickness of the Galactic
disc.

In the SNR scenario, the knee can therefore be interpreted in two
ways: 1.) as the maximal energy that can be reached by Galactic ac-
celerators and 2.) as the energy at which cosmic-rays start to escape
the magnetic field of the Galaxy.8 Both interpretations are currently 8 Alves Batista et al., “Open Questions

in Cosmic-Ray Research at Ultrahigh
Energies”.

equally viable, and in any case, a sequence of knee features is ex-
pected for the different constituents of the cosmic-ray flux; see the
H4a model in Figure 2.1. Assuming the knee at 3 PeV to be dom-
inated by protons, a similar feature at 100 PeV would be expected
through the cut-off of heavier elements. Observational evidence for
that has been reported by KASCADE-Grande.9 9 Apel et al., “Kneelike Structure in

the Spectrum of the Heavy Compo-
nent of Cosmic Rays Observed with
KASCADE-Grande”.
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Figure 2.1: The energy flux density of
cosmic rays between 40 GeV and sev-
eral hundred EeV. Different measure-
ments are shown in different colors.
Overlayed, the H4a cosmic-ray model
shows the energy-dependent contribu-
tion from the different nuclei. Impor-
tant features of the spectrum are anno-
tated. Data from http://lpsc.in2p3.f
r/crdb/ and the H4a model based on
T. K. Gaisser, Stanev, and Tilav, “Cos-
mic Ray Energy Spectrum from Mea-
surements of Air Showers”.

Observations beyond 100 PeV indicate a lightening of the compo-
sition, marking a likely transition to extragalactic cosmic rays. As
seen from the H4a model10 in Figure 2.1, the flux above this energy 10 T. K. Gaisser, Stanev, and Tilav, “Cos-

mic Ray Energy Spectrum from Mea-
surements of Air Showers”.

threshold can be purely described by hydrogen nuclei. Recent cross-
correlation studies of those events have found evidence for a large
scale anisotropy in the arrival direction of ultra-high energy cosmic
rays (UHECR) consistent with the distribution of extragalactic matter
as traced by the near-infrared 2MASS catalog.11 In general, searches 11 Aab et al., “Observation of a Large-

scale Anisotropy in the Arrival Direc-
tions of Cosmic Rays above 8 × 1018

eV”.

for the cosmic-ray sources are particularly challenging due to deflec-
tion in Galactic and extragalactic magnetic fields. Since the deflection
decreases with growing rigidity, eq. (2.2), searches for extragalactic
sources on small angular scales are usually limited to energies in the
EeV range. Using magnetohydrodynamic models that incorporate lo-
cal structures as well as intergalactic magnetic fields, it can be shown
that the deflection angle for protons with energy Ep = 4× 1019 eV is
between 0.5 and 4 degrees depending on the propagation distance,
see Figure 2.2.

http://lpsc.in2p3.fr/crdb/
http://lpsc.in2p3.fr/crdb/
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Above this energy threshold of Ep = 4× 1019 eV, protons quickly
loose their energy through interactions with photons of the cosmic
microwave background (CMB) and the production of a delta reso-
nance ∆+

0 2 4

Deflection Ψ [deg]
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Figure 2.2: The distribution of deflec-
tion angles for cosmic rays with energy
Ep = 4 × 1019 eV emitted at different
distances as indicated in the plot. Mod-
els from Dolag et al., “Mapping deflec-
tions of ultrahigh energy cosmic rays in
constrained simulations of extragalactic
magnetic fields”.

γCMB + p→ ∆+ → p + π0 (2.4)

and

γCMB + p→ ∆+ → n + π+. (2.5)

These processes thereby predict the GZK (Greisen–Zatsepin–Kuzmin)
cutoff. At around 50 EeV in the cosmic-ray spectrum a cutoff is in-
deed observed, Figure 2.1, but an association with the GZK cutoff
is not yet clearly established.12 Despite the resonant pion produc-

12 J. Abraham et al., “Observation of the
suppression of the flux of cosmic rays
above 4× 1019eV”.

tion, another major energy loss, with lower energy threshold, is the
production of electron-positron pairs via

γCMB + p→ p + e+ + e−. (2.6)

Combining the two processes, the cosmic-ray horizon is defined as
the distance up to which sources significantly contribute to the flux
above a given energy threshold. As a useful measure, the attenu-
ation length13 can be used, see Figure 2.3. Note that, for cosmic13 The distance λ after which the initial

flux has dropped to 1/e of its initial
value. In general N = N0 · e−x/λ.

rays the comparison of attenuation length to source distance is op-
timistic in a sense that the propagation length is in general longer
than a source’s luminosity distance due to random walk deflections
in magnetic fields. Combining the cosmic-ray horizon in Figure 2.3
and the deflection in Figure 2.2 it is evident that cosmic ray-based
astronomy is only possible up to a few hundred Megaparsec and
therefore completely unfeasible for the majority of extragalactic ob-
jects in the universe. This poses a clear observational disadvantage
against gamma rays and neutrinos as discussed in the following.

Figure 2.3: Attenuation length of cos-
mic rays (green) and gamma rays (blue
as a function of their energy. Differ-
ent line styles indicate different inter-
action processes as given in the leg-
end. For comparison, the energy ranges
of relevant observatories and the dis-
tance of well-known sources are shown.
Model predictions from Harari, Moller-
ach, and Roulet, “On the ultrahigh en-
ergy cosmic ray horizon” and De An-
gelis, Galanti, and Roncadelli, “Trans-
parency of the Universe to gamma
rays”.
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2.1.2 Gamma-Rays

Gamma rays describe the part of the electromagnetic spectrum with
photon energies above 100 keV. They play a crucial role in high-
energy astrophysics and are produced in both, Galactic and extra-
galactic sources as seen in the Fermi-LAT skymap showing the arrival
direction of photons in an energy range between 1 GeV and 300 GeV,
Figure 2.4.

Figure 2.4: Fermi-LAT skymap above
1 GeV with 5 years of exposure in
Galactic coordinates. Galactic gamma-
ray emission is clearly visible as the
horizontal band separating the two
hemispheres. Outside of the galac-
tic plane, small dots indicate the pres-
ence of extragalactic point sources. Plot
taken from https://svs.gsfc.nasa.gov/
11342; accessed December 12th 2020.

In contrast to cosmic rays, gamma rays are produced as secondary
particles in a large variety of processes such as

• Inverse compton scattering: e + γ → e + γ∗, with the final state
photon γ∗ being more energetic than the original one.

• Bremsstrahlung: e + N → e + N + γ for some nucleus N

• Synchrotron radiation: e→ e + γ in a magnetic field

• Meson Decay: π0 → γ + γ, where the pion is produced through
proton-proton or proton-gamma interaction (see section 2.2 for
details) .

Astrophysical source environments a rich of free electrons and charged
ions, a physical state referred to as plasma. Through accretion, fusion,
and acceleration of these particles, photons are additionally injected
into the system. In the resulting sea of electromagnetically interact-
ing particles, all of the previously mentioned processes are likely to
occur. Unsurprisingly, the list of sources creating gamma rays, there-
fore, spans from Galactic objects as pulsars 14 and supernovas, over

14 rapidly spinning neutron stars

the diffuse emission from cosmic rays interacting with the interstel-
lar medium, to extragalactic sources such as gamma-ray bursts and
blazars (see section 2.3). Although the acceleration and interaction
of cosmic rays is likely to produce a fraction of the detected gamma
rays, most of their flux is produced in leptonic processes. In the fol-
lowing, we will briefly review the two dominant components of the
gamma-ray sky
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Figure 2.5: Different components of
the Galactic gamma-ray flux accord-
ing to the KRAγ model. The diffuse
emission is shown in grey. Dashed,
dashed-dotted, and dotted lines repre-
sent the emission from π0 decay, in-
verse Compton, and bremsstrahlung,
respectively. The solid, orange line indi-
cates the contribution from gamma-ray
point sources. Adapted from Gaggero,
Urbano, et al., “Gamma-ray sky points
to radial gradients in cosmic-ray trans-
port”.

https://svs.gsfc.nasa.gov/11342
https://svs.gsfc.nasa.gov/11342
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• Diffuse Galactic emission is the product of cosmic rays interact-
ing with the gas and radiation fields in the interstellar medium.
Out of those processes, neutral (and charged) pions are created
that further decay into gamma rays (and neutrinos). Besides, elec-
trons created in the decay of charged pions can produce gamma
rays through inverse Compton scattering and bremsstrahlung. Both
components, the π0 decay and the electromagnetic production of
gamma rays, can be traced via the measurement of the Galactic
gas density and the electron synchrotron emission, respectively.
Combining those measurements with diffusion models of cosmic
rays in the Galaxy, the diffuse Galactic gamma-ray emission can
be well modeled15.16 One prominent example, the KRAγ model,15 Ackermann et al., “Fermi-LAT Obser-

vations of the Diffuse γ-Ray Emission:
Implications for Cosmic Rays and the
Interstellar Medium”.
16 Gaggero, Urbano, et al., “Gamma-ray
sky points to radial gradients in cosmic-
ray transport”.

is shown in Figure 2.5. It can be seen that the dominant contri-
bution of the Galactic flux originates from the decay of neutral
pions, while point sources and other diffuse emission processes
are subdominant. As neutral pions are inevitably produced to-
gether with charged pions that decay into neutrinos, the Galactic
plane provides a guaranteed source of neutrino emission up to
PeV energies.1717 Gaggero, Grasso, et al., “The gamma-

ray and neutrino sky: A consistent
picture of Fermi-LAT, Milagro, and
IceCube results”.
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Figure 2.6: Energy-dependent contribu-
tions of different source types to the
extragalactic gamma-ray background.
Each source class is shown as a colored
band. On top, the experimental mea-
surement of the EGB is shown as black
error bars. Plot adapted from Ajello
et al., “The Origin of the Extragalactic
Gamma-Ray Background and Implica-
tions for Dark-Matter Annihilation”.

• The extragalactic gamma-ray background (EGB) is the integrated
emission of all resolved and unresolved extragalactic GeV gamma-
ray sources. The latest Fermi 4FGL catalog provides the largest
sample of those objects so far. Of the 5064 sources detected in
the entire sky, 3219 are of extragalactic origin.18 Of these sources,

18 Abdollahi et al., “Fermi Large Area
Telescope Fourth Source Catalog”.

blazars form by far the largest subclass with 3137 objects in total.
Moreover, 42 radio galaxies and a hand full of galaxies have been
detected. Unsurprisingly, blazars thereby account for the largest
fraction of EGB. A quantitative study on that has been performed
on the older 1FGL catalog by extrapolating the source count distri-
bution of blazars below the Fermi-LAT detection threshold. It has
been shown that blazars account for 50+12

−11% of the EGB photons,
while ∼70% of the blazar contribution are already resolved.19

19 Ajello et al., “The Origin of the Extra-
galactic Gamma-Ray Background and
Implications for Dark-Matter Annihila-
tion”.

Moreover, in the energy range above 100 GeV, blazars are respon-
sible for almost the entire EGB emission, see Figure 2.6. The large
number of gamma-ray blazars is specifically interesting as blazars
have also been suggested as candidates for astrophysical neutri-
nos, and thereby cosmic rays, see chapter 2.2.

Beyond those two components, a smaller number of Galactic point
sources has been observed. Specifically, the 4FGL catalog contains
239 pulsars, 40 supernova remnants, and 17 pulsar wind nebulae.20

20 Abdollahi et al., “Fermi Large Area
Telescope Fourth Source Catalog”.

Similarly to cosmic rays, gamma rays have a limited observational
horizon, see Figure 2.3. Starting from around 100 GeV, at the upper
end of Fermi-LAT’s energy range, the interaction of gamma rays with
photons from the extragalactic background light (EBL) 21 with subse-

21 The EBL is the accumulated, diffuse
radiation produced in star formation
processes and other objects as AGNs.

quent production of electron-positron pairs becomes important. At
1 TeV, for example, EBL absorption limits the gamma-ray horizon
to a redshift of around z = 0.1. This implies that the high-energy
gamma-ray detection of objects that are further away requires very
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long exposure times. The impact of EBL absorption increases up to
a few hundred TeV where the interaction of gamma rays with pho-
tons from the Cosmic Microwave Background becomes dominant.
The abundance of background photons in this energy range limits
the gamma-ray horizon to a distance on the kiloparsec scale, making
gamma-ray astronomy unfeasible.

2.1.3 Neutrinos

Neutrinos are uncharged fermions that are created through the weak
force in one of three leptonic flavors: electron neutrinos νe, muon
neutrinos νµ, and tau neutrinos ντ . In contrast to cosmic rays and
gamma rays, neutrinos only interact through the weak force 22 and 22 and gravitation

are thus neither deflected nor substantially absorbed. While this is
advantageous to understand physical processes at the edge of the
observable universe, neutrinos are extremely difficult to detect and
event statistics are quite low. On the other hand, the limitation of
neutrinos to hadronic processes guarantees that each astrophysical
neutrino is directly tied to a cosmic ray acceleration site. Over the
last ∼ 10 years, the IceCube Neutrino Observatory (see chapter 3)
has measured the flux of astrophysical neutrinos in various channels
with high significance. A summary of the results are shown in Fig-
ure 2.7. The two most precise measurements come from the channel
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Figure 2.7: Different measurements
of the astrophysical neutrino flux by
IceCube. In the right plot the spec-
tral index γ and the flux normalization
φ0 of a power law spectrum φ(E) =
φ0 · (E/100 TeV)−γ are shown for var-
ious detection channels. In the left
plot, experimental data and best-fit
model are shown for the sample of up-
going muon tracks. Adapted from Stet-
tner, “Measurement of the Diffuse As-
trophysical Muon-Neutrino Spectrum
with Ten Years of IceCube Data”.

for through-going muons and cascades with power law spectral in-
dices of γ = 2.28+0.08

−0.09
23 and γ = 2.53± 0.07,24 respectively. Within 23 Stettner, “Measurement of the Diffuse

Astrophysical Muon-Neutrino Spec-
trum with Ten Years of IceCube Data”.
24 M. Aartsen et al., “Characteristics of
the diffuse astrophysical electron and
tau neutrino flux with six years of
IceCube high energy cascade data”.

the current statistics of these analyses, no more spectral complexity
beyond the simple power law could be identified.

In summary, the astrophysical neutrino flux is well established
in the energy range above ∼ 10 TeV up to a few PeV. While large
efforts have been made, the bulk of the astrophysical neutrino flux’s
origin remains unknown. Searches for neutrino point sources, as
well as the guaranteed diffuse galactic component 25, have yet been 25 see also section 2.1.2

inconclusive 26. However, it is expected that with growing statistics 26 In chapter 7 we report on the first sig-
nificant detection of a neutrino point
source - the starburst galaxy NGC 1068
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and improvements in the methodology, sources will start to appear
over the diffuse background. While the case for point sources is
complicated, as the underlying source count distributions and source
spectra are speculative, recent IceCube analyses searching for the
(guaranteed) Galactic diffuse component have already a sensitivity
level of 58% of the KRAγ baseline prediction.2727 M. Aartsen et al., “Search for

Sources of Astrophysical Neutrinos Us-
ing Seven Years of IceCube Cascade
Events”. 2.2 The Multi-Messenger Connection

The interactions of protons with ambient radiation fields or matter
and the subsequent cascade of particles provides a natural connec-
tion between the three previously discussed messengers. Although
this connection is theoretically on solid ground, a final proof can
only be given through the experimental detection of neutrinos from
a point source as a smoking gun. In this section, we will review and
discuss the physical processes and particle spectra that are relevant
in the scope of this thesis.

2.2.1 Production of Gamma-Rays and Neutrinos from Pions

In the multi-messenger scenario the most probable production of
neutrinos happens through the decay of light mesons, specifically
pions produced in hadronic interactions of cosmic rays. Being un-
stable particles, pions decay with a short lifetime of 2.6× 10−8 s (π0)
and 8.4× 10−17 s (π±), respectively.28 The major decay channels are28 Tanabashi et al., “Review of Particle

Physics”.

π0 → γ + γ (2.7)

π+ → µ+ + νµ (2.8)

π− → µ− + ν̄µ (2.9)

with the muons further decaying into

µ+ → e+ + ν̄µ + νe (2.10)

µ− → e− + νµ + ν̄e (2.11)

resulting in a neutrino flavor ratio of (νµ : νe : ντ) = (2 : 1 : 0).
Since the final state leptons (photons) are much lighter than the initial
pion, they share around the same energy. Hence the two gamma-ray
photons in eq. (2.7) carry one half of the pion energy, whereas each
lepton from the decay chain of eq. (2.8) and eq. (2.10) carries around
one fourth. There are two primary processes believed to produce
these pions: photo-meson and proton-proton production.

2.2.2 Photo-Meson Production

In this production channel protons interact with ambient photons to
create pions via

p + γ → n + π+ (2.12)

p + γ → p + π0, (2.13)
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with a ratio of K = 1 between charged and neutral pions. The re-
quired (lab frame 29) proton energy E′p for this process can be calcu- 29 for example the local emission region

in an astrophysical jet.lated through relativistic kinematics to

E′p =
mpmπc4

2E′t

(
1 +

mπ

2mp

)
≈ 1017

(
1 eV
E′t

)
eV (2.14)

with the proton and pion mass mp and mπ and the (lab frame) pho-
ton energy E′t, respectively. Hence, assuming exemplarily a target
spectrum with photon energy of 2 eV (optical part of the spectrum)
the required cosmic-ray energy is 5× 107GeV, which is just above the
knee of the cosmic-ray spectrum.

Assuming the pion production to be close to the threshold en-
ergy, the final state particles are at rest in the center of mass frame.
Transforming back to the lab frame, one finds for the energy ratio

κ =
mπγc2

mpγc2 =
mπ

mp
≈ 0.1, (2.15)

which is a bit smaller than the average value of 0.2 found from nu-
merical studies of the interaction phase space.30 Hence, the proton 30 Kelner and F. Aharonian, “Energy

spectra of gamma-rays, electrons and
neutrinos produced at interactions of
relativistic protons with low energy ra-
diation”.

loses around 20% of its energy to the pion. The previous assump-
tion of the processes happening close to the threshold energy is, in
fact, pretty realistic, as the cross section peaks sharply around the
threshold and is basically constant for higher energies, see Figure
2.8.31 In astrophysical environments, photo-meson production hap- 31 Ibid.

pens in emission regions that are boosted with Lorentz factor Γ to the
observer. This implies two relevant production scenarios: photons
being stationary or co-moving towards the proton emission region.
In any case, the relation between the observed proton energy an the
energy in the emission region is given by

Ep = Γ · E′p (2.16)

and hence, by combining the branching ratios in section 2.2.1 with
the fractional energy transfer from protons to pions, the neutrino
energy is related to the proton energy via

Eν =
Ep

4 · 5 =
Γ · E′p

20
= Γ · 1015

(
5 eV
E′t

)
eV. (2.17) 10−1 101 103

εγ [GeV]
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Figure 2.8: Interaction cross section for
photo-hadronic interactions as a func-
tion of the required photon energy in
the proton’s rest frame. The cross sec-
tion peaks strongly just above the pion
rest mass and remains constants for
higher energies. Adapted from Kel-
ner and F. Aharonian, “Energy spectra
of gamma-rays, electrons and neutrinos
produced at interactions of relativistic
protons with low energy radiation”.

The observed photon energy of the target photons is related to
their energy in the emission frame via Et = Γ · E′t (co-moving photon
field) and Et = Γ/E′t (stationary/external photon field)32. Plugging

32 assuming for the doppler factor δ that
δ ≈ Γ, which is good assumption for
high energies and small (boosted) an-
gles

this result into eq. (2.17), we find a relationship between the observed
neutrinos and target photon energies. For the cases of the co-moving
photon field, this yields

Eν = Γ2 · 1015
(

5 eV
Et

)
eV (2.18)

and for the case of the stationary photon field

Eν = 1015
(

5 eV
Et

)
eV. (2.19)
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This implies that the photo-hadronic production of neutrinos re-
quires much smaller (observed) photon energies if the field is sta-
tionary compared to a co-moving field.

In astrophysical source environments, the photo-meson produc-
tion threshold manifests in flat neutrino spectra. Consider exem-
plarily a proton spectrum of dNp/dEp ∝ E2

p as usually expected
from Fermi acceleration33 and a typical photon target spectrum of33 Bell, “The acceleration of cosmic rays

in shock fronts – I”. dNγ/dEγ ∝ E2
γ. In this case, the number of photons available above

a given threshold Ep scales linear with the threshold. This implies
that the optical depth, i.e., the probability for a proton to interact,
increases linearly in Ep. Consequently, the power law spectrum of
the resulting neutrino flux is harder than the initial proton flux with
γν = γp + 1.3434 Waxman and J. N. Bahcall, “High-

energy neutrinos from astrophysical
sources: An Upper bound”.

2.2.3 Proton-Proton Interaction

In this production channel meson are produced through the inelastic
collision of protons with ambient matter via processes like

p + p → p + p + π0 (2.20)

p + p → p + n + π+ (2.21)

p + p → p + p + π+ + π− (2.22)

with a usual ratio of K = 2 between charged and neutral pions.3535 Kelner, F. A. Aharonian, and
Bugayov, “Energy spectra of gamma-
rays, electrons and neutrinos produced
at proton-proton interactions in the
very high energy regime”.

Similarly as for photo-meson production, the energy threshold for
pion production through proton-proton interaction can be calculated
from the kinematics of the collision to

Ep = mpc2

(
1 +

m2
π + 4mπmp

2m2
p

)
. (2.23)

Numerically, this results in a required proton kinetic energy in the
lab frame 36 of36 where the second proton is at rest

Ekin = Ep −mpc2 ≈ 280 MeV (2.24)

and thereby much smaller than for photo-meson production in (2.14).
Thus, the pion and neutrino spectra from proton-proton interactions
follows the initial proton spectrum. This has been verified using
detailed numerical simulations, also showing that the average pion
carries away around 17% of the proton’s kinetic energy.3737 Kelner, F. A. Aharonian, and

Bugayov, “Energy spectra of gamma-
rays, electrons and neutrinos produced
at proton-proton interactions in the
very high energy regime”.

2.2.4 Multi-Messenger Constraints

The previous sections have highlighted the natural connection be-
tween the three astrophysical messenger particles: cosmic rays, neu-
trinos, and gamma rays, and the energetics of their production. It
has been shown that independently of the production process, the
pion carries about 20% of the initial proton energy. In the subse-
quent processes, charged pions (neutral pions) decay into four lep-
tons (two gamma-ray photons), each getting an equal share of the
energy. Thus, each neutrino carries around 5% of the initial proton
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energy (Eν = 0.05Ep), while each gamma-ray photon carries around
10% (Eγ = 2Eν = 0.1Ep). Although the specific realization of the
neutrino production strongly depends on the astrophysical source
environments, some model-independent constraints can be derived.

• The Waxman-Bahcall Bound was the first attempt to calculate
a calorimetric limit on the possible extragalactic (muon) neutrino
flux from the observed cosmic ray density38 at PeV energies. The 38 Waxman and J. N. Bahcall, “High-

energy neutrinos from astrophysical
sources: An Upper bound”.

calculation assumes a (constant) injection spectrum of protons
dṄp/dEp = N0E−2

p and an energy production rate of Ėp ∼ 5×
1044 erg Mpc−3 yr−1 between 1019eV and 1021eV.39 Under these 39 Waxman, “Cosmological origin for

cosmic rays above 10**19-eV”.assumptions the integrated energy density is given by

Ėp =

1021∫
1019

Ep × N0E−2
p dEp =

1021∫
1019

N0E−1
p dE = N0 × log

(
1021

1019

)
(2.25)

and hence

E2
p

dṄp

dEp
= N0 =

Ėp

log(1021/1019)
= 5× 1044 erg Mpc−3 yr−1. (2.26)

Assuming that the cosmic rays loose a fraction fpp/pγ < 1 of their
energy before leaving the source, the present neutrino energy den-
sity is given by

E2
ν

dNν

dEν
≈ ζ · fpp/pγ · tH ·

dṄp

dEp
E2

p (2.27)

≈ ζ · fpp/pγ · tH · 5× 1044 erg Mpc−3 yr−1 (2.28)

with hubble time tH and Eν = 0.05Ep as discussed above. The
factor ζ describes the process-dependent fractional energy trans-
ferred to neutrinos. In general

ζ =
3
4

K
K + 1

(2.29)

with the average fraction of charged to neutral pions K, i.e. K ≈ 1
for photo-meson and K ≈ 2 for proton-proton interaction. The
ratio K/(K + 1) represents the fractional energy in charged pions,
while the factor 3/4 describes the ratio of the number of neutrinos
to the total number of particles in the pion decay chain. Assum-
ing that neutrinos are isotropic and move with the speed of light,
multiplying eq. (2.27) by c and dividing by 4π gives the expected
all-flavor neutrino flux40 40 Waxman and J. N. Bahcall, “High-

energy neutrinos from astrophysical
sources: An Upper bound”.

E2
νφν(Eν) ≈ ζ · E2

p
dṄp

dEp
· fpp/pγ · tH ·

c
4π

(2.30)

≈ ζ · 6× 10−8 GeV cm−2 s−1 sr−1 (2.31)

which is well consistent with the experimental result as illustrated
in Figure 2.9 for the limit case of fpp/pγ = 1 41. 41 Note that the original derivation only

considers the muon neutrino flux and
hence uses a ζ of 0.25.
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• Gamma Ray - Neutrino connection: With the production of pions
and their subsequent decays, there is a natural connection between
neutrinos and gamma rays. For photo-hadronic and proton-proton
interactions the relationship of their fluxes after propagation on
astrophysical distances is

∂φν

∂Eν

∣∣∣∣
Eν=

Eγ
2

= η
∂φγ

∂Eγ

∣∣∣∣
Eγ

. (2.32)

with η = 0.5 for proton-proton interactions and η = 1/3 (neu-
trinos) or η = 1/6 (anti-neutrinos) in photo-meson production,
respectively. The propagation on astrophysical distances assures
that the (anti-)neutrino flavor ratio oscillates to (νµ : νe : ντ) = (1 :
1 : 1) allowing to treat all neutrino flavors in eq. (2.32) equally.
In many theoretical considerations it can be useful to not consider
the fluxes, but rather the energy budget. Using the production
rates and energies of neutrinos and gamma rays from pion decays,
42, the relationship between the total luminosity per logarithmic42 For pion ratio π0/π± = 1 the ener-

gies of neutrinos and gamma rays re-
late as Etot

ν = 3 · Eν = 3/2 · Eγ =
3/2 · Etot

γ /2 = 3/4 · Etot
γ

interval, EX LEX = dLEX /d log EX , can be written as

EγLEγ ≈
4

3K
(EνLEν)

∣∣∣∣
Eν=Eγ/2

. (2.33)

with the fraction of charged to neutral pions, K 43. Unfortunately,43 K = 2 for proton-proton interaction
and K = 1 for photo-meson production those relations are only of limited usage for experimental pur-

poses, as 1.) gamma rays are also produced in many other, purely
leptonic, processes (see section 2.1.2), 2.) gamma rays can interact
with ambient photons at the production side and cascade down to
lower energies and 3.) gamma rays in the energy range of IceCube
are quickly attenuated through interaction with the CMB and EBL
(see Figure 2.3) and are recovered at sub-TeV energies.44 While44 Berezinsky and Smirnov, “Cosmic

neutrinos of ultra-high energies and de-
tection possibility”.

1.) simply poses an additional experimental background 2.) and
3.) require further theoretical considerations on how the hadronic
gamma rays can be detected. The major interaction process driv-
ing the intra-source cascade is the electron-positron pair produc-
tion in two-photon interaction, γ+γ→ e−+ e+. From kinematics,
the threshold for this interaction can be calculated to

E1E2 = m2
e c4 (2.34)

with electron (positron) mass me and the energies E1 and E2 of the
incident photons. Dedicated measurements show that the cross
section peaks at E1E2 ≈ 4m2

e c4 or

Et = E2 ≈
(

1 TeV
E2

)
eV. (2.35)

Hence a 1 TeV photon interacts most efficiently with an infrared
target photon of Et = 1 eV energy. This puts us into a dilemma,
as optical photons are expected in many source environments and
are also a viable target photon field for the production of IceCube
neutrinos, see (2.14). The cross section for pair production is, in
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fact, ∼ 104 times larger than the cross section for photo-meson
production.45 In addition to the electromagnetic cascades caused 45 Waxman and J. N. Bahcall, “High-

energy neutrinos from astrophysical
sources: An Upper bound”.

by EBL and CMB interactions, it is therefore expected that gamma
rays produced in π0 decays will initiate source internal electro-
magnetic cascades, which become visible at lower energies. Ded-
icated studies indicate that sources have to be at least partially
opaque to gamma rays to not violate the isotropic gamma-ray
background as it would be, for example, the case when extend-
ing the HESE 6yr flux in Figure 2.9 to Fermi-LAT energies.46 In 46 Murase, Guetta, and Ahlers, “Hidden

Cosmic-Ray Accelerators as an Origin
of TeV-PeV Cosmic Neutrinos”.

this case, it could be promising to search for sources in the X-ray
and MeV gamma-ray range.
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Figure 2.9: The connection between
gamma rays, neutrinos, and cosmic
rays. While the calorimetric limit pro-
vides an upper bound to the pos-
sible neutrino flux (B), the extrapo-
lated neutrino flux should not exceed
the gamma-ray flux if sources are as-
sumed to be gamma-ray transparent
(A). The interaction of cosmic rays with
CMB photons and the subsequent de-
cay of pions theoretically provides a
further component to the neutrino flux.
This cosmogenic neutrinos are, however,
at energies above the IceCube energy
range and have not been detected, yet.
Courtesy of Markus Ahlers.

2.3 A Review of Cosmic Accelerators

To accelerate charged particles to the ultra-high energies of up to
1011 GeV, the particles must be confined in a small acceleration re-
gion through strong magnetic fields. The Hillas criteria gives a sim-
ple approximation for possible regions. It states that the maximum
energy Emax that can be reached by an accelerator is given by the en-
ergy at which the gyro-radius rL of a particle with charge Ze exceeds
the size of the emission region R, allowing the particle to escape.
Quantitatively, the criteria reads

Emax = ZeBR ≈ Z
(

R
pc

)(
B
G

)
1021 eV. (2.36)

Based on this equation, the Hillas plots, Figure 2.10, shows all as-
trophysical source classes that are theoretically able to accelerate
charged particles to ultra-high energies. In fact, there is only a hand
full of good candidates, three of which — AGNs, Starburst Galaxies.
and SNRs — will be discussed in the following. While this list is cer-
tainly incomplete, it represents the most common Galactic and extra-
galactic production mechanism of cosmic rays. While the Hillas cri-
terion gives a model-independent constraint on the possible source
classes, it does not make a statement about the nature of acceleration
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mechanism. Although theories are very speculative, diffuse accel-
eration mechanisms — e.g., First and Second-Order Fermi accelera-
tion47 — are promising as they naturally produce a φ ∝ E−2 cosmic-47 Fermi, “On the Origin of the Cosmic

Radiation”. ray source spectrum that is (after propagation) consistent with our
observations.4848 T. K. Gaisser, Engel, and Resconi, Cos-

mic Rays and Particle Physics.

Figure 2.10: The Hillas plot show-
ing Galactic and extragalactic sources
classes that have sufficiently small
emission regions and sufficiently strong
magnetic fields to produce high-energy
cosmic rays. The colored diagonal lines
show the maximum energy that can be
reached by a nucleus with total charge
Ze for a specific configuration of the
emission region. The solid and dashed
black line show the exemplary cases for
a 1020 eV proton and iron nuclei, respec-
tively. Adapted from T. K. Gaisser, En-
gel, and Resconi, Cosmic Rays and Parti-
cle Physics, p.256.
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2.3.1 Supernova Remnants

When stars run out of material to keep up their fusion process, the
outward radiation pressure stops, and the star collapses. This hap-
pens particularly for very heavy stars (M ≥ 8M�) that burn all the
way through until the core is made out of iron. During the collapse,
the infalling matter compresses the star until some form of pressure
leads to a new equilibrium. Depending on the star’s mass, the new
final state object is a white dwarf, a neutron star, or a black hole. Fi-
nally, through the abrupt ending of the collapse, the infalling matter
gets reflected, and the star explodes.4949 Reynolds, “Supernova remnants at

high energy.” For one subclass, the shell-type explosions, the ejected material pro-
duces a shell around the central objects that lasts for thousands of
years and provides a good environment for the acceleration of par-
ticles. This picture is, for example, supported by the observation
of radio and X-ray emission from highly-energetic electrons in the
evolving shock wave of SN1006.50 Besides, direct evidence for the50 Koyama et al., “Evidence for shock

acceleration of high-energy electrons in
the supernova remnant SN1006”.

presence of highly-energy particles comes from the observation of
gamma rays going up to at least 100 TeV.51 These observations imply

51 Abdalla et al., “H.E.S.S. observations
of RX J1713.7−3946 with improved an-
gular and spectral resolution: Evidence
for gamma-ray emission extending be-
yond the X-ray emitting shell”.

high magnetic fields and, therefore, the possibility of also accelerat-
ing nuclei to high energies. If there are sufficiently dense clouds of
ambient gas, they might interact with protons from the shock wave
in proton-proton interactions. Through the subsequent decay of me-
sons (section 2.2.1) also neutrinos and gamma rays are produced
with a spectrum φ(E) ∝ Eγ · exp−E/EC that follows approximately
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the initial cosmic ray spectrum with γ & 2. The cut off energy EC de-
pends on the specific acceleration mechanism. In general, supernova
remnants are believed to accelerate protons up to several PeV.52 52 Villante and Vissani, “How precisely

neutrino emission from supernova rem-
nants can be constrained by gamma ray
observations?”

If the gravitational pressure during the collapse is large enough,
shell electrons are pressed into the atom’s core leading to the pro-
cess p + e− → n + νe. As a result, a neutron star is formed. Since
the angular momentum and the magnetic field are conserved during
the collapse, the resulting neutron star quickly rotates, producing a
strong magnetic field that can accelerate particles in the surrounding
gas clouds up to relativistic energies. Such objects are called pulsar
wind nebula and have also been speculated to be a source of cosmic
rays and neutrinos. A recent IceCube analysis has, however, found
no evidence for the production of neutrinos in PWN.53 53 M. Aartsen et al., “IceCube Search for

High-Energy Neutrino Emission from
TeV Pulsar Wind Nebulae”.

2.3.2 Starburst Galaxies

Starburst galaxies are a special type of galaxies undergoing an episode
with an extraordinary high star-formation rate of up to 100 times
higher than the one in the Milky Way.54 Surveys in the infrared 54 Tamborra, Ando, and Murase, “Star-

forming galaxies as the origin of diffuse
high-energy backgrounds: Gamma-ray
and neutrino connections, and implica-
tions for starburst history”.

show that the evolution of these objects increases up to redshifts
of z ≈ 2 where they have the highest density before decreasing to
higher redshifts.55

55 Gruppioni et al., “The Herschel
PEP/HerMES Luminosity Function. I:
Probing the Evolution of PACS selected
Galaxies to z~4”.

While the class of starburst galaxies itself is very diverse and dif-
ficult to categorize, there is solid evidence that they are often trig-
gered by galaxy merger events that channel fresh gas into the sys-
tem, which allows the formation of massive stars.56 Those young 56 Tamborra, Ando, and Murase, “Star-

forming galaxies as the origin of diffuse
high-energy backgrounds: Gamma-ray
and neutrino connections, and implica-
tions for starburst history”.

and extremely bright stars burn their fuel extremely quickly and fi-
nally explode as supernovas. Importantly, the dynamic timescale of
the concentration of gas is comparable to the lifetime of those mas-
sive stars.57 Hence, the exploding supernovas and the accompanying 57 Loeb and Waxman, “The Cumulative

background of high energy neutrinos
from starburst galaxies”.

shock waves eject relativistic protons and electrons into an environ-
ment of dense gas. Additional relativistic particle might be injected
through outflows of a central black hole.58 Similar to the processes 58 Desai et al., “PAH Emission from Ul-

traluminous Infrared Galaxies”.leading to the diffuse gamma ray (and neutrino) emission from the
Milky Way (chapter 2.1.2), protons in starburst galaxies can collide
with the interstellar matter in inelastic scattering processes. The ef-
ficiency of these processes depends very much on the gas densities
and the confinement of the cosmic rays in the galaxy’s magnetic field,
something that is not well understood.59 59 Loeb and Waxman, “The Cumulative

background of high energy neutrinos
from starburst galaxies”.

In contrast to other extragalactic sources classes, that are more
likely to produce neutrinos via photo-hadronic interactions, the proton-
proton collisions in starburst galaxies produce softer neutrino spectra
with φν(E) ∝ Eγ

ν and γ & 2, following approximately the cosmic-ray
injection spectrum. In recent years, multi-wavelength studies have
shown, however, that the contribution of starburst galaxies to the
astrophysical neutrino flux at 100 TeV can not exceed more than
∼ 30%.60 The argument is based on the fact, that the production 60 Bechtol et al., “Evidence against

star-forming galaxies as the dominant
source of IceCube neutrinos”.

of neutrinos is inevitably accompanied by electromagnetic cascades,
and therefore gamma rays, that are visible in the Fermi-LAT energy
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range. It has been shown, however, that a large fraction of the ex-
tragalactic Fermi-LAT detected gamma rays are already resolved in
blazars61 (section 2.1.2 and specifically Figure 2.6). The question61 Ajello et al., “The Origin of the Extra-

galactic Gamma-Ray Background and
Implications for Dark-Matter Annihila-
tion”.

of whether or not the gamma-ray flux related to a potential TeV
neutrino production from starburst galaxies is compatible with the
gamma-ray constraints depends very much on the assumed spectral
indices62.63 It is also possible to loosen gamma-ray constraints if62 Bechtol et al., “Evidence against

star-forming galaxies as the dominant
source of IceCube neutrinos”.
63 Palladino et al., “IceCube Neutrinos
from Hadronically Powered Gamma-
Ray Galaxies”.

starburst galaxies are (partially) opaque to gamma rays due to the
production of electron-positron pairs in the intense radiation fields
of the galaxy itself. However, it has been argued that this is not ex-
pected to happen up to multi-TeV energies and thereby not affecting
the arguments laid out above.64 Overall starburst galaxies are a pos-64 Bechtol et al., “Evidence against

star-forming galaxies as the dominant
source of IceCube neutrinos”.

sible scenario for TeV neutrino production, and we will see in chapter
7 that, in fact, the current most significant neutrino point source —
NGC 1068 — belongs to this source class.

2.3.3 Active Galactic Nuclei and Blazars

Active Galactic Nuclei (AGN) are compact regions in the middle of
galaxies with high-luminosity broad band electromagnetic emission
that can not be associated with stars. Since their first detection in the
middle of the 20th century, they have been studied in a large range
of frequency bands. Despite their versatile appearance many AGNs
show similar features as6565 Padovani et al., “Active galactic nu-

clei: what’s in a name?”
• Strongly Doppler-broadened emission lines (high velocities)

• High variability

• Strong non-thermal emission / Extended radio jets

• Compact radio cores

• X-ray, γ-ray and TeV-emission.

With (bolometric) luminosities going up to Lbol ≈ 1048 erg s−1, AGNs
are further the most powerful non-explosive sources in the universe.6666 Ibid.

As a consequence, AGNs, and specifically the rare 67 subclass of67 A few thousand known objects in the
entire universe blazars, (AGNs with a jet pointing towards us, i.e. viewing angle

θ . 15◦ − 20◦) belong to the most promising neutrino emitters and
have been extensively discussed in the literature68,69,70.7168 Mannheim, “High-energy neutrinos

from extragalactic jets”.
69 Halzen and Zas, “Neutrino Fluxes
from Active Galaxies: A Model-
Independent Estimate”.
70 Mücke et al., “BL Lac objects in the
synchrotron proton blazar model”.
71 Padovani and Resconi, “Are both BL
Lacs and pulsar wind nebulae the astro-
physical counterparts of IceCube neu-
trino events?”

The taxonomy of AGNs has developed historically and is often
confusing and overlapping. Most fundamentally, however, the un-
derlying objects are believed to be pretty similar. It is now well es-
tablished that the emission of AGNs is driven by the presence of a
supermassive black hole (> 106 M�) that is accreting hot gas and
plasma which is forming a thin disk,72 see Figure 2.11. Based on

72 Padovani et al., “Active galactic nu-
clei: what’s in a name?”

this picture, the maximum luminosity of the object can be estimated
using the Eddington criterion, i.e., requiring outward radiative pres-
sure and inward gravity to be in equilibrium

Ledd = 1.4× 1038 erg s−1 M
M�

. (2.37)
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When conditions are suitable, a fraction of the plasma is (magneti-
cally) deflected and emitted perpendicular to the disk forming two
jets of accelerated particles. Surrounding the central engine, the
broad- and narrow-line region, BLR and NRL, consist of clouds of
hot gas. While the emission lines in the BLR are wide and indicate
supersonic velocities with temperatures of ∼ 104 K, the narrow line
region is further away from the central disk and has lower velocities
and densities. Finally, the central region of the AGN is surrounded
by a torus of hot gas and dust. Depending on the luminosity ratio
between the central region to the galaxy, AGNs are called Quasars
if the central region strongly outshines the rest of the galaxy 73 and 73 Which lets them looks like a quasi-

stellar object (quasar)Seyfert Galaxies otherwise. AGNs with extended ratio emission are
called Jetted AGN. Over the years, different categorizations of AGNs
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Figure 2.11: A schematic view of the
different classes of AGNs depending
on the viewing angle and the presence
or absence of a jet. In addition to
the most important morphological fea-
tures, also the source classifications are
shown. Abbreviations are given as fol-
lows: NLR - narrow line region, BLR
- broad line region, BLRG - broad line
radio galaxy, NLRG - narrow line ra-
dio galaxy. Adapted from Urry and
Padovani, “Unified schemes for radio-
loud active galactic nuclei”.

have been established, mainly driven by phenomenological observa-
tions. Some of them are shown in Figure 2.11. For example, Seyfert
I and Seyfert II galaxies are separated by the width of the emission
lines 74, while radio-loud and radio-quiet AGN distinguish the ob- 74 larger or smaller a full-width half-

maximum of a few times 100 km s−1
jects based on their radio flux. Unification schemes haven shown,
however, that things are much simpler, with the major difference be-
tween the classes coming from a) The viewing angle (see Figure 2.11)
b) the accretion rate and c) the presence or absence of strong jets75.76 75 Urry and Padovani, “Unified schemes

for radio-loud active galactic nuclei”.
76 Padovani et al., “Active galactic nu-
clei: what’s in a name?”

In this context, Seyfert I and Seyfert II are intrinsically the same type
of objects, with the BLR being visible or not-visible, respectively. Us-
ing the unified schemes one can, in contrast to the historical, phe-
nomenological classifications, define physically driven classes. Two
important examples are:

• HEG/LEG AGNs: This classification separates AGNs into two
classes, objects with high-excitation emission lines (HEG) and low-
excitation emission lines (LEG). Most importantly, the difference
between the two can be related to the accretion efficiency. While
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HEGs accrete in a radiative efficient way with 0.01 < L/Ledd < 1,
particles in LEGs lose less energy before crossing the event hori-
zon of the black hole resulting in 0.01 < L/Ledd.7777 Padovani et al., “Active galactic nu-

clei: what’s in a name?”

• FRI and FRII AGNs: This definition distinguishes jetted AGNs on
the basis of RFR, the ratio of the distance between the regions of
highest surface brightness to the total extent of the source. AGNs
are labeled as FRI if RFR < 0.5 and as FRII otherwise. It is gener-
ally believed that the distinction between the two classes is caused
by differences in the jets’ morphology. While the jets of FRI galax-
ies are often distorted and plume-like, the jets of FRII galaxies are
straight and dominated by highly supersonic flows.7878 Fanaroff and Riley, “The morphology

of extragalactic radio sources of high
and low luminosity”. There is, in fact, a large overlap between the two classes. Almost

all FRI galaxies are associated with LEGs, while FR II galaxies are
HEGs.

Figure 2.12: Three schematic spectral
energy distributions of AGNs. Orange
dashed and dotted lines show the typ-
ical double bump structure of blazars,
here shown for a HSP and a LSP case,
respectively. For comparison, an ex-
emplary SED of a non-jetted AGN is
shown in blue, with the different con-
tributions as purple lines (see legend
for details). Shaded bands in the back-
ground show the electromagnetic spec-
trum. The small band between infrared
and UV is the optical spectrum. Plot
adapted from Padovani, “Active Galac-
tic Nuclei at All Wavelengths and from
All Angles”.
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As noted before, AGNs emit radiation in a broad wavelength
band. In Figure 2.12 three spectral energy distributions (SEDs) are
illustrated: one of a typical non-jetted AGN, and two of blazars. A
major difference is the presence or absence of galaxy features from
the infrared to X-ray. While in the case of blazars the SED is very
much dominated by the non-thermal emission of the jet, the non-
jetted AGN shows clear features of the accretion and the galaxy itself.
The former manifest as the blue bump at UV energies and is the result
of superimposed thermal black body spectra radiated during the ac-
cretion. The IR bump, in contrast, is the result of thermal emission
from heated dust in the torus.79 Since the host galaxies of Quasars79 Padovani, “Active Galactic Nuclei at

All Wavelengths and from All Angles”. are nearly all elliptical with luminosity around 1044 erg/s,80 the de-
80 Ibid. tection of the galactic features in the SED can be used to estimate the

source’s redshift.8181 Vanden Berk et al., “Composite
Quasar Spectra from the Sloan Digital
Sky Survey”.

The SEDs of blazars significantly differs from other AGNs. It is
dominated by non-thermal emission and shows a characteristic dou-
ble bump structure. While the first bump is believed to be the result
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of the acceleration and subsequent synchrotron emission of charged
particles, the second bump is associated with inverse Compton scat-
tering or, potentially, hadronic production of gamma rays through
π0 decays.82 The common presence of gamma rays makes blazars 82 Padovani, “Active Galactic Nuclei at

All Wavelengths and from All Angles”.unique among AGNs and places them on the list of the most promis-
ing candidate sources for neutrinos. As blazars are of special impor-
tance for this thesis (see chapter 4 and 8), they are in the following
discussed in more detail.

In Figure 2.13 a lepto-hadronic model of a typical blazar SED is
shown on the example of 3HSP J095507.9+355101, a blazar associ-
ated with IceCube-200107A, see section 8.5. Separating the total flux
into its different components shows that the electromagnetic emis-
sion consists of a complex combination of leptonic and hadronic
processes. Although these lepto-hadronic models provide decent
agreement with the actual data, they usually need to make strong
assumptions on parameters as the geometry of the emission region,
the spectra of the primary particles, and the magnetic field.83 Despite 83 Petropoulou, Oikonomou, et al.,

“Comprehensive Multimessenger Mod-
eling of the Extreme Blazar 3HSP
J095507.9+355101 and Predictions for
IceCube”.

those uncertainties, lepto-hadronic models give a comprehensive in-
side into the processed that could happen in neutrino sources.
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Figure 2.13: SED model for 3HSP
J095507.9+355101. The blue and or-
ange lines show the various hadronic
and leptonic components as given in
the legend. The resulting total electro-
magnetic flux is shown as black solid
line. In addition, the predicted hard-
spectrum neutrino flux is shown in
grey. Plot adapted from Petropoulou,
Oikonomou, et al., “Comprehensive
Multimessenger Modeling of the Ex-
treme Blazar 3HSP J095507.9+355101

and Predictions for IceCube”.

While the synchrotron emission of the electrons dominates the
first hump in Figure 2.13, the second hump is a combination of lep-
tonic and (potentially) hadronic processes. In this specific example,
the gamma-ray emission is assumed to be dominated by the elec-
tromagnetic cascades resulting from the photons produced in photo-
hadronic interactions of protons (see section 2.2.2). Another purely
leptonic contribution comes from the inverse component scattering
of electrons with photons. A potential probe for the existence of pro-
tons in a blazar jet could come from Bethe-Heitler (BH) pair produc-
tion, i.e., p + γ → p + e+e−, which manifests as an electromagnetic
cascade in the MeV or X-ray part of the spectrum. Finally, the same
photo-hadronic interactions that produce the gamma rays also pro-
duce a hard-spectrum neutrino flux in an energy range of high TeV
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to PeV energies. This is a common feature of photo-meson produc-
tion as discussed in section 2.2.2. Proton-proton interactions that can
produce neutrinos with softer spectra/lower energies are believed to
be irrelevant in blazars as the target matter densities are insufficient
to facilitate the required interaction rates.

From a SED perspective blazars are usually classified based on
the frequency of their synchrotron peak, νS

peak, as a measure for the

acceleration power8484 Padovani and Giommi, “The Con-
nection between X-Ray– and Radio-
selected BL Lacertae Objects”.

Blazar Class =


LSP, for νS

peak < 1014

ISP, for 10
14 ≤ νS

peak < 1015

HSP, for 10
15 ≤ νS

peak.

(2.38)

Figure 2.14: The optical spectrum of a
typical BL Lac (top) and FSRQ (bottom)
in arbitrary flux units. While the BL
Lac spectrum is mostly flat, the FSRQ
shows clear emission lines. Highlighted
are the emission line of MgII and OIII
(nominal and after accounting for the
redshift). In addition to the blazar cat-
egorization, the spectrum can hence be
used to determine the source’s redshift,
via z = λ/λ0 − 1, with nominal and
shifted wavelength λ0 and λ, respec-
tively. Data from the SDSS Science
Archive Server; https://dr15.sdss.or
g/optical/spectrum/search.
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Further fundamental differences are found in the optical spec-
trum of blazars, Figure 2.14. While one subclass of sources, flat-
spectrum radio quasars (FSRQ), shows strong emission lines, the
other class, BL Lacs, is nearly featureless. Quantitatively, the two
classes are separated by the equivalent width (EW) of the emission
lines and the existence/absence of the Ca H&K break, a stellar fea-
ture frequently found in elliptical galaxies.85 Catalogs of blazars85 Giommi, Padovani, and Polenta, “A

simplified view of blazars: the gamma-
ray case”.

showed that the majority of sources classified as FSRQs have a small
νS

peakand a large luminosity in the Fermi-LAT energy range between

100 MeV to 100 GeV.86 This observation triggered a long-standing86 Ghisellini et al., “The Fermi blazar se-
quence”. debate of whether this is caused by a blazar sequence of the form,

FSRQ → LBL → IBL → HBL 87,88 or whether it is an effect of the87 LBL = LSP BL Lac, IBL = ISP BL Lac,
HBL = HSP BL Lac
88 Ghisellini et al., “The Fermi blazar se-
quence”.

emission lines of high-νS
peakFSRQs being strongly diluted from the

non-thermal emission of the jets.89 While both approaches statisti-
89 Giommi, Padovani, and Polenta, “A
simplified view of blazars: the gamma-
ray case”.

cally reproduce the observations, the detailed study of the optical
emission from single high-νS

peakblazars have revealed objects with
strong emission lines that are intrinsic to FSRQs90.91 This group90 Padovani, Oikonomou, et al., “TXS

0506+056, the first cosmic neutrino
source, is not a BL Lac”.
91 Keenan et al., “The Relativistic Jet Di-
chotomy and the End of the Blazar Se-
quence”.

of hard to identity, high νS
peakFSRQs is called masquaraded BL Lacs.

They complete the list of blazars by adding the high-νS
peakanalogous

https://dr15.sdss.org/optical/spectrum/search
https://dr15.sdss.org/optical/spectrum/search
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BL Lacs FSRQ Masquerading BL Lacs
accretion inefficient efficient efficient

EW < 5Å > 5Å > 5Å
L/Ledd . 0.01 & 0.01 & 0.01
νS

peak any . 1014 & 1014

Associated with LEG/FR I HEG/FR II

Table 2.1: Classification of blazars into
BL Lacs, FSRQs, and Masquerading
BL Lacs (FSRQs with strongly diluted
emission liens). In contrast to BL Lacs,
the latter two have strong emission lines
and efficient accretion. The association
with HEGs/FRII and LEGs/FRI given
in the bottom row holds true for most
of the objects. Table based on Giommi,
Padovani, and Polenta, “A simplified
view of blazars: the gamma-ray case”.

to (standard) FSRQs. In this scheme, there is mainly one fundamen-
tal difference between FSRQs and BL Lacs. Specifically, FSRQs are
nearly exclusively connected to radiatively efficient HEG galaxies,
while BL Lacs are connected to radiatively inefficient LEG galaxies.
A summary of the different blazar classes is shown in Table 2.1.

2.4 Neutrino Oscillations

The history of neutrino flavor oscillations dates back to the middle
of the 20th century when physicist were struggling with the solar
neutrino problem, i.e. the discovery that the electron neutrino flux at
Earth is only about one-third of is expected from energetic consider-
ations of the fusion processes in the sun92.93 As neutrinos are only 92 Davis, Harmer, and Hoffman,

“Search for Neutrinos from the Sun”.
93 J. N. Bahcall, N. A. Bahcall, and Sha-
viv, “Present Status of the Theoretical
Predictions for the 37Cl Solar-Neutrino
Experiment”.

detected in small numbers and the calculations of the sun required
confidence in the Standard Solar Model, many physicist at this time
believed, however, that the experiment was wrong. It was only in
1968 when Bruno Pontecorvo suggested a solution for this problem
by introducing neutrino oscillations and it took another 44 years un-
til the solar neutrino problem was finally solved in favor of neutrino
oscillations by the Sudbury Neutrino Observatory in 2002.94 In the 94 Ahmad et al., “Direct Evidence for

Neutrino Flavor Transformation from
Neutral-Current Interactions in the
Sudbury Neutrino Observatory”.

paradigm of neutrino oscillations, the flavor eigenstates, which are
relevant for neutrino interactions mediated by the weak force, are a
superposition of the mass eigenstates, that are relevant for propaga-
tion in vacuum. In a modern way this can be written as

ν1

ν2

ν3

 = U

νe

νµ

ντ

 . (2.39)

and since U is unitary (U−1 = U†)

νe

νµ

ντ

 = U†

ν1

ν2

ν3

 (2.40)

The matrix U is called the Pontecorvo–Maki–Nakagawa–Sakata ma-
trix (PMNS matrix) and has three free mixing angles (θ12, θ23, and
θ13) and one complex phase (δCP).95 A full parameterization is given 95 Maki, Nakagawa, and Sakata, “Re-

marks on the unified model of elemen-
tary particles”.
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by

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (2.41)

=

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13


(2.42)

where sij and cij are used as simplified notation for sin θij and cos θij,
respectively. The current (July 2020) best-fit values in degrees [◦]
from a global analysis of all experimental data are given as96 9796 Esteban et al., “Global analysis of

three-flavour neutrino oscillations: syn-
ergies and tensions in the determina-
tion of θ23, δCP, and the mass ordering”.
97 http://www.nu-fit.org/?q=node/21

1

• θsol ≈ θ12 = 33.82+0.78
−0.76

• θatm ≈ θ23 = 48.3+1.1
−1.9

• θ13 = 8.61+0.13
−0.13

• δCP = 222+38
−28.

While two of these angles, θ12 and θ23, are found to be large, θ13 is
much smaller, but unequal zero. The two large mixing angles play a
dominant role in the oscillation of solar neutrinos (θ12, conversion of
νe to ντ) and atmospheric neutrinos (θ23, conversion of νµ to ντ).

Most importantly, the detection of neutrino oscillations implies
that neutrino masses are non-zero and unequal between the mass
eigenstates, see eq. (2.43). Latest result by the KATRIN collaboration
place an upper limit to the electron neutrino mass to 1.1 eV98 and98 Aker et al., “Improved Upper Limit

on the Neutrino Mass from a Direct
Kinematic Method by KATRIN”.

cosmological constraints require the sum of the neutrino masses to
be smaller than 0.23 eV.99

99 Ade et al., “Planck 2013 results. XVI.
Cosmological parameters”. After production, the neutrino mass eigenstate propagated freely

according to the vacuum Hamiltonian. The propagation can be de-
scribed in terms of a plane quantum-mechanical wave with the fre-
quencies depending on the mass of the neutrinos, i.e., heavier neutri-
nos oscillate faster than lighter ones. The interference of these waves
at the point of observation allows the neutrino of a given initial flavor
to be observed in a different one. Using relativistic approximation in
the full 3-flavor model, the transition probabilities are given in natu-
ral units by100100 T. K. Gaisser, Engel, and Resconi,

Cosmic Rays and Particle Physics, p.154.

Pα→β = δαβ − 4 ∑
i>j

Re
(

U∗αiUβiUαjU∗βj

)
sin2

(
∆m2

ijL

4E

)
(2.43)

+ 2 ∑
i>j

Im
(

U∗αiUβiUαjU∗βj

)
sin

(
∆m2

ijL

2E

)
(2.44)

for a relativistic neutrino with energy E travelling a distance of L.
From this equation it is evident that the mixing angles define the
amplitude of the oscillation while the energy, propagation length and
mass difference define the frequency. For interpretability it is useful

http://www.nu-fit.org/?q=node/211
http://www.nu-fit.org/?q=node/211
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to convert the argument of the sin2 in eq. (2.43) to astronomical units,
i.e

∆m2L
4E

→ 3.09× 107 ∆m2

eV2
L

pc
PeV

E
. (2.45)

Although the masses of the single eigenstates are not known, the
mass differences are well measured to 7.54 × 10−5 eV2 and 2.43 ×
10−3 eV2 for ∆m2

12 and ∆m2
23, respectively.101 Concerning the signs of 101 Esteban et al., “Global analysis of

three-flavour neutrino oscillations: syn-
ergies and tensions in the determina-
tion of θ23, δCP, and the mass ordering”.

the mass differences it is unknown whether m3 is larger or smaller
than m1, which is usually referred to as normal and inverted hier-
archy. In order to calculate the relevant oscillation length for astro-
physical neutrinos we consider a neutrino with energy of Eν = 1 PeV
and assume ∆m2 = 10−4 eV2. The resulting propagation length ∆L
that is needed to shift the phase angle by 2π is then

∆L ≈ 2π

3.09× 107 · 10−4
pc = 2 mpc. (2.46)

With an oscillation length on the milliparsec scale, neutrino oscil-
lations are hence expected to play a significant role on astrophysi-
cal distances. In Figure 2.15 the flux ratio of the neutrino flavors is
shown against the oscillation length L/E for an initial flavor ratio of
(νµ : νe : ντ) = (2 : 1 : 0). It can be seen that the ratio quickly oscil-
lates towards (νµ : νe : ντ) = (1 : 1 : 1) on astrophysical distances as
expected from eq. (2.46).
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Figure 2.15: Neutrino flavor oscillations
as a function of distance over energy in
astrophysical units. On the y-axis the
flux of tau (blue) and muon (orange)
neutrinos is shown with respect to elec-
tron neutrinos. Starting from an initial
ratio of (νµ : νe : ντ) = (2 : 1 : 0)
the flux ratio converges quickly (on as-
trophysical distances) against (νµ : νe :
ντ) = (1 : 1 : 1).

Consequently, it is usually assumed that the astrophysical neu-
trino flux reaching the Earth has an equal flavor distribution, in-
dependent of the initial production ratio. As neutrino oscillations
happen on the milliparsec scale this statement is not only valid for
the diffuse flux, where many sources at various distances are inte-
grated, but also for a single neutrino source with an emission region
not much smaller than the oscillation length.

2.5 Atmospheric Air Showers

When cosmic-ray nuclei reach the Earth’ atmosphere, they undergo
deep-inelastic hadronic interactions with the gas molecules, produc-
ing similar cascades of particles as those discussed for astrophysical
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source environments in section 2.2.3. In this sense, the atmosphere
is a natural fixed target for a cosmic-ray beam dump. The cascade
of particles produced in these interactions is called an atmospheric air
shower. Analogous to the astrophysical case, (atmospheric) muons and
(atmospheric) neutrinos are produced through the decay of mesons
and thereby providing a background to the search for astrophysical
neutrinos. Depending on their lifetime and energy, particles in the air
shower undergo different interactions and energy losses while prop-
agating through the atmosphere. The entire sequence of interactions
and decays, as well as the (re-)productions of particles can be math-
ematically described through a set of coupled differential equations
(cascade equations) for each particle type102.103102 T. K. Gaisser, Engel, and Resconi,

Cosmic Rays and Particle Physics.
103 Fedynitch et al., “Calculation of con-
ventional and prompt lepton fluxes at
very high energy”.

In the following, we discuss some semi-analytical calculations to
illustrate the origin and behavior of the most important flux compo-
nents for neutrino telescopes. The complex hadronic cascade that is
triggered by the interaction of the cosmic-ray nuclei with molecules
in the atmosphere is composed of secondary protons and neutrons,
as well as pions, kaons and heavier mesons. Neutral pions quickly
decay into a pair of gamma rays, initiating a electromagnetic cascade of
subsequent electron-positron pairs and bremsstrahlung. The other
mesons decay further into

π± → µ± + νµ [+ν̄µ] (99.99%), (2.47)

K± → µ± + νµ [+ν̄µ] (64%), (2.48)

K0
L → π∓ + µ± + νµ [+ν̄µ] (27%), (2.49)

K0
L → π∓ + e± + νe [+ν̄e] (41%). (2.50)

with the given branching ratios and the respective neutrino or anti-
neutrino.104 If the velocity of a muon is not sufficiently high, they104 Tanabashi et al., “Review of Particle

Physics”. further decay via

µ± → e± + ν̄µ + νe [+νµ + ν̄e], (2.51)

In general, the development of the shower depends strongly on the
energy of the particles involved. Muons with energies below≈ 2 GeV
have a decay length that is shorter than their average height of pro-
duction (15 km) and hence decay via eq. (2.51) into electrons and
neutrinos. In this energy regime neutrinos are thus produced with a
flavor ratio of (νµ : νe : ντ) = (2 : 1 : 0). When the energy increases,
the muon lifetime of 2.19× 10−6 s105 is sufficient for them to reach105 Ibid.

the surface of the Earth before decaying. Hence, with growing en-
ergy, the muon decay and thereby the flux of electron neutrinos is
strongly suppressed. Consequently, at 100 GeV the flux of electron
neutrinos is already by a factor of 10 smaller than the muon neutrino
flux.106106 T. K. Gaisser, Engel, and Resconi,

Cosmic Rays and Particle Physics. The energy loss pattern is another important characteristic of muons
in the atmosphere. In general, the energy loss for long-lived particles
can be described by

dE
dX

= −a− E/b. (2.52)
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with critical energy EC describing the energy at which the radiation
losses (b) is equal to ionization losses (a). While EC is around 87 MeV
for electrons, the mass of the muons suppresses radiative processes,
pushing the critical energy up to around EC = 500 GeV.107 Con- 107 Ibid.

sequently, muons with energies below EC can travel large distances
before significantly loosing energy. The transition between ioniza-
tion and radiation losses manifests in Figure 2.16 as a softening of
the muon spectrum.

The ensemble of neutrinos produced through the decay of pions
and kaons is called conventional atmospheric neutrinos. An energy
and inclination dependent parameterization for the neutrino produc-
tion from the decay of those two mesons in the atmosphere is given
by108 108 Ibid.

dΦν

dEν
(E, θ) =

dΦCR
dECR

(E, θ)×
(

Aπν

1 + Bπν · Eν cos θ
επ

+
AKν

1 + BKν · Eν cos θ
εK

)
.

(2.53)

Here AXν and BXν are parameters describing the pion and kaon pro-
duction and decay probabilities, respectively. Importantly, εK and
επ denote the critical energies of kaons and pions, i.e. the energies
above which re-interaction becomes dominant over decays. The criti-
cal energy of kaons, εK = 850 GeV, is significantly larger than the one
of pions with επ = 115 GeV109 . Plugging these values into eq. (2.53) 109 Ibid.

the conventional atmospheric neutrino flux can be roughly divided
into three energy regions

• Eν < επ = 115 GeV: Below the pion critical energy, the denomi-
nators in eq. (2.53) are close to 1, and the neutrino flux spectrum
follows the primary cosmic ray spectrum with a power law index
of γ = 2.7.

• επ < Eν < εK: In this regime, pions lose significant energy, mak-
ing the production of neutrinos less efficient. Therefore the pro-
duction of neutrinos from kaon decays starts to dominate.

• Eν > εK: Both kaons and pions significantly loose energy before
decaying. As a result, the spectrum gets softer with a spectral
index of around γ = 3.7.

All these effects are visible in the numerical solution of the full cas-
cade equations, see Figure 2.16.

Despite kaons and pions, a minor fraction of charmed D and Λ
mesons are produced in the cosmic rays’ primary interaction with the
atmosphere. The decay times of these heavy mesons are extremely
short, producing a prompt neutrino flux110 with a spectral index of 110 Ibid.

γ = 2.7, following the initial cosmic ray spectral index. Depending
on the neutrino flavor, the prompt component starts to dominate the
total atmospheric neutrino flux between ∼ 20 TeV and several hun-
dred TeV (Figure 2.16). In addition to muon and electron neutrinos,
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the prompt flux is expected to produce a minimal number of tau
neutrinos. Up to today, the prompt flux has not been detected by
any analysis.111111 Stettner, “Measurement of the

Diffuse Astrophysical Muon-Neutrino
Spectrum with Ten Years of IceCube
Data”.

Figure 2.16: The spectrum of atmo-
spheric muons (top left) and neutrinos
(others) as calculated with MCEq. Con-
ventional and prompt contributions are
shown in different colors as indicated
in the legend. Plot adapted from Fe-
dynitch et al., “Calculation of conven-
tional and prompt lepton fluxes at very
high energy”
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2.6 Important Astronomical Observatories

At the end of this chapter, we briefly introduce three astronomical
observatories that play an important role in multi-messenger astro-
physics and the rest of this thesis. A detailed discussion of the
IceCube Neutrino Observatory can be found in chapter 3.

Figure 2.17: The detection prin-
ciple of the Large Area Telescope
(LAT) on board the Fermi Gamma-
ray Space Telescope. An incoming
gamma ray produces a pair of electrons
and positrons which are reconstructed
by silicon trackers and a calorimeter.
Graphic taken from Atwood et al., “The
Large Area Telescope on the Fermi
Gamma-Ray Space Telescope Mission”
.

2.6.1 Fermi-LAT

The Fermi Gamma-ray Space Telescope is a pair conversion tele-
scope, measuring gamma rays from a low orbit. Its main instrument
is the Larger Area Telescope (LAT), which is used to perform an
all-sky survey of gamma-ray emission in the energy range between
100 MeV and 100 GeV every 3 hours.112

112 Atwood et al., “The Large Area Tele-
scope on the Fermi Gamma-Ray Space
Telescope Mission”.

The detection principle of the LAT is illustrated in Figure 2.17.
An incident gamma ray interacts with a heavy nuclei, tungsten, in
this case, to create an electron-positron pair. The subsequent elec-
tromagnetic shower is tracked through a few layers of silicon before
its energy is measured in a calorimeter made out of the scintillator
material cesium iodid. As the initial gamma rays’ energy is much
higher than the rest mass of the electron and positron, the shower
is strongly boosted, enabling a good directional reconstruction. To
avoid the large background of cosmic rays the LAT is surrounded by
an anti-coincidence detector (ACD) made out of scintillator tiles.
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2.6.2 OVRO

The OVRO 40 meter Telescope is a radio telescope at the Owens
Valley Radio Observatory in California, US. It gained major impor-
tance as an accompanying radio telescope for the Fermi-LAT satel-
lite. In its current observation campaign around 1800 Fermi-LAT de-
tected blazars are observed at 15 GHz about twice a week 113.114 It 113 https://www.astro.caltech.edu/ov

roblazars/
114 Richards et al., “Blazars in the Fermi
Era: The OVRO 40 m Telescope Moni-
toring Program”.

thereby provides an unprecedented opportunity to study the multi-
frequency behavior of blazars with time simultaneous gamma ray
and radio data.

2.6.3 Swift

The Neil Gehrels Swift Observatory is a NASA-operated satellite
dedicated to the multi-frequency observation of gamma-ray burst
(GRBs). Swift carries three different instruments: 1.) the Burst Alert
Telescope (BAT) is a large-field of view telescope in the energy range
between 15 keV to 150 keV that is used to quickly locate GRBs. For
precise follow-up observations, the 2.) X-ray Telescope (XRT) allows
to take X-ray spectra in an energy range between 0.3 keV and 10 keV
and the 3.) UV/Optical Telescope (UVOT) takes spectral measure-
ments in the optical range between 170 nm and 600 nm.115 With this 115 Burrows et al., “The Swift X-ray Tele-

scope”.multi-frequency instrumentation, Swift is well equipped for analyz-
ing the regions around IceCube high-energy neutrinos, as shown in
chapter 8.

https://www.astro.caltech.edu/ovroblazars/
https://www.astro.caltech.edu/ovroblazars/
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3 The IceCube Neutrino Observatory

The IceCube Neutrino Observatory is the world’s first cubic-kilometer-
scale neutrino detector, primarily built to detect and characterize the
flux of high-energy neutrinos ranging between 100 GeV and several
PeV. Like its predecessor AMANDA, it is located deep in the clear ice
at the geographic South Pole, close to the Amundsen–Scott Station.1 1 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”.

IceCube’s measurements are based on the detection of Cherenkov
photons produced by charged particles propagating in ice. Comple-
mentary observatories in the Northern Hemisphere — ANTARES,2 2 Ageron et al., “ANTARES: The first

undersea neutrino telescope”.KM3NeT3 (both in the Mediterranean Sea), and Baikal-GVD4 (at
3 Margiotta, “The KM3NeT deep-sea
neutrino telescope”.
4 Avrorin et al., “Baikal-GVD: status
and prospects”.

Lake Baikal) — use water as the target medium instead of ice. In
addition, there are plans to construct another detector, P-ONE,5 at

5 Agostini et al., “The Pacific Ocean
Neutrino Experiment”.

the Cascadia Basin off the coast of Vancouver, Canada. This chapter
starts with a review of the detection principle and the requirements
for neutrino telescopes before discussing the design, event detection,
reconstruction, and data processing of the IceCube Observatory in
detail.

3.1 Detection Principle of Neutrinos

Neutrinos only interact through the weak force and are therefore not
directly visible through any electromagnetic detection principle. An
indirect detection and reconstruction is, however, possible by observ-
ing the light emission of secondary charged particles produced in
the inelastic scattering of neutrinos with nuclei. As a result of the
interaction, hadronic and electromagnetic cascades are produced. A
convenient detection principle that facilitates large target volumes,
is based on the production of Cherenkov radiation of charged par-
ticles in dense, but transparent, target media. The production of
Cherenkov light is thereby a direct consequence of Maxwell’s wave
equations for a charged point-particle moving along a given axis with
velocity v larger than the phase velocity of light in the medium. The
calculations show that as long as the particle moves with velocities
smaller than the local phase velocity, the field energy of the moving
particle is deposited close to its path. Once the velocity exceeds the
phase velocity, i.e. v > c0/n 6, the radiation escapes and is observ- 6 with refractive index n and vacuum

speed of light c0able as Cherenkov radiation.7 The wavelength-dependent deposition
7 Jackson, Classical Electrodynamics, 3rd
Edition.
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of Cherenkov radiation is described through the Frank–Tamm equa-
tion

dN
dλdx

=
2πα

λ2 sin2 θc (3.1)

with fine-structure constant α = e2/4π. Following eq. (3.1) the emis-
sion rate is inversely proportional to the wavelength squared, which
explains why Cherenkov radiation appears blue in the optical spec-
trum. The Cherenkov opening angle θc is defined as

cos θc =
1

n(λ)β
. (3.2)

Importantly, the refraction index n is a function of λ, which ensures
that the integrated energy deposition of eq. (3.1) is finite. As usual,
β is the ratio between the particle’s velocity v and the vacuum speed
of light, i.e. β = v/c0. A visual explanation of the Cherenkov angle
is given in Figure 3.1. At each time step, the moving particle emits a
spherical wave that is propagating with velocity c0/n. Like the Mach
cone for supersonic movements, the superposition of all the spherical
waves results in a Cherenkov cone. Consequently, the Cherenkov
angle can be directly deduced from the ratio of the adjacent to the
hypotenuse.

l

θc ·

Figure 3.1: Geometry of the Cherenkov
cone. A charged particle moving with
a velocity above the local phase velocity
of light in the medium emits a sequence
of circular waves. The superposition of
these waves produces a cone-like wave-
front with an opening angle of θc. Cour-
tesy of M. Huber.

The relation between a particle’s energy and the resulting number
of Cherenkov photons is of large importance for the reconstruction
of events in neutrino detectors. Through the interaction of the neu-
trino with a target nuclei and subsequent energy losses of secondary
particles, a large number of hadronic and electromagnetic cascades is
produced. In dedicated Geant48 simulations of electromagnetic and

8 Agostinelli et al., “GEANT4–a simula-
tion toolkit”.

hadronic cascades in ice, it can be shown that the number of particles
produced in these processes scales linearly with the energy of the ini-
tial primary. As each of these particles further radiates Cherenkov
photons also the total photon count is linear to the energy of the pri-
mary.9 Small corrections are due to heavier nuclei that do not have

9 Radel and Wiebusch, “Calculation of
the Cherenkov light yield from electro-
magnetic cascades in ice with Geant4”.

sufficient energy to reach the Cherenkov threshold.
An optimal medium for a Cherenkov detector is sufficiently dense

to facilitate the production of Cherenkov photons while being trans-
parent enough to keep scattering and absorption of the photons as
low as possible. Two media that fulfill this criterion — while be-
ing available in large quantities – are ice and water. With a depth-
independent refractive index of n ∼ 1.31 South Pole ice, for exam-
ple, has a Cherenkov angle of ∼ 41◦ assuming β ≈ 1. At a wave-
length of ∼ 200 nm the absorption of photons rises sharply, an effect
known as Urbach-Kante.10 For this reason the optimal wavelength10 Urbach, “The Long-Wavelength Edge

of Photographic Sensitivity and of the
Electronic Absorption of Solids”.

for Cherenkov detectors is at ∼ 300 nm where sufficient photons are
produced (see eq. (3.1)) and absorption is low. The same reasoning
applies when considering water as the target material.
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3.2 Requirements for Neutrino Telescopes

For most energies the neutrino flux reaching the Earth is dominated
by conventional atmospheric neutrinos. It is only above several hun-
dreds of TeV that the diffuse astrophysical flux dominates (see Fig-
ure 2.7). Assuming the astrophysical flux to be dominated by point
sources, this energy threshold might be lower locally, but neverthe-
less neutrino astronomy becomes only feasible above a few TeV of
neutrino energy. At these energies neutrino interactions with nuclei
are dominated by deep-inelastic scattering. Depending on the nature
of the mediating gauge boson, there are two different interactions

• Neutral-current (NC) interactions

νl + X Z0
−→ νl + Y (3.3)

• Charged-current (CC) interactions

νl + X W±−−→ l± + Y. (3.4)

In either case, the initial nucleus X is destroyed, and a hadronic cas-
cade Y is created. A major difference comes from the fact that neu-
tral current interactions are mediated by the uncharged Z0 boson,
and hence only energy and momentum are transferred. On the other
hand, in charged current processes, the charged W± also converts
the primary neutrino into an (anti-)lepton of the same flavor.

Despite the interaction with a nucleus, neutrinos can also interact
with the bound electrons of the target atoms. This process is, how-
ever, strongly suppressed in most parts of the energy range. An ex-
ception is the Glashow resonance of electron antineutrinos and bound
electrons interacting with a center of mass energy close to the mass of
the W± boson. The required neutrino energy is m2

W/(2me) ∼ 6.3 PeV.
Formally, the interaction can be written as

v̄e + e− →W− → X. (3.5)

Due to its short lifetime of only∼ 3× 10−25 s11 the W− boson quickly 11 Tanabashi et al., “Review of Particle
Physics”.decays into other particles. The branching ratios for the decay are

∼ 67.6% for hadronic and ∼ 10.8% for each leptonic channel (W− →
l−ν̄l), respectively.12 A summary plot of all cross sections is shown 12 Ibid.

in Figure 3.2. It can be seen that the CC and NC cross section increase
linearly until ∼ 10 TeV. Above this energy the momentum transfer
k becomes relevant in the boson propagator and the cross sections
flattens to

σCC/NC ∝

(
1

k2 + m2
W/Z

)2

× E (3.6)

resulting in an effective cross section dependence of σ ∝ E0.36.13 13 Formaggio and Zeller, “From eV to
EeV: Neutrino Cross Sections Across
Energy Scales”.

The ratio between charged current and neutral current cross sec-
tions, σCC/σNC ≈ 2.4, is constant over the entire energy range.14

14 Ibid.
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Figure 3.2: Deep-inelastic neutrino
cross sections (left) and average inelas-
ticities (right) for neutrino interactions
with matter. Different colors represent
different processes. Solid and dashed
lines indicate neutrinos and antineutri-
nos, respectively. Data from Cooper-
Sarkar, Mertsch, and Sarkar, “The high
energy neutrino cross-section in the
Standard Model and its uncertainty”.
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Finally, the discrepancy in neutrino and antineutrino cross section is
the consequence of the CP asymmetry of the valence quarks in the
target nuclei. The asymmetry is resolved above ∼ 10 TeV where vac-
uum fluctuations of quark/antiquark pairs become visible in large
numbers. Consequently, the neutrino and antineutrino cross sections
converge for high energies.1515 Formaggio and Zeller, “From eV to

EeV: Neutrino Cross Sections Across
Energy Scales”.

According to eq. (3.3) and eq. (3.4) the deep-inelastic interaction
of neutrinos results in a hadronic cascade and a neutrino or charged
lepton, respectively. The energy shared between the initial neutrino
and the nuclear cascades is called the inelasticity y with

y =
Ehad
Eν

. (3.7)

It can be seen from Figure 3.2 that the inelasticity depends on par-
ticles involved, as well as their energy. As a general trend, the in-
elasticity decreases toward higher energies, from ∼ 0.5/∼ 0.4 (neu-
trinos/antineutrinos) at 100 GeV to ∼ 0.25 at 1 PeV. This implies that
for NC interactions, only a minor fraction of the energy is visible.
In contrast for the reconstruction of CC events, the energy of the
leptonic energy losses is most important.

Despite the background of conventional atmospheric neutrinos,
neutrino telescopes are swamped by a large background of atmo-
spheric muons. In order to suppress this background, the Earth can
be used as a natural shield. In contrast to the muons, neutrinos are
less affected when propagating through the Earth with absorption
effects only being relevant towards higher energies. Formally, this
can be written in terms of the mean free path length

L(E, ~x) =
1

σ(E)ρ(~x)
(3.8)

Figure 3.3: Energy-dependent transmis-
sion probability of neutrinos passing
through the Earth. The zenith angle on
the y-axis is measured in IceCube co-
ordinates, i.e., starting from the South
Pole. Plot taken from M. G. Aartsen
et al., “Measurements using the inelas-
ticity distribution of multi-TeV neutrino
interactions in IceCube” .

with the total energy dependent neutrino cross section σ(E) and
the positional dependent density of the Earth ρ(~x). The probability
that a neutrino is absorbed can hence be calculated as

P(E, θ) =
∫

L(E, ~x) d |~x| =
∫ 1

σ(E)ρ(~x)
d |~x| (3.9)

with the integral going along the trajectory of the neutrino. From nu-
merical calculations the energy and zenith dependent survival prob-
ability can be calculated using realistic Earth models. The result is
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shown in Figure 3.3. Importantly, it can be seen that absorption of
high-energy (> 100 TeV) neutrinos becomes relevant at large decli-
nations when the neutrinos are crossing the dense core of the Earth.
As a result, high-energy events are usually observed from directions
close to the horizon.

Historically, the size of a neutrino telescope was estimated using
the Waxmann-Bahcall bound,16 which, in fact, turns out to be quite 16 Waxman and J. N. Bahcall, “High-

energy neutrinos from astrophysical
sources: An Upper bound”.

close to recent measurements (also compare section 2.2.1). Follow-
ing the historic argument, the number of neutrino-induced muons is
about 20 to 50 per km2 per year.17 Consequently, cubic kilometer- 17 T. Gaisser, “Neutrino astronomy:

Physics goals, detector parameters”.scale detectors are needed to detect a sufficient amount of event to
perform neutrino astronomy.

3.3 Event Topologies
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Figure 3.4: Mean propagation length
for lepton tracks and cascades. The plot
is based on water as target medium,
but the behaviour in ice is very similar.
Adapted from Kopper, “Performance
Studies for theKM3NeT Neutrino Tele-
scope”.

When neutrinos interact through charged current or neutral current
interactions, (eq. (3.3) and eq. (3.4)), secondary charged particles
are produced. During propagation those particle further loose en-
ergy, creating subsequent electromagnetic and hadronic cascades.
The sum of Cherenkov photons produced from all of these parti-
cles forms the event signature. Depending on the flavor of the initial
neutrino, different secondaries, and most importantly, different lep-
tons are produced. As the three leptons have different energy loss
patterns and lifetimes, they produce unique event topologies. In the
following the three major event signatures — tracks, cascades and
double bangs — are discussed. Exemplary photon emission patterns
for each of these signatures are shown in Figure 3.5, Figure 3.7 and
Figure 3.8, respectively.

Figure 3.5: Photon trajectories for two
∼ 100 TeV muon tracks with the initial
hadronic cascade being visible (bottom)
and invisible (top). The trajectories are
based on an IceCube simulation with
the ice model described in section 3.6.
The color gradient represents the time
from white (early) to blue (late). The
starting track on the bottom shows that
photons are boosted into the event di-
rection, therefore appearing later on the
’backside’ of the cascade.

• Tracks are created in processes with a high-energy muon in the
final state, e.g., νµ charged current interactions or muons from at-
mospheric showers. With a lifetime of 2.2× 10−6 s,18 muons with

18 Tanabashi et al., “Review of Particle
Physics”.

velocity close to the speed of light can travel several kilometres
before decaying, see Figure 3.4. During the propagation through
dense media, high-energy muons (& 100 GeV) loss their energy
through four difference processes. Ionization losses occur through
the interactions of the muon with the shell electron of the target
nuclei. It is the dominant process below around 2 TeV and is basi-
cally independent of the muon energy. In contrast, there are three
major energy-dependent radiative losses: muon-induced pair pro-
duction, photo-nuclear interactions and bremsstrahlung in the mag-
netic fields of the target nuclei. Three exemplary Feynman dia-
grams for these processes are shown in Figure 3.6. Radiative losses
are stochastic by nature and increase linearly in energy, forming a
sequence of electromagnetic cascades. Figure 3.5 (top) exemplar-
ily illustrates the Cherenkov emission for a 100 TeV muon track.
It is clearly visible that the light pattern is created by a sequence
of stochastic energy losses. Due to their elongated shape, tracks
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Figure 3.6: Feynman diagrams of muon
radiative losses. From left to right
one exemplary diagram is shown for
pair production, photo-nuclear interac-
tion and bremsstrahlung, respectively.
N represents the nucleus and N∗ its ex-
ited state. X represents any possible
pair of electromagnetically interacting
fermions, mostly electrons. Processes
are shown for muons, but are also valid
for anti-muons under CPT symmetry.
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have a long lever arm, enabling a good directional reconstruc-
tion. In neutrino detectors, tracks usually appear in two types,
through-going, and starting, with the primary neutrino interac-
tion vertex outside and inside the fiducial volume, respectively.
While the majority of tracks originates from atmospheric muons
and neutrino induced charged current interactions, a minor frac-
tion is produced through the decay of tau-leptons, or W bosons
produced in Glashow resonances W− → ν̄µµ−.

Figure 3.7: Exemplary photon trajecto-
ries for a ∼ 100 TeV cascade. The typi-
cal spherical emission profile is clearly
visible. See Figure 3.5 for more details
about the simulation.

• Cascades are produced in charged current νe and any kind of neu-
tral current interaction. The characteristic feature of a cascade
is its nearly spherical emission profile, which is the consequence
of the short propagation length of electromagnetic and hadronic
cascades, see Figure 3.4. In Figure 3.7 the Cherenkov photons
produced in a 100 TeV simulated cascade are shown. It is clearly
visible how the scattering of the Cherenkov photons diffuses the
shower direction. As a result, the angular resolution of cascades is
limited to ∼ 10◦.19 While this is disadvantageous for the identifi-19 M. Aartsen et al., “Search for

Sources of Astrophysical Neutrinos Us-
ing Seven Years of IceCube Cascade
Events”.

cation of spatial clustering, the confinement of cascades in the de-
tector enables the accurate reconstruction of the deposited energy.
Depending on the neutrino interaction, there is a different rela-
tion between deposited and initial neutrino energy. For charged-
current interactions, the entire neutrino energy is converted into
the hadronic and electromagnetic cascades. In the case of neutral-
current interactions, on the other hand, the final state neutrino still
carries a fraction of its initial energy, and hence only a fraction of
the total neutrino energy is visible; see Figure 3.2 for details.

• Similar to the muon also the tau lepton is unstable, but with a
much smaller lifetime of only 2.9× 10−13 s.20 As a result, charged20 Tanabashi et al., “Review of Particle

Physics”. current interactions of tau neutrinos produce two cascades, one at
the interaction vertex and one during decay, connected by a short
track. This topology is usually referred to as double bang. The
separation length between the two cascades can be approximated
using the energy Eτ of the tau lepton as

lτ ≈ 50 m×
(

Eτ

PeV

)
. (3.10)
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Consequently, low energy double bangs are basically indistinguish-
able from cascades. In general, there are two relevant decay chan-
nels for this topology: hadronically into pions and electromagnet-
ically via τ → ντeνe

21. The hadronic decay is dominant with a 21 with the respective charges and chi-
ralitiesbranching ratio of 64.79% compared to the electromagnetic one

with 17.82%.22 In the remaining 17.39% of cases, the tau lepton 22 Tanabashi et al., “Review of Particle
Physics”.decays leptonically into a muon, not producing a double bang

but a track-like signature. While expected event numbers are
low, the detection of double-bangs poses a clear trace of astro-
physical neutrinos, as the production of tau neutrinos in atmo-
spheric showers is strongly suppressed. Dedicated IceCube anal-
ysis have recently found the first two double bang candidates,
being consistent with an astrophysical neutrino flavor ratio of
(νµ : νe : ντ) = (1 : 1 : 1).23 23 Stachurska, “First Double Cascade

Tau Neutrino Candidates in IceCube
and a New Measurement of the Flavor
Composition”.

Figure 3.8: Photon trajectories for a
double bang. While the first cascade is
early (white), the second one happens
significantly later (blue). See Figure 3.5
for more details about the simulation.

Conveniently, the different topologies enable a broad range of physics
analyses taking advantage of their respective properties. Specifically,
the topologies help to study better the different components of the
neutrino flux, e.g., flavors or the underlying particle physics. Techni-
cally, this requires, however, a clear identification of those topologies
in the detector. An efficient approach for that is the deep learning-
based classification algorithm presented in chapter 5. The classifier
is trained to rapidly distinguish between the major topologies ob-
served in IceCube, facilitating the application to large event samples
very early in the data processing pipeline.

3.4 The Design of the IceCube Neutrino Observatory

IceCube consists of 86 strings with 5160 optical modules (DOMs),
effectively instrumenting ∼ 1 km3 of clear ice in a depth of 1450 m to
2500 m close to the geographic South Pole. The detector’s overall up-
time is more than 99% and events are observed from the full sky.24 24 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”.

IceCube consists of several sub-detectors:

• The main In-Ice Array contains 79 of the 86 strings with 60 DOMs
on each string. The strings are arranged in an approximately
hexagonal shape with a horizontal spacing of ∼ 125 m and a
vertical spacing of 17 m. The large intra-string spacing is the
major driver of IceCube’s large effective area. As a result, the
In-Ice Array is only triggered by events with energy larger than
∼ 100 GeV.25 25 Ibid.

• Deep-Core is a region in the center of the detector with 6 addi-
tional strings and a denser string spacing of only 72 m (horizontal)
and 7-10 m (vertical). Of the 60 DOMs, 50 are located in the clear-
est part of the detector below the dust layer (see section 3.6). An
additional 10 are located above the dust layer as veto cap against
atmospheric muons. In contrast to the In-Ice Array, six Deep-
Core strings are equipped with high quantum efficiency DOMs.
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All together, the energy threshold can be lowered to as small as
∼ 10 GeV, facilitating the measurements of oscillation patterns of
atmospheric neutrinos.2626 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”. • On the surface, an array of 82 Cherenkov tanks called Ice Top mea-

sures cosmic-ray air showers. Each tank consists of two DOMs.
The main goal is to measure and characterize atmospheric air
showers between the first and second knee (section 2.1.1), as well
as to veto atmospheric muons and atmospheric neutrinos for the
In-Ice Array.2727 Ibid.

A sketch of the detector design is shown in Figure 3.9 (left) together
with a close-up illustration of a single DOM (right). The DOMs are
the major measurement devices of the detector. Inside a spherical
glass pressure vessel, they are housing a 10" Hamamatsu R7081 Pho-
tomultiplier Tube (PMT), high voltage generation, waveform digi-
tization, calibration LEDs, digital communication hardware, and all
the required peripheral electronics. The glass vessel itself has a diam-
eter of 33 cm and is the combination of two symmetrical half-spheres.
Each DOM is connected to three wires in the string using a penetra-
tor. Two of these cables go directly to the IceCube Lab at the surface,
transferring power and bidirectional digital communication streams.
The remaining cable connects to neighboring DOMs, enabling fast
detection of coincident hits.2828 Ibid.

Figure 3.9: Schematic view on the
IceCube Detector (left) and a single
In-Ice DOM (right). The 86 IceCube
strings reach from the surface — with
the IceCube laboratory (ICL) — down
to a depth of around 2500m, close to the
Antarctic bedrock. The instrumented
volume with its 5160 DOMs is indicated
through circles on the strings. Images
from M. Aartsen et al., “The IceCube
Neutrino Observatory: Instrumentation
and Online Systems”

The 25 cm PMTs are the photon detection unit of the DOMs. A
sketch of a PMTs operating principle is shown in Figure 3.10. When
an incoming photon hits the photocathode, it can release a photo-
electron. Through an array of dynodes, further electrons are re-
leased and accelerated, causing an amplified cascade of electrons
that produce a measurable current at the PMTs anode. To release
electrons through the photoelectric effect, the initial photons need
a wavelength smaller than ∼ 700 nm. For smaller wavelength, the
sensitivity increases until at around ∼ 300 nm the absorption of the
surrounding PMT glass starts dominating. In the glass vessel, the
PMTs are facing downwards, being optimized for direct light from
events from the Northern Hemisphere, i.e., declinations larger than
δ > 0◦. They are shielded from magnetic fields that would influence
the electrons’ trajectories through a mu-metal grid.2929 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”.
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Figure 3.10: Scheme of a photomulti-
plier (PMT). An incident photon (left)
releases electrons from the dynodes
which produce a cascade of secondary
electrons (blue). The electrons are accel-
erated through an acceleration voltage
and measured on the right side of the
PMT. Adapted from Wikimedia Com-
mons, Scheme of a Photomultiplier Tube
(PMT), https://upload.wikimedia.o
rg/wikipedia/commons/5/55/Phot
omultiplier_schema_en.png; accessed
December 12th 2020.

For calibration purposes, each DOM holds a flasher board that con-
sist of 12 LEDs with an output wavelength of ∼ 400 nm. The LEDs
are arranged in six evenly distributed pairs. One LED for each of
these pairs faces ∼ 10 degrees downwards, which, after refraction
through the DOM glass results in a horizontal emission. The other
LED is tilted slightly upward at an angle of ∼ 50 degrees, close to
the Cherenkov angle in ice. Calibration task that make use of the
flasher board are30 30 Ibid.

• Timing response of the DOMs throughout the analysis software
chain,

• Measuring the position of the DOMs in the ice,

• Measuring the optical properties of the ice.

3.5 IceCube Data Acquisition System

Cherenkov photons hitting the photocathode of a PMT release a cas-
cade of electrons that get further amplified and collected, resulting
in a waveform describing a current over time. Once the waveform
passes a discriminator threshold of 0.25 photoelectrons, the DOM is
launched, i.e., starts the recording and digitization of the waveform.
The waveform digitization is thereby based on custom integrated cir-
cuits (ATWDs) and continuously sampling fast ADC (fADCs). While
the ATWDs are optimized to digitize the waveform at a quick sam-
pling rate of 3 ns (427 ns in total) fast enough for light produced in
the close vicinity of the DOM, the fADCs samples at a rate of 25 ns
(6.4 µ s in total). To reduce dead time, two sets of ATWD chips are
used in turns in each PMT.31 31 Ibid.

Even without an incoming event, the detector measures a few
launches due to dark noise. These unwanted artifacts are suppressed
by only sending the collected waveforms if the next or next-to-next
DOM is also launched within a time window of ±1 µs. This re-
quirement is called hard local coincidence (HLC). To identify incoming
events, the surface computers continuously evaluate all the incom-
ing HLC hits for correlations. If the signature of a likely event is

https://upload.wikimedia.org/wikipedia/commons/5/55/Photomultiplier_schema_en.png
https://upload.wikimedia.org/wikipedia/commons/5/55/Photomultiplier_schema_en.png
https://upload.wikimedia.org/wikipedia/commons/5/55/Photomultiplier_schema_en.png
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observed, the detector is triggered and all the photon hits recorded
in a time window of ∆t ∈ [−4 µs, 6 µs] are combined into an event.
IceCube’s major trigger is the simple multiplicity trigger, which re-
quires at least N HLC hits within a sliding time window. Specifically,
for the InIce-Array 8 HLC hits are required within 5 µs (SMT8) and
for Deep Core 3 HLC hits within 2.5 µs (SMT3). If trigger conditions
are met multiple times, the time window is extended to account for
all triggers. IceCube’s SMT8 trigger rate is around 2.8 kHz, which is
mainly caused by atmospheric muons penetrating the detector from
above. Seasonal variations of this rate are caused by changes in the
atmosphere’s pressure, which affects the interaction rate of pions and
kaons in atmospheric showers.32 An overview of the event rates at32 M. Aartsen et al., “The IceCube Neu-

trino Observatory: Instrumentation and
Online Systems”.

the trigger level is shown in Figure 3.11.

Figure 3.11: Comparison of IceCube
event rates at trigger level (left) to a fi-
nal level sample of well-reconstructable
up-going muon tracks (right). Differ-
ent contributions are shown in differ-
ent colors, with solid lines indicating re-
constructed quantities and dashed line
the corresponding truth. The final level
sample is optimized for tracks from the
Northern Hemisphere, in order to re-
move the large contamination of atmo-
spheric muons.
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Events passing the SMT8 trigger are transferred to the Processing
and Filtering (PnF) system. During the PnF processing, events are
calibrated, reconstructed, and filtered to provide a first selection of
potentially interesting physics events. The pre-selection is specifi-
cally important as the Iridium Satellite bandwidth at the South Pole
is limited to only around ∼ 15% of the total events. In the first
step, the waveforms are calibrated using DOM-specific calibration
data, which provide information about the digitizer response func-
tion. Subsequently, the waveforms are unfolded into a sequence of
discrete charges and times, where each tuple of charge and time is
called a pulse. An example of a waveform unfolding is shown in Fig-
ure 3.12. The timing resolution achieved through this procedure is
around 1 ns for ATWD recordings and 8 ns if only the fADC wave-
form is available. The sequence of pulses on a single DOM is usually
called a pulsemap and is the basis for any IceCube reconstruction.3333 Ibid.

Since South Pole computing facilities are limited, only inexpensive
reconstruction algorithms are applied at the pole. While they are less
accurate, they can still be used to filter potentially interesting events.
In the following, we discuss three of the major filters that are relevant
for this thesis:
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Unfolded Pulses FADC ATWD Pulses Figure 3.12: An exemplary transforma-
tion from recorded waveforms (top) to
pulses (bottom). The ATWD and FADC
waveform information is unfolded into
pulses using pulse templates (thin, grey
lines in the top panel). The resulting
pulses are a set of energy and time tu-
ples, modelling the photon detection.

• The muon filter aims to select events that have a track-like signa-
ture and could be produced through neutrino interactions. Filter
cuts are applied on the direction and fit-quality of a simple di-
rectional reconstruction, Improved Linefit, and the total charge col-
lected. In the up-going region (declination δ > −2.5◦), the atmo-
spheric muon background is suppressed through the shielding of
the Earth. Hence, we only need to apply an additional reconstruc-
tion quality cut to select clear tracks and reduce the rate of mis-
reconstructed atmospheric muons. In the down-going region, the
flux at the detector is largely dominated by atmospheric muons.
Thus, a charge and zenith dependent cut is applied. Charge, as
a simple estimator for an event’s energy, can be used to suppress
the steeply falling spectrum of background muons. The resulting
total event rate of the muon filter is around 34 Hz. For events that
pass the muon filter, a fast version of the Spline MPE reconstruc-
tion (section 3.8.1) is used to identify well reconstructable muon
tracks. This OnlineL2 filter reduces the rate of muons down to
6 Hz. Events that pass the OnlineL2 filter are the basis for the
realtime selection of through-going tracks.

• The cascade filter is designed to select events with cascade-like
topology. Like the muon filter above, the sky is separated into up-
and down-going, depending on the Linefit reconstruction direc-
tion. For all events in the up-going region (declination δ > −2.5◦),
a single cut on the cascade likelihood is placed. For the down-
going region, additional cuts on the reconstructed velocity of Lin-
efit and the tensor of inertia of the deposited charge are used
to minimize track-like contributions from the muon background.
The resulting event rate is approximately 30 Hz.

• The HESE filter selects highly energetic starting tracks with a de-
posited charge of more than 6000 photoelectrons(p.e.). The start-
ing criterion is verified by requiring that less than 3 p.e. of charge
are deposited in a veto region in the first 250 ns of the event. Fi-
nally, an atmospheric self-veto34,35 is used to discard events that 34 Schonert et al., “Vetoing atmospheric

neutrinos in a high energy neutrino
telescope”.
35 T. K. Gaisser, Jero, et al., “Gener-
alized self-veto probability for atmo-
spheric neutrinos”.

are accompanied by an atmospheric muon. The HESE Filter has a
very low rate of only a few events per year and is of major impor-
tance for the realtime pipeline, see chapter 6.
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While filters are the first step to the data selection, they have lim-
ited performance and accuracy. Instead of making a clean selection,
their major goal is to not miss any interesting events. In fact, there is
a large overlap between the muon and the cascade filter, although the
underlying topologies are fundamentally different. For the future,
deep learning-based classification and reconstruction algorithms —
as presented in chapter 5 — can significantly improvement the se-
lection efficiency and purity, as they combine high speed with the
performance of the best likelihood reconstructions. This could be es-
pecially interesting for future detectors — as IceCube-Gen2 — that
significantly increase the data rate on trigger level.3636 M. Aartsen et al., “IceCube-Gen2: The

Window to the Extreme Universe”. Events that pass any of the filters are transferred North to the
IceCube computing facilities for further processing. In the first step,
more sophisticated reconstruction algorithms are applied. This stage
of the processing is referred to as Level 2. Starting from there, the
event stream is split up into two branches, the Muon Level 3 and the
Cascade Level 3 branch, consisting of well-reconstructed events of
the respective topology. At this stage, the total event rate is lowered
to around 2 Hz. The Level 3 branches are the starting point for the
selection of events for final level analysis.
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Figure 3.13: Depth-dependent scatter-
ing and absorption coefficient of pho-
tons in the deep Antarctic ice. Evi-
dently, scattering effect are dominating
over absorption. Three basic layers are
visible: clear ice on the bottom, a dust
layer in a depth of ∼ 2000 m, and clear
ice up to the top of IceCube at 1450 m.
Data from the Spice 3.2.1 ice model.

3.6 Properties of the Antarctic Ice

The accurate modeling of the ice properties in and around IceCube
is an important factor for the calculation of the detector response to
photons produced by traversing particles. In general, the ice at the
South Pole has been formed gradually in layers through the accumu-
lation and compression of the annual snow. The age of the ice in the
detector volume is between ≈ 40 kyr (at 1500 m depth) and ≈ 100 kyr
(at 2500 m depth).37 Due to the high pressure at this depth, the ice

37 “South Pole glacial climate recon-
struction from multi-borehole laser par-
ticulate stratigraphy”.

is nearly free of air bubbles and thereby extremely transparent. The
absorption length lies between 50 m to 350 m and is therefore much
larger than in water.38 While absorption decreases the number of

38 Agostini et al., “The Pacific Ocean
Neutrino Experiment”.

photons detected, scattering of the photons on dust particles in the
ice changes their direction and arrival times. With the scattering co-
efficient being a factor of 2 - 2.5 larger than the absorption coefficient,
scattering is the major factor influencing the light propagation, see
Figure 3.13. In fact, with an horizontal inter-string spacing of around
125 meters, most of the photons are expected to scatter several times
before being detected.

To account for the changes of the optical properties with depth,
the ice is modeled in 100 layers with a thickness of 10 m each.39 In39 M. G. Aartsen et al., “Measurement

of South Pole ice transparency with the
IceCube LED calibration system”.

consistency with topological studies of the bedrock, the single layers
are tilted up to 70 m over one kilometer. The absorption and scat-
tering parameters are then calibrated independently for each of the
resulting layers using the on-board LED flashers of the DOMs.40 In40 “South Pole glacial climate recon-

struction from multi-borehole laser par-
ticulate stratigraphy”.

Figure 3.13 the measured absorption and scattering length are shown
for the latest ice model Spice 3.2.1. It can be seen that the detector is
effectively separated into three parts: Ice of good quality at the top, a
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dust layer with lower transparency and high scattering in the middle,
and ultra-pure ice on the bottom. Finally, comparisons of the model
predictions and flasher data show azimuthal intensity modulations.
While the origin of this anisotropy is still under investigation, it can
be corrected for in the ice model41.42 41 Rongen, “Calibration of the IceCube

Neutrino Observatory”.
42 Chirkin and Rongen, “Light diffu-
sion in birefringent polycrystals and the
IceCube ice anisotropy”.

3.7 Energy Reconstructions

The reconstructed energy is an important observable used in many
IceCube analyses to distinguish between atmospheric and astrophys-
ical events and characterize the underlying spectra. Different energy
reconstructions are used depending on the respective event topolo-
gies. While for cascade-like topologies usually the total deposited
energy in the detector is measured, through-going events are better
reconstructed by their energy on entry as it is independent of the
track length in the detector. Although other algorithms exist, this
section only reviews one algorithm called truncated energy,43 which 43 Abbasi et al., “An improved method

for measuring muon energy using the
truncated mean of dE/dx”.

is used in many high-level analyses searching for astrophysical neu-
trinos with through-going muon tracks. In section 7.2 we will show,
however, that the energy resolution can be significantly improved
through a deep learning-based energy reconstruction algorithm.

3.7.1 Truncated Energy

Muon energy losses are the composition of ionization losses and ra-
diative losses. While the former are continuous and dominate below
∼ 1 TeV, radiative losses produce a stochastic sequence of cascades
along the track. Figure 3.14 shows a summary of the relevant loss
contributions at different energies.
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Figure 3.14: The energy losses of muons
in ice. The total loss (black, solid
line) is split up into the different con-
tributions (colored lines as in the leg-
end). Stochastic losses start dominating
above ∼ 2 TeV of muon energy. Data
from Tanabashi et al., “Review of Parti-
cle Physics”.

Analytically, the total average loss per propagation length dx can
be written as

− <
dE
dx

>= a + bE (3.11)

with constants a and b.44 Eq. (3.11) thereby provides a direct connec- 44 Tanabashi et al., “Review of Particle
Physics”.
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tion between the muon energy and the observed losses. In contrast to
the sub-TeV range where energy losses are continuous, higher ener-
gies are intrinsically more challenging to reconstruct, as the stochas-
ticity of the radiative losses can produce varying energy loss patterns
for the same muon energy. This holds specifically true in the transi-
tion region between continuous and stochastic losses as further dis-
cussed in section 7.2. In order to be stable against stochastic effects
a truncation strategy is employed, which excludes the largest energy
losses to be insensitive against strong stochastic variations.45 Using45 Abbasi et al., “An improved method

for measuring muon energy using the
truncated mean of dE/dx”.

a reconstructed track direction, truncated energy uses the expected
light yield (total charge) to calculate the dE/dx at each single DOM.
The calculation is based on tabulated photon data for a muon with
constant energy loss of 1 GeV m−1. Since the relation between the
photon yield and the energy loss is linear, this can be used to infer
the energy loss at a single DOM via

dE
dx

∣∣∣∣
DOM

=
qobs

q̂1GeV
1 GeV m−1 (3.12)

with observed and expected charge, qobs and q̂1GeV , respectively. Fi-
nally, the average loss < dE/dx > is determined as the mean of the
smallest 50% energy losses per DOM. Using eq. (3.11) this can be
converted into an energy on entry assuming that the muon energy is
approximately constant along the track 46.46 which is valid for tracks with energy

Eµ >∼ 1 TeV, i.e. track length longer
than the extension of the detector.

3.8 Directional Reconstructions

The reconstructed event direction is an important observable for any
IceCube analysis because fluxes are inherently anisotropic due to
several reasons such as atmospheric effects, the propagation through
the Earth, and the detector response. For astrophysical neutrino
point source searches, specifically, the direction is the most important
observable to identify spatial clustering of events above the back-
ground. Depending on the event topology and the requirements
towards speed and accuracy, different algorithms are used. In this
section we discuss IceCube’s most important reconstruction meth-
ods for muon tracks - Spline MPE and Millipede. The underlying like-
lihoods are called single photoelectron (SPE) likelihood and multi-
photoelectron (MPE) likelihood, depending of the treatment of the
measured photon pulses.

3.8.1 Spline MPE

Spline MPE reconstructs track-like events based on the hypothesis
of a straight line moving through the detector at the speed of light
with continuous energy losses. Stochastic losses, as shown in Figure
3.5, are neglected. While this leads to a mismodeling of the photon
arrival times, the impact on the reconstruction quality remains mi-
nor, as it is mainly dominated by the long lever arm of the track. An
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improved method that accounts for stochastic effects is called Seg-
mented SplineMPE. While it improves the angular resolution slightly
at muon energies above 100 TeV, it is still in the test phase and com-
putationally much more expensive.47 47 Bradascio and Glüsenkamp, “Im-

proving the muon track reconstruction
of IceCube and IceCube-Gen2”.
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Figure 3.15: Geometry and timing
properties of IceCube’s directional re-
construction. The left panel shows the
geometry of the photons observed from
a track that is passing a DOM at posi-
tion x. The right panels shows the resid-
ual time of the photons arriving at the
DOM as a function of the distance d as-
suming the Pandel function. See text
for more details. Courtesy of M. Huber.

The hypothesis of Spline MPE incorporates 5 parameters, two for
the direction v = (φ, θ) and three for the position r0 = (x, y, z) at
arbitrary time t0. φ and θ are thereby the azimuth and zenith angle
on a celestial sphere. Figure 3.15 illustrates the geometry of a muon
track passing a single DOM. Based on this, the expected geometrical
arrival time tgeo of an unscattered Cherenkov photon is

tgeo = t0 +
p̂ · (x− x0) + d tan θc

c0
. (3.13)

with the DOM position x, the perpendicular distance between track
and DOM d, and the vacuum speed of light c0. The difference be-
tween the arrival time of an observed photon tobs and the geometrical
time tgeo is called the residual time tres = tobs − tgeo. Over the years
different methods have been developed in order to model the time
residuals distribution, which is the sum of several effects: the scat-
tering of the photons during propagation, the detection effects of the
PMTs, and the dark noise of the detector. An approximate, analytical
distribution is given through the Pandel function48 48 J. Ahrens et al., “Muon track recon-

struction and data selection techniques
in AMANDA”.

p(tres) ∝
τ−d/λ · td/λ−1

res
Γ(d/λ)

× e−tres(1/τ+ĉ/λa)−d/λa (3.14)

with ĉ = c0/n, absorption length λa, and two free parameters λ

and τ, which are estimated from Monte Carlo simulation. In Fig-
ure 3.15 the residual time pres(t) is illustrated for different distances
between DOM and track. As expected, the time residual distribu-
tion shifts and broadens for larger DOM distances. While the Pandel
function is a decent approximation and fast to evaluate, it does not
account for the variations of the ice properties throughout the de-
tector, as explained in section 3.6. As a more accurate alternative,
smooth Monte Carlo-based spline tables can be used to calculate the
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expected photon arrival time distributions. The generation of the ta-
bles is based on a full photon simulation chain for a large number
of light sources placed at different positions and orientations in the
detector volume. The results are stored in high-dimensional penal-
ized B-spline,49 which is reasonably fast in its evaluation. Tables are49 Whitehorn, Santen, and Lafebre, “Pe-

nalized Splines for Smooth Representa-
tion of High-dimensional Monte Carlo
Datasets”.

generated for different event hypotheses as infinite through-going
muons and single electromagnetic cascades. Note that, although the
spline table approach improves significantly over the analytical ap-
proach in eq. (3.14), it still assumes lateral translational invariance
and therefore does not account for effects as the ice anisotropy and
tilt. Methods to overcome this limitation are currently developed
using Generative Adversarial Networks.5050 Huennefeld, “Reconstruction Tech-

niques in IceCube using Convolutional
and Generative Neural Networks”.

Based on the distribution of photon arrival times the single pho-
toelectron (SPE) likelihood is defined as

LSPEall =
NDOMs

∏
i

Npulses, i

∏
j

p(tj
res, i | xi, H). (3.15)

The product runs over all detected pulses with time residual tj
res on

a DOM with distance xi to the track. While this parameterization
of the likelihood includes the maximum of information, it has been
shown to be unstable, since effects such as afterpulses are not mod-
eled accurately in the arrival distributions. In fact, the reconstruction
quality improves when only using the arrival time of the first pho-
ton, which is the one that is least affected by scattering and thereby
carries most of the information. As a trade-off between only using
the arrival time of the first photon and using all arrival times, the
MPE likelihood is constructed via

LMPE =
NDOMs

∏
i

p(t1
res,i | xi, H)

 ∞∫
t1
res,i

p(t | xi, H)dt


Npulses,i−1

. (3.16)

In this construction the arrival time of the first photon provides the
dominant timing information, while also being set into relation to
the probability of observing Ni

pulses − 1 hits at a later time. The best-
fit direction is found by minimizing the negative logarithm of eq.
(3.16). As the likelihood spaces are quite complex with potential lo-
cal minima, Spline MPE is usually seeded with a different angular
reconstruction method that has been run earlier in the data process-
ing pipeline. In Figure 3.16 the performance of Spline MPE is shown
in comparison to other algorithms for the track sample used in the
point source analysis presented in chapter 7.
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Figure 3.16: Comparison of the an-
gular resolution of different IceCube
track reconstructions. While simple
approximated algorithms like Linefit
only reconstruct within a few degrees,
the Spline MPE reconstruction reaches
around 0.2◦ at 100 TeV.

3.8.2 Estimating the Angular Uncertainty - Paraboloid

Figure 3.17: An exemplary Spline MPE
likelihood scan. The white star rep-
resents the best-fit direction and the
white, dashed contour the 95% confi-
dence region.

The estimation of the directional uncertainty is of major importance
to calculate the compatibility of an event with a specific location in
the sky. Thus, after the determination of the best-fit direction by
maximizing eq. (3.16), the likelihood region around the minimum is
analyzed, as shown exemplarily in Figure 3.17.

For the large sample limit, the confidence intervals of a likeli-
hood estimator can be approximated through the likelihood function
with51

51 Cowan et al., “Asymptotic formu-
lae for likelihood-based tests of new
physics”.

∆ logL = logL(θ̂+σ
−σ)− logLmax = −N2

2
, (3.17)

where N corresponds to the desired confidence level quantile of the
Gaussian distribution (N=1 for a 68.3% confidence interval). Hence
the one-sigma error region for a parameter σ is defined by the con-
tour at which the ∆ logL is equal to -1/2. In IceCube this method is
implemented in a package called paraboloid,52 which scans the direc- 52 Neunhoffer, “Estimating the angular

resolution of tracks in neutrino tele-
scopes based on a likelihood analysis”.

tional likelihood landscape at 24 distinct points in three rings around
the minimum. For each direction, the vertex position and time are
re-optimized. Finally, a 2-dimensional parabola is used to interpo-
late between the points and to calculate the confidence region σ of
the direction.

Conveniently, the estimated confidence region σ can be related to
the variance of directional reconstruction assuming the Cramer-Rao
bound that defines a lower limit for the variance of an estimator θ̂

via

var(θ̂) ≥ 1
I(θ)

. (3.18)

I(θ) is the Fischer Information, which for a twice differentiable func-
tion can be written as

I(θ) = −E
[

∂2L(x|θ)
∂θ2

∣∣∣∣
θ̂

]
, (3.19)

with E indicating the expectation value and θ̂ the maximum likeli-
hood estimate. Visually, eq. (3.19) represent the expectation value
of the likelihood’s curvature around the maximum. In many cases
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it is, however, unfeasible to calculate the expectation, as it requires
re-sampling of the same true hypothesis. Fortunately, the problem
simplifies significantly for the case of photon statistics going to infin-
ity. In this case, the Cramer-Rao bound in equation (3.18) becomes
exact and the expectation value in eq. (3.19) can be estimated through
a single measurement. Hence the variance is given by

var(θ̂) =
1

− ∂2L(x|θ)
∂θ2

. (3.20)

In order to determine the right side of this equation we return to the
estimation of the confidence region σ, for which we had assumed
that the likelihood function can be locally described by a parabola 5353 which can always be reached through

Taylor expansion around the minimum

L(x|θ) = −a · (θ − θ̂)2 + Lmax, a > 0 (3.21)

with second derivative

−∂2L(x|θ)
∂θ2 = 2a. (3.22)

By comparing eq. (3.20) and eq. (3.22) we find that the variance can
thus be simplified to

var(θ̂) =
1
2a

. (3.23)

On the other hand, we also used the parameterization in eq. (3.22)
and the Cramer-Rao bound in eq. (3.17) to construct σ in a way that

L(x|θ̂+σ
−σ)−Lmax = −1

2
= −a · σ2 (3.24)

and hence

1
σ2 = 2a. (3.25)

Plugging this into equation (3.23) the result reads

var(θ̂) = σ2.

The size of the confidence region can therefore be used as a measure
for the variance of the estimator. In a final step the normality of max-
imum likelihood estimators, eq. (7.5), guarantees that the deviation
of the estimated parameters θ̂ from the truth θ0 can be modeled by a
normal distribution N, i.e.

√
n(θ̂ − θ0)→ N

(
0,

1
I(θ)

= σ2
)

(3.26)

leading to the Gaussian approximation of the spatial term in the cur-
rent point source likelihood, eq. (7.26). We will see throughout chap-
ter 7 that this approximation is not valid over the entire parameter
space of the analysis. While the discrepancy is mainly caused by
the kinematic angle between neutrino and muon, in some cases the
paraboloid minimization fails and thereby produces inaccurate results.
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3.8.3 Millipede Reconstruction

In section 3.8.1 Spline MPE has been introduced as an angular recon-
struction algorithm for through-going muon tracks. While it works
well for a large range of events, it becomes unreliable for events
that deviate from the assumption of an infinite track with contin-
uous losses, e.g., starting tracks and through-going tracks with large
stochasticity. Those two topologies play, however, a crucial role in
the searches for (realtime) counterparts of the most promising as-
trophysical event candidates, as discussed in chapter 4 and chapter
8. An alternative reconstruction algorithm that is stable for those
topologies and furthermore considers the timing of all the photons is
called Millipede. The reconstruction principle is illustrated in Figure
3.18. In contrast to Spline MPE, the general strategy of Millipede is

Track

Figure 3.18: Sketch of the Millipede
reconstruction. The track is seg-
mented into chunks with energy losses
E1, . . . , EN . The expected charge at a
DOM with coordinates xi is given as the
superposition of the expectations from
the single losses.

the reconstruction of single energy losses in small segments along
the track. The hypothesis H is therefore defined by a vector of en-
ergy losses E = (E1, . . . , EN)

T along a track with given direction. The
expected charge at DOM i is then given by the matrix product

n̂i = ρi + Λi(xi, H) · E, (3.27)

where Λi(xi, H) is the i’s row of a response matrix describing the
expected hits at the DOM position xi for N 1 GeV cascades along a
given track. In addition, ρi adds a model for the DOM-specific noise.
Using the Poisson likelihood of observing k hits for an expectation
value of n̂i,

Lpoisson =
n̂i
k!

e−n̂i , (3.28)

the full likelihood is given by

logL =
N

∑
i
(ki log(Λi · E + ρi)− (ΛiE + ρi)− log ki!). (3.29)

In order to find the best-fit direction (and deposited energy) a grid
scan in azimuth and zenith direction is performed. For each direc-
tion the vector of energy losses is adjusted and the best-fit loss pat-
tern determined by minimizing the millipede likelihood in eq. (3.29).
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Unsurprisingly, this procedure is computationally extremely expen-
sive and can only be performed on a small number of interesting
events.

3.8.4 Event Resimulation and Error Contours

As a result, the millipede scan described in section 3.8.3 produces a
fine grid of likelihood values. Despite the identification of the best-
fit direction, the scan can also be used to calculate an error contour.
This is especially relevant for multi-frequency follow-up searches of
the IceCube high-energy events. As telescope time is limited, an ac-
curate determination of the error contour helps to efficiently identify
promising candidates and discard background sources outside the
contour. Unfortunately, however, the contours derived assuming a
simple χ2 distribution of the ∆ logL between best-fit and true direc-
tion 54 do not show a good coverage. This has been confirmed with54 As expected from Wilk’s theorem

a small sample of events, which have been resimulated with events
of similar energy, direction, and varying ice-systematics.55 For some55 Rädel, “Measurement of High-Energy

Muon Neutrinos with the IceCube Neu-
trino Observatory”.

extraordinary experimental events, a dedicated resimulation effort
has been performed to derive the event-specific ∆ logL distribution.
For example, this is the case for the high-energy track leading to the
identification of the first compelling neutrino source TXS 0506+056

as discussed in chapter 4. In fact, the resimulation of those few
events provide the underlying test-statistic distribution that is used
to derive the error contours for the current IceCube realtime stream.
While this is expected to have better coverage than the simple χ2 as-
sumption, the validation and characterization of this technique on a
larger sample is still pending.
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4 TXS 0506+056 - The First Source of
Astrophysical Neutrinos

Figure 4.1: Event view of IceCube-
170922A. The size of the bubbles is pro-
portional to the charge and the timing
is encoded in the color (red to blue).

On the 22
nd of September 2017, the IceCube Neutrino Observatory

detected a highly-energetic neutrino — IceCube-170922A. From the
energy estimation, the event has a high probability of being astro-
physical. Furthermore, a bright gamma-ray blazar — TXS 0506+056

— was found close to the best-fit direction of the event.1 Follow-
1 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

up observations revealed that the source was undergoing a strong
gamma-ray flare, and searches in archival neutrino data found an ad-
ditional accumulation of neutrinos from a direction consistent with
the source.2 Based on a multi-wavelength study of the region, we

2 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Samarai, et al., “Neu-
trino emission from the direction of
the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.

find that TXS 0506+056 is indeed the only energetically convincing
counterpart for this emission.3 This chapter will review and connect

3 Padovani, Giommi, et al., “Dissecting
the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

the different components that made TXS 0506+056 the first com-
pelling, non-stellar source of astrophysical neutrinos. Discussions
on the multi-frequency dissection follow closely our previously pub-
lished results.4

4 Ibid.
4.1 Detection of the Neutrino Event IceCube-170922A

Historically, IceCube’s realtime pipeline consists of two event streams,
the EHE stream for extremely-high-energy through-going tracks and
the HESE event stream for high-energy starting tracks. While the
former covers the energy range between 500 TeV to 10 PeV with a
rate of 4 to 6 events per year at a purity 5 of >50%, the latter has a 5 Fraction of signal events among the to-

tal event raterate of around 5 events per year and purity of 29%.6
6 M. Aartsen et al., “The IceCube Real-
time Alert System”.IceCube-170922A was identified as a through-going track through

the EHE alert stream at MJD 58018.87. An event view can be seen
in Figure 4.1. After applying the millipede reconstruction the best-
fit direction is given as right ascension (RA) 77.43+0.95

−0.65 and declina-
tion (Dec) +5.72+0.50

−0.30 (deg, J2000, 90 per cent containment region)7 7 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

and thereby only 0.06◦ away from the flaring gamma-ray source
TXS 0506+056, see Figure 4.4 and 4.9. As this is a very rare coin-
cidence, a re-simulation of the event was performed to determine an
event-specific confidence contour as discussed in section 3.8.4. Being
clearly up-going, i.e., coming from the Northern Hemisphere, an at-
mospheric muon origin can be excluded as they are shielded by the
Earth. Using the reconstructed direction and energy, one can further
estimate the energy of the initial neutrino. For this calculation, EHE
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Monte Carlo events with similar reconstructed energy and direction
are selected, resulting in a distribution of true energies as seen in Fig-
ure 4.2.8 The resulting energy distribution depends on the assumed8 IceCube Collaboration, M. G. Aartsen,

Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

astrophysical spectrum since the vertex, and thereby the length of the
track before entering the detector, is unknown. The most-likely neu-
trino energy lies in a range between 259 TeV and 311 TeV for spectral
indices between γ = 2.0 and γ = 2.5.9 However, note that photo-

9 Ibid.
hadronic models of neutrino production in blazars usually predict
harder spectral indices with cut off. In the case of harder spectra, the
estimated energy can be significantly higher. Finally, assuming an
astrophysical spectrum with a power law index γ = 2.13, the signal-
ness of the event, i.e., the fraction of signal events among the total
event rate at this declination and energy is 56.5%.10 Albeit this num-10 Ibid.

ber is not particularly high, the discussion of the connection between
IceCube-170922A and TXS 0506+056 in the next section will show
that the chance coincidence probability for a spatial coincidence of
the event with such a source is extremely small.

Figure 4.2: Distribution of the neutrino
energies leading to the observed di-
rection and muon energy of IceCube-
170922A. As the position of the ver-
tex and thereby the track length before
reaching the detector is unknown, the
distribution depends on the assumed
neutrino spectrum. Plot from IceCube
Collaboration, M. G. Aartsen, Acker-
mann, Adams, Aguilar, Ahlers, M.
Ahrens, Al Samarai, et al., “Multimes-
senger observations of a flaring blazar
coincident with high-energy neutrino
IceCube-170922A”.
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4.2 Chance Coincidence Probability

As discussed in section 3.8, IceCube uses likelihood-based algorithms
in order to reconstruct the event direction along with the uncertainty.
In this frequentist approach the error contours are constructed in a way
that they contain the true direction in 90% of the experimental out-
comes 11. The resulting contour does not, however, make any state-11 Assuming that the likelihood is cor-

rectly modeled and takes into account
all the relevant systematics.

ment on how probable a certain direction x is the true direction, i.e., it
does not make a statement on P(x|data), which is a strictly Bayesian
concept. Similarly to the point source analysis in chapter 7.1.3, we
can, however, construct a frequentist test that compares the signal
hypothesis of an event with direction x to originate from a nearby
source with source flux φs to the null hypothesis of the event being
of atmospheric or diffuse astrophysical origin. The corresponding
signal likelihood can be written as

L(H1 |O) = p(O|H1) = p(O|αs, ω) = p(x|αs) · p(φs|ω) (4.1)

where the observable space O consist of the event direction x and
the source flux φs. The hypothesis H1 is the composition of a source
position αs = (φs, θs) and some flux weighting ω. The formalism
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in eq. (4.1) can then simply be expanded to the case of a catalog of
sources by summing the single contributions to the total likelihood

L(H1 |O) = ∑
s

p(x|αs) · ws. (4.2)

with the single source flux weight ws = p(φs |ω). The point spread
function p(x|αs) can be approximated by a Gaussian

p(x|αs) =
1

2πσ2 × exp
(
−1

2
|x− αs|2

σ2

)
(4.3)

with the angular error estimator σ being calculated on an event-to-
event basis. In case of this follow-up analysis we use the Cramér-Rao
lower bound, which becomes a reasonably good estimator for the
variance of the directional reconstruction at high photon statistics,
i.e., high energies.12 12 M. Aartsen et al., “Very High-Energy

Gamma-Ray Follow-Up Program Using
Neutrino Triggers from IceCube”.

As the production mechanisms of astrophysical neutrinos are un-
known, there is no obvious choice of the weighting term ws in eq.
(4.2). As both neutrinos and gamma rays, are, however, expected
to be produced with a similar luminosity, it is natural to assume a
simple model of the neutrino energy flux at Earth being linearly pro-
portional to the gamma-ray energy flux, i.e., Sν ∝ Sγ. Consequently,
we define the neutrino and gamma-ray energy flux over the energy
range between 1 GeV to 100 GeV as

Sν ∝ Sγ =

100 GeV∫
1 GeV

Eγ dΦγ

dEγ
dEγ. (4.4)

To calculate the expected neutrino flux at the detector, one needs
to additionally account for absorption effects of neutrinos in the
Earth as well as the detector efficiency. The final weight is there-
fore the normalized product of the time-dependent flux weight and
zenith-dependent acceptance

ws(t, θs) =
Sγ,s(t) · wacc(θs)

∑
s̃,̃t

Sγ,s̃(t̃) · wacc(θs̃)
(4.5)

with s̃ going over all the 2257 extragalactic Fermi-LAT 3FGL sources
known at that time.13 Note that in order to account for the flaring of 13 Acero et al., “Fermi Large Area Tele-

scope Third Source Catalog”.the source, the analysis includes an additional time series parameter
t which is based on a sample of 28-day 1 GeV gamma-ray light curves
for all the sources.14 The final signal likelihood is then written as 14 IceCube Collaboration, M. G. Aart-

sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Al Samarai, et al.,
“Multimessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

S = L(H1 |O) = ∑
s

1
2πσ2 × exp

(
−1

2
|x− αs|2

σ2

)
· ws. (4.6)

For the background hypothesis we assume a conventional atmo-
spheric plus best-fit diffuse astrophysical spectrum leading to

B = L(H0 |O) =
p(θ|H0)

2π · Nt · Ns
, (4.7)
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assuming a uniform arrival direction in right ascension due to the
rotation of the detector at the South Pole; Nt = 154 and Ns = 2257 are
the number of time bins and extragalactic 3FGL sources, respectively.
Finally, the test statistic is constructed over

T S = 2× log
S
B . (4.8)

In order to determine the background probability for the space and
time coincidence of TXS 0506+056 and IceCube-170922A, a back-
ground test statistic distribution is derived using Monte Carlo-based
pseudo-experiments. Comparing to the experimental test statistic,
the resulting pre-trial p-value is plocal = 2.1× 10−5 or 4.1σ in a one-
sided test. In order to account for the rate of background events,
we further correct for the 51 archival events that passed the realtime
selection prior to the observation of IceCube-170922A. For indepen-
dent trials, the binomial probability of observing at least one trial
with plocal ≤ 2.1× 10−5 under the background hypothesis in N trials
is

pglobal = 1− (1− plocal)
N . (4.9)

leading to a post-trial significance of 3.0σ.
Note that a posteriori calculations — as the one presented here —

should only be taken as a hint that something might be interesting
since the result is susceptible to two biases: 1.) the a posteriori choice
of the (signal) hypothesis and 2.) the a posteriori choice of the data
analysis method. To illustrate this, one can think of any other rea-
sonable method to calculate the chance coincidence probability of
IceCube-170922A and TXS 0506+056. For example, one could, in-
stead of assuming a Gaussian point spread function, uses the pub-
lished millipede contours and conservatively assign the same spatial
weight for every point inside the contour (which is done in simi-
lar publications15,16). Additionally, instead of taking the gamma-ray15 Stein et al., “A high-energy neu-

trino coincident with a tidal disruption
event”.
16 Giommi, Padovani, Oikonomou, et
al., “3HSP J095507.9+355101: a flaring
extreme blazar coincident in space and
time with IceCube-200107A”.

flux, one could also argue that TXS 0506+056 is very special in its ra-
dio flux (there are only 12 brighter radio sources in the 3HSP blazar
catalog17). As a result the probability of seeing a source that is as

17 Y.-L. Chang, Arsioli, et al., “The
3HSP catalogue of extreme and high-
synchrotron peaked blazars”.

bright as TXS 0506+056 in radio (gamma rays) and included in an
error contour with a size of Ωevent = 0.97 sqdeg (90% error contour
of IceCube-170922A18) is

18 IceCube Collaboration, M. G. Aart-
sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Al Samarai, et al.,
“Multimessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

P =
Ωevent

41252.96 sqdeg
× N(Φ > ΦTXS 0506+056), (4.10)

with the denominator giving the total solid angle of a sphere and
assuming that the number of sources with a flux higher than TXS
0506+056 is small enough to avoid any higher-order binomial effects.
The resulting chance coincidence probabilities are 0.028% based on
the radio flux and 0.44% based on the gamma-ray flux (TXS 0506+056

is among the 189 brightest objects in the Fermi 4FGL catalog19). The19 Abdollahi et al., “Fermi Large Area
Telescope Fourth Source Catalog”. entire issue about the a posteriori chance coincidence calculation is a

strong motivation to move beyond single-event analysis and towards
the multi-frequency correlation studies of larger event samples as
shown in chapter 8.2.



CHAPTER 4. TXS 0506+056 - THE FIRST SOURCE OF ASTROPHYSICAL NEUTRINOS 57

4.3 Dissecting the Region around IceCube-170922A

The previous section has shown that a coincidence between a high-
energy neutrino and a gamma-ray flaring source, as bright as TXS
0506+056, is extremely rare. Despite this being interesting on its own,
a search in archival IceCube data has revealed a flare of neutrino
events from a location consistent with the position of TXS 0506+056,
Figure 4.3. The flare duration for a Gaussian time window is esti-
mated to 110+35

−24 days between MJD 56949 and 57059 with a post-
trial significance of 3.5σ.20 The corresponding νµ fluence at 100 TeV 20 IceCube Collaboration, M. G. Aart-

sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Samarai, et al.,
“Neutrino emission from the direction
of the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.

is 2.1+0.9
−0.7 × 10−4 TeV cm−2 for a best-fit power law spectral index of

γ = 2.1± 0.2 in a sensitive energy range (68 per cent) between 32

TeV and 3.6 PeV21 22. To connect all the observations in the region

21 Ibid.
22 Note that the point source analysis
method applied here has an intrinsic
bias in the spectral index and flux nor-
malization as shown in chapter 7.5. Al-
though this effect is small for an E−2

spectrum close to the horizon, it could
still impact the results by ∼ 10%.

around IceCube-170922A and to exclude other potential candidate
sources despite TXS 0506+056, we have developed a pipeline that
performs a dissection of the entire region of interest (ROI) from a
multi-frequency, i.e., radio to gamma ray, perspective.

Figure 4.3: The local p-value map
showing the time-integrated emission
around TXS 0506+056. It can be seen
that the emission is well localized and
consistent with the position of TXS
0506+056. Plot taken from IceCube Col-
laboration, M. G. Aartsen, Ackermann,
Adams, Aguilar, Ahlers, M. Ahrens,
Samarai, et al., “Neutrino emission
from the direction of the blazar TXS
0506+056 prior to the IceCube-170922A
alert”.

4.3.1 Search for Multi-Frequency Counterparts

In astrophysical source environments, neutrinos are usually expected
to be created through the decay of charged pions produced in in-
elastic proton-proton and proton-gamma interactions. In the same
processes, neutral pions are produced that further decay into two
photons (π0 → 2γ). The energy of protons εp is related to the energy
of the neutrinos (εν) and gamma rays (εγ) as

εν ≈ 0.5εγ ≈ 0.05εp. (4.11)

The production of astrophysical neutrinos is therefore accompanied
by the production of gamma rays at similar energies and rates 23.

23 see section 2.2 for a detailed review

However, the detection of those gamma rays is not always guaran-
teed as they can be a) absorbed by the EBL or b) deflected in gamma
ray opaque sources due to two-photon annihilation processes. Con-
sequently, it is advantageous to extend searches for possible neutrino
counterparts towards radio, optical and X-ray energies, where accel-
erators can be identified through their characteristical non-thermal
synchrotron spectrum. The pipeline presented here is based on two
components 1.) a search for blazar-like counterpart candidates using
the VOU-Blazar tool24 and 2.) a dedicated analysis of the available

24 Y.-L. Chang, Brandt, and Giommi,
“The Open Universe VOU-Blazars
tool”.

multi-frequency data, including an analysis of the Fermi-LAT data for
the region and all the previously identified counterpart candidates.
This work is the foundation of the automated follow-up pipeline pre-
sented in chapter 8.4.

In Figure 4.4 the radio and X-ray emission in the region around
IceCube-170922A is shown as red dots and blue circles, respectively.
The data is provided through the VOU-Blazar tool that queries 34

catalogs through the conesearch pipeline 25.26 The 34 catalogs include 25 https://github.com/chbrandt/eada
/blob/master/eada/vo/conesearch.py
26 Y.-L. Chang, Brandt, and Giommi,
“The Open Universe VOU-Blazars
tool”.

basically all the publicly available radio and X-ray data, as well as
additional type-specific catalogs of known sources to resolve ambi-
guities. In a second step, counterpart candidates are identified as

https://github.com/chbrandt/eada/blob/master/eada/vo/conesearch.py
https://github.com/chbrandt/eada/blob/master/eada/vo/conesearch.py
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positions in the sky where there is both, radio and X-ray emission, at
a flux ratio consistent with that of a blazar. A convenient definition
for this ratio is given by2727 Padovani and Giommi, “The Con-

nection between X-Ray– and Radio-
selected BL Lacertae Objects”.

αrx = − log( fν1 / fν2)

log(ν1/ν2)
(4.12)

where ν1 = 1.4 GHz and ν2 = 1 keV, with respective flux values fν1

and fν2 . Different classes of blazars have different emission profiles
and hence the αrx can be used to classify the blazars via28,2928 Padovani, Perlman, et al., “What

types of jets does nature make: A New
population of radio quasars”.
29 Padovani and Giommi, “The Con-
nection between X-Ray– and Radio-
selected BL Lacertae Objects”. Class =



HSP, for 0.43 < αrx ≤ 0.78 & νS
peak ≥ 1015,

ISP, for 0.43 < αrx ≤ 0.78 & νS
peak < 1015,

LSP, for 0.78 < αrx < 0.95,

non-jetted AGN candidate, for αrx < 0.43,

Unknown, for αrx > 0.95.

(4.13)

Considering the region around IceCube-170922A, this leads to the
source candidates shown in the right panel of Figure 4.4. There
are three known objects, TXS 0506+056 (an IBL/HBL at redshift z
= 0.3365,30 source no. 5, distance ∆ψ = 0.06◦), PKS 0502+049 (an30 Paiano, Falomo, Treves, et al., “The

redshift of the BL Lac object TXS
0506+056”.

LBL/FSRQ at z = 0.954, source no. 1, distance ∆ψ = 1.2◦), and
3HSP J050833.4+053109

31 (source no.3, distance ∆ψ = 0.35◦), as31 the source was named 2WHSP
J050833.3+05310 in the previous catalog
of HSP sources, see Figure 4.4

well as four additional blazar candidates. The first two objects, TXS
0506+056 and PKS 0502+049, are bright gamma-ray emitters and
therefore included in the 4FGL catalog, both being among the 3.5%
brightest objects in photon flux. Visual inspection of the other sources’s
SEDs show that source no. 4 is a HSP candidate, source no. 7 is likely
a cluster of galaxies (due to its extended X-ray emission), source 6 is a
steep radio spectrum object, and source 2 is a nearby elliptical galaxy
showing low luminosity X-ray emission that could be due to a jet or
even to non-nuclear sources.3232 Padovani, Giommi, et al., “Dissecting

the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

Figure 4.4: Result of the multi-
frequency dissection of the region
around IceCube-170922A using the
OpenUniverse VOU-Blazar tool. The
left plot shows all the known radio
(red) and X-ray emission (blue). Cross-
matching these emissions, only a few
blazar-like counterpart candidates re-
main (right plot). Dark blue circles rep-
resent LBL, cyan symbols IBL, and or-
ange symbols HBL candidates. Known
blazars are marked by red diamonds if
they are part of the BZCAT catalogue or
by a star if they are part of the 2WHSP
sample.

4.3.2 Analysis of the Fermi-LAT Gamma-Ray Data

In order to further address the emission spectra of the candidates,
Fermi-LAT gamma-ray data collected between August 4, 2008 to Febru-
ary 10, 2018 are analysed 33. In Figure 4.5 and Figure 4.6 the gamma-33 see Padovani, Giommi, et al., “Dis-

secting the region around IceCube-
170922A: the blazar TXS 0506+056 as
the first cosmic neutrino source” for
technical details
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ray test statistic maps are shown for various photon energy thresh-
olds around the arrival of IceCube-170922A and during the neutrino
flare, respectively. First of all, it can be seen that the gamma-ray
sky looks very much different in the two time windows. While
PKS 0502+049 shows strong emission during the neutrino flare, TXS
0506+056 clearly dominates at the observation time of IceCube-170922A.
The strong emission of PKS 0502+049 during the neutrino flare has,
in fact, lead people to suspect that something could be wrong with
the pointing of the IceCube point source analysis.

Figure 4.5: Test statistic map between
MJD 57908 and 58018, i.e., in a time
window 100 days before the arrival
of IceCube-170922A. Colored symbols
represent the sources of interest as
shown above. The best-fit direction
and 90% contour of IceCube-170922A
are shown as black square and black
dashed line, respectively. According to
Wilk’s theorem (theorem 7.1.2) the sig-
nificance Σ is related to the TS value as
Σ =
√

TS.

Figure 4.6: Test statistic map during the
IceCube neutrino flare (MJD 56949 to
57059 ). See Figure 4.5 for more details.

Looking closer at the time profile of the emission shows, however,
that the flare of PKS 0502+049 happens directly before and after, but
not during the neutrino flare, see the light curve in Figure 4.7. Also,
the dominance of PKS 0502+049 results from a bulk of low energy
photons connected to the comparably soft spectrum of the source.
Moving up to higher energies, TXS 0506+056 remains the strongest
emitter in the region (Figure 4.6). Hence, both the spatial distances
and the emission profile, point clearly against the neutrino emission
being related to PKS 0502+049.

From Figure 4.5 and Figure 4.6, no other gamma-ray emitters are
visible despite TXS 0506+056 and PKS 0502+049. As one of the other
counterpart candidates, 3HSPJ050833.4+053109, lays right in between
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Figure 4.7: The 214 MeV to 100 GeV
gamma-ray light curve of PKS 0502+049

around the time of the neutrino flare
(blue). The width of the the bins is
chosen based on the adaptive-method
by Lott et al., “An adaptive-binning
method for generating constant-
uncertainty/constant-significance light
curves with Fermi-LAT data”. Two
periods of high flux can be identified
(grey). Most importantly, however, the
periods of high emission do not overlap
with the time window of the neutrino
flare.
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the two, a dedicated gamma-ray analysis has been performed with
a lower energy threshold of 100 MeV. The result shows, however,
no clear sign of emission above the 3σ level. In fact, the fitted spec-
trum is extremely soft and most likely dominated by source confu-
sion with TXS 0506+056.

Overall, both the analysis of the IceCube neutrino data and the
multi-frequency dissection point to TXS 0506+056 as the only plau-
sible (blazar) candidate in the region. In the following, the source’s
emission is analyzed in more detail to complete the phenomenolog-
ical observations and search for a coherent picture. In Figure 4.8 the
hybrid-SEDs, combining electromagnetic and neutrino emission34,3534 IceCube Collaboration, M. G. Aart-

sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Al Samarai, et al.,
“Multimessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.
35 IceCube Collaboration, M. G. Aart-
sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Samarai, et al.,
“Neutrino emission from the direction
of the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.

for TXS 0506+056 are shown for the two relevant time windows. Ev-
idently, the source is in very different states during those two emis-
sion periods. During the neutrino flare, the gamma-ray emission is
faint at low energies but indicates a hardening towards higher en-
ergies. This is particularly visible when fitting the lower part of the
spectrum (100 MeV-30 GeV) with a log-parabola and adding a second
power law component starting at higher energies (>2 GeV). On the
contrary, at the arrival time of IceCube-170922A, the gamma-ray flux
is in its highest state while being well consistent with a simple power
law model.3636 Glauch, Padovani, et al., “Dissecting

the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

The change of the spectral shape and the integrated photon flux
are also visible in the 2 GeV - 300 GeV gamma-ray light curve, Figure
4.9. Although the states during the two neutrino emission periods
are very different, they are both rare compared to the rest of the light
curve. This can be estimated by comparing to the distribution of nor-
mal states given by the sum of Gaussians with respective mean and
standard deviation over all light curve bins without associated neu-
trino emission (Figure 4.9, upper panel). As a result, the probability
of observing a gamma-ray spectral index as hard as it is reached
during the neutrino flare turns out to be only ∼ 2%. Integrating
over the entire period of 110 days, the average spectral index above
2 GeV is 1.62 ± 0.20. Additionally, a detailed analysis of the highest-
energy part of the spectrum has been done with an adaptive binning
method above 10 GeV (Figure 4.9, right panel). Two emission periods
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Figure 4.8: Hybrid-SEDs of TXS
0506+056 during the neutrino flare (left)
and around the arrival time of IceCube-
170922A (right). Archival data points
are shown in grey and time simultane-
ous data in color. In addition to the
neutrino and gamma-ray spectra, all
the publicly available multi-frequency
data are shown. The median (upper
limit) neutrino flux in the right SED
equals the flux required to observe on
average one event (not more than one
event at 90% C.L.) in 0.5 years.

of high energy gamma rays are identified with photon energies going
up to 52.6 GeV at more than 99% confidence level. Similarly to the
hard state during the neutrino flare, we find that the strong emission
during the arrival of IceCube-170922A is pretty rare, with a chance
probability of ∼ 1%. Most importantly, both gamma-ray states are
also consistent with the respective neutrino emission flux levels at
that time. This is an important requirement, as lepto-hadronic mod-
els predict a clear connection between the observed gamma-ray and
neutrino luminosity, i.e.,

Lν = YνγLγ (4.14)

with Yνγ being on the order of 1 for a photon energy range range be-
tween 1 GeV and 1 TeV.37 For the case of TXS 0506+056 neutrino 37 Petropoulou, Dimitrakoudis, et al.,

“Photohadronic origin of γ-ray BL Lac
emission: implications for IceCube neu-
trinos”.

flare we find an all-flavor neutrino luminosity of Lν = 1.4+0.6
−0.5 ×

1047 erg s−1 between 32 TeV and 3.6 PeV and a simultaneous (extrap-
olated) gamma ray luminosity of Lγ ∼ 3× 1046 erg s−1.38 With those 38 Padovani, Giommi, et al., “Dissecting

the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

numbers being on a similar scale, we conclude that TXS 0506+056 is
also energetically a consistent candidate.

In summary, all the spatial, timing, and energetic results, from
both the IceCube neutrino analysis and the multi-wavelength dissec-
tion point to TXS 0506+056 as the first compelling non-stellar source
of astrophysical neutrinos.

4.4 The Nature of TXS 0506+056 and its Multi-Frequency
Emission

With the compelling detection of TXS 0506+056 as the first non-
stellar neutrino point source, large interest sparked around the na-
ture and the underlying mechanisms of the neutrino emission. Al-
though many questions are still unresolved, some general conclu-
sions and constraints can be derived.
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Figure 4.9: Gamma-ray light curves of
TXS 0506+056. The upper panel shows
the light curve over the full mission
using a binning of half the neutrino
flare time (55 days) and the lower panel
shows the high energy emission (above
10 GeV) during the neutrino flare. The
neutrino flare period and arrival time of
IceCube-170922A are indicated in blue
and red, respectively. In addition to
the photon fluxes on the top, the spec-
tral indices are shown on the bottom of
each plot. The right panel in the full-
emission light curve additionally shows
the distribution of neutrino-quiescent
states of the source.
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First, there is the challenge of classifying TXS 0506+056 among the
classes of blazars. As optical emission lines are strongly diluted by
the jet, early works on the source assumed it is a BL Lac. A dedi-
cated analysis of the optical spectra showed, however, the presence
of OII and OIII emission lines with luminosities typical for high-
excitation galaxies (HEGs, section 2.3.3).39 From a synchrotron peak39 Paiano, Falomo, Treves, et al., “The

redshift of the BL Lac object TXS
0506+056”.

perspective, the source is further classified in the transition region
between IBLs and HBLs and, hence, falls into the category of mas-
querading BL Lacs, i.e., FSRQs that appear as BL Lacs due to the
strong non-thermal jet emission.40 The classification of TXS 0506+056

40 Padovani, Oikonomou, et al., “TXS
0506+056, the first cosmic neutrino
source, is not a BL Lac”.

as an FSRQ has important implications as the narrow line region
might provide a stationary photon field for photo-meson produc-
tion of neutrinos in the jet. Following eq. (2.19) these target pho-
tons are required to be in the ultraviolet band to produce neutri-
nos at a few hundred TeV. For an FSRQ such target photons natu-
rally arise from the accretion disk and the narrow line region. In
contrast, the scenario of neutrino production in a co-moving pho-
ton field would require target photons in the keV (X-ray) range.
Multi-wavelength measurements around the arrival time of IceCube
170922A have found, however, a strong dip in the X-ray range, and
hence the amount of target photons in this scenario is too low to
produce neutrinos in reasonable numbers without requiring unrea-
sonable proton luminosities.4141 Reimer, Boettcher, and Buson,

“Cascading Constraints from Neutrino
Emitting Blazars: The case of TXS
0506+056”.
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Several authors have used numerical lepto-hadronic models to
perform a detailed analysis of the spectral energy distribution of
TXS 0506+056 around the two relevant neutrino emission time win-
dows42,43,44.45 Despite some differences in the assumptions, there 42 Keivani et al., “A Multimessen-

ger Picture of the Flaring Blazar
TXS 0506+056: implications for High-
Energy Neutrino Emission and Cosmic
Ray Acceleration”.
43 Cerruti et al., “Leptohadronic
single-zone models for the electromag-
netic and neutrino emission of TXS
0506+056”.
44 Liu et al., “Hadronuclear interpreta-
tion of a high-energy neutrino event co-
incident with a blazar flare”.
45 Rodrigues et al., “Leptohadronic
Blazar Models Applied to the 2014–
2015 Flare of TXS 0506+056”.

is a consensus that major constraints for the proton, and thereby
the neutrino luminosity, come from the X-ray dip. Specifically, the
proton luminosity is constrained by the Bethe-Heitler emission that
should not exceed the measured X-ray flux. While X-ray measure-
ments are available around the arrival time of IceCube-170922A, there
are no measurements during the neutrino flare, leaving more space
for interpretation. In summary, most works agree that consistent
modeling of the IceCube-170922A flux is possible in standard one-
zone models. For the neutrino flare, in contrast, things are more
complicated as the overall gamma-ray flux is lower. A possible ex-
planation could be the existence of several emission zones or the
presence of a large X-ray flux.46 In any case, it will need further neu- 46 Ibid.

trinos observations to unambiguously identify the processes that can
explain the neutrino production from TXS 0506+056. Finally, note
that the observation of neutrinos with an energy of a few hundred
TeV to 1 PeV only requires proton energies of ∼ 10 PeV(∼ 1016 eV)
and hence does not necessarily implicate the production of the high-
est energies of cosmic rays.
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5 Deep Learning Event-Type Classifi-
cation in IceCube

Although the idea of artificial neural networks (ANNs) has been
around for decades, it was only recently that improvements in GPU
power and new network architectures have paved the way for wide-
spread applications.1 Since then, their development has accelerated 1 LeCun, Bengio, and G. Hinton, “Deep

learning”.tremendously and, nowadays, ANNs are reaching human perfor-
mance levels in various tasks such as pattern recognition,2 medical 2 He, X. Zhang, et al., “Deep residual

learning for image recognition”.diagnosis,3 and playing highly-complex board games such as Go.4
3 Litjens et al., “A survey on deep learn-
ing in medical image analysis”.
4 Silver et al., “Mastering the game of
Go with deep neural networks and tree
search”.

Notably, a readily trained neural network is fast in the application,
with prediction times on the order of milliseconds (see Figure 5.14).
Of special interest in the context of ANNs are the so-called deep neu-
ral networks (DNNs), which describe ANNs where the input is con-
nected to multiple hidden layers before reaching an output node. In
this way, modern DNNs can handle up to several million free pa-
rameters, which the network freely adjusts based on a set of training
samples. This procedure is sometimes referred to as learning, in anal-
ogy to human brains.

Physics research is another large field of application for DNNs.
With data acquisition rates rapidly increasing, there is a growing de-
sire for fast and powerful algorithms to process and filter interesting
measurements as early as possible in the data processing pipeline.
Consequently, several groups within the IceCube Collaboration have
worked on different applications such as track and cascade recon-
structions using convolutional (CNNs)5 and recurrent neural net- 5 Huennefeld, “Deep Learning in

Physics exemplified by the Recon-
struction of Muon-Neutrino Events in
IceCube”.

works (RNNs), as well as muon bundle identifications using graph
neural networks (GNNs).6 Complementary, the identification of dif-

6 Choma et al., “Graph Neural Net-
works for IceCube Signal Classifica-
tion”.

ferent event topologies is an important part of the IceCube process-
ing pipeline. Therefore, this chapter presents a deep neural network
that is trained to identify the five major event topologies observed in
the IceCube In-Ice Array at energies above ∼ 100 GeV. As a practical
application example, the subsequent chapter 6 presents a new se-
lection of realtime events that combines the DNN classification with
the RNN muon reconstruction. This new selection significantly im-
proves event rates over its predecessor while having a comparable
purity.
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This chapter begins with a short review of the concepts behind
neural networks before explaining the CNN-based event classifier
and evaluating its performance and consistency on different datasets.
An earlier version of the classifier was presented at the ICRC 2019.77 Kronmueller and Glauch, “Applica-

tion of Deep Neural Networks to Event
Type Classification in IceCube”; Kro-
nmüller, “Application of Deep Neural
Networks on Event Type Classification
in IceCube”.

5.1 Artificial Neural Networks and Deep Learning

5.1.1 The Neuron and Simple Neural Networks

The idea of modelling the human brain through computational sys-
tems has inspired researches and philosophers for decades. Starting
from the early ideas of computer models8 and perceptrons9 in the8 Shannon and McCarthy, Automata

Studies. (AM-34), Volume 34.
9 Rosenblatt, “The perceptron: a prob-
abilistic model for information storage
and organization in the brain.”

1940s and 1950s, the concepts have become more and more abstract,
with modern types of artificial neural networks (ANNs) only being
vaguely connected to their biological counterparts. From a modern
perspective, deep learning describes a subset of machine learning
methods that are based on a system of artificial neurons. A sketch of
such a unit is shown in Figure 5.1. The neuron takes a vector of in-
puts x = (x1, x2, . . . , xn) ∈ Rn which is multiplied by a set of weights
W = (w1, w2, . . . , wn) ∈ Rn to produce an output y1

y1 = WT · x + b1, (5.1)

x1 xn

∑

w1
w2

wn

b1

Activation

y1 Output

x2 

Figure 5.1: Sketch of a simple neuron,
with inputs x, a set of weights W and
a bias b1. The inputs are combined ac-
cording to eq. (5.1). Finally, an activa-
tion function can be used, eq. (5.5).

where the b1 adds an offset or bias. Eq. 5.1 describes a simple
linear model. Based on this prototype neuron, more complex archi-
tectures can be constructed. An extended example is shown in Figure
5.2.

Input Layer

Output Layer

Figure 5.2: Sketch of a simple neural
network with input, hidden and output
layer. As all nodes between subsequent
layers are connected, it is called a fully-
connected network. A single neuron in
the network is highlighted.

There are two major differences to the previous model: 1.) the
outputs of the first layer are used as inputs for the second layer (hid-
den layer) and 2.) several outputs are produced at the same time.
Using the previous definition of the neuron the hereby constructed
network can be written as

y = W2(W1x + b1) + b2 (5.2)

= W2W1x + W2b1 + b2 (5.3)

= W1,2x + b1,2 (5.4)

where W1 ∈ Rm×n and W2 ∈ Rl×m are now matrices, with m and l
nodes in the first and second layer, respectively. Although the model
seems to have more complexity than the previous one, it can be seen
from eq. (5.4) that this linear combination of neurons can be simpli-
fied and is itself again a linear model. In order to overcome this limi-
tation and construct a network that can model non-linear mappings,
a (non-linear) activation function σ can be used. Eq. (5.1) changes
thereby to

y1 = σ(WT · x + b1). (5.5)

Common choices of activation functions are depicted in Figure 5.3. A
network which passes data in only one direction, as the example in
Figure 5.2, is called a feed-forward network. Although such networks
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with only one hidden layer are not used in practice, they are the basis
for one of the major results in the mathematical theory of artificial
neural networks, the universal approximation theorem.

Theorem 5.1.1 (Universal Approximation Theorem) 10 Let σ be a non- 10 Haykin, Neural Networks: A Compre-
hensive Foundation.constant, bounded, and monotone-increasing continuous function. Let Im0

denote the m0-dimensional unit hypercube [0, 1]m0 . The space of contin-
uous functions on Im0 is denoted as C(Im0). Then given any function
f ∈ C(Im0) and ε > 0 there exists a set of real constants ai, bi and wij,
where i = 1, . . . , m1 and j = 1, . . . , m0 such that we may define

F(x1, . . . , xm0) =
m1

∑
i=1

aiσ

(
m0

∑
j=1

wijxj + bi

)
(5.6)

as an approximate realization of the function f ; that is,

|F(x1, . . . , xm0)− f (x1, . . . , xm0)| < ε (5.7)

for all x1, x2, . . . , xm0 that lie in the input space.
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Figure 5.3: Common activation func-
tions used in artificial neural networks.

This means that every well-behaved function can theoretically be
approximated through a simple feed-forward network with one hid-
den layer. While this is a powerful statement, the theorem contains
no information on the network’s size and the procedure to choose the
optimal weights. As we will see later, modern applications of neural
networks tend to be deeper, i.e., have many hidden layers instead of
having many parameters in one layer, which is why we frequently
talk about deep neural networks.

5.1.2 Learning Strategies

In general, machine learning methods can be used for a wide range
of problems, which are usually split up into

• Supervised Learning: Given input data x and output values y,
the network is a model ŷ : x → y(x) that approximates the depen-
dency of y from x using a set of weights θ. Typical examples are
regression and classification problems.

• Unsupervised Learning: Given some input data x, the algorithm
identifies underlying patterns. An example is the estimation of a
probability density function f (x) using kernel density estimation,
see section 7.4.

• Reinforcement Learning: Some environments, such as games, are
highly dynamical. In this case, the model tries to optimize a re-
ward function to perform the best action.

Physics applications usually have large-scale Monte Carlo simula-
tions that connect a set of observables x to an underlying truth y.
Hence we can apply supervised learning strategies to find an ap-
proximation ŷ(x) for the unknown mapping between x and y. After
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defining the neural network architecture, sets of training samples -
batches - are propagated through the network and evaluated against
the truth. To measure the quality of the predictions for a given set of
weights θ, a loss or objective function J(θ) is defined. It measures the
distance between the truth and the prediction under a given metric.
Based on this measure, the weights between the input neuron i and
output neuron j are adjusted via backpropagation, i.e.

wt+1
ij = wt

ij − α
dJ(θ)
dwij

. (5.8)

with the weights wij of the t and t + 1 iteration and a learning rate
parameter α. Note that the calculation of the derivative in eq. (5.8)
requires the chain rule to include recursively all the derivatives up
to the output node. The general idea is to do this procedure, starting
from the output node and then going all the way to the input node
to reuse recurring derivatives. The entire procedure of repeatedly
feeding data through the network and adjusting the weights through
backpropagation is called gradient descent.

5.1.3 Loss Functions

−5 0 5
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Figure 5.4: Sketch of the softmax activa-
tion function for the binary case of two
output nodes z0 and z1. z1 is fixed to
zero and z0 varied, leading to the out-
put probabilities p1 and p2 as shown.

The choice of the loss function depends on the specific task and
the activation function in the last layer. Typical combinations are
mean squared error loss and linear activation for regression tasks
and softmax activation and cross entropy, eq. 5.11, for classification
tasks. The softmax activation function for a vector of output values
z = (z1, . . . , zK) ∈ RK is defined as

pi(z) =
ezi

∑K
j=1 ezj

for i = 1, . . . , K. (5.9)

As a result the sum of the output values pi is normalized to one,
facilitating the interpretation of a vector of probabilities or p-scores,
p = (p0, p1, . . . , pK) for each input sample. A visualization of the
softmax function is shown in Figure 5.4. In accordance with the prob-
abilistic interpretation, one usually uses a cross entropy loss function
for classification tasks. For a simplified derivation, assume that the
estimated probability for the class j of outcome i is pij, while the
known probability distribution of the classes is given by qij. In this
case the multinomial likelihood is given by

L =
N

∏
i=0

∏
j

p
qj
ij . (5.10)

For more convenient evaluation the equation can be simplified to get
the cross entropy H(P, Q) with

H(P, Q) = − 1
N

logL = − 1
N ∑

i=0
∑

j
qij log pij (5.11)

= − 1
N

N

∑
i=0

∑
j

qij log pij. (5.12)
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P and Q are vectors of the single samples, i.e. P = (p0, . . . , pN)

and Q = (q0, . . . , qN); N is the number of samples per iteration or
batch size. In machine learning classification we know the true class
labels and hence every qi in eq. (5.11) is just a vector of the form
qi = (0, . . . , 1, . . . , 0) ∈ RK with a unique qij = 1 representing the
known true class label.

5.1.4 Convolutional Neural Networks

In many cases, it is not desirable that every node in one layer is con-
nected to every node in the following layer. Specifically, for the case
of pattern recognition tasks, a feature is usually spatially bounded,
e.g., a dog in an image or a cascade in the IceCube detector. There-
fore the network’s complexity can be drastically reduced by search-
ing for local features using a set of filters that move along the input
grid. Let us assume an input grid H of the size l × m × f ∈ N3,
where f is called the feature dimension, e.g., the colors RGB in an
image or charge and time features for an IceCube event. Mathemat-
ically, moving a filter K of size j × k along this grid is called a 2D
convolution

G(l, m) = (H ∗K)(l, m) = ∑
j

∑
k

∑
f

H(l− j, m− k, f ) ·K(j, k, f ). (5.13)

In a simplified view those filters search for structures, e.g. lines or
spheres, and always go along the entire feature dimension. Using n
filters, the output grid G is therefore of the size l × m × n 11. Re- 11 Assuming a zero padding at the

edges.peating those computations in subsequent layers, the initial features
are combined to identify more and more complex structures. Note
that the same filters are used one the entire input grid, intrinsically
assuming translational invariance. A network that is based on con-
volutional layers is called a convolutional neural network (CNN).

As the precise location of a feature usually does not matter, the
network can be further simplified through pooling operations. The
idea is to shrink the image size by mapping several values in a
bounded region to their maximum (or average) value. Similarly to
the convolution, this operation is performed subsequently along the
entire grid. In contrast to the convolutional filters, the pooling op-
eration is thereby applied to each feature dimension separately. To
get a significant reduction in grid size, the pooling operation is usu-
ally applied with a stride s > 1, i.e., the bounded region is moved s
grid points after each pooling operation. The original grid is thereby
shrunk by a factor s in each dimension. A special version of the
pooling operation is the gloabal average pooling, where the pooling fil-
ter has the same size as the input grid. As a result, the input grid
is reduced to the size 1× 1× n, where n is the number of features
of the input grid. Global average pooling layers are frequently used
to summarize the extracted features before the output node. The
1× 1× n grid is then flattened to an input of size n that is fully con-
nected to the output nodes. Note finally that the discussion of this
section can be easily extended to higher dimensional convolutions.
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5.2 Classifying Event Topologies in IceCube

Different neutrino flavors and interaction channels leave different
traces in the IceCube detector. While those differences in the topol-
ogy are challenging for event selection and reconstruction, they al-
low for a broader range of physics searches that facilitate each class’s
respective advantages. Cascades and starting tracks, for example,
are characterized by their interaction vertex being inside the detector
volume. This enables a clear distinction from atmospheric muons
and a better reconstruction of the initial neutrino’s energy. On the
contrary, through-going tracks have a good angular resolution and
large statistics, making them the preferred choice for neutrino point
source searches.

The majority of events that pass the ∼ 2.8 kHz hardware trigger
of IceCube have an atmospheric muon origin and are not useful for
neutrino physics searches. Therefore, a major goal of the low-level
processing is the identification of a sub-sample of potentially inter-
esting neutrino events based on their topology and direction. In the
current IceCube pipeline the event stream is therefore split into a
Cascade and a Muon level 3 stream12. Despite the importance of the12 Check section 3.5 for a review of the

IceCube data pipeline. event topology in the selection process, there is no algorithm to clas-
sify event topologies directly based on the recorded pulses, yet. From
processing level 2 to level 3, topological selections, therefore, rely on
quality parameters of simple reconstructions and topological vari-
ables as the event’s charge-weighted center of gravity. This is both
laborious and counterintuitive as reconstructions are applied to event
topologies they were not developed for. With a deep learning classi-
fier, one can, in contrast, invert the procedure, i.e., the data processing
can follow a natural logic by running first the topological classification and
then the optimal reconstruction.

The classifier presented here is aimed to be generic in a sense that
it covers simultaneously all the major event topologies of IceCube,
as shown in Figure 5.5. In the following the definition of the event
classes is discussed in more detail: 13 14

13 The corresponding software can be
found under https://github.com/tgl
auch/DeepIceLearning/blob/master/l
ib/reco_quantities.py.

14 see also section 3.3 for a review of the
topologies.

Figure 5.5: Event views of the five
IceCube topologies predicted by the
classifier. Colors range from red (early)
to blue (late) and the size of the bub-
bles represents the amount of collected
charge.

https://github.com/tglauch/DeepIceLearning/blob/master/lib/reco_quantities.py
https://github.com/tglauch/DeepIceLearning/blob/master/lib/reco_quantities.py
https://github.com/tglauch/DeepIceLearning/blob/master/lib/reco_quantities.py
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• Skimming Events: This class contains all the events with no en-
ergy deposition in the detector. Major constituents are cascades
with their primary vertex outside of the detector (uncontained
cascades) and passing tracks, i.e., tracks that never enter the de-
tector. Depending on the track direction, the two classes are not
clearly distinguishable, e.g., a track passing a corner of the detec-
tor and leaving a single large energy deposition can appear as an
uncontained cascade. In general skimming events are excluded
from most IceCube analyses, as they are difficult to reconstruct
and susceptible to atmospheric muon background.

• (Starting) Cascades are produced by neutral current interactions
of neutrinos of any flavor, as well as charge current interactions of
electron neutrinos with primary vertex inside the detector volume
15. The hadronic and electromagnetic cascades produced in these 15 Double bang topologies from CC tau

neutrino interactions can be indistin-
guishable from cascades when the track
length of the tau lepton is below the de-
tector resolution of ∼ 5 m. For consis-
tency, they are, however, not defined as
cascades here.

interactions are usually indistinguishable. It has been suggested
that a distinction is possible based on a neutrino echo,16 which

16 Steuer, “Cascade type identification
in IceCube and an application in a
search for new physics”.

is, however, not visible using the standard IceCube SMT triggers.
At high energies, an additional, but minor, contribution to this
event class comes from Glashow resonance events, where the W-
Boson decays either hadronically or into a e νe pair. Cascades are
usually well contained in the detector, therefore providing a good
measure for the primary neutrino energy. Besides, cascades have a
larger probability of being of astrophysical origin than the muon-
induced tracks, as the background of atmospheric νe is suppressed
at neutrino energies above 100 GeV (see section 2.5). Therefore
they are specifically important for the precise measurement of the
astrophysical neutrino spectrum17 and its flavor ratio.18 17 M. Aartsen et al., “Characteristics of

the diffuse astrophysical electron and
tau neutrino flux with six years of
IceCube high energy cascade data”.
18 M. G. Aartsen et al., “Flavor Ratio of
Astrophysical Neutrinos above 35 TeV
in IceCube”.

• Through-Going Tracks: This event class is unique to muons, which
are either produced through νµ charged current (CC) interactions
or in cosmic ray air showers in the atmosphere. Also, a much
smaller number is produced via the subsequent decay of tau lep-
tons from charged current ντ interactions. The unique feature of
this topology is the long lever arm of the track that enters and
leaves the detector. Through-going tracks constitute the basis of
all major IceCube analyses searching for astrophysical sources,19 19 M. G. Aartsen et al., “Search for

steady point-like sources in the astro-
physical muon neutrino flux with 8

years of IceCube data”.

as well as the high-statistic search for diffuse astrophysical muon-
neutrinos.20 Finally, through-going muons and muon bundles

20 M. G. Aartsen et al., “Observa-
tion and Characterization of a Cosmic
Muon Neutrino Flux from the Northern
Hemisphere using six years of IceCube
data”.

from the Southern Hemisphere can be used to probe the flux of
muons from atmospheric air showers.21

21 M. G. Aartsen et al., “Characteriza-
tion of the Atmospheric Muon Flux in
IceCube”.

• Starting Tracks are similar to through-going tracks but are exclu-
sively produced by charged current νµ interactions with the in-
teraction vertex inside the detector volume. This allows for clear
separation from atmospheric muons, hence enabling selections of
high-purity samples of astrophysical neutrinos over the entire sky.
Starting tracks are one of the major channels for the IceCube re-
altime alert stream22 of which an improved, DNN-based version 22 Blaufuss et al., “The Next Generation

of IceCube Realtime Neutrino Alerts”.
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is presented in chapter 6. Furthermore, starting tracks are used
to measure the inelasticity of the interaction as both the starting
cascade and the outgoing track are visible.2323 M. G. Aartsen et al., “Measure-

ments using the inelasticity distribu-
tion of multi-TeV neutrino interactions
in IceCube”.

• Stopping Tracks are produced in the same processes as through-
going tracks but require the muon track to end inside the detector
volume. As the track length increases with the muon energy, this
event class is dominated by events with small energy on detector
entry. Therefore, those events can be used to study the detector
response in the minimum ionizing regime.2424 Tosi and Wendt, “Calibrating photon

detection efficiency in IceCube”.
Finally, double-bangs, another important event class, are not con-

sidered by the classifier as they are in most cases indistinguishable
from cascade events and have low simulation statistics. A possible
solution is to run an additional binary network with optimized input
features that tries to identify double-bang events from a previously
selected cascade stream. Feasibility studies for that are still on-going.

5.3 From Waveforms to DNN Input

On each of its 5160 DOMs, IceCube is measuring the photon arrival
times using two different digitizers - ATWD and FADC. While the
first one has a recording time of only 427 ns to capture light pro-
duced tens of meters away from the DOM, the latter one records for
6.4 µs to capture distant and scattered light.25 The respective sam-25 M. G. Aartsen, Ackermann, et al.,

“The IceCube Neutrino Observatory:
instrumentation and online systems”.

pling rates are 3.3 ns (ATWD) and 25 ns (FADC). An example of
a recorded waveform on a single DOM is shown in Figure 5.8 (top
panel). Instead of using the waveform directly, IceCube reconstruc-
tions are based on the unfolded pulses, i.e., a series of charge and
time tuples for each DOM 26. In terms of the DNN, it is tempting to26 see section 3.5 for a detailed review

use a binned version of these pulses as input quantities. To estimate
the input data size for this approach, we consider the simplified ex-
ample of a muon traversing the detector with a track length of 1500 m
27. Assuming the muon is traveling with vacuum speed of light c027 Approximated distance from one cor-

ner of the detector to the other this requires a time of

tµ =
1500 m

c0
≈ 5000 ns. (5.14)

Since there is an additional time delay until the detection of the pho-
tons, eq. (5.14) is only a lower-bound for the required time win-
dow of a typical event. This implies that, even when binning with
the sampling rate of the FADC, each DOM would have more than
tµ/(25ns) = 400 input bins. In total this sums up to more than
N = 400× 5160 = 2′064′000 input data points or ∼ 16.5 Megabyte
per event, which is computationally unfeasible.

To reduce the amount of input data, one can use a set of suitable
input features instead of a fixed time binning. The input can thereby
be drastically compressed while keeping most of the (relevant) in-
formation. Examples for such features are the time of the first hit or
the total collected charge, which are also used in other - likelihood-
based - reconstructions (section 3.8). Such an approach has already
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been presented for the reconstructions of muons and cascades28.29 28 Huennefeld, “Deep Learning in
Physics exemplified by the Recon-
struction of Muon-Neutrino Events in
IceCube”.
29 Huennefeld, “Reconstruction Tech-
niques in IceCube using Convolutional
and Generative Neural Networks”.

In this thesis, we show that similar techniques can be used for the
classification of events.

The basic structure of the DNN input consists of three spatial di-
mensions and a feature dimension, combining time and charge in-
formation. As discussed in chapter 3, the IceCube detector is ar-
ranged on a fairly regular, hexagonal grid of 86 strings, of which
7 are assigned to the deep core sub-detector optimized for low en-
ergy studies. As the DNN classifier aims for events above 100 GeV,
it is convenient to neglect the DeepCore strings as they break with
the detector’s overall symmetry. A top view of the remaining In-Ice
Array is depicted in Figure 5.6. In contrast to other approaches as
graph-neural networks, CNNs are optimized for pattern recognition
in images and hence require a fixed input grid of pixels. The required
transformation is illustrated in Figure 5.6 and Figure 5.7. It consists
of two steps: 1.) the detector is aligned with the x-axis, 2.) rows
are alternately shifted to the left and right to align all the strings
along the column direction. This procedure results in a 10× 10 grid
as shown in Figure 5.7. The transformation guarantees that string-
to-string relations are preserved over the detector. Finally, every
string of the IceCube Array has 60 DOMs in a regular distance of
15 m. Consequently, the spatial part of the input has a total size of
10× 10× 60.

−500 0 500

X-Position [m]

−500

−250

0

250

500

Y
-P

os
it

io
n

[m
]

Figure 5.6: Top view of the hexagonal
IceCube In-Ice Array. Colors represent
the string numbers in increasing order.
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Figure 5.7: Top view of the DNN input
grid in pixel coordinates X and Y. Some
pixels stay empty after the transforma-
tion and are therefore padded with ze-
ros, indicated as grey points in the plot.
The other colors follow the string num-
bers in increasing order analogous to
Figure 5.6.

The choice of the charge/time input features is discussed based on
Figure 5.8. In addition to the waveform (top) and the unfolded pulses
(middle), the bottom panel shows the accumulated charge against
time. Evidently, the main fraction of the charge is collected early
in the recording window, followed by a tail of scattered photons,
as well as late and after pulses. In general, the most accurate timing
information is carried by the first, unscattered photons. It is therefore
useful to choose features as the deposited charge after 10 ns, 50 ns
and 100 ns from the first hit. A huge rise in collected charge on
these time-scales is good indicator for a large energy loss in a DOM’s
proximity 30. To capture most of the information on how quickly

30 For a refractive index of n ≈ 1.3
Cherenkov photons travel around 2.3 m
in 10 ns

the charge piles up, we calculate charge quantiles, i.e., the time after
which a certain fraction of the total charge has been collected. In
contrast to the charge after fixed time intervals, charge quantiles are
adaptive, as seen in Figure 5.8. Specifically, they get denser when
more charge is collected. Additional timing features are the time of
the first pulse, which contains precise distance information, as well
as the standard deviation and the spread of the photon arrival times.
Finally, the total charge is used as a measure for the importance of
a DOM. The total charge also resolves the ambiguity between the
zero timestamps for hit and non-hit DOMs 31. Note that the absolute 31 All features are set to zero for non-

hit DOMs, which produces ambiguous
time values if the total charge is not
known.

times inside the original trigger window are given with respect to
an arbitrary reference t0. For the DNN input this is resolved by
calculating all times relative to the charge-weighted median pulse
time of the event as a well-defined reference point. In summary, the
CNN has 15 input features,
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• Total charge & charge after 10ns, 50ns, 100ns [p.e.]

• Time of the first hit, time spread, standard deviation of the time
[ns]

• Time after which 1%, 3%, 5%, 11%, 15%, 20%, 50%, 80% of the
charge have been collected [ns]

resulting in a 4-dimensional input of the size 10× 10× 60× 15. Neu-
ral networks perform best with input data that are roughly dis-
tributed between -1 and 1. Hence, the input is transformed by di-
viding charge values by a factor of hundred and time features by
a factor of 10000 (event windows typically have a length of several
thousand ns).

Figure 5.8: A sketch of the transforma-
tions from recorded waveforms (top),
over pulses (middle) to the DNN input
(bottom). The waveform information is
unfolded into pulses using pulse tem-
plates (thin, grey lines in the top panel).
Subsequently, the pulses can be used
to calculate the measured charge versus
time, indicated as the solid grey line in
the bottom panel. Vertical solid lines
indicate the times of successive 10%
charge quantiles. Clearly, the quantiles
are denser in areas where more charge
is deposited. Dashed horizontal lines
indicate the charge collected after 50

ns and 100 ns from the first pulse, re-
spectively. The time range is clipped
to show the most important part of the
event.
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5.4 Training Dataset

The quality of the training data is important and often limiting factor
for the performance of DNNs. Fortunately, for the case of IceCube,
large-scale Monte Carlo simulations are available, containing all the
required information for high-statistics supervised learning. Two de-
sign choices need to be made: The composition of the dataset and
the weighting of the events during the training. In general, there are
three possibilities: 1.) an unbiased training dataset with event distri-
butions following the IceCube best-fit flux and no weighting, 2.) an
arbitrary biased training dataset with a best-fit weighting factor in
the loss function, 3.) a biased dataset with event distributions being
equal among the event topologies and no weighting factor.

As noted previously, the DNN classifier presented in this chapter
is supposed to be generically applicable, implying that predictions
are only based on the specific event topology. This corresponds to
a training dataset with equal event distributions among the classes
(3.). The dataset is further biased in the sense that it is constructed
in a way that sufficiently covers all parts of the observable space,
including high energies that rarely appear in experimental data but
are of large importance for many analyses. For a specific analysis
with a given flux model H, the probability of a certain event being
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Dataset Properties
11499 Ice Model: SPICELea CLSim

(00000-00999) Flux Model: CORSIKA-in-ice 5-component
Spectrum: E−2.6 ( 600 GeV - 100 TeV)
DOM efficiency: 1.0

11362 Ice Model: SPICELea CLSim
(00000-01999) Flux Model: CORSIKA-in-ice 5-component

Spectrum: E−2.0 ( 100 TeV - 10 EeV)
DOM efficiency: 1.0

Nancy’s Simulation Ice Model: Spice 3.2.1
νµ: (00000-02999) Energy Range: 100 GeV - 5 TeV (E−2 Spectrum)
νe: (00000-00999) Hole Ice: Flasher-fit-model (p1=0.3, p2=0)

DOM efficiency: 0.99

Nancy’s Simulation Ice Model: Spice 3.2.1
νµ: (00000-02999) Energy Range: 5 TeV - 10 PeV (E−1.5 Spectrum)
νe: (00000-01999) Hole Ice: Flasher-fit-model (p1=0.3, p2=0)
ντ : (00000-00999) DOM efficiency: 0.99

Nancy’s Simulation Ice Model: Spice 3.2.1
νµ: (00000-00999)) Energy Range: 1 PeV - 100 PeV (E−1 Spectrum)
νe: (00000-00999) Hole Ice: Flasher-fit-model (p1=0.3, p2=0)
ντ : (00000-00999) DOM efficiency: 0.99

Table 5.1: Summary of the input Monte
Carlo datasets used for the training of
the DNN classifier. While the neutrino
datasets ("Nancy’s Simulation") use the
latest ice model Spice 3.2.1, the atmo-
spheric showers simulated with COR-
SIKA use a slightly older ice model.
When using the DNN for any analy-
sis these simulation sets should be ex-
cluded.

of true type X given the prediction score (p-score) pX can then be
approximated using Monte Carlo-based conditional probabilities

P(X|pX , H) =
P(X, pX |H)

P(pX |H)
. (5.15)

To reduce processing time during training, the input data are pre-
processed. This includes both generating the 4-dimensional input
grid as described in section 5.3 and calculating the true event label
from the I3MCTree, a Monte Carlo variable describing the entire stack
of particles produced during event simulation. In Table 5.1 the input
Monte Carlos and their simulation properties are listed. The pre-
processed data are finally stored in HDF5 files.
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Figure 5.9: The distribution of event
quantities in the training dataset. From
top to bottom the number of hits, the
azimuth and the zenith are shown. As
discussed in the text the distributions
are equal between the classes.

The resulting dataset covers events from the entire sky in an en-
ergy range between 100 GeV and 100 PeV. In addition, a 10% natural
coincidence rate of atmospheric muons is kept, in order increase sta-
bility against this type of background contamination. The true label
for an event with coincidence is calculated as if the coincidence was
not there, e.g., a cascade with a coincident background muon would
be classified as a cascade. Muon bundles are included by classifying
them similarly to single muons. Specifically, a muon bundle with any
muon reaching the other end of the detector is labeled as through-
going, while a bundle with all the muons stopping in the detector is
labeled as stopping.

In the last step, events are randomly selected to construct a train-
ing dataset that is equally distributed between the classes in zenith,
azimuth, and the number of hit DOMs. In contrast to the deposited
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energy, which is not well defined for skimming events, the number
of hit DOMs is a well-defined quantity for all event topologies and
therefore preferred in this application. Figure 5.9 shows the result-
ing event distributions. An exception is visible for stopping tracks
that follow a different distribution in the number of hit DOMs. The
reason is that stopping tracks are by construction a lower energetic
version of through-going tracks and therefore can not be perfectly
aligned with the other classes. As a compromise, the distribution has
been flattened as far as possible without losing event statistics. The
final dataset contains 14’716’253 events in total (∼2.9 million events
per class) of which 90% are used for training and 10% for validation.

Layer 1

Layer 2

+

Figure 5.10: A schematic view of a
residual unit. Starting from an input
x, a set of layers learns a mapping
x→ ε(x) and produces the output x′ =
x + ε(x).

5.5 CNN Architecture and Training Procedure

After the breakthrough of convolutional neural networks (CNNs) in
image classification,32 several authors have tried to further improve

32 Krizhevsky, Sutskever, and G. E. Hin-
ton, “Imagenet classification with deep
convolutional neural networks”.

these networks by increasing their depth33.34 However, with increas-

33 Ioffe and Szegedy, “Batch normal-
ization: Accelerating deep network
training by reducing internal covariate
shift”.
34 Simonyan and Zisserman, “Very deep
convolutional networks for large-scale
image recognition”.

ing depth the gradient in the backpropagation becomes very small,
a problem known as vanishing gradient problem.35 Although this has

35 Glorot and Bengio, “Understanding
the difficulty of training deep feedfor-
ward neural networks”.

been largely solved by adding normalization layers, it turned out that
going deeper causes further problems. While the training accuracy
starts saturating when adding more and more layers to a shallow net-
work, it rapidly starts degrading when passing some threshold.36 It

36 He and Sun, “Convolutional neural
networks at constrained time cost”.

has been shown that this effect is not caused by overfitting but rather
by optimization problems. In fact, a deeper network should never
perform worse than a shallow one, as the additional layers could
always learn to perform a trivial identity mapping if no further im-
provement is possible. Based on this property a residual structure has
been suggested.37 The idea is to have shortcut connections and use

37 He, X. Zhang, et al., “Deep residual
learning for image recognition”.

each (set) of layers only to learn additional, residual features. This
is schematically illustrated in Figure 5.10. It has been shown that
residual architectures can go much deeper and thereby drastically
improve performance while also being straightforward to optimize.

Input Layer

1 x 1 x n

n x 1 x 1

1 x n x 1

1 x 1 x m

m x 1 x 1

1 x m x 1

1 x 1 x 1

Concatenate

Figure 5.11: A schematic view of an in-
ception unit. The first layer is the input
for three branches with different filter
sizes. In the last step, the branches are
concatenated along the feature axis.

A general challenge for pattern recognition tasks is that the same
structures can appear in different sizes. In the case of an IceCube
event, this can be, for example, the difference between a small, low
energy, and a large, high energy cascade. Therefore, it is not a priori
clear which filter size one should use for the convolutions in each
level of the network. A convenient solution for this has been pre-
sented by Google in a series of paper, introducing the inception lay-
ers.38 Inception layers combine filters of varying sizes in one network

38 Szegedy et al., “Inception-v4,
inception-resnet and the impact of
residual connections on learning”.

level, thereby leaving it to the training procedure to optimize the ker-
nel size that suits the problem best. While this increases flexibility
in the kernel size, it adds free parameters to the model, increasing
the risk of overfitting. This problem can be counteracted by another
technique that reduces the number of free parameters in convolu-
tional layers. The idea is to split up a n × n × n filter into three
filters of size 1× 1× n, 1× n × 1 and n × 1× 1. This reduces the
amount for free parameters from n3 to 3n, equivalent to a reduction
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by 100− (300/n2) percent for n ≥ 2. For the maximum filter size of
the classifier presented in this chapter, n = 10, this approach reduces
the number of free parameters by 97%. A sketch of the resulting
inception architecture is shown in Figure 5.11.

Finally, both concepts can be combined to Inception-ResNet units
that keep the general idea of inceptions layers while adding a resid-
ual connection. The DNN classifier presented in this work is a com-
bination of pure inception units at the beginning to extract the most
relevant features, followed by a large number of Inception-ResNet
units to increase the depth. In between, average pooling layers are
used to shrink the size of the feature maps (the detector) and thereby
reduce the complexity in the subsequent layers. A sketch of the net-
work is shown in Figure 5.12 and the corresponding Keras39 imple- 39 Chollet et al., Keras.

mentation in appendix B.1. In contrast to the early developments
of CNNs — where the convolutions were usually followed by fully-
connected layers — later studies have shown that classifiers are more
stable when using global average pooling before the output.40 There- 40 Lin, Chen, and Yan, “Network In Net-

work”.fore the DNN classifier uses 4096 1× 1× 1 convolutions to efficiently
combine the features in each part of the detector before connecting
everything with a global average pooling layer to the five output
nodes corresponding to the five event topologies. In contrast to the
rest of the network, which uses ReLu activations, the final layer uses
a softmax activation to produce 5 outputs that are interpretable as
probability scores (p-score) for each event class. Overall, the final
network has a total of 1,968,581 parameters.

Input (10 x 10 x 60 x15)

6 Inception Blocks

(2x2x3) Average Pooling

24 Inception Resnet Blocks

(1x1x2) Average Pooling

24 Inception Resnet Blocks

4096 (1x1x1) Convolutions

Global Average Pooling

5 Output Nodes

Softmax Activation

Categorical Cross-Entropy Loss

Figure 5.12: Schematic view of the
DNN classifier’s architecture. A
pseudo-code implementation of the
model definition can be found in ap-
pendix B.1.

Training of the DNN classifier is conducted on 4 Nvidia GeForce
GTX 1080 in parallel, facilitating a mini batch size of 148 events. As
optimizer Adam is used with standard settings.41 Compared to stan-

41 Kingma and Ba, “Adam: A Method
for Stochastic Optimization”.

dard gradient descent algorithms, Adam automatically controls the
learning rate by calculating a moving average of the gradient’s first
and second moment. The overall training of the DNN takes around
∼ 30 days. In this time, the network has processed a little more than
2 full epochs, or 188924 mini-batches. The training accuracy and loss
as function of evaluation steps (20/epoch) are shown in Figure 5.13.

The final network can be used to make predictions on unseen data.
While the training of the DNN is slow, the application to data is fast,
specifically when compared to likelihood-based algorithms. Figure
5.14 shows the expected pre-processing and prediction times on a
representative IceCube level 2 dataset. It can be seen that most of the
total processing time for an event is required for the transformation
from the pulsemaps to the DNN input (on average ∼ 100 ms). The
prediction itself, on the other hand, only requires on average around
∼ 10 ms on a GPU. To make perfect usage of the resources, it is
therefore favorable to run the processing in parallel on several CPUs
while making the predictions of event batches on a single GPU.
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Figure 5.13: The learning curve of the
DNN classifier as a function of the eval-
uation point. One evaluation point
thereby equals to 1/20th of an epoch. In
addition to the cross-entropy loss, also
the accuracy, i.e., the fraction of correct
predictions is shown on the training
(dashed-dotted) and validation dataset
(solid).
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5.6 Performance Figures

In this section, the classifier’s performance is evaluated based on a
representative IceCube level 2 NuGen Monte Carlo dataset 42.43 As42 NuGen is an IceCube specific imple-

mentation of the ANIS neutrino gener-
ator.
43 Gazizov and Kowalski, “ANIS: High
energy neutrino generator for neutrino
telescopes”.

level 2 is the first level of offline processing, it provides the largest
variety of events and, therefore, a good benchmark scenario. Fur-
thermore, the development of a new, DNN-based, level 3 processing
is one of the major applications and long-term goals of the DNN clas-
sifier. In this regard, the following sections can be understood as a
feasibility study for further development in this direction. In the fol-
lowing we assume a HKKM conventional atmospheric flux model4444 Honda et al., “Calculation of atmo-

spheric neutrino flux using the interac-
tion model calibrated with atmospheric
muon data”.

and the best-fit astrophysical powerlaw flux from IceCube’s cascade
analysis45 (γ = 2.53± 0.07 and φastro = 1.66+0.25

−0.27 at E0 = 100 TeV)
45 M. Aartsen et al., “Characteristics of
the diffuse astrophysical electron and
tau neutrino flux with six years of
IceCube high energy cascade data”.

with a 1:1:1 flavor ratio.
Prediction results are frequently presented in the form of predic-

tion matrices as shown in Figure 5.15. Every entry in the confusion
matrix shows the fraction of events with a given truth to be classi-
fied with a specific label under the normalization condition given in
the respective title. Hereby the classification of an event is defined
as the class with the maximum p-score pmax. From Figure 5.15 it
can be seen, for example, that 81% of true through-going tracks are
correctly identified while 9% are predicted as stopping track. Of the
predicted through-going tracks, on the other hand, 75% are correctly
classified, corresponding to an overall rate of 1.3 mHz. Note that Fig-
ure 5.15 only shows the neutrino flux and neglects the atmospheric
muon contribution, as is usually the case when only considering the
Northern Hemisphere, where events have to pass through the Earth
before reaching the detector. A prediction matrix including the at-
mospheric muon tracks is shown in Figure C.2 and Figure C.3 in the
appendix.
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Figure 5.14: The CPU processing time
and the GPU prediction time for a
representative IceCube level 2 dataset.
Dashed vertical lines show the average
values.

The prediction matrix in Figure 5.15 shows major entries on the di-
agonal, implying that event classes are generally correctly predicted.
The diagonal elements of the middle plot are referred to as the accu-
racy, i.e., measuring the fraction of correct predictions among the to-
tal predictions for a specific (predicted) class. Off-diagonal elements,



CHAPTER 5. DEEP LEARNING EVENT-TYPE CLASSIFICATION IN ICECUBE 79

in contrast, are mispredictions. Specifically, we use the term confu-
sion for true events that are falsely predicted into another class (left
plot). Note that, while the accuracy depends on the overall abun-
dance between the classes, the confusion does not, e.g., 22% of all
starting tracks get predicted as cascades, which makes 48% of the en-
tire cascade predictions. Several aspects influence the accuracy and
confusion, e.g., the event’s energy and direction, the p-score thresh-
old, the geometry of the detector, and particle physics effects like the
inelasticity, i.e., the fractional energy transfer to the cascade. While
the efficient combination of the DNN output with other observables
helps to increase the accuracy further and generate high-purity sam-
ples, some confusions are unavoidable and expected, as shown in the
following sections.

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

P
re

d
ic

te
d

la
b

el

0.76 0.07 0.05 0.05 0.09

0.02 0.83 0.00 0.22 0.03

0.10 0.02 0.81 0.05 0.08

0.03 0.05 0.04 0.63 0.05

0.08 0.03 0.09 0.06 0.75

0.0 0.2 0.4 0.6 0.8 1.0

Normalized on truth

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

0.55 0.08 0.08 0.18 0.12

0.01 0.49 0.00 0.48 0.02

0.05 0.01 0.76 0.11 0.07

0.01 0.02 0.02 0.93 0.02

0.04 0.02 0.09 0.15 0.70

0.0 0.2 0.4 0.6 0.8 1.0

Normalized on prediction

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

0.61 0.08 0.09 0.20 0.14

0.02 0.98 0.01 0.95 0.05

0.08 0.02 1.33 0.19 0.13

0.02 0.05 0.07 2.73 0.07

0.07 0.04 0.15 0.24 1.16

0.5 1.0 1.5 2.0 2.5

Event Rates [mHz]

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

P
re

d
ic

te
d

la
b

el

0.92 0.03 0.03 0.03 0.04

0.01 0.95 0.00 0.14 0.02

0.05 0.01 0.91 0.03 0.11

0.01 0.01 0.03 0.80 0.05

0.02 0.01 0.03 0.01 0.79

0.0 0.2 0.4 0.6 0.8 1.0

Normalized on truth

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

0.91 0.02 0.06 0.01 0.00

0.02 0.88 0.01 0.10 0.00

0.02 0.00 0.97 0.00 0.01

0.01 0.01 0.16 0.79 0.02

0.08 0.02 0.37 0.01 0.52

0.0 0.2 0.4 0.6 0.8 1.0

Normalized on prediction

Sk
im

m
in

g

C
as

ca
de

T
.G

. Tra
ck

St
ar

t.
Tra

ck

St
op

Tra
ck

True label

Skimming

Cascade

T.G. Track

Start. Track

Stop Track

12.99 0.22 0.84 0.16 0.07

0.14 6.78 0.05 0.74 0.03

0.64 0.05 30.41 0.15 0.21

0.08 0.06 0.87 4.25 0.10

0.23 0.05 1.08 0.03 1.53

5 10 15 20 25 30

Event Rates [µHz]

Figure 5.15: Prediction matrices for a
representative level 2 neutrino Monte
Carlo dataset and neutrino energies
above 100 GeV (top) and 10 TeV (bot-
tom). From left to right the classifica-
tion performance is shown normalized
on the truth, the prediction, and in total
event numbers per year, respectively.

5.6.1 P-Score & Energy

As discussed in section 5.1, the p-score is a measure for the probabil-
ity of a given event to belong to the predicted event class. However,
due to the training on a biased dataset, there is no trivial correspon-
dence between p-score and accuracy when applying the DNN to an
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experimental event sample. Yet, it is possible to perform a Monte
Carlo-based calibration of the p-score for a given event selection and
given flux assumptions. This is illustrated in Figure 5.16, showing
the level 2 accuracy as a function of the maximum p-score, pmax,
for two energy thresholds. While the lines do not align between the
classes, it is evident that the accuracy increases with larger pmax, which
is a minimal requirement for the classifier’s consistency. Note also
the difference between the top and the bottom panel of Figure 5.16.
While starting tracks have higher accuracies when considering the
full energy range, the prediction of through-going tracks is more ac-
curate for neutrino energies above a few TeV. This can be understood
as an effect of the shift in overall event rates, i.e., the larger contribu-
tion of through-going tracks at higher energies.
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Figure 5.16: Accuracy of the different
event topologies as a function of the
maximum p-score. Top and bottom
panel show two different energy thresh-
olds, respectively.

With increasing event energy there is also more information on the
event topology. Hence we do not only expect the accuracy to increase
with pmax, but also the average pmax to increase with the energy. This
effect is shown in Figure 5.18. While the average pmax at a neutrino
energy of 1 TeV is only ∼ 99% it goes up to 99.999% at 1 PeV. This
result has important implications for the usage of the DNN classifier
in event selections. In particular, one can place more stringent purity
cuts for high-energy events before losing in the efficiency of the se-
lection, i.e. the fraction of selected events given the total number of
events from a specific class.

All these effects are exemplarily summarized in the receiver oper-
ating characteristic (ROC) curve for starting tracks in Figure 5.17. It
shows the true positive, i.e., the fraction of correctly identified start-
ing tracks given all starting tracks, against the false positive, i.e., the
fraction of non-starting tracks that get predicted as starting tracks.
Evidently, the same false positive rate leads to a higher true posi-
tive rate when the event’s deposited energy is larger. Furthermore,
tighter pstarting cuts are required for low energy events to reach the
same level of background suppression while also removing more of
the signal. Overall, Figure 5.17 shows the good separation power
between starting tracks and other classes, motivating further stud-
ies for a dedicated starting track level 3 branch in the IceCube data
pipeline as discussed in section 5.8.
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Figure 5.17: Receiver operating charac-
teristic (ROC) curve for starting tracks
at three different deposited energies.
The top panel shows the true posi-
tive against the false positive, calculated
from a sliding threshold on the starting
track score (bottom panel). The black
dotted line indicates a perfect classifier,
while the grey dashed line represents a
classifier without discriminating power.
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Figure 5.18: Maximum p-score as a
function of the initial neutrino energy.
The bands show the 68% and 90%
quantiles, respectively.

A comprehensive summary of the energy-dependent performance
of all event classes is given by Figure 5.19. For each topology, the ac-
curacy and the confusion are shown as a function of the energy and
two different pmax thresholds. Evidently, the confusion decreases
for all classes with increasing energy or by applying a larger pmax

threshold. In contrast to the confusion, the accuracy does not have
such a clear tendency. For most of the classes, it is rather flat or even
decreases above a few TeV. The explanation for this apparent con-
tradiction is twofold: 1.) although the overall confusion of through-
going and starting tracks is quite small, the overall dominance in
event numbers strongly contaminates the other classes, 2.) the detec-
tor resolution and geometry, as well as physical effects are limiting
the distinguishability of some classes at specific energy scales. The
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latter is especially evident when comparing Figure 5.19 with Figure
5.15, where it can be seen that, independent of the energy, starting
tracks are confused with cascades, through-going events with start-
ing and stopping events, and basically all event classes with skim-
ming events. In the next section, we will further analyze these con-
fusions and reconcile them with physical expectations.
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Figure 5.19: Accuracy and confusion
(blue and orange) against the initial
neutrino energy for pmax ≥ 0.20 (all
events) and pmax ≥ 0.95, shown in
dark and light colors, respectively. The
name of the classes is given in the title.
Note that accuracy refers to the frac-
tion of events in a given class being cor-
rectly identified, while confusion refers
to events with the respective true class
to be predicted into any other class.
This also implies that the lines do not
add up to 100%.

5.6.2 Effects of Detector Geometry & Particle Physics

In a perfect world with an infinitely large detector and perfect reso-
lution, one could train a neural network to arbitrarily high accuracy.
In the real world, however, IceCube is limited in size, photons are
scattered and absorbed, and DOMs have a non-negligible spacing.
Altogether, this implies that some confusion is unavoidable. Based
on Figure 5.19 and Figure 5.15 the major confusions are discussed in
the following

Figure 5.20: Left panel: The fraction
of true through-going tracks that get
falsely classified as starting tracks as a
function of the zenith angle and entry
point in the detector. Right panel: The
scattering coefficient as a function of the
depth. The dust layer is framed by the
dashed grey lines.

• Through-Going Tracks vs. Starting Tracks: From the difference
in the prediction matrices above 100 GeV and 10 TeV (Figure 5.15),
it is evident that mis-classification between these classes mainly
occurs at low energies. This is not surprising as low energy muons
can sneak through the outer detector layers without leaving a vis-
ible trace and appear to be starting. Furthermore, the primary
cascade, which usually indicates a starting event, is barely visible.
A more detailed study of the direction and position of the mis-
classified events in Figure 5.20 reveals additional effects that are
related to the ice properties and the event position and direction in
the detector. In fact, the ice in the detector is not uniformly clear.
While it is very clear on the top and bottom, the dust layer in a
depth between ∼ 1950 m and ∼ 2150 m significantly increases the
scattering and absorption of photons.46 This explains the band of 46 M. G. Aartsen et al., “Measurement

of South Pole ice transparency with the
IceCube LED calibration system”.

high confusion in the middle of the detector visible in the middle
of Figure 5.20. While confusion is generally enhanced in the dust
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layer, it is more pronounced for down-going events (cos(θ) > 0).
This is coherent with the IceCube DOMs facing downwards, there-
fore being blind to the direct light from events passing the DOM
from the top. As a result, confusion is enhanced for down-going
events independent of the entry position along the z-axis.

• Cascades vs. Starting Tracks: Starting tracks differ from cascades
by an outgoing muon track. The energy of this muon is, how-
ever, not fixed but connected to the energy of the initial hadronic
cascade Ehad through the inelasticity, which is defined as

y =
Ehad
Eν

=
Eν − Eµ

Eν
= 1− Eµ

Eν
. (5.16)

Consequently, we find y = 0 if all the energy is transferred to the
muon and y = 1 if all the energy is transferred to the hadronic
cascade. In the latter case, the starting track gets physically indis-
tinguishable from a cascade. Besides, for values very close to 1,
the muon energy can be insufficient for the muon track length to
exceed the extension of the cascade and/or create a visible amount
of hits. Figure 5.21 shows the confusion of starting tracks with cas-
cades against the energy and the inelasticity. In alignment with the
previous discussion, the confusion increases strongly with grow-
ing inelasticity (more cascade-like) and decreases with the overall
deposited energy (more event information).

Figure 5.21: The confusion of true start-
ing tracks with cascades as a function
of deposited energy and inelasticity.

• Cascades vs. Skimming Events: Cascade-like topologies can ap-
pear with primary vertex inside and outside the detector. While
the former are grouped into (starting) cascades, the latter are in-
cluded in the skimming class. Figure 5.22 shows the vertex posi-
tion of the true cascade events that are falsely classified as skim-
ming. As expected, the confusion increases strongly the closer the
vertex is to the detector hull. On the contrary, it can be seen that
the confusion quickly drops to zero once the vertex is only a few
meters inside the detector.
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Figure 5.22: The confusion of cascades
with skimming events against the in-
teraction vertex. Only events entering
from the side (|z| < 450 m) are consid-
ered for the plot. The black stars mark
the position of the IceCube In-Ice Array.
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Figure 5.23: The confusion of true stop-
ping tracks with the other topologies
as a function of the muon track length
in the detector. The bottom panel ad-
ditionally shows the expected distribu-
tion of track length.

• Stopping vs. All Other Classes: The maximum distance a muon
can travel through the IceCube detector is ∼ 1500 m. According
to the energy loss equation for muons, eq. (3.11), and the result-
ing Figure 3.4, stopping muons therefore have a typical energy
. 300 GeV on detector entry. During propagation, the muon keeps
losing energy through ionization and thereby only produces very
few hits along its trajectory. As a result, stopping tracks with a
large track length are barely distinguishable from through-going
tracks, as seen in Figure 5.23. For the maximal track length of
around 1500 m the confusion goes up to around 50%, i.e., stopping
and through-going tracks are predicted with the same probability.
In the other extreme, stopping tracks with very short track length
in the detector can appear as skimming. This effect strongly in-
creases for track length below ∼ 250 m, corresponding to only two
strings in horizontal distance.
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In summary, this section has shown that the origin of the clas-
sifier’s confusions complies with physical expectations. This is es-
pecially important as the input to output mapping of deep neural
networks is often referred to as a ’black-box’, meaning that it is dif-
ficult to understand why a certain prediction was made. Having a
coherent picture of the confusion proves, however, that the network
has learned useful features independently of whether they are in-
tuitively accessible for humans or not. Finally, understanding the
classifier’s confusions helps in the development of event selections,
as it gives a guideline on how cuts should be placed for maximal ef-
ficiency. Assume, for example, the case of a starting track selection.
Given the enhanced confusion in the dust-layer and the down-going
region, a starting track selection would profit from p-score cuts that
depend on the the events’ direction and entry point. Such an ap-
proach will be further discussed for the new starting track selection
in chapter 6.

5.7 Data/Monte Carlo Agreement and Systematic Checks

For the training of the DNN classifier a baseline Monte Carlo has
been used which incorporates the best knowledge about the photon
propagation in the ice and the detector response. Nevertheless, the
Monte Carlo is only an approximation of the real experimental data.
To further validate the performance of the DNN classifier on the
experimental data, its predictions on a given data sample can be
compared to the ones on a corresponding Monte Carlo dataset 47. 47 which should be independent of the

training dataset.Due to the large variety of event topologies observed by IceCube
and the uncertainty on the underlying fluxes, the agreement between
data and Monte Carlo is, however, not optimal at processing level 2.
Hence this early stage of the data pipeline is not suited to evaluate
the stability of the DNN classifier. In contrast, the data to Monte
Carlo agreement is usually required to be good on the final analysis
level. Therefore the DNN classifier is exemplarily tested on the data
sample of up-going (declination δ ≥ −5◦) tracks used for the mea-
surement of the diffuse astrophysical muon-neutrino spectrum48 49 48 Stettner, “Measurement of the Diffuse

Astrophysical Muon-Neutrino Spec-
trum with Ten Years of IceCube Data”.
49 diffuse muon-neutrino sample

which has a good data/MC agreement 50. The results of this study

50 See also Figure 5.27 and section 7.3
for more details on the selection

are shown in Figure 5.24. It can be seen that, independently of the
energy threshold, the pmax distribution is very well aligned between
data and Monte Carlo. While this study is thereby a good indicator
that the DNN predictions are trustworthy in the entire IceCube en-
ergy range, the check, in any case, needs to be redone for any new
selection, as exemplarily shown for the case of the improved high-
energy starting event (HESE) selection in chapter 6. In addition to
the baseline data/MC agreement, chapter 6 also discusses the sta-
bility of the DNN against modifications of the pulse arrival times,
systematic variations of the ice, and the detector efficiency.
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Figure 5.24: Data/Monte Carlo agree-
ment of the DNN classifier on the dif-
fuse up-going muon-neutrino sample
for one year of data. From top-left
to bottom-right the threshold in recon-
structed energy increases from 100 GeV
to 100 TeV. For each plot, the top panel
shows the distribution of pmax and the
bottom panel the ratio between data
and Monte Carlo. Above 100 TeV event
statistics are low and nearly all the
events end up in the highest p-score
bin.
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5.8 Possible Applications

Event type classification is an important task in any stage of the
IceCube data processing pipeline. Despite the importance, IceCube
currently does not have an algorithm that provides a direct map-
ping from the pulses to the event topology in place. Therefore, most
event selections are based on cuts combining a broad range of generic
event variables (e.g., the center of charge) and reconstruction quanti-
ties (e.g., fit quality). In contrast to that, the DNN classifier provides
a new framework for event type classification that combines perfor-
mances and speed and can be used early in the processing chain. In
Figure 5.25 a schematic view of the IceCube data pipeline, from on-
line processing at the South Pole to final level selections, is shown.
Marked in yellow are all the processing steps where the DNN clas-
sifier could be useful, although in many cases further studies are
needed to quantify this. The following list is hence only an incom-
plete collection of ideas for a future, DNN-based processing pipeline

• The goal of the IceCube filters is the reduction of the data rate to
the capacity of the satellite bandwidth while keeping the relevant
events for physics analysis. Hence only events with clear topolo-
gies and good reconstruction quality should be selected. Two of
IceCube’s major filters are the cascade and the muon filter, with
rates of around ∼ 40 Hz. Without any topological classifier in
place, there is, however, a large overlap between those streams.
With the help of the DNN classifier, in contrast, topological in-
formation can be combined with the respective reconstructions.
Subsequently, filter decisions are then based on a combination of
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Figure 5.25: A sketch of the IceCube
data processing pipeline. Processing
steps that could profit from the DNN
classifier are shown in yellow. The real-
time event selection is already partially
DNN-based and therefore marked in
green. All steps included in the grey
box are done online, i.e., using the com-
puting facilities at the South Pole.

classification and reconstruction to efficiently select events and re-
duce satellite bandwidth 51. Interestingly, the DNN p-score also 51 Which is even more important for fu-

ture neutrino observatories as IceCube
Gen-2 that will increase event rates sig-
nificantly

provides an estimate of the reconstruction quality of the event, as
shown in Figure 5.26 for through-going muons. The larger the
through-going p-score, the smaller the opening angle between re-
construction and true muon direction. This is consistent with the
picture of a high p-score indicating a clear event topology.
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Figure 5.26: The opening angle be-
tween true muon direction and the
SplineMPE reconstruction for two dif-
ferent deposited energy ranges versus
the through-going p-score. Solid lines
show the median values and the shaded
bands the 68% quantiles. It can be seen
that the resolution improves with the p-
score, implying that it is a proxy vari-
able for the reconstructability of a track.

• IceCube’s realtime stream is a prime example for a selection that
requires fast and reliable reconstruction algorithms. With intended
delays on the scale of seconds between detection at Pole and send-
ing out a notification, it is unfeasible to run high-level likelihood
reconstructions before deciding if an event is interesting or not.
Using a combination of DNN algorithms, it is possible to reach
a high performance without requiring several minutes of compu-
tation. As an example, a newly developed realtime selection of
highly-energetic starting tracks (HESE) is presented in chapter 6.
Compared to the previous version, it improves both efficiency and
accuracy by solving problems that appear when trying to classify
an event’s topology on a short time scale, using (potentially) un-
suitable reconstruction algorithms. Technically, the DNN realtime
selection can be run either online or offline. However, there are
currently no GPUs available at the South Pole. Hence, it is cur-
rently applied offline at the IceCube data center in the North. In
addition to the new starting track selection, also a newly devel-
oped HESE realtime cascade selection is using the DNN classifier
to identify interesting events 52. 52 https://gcn.gsfc.nasa.gov/amon_ice

cube_cascade_events.html, accessed at
6th October 2020• After the online filtering the data is transmitted to the IceCube

data center for further processing. The major goal of the follow-
ing level 2/level 3 processing is the removal of events that are not
useful for further analyses. Furthermore, the stream is split up
into a cascade and muon level 3 stream, which is the starting point
for all high-level analyses. The splitting is important as different

https://gcn.gsfc.nasa.gov/amon_icecube_cascade_events.html
https://gcn.gsfc.nasa.gov/amon_icecube_cascade_events.html
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event topologies can be more suitable for a specific analysis than
others and each topology has its own reconstruction algorithms.
In alignment with the five output branches of the DNN classifier,
one could extend the current level 3 with an additional branch
of starting tracks, and potentially stopping tracks and skimming
events. Such a level 3 structure creates more flexibility in the sub-
sequent combination of event streams to construct optimized final
level samples. The performance discussions in section 5.6 is a first
step into the direction of a deep learning-based level3 selection.

• To optimize the fraction of signal events, final level selections ap-
ply straight cuts or (boosted) decisions trees (BDTs) to remove
remaining background events from level 3. As a performance
check, the DNN classifier has been applied to the previously men-
tioned sample of up-going tracks.53 The selection uses two BDTs53 Stettner, “Measurement of the Diffuse

Astrophysical Muon-Neutrino Spec-
trum with Ten Years of IceCube Data”.

to identify well-reconstructable up-going tracks and to remove the
cascade background, respectively. The DNN prediction in Figure
5.27 shows a good agreement of the DNN classifier with the BDT-
based selection. While more than 99% of the true tracks are also
predicted as track, also 24% of the very small cascade component
is identified. Albeit this is not a proof for the DNN to outperform
the BDT itself, it indicates that it could be useful to add the five
DNN p-scores as input to event selection BDTs. In this way, con-
nections among the p-scores and synergies with other variables as
direction and energy can be exploited optimally.

Figure 5.27: Confusion matrix for the fi-
nal level up-going muon-neutrino sam-
ple. The respective normalization con-
ditions are given in the titles of the
plots. From the right plot — showing
the absolute rates — it is evident that
& 99% of true tracks are also predicted
as tracks. The left plots further shows
that 24% of remaining cascade contam-
ination is correctly identified.
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5.8.1 IceTray Module

In order to conveniently add the DNN Classifier to any IceCube data
processing pipeline, an IceTray Module is available on the IceCube
Open Source Github 54. It is implemented in Python 3 and backward54 https://github.com/IceCubeOpenSo

urce/i3deepice compatible with Python 2.X. After downloading the package, the
module can be added to an existing IceTray via the following lines
of python code:

https://github.com/IceCubeOpenSource/i3deepice
https://github.com/IceCubeOpenSource/i3deepice
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from i3deepice . i3module import DeepLearningModule
t ray . AddModule ( DeepLearningModule ,

’ d n n _ c l a s s i f i c a t i o n ’ ,
b a t c h _ s i z e =128 ,
cpu_cores =4 ,
gpu_cores =1 ,
model= ’ c l a s s i f i c a t i o n ’ ,
pulsemap= ’ S p l i t I n I c e P u l s e s ’ ,
save_as= ’ TUM_class i f i ca t ion ’ )

The batch size, as well as CPU and GPU cores are set here to de-
fault values, which should be varied depending on the respective
hardware availability. In general it is advantageous for an optimal
exploitation of resources to use several CPUs for the pre-processing
and only one GPU for the prediction (see Figure 5.14).

Optionally, saturation windows, bright DOMs, calibration errata
& saturated DOMs can be removed by giving the name of the respec-
tive keys in the I3Files. To apply the same DNN with different set-
tings, all the previously mentioned options, as well as the pulsemap
can also be a list. The following snippet applies the DNN twice,
including and excluding pulses in saturation windows, respectively.

from i3deepice . i3module import DeepLearningModule
t ray . AddModule ( DeepLearningModule ,

’ d n n _ c l a s s i f i c a t i o n ’ ,
b a t c h _ s i z e =128 ,
cpu_cores =4 ,
gpu_cores =1 ,
model= ’ c l a s s i f i c a t i o n ’ ,
saturation_windows = [ ’None ’ ,

’ SaturationWindows ’ ] ,
pulsemap =[ ’ S p l i t I n I c e P u l s e s ’ ,

’ S p l i t I n I c e P u l s e s ’ ] ,
save_as =[ ’ TUM_class i f i ca t ion_0 ’ ,

’ TUM_class i f i ca t ion_1 ’ ] )

Finally, note that it is also possible to use the tool on a CPU-only
machine. In contrast to GPU machines this is, however, increasing
the prediction times significantly, up to O(s) for a single event.
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6 Realtime Selection of Highly-Energetic
Starting Tracks

With the successful follow-up campaign of IceCube-170922A and the
subsequent discovery of TXS 0506+056 as the first compelling source
of astrophysical neutrinos,1 it has become increasingly evident that 1 IceCube Collaboration, M. G. Aartsen,

Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

realtime multi-frequency follow-ups can contribute crucial informa-
tion to the identification of the sources of astrophysical neutrinos.
Since telescope times are limited, it is important to have high-quality
triggers that select IceCube events with good pointing and a high
probability of being of astrophysical origin. IceCube currently has
three different alert streams: High Energy Starting Events (HESE),
Extremely-High Energy Neutrinos (EHE), and a selection of events
originally developed for gamma-ray follow-ups (GFU).2 In contrast 2 Blaufuss et al., “The Next Generation

of IceCube Realtime Neutrino Alerts”.to the latter two, which are optimized for through-going tracks, the
HESE stream requires the primary event vertex to be inside the de-
tector volume. While the event statistics of through-going tracks is
larger, HESE events have the advantage of good all-sky coverage and
a higher average signalness, due to the efficient reduction of atmo-
spheric background fluxes. A sketch of the IceCube realtime pipeline
is shown in Figure 6.1.

This chapter presents a major update to the current realtime HESE
v2 starting track selection — HESE v3. In contrast to the old selec-
tion, the new version is entirely based on deep learning algorithms.
At the core of the new selection, the DNN classifier presented in
chapter 5 is used to identify promising starting tracks. 3 The new se- 3 Complementary to that also a new

HESE cascade realtime stream has been
implemented using the same classifier;
https://gcn.gsfc.nasa.gov/amon_icecu
be_cascade_events.html.

lection is a prime example for the advantages of deep learning-based
classifications compared to standard selection approaches. Specifi-
cally, the output of the DNN classifier can be used to make clean
cuts on the event topology, whereas the previous selections rely on
goodness-of-fit parameters of reconstruction algorithms (as Spline
MPE) that are not optimized for starting tracks in the first place. In
short, HESE v3 has the advantage of first running the classification,
followed by the corresponding reconstruction.

https://gcn.gsfc.nasa.gov/amon_icecube_cascade_events.html
https://gcn.gsfc.nasa.gov/amon_icecube_cascade_events.html
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Figure 6.1: Sketch of IceCube’s realtime
pipeline. Events that pass any of the
online filters are send to the IceCube
data center via an Iridium satellite for
further processing. If an event fur-
ther passes any of the realtime selec-
tions, it is reconstructed and the sig-
nalness is determined. Finally, a sum-
mary of the event information is send
to he Gamma-ray Coordinates Network
(GCN). IceCube internally, this also
triggers improved reconstructions algo-
rithms for a refined direction and error
contour that are finally published in a
GCN Circular.

6.1 Selecting HESE Tracks for the Realtime Stream

On the lowest processing level, IceCube filters provide the first pre-
diction of an event’s topology. As those filers run online at the South
Pole, they only apply simple and thereby computationally cheap al-
gorithms. The HESE filter, for example, selects all events with a total
of more than 6000 photoelectrons (p.e), of which less than 3 p.e of the
first 250 p.e should be recorded in the veto region as shown in Figure
6.2. Being a robust pre-selection of potentially interesting astrophys-
ical events, it is used as the starting point for the HESE realtime
selections.

For the studies in this chapter, a dedicated HESE Monte Carlo is
used, containing both neutrinos and atmospheric background muons.
For the neutrinos we adopt the HESE 7.5 year best-fit flux with
φastro

ν+ν̄ = 6.37 · 10−18 · (Eν/100 TeV)−2.87 GeV−1 s−1 cm−2 sr−1 for the
astrophysical component,4 and a conventional atmospheric model4 Schneider, “Characterization of the

Astrophysical Diffuse Neutrino Flux
with IceCube High-Energy Starting
Events”.

base on the Honda parameterization.5 For the steeply-falling atmo-

5 Honda et al., “Calculation of atmo-
spheric neutrino flux using the interac-
tion model calibrated with atmospheric
muon data”.

spheric muon contribution, a dedicated MuonGun simulation is used
to reach reasonable event statistics after the HESE filter. The input
spectrum is modeled using a CORSIKA simulation6 based on the

6 Heck et al., “CORSIKA: A Monte
Carlo code to simulate extensive air
showers”.

Hillas-Gaisser H4a cosmic-ray model7 and a SIBYLL 2.1 hadronic in-

7 T. K. Gaisser, Stanev, and Tilav, “Cos-
mic Ray Energy Spectrum from Mea-
surements of Air Showers”.

teraction model.8 While this gives the correct shape of the spectrum,

8 Ahn et al., “Cosmic ray interaction
event generator SIBYLL 2.1”.

the normalization is highly uncertain. To estimate the normalization
of the muon background contribution HESE uses a muon tagging
strategy. Specifically, the passing fraction through the veto is esti-
mated by muons that leave a trace in the veto’s outer layer, but are
not visible in the inner veto layer. This strategy suggests a scaling
factor of 2.1, well consistent with the DNN predictions in Figure
6.11. The resulting event stream is composed mainly of cascades 99 Double bangs are also counted as cas-

cades here (8.92 / year) and starting tracks (3.58 / year), and a smaller con-
tribution of atmospheric background muons (∼ 1.86 / year). Note
that the rejection of incoming muons also reduces the number of
atmospheric neutrinos as they are inherently accompanied by an at-
mospheric shower. This is called the atmospheric self-veto10.1110 Schönert et al., “Vetoing atmospheric

neutrinos in a high energy neutrino
telescope”.
11 T. K. Gaisser, Jero, et al., “Gener-
alized self-veto probability for atmo-
spheric neutrinos”.

In general, if an event passing any IceCube filter is potentially
interesting for realtime follow-ups, additional reconstruction algo-
rithms are run. This is specifically the case for everything that passes
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the OnlineL2 and the HESE filter. As this is still part of the online pro-
cessing, the reconstructions are still required to be computationally
inexpensive. In the absence of dedicated event classification algo-
rithms, only the output of these reconstructions is available for real-
time selections. For the current version of the HESE realtime stream
(HESE v2), three cuts (based on five cut variables) are applied to all
the events that pass the HESE filter

Figure 6.2: Side view of the IceCube de-
tector with the HESE veto region indi-
cated as grey shaded area. As the pene-
tration of atmospheric muons is largest
for vertical down-going events a large
cap is needed on top of the detector.
Adapted from M. Aartsen et al., “Evi-
dence for High-Energy Extraterrestrial
Neutrinos at the IceCube Detector”.

• Direct track length of OnlineL2 Spline MPE > 200 m

• ∆ logL = HESE_CascadeVertexFit.logL - HESE_SPE2Fit.logL > 0

• Qtot > f (θOnlineL2 Spline MPE) for some function f

While the direct track length is supposed to select events that have
good angular reconstruction, the cut on the likelihood ratio is aimed
to separate starting tracks from cascades. The final, zenith depen-
dent, charge cut removes atmospheric neutrinos, as their rate strongly
depends on the inclination angle. The HESE v2 stream comes in two
purities, gold for cuts that give a 50% purity and bronze for cuts re-
sulting in a 30% purity. The respective event rates are shown in Table
6.1.

Cutting on the track length is intuitive to select well-reconstructable
tracks, but it introduces some severe problems by preferably select-
ing atmospheric muons. The problem originates from the underly-
ing hypothesis of SplineMPE, which assumes an infinite muon track.
Therefore, starting tracks (with large inelasticity, i.e., high energy
transfer to the hadronic casades) are not covered by the hypothe-
sis. In fact, SplineMPE is only based on hit probabilities and does
not include no-hit DOMs. This allows the reconstructed direction to
point far away from any recorded hits - and thereby the true direc-
tion - without being penalized in the likelihood. Examples of such
experimental events are shown in Figure 6.3 (two event views on the
right).

Figure 6.3: Event views indicating
problems with the HESE v2 real-
time selection: a) The two left plots
show events (IceCube-120501A and
IceCube-100912A) which get predicted
as through-going tracks by the DNN
classifier. The predictions are sup-
ported by visual inspection of the
events, which show early hits (red)
on the outer string layer. This is in-
consistent with the starting track as-
sumption as the photons from the pri-
mary cascade should be boosted in the
event direction and hits in the back-
ward direction should only appear later
from scattered photons, b) The two
plots on the right show clear starting
tracks (IceCube-140216A and IceCube-
200107A) where the SplineMPE recon-
struction is visually far off the truth.
The RNN reco on the contrary is
aligned with the expectation.

We conclude, that SplineMPE wrongly reconstructs starting tracks
systematically, resulting in the opening angle distribution between
truth and reconstruction for HESE starting tracks as shown in Fig-
ure 6.6. The HESE v2 selection tries to compensate for the bulk of
wrongly reconstructed events by selecting only events with a suffi-
ciently large Spline MPE track length. As noted before, Spline MPE
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is, however, only reliable for through-going tracks. Consequently, the
processing of archival HESE v2 data with the DNN classifier shows
indications that the number of background muons in the HESE v2

data is higher than expected from Monte Carlo. Table 6.2 gives a
complete list of archival events that pass the HESE v2 selection cri-
teria with the respective predictions of the DNN Classifier. In the 8

years of data tested 4 (2), events that pass the bronze (gold) selection
are predicted as through-going, i.e., are of atmospheric muon origin.
This is clearly in tension with the predicted rates from Monte Carlo,
which are 0.4/year (bronze) and 0.09/year (gold). A visualization of
a subset of these events is shown in Figure 6.3, supporting the pre-
diction of the DNN classifier. One reason for the discrepancy might
be a weaker veto region between string 21 and 30. This spot that was
originally detected in the medium energy starting cascade (MESC)
point source search,12 is clearly visible when plotting the detector12 M. Aartsen et al., “Search for

Sources of Astrophysical Neutrinos Us-
ing Seven Years of IceCube Cascade
Events”.

entry points of all events that pass the MESE selection 13 and get

13 HESE equivalent at lower energy with
a veto that is adaptive to the recon-
structed event vertex. As a result the
background reduction is efficient down
to ∼ 1 TeV

predicted as through-going tracks, Figure 6.4. While the total event
rates strongly decrease with increasing charge threshold, the leaking
spot (shown in black) remains visible. Up to now, there is no clear
explanation for the origin of this effect.

Figure 6.4: The SplineMPE detector en-
try points for all events in the 7.5 years
of MESE sample (2010-2017) that are
classified as through-going tracks by
the DNN. From left to right the Qtot
threshold is increased. Blue stars show
the position of IceCube strings. The
black spot between string 21 and 30 on
the right of the grid indicates a leaking
spot of atmospheric muons.
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In summary the HESE v2 selection is facing two major issues
which are both connected to the starting track selection via SplineMPE

• Low efficiency due to the removal of events that are difficult to
reconstruct for Spline MPE

• Higher than expected rate of background muons

Altogether, this motivates a revised version of the HESE starting
track realtime stream incorporating the advantages of the DNN clas-
sifier. In fact, although not yet finally implemented, a first DNN-
based GCN notice was send out for IceCube-200107A,14 a high en-14 Stein, “IceCube-200107A: IceCube ob-

servation of a high-energy neutrino
candidate event”.

ergy starting track that was found in coincidence with an HSP blazar,
3HSP J095507.9+355101

15,16 see chapter 8.15 Giommi, Padovani, Oikonomou, et
al., “3HSP J095507.9+355101: a flaring
extreme blazar coincident in space and
time with IceCube-200107A”.
16 Paliya et al., “Multi-Frequency Ob-
servations of the Candidate Neutrino
Emitting Blazar BZB J0955+3551”.
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6.2 Deep Learning-Based HESE Realtime Selection

The HESE realtime starting track selection aims to provide a high-
purity sample of astrophysical events with starting track topology.
Compared to cascades that constitute the major fraction of the HESE
events, starting tracks have a better angular resolution and are there-
fore more interesting for follow-up observations.
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Figure 6.5: DNN confusion matrix for
all events that pass the HESE filter.
From left to right the confusion, ac-
curacy, and total rates of the predic-
tions are shown. Note that, while stop-
ping tracks are never correctly classi-
fied, their overall rate is negligible.

Due to the large energy deposition of HESE events, the DNN clas-
sifier accurately predicts the events topologies, even without further
cuts on the p-score, as shown in the confusion matrix in Figure 6.5.
Specifically, the cascade contribution is well identified and through-
going track predictions are accurate up to more than 99%. A smaller
fraction of through-going track is, however, predicted as starting
tracks. This is expected, as through-going track passing the HESE se-
lection are by construction of the veto very similar to starting tracks.
Going beyond the simple classification scheme, the p-scores of the
DNN classifier can be used to construct a simple, straight cut-based
selection that has a high efficiency for starting tracks and simultane-
ously reduces the muon background to a negligible number. Starting
from all the events that pass the HESE 2015 online filter, three cuts
are applied
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Figure 6.6: The reconstruction error of
true starting tracks in the HESE event
stream for the RNN Reco and Spline
MPE.

1. The event is classified as starting track, i.e pmax = pstarting

2. The through-going p-score, pthrough−going, is smaller than 0.01

3. Qtot > f (θRNN) with function f as illustrated in Figure 6.8.

Figure 6.7 shows how the event rates of the different topologies
change with the cuts.

While step 1 efficiently removes nearly all the cascades from the
stream, the hard cut on the through-going p-score in step 2 resolves
the confusion between starting and through-going tracks. It thereby
removes the remaining fraction of atmospheric muons. At this stage,
the efficiency for astrophysical starting tracks is close to 100%, and
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Figure 6.7: Yearly event rates per class
after each of the cuts as explained in
the text. From top-left to the bottom-
right, cuts are placed on the HESE Fil-
ter, the starting track prediction (1), the
through-going score (2), and the zenith
and charge (3). The horizontal dashed
line indicates the rate of astrophysical
starting tracks after the initial HESE fil-
ter.
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all other topologies are basically removed from the stream. There
is, however, still large contamination of starting tracks produced
by conventional atmospheric neutrinos. Since this contamination is
highly zenith dependent and especially extreme around the hori-
zon, a zenith dependent cut is applied to guarantee a purity of at
least 50% in each zenith direction, see Figure 6.8. Instead of using
SplineMPE, which isn’t stable for starting tracks, a newly developed
recurrent-neural network (RNN) reconstruction is used to estimate
the direction 17. A comparison of the two reconstructions is shown17 https://indico.physik.uni-muenchen

.de/event/22/contributions/209/attac
hments/105/153/ErUM_Sept_2019_E
CAP_malyshev.pdf, visited 12/2020.

in Figure 6.6. For the RNN, the median reconstruction error on HESE
starting tracks is around ∼ 0.7 degrees, with smooth tails to high val-
ues. This is in clear contrast to Spline MPE that shows a second peak
of reconstruction errors at around ∼ 180 degrees.

Figure 6.8: The cumulative purity above
a given Qtot threshold as a function of
the reconstructed zenith angle. The rea-
son for the decreasing purity at very
high Qtot is the confusion between
starting tracks and cascades that in-
creases with growing cascade energy.
The black line shows the resulting cut
boundary f (θRNN) as explained in the
text. In the right panel the zenith de-
pendent yearly event rate after the se-
lection cuts is shown.

https://indico.physik.uni-muenchen.de/event/22/contributions/209/attachments/105/153/ErUM_Sept_2019_ECAP_malyshev.pdf
https://indico.physik.uni-muenchen.de/event/22/contributions/209/attachments/105/153/ErUM_Sept_2019_ECAP_malyshev.pdf
https://indico.physik.uni-muenchen.de/event/22/contributions/209/attachments/105/153/ErUM_Sept_2019_ECAP_malyshev.pdf
https://indico.physik.uni-muenchen.de/event/22/contributions/209/attachments/105/153/ErUM_Sept_2019_ECAP_malyshev.pdf
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A comparison of the event rates between HESE v2 and v3 selection
is shown in Table 6.1. Evidently, signal event rates are increasing
significantly, by a factor of ∼ 2.5 from HESE v2 gold to HESE v3,
reaching an overall astrophysical efficiency 18 of 67%. The major 18 Fraction of astrophysical starting

events that survive the selection cutsreduction in astrophysical efficiency originates from the charge cut,
which reduces conventional atmospheric background and removes
low energy astrophysical events. The overall high efficiency is also
visible in the effective area, Figure 6.9. In fact, the HESE v3 effective
area is fairly similar to the full HESE νµ charged-current effective
area, i.e., the effective area for all HESE starting tracks. Deviations
between the two are caused by cutting out atmospheric events (low
energy) and confusing cascades with starting tracks (high energy).

Figure 6.9: Differential effective area
in energy and declination. The pro-
jections on the x- and y-axis show
the marginal effective areas. For the
energy-dependent effective area, a com-
parison of the new HESE v3 selection to
the previous v2 selection and the over-
all HESE νµ CC effective area is shown.

In addition to the purity of the stream, an event-by-event signalness
is defined as

S =
Nsig(Qtot, θ)

Ntot(Qtot, θ)
(6.1)

where Nsig is the expected signal rate and Ntot the total signal and
background rate as a function of energy and zenith. In contrast to the
v2 signalness, the v3 calculation also includes the atmospheric self-
veto, boosting the signalness in the down-going region significantly,
see Table 6.2. A plot of the signalness as a function of deposited
charge and zenith angle is shown in Figure 6.10.

Figure 6.10: The signalness as a func-
tion of deposited charge and zenith an-
gle for the HESE v3 selection. The
white line represents the cut bound-
ary of the selection. The calculation in-
cludes the atmospheric self-veto proba-
bility.

Applying the new and old classification to archival HESE data
from 2010 to 2017 (7.5 years) reveals major differences between the
old and the new selection, Table 6.2. As previously noted, there is
some indication that the HESE v2 selection underestimates the rate
of background muons. Besides those events that are likely muon
background, all but one of the HESE v2 gold events also appear in
the new v3 selection 19. Furthermore, 8 events, some with signalness 19 The missing event is just below the

charge threshold of the new selection.> 90%, are added to the selection. Overall, 12 events pass the new
HESE v3 selection in 8 years of data. This corresponds to a yearly
rate of 1.6± 0.46, which is well consistent with the number estimated
in Table 6.1.
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Table 6.1: Comparison of the yearly
event rates between the HESE Filter,
the old HESE v2 selection and the new
HESE v3 selection. Uncertainties on
the neutrino components can be cal-
culate from systematics variations of
the ice and the DOM efficiency, which
significantly impact the total collected
charged and thereby the rate of the ini-
tial HESE filter. The rates of HESE v2

are calculated for the same spectral as-
sumptions as for HESE v3 and includ-
ing the self-veto. Note that, as dis-
cussed in the text, the rate of atmo-
spheric muons seems underestimated
for the HESE v2 case. Hence the puri-
ties given here are only an upper limit,
the truth can be significantly lower. In
the last to rows the purity of the stream
is given including and excluding astro-
physical cascades, that technically don’t
belong to the stream, but are still part of
the astrophysical signal.

Event Type HESE Filter HESE v2 B/G HESE v3

Astro. Starting Track 1.60 0.66 / 0.38 1.07 ± 0.15

Astro. Cascade 8.05 0.01 / 0.01 0.10 ± 0.01

All Conv. Atmo. ν 2.91 0.71 / 0.07 0.50 ± 0.15

Atmo. Muons ∼ 1.86 0.40 / 0.09 0.02

Purity (w/o cascades) – < 37 % / < 69% 64%
Purity (w cascades) – < 38% / < 71% 69%

6.3 Data/Monte Carlo Agreement and Consistency Checks

For the training of the DNN classifier and the development of the
HESE v3 event selection, a baseline Monte Carlo set has been used.
It incorporates the best knowledge of the detector calibration, in-
cluding ice models and detection efficiencies. Nevertheless, there are
systematic uncertainties on several of these parameters such as the
scattering and absorption length of photons in the ice, or the photon
detection efficiency. To ensure that the predictions of the DNN clas-
sifier, and thereby the event selection, performs consistently between
data and Monte Carlo, the p-score distributions can be compared as-
suming a best-fit flux model as described in Figure 6.7. In Figure
6.11 a data to Monte Carlo comparison is shown for the starting and
through-going p-score on 7.5 years of experimental data and varying
systematics. Evidently, the distributions are consistent within sta-
tistical uncertainties. To further address the impact of Monte Carlo
modeling uncertainties, the influence of some generic pulse modifi-
cations are tested on an event-to-event basis.

Figure 6.11: Data to Monte Carlo com-
parison for the DNN predictions on the
HESE sample and 7.5 years of data.
Different colors show the predictions
for different systematics and black er-
ror bars show the experimental data.
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6.3.1 Modulations of the Photon Arrival Times

Uncertainties on the ice model and the Monte Carlo simulation can
influence the prediction of the DNN classifier when applied to ex-
perimental data. For example, a shift in the scattering or absorption
length of photons results in different arrival times. At the time of
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writing this thesis, no simulations containing the same events with
varying ice systematics are available. Hence, we pursue a different
strategy and evaluate the effect of generic pulse modifications on an
event-to-event level. In the left and right plots of Figure 6.12 the
shift of the relevant p-score distributions for HESE v3 is shown for
smeared pulse arrival times and an increase in white noise, respec-
tively. While the first one imitates the effect of photon propagation
uncertainties in the ice, the latter is important to exclude an effect of
the noise rate on the classification between through-going and start-
ing events that could be sensitive to few hits in the outer veto layers.
However, it appears that the prediction scores on HESE events are too
extreme to be significantly impacted by those pulse modification. In
fact, even a relative shift of 50% in the prediction, as seen in Figure
6.12, has a negligible effect on the overall event rate of the HESE v3

selection. Consider for example the case of starting tracks, which
have a median pstarting of 0.99997, i.e 1− pstarting = 0.00003. Even a
relative shift of 100% on this number would only lead to a shift of
pstarting from 0.99997 to 0.99994. Similar arguments hold for the other
event topologies. Consequently, propagating the pulse-shifted sam-
ples through the HESE v3 selection results in an overall difference in
the event rates of less than 1% and thereby much smaller than the
effect of systematics on the total collected charge as visible in Table
6.1.
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Figure 6.12: The influence of pulse
modifications on the predictions of the
DNN classifier on a full HESE Monte
Carlo sample. The top panel shows the
relative deviations for 1− pStarting, i.e.,
events with high starting track proba-
bility for additional white noise and a
pulse smearing of σ = 10 ns. In the bot-
tom panels, the relative deviations are
shown for pThrough−Going which is used
as a score to reject atmospheric muons.
The solid lines show the median value,
and the colored bands the 90% central
quantile. The grey shaded area in the
bottom plots indicates the HESE v3 cut
threshold on pThrough−Going.

6.3.2 Missing DOMs

It occasionally happens that single DOMs of the detector drop during
data runs. This usually means that they are not responsive at the
beginning of the run and can, therefore, not take any reliable data.
Although dropped DOMs are emulated during training, it is still
important to ensure the predictions’ stability against these effects. In
Figure 6.13 the changes in the p-score distributions are shown for
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the cases of randomly dropping 75 DOMs and dropping the single
DOM with the highest charge. Similar to the previous case of pulse
modifications, the effect is small enough to guarantee the stability of
the predictions for the HESE v3 selection.

Figure 6.13: The influence of dropped
DOMs on the predictions of the DNN
classifier on a full HESE Monte Carlo
sample. The top panels shows the rel-
ative deviations for 1 − pStarting, i.e.,
events with high starting track proba-
bility for dropping the highest DOM
and randomly 75 DOMs, respectively.
In the bottom panels the relative de-
viations are shown for pThrough−Going
which is used as a score to reject atmo-
spheric muons. The solid lines shows
the median value and the colored bands
the 90% central quantile. The grey
shaded area in the bottom plots indi-
cates the HESE v3 cut threshold on
pThrough−Going.
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In summary, there is no indication that either detector or ice sys-
tematics have a relevant impact on the predictions. Most importantly,
it is not expected that the mismodeling of pulses leads to a larger rate
of background muons in the sample. The major impact on the uncer-
tainty of the event rates comes, in fact, from the effect of systematics
on the collected charge Qtot, as well as the uncertainty on the atmo-
spheric models.

6.4 Outlook

Although the new, DNN-based selection of HESE significantly im-
proves the performance and stability of the respective realtime stream,
it doesn’t yet exploit the full realtime potential of starting tracks in
general. As can be seen from Figure 6.10 there is still significant room
for lowering the Qtot threshold, especially in the down-going region
while keeping a high purity. An even more fundamental change of
the stream would be to replace Qtot itself with a different energy es-
timator. There are good arguments to do so. Qtot is a measure of the
deposited energy and thereby systematically higher for event topolo-
gies that deposit most of their energy in the detector volume. This
means that a Qtot-based selection prefers events with dominant cas-
cade contributions. Of particular interest for point source searches
are, however, the opposite event types, i.e., starting tracks where
only a small amount of energy is transferred to the cascade so that
the track is well reconstructable. Those events have a systematically
lower Qtot. The problem could be overcome by using a reconstruc-
tion algorithm that estimates the initial neutrino energy itself. Again,
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the usage of deep learning methods can be crucial here to reach ac-
ceptable computing times. Such a new event selection could be de-
veloped starting from the previously mentioned MESE stream or the
newly developed ESTES selection.20 20 Silva and Mancina, “Measurement of

the Diffuse Muon Neutrino Flux using
Starting Track Events in IceCube”.

Table 6.2: Table of events passing the old HESE v2 (B=bronze,
G=gold) or the new HESE v3 selection. In contrast to the v2

signalness, the v3 calculation includes the atmospheric self-veto
probability.

Run ID Event ID MJD v2 B/G v3 Sig. v2 Sig. v3 Start. Score T.G. Score

115994 29874216 55351 no / no yes - 79% 0.979 <0.001

116528 52433389 55451 yes / no no 45% - 0.013 0.979

118435 58198553 55756 yes / yes yes 77% 82% >0.99 0.002

119214 8606380 55925 no / no yes - 98% 0.528 <0.001

120045 22615214 56048 yes / yes no 55% - 0.008 0.991

122152 30701331 56390 yes / yes no 52% - >0.99 <0.001

122604 17469985 56470 yes / yes no 66% - 0.832 0.167

123867 11659459 56671 yes / no no 33% - >0.99 <0.001

123986 77999595 56679 yes / yes yes 82% 99% >0.99 <0.001

124244 7608824 56704 no / no yes - 47% 0.943 <0.001

125071 31397276 56859 yes / yes no 56% - 0.002 0.997

127853 67093193 57505 yes / no yes 45% 49% >0.99 <0.001

128290 6888376 57600 yes / no no 44% - >0.99 <0.001

128340 58537957 57614 yes / yes yes 60% 97% >0.99 <0.001

128582 62891970 57667 no / no yes - 66% >0.99 <0.001

128672 38561326 57695 yes / no no 31% - 0.022 0.978

129112 14865593 57782 no / no yes - 93% >0.99 <0.001

129510 63482845 57888 no / no yes - 97% 0.691 <0.001

130111 70719303 58036 no / no yes - 99% >0.99 <0.001

130126 56068624 58041 yes / yes no 55% - 0.665 0.333

130171 34032434 58054 no / no yes - 98% 0.889 <0.001
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7 An Improved Method for Neutrino
Point Source Searches

Ever since the beginning of the AMANDA detector in 1996, the iden-
tification of neutrino point sources has been among the major scien-
tific goals of neutrino telescopes. While early analyses used binned
Poisson statistics to search for excesses of neutrino counts,1 follow- 1 J. Ahrens et al., “Search for Extrater-

restrial Point Sources of Neutrinos with
AMANDA-II”.

ing analyses used an unbinned likelihood formalism.2 This increased
2 Braun et al., “Methods for point
source analysis in high energy neutrino
telescopes”.

the overall performance of the analysis and enabled the estimation
of source spectra. The unbinned likelihood approach has now been
the standard method for nearly a decade of point source analyses
in IceCube3,4.5 Although the maximum likelihood approach itself 3 M. G. Aartsen, K. Abraham, et al.,

“All-sky Search for Time-integrated
Neutrino Emission from Astrophysical
Sources with 7 yr of IceCube Data”.
4 M. G. Aartsen et al., “Search for steady
point-like sources in the astrophysical
muon neutrino flux with 8 years of
IceCube data”.
5 M. G. Aartsen et al., “Time-integrated
Neutrino Source Searches with 10 years
of IceCube Data”.

guarantees optimal statistical power, the current implementation is
non-optimal in its description of the underlying probability density
functions (pdfs), thereby introducing biases in the fit parameters. To
resolve these problems, this chapter presents a new, rigorous sta-
tistical approach to construct the likelihood function and to infer
the pdfs directly from Monte Carlo simulations using kernel den-
sity estimation. Besides, further improvements are made through
new event reconstruction methods. Most importantly, we present a
deep learning-based energy reconstruction that increases the energy
resolution by up to ∼ 50%, while being unbiased below 1 TeV, where
previous approaches had no discrimination power. Overall, the new
analysis reduces the variance in the fit parameters, removes biases,
and improves the 5σ discovery potential by 20% to 30 % for a γ = 2.0
spectrum compared to the previous publication.6 At the end of the 6 Ibid.

chapter, we apply the new point source analysis on a sample of 9-
years of muon tracks from the Northern Hemisphere.

7.1 Derivation of the Point Source Likelihood

7.1.1 Maximum Likelihood Estimators

The concept of maximum likelihood estimators (MLE) forms the ba-
sis for the analysis method discussed in this chapter. Therefore, be-
fore looking into the specific construction of the point source likeli-
hood, a short review of MLEs is presented. The discussion is mainly
inspired by the books of Glen Cowen7 and Casella & Berger.8 7 Cowan, Statistical Data Analysis.

8 Casella and Berger, Statistical Inference.
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For the beginning, consider a situation with a set of finite measure-
ments (observations) which we want to use to infer a set of model
parameters. Mathematically speaking this corresponds to a set of
independent random variables x = (x1, . . . , xn), with each of them
distributed according to the same probability density function pdf
f (x|θ). The vector hereby θ describes a set of free model parame-
ters θ = (θ1, . . . , θm). Intuitively, the optimal model parameters θ are
those that maximise the likelihood to see the observed data. With f
being a pdf, the probability of observing a certain xi is

p(xi) = f (xi|θ) · dx, (7.1)

and since the measurements xi are independent, the overall proba-
bility is the product of the single probabilities

L(θ|x) =
n

∏
i=1

f (xi|θ). (7.2)

The infinitesimals, dx, have been dropped as they pose arbitrary fac-
tors that are independent of the model parameters. The function L
is called the likelihood. In order to estimate the optimal values for
the free parameters θi, the maximum likelihood value is determined
through differentiation, i.e.,

∂L
∂θi

= 0, i = 1, . . . , m. (7.3)

The resulting best-fit parameters are denoted as θ̂i. MLEs have two
important properties, consistency and asymptotic normality99 Casella and Berger, Statistical Inference,

p. 470 ff.
• Consistency: An estimator is consistent if it converges against the

true unknown parameter θt for the sample size going to infinity

θ̂ → θt as n→ ∞. (7.4)

• Asymptotic Normality: In the asymptotic case of the sample size
approaching infinity, n→ ∞, the estimated θ̂ is normal distributed
around the truth θt with some variance σt
√

n(θ̂ − θt)→ N(0, σ2
t ), in distribution. (7.5)

As noted before and further discussed in section 7.5, the parame-
ter estimation of the current IceCube point source analysis is biased
in spectral shape and signal strength. In fact, the bias doesn’t reduce
for a larger sample size, which is a clear hint on the mismodeling of
the likelihood function and a major motivation for the development
of the improved method presented in this chapter.

Finally, the variance σ2
t of a MLE can be related to the Fisher-

Information I(θt) as σ2
t = I(θt)−1. Empirically, the Fischer-Information

provides a measure of how fast f changes when slightly varying θ in
a repeated experiment with same truth θt, i.e.

I(θt) = Eθt

(
∂

∂θ
log f (x|θ)|θ=θt

)2
, (7.6)

with expectation value E.
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7.1.2 Hypothesis Test

A frequent problem in statistics is the discrimination between two
hypotheses, the background hypothesis H0 and the signal hypothesis
H1, for a given set of observations x. It was originally proven by
Jerzy Neyman and Egon Pearson, that for simple hypotheses, i.e.,
hypothesis with fixed parameters θ0 (background) and θ1(signal), the
likelihood-ratio provides the most powerful statistical test.10 10 Neyman and Pearson, “On the Prob-

lem of the Most Efficient Tests of Statis-
tical Hypotheses”.Lemma 7.1.1 (Neyman-Pearson Lemma) Suppose one wants to do a

statistical test with two simple hypothesis H0 and H1 and corresponding
model parameters θ = θ0 and θ = θ1. The set of observation is denoted as
x with corresponding probability density function f (x|θ). In this case the
ratio of the likelihood functions L(θ|x) = f (x|θ)

Λ(x) =
L(θ0|x)
L(θ1|x)

provides the most powerful test at significance level α, where

α = P(Λ(x) ≤ η|H0)

for any threshold η, which rejects H0 in favor of H1.

In the cases of the neutrino point source search in this chapter, the
signal and background hypothesis are defined as follows

• Signal Hypothesis H1 (θ = θs): A neutrino-emitting point source
with spectrum φ(E) = φ0 × E−γ is located at a sky position ~ω =

~rsrc = (αsrc, δsrc)T . Its emission is on top of the background
of (conventional) atmospheric- and diffuse astrophysical neutri-
nos. The overall set of model parameters is then denoted as
θs = (αsrc, δsrc, φ0, γ), with αsrc and δsrc describing the right ascen-
sion and declination in the J2000 coordinate system, respectively.

• Background Hypothesis H0 (θ = θb): The flux coming from the
direction ~ω is composed solely of (conventional) atmospheric- and
diffuse astrophysical neutrinos.

The limitation to single power laws is technically not necessary, but
consistent with the prediction of neutrino spectra from theoretical
modeling of emission regions with photo-meson or proton-proton
production, see section 2.2.

While the background hypothesis is fixed by choosing an atmo-
spheric and diffuse astrophysical flux model - and thereby doesn’t
have any free parameters - the signal hypothesis has at least two
free parameters - the flux normalization φ0 and the spectral index
γ. Strictly speaking, the hypothesis test thereby doesn’t fulfill the
requirement of a simple test in Lemma 7.1.1. Nevertheless, the de-
scription of the likelihood ratio can be trivially extended for these
problems by

Λ(x) =
supθ∈θb

L(θ)
supθ∈θs

L(θ) . (7.7)
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The supremum is thereby taken over all the allowed model parame-
ters of the background and signal hypothesis, θb and θs, respectively.
Λ is usually referred to as test statistic value, and its distribution
is called the test statistic distribution. Note that for the specific case
of the point source analysis, the background hypothesis is nested
into the signal hypothesis, i.e., they converge against each other for
φ0 → 0. This has further important implications as it suggests a
simple approximation for the test statistic distribution using Wilks’
Theorem1111 Casella and Berger, Statistical Infer-

ence, p. 489 & p. 516.
Theorem 7.1.2 (Wilks’ Theorem) For testing an hypothesis H0 : θ = θ0

versus H1 = θ 6= θ0, suppose x1, . . . , xn are independent and identically
distributed random variables with f (x|θ), θ̂ is the MLE of θ, and f (x|θ) is
sufficiently regular. Then under H0, as n→ ∞

T S = −2× log Λ(x)→ χ2
1 in distribution

While the above theorem is given for a hypothesis with only one de-
gree of freedom, it can be extended to N-degrees of freedom, show-
ing that in this case the test statistic values are distributed as χ2

N for
the sample size n→ ∞.1212 Ibid., p. 490.

7.1.3 Deriving the Point Source Likelihood Function

In order to derive a likelihood function for the point source search,
first of all the observable space needs to be defined. On the most
fundamental level, IceCube DOMs measure a time series of pulses,
i.e., tuples of charge and time, pi = (qi, ti), produced by Cherenkov
photons. Naively, one could hence define the observable space as
p = p1, . . . , pn, representing all the observed pulses of an event. The
process from the production of a neutrino to the observation of the
pulses can then be described by a hierarchical model: production→
interaction→ propagation of secondaries in the detector→ detection
of pulses. The corresponding likelihood function can be written as

L(θs|p) = f (p|θs) =
∫

f (p|µ) f (µ|ν) f (ν|θs)dµ dν. (7.8)

Evidently, a series of marginalization terms appear, that highlight
the complexity of the problem. The different terms in eq. (7.8) are
described in the following:

• f (ν|θs) is the production probability of a certain neutrino ν with
energy Eν and direction~rν under the source hypothesis, i.e.

f (ν|θs) = Φ̂(Eν; Φ0, γ) · δ(~rν −~rsrc) (7.9)

with normalized flux pdf Φ̂ and delta-distribution δ.

• f (µ|ν) describes the cross-section and kinematics of the muon pro-
duction, i.e., the probability of seeing a muon µ with energy Eµ

and direction~rµ given the original neutrino. This term thereby in-
cludes the energy transfer from neutrino to the muon, the result-
ing kinematic angle between the two, and the energy loss before
entering the detector.
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• f (p|µ) is the probability of observing the specific set of pulses
given the muon in the previous step. This term is effectively what
is used in IceCube reconstruction, i.e., a mapping between pulses
and muon quantities. As discussed in section 3.8 the reconstruc-
tion procedure is quite complex and computationally intensive.

While eq. (7.8) consistently treats all the steps from the neutrino pro-
duction process to the observation, it is computationally unfeasible
as already a single reconstruction can take up to several minutes. A
more efficient approach is therefore to separate reconstruction and
hypothesis testing. In fact, by using reconstructed quantities, the ob-
servable space can be reduced to a few quantities which carry the
majority of the event information.

For the case of a muon track-based point source analysis, there
are two natural choices of observables: the muon energy Eµ and
the muon direction ~rµ. In addition, it is advantageous to add an-
other observable, σ, that describes the reconstruction quality of the
event. Note that this does not necessarily need to be an angular er-
ror estimator, but should correlate with one. The resulting likelihood
function reads

L(θ|x = {Eµ,~rµ, σ}) = f (x|θ). (7.10)

In the point source hypothesis as described above there are two
data generating processes: a neutrino emitting point source, and
background neutrinos (and muons) produced in the atmosphere or
coming from the diffuse astrophysical background. Unfortunately,
there is no a priori way to distinguish signal and background events,
adding a latent variable ξ, with ξ = 1 for signal and ξ = 0 for back-
ground events, to the hierarchical model. The likelihood in eq. (7.10)
can then be written as marginalisation over ξ via

f (x|θ) = f (x|ξ = 1, θ) f (ξ = 1|θ) + f (x|ξ = 0, θ) f (ξ = 0|θ). (7.11)

The second term of each addend describes the a prior probability
to observe a signal or background event, respectively. This can be
expressed over the normalized expectation values of the number of
signal and background events, µs and µb, respectively. Hence,

f (ξ|θ) =

µb · (µs + µb)
−1, for ξ = 0

µs · (µs + µb)
−1, for ξ = 1

(7.12)

with µs, µb ≥ 0 . Thereby eq. (7.11) can be rewritten as

f (x|θ) = f (x|θs)
µs

µs + µb
+ f (x|θb)

µb
µs + µb

. (7.13)

This is the form of the point source likelihood for a single observed
event. Extending it to a sample of events, one needs to consider that
the size of the observed sample N is not fixed, but needs to be treated
as an additional random variable that follows a Poisson distribution,
i.e.,

N ∼ Poisson(µs + µb). (7.14)
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The final likelihood for the entire set of observables becomes

f ({x}, N|θ) = f (N|θ) · f ({x}|θ) (7.15)

where {x} = {x1, . . . , xN} is the set of events and their observables.
Using eq. (7.14), eq. (7.13) and the fact that the xi are independent
random variables, the final expression for the point source likelihood
becomes

f ({x}, N | θ) = (µs + µb)
N

N!
exp (−µs − µb)

×
N

∏
i=1

{
fs (xi | θs)

µs

µs + µb
+ fb (xi | θb)

µb
µs + µb

}
.

(7.16)

Up to this point the likelihood is completely independent of the spe-
cific choice of observables.

As previously noted, a natural choice of observables for a muon
track-based neutrino point source analysis are the reconstructed muon
energy Eµ, and the reconstructed muon direction~rµ with correspond-
ing reconstruction quality estimator σ. Following eq. (7.16), the
likelihood then requires the estimation of two probability density
functions, fs

(
Eµ,~rµ, σ | θs

)
and fb

(
Eµ,~rµ, σ | θb

)
, for signal and back-

ground, respectively. Note that the directional reconstruction, ~rµ, is
defined on the 2-dimensional manifold of a sphere. Hence it can be
useful to work directly on the natural scale of spherical coordinates,
(sin δ, α) 13, in order to full fill the normalization conditions 14.13 declination δ, and right ascension α

14

2π∫
0

1∫
−1

f (sin δ, α)d sin δ dα = 1

As the background hypothesis does not involve any free parame-
ters, the derivation of the corresponding likelihood function is straight
forward. Due to the location of IceCube at the geographic South Pole,
the pdf is further invariant against rotations in right ascension for the
case of sufficiently large integration times (> 1 day). The background
pdf therefore takes the form of

fb
(
Eµ,~rµ, σ | θb

)
=

1
2π

fb
(
Eµ, sin δµ, σ | θb

)
(7.17)

with muon declination δµ and the background hypothesis θb as de-
fined in section 7.1.2. The signal case, in contrast, needs some ad-
ditional considerations for two reasons: 1.) the right ascension of
the event, αµ, can not be neglected and 2.) the hypothesis con-
tains additional free parameters, i.e., θs = (αsrc, δsrc, φ0, γ). Assume
now that we want to test a fixed but arbitrary sky position with
~rsrc = (αsrc, δsrc)T . Since the hypothesis test should not depend on
the specific choice of the coordinates one can simply use the coor-
dinate system for which the source is placed on one of the poles,
i.e., ~̃rsrc = (0, 0)T = R ·~rsrc with some rotation matrix R. In this
coordinate system the signal pdf becomes

fs
(
Eµ, ~̃rµ, σ | θ̃s = (0, 0, γ)

)
= fs

(
Eµ, (δ̃µ, α̃µ), σ | θ̃s

)
(7.18)

with rotated reconstructed right ascension and declination, α̃µ and
δ̃µ, respectively. Note that there is no more dependence on φ0 as
it has been absorbed in eq. (7.12), describing the relative strength
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between signal and background flux. Assuming the reconstruction
uncertainty σ to be circular, i.e., independent of the azimuth angle,
eq. (7.18) gets independent of α̃µ and hence only depends on the
(rotated) declination δ̃µ, which is equivalent to the angular distance
between source and reconstruction ψ̃. Applying this substitution and
marginalizing over α̃µ the signal pdf simplifies to

fs
(
Eµ, (cos δ̃µ, α̃µ), σ | θ̃s

)
=

1
2π sin ψ̃

fs
(
Eµ, ψ̃, σ | θ̃s

)
(7.19)

with fs
(
Eµ, ψ̃, σ | θ̃s

)
being normalized in a flat Euclidean space.

One can easily confirm the normalization factors by integrating over
the sphere

I =
2π∫
0

π∫
0

1
2π sin ψ

fs
(
Eµ, ψ̃, σ | θ̃s

)
d cos ψ dα̃µ (7.20)

=

π∫
0

1
sin ψ

fs
(
Eµ, ψ̃, σ | θ̃s

)
sin ψ dψ (7.21)

=

π∫
0

fs
(
Eµ, ψ̃, σ | θ̃s

)
dψ = 1. (7.22)

Finally, the coordinate system can be transformed back by using the
inverse rotation matrix R−1 with det(R−1) = 1 and R · ψ̃ = ψ as
angular distances are invariant under rotations. As a result equation
(7.19) becomes

fs
(
Eµ,~rµ, σ | θ̃s

)
=

1
2π sin ψ

fs
(
Eµ, ψ, σ | θs

)
. (7.23)

For comparison with the previous implementation of the point source
analysis15 16 one can further split this equation up by using the law 15 Braun et al., “Methods for point

source analysis in high energy neutrino
telescopes”.
16 And numerical reasons, see section
7.4.

of total probability

fs
(
Eµ,~rµ, σ | θs

)
=

1
2π sin ψ

fs
(
ψ | σ, Eµ, θs

)
· fs
(
Eµ, σ | θs

)
(7.24)

= S
(
Eµ, ψ, σ |θs

)
· E
(
Eµ, σ |θs

)
. (7.25)

Comparing to the previous method,17 one finds the general struc- 17 Braun et al., “Methods for point
source analysis in high energy neutrino
telescopes”.

ture to be pretty similar, i.e. one term describing the spatial and
another the energy likelihood. There are, however, important differ-
ences. Firstly, the spatial term is not modelled as a spectral index
independent Gaussian

S
(
Eµ, ψ, σ |θs

)
= S (ψ, σ ) =

1
2πσ2 exp−

ψ2

2σ2 , (7.26)

as this approximation is only valid in the case of high energy events
and hard spectral indices, see section 7.4. In addition, the energy
term of the previous method is approximated as

E
(
Eµ, σ |θs

)
= E

(
Eµ |θs

)
(7.27)
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and thereby neglecting the dependence on the reconstruction quality
parameter σ. While it is desirable to keep the σ dependence to have a
complete description of the problem, available Monte Carlo statistic
are not sufficient to get a stable inference of this high-dimensional
pdf. The σ parameter is therefore also dropped in this analysis from
the energy term with only minor influence on the analysis perfor-
mance as shown in section 7.5. To keep the parameter space consis-
tent, the background term in eq. (7.17) also simplifies to

fb
(
Eµ,~rµ | θb

)
=

1
2π

fb
(
Eµ, sin δµ | θb

)
. (7.28)

Note, however, that the spatial term still conditionally depends on σ.
We will see in chapter 7.5 that it is, in fact, mainly the mismodeling of
the spatial term that leads to the biases in the old analysis approach.
The numerical inference of the likelihood terms using Monte Carlo-
based kernel density estimation is discussed in section 7.4.

Putting everything together, the test statistic, eq. (7.7), for the
point source analysis is given by

T S = 2× log(Λ)

= 2× log

C×
∏N

i=1

{
fs (xi | θs)

µs
µtot

+ fb (xi | θb)
µb

µtot

}
∏N

i=1 fb (xi | θb)


= 2× log

C×
∏N

i=1

{
fb(xi | θb)

µtot

[
µs

(
fs(xi | θs)
fb(xi | θb)

− 1
)
+ µtot

]}
∏N

i=1 fb (xi | θb)


= 2× log

(
C×

N

∏
i=1

{
µs

µtot

(
fs (xi | θs)

fb (xi | θb)
− 1
)
+ 1
})

(7.29)

with utot = µs + µb and a factor C, which is the ratio of the two
leading Poisson terms in eq. (7.16). Specifically,

C =
(µtot

N

)N
× exp (N − µtot) , (7.30)

with the total number of events N, and µb = N for the background
likelihood. This holds always true as there are no free parameters
in the background case and therefore by definition µs = 0. Hence
the background likelihood will always be maximal for µb = N. Note
that the event sample contains O(105) events and hence eq. (7.30)
gets rapidly small when µs + µb deviates from the number of total
events N. For this reason previous implementations of the point
source analysis fixed µs + µb to N by default. It can be useful to
rewrite eq. (7.29) by applying the log function to get

T S = 2× log(C) + 2×
N

∑
i=1

log
{

µs

µtot

(
fs (xi | θs)

fb (xi | θb)
− 1
)
+ 1
}

(7.31)

Finally, the maximum TS value is given as

T Smax = sup
θs∈Θs

T S(θs). (7.32)
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Note that maximizing the test statistics is only correct because the
background hypothesis does not have any free parameters. In any
other case one would need to take the supremum separately for the
signal and background likelihood, as stated in eq. (7.7).

7.2 Deep Learning-Based Muon Energy Reconstruction

In chapter 5, a deep neural network (DNN) for the classification of
IceCube events has been presented. The neural network is thereby
a mapping from a set of DOMs and pulses to an output value —
event types in this case. Similar to the classification task, DNNs can
be trained to predict other quantities as the muon energy or direc-
tion.18 In this section, we present a slightly revised version of the 18 Huennefeld, “Deep Learning in

Physics exemplified by the Recon-
struction of Muon-Neutrino Events in
IceCube”.

DNN classifier, which provides an improved estimation of the muon
energy on entry for up-going tracks. A comprehensive discussion
of the general network structure and pre-processing can be found in
section 5.3 and section 5.5.

7.2.1 Training & Architecture of the Network

The DNN energy estimator uses a Inception-ResNet architecture of
which a pseudo-code implementation can be found in the appendix
B.2 19. As a major difference to the DNN classifier, the average pool- 19 As with the DNN classifier, an Ice-

Tray module for the DNN energy re-
construction is available through the
i3deepice project https://github.com/I
ceCubeOpenSource/i3deepice.

ing operation used in the final part of the classifier is replaced by a
small dense network. This allows for a different treatement of energy
contributions from different parts of the inhomogeneous detector. Fi-
nally, a linear activation function is used to connect the dense layers
to the output node.

For the training of the network, a dataset of ∼ 6 million up-going
muon events 20 in a reconstructed zenith range between 85

◦and 180
◦is 20 Only events without atmospheric co-

incidence are used during training, op-
timizing it for the usage with split
pulsemaps later.

used, see Table 7.1 for a detailed summary of the Monte Carlo datasets.
The mix of two ice models, the newer Spice 3.2.1 and the older Spice
Lea, thereby adds more stability against ice systematics to the pre-
diction. For the training, uncleaned InIceDSTPulses are used and the
dataset is split into training (80%) and validation (20%) set. The esti-
mated common logarithm of the muon energy of entry is evaluated
against its truth using a mean-square error loss. In comparison to the
deposited energy, the energy on entry has the advantage of being in-
dependent of the actual track length in the detector. Similarly to the
training of the DNN classifier in section 5.5, the Adam optimizer21 is 21 Kingma and Ba, “Adam: A Method

for Stochastic Optimization”.used with default settings. In total, the DNN is trained for 23 epochs
(5 evaluation steps per epoch), and the network weights with the best
validation loss are selected for the final application. The evolution of
the training and validation loss is shown in Figure 7.1.

As convolutional neural networks make heavy use of pooling op-
erations to reduce complexity, they wash out the precise location of
a feature, manifesting, for example, in a bad directional reconstruc-
tions of CNNs compared to standard likelihood approaches. For

https://github.com/IceCubeOpenSource/i3deepice
https://github.com/IceCubeOpenSource/i3deepice
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Table 7.1: The set of Monte Carlo
training datasets with respective sim-
ulation properties. Although coinci-
dent background has been simulated
for Nancy’s datasetrs these events are
discarded for the training, as the DNN
is only expected to be used on splitted
pulsemaps, i.e. single, isolated events.

Dataset Properties
11029 Ice Model: SPICELea CLSim

(00000-01999) Energy Range: 100 GeV - 10 PeV (E−2 Spectrum)
DOM efficiency: 1.0

11069 Ice Model: SPICELea CLSim
(00000-00999) Energy Range: 100 GeV - 10 PeV (E−1 Spectrum)

DOM efficiency: 1.0
11070 Ice Model: SPICELea CLSim

(00000-00999) Energy Range: 100 GeV - 10 PeV (E−1 Spectrum)
DOM efficiency: 1.0

Nancy’s Simulation Ice Model: Spice 3.2.1
(00000-04999) Energy Range: 100 GeV - 5 TeV (E−2 Spectrum)

Hole Ice: Dima’s flasher-fit-model (p1=0.3, p2=0)
DOM efficiency: 0.99

Nancy’s Simulation Ice Model: Spice 3.2.1
(00000-11999) Energy Range: 5 TeV - 10 PeV (E−1.5 Spectrum)

Hole Ice: Dima’s flasher-fit-model (p1=0.3, p2=0)
DOM efficiency: 0.99

Nancy’s Simulation Ice Model: Spice 3.2.1
(00000-04999) Energy Range: 1 PeV - 100 PeV (E−1 Spectrum)

Hole Ice: Dima’s flasher-fit-model (p1=0.3, p2=0)
DOM efficiency: 0.99

energy reconstructions, however, the approximated position of an
energy loss is sufficient as the spatial resolution is only relevant on
the scales of detector inhomogeneities.

Overall, the DNN combines a larger amount of event information
than truncated energy reconstruction and therefore significantly im-
proves the energy resolution as shown in Figure 7.4 and Figure 7.5.
As for the case of the DNN classifier, applying the DNN to experi-
mental data is thereby extremely fast with predictions times on the
order of 100 ms per event.

Figure 7.1: Evolution of the mean-
squared error loss of the DNN energy
estimator for training and validation
dataset.
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7.2.2 Performance
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Figure 7.2: Number of hit DOMs
against the muon energy, averaged over
all events for a representative final level
muon neutrino sample. The contours
show the 90% central quantile.

Compared to truncated energy, the DNN energy estimator improves
the energy resolution by around 50% in a large part of the energy
range, while also resolving the energy degeneracies at muon en-
ergies below ∼ 1 TeV, see Figure 7.4 and Figure 7.5. In the low
energy regime, muon neutrino losses are dominated by ionization
losses compared to stochastic losses that dominated at higher ener-
gies. This leads to very continuous (stopping) track signatures with
only a few hits in the detector, see Figure 7.2. While likelihood esti-
mators as truncated energy are stabilized against the stochasticity of
high-energy events, the truncation of the small information content
at low energies leads to instabilities in the energy estimation. As a
result, there is no discrimination power for events below ∼ 1 TeV.
The DNN, in contrast, can use the full set of event information while
also being independent of a specific track hypothesis. Hence it can
further gain from stopping tracks as the stopping length is a good
proxy for the muon energy on entry, see Figure 3.4.
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Figure 7.3: Kinematic angle between
neutrino and muon for νµ CC interac-
tions as a function of the true neutrino
energy. The shaded area shows the 90%
central quantile.

Although those events with energies below ∼ 1 TeV usually do not
carry a strong astrophysical weight, they are an important fraction
of the overall number of events as seen in Figure 7.8. Furthermore
the energy resolution at these energies also matters for the overall
angular resolution of the event. While the reconstruction error σ

gives a measure of the quality of the reconstruction between muon
direction and reconstructed direction, it does account for the energy-
dependent kinematic angle between neutrino and muon, which ap-
proximates to

∆Ψ =
0.7◦

(Eν/TeV)0.7 (7.33)

and thereby becomes relevant for below a few TeV, see Figure 7.3.
The old point source analysis accounts for this additional uncertainty
by applying a pull-correction that shifts the median opening angle
between neutrino and reconstruction to its Monte Carl expectation
value for a E−2 spectrum. In the formalism of the new point source
analysis (section 7.1.3), in contrast, the kinematic angle is naturally
folded in during the numerical inference of the pdfs as explained in
section 7.4.

The improvement in energy-dependent angular resolution is shown
in Figure 7.6. The degenerated energy prediction of truncated energy
manifests in a plateau of the median angular resolution that deviates
strongly from the expectation assuming the true muon energy. This
is the result of the many overlapping true energies that contribute
to the same reconstructed energy bin. On the contrary, for the DNN
energy estimation, the influence of the kinematic angle is continu-
ously decreasing for increasing reconstructed energies, being well
consistent with the true muon energy curve. The result is an effec-
tively better angular resolution that impacts all source spectra with
a significant contribution of events below a few TeV in energy and
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Figure 7.4: Reconstructed vs. true
energy for the DNN (left) and trun-
cated energy (right). The white solid
lines show the median prediction for a
given true energy on entry, Eµ, and the
dashed lines the 90% central quantile.
The black solid line gives the expecta-
tion for an unbiased estimation.

Figure 7.5: Energy resolution of the
DNN reconstruction and truncated en-
ergy. The resolution is defined as the
width of the 68% (90%) quantile of
the distribution f(log10(Ereco) | Eµ). The
DNN bump at ∼ 1 TeV is an effect of
the transition between ionization and
stochastic losses. At these energies a
muon with the same energy on entry
can have very different signatures de-
pending on whether or not it has a large
stochastic loss. With increasing energy
— and thereby increasing number of
stochastic losses — the effect averages
out.
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thereby is of specific importance for soft spectra (γ & 3), as the pre-
viously published case of the 2.9σ neutrino excess around the Seyfert
II starburst galaxy NGC 1068.22 22 M. G. Aartsen et al., “Time-integrated

Neutrino Source Searches with 10 years
of IceCube Data”.

Finally, the improvement of the energy reconstruction is not only
affecting the astrophysical signal itself but also enables a better de-
scription of the conventional atmospheric neutrino flux and the dis-
crimination between the two. Figure 7.8 shows the energy distribu-
tion of experimental data and Monte Carlo for the diffuse up-going
track sample used in this point source analysis. It can be seen that,
in fact, ∼ 79% of the events have an energy ≤ 1 TeV and are therefore
strongly impacted by the new energy reconstruction.

Further discussions of the impact of the new energy reconstruc-
tion on the point source analysis’s parameter estimation and espe-
cially on the fit of the spectral index can be found in section 7.5.

7.2.3 Influence of Simulation- & Detector Uncertainties
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Figure 7.6: Energy-dependent opening
angle between neutrino and SplineMPE
reconstruction for the DNN energy esti-
mator (top) and truncated energy (bot-
tom) for spectral indices of γ = 3.25
and γ = 2.0. The median and central
90% quantile are shown as solid line
and shaded area, respectively. Addi-
tionally, the expectation assuming the
true muon energy on entry is shown as
black, dashed line.

While Monte Carlo simulations try to model the real world as good
as possible, they can never provide complete accuracy. As the DNN
is trained on these Monte Carlo events, it is therefore important to
ensure that it is insensitive against small deviations from the sim-
ulation that could lead to inaccuracies when applying the DNN to
experimental data. To test the stability of the DNN against system-
atic modeling errors, a set of pulse modifications are applied to a test
set of Monte Carlo events. Specifically, the impact of pulse shifts, ad-
ditional white noise, and broken and saturated DOMs are studied.
The relative deviation in the prediction on an event-to-event basis as
a function of the predicted baseline energy is shown in Figure 7.7. In
general, it is visible that all the systematic effects influence the en-
ergy estimation only on a few percent level. Additional white noise
is relevant for very low energetic events, while the removal of 50 ran-
dom DOMs 23 has the largest effect in the transition region between

23 Note that on top of that around 30

DOMs are permanently dead, which
has also been accounted for during the
training of the DNN.

ionization and stochastic losses. Saturation windows are time peri-
ods in which a DOM collects so many photons that it deviates from
a linear response, i.e., saturates. Consequently, removing saturation
windows only affects events at the high energy end of the sample.
Finally, global Gaussian smearing of the pulse arrival times by 10 ns
does not affect the result much, showing the stability of the DNN
against mismodeling in the photon arrival time.

Overall, we conclude that the DNN is stable against those generic
simulation and detector uncertainties. The specific effect of ice model
variations is further discussed in the next section.
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Figure 7.7: Stability of the energy
DNN against pulse modifications. The
shaded region shows the 90% central
quantile of relative deviations from the
baseline prediction.
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7.3 Muon Neutrino Dataset and Systematic Uncertainties

The point source analysis methods presented in this thesis strongly
relies on the usage of Monte Carlo simulations for the inference of the
likelihood function (section 7.4), as well as the generation of pseudo-
experiments for evaluating the analysis’s performance and generat-
ing the background test statistic distributions (section 7.7). It is there-
fore required that the event observables are distributed consistently
between data and Monte Carlo.

An event sample that is specifically designed to fulfill this crite-
rion is the up-going24 muon-neutrino sample, which has been orig-24 declination δ ≥ −5◦

inally developed for the measurement of the diffuse astrophysical
muon-neutrino flux from the Northern Hemisphere25.26 Starting25 Rädel, “Measurement of High-Energy

Muon Neutrinos with the IceCube Neu-
trino Observatory”.
26 M. G. Aartsen et al., “Observa-
tion and Characterization of a Cosmic
Muon Neutrino Flux from the Northern
Hemisphere using six years of IceCube
data”.

from Muon level 3, two boosted decisions trees (BDTs) are applied to
select only well-reconstructed tracks from the Northern Hemisphere
(δ > −5◦). While the first BDT rejects mis-reconstructed atmospheric
muons by requiring quality cuts on the reconstructions, the second
BDT removes the remaining fraction of cascades through an (anti-)
cascade score. We basically adopt this processing chain but replace
the existing cut on events above 100 GeV in truncated energy by
a cut on the DNN energy estimation. Furthermore, all runs with
less than 85 strings or more than 100 dead DOMs are removed to
guarantee stable predictions of all reconstructions. As a result, the
total livetime of the sample is lowered by around 0.3%. The remain-
ing sample has an event rate of ∼ 2.53 mHz 27 and a very large

27

• conventional atmo.: ∼ 2.51 mHz,

• prompt atmo.: ∼ 0.01 mHz,

• astrophysical: ∼ 0.02 mHz

track purity of > 99.7% (see also Figure 5.27 for the distribution of
event topologies in the sample). In our analysis, we use experimen-
tal data from nine years of full-detector configuration (IC86) with
the respective livetimes and rates shown in Table 7.228. Compared to

28 The data have been re-processed to
Pass2 which includes charge correc-
tions and a consistent filtering among
all detector seasons.

the previous point source analyses,29 a new Monte Carlo simulation29 M. G. Aartsen et al., “Search for
steady point-like sources in the astro-
physical muon neutrino flux with 8

years of IceCube data”.
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Season MJD Start MJD Stop Events Livetime [days]
IC86 2011 55694.4 56062.4 70185 338.09

IC86 2012 56062.4 56414.4 68446 325.43

IC86 2013 56400.5 56783.2 73513 352.28

IC86 2014 56757.4 57160.0 74892 360.88

IC86 2015 57136.1 57528.9 76138 364.60

IC86 2016 57528.9 57891.2 74332 355.78

IC86 2017 57891.2 58309.1 85726 409.91

IC86 2018 58288.8 58682.0 76804 368.09

IC86 2019 58682.0 58998.8 65257 311.04

Table 7.2: Summary of the experimental
datasets including MJD start and end
time, the total livetime of the good runs,
and the number of total events.

Dataset Properties
21002 Ice Model: Spice 3.2.1

Energy Range: 100 GeV - 100 PeV (E−2 Spectrum)
#Events: 9’989’091

21124 Ice Model: Spice 3.2.1
Energy Range: 10 TeV - 500 PeV (E−1 Spectrum)
#Num Events: 81’208

21217 Ice Model: Spice 3.2.1
Energy Range: 100 GeV - 100 PeV (E−1.5 Spectrum)
#Num Events: 2’233’814

21220 Ice Model: Spice 3.2.1
Energy Range: 100 TeV - 100 PeV (E−1 Spectrum)
#Num Events: 95’418

Table 7.3: Properties of the Monte Carlo
datasets that are combined for the point
source analysis to have sufficient statis-
tics throughout the entire energy range.
The number of events is given for the
final level sample.

set with the latest ice models and 4 times larger statistics has been
processed (12,399,531 events in total). A summary of the dataset
properties is given in Table 7.3. In accordance with the latest spectral
measurements on the up-going muon-neutrino sample,30 we adopt a 30 Stettner, “Measurement of the Diffuse

Astrophysical Muon-Neutrino Spec-
trum with Ten Years of IceCube Data”.

conventional atmospheric flux model which is based on the cascade-
equation solver MCEq 31 with the GST cosmic ray model32 and the 31 https://github.com/afedynitch/MC

Eq
32 Dembinski et al., “Data-driven model
of the cosmic-ray flux and mass compo-
sition from 10 GeV to 1011 GeV”.

SIBYLL 2.3c hadronic interaction model.33 To match the experimen-

33 Riehn et al., “The hadronic interaction
model SIBYLL 2.3c and Feynman scal-
ing”.

tal event rates, the conventional spectrum is further scaled with a
normalization factor of ∼ 1.178. The best-fit astrophysical power
law flux, φνµ+ν̄µ = φ0 × (E/100 TeV)−γ, for this model is given by
φ0 = 1.44× 10−18 GeV−1 cm−2 s−1 sr−1 and γ = 2.28.34

34 Stettner, “Measurement of the Diffuse
Astrophysical Muon-Neutrino Spec-
trum with Ten Years of IceCube Data”.

The new point source analysis uses three observables: the DNN
energy as presented in section 7.2, the SplineMPE direction as dis-
cussed in section 3.8.1 and a new BDT estimator for the angular un-
certainty. The BDT uses several high-level input variables as different
energy & angular reconstructions, the paraboloid angular error esti-
mator (section 3.8.2), and common variables as the center of gravity
of the event to estimate the median opening angle, ψµ, median, between
the Spline MPE and the reconstructed muon. To have an angular er-
ror estimator that describes the distribution of the opening angle ψµ,
we are, however, not interested in the median opening angle but
rather the parameter σR in a Rayleigh distribution 35 35

1D analogon of the 2D Gaussian

R(ψµ, σ) =
ψµ

σ2
R

e−ψ2
µ/(2σ2

R) (7.34)

https://github.com/afedynitch/MCEq
https://github.com/afedynitch/MCEq
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as an approximation for the spatial term in the point source like-
lihood. Conveniently, the estimated median opening angle can be
converted into the Rayleigh σR via σR = ψµ, median/1.177. Most im-
portantly, the BDT provides zenith-independent predictions across
the entire declination range of the analysis (see Figure 7.12 and Fig-
ure 7.13), which is a requirement of the spatial part in the signal
likelihood, eq. 7.24.

The experimental data and Monte Carlo distributions of energy,
zenith, and angular uncertainty are shown in Figure 7.8, Figure 7.9
and Figure 7.10, respectively. Evidently, the baseline Monte Carlo
matches the data very well for all cases. Additionally, systematic
datasets with 5% increased scattering and absorption length and two
hole ice 36 variations are shown. It can be seen that there is only36 the refrozen ice from the drilling

holes one variation, the absorption length, that has a larger impact as it
systematically shifts the number of measured photons and thereby
the energy estimation to lower energies. With the current knowledge
of the atmospheric models, it is hard to conclude if the mismatch
is consistent with atmospheric flux uncertainties or if an absorption
length of +5% can be excluded from this data.

For the last point source observable, the opening angle between
reconstruction and original neutrino, ψ, it is not possible to make a
dedicated data/MC study as currently no point source for calibra-
tion is available. Up to today, the best study for the pointing verifi-
cation is the measurement of the cosmic-ray shadow of the Moon.3737 M. Aartsen et al., “Observation of the

cosmic-ray shadow of the Moon with
IceCube”.

Besides, we can use Monte Carlo datasets to test the influence of sys-
tematics on the reconstruction error, as shown in Figure 7.11. It can
be seen that the track reconstruction quality is largely unaffected by
systematics (< 10%), which is consistent with the large lever arm
of these events. Overall we conclude, that all observables used in
this analysis give consistent baseline predictions between data and
Monte Carlo and can therefore safely be used in the analysis.

While the data to Monte Carlo agreement indicates the reliabil-
ity of our reconstructions on experimental data, the remaining mis-
matches can still pose a problem for the analysis as a small mismod-
eling of the large background flux can have a significant impact on
the (small) signal. As the last step, we, therefore, apply a correction
spline to remove the remaining residual. This results in a perfect
background modeling for all further applications such as the infer-
ence of the point source likelihood and the generation of pseudo-
experiments from Monte Carlo.

7.4 Kernel Density Estimation

As the different terms of the point source likelihood can not be de-
scribed through simple analytical expression, numerical methods as
kernel density estimation (KDE) have to be used. KDEs are thereby a
convenient, non-parametric, way to infer a probability density func-
tion for a given data sample. In order to use the same data sample
for different flux models, IceCube’s Monte Carlo simulations assigns
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Figure 7.8: Event distribution and
Data/MC agreement for the DNN en-
ergy. Black points show the experimen-
tal data and colored lines the prediction
from the baseline and various system-
atic Monte Carlos, respectively. In ad-
dition, the bottom panel shows the data
to Monte Carlo agreement for each case.
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Figure 7.9: Event distribution and
Data/MC agreement for the Spline
MPE zenith angle. Black points show
the experimental data and colored lines
the prediction from the baseline and
various systematic Monte Carlos, re-
spectively. In addition, the bottom
panel shows the data to Monte Carlo
agreement for each case.
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Figure 7.10: Event distribution and
Data/MC agreement for the BDT angu-
lar error. Black points show the experi-
mental data and colored lines the pre-
diction from the baseline and various
systematic Monte Carlos, respectively.
In addition, the bottom panel shows the
data to Monte Carlo agreement for each
case.
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each event with a quantity called one-weight that can be used to re-
weight the event to any flux model. The one-weight is defined as

wo =
Pint
E−γ

· A ·Ω
Emax∫

Emin

E−γdE (7.35)

with the surface of the detection volume A, the solid angle of the
event generation Ω, and the spectral index of the simulation spec-
trum γ. In addition, the zenith, flavor and energy-dependent propa-
gation through the Earth, as well as the probability of interaction are
summarized in the total interaction probability Pint. Using the one-
weight one can calculate the event weights for any given flux φ(E, θ)

via

w = wo × φ(Ei, θi)/Nsim (7.36)

where the factor Nsim accounts for the total number of simulated
events in the dataset. Event rates can then be calculated by summing
up the event weights. Hence, a single Monte Carlo dataset can be
used to deduce all the pdfs needed in the point source likelihood, i.e.,
eq. (7.17) and eq. (7.24).

7.4.1 KDE properties

Let (x1, . . . , xn) be an independent and identically distributed sample
of observables drawn from some unknown pdf. The kernel density
estimator (KDE) is then defined as38 38 Poluektov, “Kernel density estima-

tion of a multidimensional efficiency
profile”.

f̂h(x) =
1
n

1
∑n

i=1 wi

n

∑
i=1

wi×Kh(x− xi) =
1

nh
1

∑n
i=1 wi

n

∑
i=1

wi×K
( x− xi

h

)
(7.37)

with the sample (event) weights wi and a kernel function Kh cen-
tered on each xi. The parameter h is a smoothing parameter which
accounts for limited statistics in the sample. KDEs usually do not
depend much on the choice of the kernel and hence a n-D Gaussian
is used in the following. As the optimal bandwidth is not a-priori
clear, a grid search is performed. The fit quality of each grid point
(bandwidth) is thereby calculated through a likelihood-based k-fold
cross validation. For this procedure — that is widely used in ma-
chine learning and data science — the original data sample is split
into k parts. In subsequent k iterations the KDE is then trained on
k− 1 parts of the dataset (training dataset) and evaluated on the re-
maining part (test dataset). This is done uniquely for all the k dataset
parts. Finally, the median of the evaluation metric can be used as a
measure for the fit-quality of the KDE given a specific bandwidth h.
As evaluation metric we use the (weighted) likelihood of the events
in the test dataset given the KDE model build on the training dataset

Lcv = ∏
i

f̂h(xi)
wi . (7.38)
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7.4.2 Deducing the Point Source Likelihood

The point source likelihood contains a signal and background term,
eq. (7.17) and eq. (7.24), respectively. While the background term
does not have any free parameters, but is unambiguously defined by
the background mdoel, the signal term consists of two conditional
pdfs that depend on the spectral index γ. In general, a conditional
pdf p(A | B) can be calculated as the ratio of two pdfs p(A, B) and
p(B) via

p(A | B) = p(A, B)
p(B)

. (7.39)

Consequently, the spatial term of the point source likelihood can be
calculated as the ratio of

fs
(
ψ | Eµ, σ, γ

)
=

fs(ψ, Eµ, σ | γ)
fs(Eµ, σ | γ) . (7.40)

and the energy term as

fs
(
Eµ | δsrc, γ

)
=

fs
(
Eµ, δsrc | γ

)
fs (δsrc | γ)

. (7.41)

In summary, the point source likelihood can therefore be constructed
from 4 KDEs per spectral index plus 1 additional KDE for the back-
ground. As discussed in chapter 7.1.3, the full energy term has an
additional dependency on the reconstruction quality parameter σ. It
turns out, however, that the generation of the required 3D KDEs is
pretty unstable with the limited Monte Carlo statistics available. In
addition, the σ distribution has harsh energy dependent boundaries,
driving the optimal bandwidth to much smaller values than desir-
able for a large part of the phase space. We therefore drop σ from the
likelihood with only a marginal effect on the analysis performance
as discussed in section 7.5.

For the spatial part, on the other hand, there is a workaround that
allows for stable production of 3D KDEs. From the discussion in
section 7.1.3 it is known that the opening angle between neutrino
and reconstructed direction, ψ, can be approximated by a Rayleigh
distribution 39. Using this approximation, a relative kernel density esti-39 The 1D projection of the absolute

value of the 2D circularized Gaussian
in eq. (7.26)

mation40 can be used. This specific type of KDEs use a slowly varying

40 Poluektov, “Kernel density estima-
tion of a multidimensional efficiency
profile”.

kernel to solely model deviations from an analytical approximation,
i.e.,

fs(x = (ψ, Eµ, σ) | γ) =
∑ K

(
x−xi

h

)
( fapprox ⊗ K)(x)

× fapprox(ψ, Eµ, σ | γ).

(7.42)

In our case the approximated function fapprox is the product of the
2D energy and sigma pdf and the Rayleigh approximation

fapprox(ψ, Eµ, σ| γ) = fs(Eµ, σ | γ)× R(ψ, σtot) (7.43)

= fs(Eµ, σ | γ)× ψ

σ2
tot

e−ψ2/(2σ2
tot). (7.44)
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σtot is constructed to account for both angular uncertainties, the re-
construction uncertainty and the average energy-dependent kine-
matic angle, i.e.

σtot =
√

σ2
reco + σ2

kin(Eµ). (7.45)

7.4.3 KDE generation pipeline

The KDE generation pipeline for the point source analysis is based
on a software package called Meerkat.41 Since the energy, the opening 41 Ibid.

angle ψ and the angular error estimator σ extend over several orders
of magnitude, it is advantageous to generate the pdfs on a log10-
scale, i.e., shifting the observables in the point source likelihood from
Eµ → log10 Eµ, ψ → log10 ψ and σ → log10 σ. As the Eµ and σ

transformations affect the signal and background likelihood in the
same way, no additional transformation terms appear. In contrast,
ψ is an observables that is unique to the signal likelihood and by
construction — eq. (7.24) — its distribution expected to be on the ψ

scale. The required transformation term is

dP
dψ

=
dP

d log10(ψ)

d log10(ψ)

dψ
=

dP
d log10(ψ)

1
log(10) · ψ , (7.46)

showing that a factor of 1/(log(10) · ψ) needs to be multiplied to
the spatial term when generating KDEs on the log10 scale. As the
transformation in eq. (7.46) works in both directions, it can also be
used to convert the Rayleigh in eq. (7.44) on a log10-scale as required
for the usage of the relative kernel density estimation technique in
log10 space. Hence,

dR
d log10(ψ)

= log(10) · ψ dR
dψ

= log(10)
ψ2

σ2
tot

e−ψ2/(2σ2
tot) (7.47)

The KDE generation pipeline is then based on the following steps

1. A bandwidth optimization for the background term and the higher-
dimension pdfs, fs(ψ, Eµ, σ | γ) and fs

(
Eµ, δsrc | γ

)
, in the spatial

and energy term, respectively. In order to save computational re-
sources, the cross-validation is done on a sparse spectral index
grid, i.e. γ ∈ [0.5, 1.0, 1.5, . . . , 4.5]. For each γ and each pdf the
optimal bandwidth is determined from a grid scan with 5-fold
cross validation at each grid point. An a priori range of band-
width is chosen from the approximated scale on which variations
are expected to happen, e.g. the energy resolution.

2. The results of the first step are collected and for each observable in
both signal terms a γ-dependent 1D interpolator is constructed to
independently estimate the optimal bandwidth between the grid
points of step 1.

3. The final set of KDEs is generated on a fine grid between γ = 0.5
and γ = 4.5 in steps of ∆γ = 0.05. The respective bandwidth
are taken from the interpolator in step 2. For the lower dimen-
sional denominator in the spatial and energy term, fs(Eµ, σ | γ)
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and fs (δsrc | γ), the same bandwidth as in the corresponding higher
dimensional term are used. This choice ensures the same be-
haviour towards the boundaries for numerator and denominator
in eq. (7.40) and eq. (7.41).

4. Monte Carlo statistics are limited and consequently there are only
few events with small opening angle ψ as the phase space close to
the true direction gets infinitesimally small. It is, however, desir-
able that the KDEs are also stable for events that fall very close to
the source, as this can not only happen through signal events, but
also through background events that happen to be reconstructed
close to a source position. A simple and stable solution is to fall
back to the analytical Rayleigh approximation in this case. Con-
veniently, the Rayleigh can be approximated for small ψ as

R(ψ) =
ψ

σ2 e−
ψ2

2σ2 =
ψ

σ2 (1−
ψ2

2σ2 +O(ψ4)) = mψ +O(ψ3) (7.48)

with some slope m. Given a critical value of σcrit = α · σ the KDE
can hence be continuously extrapolated to arbitrary small ψ values
via

fs(ψ | Eµ, σ, γ) =
f (ψ = σcrit | Eµ, σ, γ)

σcrit
ψ , ψ ≤ σcrit (7.49)

As KDEs itself are slow in their evaluation, they are evaluated once
on a very fine grid and finally stored as penalized B-splines using
the photospline package.42 As photosplines are optimized for high-42 Whitehorn, Santen, and Lafebre, “Pe-

nalized Splines for Smooth Representa-
tion of High-dimensional Monte Carlo
Datasets”.

dimensional spline representations the spectral index dimensions
with its 80 individuals pdfs can be concatenated. Hence, all like-
lihood terms can be stored in 3 photosplines, spatial term, energy
term, and background term.

A major difference of the new KDE method compared to the pre-
vious point source method is the proper modeling of the spatial pdfs
in the signal likelihood — including their dependence on the spectral
index. A collection of plots comparing the Monte Carlo expectation
with the Rayleigh approximation of the old method and the new
KDEs are shown in Figure 7.12 and Figure 7.13, as well as in the
appendix D.3. Most importantly, it can be seen that, specifically at
lower energies, the Monte Carlo expectation strongly deviates from
the Rayleigh assumption but is correctly modeled by the KDEs. This
has two major effects: 1.) The correct description of the tails allows
the KDE method to better recover events that are further away from
a source, 2.) Background events that fall close to a source are less
pronounced because the KDE is less peaked for small opening an-
gles. Altogether this can explain the fit biases of the old analysis
approach, as discussed in section 7.5.

Finally, note that in many applications it is sufficient to evaluate
the likelihood function on a subset of events that are in a given circle
around the position of interest where the spatial term of the signal
likelihood has a non-negligible effect 43. The resulting simplifications43 In this analysis we use a circle of 15◦

radius. and a description of the software tools for the analysis are discussed
in the appendix, section D.1.
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Figure 7.12: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ =
2.0. From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.
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Figure 7.13: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ =
3.25. From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.

0 1 2 3 4

Ψ[deg]

10

20

30

40

P
D
F

σ: 0.80 deg, log10(E/GeV)= 2.5

KDE

Rayleigh

−0.09 < sin δ < 0.34

0.34 < sin δ < 0.69

0.69 < sin δ < 1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ψ[deg]

20

40

60

P
D
F

σ: 0.50 deg, log10(E/GeV)= 3.5

KDE

Rayleigh

−0.09 < sin δ < 0.34

0.34 < sin δ < 0.69

0.69 < sin δ < 1.00

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Ψ[deg]

20

40

60

80

100

120

P
D
F

σ: 0.30 deg, log10(E/GeV)= 4.5

KDE

Rayleigh

−0.09 < sin δ < 0.34

0.34 < sin δ < 0.69

0.69 < sin δ < 1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ψ[deg]

50

100

150

200

250

300

P
D
F

σ: 0.12 deg, log10(E/GeV)= 5.5

KDE

Rayleigh

−0.09 < sin δ < 1.00



CHAPTER 7. AN IMPROVED METHOD FOR NEUTRINO POINT SOURCE SEARCHES 125

7.5 Biases in the Fit Parameters

The consistency of maximum likelihood estimators 44 ensures that 44 section 7.1.1

the estimated parameters converge against the truth for a large sam-
ple size if the likelihood function correctly models the underlying
data. In fact, the consistency is an important property for the reliable
determination of physical parameters of a detected neutrino source
and provides a good cross-check for the reliability of the analysis
method. Since the new, KDE-based, point source analysis is based
on pdfs directly inferred from Monte Carlo, we expect it to recover
the true source parameters when sufficient signal is present. To ver-
ify these properties, pseudo-experiments are generated from Monte
Carlo, emulating 9 years of recorded data. For each trial, events are
injected by randomly drawing from a Monte Carlo sample according
to their background weights and adding signal events for a given
signal spectrum and position.

Figure 7.14: Counts map of an exem-
plary point source trial emulating 9

years of data. Grey dots indicate back-
ground events and red dots events from
an injected source with φ(E) ∝ E−3 and
55 events. The size of the dots scales
with the event energy.

It is important for all the following discussions to keep in mind
that the point source analysis is a strongly background-dominated
analysis. To illustrate this, Figure 7.14 shows a simulated trial with 9

years of background and a soft spectrum (φ(E) ∝ E−3) point source
with 55 injected events. Most importantly, the large background sta-
bilizes the analysis against mismodeling of the likelihood, which is
why approximations in the old point source analysis do not cause
larger problems. Signal events that get falsely assigned a small spa-
tial weight can always be interpreted as a background event with-
out being in large tension with the signal hypothesis at a specific
sky position. In other words: the large background allows for some
mis-identification, some exchange, between signal and background
events that comes with a resulting fit bias. In the following, we will
show based on a few examples that the new analysis approach, in
contrast, produces unbiased results — for spectral index and source
strength. Plots showing additional evidence can be found in the ap-
pendix, section D.4 and section D.5.

7.5.1 Spectral Index Bias

The spectral index is an important quantity to study the emission
properties of a neutrino source. Figure 7.15 and Figure 7.17 show the
recovery of the spectral index of the old and new analysis for injected
sources with γ = 2.0 and γ = 3.25, as well as two source strength,
respectively. The soft spectrum case is specifically motivated from
the recent publication of a soft-spectrum 2.9σ excess at the position
of NGC 1068.45 45 M. G. Aartsen et al., “Time-integrated

Neutrino Source Searches with 10 years
of IceCube Data”.
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Figure 7.15: Recovery of the spectral in-
dex for the old and new method against
the declination. The injected spectral
index, γ = 2.0, is shown as white
dashed line. The median and cen-
tral 68% quantiles of the outcomes are
shown as solid line and shaded band,
respectively. In the left plot 10 events
are injected and in the right plot 20

events.
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Figure 7.16: Distribution of recon-
structed energies for the DNN and
truncated energy and two spectral in-
dices, γ = 3.25 (solid line) and γ = 4.0
(dashed line), respectively.

For the harder spectral index, γ = 2.0, the old point source method
shows a general trend to fit softer-than-injected source spectra. This
behavior can be understood by the overly peaked spatial likelihood
term (see Figure 7.12 and Figure 7.13) that assigns large spatial signal
probabilities for (low-energy) background events that happen to fall
close to the source. The effect is sufficiently strong not to be com-
pensated by the high-energy signal events that are more accurately
modeled. Furthermore, with increasing declination, more and more
high-energy events get absorbed by the Earth, effectively softening
the astrophysical spectrum observed at the detector and thereby en-
hancing the bias’s effect. Comparing the two source strength in Fig-
ure 7.15 it becomes evident that increasing the signal does not sig-
nificantly impact the median prediction, but only the variance — for
both the old and the new method.

In the case of a soft spectrum source, γ = 3.25, the spectral index
is recovered in the median for both methods. However, while the
90% central interval is rather small for the new analysis, it extends to
the fit boundary at γ = 4.0 for the old analysis at 60 injected events
(median significance ∼ 3σ) and only drops below that for 90 injected
events. Similar to the hard spectrum case, the old analysis performs
worse for higher declinations. The KDE method is instead stable
across the declination band. While for the estimation of hard spectral
indices the improvement of the new method is mainly caused by
the improved description of the likelihood function, the improved
energy estimation gets particularly relevant for softer spectra. This
is evident by looking at Figure 7.16, where the distribution of the
reconstructed energy is shown for γ = 3.0 and γ = 4.0 and the two
energy estimators. While the distributions are similar for truncated
energy due to the low-energy degeneration, they differ significantly
for the DNN energy estimator.
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Figure 7.17: Recovery of the spectral
index for the old and new method
against the declination. The injected
spectral index, γ = 3.25, is shown as
white dashed line. The median and
68% quantiles of the outcomes for both
methods are shown as solid line and
shaded band, respectively. In the left
plot 40 events are injected and in the
right plot 80 events.

Although only two examples have been shown, the results are rep-
resentative for a general trend, i.e., the new analysis provides (nearly)
unbiased spectral index fits up to very high declinations (δ ∼ 81 de-
grees, sin(δ) = 0.9876 ) while having a variance that is lower than the
previous analysis. The remaining biases result from neglecting the
angular uncertainty dependency in the energy and background term
of the likelihood, eq. (7.27). At very high declinations, fitting prob-
lems are caused by rapid changes in event rates and reconstruction
quality as many events go only along a single string of the detec-
tor. This problem can be potentially cured in the future by removing
single-string events from the event selection.

7.5.2 Source Strength Bias

Apart from the spectral index, the number of signal events, i.e., the
flux normalization is the second important property of a neutrino
source. In Figure 7.18 and Figure 7.19 the fitted source strength of the
old and new analysis are shown in comparison for an injected spec-
trum of γ = 2.0 and γ = 3.25 at two different declinations, respec-
tively. In both figures, the left panels show the fitted signal strength
against the number of injected events, while the right plot shows the
corresponding evolution of the spectral index. As expected, the new,
KDE-based method provides unbiased fits in all cases. It thereby
solves major problems of the old analysis as discussed in the follow-
ing.

In the case of a γ = 2.0 spectrum, the old method is clearly over-
fitting the number of signal events, a trend that increases with the
number of injected signal events. While this appears to be contra-
dictory to the underestimation of the tails in the spatial term, it can
be understood through the bias towards softer spectral indices in
Figure 7.15, as tilting the spectrum towards softer indices will neces-
sarily manifest in a larger number of low-energy events and thereby



128

Figure 7.18: Fitted versus injected sig-
nal for a γ = 2.0 source and two dif-
ferent declinations. Left and right plot
show the recovery of the number of
signal events and the spectral index as
a function of the number of injected
events, respectively. The unbiased ex-
pectations are shown as white dashed
lines. The results for the new and old
analysis are shown in different colors.
Solid lines and shaded bands show the
median and central 68% quantile. 0 20 40
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Figure 7.19: Fitted versus injected sig-
nal for a γ = 3.25 source spectrum
and two different declinations. Left
and right plot show the recovery of the
number of signal events and the spec-
tral index as a function of the number
of injected events, respectively. The un-
biased expectations are shown as white
dashed lines. The results for the new
and old analysis are shown in different
colors. Solid lines and shaded bands
show the median and central 68% quan-
tile.

0 25 50 75
ninj

0

50

100

n
fi

t

δ = 1.97 deg

Old Analysis New Analysis

0 25 50 75
ninj

2.5

3.0

3.5

4.0
γ
fi

t

0 25 50 75
ninj

0

50

100

n
fi

t

δ = 50.45 deg

Old Analysis New Analysis

0 25 50 75
ninj

3

4

γ
fi

t



CHAPTER 7. AN IMPROVED METHOD FOR NEUTRINO POINT SOURCE SEARCHES 129

a higher n f it. Hence, in consistency with the declination behavior of
the spectral index, also the source strength bias increases with higher
declination.

For soft spectral indices, as the exemplary γ = 3.25 case, the old
analysis continuously underestimates the true number of injected
signal events. Since we had seen previously that for these injection
spectra the spectral index fit is unbiased, this is inevitably an effect
of the mismodeling of the spatial term in the likelihood. Specifically,
events that are reconstructed further away from the source position
can not be correctly recovered. As for the case of the harder spectrum
before, the bias increases with injected source strength. In fact, go-
ing beyond 100 injected signal events, the truth is not even contained
inside the central 90% range of outcomes.

7.6 Impact of Systematic Uncertainties on the Analysis

In section 7.3 the impact of ice uncertainties on the three point source
observables — DNN energy, Spline MPE direction, and BDT angu-
lar uncertainty — have been discussed. In this section, we want to
discuss how the uncertainties impact the parameter estimation of
the full analysis. Therefore we repeat the evaluation of fit biases,
as shown for the baseline set in the previous sections, on the dif-
ferent Monte Carlo datasets with systematic ice model variations.
As the data sample of the point source analysis is dominated by at-
mospheric neutrinos, it is important to have consistent background
modelling to prevent the analysis from artificially picking up un-
modeled background components. Specifically, it is required that the
background model complies with the strong data constraints. Sim-
ilarly, to the baseline model, all systematic variations are therefore
corrected to match the experimental data perfectly. This procedure
is thereby equivalent to using a hybrid of baseline and systematics
Monte Carlo for background and signal injection, respectively.

The resulting fit bias plots are shown in Figure 7.20 and Figure
7.21 for two exemplary declinations. Most importantly, it can be
seen that the influence of ice systematics on the fit parameters is
small - independent of the spectral index and the declination. This
guarantees that the analysis results are stable even if the true ice
properties deviate from their baseline values. The same also applies
for a hypothetical prompt component that is found negligible for the
analysis.
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Figure 7.20: Fitted versus injected sig-
nal for a γ = 2.0 source spectrum
and two different declinations. The left
and right plot show the recovery of the
number of signal events and the spec-
tral index as a function of the number
of injected events, respectively. The un-
biased expectation is shown as a white
dashed line. The results for different
systematic effects are shown in different
colors. Solid lines and shaded bands
show the median and central 68% quan-
tile. 0 20 40
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Figure 7.21: Fitted versus injected sig-
nal for a γ = 3.25 source spectrum
and two different declinations. The left
and right plot show the recovery of the
number of signal events and the spec-
tral index as a function of the number
of injected events, respectively The un-
biased expectation is shown as a white
dashed line. The results for different
systematics effects are shown in dif-
ferent colors. Solid lines and shaded
bands show the median and central
68% quantile. 0 25 50 75
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7.7 Sensitivity and Discovery Potential

Besides the recovery of the signal properties, the sensitivity and dis-
covery potential are two important measures for the analysis perfor-
mance. They are defined as follows

• Sensitivity is the source strength µs needed to exceed the median
value of the background test-statistic distribution in 90% of the
cases. Thereby it makes a statement to the median 90% upper
limit assuming a non-observation of a signal.

• The discovery potential describes the power of the analysis to
detect a signal. It is defined as the source strength needed to exceed
a certain quantile (usually 3σ or 5σ) of the background test statistic
distribution in 50% of the cases.

As a first step, both discovery potential and sensitivity, as well as the
calculations of p-values in the final analysis, require the generation
of background test statistics distributions as shown in Figure 7.22 for
various declinations and 500,000 trials, respectively. It can be seen
that the distributions are slightly steeper than the naive 0.5× χ2

2 ex-
pectation from Wilks’ theorem (theorem 7.1.2) 46. In addition to the 46 Note that for the analysis a truncated

gamma function is fitted as it has more
flexibility to describe the data. This is
specifically important to correctly cal-
culate the p-value for the hottest spots
deep in the tail of the test statistic dis-
tributions.

previous discussions, we will also consider source hypothesis where
the spectral index is fixed, as most astrophysical scenarios expected
that neutrino source spectra are harder than the conventional atmo-
spheric neutrino spectrum. Shock acceleration, for example, predicts
sources with spectral index γ ≈ 2. Under these circumstances, the
likelihood has only one degree of freedom. According to Wilks’ the-
orem, we, therefore, expect that the background test statistic distri-
bution follows a 0.5× χ2

1 distribution. It turns out, however, that for
hard spectra (γ = 2.0) the fraction of 0 trials increases to around 80%
(70% for γ = 2.5) and the test statistic distribution is falling down
more steeply, see Figure D.1 and Figure D.2 in the appendix.

The overall tendency to flatter test statistic distributions for all
cases - fixed and free spectral index - can be explained by Wilks’
theorem requiring the sample size of n → ∞. Specifically, in the
case of hard, fixed spectral indices the (lower energy) background
events do not sufficiently sample the signal space to fulfill this re-
quirement. While the deviations from the χ2 expectation require
additional simulations to derive accurate background test statistic
distribution, their steepness also increases the analysis’s background
rejection power.
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Figure 7.22: Background test statis-
tic distribution for various declinations.
The χ2

2 expectation — as expected from
Wilks’ Theorem — is indicated as a
black dashed line after normalizing for
the number of zero trials N0, which is
around 50% to 60%.

0 10 20 30

10−6

10−4

10−2

100

P
D

F

δ = 0.7 deg

0 10 20 30

10−6

10−4

10−2

100
δ = 9.2 deg

0 10 20 30

TS

10−6

10−4

10−2

100
P

D
F

δ = 32.8 deg

0 10 20 30

TS

10−6

10−4

10−2

100
δ = 57.0 deg

(1−N0)× χ2
2 Trials

0 100
µs

0

20

40

<
T
S
>

γ = 2.0

γ = 3.25

Figure 7.23: The median test statistic as
a function of the signal strength at dec-
lination δ = 5◦ and 9 years of data. Dif-
ferent colors represent different spectral
indices, and the dashed lines show the
threshold for 5σ (top) and 3σ (bottom)
significance.

To calculate the sensitivity and the discovery potential, signal tri-
als have to be generated for increasing source strength µs. In Figure
7.23 it is depicted how the 50% quantile of the signal test statis-
tic distribution increases with µs. In a brute force approach, one
could simply generate sufficient trials for various µs and calculate
discovery potential and sensitivity through interpolation. This is,
however, computationally ineffective as many unnecessary trials are
generated. Instead, we use a more sophisticated binary search that
generates a larger number of trials close to the respective test statistic
threshold, increasing accuracy while generating fewer trials overall.

In Figure 7.26 the resulting sensitivity and discovery potential are
shown for injected source spectra of γ = 2.0 and γ = 3.0, as well as
three signal hypothesis with the different assumption on the spectral
index: free, fixed to γ = 2.0, and fixed to γ = 2.5, respectively. Most
prominently, the new analysis improves the discovery potential by
20%− 30% for an injected signal with γ = 2.0 (free spectral index
case). Improvements are tendentially larger towards the poles. For
the softer spectral index, the average improvement is smaller with
only ∼ 10%. On the contrary, the sensitivity does not improve much
compared to the old analysis — independent of the injected spectral
index. This results from the sensitivity being dominated by statistical
fluctuations of a few events that push the TS away from 0.
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Figure 7.24: Cumulative spectral index
distribution of background fluctuations
with more than 4σ significance.

Figure 7.26 also shows the results for the fixed spectral index
cases. While γ = 3.0 sources are better identified with the free spec-
tral index analysis, the fixed spectral index of γ = 2.0 improves the
discovery potential by another ∼ 10% when searching for γ = 2.0
sources. Visually, fixing the spectral index to γ = 2.0 penalizes the
background test-statistic values as background fluctuations are usu-
ally fitted to softer values, see Figure 7.24. On the contrary, signal
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test statistic values are not much affected by the spectral index con-
straint as the fit anyway recovers in the median the injected source
spectrum.
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Figure 7.25: Differential 5σ discovery
potential for different declinations, as-
suming an E−2 spectrum in each energy
bin.

The energy dependence of the discovery potential can finally be
studied by using the same construction as above, but limiting the
flux to a specific energy range. This results in the differential discovery
potential as shown in Figure 7.25 for two bins in each energy decade.
Most notably, the absorption of neutrinos in the Earth strongly re-
duces the discovery potential at higher declinations and energies.
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Figure 7.26: Sensitivity and discovery
potential for an injected spectral indices
of γ = 2.0 (top) and γ = 3.0 (bottom).
The results for this 9 year IC86 analy-
sis are also compared to the previously
published 10 year point source result
(including IC40, IC59 and IC79 seasons)
with the old method (grey) as adopted
from M. G. Aartsen et al., “Time-
integrated Neutrino Source Searches
with 10 years of IceCube Data”.

7.8 Experimental Results

Note: The results presented in this section are preliminary. While
the general picture will not change, numbers can still vary on the
order of numerical precision in future publications.

Finally, in this section, the new point source likelihood is used to
analyze the 9 years sample of up-going muon tracks47 for a neutrino 47 as described in section 7.3

point source signal. Two types of tests are performed:
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1. A sky scan that covers the Northern Hemisphere between decli-
nation −3◦ ≤ δ ≤ 81◦ and evaluates the point source likelihood
— eq. (7.24) with eq. (7.27) — on a grid with a pixel area of 0.052

square degree 48. The resulting test statistic values are converted48 corresponding to a HEALPix grid
with nside = 256 , see Gorski et al.,
“HEALPix - A Framework for high res-
olution discretization, and fast analysis
of data distributed on the sphere”

to p-values using background test statistic distributions generated
at 230 declinations. For the 20 hottest spots from the initial scan,
a fine scan is performed in a region of 0.75 degrees around the
hot spot and a HEALPix nside of 2048 (0.0008 sqdeg per pixel). In
addition to the case of the free spectral index, the same procedure
is repeated for the two fixed spectral indices, γ = 2.0 and γ = 2.5.
The hottest spot is reported as the most significant spot among all
maps.

2. A source catalog search including 110 known gamma-ray sources.
The choice of 110 sources guarantees that a 5σ pre-trial detec-
tion will not drop below a 4σ discovery after accounting for trials.
For the construction of the catalog, the integrated gamma-ray flux
above 1 GeV of all 4FGL sources in the declination range −3◦ ≤
δ ≤ 81◦ is weighted with the IceCube sensitivity at the respec-
tive source declination. Subsequently, the 5% highest weighted
BL Lacs and FSRQs are then added to the source list. On top, all
6 4FGL starburst galaxies with suitable declination are added as
they have been predicted to produce neutrinos via proton-proton
interaction.49 Finally, one Galactic source, MGRO J1908+06, is49 Murase, Ahlers, and Lacki, “Testing

the Hadronuclear Origin of PeV Neu-
trinos Observed with IceCube”.

added as its expected neutrino emission assuming φν ∝ φγ is com-
patible with the differential sensitivity in Figure 7.25. We report
on the hottest spot of the catalog.

The results of the sky scans are shown in Figure 7.31. When
interpreting the sky scan’s local p-values, it is important to keep
in mind that each new position in the scan corresponds to a new
source hypothesis. Although not all of these positions are statis-
tically independent, scanning the entire sky, therefore, produces a
large number of independent trials. Consequently, the interpretation
of the hottest local p-value requires a correction for the probability
of observing a hot spot at least as significant as the experimental one
somewhere in a sky scan, assuming the background hypothesis to be
true. The required distribution of smallest p-values from 1000 back-
ground pseudo-experiments and subsequent sky scans is shown in
Figure 7.27 for the case of the free spectral index and in the appendix,
Figure D.11 and Figure D.12, for the fixed spectral index cases.

In order to describe the distribution of p-values, one can use order
statistic, which states that the kth smallest p-value from an indepen-
dent sample of N trials follows a beta distribution,50 i.e.,50 Gentle, Computational Statistics, p.63.

ppre ∼ Beta(k, N + 1− k). (7.50)

In our case we search for the hottest spot in a skymap and hence
k = 1. N can be interpreted as an effective number of independent
trials. Fitting eq. (7.50) to the respective p-value distributions re-
sults in N = 202,299 (free spectral index), N=333,683 (γ = 2.0) and
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N=409,883 (γ = 2.5) independent trials. As expected the number
of independent trials is fairly large, being on the order of one inde-
pendent spot per 0.1-0.2 sqdeg — approximately the size of the area
covered by a median directional uncertainty of ∼ 0.2 deg. Notice-
ably, the number of independent trials is smaller for the free spectral
index case. This is consistent with the results of the sky scan in
Figure 7.31 which clearly shows that neighbouring pixels are much
more washed out and therefore more correlated in this case. Finally,
Figure 7.27 also shows the resulting cumulative distributions that is
needed to convert the pre-trial into a post-trial p-value. Analytically
it can be described as51 51 Casella and Berger, Statistical Infer-

ence, p.229.
ppost = 1− (1− ppre)

N (7.51)

which for ppre � 1 can be approximated as

ppost ≈ N · ppre. (7.52)

Hence, a pre-trial p-value of 7σ is need for a 5σ discovery.
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Figure 7.27: The trial correction func-
tion for the case of a free spectral index
hypothesis. The left plot shows the dis-
tribution of p-values from 1000 pseudo-
experiments assuming the background
hypothesis to be true. The fitted beta
distribution is shown as orange line.
The corresponding cumulative function
that can be used to convert the pre-trial
into a post-trial p-value is shown in the
right plot.

After correcting the smallest pre-trial p-value from each sky scan
with the respective trial correction function, the analysis’s hottest
spot is given as the most significant spot among all three maps.
It is found in the free-spectrum spectrum map at right ascension
40.69

◦ and declination 0.09
◦ (J2000) with a local pre-trial p-value of

ploc = 8.64× 10−8 (5.2 σ). In addition to the previously discussed
trial correction for the sky scan, also a trial correction factor for test-
ing three different spectral index hypotheses needs to be considered.
Using simulations, we find that this correction factor is 1.6, which is
smaller than 3 as the maps are highly correlated. Combining all trial
correction factors, the post-trial p-value is ∼ 1.9σ and therefore by it-
self not significant when the entire sky is scanned without any prior
assumption. A fine scan around the best-fit position of the hottest
spot is shown in Figure 7.28.

Figure 7.28: A fine scan around the lo-
cation of the sky scan’s hottest spot.
The black cross indicates the hottest
spot position with respective coordi-
nates given above the plot. 4FGL
sources are indicated as grey stars. The
solid and dashed white contours give
the 68% and 95% confidence regions of
the hot spot localization as calculated
from Wilks’ Theorem with two degrees
of freedom.

In addition to the neutrino hotspot, Figure 7.28 also shows the
presences of a 4FGL source spatially consistent with the neutrino
emission. This source — a Seyfert type-II starburst galaxy NGC 1068



136

— is also part of our source catalog and, therefore, unsurprisingly its
most significant candidate. At the multi-frequency position of NGC
1068 (r.a.: −0.007◦ dec: 40.667◦) we find a local p-value of ploc =

1.64× 10−7 (5.1 σ), with best-fit values of spectral index γ = 3.19 and
number of signal events n f it = 78.78. In fact, this hotspot has already
been seen in a previous publication but was shifted by around 0.35◦

further south in declination.52 With the new analysis, the localization52 M. G. Aartsen et al., “Time-integrated
Neutrino Source Searches with 10 years
of IceCube Data”.

of the neutrino hotspot is well consistent with the position of NGC
1068, which manifest in a jump in the post-trial p-value from 2.9 σ

to 4.2 σ after accounting for the 110 trials from the source catalog.
Hence, NGC 1068 is the first candidate of astrophysical neutrinos
with post-trial significance above 4σ.

To better characterize the spectrum of the source, the likelihood
function is scanned around the minimum in source normalization
and spectral index resulting in the profile likelihood shown in Figure
7.29. Using Wilks’ Theorem, 68% and 95% confidence intervals are
drawn assuming the likelihood difference to follow a χ2

2 distribution,
which has been validated using Monte Carlo simulations.

Finally, the profile likelihood enables us to assemble the source’s
full SED, Figure 7.30, including all the data from the multi-frequency
analysis tool as described in section 8.2. The uncertainty contour of
the neutrino emission is thereby derived by calculating the energy-
dependent minimum and maximum flux of all fluxes that lay on the
68% contour of Figure 7.29. While the soft neutrino spectrum of
NGC 1068 is against the usual expectation of hard neutrino source
spectra, there are already models that predict this kind of emission
for neutrino production close to the supermassive black hole in the
center of the galaxy53.54 These models can also explain the discrep-53 Inoue, Khangulyan, and Doi, “On the

Origin of High-energy Neutrinos from
NGC 1068: The Role of Nonthermal
Coronal Activity”.
54 Murase, Kimura, and Meszaros,
“Hidden Cores of Active Galactic Nu-
clei as the Origin of Medium-Energy
Neutrinos: Critical Tests with the MeV
Gamma-Ray Connection”.

ancy between neutrino and gamma-ray flux through absorption of
gamma-rays in the X-ray coronae of the source. Nevertheless, further
theoretical studies of the source will be necessarily to unambiguously
identify the underlying processes of the neutrino production.

Figure 7.29: Profile likelihood scan for
the flux parameters of NGC 1068. The
cross shows the best-fit values, solid
and dashed lines represent 68% and
95% confidence levels derived from
Wilks’ Theorem, respectively. The con-
tours include only statistical uncertain-
ties.

Figure 7.30: Spectral energy distri-
bution of NGC 1068. Black points
show archival multi-frequency mea-
surements. The Fermi-LAT gamma-ray
spectrum (grey with black SED points)
is based on an analysis integrating over
the same 9 years as the neutrino data.
The νµ + ν̄µ neutrino spectrum is shown
as the blue band in the energy range be-
tween 300 GeV and 20 TeV.
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Figure 7.31: Skymaps for the different
signal hypotheses. The maps are shown
in Hammer-Aitoff projection with the
color scale representing the local p-
value. The red circles indicate the
hottest spot positions.
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8 Multi-Messenger Searches for Neutrino-
Emitting Blazars

In this thesis, we have presented the first compelling sources of as-
trophysical neutrinos — the masqueraded BL Lac TXS 0506+056 in
chapter 4 and the starburst galaxy NGC 1068 in section 7.8. Overall,
those two sources can, however, only explain a small fraction of the
entire astrophysical neutrino flux. Population studies of hot spots
in the neutrino sky actually indicate contributions from more than
1000 neutrino sources1.2 Additional search strategies are therefore 1 Glauch and Turcati, “Search for weak

neutrino point sources using angular
auto-correlation analyses in IceCube”.
2 M. G. Aartsen, K. Abraham, et al.,
“All-sky Search for Time-integrated
Neutrino Emission from Astrophysical
Sources with 7 yr of IceCube Data”.

required to identify a larger population of neutrino sources. In gen-
eral, astrophysical neutrinos are expected to be produced along with
a broad range of multi-frequency electromagnetic emission (see sec-
tion 2). Hence, requiring a spatial connection of neutrinos with other
messengers, for example, gamma rays, can significantly reduce trials
compared to model-independent neutrino-only searches.

Blazars, as a subclass of active galactic nuclei with a jet point-
ing towards the observer, have often been proposed as good can-
didates for the production of astrophysical neutrinos (see section
2.3.3). Despite their acceleration power, which is manifested in the
bright synchrotron peak of their spectral energy distribution, they
are also known to produce a significant fraction of the extragalactic
100 MeV to 100 GeV gamma-ray emission (see Figure 2.6). In fact,
TXS 0506+056, the first compelling neutrino source candidate (see
chapter 4), is a blazar. Dedicated IceCube Collaboation studies have
shown that the contribution from the 3FHL 3 blazar catalog to the dif- 3 Blazars detected in Fermi-LAT above a

photon energy of 10 GeVfuse IceCube neutrino flux is limited to 14.4 % (γ = 2.0) and 22.3%
(φ(E) ∝ E−1.0 · exp(E/E0); E0 ≥ 1 PeV).4 In contrast, the slightly 4 Huber, “Searches for steady neutrino

emission from 3FHL blazars using eight
years of IceCube data from the North-
ern hemisphere”.

older, but lower energy threshold catalog, 2LAC, allows for a con-
tribution of up to 66.9% (φ(E) ∝ E−1.0 · exp(E/E0); E0 ≥ 1 PeV).5

5 Huber, “Multi-Messenger correlation
study of Fermi-LAT blazars and high-
energy neutrinos observed in IceCube”.

While these results indicate that blazars are not the only neutrino
emitters, they can still be responsible for a large majority of the flux
— specifically at energies above 100 TeV.

This chapter presents a new statistical analysis, searching for gamma-
ray blazars in the error regions of the IceCube Observatory’s high-
energy neutrinos. It is thereby the natural extension of the dissection
analysis presented in chapter 4. For future applications, the analysis
pipeline has been automatized and optimized to perform a semi-
realtime dissection of all the publicly available data in the region
around neutrino realtime alerts. It thereby poses a powerful tool to
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identify source targets for multi-frequency follow-ups in the prox-
imity of IceCube neutrinos. In addition to the analysis of the avail-
able multi-frequency data, the pipeline also generates gamma-ray
test statistic maps to identify previously unknown sources. Finally,
the multi-wavelength SED is assembled and analyzed using machine
learning methods for all interesting candidates.

Making extensive use of multi-frequency data, the work presented
in this chapter is complementary to the analysis presented in chapter
7. It also focuses only on the few publicly available events with the
highest energies. While this reduces the sample size significantly,
a large fraction of the (hard spectrum) astrophysical signal is pre-
served. In fact, if we assume that neutrinos are produced with hard
spectra (e.g., φ(E) ∝ E−1) — as expected from photo-meson pro-
duction — IceCube would only observe an astrophysical signal of
scattered high-energy events. This can be easily seen by looking at
the IceCube event rates for a hard spectrum with φ(E) ∝ E−1. In this
case, the rate of neutrinos reaching the Earth is the same in every
log-decade, i.e.,

dN
d log10(E)

= E
dN
dE

= E · φ(E) ∝ E · E−1 = const. (8.1)

Furthermore, the effective area of IceCube increases strongly in en-
ergy and hence hard spectrum sources manifest in single high en-
ergy neutrinos without accompanying low energy events. This is
particularly true for the region around the horizon where the νµ + ν̄µ

effective area is around 200 m2 at 1 TeV while going up to around
4000 m2 at 100 TeV and 9000 m2 at 1 PeV.6 Hence, cross-correlation6 M. G. Aartsen et al., “Search for steady

point-like sources in the astrophysical
muon neutrino flux with 8 years of
IceCube data”.

studies between multi-wavelength emitters and high-energy neutri-
nos provide an important, complementary channel to identify the
common sources of the astrophysical messengers. This chapter sum-
marizes and extends the results of a series of papers that are estab-
lishing new methods for multi-wavelength searches of astrophysical
neutrino sources7,8.97 Padovani, Giommi, et al., “Dissecting

the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.
8 Giommi, Glauch, et al., “Dissect-
ing the regions around IceCube high-
energy neutrinos: growing evidence for
the blazar connection”.
9 Giommi, Padovani, Oikonomou, et al.,
“3HSP J095507.9+355101: a flaring ex-
treme blazar coincident in space and
time with IceCube-200107A”.

8.1 Catalogs of Blazars

Over the years, objects identified as blazars in various wavelength
bands have been collected in catalogs. Three major catalogs that are
frequently used throughout this chapter are briefly summarized in
the following.

• BZCAT:10 The latest, 5th-edition of the Roma-BZCAT is based on10 Massaro et al., “The 5th edition of the
Roma-BZCAT. A short presentation”. the multi-frequency detection of blazars with and without gamma

rays. It contains a total of 3561 sources and is thereby the largest
catalog of blazars. In addition to the source position and its
redshift, also radio, microwave, optical, X-ray, and gamma-ray
fluxes are given wherever available. Sources are further grouped
into four classes: 5BZB (BL Lacs), 5BZQ (FSRQ), BSG (Blazars
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with strong galaxy), and BZU (Blazars of uncertain type). The
completeness of the BZCAT is unknown as the underlying multi-
frequency surveys are not uniform.

• 4LAC:11 The fourth catalog of active galactic nuclei (Fermi-4LAC) 11 Ajello et al., “The Fourth Catalog of
Active Galactic Nuclei Detected by the
Fermi Large Area Telescope”.

contains the gamma-ray sources of the 4FGL catalog12 that have

12 Abdollahi et al., “Fermi Large Area
Telescope Fourth Source Catalog”.

an AGN counterpart, in total 2863 objects. 98% of those coun-
terparts are blazars. As it is based on the 4FGL catalog, it has a
uniform exposure and, therefore, the same completeness every-
where (outside the Galactic plane). In addition to the counterpart
name, it also provides an estimate of the synchrotron peak.

• 3HSP:13 This catalogue contains high synchrotron peaked blazars, 13 Y.-L. Chang, Arsioli, et al., “The
3HSP catalogue of extreme and high-
synchrotron peaked blazars”.

i.e., blazars with synchrotron peak νS
peaklarger than 1015 Hz. The

catalog contains 2013 objects in total. In addition to the radio, X-
ray, and gamma-ray flux (where available), the redshift is given in
88% of the cases.

8.2 Blazar Counterparts of High-Energy Neutrinos

Historically, IceCube has published several lists of high-energy track-
like events from different event selections including highly-energetic
starting tracks (HESE)14,15,16 up-going muon tracks from the North- 14 M. Aartsen et al., “Evidence for High-

Energy Extraterrestrial Neutrinos at the
IceCube Detector”.
15 M. Aartsen et al., “Observation of
High-Energy Astrophysical Neutrinos
in Three Years of IceCube Data”.
16 M. Aartsen et al., “The IceCube Neu-
trino Observatory - Contributions to
ICRC 2017 Part II: Properties of the At-
mospheric and Astrophysical Neutrino
Flux”.

ern Hemisphere17 and the realtime stream18 19 20. With the publica-

17 M. G. Aartsen et al., “Observa-
tion and Characterization of a Cosmic
Muon Neutrino Flux from the Northern
Hemisphere using six years of IceCube
data”.
18 M. Aartsen et al., “The IceCube Real-
time Alert System”.
19 https://gcn.gsfc.nasa.gov/amon_ice
cube_gold_bronze_events.html
20 https://gcn.gsfc.nasa.gov/gcn/am
on_ehe_events.html

tion of the discovery of TXS 0506+056, an additional list of archival
alerts was provided.21 While this sums up to a sample of ∼ 100

21 IceCube Collaboration, M. G. Aart-
sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Al Samarai, et al.,
“Multimessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

events, no in-depth study of counterpart candidates had been pre-
sented so far. By combining all of those streams we have compiled
a list of 70 unique events with angular resolution ≤ 3 deg and being
off the Galactic plane (|b| > 10 deg), Table 8.3. For events appearing
in two streams, the most recent reconstruction and errors are used.
Note that errors are, however, not treated consistently across the sam-
ple. Overall, four different methods are being used by IceCube

• For a few very special events as IceCube-141106A, a∼ 6 PeV through-
going muon neutrino,22 and IceCube-170922A, the event in coinci-

22 M. G. Aartsen et al., “Observa-
tion and Characterization of a Cosmic
Muon Neutrino Flux from the Northern
Hemisphere using six years of IceCube
data”.

dence with TXS 0506+056,23 a full event re-simulation was per-

23 IceCube Collaboration, M. G. Aart-
sen, Ackermann, Adams, Aguilar,
Ahlers, M. Ahrens, Al Samarai, et al.,
“Multimessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.

formed. Given the reconstructed quantities as direction, the en-
try point in the detector, and energy, similar events are generated
from Monte Carlo with varying ice systematics. Subsequently,
each of the events is reconstructed, and the ∆ logL between re-
construction and truth is recorded. From this distribution, the
90% contours can be calculated as the region where the ∆ logL
of the experimental event is smaller than the 90% quantile of the
distribution. Note that the choice of systematic ice variations is an
ad-hoc approximation and not deduced from a clear procedure,
leaving some uncertainty on the coverage of the contour.

• For all the events from the realtime stream, the likelihood space
is scanned around the minimum. In contrast to the re-simulation,
however, no dedicated calculation of the event-dependent ∆ logL

https://gcn.gsfc.nasa.gov/amon_icecube_gold_bronze_events.html
https://gcn.gsfc.nasa.gov/amon_icecube_gold_bronze_events.html
https://gcn.gsfc.nasa.gov/gcn/amon_ehe_events.html
https://gcn.gsfc.nasa.gov/gcn/amon_ehe_events.html
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distribution is performed. Instead, the ∆ logL distribution of a
previously re-simulated HESE event is used as a baseline. While
this is presumably better than a simple X 2 assumption, it is not
clear how well this suits the individual event, as the ∆ logL dis-
tribution could depend on parameters as the deposited energy, the
energy loss pattern, the direction, and the event’s position of entry
in the detector. While there are some hints on how the mapping
looks like,24 no dedicated large-scale study has been performed24 Rädel, “Measurement of High-Energy

Muon Neutrinos with the IceCube Neu-
trino Observatory”.

yet. Similarly to this approach, the error for the high-energy tracks
in the diffuse muon-neutrino search25 is calculated by using a

25 M. G. Aartsen et al., “Observa-
tion and Characterization of a Cosmic
Muon Neutrino Flux from the Northern
Hemisphere using six years of IceCube
data”.

∆ logL scaling that only includes statistical uncertainties.

• For the remaining fraction of HESE events, a 50% uncertainty is
calculated from the point-spread function as an ensemble-averaged
quantity.

In summary, there is a non-negligible uncertainty on the coverage of
IceCube’s error estimations 26. For this reason, the following cross-26 not on the best-fit direction itself,

which is - at least for tracks - fairly
stable against systematics, due to their
long lever arm.

correlation study of IceCube high-energy tracks with blazar candi-
dates will not only search in the published 90% error region (50% for
a small number of HESE events) but also increase the contour by fac-
tors of 1.1, 1.3, 1.5 to not miss any signal due to overly optimistic er-
ror contours. Additionally, by definition, 10% of sources are expected
outside the 90% error contour. While in the background-dominated
case an enlargement of the contours would mainly increase the num-
ber of false associations, in the presence of small catalogs mainly
signal is added, leading to an improvement in sensitivity. The error
regions are denoted with Ω90×i where i ∈ {1.0, 1.1, 1.3, 1.5}.

To search for counterpart blazars, we have dissected all the 70

regions of the IceCube high-energy tracks as follows:

• Search for multi-frequency blazar candidates in 1.0, 1.1., 1.3, 1.5
times the elliptical error region using the VOU Blazar tool.27 In27 Y.-L. Chang, Brandt, and Giommi,

“The Open Universe VOU-Blazars
tool”.

the first phase, the tool queries ∼ 30 catalogs to collect known
multi-frequency blazars or new blazar candidates based on a co-
spatial emission of radio and X-ray.

• For the subset of candidates spatially consistent with a 4FGL source,
the overall SED from radio to VHE gamma-rays is requested from
∼ 70 catalogs and visually inspected in detail. If the SED is con-
sistent, the source is added to Table 8.4.

• Finally, the synchrotron peak, νS
peak, is estimated using a poly-

nomial fit to the SED after removing contributions from the host
galaxy (usually in IR), the blue bump of the accretion (optical+UV),
and inverse Compton emission (X-Ray). The result is cross-checked
with the machine learning SED classifier in chapter 8.4.1. Note
that this leads to relevant deviations to the predictions in the 4LAC
catalog,28 where in some cases the blue bump is falsely interpreted28 Abdollahi et al., “Fermi Large Area

Telescope Fourth Source Catalog”. as the νS
peak. Wherever possible, the redshift of the sources is also

added, preferably from spectroscopic measurements; otherwise,
from a fit to the blue bump of the host galaxy.
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The resulting list of blazars associated with high-energy neutrinos is
shown in Table 8.4. While the list itself is a major step by providing
for the first time a list of possible counterpart objects to IceCube’s
high-energy neutrinos, it also allows searching for statistical excesses
in the classes of LBLs or IBLs/HBLs. The classification into these
classes is purely based on the accretion power measured via the νS

peak,

i.e., objects are classified as LBL if νS
peak< 1014 Hz, IBL for 1014 Hz ≤

νS
peak< 1015 Hz and HBL 1015 Hz ≤ νS

peak. Due to the optical peak of

the host galaxy at around 1014 Hz, the sparse multi-wavelength data,
and the time variability of the νS

peakit is often difficult to separate
between IBL and HBL. Hence we group them into one single class.

8.3 Counterpart Statistics and Discussion

In the previous section, a method for the identification of gamma-
ray visible multi-wavelength blazars has been presented. In contrast
to a simple catalog search, additional blazar counterparts have been
identified, and the synchrotron peaks have been determined more
precisely.

To compare the number of observed objects in the class of LBLs
and IBLs/HBLs with the background expectation, we first need to
calculate the background source density for each of these classes fol-
lowing the same procedure. Assuming an isotropic distribution of
extragalactic sources, we redo the same dissection in 27 square de-
grees control regions centered ± 6◦ in declination from the observed
neutrinos. For consistency, we still avoid regions where the center
lays inside the Galactic plane (|b| < 10 deg) or overlaps with any
other neutrino error region. The resulting control area covers a total
of 2,573 square degrees. In total, 103 gamma-ray LBL blazars and 103

gamma-ray IBL/HBL blazars are found in the control area, leading
to the same expected average density of one object every 27.4 square
degrees for both classes. Two tables summarizing the results of the
dissections of the neutrino error regions and the control sample are
shown in Table 8.1 and 8.2.

Area searched γ-ray IBL/HBL Expectation Likelihood-test
found in neutrino from control p-value

error region sample
(1) (2) (3) (4)

Ω90 20 11.9 7.4× 10−3

Ω90×1.1 24 14.4 1.4× 10−2

Ω90×1.3 35 20.1 1.9× 10−4

Ω90×1.5 47 26.8 2.0× 10−4

Table 8.1: Summary of γ-ray HBL/IBL
blazars within the 70 IceCube tracks
and comparison with the expecta-
tions due to random coincidences as
estimated from the control sample.
Adapted from Giommi, Glauch, et al.,
“Dissecting the regions around IceCube
high-energy neutrinos: growing evi-
dence for the blazar connection”

While the numbers of observed sources for the case of LBL is
pretty consistent with the background expectation there is a clear
over fluctuation of IBL/HBL sources. In order to calculate the sta-
tistical significance we have developed a method that properly takes
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Table 8.2: Summary of γ-ray LBL
blazars within the 70 IceCube tracks
and comparison with the expecta-
tions due to random coincidences as
estimated from the control sample.
Adapted from Giommi, Glauch, et al.,
“Dissecting the regions around IceCube
high-energy neutrinos: growing evi-
dence for the blazar connection”

Area searched γ-ray LBL Expectation Likelihood-test
found in neutrino from control p-value

error region sample
(1) (2) (3) (4)

Ω90 9 11.9 0.43

Ω90×1.1 15 14.4 0.44

Ω90×1.3 17 20.1 0.48

Ω90×1.5 24 26.8 0.33

into account that the same error regions can include several coun-
terpart candidates while the neutrino itself can only be associated to
one object. The general idea is to count the number of regions with
0, 1, 2, . . . counterparts and add them to a vector θ = (n0, n1, n2, n3, n≥4).
Given the low background expectation, regions with more than 4

sources are extremely rare and are therefore combined to a single
bin in order to simplify computations, while not losing significant
information. Based on this, a likelihood ratio test is designed via

λ =
LH0

LH1
=

p(n1, n2, n3, n≥4 |H0)

maxNsrcs p(n1, n2, n3, n≥4 |H1)
(8.2)

with test-statistic T S = −2× log λ. The probability density function
p is independent of n0 as the number of regions with zero coun-
terparts is unambiguously determined given the number of regions
with 1,2,3, ≥ 4 counterparts. The signal and background hypothesis
are defined as follows

• Background Hypothesis (H0): The sources found in the neutrino
error regions are random coincidences. Consistently the expecta-
tion value for the number of sources in a region is the product of
the average source density as estimated from the control region,
and the size of the error region.

• Signal Hypothesis (H1): In addition to the random occurrence of
background sources, a total of Nsrcs signal sources are observed in
the error regions.

Evidently, H0 is a special case of H1 with Nsrcs = 0 and hence the
hypothesis is nested. In order to calculate the pdfs in equation (8.2)
Monte Carlo simulations are run for every relevant number of signal
sources Nsrcs ∈ {0, 1, . . . , 40} and scaling of the error region (Ω90×1.0,
Ω90×1.1, Ω90×1.3, Ω90×1.5) using the 70 events in Table 8.3 as a repre-
sentative sample. The simulation procedure for each trial is based on
the following steps:

1. For each of the event the background expectation µbg is calculated
as the product of the average source density (as estimated from the
control region) and the size of the error region.

2. Background sources are drawn for each neutrino event based on
a Poisson distribution with expectation value µbg
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3. Nsrcs unique signal sources are randomly distributed over the
events.

To get a smooth distribution of the 4-dimensional pdfs, around 10

million trials are generated for each Nsrcs
29. Using the calculated 29 This is another reason to use the

overflow bin for regions with ≥ 4
sources. Going in even higher dimen-
sions would make the generation of
smooth pdfs quite challenging.

pdfs, a background test statistic distribution can be generated. As
expected for the case of a nested hypothesis with a single free pa-
rameter, Wilks’ theorem (theorem 7.1.2) is applicable. Hence, the test
statistic distribution follows a X 2

1 distribution with one degree of
freedom.

Finally, the experimental test statistic values are calculated and
compared to the background test statistic distribution. The resulting
p-values are shown in the last column of Table 8.1 and Table 8.2
for the various cases. The strongest signal is found for the class
of IBLs/HBLs in 1.3 times the 90% error region, with a best-fit of
N̂srcs = 15± 3.6 and a pre-trial p-value of 0.019%, equivalent to 3.56

σ in a one-sided test. The corresponding profile likelihood is shown
in Figure 8.1 with the 1,2 and 3 sigma regions calculated on basis of a
X 2

1 distribution which has been validated using signal simulations30. 30 See Cowan et al., “Asymptotic for-
mulae for likelihood-based tests of new
physics” p. 130 for the statistical theory

In the last step, the results are corrected by the effective num-
ber of independent trials. As the regions, and thereby the p-values
of the different scalings are highly-correlated, each class’s trial fac-
tor should be smaller than 4 as expected for the uncorrelated case.
Again, the actual number can be calculated through Monte Carlo
simulation, where for each trial the overall p-value is the minimum
of all the p-values of the 4 different error regions (Ω90×1.0, Ω90×1.1,
Ω90×1.3, Ω90×1.5). Asking how many times we find a p-value as low
as 0.019% from pure background considerations in any of the regions,
we obtain a trial correction factor of 1.64. To further account for the
two independent blazar scenarios, this is multiplied by two, resulting
in an overall trial correction factor of 3.28 and a post-trial p-value for
the IBL/HBL excess of 6.2× 10−4 (3.23 σ). In contrast, for the case
of LBL objects, no excess has been found, allowing to set an upper
limit of 3.48 sources at 90% C.L.

In order to evaluate if the statistical excess of the IBL/HBL objects
is consistent with a signal, the expected distribution of counterparts
θ = (n0, n1, n2, n3, n≥4) is shown in Figure 8.3 for the case of Ω90×1.3.
While the grey band indicates the pure background case, the blue
band adds the best-fit number of 15 signal sources. In both cases,
the dotted line represents the median value and the shaded area the
standard deviation. In addition, grey and blue points show the ex-
perimental results for the HBL/IBL and the LBL class, respectively.
While the latter one is, as expected, well compatible with the back-
ground expectation, the HBL/IBL distribution aligns well with the
signal case without showing any systematic deviations.

In summary, the analysis of the 70 archival IceCube tracks pro-
vides convincing arguments that HBL/IBL gamma-ray blazars pro-
duce a significant fraction of the TeV to PeV astrophysical neutrino
flux. Using the best-fit number of 15 sources, a lower limit on the
fraction can be set to ∼ 21% of the astrophysical high-energy events.
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Figure 8.1: Profile likelihood for the
identified LBL counterparts. The solid
blue line shows the −2× ∆LLH values
for different number of signal sources.
The red point shows the best-fit value.
Using a X 2

1 distribution, upper limits
can be calculated as indicated through
the grey, dashed lines.

Figure 8.2: Profile likelihood for the
identified IBL/HBL counterparts. The
solid blue line shows the −2 × ∆LLH
values for different number of signal
sources. The red point shows the best-
fit value. Using a X 2

1 distribution, cen-
tral limits can be calculated as indicated
through the grey, dashed lines.

Figure 8.3: The expected distribution
of the number of counterparts for pure
background and background plus 15

signal events in grey and blue, respec-
tively. The dashed lines show the mean
and the shaded area the standard de-
viation from Monte Carlo simulation.
The experimental data are shown as
dots. In the bottom panel the deviation
of the data from the background expec-
tation is shown in Gaussian sigma.
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The true value could be higher as not all the 70 events are expected to
be of astrophysical origin. The calculated limit is consistent with the
IceCube limit for the 2LAC catalog which constrains hard-spectrum
(φ(E) ∝ E−1.0 · exp(E/E0); E0 ≥ 1 PeV) gamma-ray blazars to con-
tribute not more than 66.9% to the (high-energy) flux.31 31 Huber, “Multi-Messenger correlation

study of Fermi-LAT blazars and high-
energy neutrinos observed in IceCube”.

Interestingly, Figure 8.3 also allows to extract an interesting sub-
sample of the HBL/IBL class for further studies. While from back-
ground expectation only 10 events with a single HBL/IBL counter-
part are expected, 20 are found. Therefore, we can identify a sub-
sample of 20 sources with a single, clear counterpart of which around
10 (50%) are expected to be signal. The characterization and identifi-
cation of common features in these objects are major goals for further
work on this topic.

Finally, after submitting the corresponding paper32 in Novem- 32 Giommi, Glauch, et al., “Dissect-
ing the regions around IceCube high-
energy neutrinos: growing evidence for
the blazar connection”.

ber 2019, additional neutrino realtime alerts have been sent out by
IceCube. For one of these events — IceCube-200107A — a plausible
counterpart in the form of a rare HBL blazar has been found as dis-
cussed in section 8.5. This observation further strengthens the case
for IBL/HBL blazars as emitters of highly-energetic neutrinos.

8.4 An Automatic Multi-Wavelength Follow-Up Pipeline for
IceCube Realtime Alerts

The previous section has shown the potential of large-scale multi-
frequency dissections to identify plausible blazar counterparts to
IceCube neutrinos. As blazars can be highly-variable it is, however,
even more favorable to run the entire dissection in near-realtime to
request follow-up observations by other observatories. This is par-
ticularly important as only a small minority of telescopes have full
sky coverage. Other telescopes, such as the X-ray satellite Swift (see
section 2.6.3), have a small field of view and therefore need a trigger
to observe sources of interest.

The automatic multi-frequency follow-up pipeline presented in
this section 33 combines techniques for multi-frequency blazar detec- 33 https://github.com/tglauch/Realtim

e_Dissection.tion with a fast and reliable, time-dependent analysis of Fermi-LAT
gamma-ray data. The goal is to collect all the relevant data about
a region of interest (ROI) and the blazar candidates on a time-scale
similar to the one required for sophisticated IceCube reconstructions
(∼ 1 hour). Once triggered by a neutrino alert, the pipeline goes
through the following analysis steps:

1. Multi-frequency search for blazar counterparts using the VOU
Blazar tool34 and download of additional optical data from the 34 Y.-L. Chang, Brandt, and Giommi,

“The Open Universe VOU-Blazars
tool”.

OVRO database35 if available.
35 https://www.astro.caltech.edu/ovro
blazars/.2. Calculation of the blazars νS

peakusing a machine learning estima-
tor, see section 8.4.1.

3. Automatic download of all Fermi-LAT data of the ROI from the
NASA webpage 36 36 https://fermi.gsfc.nasa.gov/cgi-bin/

ssc/LAT/LATDataQuery.cgi

https://github.com/tglauch/Realtime_Dissection
https://github.com/tglauch/Realtime_Dissection
https://www.astro.caltech.edu/ovroblazars/
https://www.astro.caltech.edu/ovroblazars/
https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
https://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
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4. A time-dependent gamma-ray analysis of the Fermi-LAT data,
including light curves of all (potential) gamma-ray blazars, test-
static maps and association probabilities for the highest-energy
photons (see section 8.4.2). To get quick results, computations are
optimized for CPU parallelization and high-performance clusters.

5. Generation of a summary website and PDF document with gamma-
ray test statistic maps of the region, hybrid-SEDs, and multi-frequency
light curves.

Since some of the computations are more time consuming than oth-
ers, the summary website and the PDF document are continuously
updated whenever calculations finish. For a working example of
how the pipeline can be used, see the discussion about the detection
of 3HSP J095507.9+355101 in chapter 8.5.

The multi-frequency search for blazar counterparts (step 1 in the
list above) has already been discussed in section 4.3. Hence the fol-
lowing sections focus on the discussion of the νS

peakclassifier and the
gamma-ray pipeline.

8.4.1 Deep Learning-Based Evaluation of Blazar SEDs

The calculation of the synchrotron peak νS
peakis of major importance

for the classification of a blazar. As discussed in section 2.3.3 the
first bump of the typical blazar SED is a superposition of emission
features from the galaxy and the accretion around the black hole with
the synchrotron emission. It is therefore not (always) straightforward
to fit a polynomial model to determine the νS

peak. Alternatively, one

can use a deep neural network (DNN) that predicts the νS
peakbased

on a binned version of the SED 37. In contrast to the polynomial fit,37 See section 5.1 for a short review of
DNNs the DNN provides guaranteed convergence while considering all the

features in the spectrum. On the other hand, however, it needs to be
trained on a sufficiently large set of SEDs with well-determined νS

peak.
This makes the case specifically complicated for blazars, as there are
only a few thousand well-identified and classified blazars in the sky.
In order to get a reasonably sized training dataset, we combine the
3HSP catalog of high νS

peakblazars38 with the 4LAC catalog.39 While38 Y.-L. Chang, Arsioli, et al., “The
3HSP catalogue of extreme and high-
synchrotron peaked blazars”.
39 Ajello et al., “The Fourth Catalog of
Active Galactic Nuclei Detected by the
Fermi Large Area Telescope”.

the νS
peakestimation of the 4LAC catalog occasionally suffers from

confusion with the emission of the host galaxy, it provides a good
accuracy on average.

The procedure of the data preparation is exemplarily shown in
Figure 8.4. First of all, a set of frequency bins need to be chosen.
While a finer binning is usually favored, data coverage is sparse
across the SED. To avoid many missing data points, the bins are
chosen such that there is data available for most SEDs. As seen in
Figure 8.4 this results in one bin in radio, microwave, and many bins
in optical, X-ray, and gamma-ray, respectively. For each bin, the 68%
central flux range is calculated as input, and all values are concate-
nated to an array of the length n = 26 (13 bins with 2 values each).
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As neural networks perform better when their input values are dis-
tributed on a scale O(1) around zero, the flux values are transformed
to the input In via

In =
log10(φn)

< log10(φ) >
, (8.3)

where < φ > is the median flux value of the entire SED. Finally,
bins without data are padded with -5 and 5, representing maximal
uncertainty.
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Figure 8.4: Input scheme of the DNN
νS

peakestimator. The grey points exem-
plarily show the SED data for the blazar
TXS 0506+056 based on all available
multi-frequency data. The upper and
lower points of the red bars represent
the central 68% quantiles used as input.

In the end, we also want to re-apply the trained network to the in-
put SED data to refine and consistently determine their νS

peak. Hence,
a special cross-validation strategy is adopted for the training. In
the first step, the dataset is divided into 10 parts. Subsequently,
for each 9/10th of the dataset, a separated network with the same
hyperparameters is trained and applied to the remaining dataset
(test dataset). This procedure ensures that the prediction on the test
dataset is not affected by overfitting. For the training, we choose
a split of training to validation dataset of 80% to 20 % and sub-
sequently minimize the loss function using the Adam optimizer.40 40 Kingma and Ba, “Adam: A Method

for Stochastic Optimization”.Early stopping is used after 100 epochs of no improvement in the
validation loss. To increase the prediction’s stability for yet unclassi-
fied objects — and thereby potentially sparse SEDs — up to 4 SED
points are randomly dropped for each SED during training. For the
loss function, a standard Gaussian likelihood is used. Hence, two
parameters are predicted for each SED, a mean value ŷ and an un-
certainty σ. The corresponding loss function is given by

logL = −0.5 ∑
(

y0,i − ŷi

σi

)2
−∑ log(σi)− 0.5 · log(2π) (8.4)

with target value y0. The architecture of the DNN is based on a
simple fully connected network, followed by some residual layers,
leading to a total of around 1000 free parameters.
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Figure 8.5: Performance of the DNN
νS

peakestimator. The predicted νS
peakis

shown against the true value from the
training catalogs. The probability is
normalized along each column of true
νS

peak. The expectation for an unbiased
estimator is shown as a solid grey line.
The prediction median, as well as the
central 90% quantile are indicated as
black solid and dashed lines.

13 14 15 16 17

log10(νSpeak,true/Hz)

13

14

15

16

17

lo
g

1
0
(ν
S p
e
a
k
,D

N
N
/H

z
)

10%, 90% Quantile

Median

0.0

0.1

0.2

0.3

0.4

0.5

P
ro

b
ab

il
it

y

−2 0 2

νSpeak,true − νSpeak,DNN

0

1

P
D

F

σDNN = 0.40

−2 0 2

νSpeak,true − νSpeak,DNN

0.0

0.5

1.0

P
D

F

σDNN = 0.50

−2 0 2

νSpeak,true − νSpeak,DNN

0.0

0.5

P
D

F

σDNN = 0.60

Figure 8.6: Distribution of the
νS

peakprediction errors for different
estimated uncertainties σ. The distri-
butions are shown for σ ∈ 0.4, 0.5, 0.6
and are reasonably consistent with the
Gaussian likelihood.

After the training, the set of DNNs is re-applied to the dataset with
the result shown in Figure 8.5. Evidently, the prediction is largely un-
biased with respect to the ground truth. Deviations mainly appear
at very low or very high νS

peak, where training statistic is limited,
and the uncertainty on the ground truth is high. While this can be
improved with better training data in the future, it does not signifi-
cantly impact the simple LBL/IBL/HBL scheme. Furthermore, Fig-
ure 8.6 shows that the predictions are consistently scattered around
the truth with their respective uncertainty σ. The uncertainty σ is
thereby the superposition of three effects: the uncertainty on the
νS

peakin the training data, the prediction error from the DNN itself,
and the time variability of the source emission. While the first two
can be reduced by improving the methodology, the third one is un-
avoidable when calculating an average νS

peak. In practice, the DNN

νS
peakestimation has been used for a survey of blazars in Swift-XRT

fields (see Giommi, Y. L. Chang, et al., “The Open Universe survey
of Swift-XRT GRB fields: a complete sample of HBL blazars”).

8.4.2 Gamma-Ray Analysis

The pipeline’s gamma-ray analysis uses all Fermi-LAT Pass 8 data 41

41 with the P8R2 SOURCE V6 instru-
ment response functions

acquired between August 4, 2008 (the beginning of the Fermi-LAT
mission) and the neutrino trigger time. Data preparation follows the
standard procedures suggested by the Fermi-LAT team. Specifically,
only the events with a high probability of being photons (evclass =
128, evtype = 3 [FRONT+BACK]) in the energy range of 100 MeV
- 300 GeV from a region of interest (ROI) defined as a circle of ra-
dius 12 degrees centered at the multi-wavelength position of the re-
spective source are analyzed. Possible contamination from the Earth
limb is removed by cutting out all the events with zenith angle > 90

degrees and only including time intervals with stable data acquisi-
tion (DATA QUAL>0 && LAT CONFIG==1). Consistently with the
event selection, standard Galactic (gll_iem_v06_V11) and isotropic
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(iso_P8R2_SOURCE_V6_v06) models are used to describe the dif-
fuse background emissions.

Residual test-statistic maps
In general, test statistic maps can identify emission on a coarse grid
in a region of interest. For each point on the grid, the test statistic is
defined as

T S = 2× [logL(Hsource)− logL(Hbackground)] (8.5)

for a given source and background hypothesis. In the case of the
residual test statistic maps, the signal hypothesis is given by a point
source with spectrum φ(E) = φ0 × (E/E0)

−γ at a certain position in
the sky. The background is the superposition of the diffuse gamma-
ray background (isotropic and Galactic) and all the known sources
in the region. For the latter, the respective flux normalizations are
added to the background model if the source is located inside a cir-
cle with the radius of the 95% quantile of the Fermi-LAT point spread
function. The spectral indices for all background sources are fixed to
the values in the 4FGL catalog. The rest of the calculations, includ-
ing exposure maps and data preparation, follows the description in
section 8.4.2 and the Fermi Cicerone 42. 42 https://fermi.gsfc.nasa.gov/ssc/da

ta/analysis/documentation/Cicerone/

Light curves
There are two ways to analyze the time behavior of a gamma-ray
source: fixed and adaptive binning light curves.43 While the first 43 Lott et al., “An adaptive-binning

method for generating constant-
uncertainty/constant-significance light
curves with Fermi-LAT data”.

tends to dilute important emission features, the latter is computa-
tionally slow and only applicable for a limited number of objects. As
the multi-wavelength pipeline is supposed to be fast and applied to
many sources simultaneously, a hybrid approach between fixed and
adaptive binning is used. Specifically, the length of the time win-
dows is fixed for a single source but varies between different sources
depending on the time-integrated gamma-ray emission.

Conveniently, the a measurement of the time-integrated emission
is already provided by the 4FGL catalog.44 To deduce a reasonable 44 Abdollahi et al., “Fermi Large Area

Telescope Fourth Source Catalog”.binning for the light curve, we use the asymptotic behavior of count-
ing experiments. Specifically, for a counting experiments with χ2

1
background test statistic distribution in the asymptotic limit, the me-
dian test statistic quantile of a signal behaves as45 45 Cowan et al., “Asymptotic formu-

lae for likelihood-based tests of new
physics”.T S = −2×

[
(s + b) log

(
1 +

s
b

)
− s
]

(8.6)

where s and b are the number of signal and background photons,
respectively. For all the sources considered in this analysis we can
safely assume the signal dominated case with s >> b >> 1 and
s + b→ ∞. In this limit, the previous equation simplifies to

T S → 2× s
[
log
( s

b

)]
(8.7)

Assuming further a somewhat steady emission, the signal and back-
ground can be approximated to s = s0 · t and b = b0 · t, with emission
rate s0 and background rate b0, respectively. Thereby equation (8.7)

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
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becomes

T S → 2× s0t
[

log
(

s0

b0

)]
∝ t (8.8)

which scales linearly in time. Using eq. (8.8) we can therefore cal-
culate the integration time t needed to reach a certain significance Σ
via

t(Σ) =
TS(Σ)
T S4FGL

· 2920 [days]. (8.9)

In this equation, the 2920 days correspond to the integration time of
the 4FGL catalog and TS(Σ) to the test-statistic value needed for a
certain significance Σ under the assumption of a χ2

1 distribution, i.e.,
TS(Σ) = Σ2. The test statistic information in the 4FGL catalog is
given in 7 energy bands. In order to calculate the T S4FGL for a given
energy threshold Emin one can sum up the independent energy bands
with the lower energy bound being equal or higher energy than Emin

of the analysis, i.e.,

T S4FGL = ∑
Ei>Emin

T SEi
4FGL ≤ T S true

4FGL. (8.10)

Note that this approximation is conservative, as the test statistic
value in each energy band ,T SEi

4FGL, is given for a standard power
law assumption φ = φ0 × (E/E0)

−2. Hence the test statistic value
calculated from equation (8.10) is optimal for a true source spectrum
with γ = 2, but underestimated otherwise. Optimally one would
aim for a 5σ detection in every time window, in order to characterize
the spectral variations of the source. The required integration times
is given by

t(5σ) =
25

T S4FGL
· 2920 [days]. (8.11)

As stated before, this is a conservative approximation assuming a
steady-source.

In reality, sources can be strongly variable, in which case the key
assumption of the calculation does not hold anymore. There are,
however, two reasons why the procedure still gives good results in a
large majority of cases: a) a jump from 5σ to 3σ (which is around a
factor 3 smaller in required integration time) still gives meaningful
spectral fits, i.e., there is certain stability against lower-than-average
flux windows; b) the methods ensure that especially time windows
with particular large photon flux — which are particularly interest-
ing — are well described. In summary, the method provides a quick,
efficient, and reliable way to pick an ad-hoc binning for light curves
that preservers most of the important information while being com-
putationally inexpensive.
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8.5 The Case of 3HSP J095507.9+355101 - a Flaring Blazar
in the Error Region of IceCube-200107A

Figure 8.7: Event view of IceCube-
200107A. The color indicates the time,
from early (red) to late (blue). The size
of the bubbles represents the total col-
lected charge. In addition, two recon-
struction are shown: Spline MPE in red,
and the RNN reco in blue.

The detection of an X-ray flaring 3HSP source as a probable counter-
part to the high-energy neutrino IceCube-200107A is a prime exam-
ple of the interplay between the new DNN-based HESE v3 selection
(chapter 6) and the automatic follow-up pipeline (section 8.4).

On the 7
th of January 2020, a highly-energetic starting event passed

the IceCube HESE filter (see Figure 8.7 for an event view). While
the SplineMPE reconstruction falsely reconstructs a vertically down-
going direction and therefore rejects the event, it was clearly identi-
fied as a starting track by the DNN classifier. Consequently, a GCN
was sent out46 to alert the astronomical community for follow-up ob-

46 https://gcn.gsfc.nasa.gov/gcn3/266

55.gcn3

servations. Based on the new HESE v3 realtime selection, the event’s
signalness, i.e., the probability of being of astrophysical origin, is
around 52 %. With the limited public information in the GCN it is,
however, difficult to make precise statements om the event’s energy.
Using the νµ + ν̄µ public HESE effective area as a good approxima-
tion for the HESE v3 stream (Figure 6.9), we can nevertheless approx-
imate the expected neutrino energy given the reconstructed direction
and an assumed astrophysical neutrino spectrum. The calculation
requires the normalized cumulative density function of neutrino en-
ergies Eν which is given by

C(Eν) =

Eν∫
−∞

Ae f f (E)× E−γ dE

∞∫
−∞

Ae f f (E)× E−γ dE
. (8.12)

The resulting neutrino energy distributions for the case of IceCube-
200107A are shown for three different spectral indices in Figure 8.8.
Assuming an E−2 (E−1/E−2.7) spectrum we can read off energy ranges
between 65 TeV - 2.5 PeV ( 87 TeV - 7.2 PeV / 39 TeV - 981 TeV), re-
spectively.
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Figure 8.8: Estimation of the neutrino
energy assuming different flux models.
The cumulative density function (CDF)
is calculated according to eq. (8.12).
The 10% and 90% quantile are given by
the crossing points of the CDFs with the
grey dashed lines.

Figure 8.9: Dissection around IceCube-
200107A using the VOU Blazar tool.
The left plot shows the radio (red) and
X-ray emission (blue). After cross-
matching the emissions a few blazar-
like sources remain (right). Dark blue
circles represent LBL, cyan symbols
IBL, and orange symbols HBL candi-
dates, respectively. Known blazars are
marked by diamonds or stars if they are
part of the BZCAT or 2WHSP catalog.

Based on the GCN, the automatic realtime pipeline (section 8.4)
was triggered for the region around IceCube-200107A. The VOU-
Blazars output with all radio and X-ray sources, as well as the blazar

https://gcn.gsfc.nasa.gov/gcn3/26655.gcn3
https://gcn.gsfc.nasa.gov/gcn3/26655.gcn3
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candidates, is shown in Figure 8.9. It can be seen that inside the
90% confidence region many cataloged and non-cataloged blazars
candidates are identified.

According to usual photo-meson scenarios, neutrino production
in blazars is assumed to happen together with the production of
gamma rays. Hence the residual gamma-ray maps in Figure 8.10

are used to identify plausible candidates. The map is residual in
a sense that known gamma-ray sources, as 4FGL J0955.1+3551, are
subtracted to identify yet undiscovered weak emitters. For neither
the short term TS-map or the long term one, any significant excess is
found. Hence the only gamma-ray detected candidate in the region
remains 4FGL J0955.1+3551.

Figure 8.10: Fermi-LAT gamma-ray
significance maps in the region around
IceCube-200107A after subtracting
known 4FGL sources. The respec-
tive integration times are 250 days
before the alert (left), and over the
full Fermi-LAT mission (right). The
multi-frequency blazar candidates
identified in Figure 8.9 are shown with
their respective symbols.

The full, time-dependent multi-frequency SED of the source is pre-
sented in Figure 8.11. In the optical range between 1.3 eV - 3.1 eV the
accretion of the galaxy is clearly visible, while the non-thermal syn-
chroton peak goes up to X-ray energies. In fact, the source is included
in the 3HSP catalog (3HSP J095507.9+355101)47 with a νS

peaklarger47 Y.-L. Chang, Arsioli, et al., “The
3HSP catalogue of extreme and high-
synchrotron peaked blazars”. than 5 × 1017 Hz. Overall, the 3HSP catalogue includes only 80

Fermi-LAT detected sources with a higher νS
peak. The correspond-

ing source density of those objects is therefore about one every 425

square degrees. Consequently, the probability that an extreme source
like that is included in the 7.3 square degrees error region of IceCube-
200107A is around 1.7%. Overall, the automatic follow-up pipeline
has thereby laid out a detailed scientific justification to ask for fur-
ther follow-up observations of the one primary good candidate in
the error contour, 3HSP J095507.9+355101. A target of opportunity
(ToO) request for the X-ray observation of the source was there-
fore submitted to Swift and granted shortly after 48. The results48 https://www.swift.psu.edu/toop/s

ummary.php from these optical and X-ray observations are then fed back into
the pipeline and combined to the SED in Figure 8.11. Compared
to the archival data (grey) the source appears in a high X-ray and
slightly increased gamma-ray state. Quantitatively, a dedicated anal-
ysis of the Swift data show that the 2 – 10 keV X-ray flux is around

https://www.swift.psu.edu/toop/summary.php
https://www.swift.psu.edu/toop/summary.php
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5× 10−12 erg cm−2 s−1, which is a factor of 2.5 larger than the aver-
age value observed during a previous observation in 2012/2013. Fit-
ting a log-parabola model we find a spectral index of γ = 1.8± 0.06
without curvature and therefore conclude that the synchrotron peak
νS

peakmust be beyond 2× 1018 Hz. The gamma-ray spectral indices
in Figure 8.11 are γ = 1.73± 0.31 for the 250 days around the neu-
trino arrival time and γ = 1.88± 0.15 for the full mission. Together
with the redshift estimation of 0.557

49 the gamma-ray luminosity be- 49 Paiano, Falomo, Padovani, et al., “The
redshift and the host galaxy of the
neutrino candidate 4FGL J0955.1+3551

(3HSP J095507.9+355101)”.

tween 100 MeV and 100 GeV is then given by 3.96× 1045 erg s−1 and
1.47× 1045 erg s−1, respectively. In a similar way the redshift can also
be used to calculate the neutrino luminosity required to expect on av-
erage one IceCube neutrino on a given timescale using the same ef-
fective area as in eq. (8.12) and assuming an E−2 flux between 65 TeV
and 2.5 PeV. The results are 5× 1047 erg s−1 and 3× 1046 erg s−1, re-
spectively.50 50 Giommi, Padovani, Oikonomou, et

al., “3HSP J095507.9+355101: a flaring
extreme blazar coincident in space and
time with IceCube-200107A”.
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] Figure 8.11: The hybrid SED of 3HSP

J095507.9+355101. The gamma-ray
emission is shown as grey and red
bow ties for the full Fermi-LAT mission
and the 250 days before the detection
of IceCube-200107A. The neutrino flux
upper limit, calculated from the obser-
vation of a single event over the entire
Fermi-LAT emission period, is shown as
grey solid line. In all other wavelengths
grey points indicate archival data. Data
from the three Swift follow-up observa-
tions are shown as colored points and
bands. The bottom panel is a zoom in
view of the optical and X-ray emission.

8.5.1 Theoretical Considerations

Neutrino production in Blazars is usually expected to happen through
photo-hadronic interaction of accelerated protons with ambient pho-
tons. While the detailed modelling of the sources is challenging and
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depends on many parameters,51 some generic arguments can be laid51 Petropoulou, Oikonomou, et al.,
“Comprehensive Multimessenger Mod-
eling of the Extreme Blazar 3HSP
J095507.9+355101 and Predictions for
IceCube”.

out.52 First of all we note that 3HSP J095507.9+355101 is likely a

52 Giommi, Padovani, Oikonomou, et
al., “3HSP J095507.9+355101: a flaring
extreme blazar coincident in space and
time with IceCube-200107A”.

blazar of type BL Lac. This is mainly based on two arguments a.)
the non detection of strong emission lines in the optical spectrum53

53 Paiano, Falomo, Padovani, et al., “The
redshift and the host galaxy of the
neutrino candidate 4FGL J0955.1+3551

(3HSP J095507.9+355101)”.

(see also Figure 2.14) and b.) the Eddington ratio of L/Ledd . 0.02,
which is at the boarder between BL Lacs and FSRQs. The calcu-
lation of the luminosity is based on the estimated black hole mass
MBH ∼ 3× 108M� (typical for a BL Lac),54 with resulting Eddington

54 Ibid.

luminosity Ledd ∼ 4× 1046 erg s−1 and the upper limit on the oxygen
OII and OIII emission lines of LOII and LOIII < 2× 1040 erg s−1. This
upper limit can be converted into a limit on the bolometric luminos-
ity Lbol . 8× 1044 erg s−1,55 giving L/Ledd . 0.02.55 Punsly and S. Zhang, “Calibrating

emission lines as quasar bolometers”. In the following, the energetics of the gamma-ray and neutrino
production are discussed assuming the source being a BL Lac, im-
plying that the target photons are produced comoving in the jet. Fol-
lowing section 2.2.1 and specifically eq. (2.29) a fraction of 3/8th
of the proton energy lost in photo-hadronic interactions goes to the
neutrinos and hence neutrino and proton luminosity are related over

ενLν =
3
8

fpγεpLp (8.13)

with respective optical depth fpγ and neutrino energy εν = 0.05εp.
For the case of the target photons being produced comoving with
the jet, the observed neutrino energy can be related to the observed
energy of the target photons εt via

εν,obs ≈ 7.5 PeV
(

2 keV
εt,obs

)(
Γ
20

)2 1
(1 + z)2 (8.14)

The remaining 5/8 of the energy goes into the production of gamma
rays and the subsequent production of electron positron pairs. The
resulting synchrotron cascade is shifting the gamma ray photons to
lower energies. The luminosity of the neutrino and the gamma rays
can hence be related over5656 Murase, Oikonomou, and

Petropoulou, “Blazar Flares as an
Origin of High-Energy Cosmic
Neutrinos?” ενLεν ≈

6(1 + YIC)

5
εγLεγ |εpπ

syn
≈ 8× 1044 erg s−1

(
εγLεγ |εpπ

syn

7× 1044

)
(8.15)

with the compton dominance YIC ∈ O(1) and the typical energy of
the observed synchrotron photons

ε
pπ
syn,obs ≈ 39.4 GeV

(
B

0.3 G

)( εν,obs

7.5 PeV

)2
(

20
Γ

)(
1

1 + z

)
(8.16)

From Figure 8.8 we see that for an assumed spectral index γ = 1
the most likely neutrino energy is around 1 PeV. This is consistent
with eq. (8.14) assuming that the target photons are provided by the
synchroton peak at νt ≈ 1018 Hz (εt ≈ 2 keV) and that the jet has a
typical bulk Lorentz factor of Γ ≈ 20.57 Using these values in eq.57 Saikia, Körding, and Falcke, “Lorentz

factor distribution of blazars from the
optical Fundamental plane of black
hole activity”.

(8.16) for a typical magnetic field strength of B = 20 G the synchro-
ton gamma-ray flux appears at ε

pπ
syn,obs ≈ 30 GeV consistent with an
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observations in the Fermi-LAT band. Based on the gamma-ray lumi-
nosities in section 8.5 we then estimate the gamma-ray luminosity
per decade via

εγLγ ∼
Lγ

log(100 GeV/100 MeV)
(8.17)

assuming a spectral index of γ = 2. As a result εγLγ is 5.73 ×
1044 erg s−1 and 2.13× 1044 erg s−1 for the 250 day period and the full
mission, respectively. Plugging this into eq. (8.15), the expected neu-
trino luminosities ενLεν are hence on the order of 1044 erg s−1, which
is around two orders of magnitude smaller than the flux required to
expect the observation of one neutrino. While this is puzzling, it can
be understood as the result of an underlying population of sources58 58 Strotjohann, Kowalski, and Franck-

owiak, “Eddington bias for cosmic neu-
trino sources”.

or the presence of multiple emission zones. Note finally, that as for
the case of TXS 0506+056, 3HSP J095507.9+355101 is a clear outlier
from the blazar sequence (Figure 8.12).

In summary, 3HSP J095507.9+355101 is a plausible counterpart to
IceCube-200107A in the sense that it provides sufficient target pho-
ton material to produce neutrinos and gamma-rays in the expected
energy range. The discrepancy between the neutrino and gamma-
ray luminosities can be understood through the limited knowledge
of the underlying source population producing astrophysical neutri-
nos.
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Figure 8.12: 3HSP J095507.9+355101

in the blazar sequence. Similar to
TXS 0506+056, which is very much off
the blazar sequence for FSRQs, 3HSP
J095507.9+355101 is inconsistent with
the blazar sequence for BL Lacs. Blazar
sequence data taken from Ghisellini et
al., “The Fermi blazar sequence”.
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Table 8.3: The sample of 70 IceCube tracks up to November 2019

off the Galactic plane. Columns 1 and 2 give the standard IceCube
name and previous namings and the other columns give the MJD,
right ascension and declination with 90% error (if available) and
the Galactic latitude. Wherever no 90% error is given, a fixed
median angular resolution of 1.3 degrees is used. The events are
sorted by right ascension. Whenever a new data release has pro-
vided an updated reconstruction we add a † to the event name.
Adapted from Giommi, Glauch, et al., “Dissecting the regions
around IceCube high-energy neutrinos: growing evidence for the
blazar connection”.

IceCube Name Other IceCube Name MJD RA Dec Galactic
J2000.0 J2000.0 Latitude
(deg) (deg) (deg)

IceCube-160331A DIF35 57478.60 15.60 +0.45
−0.58 15.60 +0.53

−0.60 -47.19

IceCube-090813A DIF1 55056.70 29.51 +0.40
−0.38 1.23 +0.18

−0.22 -57.42

IceCube-131014A DIF23 56579.91 32.94 +0.63
−0.62 10.20 +0.34

−0.49 -47.90

IceCube-111216A DIF16 55911.28 36.65 +1.85
−1.71 19.10 +2.21

−2.21 -38.34

IceCube-161103A AHES4 57695.38 40.83 +1.10
−0.70 12.56 +1.10

−0.65 -41.92

IceCube-161210A EHE3 57732.84 46.58 +1.10
−1.00 14.98 +0.45

−0.40 -36.67

IceCube-150831A 57265.22 54.85 +0.94
−0.98 33.96 +1.07

−1.19 -17.09

IceCube-141109A HES61† 56970.21 55.63 +0.79
−1.53 −16.50 +0.81

−0.68 -49.11

IceCube-190504A 58607.77 65.79 +1.23
−1.23 −37.44 +1.23

−1.23 -44.68

IceCube-120922A 56192.55 70.75 +1.56
−1.63 19.79 +1.37

−0.68 -16.90

IceCube-151114A DIF34 57340.90 76.30 +0.75
−0.74 12.60 +0.61

−0.58 -16.79

IceCube-170922A EHE5 58018.87 77.43 +0.95
−0.65 5.72 +0.50

−0.30 -19.56

IceCube-150428A HES71† 57140.47 80.77 +1.12
−1.23 −20.75 +0.45

−0.83 -28.33

IceCube-101028A DIF9† 55497.30 88.68 +0.54
−0.55 0.46 +0.33

−0.27 -12.38

IceCube-170321A EHE4 57833.31 98.30 +1.20
−1.20 −15.02 +1.20

−1.20 -10.75

IceCube-140721A HES58 56859.76 102.10 −32.40 -14.73

IceCube-140611A DIF27† 56819.20 110.30 +0.66
−0.45 11.57 +0.14

−0.24 11.79

IceCube-190503A 58606.72 120.28 +0.57
−0.77 6.35 +0.76

−0.70 18.37

IceCube-160806A EHE2 57606.51 122.81 +0.50
−0.50 −0.81 +0.50

−0.50 17.29

IceCube-130907A 56542.79 129.81 +0.48
−0.28 −10.36 +0.36

−0.31 18.35

IceCube-150904A DIF32 57269.80 134.00 +0.39
−0.58 28.00 +0.47

−0.47 38.35

IceCube-100623A DIF4 55370.74 141.25 +0.46
−0.45 47.80 +0.56

−0.48 45.16

IceCube-180908A 58369.83 144.58 +1.55
−1.45 −2.13 +0.9

−1.2 35.09

IceCube-141209A HES63† 57000.14 160.05 +0.84
−1.04 6.57 +0.64

−0.56 52.68

IceCube-171015A 58041.07 162.86 +2.60
−1.70 −15.44 +1.60

−2.00 38.43

IceCube-130408A HES37 56390.19 167.17 +2.87
−1.90 20.67 +1.15

−0.89 65.69

IceCube-121026A DIF20 56226.60 169.61 +1.16
−1.11 28.04 +0.67

−0.66 69.40

IceCube-140923A 56923.72 169.72 +0.91
−0.86 −1.34 +0.73

−0.66 53.85

IceCube-120523A 56070.57 171.03 +0.81
−0.90 26.36 +0.49

−0.30 70.51

IceCube-190819A 56070.57 148.80 +2.07
−3.24 1.38 +1.00

−0.75 70.51

IceCube-141126A HES62 56987.77 187.90 13.30 75.41

IceCube-150926A 57291.90 194.50 +0.76
−1.21 −4.34 +0.70

−0.95 58.49

IceCube-151017A DIF33 57312.70 197.60 +2.46
−2.09 19.90 +2.82

−2.21 81.57
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IceCube-120515A DIF17 56062.96 198.74 +1.44
−1.09 31.96 +0.81

−0.85 82.97

IceCube-160814A AHES3 57614.91 200.30 +2.43
−3.03 −32.40 +1.39

−1.21 30.05

IceCube-121011A DIF19† 56211.77 205.22 +0.59
−0.65 −2.39 +0.51

−0.57 58.17

IceCube-131202A HES43† 56628.57 206.63 +2.04
−1.56 −22.02 +1.69

−1.04 39.08

IceCube-120123A HES23 55949.57 208.70 −13.20 46.84

IceCube-140216A HES47 56704.60 209.40 67.40 48.49

IceCube-160731A EHE1, AHES2 57600.08 214.50 +0.75
−0.75 −0.33 +0.75

−0.75 55.55

IceCube-170506A AHES6 57879.53 221.80 +3.00
−3.00 −26.00 +2.00

−2.00 30.01

IceCube-130817A DIF22 56521.83 224.89 +0.87
−1.19 −4.44 +1.21

−0.94 45.80

IceCube-181014A 58405.50 225.15 +1.40
−2.85 −34.80 +1.15

−1.85 20.95

IceCube-190730A 58694.87 225.79 +1.28
−1.43 10.47 +1.14

−0.89 54.83

IceCube-110521A DIF12 55702.77 235.13 +2.70
−1.76 20.30 +1.00

−1.43 50.88

IceCube-120301A 55987.81 238.01 +0.60
−0.59 18.60 +0.46

−0.39 47.76

IceCube-140420A HES53† 56767.07 238.98 +1.81
−1.91 −37.73 +1.47

−1.31 12.06

IceCube-150911A HES76† 57276.57 240.20 +1.29
−1.38 −0.45 +1.17

−1.23 36.83

IceCube-160427A AHES1, HES82† 57505.25 240.57 +0.60
−0.60 9.34 +0.60

−0.60 41.68

IceCube-151122A 57348.53 262.18 +0.90
−1.21 −2.38 +0.73

−0.43 17.16

IceCube-110930A 55834.45 266.48 +2.09
−1.55 −4.41 +0.59

−0.86 12.43

IceCube-100925A DIF7 55464.90 266.29 +0.58
−0.62 13.40 +0.52

−0.45 20.64

IceCube-110610A DIF13 55722.43 272.22 +1.23
−1.19 35.55 +0.69

−0.69 23.50

IceCube-131204A 56630.47 289.16 +1.08
−0.94 −14.25 +0.91

−0.81 -11.94

IceCube-131023A 56588.56 301.82 +1.10
−0.93 11.49 +1.19

−1.09 -11.10

IceCube-170312A AHES5 57824.58 305.15 +0.50
−0.50 −26.61 +0.50

−0.50 -30.40

IceCube-100710A DIF5 55387.54 306.96 +2.70
−2.28 21.00 +2.25

−1.56 -10.13

IceCube-190124A 58507.15 307.40 +0.80
−0.90 −32.18 +0.70

−0.70 -33.76

IceCube-110128A DIF11† 55589.56 307.53 +0.82
−0.81 1.19 +0.35

−0.32 -21.22

IceCube-150714A DIF30 57217.90 325.50 +1.77
−1.46 26.10 +1.68

−1.85 -19.93

IceCube-150812A DIF31† 57246.76 328.19 +1.01
−1.03 6.21 +0.44

−0.49 -35.44

IceCube-120807A DIF18 56146.21 330.10 +0.65
−0.82 1.57 +0.46

−0.42 -39.84

IceCube-101009A DIF8† 55478.38 331.09 +0.56
−0.72 11.10 +0.48

−0.58 -34.30

IceCube-140114A HES44 56671.88 336.71 0.04 -45.92

IceCube-190331A 58573.29 337.68 +0.23
−0.34 −20.70 +0.30

−0.48 -57.31

IceCube-171106A 58063.77 340.00 +0.7
−0.5 7.40 +0.35

−0.25 -43.05

IceCube-140108A 56665.31 344.53 +0.67
−0.48 1.57 +0.35

−0.32 -50.41

IceCube-140203A 56691.79 349.54 +2.21
−1.97 −13.71 1.23

−1.38 -64.43

IceCube-160510A 57518.66 352.34 +1.63
−1.31 2.09 +0.99

−0.85 -54.72

IceCube-190104A 58487.36 357.98 +2.30
−2.10 −26.65 +2.20

−2.50 -76.73
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Table 8.4: Table of IceCube tracks with blazar counterpart candi-
dates within 1.5 times the 90% error ellipses (Ω90×1.5). In addition
to the source names we also give the 1.4 GHz radio flux, the νS

peak
for the SED classification and the redshift. Bold event names in-
dicate tracks with at least one plausible counterpart, while the
letters a, b, c, d indicate whether the source was found in Ω90,
Ω90×1.1, Ω90×1.3, Ω90×1.5 respectively. Adapted from Giommi,
Glauch, et al., “Dissecting the regions around IceCube high-
energy neutrinos: growing evidence for the blazar connection”

IceCube Name Source Name S1.4GHz νS
peak Redshift

[mJy] [Hz]

IceCube-160331A 3HSP J010326.0+152624
a

225 15.0 0.25

IceCube-090813A 5BZU J0158+0101
b

82 14.1 0.4537

IceCube-131014A
IceCube-111216A 5BZQ J0225+1846

a
461 12.5 2.69

3HSP J023248.5+201717
a

82 18.5 0.14

VOU J022411+161500
d

13 14.5 0.3
IceCube-161103A VOU J024445+132002

a
200 14.5 0.90

3HSP J023927.2+132738
d

20 15.0 0.5
IceCube-161210A
IceCube-150831A 3HSP J034424.9+343017

c
13 15.7 —

5BZQ J0336+3218
d

2677 12. 1.26

IceCube-141109A 3HSP J033913.6-173600
d

171 15.6 0.07

IceCube-190504A 5BZB J0428-3756
a

753 12.8 1.11

4LAC J0420.3-3745
a

60 <13.5 0.3
IceCube-120922A
IceCube-151114A 5BZB J0502+1338

d
545 13.2 –

IceCube-170922A 5BZB J0509+0541
a

536 14.5. 0.34

IceCube-150428A VOU J052526-201054
c

231 14.5 0.12

IceCube-101028A
IceCube-170321A 3HSP J062753.3-151957

c
43 17.3 0.29

IceCube-140721A 3HSP J064933.5-313920
a

8 17.0 >0.56

5BZQ J0648-3044
c

898 12.5 1.15

IceCube-140611A
IceCube-190503A
IceCube-160806A
IceCube-130907A
IceCube-150904A 3HSP J085410.1+275421

a
15 16.1 0.49

IceCube-100623A
IceCube-180908A
IceCube-141209A VOU J104031+061721

a
35 14.5 –

5BZB J1043+0653
b

8 14.5 0.43

IceCube-171015A VOU J105603-180929
d

12 14.1 –
IceCube-130408A 3HSP J111706.2+201407

a
103 16.5 0.14

5BZQ J1059+2057
b

121 13.0 0.39

3HSP J112405.3+204553
d

9 15.3 0.54
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3HSP J112503.6+214300
d

8 15.8 0.36

IceCube-121026A
IceCube-140923A
IceCube-120523A 5BZQ J1125+2610

c
921 12.5 2.34

IceCube-190819A 3HSP J094620.2+010451
a

15 > 18 0.58

3HSP J100326.6+020455
c

6 15.8 0.48

5BZQ J0948+0022
d

70 12.8 0.59

IceCube-141126A M87
a

138488 – 0.004

3HSP J123123.9+142124
a

54 16.0 0.26

IceCube-150926A 3HSP J125848.0-044745
a

4 17.0 0.59

IceCube-151017A 5BZB J1314+2348
d

184 ≥14 0.15?
3HSP J130008.5+175537

d
16 14.5 0.55

5BZQ J1321+2216
d

314 12.0 0.943

3HSP J125821.5+212351
d

26 16.7 0.6265

IceCube-120515A 5BZU J1310+3220
b

1687 12.5 0.997

5BZQ J1310+3233
b

374 12.0 1.64

5BZB J1322+3216
c

906 14.5 –
IceCube-160814A 5BZQ J1316-3338

b
1277 12.5 1.21

IceCube-121011A 5BZQ J1340-0137
d

175 13.0 1.62

IceCube-131202A 5BZQ J1342-2051
a

399 12.0 1.58

IceCube-120123A VOU J135921-115043
d

48 14.0 0.27

IceCube-140216A 3HSP J140449.6+655431
c

15 16.0 0.36

5BZQ J1344+6606
d

639 12.3 1.35

IceCube-160731A
IceCube-170506A 3HSP J144656.8-265658

a
41 17.6 0.32

VOU J143934-252458
a

35 14.0 0.18

3HSP J143959.4-234140
c

101 16.2 0.25

IceCube-130817A
IceCube-181014A 5BZB J1505-3432

a
138 12.5 –

5BZQ J1457-3539
a

675 13.5 1.42

VOU J150720-370902
d

74 14.5 –
IceCube-190730A 5BZQ J1504+1029

a
1775 12.8 1.84

IceCube-110521A 3HSP J155424.1+201125
c

80 17.3 0.27

3HSP J153311.2+185429
d

23 17.0 0.30

3HSP J152835.7+200420
d

5 16.2 0.52

IceCube-120301A
IceCube-140420A
IceCube-150911A 5BZQ J1557-0001

a
1107 12.2 1.77

IceCube-160427A
IceCube-151122A
IceCube-110930A 5BZQ J1743-0350

b
1411 12.5 1.06

IceCube-100925A
IceCube-110610A VOU J180812+350104

a
94 14.5 0.4

3HSP J180849.7+352042
a

31 15. 0.142

IceCube-131204A VOU J191651-151902
b

166 13.0 –

IceCube Name Source Name S1.4GHz νS
peak Redshift

[mJy] [Hz]
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IceCube-131023A
IceCube-170312A
IceCube-100710A 3HSP J203031.7+223439

a
5 16.2 –

3HSP J203057.1+193612
a

57 15.8 0.27

IceCube-190124A
IceCube-110128A
IceCube-150714A 3HSP J213314.3+252859

c
40 15.2 0.29

VOU J213253+261144
d

211 12.0 0.8
IceCube-150812A
IceCube-120807A
IceCube-101009A
IceCube-140114A 5BZB J2227+0037

a
102 14.5 –

5BZQ J2226+0052
a

615 12.5 2.26

3HSP J222329.5+010226
b

7 15.5 0.51

IceCube-190331A
IceCube-171106A
IceCube-140108A
IceCube-140203A
IceCube-160510A VOU J232625+011147

c
204 14.0 0.53

IceCube-190104A IC 5362
a

90 14.5 0.03

VOU J235815-285341
b

169 14.0 –
3HSP J235034.3-300604

d
39 15.7 0.23
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9 Conclusion & Outlook

The quest for the origin of high energy cosmic radiation is both a
scientific and a technological challenge. While astronomy and as-
trophysics provide the models and search strategies to achieve this
goal, data science and statistics are mandatory to identify, with con-
fidence, a signal in the large amount of data provided by modern
telescopes such as the IceCube Neutrino Observatory. This has been
the focus of this thesis’s research. Consequently, we have tackled
the quest from an interdisciplinary standpoint: Novel deep learning
methods are used to improve the event selection and energy recon-
struction, statistical methods are refined to better identify a signal of
point-like neutrino sources above the atmospheric background, and
multi-frequency techniques help to identify counterpart candidates.

While many questions remain still unresolved, the field of multi-
messenger astronomy has seen significant progress over the period
during which this Ph.D. was completed. Most notably, the associ-
ation of the IBL/HBL blazar TXS 0506+056

1,2,3 with a high-energy 1 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Al Samarai, et al., “Mul-
timessenger observations of a flar-
ing blazar coincident with high-energy
neutrino IceCube-170922A”.
2 IceCube Collaboration, M. G. Aartsen,
Ackermann, Adams, Aguilar, Ahlers,
M. Ahrens, Samarai, et al., “Neu-
trino emission from the direction of
the blazar TXS 0506+056 prior to the
IceCube-170922A alert”.
3 Padovani, Giommi, et al., “Dissecting
the region around IceCube-170922A:
the blazar TXS 0506+056 as the first cos-
mic neutrino source”.

neutrino has provided the first glimpse beyond the curtain of the
large background of atmospheric events. Although the physical pro-
cesses of the neutrino emission from TXS 0506+056 are still disputed,
we have seen in chapter 4 that, based on all the available multi-
frequency information, especially the timing and the energetics of
the emission, the association is consistent. Therefore, this observa-
tion motivates an even deeper look into the available data to associate
a larger fraction of the astrophysical signal to their sources.

At trigger level, the IceCube Observatory measures events at a
rate of ∼ 2.5 kHz, of which the vast majority are of atmospheric ori-
gin. Thus, sophisticated reconstruction and classification algorithms
are used to extract potential signal events. Even though the IceCube
Observatory has been operational for a decade, rapid developments
in machine learning and data science since then still provide room
for improvements. In this thesis, two new deep learning-based al-
gorithms have been presented: a deep neural network event-type
classifier4 and a deep neural network energy reconstruction for up- 4 Kronmueller and Glauch, “Applica-

tion of Deep Neural Networks to Event
Type Classification in IceCube”.

going muons. The DNN classifier thereby provides — for the first
time — a direct mapping between the measured pulses in the de-
tector and the event’s topology. This approach’s potential has been
discussed exemplarily through the development of a new realtime
stream of high-energy starting events. Compared to its predecessor,
the stream’s accuracy and efficiency improve significantly, with event
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rates more than doubled. The DNN energy estimator, on the other
hand, increases the energy resolution of muons by up to 50% com-
pared to previous, likelihood-based methods while also resolving
biases at energies below 1 TeV. In addition to these improvements,
DNN-based reconstructions are also extremely quick. Once the map-
ping between pulses and output quantity has been learned, apply-
ing the algorithm to new data only takes around 100 ms, allowing
large scale applications at an early stage of the processing pipeline.
Although the applications presented in this thesis have shed some
light on the potential of deep learning algorithms in neutrino tele-
scopes, many developments are yet to come. In recent years, graph
neural networks, recurrent neural networks, and adversarial neural
networks, together with large scale Monte Carlo simulations, have
opened new opportunities to exploit further the potential of deep
learning5 and to extend their application to geometries other than5 https://www.snowmass21.org/docs/

files/summaries/CompF/SNOWMAS
S21-CompF3_CompF0-019.pdf.

the hexagonal shape of IceCube.
In addition to the search of multi-frequency counterparts to the

most promising astrophysical neutrino candidates, the IceCube Col-
laboration has, over the last nine years, collected a sample of around
650,000 neutrino-induced tracks from the Northern Hemisphere (δ >

−3◦) in an energy range between 100 GeV and several PeV. Chapter
7 has presented a new approach to search this sample for accumu-
lations of neutrinos that are consistent with a point-like astrophys-
ical source. Compared to previous analyses, the novel modeling of
the likelihood function provides unbiased fits and allows for better
source localization and measurements of the source spectrum. In
addition, the DNN energy estimator improves the energy resolution
by up to 50%. Analyzing a catalog containing 110 potential neutrino
sources reveals the emission from a starburst galaxy — NGC 1068 —
at the level of 4.2σ, with a soft spectral index of γ ≈ 3.2. This source
is therefore the most significant candidate of astrophysical neutrino
emission to date. Given the source’s soft spectrum, this observation
will also require more work on theoretical astrophysical models for
neutrino production.

Even with the associations of neutrino emission from TXS 0506+056

and NGC 1068, a large fraction of the astrophysical neutrino flux re-
mains unresolved. In chapter 8, we have therefore expanded the
multi-frequency dissection strategy for TXS 0506+056 to the error re-
gions of 80 high-energy tracks of IceCube. Most importantly, the
study has found an excess of HBL/IBL blazars at a 3.23σ level.66 Giommi, Glauch, et al., “Dissect-

ing the regions around IceCube high-
energy neutrinos: growing evidence for
the blazar connection”.

While the study does not make clear associations of neutrinos with
a source, a sample of 20 regions with a unique HBL/IBL counter-
part have been compiled, of which ∼ 50% are expected to be neu-
trino emitters. To take this further, we currently conduct large-scale
multi-frequency analyses, including dedicated optical observations
with the Very Large Telescope and additional X-ray observations with
Swift. Combining this data with source models, we hope to identify
an emission profile of a subclass of HBL/IBL blazars that is con-
sistent with neutrino production. An example of such a study has

https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF3_CompF0-019.pdf
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF3_CompF0-019.pdf
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF3_CompF0-019.pdf
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been discussed to the scope of another energetically plausible HBL
neutrino source candidate, 3HSP J095507.9+355101, that has been de-
tected through the automatic version of our multi-frequency dissec-
tion analysis.7 7 Giommi, Padovani, Oikonomou, et al.,

“3HSP J095507.9+355101: a flaring ex-
treme blazar coincident in space and
time with IceCube-200107A”.

It has now been shown by many analyses that the flux of astro-
physical neutrinos is not dominated by a few strong sources, but
rather by populations of weak objects8,9.10 With the associations of 8 Glauch and Turcati, “Search for weak

neutrino point sources using angular
auto-correlation analyses in IceCube”.
9 M. G. Aartsen, K. Abraham, et al.,
“All-sky Search for Time-integrated
Neutrino Emission from Astrophysical
Sources with 7 yr of IceCube Data”.
10 Huber, “Multi-Messenger correlation
study of Fermi-LAT blazars and high-
energy neutrinos observed in IceCube”.

TXS 0506+056 and NGC 1068, it further appears that it is not only
one, but rather different types of sources which are contributing. As
observed many times in astronomy, source populations can appear at
different energies with different spectra. For example, there could be
a population of starburst galaxies at lower energies while blazars sig-
nificantly contribute to the high-TeV to PeV regime. To finally settle
the question of the origin of neutrinos and cosmic rays, it will thus be
indispensable to further increase event rates and astronomical data
coverage to get a deeper view into our universe. Conveniently, ex-
perience from simulation and data analysis techniques developed in
IceCube can be transferred to newly constructed telescopes. Future
neutrino telescopes will therefore likely rely on deep learning meth-
ods to optimize their data pipelines and coordinate observations in
real time with other multi-frequency telescopes around the globe.
Four new neutrino telescopes are currently in development: IceCube
Gen-2 at the South Pole11,12 KM3NET in the Mediterranean sea,13 11 M. Aartsen et al., “Neutrino astron-

omy with the next generation IceCube
Neutrino Observatory”.
12 M. Aartsen et al., “IceCube-Gen2: The
Window to the Extreme Universe”.
13 Margiotta, “The KM3NeT deep-sea
neutrino telescope”.

Baikal-GVD at Lake Baikal in Russia,14 and P-ONE in the Cascadia

14 Avrorin et al., “Baikal-GVD: status
and prospects”.

Basin in Canada.15 Altogether, they will significantly increase event

15 Agostini et al., “The Pacific Ocean
Neutrino Experiment”.

rates and provide good coverage over the entire sky. This will fur-
ther accelerate the development of the field, bringing us a few steps
closer to fully understanding the origin of cosmic rays.
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A Abbreviations

Table A.1: This table provides an overview of abbreviations that
are used commonly throughout this thesis.

Acronym Meaning
XFGL The Xth generation of the Fermi FGL catalog
AGN Active galactic nucleus
BZCAT Multi-frequency catalog of blazars
CNN Convolutional neural network
DNN Deep neural network
DOM Digital optical module
FSRQ Flat spectrum radio quasar
GPU Graphics processing unit
HESE High-energy starting events
HBL Blazar of type BL Lac with high synchroton peak frequency
HSP Catalog of high synchrotron peaked blazars
IBL Blazar of type BL Lac with intermediate synchroton peak frequency
ICXX IceCube detector season with XX strings
KDE Kernel density estimation
MESE Medium-energy starting events
MLE Maximum likelihood estimator
LBL Blazar of type BL Lac with low synchroton peak frequency
RNN recurrent neural network
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B Pseudo-Code Implementations of the
DNN Models

B.1 DNN Classifier

inputs = OrderedDict ( )

inputs [ " Branch_IC_time " ] = { " v a r i a b l e s " :
[ ’ IC_charge ’ , ’ I C _ t i m e _ f i r s t ’ , ’ IC_charge_10ns ’ ,

’ IC_charge_50ns ’ , ’ IC_charge_100ns ’ ,
’ IC_time_spread ’ , ’ IC_time_std ’ ,
’ IC_time_weighted_median ’ ,
’ IC_pulse_0_01_pct_charge_quant i le ’ ,
’ IC_pulse_0_03_pct_charge_quant i le ’ ,
’ IC_pulse_0_05_pct_charge_quant i le ’ ,
’ IC_pulse_0_11_pct_charge_quant i le ’ ,
’ IC_pulse_0_15_pct_charge_quant i le ’ ,
’ IC_pulse_0_2_pct_charge_quant i le ’ ,
’ IC_pulse_0_5_pct_charge_quant i le ’ ,
’ IC_pulse_0_8_pct_charge_quant i le ’ ] ,

" t rans format ions " :
[ t r . IC_divide_100 , t r . IC_divide_10000 ,

t r . IC_divide_100 , t r . IC_divide_100 ,
t r . IC_divide_100 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ] }

# d e f i n e o u t p u t s f o r e a c h branch
outputs = OrderedDict ( )
outputs [ " Out1 " ] = { " v a r i a b l e s " : [ " c l a s s i f i c a t i o n " ] ,

" t rans format ions " : [ t r . oneHotEncode_new ] }
loss_weights = { ’ Target1 ’ : 1 . }
l o s s _ f u n c t i o n s = [ " c a t e g o r i c a l _ c r o s s e n t r o p y " ]
metr i cs = [ " acc " ]

output_names = { 0 : ’ Skimming ’ , 1 : ’ Cascade ’ , 2 : ’ Through_Going_Track ’ ,
3 : ’ S t a r t i n g _ T r a c k ’ , 4 : ’ Stopping_Track ’ }

def incept ion_block4 ( input_tensor , n , t0 =2 , t 1 =4 ,
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t2 =5 , n_pool =3 , s c a l e = 0 . 1 ) :

tower_0 = conv3d_bn ( input_tensor , n , ( t0 , 1 , 1 ) ,
padding= ’ same ’ )

tower_0 = conv3d_bn ( tower_0 , n , ( 1 , t0 , 1 ) ,
padding= ’ same ’ )

tower_0 = conv3d_bn ( tower_0 , n , ( 1 , 1 , t0 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( input_tensor , n , ( t1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , t1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , 1 , t1 ) ,
padding= ’ same ’ )

tower_4 = conv3d_bn ( input_tensor , n , ( 1 , 1 , t2 ) ,
padding= ’ same ’ )

tower_3 = MaxPooling3D (
( n_pool , n_pool , n_pool ) , s t r i d e s = ( 1 , 1 , 1 ) ,
padding= ’ same ’ ) ( input_tensor )

tower_3 = conv3d_bn ( tower_3 , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

up = concatenate (
[ tower_0 , tower_1 , tower_3 , tower_4 ] ,
a x i s = channel_axis )

return up

def i n c e p t i o n _ r e s n e t ( input_tensor , n , t1 =2 , t2 =3 ,
n_pool =3 , s c a l e = 0 . 1 ) :

tower_1 = conv3d_bn ( input_tensor , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( t1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , t1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , 1 , t1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( input_tensor , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( t2 , 1 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( 1 , t2 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( 1 , 1 , t2 ) ,
padding= ’ same ’ )

tower_3 = MaxPooling3D (
( n_pool , n_pool , n_pool ) , s t r i d e s = ( 1 , 1 , 1 ) ,
padding= ’ same ’ ) ( input_tensor )
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tower_3 = conv3d_bn ( tower_3 , n , ( 1 , 1 , 1 ) , padding= ’ same ’ )

up = concatenate (
[ tower_1 , tower_2 , tower_3 ] , a x i s = channel_axis )

x = Lambda (
lambda inputs , s c a l e : inputs [ 0 ] + inputs [ 1 ] * sca le ,
output_shape=K. int_shape ( input_tensor ) [ 1 : ] ,
arguments ={ ’ s c a l e ’ : s c a l e } , ) ( [ input_tensor , up ] )

return x

#Model d e f i n i t i o n

def model ( input_shapes , output_shapes ) :
# The Input
input_b1 = Input (

shape=input_shapes [ ’ Branch_IC_time ’ ] [ ’ genera l ’ ] ,
name = " Input−Branch1 " )

# Hidden L a y e r s
z1 = incept ion_block4 ( input_b1 , 24 , t0 =3 , t 1 =7 , t2 =10)
z1 = incept ion_block4 ( z1 , 24 , t0 =2 , t 1 =3 , t2 =7)
z1 = incept ion_block4 ( z1 , 24 , t0 =2 , t 1 =4 , t2 =8)
z1 = incept ion_block4 ( z1 , 24 , t0 =3 , t 1 =5 , t2 =9)
z1 = incept ion_block4 ( z1 , 24 , t0 =3 , t 1 =8 , t2 =9)
z1 = AveragePooling3D ( pool_s ize =(2 , 2 , 3 ) ) ( z1 )
z1 = BatchNormalization ( ) ( z1 )
for i in range ( 8 ) :

z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =3)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =4)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =5)

z1 = AveragePooling3D ( pool_s ize =(1 , 1 , 2 ) ) ( z1 )
z1 = BatchNormalization ( ) ( z1 )
for i in range ( 8 ) :

z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =3)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =4)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 32 , t2 =5)

z1 = Conv3D( 4 0 9 6 , ( 1 , 1 , 1 ) , a c t i v a t i o n = ’ r e l u ’ ,
padding=" same " , name= ’ conv1x1x1 ’ ) ( z1 )

z1 = GlobalAveragePooling3D ( ) ( z1 )
output_b1 = Dense ( output_shapes [ " Out1 " ] [ " genera l " ] [ 0 ] ,

a c t i v a t i o n =" softmax " ,
name=" Target1 " ) ( z1 )

# The Output
model= Model ( inputs =[ input_b1 ] ,

outputs =[ output_b1 ] )
return model
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B.2 DNN Energy Estimator

inputs = OrderedDict ( )

inputs [ " Branch_IC_time " ] = { " v a r i a b l e s " :
[ ’ IC_charge ’ , ’ I C _ t i m e _ f i r s t ’ ,

’ IC_charge_10ns ’ ,
’ IC_charge_50ns ’ , ’ IC_charge_100ns ’ ,
’ IC_time_spread ’ , ’ IC_time_std ’ ,
’ IC_time_weighted_median ’ ,
’ IC_pulse_0_01_pct_charge_quant i le ’ ,
’ IC_pulse_0_03_pct_charge_quant i le ’ ,
’ IC_pulse_0_05_pct_charge_quant i le ’ ,
’ IC_pulse_0_11_pct_charge_quant i le ’ ,
’ IC_pulse_0_15_pct_charge_quant i le ’ ,
’ IC_pulse_0_2_pct_charge_quant i le ’ ,
’ IC_pulse_0_5_pct_charge_quant i le ’ ,
’ IC_pulse_0_8_pct_charge_quant i le ’ ] ,

" t rans format ions " :
[ t r . IC_divide_100 , t r . IC_divide_10000 ,

t r . IC_divide_100 , t r . IC_divide_100 ,
t r . IC_divide_100 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ,
t r . IC_divide_10000 , t r . IC_divide_10000 ] }

# d e f i n e o u t p u t s f o r e a c h branch
outputs = OrderedDict ( )
outputs [ " Out1 " ] = { " v a r i a b l e s " : [ " e_on_entry " ] ,

" t rans format ions " : [ t r . log10 ] }
loss_weights = { ’ Target1 ’ : 1 . }
l o s s _ f u n c t i o n s = [ "mse" ]
metr i cs = [ ’mae ’ ]

def incept ion_block4 ( input_tensor , n , t0 =2 , t 1 =4 ,
t2 =5 , n_pool =3 , s c a l e = 0 . 1 ) :

tower_0 = conv3d_bn ( input_tensor , n , ( t0 , 1 , 1 ) ,
padding= ’ same ’ )

tower_0 = conv3d_bn ( tower_0 , n , ( 1 , t0 , 1 ) ,
padding= ’ same ’ )

tower_0 = conv3d_bn ( tower_0 , n , ( 1 , 1 , t0 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( input_tensor , n , ( t1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , t1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , 1 , t1 ) ,
padding= ’ same ’ )

tower_4 = conv3d_bn ( input_tensor , n , ( 1 , 1 , t2 ) ,
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padding= ’ same ’ )

tower_3 = MaxPooling3D (
( n_pool , n_pool , n_pool ) , s t r i d e s = ( 1 , 1 , 1 ) ,
padding= ’ same ’ ) ( input_tensor )

tower_3 = conv3d_bn ( tower_3 , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

up = concatenate (
[ tower_0 , tower_1 , tower_3 , tower_4 ] ,
a x i s = channel_axis )

return up

def i n c e p t i o n _ r e s n e t ( input_tensor , n , t1 =2 , t2 =3 ,
n_pool =3 , s c a l e = 0 . 1 ) :

tower_1 = conv3d_bn ( input_tensor , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( t1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , t1 , 1 ) ,
padding= ’ same ’ )

tower_1 = conv3d_bn ( tower_1 , n , ( 1 , 1 , t1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( input_tensor , n , ( 1 , 1 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( t2 , 1 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( 1 , t2 , 1 ) ,
padding= ’ same ’ )

tower_2 = conv3d_bn ( tower_2 , n , ( 1 , 1 , t2 ) ,
padding= ’ same ’ )

tower_3 = MaxPooling3D (
( n_pool , n_pool , n_pool ) , s t r i d e s = ( 1 , 1 , 1 ) ,
padding= ’ same ’ ) ( input_tensor )

tower_3 = conv3d_bn ( tower_3 , n , ( 1 , 1 , 1 ) , padding= ’ same ’ )

up = concatenate (
[ tower_1 , tower_2 , tower_3 ] , a x i s = channel_axis )

x = Lambda (
lambda inputs , s c a l e : inputs [ 0 ] + inputs [ 1 ] * sca le ,
output_shape=K. int_shape ( input_tensor ) [ 1 : ] ,
arguments ={ ’ s c a l e ’ : s c a l e } , ) ( [ input_tensor , up ] )

return x

#Model d e f i n i t i o n

def model ( input_shapes , output_shapes ) :

# The Input
input_b1 = Input (
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shape=input_shapes [ ’ Branch_IC_time ’ ] [ ’ general ’ ] ,
name = " Input−Branch1 " )

# Hidden L a y e r s
z1 = incept ion_block4 ( input_b1 , 18 , t0 =2 , t 1 =5 , t 2 =8)
z1 = incept ion_block4 ( z1 , 18 , t0 =2 , t 1 =3 , t 2 =7)
z1 = incept ion_block4 ( z1 , 18 , t0 =2 , t 1 =4 , t 2 =8)
z1 = incept ion_block4 ( z1 , 18 , t0 =3 , t 1 =5 , t 2 =9)
z1 = incept ion_block4 ( z1 , 18 , t0 =3 , t 1 =8 , t 2 =9)
z1 = AveragePooling3D ( pool_s ize =(2 , 2 , 3 ) ) ( z1 )
z1 = BatchNormalization ( ) ( z1 )
for i in range ( 6 ) :

z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =3)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =4)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =5)

z1 = AveragePooling3D ( pool_s ize =(1 , 1 , 2 ) ) ( z1 )
z1 = BatchNormalization ( ) ( z1 )
for i in range ( 6 ) :

z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =3)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =4)
z1 = i n c e p t i o n _ r e s n e t ( z1 , 24 , t2 =5)

z1 = Conv3D( 6 4 , ( 1 , 1 , 1 ) , a c t i v a t i o n = ’ r e l u ’ ,
padding=" same " , name= ’ conv1x1x1 ’ ) ( z1 )

z1 = Conv3D ( 4 , ( 1 , 1 , 1 ) , a c t i v a t i o n = ’ r e l u ’ ,
padding=" same " , name= ’ conv1x1x1_2 ’ ) ( z1 )

z1 = AveragePooling3D ( pool_s ize =(1 , 1 , 2 ) ) ( z1 )
z1 = F l a t t e n ( data_format=K. image_data_format ( ) ) ( z1 )
z1 = Dense ( 1 2 0 , name= ’ dense1 ’ ) ( z1 )
z1 = Dense ( 6 4 , name= ’ dense2 ’ ) ( z1 )
z1 = Dense ( 1 6 , name= ’ dense3 ’ ) ( z1 )
output_b1 = Dense ( output_shapes [ " Out1 " ] [ " genera l " ] [ 0 ] ,

a c t i v a t i o n =" l i n e a r " ,
name=" Target1 " ) ( z1 )

# The Output
model= Model ( inputs =[ input_b1 ] ,

outputs =[ output_b1 ] )
return model
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C Confusion Matrices of the DNN Clas-
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Figure C.1: Example of a simple cas-
cade selection on level 2. Only events
with true deposited energy larger than
5 TeV, cascade p-score larger than 0.5
and track p-score smaller 0.001 are cho-
sen. The track p-score is defined as
the maximum score of through-going
and stopping prediction. As a result
a fairly clean sample of cascades is
selected without applying any further
cuts on the direction. The plot includes
a complete modelling of the atmo-
spheric components and assumes the
best-fit astrophysical flux of IceCube’s
latest cascade sample M. Aartsen et
al., “Search for Sources of Astrophys-
ical Neutrinos Using Seven Years of
IceCube Cascade Events”.
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Figure C.2: Confusion matrices above
100 GeV for a full IceCube level 2 Monte
Carlo dataset including the dominant
atmospheric muon background. From
top to bottom a cut is place on the max-
imum p-score pmax of 0.5, 0.95 and 0.99,
respectively.
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Figure C.3: Confusion matrices above
10 TeV for a full IceCube level 2 Monte
Carlo dataset including the dominant
atmospheric muon background. From
top to bottom a cut is place on the max-
imum p-score pmax of 0.5, 0.95 and 0.99,
respectively.
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D Additional Material for the Point Source
Analysis

D.1 Efficient Minimization of the Likelihood Function

For a given source position the point source signal likelihood has
two free parameters, the signal strength µs and the spectral index γ,
which need to be maximized according to the maximum likelihood
principle. Numerically, this requires the gradient of eq. (7.31), which
is given by

∂(T S)
∂γ

=
N

∑
i=1

1
( fs,i − fb,i) +

µtot
µs

fb,i

[
∂Si
∂γ
Ei + Si

∂Ei
∂γ

]
(D.1)

for the spectral index and

∂(T S)
∂µs

= 2×
(

N
µtot
− 1
)
+ 2×

N

∑
i=1

1

µs

(
fs,i
fb,i
− 1
)
+ µtot

(
fs,i

fb,i
− 1
)

(D.2)

for the signal strength. For readability, function arguments have been
suppressed and S and E represent the spatial and energy term, re-
spectively. It can be seen that while the µs gradient only depends
on the function values of the pdfs in the likelihood, the γ gradient
additionally requires their derivatives. Note that eq. (D.1) and eq.
(D.2) are maximizing directly the test statistic. This is only valid as
the background likelihood doesn’t have any free parameters to be
maximized and is mainly done for simplification. In a case where
the background likelihood has additional free parameters, the signal
and background likelihood need to be maximized separately.

As the minimization procedure requires several steps, and thereby
many spline evaluations per event, performance considerations are
of large importance. In a first step, computation time can be reduced
by only evaluating events in a certain radius around the source po-
sition. For all the events outside this radius, fb is much larger than
fs and therefore the addend in the test statistic definition, eq. (7.31),
can be simplified to

log
{

µs

µtot

(
fs (xi | θs)

fb (xi | θb)
− 1
)
+ 1
}
→ log

{
1− µs

µtot

}
≈ − µs

µtot
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which is independent of fb and fs. Events outside the radius thereby
only contribute a constant factor of −1/µtot to the gradient in eq.
(D.2) while completely vanishing in eq. (D.1). This simplification re-
duces the computing time for the generation of one pseudo-experiment,
i.e., the injection of background and signal events and the minimiza-
tion of the likelihoods, to ∼ 200 ms when using a box of 15 degrees
radius around the source position, because only around 3% of the
total number of events in the sky have to be evaluated. Further im-
provement can be reached by making the box a function of the recon-
structed energy and the angular uncertainty estimation. In our case,
for each EDNN and σBDT bin the 99.8% quantile of the point-spread
function is calculated. For stability reasons a lower threshold is set to
4 degrees, while an upper threshold of 15 degrees is used wherever
the 99.8% quantile is larger or not sufficient Monte Carlo statistic is
available to reliably calculate the quantile. Using only events that
fall in the dynamic box further reduces the amount of events that
are evaluated to ∼ 2 % and thereby reducing the computing time to
∼ 150 ms/trial.

All the calculations for the point source analysis are implemented
in a new tool python-based tool called SkyLLH 1. It is designed to1 https://github.com/IceCubeOpenSo

urce/skyllh perform likelihood analysis in a wide range of astrophysical appli-
cations, not being limited to neutrino point source searches.2 It also2 Wolf, “SkyLLH – A generalized

Python-based tool for log-likelihood
analyses in multi-messenger astron-
omy”.

provides an interface for reading and interpolating the previously
generated pdfs and to perform a gradient-based minimization of the
likelihood function.

https://github.com/IceCubeOpenSource/skyllh
https://github.com/IceCubeOpenSource/skyllh
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D.2 Background Test Statistic Distributions
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1 Trials Figure D.1: Background test statistic

distributions for various declinations
assuming a fixed spectral index of γ =
2.0. A χ2

1 is indicated as a black dashed
line after normalizing for the number of
zero trials N0 which is around 80%.
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D.3 Point Spread Functions

Figure D.3: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ = 1.0.
From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.
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Figure D.4: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ = 1.5.
From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.
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Figure D.5: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ = 2.5.
From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.
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Figure D.6: Comparison of the KDE
spatial term and the Rayleigh approx-
imation for a spectral index of γ = 4.0.
From top to bottom, the plots are
shown for increasing DNN energy and
a common BDT angular uncertainty.
The Monte Carlo truth is given for dif-
ferent zenith bands to highlight its in-
variance.
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D.4 Fit Biases at Various Declinations

Figure D.7: Fitted versus injected signal
for a γ = 2.0 source spectrum and four
different declinations. Left and right
plot show the recovery of the number
of signal events and the spectral in-
dex as a function of the number of in-
jected events. The unbiased expectation
is shown a white dashed lines. The re-
sults for the new and old analysis are
shown in different colors as solid lines
and shaded bands for the median and
central 68% quantile, respectively.
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Figure D.8: Fitted versus injected sig-
nal for a γ = 3.25 source spectrum and
four different declinations. Left and
right plot show the recovery of the
number of signal events and the spec-
tral index as a function of the number
of injected events. The unbiased expec-
tation is shown as white dashed lines.
The results for the new and old analy-
sis are shown in different colors as solid
lines and shaded bands for the median
and central 68% quantile, respectively.
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D.5 Impact of Systematic Uncertainties on the Fit Biases

Figure D.9: Fitted versus injected signal
for a γ = 2.0 source spectrum and four
different declinations. Left and right
plot show the recovery of the number
of signal events and the spectral index
as a function of the number of injected
events. The unbiased expectation is
shown as a white dashed line. The re-
sults for different systematic effects are
shown in different colors, while solid
lines and shaded bands represent the
median and central 68% quantile, re-
spectively.
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Figure D.10: Fitted versus injected sig-
nal for a γ = 3.25 source spectrum and
four different declinations. Left and
right plot show the recovery of the
number of signal events and the spec-
tral index as a function of the number
of injected events. The unbiased ex-
pectation is shown as a white dashed
line. The results for different system-
atic effects are shown in different col-
ors, while solid lines and shaded bands
represent the median and central 68%
quantile, respectively.
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D.6 Trial Correction Functions

Figure D.11: The trial correction func-
tion for the case of a fixed spectral index
of γ = 2.0. The left plot shows the dis-
tribution of p-values from 1000 pseudo-
experiments assuming the background
hypothesis to be true. The fitted beta
distribution is shown as orange line.
The corresponding cumulative function
that can be used to convert the pre-trial
into a post-trial p-value is shown in the
right plot.
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Figure D.12: The trial correction func-
tion for the case of a fixed spectral index
of γ = 2.5. The left plot shows the dis-
tribution of p-values from 1000 pseudo-
experiments assuming the background
hypothesis to be true. The fitted beta
distribution is shown as orange line.
The corresponding cumulative function
that can be used to convert the pre-trial
into a post-trial p-value is shown in the
right plot.

4 6 8
− log10(ppre)

0.0

0.2

0.4

0.6

0.8

P
D

F

Fixed γ = 2.5; N=409833

4 6 8
− log10(ppre)

0

1

2

3

−
lo

g
1
0
(p
p
o
s
t
)

2σ

3σ



APPENDIX E. BIBLIOGRAPHY 193

E Bibliography

Aab, A. et al. “Observation of a Large-scale Anisotropy in the Arrival Direc-
tions of Cosmic Rays above 8 × 1018 eV”. Science 357.6537 (2017) 1266–1270.
arXiv:1709.07321 [astro-ph.HE] (cit. on p. 7).

Aartsen, M. G. et al. “Characterization of the Atmospheric Muon Flux in IceCube”.
Astropart. Phys. 78 (2016) 1–27. arXiv:1506.07981 [astro-ph.HE] (cit. on p. 71).

– “Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube”. Phys. Rev. Lett.
114.17 (2015) 171102. arXiv:1502.03376 [astro-ph.HE] (cit. on p. 71).

– “Measurement of South Pole ice transparency with the IceCube LED calibration
system”. Nucl. Instrum. Meth. A711 (2013) 73–89. arXiv:1301.5361 [astro-ph.IM] (cit.
on pp. 44, 81).

– “Measurements using the inelasticity distribution of multi-TeV neutrino interac-
tions in IceCube”. Phys. Rev. D99.3 (2019) 032004. arXiv:1808.07629 [hep-ex] (cit. on
pp. 36, 72).

– “Observation and Characterization of a Cosmic Muon Neutrino Flux from the
Northern Hemisphere using six years of IceCube data”. Astrophys. J. 833.1 (2016) 3.
arXiv:1607.08006 [astro-ph.HE] (cit. on pp. 71, 114, 141, 142).

– “Search for steady point-like sources in the astrophysical muon neutrino flux with
8 years of IceCube data”. Eur. Phys. J. C79.3 (2019) 234. arXiv:1811.07979 [hep-ph]
(cit. on pp. 71, 101, 114, 140).

– “Time-integrated Neutrino Source Searches with 10 years of IceCube Data”. Phys.
Rev. Lett. 124.5 (2020) 051103. arXiv:1910.08488 [astro-ph.HE] (cit. on pp. 101, 113,
125, 133, 136).

Aartsen, M. G., Abraham, K., et al. “All-sky Search for Time-integrated Neutrino
Emission from Astrophysical Sources with 7 yr of IceCube Data”. Astrophysical
Journal 835.2, 151 (Feb. 2017) 151. arXiv:1609.04981 [astro-ph.HE] (cit. on pp. 101,
139, 165).

Aartsen, M. G., Ackermann, M., et al. “The IceCube Neutrino Observatory: instru-
mentation and online systems”. Journal of Instrumentation 12.3 (Mar. 2017) P03012.
arXiv:1612.05093 [astro-ph.IM] (cit. on p. 72).

Aartsen, M. et al. “Characteristics of the diffuse astrophysical electron and tau
neutrino flux with six years of IceCube high energy cascade data” (Jan. 2020).
arXiv:2001.09520 [astro-ph.HE] (cit. on pp. 11, 71, 78).

– “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector”.
Science 342 (2013) 1242856. arXiv:1311.5238 [astro-ph.HE] (cit. on pp. 5, 91, 141).

– “IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Neb-
ulae” (Mar. 2020). arXiv:2003.12071 [astro-ph.HE] (cit. on p. 19).

http://arxiv.org/abs/1709.07321
http://arxiv.org/abs/1506.07981
http://arxiv.org/abs/1502.03376
http://arxiv.org/abs/1301.5361
http://arxiv.org/abs/1808.07629
http://arxiv.org/abs/1607.08006
http://arxiv.org/abs/1811.07979
http://arxiv.org/abs/1910.08488
http://arxiv.org/abs/1609.04981
http://arxiv.org/abs/1612.05093
http://arxiv.org/abs/2001.09520
http://arxiv.org/abs/1311.5238
http://arxiv.org/abs/2003.12071


194

Aartsen, M. et al. “IceCube-Gen2: The Window to the Extreme Universe” (Aug. 2020).
arXiv:2008.04323 [astro-ph.HE] (cit. on pp. 44, 165).

– “Neutrino astronomy with the next generation IceCube Neutrino Observatory”
(Nov. 2019). arXiv:1911.02561 [astro-ph.HE] (cit. on p. 165).

– “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube
Data”. Phys. Rev. Lett. 113 (2014) 101101. arXiv:1405.5303 [astro-ph.HE] (cit. on
p. 141).

– “Observation of the cosmic-ray shadow of the Moon with IceCube”. Phys. Rev. D
89.10 (2014) 102004. arXiv:1305.6811 [astro-ph.HE] (cit. on p. 116).

– “Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cas-
cade Events”. Astrophys. J. 886 (2019) 12. arXiv:1907.06714 [astro-ph.HE] (cit. on
pp. 12, 38, 92, C-177).

– “The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II:
Properties of the Atmospheric and Astrophysical Neutrino Flux” (Oct. 2017).
arXiv:1710.01191 [astro-ph.HE] (cit. on p. 141).

– “The IceCube Neutrino Observatory: Instrumentation and Online Systems”. JINST
12.03 (2017) P03012. arXiv:1612.05093 [astro-ph.IM] (cit. on pp. 2, 33, 39–42).

– “The IceCube Realtime Alert System”. Astropart. Phys. 92 (2017) 30–41.
arXiv:1612.06028 [astro-ph.HE] (cit. on pp. 53, 141).

– “Very High-Energy Gamma-Ray Follow-Up Program Using Neutrino Triggers
from IceCube”. JINST 11.11 (2016) P11009. arXiv:1610.01814 [hep-ex] (cit. on p. 55).

Abbasi, R. et al. “An improved method for measuring muon energy using the trun-
cated mean of dE/dx”. Nuclear Instruments and Methods in Physics Research A 703

(Mar. 2013) 190–198. arXiv:1208.3430 [physics.data-an] (cit. on pp. 45, 46).
Abdalla, H. et al. “H.E.S.S. observations of RX J1713.7−3946 with improved angular

and spectral resolution: Evidence for gamma-ray emission extending beyond the X-
ray emitting shell”. Astron. Astrophys. 612 (2018) A6. arXiv:1609.08671 [astro-ph.HE]
(cit. on p. 18).

Abdollahi, S. et al. “Fermi Large Area Telescope Fourth Source Catalog”. Astrophys. J.
Suppl. 247.1 (2020) 33. arXiv:1902.10045 [astro-ph.HE] (cit. on p. 10).

Abdollahi, S. et al. “Fermi Large Area Telescope Fourth Source Catalog”. Astrophysical
Journal Suppl. Ser. 247.1, 33 (Mar. 2020) 33. arXiv:1902.10045 [astro-ph.HE] (cit. on
pp. 56, 141, 142, 151).

Abraham, J. et al. “Observation of the suppression of the flux of cosmic rays above
4× 1019eV”. Phys. Rev. Lett. 101 (2008) 061101. arXiv:0806.4302 [astro-ph] (cit. on
p. 8).

Acero, F. et al. “Fermi Large Area Telescope Third Source Catalog”. Astrophys. J. Suppl.
218.2 (2015) 23. arXiv:1501.02003 [astro-ph.HE] (cit. on p. 55).

Ackermann, M. et al. “Fermi-LAT Observations of the Diffuse γ-Ray Emission: Impli-
cations for Cosmic Rays and the Interstellar Medium”. Astrophysical Journal 750.1,
3 (May 2012) 3. arXiv:1202.4039 [astro-ph.HE] (cit. on p. 10).

Ade, P. et al. “Planck 2013 results. XVI. Cosmological parameters”. Astron. Astrophys.
571 (2014) A16. arXiv:1303.5076 [astro-ph.CO] (cit. on p. 26).

Ageron, M. et al. “ANTARES: The first undersea neutrino telescope”. Nuclear Instru-
ments and Methods in Physics Research A 656.1 (Nov. 2011) 11–38. arXiv:1104.1607

[astro-ph.IM] (cit. on p. 33).

http://arxiv.org/abs/2008.04323
http://arxiv.org/abs/1911.02561
http://arxiv.org/abs/1405.5303
http://arxiv.org/abs/1305.6811
http://arxiv.org/abs/1907.06714
http://arxiv.org/abs/1710.01191
http://arxiv.org/abs/1612.05093
http://arxiv.org/abs/1612.06028
http://arxiv.org/abs/1610.01814
http://arxiv.org/abs/1208.3430
http://arxiv.org/abs/1609.08671
http://arxiv.org/abs/1902.10045
http://arxiv.org/abs/1902.10045
http://arxiv.org/abs/0806.4302
http://arxiv.org/abs/1501.02003
http://arxiv.org/abs/1202.4039
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1104.1607


APPENDIX E. BIBLIOGRAPHY 195

Agostinelli, S. et al. “GEANT4–a simulation toolkit”. Nucl. Instrum. Meth. A 506 (2003)
250–303 (cit. on p. 34).

Agostini, M. et al. “The Pacific Ocean Neutrino Experiment” (May 2020).
arXiv:2005.09493 [astro-ph.HE] (cit. on pp. 33, 44, 165).

Ahmad, Q. R. et al. “Direct Evidence for Neutrino Flavor Transformation from
Neutral-Current Interactions in the Sudbury Neutrino Observatory”. Phys. Rev.
Lett. 89 (1 June 2002) 011301 (cit. on p. 25).

Ahn, E.-J. et al. “Cosmic ray interaction event generator SIBYLL 2.1”. Phys. Rev. D 80

(2009) 094003. arXiv:0906.4113 [hep-ph] (cit. on p. 90).
Ahrens, J. et al. “Muon track reconstruction and data selection techniques in

AMANDA”. Nucl. Instrum. Meth. A 524 (2004) 169–194. arXiv:astro-ph/0407044

(cit. on p. 47).
Ahrens, J. et al. “Search for Extraterrestrial Point Sources of Neutrinos with

AMANDA-II”. 92.7, 071102 (Feb. 2004) 071102. arXiv:astro-ph/0309585 [astro-ph]
(cit. on p. 101).

Ajello, M. et al. “The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi
Large Area Telescope” (May 2019). arXiv:1905.10771 [astro-ph.HE] (cit. on pp. 141,
148).

– “The Origin of the Extragalactic Gamma-Ray Background and Implications for
Dark-Matter Annihilation”. Astrophys. J. Lett. 800.2 (2015) L27. arXiv:1501.05301

[astro-ph.HE] (cit. on pp. 10, 20).
Aker, M. et al. “Improved Upper Limit on the Neutrino Mass from a Direct Kinematic

Method by KATRIN”. Phys. Rev. Lett. 123.22 (2019) 221802. arXiv:1909.06048 [hep-
ex] (cit. on p. 26).

Alves Batista, R. et al. “Open Questions in Cosmic-Ray Research at Ultrahigh Ener-
gies”. Front. Astron. Space Sci. 6 (2019) 23. arXiv:1903.06714 [astro-ph.HE] (cit. on
p. 7).

Apel, W. D. et al. “Kneelike Structure in the Spectrum of the Heavy Component
of Cosmic Rays Observed with KASCADE-Grande”. 107.17, 171104 (Oct. 2011)
171104. arXiv:1107.5885 [astro-ph.HE] (cit. on p. 7).

Atwood, W. B. et al. “The Large Area Telescope on the Fermi Gamma-Ray Space Tele-
scope Mission”. Astrophysical Journal 697.2 (June 2009) 1071–1102. arXiv:0902.1089

[astro-ph.IM] (cit. on p. 30).
Avrorin, A. et al. “Baikal-GVD: status and prospects”. EPJ Web Conf. 191 (2018). Ed. by

Volkova, V. et al. 01006. arXiv:1808.10353 [astro-ph.IM] (cit. on pp. 33, 165).
Bahcall, J. N., Bahcall, N. A., and Shaviv, G. “Present Status of the Theoretical Pre-

dictions for the 37Cl Solar-Neutrino Experiment”. Phys. Rev. Lett. 20 (21 May 1968)
1209–1212 (cit. on p. 25).

Bechtol, K. et al. “Evidence against star-forming galaxies as the dominant source of
IceCube neutrinos”. Astrophys. J. 836.1 (2017) 47. arXiv:1511.00688 [astro-ph.HE]
(cit. on pp. 19, 20).

Bell, A. R. “The acceleration of cosmic rays in shock fronts – I”. Monthly Notices of the
Royal Astronomical Society 182.2 (Feb. 1978) 147–156. issn: 0035-8711. eprint: https:
//academic.oup.com/mnras/article-pdf/182/2/147/3710138/mnras182-0147.pdf
(cit. on p. 14).

Berezinsky, V. and Smirnov, A. Y. “Cosmic neutrinos of ultra-high energies and detec-
tion possibility”. Astrophysics and Space Science 32.2 (1975) 461–482 (cit. on p. 16).

http://arxiv.org/abs/2005.09493
http://arxiv.org/abs/0906.4113
http://arxiv.org/abs/astro-ph/0407044
http://arxiv.org/abs/astro-ph/0309585
http://arxiv.org/abs/1905.10771
http://arxiv.org/abs/1501.05301
http://arxiv.org/abs/1909.06048
http://arxiv.org/abs/1903.06714
http://arxiv.org/abs/1107.5885
http://arxiv.org/abs/0902.1089
http://arxiv.org/abs/1808.10353
http://arxiv.org/abs/1511.00688
https://academic.oup.com/mnras/article-pdf/182/2/147/3710138/mnras182-0147.pdf
https://academic.oup.com/mnras/article-pdf/182/2/147/3710138/mnras182-0147.pdf


196

Blasi, P. “The Origin of Galactic Cosmic Rays”. Astron. Astrophys. Rev. 21 (2013) 70.
arXiv:1311.7346 [astro-ph.HE] (cit. on p. 6).

Blaufuss, E. et al. “The Next Generation of IceCube Realtime Neutrino Alerts”. PoS
ICRC2019 (2020) 1021. arXiv:1908.04884 [astro-ph.HE] (cit. on pp. 71, 89).

Bradascio, F. and Glüsenkamp, T. “Improving the muon track reconstruction of
IceCube and IceCube-Gen2”. EPJ Web Conf. 207 (2019). Ed. by Spiering, C. 05002.
arXiv:1905.09612 [astro-ph.IM] (cit. on p. 47).

Braun, J. et al. “Methods for point source analysis in high energy neutrino telescopes”.
Astroparticle Physics 29.4 (May 2008) 299–305. arXiv:0801.1604 [astro-ph] (cit. on
pp. 101, 107).

Burrows, D. N. et al. “The Swift X-ray Telescope”. Space Sci. Rev. 120 (2005) 165.
arXiv:astro-ph/0508071 (cit. on p. 31).

Casella, G. and Berger, R. Statistical Inference. Duxbury advanced series in statis-
tics and decision sciences. Thomson Learning, 2002. isbn: 9780534243128 (cit. on
pp. 101, 102, 104, 135).

Cerruti, M. et al. “Leptohadronic single-zone models for the electromagnetic and neu-
trino emission of TXS 0506+056”. Mon. Not. Roy. Astron. Soc. 483.1 (2019) L12–L16.
arXiv:1807.04335 [astro-ph.HE] (cit. on p. 63).

Chang, Y.-L., Arsioli, B., et al. “The 3HSP catalogue of extreme and high-synchrotron
peaked blazars”. Astron. Astrophys. 632 (2019) A77. arXiv:1909.08279 [astro-ph.HE]
(cit. on pp. 56, 141, 148, 154).

Chang, Y.-L., Brandt, C., and Giommi, P. “The Open Universe VOU-Blazars tool”.
Astron. Comput. 30 (2020) 100350. arXiv:1909.11455 [astro-ph.HE] (cit. on pp. 57,
142, 147).

Chirkin, D. and Rongen, M. “Light diffusion in birefringent polycrystals and the
IceCube ice anisotropy”. PoS ICRC2019 (2020) 854. arXiv:1908.07608 [astro-ph.HE]
(cit. on p. 45).

Chollet, F. et al. Keras. https://keras.io. 2015 (cit. on p. 77).
Choma, N. et al. “Graph Neural Networks for IceCube Signal Classification”. arXiv e-

prints, arXiv:1809.06166 (Sept. 2018) arXiv:1809.06166. arXiv:1809.06166 [cs.LG] (cit.
on p. 65).

Cooper-Sarkar, A., Mertsch, P., and Sarkar, S. “The high energy neutrino cross-section
in the Standard Model and its uncertainty”. JHEP 08 (2011) 042. arXiv:1106.3723

[hep-ph] (cit. on p. 36).
Cowan, G. Statistical Data Analysis. Oxford science publications. Clarendon Press,

1998. isbn: 9780198501558 (cit. on p. 101).
Cowan, G. et al. “Asymptotic formulae for likelihood-based tests of new physics”. Eur.

Phys. J. C 71 (2011). [Erratum: Eur.Phys.J.C 73, 2501 (2013)] 1554. arXiv:1007.1727

[physics.data-an] (cit. on pp. 49, 145, 151).
Davis, R., Harmer, D. S., and Hoffman, K. C. “Search for Neutrinos from the Sun”.

Phys. Rev. Lett. 20 (21 May 1968) 1205–1209 (cit. on p. 25).
De Angelis, A., Galanti, G., and Roncadelli, M. “Transparency of the Universe to

gamma rays”. Mon. Not. Roy. Astron. Soc. 432 (2013) 3245–3249. arXiv:1302.6460

[astro-ph.HE] (cit. on p. 8).
Dembinski, H. P. et al. “Data-driven model of the cosmic-ray flux and mass com-

position from 10 GeV to 1011 GeV”. PoS ICRC2017 (2018) 533. arXiv:1711.11432

[astro-ph.HE] (cit. on p. 115).

http://arxiv.org/abs/1311.7346
http://arxiv.org/abs/1908.04884
http://arxiv.org/abs/1905.09612
http://arxiv.org/abs/0801.1604
http://arxiv.org/abs/astro-ph/0508071
http://arxiv.org/abs/1807.04335
http://arxiv.org/abs/1909.08279
http://arxiv.org/abs/1909.11455
http://arxiv.org/abs/1908.07608
https://keras.io
http://arxiv.org/abs/1809.06166
http://arxiv.org/abs/1106.3723
http://arxiv.org/abs/1007.1727
http://arxiv.org/abs/1302.6460
http://arxiv.org/abs/1711.11432


APPENDIX E. BIBLIOGRAPHY 197

Desai, V. et al. “PAH Emission from Ultraluminous Infrared Galaxies”. Astrophys. J.
669 (2007) 810–820. arXiv:0707.4190 [astro-ph] (cit. on p. 19).

Dolag, K. et al. “Mapping deflections of ultrahigh energy cosmic rays in con-
strained simulations of extragalactic magnetic fields”. JETP Lett. 79 (2004) 583–587.
arXiv:astro-ph/0310902 (cit. on p. 8).

Esteban, I. et al. “Global analysis of three-flavour neutrino oscillations: synergies and
tensions in the determination of θ23, δCP, and the mass ordering”. JHEP 01 (2019)
106. arXiv:1811.05487 [hep-ph] (cit. on pp. 26, 27).

Fanaroff, B. L. and Riley, J. M. “The morphology of extragalactic radio sources of high
and low luminosity”. Monthly Notices of the Royal Astronomical Society 167 (May
1974) 31P–36P (cit. on p. 22).

Fedynitch, A. et al. “Calculation of conventional and prompt lepton fluxes at
very high energy”. EPJ Web Conf. 99 (2015). Ed. by Berge, D. et al. 08001.
arXiv:1503.00544 [hep-ph] (cit. on pp. 28, 30).

Fermi, E. “On the Origin of the Cosmic Radiation”. Phys. Rev. 75 (1949) 1169–1174

(cit. on p. 18).
Formaggio, J. and Zeller, G. “From eV to EeV: Neutrino Cross Sections Across En-

ergy Scales”. Rev. Mod. Phys. 84 (2012) 1307–1341. arXiv:1305.7513 [hep-ex] (cit. on
pp. 35, 36).

Gaggero, D., Grasso, D., et al. “The gamma-ray and neutrino sky: A consistent picture
of Fermi-LAT, Milagro, and IceCube results”. Astrophys. J. Lett. 815.2 (2015) L25.
arXiv:1504.00227 [astro-ph.HE] (cit. on p. 10).

Gaggero, D., Urbano, A., et al. “Gamma-ray sky points to radial gradients in cosmic-
ray transport”. Phys. Rev. D 91.8 (2015) 083012. arXiv:1411.7623 [astro-ph.HE] (cit.
on pp. 9, 10).

Gaisser, T. “Neutrino astronomy: Physics goals, detector parameters”. July 1997.
arXiv:astro-ph/9707283 (cit. on p. 37).

Gaisser, T. K., Engel, R., and Resconi, E. Cosmic Rays and Particle Physics. 2nd ed.
Cambridge University Press, 2016 (cit. on pp. 18, 26, 28, 29).

Gaisser, T. K., Jero, K., et al. “Generalized self-veto probability for atmospheric neutri-
nos”. Phys. Rev. D 90.2 (2014) 023009. arXiv:1405.0525 [astro-ph.HE] (cit. on pp. 43,
90).

Gaisser, T. K., Stanev, T., and Tilav, S. “Cosmic Ray Energy Spectrum from Mea-
surements of Air Showers”. Front. Phys. (Beijing) 8 (2013) 748–758. arXiv:1303.3565

[astro-ph.HE] (cit. on pp. 7, 90).
Gazizov, A. and Kowalski, M. “ANIS: High energy neutrino generator for neutrino

telescopes”. Computer Physics Communications 172.3 (2005) 203–213. issn: 0010-4655

(cit. on p. 78).
Gentle, J. E. Computational Statistics. Springer New York, 2009 (cit. on p. 134).
Ghisellini, G. et al. “The Fermi blazar sequence”. Mon. Not. Roy. Astron. Soc. 469.1

(2017) 255–266. arXiv:1702.02571 [astro-ph.HE] (cit. on pp. 24, 157).
Ginzburg, V. L. and Syrovatskii, S. I. The Origin of Cosmic Rays. 1964 (cit. on p. 6).
Giommi, P., Chang, Y. L., et al. “The Open Universe survey of Swift-XRT GRB fields:

a complete sample of HBL blazars”. arXiv e-prints, arXiv:2003.05153 (Mar. 2020)
arXiv:2003.05153. arXiv:2003.05153 [astro-ph.HE] (cit. on p. 150).

http://arxiv.org/abs/0707.4190
http://arxiv.org/abs/astro-ph/0310902
http://arxiv.org/abs/1811.05487
http://arxiv.org/abs/1503.00544
http://arxiv.org/abs/1305.7513
http://arxiv.org/abs/1504.00227
http://arxiv.org/abs/1411.7623
http://arxiv.org/abs/astro-ph/9707283
http://arxiv.org/abs/1405.0525
http://arxiv.org/abs/1303.3565
http://arxiv.org/abs/1702.02571
http://arxiv.org/abs/2003.05153


198

Giommi, P., Glauch, T., et al. “Dissecting the regions around IceCube high-energy neu-
trinos: growing evidence for the blazar connection” (Jan. 2020). arXiv:2001.09355

[astro-ph.HE] (cit. on pp. 3, 140, 143, 144, 147, 158, 160, 164).
Giommi, P., Padovani, P., Oikonomou, F., et al. “3HSP J095507.9+355101: a flaring

extreme blazar coincident in space and time with IceCube-200107A” (Mar. 2020).
arXiv:2003.06405 [astro-ph.HE] (cit. on pp. 3, 56, 92, 140, 155, 156, 165).

Giommi, P., Padovani, P., and Polenta, G. “A simplified view of blazars: the gamma-
ray case”. Mon. Not. Roy. Astron. Soc. 431 (2013) 1914. arXiv:1302.4331 [astro-ph.HE]
(cit. on pp. 24, 25).

Glauch, T., Padovani, P., et al. “Dissecting the region around IceCube-170922A: the
blazar TXS 0506+056 as the first cosmic neutrino source”. EPJ Web Conf. 207 (2019).
Ed. by Spiering, C. 02003 (cit. on pp. 2, 60).

Glauch, T. and Turcati, A. “Search for weak neutrino point sources using angular
auto-correlation analyses in IceCube”. PoS ICRC2017 (2018) 1014 (cit. on pp. 139,
165).

Glorot, X. and Bengio, Y. “Understanding the difficulty of training deep feedforward
neural networks”. Proceedings of the thirteenth international conference on artificial in-
telligence and statistics. 2010 p. 249 (cit. on p. 76).

Gorski, K. et al. “HEALPix - A Framework for high resolution discretization, and
fast analysis of data distributed on the sphere”. Astrophys. J. 622 (2005) 759–771.
arXiv:astro-ph/0409513 (cit. on p. 134).

Gruppioni, C. et al. “The Herschel PEP/HerMES Luminosity Function. I: Probing the
Evolution of PACS selected Galaxies to z~4”. Mon. Not. Roy. Astron. Soc. 432 (2013)
23. arXiv:1302.5209 [astro-ph.CO] (cit. on p. 19).

Halzen, F. and Zas, E. “Neutrino Fluxes from Active Galaxies: A Model-Independent
Estimate”. Astrophysical Journal 488.2 (Oct. 1997) 669–674. arXiv:astro-ph/9702193

[astro-ph] (cit. on p. 20).
Harari, D., Mollerach, S., and Roulet, E. “On the ultrahigh energy cosmic ray horizon”.

JCAP 11 (2006) 012. arXiv:astro-ph/0609294 (cit. on p. 8).
Haverkorn, M. “Magnetic Fields in the Milky Way”. Magnetic Fields in Diffuse Media.

Ed. by Lazarian, A., de Gouveia Dal Pino, E. M., and Melioli, C. Vol. 407. Astro-
physics and Space Science Library. 2015 p. 483 (cit. on p. 6).

Haykin, S. Neural Networks: A Comprehensive Foundation. 1st. USA: Prentice Hall PTR,
1994. isbn: 0023527617 (cit. on p. 67).

He, K. and Sun, J. “Convolutional neural networks at constrained time cost”. Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2015 p. 5353

(cit. on p. 76).
He, K., Zhang, X., et al. “Deep residual learning for image recognition”. Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016 p. 770 (cit. on
pp. 65, 76).

Heck, D. et al. “CORSIKA: A Monte Carlo code to simulate extensive air showers”
(Feb. 1998) (cit. on p. 90).

Hess, V. F. “Über Beobachtungen der durchdringenden Strahlung bei sieben Freibal-
lonfahrten”. Phys. Z. 13 (1912) 1084–1091 (cit. on pp. 1, 5).

Honda, M. et al. “Calculation of atmospheric neutrino flux using the interaction
model calibrated with atmospheric muon data”. Phys. Rev. D75 (2007) 043006.
arXiv:astro-ph/0611418 [astro-ph] (cit. on pp. 78, 90).

http://arxiv.org/abs/2001.09355
http://arxiv.org/abs/2003.06405
http://arxiv.org/abs/1302.4331
http://arxiv.org/abs/astro-ph/0409513
http://arxiv.org/abs/1302.5209
http://arxiv.org/abs/astro-ph/9702193
http://arxiv.org/abs/astro-ph/0609294
http://arxiv.org/abs/astro-ph/0611418


APPENDIX E. BIBLIOGRAPHY 199

Huber, M. “Multi-Messenger correlation study of Fermi-LAT blazars and high-energy
neutrinos observed in IceCube”. PhD thesis. Technical University of Munich, 2020

(cit. on pp. 139, 147, 165).
– “Searches for steady neutrino emission from 3FHL blazars using eight years

of IceCube data from the Northern hemisphere”. PoS ICRC2019 (2020) 916.
arXiv:1908.08458 [astro-ph.HE] (cit. on p. 139).

Huennefeld, M. “Deep Learning in Physics exemplified by the Reconstruction of
Muon-Neutrino Events in IceCube”. PoS ICRC2017 (2018) 1057 (cit. on pp. 65, 73,
109).

– “Reconstruction Techniques in IceCube using Convolutional and Generative Neu-
ral Networks”. EPJ Web of Conferences 207 (Jan. 2019) 05005 (cit. on pp. 48, 73).

IceCube Collaboration, Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A.,
Ahlers, M., Ahrens, M., Al Samarai, I., et al. “Multimessenger observations of
a flaring blazar coincident with high-energy neutrino IceCube-170922A”. Science
361.6398, eaat1378 (July 2018) eaat1378. arXiv:1807.08816 [astro-ph.HE] (cit. on
pp. 2, 53–56, 60, 89, 141, 163).

IceCube Collaboration, Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A.,
Ahlers, M., Ahrens, M., Samarai, I. A., et al. “Neutrino emission from the direction
of the blazar TXS 0506+056 prior to the IceCube-170922A alert”. Science 361.6398

(July 2018) 147–151. arXiv:1807.08794 [astro-ph.HE] (cit. on pp. 2, 53, 57, 60, 163).
Inoue, Y., Khangulyan, D., and Doi, A. “On the Origin of High-energy Neutrinos

from NGC 1068: The Role of Nonthermal Coronal Activity”. Astrophys. J. Lett. 891.2
(2020) L33. arXiv:1909.02239 [astro-ph.HE] (cit. on p. 136).

Ioffe, S. and Szegedy, C. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. arXiv preprint arXiv:1502.03167 (2015) (cit. on
p. 76).

Jackson, J. D. Classical Electrodynamics, 3rd Edition. 1998 (cit. on p. 33).
Keenan, M. et al. “The Relativistic Jet Dichotomy and the End of the Blazar Sequence”

(July 2020). arXiv:2007.12661 [astro-ph.GA] (cit. on p. 24).
Keivani, A. et al. “A Multimessenger Picture of the Flaring Blazar TXS 0506+056:

implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration”.
Astrophys. J. 864.1 (2018) 84. arXiv:1807.04537 [astro-ph.HE] (cit. on p. 63).

Kelner, S. and Aharonian, F. “Energy spectra of gamma-rays, electrons and neutrinos
produced at interactions of relativistic protons with low energy radiation”. Phys.
Rev. D 78 (2008). [Erratum: Phys.Rev.D 82, 099901 (2010)] 034013. arXiv:0803.0688

[astro-ph] (cit. on p. 13).
Kelner, S., Aharonian, F. A., and Bugayov, V. “Energy spectra of gamma-rays, elec-

trons and neutrinos produced at proton-proton interactions in the very high energy
regime”. Phys. Rev. D 74 (2006). [Erratum: Phys.Rev.D 79, 039901 (2009)] 034018.
arXiv:astro-ph/0606058 (cit. on p. 14).

Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic Optimization”. arXiv e-
prints, arXiv:1412.6980 (Dec. 2014) arXiv:1412.6980. arXiv:1412.6980 [cs.LG] (cit. on
pp. 77, 109, 149).

Kopper, C. “Performance Studies for theKM3NeT Neutrino Telescope”. PhD thesis.
Friedrich-Alexander-Universit Erlangen-Nuernberg, 2010 (cit. on p. 37).

Koyama, K. et al. “Evidence for shock acceleration of high-energy electrons in the
supernova remnant SN1006”. Nature 378.6554 (Nov. 1995) 255–258 (cit. on p. 18).

http://arxiv.org/abs/1908.08458
http://arxiv.org/abs/1807.08816
http://arxiv.org/abs/1807.08794
http://arxiv.org/abs/1909.02239
http://arxiv.org/abs/2007.12661
http://arxiv.org/abs/1807.04537
http://arxiv.org/abs/0803.0688
http://arxiv.org/abs/astro-ph/0606058
http://arxiv.org/abs/1412.6980


200

Krizhevsky, A., Sutskever, I., and Hinton, G. E. “Imagenet classification with deep
convolutional neural networks”. Advances in neural information processing systems.
2012 p. 1097 (cit. on p. 76).

Kronmueller, M. and Glauch, T. “Application of Deep Neural Networks to Event Type
Classification in IceCube”. 36th International Cosmic Ray Conference (ICRC2019).
Vol. 36. International Cosmic Ray Conference. July 2019 p. 937. arXiv:1908.08763

[astro-ph.IM] (cit. on pp. 2, 66, 163).
Kronmüller, M. “Application of Deep Neural Networks on Event Type Classification

in IceCube”. MA thesis. Technical University of Munich, 2018 (cit. on p. 66).
LeCun, Y., Bengio, Y., and Hinton, G. “Deep learning”. nature 521.7553 (2015) 436–444

(cit. on p. 65).
Lin, M., Chen, Q., and Yan, S. “Network In Network”. arXiv e-prints, arXiv:1312.4400

(Dec. 2013) arXiv:1312.4400. arXiv:1312.4400 [cs.NE] (cit. on p. 77).
Litjens, G. et al. “A survey on deep learning in medical image analysis”. Medical image

analysis 42 (2017) 60–88 (cit. on p. 65).
Liu, R.-Y. et al. “Hadronuclear interpretation of a high-energy neutrino event coinci-

dent with a blazar flare”. Phys. Rev. D 99.6 (2019) 063008. arXiv:1807.05113 [astro-
ph.HE] (cit. on p. 63).

Loeb, A. and Waxman, E. “The Cumulative background of high energy neutrinos
from starburst galaxies”. JCAP 05 (2006) 003. arXiv:astro-ph/0601695 (cit. on p. 19).

Lott, B. et al. “An adaptive-binning method for generating constant-
uncertainty/constant-significance light curves with Fermi-LAT data”. Astronomy &
Astrophysics 544, A6 (Aug. 2012) A6. arXiv:1201.4851 [astro-ph.HE] (cit. on pp. 60,
151).

Maki, Z., Nakagawa, M., and Sakata, S. “Remarks on the unified model of elementary
particles”. Prog. Theor. Phys. 28 (1962) 870–880 (cit. on p. 25).

Mannheim, K. “High-energy neutrinos from extragalactic jets”. Astroparticle Physics
3.3 (May 1995) 295–302 (cit. on p. 20).

Margiotta, A. “The KM3NeT deep-sea neutrino telescope”. Nucl. Instrum. Meth. A
766 (2014). Ed. by Sumiyoshi, T. et al. 83–87. arXiv:1408.1392 [astro-ph.IM] (cit. on
pp. 33, 165).

Massaro, E. et al. “The 5th edition of the Roma-BZCAT. A short presentation”. Astro-
phys. Space Sci. 357.1 (2015) 75. arXiv:1502.07755 [astro-ph.HE] (cit. on p. 140).

Morrison, P. “On gamma-ray astronomy”. Il Nuovo Cimento 7.6 (Mar. 1958) 858–865

(cit. on p. 5).
Mücke, A. et al. “BL Lac objects in the synchrotron proton blazar model”. Astroparticle

Physics 18.6 (Mar. 2003) 593–613. arXiv:astro-ph/0206164 [astro-ph] (cit. on p. 20).
Murase, K., Ahlers, M., and Lacki, B. C. “Testing the Hadronuclear Origin of PeV Neu-

trinos Observed with IceCube”. Phys. Rev. D 88.12 (2013) 121301. arXiv:1306.3417

[astro-ph.HE] (cit. on p. 134).
Murase, K., Guetta, D., and Ahlers, M. “Hidden Cosmic-Ray Accelerators as an

Origin of TeV-PeV Cosmic Neutrinos”. Phys. Rev. Lett. 116.7 (2016) 071101.
arXiv:1509.00805 [astro-ph.HE] (cit. on p. 17).

Murase, K., Kimura, S. S., and Meszaros, P. “Hidden Cores of Active Galactic Nuclei as
the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray
Connection”. Phys. Rev. Lett. 125.1 (2020) 011101. arXiv:1904.04226 [astro-ph.HE]
(cit. on p. 136).

http://arxiv.org/abs/1908.08763
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1807.05113
http://arxiv.org/abs/astro-ph/0601695
http://arxiv.org/abs/1201.4851
http://arxiv.org/abs/1408.1392
http://arxiv.org/abs/1502.07755
http://arxiv.org/abs/astro-ph/0206164
http://arxiv.org/abs/1306.3417
http://arxiv.org/abs/1509.00805
http://arxiv.org/abs/1904.04226


APPENDIX E. BIBLIOGRAPHY 201

Murase, K., Oikonomou, F., and Petropoulou, M. “Blazar Flares as an Origin of High-
Energy Cosmic Neutrinos?” Astrophys. J. 865.2 (2018) 124. arXiv:1807.04748 [astro-
ph.HE] (cit. on p. 156).

Neunhoffer, T. “Estimating the angular resolution of tracks in neutrino telescopes
based on a likelihood analysis”. Astropart. Phys. 25 (2006) 220–225. arXiv:astro-
ph/0403367 (cit. on p. 49).

Neyman, J. and Pearson, E. S. “On the Problem of the Most Efficient Tests of Statis-
tical Hypotheses”. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character 231 (1933) 289–337. issn:
02643952 (cit. on p. 103).

Padovani, P. et al. “Active galactic nuclei: what’s in a name?” Astron. Astrophys. Rev.
25.1 (2017) 2. arXiv:1707.07134 [astro-ph.GA] (cit. on pp. 20–22).

Padovani, P., Giommi, P., et al. “Dissecting the region around IceCube-170922A: the
blazar TXS 0506+056 as the first cosmic neutrino source”. Mon. Not. Roy. Astron.
Soc. 480.1 (2018) 192–203. arXiv:1807.04461 [astro-ph.HE] (cit. on pp. 2, 53, 58, 61,
140, 163).

Padovani, P., Oikonomou, F., et al. “TXS 0506+056, the first cosmic neutrino source, is
not a BL Lac”. Mon. Not. Roy. Astron. Soc. 484.1 (2019) L104–L108. arXiv:1901.06998

[astro-ph.HE] (cit. on pp. 24, 62).
Padovani, P. and Resconi, E. “Are both BL Lacs and pulsar wind nebulae the as-

trophysical counterparts of IceCube neutrino events?” Monthly Notices of the Royal
Astronomical Society 443.1 (Sept. 2014) 474–484. arXiv:1406.0376 [astro-ph.HE] (cit.
on p. 20).

Padovani, P. “Active Galactic Nuclei at All Wavelengths and from All Angles”. Fron-
tiers in Astronomy and Space Sciences 4 (2017) 35. issn: 2296-987X (cit. on pp. 22,
23).

Padovani, P. and Giommi, P. “The Connection between X-Ray– and Radio-selected BL
Lacertae Objects”. Astrophysical Journal 444 (May 1995) 567. arXiv:astro-ph/9412073

[astro-ph] (cit. on pp. 24, 58).
Padovani, P., Perlman, E. S., et al. “What types of jets does nature make: A New pop-

ulation of radio quasars”. Astrophys. J. 588 (2003) 128–142. arXiv:astro-ph/0301227

(cit. on p. 58).
Paiano, S., Falomo, R., Padovani, P., et al. “The redshift and the host galaxy of the

neutrino candidate 4FGL J0955.1+3551 (3HSP J095507.9+355101)”. Mon. Not. Roy.
Astron. Soc. 495.1 (2020) L108–L111. arXiv:2003.03634 [astro-ph.HE] (cit. on pp. 155,
156).

Paiano, S., Falomo, R., Treves, A., et al. “The redshift of the BL Lac object TXS
0506+056”. Astrophys. J. Lett. 854.2 (2018) L32. arXiv:1802.01939 [astro-ph.GA] (cit.
on pp. 58, 62).

Paliya, V. S. et al. “Multi-Frequency Observations of the Candidate Neutrino Emitting
Blazar BZB J0955+3551” (Mar. 2020). arXiv:2003.06012 [astro-ph.HE] (cit. on p. 92).

Palladino, A. et al. “IceCube Neutrinos from Hadronically Powered Gamma-Ray
Galaxies”. JCAP 09 (2019) 004. arXiv:1812.04685 [astro-ph.HE] (cit. on p. 20).

Petropoulou, M., Dimitrakoudis, S., et al. “Photohadronic origin of γ-ray BL Lac emis-
sion: implications for IceCube neutrinos”. Mon. Not. Roy. Astron. Soc. 448.3 (2015)
2412–2429. arXiv:1501.07115 [astro-ph.HE] (cit. on p. 61).

http://arxiv.org/abs/1807.04748
http://arxiv.org/abs/astro-ph/0403367
http://arxiv.org/abs/astro-ph/0403367
http://arxiv.org/abs/1707.07134
http://arxiv.org/abs/1807.04461
http://arxiv.org/abs/1901.06998
http://arxiv.org/abs/1406.0376
http://arxiv.org/abs/astro-ph/9412073
http://arxiv.org/abs/astro-ph/0301227
http://arxiv.org/abs/2003.03634
http://arxiv.org/abs/1802.01939
http://arxiv.org/abs/2003.06012
http://arxiv.org/abs/1812.04685
http://arxiv.org/abs/1501.07115


202

Petropoulou, M., Oikonomou, F., et al. “Comprehensive Multimessenger Modeling
of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube” (May
2020). arXiv:2005.07218 [astro-ph.HE] (cit. on pp. 23, 156).

Poluektov, A. “Kernel density estimation of a multidimensional efficiency pro-
file”. Journal of Instrumentation 10.2, P02011 (Feb. 2015) P02011. arXiv:1411.5528

[physics.data-an] (cit. on pp. 119–121).
Ptuskin, V., Zirakashvili, V., and Seo, E.-S. “Spectrum of Galactic Cosmic Rays Ac-

celerated in Supernova Remnants”. Astrophysical Journal 718.1 (July 2010) 31–36.
arXiv:1006.0034 [astro-ph.CO] (cit. on p. 6).

Punsly, B. and Zhang, S. “Calibrating emission lines as quasar bolometers”. Monthly
Notices of the Royal Astronomical Society 412.1 (Mar. 2011) L123–L127. arXiv:1101.4833

[astro-ph.CO] (cit. on p. 156).
Rädel, L. “Measurement of High-Energy Muon Neutrinos with the IceCube Neutrino

Observatory”. PhD thesis. RWTH Aachen University, 2017 (cit. on pp. 52, 114, 142).
Radel, L. and Wiebusch, C. “Calculation of the Cherenkov light yield from elec-

tromagnetic cascades in ice with Geant4”. Astropart. Phys. 44 (2013) 102–113.
arXiv:1210.5140 [astro-ph.IM] (cit. on p. 34).

Reimer, A., Boettcher, M., and Buson, S. “Cascading Constraints from Neutrino Emit-
ting Blazars: The case of TXS 0506+056” (Dec. 2018). arXiv:1812.05654 [astro-ph.HE]
(cit. on p. 62).

Reynolds, S. P. “Supernova remnants at high energy.” Ann. Rev. Astron. Asrophys. 46

(Sept. 2008) 89–126 (cit. on p. 18).
Richards, J. L. et al. “Blazars in the Fermi Era: The OVRO 40 m Telescope Monitoring

Program”. Astrophysical Journal Suppl. Ser. 194.2, 29 (June 2011) 29. arXiv:1011.3111

[astro-ph.CO] (cit. on p. 31).
Riehn, F. et al. “The hadronic interaction model SIBYLL 2.3c and Feynman scaling”.

PoS ICRC2017 (2018) 301. arXiv:1709.07227 [hep-ph] (cit. on p. 115).
Rodrigues, X. et al. “Leptohadronic Blazar Models Applied to the 2014–2015 Flare of

TXS 0506+056”. Astrophys. J. Lett. 874.2 (2019) L29. arXiv:1812.05939 [astro-ph.HE]
(cit. on p. 63).

Rongen, M. “Calibration of the IceCube Neutrino Observatory”. Other thesis. 2019.
arXiv:1911.02016 [astro-ph.IM] (cit. on p. 45).

Rosenblatt, F. “The perceptron: a probabilistic model for information storage and
organization in the brain.” Psychological review 65.6 (1958) 386 (cit. on p. 66).

Saikia, P., Körding, E., and Falcke, H. “Lorentz factor distribution of blazars from the
optical Fundamental plane of black hole activity”. Mon. Not. Roy. Astron. Soc. 461.1
(2016) 297–303. arXiv:1606.06147 [astro-ph.HE] (cit. on p. 156).

Schneider, A. “Characterization of the Astrophysical Diffuse Neutrino Flux
with IceCube High-Energy Starting Events”. PoS ICRC2019 (2020) 1004.
arXiv:1907.11266 [astro-ph.HE] (cit. on p. 90).

Schonert, S. et al. “Vetoing atmospheric neutrinos in a high energy neutrino tele-
scope”. Phys. Rev. D 79 (2009) 043009. arXiv:0812.4308 [astro-ph] (cit. on p. 43).

Schönert, S. et al. “Vetoing atmospheric neutrinos in a high energy neutrino tele-
scope”. Phys. Rev. D 79 (4 Feb. 2009) 043009 (cit. on p. 90).

Shannon, C. E. and McCarthy, J. Automata Studies. (AM-34), Volume 34. Princeton:
Princeton University Press, 2016. isbn: 978-1-4008-8261-8 (cit. on p. 66).

http://arxiv.org/abs/2005.07218
http://arxiv.org/abs/1411.5528
http://arxiv.org/abs/1006.0034
http://arxiv.org/abs/1101.4833
http://arxiv.org/abs/1210.5140
http://arxiv.org/abs/1812.05654
http://arxiv.org/abs/1011.3111
http://arxiv.org/abs/1709.07227
http://arxiv.org/abs/1812.05939
http://arxiv.org/abs/1911.02016
http://arxiv.org/abs/1606.06147
http://arxiv.org/abs/1907.11266
http://arxiv.org/abs/0812.4308


APPENDIX E. BIBLIOGRAPHY 203

Silva, M. and Mancina, S. “Measurement of the Diffuse Muon Neutrino Flux using
Starting Track Events in IceCube”. PoS ICRC2019 (2020) 1010. arXiv:1908.06586

[astro-ph.HE] (cit. on p. 99).
Silver, D. et al. “Mastering the game of Go with deep neural networks and tree

search”. Nature 529 (2016) 484–503 (cit. on p. 65).
Simonyan, K. and Zisserman, A. “Very deep convolutional networks for large-scale

image recognition”. arXiv preprint arXiv:1409.1556 (2014) (cit. on p. 76).
“South Pole glacial climate reconstruction from multi-borehole laser particulate

stratigraphy”. J. Glaciol. 59.218 (2013) 1117–1128 (cit. on p. 44).
Stachurska, J. “First Double Cascade Tau Neutrino Candidates in IceCube and

a New Measurement of the Flavor Composition”. PoS ICRC2019 (2020) 1015.
arXiv:1908.05506 [astro-ph.HE] (cit. on p. 39).

Stein, R. “IceCube-200107A: IceCube observation of a high-energy neutrino candidate
event”. GCN 26655 (Jan. 2020) 1 (cit. on p. 92).

Stein, R. et al. “A high-energy neutrino coincident with a tidal disruption event” (May
2020). arXiv:2005.05340 [astro-ph.HE] (cit. on p. 56).

Stettner, J. “Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with
Ten Years of IceCube Data”. PoS ICRC2019 (2020) 1017. arXiv:1908.09551 [astro-
ph.HE] (cit. on pp. 11, 30, 83, 86, 115).

Steuer, A. K. “Cascade type identification in IceCube and an application in a search
for new physics”. PhD thesis. Mainz U., 2018 (cit. on p. 71).

Strotjohann, N. L., Kowalski, M., and Franckowiak, A. “Eddington bias for cosmic
neutrino sources”. Astron. Astrophys. 622 (2019) L9. arXiv:1809.06865 [astro-ph.HE]
(cit. on p. 157).

Szegedy, C. et al. “Inception-v4, inception-resnet and the impact of residual connec-
tions on learning”. Thirty-first AAAI conference on artificial intelligence. 2017 (cit. on
p. 76).

Tamborra, I., Ando, S., and Murase, K. “Star-forming galaxies as the origin of diffuse
high-energy backgrounds: Gamma-ray and neutrino connections, and implications
for starburst history”. JCAP 09 (2014) 043. arXiv:1404.1189 [astro-ph.HE] (cit. on
p. 19).

Tanabashi, M. et al. “Review of Particle Physics”. Phys. Rev. D 98 (3 Aug. 2018) 030001

(cit. on pp. 12, 28, 35, 37–39, 45).
Tosi, D. and Wendt, C. “Calibrating photon detection efficiency in IceCube”. PoS

TIPP2014 (2014) 157. arXiv:1502.03102 [physics.ins-det] (cit. on p. 72).
Urbach, F. “The Long-Wavelength Edge of Photographic Sensitivity and of the Elec-

tronic Absorption of Solids”. Phys. Rev. 92 (5 Dec. 1953) 1324–1324 (cit. on p. 34).
Urry, C. M. and Padovani, P. “Unified schemes for radio-loud active galactic nuclei”.

Publications of the Astronomical Society of the Pacific 107.715 (1995) 803 (cit. on pp. 2,
21).

Vanden Berk, D. E. et al. “Composite Quasar Spectra from the Sloan Digital Sky
Survey”. Astronomical Journal 122.2 (Aug. 2001) 549–564. arXiv:astro-ph/0105231

[astro-ph] (cit. on p. 22).
Villante, F. and Vissani, F. “How precisely neutrino emission from supernova rem-

nants can be constrained by gamma ray observations?” Phys. Rev. D 78 (2008)
103007. arXiv:0807.4151 [astro-ph] (cit. on p. 19).

http://arxiv.org/abs/1908.06586
http://arxiv.org/abs/1908.05506
http://arxiv.org/abs/2005.05340
http://arxiv.org/abs/1908.09551
http://arxiv.org/abs/1809.06865
http://arxiv.org/abs/1404.1189
http://arxiv.org/abs/1502.03102
http://arxiv.org/abs/astro-ph/0105231
http://arxiv.org/abs/0807.4151


204

Waxman, E. “Cosmological origin for cosmic rays above 10**19-eV”. Astrophys. J. Lett.
452 (1995) L1–L4. arXiv:astro-ph/9508037 (cit. on p. 15).

Waxman, E. and Bahcall, J. N. “High-energy neutrinos from astrophysical sources: An
Upper bound”. Phys. Rev. D 59 (1999) 023002. arXiv:hep-ph/9807282 (cit. on pp. 14,
15, 17, 37).

Whitehorn, N., Santen, J. van, and Lafebre, S. “Penalized Splines for Smooth Repre-
sentation of High-dimensional Monte Carlo Datasets”. Comput. Phys. Commun. 184

(2013) 2214–2220. arXiv:1301.2184 [physics.data-an] (cit. on pp. 48, 122).
Wolf, M. “SkyLLH – A generalized Python-based tool for log-likelihood analyses in

multi-messenger astronomy”. PoS ICRC2019 (2020) 1035. arXiv:1908.05181 [astro-
ph.IM] (cit. on p. D-182).

http://arxiv.org/abs/astro-ph/9508037
http://arxiv.org/abs/hep-ph/9807282
http://arxiv.org/abs/1301.2184
http://arxiv.org/abs/1908.05181

	Abstract
	List of Figures
	List of Tables
	Introduction
	Highly-Energetic Cosmic Particles
	Characterisation of the High-Energy Universe
	The Multi-Messenger Connection
	A Review of Cosmic Accelerators
	Neutrino Oscillations
	Atmospheric Air Showers
	Important Astronomical Observatories

	The IceCube Neutrino Observatory
	Detection Principle of Neutrinos
	Requirements for Neutrino Telescopes
	Event Topologies
	The Design of the IceCube Neutrino Observatory
	IceCube Data Acquisition System
	Properties of the Antarctic Ice
	Energy Reconstructions
	Directional Reconstructions

	TXS 0506+056 - The First Source of Astrophysical Neutrinos
	Detection of the Neutrino Event IceCube-170922A
	Chance Coincidence Probability
	Dissecting the Region around IceCube-170922A
	The Nature of TXS 0506+056 and its Multi-Frequency Emission

	Deep Learning Event-Type Classification in IceCube
	Artificial Neural Networks and Deep Learning
	Classifying Event Topologies in IceCube
	From Waveforms to DNN Input
	Training Dataset
	CNN Architecture and Training Procedure
	Performance Figures
	Data/Monte Carlo Agreement and Systematic Checks
	Possible Applications

	Realtime Selection of Highly-Energetic Starting Tracks
	Selecting HESE Tracks for the Realtime Stream
	Deep Learning-Based HESE Realtime Selection
	Data/Monte Carlo Agreement and Consistency Checks
	Outlook

	An Improved Method for Neutrino Point Source Searches
	Derivation of the Point Source Likelihood
	Deep Learning-Based Muon Energy Reconstruction
	Muon Neutrino Dataset and Systematic Uncertainties
	Kernel Density Estimation
	Biases in the Fit Parameters
	Impact of Systematic Uncertainties on the Analysis
	Sensitivity and Discovery Potential
	Experimental Results

	Multi-Messenger Searches for Neutrino-Emitting Blazars
	Catalogs of Blazars
	Blazar Counterparts of High-Energy Neutrinos
	Counterpart Statistics and Discussion
	An Automatic Multi-Wavelength Follow-Up Pipeline for IceCube Realtime Alerts
	The Case of 3HSP J095507.9+355101 - a Flaring Blazar in the Error Region of IceCube-200107A

	Conclusion & Outlook
	Acknowledgements/Danksagung
	Abbreviations
	Pseudo-Code Implementations of the DNN Models
	DNN Classifier
	DNN Energy Estimator

	Confusion Matrices of the DNN Classifier
	Additional Material for the Point Source Analysis
	Efficient Minimization of the Likelihood Function
	Background Test Statistic Distributions
	Point Spread Functions
	Fit Biases at Various Declinations
	Impact of Systematic Uncertainties on the Fit Biases
	Trial Correction Functions

	Bibliography

