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Abstract: 

Persisting stimulation can skew CD8 T cells towards a hypofunctional state commonly 

referred to as T cell exhaustion. This functional attenuation likely constitutes a mechanism 

which evolved to balance T cell mediated viral control versus overwhelming immunopathology. 

Here, we highlight the recent progress in defining the genetic mechanisms and factors shaping 

the differentiation of exhausted CD8 T cells. We review how the transcription factor Tox 

imposes an exhausted phenotype in the Tcf1+ progenitors and how CD4 help fine-tunes the 

effector subsets that emerge from this progenitor population. Both processes critically shape 

the spectrum of effector function performed by CD8 T cells and the level of resulting virus 

control. Finally, we discuss how these insights can be exploited to boost the immune response 

in chronic infection and cancer. 
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Highlights: 

• Tox is a lineage defining, T-cell exhaustion associated transcriptional factor. 

• CD4 helper T cells support the maintenance of effector but not proliferation competent 

progenitor cells in chronic infection  

• CD4 T cells fine-tune the effector subsets that emerge from the progenitor population 

• IL-21 produced by CD4s supports the formation of the critical Cx3cr1+ effector cells. 
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Introduction: 

Viruses like human immunodeficiency virus (HIV) or the Hepatitis B and C virus (HBV 

and HCV) as well as certain strains of Lymphocytic choriomeningitis virus in mice have the 

capacity to bypass protective immunity and establish chronic infections. This goes along with 

a tightly controlled partial stalling of the antigen-specific CD8 T-cell response known as the 

phenomenon of T-cell exhaustion [1]. The latter was first described in the 90s, when antigen-

specific T cell responses in mice infected with persistent strains of LCMV (Lymphocytic 

choriomeningitis virus) were evaluated [2-4]. Later T cell exhaustion was observed in a variety 

of human persistent viral infections [5-10] and cancer [11-17]. The term was originally coined 

to highlight the circumstance of failed protection and vanishing anti-pathogen immunity. 

Nonetheless, we know now that a certain level of protective function is often retained over long 

periods and causes for instance the late onset of viral T-cell epitope escape variants occurring 

in HIV, HCV and Simian immunodeficiency virus (SIV) infections [18,19]. Similarly, SIV-

infected rhesus macaques showed significant gains in virus titers following the removal of CD8 

T cells [20-22]. This also underlines the presence of a functional T cell compartment. In 

contrast to the original loss of function concept, it becomes more and more accepted that T 

cell exhaustion merely reflects a differentiation process during which T cells adjust their effector 

capacity to the requirements and particular conditions found in persistent infection [23].  

A key feature of exhausted T cells is that they mediate a critical level of long-term virus 

control, but cause less immunopathology than normal effector T cells [24,25]. This functional 

adaptation is achieved through the induction and epigenetic imprinting of an alternative 

transcriptional program. Exhausted CD8 T cells display decreased cytokine production (e.g. 

IL-2, IFNγ, TNFα) and increased co-expression of receptors negatively modulating their 

function – e.g. PD-1, TIM3, LAG3 and CTLA4, (Figure 1) [23,26-31]. High-antigen load and 

prolonged antigen exposure are the key factors that drive T cell into this specific functional 
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stage. This effect is further modulated by cytokines (e.g. IL-10 and TGF-β) and inhibitory 

receptor signalling [32,33].  

Another critical feature of exhausted T-cell populations in chronic infections is that they 

are maintained over very long and often indefinite periods of time. The cells responsible for 

this long-term maintenance are proliferation competent Tcf1+ progenitor T cells [34-40]. These 

cells constantly generate exhausted effector cells, which are short-lived as it is the cause for 

effector T cells found in acute infection. Even though the Tcf1+ progenitors show some 

similarities with memory precursor T cells found in acute infections (e.g. both express Tcf1), 

the progenitors in chronic infection display typical signatures of T cell exhaustion including PD-

1 expression [34]. Most importantly, this population is also very critical for immunotherapy, as 

PD-1 blockade stimulates the function of the progenitors resulting in increased numbers of 

antigen-specific effector cells [41,42].  

A better understanding of the mechanisms that control CD8 T cell dynamics, 

differentiation, and protective potential is a prerequisite for making more effective 

immunotherapies against chronic viral infections and cancer. Significant progress has recently 

been made that include in depth characterizations of the progenitor population [42-46], the 

discovery of Tox as the first exhaustion specific transcriptional factor driving the epigenetic 

reprogramming of the progenitors in the early infection phase [47-52], an improved resolution 

of the diversity of exhausted effector T cell subpopulations [44,46], an advanced 

characterization of the role of helper T cells in fine-tuning the effector CD8 T cell compartment 

in chronic infection [44,46,53,54] and finally the demonstration of novel human memory CD8 

T cell populations that express Tox and show a gene expression profile typically seen during 

T cell exhaustion [55,56]. These aspects will be reviewed in the subsequent sections. 
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Main text: 

Transcriptional and epigenetic programming of antigen-specific T cells in chronic 

infection occurs primarily in the progenitor population.  

While the phenotypic features of exhausted effector T cell populations are well 

established, a major challenge is to fully understand the processes that generate and maintain 

this phenotype. The majority of T cells found in exhausted T cell populations are terminally 

differentiated cells, which like their counterparts found in non-exhausted T cell populations 

have a short life-span and limited or no proliferative capacity. In contrast, the Tcf1+ progenitor 

population bears stem-like features and has the potential to form new effector T cells. Several 

years ago, we and others have observed that the proliferation competent progenitors carry 

signatures of exhaustion, which they stably transfer to their effector progeny 

[28,30,34,35,37,57]. This phenotype stability was owed to epigenetic imprinting and persisted 

even after resolution of the infection or check-point inhibition. This signalled that the 

progenitors are already committed to give rise to exhausted T cells but so far, we have only 

limited insights into how this commitment occurs.   

Persisting T-cell receptor (TCR) signalling is a leading mechanism inducing T cell 

exhaustion [26,58]. Mechanistically, this is achieved via the induction of multiple TCR 

responsive transcriptional factors among which are NFAT, NR4A2, IRF4 and BATF [59-62]. 

However, the engagement of these factors is not specific to chronic infection as they also play 

a key role in acutely resolved infections. In contrast, several laboratories identified in parallel 

last year that the transcription regulator Tox (Thymus High Mobility Group Box Protein Tox) 

plays a highly specific role during T cell exhaustion in chronic mouse and human infection [47-

51]. In contrast, though Tox can become transiently upregulated during acute infection in mice 

and human [48,63] and following strong ex-vivo stimulation, it was not reported to persist or 

affect the differentiation of bona-fide human or mouse effector T cells formed in acute infection 

[47-51]. In chronic infection, Tox attunes the transcriptional and epigenetic landscape of the 
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progenitor population. This affects genes such as Nr4a2, Pdcd1, Cd244, Lag3, ID3, and 

Havcr2 [47]. Thus, the Tox-induced epigenetic reprogramming of the progenitors explains the 

maintenance of the exhaustion signature following their re-activation through PD-1 blockade 

[64] or upon resolution of the infection [35].  

Without Tox, the progenitors do not acquire the transcriptional signature of exhausted 

T cells and their progeny continues to display an acute phenotype. Initially this results in 

heightened virus control and massively augmented immunopathology [47]. The latter 

underscores the tissue protective role of T cell exhaustion. Despites these clearly beneficial 

for improved effector function aspects of removing Tox, a major limitation arises from the fact 

that the Tox-deficient progenitors fail to be maintained and are lost over time. As a 

consequence, the Tox-deficient pathogen-specific T cell populations decline sharply in the 

chronic phase of infection. Accordingly, the retention of an acute phenotype in the absence of 

Tox does not condition the progenitors to persist in an environment of chronic inflammation. 

Likely, the lack or reduced expression of inhibitory receptors on Tox-deficient progenitors, 

deprives those cells of mechanism counterbalancing their persistent stimulation. Thus, they 

are potentially driven into terminal differentiation. The complexity of Tox-mediated conditioning 

of CD8 T cell in chronic infection makes Tox a challenging candidate for direct therapeutic 

intervention. Nevertheless, Tox provides a promising starting point for the identification of 

downstream mechanisms regulating progenitor maintenance versus effector function. 

Importantly, Tox was reported to be expressed in human effector memory CD8 T cells specific 

for persistent viruses such as Cytomegalovirus (CMV), Epstein–Barr virus (EBV) and HIV, but 

not among influenza specific memory cells [65]. This further highlights the cross-species mode 

of action of Tox and the translational potential of its downstream regulatory networks.  

CD4 T cell help is dispensable for maintaining functional progenitor T cells in chronic 

infection. 
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CD4 T cell help has long been known as a prerequisite for sustained antigen-specific 

CD8 T cell responses in chronic infection. In fact, it was recognized very early that the 

elimination of CD4 T cells from chronic LCMV infections in mice goes along with a much more 

prominently exhausted phenotype in antigen-specific CD8 T cell populations [3]. Therefore, 

the depletion of CD4 T cells is a common experimental approach to study T cell exhaustion. 

Nonetheless, it remained until recently unclear how CD4 T cells shape and impact the 

progenitor cells and their progeny. [66-70]. Based on observations in acute infection, where 

the presence of CD4 help is necessary for the formation of functional and long-lasting memory 

[71-73], a critical role of CD4 help for supporting the maintenance and function of the 

progenitors in chronic infection appeared to be a likely scenario. This would be well in line with 

the known numerical decline and deteriorating phenotype of persistently stimulated CD8 T 

cells in absence of CD4 help. In sharp contrast, we and other have shown recently that not the 

Tcf1-expressing progenitors but their terminally differentiated progeny is lost upon CD4 

deprivation [44,53]. Surprisingly, side by side comparison between progenitors formed with or 

without of CD4 help showed identical transcriptional profiles [44]. Consistent with this, upon 

restoration of antigen-specific CD4 T cell help, the progenitors quickly repopulated the effector 

compartment with newly generated effector cells as indicated by their increased expression of 

Ki67. This indicated the general integrity of the progenitors in absence of CD4 help. What 

remains nonetheless unclear is if the progenitors fail to generate the differentiated effector 

progeny or if the survival of newly generated effector cells is impaired in absence of CD4 help. 

Very interestingly, this help independent survival applied only to progenitors with an exhausted 

phenotype but not those with a normal or polyfunctional one [44]. We had shown previously 

that such populations can be formed in chronic infection when antigen is presented in low 

quantities [33]. In such T cell populations both the progenitors and the terminally differentiated 

effector T cells lack the expression of inhibitory receptors and have augmented cytokine 

production capacity. Surprisingly, these progenitors vanish in the absence of CD4 help [44] as 

it was reported for conventional memory T cells [72]. This underlines functional differences 

between the two types of progenitor cells that goes far beyond the known phenotypic 
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differences. However, the exact genetic and functional differences among progenitors with or 

without an exhausted phenotype and of memory-precursor cells remain to be examined.  

Helper T cells fine-tune the effector CD8 T cell subset distribution in chronic infection.   

Defining the range and diversity of effector T cell states in chronic infection and the 

factors controlling their formation has long been of utmost importance. Previously, this was 

successfully analyzed at the level of the entire population [74], but the combination of single-

cell RNA sequencing (scRNA-seq) with classical immunological techniques provides certain 

advantages. In contrast to bulk population sequencing, scRNA-seq has the ability to 

deconvolute cellular heterogeneity within mixed populations with still undefined subpopulation-

specific markers [75]. In recent parallel studies by several laboratories, the application of 

scRNA-seq allowed the full grasp of the this phenotypic and functional diversity of CD8 T cells 

[44,53,54]. Upon clustering single-cell transcriptomes of P14 T cells recovered from chronically 

infected hosts with or without CD4 depletion, 5 discrete cell subpopulations were identified 

based on their gene expression profiles [44]. One of these populations represented the 

progenitors (expression of Tcf7, Slamf6), one population effector cells without an apparent 

signature of exhaustion (Cx3cr1, Gzmb, Tbx21) and three populations represented effector 

cells with varying degree of exhaustion (Pdcd1, Cd244 and Cd160). The lack of CD4 help 

shifted the percentage-wise representation of differentiated effector cells from Cx3cr1+ to 

populations with pronounced exhaustion signature [44,53,54]. Interestingly, this affected 

negatively not only the numbers of the Cx3cr1+ effector cells without apparent signs of 

exhaustion, but also of those with comparatively low degree of dysfunctional signature. 

Nevertheless, the absence of CD4 help did not impact the general capacity to form cells from 

all clusters found in control animals. While some precaution needs to be applied to the 

interpretation of cell dynamics on the basis of such a static shot analysis, the data nonetheless 

suggest that CD4 help shapes the composition of Tcf1-negative compartment and 

preferentially supports certain effector cell subsets.  The Cx3cr1+ effector cells were reported 
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to be the recent progeny of the Tcf1 expressing progenitors, which could further continue their 

differentiation towards cells with dysfunctional phenotype [54]. Similar observations were made 

by Beltra and colleagues, who identified two distinct progenitor populations - one more tissue 

restricted and other more blood accessible [46]. The latter gradually lost Tcf1 as it divided and 

converted into effector cells with Cx3cr1+ effector signature. A study showing that diphtheria 

toxin receptor (DTR) induced ablation of the Cx3cr1-expressing population in chronic infection 

resulted in impaired viral control, highlights the significance of this population for the CD8 T 

cell response [53]. Additionally, PD-1 blockade increased the number of Cx3cr1+ effector CD8 

T cells at least in the short-term [54]. IL-21 has long been known as one of the key mediators 

CD4 help in chronic infection, which absence causes severely impaired antigen-specific CD8 

response and viral control [76-78]. It appeared that the formation or maintenance of the 

Cx3cr1+ effector cells in chronic infection depends on IL-21 produced by CD4 T cells [53]. The 

role in viral control of the remaining effector subpopulations apart from the Cx3cr1+ cells 

remains to be addressed. Additionally, better understanding of the regulation of these intra-

populational transitions could provide a mean to promote some transitions (progenitors to 

Cx3cr1+ effector cells) while preventing others (Cx3cr1+ effector cells to cells with exhaustion 

signature).  

The chance and challenge of developing subpopulation focused manipulation 

strategies. 

The advances in our understanding of T cell differentiation and function gained in 

experimental model systems were readily reconciled in human patients including related to 

immunotherapies in different tumor entities. This started with the successful translation of PD-

1 blockade [79]  followed by numerous other examples of signaling mechanisms and pathways 

that are shared between chronic LCMV infection in mice and human chronic infections [57]. 

For instance, shortly after the discovery of the reservoir function of the Tcf1-expressing 

progenitors in persistent CD8 T cell responses, their frequency was associated with prolonged 
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duration and efficacy of the response to PD-1 blockade [41,42]. Nevertheless, it was also 

observed that PD-1 blockade only transiently boosts the production of functional effector cells 

which retain an exhausted phenotype [64]. All these examples underline the enormous 

richness of the LCMV model as a test and developmental resource for new therapeutic 

strategies. Alongside, the recently described diversity of exhausted T cell populations [44,46] 

raises a major new challenge to develop and adopt strategies for targeted manipulation of 

individual subpopulations. This includes strategies to selective enhance the function of the 

progenitor cells. Moreover, based on the new insights on effector compartment diversity 

mentioned above, the efficacy of PD-1 blockade or classical check-point inhibition could 

potentially be improved if combined with a secondary subpopulation-targeting treatment. The 

latter might be aimed at stimulating the maintenance or function of the Cx3cr1+ effector cells 

for instance. Interestingly, those cells uniquely express the receptor for IL18 (subunits Il18r1 

and Il18rap), which is not expressed by any other cell subpopulation [44]. This goes along with 

a previous report suggesting Il18r1 is downregulated in the process of T cell exhaustion [80]. 

IL-18 is well known for its ability to limit activation-induced cell death, promote proliferation and 

interferon gamma (IFNγ) secretion in CD8 T cells [81,82]. Moreover, IL-18 supplementation in 

tumor models increased effector function and decreased exhaustion signature in CD8 T cells 

[83]. Thus, IL-18 supplementation seems a promising strategy to boost Cx3cr1+ effector cell 

function, which effectiveness alone or in combination with immune checkpoint blockade 

remains to be explored in models of chronic infection and cancer. 
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Conclusion: 

The recent advances in our understanding of the factors and mechanism shaping CD8 

T cell phenotype and function in chronic infection shed new light on the process underlying the 

phenomenon of T cell exhaustion (Figure 2). This includes the discovery of Tox as the first 

exhaustion specific transcriptional factor and the existence of a spectrum of effector cells with 

varying degree of exhaustion, including the critical Cx3cr1+ effector subpopulation. A key 

question which still remains unanswered is to what extent and up to what point T cell 

exhaustion can be reversed. The recent progress in genome-editing technologies allows for 

targeted manipulation of exhaustion specific genes. However, the simple deletion of 

exhaustion associated genes in particular in progenitor cells can reduce the overall survival 

and maintenance of the T cell population. This critical side effect was shown not only for Tox, 

but also for PD1 and IRF4 [47,48,61,84]. Theoretically, one would need to develop strategies 

where the progenitor cells are kept from undergoing terminal differentiation. As discussed 

above, this could involve the retention of signalling mechanisms such as PD-1 that supports 

the maintenance of the progenitors. At the same time, one would need on ensure that these 

exhaustion specific programs are not passed on to the effector cells. Such a combined strategy 

would preserve the progenitors while maximizing the effector capacity of their progeny.  

Given the critical role of epigenetic mechanisms in the stable fixation of the exhausted 

phenotype, it will be of key importance to either identify pathways to overcome these 

mechanisms or to prevent their enforcement in first place. This was for instance shown for cells 

lacking Dnmt3a [85]. Additionally, approaches that directly promote the function of the less 

exhausted effector T cell subpopulations, like IL18 supplementation, can prove beneficial for 

improved CD8 T cell responses in viral infection and cancer.  

Altogether, the field of T cell exhaustion and immunotherapy has reached an exciting 

stage. We have a detailed view of the origin and propagation of the exhausted phenotype. 

Moreover, we have identified key molecules and signaling pathways that drive this phenotype. 
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Nevertheless, we are still lacking approaches to effectively overcome or prevent T cell 

exhaustion in particular in clinically applicable fashion.  
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Figure Legends 

Figure 1. Schematic illustration of the time-dependent abundance of different CD8 T cell 

subpopulations in chronic infections.  

Infections that induce T cell exhaustion typically generate diversе CD8 T-cell subpopulations. 

The early phase of infection often includes a larger fraction of cells with a polyfunctional 

phenotype (green). Then, over time cells with different level of functional impairment (yellow, 

orange, and red) become more prevalent. These subsets can be categorized into cells that 

have lost their ability to secrete IL-2 (yellow), as well as TNFα alone (orange) or in combination 

with IFNγ (red) secretion [70,86-88]. These changes go along with increased co-expression 

levels multiple inhibitory receptors (e.g. PD-1, TIGIT, Lag-3, Tim-3 and CTLA-4), which upon 

their engagement suppress T cell function in response to environmental stimuli [29,32,63,89-

91]. How these changes occur at a cellular level remains still incompletely understood. It is 

widely believed that cells transition over time from a more functional towards more exhausted 

phenotype (cell conversion model). However, recent observations that non-exhausted T cell 

populations fail to be maintained in chronic infection [47] suggest that these changes may also 

results from a selective outgrowth or preferential survival of exhausted T cell populations over 

non-exhausted cells (selective survival model). Finally, a combination of ‘cell conversion’ and 

‘selective outgrowth’ is also possible.  

Figure 2. Schematic illustration of the impact of CD4 helper cells on CD8 T cell 

subpopulation diversity in chronic infection.  

A and B show the CD8 T cell population composition with or without CD4 help respectively. 

Long-term maintenance of the population is secured by a proliferation competent Tcf1+ 

progenitor population [34-40]. The exhaustion specific transcriptional factor Tox drives 

transcriptional and epigenetic reprograming of the progenitors [47-51]. Their phenotype and 
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epigenetic profile are then passed onto their Tcf1- effector progeny. The effector compartment 

predominantly consists of cells with varying degree of dysfunctional signature (i.e. expression 

of PD1+, CD160+, CD244+), but also Cx3cr1+ cells with no apparent threats of T cell 

exhaustion [44,46,53,54].  These Cx3cr1+ effector cells are considered as the recent 

decedents of the progenitors [54]. The generation or maintenance of the Cx3cr1+ effector cells 

is highly CD4 help dependent, as their numbers dropped by more than 120-fold after CD4 

depletion [44] . The CD4 help provided in this case occurs potentially through IL-21-dependent 

mechanism [53]. The absence of CD4 help also negatively impacts the numbers of effector 

cells with less pronounced signature of T cell exhaustion [44]. The unique expression of IL-

18R on the Cx3cr1+ effector population, could potentially be exploited to provide stimulation 

signals to these cells [44]. 
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