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A B S T R A C T

To reduce inaccuracies due to insufficient spatial resolution of models, it has been suggested to use smaller raster
cells instead of larger zones. Increasing the number of zones, however, increases the size of a matrix to store
travel times, called skim tables in transport modeling. Those become difficult to create, to store and to read,
while most of the origin-destination pairs are calculated and stored but never used. At the same time, such
approaches do not solve inaccuracies due to lack of temporal resolution. This paper analyzes the use of perso-
nalized travel times at the finest spatial resolution possible (at x/y coordinates) and a detailed temporal re-
solution for synthetic agents. The approach is tested in the context of an existing integrated land use/transport
model (ILUT) where travel times affect, among others, household relocation decisions. In this paper, person-level
individual travel times are compared to traditional skim-based travel times to identify the extent of errors caused
by spatial and temporal aggregation and how they affect relocation decisions in the model. It was shown that
skim-based travel times fail to capture the spatial and temporal variations of travel times available at a mi-
croscopic scale of an agent-based ILUT model. Skims may provide acceptable averages for car travel times if a
dense network and small zones are used. Transit travel times, however, suffer from temporal and spatial ag-
gregation of skims. When analyzing travel-time-dependent relocation decisions in the land use model, transit
captive households tend to react more sensitively to the transit level of service when individual travel times are
used. The findings add to the existing literature a quantification of spatial biases in ILUT models and present a
novel approach to overcome them. The presented methodology eliminates the impact of the chosen zone system
on model results, and thereby, avoids biases caused by the modifiable spatial unit problem.

1. Introduction

In 2000, Spiekermann and Wegener (2000) published an article
with the title “Freedom from the tyranny of zones”. The idea was to use
small raster cells instead of zones to reduce spatial biases in spatial
models. For matrix-based travel time skims, however, raster cells
proved to be impractical. The matrix grows by a factor of n2, where n is
the number of zones. In systems with many zones, the matrix becomes
difficult to create, to store and to read, while most of the origin-desti-
nation pairs are calculated and stored but never used. In addition, every
travel time matrix is created for one point of time during the day, which
may not represent well travel times for another time of the day. Finally,
a separate matrix has to be created for each transport mode considered
in the model.

This paper proposes a new method to process travel times that

allows for the finest spatial resolution possible (i.e. x/y coordinates)
and a detailed temporal resolution in an integrated land use/transport
(ILUT) model. Updated travel times are provided by a transport simu-
lation. Future year travel times are simulated, too, as ILUT models ty-
pically run for multiple decades into the future. Results suggest that
ILUT models and similar applications (e.g. mode choice models
(Javanmardi et al., 2015)) would benefit from this microscopic re-
presentation of travel times.

In traditional ILUT models, the transport model provides zone-to-
zone travel times in the form of skim matrices. Those affect accessi-
bilities, and thereby, household relocation decisions. While the accu-
racy of skims could be improved by providing multiple skims for dif-
ferent time slices, there is commonly only one travel time for each zone-
to-zone-relation, which is aggregated in time (e.g. one travel time value
for the peak hour) and space (e.g. one centroid per zone) (Slavin et al.,
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2015). In reality, however, a worker who commutes at 5:00 am ex-
periences a different level of congestion and different mode options
than a commuter traveling at 8:00 am. The impact of travel options on
accessibility becomes even more complex for households with multiple
workers. The temporal aggregation ignores that travel times may vary
during the day, which is of interest when trips are not made during
peak hours. Especially for transit travel times, the time of day plays an
important role due to service hours and frequencies.

In this paper, a new microscopic ILUT model is used to compare
person-individual travel times against traditional skim-based travel
times for the feedback from a transport to a land use model. The in-
dividual travel times use x/y coordinates and represent traffic condi-
tions at specific times of day. The skim-based approach uses peak-hour
travel times and centroid connectors. The goal of this paper is to
identify the benefits of dynamic, individual travel time queries in
comparisons to more traditional skim-based travel times.

2. Literature review

Disaggregated microscopic models help capturing heterogeneities in
travel behavior and household relocation (Wegener and Spiekermann,
2009; Davidson et al., 2007). High spatial resolutions support the re-
presentation of environmental issues (Kuehnel et al., 2020;
Spiekermann and Wegener, 2008). On the other hand, Wegener and
Spiekermann (2009) point out that many disaggregate transport models
are too slow to be executed multiple times in ILUT models. Wegener
concludes that ‘the more micro the better’ may be misleading.’ The
computing time of full-scale microsimulation models can exceed days
or weeks. Adding too much complexity to simulation model is one of
the sins Lee also describes in his “Requiem for Large-Scale Models”
(Lee, 1973). One should pay attention to not increase complexity of
models too much and keep models – as Einstein is said to have said – as
simple as possible but no simpler.

Nevertheless, there is a continued interest in increasing the spatial
and temporal resolution in models (Miller et al., 1999). Policies that test
local impacts (e.g. as transit-oriented development) or time-specific
impacts (e.g. dynamic tolling) require more detailed representations of
space and time. To strive for the right level of detail remains a challenge
for many transport and land use modelers (Donnelly et al., 2010).

There have been previous attempts to evaluate the variability of
travel times and incorporate less aggregated transport indicators in
models. In a recent study, Blanchard and Waddell (2017) developed a
methodology to measure transit accessibility at fine spatial and tem-
poral scales based on a weighted network graph derived from a transit
schedule. Nicolai and Nagel (2014) introduced a tool to compute high-
resolution accessibilities based on simulated travel times. Based on a
transit schedule, Farber et al. (2014) analyzed transit accessibilities to
find temporal dynamics throughout the day. Javanmardi et al. (2015)
developed a mode choice model that queried personalized travel time
and costs online with an API.

The level of zonal aggregation affects simulation outcomes. This is
also known as the modifiable areal unit problem (MAUP) described by
Openshaw (1977), which states that results of spatial analyses are in-
fluenced by the chosen zone size (scale effect) and the criteria used to
form spatial units (aggregation effect) (Viegas et al., 2009). While the
aggregation effect is reported to be hardly solvable (Fotheringham and
Wong, 1991), Openshaw (1984) proposes four ways of dealing with the
scale effect: ignore it, use individual data, use an ‘appropriate’ scale or
use spatial units that the results produce a predicted outcome. Ac-
cording to Stȩpniak and Jacobs-Crisioni (2017), methods to reduce the
MAUP have been proposed for location-allocation problems. However,
the problem has not yet been resolved in spatial interaction models
(such as in ILUT models). They present an approach that uses interac-
tion-weighted travel times based on population density to reduce errors
in aggregated zone-to-zone travel times. The impact of MAUP on spatial
interaction models, which was also analyzed by Putman and Chung

(1989) and Zhang et al. (2018) does not exist if individual (=non-ag-
gregated) data are used (Fotheringham, 1989). The study presented
here aims to overcome the MAUP by using individual data in form of
individual travel times.

Typically, there is a tradeoff to make between few large zones with
coarse resolution and many intra-zonal trips and many small zones with
a finer granularity but much higher computing times. Choosing the
right zone size has been described as being more art than technique
(Viegas et al., 2009; Hargrove and Hoffman, 2004), and changing the
zone system requires to recalculate and recalibrate skims (Mollov and
Moeckel, 2017). In general, the MAUP can be reduced by reducing the
size of zones. For large study areas, a fine grid of zones is not feasible.
Therefore, zone system algorithms have been developed to generate
smaller zones where urban density is high (Mollov and Moeckel, 2017)
and to use larger zones in less dense areas. Spatial bias is additionally
introduced by the chosen network density and selection of zone con-
nectors/centroids. Chang et al. (2002) report that more detailed net-
works show lower errors than less detailed networks, although the
impact becomes smaller in larger zones. In addition, previous studies
confirmed that smaller zone sizes improve the model fit (Lovelace et al.,
2014). Another study identified that the level of detail should be high
for travel time queries to nearby zones and can be lower for more
distant zones (Hagen-Zanker and Jin, 2012).

While the problem of spatial biases is well known, ‘the effects of
spatial biases on LUTI models remain largely unexplored and under-
estimated’ (Thomas et al., 2015). In a review of existing ILUT studies,
Badoe and Miller (2000) identified several studies that “have worked
with zonal-aggregate variables for gross spatial units […] thus clouding
the effects […]”. The MAUP affects the true representation of travel
times (Homer and Murray, 2002). Rosenbaum and Koenig (1997) re-
port that zone-based land use models may be limited in their ability to
assess policies that aim at influencing development at small spatial
scales, such as areas near a transit stop. Jones (2016) presented sensi-
tivity analyses for spatial biases in ILUT models caused by the spatial
resolution (i.e. size, number and shape of areal units/zones) and the
spatial extent (i.e. size and boundaries of the study area) of the model
input. Results indicate that both resolution and extent significantly
impact model outputs.

Microscopic ILUT models have been developed for more than two
decades. However, previous applications do not account for micro-
scopic travel time representations. The MOEBIUS project is a micro-
scopic ILUT model that has been applied to Luxembourg (Gerber et al.,
2018). The model consists of components for synthetic population, re-
sidential mobility and land-use. Similar to the modeling suite presented
in the present paper, the agent-based transport simulation MATSim
(Horni et al., 2016) is used for assigning traffic. MOEBIUS operates on
fine 20 m grid cells to allocate residential population by using a multi-
scale, bid-rent approach in the base and the final year. Agent-based
travel plans can be derived from microscopic locations for traffic as-
signment. However, as to the authors' understanding, the integration
seems to be based on a file-based approach and only goes from the land-
use to the transport model, as the transport results are “used in ap-
praisal, but not feedback, of residential location decisions”. In other
words, updated travel times are not accounted for in simulated land-use
choices.

A similar approach was taken by the SustainCity project, which
applied an ILUT model in multiple European cities (Bierlaire et al.,
2015). Here, the microscopic land use model UrbanSim (Waddell,
2002) was coupled with MATSim, and alternatively with the dynamic
transport model METROPOLIS (de Palma et al., 1997). UrbanSim op-
erates on different levels of scale from zones to grids to individual
parcels. In the SustainCity handbook (Bierlaire et al., 2015), the authors
acknowledge and discuss problems of spatial aggregation and delinea-
tion aspects that lead to statistical artifacts. They argue that the effect of
MAUP on discrete choice models has not been studied extensively and
that there currently is no methodological consensus on a solution to the
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problems that arise because of the MAUP and study area delineation.
Delineation and scale of the study area are subject to the choices of the
modelers, which often are not justified well. The ILUT model of the
SustainCity project microscopically links transport and land use.
However, while microscopic accessibilities were computed, the authors
report the issue that, similar to the MOEBIUS approach, the integration
is file-based and that it is “impossible for simulated ’persons' making
choices in UrbanSim to query the MATSim model directly”(de Palma
et al., 2015).

In a preceding study, the land use model SILO was already coupled
with MATSim (Ziemke et al., 2016). MATSim replaced an aggregated
transport model to produce zone-to-zone skim matrices for the land use
model, and it was proposed to implement a query architecture that
allows agents in the land use model to query individual travel times
from the transport model instead of updating a skim matrix. This
functionality has been implemented in the meantime and is applied for
the research of the present paper. Individual travel times are expected
to reduce the bias introduced by temporal and spatial aggregation while
increasing computation times.

3. The FABILUT modeling suite

The FABILUT (flexible, agent-based integrated land use/transport)
modeling suite consists of the land use model SILO (Moeckel, 2016) and
the transport simulation model MATSim (Horni et al., 2016). For travel
demand generation, MITO (Microscopic Transportation Orchestrator;
Moeckel et al., 2020) is used in this study. All three models are open
source and written in Java, which allows for a tight integration. For
studies with no travel demand model available, the FABILUT modeling
suite can also be run with SILO and MATSim only, which e.g. allows to
simulate the commute segment of traffic (Ziemke et al., 2016).

On a year-by-year basis, SILO models demographic events (e.g.
birth, marriage, death, etc.), household relocation and real-estate up-
dates, such as construction of new dwellings, renovation, price updates,
etc. SILO belongs to the class of land use models that incrementally
update an existing synthetic population. MATSim is used to simulate
traffic. In MATSim, each person is resolved as an agent and has one or
more plans. A plan is a chain of activities at different locations which
are connected by trips. MATSim is based on a co-evolutionary algo-
rithm which iterates over the three steps traffic simulation, scoring of
plans, and replanning, which eventually leads to a stochastic user
equilibrium (Horni et al., 2016). MATSim's efficient queue-based model
makes it suitable to simulate large metropolitan regions. A common
approach to reduce computing times is using sampled scenarios where
only a sample of the full population of agents is simulated in the
transport supply system whose properties are scaled-down corre-
spondingly (Ziemke et al., 2019; Llorca and Moeckel, 2019).

In the current setup, MITO is used to model travel demand. MITO is
a microscopic transport demand model that creates home-based tours
and non-home-based trips. MATSim is used to simulate the tours/trips
created by MITO, i.e. sub-segments of full day plans. As replanning
strategy, only route choice is enabled, such that the application of
MATSim in this particular setup resembles that of a pure dynamic
traffic assignment tool. Based on the MATSim transport simulation,
spatially and temporally highly resolved travel times can be queried by
SILO. Currently, travel times are used for relocation and job search
decisions in SILO.

Traditionally, the transport model provides skim matrices with
zone-to-zone travel times for a given time of day (sometimes distin-
guishing peak and off-peak travel times). Such skim matrices aggregate
spatially (zone-to-zone) and temporally (at peak hours) and are only
valid for a certain transport mode definition. In this research, we ex-
plore the use of individual travel times. We call these travel times in-
dividual because.

1. they reflect travel times from a micro location to a micro location in

x/y coordinates. The size of zones becomes irrelevant, as all loca-
tions are stored in x/y coordinates

2. they reflect travel times for a specific time of day. Someone traveling
to work at 5:00 AM in the morning will see different travel times
than someone traveling to work at 9:00 AM. Also, the availability of
travel modes will differ by time of day.

We implemented both skim-based travel times and individual travel
times. This allows us to test both approaches and explore the differences
between querying skim-based versus individual travel times.

3.1. Household relocation

The representation of travel times is particularly relevant for the
household relocation module of SILO. A household will evaluate a
sample of 20 randomly drawn vacant dwellings inside a region (i.e. a
set of zones) which has been chosen in a prior step. For evaluation, a
multinomial logit choice model is used in which the probability of
choosing a dwelling depends on the utility of the dwelling in compar-
ison of the utilities of all other dwelling alternatives:

=
×

×p d e
e
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u
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where ud is the utility of option d and ui are utilities of all choice al-
ternatives. The utility of a dwelling accounts for the size, quality and
price of the dwelling and accessibility of the zone where the dwelling is
located. For households with workers, the expected commute times
from this new dwelling for each worker are included in the evaluation
to ensure that a household attempts to find a location within an ac-
ceptable commute time for all workers in this household. A Cobb-
Douglas function is used for the utility calculation with the commuting
times being one of the factors.

Both travel time to work by auto and by transit are considered in the
evaluation. The utility component for commuting times for dwelling d
is defined as

=u ecommute d
j

tt
, d j,
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where tti,j is the commute time from dwelling d to work place j. An
exponentially decreasing function represents the probability of com-
muting for the given amount of time. tti,j is defined as a composite travel
time consisting of car and transit travel times, depending on the ratio of
cars and workers in the household:

= × + ×tt tt tt(1 )i j i j car i j transit, , , , , (3)

where = cars
workers is the ratio of cars to workers (capped at 0 and 1) and

tti,j,car and tti,j,transit are car and transit travel times from dwelling i to
workplace j. This definition will make households with cars less sensi-
tive to transit travel time while households without cars are considered
to be transit captives that rely on transit travel times.

3.2. Query architecture for individual travel times

The implemented query architecture allows agents to query for ex-
pected individual travel times from and to micro-locations in the form of
x/y coordinates at a specific time of day. Whenever SILO requires travel
times, MATSim's trip router is queried. Transit is not explicitly simu-
lated but only routed based on the schedule using the recent im-
plementation of the efficient raptor transit router (Rieser et al., 2018).
The router also includes access and egress times as well as transfer
times for public transport queries. For car travel time queries, it is as-
sumed that the car is parked very close to origin and destination, re-
sulting into access and egress times that can be neglected.

Travel times are not computed preemptively as it is done for skim
matrices. Instead, the query architecture returns individual travel times
as they are needed.
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4. Study area

The zone system for the Munich study area, for which a skim matrix
was generated, was developed with a quad-tree based automated zone
system generator that iteratively creates smaller raster cells in densely
populated areas and larger raster cells in rural areas, while respecting
administrative boundaries (Mollov and Moeckel, 2017). This leads to
zones with similar population sizes but different areas. While most
zones are square-shaped, zones at municipality borders follow the
municipal delineation. Undesirably small raster cells may occur near
municipality boundaries where raster cells might get split. A post-
processor merges those “zone snippets” with neighboring raster cells
within the same municipality. Nesting the generated zones within
municipalities simplifies and improves the disaggregation of socio-
economic data, which were available at the municipality level only. In
this setup, large zones usually have a low population and transport
network density. It is therefore expected that the accuracy of skim
travel times decrease in larger zones with low population densities. The
real-world scenario allows to have an actual insight on aggregation
issues faced during a usual simulation. As stressed by Thomas et al.
(2018), the delineation of the study area can have an important impact
on ILUT model results that may lead to additional spatial bias. They
argue that the study area should be associated to its functional area and
include the nearby competing cities to cover major commute flows. In
line with their suggestion, the Munich study area includes all munici-
palities from where 25% or more of the working population commutes
to one of the five core cities in the region, including Munich, Augsburg,
Landshut, Ingolstadt and Rosenheim. This 25% threshold was chosen to
include all major commute flows while also keeping the study area size
computationally feasible.

The synthetic population for this study area (Moreno and Moeckel,
2018) includes household and job locations and was created using
iterative proportional updating (Konduri et al., 2016). The population
consists of approximately 4.5 million people in 2.2 million households
and dwellings.

5. Skim matrices for comparison

The skims are calculated for auto and transit travel times by routing
between weighted zone centroids of each zone at a defined and fixed
peak hour (once for the morning and once for the afternoon peak). For
4,924 zones, each skim matrix has 4,9242 = 24,245,776 travel time
values, of which many entries are never used. Zone centroids are ob-
tained by geographically averaging the micro-coordinates of dwellings,
weighted by their residents' household size. This is in line with Stȩpniak
and Jacobs-Crisioni (2017) who report that population-weighted cen-
troids are to be preferred to reduce uncertainty due to spatial ag-
gregation. For intrazonal travel times, we consider Z as the set of zones

that include the n closest neighbors in terms of travel times. The in-
trazonal travel time tti,i of zone i is defined as a given share λ of the
average travel time to these closest neighbors:

=tt
t

ni i
j Z i j

,
,

(4)

where ti,j is the travel time from zone i to j and λ is a configurable
parameter. By trial-and-error, reasonable (i.e. not biased by systematic
under- or overestimation) estimates are obtained by setting n to 5 and λ
to 0.66. In other words, the intrazonal travel time is set to two thirds of
the average travel time to the next five zones. For individual travel
times, all queries ask for explicit origin and destination x/y coordinates,
i.e. no intrazonal travel times need to be calculated.

For transit travel times skims, all stops in a 1000 m radius around
the weighted centroid of the origin are routed to all stops in the same
radius around the centroid of the destination zone. In cases where no
stops are found within the 1000 m radius, the (single) closest stop to the
centroid at any distance is selected. The most optimistic route is then
selected and access/egress times by walk are added between the stops
of the selected route and the centroids of zones. In a last step, the re-
sulting zone-to-zone travel time by transit is compared to the direct
walk travel time. The shorter option is saved in the skim matrix.

6. Results

6.1. Hypothetical scenario

To showcase the problem of spatial aggregation in the case of
transit, the implemented model was applied to a simplistic hypothetical
study area. Fig. 1 shows a coarse grid scenario which consists of 5 × 5
square zones with a side-length of 5000 m each (i.e. the area of the
study area is 25 km × 25 km). Two U-shaped transit lines connect the
corners with the center of the study area. A fixed destination point was
picked at the top right corner (blue triangle). Next, the individual and
skim travel times to this point were queried in a 100 × 100 meters
resolution. In the case of individual travel times, one can clearly see
isochrones around the fixed point that show increasing travel times as
distance increases. Here, the router would just return a direct walk trip
in the transit case. It is important to see that the isochrones span over
the zonal boundaries. In the zone in the second row in the last column,
the isochrones have an uneven extension, which is due to the transit
stop that is located at the center of the zone and that connects to the
upper zone. Every other zone that is connected with the transit system
has their own isochrones around stops that stick out from the zones that
are not connected. Here, one can see that the size of the isochrones gets
smaller as the number of stops to the target zone increases. The iso-
chrones in the top left transit zones are slightly larger than their
counterparts in the bottom right which is due to the fact that the zones

Fig. 1. A comparison of obtained travel times for a hypothetical scenario. Zone system and transit lines (left), skim zonal travel times to a fixed destination (middle)
and the respective individual travel times (right).
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in the bottom right are not directly connected and passengers need to
transfer to the other line, which adds waiting time.

In the skim case, every zone consists of one value only. While the
overall pattern is similar, one can clearly see the issues that arise due to
aggregation. The first issue is that the top right zone does not show the
lowest travel time, which is due to the fact that the intrazonal travel
time takes an average to all nearest neighbors including the zone to the
left that is inaccessible by public transport. Secondly, travel times
abruptly change when a zone border is crossed. This refers to the par-
titioning bias of the MAUP. While parts of the fourth zone in the second
row have some reasonable travel times in the individual case, it is
considered completely unaccessible by the skim case. A third issue is
that the skim travel time cannot capture the decreasing isochrone area
in more distant zones, as it computes the zonal value for the zone
centroid which is the geographical center in this example. Finally, the
skim travel times seem to be biased towards shorter travel times in
general. This is due to the fact that the destination, too, is represented
by a zonal centroid that is close to the transit stop in the upper right
corner. This omits the egress travel time to the actual location.

6.2. Comparison of travel time provision methods in the real-world
application

For further analysis, the travel times queried by agents throughout
the first simulation year of the ILUT model for both the skim and the
individual case are compared. A sample of 200,000 queries during
housing search of the first simulation year was recorded. To allow for a
fair comparison, both the skim and the individual travel time queries
were obtained from the same relaxed MATSim simulation of each sce-
nario. Fig. 2 shows a visualization of dwelling evaluations in the study
area. It can be seen that the density of queries correlates with the po-
pulation and employment density which is highest in the five larger
cities of the study area.

Four different setups are compared to determine the influence of the
car network density and the choice of the representative time for
creation of the peak-hour skim on travel times. Two networks with
different network densities were analyzed with two peak-hour alter-
natives. The dense network consists of 504,109 links, while the coarse
network has 142,703 links. Based on traffic count data, the morning
peak hour is set to be 8 AM and the afternoon peak hour to 5 PM, which
are used to create travel time skims for the skim case. For the Munich
case, the afternoon peak hour is more congested than the morning peak
hour. Table 1 shows the root mean squared errors (RMSE) and corre-
lation coefficient (r) between the individually queried travel times and
the respective skim query for the four setups. Travel times, and in
consequence RMSE, is given in minutes.

Both setups using the afternoon peak hour for the skim computa-
tions show higher RMSE values than their morning peak counterparts.
This is expected as the queries from SILO use job start times as their
query time, and the majority of workers starts their job in the morning
hours.

When comparing network density, the dense network setups exhibit
more congruent results for both peak-hour alternatives. This can be
understood as another variant of the MAUP. The accuracy of routing
decreases with less realistic networks. At the same time, there will be
fewer route alternatives for congested route segments. This increases
the impact of congestion and leads to higher fluctuations. Additionally,
the coarser network is less connected, which leads to high under- and
overestimation of travel times depending on the actual queried co-
ordinate or centroid. The results are in line with previous findings that
concluded that increased network density will always lead to lower
errors, regardless of zone size (Khatib et al., 2001; Chang et al., 2002).

Fig. 3 shows scatter plots for the four scenarios. The setup that uses
the morning peak and the dense network shows the best match between
skim and individual travel times. For both plots where the morning
peak was used for the skims, there are point clouds to right of the

diagonal that represent travel times that are underestimated by the
skim, presumably from households in which the workers start work at
untypical times (e.g. afternoon or evening, where congestion is actually
higher).

In the setup where afternoon peaks are used as representative times
for the skims, they clearly overestimate travel times. Here, skims were
built on congested afternoon conditions, while most commuters for
whom travel times are requested do these trips in the morning. It ap-
pears that in this particular case where only commutes are considered,
inaccuracies due to the use of a time-invariant skim matrix can be re-
medied by an appropriate choice of the representative time. It is clear,
however, that this is not possible in more general cases where different
demand segments of travel (that do not take place at the same time of
day) need to be taken into account.

Fig. 4 depicts the comparison of the transit case. Results are neither
affected by car network density (because transit is routed on a separate,
congestion-free network based on a planned schedule) nor the peak
hour used for the skim because travel times are almost identical in the
afternoon and morning peaks. It can be seen that the spread between
individual and skim travel times is much larger than for auto travel
times. The RMSE for the transit comparison is 66.45 min, the correla-
tion coefficient is 0.84. The RMSE is rather high, because skim-based
and individual travel times tend to be more different, especially in the
range of longer travel times. This is plausible as those queries are
usually between more rural zones, which also tend to be larger zones.
There, transit accessibility is low and the correct actual distance to the
next stop is more decisive. In the skim case, the transit travel times are
the same for the whole zone, which can be very inaccurate for large,
rural zones. The correlation coefficient is relatively high as most of the
queries are from households which live in one of the major cities in the
study area, where zones are small. Overall, there seems to be no sys-
tematic bias to under- or overestimate transit travel times, the mean
percentage error is −4%, while the mean absolute percentage error is
23%. The error for transit travel times is higher than for auto travel
times as the car network is much more connected than the transit
network, which makes it less crucial to query from/to specific points
(i.e. stops) in the network.

In the following sections, only the morning peak and the dense
network will be considered to analyze auto travel times. This is the
setting where skim-based and individual travel times are most similar.
By choosing this setup, we allow the skim-based approach the best
possible performance in comparison to individual travel times. One
should keep in mind, however, that skims will perform worse in many
applications other than presented below.

6.2.1. Spatial influence
To analyze the effect of the spatial aggregation for the skim, the

comparison is repeated with the time of day of the query fixed in the
individual case as well, i.e. the individual travel times are queried for
the same time of day that was used to compute the peak hour skim in
the skim case. As such only the finer spatial resolution in the individual
case remains as a difference to the skim case. For car travel times, the
RMSE reduces to 1.89 min (compared to 3.14 min without isolation of
the spatial influence), which suggests that for the dense network the
spatial aggregation is not too inaccurate. Additionally, the outliers in
which the skim travel times underestimate travel times are reduced,
which supports the hypothesis that those are emerging from queries at
untypical times. In the transit case, however, the RMSE hardly drops, to
59.26 min. This suggests that the spatial aggregation is impacting the
difference between individual and skim travel times much stronger than
in the car case. Again, this can be explained by the importance of the
actual microlocation in relation to stop locations.

The MAUP can be evaluated when comparing the travel time dif-
ferences against the zone sizes of origin or destination. Fig. 5 shows the
zones in the study area, classified by their area. The same classification
is applied to analyze the distribution of differences between skim and
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individual travel times in relation to the size of the origin zone of the
query (i.e. the dwelling zone) in Fig. 6. It can be seen that the differ-
ences do not change much when zone size increases for the car travel
time comparison. In fact, the RMSE in those classes stays around 3 min.
For transit, however, the differences are not only larger in general, but
their spread also increases significantly when the zone size increases.
The RMSE values increase from 50 min for origin zones that are smaller

than 3.9 km2 and increase to 93 min for zones that are larger than 32.6
km2. This is because larger zones in this model have lower population
densities, and therefore, lower transit network densities. Lower network
densities increase the variation of travel times for exact coordinates
inside the zone. The high RMSE values can be explained by the large
amount of outliers in which individual transit queries would return a
direct walk trip. For example, for a night time queries or remote

Fig. 2. Visualization of dwelling searches simulated by SILO (sample of 25,000 searches shown). Red dots indicate job locations of workers of the household looking
for a new dwelling. Purple dots represent vacant dwellings that were evaluated by these households. The lines show which dwellings were assessed in terms of
commuting times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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locations, no transit connection is available and the model provides the
travel time by walking instead. As the whole study area covers an area
of almost 15,000 km2, walk trips can easily become very long.

6.2.2. Temporal influence
The impact of temporal aggregation of skim travel times is analyzed

by comparing skim and individual travel time by fixing the zone con-
nectors in the case of individual travel times, but still using job starting
times for travel time queries in the individual case. The RMSE in the
comparison of car travel times is 2.88 min, which confirms that for car
travel times, the impact of temporal aggregation is higher than the
impact of spatial aggregation. In contrast to the comparison with fixed
query times, we find that fixing the spatial component (i.e. zone

Table 1
Root mean square errors (in minutes) and correlation coefficients between in-
dividual and skim-based travel times for different setups. Travel times, and thus
RMSE, are given in minutes.

Both queries use

Dense network Coarse network

Skim matrix comes from .Morning peak RMSE = 3.139 RMSE = 8.339
r = 0.929 r = 0.709

Afternoon peak RMSE = 7.094 RMSE = 26.731
r = 0.817 r = 0.487

Fig. 3. Comparison between individual and skim-based travel times for four different setups: morning peak - dense network (top left), morning peak - coarse network
(top right), afternoon peak - dense network (bottem left) and afternoon peak - coarse network (bottom right).

N. Kuehnel, et al. Journal of Transport Geography 88 (2020) 102862

7



Fig. 4. Query result comparison between individual and skim based travel times for transit modes.

Fig. 5. Zone system and respective zone sizes of the study area (left) and in Munich (right).
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connectors) reveals the outliers in which the skim underestimates travel
times. This confirms that these outliers are an artifact of temporal ag-
gregation which is inaccurate for untypical job start times. This is
confirmed by looking at the deviations of travel time throughout the
day (see Fig. 7). The RMSE for queries from 6 am to 10 am is 2.44 min.
In the afternoon from 3 pm to 7 pm the RMSE increases to 6.55 min,
with most of the queries underestimated by the skim. In Munich, the
congestion in the afternoon peak hour is typically higher than in the
morning peak hour. This is not captured when the skim is computed for

the morning peak hour. Additionally, there are people with anticyclical
behavior that start their job in the afternoon and who have to travel in
the opposite direction of the main congestion and whose travel time is
thus underestimated in the skim case.

Contrary to car travel times, the transit travel times seem to be less
distorted by temporal aggregation than by spatial aggregation. The
RMSE drops to 25.01 min when querying from fixed zone connectors
which is less than half of the error of the spatial impacts comparison.
This can be explained by the fact that transit travel times are routed

Fig. 6. Violin plots of the difference in travel times between individual and skim travel times by zone area for car (left) and transit (right). The colors correspond to
zone sizes shown in Fig. 5.

Fig. 7. Difference between individual and skim travel times by time of day for car (left) and transit (right). Note different scales.

N. Kuehnel, et al. Journal of Transport Geography 88 (2020) 102862

9



based on scheduled times on a separate network without congestion. As
service is similar in terms of frequencies for most of the day, the time of
day does not have a strong effect on transit travel time queries. The
RMSE is 59.52 min from 6 am to 10 am and hardly changes to
57.40 min in the afternoon from 3 pm to 7 pm. The seemingly larger
variations in the morning hours in Fig. 7 can be explained by the fact
that the number of queries is much higher than in the afternoon hours,
leading to a higher spread.

However, the RMSE is still high and large differences can be seen
during night and off-service hours. Fig. 7 shows an almost diagonal line
in the early morning hours until 4 am during which the skim under-
estimates travel times. As most of the transit services do not operate in
those hours, the transit router will return a large direct walking trip,
making transit very unattractive. The underestimation of travel times
reduces towards the start of the transit operation around 4 am as people
might as well wait for the start of the service. It can be expected that the
error increases when the schedule varies more throughout the day.

6.3. Impacts on household relocation

It is expected that the aggregations in skims lead to inconsistent
behavior in microscopic relocation decisions. Transit captive house-
holds without cars that only evaluate transit travel times will select
more randomly when choosing from dwellings within the same zone in
the skim case as the zone-to-zone transit travel times will be the same.
In the query analysis it was shown that the spatial impact is high for
transit skims. Compared to individual travel times, households should
on average move closer to transit stops because the exact microlocation
in relation to stop positions is important. To test this, all household
moves of the first simulation year of the Munich scenario were recorded
for the skim and the individual travel time representation. In both
scenarios the households that decided to look for a new dwelling were
randomly chosen with a probability of 1%. This is to prevent that the
current housing satisfaction, which is also based on current travel
times, would lead to different households that decide to move. After the
simulation, the distances of the new dwelling locations to the nearest
stop according to the transit schedule were calculated. When looking at
all relocations (28,430 cases), the average distance to the closest transit
stop after moving is 1085.45 m in the skim scenario and 1085.19 m in
the individual travel time scenario. The average distances are the same
when looking at all relocations which includes the majority of house-
holds which are not “‘transit captives”’. However, when looking at the
relocations of households that have no cars and at least one worker who
has to commute (2886 cases), the average distance to the closest stop
drops to 605.57 m for the skim scenario and to 569.51 m in the in-
dividual travel times scenario. One can see that those households cor-
rectly show a higher sensitivity to transit accessibility in both scenarios.
In the individual travel time scenario households seem to be slightly
more sensitive (about 6%) to transit stop distance than in the skim
scenario, which is a small effect but confirms the hypothesis of a more
random selection of dwellings in the skim case. It is important to note
that the nearest stop distance is not necessarily the stop which is served
by the actually taken transit line for getting to work.

7. Discussion

The presented results suggest that the temporal and spatial ag-
gregation of travel times can have a large impact on their accuracy and
that individual travel times help to overcome this issue in ILUT models.
While aggregation is less of a problem for car travel times if a dense
network is used, it becomes even more important in the case of transit
travel times which proved to be very inaccurate. A disadvantage of the
individual query is the extended computation time. Still, a model run of
the FABILUT modeling suite with individual travel times run multiple
decades into the future can be finished in less than two days for the
Munich case. On the other hand, skim-based approaches that aim to

improve accuracies (e.g. using multiple distinct time-of-day-specific
matrices or a very high spatial resolution) also increase computing
times, and lead to memory requirements that can become unwieldy. In
the presented setup, the creation of a car skim for one time-of-day
period takes about 4 to 7 min, depending on network density. For
transit, the skim creation takes about 1 min for one time-of-day period.
In contrast, individually routing the members of roughly 200,000
moving households for up to 20 potential dwellings takes about 40 min
per year.

Besides using individual travel times, there are basically three
common methods to improve the accuracy of skim-based travel times:

• Use smaller zones. While this reduces the MAUP, the number of
entries in the skim grows as n2, where n is the number of zones. The
Munich study area has a total area of approximately 15,000 km2 in
4924 zones with an average zone size of 2.94 km2. If finer zones
with, e.g., an average area of 1 km2 were used, the number of zones
would almost triple, while the skim matrix would grow by a factor
of 9. In Java, the resulting two-dimensional array would take up
around 1.7 GB of RAM just to store values for one mode for one time
of day. In addition, the calculation time for the skim matrix would
increase (by ~n, since skims can be retrieved from Dijkstra trees).

• Use more skim matrices for more detailed time slices. This helps to
reduce the effects of temporal aggregation, but linearly increases the
consumption of computation time and memory. One could, for ex-
ample, use four matrices to describe morning and afternoon peaks,
off-peak and night time. However, especially for low-frequent
transit services which can run in 30+ minutes intervals, the exact
time of departure can make a difference.

• Use more zone connectors per zone. This would result in a more
smoothed value per O-D pair that might be more valid on average.
However, the actual spread of travel times over space and time is
still not captured. The impact of zone connector placement is re-
ported to have a small impact when small zones are used (Chang
et al., 2002). Stȩpniak and Jacobs-Crisioni (2017) report small in-
creases in accuracy for the price of higher computational com-
plexity. It should be noted that the population concentration is not a
stable attribute in ILUT models and the respective changes are key
results of the simulation. This means that zone connectors should
take into account not only the base year distribution of population
and employment but also future distributions.

The spatial resolution impacts spatial biases. In the presented zone
system, zones are smaller where population density is high. As it was
shown that larger zone sizes are correlated with higher errors, the
chosen detailed zone system ensures that the majority of agents that
live in dense areas experience smaller aggregation errors than the
smaller number of agents that live in remote areas. In very dense areas
of the core cities, the smallest zones are only 100 by 100 m in area. If a
zone system with the same number of zones with an even surface with
the above-mentioned average zone size of 2.94 km2 was used, the errors
would be more similar for all agents. However, this would reduce the
error of a few extreme cases at the costs of the majority of agents in
dense areas whose error would increase.

Next to the spatial resolution, the spatial extent has an impact on
the spatial biases Jones, 2016). The chosen threshold of 25% of com-
mute flows could have been set lower or higher and would lead to the
inclusion of more or fewer municipalities on the fringe of the study
area. Given the rather rural nature of the regions near the fringe of the
study area, the impact of the threshold on this analysis is small. The
variety of errors throughout different zone sizes has been captured in
this study. On the other hand, a larger spatial extent would potentially
include a few longer commute trips. In an analysis that is not presented
here, the trip distance did not have a major impact on the aggregation
errors for commute trips by car. For transit travel times, distance did
have an impact on the error for the few cases where aggregate skims
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provide a transit connection while individual travel times show that
walking is faster than waiting for transit (e.g., for a trip at 3 AM in the
morning). For these rare cases, the error increases with distance.

The impact of individual travel times on relocation were small but
clearly visible and confirm the increased accuracy of individual travel
times. A reason for the relatively small impact is that household re-
location does not react very sensitively to changes in transit travel
times. The model assumes the same commute probability distribution
for car as for transit, even though travel times by car tend to be shorter.
Another limitation of the current approach is that workers only eval-
uate their trip going to work and do not consider the travel time for the
return trip.

8. Outlook

This research shows the relevance of individual travel times for
ILUT models. We were able to show that it makes a difference when we
introduce the spatial and temporal detail of individual travel times
compared to aggregate skim matrices. This finding suggests that it will
also make a substantial difference when we replace skim matrices with
individual travel times in travel demand modeling. Most destination
choice and mode choice models in operation use skim matrices to cal-
culate the utilities of different destinations and various modes.
Sometimes, peak hour skims and off-peak hour skims are distinguished.
One could imagine, however, that replacing skims with individual
travel times may have an equally substantial impact as shown in this
paper for land use/transport model integration. For example, the transit
schedule differs by time of day, which is likely to affect the tripmaker's
mode choice depending on their departure time. Similarly, congestion
changes over the course of a day, which may entice them to choose
different destinations for trips in the morning than in the afternoon.
Last but not least, many travel demand models suffer from a coarse zone
system. In a skim-based world, every trip to a larger zone takes the
same travel time, no matter whether the final destination is close to the
zone centroid or at the outskirts of the zone. Individual travel times
allow to overcome this spatial and temporal aggregation. In addition,
the definition of the zone system, zone connectors and skim time slices
does not influence the accuracy of travel times anymore, removing
potential sources of bias and error. Travel times become independent of
zone definitions and do not change when the zone system is adjusted.
While biases introduced by an inappropriate spatial resolution are
avoided, the presented approach does not overcome spatial biases in-
troduced by inappropriate spatial extents of the study area.

The implemented query approach can be extended to additionally
include person attributes (e.g. age, gender, disability status, value of
travel time, access/egress mode) or vehicle attributes (e.g. fuel type,
noise and pollutant emission rates). Furthermore, policy-relevant net-
work attributes can be implemented (e.g. environmental zones, time-
dependent tolls etc). In addition, high-occupancy vehicle and/or ex-
press lanes that require personal information and would otherwise lead
to additional matrices are easier to model. The microscopic travel times
can further be used to calculate microscopic accessibilities, as described
by Ziemke et al. (2017). This would further reduce the impact of the
zone system.

Another important benefit of this method is that intrazonal travel
times are eliminated. It is inherently difficult to calculate intrazonal
travel times (Okrah et al., 2016; Moeckel and Donnelly, 2009), because
the origin and destination are represented with the same zonal centroid.
The method proposed here uses true x/y coordinates, and thereby,
eliminates the need to define intrazonal travel times.
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