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ARTICLE INFO ABSTRACT

What we understand by the simple term ‘city’ is in fact describing highly diverse domains: different economies,
demographics, ways of living, land uses, built-up morphologies, among other things. The built landscape alone
ranges from low-density, one-storey suburban settlements to high-density accumulations of skyscrapers. Models
have repeatedly attempted to describe these various ‘city’ manifestations and to understand the processes that
shape these spatial appearances and patterns. In this paper we analyze the morphological-spatial configurations
of urban landscapes. We empirically examine 110 cities distributed around the globe. By using the Local Climate
Zones (LCZs) classification scheme, we quantitatively describe morphologic variances of the built landscape
within cities. We find seven city types (clusters) that capture the global diversity of spatial urban configurations.
These seven types testify in parts to common geographic-cultural spaces. Some are largely congruent with well-
known spatial units such as Europe or the Islamic world. In contrast to theoretical city models, however, we also
find clusters that are more spatially complex such as African-American or Asian-African clusters. On the one
hand, the study confirms that similar cultural, socio-economic, demographic or political conditions in fact do
produce similar morphologic-spatial urban configurations. On the other hand, it also shows that there exist
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similar morphological configurations across geographic-cultural spaces.

1. Introduction

We perceive the city first and foremost through its physical form.
When visiting a new city, its spatial structure and its interrelationships
appear at first inscrutable. Nevertheless, we expect an underlying spa-
tial order which follows a more universal structural configuration of
urban space. A configuration we can understand within the framework
of previous experiences. An order that adheres to certain basic princi-
ples — a dense, multifunctional city center, an arrangement of sub-
centers of commerce and industry spread over the city, different den-
sities of living forms, and a generally decreasing density with increasing
distance to the center.

Urban geography has long endeavored to uncover rules and general
principles of order (e.g. Bettencourt, 2007) and to develop ideal
structural models to describe the spatial patterns of cities. As early as
the Chicago school, the general spatial order of cities has been con-
ceptualized by observations and theories. Cities were spatially modelled
in concentric zones (Burgess, Park, & McKenzie, 1925), sectors (Hoyt,
1939), or multiple nuclei configurations (Harris & Ullman, 1945). The

various models created over the years with a claim to universal validity
generally refer to social-ecological space, to transport costs, land
market and land use, to population density, to functional inter-
dependence, central-local network theory or to diffusion (Hofmeister,
1991). The “Alonso-Mills-Muth” model (Alonso, 1964), as example, has
been established with a monocentric character referring to the even
distribution of land use within a city as a function of land rents, which
decreases with increasing distance from the center (Paulson, 2012).
This monocentric character, however, has been questioned by scholars,
since a constantly decreasing density with increasing distance to the
center no longer adequately reflects today's complex polycentric city
patterns (e.g. Adolphson, 2009; Siedentop, Kausch, Einig, & Gossel,
2003). In this regard the “Urban Realms” model tried to capture the
simplified representation of the spatial, social, economic and cultural
pattern in monocentric models by realms representing more complex
polycentric patterns (Vance, 1964). Models that reflect this higher
complexity refer to, for instance, effects of economic externalities such
as traffic congestion (Anas & Kim, 1996; Fujita & Ogawa, 1982) or in-
direct utility functions with economic activity to cluster in several
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interacting centers (Anas, Arnott, & Small, 1998; Roca Cladera,
Marmolejo Duarte, & Moix, 2009; Solow, 1973). Edge cities have been
described, reflecting spatial concentration of office and retail space,
often in conjunction with other types of development, including re-
sidential, at the nodes of major express highways (Bontje & Burdack,
2005; Garreau, 1991). The unbridled dispersion of economic activity
outside the centers as a whole has continued leading to patterns de-
scribed even as ‘beyond polycentricity’ (Gordon & Richardson, 1996),
often resulting in forms of low dense urban sprawl (Nechyba & Walsh,
2004).

In addition to these more or less universally valid urban structural
models, attempts were made to reflect the relationship between global
economic forces and the local cultural context. Spatial models are in-
tended to reflect the geographical-cultural diversity by regionally spe-
cific features of the urban configuration at the inner-city level (Pacione,
2009). Models for the European (e.g. Lichtenberger, 1972), the US-
American (e.g. Hahn, 2014), the Ford-Griffin-Model for Latin America
(Griffin & Ford, 1980), the oriental Islamic model (Ehlers, 1993), the
African model (UN, 1973), the Chinese city (Gaubatz, 1998), among
many others have been conceptualized. Further spatial refinements to
urban forms within these large, often continental regions have been
developed: For Africa, as example, models for the indigenous city
(Krapf-Askari, 1969), the colonial city (Pacione, 2009), the apartheid
city (Davies, 1981), among others were conceptualized. The basis for
such intercultural comparisons of cities is the division of the earth into
cultural areas or cultural earth parts, as it has been done e.g. by Kolb
(1962) or Huntington (1997).

Modeling aproaches tried to better understand the complex under-
lying processes shaping urban patterns. The complexity is also reflected
in the fact that, like DNA, each city developed its own unique config-
uration. The most obvious configuration is the morphologic-spatial
structure. It is the direct physical implementation of a complex inter-
relation of economic, social, demographic, legal, and political systems
(Tonkiss, 2013), historical path dependencies (Kostof, 1991) and loca-
tion factors such as topography or climate (Taubenbock, 2019). This
“physicalism” (Batty, 2013) is, on a very generic level, composed of
buildings, streets, plots, and open spaces (Kostof, 1991; Salat, 2011).
This urban form is designed so differently across the globe that two
ends of a morphologic-spatial continuum may be marked by a planned,
geometric, regular, low dense arrangement of suburbs with high ve-
getation fractions and open spaces on the one hand, and informally
shaped, organic, irregular, high dense arrangements of shacks in slums
basically without open, public space, on the other hand.

However, empirical studies comparing the urban spatial config-
uration of cities across the globe are few due to data scarcity or data
inconsistency. An urgent need for a comprehensive database world-
wide that goes beyond an urban footprint analysis with the need to
capture the internal structure of cities is formulated (Bechtel et al.,
2015). Remote sensing from space is one data source that has the
capability to increasingly reduce these data gaps. In the recent past,
global mapping products based on Earth observation data with ever
better spatial resolutions have emerged (e.g. Esch et al., 2012; Small &
Sousa, 2016) and related data-driven urban analysis have been con-
ducted predominantly on urban growth (e.g. Angel, Parent, Civco, Blei,
& Potere, 2011; Taubenbock et al., 2012). First models have been de-
veloped that allow evaluating the spatial dispersion of urban landscapes
on this new empiricism (Taubenbock, Wurm, Geil3, Dech, & Siedentop,
2019). However, at continental or even global scale these analyses are
still limited in a thematic sense due to their binary representation of the
settlement space. Existing works that analyze and compare the internal
morphologic structure of cities using EO-data are so far mostly based on
a comparatively small number of cities (e.g. Seto & Fragkias, 2005; Cai,
Huang, & Song, 2017; Taubenbock, Standfuffl, Wurm, Krehl, &
Siedentop, 2017; Wurm et al.,, 2019) and the specifications of the
needed or used input data rarely allow, for several reasons, a global
approach. Thus, studies that analyze the intra-urban structure of cities
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or the conceptualized models of cities in a global empirical comparison
on the basis of a consistent data set do not exist so far.

Another challenge for comparative urban research derives from a
rather arbitrary use of geographical boundaries for cities or urban
landscapes which makes many comparisons inadmissible (e.g. Lechner,
Reinke, Wang, & Bastien, 2013; Openshaw, 1983). It has been shown
that the commonly used conventional, historical administrative spatial
units do represent cities in a world characterized by highly dynamic
urbanization less and less (Taubenbock, Weigand, et al., 2019). As a
result, geographical knowledge is often distorted by those incomparable
spatial baselines.

Against these backgrounds, we aim in this paper for a global em-
pirical analysis on the intra-urban structure of cities using consistent
data with comparable spatial baselines. To do so, we characterize the
intra-urban morphologic-spatial composition of urban landscapes
across the globe. We have selected 110 representative cities. This se-
lection is proportional to the relative global share of urban population
per continent, generally selecting the largest cities on each continent
and at the same time ensuring a balanced spatial distribution. We
classified them according to the classification scheme of the Local
Climate Zones (LCZs) (Stewart & Oke, 2012) using remotely sensed data
(Qiu, Schmitt, & Zhu, 2019) and we rely on a comparable spatial
baseline of city extents (Taubenbock, Weigand, et al., 2019). With it, we
specifically ask the following research questions:

e Are intra-urban morphologic configurations of cities across the
globe similar or different?

® And, should they be different, do groups form according to geo-
graphical and cultural aspects?

2. Conceptualization of the study

The general idea of this study is to quantify intra-urban morpho-
logic-spatial configurations of cities across the globe and to identify
groups consisting of similar spatial configurations. This requires a clear
definition of the components for analysis and comparison, i.e. we must
ensure that we do not use a random selection of cities for our experi-
ments, that we do not compare apples with oranges in terms of thematic
content (i.e. structural classes defining the different morphologic com-
positions within the urban landscape) and, since space plays a decisive
role, that the spatial units across cities are comparable.

For a representative selection of cities we select cities whose cumu-
lative populations are proportional to city populations on continental
level. We base this on statistics from the United Nations (UN, 2018).
Beyond, we ensure a balanced spatial distribution across the respective
continent. Our object of investigation from the perspective of the the-
matic content is the intra-urban morphologic configuration of an urban
landscape. As elements of this configuration we understand homo-
geneous parcels that contain a similar equipment of space of the built
and non-built (non-natural and natural) environment. For this purpose,
we adapt the Local Climate Zones (LCZs) scheme as it is a generic,
culturally-neutral description of land-use and land-cover (Stewart &
Oke, 2012). Although originally developed for studies on urban climate,
the classification scheme relies on universal, standardized and mea-
surable parameters of urban form. The classes are based on the char-
acteristics ‘density’, ‘building size’ and ‘building height’ for the built
landscape. For the non-built landscape, they are based on the theme
(e.g. trees or open spaces). These “regions of uniform surface cover,
structure, material, and human activity span hundreds of meters to several
kilometers in horizontal scale” (Stewart & Oke, 2012). Fig. 1 introduces
the 17 thematic LCZs split into ten LCZs defining the built types of the
urban landscape and seven LCZs defining the non-built types of the city.
In our study we define that different LCZs reflect a different morpho-
logic urban configuration. In consequence, we understand the mor-
phologic urban configuration of cities being similar or different, if the
share of specific LCZs is similar or different and/or if the spatial
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Fig. 1. The 17 Local Climate Zones (LCZs) as a generic, culturally-neutral description of land-use and land-cover.

(Based on Stewart & Oke, 2012; Oke, 2004).

distribution of LCZs within cities is similar or different.

For the spatial units defining the city extents, we rely on morpho-
logical urban areas (MUAs). These encompass the built space of cities
independent of administrative/political borders. Since critics question
much of existing comparative urban research because of a rather ar-
bitrary use of geographical boundaries (e.g. Lechner et al., 2013;
Masucci, Arcaute, Hatna, Stanilov, & Batty, 2015; Taubenbdck,
Standfuf3, Klotz, & Wurm, 2016), we do not use administrative or
standardized spatial units, but a consistent delineation of urban from
rural areas. We apply the MUAs as provided by Taubenbdck, Weigand,
et al. (2019). Decisive here is not whether these MUAs capture the
urban space in a universal true manner, but that they delimit the urban
spaces in a globally consistent manner, which provides the spatial basis
for a valid comparison.

3. Study sites, data and methodology
3.1. Study sites

In order to compile a sample of about 100 cities that allows a

globally representative evaluation of urban configuration, we have
made use of the following considerations: We calculate the relative
global share of the urban population per continent using population
statistics from the United Nations (UN, 2018). Then we select cities per
continent, which in their cumulative number of inhabitants correspond
to the relative continental share. In general, we select the largest cities
of the continents; however, for a reasonable spatial distribution that
ensures all regions are covered, we do not strictly follow the population
numbers. However, any selection of cities is naturally not fully pro-
portional to the urban population per continent. Thus, we define an
error tolerance of 3% and choose cities that keep the error tolerance
low. Based on these considerations, we selected an ensemble of 110
cities. All 110 cities are displayed in Fig. 3 and stated in Table 2.

3.2. Satellite data and classification of LCZs

For the classification of LCZs we rely on multi-seasonal Sentinel-2
satellite data (ESA, 2012). The sensor acquires multi-spectral optical
imagery at high spatial resolution of 10, 20 or 60 m with 10 bands in
the visible, near infrared, and short wave infrared part of the spectrum.
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Fig. 2. The morphological urban areas (MUAs) in comparison to administrative unit for the sample city of Madrid (left) and the related classification of LCZs with few
sample rings around the defined city center to visualize the spatial concept of the monocentric city model (right).

A recurrent residual network (Re-ResNet) architecture capable of
learning a joint spectral-spatial-temporal feature representation within
a unitized framework has been exploited and trained on the LCZ42
dataset. The labels for training have been generated manually by 15
domain experts following a carefully designed labeling workflow and
evaluation process over a period of six months. The labels are with an
overall confidence of 85% based on a rigorous quality assessment (on
technical details we refer to Zhu et al., 2019). Afterwards, the trained
network is applied to perform the LCZ classification at a resolution of
100 x 100 m per city from seasonal Sentinel-2 images, followed by a
majority voting on the multi-seasonal predictions (for details on the
classification procedure we refer to Qiu et al., 2019). In Fig. 2 we vi-
sually exemplify the LCZ classification.

3.3. Spatial units of analysis

A fundamental challenge for any comparative urban study is the
spatial unit to base the empirical investigation on. As introduced above,
we apply in our study MUAs as provided by Taubenbock, Weigand,
et al. (2019). They understand MUAs as a territorially contiguous set-
tlement area that can be distinguished from low-density peripheral and
rural hinterlands along a gradient of decreasing built-up density from
the urban center to the periphery. Fig. 2 underpins the spatial dis-
crepancy between the arbitrary administrative units and the MUAs. The
exemplified administrative area of Madrid and the respective MUA are
very similar around the center. The administrative area, however, in-
cludes large non-built forest areas in the northwest that are not con-
sidered part of the city in the MUA. At the same time, large suburbs are
not considered part of the city by the administrative area in the
southwest, while the MUA integrates these built settlement landscapes.
By applying the same method to all larger cities worldwide, the

provided MUAs are re-territorializing commonly used urban extents.
These MUAs constitute a consistent and thus permissible spatial unit for
comparative urban research by capturing the built urban space, rather
than arbitrary administrative city boundaries or standardized extents.
For analyzing the intra-urban spatial distributions of LCZs, we apply
a monocentric city model. Although, as discussed above, this model
certainly does not correspond to the many spatial characteristics of the
cities investigated here, it allows us to investigate a basic assumption of
decreasing densities with a greater distance to the center. And, this
model still proves empirical understandability and an explanation of an
essential part (at least 80%) of the variation in urbanized land area (e.g.
Spivey, 2008) that functions as a theoretical and empirical basis to
evaluate intra-urban locations (e.g. McMillen, 2006). As a spatial
starting point of the models we rely on the defined center points for
each city as provided by the United Nations (2014). We use two dif-
ferent spatial approaches: For a standardized comparison we apply ring
models with bandwidths of 100 m to determine the location related to
the defined urban center point. For a normalized comparison we apply
100 rings of uniform bandwidths relative to the specific MUA of a city.
Fig. 2 exemplifies some sample rings around the defined urban center.

3.4. Methods for comparing landscape configurations of cities

3.4.1. Clustering of cities

We understand the LCZs as the individual building blocks that in
their entirety define the morphological-spatial configuration of a city.
Against the background of these considerations, we try to identify si-
milarities and differences between urban configurations using two in-
dicators: The spatial proportions of LCZs and the spatial proportions of
LCZs depending on their locations within the city. We want to identify
groups for both indicators.
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For the spatial proportions of LCZs, we count the occurrence (in
pixels) of each of the 17 LCZs per city at the spatial unit of MUAs. We
apply minimum-maximum normalization to them relative to all cities.
With it we produce a 17 dimensional feature space per city (we refer to
it as ‘17f). To take specifically account of the various city sizes, we
derive the spatial share of the 17 LCZs per city from the 17 dimensional
feature space and we additionally integrate the ‘city size’ derived from
the MUAs (Taubenbock, Weigand, et al., 2019) as further variable. We
apply minimum-maximum normalization to the ‘city size’ relative to all
cities. With it we produce an 18 dimensional feature space per city
(‘18f).

For the spatial proportions of LCZs depending on their locations within
the city, we count the occurrence (in pixels) of each of the 17 LCZs per
city at the spatial unit of MUAs for each of the 100 concentrical rings of
relative width using our monocentric city models. As above, we apply
minimum-maximum normalization to them relative to the basic popu-
lation, i.e. all cities. With it, we produce a 1700 dimensional feature
space per city (‘1700f). In addition, we derive the spatial share of the
17 LCZs per ring from the 1700 dimensional feature space and we also
integrate the size of the city based on the size of MUAs. We apply
minimum-maximum normalization to the ‘city size’ relative to all cities.
With it, we produce a 1701 dimensional feature space per city (‘1701f).

With it four features spaces are at our disposal. This allows us to find
various clusters of similar proportions of the various LCZs in the first
place, and to find various clusters of similar proportions of the various
LCZs with respect to their spatial location within the urban landscape in
the second place. For clustering we apply two unsupervised methods: k-
means (Hartigan & Wong, 1979) and expectation-maximization algo-
rithms (Dempster, Laird, & Rubin, 1977), where we assume a model of
type “EII” (Spherical distribution, Equal Volume, Equal shape, without
specification of orientation). Both algorithms apply centers of clusters
to model the data; however, k-means tends to find clusters of com-
parable spatial extent; the expectation-maximization allows clusters to
have different extents. Expectation-maximization can detect clusters
partially mixed in the feature space; k-means, in comparison, tends to
find clusters with more neighborhood-oriented logics.

In unsupervised clustering methods, the number of clusters is not
known a priori. For determining the optimal number of clusters we rely
on the gap statistics algorithm (Tibshinari, Walther, & Hastie, 2001).
We apply 100 random launches with different seeds. To define the
amount of clusters for all four feature spaces (17 and 18-dimensional as
well as 1700 and 1701-dimensional) we calculate the average from the
100 launches. As a result, we plot the determined particular clusters on
a world map.

3.4.2. Correlation of identified clusters to geographical-cultural spaces
The clustering results (based on the four feature spaces and the two
clustering methods) differ in composition and thus their spatial ex-
pression. It is not a priori clear which clusters are our target. As in this
study we want to focus on whether groups are emerging that corre-
spond or come close to predefined geographical-cultural spaces we
evaluate our resulting clusters in relation to geographical/cultural re-
gions based on those defined by Huntington (1997). He divided the
world basically into the following geographical/cultural regions —
Western, Latin American, Orthodox, Islamic, Sinic, Buddhist, Japanese,
Hindu, African (cf. Fig. 1A, Appendix). It is perfectly clear to us that this
division into regions is problematic. Distinct cultural boundaries do not
exist in the present day and are oversimplifying the complexity of our
globalized world (e.g. Berman, 2003). However, the underlying argu-
ment of using these geographical/cultural regions in our study is that,
as assumed in many studies, similar cultural, demographic, socio-eco-
nomic and political conditions produce similar spatial patterns. This is
reflected by specific city models designed for different cultural circles
assuming they influence the morphologic-spatial configuration of cities
(e.g. Hahn, 2014; Griffin & Ford, 1980). Against this background, we
want to take a closer look at the clustering that comes closest to this
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geographical and cultural division.

To identify this clustering, we apply the Simpson Evenness Index
(SIED) (Simpson, 1949), which defines the probability that two sub-units
(in our case the cities) of the landscape (in our case the geographic-
cultural region), selected at random, belong to different types (in our
case the clusters). The SIEI is defined as

7 number of cities of cluster k
-3 (),

number of cities in i
=)
7
producing values from O to 1; with 0 indicating there is only one cluster
present in the respective region and 1 indicating there is an even re-

partition of all clusters in the respective region. In other words the
lower the value, the higher the congruency.

SIEIgcographic/cultural zone; =

3.4.3. Morphologic descriptions of clusters

Based on the analysis above, we continue this study with only one
clustering result having highest congruency to geographical/cultural
regions as defined by Huntington (1997). The idea now is to char-
acterize these resulting clusters in their morphologic-spatial config-
uration. To do so, we apply four elements: 1) The average size of the
cities, a parameter which was not tackled by theoretical models; 2) the
share of built versus non-built up LCZs, a parameter to assess the intensity
of used urban space; 3) distributions of LCZ shares within the respective
MUAs as the main information on the structural configuration of the
cities; we illustrate the internal variability per cluster in boxplots; 4)
and, the volume density gradients from the center to the peripheries, a
parameter to describe the distribution of the usage of space within the
urban landscape. For the latter, we transfer the LCZs into measures of
three-dimensional built-up density. We extract the building surface
fraction and the height of roughness element (as provided in Stewart &
Oke, 2012) per LCZ. For each grid, we calculate the approximated built-
up volume by multiplying the building surface fraction with the pro-
vided height of roughness elements. We aggregate all resulting built-up
volumes from the grid level to the corresponding ring of the mono-
centric city model. From it we calculate the average built-up volume
along the gradient from the defined city center to the peripheries of the
MUAs for each of the resulting clusters. We display the resulting density
gradients per cluster in two different ways — absolute and normalized.
In absolute manner, we derive for each city and every ring (100 m of
width) of the monocentric city model the average built-up volume. For
the clusters we rescale the resulting values of the built-up volumes to 0
(minimum value) and 100 (maximum value) and plot the clusters' de-
pending on the absolute distance to the center (x-axis from 0 to the
maximal radius of the city). In the normalized manner, we derive for
each city 100 individual rings varying in widths depending on the
particular city radius as defined by the MUAs. From it we calculate the
average built-up volume for each of the clusters and rescale the values
as done above. We then plot the clusters' built-up volume depending on
the relative distance to the center (x-axis from 0 to 100% of the max-
imal radius of the city).

We illustrate one representative city per cluster in a LCZ map, we
plot the distribution of LCZs within the clusters, we describe the main
morphologic-spatial characteristics of this cluster and we name the
cluster according to urban geographical features.

4. Results
4.1. City clusters and their geographic-cultural expression

The gap statistics algorithm suggests in principle, for all four fea-
tures spaces, the 17 and 18-dimensional and the 1700 and 1701-di-
mensional feature space, that on average seven clusters best group the
data. As a consequence, the input data of LCZ classifications, the spatial
baseline of the MUAs, the introduced methodological approach, and
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Table 1

Results of the weighted Simpson Evenness Index based on the different
feature spaces (17-, and 18-dimensional features (17f, 18f), and 1700-, and
1701-dimensional features (1700f, 1701f)) and the different clustering
methods (k-means, expectation-maximization).

Method used Weighted SIEI

k-Means & 17f 0.81
k-Means & 18f 0.77
k-Means & 1700f 0.82
k-Means & 1701f 0.82
Expectation-maximization & 17f 0.79
Expectation-maximization & 18f 0.83
Expectation-maximization & 1700f 0.87
Expectation-maximization & 1701f 0.82

application onto these sample cities indicate that seven types of mor-
phological-spatial city configurations generally allow capturing the
built appearance of cities on our globe.

Based on this, we have systematically tested the different methods
for clustering (k-means and expectation-maximization) onto the dif-
ferent feature spaces (17 and 18-dimensional as well as 1700 and 1701-
dimensional) for the a priori defined seven clusters. Of course, the re-
sulting groups are not so unambiguous that the results remain the same
regardless of the feature space or method. Since we want to find out in
this study whether similar groups are emerging that are similar to pre-
defined geographical-cultural regions as proposed by Huntington
(1997), we continue from here with the result that shows the greatest
possible similarity to the geographical-cultural region. By weighting the
Simpson Evenness Index by the number of cities in each region, we find
the 18-dimensionsal feature space using the k-means algorithm pro-
vides highest congruence to the suggested geographical-cultural regions
(Table 1).

This empirical analysis according to physical equipment and spatial
distribution for cities on our globe shows that whether we consider only
the proportions of the LCZs or whether we consider the proportions of
the LCZs as a function of their relative position relative to the center, or
whether we apply k-means or expectation-maximization as clustering
methods, we find slightly different spatial compositions of the seven
clusters. Nevertheless, we generally also see the geographical-cultural
clusters remain comparatively constant. Relative to our best result (k-
means, 18f), we observe the greatest match of classes if we leave the
feature space the same. Applying the expectation-maximization algo-
rithm on the 18-dimensionsal feature we have an 80% match in the
class assignment of the cities (cf. Fig. 2A, Appendix). But even if we
vary the feature space (k-means, 1701f), compared to our best result (k-
means, 18f), there is still a 60.9% agreement in the class assignment of
the cities. For the latter example, still 66 of our 110 sample cities re-
main in the same cluster constituting similar geographical-cultural re-
gions.

If we plot the best results on the world map (18f and k-means), we
can see certain spatial distributions of the clusters, which obviously
represent in parts geographical-cultural spaces (Fig. 3). This is a first
clear indication that the geographical regions, their cultural and his-
torical background do influence the morphologic-spatial appearance of
cities.

In a first step, we describe the geographical distribution of the
identified clusters. The morphological specifics of the identified clusters
are introduced below in Section 4.2.

Cluster 1: mainly Asian and African cities

Of the 22 cities in this cluster, 19 are located in Africa and Asia (10
in Africa, 9 in Asia with 5 of them in India). Many cities have a colonial
or dominion heritage. It should also be mentioned here that also two
cities from South America and one from Europe are belonging to this
cluster.
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Cluster 2: mainly Asian and American cities

Of the 15 cities in this cluster, 9 are from Asia and 5 are from
America. The only exception here is Melbourne in Australia.

Cluster 3: dominated by European cities

21 out of 29 cities belonging to this cluster are on the European con-
tinent. Of the 22 European cities that are part of our entire sample, 21
belong to this cluster (the only exception is Bucharest belonging to Cluster
1). It is also worth mentioning that contrary to our expectations some cities
like Addis Ababa in Ethiopia or Wuhan in China also belong to this cluster.

Cluster 4: mainly Eastern African and Eastern Asian cities

Of the 20 cities in this cluster, 10 are located in Africa. It is striking
that all these cities are located in (south-)eastern parts of Africa. 8 cities
are located in Asia, mainly in far Eastern parts and one city (Port-au-
Prince) belongs to America and one (Sydney) to Australia. It is inter-
esting to note that most of the cities here do have a colonialist legacy.

Cluster 5: dominated by cities of central Africa

8 out of 10 cities of this cluster are located in Central Africa - dis-
tributed from west to east. Just one from Oceania (Port Moresby) and 1
from Asia (Poona) add to it. Again, most of the cities here do have a
colonialist legacy.

Cluster 6: Cities of the Islamic world

It is noteworthy that all cities in this cluster are exclusively located
in the Islamic region from Ouagadougou to the Hindu Kush. 9 cities (5
in northern parts of Africa and 4 in the Middle East) define this cluster.
In this region, two cities part of our sample — Bagdad and Riyadh - do
not belong to this cluster.

Cluster 7: consisting of very large cities

This cluster contains only 5 cities. All of these five cities are mega
cities with four of them located in Eastern Asia. The remaining one (Los
Angeles) is from America. They all are very large cities and assume that
the share of LCZs could be characteristic for these mega cities.

All in all, we draw the following interim conclusion from this em-
pirical analysis according to physical equipment and spatial distribu-
tion for cities on our globe: In many theory-based studies, city models
are strictly constituted according to more or less accepted geographical
spaces. This empirical analysis, however, shows that these geographical
spaces represent a unit that is too simplified and too generalized. Here
historical path dependencies such as colonial influences or economic
situations overlap with many other factors and influence the constitu-
tion of the built city. But it remains undisputed that geographical-cul-
tural spaces are reflected in the morphological configuration of cities
(and yes, outliers do exist). The European city model (Cluster 3) and the
Islamic city model (Cluster 6), as presented in many theoretical models,
are clearly identified by this empirical investigation. City configura-
tions that apply mainly to Central Africa (Cluster 5) could be localized.
However, other clusters are found that cannot be assigned so clearly to
only single geographical-cultural area. Clusters are identified whose
similar morphologic-spatial urban characteristics appear pre-
dominantly in cities located at different continents: Asian and African
(Cluster 1), Asian and American (Cluster 2) cities. For the first case
—Asian and African—, a further cluster is identified which takes a clear
spatial concentration on the eastern parts within the particular con-
tinents (Cluster 4). Despite some geographical outliers of these clusters,
we find there are cultural spaces that seem to have a clear influence on
the morphologic-spatial configuration of cities (Figs. 3 and 4).
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4.2. Seven city clusters and their morphological configurations

In the following we present the morphologic specifics of the seven
clusters based on the 18-dimensional feature space and the k-means
algorithm. For the morphologic-spatial characterization we apply the
four elements, size of the cities, the share of built versus non-built up
LCZs, the general shares of LCZs and, the volume density gradient.

In Fig. 4 we illustrate the cartographic results of the LCZ classification
for one representative city per cluster as well as box plots showing the
distributions of LCZs. We also illustrate the three dimensional volume
density by density gradients from the urban center towards the peripheries
(Fig. 5). We do so for the standardized and for the normalized distances.

Cluster 1: (mainly Asian and African cities)
Medium large cities of low structural variability, medium
compact, low-rise

Cities of this cluster have on average a radius of 14.9 km. With it, this
clusters features cities in a medium size among the seven clusters.
Structurally, these cities show an average share of 35% of non-built up land.
This ratio seems to be rather typical for cities across the globe as four out of
the seven clusters show values between 31 and 35%. The structural varia-
bility of these cities is low. Three LCZs, which together account for about
61% of the MUAs, dominate the structural configuration: low plants (LCZ-D
with 25% on median), large low-rise (LCZ8; 24%), and compact low rise
(LCZ3; 12%). The remaining LCZs cover without exception less than 5%
each of the urban area. From the point of view of spatial statistics, this class
has the greatest similarity with cluster 2.

Uniform density decrease (abs.) and convex gradient (normalized)

For cluster 1 we measure the expected decreasing built-up volume
density gradient with increasing distance to the center. The general
volume density for these cities, however, is just above average among
all clusters (Fig. 5). It is remarkable that when we evaluate the nor-
malized approach, we do not get a flattening curve towards the urban
periphery, but a rising curve outside the city center which eventually
decreases again on the edges of town. In other words, in comparison to
other clusters, the drop in density is less pronounced and the urban
morphology remains relatively constant within the MUA.

Cluster 2: (mainly Asian and American cities)
Large cities of medium structural variability, medium com-
pact, low-rise

With 25.1 km radius on average, this cluster contains large cities
compared to other clusters. The share of non-built up is with 31% still
in a medium range. While this cluster features one LCZ that stands out
in terms of spatial shares (large low-rise structure (LCZ8) accounting for
28% of the MUAs), more other LCZs have higher spatial proportions
compared to cluster 1 (compact low rise (LCZ3; 13%), low plants (LCZ-
D; 12%), open low rise (LCZ6; 7%), sparsely built low rise (LCZ9; 7%),
dense (LCZ-A; 5%) and scattered trees (LCZ-B; 4%)) (Fig. 4). From the
point of view of spatial statistics, this class has among the remaining
clusters (3-7) the highest similarity with cluster 3.

Concave decreasing density gradient (abs. and normalized)

The volume density of the built-up in the center is on average com-
paratively high in this cluster and we measure a continuously decreasing,
concave density gradient towards the periphery (Fig. 5a). A specific char-
acteristic here is the comparatively high volume density at a long distance
from the center (even at 25km at over 20%), which is an indication that
there are many very large cities in the cluster. This is also represented in the
normalized density gradient showing a relative increase in the periphery
(Fig. 5b).
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Cluster 3 (dominated by European cities)
Medium-sized cities of high structural variability, medium
compact, mid-rise

With 13.7 km radius on average, this cluster contains medium sized
cities compared to other clusters. This morphological configuration
consists of a generally medium share of non-built up (31%). This cluster
features no dominance of one or few LCZs, but more balanced shares of
LCZs: Open low rise (LCZ6; 15%), large low-rise (LCZ8; 15%), low
plants (LCZ-D; 13%), open mid-rise (LCZ5; 10%), compact mid-rise
(LCZ2; 6%), dense (LCZ-A; 6%) and scattered trees (LCZ-B; 4%) show
the high structural variability. From the point of view of spatial sta-
tistics, this cluster has the among the remaining clusters (4-7) highest
similarity with cluster 4.

Strongly decreasing, concave uniform density gradient (abs.
and normalized)

The volume density gradient of this cluster comes closest to the
generalized assumption that a continuous decrease from the center to
the periphery exists. The volume density in the center is very high in
this cluster and we observe the steepest decrease among all clusters
with increasing standardized distances from the center (Fig. 5a). And,
we observe an even and continuous decrease in density using relative
distances to the center, too (Fig. 5b).

Cluster 4: (mainly Eastern African and Eastern Asian cities)
Small cities of high structural variability, low compact, low-
rise

With 12.2km radius on average, this cluster contains
small sized cities among our clusters. The share of non-built up is with
32% again in a medium range. This cluster features no dominance of
one LCZ but a high structural variability: open low rise (LCZ6; 20%),
low plants (LCZ-D; 18%), sparsely built (LCZ9; 18%), compact low rise
(LCZ3; 11%), scattered trees (LCZ-B; 5%) and large low-rise (LCZ8; 5%)
are the six classes featuring highest shares. Statistically, this cluster has
the among the remaining clusters (5-7) highest similarity with
cluster 5.

Strongly decreasing, non-uniform density gradient (abs.) and
change from decreasing to increasing gradient (normalized)

The standardized volume density gradient of this cluster features a
high drop in density outside the center with a lower drop in the per-
ipheries. The relative density gradient reveals a comparatively high
density in the periphery and an unconventional increase relative to all
clusters towards the periphery (Fig. 5).

Cluster 5: (dominated by cities of central Africa)
Small-sized cities of medium structural variability, low
compact, low-rise

With 11.8km radius on average, this cluster contains the
smallest sized cities among our clusters. The share of non-built up is
here with 57% large, i.e. the general structure of these cities differs
significantly to clusters 1-4. The large amount of undeveloped
land is generating a less intense usage of urban space. This cluster
features an exceptional proportion of one non-built LCZ: low plants
(LCZ-D; 47%) defines the pattern. In the built domain, the shares of
individual LCZs are exceptionally small: large low-rise (LCZ8; 8%),
compact low rise (LCZ3; 11%), open low rise (LCZ6; 10%), sparsely
built (LCZ9; 10%). Many LCZs do not exist at all. Statistically, this
cluster has among the remaining clusters (6, 7) highest similarity with
cluster 6.
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Fig. 4. The seven resulting clusters based on the k-means algorithm using the 18 dimensional feature spaces consisting of 17 LCZs and city size at the spatial unit of

the morphological urban areas.

Uniform density decrease (abs.) and increasing gradient (nor-
malized)

This cluster features lowest volume densities across all clusters in-
dependent from the location within the city. The standardized volume
density gradient features the expected continuous decrease towards the
periphery starting at the lowest measured rate of 32% of the maximum
density measured across all cities. Interestingly, the relative density
gradient reveals an increase relative to other clusters towards the edges
of towns.

Cluster 6: (dominated by cities of the Islamic world)
Medium-sized cities of high structural variability, medium
compact, low-rise

With 15.8 km radius on average, this cluster contains medium sized
cities. The share of non-built up is with 62% the largest of all clusters; a
structural configuration that leaves a large part of the urban landscape
undeveloped. So, this cluster shows large shares of non-built up LCZs:
Bare soil or sand (LCZ-F; 29%) and low plants (LCZ-D; 19%) are dom-
inating. In the built types individual LCZs feature on median com-
paratively small shares. Compact mid-rise (LCZ2; 3%), compact low rise
(LCZ3; 3%), open low rise (LCZ6; 3%), large low-rise (LCZ8; 4%),
sparsely built (LCZ9; 3%) and heavy industry (LCZ10; 3%).

Uniform density decrease (abs.) and basically constant gradient
below average (normalized)

The volume density gradient features a continuous and uniform
decrease in density towards the periphery. The relative volume density
gradient reveals a cluster consistently below average densities across
clusters.

Cluster 7: (consisting of very large cities)
Very large cities of low structural variability, medium com-
pact, mid-rise

With 37.4km radius on average, this cluster contains by far the
largest cities among our clusters. The share of non-built up is with 26%
the lowest of all clusters and reveals highly developed urban spaces. In
this cluster two LCZs cover more than 50% of the entire MUAs. In the
built domain large low-rise (LCZ8; 33%) dominates the physical con-
figuration of the cities. In the non-built domain, low plants (LCZ-D)
cover 20%. Other LCZs (3, 4, 5, 6, 9 and 10) are in the range of 2.5-8%.
It is noteworthy that even for these very large cities, the compact high-
rise (LCZ1; 1%) occupies only a small proportion of the urban area
(albeit more than in the other clusters).

Concave density gradient (abs. and normalized)

Volume density is highest in the center among all clusters and due to
the city sizes in this cluster the gradient is, in comparison to others,
featuring a lower decrease with remarkable densities even 50 km from
the city center. Due to this, the relative density gradient reveals a
strongly concave shape with significant relative increases in density
compared to other clusters.

Summarizing, Table 2 provides a detailed overview of the seven
clusters with highest congruence to geographical-cultural regions. The
associated cities, the geographical allocation and their physical char-
acteristics in terms of LCZs and density are provided.

We conclude that based on these specific data, these methods, these
spatial units, we find seven clusters (or city types) represent the

10

morphologic-spatial configuration of cities worldwide. And these seven
clusters do related in parts to geographical-cultural regions.

5. Discussion

Cities are diverse — in their economic, social, demographic, ad-
ministrative, political structure, but also in their atmospheres, in their
daily routines, in their sound volumes or smells; and, of course, also in
their physical appearance, i.e. the built and non-built urban landscape.
The morphologic-spatial appearance is naturally only one part re-
flecting this diversity; yet, it defines many routines and modes of op-
eration of a city (e.g. Glaeser, 2010). In this study we have filtered out
similarities of built landscapes of cities across the world and formed
groups that represent different morphologic-spatial types.

City models, as mentioned in the Introduction, are based mainly on
observations and theories. They rely comparatively little on truly con-
sistent empirical data, which are suitable for comparison. Our study is
based on consistent, structural knowledge of the built landscape based
on a uniform concept. The structural knowledge is derived from remote
sensing data. This enables a new empirical approach to analyze city
theories and models.

It may not come as a surprise, but this study shows that the theo-
retical spatial model concepts of cities and the seven spatial city types
(clusters) determined from our empirical work have common features;
however, differences also become apparent.

With respect to our first research question — are intra-urban mor-
phologic configurations of cities across the globe similar or different —
we empirically find that different morphologic-spatial configurations of
cities across the globe exist. Against the often stated narrative of
‘homogenization’ (e.g. Gordon & Cox, 2012), we found here a large
structural variation. In general, seven clusters of morphologic city
models have been statistically identified representing the various
morphological appearances of cities across our globe.

The second research question — do groups form according to geo-
graphical and cultural aspects (with the underlying assumption that
similar processes produce similar spatial patterns) — cannot be an-
swered so unambiguously. On the one hand, we find clusters of cities
that show structural similarities in our global sample and correspond to
the often proposed geographical-cultural aspects. The European, the
Islamic and the central African model are the representatives of this
group. On the other hand, we identify groups in this study that surprise
us with regard to a geographical-cultural classification: The ‘Asian and
African’, the ‘Asian and American’, and the ‘Eastern African and Eastern
Asian’ clusters that have, to the knowledge of the authors, never been
identified explicitly with respect to similar morphological-spatial con-
figurations. These clusters suggest that there are indeed urban config-
urations in which cities are more similar across continents than to cities
in geographically and culturally closer regions. City models that gen-
erate themselves exclusively from these geographical-cultural spaces
thus seem to represent reality in an over-simplified way.

However, our results are, and this must be discussed here, also
fraught with uncertainty. The uncertainties are derived from the fol-
lowing points: 1) inaccuracies in the classification products, 2) the
applied classification scheme of LCZs, 3) the spatial units of measure-
ment, 4) the general spatial entity of MUAs, and 5) the selection of
cities: 1) The input LCZ classifications have an overall accuracy of 87.3
and a kappa value of 0.65. Overall accuracies among the thematic
classes vary significantly. 65.1% for the ‘LCZ-C - bush, scrub’ up to
99.3% for ‘LCZ-G — water’ in the natural domain and, as examples in the
built domain 0.58 for the ‘LCZ-6 — open low-rise’ to 0.87 for ‘LCZ-8 —
large low-rise’. Although these are fair numbers, the effects of mis-
classifications to the derivation of clusters is unknown. Furthermore, it
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must be stated that the LCZ classifications from Sentinel-2 data are two-
dimensional. The derivation of built-up volumes is purely based on a
statistical approach derived from the concept of Stewart and Oke
(2012) and thus contains further unknown uncertainties. 2) The applied
classification scheme of LCZs is a concept aggregating the structures to
a larger spatial unit, in our case a standardized raster of 100 x 100 m.
In this spatial generalization, small-scale, structural transitions or in-
variances are lost, of course, due to an averaging effect in the classifi-
cation process demanding for a discrete LCZ class. Beyond this, we must
be aware that although LCZs are generic, culturally-neutral descriptions
of land-use and land-cover, we cannot rule out that morphologically
similar areas exhibit different meanings in different cities or areas. 3)
The spatial units of measurement we applied rely on a monocentric city
model. While it is still a well-accepted approach (e.g. Spivey, 2008), it
is once again a generalized assumption that structural peculiarities,
especially in the periphery, are masked by averaging. 4) Beyond, al-
though the MUAs are consistently derived and thus form a comparable
basis (Taubenbock, Weigand, et al., 2019), they are only one way of
delineating urban from rural. A different setting allowing larger or
smaller MUAs, while still being designed consistent, might have effects
on the resulting clusters. We do have tested in our study also admin-
istrative city units as well as standardized circles as spatial extents; the
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resulting clusters, however, were geographically not as congruent with
the geographic-cultural regions used, and thus we disregarded them in
this paper. And, our analysis is based on the fact that the extent used for
the cities, except for the class ‘water’, which is eliminated, is flat and
therefore the same. However, topographic, economic-specifics, historic
path-dependencies such as colonial influences or any other related
possible effects shaping the configurations of cities have not been
considered in this analysis. These things may counteract geographic-
cultural processes, but the effect is unknown to us. 5) Last but not least,
our analysis relies on 110 cities. While this is a large sample, with a
proven representative distribution across the globe relative to con-
tinental urban population shares, a smaller or a larger sample, might
also affect the resulting clusters. All in all, we conclude that based on
our particular data and methods, we think the resulting seven clusters
are one reasonable possibility of describing the city configurations
across the globe in a transparent way that reveal that geographical-
cultural aspects influence their spatial configuration; but, these seven
clusters are neither the only possibility nor the universal best fit for a
reality probably more complex.

When we close our eyes and think of big cities on our planet, the often
appearing feature in our mind is a high-rise skyline. This often feeds the
feeling that cities are becoming more and more homogeneous. However, the
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Overview of the Clusters (C), the containing cities depending on the feature space (18f), and their geographical allocation and spatial features.

Cluster Cities (k-means, 18-dimensional feature space)

Geographic-cultural

allocation

LCZ features

Density features

Abidjan, Ahmadabad, Baghdad, Bangalore, Bucharest, Cape Town,
Chennai, Delhi, Douala, Fortaleza, Ha Noi, Ho Chi Minh City, Jaipur,
Johannesburg, Lagos, Lahore, Lucknow, Mogadishu, Mombasa, Port
Harcourt, Santiago, Tianjin

Beijing, Buenos Aires, Jakarta, Kuala Lumpur, Manila, Melbourne,
Mexico City, New York, Osaka, Rio De Janeiro, Riyadh, Sao Paulo,
Seoul, Singapore, Toronto

Addis Ababa, Amsterdam, Athens, Berlin, Brussels, Budapest,
Changsha, Chittagong, Chongqing, Dhaka, Hamburg, Istanbul, Kiev,
Lisbon, London, Madrid, Manchester, Milan, Minsk, Moscow, Mumbai,
Munich, Paris, Rome, Saint Petersburg, Vancouver, Vienna, Warsaw,
Wuhan

Antananarivo, Blantyre, Calcutta, Calicut, Dar Es Salaam, General
Santos City, Harare, Hong Kong, Islamabad, Kitwe, Lusaka, Maputo,
Mwanza, Nairobi, Nanjing, Port Au Prince, Sydney, Yangon, Zanzibar

Abuja, Bujumbura, Kampala, Kano, Kigali, Kinshasa, Kumasi,
Lilongwe, Poona, Port Moresby, Surat

Asmara, Cairo, Faisalabad, Hargeysa, Kabul, Karachi, Khartoum,
Ouagadougou, Tehran

Bangkok, Guangzhou, Los Angeles, Shanghai, Tokyo

Mainly

Asian and African cities

Mainly

Asian and American

cities
Dominated by
European
Cities

Mainly

Eastern African &

Eastern Asian
Cities
Dominated by
Central Africa
cities

Dominated by cities of the

Islamic world

Consisting of some
Very large cities

Low structural variability,
medium compact, low-rise,
medium shares of open space

Medium structural variability,
medium compact, low-rise,
medium shares of open space
High structural variability,
medium compact, mid-rise,
medium shares of open space

High structural variability,
low compact, low-rise,
medium shares of open space

Medium structural variability,
low compact, low-rise, high
shares of non-built space
High structural variability,
medium compact, low-rise,
very high shares of non-built
space

Low structural variability,
medium compact, mid-rise,

Uniform density decrease (abs.) and
convex gradient (norm.)

Concave decreasing density gradient
(abs. and norm.)

Model-like, strongly decreasing,
concave uniform density gradient (abs.
& norm.)

Strongly decreasing, non-uniform
gradient (abs.) and change from
decreasing to increasing gradient
(norm.)

Uniform decrease (abs.) and increasing
gradient (norm.)

Uniform decrease (abs.) and basically
constant gradient below average
(norm.)

Concave density gradient (abs. and
norm.)

lowest shares of open space

related morphological class (LCZ1 — compact highrise) plays almost no role
in the morphologic-spatial composition of cities, since their spatial propor-
tions usually make up only about 1% of the MUAS. And this focus on the
most conspicuous morphological manifestations, but extremely under-
represented in the urban landscape as a whole, probably also obstructs the
feeling that there is a wide range of urban configurations worldwide. On our
global analysis seven clusters with still a large variation in themselves are
the result. Even if we, for instance, find the European cluster relatively
homogeneous within our global sample, other studies reveal, looking only at
a sample of European cities, that a large variety exists also within Europe
(e.g. Scharz, 2010; Siedentop & Fina, 2012; Taubenbock, Gerten, Rusche,
Siedentop, & Wurm, 2019). This clearly shows that the generalization of the
clusters here as done by our study is on a highly aggregated level. Cities like
Mumbai and Hamburg fall into one cluster. However, this is legitimate as
geographically motivated city models have always adopted this high ab-
straction level. The fact that similar morphological structures produce very
different atmospheres, life routines or many other things (as Mumbai and
Hamburg testify) is not the issue here and goes without saying. This study is
exclusively about morphologic-spatial manifestations. Given these varia-
tions, the identified seven clusters allow us to take a novel look at city
configurations and their geographic distributions across our planet. We
must not forget that the generalized models conceal regional specifics of
urbanization processes that often materialize in highly site-specific urban
outcomes that are incompatible with the model.

6. Conclusion and outlook

Science, but also reports or popular rankings have always tried to fit
the diversity of our urban landscapes into generalizing and thus sim-
plifying models. This study shows with novel data from remote sensing
an improved empiricism to identify morphologic-spatial characteristics
for such models across the globe. And the realization that geographic-
cultural characteristics can be empirically proven with regard to mor-
phological urban configurations is a confirmation of a long-held ob-
servation. At the same time, however, it also shows that morphological
urban configurations also have similarities across geographical-cultural
spaces. Understanding and fathoming these will be part of future re-
search tasks. With a large database of 110 globally distributed cities,
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selected in proportion to the urban population per continent, we can
principally make generalizable statements at global level. Nevertheless,
an expansion of the empirical basis remains necessary. In times of ‘Big
Data’ this study is only a beginning to master this complexity with more
precise classifications, more cities, or alternative methods. It may be a
basis to more systematically analyze which forms and models work
better or worse.

Firmly convinced that the spatial-morphological configuration of
cities makes a decisive contribution to whether cities offer quality of
life, whether they are socially acceptable, ecologically sustainable or
economically successful, this study attempts to create a spatial-mor-
phological basis to examine these questions more systematically: In the
hope of better understanding urban space as the theatre of life and thus
being able to make it more livable.
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Appendix A

Cultural geographic regions
adapted from Huntington (1997)
Latin America
I Western World
B Orthodox Asia
_ Hindouist Asia
P Islamic World
Sub-Saharian Africa
[0 Sino-Nipon Asia
I Southeast Asia

Fig. 1A, Appendix. Cultural-geographic regions adapted from Huntington (1997).
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