
TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Informatik

Prediction of Protein Function through Machine Learning
Dissertation

Maria Littmann





 
 
 

Fakultät für Informatik 

 

Prediction of Protein Function through Machine Learning 

 

Maria Littmann 

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München 

zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) 

genehmigten Dissertation. 

Vorsitzender: Prof. Dr.-Ing. Nils Thuerey 

Prüfende/-r der Dissertation: 

1. Prof. Dr. Burkhard Rost 

2. Prof. Christine Orengo, Ph. D., University College London, UK 

Die Dissertation wurde am 17.02.2021 bei der Technischen Universität München eingereicht und 

durch die Fakultät für Informatik am 25.05.2021 angenommen. 





To my late grandfather, Dr. Carl Preißer





Abstract

Knowledge about a protein’s function is crucial for understanding the molecular mech-
anisms of life. However, function is not a well-defined concept but is determined by
various factors and can be described through different annotations. Despite its impor-
tance, protein function remains unknown for most protein sequences. Computational
methods bridge this sequence-annotation gap typically through homology-based infer-
ence by transferring annotations from sequence-similar proteins with known function or
through prediction methods based on Machine Learning (ML).

This dissertation focuses on developing prediction methods for three aspects of protein
function: Gene Ontology (GO) terms, binding residues, and sub-nuclear localization.
Applying supervised learning and using manually selected features derived from evolu-
tionary information, we succeeded in predicting sub-nuclear compartments and binding
residues of proteins with high prediction performance.

In subsequent work, due to the advances in Deep Learning, we replaced hand-crafted
features with data-driven inputs, namely sequence embeddings derived from language
models. We used these embeddings to predict binding residues (transfer learning) im-
proving the performance compared to the previous method based on evolutionary in-
formation. GO terms were predicted through annotation transfer following a concept
similar to homology-based inference but using similarity between embeddings instead of
sequence similarity to identify evolutionary related proteins. This new embedding-based
annotation transfer clearly outperformed homology-based inference.

All methods developed in this dissertation provide reliable predictions of protein func-
tion, rely solely on sequence information, and are more broadly applicable than other
methods. In addition, they demonstrate the benefit of combining various ML concepts
(supervised learning, transfer learning, unsupervised learning) with biological data, high-
lighting the large potential of ML not only for protein function prediction but for com-
putational biology in general.

i





Zusammenfassung

Das Wissen über die Funktion von Proteinen ist wichtig, um die molekularen Mecha-
nismen des Lebens zu verstehen. Proteinfunktion ist aber kein gut definiertes Konzept,
sondern wird von mehrere Faktoren bestimmt und kann durch verschiedene Annotatio-
nen beschrieben werden. Trotz ihrer Wichtigkeit ist die Funktion der meisten Protein-
sequenzen nicht bekannt. Computerbasierte Methoden schließen diese Lücke zwischen
Sequenzen und Annotationen typischerweise durch Inferenz basierend auf Homologie,
bei der Annotationen von Proteinen mit ähnlicher Sequenz und bekannter Funktion
übertragen werden, oder duch Vorhersagemethoden basierend auf maschinellem Lernen
(ML).

Diese Dissertation befasst sich mit der Entwicklung von Vorhersagemethoden für drei
Aspekte von Proteinfunktion: Gene Ontology (GO) Terme, Bindungsstellen und Lokali-
sation von Proteinen im Zellkern. Durch die Nutzung von überwachtem Lernen (engl.
Supervised Learning) und manuell ausgewählten Proteineigenschaften (engl. Features),
die auf evolutionärer Information beruhen, haben wir erfolgreich und mit guter Qualität
die Lokalisation von Proteinen im Zellkern und Bindungsstellen vorhergesagt.

In der nachfolgenden Arbeit konnten wir dank der Fortschritte im Deep Learning manuell
bestimmte Eigenschaften durch datenbasierte Inputs ersetzen, und zwar durch Sequen-
zembeddings, die aus Sprachmodellen gewonnen werden können. Wir haben diese Em-
beddings genutzt, um Bindungsstellen vorherzusagen (Transfer Learning) und konnten
die Vorhersagekraft im Vergleich zur vorhergehenden Methode, die evolutionäre Informa-
tion genutzt hatte, klar verbessern. GO Terme wurden durch einen Annotationtransfer
vorhergesagt, der einem ähnlichen Konzept wie Inferenz basierend auf Homologie folgt,
allerdings die Ähnlichkeit zwischen Embeddings statt zwischen Sequenzen nutzt, um
evolutionär verwandte Proteine zu finden. Dieser neue embedding-basierte Annotation-
transfer liefert deutlich bessere Vorhersagen als Inferenz basierend auf Homologie.

Alle Methoden, die in dieser Dissertation entwickelt wurden, erlauben verlässliche Vorher-
sagen von Proteinfunktionen, nutzen ausschließlich Sequenzinformation und sind breiter
anwendbar als andere Methoden. Außerdem zeigen sie auf, dass die Kombination von
verschiedenen ML Konzepten (Supervised Learning, Transfer Learning, Unsupervised
Learning) mit biologischen Daten Vorteile bringt. Das wiederum zeigt, dass ML nicht
nur ein großes Potential für die Vorhersage von Proteinfunktion hat, sondern für die
Bioinformatik im Allgemeinen.
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1. Introduction

Proteins are involved in almost all cellular processes such as metabolic and information
pathways, transport, DNA replication and transcription, and organization of structure
[1]. Incorrect functioning of certain proteins can highly affect the organism. Therefore,
determining the function of proteins is crucial to obtain insights into the molecular
mechanisms of life. Knowing the function of a protein fosters the understanding of its
overall role in the organism and helps to understand how a mutation in this protein
might affect the fitness of the organism.

However, protein function is not a well-defined concept. Proteins can execute multi-
ple functions and their functionality highly depends on the possibility to bind to other
molecules called ligands [2]. Furthermore, a protein’s function is influenced by its envi-
ronment. Which function a protein executes depends on its localization in the cell, its
interaction with other proteins, and conformational changes through post-translational
modifications, among other factors [2]. To fully understand a protein’s function, it is
important to gain knowledge about all aspects influencing function.

In theory, protein function can be determined through specific experiments or compu-
tational methods. Though, in reality, it is often difficult to determine all the different
facets of protein function and, especially, the complex interplay between them. Thus,
we are usually restricted to only considering a few key aspects of a protein’s function.
This dissertation focuses on the development of computational methods using available
experimental annotations to allow predictions of certain functional aspects for proteins
without known annotations.

1.1. Annotation of Protein Function

The variety and flexibility of possible protein functions depending on multiple environ-
mental factors make it difficult to annotate one specific function to a protein. Therefore,
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1. Introduction

diverse annotations, which allow to assign function on different interdependent levels,
are available [3]. Considering the biological process or pathway a protein is involved in
provides a functional assignment on a broader level. Annotations of a protein’s subcellu-
lar localization describe the compartment or compartments of a cell in which the protein
acts. A more specific assignment of protein function considers function on a molecular
level, e.g., by determining the reaction catalyzed by a certain enzyme [3].

These three levels of annotations only consider function as a per-protein feature, i.e.,
one function is assigned to the entire protein. However, function can also be assigned to
individual residues by identifying residues which are, for example, involved in binding
to other molecules or are important for stabilizing the overall structure of the protein.
Information about protein function on a per-residue level allows to determine those
residues that are most essential for correct functioning of a protein and can reveal, for
example, which mutations are most likely to disrupt protein function and consequently
affect the overall fitness of the organism.

Functional annotations have often been made available as free text with a large spec-
trum of terminology and synonyms [3]. Such unstandardized and ambiguous annotations
make it challenging to compare functions between different proteins, automatically an-
alyze the available data, and to develop methods to predict protein function. While
text-mining resources allow automatic retrieval of information even from unstructured
text [4], especially the structuring and standardization of functional annotations fa-
cilitate computational processing of available data. Many excellent sources providing
standardized functional annotations exist. They focus on different aspects of protein
function considering function both as a protein-wide and a per-residue feature and in-
clude ENZYME [5], Swiss-Prot [6], KEGG [7], GO [8, 9], PDB [10, 11], and BioLiP
[12, 13], among others [14–18].

From this variety of available functional annotations, this dissertation focuses on three
aspects: Gene Ontology (GO) terms, ligand binding, and sub-nuclear localization. How
these aspects are determined and formally annotated is outlined in more detail below.

2



1.1. Annotation of Protein Function

1.1.1. Describing Protein Function through Gene Ontology Terms

The Gene Ontology (GO)

GO [8, 9] is one of the most comprehensive resources and provides a structured and
controlled vocabulary to describe protein function in a human- and machine-readable
format. This allows easy manual annotation of protein function as well as computa-
tional processing of proteins and their annotations [8, 9]. GO separates different as-
pects of function into three hierarchies: (1) the Molecular Function Ontology (MFO)
describes protein activity on the molecular level, (2) the Biological Process Ontology
(BPO) focuses on the larger processes and pathways in a cell involving multiple molec-
ular activities, and (3) the Cellular Component Ontology (CCO) refers to the cellular
component(s) or subcellular localization(s) in which the protein acts. These three on-
tologies are organized as directed acyclic graphs with each node representing a functional
annotation called a GO term. GO terms consist of a standardized name describing a
certain function (e.g., “protein binding”) and a unique identifier (e.g., GO:0005515). GO
terms are connected through “is a” relationships. For a certain relationship “X is a Y ”,
X is a more specific description of Y and is considered a child term of Y with the least
specific term in each ontology being the corresponding root (molecular function, biolog-
ical process, cellular component). However, GO is only loosely hierarchical because a
term may have more than one parent term [9]. Other relations like “regulates”, “occurs
in”, or “part of” do not follow a hierarchical structure but allow further specifications of
functional connections and even relationships between terms from different ontologies.
For example, the term “oxygen carrier activity” (GO:0005344) is a molecular carrier
activity (GO:0140104) which is a molecular function (GO:0003674), i.e., this term be-
longs to MFO. However, it is also “part of” oxygen transport where “oxygen transport”
(GO:0015671) belongs to BPO (Fig. 1.1).

A protein can be annotated to multiple functions by assigning a set of GO terms to
it. The structure of the ontologies allows functional annotation with varying degree of
specificity depending on, for example, the experimental evidence for a certain function.
For a particular term annotated to a protein, all of its less specific parent terms are
implicitly also assigned to this protein. In general, obtaining GO annotations through
experimental or computational methods is difficult due to the large number of available
terms with less specific terms usually being easier to annotate while providing less infor-
mation than more specific terms. Therefore, many, particularly very specific GO terms

3



1. Introduction

Figure 1.1.: Example of relationships in GO for term “oxygen carrier ac-
tivity”. The GO term “oxygen carrier activity” (GO:0005344) belongs to
MFO but is also connected to the term “oxygen transport” (GO:0015671),
which is part of BPO. Terms in boxes with a black heading belong to
MFO, terms in boxes with a blue heading to BPO. Black arrows indicate
“is a” relationships while blue arrows depict “part of” relationships. The
visualization has been retrieved from QuickGO [19].

.
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1.1. Annotation of Protein Function

are only annotated to very few proteins [20]. Computational annotation of GO terms
is further complicated by the hierarchical structure of the GO and the relationships
between terms. Computational methods that treat terms independently of each other
ignore that, if a certain term is annotated to a protein, other terms might implicitly also
be annotated (e.g., parent terms) or cannot be annotated to this protein (e.g., mutually
exclusive cellular compartments) [20].

The Gene Ontology Annotation database (GOA) [21–23] provides high-quality GO an-
notations for protein sequences in UniProt [24]. It contains manual annotations as well
as computationally assigned GO terms. An evidence code indicates the annotation type.
GOA is updated approximately every four weeks and version 201, released on 03 Decem-
ber 2020, contained GO annotations for 300 087 protein sequences from Swiss-Prot [6],
of which 71 367 (24%) proteins had experimentally verified annotations (with evidence
codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, or IC). Therefore, for 53% of all sequences
in Swiss-Prot, any GO annotation is known, while experimentally verified annotations
are only available for 13% of all proteins.

The Critical Assessment of protein Function Annotation algorithms (CAFA)

To bridge the gap between many known sequences but only few with known GO an-
notations, multiple computational methods have been developed to determine protein
function by predicting GO terms (more information in Section 1.3.1). The growing
number of methods necessitated comparable performance evaluations. The Critical As-
sessment of protein Function Annotation algorithms (CAFA) [25–27] is an international
collaboration designed to assess computational methods predicting GO terms, using a
time challenge. The CAFA challenge takes place roughly every two to three years with
the fourth instance (CAFA4) currently being evaluated. It follows a specific timeline and
setup to allow an independent and fair evaluation of the prediction methods. Initially,
at time point t−1, a set of prediction targets is released (Fig. 1.2). Those targets usually
comprise around 100 000 protein sequences which lack GO annotations for at least one
of the three ontologies (BPO, MFO, CCO). CAFA participants set out to predict GO
terms for those targets until time point t0 (Fig. 1.2). If any annotations are known in
one ontology, predictions for that ontology are not considered in the evaluation. After
the prediction phase, annotations for some of the targets are collected over the course
of approximately nine months until time point t1b (Fig. 1.2). Those annotations are
obtained due to the natural annotation growth in public databases and, therefore, the

5



1. Introduction

number of targets used for evaluation can vary between different instances of CAFA.
The number of sequences with experimentally verified annotations after this phase is
usually much smaller than the number of released targets. For example, for CAFA3,
only 2.5% of the released targets gained annotations until the final assessment [27]. Us-
ing those newly obtained annotations, all participating methods are assessed applying
the same evaluation criteria. The time-separated setup of the CAFA challenge ensures
that the evaluation only relies on functional annotations which were not available dur-
ing the development of any of the assessed methods. Even outside of the assessment
phase of CAFA, the CAFA targets and evaluation are usually considered the standard
for assessing performance of a method predicting GO terms.

Figure 1.2.: CAFA3 timeline. In the prediction phase between t−1 and t0, par-
ticipants submit predictions for the released targets. During the phase
of annotation growth, the CAFA organizers collect newly gained anno-
tations for the targets. Based on this final benchmark set, all partici-
pating methods are assessed and their performance is compared. This
figure is a reprint from [27] and has been published under the terms
of the Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/).

1.1.2. Protein Function Determined through Ligand Binding

Protein function is largely determined through the binding of proteins to specific ligands
[2]. For example, proteins can bind to certain molecules to mark them for destruction
or to catalyze a reaction between them. Proteins also bind to each other to assemble

6
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1.1. Annotation of Protein Function

into larger complexes, and the binding of certain molecules can activate or deactivate
the execution of a certain protein function [2].

Proteins can bind various different ligands like metal ions (e.g., Ca2+ or Zn2+), in-
organic molecules (e.g., SO4

2– or PO4
3– ), organic molecules (e.g., ATP or NAD), or

macromolecules such as DNA, RNA, and other proteins. The biophysical properties of
these ligands vary highly. For example, metal ions are usually positively charged while
acid radicals like SO4

2– or PO4
3– are negatively charged. Also, metal ions and other

small molecules are much smaller than DNA, RNA, or other proteins. Therefore, de-
pending on the bound ligand, binding sites differ as well. More residues are involved in
binding macromolecules like DNA or RNA than in binding small molecules. Positively
charged ligands bind to negatively charged amino acids in the protein, while the binding
site for negatively charged ligands rather contains positively charged amino acids [2].
Therefore, which residues in a protein can potentially be involved in binding depends on
the specific ligand bound to the protein. The number of potential binding residues in-
creases even further if other proteins are considered as possible ligands. Proteins highly
vary in size, and biophysical properties like charge or hydrophobicity do not only dif-
fer between proteins, but also differ between different regions of one protein. Thus, a
protein-protein binding site is not always formed by a similar structure which makes it
hard to identify a consistent pattern.

The differences in size and biophysical properties of binding sites make protein binding
a process of high specificity as one protein commonly binds to one or only a few selected
ligands. Often only a few key residues in the protein determine this specificity. Those
binding residues are experimentally determined by solving structures in complex with
the respective ligand and identifying residues in close proximity to this ligand as binding
residues (e.g., ≤ 5Å) [28]. In addition, catalytic residues can be identified as those
residues in enzymes that are directly involved in the catalytic mechanism [29].

Protein-ligand complexes are available through the Protein Data Bank (PDB) [10, 11]
and high-resolution structures (e.g., with a resolution ≤ 2.5Å) obtained through X-ray
crystallography [30] serve as a good starting point to obtain high-quality annotations
of binding residues. However, many additives are used during protein purification and
crystallization. Those additives appear as ligands bound to the protein in the crystallized
structure, although they are not biologically relevant and do not bind to the protein
under natural conditions. Evaluating which ligands are in fact biologically relevant is
not trivial. Many resources have tried to address this issue [31–35]. BioLiP [12, 13], a
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1. Introduction

database of biologically relevant ligand-protein interactions collected from the PDB, is
one of those resources. The database is created using a combination of computational
and manual assessment of ligand binding allowing a fast and high-quality determination
of the biological relevance of ligands. Each entry in BioLiP provides a large list of
annotations including not only the residues in a PDB structure involved in binding but
also the bound molecule, ligand-binding affinity, catalytic residues obtained from the
Catalytic Site Atlas (CSA) [29], Enzyme Commission (EC) numbers [36] describing the
catalyzed reaction, GO terms, and cross-links to other popular databases [12]. BioLiP
contains information on ligand binding for small (regular) ligands, metal ions, peptides,
and DNA and RNA (combined as nucleic acids). It is updated weekly and the version
released on 08 January 2021 contained data for 29 509 different ligands and 109 206
PDB structures (Table 1.1). The most frequently occurring ligands are nucleic acids,
zinc ions, calcium ions, magnesium ions, and peptides accounting for 38% of the binding
annotation data while 12 183 (41%) ligands are only annotated to one protein.

Number of
Entries 525 197
PDB structures 109 206
DNA/RNA ligands 56 807
Peptide ligands 25 835
Metal ligands 146 126
Small (regular) ligands 296 421
Entries with binding affinity data 23 492

Table 1.1.: Entries in BioLiP database. BioLiP is updated weekly. In the version
released on 08 January 2021, it contained binding information for 109 206
PDB structures. Most information was available for small ligands with
296 421 entries. Binding affinity data was available for 23 492 entries.

In addition to the presence of additives in protein-ligand complexes, the cognate ligand,
i.e., the ligand binding to an enzyme in nature, can often not bind to the enzyme without
the catalyzed reaction occurring. Therefore, compounds with a certain similarity to the
cognate ligand are used as surrogates for crystallization of protein-ligand complexes.
However, Tyzack et al. showed that the bound ligand is often not very similar to the
cognate ligand with only 26.0% of all enzymatic structures in the PDB bound to a ligand
with a similarity of ≥ 0.7 to the cognate ligand [37]. Therefore, considering the similarity
between bound and cognate ligand in addition to the resolution of the structure can help

8



1.1. Annotation of Protein Function

in identifying protein-ligand complexes that provide high-quality annotations of binding
residues in enzymes.

Even with resources like BioLiP and information on similarity between cognate and
bound ligand available, assessing the correctness of binding annotations remains an open
issue. Binding annotations are not available for all proteins, and even if binding residues
are known for a certain protein, other binding annotations can still be missing. Also,
which residues are considered as binding is not well-defined. While defining all residues
as binding which are close to the ligand is a commonly used approach, this definition
still relies on a pre-defined threshold. Small variations of this threshold or of the overall
protein structure can highly affect which residues are considered close to the ligand and,
therefore, binding. These issues make it, in general, difficult to fully understand binding
and protein function on a per-residue level. Computational methods to predict binding
residues can assist experimental annotation by hinting towards potential binding sites.
However high-quality prediction methods are difficult to develop because only a few
residues in a protein are usually involved in binding (around 3% for metal ions to 15%
for nucleic acids).

1.1.3. Influence of Localization on Protein Function

Proteins with a similiar function often co-localize [38–40], and many proteins only exe-
cute their correct function in one particular compartment of the cell [41, 42]. Therefore,
knowing the subcellular localization of a protein is one important aspect to describe its
function.

Prokaryotic cells surround only one single compartment with a plasma membrane (with
gram-negative bacteria having an additional outer membrane), while eukaryotic cells
are organized into several membrane-bound compartments. The major intracellular
compartments of an animal cell are the cytosol, endoplasmic reticulum, Golgi apparatus,
nucleus, mitochondrion, lysosome, and peroxisome [2]. Plant cells have chloroplasts
and vacuole as additional compartments. The compartments are separated from the
extracellular space by the plasma membrane. More fine-grained distinctions between
these compartments are also possible; e.g., we can distinguish between rough and smooth
endoplasmic reticulum [2]. Additionally, some of the compartments are divided into sub-
compartments. For example, the nucleus consists of the nucleolus, nucleoplasm, and the
nuclear membrane [18].

9



1. Introduction

Proteins are translated in the ribosomes located in the cytosol or attached to the en-
doplasmic reticulum and have to be transported to their final compartment afterwards
[43]. To a large extent, they are sorted based on sorting signals, i.e., specific short
sequences which are part of the whole protein sequence. For example, signal peptides
are the targeting signal for the secretory pathway, i.e., the transport of proteins to the
cell membrane or the extracellular space, and are usually located at the N-terminus of
the protein sequence [44]. Transport into and out of the nucleus is mediated through
nuclear localization signals (NLS; for import) and nuclear export signals (NES; for ex-
port), which are sorting signals that can occur anywhere in the protein sequence [45].
There exist different databases providing sorting signals associated with different com-
partments. For example, LocSigDB [43] collects experimentally known sorting signals
for eight distinct subcellular localizations. NLSdb [46, 47] is a database for NLS and
NES combining experimentally annotated signals and signals identified through a simple
in silico mutagenesis.

Annotations for subcellular localization are, for example, available as part of GO through
CCO [8, 9]. In total, CCO consists of 4 185 terms [48] with many terms describing very
specific localizations but being annotated to none or very few protein sequences. Also,
annotations in CCO seem to be incomplete. For example, only 0.2% of human proteins
have an experimentally verified annotation in CCO. Other, probably more comprehen-
sive resources like Swiss-Prot [6] and HPA [18] currently contain experimentally verified
annotations of subcellular localization for 36% (with evidence code ECO:0000269 [49])
and 52% (“supported” and “approved” localizations) of the human proteome, respec-
tively. These databases focus on a limited set of compartments and experimentally
verified annotations of localization seem to be prevalently stored in those databases but
are not reflected in CCO. Furthermore, specialized resources zoom into the localization in
specific cellular compartments. For example, NMPdb [50], NOPdb [51], and NSort/DB
[52] focus on more fine-grained localization annotations of nuclear proteins.

In general, determining localization on a more coarse-grained level is usually simpler
than defining it on a more detailed level. Consequently, most experimentally verified
annotations are available for compartments which can be easily determined in exper-
iments with the most annotations usually being available for extracellular space and
nucleus while less prominent compartments include peroxisome, lysosome, or vacuole
[53, 54]. Prediction methods can help to infer annotations where experimental data are
not available, but these methods tend to experience the same bias and are usually better
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in predicting more frequently annotated compartments, while not providing predictions
for less well-studied compartments or more fine-grained substructures.

1.2. Concepts for Protein Function Prediction

Advances in sequencing during the last years reducing costs and increasing speed have led
to an exponential growth of publicly available protein sequences with more than 500 000
manually curated protein sequences currently available in Swiss-Prot [6]. However, most
of these sequences lack functional annotations causing a substantial sequence-annotation
gap. Computational biology has been trying to bridge this gap by developing prediction
methods that allow fast and high-quality prediction of structural or functional protein
features. In general, most pre-existing methods as well as the methods developed in this
dissertation are based on two different core concepts: (1) Homology-based inference and
(2) de novo prediction through Machine Learning (ML).

1.2.1. Homology-based Inference

In general, homology describes a similarity due to shared ancestry. In terms of proteins,
we expect two homologous proteins to share a similar structure and function [55].

Homology-based inference is based on the assumption that sequence similarity between
two proteins mostly stems from evolutionary relation and, therefore, sequence-similar
proteins should share, for example, a common function [56]. Based on this relation-
ship, homology-based inference transfers annotations between sequence-similar proteins.
More specifically, for a given query protein Q without known functional annotations, the
most sequence-similar protein H is identified from a set of proteins with known annota-
tions. Then, the annotations from H are transferred to Q (Fig. 1.3, annotation transfer
is indicated as blue arrows). Pairs of similar proteins can be found by using either simple
sequence-to-sequence comparisons applying algorithms like BLAST [57] or more sophis-
ticated sequence-to-profile comparisons through, e.g., PSI-BLAST [58] or MMseqs2 [59],
which allow the identification of more distantly related proteins. The best hit for a given
query protein can be simply identified as the protein with the highest sequence identity
or sequence similarity to the query. However, taking aspects like the sequence length
and the likelihood for the observed similarity to occur by chance into account usually
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allows better distinction of protein hits which actually indicate evolutionary relation
from random hits.

Figure 1.3.: Homology-based inference. This sketch shows the principal idea of
homology-based inference. Triangles represent proteins without known
annotations while squares indicate proteins with annotations. For some
of the unannotated proteins, proteins with similar sequences and known
annotations can be found, and annotations can be transferred between
them as depicted by blue arrows. However, for some proteins indicated
as purple triangles, no sequence-similar protein with known annotations
exists in the data set. Therefore, no predictions can be made for those
proteins using homology-based inference.

Homology-based inference has proven to work very well for the prediction of protein
function as long as an annotated protein with high enough sequence similarity can be
found [60–62]. There also exist evolutionary related protein pairs with low sequence
similarity that still share a common function. However, if the similarity between two
protein sequences is low, it is more likely that this similarity is observed by chance and
not because the proteins descend from a common ancestor. Therefore, we cannot safely
transfer annotations between such pairs anymore.

In addition, algorithms to perform sequence comparison rely on multiple parameters.
Changing those parameters can affect which proteins are identified as similar and hence
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potentially homologous to a certain query protein. Especially for low similarities, slight
changes in the parameters can lead to missing homologous proteins or incorrectly iden-
tifying proteins as evolutionary related. For high similarity thresholds allowing a safe
transfer of annotations, we cannot identify a sequence-similar protein with annotations
for many queries (Fig. 1.3, purple triangles), and most proteins remain unannotated
through homology-based inference. In particular for proteins from small, less studied
protein families, homology-based inference often fails to provide protein function predic-
tions.

1.2.2. Machine Learning (ML)

To predict the function of proteins for which homologs with annotations are not available,
we usually rely on de novo prediction methods based on ML. ML automatically discovers
patterns and regularities in a data set and makes predictions for new data based on
these patterns [63, 64]. In the most common variant of supervised learning, an ML
model is trained on a set of inputs or features for which the output is known. In the
case of protein function prediction, protein structures can be a powerful input for these
ML models. However, experimentally determined structures are not available for most
proteins, and methods to predict protein structures with high quality and on large scale
are not publicly available yet. Therefore, this dissertation focuses on the development of
sequence-based methods. These methods solely rely on protein sequences as input, are
therefore more broadly applicable than structure-based methods, and allow to obtain
predictions for large sets of proteins.

Protein sequences are given as strings of varying length, built from 20 characters. Each
character represents one of the 20 native amino acids, and each letter in the string
represents one position in the protein sequence. For most ML algorithms, in order to be
able to train them on protein sequences, we need to find a numerical encoding for those
sequences.

One-hot Encoding

The simplest numerical encoding of a protein sequence is the one-hot encoding (Fig.
1.4). Here, each residue in the protein is represented as a vector of length 20, and each
position in the vector stands for one of the 20 amino acids. For any position in the
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sequence, the vector element corresponding to the amino acid present at this position in
the sequence is set to 1 while all other elements in the vector are set to 0 (Fig. 1.4B).
One-hot encoding results in a representation of the protein as a L×20 matrix, where L is
the length of the protein. To obtain a fixed-length representation, the one-hot encoding
can be converted into the amino acid composition, which gives the relative frequency
of each amino acid in this protein and results in a vector of length 20 independent of
the protein length (Fig. 1.4C). The amino acid composition does not contain any posi-
tional information anymore; i.e., the order of the amino acids in the sequence is unknown.

A R N D C Q E G H I L K M F P S T W Y V
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
E 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

A R N D C Q E G H I L K M F P S T W Y V
0 0 0.125 0 0.125 0.125 0.375 0 0 0 0 0 0 0 0 0.125 0 0.125 0 0

SEQWENCEA

B

C

Figure 1.4.: One-hot encoding. A. Protein sequence “SEQWENCE” represented as
string. B. With one-hot encoding, each residue is represented as a vector
of length 20 with the element corresponding to the amino acid at this
position set to 1 (indicated as yellow cells) and all other elements set to
0. The one-hot encoding for the first three amino acids in the sequence is
shown. C. The amino acid composition gives the relative frequency of all
amino acids in the sequence without providing any information about the
position of a specific amino acid in the sequence.

Evolutionary Profiles

One-hot encoding only takes the given protein sequence into account, however consid-
ering protein families can provide additional information. A protein family consists of
evolutionary related proteins descending from a common ancestor. Proteins within a
family are sequence-similar, and they usually also share a common structure and func-
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tion. Therefore, if a position is conserved, i.e., it is rarely changed between sequences
from one family, it is likely to be structurally or functionally important. On the other
hand, more variable positions which are different between proteins are probably less
involved in ensuring correct functioning of the protein. Thus, using protein families as
input for ML allows to implicitly provide the algorithm with information about sequence
conservation and variability of single positions.

Protein families are represented through evolutionary profiles. Evolutionary profiles can
be constructed using algorithms like PSI-BLAST [58]. They are represented through
position-specific scoring matrices (PSSMs) which are built from multiple sequence align-
ments (MSAs) (Fig. 1.5A). For each position, a PSSM indicates how likely it is that a
specific amino acid occurs at this position (Fig. 1.5B). If amino acids receive a positive
score, they occur more often than expected while a negative value indicates that this
amino acid occurs less frequently than expected. We can either assume an equal distri-
bution for the expected frequency for each amino acid a, i.e., fexp(a) = 1

20 ∀a, or use
more sophisticated distributions that consider, for example, the frequency with which
an amino acid occurs in the entire MSA or in sequence sets from large databases.

PSSMs are of size L× 20 and therefore, have variable length depending on the protein
sequence. To convert them into a vector of fixed length, for example, the Profile Kernel
[65, 66] can be applied. The Profile Kernel counts the number of occurrences of k-mers
(i.e., short protein sequences of length k) and similar k-mers in the protein sequence
resulting in a vector of length 20k where each element represents one k-mer (Fig. 1.5C).
The value for k needs to be optimized by the user and, e.g., k = 3 has achieved best
results for subcellular localization prediction [53, 60]. As for the amino acid composition,
the Profile Kernel does not encode any positional information. To predict features on
a protein level, the Profile Kernel can be used in conjunction with a Support Vector
Machine (SVM). SVMs apply the Kernel trick to map input data which are not linearly
separable into a higher dimensional feature space and find the optimal linear separation
of the data in this new space. Therefore, SVMs rely heavily on the used Kernel function.
For proteins, the Profile Kernel can serve as this function.

Evolutionary profiles are a powerful input used for many methods trying to predict all
kinds of protein features [53, 62, 67, 68]. With a growing number of well performing
prediction methods, we cannot only use the evolutionary profiles directly for predictions,
but we can also develop prediction methods indirectly relying on evolutionary profiles
by integrating protein features predicted through other methods. For example, the
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SEQWENCE
SQQWENCE
SEQWEMC-
SEEWE-CE
TEEVEMCE

A R N D C Q E G H I L K M F P S T W Y V
1 -1 0 0 -1 0 0 0 -1 -3 -3 0 -2 -3 -1 4 1 -3 -2 -2
-1 0 0 1 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -3
2 -1 -1 0 -2 1 4 -1 -1 -2 -2 0 -2 -3 -1 0 -1 -3 -2 -1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

A

B

C ɸ(SEQ...) = (0,    …,    1,    1,    0,    1,    …,    0), |Q|=20!

SEQ SEE SCQ TEE

𝑠𝑖𝑚 𝑆𝐸𝑄, 𝑆𝐸𝑄 = 4 + 5 + 1 = 10 > 5
𝑠𝑖𝑚 𝑆𝐸𝑄, 𝑆𝐸𝐸 = 4 + 5 + 4 = 13 > 5
𝑠𝑖𝑚 𝑆𝐸𝑄, 𝑆𝐶𝑄 = 4 − 2 + 1 = 3 < 5
𝑠𝑖𝑚 𝑆𝐸𝑄, 𝑇𝐸𝐸 = 1 + 5 + 4 = 10 > 5

Figure 1.5.: Evolutionary profiles. A. Small MSA with five sequences for protein
sequence “SEQWENCE”. B. Potential resulting PSSM for the first three
positions in the alignment. Negative values indicated as blue cells repre-
sent amino acids less observed at this position in the MSA than expected;
positive values (red cells) represent amino acids more often observed than
expected. C. The Profile Kernel is a vector of length 20k. For k = 3,
each element in the vector represents one 3-mer. For a given 3-mer in the
sequence (here: “SEQ”), all elements in the vector corresponding to a sim-
ilar 3-mer are increased by one. Similarity is defined using a conservation
threshold. For example, all 3-mers with a score > 5 are considered similar.
Then, “SEQ”, “SEE”, and “TEE” are similar to “SEQ” while “SCQ” is
not.

web service PredictProtein [68] provides predictions for around 30 different structural
and functional protein features and most of them are predicted through methods using
evolutionary profiles as input. Then, those features are used as input for methods like
SNAP2 [67] or ProNA2020 [62].
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While evolutionary profiles and protein features predicted from them serve as input for
many methods achieving good prediction performance, evolutionary profiles still rely on
the construction of MSAs and the identification of sequence-similar proteins. As for
the sequence search forming the basis of homology-based inference (see Section 1.2.1
for more information), building MSAs depends on many parameters which need to be
optimized by experts, and for some proteins, it might not be possible to construct a
meaningful MSA. Furthermore, using predicted features as input requires manual feature
selection by experts since each feature might add beneficial information for different ML
predictors.

Sequence Embeddings

New data-driven techniques remove the need for the calculation of MSAs and manual se-
lection of hand-crafted features. Adapting concepts from Natural Language Processing,
new encodings for proteins referred to as embeddings are developed. They are derived
from large sets of protein sequences without the need of any annotations for those se-
quences (self-supervised training). For example, ProtVec [69] is based on the concept
of word2vec [70]. It defined 3-mers of amino acids as “words” and trained a Skip-gram
neural network [70] using sequences from Swiss-Prot [6] to represent 3-mers as vectors
of length 100. The length of the vectors is defined by the number of units in the hid-
den layer of the Skip-gram neural network. Therefore, the number of hidden units and
consequently the size of the embeddings is one of the hyperparameters of the model, set
prior to training. For ProtVec, a residue ri in a sequence can be represented through
the 100-dimensional embedding for the 3-mer (ri−1, ri, ri+1). For example, in sequence
“SEQW...”, the residue E would be represented through the embedding of “SEQ”. To
obtain a fixed-length representation for an entire sequence, the vector representations of
overlapping 3-mers for this sequence can, for example, be summed up and normalized
(mean pooling) resulting in an embedding for the entire protein with 100 dimensions. It
has been shown that ProtVec embeddings capture biophysical properties of amino acids
and, e.g., 3-grams of hydrophobic amino acids are closer to each other in embedding
space than to 3-grams of hydrophilic amino acids [69].

While ProtVec captures some context (the representation of a residue changes for differ-
ent neighbors), “words”, i.e., 3-mers, are always depicted by the same vector independent
of the rest of the sequence. Therefore, ProtVec is considered an uncontextualized ap-
proach [69, 70]. Contextualized approaches like SeqVec [71] or ProtBERT-BFD [72]
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allow to derive representations for amino acids depending on their context, i.e., the rest
of the protein sequence. SeqVec is based on the language model (LM) ELMo [73] (Em-
beddings from Language Models) using a stack of bi-directional long-short-term-memory
cells (LSTMs) [74] and was trained to predict the next amino acid given the entire previ-
ous sequence (auto-regressive pre-training) [75, 76]. All sequences in UniRef50 (UniProt
[24] clustered at 50% pairwise sequence identity) were used for training resulting in a
set of around 33 million proteins. For ProtBERT-BFD, UniRef50 was replaced by BFD
[77, 78] which contains around 2.1 billion sequences and is therefore 70 times larger
than UniRef50. ProtBERT-BFD follows the idea of BERT [79] (Bidirectional Encoder
Representations from Transformers [80]), which processes sequential data through the
self-attention mechanism [81], and was trained to reconstruct masked out amino acids
in a given protein sequence (masked language modeling). Transformers are better at
capturing long-range dependencies than LSTMs because they explicitly compare each
input token (amino acid) against all other input tokens (amino acids). While this allows
to efficiently propagate information that is spread far apart in the sequence, it scales the
memory requirement quadratically with the input length.

For both SeqVec and ProtBERT-BFD, 1024-dimensional embeddings for each residue in
a protein sequence can be extracted from the hidden states of the pre-trained models
(e.g., using the first LSTM layer of SeqVec, Fig. 1.6). Due to the extensive training time
for both SeqVec and ProtBERT-BFD, the default embedding size of 1024 was chosen
without further optimization of the number of dimensions. A fixed-size representation
for a protein sequence of length L can be derived by, for example, averaging over all L

residue embeddings (mean pooling) resulting in a 1024-dimensional embedding encod-
ing the entire sequence (Fig. 1.6). Other approaches like maximum pooling or more
complex methods [82, 83] can also be applied to derive per-protein embeddings from the
per-residue representations. Since SeqVec and ProtBERT-BFD embeddings are contex-
tualized, the per-residue embedding for a certain amino acid X looks different for two
different sequences and also for two different occurrences of X in the same sequence.
Therefore, unlike the Profile Kernel or the amino acid composition, per-protein em-
beddings encode positional information, and for two proteins with identical amino acid
composition but different ordering of those amino acids, the per-protein embeddings will
look differently.

Without the need to re-train the LMs for a specific task, the protein embeddings can be
used as input to train prediction methods (transfer learning). Although the LMs were

18



1.2. Concepts for Protein Function Prediction
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Figure 1.6.: Embedding extraction using SeqVec. The example illustrated here
shows how the first three residues (SEQ) of a hypothetical protein se-
quence (“SEQ...”) are processed with SeqVec in order to obtain a fixed-
sized embedding. In general, the three layers of SeqVec (uncontextualized:
CharCNN; contextualized: LSTM layer 1 and LSTM layer 2) project each
residue to a vector space. The two LSTM layers process the sequence in
both directions (“Forward” and “Backward”), each creating a vector of size
512. The vectors of both directions are concatenated for each LSTM in-
dependently, resulting in an embedding of size 1024 for each LSTM layer.
Then, embeddings are extracted for each residue, e.g., as shown here,
from the first LSTM layer. This results in 1024-dimensional embeddings
for each residue. Per-protein embeddings are obtained by concatenating
all per-residue embeddings (resulting in a L× 1024 matrix) and averaging
over the length of the protein L (mean(L)). This results in a per-protein
embedding of length 1024. This figure is a reprint from [84] and has been
published under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/).

never trained on any functional annotations, it has been shown that the embeddings
capture rudimentary features of protein structure and function [71, 72, 85, 86]. While
prediction methods using embeddings as input cannot compete with state-of-the-art
methods yet [71, 72], they offer a fast and easy to compute alternative compared to
evolutionary profiles. Future advances in the underlying LMs are presumably going to
further improve the resulting embeddings offering the potential of developing easy yet
powerful new methods for protein structure and function prediction.
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1.3. Pre-existing Methods to Predict Protein Function

1.3.1. Prediction of GO Terms

Among the many existing methods to predict GO terms, the top performing meth-
ods from CAFA3 [27] being considered current state-of-the-art. For all three ontologies
(BPO, MFO, CCO), the best performing method in CAFA3 was GOLabeler [87]. It com-
bines five different components complementing each other: a naïve approach based on
the frequency of GO terms in a database, homology-based inference, and three methods
based on logistic regression using amino acid trigram, domains and motifs, and biophys-
ical properties, respectively. The corresponding outputs are passed through a separate
ranking model to generate the final list of predicted GO terms [87]. The performance of
both the naïve approach and homology-based inference were reported as baseline meth-
ods for CAFA3 [27]. While the three logistic regression models require computationally
intensive additional feature extraction, the results from CAFA3 as well as the indepen-
dent performance evaluation from You et al. clearly showed that those three models
improve performance upon just using the two baseline approaches. You et al. further
extended their method after CAFA3 by adding another component harnessing data from
protein-protein interactions resulting in the new method NetGO [88].

Methods published after CAFA3 with promising performance started to apply Deep
Learning models. Two examples for such methods are DeepGOPlus [89] and a multi-task
deep neural network (MTDNN) architecture developed by Fa et al. [90]. DeepGOPlus
builds upon DeepGO [91] which learned sequence features using Convolutional Neural
Networks (CNNs) and combined them with a protein-protein interaction network. For
DeepGOPlus, Kulmanov and Hoehndorf replaced the original trigram embedding layer to
represent the sequence with one-hot encoding, increased the number of CNN layers used,
and switched from a hierarchical classification to a flat classification scheme. Kulmanov
and Hoehndorf claimed that their method would have been among the top three methods
in CAFA3 if they had competed.

MTDNN uses a multi-task architecture to tackle the multi-label problem of predicting
GO terms, i.e., one protein can be annotated to multiple GO terms, and predicting
whether one specific GO term is annotated to the respective protein or not is considered
one task in this context. MTDNN combines a set of feedforward layers that are shared
by all tasks with a set of layers specifically trained for each task. This setup allows
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the predictor to utilize information from shared representations as well as task-specific
characteristics during training. While not requiring time-consuming feature extraction
steps, MTDNN could not be trained for each GO term individually due to too high
demands for GPU memory. Instead, terms were grouped by their “is a” relationships in
GO in order to allow training of single branches followed by subsequent predictions of
the descendants in each branch [90].

In general, the best performing methods from CAFA3 have mainly relied on large feature
sets and the combination of multiple ML models into one ensemble method [27]. There-
fore, obtaining high-quality predictions of GO terms requires complex models, which
are time-consuming to train, and input features which are difficult and sometimes even
impossible to retrieve. With the rise of Deep Learning, time-consuming feature selec-
tion can be replaced. However, the resulting new models are even more complex, require
training of many free parameters using only a small set of available data, and also trigger
high demands for GPU memory to allow efficient training.

In this dissertation, I propose a new method which is simpler than other state-of-the-
art methods while still achieving competitive performance, allowing fast and accurate
predictions of GO terms for large sets of proteins (see Chapter 3).

1.3.2. Prediction of Binding Residues

Protein-ligand binding is mainly determined through the three-dimensional structure of
the protein. Therefore, structure-based methods have usually outperformed sequence-
based methods [12, 92]. The method COACH [92] has been considered the state-of-the-
art method to predict binding residues for many years [93–95]. It is an ensemble classifier
combining five individual approaches. COACH was built upon two main components:
the template-based methods TM-SITE and S-SITE. TM-SITE predicts binding residues
by using structures of proteins with known annotations that are similar to the query
protein, while S-SITE facilitates sequence profile-profile comparisons. COACH was fur-
ther extended to also integrate COFACTOR [96], FINDSITE [97], and ConCavity [98],
three previously developed prediction methods utilizing different structural features to
predict binding residues.

While COACH is a powerful method, it highly relies on protein structures and the
availability of templates, i.e., homologous proteins with known binding sites similar to
the query protein. However, structures are not available for all sequences, and homologs
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cannot be identified for each protein. Therefore, sequence-based de novo methods are
needed to allow predictions for all available protein sequences. To not loose the good
performance of structure- and template-based methods, some prediction methods apply
a template-based approach whenever possible and only fall back to sequence-based de
novo prediction if no structure or template is known. For example, IonCom [94] provides
predictions for 13 metal and four acid radical ion ligands by combining a sequence-
based model trained on sequence profiles using a modified AdaBoost [99] algorithm with
predictions from COFACTOR, TM-SITE, S-SITE, and COACH.

ProNA2020 [62] is a method to predict protein-protein, protein-DNA, and protein-RNA
binding both on a per-protein and a per-residue level. First, it predicts whether the given
protein sequence binds to another protein, DNA, or RNA. For this step, ProNA2020
combines de novo prediction with homology-based inference. Annotations are transferred
from a sequence-similar protein if available (homology-based inference); otherwise, the
potential binding partner is predicted combining a Profile Kernel SVM [65, 66] and
ProtVec [69]. The per-residue prediction is carried out through three Artificial Neural
Networks (ANN) trained individually to predict residues binding to proteins, DNA, or
RNA, respectively, using various predicted features available through PredictProtein
[68].

New, completely sequence-based approaches facilitate concepts from Deep Learning. For
example, DeepCSeqSite [95] consists of multiple CNN layers trained using seven different
input features: PSSM, predicted structural features, conservation scores, residue type,
and position embedding [95]. DeepCSeqSite is trained on 14 different ligands including
small molecules and metal and acid radical ions without considering binding to other
macromolecules (DNA, RNA, and other proteins).

In general, while the best-performing methods to predict binding residues require the
availability of protein structures or similar proteins with known annotations, many well
performing sequence-based de novo methods exist. Especially, applying homology-based
inference or structure-based methods if available, and otherwise, relying on sequence-
based de novo predictions offers a promising approach ensuring good performance and
broad applicability. However, most of the currently existing methods focus on a specific
set of ligands, e.g., there a predictors specialized for macromolecules like ProNA2020
[62] or only applicable to metal ions like IonCOM [94]. Even more specialized predictors
focusing on only one specific ion exist [100, 101]. Therefore, the ligand of interest usually
needs to be known prior to using these methods. In general, current methods to predict
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binding residues are not applicable to all protein sequences because they are restricted
to certain ligands or rely on features not available for all sequences.

To allow predictions for all proteins independently of the bound ligand, I propose two
methods to predict binding residues which are less restrictive in terms of ligand type
and are solely based on sequence information (see Chapter 4).

1.3.3. Prediction of Subcellular Localization

Different approaches exist to predict subcellular localization and are, for example, based
on homology-based inference, the identification of sorting signals, the utilization of func-
tional annotations, or the application of de novo prediction methods. Hybrid approaches
combine different concepts into one method.

The identification of sorting signals provides a simple first step towards elucidating the
subcellular localization of a protein because the transport of many proteins is mediated
through the presence of such signals. For example, SignalP-5.0 [102] predicts signal
peptides using a deep neural network approach, which allows the distinction of secreted
proteins, i.e., proteins localized outside of the cell, from non-secreted proteins inside
the cell. However, using known sorting signals only allows the identification of the
localization of few proteins [103], indicating that many sorting signals remain unknown or
that proteins are also transported through other mechanisms not requiring the presence
of sorting signals.

Because of the strong connection of subcellular localization and protein function, text-
based approaches allow the inference of subcellular localization from functional annota-
tions of a protein. For example, in an eukaryotic cell, DNA only occurs in the nucleus,
and a protein annotated as “DNA-binding” has to be localized to the nucleus to execute
its function. LOCkey [104] is an example for a text-based method using this connection
to predict subcellular localization. It created a rule library from proteins with known
subcellular localizations to infer localization from annotations available in Swiss-Prot
[6] for proteins without known localization. However, since text-based approaches rely
on functional annotations which are not necessarily available for all sequences, they are
usually not applicable to all proteins.

ML methods allow predictions from sequence alone and are generally applicable to all
protein sequences. LocTree2 [53] uses a Profile Kernel SVM [65, 66] and a hierarchical
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classification scheme to predict subcellular localization for eukaryotes, bacteria, and
archaea, separately. Since prokaryotes lack larger membrane-bound compartments, only
three and six classes are predicted for archaea and bacteria, respectively. For eukaryotes,
LocTree2 distinguishes 18 different classes including ten major compartments of which
some are further divided into membrane and non-membrane (e.g., LocTree2 considers
nucleus and nuclear membrane as two different classes). The hierarchical prediction
scheme allows to first separate soluble proteins from membrane-bound ones and then,
follows the basic localization pathways (secretory and non-secretory pathway) in the
cell [53]. LocTree3 [60] builds upon LocTree2 by combining it with homology-based
inference, further improving the predictive power of the method.

DeepLoc [54] uses recurrent neural networks and an attention mechanism to predict
for eukaryotic proteins (1) whether a protein is soluble or membrane-bound and (2) to
which of ten compartments it localizes. While the hierarchical prediction scheme has
improved performance for LocTree2 [53], a similar approach applied for DeepLoc could
not increase its performance [54].

In general, current methods to predict subcellular localization focus on around ten major
compartments without considering substructures, e.g., inside the nucleus. Also, most
methods only predict one subcellular localization per protein. However, especially in
dynamic compartments like the nucleus, where some substructures only form at certain
time points, proteins could easily be associated with multiple localizations throughout
the cell cycle. Therefore, while being very accurate, current prediction methods do not al-
low more fine-grained analysis through predictions of substructures or multi-localization
predictions.

To overcome these limitations, I introduce a method specialized to predict sub-nuclear
compartments also allowing the assignment of multiple compartments to one protein
(see Chapter 5).

1.4. Outline of This Work

This dissertation aims at advancing prediction methods for three different aspects of pro-
tein function (GO terms, binding residues, and sub-nuclear localization) utilizing various
ML techniques. First, in Chapter 2, I investigate the importance of ML applications in
biology and medicine in general, with a strong focus on how technical correctness is
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achieved, and how collaborations between authors from different fields of expertise in-
fluence the developed ML models. Chapter 3 presents goPredSim, a new method to
predict GO terms using a simple yet effective approach which is similar to homology-
based inference, but uses sequence embeddings derived from deep learned LMs instead
of protein sequences. Chapter 4 focuses on the prediction of binding residues. First, I
present the method bindPredictML17 which predicts binding residues through an ANN
trained on evolutionary information. This method relies on features which can be diffi-
cult to compute and was only trained on a subset of proteins with binding annotations
(namely DNA-binding proteins and enzymes). I also describe a potential method to
improve upon bindPredictML17 by training a CNN and replacing the hand-crafted fea-
tures with protein embeddings. Section 4.2 outlines preliminary results for the predictive
performance of this method called bindPredictDL. In Chapter 5, I introduce LocNuclei,
a method to predict sub-nuclear localizations of proteins by combining homology-based
inference with a Profile Kernel SVM. LocNuclei distinguishes between 13 different sub-
nuclear compartments and allows multiple compartments to be predicted for one protein.
The analysis of GO terms and protein-protein interactions helps to assess whether the
resulting predictions reveal insights about the nuclear mechanisms a protein is involved
in and consequently about the overall function of a protein. Finally, this dissertation
concludes with a summary of all presented results in Chapter 6.
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2. Validity of Machine Learning in Life
Sciences Increased through
Collaborations

2.1. Preface

Quality and validity of Machine Learning (ML) models depend on two major factors:
(1) size, quality, and universal validity of data, and (2) the correct development and
assessment of the resulting models [64, 105]. To ensure that both aspects are met,
the development and application of ML models to the life sciences requires expertise
from both computational and biological or medical fields. Therefore, we hypothesized
that interdisciplinarity should improve the validity of ML models, also leading to articles
published in journals with higher impact factors and receiving higher number of citations.
While previous literature discussed the influence of interdisciplinary collaborations on
the number of citations and impact factor, the results were inconsistent [106–112].

In our study, we put emphasis on ML in life sciences and manually extracted information
from 300 articles unavailable through automated assessment. The extracted information
included the frequency of published data and software, the kind of applied evaluation,
and the field of expertise of the authors. The field of expertise was determined by
checking publicly available information about an author’s scientific background and was
grouped into computational sciences, biology, and medicine. In addition, impact factor,
number of citations, and other metadata of the article were automatically retrieved.
This allowed the separate analysis of scientific soundness and of impact as well as a
more stringent and intuitive definition of interdisciplinarity: researchers from different
disciplines co-authoring a work in contrast to purely looking at the number of disciplines
citing a work.
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Three results stood out: First of all, ensuring the validity of ML applications was im-
paired in many cases as only half of the articles shared their software, 64% shared data,
and 81% applied any kind of evaluation. Only 26% met all three criteria. Secondly, the
authors’ scientific background highly influenced how technical aspects were addressed:
Reproducibility and computational evaluation methods were more prominent if authors
with a background in computational sciences were involved, while experimental veri-
fication was more often applied with experimentalists as co-authors. Thirdly, 73% of
the ML applications resulted from interdisciplinary collaborations comprising authors
from at least two of the three different disciplines. Our analysis suggested that, while
collaborations between computational and experimental scientists were not associated
with a higher impact factor, such collaborations led to more scientifically sound work.
Both computational as well as experimental scientists benefit from working together:
The first are given access to novel and challenging real-world biological data, increasing
the scientific impact of their research, while the latter profit from computationally sound
analyses improving the technical correctness of their work.

Author contribution: Katharina Selig and I performed the major part of data analysis
and manuscript writing. I created and adapted the list of articles. Katharina Selig
generated figures and performed statistical tests. Katharina Selig, Liel Cohen-Lavi,
Yotam Frank, Peter Hönigschmid, Evans Kataka, Anja Mösch, Kun Qian, Avihai Ron,
Sebastian Schmid, Adam Sorbie, Liran Szlak, and Ayana Dagan-Wiener collected data
for the predefined list of articles. All authors read and approved the final manuscript.

2.2. Journal Article: Littmann, Selig et al., Nature Machine
Intelligence (2020)

Reference: Littmann, M., Selig, K., Cohen-Lavi, L., Frank, Y., Hönigschmid, P.,
et al. Validity of machine learning in biology and medicine increased through col-
laborations across fields of expertise. Nature Machine Intelligence, 2(1):18–24, 2020.
doi:10.1038/s42256-019-0139-8
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Large amounts of experimental data triggered by technological 
advances are increasing the interaction between biology, medi-
cine, and quantitative sciences1–3. For instance, the amount of 

genome sequencing data is growing exponentially while data stor-
age capacity only grows linearly4. Numerous large databases in 
molecular biology and large clinical datasets increasing through 
electronic health records call for novel ways to interrogate, analyse 
and process biological and biomedical data for gaining biological 
and medical insights5.

Machine learning (ML) automatically identifies patterns and 
regularities in existing data to accurately predict for unseen data6. 

Despite the complexity of the underlying mathematical concepts, 
ML has attracted broad attention even outside of the research com-
munity: querying Google Trends7 with “machine learning” dem-
onstrated an exponential increase over the past decade (January 
2010–February 2019, data not shown). This general rise has been 
mirrored in many fields of biology and medicine—that is, the life 
sciences8–11—although keeping track with the rapid evolution of 
artificial intelligence (AI) challenges even those applying ML12. 
Typically, large biological or medical datasets enable the develop-
ment of ML models that can be used to predict biological or clinical 
phenotypes through measurements from novel samples.

Validity of machine learning in biology and 
medicine increased through collaborations across 
fields of expertise
Maria Littmann   1,27*, Katharina Selig   2,27*, Liel Cohen-Lavi3,4, Yotam Frank5, Peter Hönigschmid   6, 
Evans Kataka6, Anja Mösch   6, Kun Qian   7,8, Avihai Ron   9,10, Sebastian Schmid   11, Adam Sorbie   12, 
Liran Szlak13, Ayana Dagan-Wiener14, Nir Ben-Tal   15, Masha Y. Niv14,16, Daniel Razansky   9,10,17,18,19,20, 
Björn W. Schuller   21, Donna Ankerst   2, Tomer Hertz3,22,23 and Burkhard Rost1,24,25,26

Machine learning (ML) has become an essential asset for the life sciences and medicine. We selected 250 articles describing 
ML applications from 17 journals sampling 26 different fields between 2011 and 2016. Independent evaluation by two readers 
highlighted three results. First, only half of the articles shared software, 64% shared data and 81% applied any kind of evalua-
tion. Although crucial for ensuring the validity of ML applications, these aspects were met more by publications in lower-ranked 
journals. Second, the authors’ scientific backgrounds highly influenced how technical aspects were addressed: reproducibility 
and computational evaluation methods were more prominent with computational co-authors; experimental proofs more with 
experimentalists. Third, 73% of the ML applications resulted from interdisciplinary collaborations comprising authors from at 
least two of the three disciplines: computational sciences, biology, and medicine. The results suggested collaborations between 
computational and experimental scientists to generate more scientifically sound and impactful work integrating knowledge 
from both domains. Although scientifically more valid solutions and collaborations involving diverse expertise did not correlate 
with impact factors, such collaborations provide opportunities to both sides: computational scientists are given access to novel 
and challenging real-world biological data, increasing the scientific impact of their research, and experimentalists benefit from 
more in-depth computational analyses improving the technical correctness of work.
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Quality and validity of ML models hinge on two primary factors: 
(1) size, quality and universal validity of data; and (2) the correct 
development and assessment of the resulting models5,13. Successful 
ML applications extract generic principles from today’s data, allow-
ing the generalization—that is, accurate prediction—for tomorrow’s 
data. This needs proper extraction and processing of data and fea-
tures often requiring expert knowledge14–16. The development and 
application of ML models to the life sciences needs expertise from 
both computational and biological/medical fields. In contrast, ML 
applications to areas such as object and speech recognition or com-
plex games (including chess and Go/Weiqi) for which task and suc-
cess are more clearly defined require mainly expertise in ML.

Collaborations across fields of expertise
Throughout science, interdisciplinarity has become important to 
break new grounds17,18. Several recent studies17,19–24 investigated 
the role of interdisciplinarity by automatically extracting tens and 
hundreds of thousands of publications (for example, from Web of 
Science or the Proceedings of the National Academy of Sciences). 
Toward this end, one definition of interdisciplinarity is as follows: 
if an article is published and cited in different fields or subfields (for 
example, the US National Science Foundation classifies journals 
into 14 different disciplines and 143 subdisciplines17,21), the article 
is deemed ‘interdisciplinary’17,21,24. Others define interdisciplinary as 
articles published by authors from different disciplines, an approach 
so far limited to Italian scientists due to a public directory mapping 
Italian researchers to disciplines19,20.

The scientific impact of an article is usually measured by its 
number of citations17,24. To correct for field- and journal-specific 
effects, that number is normalized by time (years since publication) 
and by the journal’s impact factor23,24. Since the impact factor is cal-
culated from the number of citations of articles published in this 
journal25, articles from higher-ranked journals are expected to have 
higher citation counts.

All those automated studies allowed the assessment of many 
articles while being limited to the extraction of only a particular 
type of information. The studies disagree in their findings regard-
ing the importance of interdisciplinary collaborations: one finds no 
consistent correlation between impact and interdisciplinarity from 
sampling over 750,000 publications: for some disciplines, interdis-
ciplinarity was proportional to citations; for others (including phys-
ics) the relation was reversed24. Another work, focusing on more 
than 15,000 publications from physics, found interdisciplinarity 
was proportional to citation rates but only when published in jour-
nals with citation rates below average23. Yet other studies, based on 
751,76617 and 71,633 publications20, agreed that interdisciplinary 
work creates higher impact than non-interdisciplinary work. Also, 
specific collaborations between scientists from related fields lead 
to higher-impact publications than generic collaborations between 
scientists from very different fields20. Clearly, there is no simple 
common thread running through all of those findings. However, 
what made us revisit this question and begin our analysis were three 
other reasons: (1) the focus on ML and the life sciences, not explic-
itly covered by others; (2) the aim of separating the analysis of scien-
tific quality (soundness) from impact; and (3) the introduction of a 
more rigorous definition of interdisciplinarity—instead of proxying 
by the number of disciplines citing a work, we require experts from 
different disciplines to co-author a work, a definition similar to the 
one used for the analysis of Italian authors19,20.

Focus of this work
Here, we assessed several aspects of ML applications in the life sci-
ences. We started with the selection of 17 journals representing com-
putational/experimental biology and medicine (see Supplementary 
Information). Among all papers published in those 17 journals in 
the years 2011–2016, keyword searches (Supplementary Table 1) 

matched 4,306 articles, where about 2,100 of those were deemed 
correct hits based on the observed false positive rate for a sub-
set of articles. From those, initially 250 were randomly selected 
(see Supplementary Information; complete list in Supplementary 
Dataset 1, list of identified falsely extracted articles is provided 
in Supplementary Dataset 2). Subsequently, we applied the same 
selection process and chose another 50 papers from 2018 to verify 
that the major findings have not changed through the most recent 
advent of deep learning9,10. In contrast to previous studies17,19–24, our 
assessment focused on ML applications in the life sciences and all 
information was manually extracted from the articles. This allowed, 
for instance, to correct the 50% false positives from the keyword 
searches, and also to define interdisciplinarity through the authors’ 
scientific backgrounds by reading partial CVs for 1,918 authors of 
the 250 papers. Each article was classified independently by two of 
us. These investments limited the number of papers analysed but 
allowed a more fine-grained assessment not accessible to automatic 
extraction.

Our focus had several implications, including that all papers 
reported applications of ML to the life sciences, as opposed to more 
theoretical treatments. In some sense, the application of ML (com-
putational sciences) to the life sciences is by definition interdisci-
plinary. Thus, we could sharpen the perspective by distinguishing 
the expertise contributing to the application of ML to the life sci-
ences with authors from potentially three disciplines: computa-
tional sciences, biology and medicine (expertise of author verified 
through CV, not through affiliation). The number of different disci-
plines presented in the author list proxied the level of interdisciplin-
arity with values from 1 to 3.

We proxied the validity of papers describing the application of 
ML methods to biology and medicine through six different indi-
cators. The first four relate to whether the method was assessed 
in ways needed to ascertain that it works as promised (or at all). 
We asked: did the authors use cross-validation or other evaluation 
methods (V1: binary value), more than one single measure for per-
formance (V2: integer), additional test sets (V3: binary value) or 
experimental verification (V4: binary value)? While method evalu-
ation might correctly estimate performance for unseen data with-
out V4, it appears impossible to accomplish this simple objective 
without V1–V3, let alone to develop the best possible method. The 
last two indicators related to sharing methods and results. These 
were sharing data (V5), programmes and codes (V6) through pub-
licly available sites. Typically, reviewing ML applications by journal 
reviewers and the public at large requires availability of data and 
programmes in a form beyond what is available through description 
of methods.

The correct application of ML requires expertise from those 
familiar with ML and those familiar with the life sciences, that is, 
different disciplines. Thus, we hypothesized articles written by 
research teams from different disciplines to be more likely to report 
the necessary evaluation methods ensuring proper implementation 
of ML methods, to make their data publicly available so others could 
validate their results, and, subsequently, to be accepted in higher-
ranked journals and have more citations.

Results and discussion
Three levels of interdisciplinarity. By definition, all the papers 
analysed applied methods from computational fields to the life sci-
ences—that is, were intrinsically interdisciplinary. All 250 papers 
analysed might have been considered interdisciplinary by auto-
mated analyses checking from which field/discipline the article was 
quoted. To generate a more detailed lens, we distinguished three 
disciplines (computational scientists, biologists and physicians) 
and introduced interdisciplinarity as a number ranging from one 
to three depending on how many disciplines were represented by 
the authors of the work. Most of the 250 papers were co-authored 
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by two disciplines (one, 27%; two, 53%; three, 20%). Given these 
levels, we could classify all papers according to their level of inter-
disciplinarity and differentially analyse the key indicators: validity 
(evaluation and sharing) and impact (number of citations (NC); 
NC adjusted by year, equation (1) in Supplementary Information; 
impact factor, and NC adjusted by year and impact factor, equation 
(2) in Supplementary Information).

58% of the chosen 250 papers (see Supplementary Information 
for more details on how these articles were selected) appeared in only 
four of the 17 journals (by occurrence: Bioinformatics, Proceedings 
of the National Academy of Sciences, PLOS Computational Biology 
and BMC Bioinformatics; see additional results in Supplementary 
Information, including Supplementary Figs. 1, 2, 3 and 4, for 
more details)—that is, were 2.5-fold over-represented. While the 
disciplines of biologist and physician correlated positively with 
impact factor (ρ = 0.30/p-value < 0.001, ρ = 0.26/p-value < 0.001, 
respectively), computational science correlated negatively (ρ = 
–0.30/p-value < 0.001; Fig. 1). Computational scientists might focus 
more on methods, while biologists and physicians focus more on 
new data that tend to be highly cited in the life sciences.

Scientific validity higher with experts participating in collabo-
ration. Evaluation methods (for example, cross-validation), usage 
of independent test sets, and/or experimental proofs reduce the 

chance of overfitting and enhance the applicability of the model 
to future data. Indeed, 80% of the articles with only computational 
authors applied some evaluation methods or independent tests; 
compared to 41% of those written by ‘experimentalists’ (biologists 
and physicians; Fig. 2a). However, most articles written solely by 
experimentalists provided experimental proof (55%), so did 16% 
of those from only computational co-authors (Fig. 2a). The cor-
responding numbers for interdisciplinary collaborations between 
computational and experimental scientists (level of interdiscipli-
narity ≥ 2) were between these two extremes: 67% evaluated their 
methods and 43% provided experimental proof, suggesting that 
such collaborations facilitate experimental and computational 
validation. On the flip side, 19% of all articles did not provide any 
evaluation; this number rose as high as 34% without computational 
co-authors (Fig. 2a).

Several evaluation metrics are required to assess the perfor-
mance of ML applications (for example, precision, recall, accuracy 
or confusion matrices). 6% of all articles used no evaluation metric, 
53% used one or two, and 6% used over five (Supplementary Fig. 5).  
Although more metrics do not necessarily imply better assessment, 
even for binary predictions (separation of two classes/classifica-
tions), we have to consider the predictive power of the model for 
both classes separately—that is, minimally we need two evaluation 
metrics. More complex problems require more evaluation metrics. 
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Fig. 1 | Spearman correlation coefficients for numeric and binary variables. Correlation between the different criteria of 250 articles using the Spearman 
correlation tested at a significance level of 0.05. Significant p-values are displayed using * for p-value < 0.05, ** for p-value < 0.01 and *** for p-value < 
0.001 after adjusting for multiple testing using the Benjamin–Hochberg procedure. Blank squares denote that the correlation is non-significant. Citations 
adj. (year) and citations adj. (year and imp. fct.) denote the citations adjusted by year and by year and impact factor, respectively.
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Typically, clearly more than two metrics are needed to show differ-
ent strengths and weaknesses of a prediction method.

About half (52%) of the methods were compared to others; this 
again dropped to 21% without computational co-authors (p-value = 
0.001; Fig. 2b). Although crucial for validation, method comparisons 
might make descriptions more complex, leading to rejection from 
higher-ranked journals (Fig. 3c) and possibly to lower impact (Fig. 3c),  
although adjusting by impact factor as well suggested a slight pay-off 
from method comparisons in terms of citations (Fig. 3b).

Reproducibility is a pillar of science26–28, partially relying on 
making data and methods publicly available. It is particularly criti-
cal for ML applications because many minor technical details may 
invalidate results25. Overall, 64% of the articles shared their data 
(with large variation between journals: from Nucleic Acids Research 
= 89% to New England Journal of Medicine = 8%; Supplementary 
Fig. 6), reflecting the general trend that articles from medicine 
shared data the least (Supplementary Fig. 7). We could not establish 
whether this is related to sensitive patient data. While all journals 
encourage data sharing, many do not enforce it.

Overall, 68% of the articles with computational scientists shared 
data, opposed to 31% without (p-value < 0.001; Fig. 2b). 57% of the 
articles relied on data extracted from public resources or previous 
articles; however, 22% of those that did, did not publish their data. 

Data sharing was highest for collaborations with computer scien-
tists (Fig. 2b).

Experimentalists might benefit from colleagues with knowledge 
in computer science to add evaluation methods, bring a greater 
variety of tools, and help with the interpretation of the scientific and 
statistical significance of results, therefore focusing more on techni-
cal aspects; while computational scientists benefit from the access to 
new data, domain knowledge and experimental verification of the 
results. Therefore, collaborative work will generate more scientifi-
cally sound and impactful work.

Collaborations of scientists with different expertise were some-
how cited more often. Interdisciplinary collaborations of research-
ers from different fields seem increasingly important to generate 
new ideas and results29,30. The higher the level of interdisciplinarity, 
the higher the NC adjusted by year (ρ = 0.22, p-value = 0.02; Fig. 1, 
Supplementary Fig. 8) and the higher the impact factor (ρ = 0.24, 
p-value = 0.002; Fig. 1, Supplementary Fig. 8). When adjusting NC 
by impact factor as well, the correlation was no longer significant 
(Fig. 1, Supplementary Fig. 8), suggesting that interdisciplinary arti-
cles were cited more mainly because they were published in higher-
ranked journals (Supplementary Fig. 8). The correlation between 
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of citations adjusted by year were not influenced by data or programme 
availability. Comparing the developed method to others led to a small 
decrease in the number of citations. b, Adjusting by impact factor as well 
showed a small, but non-significant, trend towards higher citations when 
data or programme were available, or a comparison to other methods was 
performed. c, The impact factor was slightly higher for articles that did not 
make data or programme available, or compared their method to others, 
where only the last difference was statistically significant.
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impact factor and level of interdisciplinarity (Supplementary Fig. 8) 
suggested that authors profit from collaborations.

Closer analysis of the correlation between interdisciplinarity and 
impact refined the message: distinguishing just two groups (com-
putational and experimental), revealed NC to be higher for research 
teams of only experimental scientists (Fig. 4a). The results for 
impact factor and NC adjusted by impact factor and year suggested 
that the higher NC originated essentially from experimentalists 
publishing in higher-ranked journals (Fig. 4b,c). For research teams 

with only computational expertise, contributions from experimen-
talists can help to add new data, find biologically relevant applica-
tions and interpretations of the results, and increase the relevance 
of ML applications leading to more visibility of conducted research 
because it might be accepted in higher-ranked journals.

Did scientific validity (evaluation and sharing) correlate with 
impact? Computational evaluations correlated negatively with 
the impact factor (ρ = –0.31, p-value < 0.001); using no evalua-
tion method correlated positively with the impact factor (ρ = 0.23, 
p-value = 0.004), but we could not detect a significant relationship 
between impact factor and experimental proof (Fig. 1). Since all 
articles analysed here focus on applications, the absence of proper 
evaluation—independent of the focus of a paper—clearly contra-
dicts good scientific conduct.

Data sharing was not rewarded by increases in NC adjusted by 
year (Fig. 3a), although adjusting by impact factor as well hinted 
at a tendency for sharing to lead to more citations (Fig. 3b). Thus, 
although data sharing is crucial to ascertain validity and reproduc-
ibility, it is not incentivized by increased visibility. In fact, there was 
no significant difference in the impact factor (Fig. 3c).

Software sharing also did not correlate with NC adjusted by year 
(Fig. 3a); the trend changed toward more cited when adjusting NC 
by impact factor as well (Fig. 3b). On the contrary, not sharing soft-
ware seemed to lead to acceptance of articles in higher-ranked jour-
nals, but again the difference was not significant (Fig. 3c). Certainly, 
method sharing is crucial for reproducibility and for the impact of 
a method on science. Therefore, we were surprised that programme 
sharing appeared neither crucial for visibility nor acceptance in 
the research community as proxied by citations and journal rank. 
Ultimately, this might shed light on the limitations of such measures 
to evaluate scientific impact.

More computational scientists involved in 2018. AI and ML are 
so rapidly evolving that papers published from 2011–2016 might 
simply not be up to date enough to capture the newest trends. We 
attempted to address this issue by analysing another 50 articles 
describing ML applications to the life sciences published in 2018 
(selected and analysed largely by the same criteria as the other 
250; see Supplementary Information for details; complete list in 
Supplementary Dataset 3). The major differences were: fewer 
publications without computational scientists (6% 2018 versus 
12% 2011–2016), and programme sharing rose (70% versus 50%). 
Although data sharing did not change significantly (68% versus 
64%), those papers that shared data were cited more often and 
accepted to higher-ranked journals, but we could not detect a sig-
nificant difference (Supplementary Fig. 9). Other aspects also did 
not change, neither the fact that papers sharing programmes tended 
to be published in lower-ranked journals (Supplementary Fig. 6) 
nor the correlation between number of involved disciplines and the 
proxies for impact (for example, NC adjusted by year, impact factor, 
and NC adjusted by year and impact factor). Overall, the most sub-
stantial change was that computational scientists contributed more 
often in 2018. This might reflect the increasing complexity of real-
izing ever more popular deep learning-type solutions of ML.

Limitations. Although our analysis revealed interesting insights, 
some issues remain to be addressed in the future. First, thoroughly 
analysing more than 300 articles will render the conclusions more 
valid. Second, we proxied impact and visibility through number 
of citations and the impact factor. However, the number of cita-
tions can be influenced by other factors that can seem superficial 
and can be controlled by the authors31, and it is hard to compen-
sate for these ones. Using the impact factor for measuring scientific 
impact has been criticized in the literature and the increasing use 
of social media might increase the visibility of research indepen-
dent of the journal’s impact factor32,33. Third, the scope of a journal 
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Fig. 4 | Number of citations and impact factor not consistently higher 
for collaborations. Boxplots of adjusted citations and log10-transformed 
impact factor of 250 articles split by authors’ backgrounds. Vertical bars 
indicate largest (smallest) value within 1.5 times the interquartile range 
above (below) the third (first) quartile. a, The number of citations adjusted 
by year was slightly higher for articles solely written by experimentalists 
compared to articles involving computational scientists. b, Adjusting by 
impact factor as well removed this difference. This suggests that the higher 
number of citations for experimentalists was mainly caused by the fact 
that their work got accepted in higher-ranked journals. c, Impact factor was 
higher for articles only published by experimentalists (biologists and/or 
physicians) than for articles with computational scientists.
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might influence the description of ML applications. Journals focus-
ing on methodologies are more likely to require certain standards in 
ML; those focusing on biologically and medically relevant novelties 
are less likely to specifically ask for methodological details. Fourth, 
we considered any publicly available information to assign author 
disciplines but could not account for paid statisticians not listed as 
authors. A variety of medical scientists from pathologists to clini-
cians were all simplified as physician, ignoring large differences in 
scientific training. These simplifications might lead to underesti-
mating computational expertise in publications. Furthermore, we 
considered data and programme availability as stated in the articles 
but did not attempt to contact authors to obtain those if not avail-
able. Finally, since several aspects in our analysis that correlated 
with the impact factor also correlated with each other, confounding 
factors might influence the results and these interrelationships are 
difficult to separate.

Conclusions
We analysed 250 articles describing ML applications to the life sci-
ences published 2011–2016 and another 50 articles published in 
2018 in 17 journals from 24 different biological/medical fields (see 
Supplementary Information for more information). This diver-
sity of fields was mirrored by the diversity of how ML was applied. 
Reproducibility and correct evaluation of results are crucial to ascer-
tain validity and reliability of ML applications. Surprisingly, many 
articles did not focus on these aspects: 50% shared no software, 36% 
shared no data, and 19% applied no evaluation. In fact, an entire third 
(34%) of the articles only written by experimentalists described no 
evaluation. While we hypothesized that ensuring validity of ML appli-
cations would be necessary to achieve high visibility of the research, 
we found the opposite: more valid work was often published in lower-
ranked journals, attracting fewer citations (Fig. 1, Fig. 3).

In general, how these technical aspects were addressed was 
highly influenced by the authors’ scientific backgrounds: reproduc-
ibility and evaluation were more prominent with computational 
scientists as co-authors (Fig. 2), while articles co-authored by exper-
imentalists more frequently provided experimental proof (Fig. 2). 
Thus, collaborations of authors from different disciplines provided 
more opportunity for higher-quality results integrating knowledge 
from various fields of expertise.

We hypothesized that collaborative research should also be cited 
more often and be accepted in higher-ranked journals. However, 
this was only true for computational scientists who profited from 
collaborating with experimentalists by getting accepted in higher 
impact factor journals (Fig. 4c).

One of the most substantial challenges for ML is a comprehen-
sive, adequate evaluation; incorrect application of such tools can 
lead to drawing false conclusions or to overestimating the predic-
tive power of a method. Collaborations between computational and 
experimental scientists substantially increased the correctness of 
evaluations and the likelihood of reproducibility. Thus, interdisci-
plinary collaborations increased the scientific validity of published 
research. As the enforcement of data and programme transparency 
will increase, ML methods in biology and medicine will have to 
be implemented more carefully. While using the impact factor to 
measure the success of a scientific article currently does not show 
an advantage of collaborations for experimental scientists (Fig. 4c), 
we suggest that these collaborations will become more frequent and 
impactful in the near future.
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Short description of SOM 
In this Supporting Online Material (SOM), we show a more detailed analysis of the 
underlying data and minor aspects mentioned in the text. We begin by a more 
detailed description of the way we conducted our analysis (SOM Methods & 
Materials). We chose the 250+50 articles from a larger list of articles that was 
extracted from PubMed using a pre-defined list of keywords (Table S1). The articles 
were chosen from 17 journals (Bioinformatics, BMC Bioinformatics, Cell, IEEE 
Transitions on Biomedical Engineering, IEEE Transitions on Medical Imaging, 
Journal of Cheminformatics, Lancet, Molecular Informatics, Molecular Systems 
Biology, NAR, Nature, Nature Medicine, Nature Methods, NEJM, PLOS 
Computational Biology, PNAS, Science). The number of chosen articles differed 
between journals (Fig. S1) and citations were on average higher for older articles 
(Fig. S1). This trend is not specific for ML, but also holds true for all articles published 
in Nature and Science (Fig. S1). The chosen articles are from 24 different fields out 
of a list of 49 fields (Table S2). The five most frequent fields covered 76% of all 
articles. Some journals primarily publish papers from specific fields (Fig. S2) and the 
involvement of authors from a specific scientific background differed between fields 
(Fig. S3). We did not observe a difference in the number of citations adjusted by year 
or adjusted by year and impact factor (Fig. S4). The difference of the impact factor 
between the fields is not significant, but articles focusing on medicine, neuroscience, 
and oncology were, on average, published in journals with higher impact factors than 
articles from genetics and molecular biology (Fig. S4). 
 While all journals encourage or enforce data sharing, the number of articles 
actually sharing data or program was influenced by the journal (Fig. S5). Journals 
like NEJM that rarely publish articles sharing their data also often publish medical 
research and articles from medicine share data least often compared to other fields 
(Fig. S6). 
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SOM: Material & Methods 
Generation of journal list 
We considered different aspects of ML manually extracted from the first 250 scientific 
articles, which were selected from a list of pre-defined journals representing the life 
sciences based on a discussion during a scientific meeting organized between the 
co-authors from a great diversity of life science and computational fields. The final 
list consisted of the following 17 journals: Bioinformatics, BMC Bioinformatics, Cell, 
IEEE Transactions on Biomedical Engineering, IEEE Transactions on Medical 
Imaging, Journal of Cheminformatics, Lancet, Molecular Informatics, Molecular 
Systems Biology, Nature, Nature Medicine, Nature Methods, New England Journal 
of Medicine (NEJM), Nucleic Acids Research (NAR), PLOS Computational Biology, 
Proceedings of the National Academy of Sciences (PNAS), Science.  
 

Generation of keyword list 
We refined the set of search keywords related to ML in the life sciences by the 
following process (complete list given in Table S1). Start with a published exhaustive 
list of algorithms; exclude ‘dimensionality reduction’, ‘semi-supervised learning’, and 
‘other machine learning methods and problems’ as well as terms that either describe 
approaches in a very general way or are more a notation of the underlying problem, 
for example ‘binary classifier’. We removed abbreviations such as ANN and SVM to 
decrease false positives from the keyword search. However, we did maintain 
abbreviations for algorithms such as LASSO that are generally used without 
mentioning the full name.  
 

Table S1: List of keywords. 
 
AdaBoost 2 Hopfield network 0 
Artificial Neural Network 0 K-means clustering 0 
Association rule learning 0 K-medians 0 
Autoencoder 2 K-nearest neighbors algorithm 0 
Bagging 1 LARS 1 
Bayesian Belief Network 0 LASSO 7 
Bayesian Network 10 Learning vector quantization 0 
Belief Network 2 Linear discriminant analysis 4 
BIRCH 1 Linear regression 35 
Blending 0 Logistic regression 29 
Boltzmann machine 0 Machine learning 100 
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Boosting 4 Multilayer perceptron 0 
Bootstrap aggregating 0 Multinomial logistic regression 0 
Classification and regression tree 2 Multivariate adaptive regression splines 0 
Conditional Random Field 4 Naive Bayes 7 
Convolutional neural network 8 Neural Network 28 
Cross-validation 30 OPTICS algorithm 0 
DBSCAN 0 Ordinary least squares regression 0 
Decision tree 3 Perceptron 22 
Deep belief networks 0 Principal component analysis 18 
Deep Boltzmann Machine 0 Radial basis function network 0 
Deep Learning 17 Random Forests 5 
Dimension Reduction 3 Recurrent neural network 0 
Ensemble Methods 13 Restricted Boltzmann machine 0 
Fisher's linear discriminant 0 Ridge Regression 1 
Fuzzy clustering 0 Self-organizing map 2 
Gradient boosted regression tree 0 Stacked Auto-Encoders 0 
Gradient boosting machine 1 Stacked Generalization 0 
Hidden Markov Models 14 Stepwise regression 1 
Hierarchical Clustering 7 Support vector machines 36 
Hierarchical temporal memory 1   

 

List of keywords used to extract articles covering machine learning from PubMed 
with the number of the 250 articles that match each keyword. To decrease the 
number of wrongly identified articles containing one of the keywords, but not dealing 
with machine learning, abbreviations were excluded from the list. 
 

Generation of article list 
We accessed PubMed1 through the Entrez package from Biopython2 and keyword-
searched the 17 journals for articles from 2011 to 2016 matching at least one 
keyword. This retrieval yielded a list of 4,306 articles. 250 articles were chosen: the 
first 125 were the most cited articles and the second 125 were picked randomly. The 
number of citations in the Entrez package refer to the citations count as given in 
PubMed. Most cited 125: for each year we chose the top x articles with the most 
citations. We chose x proportional to the number of all articles that matched at least 
one keyword and were published in that year. Random 125: we picked y articles at 
random for each journal again matching y to the overall proportions of that journal 
overall years. Articles matching keywords unrelated to ML (e.g. neural network 
referring to brain), and those with ML applications in non-life sciences (e.g. language 
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recognition) were replaced by other articles using the above selection procedure. 
From the original list of 250 articles, 124 were still part of the final list and certain 
articles had to be replaced multiple times. This suggests a false-positive rate of at 
least 50%. Therefore, we expect that around 2,100 articles from the 4,306 originally 
retrieved are matching our criteria. With analysing 250 of those, we chose a sample 
of 12% from the original set. 
 

Data extraction and analysis. 
Information extracted from the 250 articles included the impact factor of the journal 
(extracted from scijournal.org and Web of Science) the number of citations (the 
Biopython Entrez package grepping the numbers from PubMed) and scientific field 
of an article (Table S2, extracted from Wikipedia), the scientific background of the 
authors, the dataset (size, data type, and data source), the type of ML algorithm 
applied, and the types of model validations and assessments. Bioinformatics was 
excluded from the fields because the application of ML to biology essentially is one 
aspect of bioinformatics. We assigned the field of an article based on the actual 
topics covered there and one article could be assigned to more than one field. 
 

Table S2: List of biological fields. 

Anatomy   1 Medicine 34 
Astrobiology 0 Microbiology 9 
Bacteriology   0 Molecular biology 64 
Biochemistry   5 Mycology 1 
Bioengineering  5 Neuroscience 23 
Biogeography 0 Oncology 25 
Biomechanics 1 Paleobiology 0 
Biophysics 2 Paleontology 0 
Biotechnology 0 Parasitology 1 
Botany 0 Pharmacology 5 
Cell biology 3 Photobiology 0 
Chronobiology 0 Phycology 0 
Cognitive biology 2 Physiology 2 
Comparative anatomy 0 Plant physiology 0 
Cryobiology 0 Population biology 1 
Developmental biology 0 Psychobiology 0 
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Ecology 1 Radiobiology 0 
Embryology 0 Sociobiology 0 
Epidemiology 5 Structural biology 8 
Evolutionary biology 0 Synthetic biology 0 
Evolutionary developmental 0 Systems biology 15 
Genetics 59 Theoretical biology 0 
Gerontology 0 Virology 0 
Immunology 4 Zoology 4 
Marine biology 0   

 
List of biological fields used to classify the articles by topic with the number of articles 
matched to that field. 
 

The scientific background of the authors was categorized into computational, 
biological and medical based on publicly available information about their profession 
and education. Computational scientists included authors from computer sciences, 
statistics, mathematics, and bioinformatics; authors from medical fields were 
referred to as physicians; those from other disciplines of biology were considered as 
biologists. In our opinion, these three classifications should cover the most important 
fields of expertise for ML applications in the life sciences. In fact, all authors could 
be assigned to one of these categories.  

We counted the number of different disciplines to assess the interdisciplinarity 
of the author list. Thereby the minimal number of one described articles with authors 
from a single field, two means authors from two different backgrounds contributed, 
and for the maximum number of three disciplines, at least one author of each 
background category (biology, medicine, and computer science) had to contribute to 
the article. 

Two co-authors investigated each article in detail, extracting the predefined 
information into a specified data format. Inconsistent data or spelling errors were 
corrected. For numeric and binary variables, we calculated the Spearman correlation 
coefficient r and tested the correlation while controlling the false-discovery rate using 
the Benjamini–Hochberg procedure3 adjusting for 136 multiple comparisons. We 
assessed the relationship between categorical variables using a chi-square test of 
independence and between numeric and categorical variables using the Wilcoxon 
rank sum test, while adjusting for 3 and 4 multiple comparisons, respectively. In 
addition to the chi-square test for categorical variables, we constructed a percentile 
bootstrap 95% - confidence interval for the proportions with 1000 bootstrap samples. 
The PubMed IDs of the bootstrap samples are available as additional file 
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bootstrap_pubmed_ids.csv. We performed all statistical tests at a 0.05 significance 
level. 

 

Adjustment of number of citations for impact factor and year. 
To allow a comparison of the citations between articles published in different years, 
we adjusted the number of citations using a linear regression model of the log-
transformed citations on year (Eqn. S1).  
 

𝑙𝑜𝑔(𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠) = 	𝛽/ +	𝛽1 ⋅ 𝑦𝑒𝑎𝑟 + 𝜀    (Eqn. S1) 

The adjusted citations were the residuals as calculated by the log-transformed 
number of citations minus the estimated log-transformed number of citations for the 
corresponding year (Eqn. S2). 
 

𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠789:;<=8 = 𝑙𝑜𝑔(𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠7><:7?) − (𝛽A/ + 𝛽A1 ⋅ 𝑦𝑒𝑎𝑟)	  (Eqn. S2) 

Since the impact factor is calculated from the number of citations (as described in 
the Web of Science), impact factor and number of citations are correlated. Adding 
the log-transformed impact factor as a covariate to the regression model can be 
applied to remove this correlation. 

Construction of 2018 dataset for comparison.  
We extracted 50 articles from 2018, again 25 being the most cited ones and 25 being 
chosen at random. The random articles were extracted from the same 17 journals 
as the original list following the distribution of journals in there. We analysed these 
articles regarding the authors’ scientific background and whether the data or 
program was made available. Again, we extracted the number of citations as well as 
the impact factor and the data is available in Supplementary Dataset 4. 
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SOM: Additional Results 
Coverage of machine learning varies between journals and fields.  
Most articles were cited fewer than 100 times, and the number of citations was 
proportional to time passed since publication (Spearman correlation coefficient r=-
0.22, p-value = 0.03; Fig. 1 main paper; Fig. S1). The average number of citations 
for articles from Nature and Science (2011-2016) showed the same trend as that for 
all 250 articles (Fig. S1). Since the time-dependency obfuscated inter-year 
comparisons, we adjusted by the number of years (SOM Material & Methods). As 
the number of citations correlated with the journal impact factor (r=0.52, p-
value<0.001, Fig. 1 main paper;), all aspects correlating with the impact factor 
trivially correlated with the number of citations. Normalizing by year and impact 
factor, removed this correlation. We continued also using the impact factor to assess 
the visibility of an article as publications in higher-ranked journals tend to be 
downloaded more often from bioRxiv4.  

The number of articles differed highly between fields: the top five (molecular 
biology 26%, genetics 24%, medicine 14%, oncology 10% and neuroscience 9%) 
accounted for 76% of the 250 articles (Table S2, Fig. S2). Numbers varied even 
more by disciplines (author expertise): Computational scientists co-authored 88% of 
all articles, and 95% of those from genetics (Fig. S3). Biologists co-authored 70% of 
all and 59% in medicine. Physicians were primarily involved in articles from medicine 
and oncology (Fig. S3). Numbers of citations were largely similar for all fields (Fig. 
S4) but articles focusing on medicine, neuroscience, and oncology tended to be 
published in higher impact journals (Fig. S4).  
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Fig. S1: Citations per year and articles per journal per year Overview of the distribution 
of articles across journals and citations across years in comparison with Nature and Science 
citations. a. Number of articles per journal per year. The number of articles varies highly 
between journals with the most articles contributed by the journal Bioinformatics and only 
one article contributed by the journal Nature Medicine. b. Violin plots with boxplots 
superimposed of number of citations per year. Articles are split by the year, they are 
published in. Older articles are on average more cited than newer articles, probably just 
because they have been available longer. Therefore, a higher number of citations does not 
necessarily imply a higher scientific relevance of the article. c. The increase of citations over 
time is not a trend specific to ML. The same holds true for all articles published in Nature 
and Science between 2011 and 2016. 
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Fig. S2: Fields represented in different journals Certain fields are more common in some 
journals than in others. Bioinformatics focuses mainly on articles from the field of genetics 
or molecular biology while New England Journal of Medicine or IEEE Transactions on 
Biomedical Engineering primarily publish articles from medicine. The scope of a journal 
obviously influences whether an article from a certain field is more likely to get accepted or 
not. 
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Fig. S3: Authors’ fields of expertise per field Involvement of authors from different 
disciplines differs between fields. Computational scientists are involved in most of the 
articles with the highest involvement in articles from genetics and molecular biology. Not 
surprisingly, physicians are mainly involved in articles from medicine and oncology while 
only being rarely involved in articles from genetics or molecular biology. 
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Fig. S4: Adjusted number of citations and impact factor per field Boxplots of adjusted 
citations and log10-transformed impact factor of 250 articles split by field. Vertical bars 
indicate largest (smallest) value within 1.5 times the interquartile range above (below) the 
third (first) quartile. We focus on the five major fields (Molecular biology, genetics, medicine, 
oncology, and neuroscience) covering 76% of all articles. The overall number of citations 
did not differ substantially between the five frequent fields, neither for the citations only 
adjusted by year nor the citations adjusted by both year and impact factor. a. Citations 
adjusted by year per field. b. Citations adjusted by year and impact factor per field. c. Impact 
factor per field on a log10-scale. The median impact factor was similar for all fields, but 
articles focusing on medicine, neuroscience, and oncology were, on average, published in 
journals with higher impact factors than articles from genetics and molecular biology. 
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Scientific validity higher with experts participating in collaboration 
 

 
 

Fig. S5: Number of evaluation metrics One way to assess the validity of a method is 
achieving a certain performance for the given prediction task. This performance can be 
measured by a variety of evaluation metrics. The majority of articles (53%) apply one or two 
evaluation metrics, only 6% apply no metric, and also only 6% apply more than five metrics. 
While considering more evaluation metrics does not necessarily lead to a better 
assessment, applying at least two metrics is preferred to allow a valid assessment. 
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Fig. S6: Percentage of articles sharing their data or program per journal Considering 
journals with at least 10 articles in the data, we compare the percentage of those which 
provide their data or program. New England Journal of Medicine has the smallest fraction of 
articles sharing their data (8%) or program (8%). In Nature Methods all articles provide their 
program and 89% of articles published in NAR share their data.  
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Fig. S7: Data availability split by field Percentages of 250 articles with data available split 
by field are shown with 95% percentile bootstrap confidence intervals based on 1000 
bootstraps. The field of an article highly influences how often data is shared. Articles from 
medicine share data least often compared to other fields. This is probably caused by the 
fact that medical research often deals with sensitive patient data that cannot be shared 
publicly.  
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Collaborations of scientists with different expertise somehow cited more 
often. 
 

 
 
Fig. S8: Adjusted number of citations and impact factor for different collaborations 
Boxplots of adjusted citations and log10-transformed impact factor of 250 articles split by 
interdisciplinarity level. Vertical bars indicate largest (smallest) value within 1.5 times the 
interquartile range above (below) the third (first) quartile. a. The number of citations adjusted 
by year tended to be higher if researchers collaborated with other scientist outside their field 
of expertise. b. Adjusting also by impact factor led to smaller differences. This suggests that 
the higher number of citations for interdisciplinary teams was mainly caused by the fact that 
their work got accepted in higher-ranked journals. c. Articles written by authors of different 
specialities were on average published in journals with a higher impact factor than articles 
only written by authors from a single field of expertise.  
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More computational scientists are involved for articles published in 2018. 
 

 
 

Fig. S9: Adjusted number of citations and impact factor for articles published in 2018 
by data or program availability and for different collaborations Boxplots of adjusted 
citations and log10-transformed impact factor of 250 articles split by data or program sharing 
or interdisciplinarity level. Vertical bars indicate largest (smallest) value with 1.5 times the 
interquartile range above (below) the third (first) quartile. a. The number of citations adjusted 
by year is not significantly different between articles sharing data and/or program and those 
that do not. As for articles from 2011 to 2016, citations are slightly higher for articles written 
by authors from different fields of expertise. b. Adjusting the citations also by impact factor 
reveals larger differences between the number of citations for sharing data and/or program 
and not sharing, but the differences are also not statistically significant. The number of 
citations adjusted by impact factor is similar independent of the number of different 
specialties among authors. c. It seems that articles sharing their data and not sharing their 
program are accepted to higher-ranked journals, but these differences are not statistically 
significant. Articles involving a large number of authors with different specialties are 
accepted in higher-ranked journals.  
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3. Embeddings from Deep Learning
Transfer GO Annotations beyond
Homology

3.1. Preface

The Gene Ontology (GO) [8, 9] provides a standardized vocabulary to describe protein
function in a human- and machine-readable format and separates different functional
aspects into three hierarchies: Biological Process Ontology (BPO), Molecular Function
Ontology (MFO), Cellular Component Ontology (CCO). A protein’s function can then
be described by assigning certain GO terms to it. Experimentally verified GO annota-
tions are not available for most proteins creating the need for prediction methods.

We developed goPredSim, a new and simple method to predict GO terms following a
concept similar to homology-based inference: Annotations of an evolutionary related
protein with annotations are transferred to a protein without known annotations. In-
stead of using sequence similarity to define evolutionary relation, our method relied
on SeqVec embeddings [71] which were derived from language models adapting con-
cepts from Natural Language Processing. We defined similarity between proteins as the
Euclidean distance between the respective embeddings and considered two proteins as
evolutionary related if their embeddings were similar.

The Critical Assessment of protein Function Annotation algorithms (CAFA) [25–27] is
a community challenge taking place every two to three years to assess computational
methods to predict GO terms. Replicating the conditions of CAFA3, which took place
in 2017, goPredSim reached Fmax = 37±2%, 50±3%, and 57±2% for BPO, MFO, and
CCO, respectively. With this performance, our method would have been competitive
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to the top ten CAFA3 competitors if we had participated. Preliminary evaluations for
CAFA4 presented at ISMB2020 [114] supported those results. In addition, goPredSim
clearly outperformed homology-based inference indicating that similarity between em-
beddings better captures functional similarity than sequence similarity does. Therefore,
goPredSim is a simple yet effective method to predict GO terms, which is less complex
than state-of-the-art methods and broader applicable than homology-based inference by
allowing annotation transfer between more distantly related proteins. The method is
available as a standalone web server (https://embed.protein.properties/) and as
part of PredictProtein [68, 115].

Author contribution: I implemented the method goPredSim and performed evalua-
tions. Michael Heinzinger provided SeqVec and ProtBERT embeddings. Christian Dal-
lago implemented the web server. Tobias Olenyi computed the combination of sequence-
and embedding-based transfer. All authors drafted the manuscript.

3.2. Journal Article: Littmann, Heinzinger et al., Scientific
Reports (2021)

Reference: Littmann, M., Heinzinger, M., Dallago, C., Olenyi, T., and Rost, B.
Embeddings from deep learning transfer GO annotations beyond homology. Scientific
Reports, 11(1):2045–2322, 2021. doi:10.1038/s41598-020-80786-0

Copyright Notice: Creative Commons Attribution 4.0 International License (https:

//creativecommons.org/licenses/by/4.0/).
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Embeddings from deep learning 
transfer GO annotations 
beyond homology
Maria Littmann1,2,6*, Michael Heinzinger1,2,6, Christian Dallago1,2, Tobias Olenyi1 & 
Burkhard Rost1,3,4,5

Knowing protein function is crucial to advance molecular and medical biology, yet experimental 
function annotations through the Gene Ontology (GO) exist for fewer than 0.5% of all known 
proteins. Computational methods bridge this sequence-annotation gap typically through homology-
based annotation transfer by identifying sequence-similar proteins with known function or through 
prediction methods using evolutionary information. Here, we propose predicting GO terms through 
annotation transfer based on proximity of proteins in the SeqVec embedding rather than in sequence 
space. These embeddings originate from deep learned language models (LMs) for protein sequences 
(SeqVec) transferring the knowledge gained from predicting the next amino acid in 33 million protein 
sequences. Replicating the conditions of CAFA3, our method reaches an Fmax of 37 ± 2%, 50 ± 3%, and 
57 ± 2% for BPO, MFO, and CCO, respectively. Numerically, this appears close to the top ten CAFA3 
methods. When restricting the annotation transfer to proteins with < 20% pairwise sequence identity 
to the query, performance drops (Fmax BPO 33 ± 2%, MFO 43 ± 3%, CCO 53 ± 2%); this still outperforms 
naïve sequence-based transfer. Preliminary results from CAFA4 appear to confirm these findings. 
Overall, this new concept is likely to change the annotation of proteins, in particular for proteins from 
smaller families or proteins with intrinsically disordered regions.
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BERT	� Bidirectional Encoder Representations from Transformers (particular deep learning language 

model)
BP(O)	� Biological process (ontology) from GO
CAFA	� Critical Assessment of Functional Annotation
CC(O)	� Cellular component (ontology) from GO
ELMo	� Embeddings from Language Models
GO	� Gene ontology
GOA	� Gene Ontology Annotation
k-NN	� K-nearest neighbor
LK	� Limited-knowledge
LM	� Language model
LSTMs	� Long-short-term-memory cells
M	� Million
MF(O)	� Molecular function (ontology) from GO
NK	� No-knowledge
PIDE	� Percentage pairwise sequence identity
RI	� Reliability index
RMSD	� Root-mean-square deviation
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GO captures cell function through hierarchical ontologies.  All organisms rely on the correct func-
tioning of their cellular workhorses, namely their proteins involved in almost all roles, ranging from molecular 
functions (MF) such as chemical catalysis of enzymes to biological processes or pathways (BP), e.g., realized 
through signal transduction. Only the perfectly orchestrated interplay between proteins allows cells to perform 
more complex functions, e.g., the aerobic production of energy via the citric acid cycle requires the intercon-
nection of eight different enzymes with some of them being multi-enzyme complexes1. The Gene Ontology 
(GO)2 thrives to capture this complexity and to standardize the vocabulary used to describe protein function in 
a human- and machine-readable manner. GO separates different aspects of function into three hierarchies: MFO 
(Molecular Function Ontology), BPO (biological process ontology), and CCO, i.e. the cellular component(s) or 
subcellular localization(s) in which the protein acts.

Computational methods bridge the sequence‑annotation gap.  As the experimental determina-
tion of complete GO numbers is challenging, the gap between the number of proteins with experimentally veri-
fied GO numbers and those with known sequence but unknown function (sequence-annotation gap) remains 
substantial. For instance, UniRef1003 (UniProt3 clustered at 100% percentage pairwise sequence identity, PIDE) 
contains roughly 220  M (million) protein sequences of which fewer than 1  M have annotations verified by 
experts (Swiss-Prot3 evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, or IC).

Computational biology has been bridging the sequence-annotation gap for decades4–11, based on two dif-
ferent concepts: (1) sequence similarity-based transfer (or homology-based inference) which copies the annota-
tion from one protein to another if that is sequence similar enough because proteins of similar sequence have 
similar function12. In more formal terms: given a query Q of unknown and a template T of known function 
(Ft): IF PIDE(Q,T) > threshold θ, transfer annotation Ft to Q. (2) De-novo methods predict protein function 
through machine learning5. If applicable, the first approach tends to out-perform the second13–16 although it 
largely misses discoveries17. The progress of computational methods has been monitored by CAFA (Critical 
Assessment of Functional Annotation)9,18,19, an international collaboration for advancing and assessing methods 
that bridge the sequence-annotation gap. CAFA takes place every 2–3 years with its fourth instance (CAFA4) 
currently being evaluated.

Here, we introduce a novel approach transferring annotations using the similarity of embeddings from lan-
guage models (LMs: SeqVec20 and ProtBert21) rather than the similarity of sequence. Using embedding space 
proximity has helped information retrieval in natural language processing (NLP)22–25. By learning to predict the 
next amino acid given the entire previous sequence on unlabeled data (only sequences without any phenotype/
label), e.g., SeqVec learned to extract features describing proteins useful as input to different tasks (transfer 
learning). Instead of transferring annotations from the labeled protein T with the highest percentage pairwise 
sequence identity (PIDE) to the query Q, we chose T as the protein with the smallest distance in embedding space 
(DISTemb) to Q. This distance also proxied the reliability of the prediction serving as threshold above which hits 
are considered too distant to infer annotations. Instead of picking the top hit, annotations can be inferred from 
the k closest proteins where k has to be optimized. In addition, we evaluate the influence of the type of LM used 
(SeqVec20 vs. ProtBert21). Although the LMs were never trained on GO terms, we hypothesize LM embeddings to 
implicitly encode information relevant for the transfer of annotations, i.e., capturing aspects of protein function 
because embeddings have been shown to capture rudimentary features of protein structure and function20,21,26,27.

Results and discussion
Simple embedding‑based transfer almost as good as CAFA3 top‑10.  First, we predicted GO 
terms for all 3328 CAFA3 targets using the Gene Ontology Annotation (GOA) data set GOA2017 (Methods), 
removed all entries identical to CAFA3 targets (PIDE = 100%; set: GOA2017-100) and transferred the annota-
tions of the closest hit (k = 1; closest by Euclidean distance) in this set to the query. When applying the NK 
evaluation mode (no-knowledge available for query, Methods/CAFA3), the embedding-transfer reached Fmax 
scores (Eq. 3) of 37 ± 2% for BPO (precision: P = 39 ± 2%, recall: R = 36 ± 2%, Eqs. 1/2), F1 = 50 ± 3% for MFO 
(P = 54 ± 3%, R = 47 ± 3%), and F1 = 57 ± 2% for CCO (P = 61 ± 3%, R = 54 ± 3%; Table 1, Fig. 1, Fig. S1). Errors 
were estimated through the 95% confidence intervals (± 1.96 stderr). Replacing the Euclidean by cosine distance 
(more standard amongst those working with embeddings, e.g., in NLP) changed little (Table 1; for simplicity, 
we only used Euclidean from here on). In the sense that the database with annotations to transfer (GOA2017) 
had been available before the CAFA3 submission deadline (February 2017), our predictions were directly com-
parable to CAFA319. This embedding-based annotation transfer clearly outperformed the two CAFA3 baselines 
(Fig. 1: the simple BLAST for sequence-based annotation transfer, and the Naïve method assigning GO terms 
statistically based on database frequencies, here GOA2017); it would have performed close to the top ten CAFA3 
competitors (in particular for BPO: Fig. 1) had the method competed at CAFA3. 

Performance did not change when replacing global average with maximum pooling (Table 1). While averaging 
over long proteins could lead to information loss in the resulting embeddings, we did not observe a correlation 
between performance and protein length (Fig. S2, Table S1). In order to obtain the embeddings, we processed 
query and lookup protein the same way. If those have similar function and similar length, their embeddings 
might have lost information in the same way. This loss might have “averaged out” to generate similar embeddings.

Including more neighbors (k > 1) only slightly affected Fmax (Table S2; all Fmax averages for k = 2 to k = 10 
remained within the 95% confidence interval of that for k = 1). When taking all predictions into account inde-
pendent of a threshold in prediction strength referred to as the reliability index (RI, Methods; i.e., even low 
confidence annotations are transferred), the number of predicted GO terms increased with higher k (Table S3). 
The average number of GO terms annotated per protein in GOA2017 already reached 37, 14, 9 for BPO, MFO, 
CCO, respectively. When including all predictions independent of their strength (RI) our method predicted more 
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terms for CCO and BPO than expected from this distribution even for k = 1. Only for MFO the average (11.7 
terms) predicted was slightly lower than expected for k = 1 (number of terms exploded for k > 1: Table S3). While 
precision dropped with adding terms, recall increased (Table S3). To avoid overprediction and given that k hardly 
affected Fmax, we chose k = 1. This choice might not be best in practice: considering more than one hit (k > 1) might 
help when the closest hit only contains unspecific terms. However, such a distinction will be left to expert users.

When applying the LK evaluation mode (limited-knowledge, i.e., query already has some annotation about 
function, Methods/CAFA3), the embedding-based annotation transfer reached Fmax scores of 49 ± 1%, 52 ± 2%, 

Table 1.   Performance for CAFA3 targets for simple GO annotation transfers*. *Mean Fmax values for GO 
term predictions using embeddings from two different language models (SeqVec or ProtBert) or sequence 
similarity (BLAST) for the data sets GOA2017-100 (2017), GOA2017X (2017), and GOA2020-100 (2020) used 
for annotation transfer (note: the notation ‘-100′ implies that any entry in the data set with PIDE = 100% to any 
CAFA3 protein had been removed). By default, embedding distance was assessed by Euclidean distance (Eq. 4; 
exception marked cosine), and per-residue embeddings were pooled by global average pooling (exception 
marked maximum pooling). All values were compiled for picking the single top hit (k = 1) and using the 
CAFA3 targets from the NK and full evaluation mode19. For all simple annotation transfers (embedding- and 
sequence-based), performance was higher for the more recent data sets (GOA2020 vs. GOA2017). Error 
estimates are given as 95% confidence intervals. Fmax values were computed using the CAFA3 tool18,19.

Data set Embeddings

Fmax

BPO MFO CCO

GOA2017

SeqVec 37 ± 2% 50 ± 3% 57 ± 2%

SeqVec (Cosine) 37 ± 2% 50 ± 3% 58 ± 2%

SeqVec (maximum pooling) 35 ± 2% 52 ± 3% 58 ± 2%

ProtBert 36 ± 2% 49 ± 3% 59 ± 2%

BLAST 26% 42% 46%

GOA2017X SeqVec 31 ± 2% 51 ± 3% 56 ± 2%

GOA2020

SeqVec 51 ± 2% 61 ± 3% 65 ± 2%

ProtBert 50 ± 2% 59 ± 2% 65 ± 2%

BLAST 31% 53% 58%

Figure 1.   Fmax for simplest embedding-based transfer (k = 1) and CAFA3 competitors. Using the data sets 
and conditions from CAFA3, we compared the Fmax of the simplest implementation of the embedding-based 
annotation transfer, namely the greedy (k = 1) solution in which the transfer comes from exactly one closest 
database protein (dark bar) for the three ontologies (BPO, MFO, CCO) to the top ten methods that—in contrast 
to our method—did compete at CAFA3 and to two background approaches “BLAST” (homology-based 
inference) and “Naïve” (assignment of terms based on term frequency) (lighter bars). The result shown holds 
for the NK evaluation mode (no knowledge), i.e., only using proteins that were novel in the sense that they had 
no prior annotations. If we had developed our method before CAFA3, it would have almost reached the tenth 
place for MFO and CCO, and ranked even slightly better for BPO. Error bars (for our method) marked the 95% 
confidence intervals.
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and 58 ± 3% for BPO, MFO, and CCO, respectively (Fig. S3). Thus, the embedding-based annotation transfer 
reached higher values for proteins with prior annotations (LK evaluation mode) than for novel proteins without 
any annotations (NK evaluation mode; Table 1); the same was true for the CAFA3 top-10 for which the Fmax 
scores increased even more than for our method for BPO and MFO, and less for CCO (Fig. 1, Fig. S3). In the 
LK mode, predictions are evaluated for proteins for which 1–2 GO ontologies had annotations while those for 
another ontology (or two) were added after the CAFA3 deadline9,19. While supervised training uses such labels; 
our approach did not since we had excluded all CAFA3 targets explicitly from the annotation transfer database 
(GOA2017). Thus, our method could not benefit from previous annotations, i.e., LK and NK should be identical. 
The observed differences were most likely explained by how Fmax is computed. The higher Fmax score, especially for 
BPO, might be explained by data set differences, e.g. LK average number of BPO annotations was 19 compared 
to 26 for NK. Other methods might have reached even higher by training on known annotations.

Embedding‑based transfer successfully identified distant relatives.  Embeddings condense infor-
mation learned from sequences; identical sequences produce identical embeddings: if PIDE(Q,T) = 100%, then 
DISTemb(Q,T) = 0 (Eq. 4). We had assumed a simple relation: the more similar two sequences, the more similar 
their embeddings because the underlying LMs only use sequences as input. Nevertheless, we observed embed-
ding-based annotation transfer to outperform (higher Fmax) sequence-based transfer (Table 1, Fig. 1). This sug-
gested embeddings to capture information beyond raw sequences. Explicitly calculating the correlation between 
sequence and embedding similarity for 431,224 sequence pairs from CAFA3/GOA2017-100, we observed a cor-
relation of ρ = 0.29 (Spearman’s correlation coefficient, p-value < 2.2e−16; Table 2). Thus, sequence and embed-
ding similarity correlated at an unexpectedly low level. However, our results demonstrated that embedding simi-
larity identified more distant relatives than sequence similarity (Figs. S1, S4).

In order to quantify how different embeddings for proteins Q and T can still share GO terms, we redundancy 
reduced the GOA2017 database used for annotation transfers at distance thresholds of decreasing PIDE with 
respect to the queries (in nine steps from 90 to 20%, Table S6). By construction, all proteins in GOA2017-100 
had PIDE < 100% to all CAFA3 queries (Q). If the pair (Q,T) with the most similar embedding was also similar 
in sequence, embedding-based would equal sequence-based transfer. At lower PIDE thresholds, e.g., PIDE < 20%, 
reliable annotation transfer through simple pairwise sequence alignment is no longer possible14,29–32. Although 
embeddings-based transfer tended to be slightly less successful for pairs with lower PIDE (Fig. 2: bars decrease 
toward right), the drop appeared small; on top, at almost all PIDE values, embedding-transfer remained above 
BLAST, i.e., sequence-based transfer (Fig. 2: most bars higher than reddish line – error bars show 95% confi-
dence intervals). The exception was for MFO at PIDE < 30% and PIDE < 20% for which the Fmax scores from 
sequence-based transfer (BLAST) were within the 95% confidence interval (Fig. 2). This clearly showed that 
our approach benefited from information available through embeddings but not through sequences, and that 
at least some protein pairs close in embedding and distant in sequence space might function alike. In order to 
correctly predict the next token, protein LMs have to learn complex correlations between residues as it is impos-
sible to remember the multitude of all possible amino acid combinations in hundreds of millions to billions of 
protein sequences. This forces models to abstract higher level features from sequences. For instance, secondary 
structure can directly be extracted from embeddings through linear projection26. The LMs (SeqVec & ProtBert) 
might even have learned to find correlations between protein pairs diverged into the “midnight zone” sequence 
comparison in which sequence similarity becomes random29,33. Those cases are especially difficult to detect by 
the most successful search methods such as BLAST34 or MMseqs235 relying on finding similar seeds missing at 
such diverged levels.

Ultimately, we failed to really explain why the abstracted level of sequences captured in embeddings out-
performed raw sequences. One attempt at addressing this question led to displaying cases for which one of the 
two worked better (Fig. S5). Looking in more detail at outliers (embeddings more similar than sequences), 
we observed that embedding-based inference tended to identify more reasonable hits in terms of lineage or 
structure. For instance, for the uncharacterized transporter YIL166C (UniProt identifier P40445) from Saccha-
romyces cerevisiae (baker’s yeast), the closest hit in SeqVec embedding space was the high-affinity nicotinic acid 
transporter (P53322) also from Saccharomyces cerevisiae. Both proteins belong to the allantoate permease family 
while the most sequence-similar hit (with PIDE = 31%) was the gustatory and odorant receptor 22 (Q7PMG3) 
from the insect Anopheles gambiae belonging to the gustatory receptor family. Experimental 3D structures were 

Table 2.   Embedding and sequence similarity correlated*. * PIDE percentage pairwise sequence identity, 
dSeqVec similarity in SeqVec20 embeddings (Eq. 5); dProtBert similarity in ProtBert21 embeddings (Eq. 5). All 
values represent Spearman’s correlation coefficients calculated for 434,001 sequence pairs. For all pairs, the 
significance was p-value < 2.2e−16, i.e., significant at the level of the precision of the software R28. The similarity 
between sequence and embeddings correlated less than the two different types of embeddings, namely SeqVec 
and ProtBert with each other. In order to highlight the trivial symmetry of the matrix, only the upper diagonal 
was given.

PIDE dSeqVec dProtBert

PIDE 1 0.293 0.248

dSeqVec 1 0.576

dProtBert 1
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not available for any of the three proteins. However, comparative modeling using Swiss-Model36 revealed that 
both the target and the hit based on SeqVec were mapped to the same template (root-mean-square deviation 
(RMSD) = 0.3 Å) (Fig. S6a) while the hit based on sequence similarity was linked to a different structure (with 
RMSD = 16.8 Å) (Fig. S6b). Similarly, for the GDSL esterase/lipase At3g48460 (Q9STM6) from Arabidopsis thali-
ana, the closest hit in ProtBert embedding space was the GDSL esterase/lipase 2 (Q9SYF0) also from Arabidopsis 
thaliana while the most sequence-similar hit was the UDP-glucose 4-epimerase (Q564Q1) from Caenorhabditis 
elegans. The target and the embedding-based hit are both hydrolases belonging to the same CATH superfamily 
while the sequence-based hit is an isomerase and not annotated to any CATH superfamily. Comparative mod-
eling suggested similar structures for target and embedding hit (RMSD = 2.9 Å) (Fig. S6c) while the structure 
found for the sequence-based hit similarity was very different (RMSD = 26 Å) (Fig. S6d). This suggested embed-
dings to capture structural features better than just raw sequences. Homology-based inference depends on many 
parameters that can especially affect the resulting sequence alignment for distantly related proteins. Possibly, 
embeddings are more robust in identifying those more distant evolutionary relatives.

Embedding‑based transfer benefited from non‑experimental annotations.  Unlike the data set 
made available by CAFA3, annotations in our GOA2017 data set were not limited to experimentally verified 
annotations. Instead, they included annotations inferred by computational biology, homology-based infer-
ence, or by “author statement evidence”, i.e., through information from publications. Using GOA2017X, the 
subset of GOA2017-100 containing only experimental terms, our method reached Fmax = 31 ± 2% (P = 28 ± 2%, 
R = 34 ± 2%), 51 ± 3% (P = 53 ± 3%, R = 49 ± 3%), and 56 ± 2% (P = 55 ± 3%, R = 57 ± 3%) for BPO, MFO, and CCO, 
respectively. Compared to using GOA2017-100, the performance dropped significantly for BPO (Fmax = 37 ± 2% 
for GOA2017-100, Table 1); it decreased slightly (within 95% confidence interval) for CCO (Fmax = 57 ± 2% for 
GOA2017-100, Table 1); and it increased slightly (within 95% confidence interval) for MFO (Fmax = 50 ± 3% for 
GOA2017-100, Table 1). Thus, less reliable annotations might still help, in particular for BPO. Annotations for 

Figure 2.   Embedding-based transfer succeeded for rather diverged proteins. After establishing the low 
correlation between embedding- and sequence-similarity, we tested how the level of percentage pairwise 
sequence identity (PIDE, x-axes) between the query (protein without known GO terms) and the transfer 
database (proteins with known GO terms, here subsets of GOA2017) affected the performance of the 
embedding-based transfer. Technically, we achieved this by removing proteins above a certain threshold in 
PIDE (decreasing toward right) from the transfer database. The y-axes showed the Fmax score as compiled by 
CAFA319. If embedding similarity and sequence identity correlated, our method would fall to the level of the 
reddish lines marked by BLAST. On the other hand, if the two were completely uncorrelated, the bars describing 
embedding-transfer would all have the same height (at least within the standard errors marked by the gray 
vertical lines at the upper end of each bar), i.e., embedding-based transfer would be completely independent of 
the sequence similarity between query and template (protein of known function). The observation that all bars 
tended to fall toward the right implied that embedding and sequence similarity correlated (although for CCO, 
Fmax remained within the 95% confidence interval of Fmax for GOA2017-100). The observation that our method 
remained mostly above the baseline predictions demonstrates that embeddings capture important orthogonal 
information. Error bars indicate 95% confidence intervals.
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BPO may rely more on information available from publications that is not as easily quantifiable experimentally 
as annotations for MFO or CCO.

Many of the non-experimental annotations constituted sequence-based annotation transfers. Thus, non-
experimental annotations might have helped because they constituted an implicit merger of sequence and 
embedding transfer. Adding homologous proteins might “bridge” sequence and embedding space by populat-
ing embedding space using annotations transferred from sequence space. The weak correlation between both 
spaces supported this speculation because protein pairs with very similar sequences may differ in their embed-
dings and vice versa.

Improving annotations from 2017 to 2020 increased performance significantly.  For CAFA3 
comparisons, we only used data available before the CAFA3 submission deadline. When running new que-
ries, annotations will be transferred from the latest GOA. We used GOA2020-100 (from 02/2020 removing 
the CAFA3 targets) to assess how the improvement of annotations from 2017 to 2020 influenced annotation 
transfer (Table 1). On GOA2020-100, SeqVec embedding-based transfer achieved Fmax = 50 ± 2% (P = 50 ± 3%, 
R = 50 ± 3%), 60 ± 3% (P = 52 ± 3%, R = 71 ± 3%), and 65 ± 2% (P = 57 ± 3%, R = 75 ± 3%) for BPO, MFO, and CCO, 
respectively, for the NK evaluation mode (Table 1). This constituted a substantial increase over GOA2017-100 
(Table 1).

The large performance boost between GOA2017 and GOA2020 suggested the addition of many relevant GO 
annotations. However, for increasingly diverged pairs (Q,T), we observed a much larger drop in Fmax than for 
GOA2017 (Fig. 2, Fig. S4). In the extreme, GOA2020-20 (PIDE(Q,T) < 20%) with Fmax = 33 ± 2% (BPO), 44 ± 2% 
(MFO), and 54 ± 2% (CCO) fell to the same level as GOA2017-20 (Figs. 2, S4). These results suggested that many 
of the relevant GO annotations were added for proteins sequence-similar to those with existing annotations. Put 
differently, many helpful new experiments simply refined previous computational predictions.

Running BLAST against GOA2020-100 for sequence-based transfer (choosing the hit with the highest 
PIDE) showed that sequence-transfer also profited from improved annotations (difference in Fmax values for 
BLAST in Table 1). However, while Fmax scores for embedding-based transfer increased the most for BPO, those 
for sequence-based transfer increased most for MFO. Embedding-transfer still outperformed BLAST for the 
GOA2020-100 set (Fig. S4c).

Even when constraining annotation transfer to sequence-distant pairs, our method outperformed BLAST 
against GOA2020-100 in terms of Fmax at least for BPO and for higher levels of PIDE in MFO/CCO (Fig. S4c). 
However, comparing the results for BLAST on the GOA2020-100 set with the performance of our method for 
subsets of very diverged sequences (e.g. PIDE < 40% for GOA2020-40) under-estimated the differences between 
sequence- and embedding-based transfer, because the two approaches transferred annotations from different 
data sets. For a more realistic comparison, we re-ran BLAST only considering hits below certain PIDE thresholds 
(for comparability we could not do this for CAFA3). As expected, performance for BLAST decreased with PIDE 
(Fig. S4 lighter bars), e.g., for PIDE < 20%, Fmax fell to 8% for BPO, 10% for MFO, and 11% for CCO (Fig. S4c 
lighter bars) largely due to low coverage, i.e., most queries had no hit to transfer annotations from. At this level 
(and for the same set), the embedding-based transfer proposed here, still achieved values of 33 ± 2% (BPO), 
44 ± 2% (MFO), and 54 ± 2% (CCO). Thus, our method made reasonable predictions at levels of sequence identity 
for which homology-based inference (BLAST) failed completely.

Performance confirmed by new proteins.  Our method and especially the threshold to transfer a GO 
term were “optimized” using the CAFA3 targets. Without any changes in the method, we tested a new data set 
of 298 proteins, GOA2020-new, with proteins for which experimental GO annotations have been added since 
the CAFA4 submission deadline (02/2020; Method). Using the thresholds optimized for CAFA3 targets (0.35 
for BPO, 0.28 for MFO, 0.29 for CCO, Fig. 3), our method reached F1 = 50 ± 11%, 54 ± 5%, and 66 ± 8% for BPO, 
MFO, and CCO, respectively. For BPO and CCO, the performance was similar to that for the CAFA3 targets; for 
MFO it was slightly below but within the 95% CI (Table 1). For yet a different set, submitted for MFO to CAFA4, 
the first preliminary evaluation published during ISMB202037, also suggested our approach to make it to the 
top-ten, in line with the post facto CAFA3 results presented here.

Embedding similarity influenced performance.  Homology-based inference works best for pairs with 
high PIDE. Analogously, we assumed embedding-transfer to be best for pairs with high embedding similarity, 
i.e., low Euclidean distance (Eq. 4). We used this to define a reliability index (RI, Eq. 5). For the GOA2020-100 
set, the minimal RI was 0.24. The CAFA evaluation determined 0.35 for BPO, 0.28 for MFO, and 0.29 for CCO 
as thresholds leading to optimal performance as measured by Fmax (Fig. 3 dashed grey lines marked these thresh-
olds). For all ontologies, precision and recall were almost constant for lower RIs (up to ~ 0.3). For higher RIs, 
precision increased, and recall decreased as expected (Fig. 3). While precision increased up to 82% for BPO, 91% 
for MFO, and 70% for CCO, it also fluctuated for high RIs (Fig. 3). This trend was probably caused by the low 
number of terms predicted at these RIs. For CCO, the RI essentially did not correlate with precision. This might 
point to a problem in assessing annotations for which the trivial Naïve method reached values of Fmax ~ 55% 
outperforming most methods. Possibly, some prediction of the type “organelle” is all that is needed to achieve a 
high Fmax in this ontology.

Similar performance for different embeddings.  We compared embeddings derived from two dif-
ferent language models (LMs). So far, we used embeddings from SeqVec20. Recently, ProtBert, a transformer-
based approach using a masked language model objective (Bert38) instead of auto-regression and more protein 
sequences (BFD39,40) during pre-training, was shown to improve secondary structure prediction21. Replacing 
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SeqVec by ProtBert embeddings to transfer annotations, our approach achieved similar Fmax scores (Table 1). In 
fact, the ProtBert Fmax scores remained within the 95% confidence intervals of those for SeqVec (Table 1). Similar 
results were observed when using GOA2017-100 (Table 1).

On the one hand, the similar performance for both embeddings might indicate that both LMs extracted 
equally beneficial aspects of function, irrespective of the underlying architecture (LSTMs in SeqVec, transformer 
encoders in ProtBert) or training set (SeqVec used UniRef50 with ~ 33 M proteins, ProtBert used BFD with ~ 2.1B 
proteins). On the other hand, the similar Fmax scores might also highlight that important information was lost 
when averaging over the entire protein to render fixed-size vectors. The similarity in Fmax scores was less surpris-
ing given the high correlation between SeqVec and ProtBert embeddings (ρ = 0.58, p-value < 2.2e-16; Table 2). 
The two LMs correlated more with each other than either with PIDE (Table 2).

No gain from simple combination of embedding‑ and sequence‑based transfer.  All three 
approaches toward annotation transfer (embeddings from SeqVec or ProtBert, and sequence) had strengths; 
although performing worse on average, for some proteins sequence-transfer performed better. In fact, analyzing 
the pairs for which embedding-based transfer or sequence-based transfer outperformed the other method by at 
least four percentage points (|Fmax(BLAST)-Fmax(embeddings)|≥ 4) illustrated the expected cases for which PIDE 
was high and embedding similarity low, and vice versa, along with more surprising cases for which low PIDE 
still yielded better predictions than relatively high embedding RIs (Fig. S5). Overall, these results (Fig. S5) again 
underlined that LM embeddings abstract information from sequence that are relevant for comparisons and not 
captured by sequences alone. However, it also indicates that even protein pairs with low embedding similar-
ity can share similar GO terms. In fact, embedding similarity for SeqVec embeddings only weakly correlated 
with GO term similarity (Spearman rank coefficient ρ = 0.28, p-value < 2.2e−16), but proteins with identical GO 
annotations were on average more likely to be close than proteins with more different GO annotations (Fig. S7). 
The similarity of GO terms for two proteins was proxied through the Jaccard index (Eq. 7). More details are 
provided in the SOM.

To benefit from the cases where BLAST outperformed our approach, we tried simple combinations: firstly, we 
considered all terms predicted by embeddings from either SeqVec or ProtBert. Secondly, reliability scores were 
combined leading to higher reliability for terms predicted in both approaches than for terms only predicted by 
one. None of those two improved performance (Table S4, method SeqVec/ProtBert). Other simple combinations 
also failed so far (Table S4, method SeqVec/ProtBert/BLAST). Future work might improve performance through 
more advanced combinations.

Case study: embedding‑based annotation transfer for three proteomes.  Due to its simplicity 
and speed, embedding-based annotation transfer can easily be applied to novel proteins to shed light on their 
potential functionality. We applied our method to the proteomes of three different proteomes: human (20,370 
proteins from Swiss-Prot) as a well-researched proteome, the fungus Armillaria ostoyae (22,192 proteins, 0.01% 

Figure 3.   Precision and recall for different reliability indices (RIs). We defined a reliability index (RI) 
measuring the strength of a prediction (Eq. 5), i.e., for the embedding proximity. Precision (Eq. 1) and recall 
(Eq. 2) were almost constant for lower RIs (up to ~ 0.3) for all three ontologies (BPO, MFO, CCO). For higher 
RIs, precision increased while recall dropped. However, due to the low number of terms predicted at very 
high RIs (> 0.8), precision fluctuated and was not fully correlated with RI. Panel (a) shows precision and recall 
for BPO, panel (b) for MFO, and panel (c) for CCO. Dashed vertical lines marked the thresholds used by the 
CAFA3 tool to compute Fmax: 0.35 for BPO, 0.28 for MFO, and 0.29 for CCO. At least for BPO and MFO higher 
RI values correlated with higher precision, i.e., users could use the RI to estimate how good the predictions are 
likely to be for their query, or to simply scan only those predictions more likely to be correct (e.g. RI > 0.8).
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of these in Swiss-Prot), as one of the oldest (2500 years) and largest (4*105 kg/spanning over 10 km2) living 
organisms known today41, and SARS-CoV-2, the virus causing COVID-19 (14 proteins). At RI = 1.0, annota-
tions were inferred from proteins of this organism (“self-hits”). Using only experimentally verified annotations 
(lookup data set GOA2020X), revealed both how few proteins were directly annotated (self-hits) in these organ-
isms and how much of the sequence-annotation gap is gapped through embedding-based inference (Fig. 4: bars 
with darker orange, blue, green for BPO, CCO, and MFO respectively). In particular, for self-hits, i.e., proteins 
with 100% pairwise sequence identity (PIDE) to the protein with known annotation, it became obvious how few 
proteins in human have explicit experimental annotation (sum over all around 270), while through embedding-
based inference up to 80% of all human proteins could be annotated through proteins from other organisms 
(light bars in Fig. 4 give results for the entire GOA2020 which is dominated by annotations not directly verified 
by experiment). For the other two proteomes from the fungus (Armillaria ostoyae) and the coronavirus (SARS-
CoV-2), there were no inferences at this high level. On the other end of including all inferences as assessed 
through the data presented in all other figures and tables (i.e., at the default thresholds), for all three proteins 
most proteins could be annotated directly from experimentally verified annotations through embeddings (three 
left-most bars in Fig. 4 for BPO, CCO, and MFO). In fact, when including all GO annotations from GOA (lookup 
set GOA2020), almost all proteins in all three proteomes could be annotated (Fig. 4: lighter colored left-most 
bars close to fraction of 1, i.e., all proteins). For SARS-CoV-2, our method reached 100% coverage (prediction 
for all proteins) already at RI≥0.5 (Fig. 4c, lighter colors, middle bars) through well-studied, similar viruses such 
as the human SARS coronavirus (SARS-CoV). RI = 0.5 represent roughly a precision and recall of 50% for all 
three ontologies (Fig. 3). For Armillaria ostoyae, almost no protein was annotated through self-hits even when 
using unverified annotations (Fig. 4b: no bar at RI = 1). At RI = 0.5, about 25% of the proteins were annotated.

Case study: embedding‑based annotation transfer for SARS‑CoV‑2 proteome.  Given the rel-
evance of SARS-CoV-2, we did not only apply our method to predict GO terms (BPO, MFO, and CCO) for 
all 14 SARS-CoV-2 proteins (taken from UniProt3; all raw predictions were made available as additional files 
named predictions_$emb_$ont.txt replacing the variables $emb and $ont as follows: $emb = seqvec|protbert, 

Figure 4.   Fraction of proteomes with predicted GO terms. We applied our method to three proteomes 
(animal: Homo sapiens, fungus: Armillaria ostoyae, and virus: SARS-Cov-2) and monitored the fraction of 
proteins in each proteome for which our method predicted GO terms for different thresholds in embedding 
similarity (RI, Eq. 5). We show predictions for RI = 1.0 (“self-hits”), RI = 0.5 (with an expected precision/
recall = 0.5), and RI = 0.3 (CAFA3 thresholds). Darker colored bars indicate predictions using GOA2020X 
as lookup set (only experimentally verified GO annotations) and lighter colors indicate predictions using 
GOA2020 as lookup set (using all annotations in GOA). (a) The human proteome is well-studied (all 20,370 
proteins are in Swiss-Prot) and for most proteins, GO annotations are available, but those annotations are 
largely not experimentally verified (very small, dark-colored bars vs large, lighter-colored bars at RI = 1.0). (b) 
The proteome of the fungus Armillaria ostoyae appears more exceptional (0.01% of the 22,192 proteins were 
in Swiss-Prot); at RI ≥ 0.5, predictions could be made only for 25% of the proteins when also using unverified 
annotations and none of the proteins already had any GO annotations. (c) While annotations were unknown 
for most proteins of the novel virus SARS-CoV-2 (no coverage at RI = 1), many annotations could be transferred 
from the human SARS coronavirus (SARS-CoV) and the bat coronavirus HKU3 (BtCoV) allowing GO term 
predictions for all proteins at reliability values ≥ 0.5.
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and $ont = bpo|mfo|cco), but also investigated the resulting annotations further. While the two replicase poly-
proteins pp1a and pp1ab can also be split further into up to 12 non-structural proteins resulting in 28 proteins42, 
we used the definition from UniProt identifying 14 different proteins.

Step 1: confirmation of known annotations. Out of the 42 predictions (14 proteins in 3 ontologies), 12 were 
based on annotation transfers using proteins from the human SARS coronavirus (SARS-CoV), and 13 on proteins 
from the bat coronavirus HKU3 (BtCoV). CCO predictions appeared reasonable with predicted locations mainly 
associated with the virus (e.g., viral envelope, virion membrane) or the host (e.g., host cell Golgi apparatus, host 
cell membrane). Similarly, MFO predictions often matched well-known annotations, e.g., the replicase polypro-
teins 1a and 1ab were predicted to be involved in RNA-binding as confirmed by UniProt. In fact, annotations 
in BPO were known for 7 proteins (in total 40 GO terms), in MFO for 6 proteins (30 GO terms), and in CCO 
for 12 proteins (68 GO terms). Only three of these annotations were experimentally verified. With our method, 
we predicted 25 out of the 40 GO terms for BPO (63%), 14/30 for MFO (47%), and 59/68 for CCO (87%). Even 
more annotations were similar to the known GO annotations but were more or less specific (Table S5 summa-
rized all predicted and annotated GO leaf terms, the corresponding names can be found in the additional files 
predictions_$emb_$ont.txt).

Step 2: new predictions. Since the GO term predictions matched well-characterized proteins, predictions 
might provide insights into the function of proteins without or with fewer annotations. For example, function 
and structure of the non-structural protein 7b (Uniprot identifier P0DTD8) are not known except for a trans-
membrane region of which the existence was supported by the predicted CCO annotation “integral component of 
the membrane” and “host cell membrane”. This CCO annotation was also correctly predicted by the embedding-
based transfer from an Ashbya gossypii protein. Additionally, we predicted “transport of virus in host, cell to cell” 
for BPO and “proton transmembrane transporter activity” for MFO. This suggested non-structural protein 7b to 
play a role in transporting the virion through the membrane into the host cell. Visualizing the leaf term predic-
tions in the GO hierarchy could help to better understand very specific annotations. For the BPO annotation 
of the non-structural protein 7b, the tree revealed that this functionality constituted two major aspects: The 
interaction with the host and the actual transport to the host (Fig. S10). To visualize the predicted terms in the 
GO hierarchy, for example the tool NaviGO43 can be used which can help to interpret the GO predictions given 
for the SARS-CoV-2 proteins here.

Comparing annotation transfers based on embeddings from SeqVec and from ProtBert showed that 16 of 
the 42 predictions agreed for the two different language models (LMs). For five predictions, one of the two LMs 
yielded more specific annotations, e.g., for the nucleoprotein (Uniprot identifier P0DTC9) which is involved in 
viral genome packaging and regulation of viral transcription and replication. For this protein, SeqVec embeddings 
found no meaningful result, while ProtBert embeddings predicted terms such as “RNA polymerase II preinitia-
tion complex” and “positive regulation of transcription by RNA polymerase II” fitting to the known function of 
the nucleoprotein. This example demonstrated how the combination of results from predictions using different 
LMs may refine GO term predictions.

Conclusions
We introduce a new concept for the prediction of GO terms, namely the annotation transfer based on similarity of 
embeddings obtained from deep learning language models (LMs). This approach conceptually replaces sequence 
information by complex embeddings that capture some non-local information beyond sequence similarity. The 
underlying LMs (SeqVec & ProtBert) are highly involved and complex, and their training is time-consuming 
and data intensive. Once that is done, those pre-trained LMs can be applied, their abstracted understanding of 
the language of life as captured by protein sequences can be transferred to yield an extremely simple, yet effective 
novel method for annotation transfer. This novel prediction method complements homology-based inference. 
Despite its simplicity, this new method outperformed by several margins of statistically significance homology-
based inference (“BLAST”) with Fmax values of BPO + 11 ± 2% (Fmax(embedding)-Fmax(sequence)), MFO + 8 ± 3%, 
and CCO + 11 ± 2% (Table 1, Fig. 1); it even might have reached the top ten, had it participated at CAFA3 (Fig. 1). 
Embedding-based transfer remained above the average for sequence-based transfer even for protein pairs with 
PIDE < 20% (Fig. 2), i.e., embedding similarity worked for proteins that diverged beyond the recognition in pair-
wise alignments (Figs. S2 & S3). Embedding-based transfer is also blazingly fast to compute, i.e., around 0.05 s 
per protein. The only time-consuming step is computing embeddings for all proteins in the lookup database 
which needs to be done only once; it took about 30 min for the entire human proteome. GO annotations added 
from 2017 to 2020 improved both sequence- and embedding-based annotation transfer significantly (Table 1). 
Another aspect of the simplicity is that, at least in the context of the CAFA3 evaluation, the choice of none of 
the two free parameters really mattered: embeddings from both LMs tested performed, on average, equally, and 
the number of best hits (k-nearest neighbors) did not matter much (Table S2). The power of this new concept 
is generated by the degree to which embeddings implicitly capture important information relevant for protein 
structure and function prediction. One reason for the success of our new concept was the limited correlation 
between embeddings and sequence (Table 2). Additionally, the abstraction of sequence information in embed-
dings appeared to make crucially meaningful information readily available (Fig. S6). This implies that embed-
dings have the potential to revolutionize the way sequence comparisons are carried out.

Methods
Generating embedding space.  The embedding-based annotation transfer introduced here requires each 
protein to be represented by a fixed-length vector, i.e., a vector with the same dimension for a protein of 30 and 
another of 40,000 residues (maximal sequence length for ProtBert). To this end, we used SeqVec20 to represent 
each protein in our data set by a fixed size embedding. SeqVec is based on ELMo44 using a stack of LSTMs45 for 



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1160  | https://doi.org/10.1038/s41598-020-80786-0

www.nature.com/scientificreports/

auto-regressive pre-training46,47 i.e., predicting the next token (originally a word in a sentence, here an amino 
acid in a protein sequence), given all previous tokens. Two independent stacks of LSTMs process the sequence 
from both directions. During pre-training, the two directions are joined by summing their losses; concatenat-
ing the hidden states of both directions during inference lets supervised tasks capture bi-directional context. 
For SeqVec, three layers, i.e., one uncontextualized CharCNN48 and two bi-directional LSTMs, were trained on 
each protein in UniRef50 (UniProt3 clustered at 50% PIDE resulting in ~ 33 M proteins). In order to increase 
regularization, the weights of the token representation (CharCNN) as well as the final Softmax layer were shared 
between the two LSTM directions, and a 10% dropout rate was applied. For SeqVec, the CharCNN as well as 
each LSTM has a hidden state of size 512, resulting in a total of 93 M free parameters. As only unlabeled data (no 
phenotypical data) was used (self-supervised training), the embeddings could not capture any explicit informa-
tion such as GO numbers. Thus, SeqVec does not need to be retrained for subsequent prediction tasks using the 
embeddings as input. The hidden states of the pre-trained model are used to extract features. Corresponding to 
its hidden state size, SeqVec outputs for each layer and each direction a 512-dimensional vector; in this work, 
only the forward and backward passes of the first LSTM layer were extracted and concatenated into a matrix 
of size L * 1024 for a protein with L residues. While the auto-regressive pre-training only allowed to gather 
contextual information from either direction, the concatenation of the representations allowed our approach to 
benefit from bi-directional context. A fixed-size representation was then derived by averaging over the length 
dimension, resulting in a vector of size 1024 for each protein (Fig. S11). This simple way of information pool-
ing (also called global average pooling) outperformed in many cases more sophisticated methods in NLP49 and 
showed competitive performance in bioinformatics for some tasks20,21,26. Based on experience from NLP49,50, 
we also investigated the effect of using a different pooling strategy, i.e., maximum pooling, to derive fixed size 
representations from SeqVec embeddings.

To evaluate the effect of using different LMs to generate the embeddings, we also used a transformer-based LM 
trained on protein sequences (ProtBert-BFD21, here simply referred to as ProtBert). ProtBert is based on the LM 
BERT38 (Bidirectional Encoder Representations from Transformers51) which processes sequential data through 
the self-attention mechanism52. Self-attention compares all tokens in a sequence to all others in parallel, thereby 
capturing long-range dependencies better than LSTMs. BERT also replaced ELMo’s auto-regressive objective 
by masked language modeling during pre-training, i.e., reconstructing corrupted tokens from the input, which 
enables to capture bi-directional context. ProtBert was trained with 30 attention layers, each having 16 attention 
heads with a hidden state size of 1024 resulting in a total of 420 M free parameters which were optimized on 
2.1B protein sequences (BFD)39,40 which is 70 times larger than UniRef50. The output of the last attention layer 
of ProtBert was used to derive a 1024-dimensional embedding for each residue. As for SeqVec, the resulting L * 
1024 matrix was pooled by averaging over protein length providing a fixed-size vector of dimension 1024 for each 
protein. Usually, BERT’s special CLS-token is used for sequence-classification tasks38 as it is already optimized 
during pre-training on summarizing sequence information by predicting whether two sentences are consecutive 
in a document or not. In the absence of such a concept for proteins, this second loss was dropped from ProtBert’s 
pre-training rendering the CLS token without further fine-tuning on supervised tasks uninformative.

Embeddings derived from LMs change upon retraining the model with a different random seed, even using 
the same data and hyper-parameters. They are likely to change more substantially when switching the training 
data or tuning hyper-parameters. As retraining LMs is computationally (and environmentally) expensive, we 
leave assessing the impact of fine-tuning LMs to the future.

Generating the embeddings for all human proteins using both SeqVec and ProtBert allowed estimating the 
time required for the generation of the input to our new method. Using a single Nvidia GeForce GTX1080 with 
8 GB vRAM and dynamic batching (depending on the sequence length), this took, on average, about 0.05 s per 
protein21.

Data set.  To create a database for annotation transfer, we extracted protein sequences with annotated 
GO terms from the Gene Ontology Annotation (GOA) database53–55 (containing 29,904,266 proteins from 
UniProtKB3 in February 2020). In order to focus on proteins known to exist, we only extracted records from 
Swiss-Prot56. Proteins annotated only at the ontology roots, i.e. proteins limited to “GO:0003674” (molecular_
function), “GO:0008150” (biological_process), or “GO:0005575” (cellular_component) were considered mean-
ingless and were excluded. The final data set GOA2020 contained 295,558 proteins (with unique identifiers, IDs) 
described by 31,485 different GO terms. The GO term annotation for each protein includes all annotated terms 
and all their parent terms. Thereby, proteins are, on average, annotated by 37 terms in BPO, 14 in MFO, and 9 in 
CCO. Counting only leaves brought the averages to 3 in BPO, 2 in MFO, and 3 in CCO.

For comparison to methods that contributed to CAFA319, we added another data set GOA2017 using the 
GOA version available at the submission deadline of CAFA3 (Jan 17, 2017). After processing (as for GOA2020), 
GOA2017 contained 307,287 proteins (unique IDs) described by 30,124 different GO terms. While we could 
not find a definite explanation for having fewer proteins in the newer database (GOA2020 295 K proteins vs. 
GOA2017 with 307 K), we assume that it originated from major changes in GO including the removal of obsolete 
and inaccurate annotations and the refactoring of MFO2.

The above filters neither excluded GOA annotations inferred from phylogenetic evidence and author state-
ments nor those based on computational analysis. We constructed an additional data set, GOA2017X exclusively 
containing proteins annotated in Swiss-Prot as experimental (evidence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, 
or IC) following the CAFA3 definition19. We further excluded all entries with PIDE = 100% to any CAFA3 target 
bringing GOA2017X to 303,984 proteins with 28,677 different GO terms.
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Performance evaluation.  The targets from the CAFA3 challenge19 were used to evaluate the performance 
of our new method. Of the 130,827 targets originally released for CAFA3, experimental GO annotations were 
obtained for 3328 proteins at the point of the final benchmark collection in November 201719. This set consisted 
of the following subsets with experimental annotations in each sub-hierarchy of GO: BPO 2145, MFO 1101, and 
CCO 1097 (more details about the data set are given in the original CAFA3 publication19).

We used an additional data set, dubbed GOA2020-new, containing proteins added to GOA after February 
2020, i.e., the point of accession for the GOA set used during the development of our method in preparation for 
CAFA4. This set consisted of 298 proteins with experimentally verified GO annotations and without any identical 
hits (i.e. 100% PIDE) in the lookup set GOA2020.

In order to expand the comparison of the transfer based on sequence- and embedding similarity, we also 
reduced the redundancy through applying CD-HIT and PSI-CD-HIT57 to the GOA2020 and GOA2017 sets 
against the evaluation set at thresholds θ of PIDE = 100, 90, 80, 70, 60, 50, 40, 30 and 20% (Table S6 in the Sup-
porting Online Material (SOM) for more details about these nine subsets).

We evaluated our method against two baseline methods used at CAFA3, namely Naïve and BLAST, as well as, 
against CAFA3′s top ten19. We computed standard performance measures. True positives (TP) were GO terms 
predicted above a certain reliability (RI) threshold (Method below), false positives (FP) were GO terms predicted 
but not annotated, and false negatives (FN) were GO terms annotated but not predicted. Based on these three 
numbers, we calculated precision (Eq. 1), recall (Eq. 2), and F1 score (Eq. 3) as follows.

The Fmax value denoted the maximum F1 score achievable for any threshold in reliability (RI, Eq. 5). This 
implies that the assessment fixes the optimal value rather than the method providing this value. Although this 
arguably over-estimates performance, it has evolved to a quasi-standard of CAFA; the publicly available CAFA 
Assessment Tool18,19 calculated Fmax for the CAFA3 targets in the same manner as for the official CAFA3 evalu-
ation. If not stated otherwise, we reported precision and recall values for the threshold leading to Fmax.

CAFA3 assessed performance separately for two sets of proteins for all three ontologies: (i) proteins for which 
no experimental annotations were known beforehand (no-knowledge, NK evaluation mode) and (ii) proteins 
with some experimental annotations in one or two of the other ontologies (limited-knowledge, LK evaluation 
mode)9,19. We also considered these sets separately in our assessment. CAFA3 further distinguished between 
full and partial evaluation with full evaluation penalizing if no prediction was made for a certain protein, and 
partial evaluation restricting the assessment to the subset of proteins with predictions19. Our method predicted 
for every protein; thus, we considered only the full evaluation. Also following CAFA3, symmetric 95% confi-
dence intervals were calculated as error estimates assuming a normal distribution and 10,000 bootstrap samples 
estimated mean and standard deviation.

Method: annotation transfer through embedding similarity.  For a given query protein Q, GO 
terms were transferred from proteins with known GO terms (sets GOA2020 and GOA2017) through an approach 
similar to the k-nearest neighbor algorithm (k-NN)58. For the query Q and for all proteins in, e.g., GOA2020, 
the SeqVec20 embeddings were computed. Based on the Euclidean distance between two embeddings n and m 
(Eq. 4), we extracted the k closest hits to the query from the database where k constituted a free parameter to 
optimize.

In contrast to standard k-NN algorithms, all annotations from all hits were transferred to the query instead 
of only the most frequent one58. When multiple pairs reached the same distance, all were considered, i.e., for a 
given k, more than k proteins might be considered for the GO term prediction. The calculation of the pairwise 
Euclidean distances between queries and all database proteins and the subsequent nearest neighbor extraction 
was accomplished very efficiently. For instance, the nearest-neighbor search of 1000 query proteins against 
GOA20* with about 300,000 proteins took on average only about 0.005 s per query on a single i7-6700 CPU, i.e., 
less than two minutes for all human proteins.

Converting the Euclidean distance enabled to introduce a reliability index (RI) ranging from 0 (weak predic-
tion) to 1 (confident prediction) for each predicted GO term p as follows:

(1)P = precision =
TP

TP + FP

(2)R = recall =
TP

TP + FN

(3)F1 = 2 •
Precision • Recall

Precision+ Recall

(4)d(n,m) =

√√√√
1024∑

i=1

(ni −mi)
2

(5)RI(p) =
1

k

l
∑

i=1

0.5

0.5+ d(q, ni)
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with k as the overall number of hits/neighbors, l as the number of hits annotated with the GO term p and the 
distance d(q, ni) between query and hit being calculated according to Eq. (4).

Proteins represented by an embedding identical to the query protein (d = 0) led to RI = 1. Since the RI also 
takes into account, how many proteins l in a list of k hits are annotated with a certain term p (Eq. 5), predicted 
terms annotated to more proteins (larger l) have a higher RI than terms annotated to fewer proteins (smaller 
l). As this approach accounts for the agreement of the annotations between the k hits, it requires the RI to be 
normalized by the number of considered neighbors k, making it not directly comparable for predictions based 
on different values for k. On top, if different embeddings are used to identify close proteins, RI values are not 
directly comparable, because embeddings might be on different scales.

Instead of assessing embedding proximity through the Euclidean distance, the embedding field typically uses 
the cosine distance (Eq. 6):

Our initial assessment suggested cosine and Euclidean distance to perform alike, and we chose to use the 
metric more familiar to structural biologists, namely the Euclidean distance throughout this analysis.

GO term similarity.  We measured the similarity between two sets of GO annotations A and B through the 
Jaccard index (Eq. 7) where |A ∩ B| is the number of GO terms present in both sets and |A ∪ B| is the number of 
GO terms present in at least one of the sets (duplicates are only counted once):

Correlation analysis.  We analyzed the correlation between sequence identity and embedding similarity 
through the Spearman’s rank correlation coefficient because our data was neither distributed normally, nor were 
the two measures for similarity measures linear. In contrast to, e.g. Pearson correlation, Spearman does not 
assume a normal distribution and detects monotonic instead of linear relations59,60.

Availability.  GO term predictions using embedding similarity for a certain protein sequence can be per-
formed through our publicly available webserver: https​://embed​.prote​in.prope​rties​/. The source code along with 
all embeddings for GOA2020 and GOA2017, and the CAFA3 targets are also available on GitHub: https​://githu​
b.com/Rostl​ab/goPre​dSim (more details in the repository). In addition to reproducing the results, the source 
code also allows calculating embedding similarity using cosine distance.

Data availability
The source code and the embedding sets for target proteins and lookup databases are publicly available as a 
GitHub repository. GO term predictions for the SARS-CoV-2 proteins are provided as additional files and in 
the GitHub repository.
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Short description of Supporting Online Material 

In this Supporting Online Material (SOM), we show a more detailed performance 

assessment of our method to predict GO terms and provide details regarding the 

used data sets as well as a sketch of how to extract embeddings via SeqVec (Fig. 

S11). While averaging over long proteins could lead to information loss in the 

resulting embeddings, the performance of our method did not correlate with the 

protein length (Fig. S2, Table S1).  

As Fmax, precision and recall decreased for lookup sets redundancy reduced at lower 

sequence identity thresholds for GOA2017 and GOA2020 (Fig. S1, S4). 

Performance generally increased for the top ten CAFA3 competitors as well as for 

our method for the LK evaluation mode (Fig. S3). In the LK evaluation mode, targets 

are evaluated for which some annotations were already known at point of submission 

for CAFA3 and that gained additional annotations since then. Comparing the 

performance of homology-based inference with our method did not show a clear 

correlation between embedding similarity, sequence identity, and which of the 

methods performed better (Fig. S5). A more detailed analysis of two example targets 

and the respective hits through embedding- and sequence similarity shows that 

embeddings seem to better capture structural relationship (Fig. S6). We also 

evaluate our underlying assumption that proteins close in embedding space should 

have similar GO annotations (Fig. S7). 

We applied our method to three different organisms (human, the fungus Armillaria 

ostoyae, and virus: SARS-CoV-2) and show the fraction of proteins with a GO term 

prediction for different RI thresholds using GOA2020 (Fig. S8) or GOA2020X (Fig. 

S9). For further analysis of the predictions, the predicted leaf terms can be visualized 

in the GO tree structure. Fig. S10 shows an example for the non-structural protein 

7b of SARS-CoV-2. 

The choice of neighbors (k) to include for annotation transfer did not affect Fmax 

(Table S2), however including more hits than the closest one could increase recall 

and the quality of predictions if e.g. only unspecific terms are annotated to the closest 

hit (Table S3). A detailed analysis of annotated and predicted GO terms for the 14 

proteins from SARS-CoV-2 showed that only three of the annotated GO terms are 

experimentally verified and that our method predicted 83%, 47%, and 87% of the 

annotated terms for BPO, MFO, and CCO (Table S4). Surprisingly, the GOA2017 

set was larger than GOA2020 in terms of sequences (Table S1), however not in 

terms of GO annotations. In general, the redundancy-reduced versions of the two 

sets had on average a sequence similarity of 43-44% while the number of identical 

sequences (by identifier) dropped for the sets reduced at 20 and 30% sequence 

identity compared to the other sets (Table S5).   
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Material 

Fig. S1: Precision and recall for different lookup sets based on GOA2017 

 

 

 
To test how the level of percentage pairwise sequence identity affects the performance of 
our method, we removed proteins above a certain pairwise sequence identity (as indicated 
on the x-axes) to the targets from our lookup set based on GOA version 2017. Panel a shows 
the recall and panel b the precision for BPO, MFO, and CCO, respectively, for lookup sets 
of <100, 90, 80, 70, 60, 50, 40, 30, and 20% sequence identity to the target proteins. Error 
bars indicate 95% confidence intervals. 
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Fig. S2: Fmax of our method for different protein lengths 

 

 

 
Fig. S2: Performance not correlated with protein lengths.  We show the Fmax score for 
different intervals of varying protein length ranging from 100 to 1000 in steps of 100 for a. 
SeqVec and b. ProtBert. Protein embeddings for both models are derived by global average 
pooling over per-residue representations. This process could lead to an information loss for 
longer proteins. However, the performance of our method did not correlate with the length 
of the query protein. 
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Fig. S3: Fmax for our method and CAFA3 competitors using LK evaluation mode 

 

 

 
We compared the Fmax of our method (dark bar) for the three ontologies (BPO, MFO, CCO) 
to the top ten methods that did actually compete at CAFA3 1 and to two background 
approaches (lighter bars) also applied in the CAFA3 challenge for the LK evaluation mode 
using proteins for which some GO terms have been known before. 
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Fig. S4: Fmax, precision, and recall for different lookup sets based on GOA2020 

 

 
 
To test how the level of percentage pairwise sequence identity (PIDE) affects the 
performance of our method and of homology-based inference (BLAST), we stepwise 
removed proteins from our lookup set (here: GOA-2020) if they shared more than a certain 
PIDE (as indicated on the x-axes) to any query protein. Panel a shows the recall, panel b 
the precision, and panel c Fmax for BPO, MFO, and CCO, respectively, for lookup sets of 
<100, 90, 80, 70, 60, 50, 40, 30, and 20% PIDE to the target proteins. Sequence-based 
transfer was accomplished by running BLAST against GOA2020 and transferring 
annotations from the hit with the highest PIDE (and PIDE <x% for the different lookup sets) 
in the local alignment (result marked by lighter colored bars, labeled as BLAST). Error bars 
indicate 95% confidence intervals. 
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Fig. S5: Proteins for which embedding-based or homology-based inference 
worked better dependent of RI and PIDE 

 

 
 
Blue points indicate proteins for which embedding-based annotation transfer (a. SeqVec, b. 
ProtBert) worked better than homology-based inference (BLAST) (by at least four 
percentage points), red points indicate the reverse: proteins for which PIDE worked better 
than embeddings. The RI gives the embedding similarity, PIDE is percentage pairwise 
sequence identity. There is no clear relationship between PIDE, RI, and which of the two 
approaches worked better. Only for high RIs and low PIDE, embedding-based annotation 
transfer performed almost always better than PIDE. 
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Fig. S6: Comparative model for two target proteins and the corresponding hits 
found through embedding- or sequence similarity 

 

 
 
We chose two example targets for which embedding-based inference worked better than 
homology-based inference and where the embedding similarity was high while the sequence 
similarity was low. This resulted in two protein triplets (target, embedding-similar hit, 
sequence-similar hit). For none of the six proteins, structures were available. a. Comparative 
modeling using Swiss-Model2 mapped the first target with UniProt identifier P40445 and the 
corresponding hit found using SeqVec embeddings (P53322) to the same structural 
template of the D-galactonate-proton symporter of E. coli (6E9N3,4) with the resulting Swiss-
Model models having a root-mean-square deviation (RMSD) of 0.3Å. b. The sequence-
similar hit (Q7PMG3) for the same target mapped to the PDB structure 6C70 (Cryo-EM 
structure of Orco)3,5 with RMSD=16.8Å to the structure of the target. c. For the second target 
(Q9STM6), the embedding-based hit (Q9SYF0) was found using ProtBert. Comparative 
modeling mapped target and hit to PDB structures 3KVN (autotransporter EstA from 
Pseudomonas aeruginosa)3,6 and 5XTU (GDSL esterase of photobacterium sp. J15)3,7 with 
RMSD=2.9Å. d. The modeled structure for the corresponding sequence-similar hit 
(Q564Q1) was based on the PDB structure 1KVQ (UDP-galactose 4-epimerase complexed 
with UDP-phenol)3,8 with RMSD=26Å to the structure model of the target. 
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Weak correlation between embedding similarity and GO term similarity 

Our method relies on the assumption that proteins with similar embeddings share 
similar GO annotations. To evaluate this assumption, we randomly chose 5,000 
proteins from the GOA2017-100 set and calculated pairwise distances between 
these proteins and the remaining proteins in GOA2017-100 (298,984 proteins) using 
SeqVec embeddings. We extracted the first 1,000 hits to avoid that our analysis is 
dominated by random noise for very distant protein pairs. This resulted in 5,000,000 
pairs of proteins. For each of those pairs, we calculated the GO term similarity using 
the Jaccard index (Eqn. 7 in the main text).  

 The absolute embedding similarity does not necessarily have to correlate with 
the GO term similarity, i.e. if two proteins have a distance d1, their GO annotations 
are not necessarily more similar than for two other proteins with a larger distance d2. 
We rather assume that for a given query, the protein closest to it is more likely to 
have more similar GO terms than another hit farther away. Also, how similar the 
annotations of the most similar hit are differs between proteins. There are proteins 
for which we find hits in the lookup data set with identical annotations while for others, 
even the most similar hit might still be annotated to very different GO terms. Since 
both embedding distance and GO term similarity are not directly comparable 
between proteins, we converted our results to ranks, i.e. for a given query protein, 
we ordered all hits by distance and gave the hit with the smallest distance rank 1, 
the hit with the second-smallest distance rank 2, and so forth. We applied the same 
approach for the GO term similarity. For a perfect correlation, the closest protein 
(rank 1) should also have the most similar GO annotations (rank 1) and the most 
distant protein (rank 1000) should have the most dissimilar GO annotations (rank 
1000). 

 For a query protein, its most similar hits (i.e. low ranks) are also more likely 
to be amongst the closet hits while more dissimilar hits also tend to be further away 
from the query in embedding space (Fig. S1). This observation corresponds to a 

weak correlation of =0.28 (Spearman’s correlation coefficient, p-value < 2.2e-16) 
between embedding similarity and GO term similarity. This weak correlation was 
expected to some extent. While we assume that proteins close in embedding space 
should have similar GO annotations, this does not necessarily imply that proteins far 
away in embedding space have dissimilar GO annotations. 
  



Littmann, Heinzinger, Dallago, Olenyi & Rost goPredSim SOM 

Appendix p. 10 

Fig. S7: Embedding similarity for different levels of GO term similarity 

 

 

 

For each query protein, we extracted the 1000 closest proteins and assigned each hit a rank 
(i) according to its distance to the query (rank 1 = closest hit) and (ii) according to its Jaccard 
similarity between the GO annotations (rank 1 = most similar annotations). For a set of 5,000 
proteins, the ranks for the Jaccard similarity were grouped as shown on the x-axis. On the 
y-axis, the ranks for the embedding distance are shown. For most proteins, the hit with the 
most similar annotation (most left box) is also one of the closest hits in embedding space. 
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Fig. S8: Fraction of proteomes with predicted GO terms using lookup set 
GOA2020 

 

 
 
We applied our method to three proteomes (animal: Homo sapiens, fungus: Armillaria 
ostoyae, and virus: SARS-CoV-2) and monitored the fraction of proteins in each proteome 
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for which our method predicted GO terms for different thresholds in embedding similarity 
(RI, Eqn. 5 in main text). Intervals labelled by number (N=[0.1,1.0]) average over all 
predictions (with N-0.1<RI≤N). For RI=0.5, our method is expected to achieve roughly 50% 
precision and recall in all three ontologies (indicated by red dashed line). We used the set 
GOA2020 as lookup data set which also contains GO annotations not experimentally 
verified. a. The human proteome is well-studied (all 20,370 proteins are in Swiss-Prot) and 
for many proteins, GO term predictions can be obtained through self-hits, i.e. the annotations 
are taken from the query protein. Also, for proteins without any GO annotation, our method 
could predict GO terms at very high reliability probably because there are many well-studied 
model organisms with experimentally annotated orthologous proteins. b. The proteome of 
the fungus Armillaria ostoyae appears more exotic (0.01% of the 22,192 proteins were in 
Swiss-Prot); high-reliability (RI>0.7) predictions of GO terms were available for few proteins, 
and for RI>0.5, GO terms were predicted for fewer than half of the proteome. c. While 
annotations were unknown for most proteins of the novel virus SARS-CoV-2 (no coverage 
at RI=1), many annotations could be transferred from the human SARS coronavirus (SARS-
CoV) and the bat coronavirus HKU3 (BtCoV) allowing GO term predictions for all proteins 
at reliability values as high as RI=0.6. 
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Fig. S9: Fraction of proteomes with predicted GO terms using lookup set 
GOA2020X 

 

 
 
We applied our method to three proteomes (animal: Homo sapiens, fungus: Armillaria 
ostoyae, and virus: SARS-CoV-2) as described in Fig. S6. Instead of GOA2020, we used 
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GOA2020X as lookup data set which only contains experimentally verified annotations. a. 
While the human proteome is in general well-studied, most proteins lack GO annotations 
(almost no annotation transfer at RI=1.0). b. For the proteome of the fungus Armillaria 
ostoyae, almost no experimental GO annotations could be transferred at high reliability 
(RI>0.5). c. While SARS-CoV-2 is a very novel and therefore not well-studied proteome, for 
almost 50% of the proteins, GO annotations for MFO could be inferred at RI>0.5 from the 
human SARS coronavirus (SARS-CoV) and the bat coronavirus HKU3 (BtCoV) which are 
both more well-studied. 
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Fig. S10: Visualization of predicted GO term for Nsp7b from SARS-CoV-2 

 

 

 
To further analyze the predicted GO terms, the leaf terms can be visualized in the GO 
hierarchy. For the prediction of “GO:0046740” for the non-structural protein 7b from SARS-
CoV-2, this visualization revealed that the functionality of this protein constituted two main 
components: The interaction with the host and the actual transportation. 
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Fig. S11: Visualization of the embedding generation using SeqVec. 

 

 
 
We outline the process of generating fixed-size embeddings for protein sequences of 
variable length using SeqVec. The example illustrated here shows how the first three 
residues of protein sequence (“SEQ..”) are processed: first, the three layers of SeqVec 
(uncontextualized: CharCNN; contextualized: LSTM layer 1 and LSTM layer 2) project the 
protein sequence to vector space. The CharCNN generates vectors of size 1024 without 
considering neighboring residues. In contrast to this, the two LSTM layers process the 
sequence in both directions, each creating a vector of size 512. The vectors of both 
directions are concatenated for each LSTM independently, resulting in an embedding size 
of 1024 for each LSTM layers. In a second step, only embeddings of the first LSTM layer 
are extracted, concatenated and averaged over the length of the protein (global average 
pooling), resulting in a 1024-dimensional embedding. 
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Table S1: Correlation between Fmax and protein length 

 Spearman’s correlation coefficient P-value 

SeqVec -0.03 0.27 

ProtBert -0.03 0.16 

BLAST 0.05 0.06 

* Global average pooling for long sequences could lead to information loss because 
important information might be averaged out if the signal is not consistent over the 
protein length. However, we did not observe a correlation between protein length 
and performance for either SeqVec or ProtBert. The same holds true for homology-
based inference (“BLAST”). Correlation was measured using Spearman’s rank 
correlation coefficient. 

 

Table S2: Fmax and average number of predicted GO terms for different values 
of k 

 Fmax 

 BPO MFO CCO 

k=1 372% 503% 572% 

k=2 372% 512% 582% 

k=3 372% 502% 582% 

k=4 372% 512% 582% 

k=5 362% 512% 592% 

k=10 362% 493% 562% 

* The number of neighbors included for the annotation transfer did not affect Fmax. 
Evaluation was performed for the no-knowledge (NK) set of proteins for which no 
annotations in any ontology were available at the submission deadline of CAFA3. 
Error estimates indicate 95% confidence intervals.  
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Table S3: Precision, recall, and average number of predicted GO terms for 
different values of k 

 Precision (shown as 
percentages) 

Recall (shown as 
percentages) 

Average number of 
predicted GO terms per 

protein 

  

 BPO MFO CCO BPO MFO CCO BPO MFO CCO 

k=1 322 473 543 433 543 623 46.5 11.7 15.7 

k=2 282 403 493 492 603 693 66.3 15.4 19.8 

k=3 252 373 462 522 623 723 80.6 18.0 22.7 

k=4 232 353 432 552 643 752 97.6 20.1 25.8 

k=5 212 323 402 572 663 782 113.5 22.4 29.0 

k=10 161 242 302 652 723 832 183.5 33.4 43.2 

* The average number of predicted GO terms per protein increased with increasing 
values of k when all predictions are taken into account. This increase in the 
number of predicted terms led to a decrease in precision, but to an increase in 
recall. Taking more proteins than the closest one into account can be beneficial 
to e.g., increase the specificity and quality of the predicted terms if only a few, 
unspecific terms are annotated to the closest hit. Evaluation was performed for 
the no-knowledge (NK) set of proteins for which no annotations in any ontology 
were available at the submission deadline of CAFA3. Error estimates indicate 
95% confidence intervals.  
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Table S4: Fmax for different combinations of embedding-based and 
homology-based annotation transfer 

 Fmax 

 BPO MFO CCO 

SeqVec-2020 512% 613% 652% 

SeqVec/ProtBert 512% 602% 662% 

SeqVec/BLAST 502% 612% 652% 

ProtBert/BLAST 492% 602% 652% 

SeqVec/ProtBert/BLAST 512% 612% 662% 

* Combining embedding-based annotation transfer for different language models 
(SeqVec, ProtBert) and homology-based transfer (BLAST) did not improve 
performance over embedding-based transfer using SeqVec (SeqVec-2020). For 
this combination, every term predicted for either of the methods was also include 
in the final, combined prediction. Maybe this approach is too simple to reflect the 
complex relationship between embedding similarity, sequence similarity and 
prediction quality and only a more sophisticated combination could improve over 
the single method (SeqVec). 
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Table S5: Annotated and predicted GO terms for SARS-CoV-2 proteins 

 Annotated Predicted 

 BPO MFO CCO BPO MFO CCO 

P0DTC1 
GO:0006508 
GO:0016032 
GO:0030683 
GO:0039502 
GO:0039503 
GO:0039520 
GO:0039548 
GO:0039579 
GO:0039595 
GO:0039648 
GO:0039657 
GO:0090305 

GO:0003723 
GO:0004518 
GO:0004519 
GO:0008233 
GO:0008234 
GO:0016787 
GO:0036459 
GO:0046872 

 

GO:0016020 
GO:0016021 
GO:0030430 
GO:0033644 
GO:0044220 

 

GO:0001172 
GO:0006508 
GO:0019079 
GO:0019082 
GO:0039502 
GO:0039520 
GO:0039548 
GO:0039579 
GO:0039595 
GO:0039648 
GO:0090305 

 

GO:0036459 
GO:0003723 
GO:0003968 
GO:0004197 
GO:0004519 
GO:0008242 
GO:0008270 

GO:0016020 
GO:0016021 
GO:0030430 
GO:0033644 
GO:0044220 

 

P0DTD1 
GO:0001172 
GO:0006508 
GO:0016032 
GO:0030683 
GO:0032259 
GO:0032508 
GO:0039502 
GO:0039503 
GO:0039520 
GO:0039579 
GO:0039595 
GO:0039644 
GO:0039648 
GO:0039657 
GO:0090305 

GO:0000166 
GO:0003678 
GO:0003723 
GO:0003724 
GO:0003968 
GO:0004386 
GO:0004518 
GO:0004519 
GO:0004527 
GO:0005524 
GO:0008168 
GO:0008233 
GO:0008234 
GO:0016740 
GO:0016779 
GO:0016787 
GO:0036459 
GO:0046872 

GO:0016020 
GO:0016021 
GO:0030430 
GO:0033644 
GO:0044172 
GO:0044220 

 

GO:0001172 
GO:0006351 
GO:0006508 
GO:0019082 
GO:0019083 
GO:0032259 
GO:0032508 
GO:0039502 
GO:0090503 
GO:0039520 
GO:0039579 
GO:0039595 
GO:0039644 
GO:0039648 
GO:0039694 

 

GO:0000175 
GO:0003678 
GO:0003723 
GO:0003724 
GO:0003968 
GO:0004197 
GO:0004519 
GO:0005524 
GO:0008168 
GO:0008242 
GO:0008270 
GO:0036459 
GO:0042802 

GO:0016020 
GO:0016021 
GO:0030430 
GO:0033644 
GO:0044172 
GO:0044220 

P0DTC2 
GO:0009405 
GO:0016032 
GO:0019062 
GO:0039654 
GO:0039663 
GO:0044650 
GO:0046718 

GO:0005515 
GO:0046789 

 

GO:0016020 
GO:0016021 
GO:0019012 
GO:0019031 
GO:0020002 
GO:0033644 
GO:0044173 
GO:0055036 

GO:0009405 
GO:0019064 
GO:0039654 
GO:0046718 
GO:0046813 
GO:0075509 

GO:0042802 
GO:0046789 

 

GO:0016021 
GO:0019012 
GO:0019031 
GO:0020002 
GO:0044173 
GO:0055036 

P0DTC3 
No annotations GO:0005576 

GO:0016020 
GO:0016021 
GO:0019012 
GO:0020002 
GO:0030430 
GO:0033644 
GO:0044177 
GO:0044178 

GO:0034220 
GO:0039707 
GO:0051259 

GO:0005216 GO:0005576 
GO:0016020 
GO:0016021 
GO:0019012 
GO:0020002 
GO:0030430 
GO:0044177 
GO:0044178 
GO:0044385 
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 Annotated Predicted 

 BPO MFO CCO BPO MFO CCO 

P0DTC4 
No annotations GO:0016020 

GO:0016021 
GO:0033644 
GO:0044177 
GO:0044178 

GO:0044662 
GO:0046760 

GO:0015078 GO:0016020 
GO:0016021 
GO:0044172 
GO:0044177 
GO:0044178 

P0DTC5 
GO:0016032 
GO:0030683 

 

GO:0039660 
 

GO:0016020 
GO:0016021 
GO:0019012 
GO:0019031 
GO:0033644 
GO:0044177 
GO:0044178 
GO:0055036 

GO:0019058 
GO:0030683 

GO:0039660 GO:0016021 
GO:0019012 
GO:0019031 
GO:0030430 
GO:0044177 
GO:0044178 
GO:0055036 

P0DTC6 
GO:0009405 No 

annotations 
GO:0016020 
GO:0033644 
GO:0044165 
GO:0044167 
GO:0044177 
GO:0044178 

GO:0009405 GO:0005125 
GO:0005126 

GO:0016020 
GO:0044165 
GO:0044167 
GO:0044177 
GO:0044178 

P0DTC7 
GO:0016032 
GO:0039646 
GO:0060153 

No 
annotations 

GO:0016020 
GO:0016021 
GO:0019012 
GO:0033644 
GO:0044165 
GO:0044167 
GO:0044173 
GO:0044177 
GO:0044178 

GO:0039646 GO:0005515 
GO:0005537 

GO:0016020 
GO:0016021 
GO:0019012 
GO:0044165 
GO:0044167 
GO:0044173 
GO:0044177 
GO:0044178 

P0DTD8 
No annotations GO:0016020 

GO:0016021 
GO:0033644 

GO:0046740 GO:0015078 GO:0016020 
GO:0016021 
GO:0033644 

P0DTC8 No annotations GO:0006954 
GO:0031666 
GO:0045087 

GO:0005515 GO:0005576 
GO:0005615 

P0DTC9 
No 

annotations 
GO:0003723 GO:0019012 

GO:0019013 
GO:0044172 
GO:0044177 

GO:0000413 
GO:0006457 
GO:0016567 

GO:0003723 GO:0019012 
GO:0019013 
GO:0030430 
GO:0044172 
GO:0044177 
GO:0044220 

P0DTD2 
No annotations GO:0016020 

GO:0030430 
GO:0033644 
GO:0044161 
GO:0044162 

GO:0006412 GO:0000049 
GO:0003735 

GO:0016020 
GO:0030430 
GO:0044161 
GO:0044162 

A0A663DJA2 No annotations GO:0009734 
GO:0010930 
GO:0048364 

GO:0005506 
GO:0009055 
GO:0020037 

GO:0016020 
GO:0016021 

* Of the 14 proteins of SARS-CoV in UniProt, 7 have annotations in BPO, 6 in 
MFO and 12 in CCO. Of the 138 GO terms annotated, only three are 
experimentally verified. We predicted 83% of the annotations for BPO, 47% 
for MFO, and 87% for CCO. Bold terms indicate experimentally verified 
annotations; underlined terms indicate predicted terms which are also 
annotated. 
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Table S6: Datasets for similarity lookup at different sequence identity 
thresholds. 

 GOA2017 GOA2020 %identical 
proteins  

Average 
sequence 
identity 

Full 307,287 295,558   

100% Seq. ID. 303,984 292,059 87% 44% 

90% Seq. ID. 302,052 290,030 87% 44% 

80% Seq. ID. 300,571 288,561 87% 44% 

70% Seq. ID. 298,677 286,748 87% 44% 

60% Seq. ID. 295,823 284,043 87% 43% 

50% Seq. ID. 290,094 278,711 87% 43% 

40% Seq. ID. 281,539 270,691 87% 43% 

30% Seq. ID. 262,440 260,056 72% 43% 

20% Seq. ID. 242,154 242,261 63% 43% 

* The first two columns show the size of data sets extracted from the Gene Ontology 
Annotation (GOA) database 9-11 in January 2017 (GOA2017) and January 2020 
(GOA2020). The first row shows the full data set when only considering 
sequences from Swiss-Prot 12 and removing proteins only annotated to the roots 
of the three ontologies. The remaining rows represent data sets redundancy 
reduced against the CAFA3 targets at sequence identity thresholds of 100, 90, 
80, 70, 60, 50, 40, 30 and 20%, respectively. Redundancy reduction was 
performed using CD-HIT and PSI-CD-HIT 13,14. The last two columns show the 
agreement between the two GOA versions, %identical proteins gives the 
percentage of identical proteins in both sets (by UniProt identifier), and Average 
sequence identity states the average sequence identity of all protein pairs. 
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4. Prediction of Protein Binding Residues
from Sequence

4.1. Evolutionary Couplings and Sequence Variation Effect
Predict Protein Binding Sites

4.1.1. Preface

Binding of proteins to ligands such as small molecules, metal ions, or macromolecules
like DNA, RNA, and other proteins is one important aspect of the molecular function
of proteins [2]. However, with experimentally verified binding annotations unknown for
most protein sequences, we have to rely on prediction methods.

We developed bindPredictML17, a method based on an Artificial Neural Network (ANN)
that predicts binding residues mainly relying on evolutionary information derived from
evolutionary couplings [116, 117] and variant effect predictions [67, 118]. Evolutionary
couplings have proven to be a powerful concept to predict protein structure [116, 117] and
it has also been hypothesized that they could capture functional information [117, 119].
We calculated evolutionary couplings using EVcouplings [116, 117, 120]. Variant effect
predictors allow to predict whether a mutation from the native amino acid X at a certain
position to any other amino acid Y will have an effect on the protein or not. Changing
a protein residue involved in binding often leads to a change in this protein’s function.
Therefore, such mutations would be predicted to have a strong effect and, consequently,
these predictions can be an indicator for the functional relevance of a residue. Variant
effects were predicted using SNAP2 [67] and EVmutation [118].

bindPredictML17 achieved a performance of F1 = 26.2 ± 0.8% clearly outperforming
a random approach as well as a simple method combining the same input features as
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4. Prediction of Protein Binding Residues from Sequence

a weighted sum instead of using Machine Learning (ML). Although our method was
limited by the small data set and possibly missing annotations of binding residues, the
predicted binding residues formed spatial clusters in the protein indicating that wrongly
predicted binding residues could depict unknown binding sites. bindPredictML17 is
solely based on sequence information allowing predictions for proteins without known
structures. The source code of the method is made available as a GitHub repository:
https://github.com/Rostlab/bindPredict.

Author contribution: I implemented bindPredictML17, performed the detailed per-
formance assessment of the method, and did the majority of manuscript writing. Thomas
A. Hopf helped with running EVcouplings and interpreting its results. All authors
drafted the manuscript.

4.1.2. Journal Article: Schelling et al., Proteins: Structure, Function, and
Bioinformatics (2018)

Reference: Schelling, M., Hopf, T. A., and Rost, B. Evolutionary couplings and se-
quence variation effect predict protein binding sites. Proteins: Structure, Function, and
Bioinformatics, 86(10):1064–1074, 2018. doi:10.1002/prot.25585
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Abstract
Binding small ligands such as ions or macromolecules such as DNA, RNA, and other proteins is

one important aspect of the molecular function of proteins. Many binding sites remain without

experimental annotations. Predicting binding sites on a per-residue level is challenging, but if 3D

structures are known, information about coevolving residue pairs (evolutionary couplings) can

predict catalytic residues through mutual information. Here, we predicted protein binding sites

from evolutionary couplings derived from a global statistical model using maximum entropy.

Additionally, we included information from sequence variation. A simple method using a

weighted sum over eight scores substantially outperformed random (F1 = 19.3% � 0.7% vs

F1 = 2% for random). Training a neural network on these eight scores (along with predicted sol-

vent accessibility and conservation in protein families) improved substantially (F1 = 26.2%

�0.8%). Although the machine learning was limited by the small data set and possibly wrong

annotations of binding sites, the predicted binding sites formed spatial clusters in the protein.

The source code of the binding site predictions is available through GitHub: https://github.com/

Rostlab/bindPredict.

KEYWORDS

binding site, coevolution, evolutionary couplings, machine learning, neural network,

prediction, sequence variation

1 | INTRODUCTION

Determining protein function is crucial to understand the molecular

mechanisms of life.1 Nevertheless, molecular function remains experi-

mentally unknown for most proteins and de novo predictions remain

challenging.2 One aspect of molecular function is binding: almost all

key cell processes require proteins binding to other molecules.3 These

molecules are referred to as ligands, including ions, small molecules, or

macromolecules such as DNA, RNA, and other proteins. Mostly one

protein specifically binds selected ligands. Often only a few key resi-

dues determine this specificity. Mutations of those key residues tend

to disrupt function. We might distinguish three types of binding sites

with very different features: (i) catalytic sites in enzymes that bind

small molecules, (ii) binding interfaces for large molecules such as

DNA or RNA, and (iii) binding of other proteins. In this work, we have

focused on representatives from the first two classes for which we

had reliable binding annotations: for enzymes and DNA-binding.

1.1 | Evolutionary couplings can predict binding

Genetic variation drives evolution; natural selection acts on the level

of the corresponding phenotype.4 Understanding how the genotype

determines the phenotype is important for characterizing evolutionary

processes and for identifying the phenotypic consequences of muta-

tions. The first step toward understanding how the genotype deter-

mines the phenotype is the analysis of the effect of single sequence

variants (SAV: Single Amino Acid Variant) on the protein. The effect of

a mutation on the phenotype can be influenced by variants at other

positions.5 This phenomenon is referred to as epistasis. For instance,

Abbreviations: ANN, artificial neural network; AUC, area under the receiver

operating curve (ROC-curve); CCS, cumulative coupling scores; DI, direct infor-

mation; ECs, evolutionary couplings; EVmutation, method predicting impact of

sequence variation using ECs; MI, mutual information; MSA, multiple sequence

alignment; PDB, Protein Data Bank; PDIdb, Protein-DNA-Interface Database;

RI, reliability index; ROC-curve, receiver operating characteristic-here plotted as

true positive rate vs false positive rate; SAV, single amino acid variant
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epistatic interactions could lead to a compensation of deleterious

mutants by additional, compensatory mutations.

Evolutionary information can help to elucidate the genotype-

phenotype relation and to identify epistatic interactions. Proteins with

similar sequences belonging to the same family tend to be subject to

similar constraints caused by natural selection. Residues conserved

between all sequences are prone to be functionally important sites.

Epistatic interactions between two residues suggest that the change

of one residue has to be compensated by the change of the other to

maintain function. In particular, residues close in space or residues

involved in protein-ligand interactions are subject to coevolution.6

Because these residues are linked in the constrains they together put

upon evolution, they are referred to as evolutionary couplings (for

brevity: ECs in this work). The correct identification of ECs from

sequence information alone remains challenging, but if it succeeds, de

novo predictions of protein structure and functional hotspots become

possible.7 ECs are often used to predict protein structure but can also

help in the prediction of function.6,8 Using mutual information (MI) as

marker for ECs, it has been claimed that catalytic residues in enzymes

can be predicted given protein sequence and structure as input.9 It

has, also, been shown that networks of residues constructed from

spatial information and MI contain information about functional

residues.10

Here, we present a new method predicting binding site residues

through evolutionary couplings (ECs) from sequence alone. ECs are

calculated using EVcouplings7 which implements a global statistical

model differing from previous approaches using MI. Enzymes and

DNA-binding proteins serve as proxies for binding sites because for

these proteins molecular function is largely defined by the binding

site, and because they represent opposites of the spectrum, that is,

the binding of small (enzymes) and large ligands (DNA-binding). Fur-

thermore, we picked two diverse groups for which detailed experi-

mental data was available for large-scale analysis. This was particularly

important because the application of ECs already reduced the data set

substantially due to its need for very large alignments. Different inter-

pretations of the evolutionary couplings to extract and use informa-

tion about the binding site are analyzed and combined with

information derived from sequence variation. A simple average over

relevant information provides a baseline prediction. This statistical

baseline performed less well than a machine learning solution using a

simple artificial neural network (ANN).

2 | METHODS

2.1 | Data set

The data set included only enzymes and DNA-binding proteins.

Enzymes were extracted from Swiss-Prot11 only using sequences with

an EC number (Enzyme Commission number)12 and at least one refer-

ence to a structure in the Protein Data Bank (PDB).13 DNA-binding

proteins were extracted from the Protein-DNA Interface Database

(PDIdb)14 containing only sequences for which at least one structure

is available in the PDB. PDIdb contains 922 entries referring to

922 protein structures with known protein-DNA interfaces. These

922 structures can be mapped to 272 unique Swiss-Prot entries. The

combined data set (enzymes + DNA-binding) was redundancy reduced

with Unique-Prot15 using an HVAL < 0 to obtain an unbiased data set.

This implied a maximum pairwise sequence identity of 20% for align-

ments of more than 250 residues.16

For enzymes, all residues annotated in the PDB as binding

(as given by the “SITE” and the “SITE_DESCRIPTION” in the

REMARK800 in PDBx files or the “struct_site.gen” and “struct_site.

details” as given in mmCIF) were considered; this included catalytic

sites, co-factors, or metal-binding sites. If multiple structures for a

sequence were available, the binding site annotations of all structures

were used. For DNA-binding proteins, PDIdb provided the binding

sites by giving detailed interface data that can be downloaded for all

922 entries in PDIdb (http://melolab.org/pdidb/web/download/

pdidb_dat.tar.gz). Some sequences map to more than one structure in

PDIdb, and for some structures, PDIdb describes more than one inter-

face.14 We took all structures and all described interfaces into account

and annotated every residue as binding which is part of one of the

DNA-protein interfaces given in PDIdb.

Some structures are oligomers also including heteromers (for

both: enzymes and DNA-binding proteins). To annotate the binding

site of a heteromer, only those chains of the structure mapping to the

given sequence from Swiss-Prot were considered and their binding

site annotations were used for this protein. All residues not labeled as

binding were considered as non-binding in our evaluation.

The final sequence-unique data set contained 412 proteins

(357 enzymes, 55 DNA-binding) corresponding to 3027 different PDB

structures. These data corresponded to 80 385 residues: 9483 bind-

ing (12%) and 70 902 (88%) non-binding (detailed distribution for

binding sites in the Supporting Information Figure S1).

2.2 | ECs: Evolutionary couplings

EVcouplings6–8,17 infers ECs between pairs of residues in a protein

from a multiple sequence alignment (MSA) by computing a maximum

entropy model providing Direct Information (DI) scores that represent

the ECs. EVcouplings calculates alignments using jackhammer.18 To

ensure high quality results for the calculation of EC scores, EVcou-

plings considers positions (residues) in the alignment for which at least

70% of all aligned sequences have an amino acid (as opposed to a

gap).8 Alignments also have to contain enough members and enough

diversity, and to overall cover a substantial fraction of the query (ide-

ally entire structural domains; short regions or motifs are not enough).

Alignments for queries of length L (number of residues/positions used

for the probability model) have to have ≥3 L sequences covering

≥0.7 L residues to provide reasonable results.8 Proteins/families not

meeting any of those criteria were excluded from the analysis. For the

remaining proteins, the distribution of alignment lengths and diversity

of sequences is given in Supporting Information Figure S2. Using the

MSAs calculated with EVcouplings, DI scores were calculated through

FreeContact.19 DI scores are only one way to infer ECs from sequence

alignments; many other methods exist (eg, Refs. 20 and 21). It has

been shown that pseudo-likelihood maximization Direct Coupling

Analysis (plmDCA) to infer ECs performs best for structure predic-

tion.20 Nevertheless, here we used mean-field DCA (mfDCA) because
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it worked better to predict binding sites (plmDCA vs mfDCA in SOM

Supporting Information Table S1).

The method EVcouplings provides scores for all possible pairs of

residues in a protein, but not all of these pairs are actually evolution-

ary coupled. According to the developers of EVcouplings, the number

of chosen pairs should scale monotonically with the length L of the

protein.6 We tested different numbers of pairs (0.5 L, L, 2 L, 3 L) and

observed that the calculation of our scores described below works

best when using the top 2 L scores (Supporting Information Table S1).

Binding residues tend to be on the protein surface. Thus, all

coupled residue pairs for which both residues were in the protein core

were removed. Solvent accessibility was predicted by PROFacc22,23

and was normalized to relative solvent accessibility values using the

maximum solvent accessibility value for each amino acid as given in

Ref. 24 to obtain comparable values.

Most residues relevant for a binding site are confined to a local

region in 3D. Thus, pairs with high EC scores distant in space were fil-

tered out. Distances were inferred from structures of sequences simi-

lar to the query. Structures were chosen using a bitscore threshold. If

more than one structure or chain was available for a protein sequence,

the distance between two residues i and j was defined as the minimal

distance over all structures. If no similar structure were found, no dis-

tances were provided for the query protein.

Another filter compiled cumulative coupling scores (CCS).8 The

CCS of residue i was calculated by summing the ECs over all highly

coupled pairs P involving that residue (Equation (1)). P was either the

original list of highly coupled pairs or a list of pairs filtered by solvent

accessibility or distance.

CCS ið Þ=
X

i, jf g2P
EC i, jf gð Þ ð1Þ

To ascertain comparability between proteins, CCS was normalized

by dividing through the average EC score over all high-ranking pairs

(Equation (2)):

CCSnorm ið Þ= CCS ið Þ
avg Pð Þ avg Pð Þ= 1

Pj j
X

8i, j: i, jf g2P
EC i, jf gð Þ ð2Þ

Next was a filter that identified EC clusters in a network, the

nodes of which formed by all residues in a protein and the edges

drawn between two nodes/residues with “high EC scores.” The list

with “high EC scores” was given by the original EC score ranking or by

the original list filtered through solvent accessibility or by distance.

The clustering coefficient for each node in the network measures how

connected the neighborhood of a certain node is. Thereby, it identifies

residues in locally dense clusters. Let G = (V, E) be a graph with V

being the set of nodes and E being the set of edges. An edge eij

connects nodes vi and vj. The neighborhood of a node vi is given by

Ni = {vj : eij 2 E}. The clustering coefficient Ci is then given by:

Ci =
2 j ejk : vj ,vk 2Ni ,ejk 2 E

� � j
jNi j jNij−1ð Þ ð3Þ

2.3 | Effect predictions as filter

BLOSUM (block substitution matrix)25 is a substitution matrix asses-

sing how likely a mutation is observed in a protein family. BLOSUM

scores sij describe how the mutation of amino acid i into j compares to

the expectation: sij = 0 means “mutation as expected,” while sij < 0

implies “observed less often than expected,” and sij > 0 implies

“observed more often than expected.” The particular version BLO-

SUM62 can, therefore, be used to assess whether an observed muta-

tion is likely to affect function,26 for example, mutations with scores

≥0 can be considered as conservative and occurring in nature (essen-

tially as neutral), those with scores <0 as non-conservative and less

frequent due to purifying selection.27

Our filter combined BLOSUM62 with two methods predicting the

effect of sequence variation upon molecular function, namely with

SNAP228 and EVmutation.17 For each residue in the protein, we deter-

mined the fraction of conservative mutations predicted as non-neutral

by SNAP2 or EVmutation (taking ALL possible 19 non-native mutations

into account). Residues with a high value for this filter were predicted

to be binding. Both effect predictors were considered separately lead-

ing to two different scores. However, these scores are highly corre-

lated (correlation coefficient = 0.65).

2.4 | Prediction based on weighted sum

Overall, eight different scores were used. Three reflected the CCS

scores (Equation (2)) and three the clustering coefficients

(Equation (3)). For both the list of pairs were compiled in three differ-

ent ways: (1) take the full list of highly coupled pairs, (2) filter the list

by solvent accessibility (keeping only pairs with at least one exposed

residue), and (3) filter the list by spatial distance (keeping only those

close). The scores derived from SNAP2 and EVmutation represented

two additional scores. Each of those scores constituted a simple pre-

diction of binding site. In order to combine all eight, CCS was normal-

ized to range from 0 to 1 as all other scores. The combined score ci

for each residue i was the weighted sum over all scores c for this resi-

due for the eight different predictions:

ci =
X8

j=1

wj �cij ð4Þ

The weight for each score was simply given by its F1 score, that

is, the harmonic mean between coverage and accuracy for that partic-

ular contribution. All residues for which ci > c were predicted as bind-

ing where c is a predefined cut-off. To not overestimate the

performance of the weighted sum the data set was split into five

parts. The weights wj and cut-off c were determined using four splits

while the performance based on these weights and the threshold was

estimated for the fifth split. This procedure was repeated so that

every protein was tested exactly once.

2.5 | Application of machine learning

The eight scores to predict binding site residues can also be used as

input to an artificial neural network (ANN). In addition to these eight,

two other input units were used to reach a total of 10 input units,

namely the solvent accessibility prediction and the conservation. Con-

servation scores were calculated based on the MSAs generated by

EVcouplings. Using the Synthetic Minority Oversampling Technique

(SMOTE)29 compensated the imbalance between the class of binding
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residues and non-binding residues. The ANN was implemented using

the Python library scikit-learn30,31 and had one hidden layer with

100 hidden units. Homologous sequences were included exclusively

to train in order to increase the data set size (no homologs used for

cross-training nor for testing). The ANN was trained and optimized

using fivefold cross-validation splitting into three sets: training set,

cross-training (or validation) set, and test set. Each protein in the

redundancy-reduced data set was used for testing exactly once. The

test sets were not used to make ANY decision: neither the best num-

ber of hidden units, nor early stopping, nor the choice of input. All of

those parameters were optimized on the cross-training set. All sets

contained roughly the same number of proteins, but not necessarily

the same ratio of binding/non-binding residues.

2.6 | Homology-based inference

Homology-based inference of protein binding sites was performed based

on the HVAL.16 Assume a query protein Q and a protein with experi-

mentally annotated binding sites E, then the binding sites for Q were

homology-based inferred from E (“read off”), if: HVAL(E,Q) > Threshold.

We tested different thresholds. The proteins were aligned locally using

BLAST,32 HVALs were calculated for these BLAST alignments and

binding site annotations were inferred to the query protein from the

BLAST hit with the highest HVAL.15 Annotations were only inferred

for the part of the query covered by the BLAST alignment.

2.7 | Comparison to other methods predicting
binding sites in DNA-binding proteins

To compare the performance of our method to predict protein binding

sites against other methods we chose three methods specialized on

predicting DNA-binding residues. DP-Bind33 uses the amino acid

sequence, evolutionary profile and low-resolution structural informa-

tion to apply a Support Vector Machine to predict DNA-binding resi-

dues. It was trained on 62 experimentally solved protein-DNA

complexes. DRNApred34 considers a sliding window of 15 physico-

chemical and biochemical properties together with a hidden Markov

model. This feature set serves as input to a logistic regression model

to predict DNA-binding residues. They expand an existing benchmark

dataset and train their model on 2827 DNA-binding proteins.

someNA35 uses a variety of features like amino acid composition, evo-

lutionary profile, predicted secondary structure and solvent accessibil-

ity to train an ANN to predict DNA-binding residues. The model was

trained on 144 proteins from PDIdb.14

2.8 | Performance evaluation

The performance in predicting binding site residues was assessed

through standard measures, namely positive coverage (or sensitivity:

TP/TP + FN: residues correctly predicted as binding/all residues

observed as binding), positive accuracy (or precision: TP/TP + FP: resi-

dues correctly predicted as binding/all residues predicted as binding),

negative coverage (or specificity: TN/TN + FP), and negative accuracy

(or negative predictive value: TN/TN + FN). To compile those numbers

all residues NOT annotated as binding were considered as non-

binding (using the PDB annotation “SITE,” ie, excluding protein-

protein binding sites). The F1 score (F-measure) was compiled as the

harmonic mean over positive coverage and positive accuracy. Each

performance measure was calculated for each protein separately and

the resulting distribution was used to calculate average performance

values and SEs ( σffiffiffiffiffiffiffi
n−1

p where σ refers to the SD and n to the number of

proteins). If not stated otherwise, values for performance measure-

ments are always given as averages along with �one SE.

The performance of the prediction using a weighted sum was

compared with random predictions. The random background was gen-

erated by assigning the calculated ECs randomly to other pairs of resi-

dues in the same protein and by assigning the effect predictions from

SNAP2 and EVmutation randomly to single residues. From this random

assignment, CCS and clustering coefficients and the weighted sum

were calculated as described above.

2.9 | Availability

The best machine learning-based prediction method is available as a

Python project named bindPredict through GitHub: https://github.

com/Rostlab/bindPredict. The repository contains the source code to

run the trained model to predict binding sites in one or more query

proteins. More detailed information on how to run the method is

given in the repository.

3 | RESULTS AND DISCUSSION

3.1 | Weighted combination of single-feature
prediction superior to random

The simplest method predicts binding sites based on a single feature.

For instance, the cumulative coupling score (CSS Equation (2)) reflect-

ing the evolutionary coupling of residue pairs, or the clustering coeffi-

cient of EC scores (Equation (3)), or information from the impact of

sequence variation. While some of those simple methods did not per-

form very well, all outperformed random (Supporting Information

Table S2): the F1 score reached by a single feature was highest for

SNAP2 (F1 = ~24, Supporting Information Table S2), that is, compar-

ing conservative mutations according to BLOSUM62 with effect pre-

dictions from SNAP2 (Methods). The second highest score was

reached for another feature using an effect-prediction method,

namely EVmutation (F1 = ~21, Supporting Information Table S2).

However, if the worst method improved over random the least, this

would also be EVmutation (factor of 2.3, Supporting Information

Table S2). The reason was that EVmutation predicted more residues as

binding, that is, had a higher chance to randomly hit on binding sites.

In other words, the best single feature prediction would not use any

EC or conservation score, instead, it would simply base the prediction

on sites for which many conservative mutations according to BLO-

SUM62 are predicted to have an effect by SNAP2.

The combination of single methods through a simple weighted

sum (Equation (4)) provided a better solution than any single feature

(Supporting Information Table S2). Every residue above a certain

threshold was classified as binding, all others as non-binding. The
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threshold was determined through cross-validation. Comparing

10 thresholds between 0.1 and 0.9 with random always using 80% of

the data to analyze performance, indicated highest improvements

over random for a threshold of 0.3 (Supporting Information Table S3).

Applying this threshold of 0.3 to the weighted sum (Equation (4))

resulted in a weighted-sum prediction method with F1 = 19.3% �
0.7% (sensitivity/positive coverage = 35.2% � 1.2%; precision/posi-

tive accuracy = 16.5% � 0.7%). The weighted sum clearly outper-

formed random predictions (F1 = 1.8% � 0.7%) and served as

baseline to measure further improvements against.

3.2 | Machine learning improved to F1 around 26%

The success of the relatively simple weighted sum over eight predic-

tive features suggested the implementation of machine learning at

least to optimize those weights. The challenge was the tiny data set of

binding sites (redundancy reduced: 9483 binding residues). On top,

the problem turned out to be very complex to learn (ie, the intrinsic

complexity of the data was high): in order to learn, we needed neural

networks with over 100 hidden units. Neural networks with fewer

hidden units led to worse performance results (data not shown). Thus,

even when only using the above eight features and three consecutive

residues, the number of free parameters (100 * [3 * 8 + 2] = 2600)

was already slightly too high for the data set size (the cross-validation

splits gave a training set size with about 5800 binding samples, that is,

just twice the free parameters). Indeed, this rough back-of-an-

envelope calculation was confirmed by the finding that using anything

beyond information from a single residue was not supported by the

data (data not shown).

Consequently, the input to the machine learning was carefully

limited to: (i) the eight input features used for the weighted sum,

(ii) the predicted per-residue solvent accessibility, and (iii) the conser-

vation in the alignment generated by EVcouplings. Thus, the neural

network (ANN) had 10 input and 100 hidden units (in one hidden

layer), and two output units adding to 1200 free parameters. Although

during training, the imbalance between binding (12%) and non-binding

(88%) was corrected by over-sampling the binding residues (by a fac-

tor of eight), the non-binding still dominated. Therefore, the final deci-

sion was not performed by choosing “binding if output >0.5,” but

rather by “binding if output >0.6.” Trying to slightly compensate the

lack of data, homologs were added to the sequence-unique training

set. Overlap between these training homologs and the test set were

carefully avoided, that is, none of the added homologs was more

sequence similar to any test protein than HVAL < 0. Performance was

assessed by fivefold cross-validation using each protein exactly once

for testing. The ANN reached F1 score of 26.2% � 0.8% at a preci-

sion/positive accuracy of 32.2% � 1.1% and a sensitivity/positive

coverage of 30.6% � 1.1%. The ANN achieved an area under the

receiver operating characteristic (AUC) of 0.68 clearly outperforming

a random approach (AUC = 0.45; Supporting Information Figure S3).

The most significant improvement over random was reached at very

low false positive rates (left-most region of ROC-curve, Supporting

Information Figure S3). The performance differed highly between pro-

teins (indicated by a very high median absolute deviation) with very

high performance for a few proteins (Figure 1).

The best machine-learning solution presented in Figure 1 relied

upon distance information inferred from known structures similar to

the query protein. In other words, this method is applicable only if

comparative modeling is applicable.36,37 As this is not the case for all

proteins, another method was tested that made no use of such infor-

mation. For simplicity, this was tested by simply setting all values to

0, instead of by retraining without using that information. Without

any information from known 3D structures, the method reached

F1 = 25.6% � 0.8%. Thus, without distance information, performance

dropped numerically (by 0.4 percentage points), but not significantly

(by half a SE). Clearly then, the 3D information was not crucial.

Not using homologs for training by restricting the training to the

original sequence-unique data set reduced performance to

F1 = 25.5% � 1.9% (vs 26.2% � 0.8% with homologs). Although the

difference was not statistically significant, it held for all cross-valida-

tion-folds. Through the addition of homologs, the training data

increased about threefold from roughly 6000 binding residues per

cross-validation-fold to 18 000. The gain from using homologs might

have been so limited because homologs might not contain enough

new information, but only information similar to the data already pre-

sented. Including more non-redundant, unique data was impossible

due to lack of data when focusing on enzymes and DNA-binding pro-

teins with experimentally known structures. If the inclusion of more,

but redundant data already improves substantially, the addition of

more new data might be the most important key to major

improvements.

Another limitation of the performance was likely noisy data.

Wrong annotations of binding sites would make it more difficult for

the neural network to learn the correct classification. Analyzing the

size of the binding site suggested that certain annotations had severe

issues (Supporting Information Figure S1). For instance, several

enzymes had binding sites annotated for 60% of all their residues.

Clearly not correct. In fact, all outliers, that is, all cases of proteins with

most annotated binding residues were enzymes, not DNA-binding

proteins. Correct annotations are likely to invert this finding: DNA-

binding sites are, on average, larger than sites conveying enzymatic

activity (this result is mostly due to many extreme outliers, Supporting

Information Figure S1 violin plots under x-axis). Removing those cases

from the testing would “beautified” the results reported (performance

measures are higher for the set with fewer proteins); removing them

from training would have reduced the valid points even further and

thus been counterproductive. Therefore, for improving the method,

not only more, but also better and more reliable data is needed. Sur-

prisingly, the ANN learned from the experimental data to predict

enzymes as having on average more binding sites than DNA-binding

proteins (Supporting Information Figure S1, rightmost violin plots).

3.3 | Simple machine learning solution clearly
outperformed weighted sum

The prediction of binding site residues using a weighted sum of CCS,

clustering coefficients and disagreement between BLOSUM and

SNAP2 and BLOSUM and EVmutation served as one baseline predic-

tion. Machine learning these eight plus solvent accessibility and con-

servation improved by roughly six percentage points from F1 = 19.3%
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to F1 = 25.5% (Figure 2). This increase was statistically significant by

four standard errors (corresponding roughly to a P-value <10−4).

The neural network outperformed the simple weighted sum for

most proteins. However, despite the substantial difference in the

averages, the weighted sum did better for many others (Supporting

Information Figure S4: points below diagonal). Especially for the few

examples for which the neural network failed completely to predict

any binding site at the default threshold (Supporting Information

Figure S4: points at F1 = 0), the weighted sum at least predicted some

binding site residues.

3.4 | Homology-based inference limited to a few
proteins

Given a protein E with experimental binding site annotation that is

sequence similar to a query protein Q, the binding sites for Q can be

predicted by homology-based inference by simply transferring the

annotation from E to Q, if, for example, HVAL(Q,E) < T, that is, the

two are more similar than some threshold T. For instance, for T = 50

(HVAL > 50 implies over 70% pairwise sequence identity for long

alignments), homology-based inference reached F1 = 46% � 7%

(Supporting Information Figure S5) for the subset of proteins in our

dataset for which this method could be applied. The machine learning

de novo prediction method reached F1 = 29% � 3% on the same sub-

set of proteins (ie, better than F1 = 26.2% � 0.8% for the full data

set). Using a higher HVAL thresholds dropped performance (eg, HVAL

> 70: F1 = 36% � 15%). Performance dropped for lower HVAL

threshold. Nevertheless, at HVAL > 5 (corresponding to >25% PIDE

for alignments over 250 residues), homology-based inference still

slightly outperformed the de novo prediction (F1 = 29% � 2% for

homology-based inference vs F1 = 27% � 1% for de novo, Supporting

Information Figure S5).

By definition, homology-based inference is limited to finding

sequence-similar proteins with reliable experimental annotations.

Only for 27 of the 412 proteins in our data set (ie, 7%), we found a

second protein with binding annotations at HVAL > 50. As always,

however, the advantage of homology-based inference is that its

power increases with growing databases. Another way to compare

homology-based inference is by randomly (probability for binding =

0.12) predicting binding sites when no experimental information was

available. This gave F1 = 12.9% � 0.7% for HVAL > 50, significantly

below the de novo prediction for the full set (26.2% � 0.8%).

These findings suggest combining homology-based inference and

de novo prediction inferring binding annotations if a similar protein is

available and predicting them using the ANN, otherwise. For HVAL >

FIGURE 1 Performance of neural network. The neural network using CCS, clustering coefficients and disagreement between BLOSUM and

SNAP2 and BLOSUM and EVmutation as well as per-residue solvent accessibility and conservation as input features achieved a median accuracy
of 31% with a median absolute deviation of (MAD) 25% corresponding to an average positive accuracy of 32.2% � 1.1%, a median positive
coverage of 28% with a MAD of 18% (average coverage of 30.6% � 1.1%) and a median positive F1 score of 27% with a MAD of 15% (average
F1 score of 26.2% � 0.8%). Because the high imbalance between binding and non-binding residues, much higher values could be achieved for the
negative accuracy and negative coverage than the (positive) accuracy and coverage. The performance varied highly between proteins and high
values of the F1 score between 50% and 60% could be achieved for a few proteins. The performance of three examples is highlighted as colored
dots. The structures of the chosen proteins and the binding site prediction are visualized in Figure 4
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10, the combined prediction reached the highest performance with

F1 = 29% � 1%. For HVAL > 10, we have a homologous protein for

117 of 412 proteins. For these, homology-inference achieves

F1 = 34% � 3% compared with F1 = 27.1% � 0.8% for de novo pre-

diction. Assigning binding residues randomly when no experimental

information was available leads to F1 = 19% � 1% for HVAL > 10. If

homology-based inference outperformed de novo prediction down to

HVAL > 5, why is the optimal combination not around HVAL = 5,

then? Ultimately, because we are comparing apples and oranges:

when citing the performance of homology inference vs de novo, we

used different data set for both. When optimizing the threshold, the

optimization implicitly used the entire set. Put differently, the above

statement that homology inference works better down to HVAL >

5 seemed to be based on overly optimistic data sets available for

homology inference: for the same proteins, de novo prediction per-

formed better than average.

3.5 | A few residues predicted reliably

Users of a binding site prediction method might be interested in con-

sidering only the most reliable predictions. More strongly predicted

residues were also predicted more accurately (Figure 3), for example,

44% (arrow for Accuracy in Figure 3) of the 12% most strongly pre-

dicted binding residues (arrow for Coverage in Figure 3) were pre-

dicted correctly. Conversely, almost 20% of the residues were

predicted at the lowest accuracy around 18% (saturation in accuracy

curve below 0.4, Figure 3). The highest accuracy of 50% was reached

for only 1% of all residues (coverage of 0.01%, Figure 3). No residues

were predicted with a probability ≥0.9 and only very few for ≥0.8.

Accuracy did not increase much, for the subset of the most reli-

able predictions for each protein. However, zooming into the most

reliable predictions, users could focus on some proteins for which very

good predictions were obtained. Considering only the single most reli-

able prediction for each protein, this prediction was correct for 35%

of all proteins (Table 1). Picking the five strongest predictions in each

protein, at least one out of these five was correct for 70% of all pro-

teins (Table 1); all five were correct for 5% of all proteins. Therefore, if

only predictions with a high probability are picked, these could seed

further (experimental and computational) investigations.

3.6 | Prediction method appeared to detect surface
patches of binding

A closer inspection of three examples that were picked randomly from

three different groups of proteins, namely those with low, average, or

high F1 (Figure 4A-C; points marked in Figure 1) suggested that higher

F1 scores originated from simultaneous reduction in residues mistak-

enly predicted as binding (FP) and as non-binding (FN). Examples with

mediocre performance suggested that binding site residues missed

TABLE 1 Choosing the most reliable prediction(s) in each protein

Number of most
reliable predictions
chosen per protein

Number of proteins
with at least one
correct prediction

Fraction of proteins
with correct
predictions

1 144 35%

2 213 52%

3 254 62%

4 277 67%

5 289 70%

When only considering the best prediction for every protein, the neural
network made a correct prediction for 35% of the proteins. When picking
the five best prediction, it could make at least one correct prediction for
70% of the proteins and for 5%, it was even completely right.

FIGURE 2 Comparison of performance of weighted sum and of

neural network. Using a weighted sum of CCS, clustering coefficients
and disagreement between BLOSUM and SNAP2 and BLOSUM and
EVmutation achieved an average F1 score of 19.3% � 0.7% while the
neural network using these scores as well as per-residue solvent
accessibility and conservation as input features achieved an average
F1 score of 26.2% � 0.8%. Applying machine learning improved the
predictive performance by seven percentage points and led mainly to
an improvement of proteins with an average performance while the
best performance achieved did not differ much between the
application of the weighted sum and the neural network

FIGURE 3 Accuracy and coverage for different probability cut-offs.

Using different cut-offs for the probability of the output unit
“binding” to classify a prediction showed that the accuracy increased
for higher probabilities while the coverage decreased. A small fraction
of residues (12.8%) could be predicted at an accuracy of 44.0% for a
probability cut-off of 0.8 while the highest precision of 50% could
only be achieved for a very small fraction of residues (0.01%). There
were no predictions of binding site residues for a probability ≥0.9
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(FN) tended to spatially cluster around correct predictions. Also,

residues wrongly predicted as binding tended to form small spatial

clusters away from the binding site. Overall, the prediction method

appeared to pick up spatial relations although only sequence informa-

tion was used as input. For the examples chosen here, this even

remains true when not using any distance information to predict bind-

ing sites. The predictions only changed slightly (one new FP not pre-

dicted when using distance information) while the larger proportion

remained the same.

In other words, the center of the binding site was often predicted

correctly while its size was underestimated. This implied that residues

in or at the periphery of the binding site were missed. The correctly

predicted residues could help to identify the whole binding site by

serving as a starting point for further analyses and experiments. Also,

some residues were wrongly predicted as binding cluster. Especially if

such clusters are big enough, it might be that instead of “false

predictions,” these could be sites for which experimental results are

missing. Put differently: the predictions might appear less accurate

than they really were due to mistakes in annotations. For each pro-

tein, some residues were predicted at high reliability (Figure 3), and

yet were labeled as incorrect. If only the 12% predictions with the

highest reliability were considered, there was a prediction for every

protein (Supporting Information Figure S6), but only 44% of those

appeared correct (Figure 3). In fact, for 30% of the proteins, none of

the five most reliable predictions were correct (Table 1). Randomly

picking one of those proteins and visualizing the five most reliable

predictions on the structure showed that these five predictions form a

spatial cluster (Figure 4D). This cluster was also present when not

using distance information to predict binding sites. In fact, these resi-

dues are located in a cavity that could function as a binding site. This

suggested that these predictions were not wrong, but that a binding

site annotation might be missing for this protein. We could not carry

out such an analysis for all 30% of the above examples, nor can we

FIGURE 5 Comparison of performance between DNA-binding

proteins and enzymes. Comparing the performance for DNA-binding
proteins and enzymes showed that binding sites of DNA-binding
proteins are predicted at a lower accuracy while they are predicted at
a slightly higher accuracy leading to an overall slightly lower F1 score
for DNA-binding proteins. A more detailed analysis of the
performance including negative accuracy and negative coverage is
shown in Supporting Information Figure S7

FIGURE 4 Examples of predicted binding sites. Residues correctly

predicted as binding are shown in red, residues wrongly predicted as
non-binding in blue and residues wrongly predicted as binding in
black. (A) The lysozyme of the bacteriophage P1 (UniProt identifier
Q37875) is an example of an enzyme for which the prediction was
rather bad with an F1 score of 4.2%. Especially binding residues
around the center of the binding site were missed while certain
regions were falsely predicted as binding. (B) The binding site of the
multidrug-efflux transporter 1 regulator of Bacillus subtilis (UniProt
identifier P39075) could be predicted with an F1 score of 29.2%.
Again, the size of the binding site was underestimated leading to
many missing residues around the center of the binding site while a
second binding site in the lower part of the protein was predicted.
(C) the prediction of the binding site of the RING finger and CHY zinc
finger domain-containing protein 1 of the mouse (UniProt identifier
Q9CR50) achieved an F1 score of 57.1%. The number of wrongly
predicted residues was highly reduced compared with the other
examples with a lower performance. (D) The 2-hydroxymuconate
tautomerase from pseudomonas sp. (UniProt identifier P49172) is one
of the proteins where none of the five most reliable predictions were
correct. Visualizing these predictions on the structure (shown in black)

made it obvious that they form a spatial cluster which can also be
seen as a cavity that could act as a binding site. Therefore, it is
possible that these five predictions are in fact not wrong, but the
binding site is just not experimentally annotated
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ascertain that this protein does have an unknown binding site. How-

ever, given that we tested one single example and found something

very reasonable, the suspicion that we substantially underestimated

performance was clearly supported by this example. Overall, there-

fore, binding site residue predictions and especially very reliable pre-

dictions in proteins with known annotations might help to identify

previously missed binding sites and might offer new directions for

experiments to refine binding site annotations.

3.7 | Underestimating size of DNA-binding sites

Performance for DNA-binding proteins was slightly worse than for

enzymes (Figure 5; Supporting Information Figure S7). Since DNA-

binding sites tend to be larger than substrate binding sites of enzymes

(Supporting Information Figure S1C), we had assumed the opposite,

namely a higher performance for DNA-binding proteins than for

enzymes. One problem for the prediction of DNA-binding might have

been that 87% of the proteins in the data set were enzymes

(357 enzymes vs 55 DNA-binding). The neural network largely learnt

the average size (Supporting Information Figure S1: compare violin

plots along y- and x-axes). Given the dominance of enzymes, the size

prediction was also dominated by the smaller binding sites of those.

Thus, DNA-binding sites tended to be more often under-predicted

than those of enzymes (Supporting Information Figure S1: more black

disks above than below dashed line). This under-prediction reduced

the performance for DNA-binding proteins. DNA-binding proteins

were also the most extreme cases for which the weighted sum out-

performed the neural network (Supporting Information Figure S4).

This added to the view that the abundance of enzymes in the training

distracted the neural networks from learning DNA-binding sites.

3.8 | Active site residues predicted at higher
reliability

Additional to the binding sites annotated in the PDB and in the PDIdb,

Swiss-Prot provides explicit annotations for “active sites,” and alterna-

tive annotations for” binding sites.” However, only 64 of the 412 pro-

teins (16%) had active/binding sites with an experimental evidence

code (ECO:0000269) in Swiss-Prot/UniProt. On average, about 1% of

the residues in a protein were annotated as binding by Swiss-Prot/

UniProt compared with 12% for PDB and PDIdb. Obviously, Swiss-

Prot/UniProt annotations were based on a narrower definition of

binding, while PDB identified binding sites as a larger spatial region

around the ligand. The fact that only 16% of the proteins had any

binding/active site annotation in UniProt demonstrated that most

annotations (84%) remained missing in UniProt even by their own def-

inition. Annotations from the PDB and PDIdb, thus, rendered a more

comprehensive data set for method development and assessment.

Nevertheless, if de novo prediction works, it should also work for sites

annotated in Swiss-Prot, in particular, since those—where available—

might point to the most important binding residues in a protein.

The direct comparison between annotations that cover 1% of all

residues and those covering 12% would be non-sense because the

random odds of hitting 1 in 100 differ more than tenfold from those

of hitting 12 in 100. Thus, the two sets of annotations needed to be

compared indirectly. For instance, binding sites annotated in Swiss-

Prot were predicted at higher reliability than annotations from the

PDB and PDIdb (Supporting Information Figure S8). In fact, when con-

sidering the 10% most reliable predictions for every protein, 9% of

these predictions were Swiss-Prot binding sites as compared with 1%

in the whole data set. Thus, Swiss-Prot binding site residues were

overrepresented by a factor of 8 in the 10% most reliable predictions.

PDB/PDIdb binding site residues were only over-represented by a

factor of 2.5 (12% in the whole set vs 30% in the 10% most reliable

predictions). The de novo machine learning method might have been

trained on too inclusive (too large) binding sites from the PDB/PDIdb.

However, the resulting method predicted the most important subset

of these residues (narrower Swiss-Prot) even more reliably than those

it had been trained on.

3.9 | Specialized DNA-binding predictions seemed
better

Although, the machine learning had not been able to perform well for

DNA-binding proteins, we still compared it to methods specialized on

this task, namely on the three methods DP-Bind,33 DRNApred,34 and

someNA.35 Performance comparisons between these methods and our

machine learning had limited value because all three methods most

likely used many of the proteins in our data set (in fact, someNA used

all DNA-binding proteins from our data set) for training their method.

As we could not access their cross-validation results, we had to com-

pare their training with our testing performance which will clearly

over-estimate the performance for the specialists. Specialist could

learn specifics about protein-DNA binding that generalist methods

such as the one presented here will hardly be able to zoom into.

The 55 DNA-binding proteins in our dataset suggested that DP-

Bind and someNA perform similar (F1 = 46%), while DRNApred

appeared inferior (F1 = 17%, Table 2). Again, as DRNApred was shown

to be superior to state-of-the art prediction methods,34 it might be

that the other were optimized more on proteins identical or similar to

the 55 used here, that is, that we inadequately compared training and

testing when comparing DP-Bind/someNA on the one side (training)

and DRNApred (testing) on the other. Also, the low performance of

DRNApred is partially caused by a low coverage which suggests that

DRNApred was trained on smaller binding sites leading to an underes-

timation of the size of the binding site. The generalist method intro-

duced here fell between the two extremes (F1 = 22% �2%). Although

some of the difference to the much better DP-Bind and someNA might

root in the data set overlap issue (“used for training”), the difference

appeared to be so substantial (more than factor of two in F1) that a

major reason might simply be the specialists to clearly outperform the

generalist. More surprising was that although DRNApred most likely

TABLE 2 DNA-binding specialist vs generalist

Method DP-bind someNA DRNApred Generalist-here

F1 score 46% � 2% 46% � 3% 17% � 3% 22% � 2%

The three specialists in predicting protein-DNA binding (DP-bind,
someNA, and DRNApred) were applied to the 55 DNA-binding proteins in
our dataset. The numbers reflect the cross-validated view only for the
method introduced here (generalist) because the specialists all used either
the same or similar proteins for training.
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used some of those 55 proteins for training and although it specialized

on DNA and RNA prediction, our generalist was competitive

(improvement by 2.5 standard errors not impressive but significant).

This showed that the generalist picked up crucial features about

“binding” although not learning any features specific to nucleic acid

binding.

4 | CONCLUSIONS

Our hypothesis was that we could use evolutionary couplings to

directly predict protein ligand binding sites directly from sequence. In

the most optimistic view, we proved that the signal carried by evolu-

tionary couplings clearly outperformed random predictions and that

our rigid decision to consider existing annotations as complete (not

annotated as binding implied non-binding) was obviously too rigorous

due to the incompleteness of and the noise in existing binding site

annotations. The binding of proteins to DNA and to substrates upon

which enzymes act, served as proxy for protein ligand binding.

Combining eight different scores derived from evolutionary cou-

plings and sequence variation into a weighted sum and using this sum

to predict binding site residues in enzymes and DNA-binding proteins

resulted in a method outperforming a random approach by roughly

17 percentage points (F1 = 19.3 � 0.7, Figure 2). To put this score

into perspective: picking a protein for which 10 residues are predicted

as binding, 2 of 10 will be correct and this prediction will cover

roughly half of the entire binding site. This combined prediction

served as a baseline to assess whether machine learning can improve

performance. Training a neural network using the same eight scores

plus predicted solvent accessibility and conservation statistically sig-

nificantly outperformed the baseline (F1 = 26.2% � 0.8%, Figures 1

and 2).

The strength of the neural network prediction reflects the

reliability of the prediction (Figure 3). Choosing the five most reliable

predictions for each protein gives at least one correctly predicted

binding residue in 70% of all proteins (Table 1). Visualizing some

examples suggested that especially very reliable, but wrong predic-

tions of binding sites tended to form spatial clusters (Figure 4) which

might imply that the predictions were more correct than the annota-

tions. Therefore, the neural network can help in refining annotations

of known binding sites or in finding experimental evidence for new

binding sites. When homologs with experimentally known annotations

of binding sites are available, reading those off is a better strategy

than using the de novo prediction method (Supporting Information

Figure S5). The simple combination “if an experimental annotation to

a protein at HVAL > 10 is available: use homology inference, else: use

de novo” gave the best performance boost, reaching F1 = 29% � 1%.

For our data, DNA-binding was, unexpectedly, predicted less well

than active sites (Figure 5; Supporting Information Figure S1), and

good DNA-binding predicting specialists seemed to clearly outperform

the generalist approach introduced here (Table 2). Ultimately, the

major limitation in performance appeared to originate from the insuffi-

cient amount of data available for our approach. This data shortage

might also have been in the way of clearly answering our hypothesis:

evolutionary couplings enable the prediction of generic small binding

sites (proxied by enzymes) and large binding sites (proxied by DNA-

binding). At the same time, the evolutionary couplings did not provide

the features most important for the success of the prediction method

(Supporting Information Table S2). In particular, features generated by

methods that predict the effect of sequence variation upon molecular

function (eg, SNAP2 and EVmutation, Supporting Information

Table S2) contributed more to the prediction success.
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Comparison of size of the actual binding site with size of the predicted binding site. 

DNA-binding proteins tend to have a larger binding site than enzymes. However, the neural 

network learnt the average size of binding sites from the given data. The data is highly 

dominated by enzymes (357 enzymes vs 55 DNA-binding). Therefore, the neural network 

tended to predict binding sites with a similar size as expected for enzymes leading to an 

underestimation of the actual size of the binding site for DNA-binding proteins. Proteins 

represented by dots that are below the dotted line are proteins for which the size of the actual 

binding site were larger than of the predicted binding site. 
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Fig. S2: 

 

 

 

Sequence diversity and length of MSAs generated by EVcouplings. To ensure high 

quality results, the MSA should contain at least 3L sequences with L being the number of 

positions in the query sequence used for the probability model and the sequence diversity 

within the alignment should be high enough, so sequences in the alignment should have a 

low sequence identity to the query. The upper part of the figure shows the sequence diversity 

for every MSA, only outliers are not shown for better visualization. It becomes clear that 

most sequences in the alignments have a sequence identity between 0.2 and 0.6 to the query 

sequence with an average sequence identity for all alignments of 0.26. Alignments in the 
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upper part of the figure are sorted by their size (number of sequences) as shown in the lower 

part. The size is given with respect to L and alignments with a size <3L were excluded from 

the data set. The curve is a reverse cumulative curve. So, for every length x, the corresponding 

point on the curve gives the fraction of alignments with a size >=x. 
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Fig. S3: 

 

 

 

ROC curve and AUC for ANN predicting binding site residues. The receiver operation 

characteristic (ROC) sets the coverage and false-positive rate (FPR, number of residues 

falsely predicted as binding divided by the number of non-binding residues) into relation. 

The straight line represents the ROC for a random prediction. The area under the curve 

(AUC) is 0.68 showing that the ANN outperforms random (AUC=0.45) 

  



Schelling, Hopf & Rost  Supporting online material 

Appendix p. 8 

Fig. S4: 

 

 

 

Comparison of performance of weighted sum and neural network. Comparing the F1 

score of the neural network and the weighted sum on a per-protein basis showed that the 

neural network outperformed the weighted sum for most cases while there are some proteins 

for which the weighted sum achieved higher F1 scores. Every point below the dotted line 

represents a protein for which the weighted sum works better than the neural network. It 

became apparent that most of the extreme cases for which the weighted sum worked much 

better than the neural network were DNA-binding proteins suggesting that the neural network 
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had more problems in correctly predicting binding sites for DNA-binding proteins than the 

weighted sum. 
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Fig. S5: 

 

 

 

Performance of homology-based inference limited by number of available homologs. 

When predicting protein binding sites by transferring a known binding site annotation from 

a similar protein to the query protein (homology-based inference), this inference works best 

when two proteins are considered as similar if they have a pairwise HVAL > 50. For this 

threshold, homology-based inference on the set of proteins with a homolog achieves an 

average F1 score of 46±7% while machine learning can only achieve an average F1 score of 

29±3% on the same set. However, the performance of homology-based inference is limited 

by the fact that there does not exist a homolog for every protein. Assigning binding residues 

randomly to the remaining proteins leads to an overall performance of 12.9±0.7% which is 

significantly worse than the performance of the de novo prediction (26.2±0.8%). Applying 

homology-based inference if a homolog exists and de novo prediction otherwise, improves 

the performance to F1=29±1% when choosing HVAL > 10 to define homology.  



Schelling, Hopf & Rost  Supporting online material 

Appendix p. 11 

Fig. S6: 

 

 

 

Number of proteins with a prediction for most reliable predictions. When only the 12% 

best predictions with the highest probability were considered, there was a prediction for every 

protein. This showed that reliable predictions were made for every protein although it is not 

clear whether these predictions are right or wrong. 
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Fig. S7 

 

 

 

Detailed comparison of performance between DNA-binding proteins and enzymes. 

Comparing the performance for DNA-binding proteins and enzymes showed that binding 

sites of DNA-binding proteins are predicted at a lower coverage while they are predicted at 

roughly the same accuracy leading to an overall slightly lower F1 score for DNA-binding 

proteins. Because of the high imbalance between binding and non-binding residues, negative 

accuracy and negative coverage achieve very high values for both enzymes and DNA-

binding proteins. Most residues are correctly predicted as non-binding. 
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Fig. S8 

 

 

 

Comparison of prediction of binding site residues annotated in UniProt and of binding 

site residues annotated in PDB/PDIdb. Comparing the reliability of prediction for binding 

site residues annotated in UniProt with binding site residues annotated in PDB/PDIdb shows 

that binding site residues from UniProt are predicted at higher reliability than binding site 

residues from PDB/PDIdb. However, since UniProt only has experimentally validated 

annotations for 64 of our 412 proteins, the UniProt annotations are far from complete (ever 

enzyme and DNA-binding protein should have an annotated binding site). Therefore, UniProt 

annotations are not sufficient for a de novo prediction of protein binding sites.  
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Table S1: Performance comparison for different parameters for plmDCA and mfDCA* 

 plmDCA

0.9 

plmDCA

0.999 

plmDCA

0.99999 

mfDCA 

0.5L 

mfDCA 

L 

mfDCA 

2L 

mfDCA 

3L 

F1 

score 

(CCS) 

6.0±0.5 3.8±0.4 3.2±0.4 4.8±0.4 9.4±0.5 9.3±0.5 10.2±0.5 

F1 

score 

(CC) 

13.7±0.8 8.4±0.4 7.2±0.4 11.0±0.5 15.5±0.6 17.6±0.7 16.1±0.6 

 

* plmDCA provides a probability for each residue pair to reflect a real evolutionary coupling 

while mfDCA only provides a ranking given by the order of the scores. To determine how 

many scores should be considered as real evolutionary couplings, we tested different numbers 

of pairs. For plmDCA, best results are obtained both for CCS and CC when using a 

probability cutoff of 0.9 and considering every residue pair with a probability equal to 0.9 or 

higher as actually evolutionary coupled. For mfDCA, using the top 0.5L pairs leads to the 

worst results both for CCS and CC. Using the top 2L leads to the best performance for CC 

while using the top 3L leads to the best performance for CCS. However also the random 

performance increases for the top 3L, therefore we decided to use only the top 2L pairs for 

binding site prediction. For the best parameter settings (0.9 and 2L), mfDCA performs better 

than plmDCA when trying to predict binding sites. Therefore, mfDCA and a cutoff of 2L is 

used in our analysis.  
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Table S2: Simple features outperform random in predicting binding sites. * 

Single feature F1 score F1 score (random) Improvement 

over random 

CCS   9.3±0.5 1.3±0.5 7.2 

CCS Dist 12.5±0.6 3.4±0.6 3.7 

CCS Solv 10.4±0.5 3.4±0.5 3.1 

CC 17.6±0.7 2.6±0.7 6.8 

CC Dist 16.4±0.7 2.1±0.7 7.8 

CC Solv 16.8±0.7 1.2±0.7 14.0 

SNAP2 24.2±0.8 5.6±0.7 4.3 

EVmutation 21.3±0.8 9.2±0.7 2.3 

Weighted sum 19.3±0.7 1.8±0.7 10.7 

 

*  Predicting protein binding sites based on one single feature either derived from CCS or 

from clustering coefficients (CC) or from SNAP2 or EVmutation predictions always 

succeeded in outperforming a random approach. Performance was compared based on the 

F1 score given in percentage. The random prediction was calculated for each prediction 

differently always using the same scores as for the actual prediction assigned to random 

residues in the protein. The prediction based on SNAP2 achieved the best results 

compared to random.  
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Table S3: Optimizing thresholds for single feature-based predictions. * 

Cutoff 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 F1 score for weighted sum 

Run 1 41.7 39.6 29.3 16.0 6.0 0 0 0 0 

Run 2 17.7 19.9 20.6 14.8 25.0 11.7 0 0 0 

Run 3 31.6 26.0 36.1 12.5 15.4 0 0 0 0 

Run 4 44.0 42.8 34.5 33.3 0 0 0 0 0 

Run 5 19.3 14.9 10.5 10.0 0 0 0 0 0 

Average 30.9 28.6 26.2 17.3 9.3 2.3 0 0 0 

 F1 score for random prediction 

Run 1 27.7 28.8 12.2 0 0 0 0 0 0 

Run 2 10.4 11.7 7.1 1.1 0 0 0 0 0 

Run 3 22.2 16.5 8.4 0 0 0 0 0 0 

Run 4 31.6 23.6 2.8 0 0 0 0 0 0 

Run 5 15.8 13.6 12.2 0 0 0 0 0 0 

Average 21.5 18.8 8.54 0.22 0 0 0 0 0 

 

* Combining all eight scores into a weighted sum resulted in a per-residue score ranging from 

0 to 1. A residue can be classified as binding or non-binding depending on this score. 
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Choosing different cut-offs for the classification and comparing them to a random 

approach using a procedure similar to fivefold cross-validation showed that a cut-off of 

0.3 did not lead to the highest F1 score in general but could improve the most over a 

random prediction for all five data splits. Therefore, this cut-off was chosen to predict 

binding site residues. 



4. Prediction of Protein Binding Residues from Sequence

4.2. Protein Embeddings Allow Prediction of Binding Residues
for Various Ligand Types

While bindPredictML17 (see Section 4.1) achieved satisfactory performance, the evolu-
tionary couplings serving as input are difficult to compute, and the method was mainly
optimized for enzymes and DNA-binding proteins limiting its broader applicability. Re-
placing the hand-crafted features with data-driven inputs and extending the data set
including more ligand types could improve performance and allow easier application to
a larger number of sequences.

Here, we propose bindPredictDL, a method to predict binding residues which improves
upon bindPredictML17. Instead of relying on evolutionary information, bindPredictDL
uses embeddings derived from the language model (LM) ProtBERT-BFD [72] as input.
Additionally, it replaces the development set of bindPredictML17, which used binding
annotations from the Protein Data Bank (PDB) [10, 11] and the Protein-DNA Interface
Database (PDIdb) [122], with a set which consists of more than twice as many proteins
and contains more reliable binding annotations extracted from BioLiP [12, 13]. Using the
distinction of different ligand types from BioLiP, bindPredictDL does not only predict
whether a residue is binding or not, but also to what type of ligand (metal ions, nucleic
acids, or small molecules) it binds.

4.2.1. Material and Methods

Data Set

Protein sequences with annotations of binding residues were extracted from BioLiP [12,
13]. BioLiP provides binding annotations for residues based on structural information
from the PDB [10, 11], i.e., it is possible to have multiple annotations of binding residues
for one sequence if there exist multiple structures for that sequence. To obtain binding
annotations per sequence, we extracted binding information from BioLiP for all chains of
high-resolution structures matching a given sequence and combined these annotations.
Structures were considered as high-resolution if they were determined through X-ray
crystallography [30] with a resolution of ≤ 2.5Å. All residues not annotated as binding
were considered non-binding.
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BioLiP distinguishes four different ligand types: metal ions, nucleic acids (i.e., DNA and
RNA), peptides, and small molecules (referred to as regular ligands in BioLiP). Here, we
focused on predicting ligand binding excluding protein-protein binding. Therefore, we
only considered proteins annotated to bind metal ions, nucleic acids, or small molecules
and excluded peptides. At point of data set creation (26 November 2019), BioLiP
consisted of 104 733 structures with high enough resolution and binding annotations
which could be mapped to 14 894 sequences in UniProt [24]. This set was redundancy
reduced using UniqueProt [123] with an H-VAL < 0. The final set of 1 314 proteins was
split into a test set of 300 proteins and a training set of 1 014 proteins. The training set
was used to train the Deep Learning model and to optimize hyperparameters applying
five-fold cross-validation. The test set was used to evaluate the final model and to
compare the method to bindPredictML17. More information on the data set is given in
Table 4.1.

Training Test

Metal ions
No. of proteins 455 122
No. of binding residues 2 374 881
No. of non-binding residues 77 401 26 763

Nucleic acids
No. of proteins 108 66
No. of binding residues 2 689 1 470
No. of non-binding residues 15 582 14 689

Small molecules
No. of proteins 606 220
No. of binding residues 9 281 3 906
No. of non-binding residues 94 119 42 629

All
No. of proteins 1 014 300
No. of binding residues 13 999 5 869
No. of non-binding residues 156 684 56 820

Table 4.1.: Development set for bindPredictDL. The number of proteins, binding
residues, and non-binding residues for the three ligand types (metal ions,
nucleic acids, and small molecules) and for the entire data set are given.
Values from the different ligand types do not sum to the number for “All”
because some proteins are annotated to bind multiple ligands.

Protein Representation

We used ProtBERT-BFD [72] (in the following called ProtBERT) to create fixed-length
vector representations for each residue in a protein sequence. ProtBERT uses the ar-
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chitecture of the LM BERT [79], which applies a stack of self-attention [81] layers for
masked language modeling. For ProtBERT, a stack of 30 attention layers, each having
16 attention heads with a hidden state size of 1024 (total number of free parameters:
420M) was trained on BFD with 2.1 billion protein sequences [77, 78]. Features learned
during pre-training can be transferred to any task requiring protein representations by
extracting the hidden states of the LM (transfer learning). To predict which residues in
a protein are binding a ligand or not, we extracted 1024-dimensional vectors for each
residue from ProtBERT.

Machine Learning Architecture

bindPredictDL consists of two independent methods: bindPredictDL-binary performs a
binary prediction of whether a residue in a protein is binding or not; bindPredictDL-
multi predicts whether a residue is non-binding or binding to a small molecule, a metal
ion, or a nucleic acid (DNA or RNA). For both methods, a two-layer Convolutional
Neural Network (CNN) implemented in PyTorch [124] was trained using the Adam
optimizer, a learning rate of 0.01, early stopping, and a batch size of 406 resulting in
two batches. ProtBERT embeddings with 1024 dimensions were used as input. The first
CNN layer consisted of 128 feature channels each with a kernel (sliding window) size of
k = 5 mapping the input of size L × 1024 to an output of L × 128. The second layer
created the final predictions by applying a CNN with k = 5 and one feature channel for
bindPredictDL-binary (size of output: L) and three feature channels for bindPredictDL-
multi (size of output: L × 3). A residue was considered as non-binding if the output
probability was < 0.5 for bindPredictDL-binary, or if all of the output probabilities
were < 0.5 for bindPredictDL-multi. The two CNN layers were connected through an
exponential linear unit (ELU) [125] and a dropout layer [126], with a dropout-rate of
50% for bindPredictDL-binary and 70% for bindPredictDL-multi.

To adjust for the high class imbalance (8% binding vs. 92% non-binding residues), we
used weights in the loss function. For bindPredictDL-binary, positive samples (binding
residues) were weighted with a factor of 4.2 simulating that 4.2 times more positive sam-
ples were in the training set than actually in there. For bindPredictDL-multi, individual
weights were assigned for each ligand type with residues binding to metal ions being
weighted with a factor of 8.9, residues binding to nucleic acids with 7.7, and residues
binding to small molecules with 4.4. These weights allowed to adjust for the imbalance
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between binding and non-binding residues within one class but not for the imbalance be-
tween classes, i.e., imbalance between the number of residues binding to small molecules,
metal ions, or nucleic acids. Applying higher weights in the loss function increases re-
call (Eqn. 4.1), lower weights increase precision (Eqn. 4.2). The chosen weights led to
optimal results in terms of F1 score (Eqn. 4.3) and MCC (Eqn. 4.4).

Both methods were trained using five-fold cross-validation. Every protein was used for
validation exactly once.

Homology-based Inference

To transfer annotations by homology, PSI-BLAST [58] alignments were used. For all
proteins in the development set (training + test), we generated PSI-BLAST profiles with
two iterations and E-value ≤ 10−3 using an 80% non-redundant database combining
UniProt [24] and PDB [10] following a standard protocol implemented also for other
methods [60, 62, 68]. The resulting profiles were then aligned at E-value ≤ 10−9 against
all proteins with known binding annotations. For performance estimates, self-hits were
excluded. Taking the hit of all retrieved alignments with the highest pairwise sequence
identity to the query, a local alignment was calculated between query and hit using the
Smith-Waterman algorithm [127]. Then, binding annotations were transferred between
the aligned positions.

Performance Evaluation

To assess whether a prediction was correct or not, we used the following standard anno-
tations: True positives (TP) were residues correctly predicted as binding, false positives
(FP) were incorrectly predicted as binding, but were annotated as non-binding, true
negatives (TN) were correctly predicted as non-binding, and false negatives (FN) were
not predicted as binding while being annotated as binding. Based on this classification
for each residue, we evaluated performance using standard performance measurements,
namely recall (or sensitivity) (Eqn. 4.1), precision (Eqn. 4.2), F1 score (Eqn. 4.3), and
Matthews Correlation Coefficient (MCC) (Eqn. 4.4).

Recall = TP

TP + FN
(4.1)
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Precision = TP

TP + FP
(4.2)

F1 = 2 · Recall · Precision

Recall + Precision
(4.3)

MCC = TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.4)

The coverage (Eqn. 4.5) indicated for how many proteins with a binding site any residue
was predicted as binding. Accordingly, the negative coverage gave the fraction of proteins
without a binding site for which also no binding site was predicted. Since our data set
only consisted of proteins with a binding site, the negative coverage was only considered
for the task of predicting binding residues for different types of ligands. In this case, the
negative coverage gave the fraction of proteins without a binding site for a specific ligand
type for which also no binding site for this ligand type was predicted (Eqn. 4.6).

Coverage = No. of proteins with binding predictions
No. of proteins with binding annotations (4.5)

Neg. Coverage(l) = No. of proteins without binding predictions for ligand l

No. of proteins without binding annotations for ligand l
(4.6)

Each performance measurement was calculated for each protein individually, the mean
was calculated over the resulting distribution, and standard errors defined as SE =
SD/

√
n− 1 were calculated as error estimates, with n being the number of proteins and

SD representing the standard deviation.

4.2.2. Preliminary Results

bindPredictDL-binary predicted binding residues with F1=34-38%

bindPredictDL-binary used ProtBERT [72] embeddings to predict, for each residue in
a protein sequence, whether this residue is binding to a ligand or not. The method
achieved F1 = 33.7 ± 0.8% on the cross-training set (Fig. 4.1A) and F1 = 38 ± 1%
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on the test set (Fig. 4.1B). For the cross-training set, the coverage (Eqn. 4.5) was
95%, i.e., at least one residue was predicted as binding for 959 proteins in the cross-
training set, while it provided any binding prediction for 296 of the proteins in the test
set corresponding to a coverage of 99%.

Figure 4.1.: Performance for bindPredictDL-binary. bindPredictDL-binary
achievedA. Precision = 33.1±0.8%, Recall = 47±1%, F1 = 33.7±0.8%,
and MCC = 0.30 ± 0.01 on the cross-training set, and B. Precision =
39±2%, Recall = 50±2%, F1 = 38±1%, and MCC = 0.35±0.01 on the
test set. While hyperparameters were optimized for the cross-training set,
the method performed better on the test set. Error bars indicate standard
errors.

The data set consisted of proteins binding to three major groups of ligands. bindPredictDL-
binary was not trained to distinguish between these groups and was only provided infor-
mation on whether a residue is binding or not, but not to what type of ligand it binds.
However, it still performed differently for the different types with achieving better F1
scores for small molecules and nucleic acids as ligands than for metal ions (Table 4.2).
Precision was especially low for metal ions (19 ± 2%), while recall was higher than for
the other ligands (Table 4.2). In fact, the binding sites for metal ions are much smaller
than for the other ligands. On average, 3% of a protein’s residues form binding sites to
metal ions, while 9% and 15% make binding sites for small molecules and nucleic acids,
respectively (Table 4.1). The model apparently learned to predict larger numbers of
binding residues mirroring the expected size of binding sites for small molecules and nu-
cleic acids. This led to an over-prediction for metal ions and, consequently, to a decrease
in precision compared to the other ligands.
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Precision Recall F1 MCC
Overall 39± 2% 50± 2% 38± 1% 0.35± 0.01
Metal ions 19± 2% 61± 2% 25± 2% 0.28± 0.02
Nucleic acids 43± 3% 43± 3% 39± 3% 0.34± 0.03
Small molecules 40± 2% 49± 2% 39± 2% 0.36± 0.01

Table 4.2.: Test set performance by ligand type. The method achieved a higher
precision for nucleic acids and small molecules than for metal ions, while
recall was highest for metal ions. Standard errors are given as error esti-
mates.

While parameters were optimized for the cross-training set, the model surprisingly per-
formed better on the test set (Fig. 4.1). The test set was constructed to allow maximum
overlap with the development set of bindPredictML17 which consisted solely of enzymes
and DNA-binding proteins. Thus, the better performance on the test set could indicate
that binding residues of enzymes were more accurately predicted because the binding
site is better defined for enzymes than for other proteins.

bindPredictDL-binary clearly outperformed bindPredictML17

Of the 300 proteins in the test set, 225 were also part of the development set of bind-
PredictML17. Using the predictions for these 225 proteins from the respective cross-
validation splits of bindPredictML17 allowed an unbiased comparison of both methods
because there was no overlap between training and test set for either bindPredictML17
or bindPredictDL-binary.

bindPredictDL-binary clearly outperformed bindPredictML17. While bindPredictML17
achieved F1 = 34 ± 1% on this set of 225 proteins, bindPredictDL-binary achieved
F1 = 41± 1% improving upon the old method by seven percentage points (Table 4.3).
However, compared to bindPredictML17, bindPredictDL-binary did not make a binding
prediction for all proteins resulting in a coverage of 99% (223 proteins).

Unlike bindPredictDL, bindPredictML17 was trained using annotations available through
PDB [10, 11] for enzymes and through PDIdb [122] for DNA-binding proteins. However,
as outlined in Section 1.1.2, binding annotations in the PDB do not necessarily reflect
biologically relevant binding sites. Therefore, we used annotations from BioLiP [12, 13]
to train bindPredictDL. Considering the predictions of bindPredictML17 for the 225 test
proteins, we observed a better performance for the BioLiP annotations than for the PDB
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Precision Recall F1 MCC TP FP TN FN Coverage
bindPredictML17
(PDB) 39± 1% 31± 2% 29± 1% 0.23± 0.01 1 720 3 107 39 018 5 162 225 (100%)

bindPredictML17
(BioLiP) 37± 1% 42± 2% 34± 1% 0.30± 0.01 1 687 3 140 41 023 3 157 225 (100%)

bindPredictDL-
binary 43± 2% 53± 2% 41± 1% 0.38± 0.01 2 252 3 533 40 630 2 592 223 (99%)

bindPredictDL-
multi 45± 2% 48± 2% 39± 1% 0.37± 0.01 1 920 2 716 41 447 2 924 217 (96%)

Table 4.3.: Performance comparison with bindPredictML17. 225 of the 300
proteins in the test set were also part of the development set for bind-
PredictML17 which could be used to compare bindPredictML17 and
bindPredictDL. Both bindPredictDL-binary and bindPredictDL-multi per-
formed better than bindPredictML17. Also, bindPredictML17 managed to
better predict the more reliable binding annotations from BioLiP than the
ones from the PDB, although it was trained on PDB annotations. This
indicated that the improvement of bindPredictDL upon bindPredictML17
was partially caused by training on more reliable annotations. Standard
errors are given as error estimates.

annotations although bindPredictML17 was trained on annotations from PDB (Table
4.3 “bindPredictML17 (PDB)” versus “bindPredictML17 (BioLiP)”). First of all, this
showed, while being trained on noisy data, the seemingly false negative predictions of
bindPredictML17 (FN in Table 4.3) were in fact often due to a wrong annotation in PDB.
Without any re-training, the number of FN dropped by almost 40% when evaluating on
annotations from BioLiP (Table 4.3). Secondly, these differences also highlighted the im-
portance of using high-quality binding annotations. The binding annotations from PDB
contain a lot of noise due to biologically irrelevant ligands. Training on those noisy data
worsened performance, and the improvement of bindPredictDL upon bindPredictML17
could partially be attributed to training on annotations from BioLiP.

bindPredictDL-multi could distinguish between different ligand types

To extend bindPredictDL-binary, we proposed bindPredictDL-multi. Using the same
input (ProtBERT embeddings) and data set (Table 4.1) as for bindPredictDL-binary,
bindPredictDL-multi was trained to not only predict whether a residue is binding or not
but also to which ligand type it binds. Binding residues were predicted with F1 = 22±1%
for metal ions, F1 = 18 ± 2% for nucleic acids, and F1 = 20 ± 1% for small molecules
(Fig. 4.2A, darker colored bars). Performance was mainly limited by a low coverage
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(Eqn. 4.5) and low negative coverage (Eqn. 4.6) (Table 4.4). If no binding predictions
were made for a protein binding ligand l, precision, recall, F1, and MCC for this predic-
tion were set to 0. Same was true for the performance values for proteins not binding
to a certain ligand but for which the method predicted some binding residues. If we
only considered proteins with predictions for a specific ligand type for the performance
evaluation, F1 rose to 26± 1%, 20± 2%, and 22± 1% for metal ions, nucleic acids, and
small molecules, respectively (Fig. 4.2A, lighter colored bars).

Figure 4.2.: Performance for bindPredictDL-multi. Performance for prediction
of residues binding to metal ions, nucleic acids, and small molecules for
A. the cross-training set and B. the test set. Darker colored bars indicate
performance values for all proteins with all values for the prediction of
binding to ligand type l were set to 0 if no residue was predicted to bind
to l. Lighter colored bars indicate prediction performance only for the
proteins covered by the prediction, i.e., at least one residue is predicted to
bind to ligand type l. In general, performance improved if only proteins
with any binding prediction were considered (lighter colored bars). Error
bars indicate standard errors.
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Coverage Negative Coverage
Metal ions 75% 48%
Nucleic acids 86% 86%
Small molecules 89% 33%

Table 4.4.: Coverage and Negative Coverage for bindPredictDL-multi. Cov-
erage (Eqn. 4.5) indicates the fraction of proteins binding to ligand type l
for which at least one residue was predicted to bind to l (without consid-
ering whether the prediction was correct or not). Negative Coverage (Eqn.
4.6) indicates the fraction of proteins not binding to ligand type l for which
also no residue was predicted to bind to l. Coverage was lowest for pro-
teins binding to metal ions, while negative coverage was lowest for proteins
binding to small molecules.

Separately predicting whether a residue binds to a metal ion, a nucleic acid, or a
small molecule was a more complicated prediction task than the binary classification of
bindPredictDL-binary. Therefore, it was important to investigate how much predictive
power we lost by performing this more complicated task. To compare bindPredictDL-
multi with bindPredictDL-binary, we mapped the ligand-specific predictions to a binary
output by considering every residue predicted as binding which was predicted to bind at
least one of the three ligand types. For this binary prediction task, bindPredictDL-multi
achieved 32.0±0.8% on the cross-training set performing only 1.7 percentage points worse
than bindPredictDL-binary and almost remaining within two standard errors. Thus, the
predictions of bindPredictDL-multi provided additional information about the bound
ligand without loosing predictive power compared to bindPredictDL-binary.

Applying bindPredictDL-multi to the test set, the method achieved F1 = 37 ± 1%
being only one percentage point worse than bindPredictDL-binary. Residues binding to
metal ions, nucleic acids, and small molecules could be predicted with F1 = 21 ± 2%,
F1 = 17 ± 3%, and F1 = 29 ± 1%, respectively (Fig. 4.2B). As bindPredictDL-binary,
bindPredictDL-multi clearly outperformed bindPredictML17. It achieved F1 = 39 ±
1% and a coverage of 96% on the 225 proteins from the test set of bindPredictDL
overlapping with the development set of bindPredictML17. Therefore, F1 increased by
five percentage points for bindPredictDL-multi compared to bindPredictML17 (Table
4.3).
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Focus on more reliable predictions increased precision

On the cross-training set, bindPredictDL-multi achieved a precision of 24±1%, 22±2%,
and 25± 2% for metal ions, nucleic acids, and small molecules, respectively (Fig. 4.2A,
darker colored bars). Considering only proteins for which at least one residue was
predicted as binding, precision rose to 28 ± 2% (metal ions), 23 ± 2% (nucleic acids),
and 27±1% (small molecules) (Fig. 4.2A, lighter color bars). Precision could be further
increased if stricter cutoffs were applied to define a residue as binding (Fig. 4.3). By
default, all predictions with an output probability ≥ 0.5 were considered as binding
residues. Increasing this cutoff led to an increase in negative coverage, i.e., for more
proteins not binding to a specific ligand type, no residues were predicted to be binding
(Fig. 4.3, orange line). If a binding prediction was made for a non-binding protein, all
performance measurements were set to 0. Therefore, increasing the negative coverage
reduced the number of proteins with a precision of 0. Also, the number of false positives
was generally reduced leading to an overall increase of precision (Fig. 4.3, lighter blue
line). While stricter prediction cutoffs allowed to focus on more reliable predictions
for a few proteins, lower cutoffs led to a general increase of coverage (Fig. 4.3, red
line). Therefore, while resulting in more false positive predictions, lower cutoffs provided
predictions for more proteins.

Figure 4.3.: Prediction performance for different thresholds. Residues were
considered as binding if the output probability was greater or equal to a
specific cutoff. Choosing larger values for this cutoff led to an increase in
negative coverage and precision for A. metal ions, B. nucleic acids, and
C. small molecules. On the other hand, lower cutoffs increased coverage
allowing predictions for more proteins.
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Combination with homology-based inference further improved performance

Using homology-based inference to predict binding residues yielded very good results for
low E-value thresholds, but hits at those thresholds were only found for very few proteins.
For example, for E-value ≤ 10−50, homology-based inference achieved F1 = 55±3% (Fig.
4.4, leftmost dark red bar), but a hit could only be identified for 102 of 1 014 proteins.
When only using homology-based inference to make a prediction for all proteins, a ran-
dom decision would have to be made if no homolog with known binding annotations
was available at the given threshold. This led to an immense drop in performance to
F1 = 16.4 ± 0.6% for E-value ≤ 10−50 (Fig. 4.4, leftmost light red bar). To harness
the strong performance of homology-based inference while allowing better than ran-
dom predictions for proteins without close homologs, we combined bindPredictDL with
homology-based inference applying a simple protocol: Predict binding residues through
homology-based inference if available; otherwise use the ML method. This combination
achieved optimal performance at an E-value threshold of 10−9 leading to F1 = 39± 1%
for bindPredictDL-multi (when converting the three outputs to the binary prediction
“binding/non-binding”) (Fig. 4.4, blue bar at E-value = 10−9).

In the used protocol, homologs were identified by determining the most sequence-similar
protein for an E-value below a certain threshold. For this protein, a local alignment
was calculated, and binding annotations were inferred between aligned positions. If
the alignment did not contain any binding annotations, the hit was discarded and the
ML method was applied instead. While already reaching much higher performance
than the ML method alone, the protocol for homology-based inference could be further
improved to avoid discarding hits because the local alignment did not contain any binding
annotations. Instead of using the most sequence-similar hit, we could use the hit with the
local alignment covering most binding annotations. Alternatively, if the most sequence-
similar hit did not contain any binding annotations in the aligned sequence part, we
could choose the second best hit and continue for all hits that were found below the
given E-value threshold. In this case, we would only switch to the ML method if none
of the local alignments to any of the found hits contained binding annotations.

However, for simplicity, we used the standard protocol for now, i.e., if the local alignment
of the most sequence-similar hit to the query contains binding annotations, transfer those
to the query, otherwise, apply the ML method. Using this approach and the optimal
E-value threshold of 10−9 to combine homology-based inference and ML improved perfor-
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Figure 4.4.: Performance of homology-based inference for different E-value
thresholds. Performance as measured by the F1 score for homology-
based inference varied with the E-value thresholds (red bars). The high-
est F1 was reached at E-value ≤ 10−50. However, if forcing predictions
for all proteins by assigning binding residues at random if no homolog
was available, F1 dropped to 16.4 ± 0.5% (leftmost light red bar). The
combination of homology-based inference and ML (blue bars) performed
best for E-value ≤ 10−9. The dashed line indicates the performance for
just using the CNN to predict binding residues by ligand type which are
mapped to a binary output “binding/non-binding”. Error bars indicate
standard errors.

mance on the test set. Compared to just using ML, the F1 score of bindPredictDL-multi
improved by seven percentage points resulting in F1 = 44± 2% (Table 4.5).

Homology-based inference also improved performance for the individual ligands (Fig.
4.5) while still experiencing the same issues as the method solely based on ML, i.e.,
missing predictions for proteins annotated to bind this ligand (low coverage) and wrong
predictions for proteins not annotated to bind this ligand (low negative coverage). Com-
bining homology-based inference with ML resulted in the final method bindPredictDL-
multi which allowed to predict whether a residue is binding to a metal ion, a nucleic
acid, or a small molecule with F1 = 27 ± 3%, F1 = 20 ± 3%, and F1 = 39 ± 2%,
respectively (Fig. 4.5). The binary prediction of whether a residue is binding or not
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Precision Recall F1 MCC
bindPredictDL-binary (only ML) 39± 2% 50± 2% 38± 1% 0.35± 0.01
bindPredictDL-multi (only ML) 42± 2% 45± 2% 37± 1% 0.34± 0.01
bindPredictDL-binary (with HBI) 54± 2% 48± 2% 45± 2% 0.43± 0.02
bindPredictDL-multi (with HBI) 54± 2% 46± 2% 44± 2% 0.43± 0.02

Table 4.5.: Test set performance with and without homology-based infer-
ence. Combining the ML method with homology-based inference im-
proved F1 by seven percentage points both for bindPredictDL-binary and
bindPredictDL-multi. Standard errors are given as error estimates. HBI:
Homology-based inference.

using the combination of ML and homology-based inference achieved F1 = 44 ± 2%.
This performance was only slightly worse and still within the error margin compared to
the combination of homology-based inference and bindPredictDL-binary, which was only
trained on distinguishing between binding and non-binding residues without considering
the bound ligand (Table 4.5).

4.2.3. Conclusion

With bindPredictDL-multi, we proposed a new method to predict whether a residue is
binding metal ions, nucleic acids, or small molecules, or is non-binding. It used Prot-
BERT embeddings as input which were derived from a pre-trained LM and could easily
be obtained for all protein sequences. A binary distinction of binding residues from
non-binding residues could be derived from the ligand-specific predictions by mapping
the three individual outputs to one prediction. In this case, each residue which was
predicted to bind at least one of the three ligand types was considered as binding and
all other residues as non-binding. This binary prediction of bindPredictDL-multi out-
performed bindPredictML17 by five percentage points (Table 4.3). On the entire test
set, bindPredictDL-multi achieved F1 = 37 ± 1% for the classification of residues into
binding and non-binding; bindPredictDL-binary, which was trained explicitly for this
binary task, achieved F1 = 38 ± 1%. While being one percentage point worse than
bindPredictDL-binary, bindPredictDL-multi solved the more complicated task of pre-
dicting the type of bound ligand and, therefore, provided reliable predictions of binding
residues as well as additional information about the bound ligand.
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Figure 4.5.: Performance for bindPredictML-multi combined with homology-
based inference. We combined homology-based inference and ML and
transferred annotations between close homologs if available, and run de
novo prediction, otherwise. This improved performance for the prediction
whether a residue binds a certain ligand or not for all ligands (A. Metal
ions, B. Nucleic acids, C. Small molecules) compared to just applying the
ML method (lighter colored bars). This resulted in the final version of
bindPredictDL-multi achieving F1 = 27 ± 3%, F1 = 20 ± 3%, and F1 =
39 ± 2% for metal ions, nucleic acids, and small molecules, respectively.
Error bars indicate standard errors.

The performance of bindPredictDL was limited to a certain extent by a low coverage
and low negative coverage (Table 4.4). For many proteins which were annotated to bind
a specific ligand, no binding predictions were made, while residues were predicted as
binding in proteins not bound to the ligand. Considering only proteins with at least
one residue predicted as binding and applying a stricter cutoff to classify a residue as
binding increased precision (Fig. 4.3).

The performance of bindPredictDL was improved through a simple combination of ML
and homology-based inference: If a homologous protein with binding annotations was
found, annotations of this protein were transferred to the query. Otherwise, the ML
method was applied. This combination resulted in F1 = 27 ± 3%, F1 = 20 ± 3%, and
F1 = 39 ± 2% for the prediction of residues binding to metal ions, nucleic acids, and
small molecules, respectively (Fig. 4.5). The binary prediction of whether a residue is
binding or not achieved F1 = 44 ± 2% leading to an improvement of seven percentage
points over the approach not using homology-based inference.
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bindPredictDL represents a powerful method to predict binding residues. It relies solely
on sequence information, and the usage of embeddings removes the need of hand-crafted
features, which were used for, e.g., bindPredictML17. bindPredictDL allows the distinc-
tion of binding to three different ligand types while also achieving good performance
for the binary prediction task of classifying residues as binding or non-binding. Since
only a few residues in a protein sequence are binding, a more sophisticated approach to
perform homology-based inference, which focuses more on the best local alignment than
the overall most sequence-similar hit, could improve performance of the method further.
Making the method publicly available as a web server will allow easy access to binding
residue predictions also for non-expert users.
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5. Detailed Prediction of Protein
Sub-nuclear Localization

5.1. Preface

The nucleus contains several distinct substructures which are associated with differ-
ent functions. Extensive knowledge about those substructures and which proteins are
associated with them can help to better understand the interior nuclear mechanisms.
However, nuclear substructures are very dynamic and some are exclusively formed dur-
ing particular cell stages through interaction with DNA, RNA, and proteins [128, 129].
These dynamic rearrangements complicate experimental annotations of sub-nuclear lo-
calizations creating a need for accurate prediction methods.

We developed LocNuclei, a new method that predicts nuclear substructures from se-
quence alone. It distinguishes between 13 different sub-nuclear localizations and also
predicts whether a protein only occurs in the nucleus or is also native to other sub-
cellular compartments (i.e., is a traveler protein). LocNuclei applies homology-based
inference to transfer annotations from a sequence-similar protein to the target protein if
such a protein exists, and otherwise, relies on an SVM using the Profile Kernel [65, 66]
to predict sub-nuclear compartments. Using this approach, sub-nuclear localization of
a protein was predicted with Q13 = 62± 3%, and traveler proteins were identified with
Q2 = 72± 2%, where Qn is defined as

Qn = 100 ∗
∑n

i=1 number of proteins correctly predicted in class i∑n
i=1 total number of proteins observed in class i (5.1)

and n is the number of classes. Since nuclear compartments are dynamic and sometimes
only form during certain cell stages, it is likely that nuclear proteins are associated with
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multiple compartments at different time points of the cell cycle. LocNuclei models this
dynamic by allowing predictions of multiple compartments for one protein.

The analysis of GO term enrichment and protein-protein interactions showed that pre-
dictions of sub-nuclear structures through LocNuclei reveal functional insights of nu-
clear proteins. The source code and data sets are available in a GitHub repository:
https://github.com/Rostlab/LocNuclei.

Author contribution: Sebastian Seitz collected the data and implemented the first
version of LocNuclei together with Tatyana Goldberg and Mikael Bodén. I refined
the existing implementation, performed analysis of GO enrichment and protein-protein
interactions for nuclear proteins, and wrote the major part of the manuscript. All authors
drafted the manuscript.
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METHODOLOGY ARTICLE Open Access

Detailed prediction of protein sub-nuclear
localization
Maria Littmann1*† , Tatyana Goldberg1†, Sebastian Seitz1, Mikael Bodén2 and Burkhard Rost1,3,4,5

Abstract

Background: Sub-nuclear structures or locations are associated with various nuclear processes. Proteins localized in
these substructures are important to understand the interior nuclear mechanisms. Despite advances in high-throughput
methods, experimental protein annotations remain limited. Predictions of cellular compartments have become very
accurate, largely at the expense of leaving out substructures inside the nucleus making a fine-grained analysis impossible.

Results: Here, we present a new method (LocNuclei) that predicts nuclear substructures from sequence alone. LocNuclei
used a string-based Profile Kernel with Support Vector Machines (SVMs). It distinguishes sub-nuclear localization in 13
distinct substructures and distinguishes between nuclear proteins confined to the nucleus and those that are also native
to other compartments (traveler proteins). High performance was achieved by implicitly leveraging a large biological
knowledge-base in creating predictions by homology-based inference through BLAST. Using this approach, the
performance reached AUC = 0.70–0.74 and Q13 = 59–65%. Travelling proteins (nucleus and other) were identified
at Q2 = 70–74%. A Gene Ontology (GO) analysis of the enrichment of biological processes revealed that the predicted
sub-nuclear compartments matched the expected functionality. Analysis of protein-protein interactions (PPI) show that
formation of compartments and functionality of proteins in these compartments highly rely on interactions between
proteins. This suggested that the LocNuclei predictions carry important information about function. The source code
and data sets are available through GitHub: https://github.com/Rostlab/LocNuclei.

Conclusions: LocNuclei predicts subnuclear compartments and traveler proteins accurately. These predictions carry
important information about functionality and PPIs.

Keywords: Sub-nuclear localization, Traveler proteins, Prediction, Support vector machines (SVM), Profile kernel, GO
enrichment, Evolutionary information, Predict protein function

Background
The nucleus was the first sub-cellular organelle to be
discovered as early as in the seventeenth century [1]. It
is enclosed by a membrane and only found in eukaryotic
cells (Greek “eu” εν: true, “karyon” καρυον: kernel, i.e.
cells with a core, Latin: nucleus). The nucleus contains
most of the genetic material, organized in chromosomes,
and is the site for DNA replication and transcription.
Nuclear proteins are synthesized mostly on the ribo-
somes in the cytoplasm and have to be transported back
into the nucleus for proper function. Import into and

export out of the nucleus differ in several ways from the
transport to other sub-cellular compartments. For in-
stance, all proteins have to pass through a large struc-
ture in the nuclear envelope known as the nuclear pore
complex (NPC) [2, 3]. Nuclear proteins can be trans-
ported in their fully folded conformation [3]. Transport
is often regulated through binding to specific proteins,
called karyopherins. Karyopherins bind by recognizing
nuclear localization signals (NLS for import into the nu-
cleus) or nuclear export signals (NES; for export from
the nucleus) in the amino acid sequence of their cargo
proteins [4]. Relying only on these NLS and NES fails to
identify nuclear proteins because many known signals
are too unspecific in sequence (match in many
non-nuclear proteins) and for most known nuclear pro-
teins such signals remain unknown [5–7].
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The nucleus is a compartment separated by two mem-
branes that contains several distinct sub-structures, each
associated with distinct sets of function. These nuclear
sub-structures are not enclosed by membranes and are
very dynamic. Nuclear sub-structures can be in continu-
ous flux; some are exclusively formed during particular
cell stages through interaction with DNA, RNA and pro-
teins [8, 9]. These dynamic rearrangements complicate
experimental annotations. Translocation within the nu-
cleus has been linked to NLS- and NES-like signals [10,
11]. However, this process is not well understood [8].

Results
High performance: Q13 = 62% and Q2 = 72%
LocNuclei describes two separate prediction methods: (1)
predict one of 13 nuclear sub-structures and (2) distin-
guish proteins functional only in the nucleus vs.traveler
proteins,i.e.those functional in the nucleus and other com-
partments. Each of those two methods combines two dif-
ferent algorithms: (i) homology-based inference and (ii)
machine learning-based prediction (through profile kernel
SVMs). For the prediction task of 13 sub-nuclear com-
partments, the homology-based inference for proteins for
which experimentally annotated homologs were available
was most accurate with Q13 = 68% at E-value ≤10− 50 (Fig. 1
black arrow). However, if only using homology-based in-
ference, a random decision had to be made when no
homolog of known localization was available at a given

threshold. Thus,the Q13 dropped to 38% (Fig. 1: left bar at
E-value 10− 50). This was still statistically significantly
above random (Fig. 1: standard error bars substantially
above random performance of 27% shown at the leftmost
bar). On the same test set, the de novo-based inference
employing a battery of 13 SVM classifiers achieved an al-
most three-fold higher level of Q13 = 59% (Fig. 1: 2nd bar
from the left). This result encouraged the application of a
simple protocol: use homology-based inference when
available, else use the machine learning method. The ac-
curacy of homology-based inference decreased for less
stringent E-value thresholds (Fig. 1: line decreases toward
right). We chose the PSI-BLAST E-value of 10− 20 as the
decision threshold between homology-based inference
and machine learning based de novo prediction because
the simple combination of homology-based and de novo
was highest (the performance was determined using
cross-validation/cross-training, i.e. NOT the testing set).
The combined method, LocNuclei, outperformed both its
components (Fig. 1: circle above bar for SVM and
homology), reaching an overall accuracy of Q13 = 62 ± 3%
(Fig. 1: circle).
In terms of relative contributions of HB vs. ML for

our data set, the numbers were as follows. From the
1934 subnuclear proteins in our data set, 736 (38%) were
predicted through homology-based inference (HB), and
1096 (57%) through the SVM Profile Kernel (ML). For
102 proteins (5%), neither HB nor any of the 13 SVMs

0
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13
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Combined

Fig. 1 Effect of homology threshold to predict 13 sub-structures. The accuracy Q13 for classifying proteins into 13 sub-nuclear compartments
using the homology-based inference with PSI-BLAST (based on 3522 experimentally annotated proteins) varied with the E-value thresholds
(darker gray bars on the left). For proteins for which a protein with experimentally known nuclear sub-structure annotation was more sequence
similar than the threshold, performance depended on the threshold (black line). The highest accuracy Q13 = 68% was reached at E-value ≤10−
50(black arrow). However, if forcing predictions for all proteins, Q13 dropped to 38% compared to random (27%). The performance of machine
learning-based profile kernel SVMs on the same set was Q13 = 59% (gray horizontal line). The lighter gray bars mark the combination of homology
inference and machine learning. The optimal threshold for the combination was E-value ≤10− 20. One standard error marked on each bar and on the
black line and through the dotted lines for ML
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predicted any nuclear sub-compartment (note: this was
only a subset of all prediction mistakes).
For the second prediction task (nuclear-only vs. traveler

proteins) the final method combined homology-based in-
ference and machine learning (again a Profile Kernel
SVM) essentially in the same straightforward manner: take
HB if possible. The final method (also referred to as
LocNuclei) performed best at the PSI-BLAST E-value
≤10− 5 reaching an overall performance of Q2 = 72 ± 2%
(Additional file 1: Figure S1). In detail of the 1098 nuclear
proteins in the corresponding data set, 419 proteins (38%)
were predicted by homology-based inference, all other
679 (62%) using the SVM Profile Kernel.

Good predictions also for minority classes
LocNuclei distinguished between 13 different nuclear
sub-structures. One crucial challenge for predicting many
classes was the lack of experimental annotations for the
minority classes, i.e. those with fewer known proteins. For
instance, the SVM had to generalize from only 14 proteins
in the spindle apparatus and from only 13 in the perinu-
cleolar sub-structure (Additional file 1: Table S1). Never-
theless, LocNuclei succeeded in predicting for minority
classes, e.g. 8 of the 14 samples for spindle apparatus were
predicted correctly. The worst performance was observed
for the Cajal body: 10 of the 42 predicted in this
sub-structure were correctly predicted, while an equal
number of 10 proteins were mis-predicted to be in the nu-
cleoplasm (Table 1). All these ten mis-predictions origi-
nated from the SVM prediction. Using exclusively
homology-based inference correctly predicted 8 of 42
Cajal bodies and no misclassification to nucleoplasm
would occur (Additional file 1: Table S2).

Reliability index allows focus on best predictions
For each prediction, LocNuclei also provides a reliability
index (RI) that reflects the prediction strength. The RI was
scaled to values between 0 (uncertain prediction) and 100
(reliable prediction). Although the RI scaling did not cor-
relate with performance throughout its entire interval, it
enables users to focus on reliably predicted proteins: e.g.
of the 25% most strongly predicted proteins, 76% were
correctly predicted (RI > 50, Fig. 2a: dashed lines).
For the second prediction task (traveler), the reliability

index correlated slightly better with performance in the
sense that with increasing RI Q2 increased (albeit not
significantly above values of RI = 50, Fig. 2b). For RI >
50, LocNuclei predicted for 45% of the proteins and 77%
of these were predicted correctly (Fig. 2b: dashed line).

Performance of LocNuclei confirmed for independent
data set of novel proteins
The only method for predicting nuclear sub-structures
available during the development of our new method was

NSort [12]. Comparing the two methods back-to-back
using values published was meaningless due to the differ-
ences in data sets. Being no longer available, NSort could
not be run on new data. Thus, the only meaningful bench-
mark required training and testing LocNuclei on the sets
used for NSort. Towards this end, we downloaded the
NSort data set from http://bioinf.scmb.uq.edu.au:8080/
nsort/db and split into five subsets, trained on four and
tested on the remaining one. These sets were rotated five
times, so that each protein in the NSort set was tested
exactly once. The area under the ROC curve (AUC)
calculated from the test proteins proxied performance for
comparability. For training, we used the same parameters
as for the original method. The data set of NSort con-
tained proteins from eight sub-nuclear localizations;
LocNuclei-NSort performed equally well as or even better
than NSort except for proteins located in the perinucleolar
(Table 2). Comparing the original version of LocNuclei
predicting 13 classes with the version re-trained on eight
using the NSort data set using common proteins showed
that LocNuclei performed on average equally well
(Additional file 1: Table S3).

Spectra of sub-nuclear distributions predicted between
organisms differ
After completing the development, LocNuclei was applied
to predicting the nuclear sub-structures for entire prote-
ome in Homo sapiens (human), Pan troglodytes (chimp),
Mus musculus (mouse) and Saccharomyces cerevisiae
(baker’s yeast). Human, mouse and baker’s yeast contrib-
ute the most proteins to the development set (341, 961,
and 101, respectively). Chimp was only chosen because we
expect it to be very close to human. LocTree3 [13] pro-
vided the whole proteome predictions for all four organ-
isms (https://rostlab.org/services/loctree3/proteomes). All
proteins predicted as nuclear and nuclear membrane were
used. The resulting datasets contained 6123 proteins for
human, 7358 proteins for mouse, 4761 proteins for chimp
and 2107 for yeast.
Most machine learning tools have some kind of pre-

diction bias overestimating some classes while underesti-
mating others. To correct for this bias, it was proposed
to use the confusion matrix of the tool based on the de-
velopment set [14]. This leads to an estimation of the
overall class distribution that is closer to the truth than
the actual predicted distribution. The compositions of
the predicted sub-nuclear compartments, i.e. the
sub-nuclear spectra were very similar for all organisms
for the part only using homology inference (Fig. 3b, c, d
and e inner circles). When applying the bias correction
to the whole dataset, the composition for human, mouse
and chimp remained similar (Fig. 3b, c and d). For hu-
man, chimp and mouse, the distributions were also close
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to the one of the development set (Fig. 3). Only the dis-
tribution for yeast differed with a higher number of pro-
teins localized to the chromatin than for the other
organisms (Fig. 3e). For all organisms, most proteins were
predicted to be either in the chromatin or in the nucleolus
(Fig. 3b, c, d and e). Chromatin is a structure built from
the interaction with DNA and its role is the maintenance
of DNA and the regulation of its transcription. It is known

that many proteins that compose the chromatin are ex-
changed with other sub-nuclear compartments, such as
the nucleolus [15, 16].
Using the given distribution, we can also calculate the

Euclidean distance between these distributions and use
them as a proxy for the distance between the organisms.
In our lab, it has been shown that the simple predicted
location spectra using all subcellular localizations

Nucleoplasm 1%

Chromatin 33%
NPC 2%

Nucleolus 31%

PML body 5% Nuclear Speckle 14%

Nuclear Lamina 4%

Nuclear Envelope 3%

Other 8%

Development dataset
A

Nucleoplasm 13%

Chromatin 28%

NPC 2%

Nucleolus 28%

PML body 7%

Nuclear Speckle 15%

Nuclear Lamina 2%
Nuclear Envelope 1%

Other 4%

Human
B

Nucleoplasm 12%

Chromatin 24%

NPC 3%

Nucleolus 30%

PML body 6%
Nuclear Speckle 15%

Nuclear Lamina 3%
Nuclear Envelope 2%

Other 5%

Chimp
C

Nucleoplasm 15%

Chromatin 28%

NPC 2%

Nucleolus 27%

PML body 6%

Nuclear Speckle 14%

Nuclear Lamina 3%
Nuclear Envelope 2%
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Mouse
D

Nucleoplasm 10%

Chromatin 41%

NPC 2%

Nucleolus 29% PML body 1%

Nuclear Speckle 11%

Nuclear Lamina 2%
Nuclear Envelope 1%
Other 3%
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E

Fig. 2 Highly reliable predictions more accurate. The reliability index (RI, x-axis) of LocNuclei scaled between 0 (unreliable) and 100 (reliable). It
related the prediction strength to the performance. The data for this figure were binned in intervals of 20. Each point reflected the cumulative
performance, i.e. we computed accuracy (Q13 and Q2) and coverage (percentage of proteins for which predictions were made above given RI). a
For the prediction of 13 nuclear sub-structures, 19% of all proteins were predicted at RI > 60 (point marked by dotted lines). For this top 19%, accuracy
rose from the average Q13 = 62% (indicated by leftmost black point) to 75% (point marked by dotted lines). For our data set, RI < 20 did not correlate
with accuracy. b For the prediction of traveler proteins, 29% of all proteins were predicted at RI > 60 (part B, point marked by dotted lines) with
Q2 = 78% (point marked by dotted lines, improving over the average of 72% by six percentage points)

Table 2 Comparison between LocNuclei and NSort

Sub-nuclear compartment Number of proteins AUC NSort AUC LocNuclei-NSort

Perinucleolar 24 0.80 ± 0.05 0.73 ± 0.03

Cajal body 49 0.60 ± 0.03 0.62 ± 0.02

Nuclear pore complex 51 0.79 ± 0.05 0.88 ± 0.02

Nuclear lamina 77 0.70 ± 0.01 0.82 ± 0.01

PML bodies 91 0.77 ± 0.03 0.75 ± 0.01

Chromatin 323 0.71 ± 0.01 0.78 ± 0.01

Nuclear speckle 403 0.71 ± 0.01 0.77 ± 0.01

Nucleolus 598 0.60 ± 0.01 0.72 ± 0.01

Sum/Mean 1285 0.71 ± 0.03 0.76 ± 0.02

For this comparison, LocNuclei was re-trained using the development data of NSort, comprising 1285 sequence-unique proteins annotated in eight sub-nuclear
localization classes. On proteins from all eight classes, LocNuclei performed equally well as or better than NSort except for proteins located in the perinucleolar.
The overall cross-validated AUC of LocNuclei was 0.76 compared to 0.71 for NSort. The values for NSort were taken from its publication [12]
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capture evolutionary aspects of cross-species compari-
sons [17]. Applying the same concept to the subnuclear
location spectra suggested yeast to be most distant from
human, chimp and mouse while the distance between
human and mouse was smaller than that between hu-
man and chimp (Table 3). These differences were statis-
tically significant. If we consider de novo prediction and
homology-based inference separately, the relation be-
tween organisms based on the distances of the sub-
nuclear location spectra did not change for de novo
prediction while the location spectra predicted through
homology-based inference reflected the expected

relation, i.e. human appeared closest to chimp and most
distant to yeast (Additional file 1: Table S4).

Predictions for homologous protein pairs from different
organisms agreed
For a more fine-grained analysis, we also compared pre-
dictions for pairs of homologous proteins. For each of the
six possible organism pairings, we identified all pairs of
homologous proteins in the same way used for LocNuclei
(PSI-BLAST at E-Values≤ 10-20). The resulting number of
homologous protein pairs mirrored the distance between
the predicted subnuclear location spectra (Table 3) for
these organisms: For 70% of the human nuclear proteins,
we found a homologous protein in mouse (Table 4); the
distance between these two organisms based on the loca-
tion spectra was also the smallest. For yeast, which was
most distant to the other organisms, we only found hom-
ologous proteins for 20–23% of the proteins (Table 4). For
all organism pairs, most protein pairs were predicted by
homology-based inference (Table 4, third column). For
only a few protein pairs (2% or 6%), one of the proteins
was predicted using homology-based inference while the
other one is predicted de novo (Table 4, fourth column).
For pairs of homologous proteins, we expect similar

predictions from LocNuclei. The similarity in predictions
between two proteins was measured through the fraction
of agreement (Eq. 5; note: for some proteins more than
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Fig. 3 Composition of sub-nuclear compartments in a LocNuclei's development set, b the human, c chimp, d mouse and e yeast proteome.
Proteomes show in B-E are corrected for prediction bias. Most machine learning tools have a prediction bias leading to wrong estimates of
distributions. Using the confusion matrix of the development set, this bias can be corrected leading to more realistic estimates of the distribution
[14]. When applying this correction to the sub-nuclear predictions for human, chimp, mouse and yeast, the distributions for human, chimp and
mouse look more similar to the development set. For all four organisms, the fraction of proteins annotated to the nucleoplasm decreases after
the correction

Table 3 Euclidean distance between organisms based on
predicted subnuclear location spectra

Overall

Human Chimp Mouse Yeast

Human 0 4.0 ± 0.6 1.8 ± 0.3 9.7 ± 0.7

Chimp 4.0 ± 0.6 0 4.0 ± 0.5 12.7 ± 0.8

Mouse 1.8 ± 0.3 4.0 ± 0.5 0 9.9 ± 0.7

Yeast 9.7 ± 0.7 12.7 ± 0.8 9.9 ± 0.7 0

We calculate the Euclidean distance between predicted subnuclear location
spectra and use that distance as proxy to identify evolutionary relationships.
As expected, yeast is most distant from the other organisms. However, according
to the subnuclear location spectra, human is closer to mouse than to chimp
which is opposite what we would expect from known evolutionary relationships.
Predicted subnuclear location spectra help in identifying certain aspects of
evolution while they cannot capture all evolutionary relations in detail
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one class was predicted). For almost three fourth (74%)
of all protein pairs this agreement was 1, i.e. all classes
were predicted identically; while for over 95% of the
pairs the agreement scores were ≥ 0.5 (Fig. 4a). Surpris-
ingly, the agreement was essentially the same if both
proteins were predicted by homology-based inference
(HB) and de novo by machine learning (ML, Fig. 4a
dashed and dotted lines). Only for mixed protein pairs
(one predicted by HB, the other by ML) predictions

agreed much less (Fig. 4a: lowest line with dots and
dashes). However, these pairs constituted a small frac-
tion of the overall set of protein pairs (Table 4, fourth
column; 2% of all pairs of homologous proteins).
For the set of four model organisms (human, chimp,

mouse, and yeast), predictions for homologous proteins
agreed most between human and chimp, slightly less be-
tween human-mouse or chimp-mouse, and least for
human-yeast, mouse-yeast and chimp-yeast (Fig. 4b). As

Table 4 Homologous protein pairs between four different organisms

Overall Both HB HB/SVM SVM % of proteins (organism1) % of proteins (organism2)

Human/Chimp 3663 2510 (68%) 58 (2%) 1095 (30%) 60% 62%

Human/Mouse 4316 2609 (60%) 67 (2%) 1640 (38%) 70% 50%

Human/Yeast 809 638 (79%) 50 (6%) 121 (15%) 13% 21%

Chimp/Mouse 4041 2667 (66%) 65 (2%) 1309 (32%) 65% 55%

Chimp/Yeast 776 608 (78%) 42 (6%) 126 (16%) 16% 20%

Mouse/Yeast 973 742 (76%) 50 (5%) 181 (19%) 13% 23%

We identified pairs of homologous proteins between human, chimp, mouse, and yeast. The second column in the table gives the overall numbers of pairs for these two
organisms, the next three columns refer to pairs of proteins where both were predicted using homology-based inference, one was predicted with homology-based
inference and the other one de novo, and both were predicted de novo. The last two columns give the percentage of proteins in the respective organisms for which a
homolog was found

A B

Fig. 4 Agreement for predictions of homologous protein pairs. 95% of all pairs of homologous proteins agreed to a score≥ 0.5 (Eq. 5); 74% reached full
agreement (score = 1; black lines in A and B). a If both proteins were predicted using the same approach (either homology-based inference or de novo),
the fraction of agreement was very similar. Predictions disagreed more when the proteins were predicted by different approaches. b Predictions for yeast
proteins and homologs in any other organism disagreed more than for other pairs of organisms
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yeast is the most distant from the other organisms, it is
most likely that yeast proteins have different sub-nuclear
locations although related in evolution.
Overall, homologous protein pairs, obviously share

sub-nuclear locations, otherwise, homology-based infer-
ence would not work for our predictions. Nevertheless,
for some protein pairs predictions agreed poorly, with
the minimal agreement of 0.14 and with 21 protein pairs
having agreement ≤0.2. Of these 21 proteins, only eight
include proteins from yeast; most (15) include a protein
from mouse. The agreement score inversely correlated
with the number of compartments predicted differen-
tially between the two organisms. For instance, for the
four worst predictions (agreement = 0.14), seven com-
partments were predicted for one organism, but only
two for the other. The second protein with two pre-
dicted compartments was always the probable E3
ubiquitin-protein ligase HUL4 from yeast (Uniprot iden-
tifier P40985) while the other four proteins seemed to
belong to the same family. Three proteins were from
mouse (genes Herc6, Herc4, and Herc3; Uniprot identi-
fier F2Z461, Q6PAV2, A6H6S0) and the fourth protein
was from the chimp gene HERC6 (Uniprot identifier
H2QPV8).

GO enrichment of sub-nuclear predictions
Subcellular localization is one aspect of protein function.
Thus, the Gene Ontology (GO) [18, 19] reserves one of
its three ontologies for function to Cellular Component
(the other two being Molecular Function and Biological
Process). This does not strictly imply that the LocNuclei
predictions correlate with function as described by the
BFO (Biological Process Ontology of GO). Nevertheless,
we hypothesized that there is a correlation.
To address this hypothesis, we performed a GO en-

richment analysis of terms from the BFO for the human
nuclear proteins predicted by LocNuclei. Experimental
annotations were available for 4667 of the 5088 (92%)
predicted human nuclear proteins. For each of the 13
nuclear sub-structures, we identified the BFO-terms
enriched at highest statistical significance (p-value< 0.01,
Additional file 1: Table S5). Only for 10 of the 13, more
than 10 BFO terms reached p-values< 0.01 (only 2 for
peri-nucleolar, only one for nucleoplasm, and none for
the spindle apparatus, Additional file 1: Table S5).
The nucleolus is involved in ribosomal biogenesis [20]

and LocNuclei predicted 1856 of the 5088 (36%) human
nuclear proteins at the nucleolus. For these proteins, the
BFO terms “rRNA processing”, “rRNA metabolic
process”, “RNA modification” and “ribonucleoprotein
complex biogenesis” were prominent amongst the ten
terms with the lowest p-value (highest significance, Add-
itional file 1: Table S5). Chromatin packages DNA and

regulates the access of DNA-binding proteins [21]. For
the 1901 proteins predicted to locate to the chromatin
(37% of all nuclear proteins) enriched BFO terms in-
cluded “chromatin organization”, “regulation of RNA
biosynthetic process” and “regulation of transcription,
DNA-templated” (Additional file 1: Table S5). Kineto-
chores are protein complexes that form when a cell di-
vides; they are located at the centromere and attach the
duplicated chromosomes to the mitotic spindle to allow
their separation [2]. Only 42 proteins were predicted to
locate to the kinetochores. For these proteins enriched
BFO terms included “cell division”, “chromosome segre-
gation”, and “attachment of spindle microtubules to ki-
netochores” (Additional file 1: Table S5). Although only
few (42) proteins were predicted for kinetochores, the
GO enrichment analysis revealed a clear link between
the predicted localization and function. Overall, the re-
sults of the enrichment analysis for nucleolus, chromatin
and kinetochore clearly supported the hypothesis that
the predicted sub-nuclear location provided important
new evidence for inferring protein function. The results
for other compartments such as nuclear pore complex
and nuclear envelope also supported the hypothesis
(Additional file 1: Table S5).
For other sub-structures, the signal was less clear. One

extreme negative example was the spindle apparatus for
which not a single BFO term was enriched statistically
significantly. The problem might have been that only 13
proteins were predicted in this sub-structure (Additional
file 1: Table S5) limiting the power of an enrichment
analysis. Another extreme example was the nucleoplasm
for which 852 proteins (17% of all) were predicted but
only one BFO term was statistically significant (namely
Keratinization, Additional file 1: Table S5). The problem
here might have originated from the diversity of this
sub-structure that might also result in many prediction
mistakes (Table 1). The third sub-structure for which we
found fewer than 10 BFO terms enriched at P-values<
10− 2 was the perinucleolar (two terms enriched in 33
predicted proteins, Additional file 1: Table S5). For an-
other sub-structure full of a variety of very different pro-
teins [22], the PML bodies, our hypothesis was also not
supported making it difficult to clearly infer function
from enrichment of GO terms.
Performing the same analysis for traveler proteins shows

that the most significantly enriched BFO terms for traveler
proteins are all associated with transport and localization
(Additional file 1: Table S5) suggesting that traveler pro-
teins travel in and out of the nucleus to transport mole-
cules and guide protein localization. Less, but still
significantly enriched terms also include involvement in
signal transduction (e.g. GO35556 – intracellular signal
transduction, GO0023051 – regulation of signaling, or
GO0010646 – regulation of cell communication).
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Protein-protein interactions (PPI) related to
predicted sub-nuclear localizations
Another way to proxy biological processes is through moni-
toring physical protein-protein interactions (PPIs1) [23]. In
analogy to the BFO enrichment analysis, we tested whether
or not proteins predicted in nuclear sub-structures by
LocNuclei contained information about PPIs. More expli-
citly, we analyzed whether the experimentally annotated
PPIs are overrepresented for certain compartments.
Overrepresentation is described by the odds ratio that sets
the number of observed PPIs between proteins in two com-
partments (or the same one) into relation with the expected
number of PPIs between these compartments. An odds ra-
tio below 1 indicates less PPIs than expected, 1 indicates as
many PPIs as expected and values above 1 indicate more
PPIs than expected.
Toward this end, the set of human proteins with pre-

dicted sub-nuclear localizations were mapped to a data-
set of binary, direct interactions from multiple sources
used in a different context by our group [24]. In this set,
more PPIs than expected are observed within all com-
partments with especially high values for PPIs between
proteins within the kinetochore and the spindle appar-
atus (Fig. 5) indicating that the formation of compart-
ments and the functionality of proteins performed in
these compartments highly relies on interaction between
proteins. PPIs between proteins in different compart-
ments are either underrepresented or close to expected
except for interactions between proteins in the kineto-
chore and the spindle apparatus as well as between pro-
teins in the nuclear pore complex, the nuclear lamina
and the nuclear envelope (Fig. 5).
Another way to analyze PPIs within nuclear pro-

teins is to compare them to proteins outside the nu-
cleus. To do so, we constructed a PPI network from
the human PPI data with proteins being the nodes
and an edge drawn between proteins when they inter-
act. The network consists of 15,634 nodes in 569
connected components. Only 142 of these compo-
nents consist of more than one node. Of the 15,634
proteins in the network, 2037 are solely located in
the nucleus, 1283 are traveler proteins travelling be-
tween the nucleus and other compartments and
12,314 are proteins located outside the nucleus. On
average, nuclear proteins in this network have an
average degree of 18 for non-traveler and of 20 for
traveler while non-nuclear proteins only have a degree
of 10. Considering only the largest connected compo-
nent with 14,875 does not significantly change the
average degree. So, on average nuclear proteins have
a higher degree, i.e. they are interacting with more
other proteins, than non-nuclear proteins. Also, trav-
eler proteins have a slightly higher degree than
non-traveler proteins indicating that they need to

interact with other proteins to move in and out of
the nucleus. Also, most of the nuclear proteins (97%)
are located in the largest connected component, so
they are an important part of the PPI network.

Discussion
LocNuclei predicts sub-nuclear localization at a high ac-
curacy. It combines homology-based inference and de
novo prediction to achieve the highest performance. The
relatively conservative threshold at which the combination
was best (Fig. 1: E-value ≤ 10-20) was surprising due to its
extremity (e.g. thresholds down to E-values ≤ 10− 3 are
often used to infer functional similarity), and due to the
fact that the performance for lower values was still higher
than that of the machine learning (Fig. 1: “Homology (with
hit)” vs. SVM). In fact, the curve remained numerically
higher down to E-values≤10− 5 (straight gray line at
Q13 = 59% vs. dark line in Fig. 1). Given the simple algo-
rithm for the combination of homology-based inference
(HB) and machine learning (ML) (if ∃ HB, take HB, else
take ML) the combined algorithm could never be worse
than its constituents (HB&ML >max (HB,ML)). Thus, the
optimality in Q13 of a conservative threshold suggested
that some of the proteins for which HB was available were
also predicted above average for ML. Conversely, the cases
added at lower thresholds of HB were predicted better by
ML than by HB thereby reducing performance by choos-
ing HB over ML (Fig. 1 threshold between 10−20 and 10− 5

all have HB above the ML performance).
Trained on the NSort training data, LocNuclei-NSort

outperforms NSort, a predictor for eight sub-nuclear
localization classes. On the one hand, it appeared that
LocNuclei did not gain much from more recent data. On
the other hand, it appeared not to have lost from distin-
guishing more classes.
Spectra for subnuclear compartments calculated from

the distribution of the actual predictions show that none
of the spectra for human, chimp, mouse, or yeast
resembled that for the development set (Additional file 1:
Figure S2A) suggesting that the new method was not
completely biased by its development set and could dis-
cover important aspects in the nuclear proteomes of hu-
man, chimp, mouse, and yeast. The biggest difference was
for the nucleoplasm for which a much large fraction was
predicted in all organisms than in the development set.
Since the fraction of proteins predicted in the nucleo-
plasm decreases when applying a correction (Fig. 3), this
suggests a bias in the prediction towards overestimating
the number of proteins located to that compartment.
The Euclidean distance between subnuclear location

spectra is used to discover evolutionary relationships be-
tween organisms. However, the discovered relations be-
tween human, chimp, mouse, and yeast are not all as
expected (e.g. human closest to mouse instead of
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chimp). So, while the comparison of subnuclear location
spectra can reveal some insights into the evolutionary
relationship between organisms (e.g. human, chimp
and mouse closer to each other than to yeast), not
all evolutionary aspects can be uncovered com-
pletely. Either the subnuclear spectra do not carry
enough information to capture evolutionary relation-
ships between these organisms fully or the de novo
method makes too many mistakes when predicting
subnuclear compartments so that not enough

information is left to reconstruct the evolutionary re-
lationships correctly.
For pairs of homologous proteins, the predicted

sub-nuclear compartments often agree. However, there
are some pairs where the predictions are very different,
especially in terms of number of predicted compart-
ments. We could not find any evidence in public data-
bases or the literature that the difference in predicted
compartments for these protein pairs is reasonable.
Therefore, the major reason for a disagreement in
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Fig. 5 Odds ratio of protein-protein interactions (PPIs) in the human nuclear proteome. The heatmap shows the odds ratio of PPIs within and
between 13 sub-nuclear compartments. The experimentally annotated PPIs were extracted from mentha [46], the Integrated Interactions Database (iid)
[47], the Human Reference Protein Interactome Mapping Project (HuRI) [48] (data gathered by the Center for Cancer Systems Biology at the Dana-Farber
Cancer Institute and supported by the National Human Genome Research Institute of NIH, the Ellison Foundation, Boston, MA and the Dana-Farber
Cancer Institute Strategic Initiative, accessed on 14-02-2018), HINT [49], iRefIndex [50], InBio Map [51] and mapped to those in human proteins of 13
predicted sub-nuclear compartments. Values below 1 (depicted by green colors) indicate less PPIs between proteins in these compartments than
expected, values equal to 0 (depicted by white) indicate as many PPIs as expected and values above 1 (depicted by red colors) indicate more PPIs than
expected. PPIs are observed more often than expected within all compartments and also between proteins in the Spindle apparatus and Kinetochore as
well as proteins in the Nuclear Pore Complex, Nuclear Lamina and Nuclear Envelope which can be explained by the shared functionality of the
different compartments
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predictions between homologous proteins seems to be
that LocNuclei predicts too many compartments for cer-
tain proteins. In fact, this observation is also true for the
development set: For 34% of the proteins, the correct
number of compartments is predicted, for 61%, at least
one compartment more is predicted than annotated, and
for 44%, even at least two compartments more are pre-
dicted than annotated.
Predicted subnuclear compartments can reveal in-

sights into a protein’s functionality. GO enrichment ana-
lysis revealed a clear link between the predicted
localization and function for many compartments (e.g.
nucleolus and kinetochores) while the signal was less
clear for other compartments (e.g. nucleoplasm and
PML bodies). Overall, the inference of function (as prox-
ied by BFO) from LocNuclei predictions worked best for
compartments with a stable structure and a clearly
defined function.
Monitoring PPIs provides another way to proxy bio-

logical processes. As expected, the number of PPIs be-
tween proteins within the same compartment is always
high while the number of PPIs between proteins in dif-
ferent compartments is much lower. There are only a
few exceptions (PPIs between kinetochores and spindle
apparatus, and between nuclear pore complex, nuclear
lamina, and nuclear envelope occur more often than ex-
pected) and these ones can be explained by the shared
functionality of the proteins in these compartments. The
kinetochore is responsible for attaching the duplicated
chromosomes to the spindle apparatus [2] making PPIs
between these two compartments inevitable for proper
functionality. Nuclear pore complex, nuclear lamina and
nuclear envelope are all part of the nuclear membrane
suggesting that interactions between proteins of these
compartments are needed for stability and proper func-
tionality of the nuclear membrane. As the GO enrich-
ment analysis, the analysis of PPIs between sub-nuclear
human proteins showed that the predicted nuclear
sub-structures related to the expected functionality of
sets of proteins. Therefore, being able to correctly pre-
dict subnuclear compartments can help in identifying
probable PPIs and functionality.

Conclusions
LocNuclei is an easy-to-use new method predicting
sub-nuclear localization; it combined homology-based in-
ference (using PSI-Blast) and de novo prediction (machine
learning through an SVM Profile Kernel) to predict the
most likely of 13 sub-nuclear compartments in which a
nuclear protein functions. It used a similar technology to
distinguish between proteins functional only in the nu-
cleus and those also functional in other non-nuclear com-
partments (dubbed traveler proteins). Fivefold stratified

cross-validation yielded Q13 = 0.62 ± 0.03 (one standard
deviation) for the sub-structure prediction and Q2 = 0.72
± 0.02 for the traveling proteins. These high values consti-
tuted another example for the scientific merit of the
Profile Kernel technology [25].
Six thousand one hundred twenty-three proteins of

20,248 of the human proteins (30%) were predicted by
LocTree3 to be located in the nucleus. Here we intro-
duced a set of new methods, referred to as LocNuclei
that mapped these proteins onto 13 sub-nuclear struc-
tures. Most of the nuclear proteins (57%) were predicted
to function in the chromatin or the nucleolus. LocNuclei
also distinguished between traveler and non-traveler
proteins. This method suggested only about one third of
all nuclear proteins to also function outside the nucleus.
GeneOntology (GO) enrichment analyses focusing on

the BFO (Biological Process Ontology) suggested that
BFO terms can be inferred from the predicted sub-nuclear
locations, at least for stable localizations with a clearly de-
fined role. By cross-referencing the mapped human nu-
clear proteome protein-protein interaction (PPI) data, an
overrepresentation of interactions of proteins within a
compartment as well as between proteins located to the
kinetochores and the spindle apparatus or proteins located
to the nuclear lamina, nuclear envelope, and nuclear pore
complex were observed. Like the BFO enrichment, the
PPI enrichment suggested that LocNuclei predictions
might help in annotating protein networks.

Methods
Data set for development and evaluation
Experimentally annotated nuclear proteins and annota-
tions for their sub-nuclear localization were combined
from six databases: HPRD [26], NMPdb [27], NOPdb
[28], NPD [29], NSort/DB [30], and Swiss-Prot [31].
These databases differ in some of their annotation terms
for sub-nuclear compartments. We “normalized” these
differences through a set of 13 distinct keywords
describing the sub-nuclear data set (Additional file 1:
Table S6).
Of 12,055 proteins experimentally annotated as nuclear,

only 3522 (29%) were associated with one or more nuclear
sub-structure. UniqueProt [32] generated a non-redundant
subset for these by only accepting pairs with HVAL< 20
[33, 34] (implying less than 40% pairwise sequence identity
for alignments over 250 residues). At lower HVALs, the
data set became too small for meaningful performance es-
timates. The final sequence-unique sub-nuclear set com-
prised 1934 proteins (Additional file 1: Table S1).
Four thousand seven hundred twenty-two of the same

12,055 nuclear proteins were also annotated in at least
one other non-nuclear sub-cellular compartment (e.g. the
mitochondria). The complete set of 12,055 nuclear pro-
teins was redundancy-reduced at HVAL< 0 yielding 1098
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sequence-unique proteins, of which 559 (51%) were anno-
tated to exclusively localize to the nucleus, 539 (49%) to
be in the nucleus and some other compartment.
The resulting prediction method was trained to differen-

tiate between (i) proteins localized solely to the nucleus and
proteins localized to the nucleus and other sub-cellular
compartments (traveler proteins), as well as between (ii)
proteins of the 13 sub-nuclear localization classes.

Prediction methods
LocNuclei combined homology-based inference and ma-
chine learning-based de novo predictions in the same way
LocTree3 [13] does: if a sequence similar to a protein of
experimentally known localization is available that annota-
tion is transferred, if not, the machine learning-based pre-
diction is returned. Stratified fivefold cross-validation was
used to determine all parameters and to assess the per-
formance. In a stratified cross-validation, the distribution
of classes is approximately equal in every subset [35].

Homology-based inference
PSI-BLAST [36] alignments are used to transfer annota-
tions by homology. For all proteins of known localization,
PSI-BLAST profiles were generated with two iterations
and E-value ≤ 10− 3 using an 80% non-redundant database
combining UniProt [37] and PDB [38]. These profiles
were then aligned at E-value ≤ 10− 20(for prediction of sub-
nuclear compartments) or ≤ 10− 5 (for prediction of trav-
eler proteins) against non-redundant proteins in the
development set. For performance estimates, PSI-BLAST
self-hits were excluded. The annotation from the hit with
the highest pairwise sequence identity of all retrieved
alignments was transferred to the query protein.

De novo prediction
The SVM [39] implementation of LibSVM [40] and the
Profile Kernel Function [25, 41] was used to train 13 differ-
ent SVM classifiers to predict 13 sub-nuclear localizations,
where each classifier was trained to discriminate between
all the proteins in one particular nuclear sub-structure and
all proteins in any of the other 12 nuclear sub-structures.
Another profile kernel SVM learned to distinguish between
proteins exclusively observed in the nucleus and those ob-
served in the nucleus and other sub-cellular compartments
(referred to as traveler proteins).
The Profile Kernel algorithm maps each evolutionary

profile to a 20k-dimensional vector of integers. Each di-
mension represents one k-mer, a string of k consecutive
residues and a particular value gives the number of
times this k-mer is conserved in an evolutionary profile
(multiple sequence alignment). Conservation is calcu-
lated as the sum of substitution scores for each residue
in the k-mer and has to fall below a certain threshold σ
[25, 41]. σ and k are user defined parameters that we

optimized during training. For the SVMs, we focused on
optimizing C, the penalty parameter of the error term,
and tol, the tolerance for the stopping criterion. For each
Profile Kernel SVM, we optimized these four parameters
independently. Also, class weights inversely proportional
to class frequencies in the input data were applied for
the subnuclear prediction to correct for class imbalance.
The traveler dataset was almost balanced; thus, we did
not apply class weights for this prediction task. All
chosen parameter settings for the 14 different SVMs are
listed in Additional file 1: Table S7.

Reliability index (RI)
Prediction strength correlated with performance (Fig. 2)
allowing users to focus on more reliable new predictions
through a reliability index (RI) ranging from 0 (weak pre-
diction) to 100 (confident prediction). For the homology-
based inference, the percentage pairwise sequence
identity (PIDE) from PSI-BLAST was used to define the
RI (RI = int(10*(PIDE-20)/8)). To convert the raw SVM
score to a reliability index, this score is normally trans-
ferred to a probability using Platt scaling [42]. However,
the implementation of Platt scaling in LibSVM [40] failed
for our dataset. Typically, SVM scores > 0 should give
probability values > 0.5. For our dataset, this was only ob-
served for the prediction of some sub-structures (classes).
For others, Platt scaling transferred the scores to probabil-
ities < < 0.5. Therefore, we had to renormalize the raw
SVM scores (Eq. 1) as follows:

RIsvm ¼ rawsvm∙
100

max rawsvmð Þ ð1Þ

Performance evaluation
The performance of LocNuclei was assessed through
standard measures. For each localization class, every
prediction can be classified as either true positive (TP,
the sample is predicted and observed in this class), false
positive (FP, the sample is predicted in this class, but ob-
served in another), false negative (FN, the sample is pre-
dicted not to be in this class but observed in it) and true
negative (TN, the sample is predicted and observed in
another class). From this classification, the overall accur-
acy follows:

Q nð Þ ¼ 100∙
Pn

i−1number of proteins correctly predicted in class iPn
i¼1total number of proteins observed in class i

ð2Þ

with n as the number of localization classes (here: 13).
To simplify, this measure calculates the total number of
correct predictions divided by the total number of pro-
teins in the test set.
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The receiver operating characteristic (ROC) curve and
the derived area under the curve (AUC) are combined
performance measures connecting true positive rate
(TPR, Eq. 3) and false positive rate (FPR, Eq. 4) [43].
The ROC-curve shows FPR versus TPR.

TPR ¼ 100∙
TP

TP þ FN
ð3Þ

FPR ¼ 100−100∙
TN

TN þ FP
ð4Þ

The curve is often simplified into a single number, the
Area Under the Curve (AUC) [43].

Comparison of LocNuclei predictions between proteins
LocNuclei might predict more than one sub-nuclear
compartment for a particular protein. This implies that
the comparison of predictions between, e.g. two similar/
homologous proteins requires the introduction of add-
itional parameters. Toward this end, we used the frac-
tion of agreement in two predictions An and Bm defined
as follows:

agree An;Bmð Þ ¼ 1
n
∙
Xn

i¼1
zi; zi

¼ 1; if ai∈ b1;…; bmð Þ
0; otherwise

�
and n≥m w:l:o:g:

ð5Þ
where A and B are two proteins and n and m are the
number of predicted compartments for A and B, re-
spectively. In the limit of a single prediction per protein,
this agreement is identical to the percentage of correct
predictions; in the limit of predicting all sub-
compartments for one protein, the value falls below ran-
dom (1/13 which is lower than random given the differ-
ence in the size distribution of the 13 compartments).

GO enrichment analysis
Gene Ontology (GO) [18, 19] provides a controlled vo-
cabulary (GO terms) of annotated functions for a pro-
tein. It consists of three separate ontologies: “Biological
Process”, “Molecular Function” and “Cellular Compart-
ment”. To analyze whether certain GO terms are statisti-
cally enriched for proteins annotated in a particular
nuclear sub-structure, we used the webserver GOrilla
(http://cbl-gorilla.cs.technion.ac.il/) [44]. GOrilla ana-
lyzes the enrichment of a certain set of proteins through
a hypergeometric distribution. It compares the number
of known experimental annotations of a GO term in all
proteins within a compartment (positive class) and those
in all proteins not in the compartment (negative class).
The resulting p-value gives the probability to observe
the given annotations under the assumption that the an-
notations for proteins from both classes do not differ. A

small p-value indicates that this assumption is not true
and that the corresponding GO term is overrepresented
in the positive class. GOrilla also offers correction for
multiple testing by giving a p-value adjusted using the
Benjamini-Hochberg method [45]. We only considered
the adjusted p-value when analyzing the significance of
results. We considered all terms with p-values < 0.01 as
significantly enriched in the positive. The GO enrich-
ment analysis was carried out exclusively for GO ontol-
ogy “biological process”.

Protein-protein interactions (PPI) for nuclear proteins
To analyze the map between nuclear sub-structures and
protein-protein interactions (PPIs) in human proteins,
we merged a dataset containing information from six
original resources, namely: (1) mentha [46], (2) the Inte-
grated Interactions Database (iid) [47], (3) the Human
Reference Protein Interactome Mapping Project (HuRI)
[48] (data gathered by the Center for Cancer Systems
Biology at the Dana-Farber Cancer Institute and sup-
ported by the National Human Genome Research Insti-
tute of NIH, the Ellison Foundation, Boston, MA and
the Dana-Farber Cancer Institute Strategic Initiative,
accessed on 14-02-2018), (4) HINT [49], (5) iRefIndex
[50], and from (6) InBio Map [51]. For each database,
only binary, direct interactions were considered (often
also referred to as transient physical interactions), i.e. we
excluded associations. Furthermore, only interactions
determined by an experiment and validated by a yeast
two-hybrid (Y2H) experiment or interactions supported
by two independent Pubmed IDs were considered.
To analyze whether proteins between or within a com-

partment interact more often than we would expect, we
calculate an odds ratio for an interaction to happen be-
tween compartment i and j (Eq. 5).

odds PPIij
� � ¼ numobs PPIij

� �
numexp PPIij

� � ð6Þ

where is the number of expected PPIs between proteins
in these compartments and is calculated as

numexp PPIij
� � ¼ numpos PPIij

� �
P

ijnumpos PPIij
� � ∙numobs PPIð Þ ð7Þ

Where numpos (PPIij) is the number of possible PPIs
between proteins in compartment i and j in the whole
PPI dataset and numobs (PPI) is the overall number of
observed PPIs in our data set.
NSort [12] is a framework with eight Bayesian

Network-based classifiers that predict protein sub-nuclear
localization in eight classes (nucleolus, perinucleolar
region, PML bodies, nuclear speckle, Cajal bodies, chro-
matin and nuclear pore complexes). Each classifier
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operates from biological features including protein
sequence, protein interactions, domain and post-
translational modification. Each prediction of NSort can
be traced back to the feature contributing most to the re-
sult. As NSort is the only method available to accomplish
some of the objectives aimed at by LocNuclei, we com-
pared the performance of LocNuclei to that of NSort.

Availability
LocNuclei is a Python project and is available on GitHub:
https://github.com/Rostlab/LocNuclei. The datasets of
sub-nuclear and traveler proteins used for development
as well as sub-nuclear and traveler predictions for all
proteins from the development set are also available.
More detailed information on how to run LocNuclei is
given in the repository.

Endnotes
1Operationally, we defined transient, physical protein-

protein interactions (PPI) as cases of two different
proteins that come so close in space that they “bind”
(physical interaction as opposed to association; closest
C-alpha≤6 Å) and that this binding is shorter than the
“life”-time of either of the two (transient). This simple
definition implies in particular that (i) PPIs are formed
only between different proteins, (ii) no transitivity:
PPI(A,B) ∩ PPI(B,C) ↛ PPI(A,C), and (iii) no molecular
machines: just as most associated proteins do not bind,
most members of the same molecular machine, or large
physical complex do not bind.
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5. Detailed Prediction of Protein Sub-nuclear Localization

5.3. Correction to: Littmann, Goldberg et al., BMC
Bioinformatics (2019)

An incorrect figure has been published as Fig. 2 in the original publication. A correction
with the correct Fig. 2 has been published and is shown below.
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Fig. 2 Highly reliable predictions more accurate. The reliability index (RI, x-axis) of LocNuclei scaled between 0 (unreliable) and 100 (reliable). It
related the prediction strength to the performance. The data for this figure were binned in intervals of 20. Each point reflected the cumulative
performance, i.e. we computed accuracy (Q13 and Q2) and coverage (percentage of proteins for which predictions were made above given RI). a
For the prediction of 13 nuclear sub-structures, 19% of all proteins were predicted at RI > 60 (point marked by dotted lines). For this top 19%,
accuracy rose from the average Q13 = 62% (indicated by leftmost black point) to 75% (point marked by dotted lines). For our data set, RI < 20 did
not correlate with accuracy. b For the prediction of traveler proteins, 29% of all proteins were predicted at RI > 60 (part B, point marked by
dotted lines) with Q2 = 78% (point marked by dotted lines, improving over the average of 72% by six percentage points)
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Fig. S1: Effect of E-value thresholds on combined prediction of traveler proteins. The 
accuracy Q2 for classifying nuclear proteins as travelers or not using homology-based 

inference with PSI-BLAST (based on 12,055 experimentally annotated nuclear proteins) 
varies at different E-value thresholds (darker grey bars on the left). For proteins for which a 
protein with experimentally known nuclear sub-structure annotation is more sequence 
similar than the threshold, performance depends on the threshold (black line). Homology 
based inference reaches the highest accuracy of Q2 = 77% at the stringent E-value ≤
10−50.However, when evaluated on the entire test set (i.e. also on proteins for which no 

homolog is available), the performance drops significantly to Q2 = 53% compared to a 
random prediction of Q2 = 49%. The performance of the SVM on the same set, however, 
reaches Q2 = 66% (the performance is marked by grey lines). The lighter grey bars mark 
the combination of homology inference and machine learning. The optimal threshold for the 

combination was E-value ≤ 10−5. One standard error marked on each bar and on the black 

line and through the dotted lines for ML. 
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Fig. S2: Composition of sub-nuclear compartments in the human, chimp, mouse and 
yeast proteome and LocNuclei’s development set. A. Composition of LocNuclei’s 
development set (assembled from nuclear proteins of various organisms) B. Composition of 
5,088 human nuclear C. Composition of 4,067 nuclear proteins from chimp. D. Composition 
of 6,041 nuclear proteins from mouse E. Composition of 1,790 nuclear proteins from yeast. 
All nuclear proteome sets were obtained by taking nuclear and nuclear membrane proteins 
from LocTree3 [29] whole proteome prediction. Differences in the number of nuclear proteins 
identified from LocTree3 and numbers given here originate from the fact that LocNuclei was 
not able to predict any sub-nuclear compartment for some of the proteins.  For each 
organism, the outer circle shows the composition of the whole dataset while the inner circle 
only shows the composition of the proteins predicted using homology inference. Human, 
mouse and chimp are very similar because they also share a large amount of homologous 
proteins while yeast with a more different proteome in general also shows a different 
composition of the nuclear proteome.  
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2 0 0 1 3 1 63       

Cajal body (42) 3 15 14 4 2 0 0 15      

Nuclear pore 
complex (35) 

5 6 3 2 17 0 0 2 12     

Nucleoplasm (29) 3 8 3 1 0 2 2 0 0 13    

Kinetochore (25) 3 4 0 0 1 0 0 0 2 1 15   

Spindle apparatus 
(14) 

2 1 0 1 4 1 1 0 1 0 3 6  

Perinucleolar (13) 3 4 6 2 1 0 0 1 0 0 3 0 2 

 

The table displays numbers of sequence-unique proteins (HVAL [7, 8] ≤ 20) across 
13 sub-nuclear localization classes in the development set of LocNuclei. Only 
proteins with experimental annotations extracted from HPRD [1], NMPdb [2], NOPdb 
[3], NPD [4], NSort/DB [5] and Swiss-Prot [6] are used. The numbers of unique 
sequences per localization are given in parentheses. The numbers on the diagonal 
describe sequences with the annotation of one localization class (e.g. 584 
sequences in the set were annotated to localize at the chromatin only). Other 
numbers are annotations of two sub-nuclear compartments. Note that some 
sequences had annotations of more than two compartments. 
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Table S2: LocNuclei confusion matrix for homology-based inference and 
machine learning prediction 
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Chromatin 208 

298 

19 

13 

4 

7 

4 

3 

0 

0 

3 

3 

1 

2 

0 

1 

0 

1 

3 

1 

4 

2 

0 

1 

1 

0 

247 

332 

Nucleolus 28 

21 

212 

249 

17 

12 

8 

3 

0 

4 

5 

7 

0 

3 

2 

4 

1 

1 

2 

1 

1 

1 

0 

1 

1 

1 

277 

308 

Nuclear 

speckle 

4 

10 

11 

8 

66 

87 

1 

1 

0 

2 

3 

1 

0 

1 

0 

1 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

87 

112 

PML body 1 

11 

2 

11 

3 

6 

21 

17 

0 

2 

0 

3 

0 

2 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

29 

53 

Nuclear 

lamina 

1 

4 

1 

5 

2 

1 

1 

1 

12 

29 

2 

1 

5 

2 

0 

0 

1 

1 

0 

0 

1 

0 

0 

0 

0 

0 

26 

44 

Nuclear 

matrix 

3 

4 

6 

3 

4 

1 

3 

1 

1 

1 

16 

9 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

33 

21 

Nuclear 

envelope 

1 

3 

0 

4 

0 

1 

0 

0 

2 

1 

0 

1 

14 

20 

0 

0 

5 

1 

0 

0 

1 

0 

0 

0 

0 

0 

23 

31 

Cajal body 0 

3 

2 

3 

0 

2 

0 

0 

0 

1 

0 

1 

0 

0 

8 

2 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

11 

12 

Nuclear pore 

complex 

0 

4 

1 

3 

0 

1 

1 

1 

2 

1 

0 

0 

5 

1 

0 

0 

10 

5 

0 

0 

1 

0 

0 

0 

0 

0 

20 

16 

Nucleoplasm 1 

38 

3 

35 

2 

28 

2 

9 

0 

7 

0 

8 

0 

5 

0 

10 

0 

3 

5 

8 

0 

2 

0 

1 

0 

2 

13 

156 

Kinetochore 2 

2 

3 

2 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

0 

1 

2 

0 

1 

1 

3 

2 

0 

0 

0 

0 

12 

10 

Spindle 

apparatus 

0 

32 

1 

26 

0 

19 

0 

8 

0 

10 

0 

9 

0 

7 

0 

5 

0 

1 

0 

1 

0 

1 

1 

7 

0 

1 

2 

127 

Perinucleolar 0 

0 

2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

4 

0 

6 

2 

None 18 27 29 9 4 2 2 6 1 2 4 3 3 110 

% observed 33 31 14 4 4 3 3 2 2 1 1 1 1  

SUM 

observed 697 653 292 95 80 74 72 42 34 29 25 14 13 
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The confusion matrix for LocNuclei predictions on the development set with the 
columns showing the number of observed and the rows the number of predicted 
proteins. In each cell, the upper numbers are always predictions through homology-
based inference and lower numbers are predictions with the SVM Profile Kernel.  
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Table S3: Comparison between LocNuclei and LocNuclei-NSort 

Sub-nuclear 
compartment 

Number of 
proteins 

AUC LocNuclei-
NSort 

AUC LocNuclei 

Perinucleolar 13 0.71±0.04 0.83±0.03 

Cajal body 35 0.64±0.02 0.55±0.03 

Nuclear pore 
complex 

30 0.85±0.02 0.83±0.02 

Nuclear lamina 41 0.78±0.02 0.76±0.02 

PML bodies 68 0.74±0.01 0.73±0.02 

Chromatin 204 0.75±0.01 0.73±0.01 

Nuclear speckle 250 0.76±0.01 0.74±0.01 

Nucleolus 409 0.72±0.01 0.70±0.01 

Sum/Mean 849 0.74±0.02 0.73±0.02 

 
Comparing the original version of LocNuclei trained on 13 compartments and 
LocNuclei-NSort trained on the development set of NSort and predicting 8 
compartments shows that LocNuclei can perform equally well. It is even better on 
proteins in the perinucleolar than LocNuclei-NSort while being worse on proteins 
located in the cajal bodies.  
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Table S4: Euclidean distance between organisms based on subnuclear 
location spectra predicted with SVM Profile Kernel (de novo) or homology-
based inference 

 

 De novo prediction Homology-based inference  

Human Chimp Mouse Yeast Human Chimp Mouse Yeast 

Human 0 7.2 1.9 12.8 0 1.7 2.8 3.9 

Chimp 7.2 0 6.1 18.7 1.7 0 2.7 4.0 

Mouse 1.9 6.1 0 13.3 2.8 2.7 0 4.6 

Yeast 12.8 18.7 13.3 0 3.9 4.0 4.6 0 

 

We calculate the Euclidean distance between predicted subnuclear location spectra 
and use that distance as proxy to identify evolutionary relationships. Comparing the 
results for location spectra predicted with an SVM Profile Kernel (de novo) to those 
predicted with homology-based inference shows that de novo prediction cannot 
entirely capture the expected relationships, i.e. the distance between human and 
mouse is smaller than between human and chimp. Location spectra predicted with 
homology-based inference succeed in reflecting the expected evolutionary 
relationship, i.e. the distance between human and chimp is the smallest  
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Table S5: Top ten statistically enriched GO terms for each sub-nuclear 
compartment 

 

Compart-
ment 

Top 10 
enriched 

GO terms 

Description 

No. of 
enriched 

GO 
terms 

No. of 
proteins in 

this 
compart-

ment 

Nuclear 
envelope 

GO:0006998 

GO:0061024 

GO:0007077 

GO:0030397 

GO:0051081 

GO:0006409 

GO:0051031 

GO:0097064 

GO:0075733 

GO:0046794 

Nuclear envelope organization 

Membrane organization 

Mitotic nuclear envelope disassembly 

Membrane disassembly 

Nuclear envelope disassembly 

tRNA export from nucleus 

tRNA transport 

ncRNA export from nucleus 

Intracellular transport of virus 

Transport of virus 

99 58 

Chromatin GO:0006325 

GO:2001141 

GO:1903506 

GO:0006355 

GO:0034645 

GO:0097659 

GO:0006351 

GO:0031326 

GO:0009889 

GO:0010556 

Chromatin organization 

Regulation of RNA biosynthetic process 

Regulation of nucleic acid-templated transcription 

Regulation of transcription, DNA-templated 

Cellular macromolecule biosynthetic process 

Nucleic acid-templated transcription 

Transcription, DNA-templated 

Regulation of cellular biosynthetic process 

Regulation of biosynthetic process 

Regulation of macromolecule biosynthetic process 

97 1901 

Nuclear 
pore 
complex 

GO:0006606 

GO:0017038 

GO:0006913 

GO:0051169 

GO:0051170 

GO:0051168 

GO:0006409 

GO:0051031 

GO:0034504 

GO:0071705 

Protein import into nucleus 

Protein import 

Nucleocytoplasmic transport 

Nuclear transport 

Import into nucleus 

Nuclear export 

tRNA export from nucleus 

tRNA transport 

Protein localization to nucleus 

Nitrogen compound transport 

77 141 

Nuclear 
speckle 

GO:0008380 

GO:0006397 

GO:0016071 

GO:0000375 

GO:0000377 

GO:0000398 

GO:0006396 

GO:0043484 

GO:0048024 

GO:0050684 

RNA splicing 

mRNA processing 

mRNA metabolic process 

RNA splicing via transesterification reactions 

RNA splicing via transesterification reactions with bulged adenosine 

mRNA splicing via spliceosome 

RNA processing 

Regulation of RNA splicing 

Regulation of mRNA splicing via spliceosome 

Regulation of mRNA processing 

71 976 

PML body GO:0043401 

GO:0009755 

GO:0070936 

Steroid hormone mediated signalling pathway 

Hormone-mediated signalling pathway 

Protein K48-linked ubiquitination 

64 470 
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Compart-
ment 

Top 10 
enriched 

GO terms 

Description 

No. of 
enriched 

GO 
terms 

No. of 
proteins in 

this 
compart-

ment 

GO:0006357 

GO:0006355 

GO:0045944 

GO:1903506 

GO:2001141 

GO:0030522 

GO:0048522 

Regulation of transcription by RNA polymerase II 

Regulation of transcription, DNA-templated 

Positive regulation of transcription by RNA polymerase II 

Regulation of nucleic acid-templated transcription 

Regulation of RNA biosynthetic process 

Intracellular receptor signalling pathway 

Positive regulation of cellular process 

Cajal body GO:0060333 

GO:0060337 

GO:0016074 

GO:0043170 

GO:0006807 

GO:0044238 

GO:0071704 

GO:0044237 

GO:0000387 

GO:0031118 

Interferon-gamma-mediated signalling pathway 

Type I interferon signalling pathway 

snoRNA metabolic process 

Macromolecule metabolic process 

Nitrogen compound metabolic process 

Primary metabolic process 

Organic substance metabolic process 

Cellular metabolic process 

Spliceosomal snRNP assembly 

rRNA pseudouridine synthesis 

62 67 

Nucleolus GO:0006364 

GO:0016072 

GO:0034470 

GO:0034660 

GO:0006396 

GO:0044085 

GO:0022613 

GO:0009451 

GO:0030490 

GO:0006399 

rRNA processing 

rRNA metabolic process 

ncRNA processing 

ncRNA metabolic process 

RNA processing 

Cellular component biogenesis 

Ribonucleoprotein complex biogenesis 

RNA modification 

Maturation of SSU-rRNA 

tRNA metabolic process 

54 1856 

Kine-
tochore 

GO:0007062 

GO:0051301 

GO:0007059 

GO:0051276 

GO:0000819 

GO:0008608 

GO:0000070 

GO:0098813 

GO:0071173 

GO:0071174 

Sister chromatid cohesion 

Cell division 

Chromosome segregation 

Chromosome organization 

Sister chromatid segregation 

Attachment of spindle microtubules to kinetochore 

Mitotic sister chromatid segregation 

Nuclear chromosome segregation 

Spindle assembly checkpoint 

Mitotic spindle checkpoint 

38 42 

Nuclear 
matrix 

GO:0021515 

GO:0009725 

GO:0009719 

GO:0097485 

GO:0007411 

GO:0021527 

GO:0045944 

GO:1904903 

GO:1904896 

GO:0045935 

Cell differentiation in spinal cord 

Response to hormone 

Response to endogenous stimulus 

Neuron projection guidance 

Axon guidance 

Spinal cord association neuron differentiation 

Positive regulation of transcription by RNA polymerase II 

ESCRT III complex disassembly 

ESCRT complex disassembly 

Positive regulation of nucleobase-containing compound metabolic 
process 

38 120 
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Compart-
ment 

Top 10 
enriched 

GO terms 

Description 

No. of 
enriched 

GO 
terms 

No. of 
proteins in 

this 
compart-

ment 

Nuclear 
lamina 

GO:0006998 

GO:0007010 

GO:0061024 

GO:0051225 

GO:0007030 

GO:0007051 

GO:0000226 

GO:0090286 

GO:0007017 

GO:0051179 

Nuclear envelope organization 

Cytoskeleton organization 

Membrane organization 

Spindle assembly 

Golgi organization 

Spindle organization 

Microtubule cytoskeleton organization 

Cytoskeletal anchoring at nuclear membrane 

Microtubule-based process 

Localization 

25 130 

Peri-
nucleolar 

GO:0048010 

GO:0045445 

Vascular endothelial growth factor receptor signalling pathway 

Myoblast differentiation 

2 33 

Nucleo-
plasm 

GO:0031424 Keratinization 1 852 

Spindle 
apparatus 

  0 
(lowest 

p-value= 
0.0247) 

13 

Traveler GO:0051179 

GO:0051234 

GO:0006810 

GO:0008104 

GO:0015833 

GO:0042886 

GO:0015031 
GO:0033036 

GO:0045184 

GO:0016192 

Localization 

Establishment of localization 

Transport 

Protein localization 

Peptide transport 

Amide transport 

Protein transport 

Macromolecule localization 

Establishment of protein localization 

Vesicle-mediated transport 

207 2248 

 

The table displays the overall number of enriched GO terms and the top ten enriched 
GO terms for each sub-nuclear compartment and for proteins predicted as traveler. 
GO enrichment analysis was performed for the 5,088 proteins of the human nuclear 
proteome and their sub-nuclear localizations as predicted by LocNuclei. A GO term 
is considered as enriched if the p-value, adjusted for multiple testing, is < 0.01. 
Terms are ranked by p-value where the first term is the term with the lowest p-value. 
For Spindle apparatus, there are no enriched terms which is probably due to the low 
number of proteins prediction for this localization (13). For compartments with many 
proteins and a clearly defined function like nucleolus, chromatin, kinetochores, 
nuclear envelope or nuclear pore complex, the enriched GO terms reflect the 
expected functionality. Also for traveler proteins, the enriched GO terms all 
associated with transport and localization give evidence about the functionality of 
these proteins. 

 

Table S6: Normalization of sub-nuclear localization terms  
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Databases term Normalized term 

Cajal body, cajal bodies, gem Cajal bodies 

Chromatin, centromere, chromosome, 
heterochromatin, telomere, unsynapsed 
chromosome axes 

Chromatin 

Nuclear envelope, nuclear membrane, 
nucleus membrane 

Nuclear envelope 

Nuclear lamina, nuclear periphery, nucleus 
lamina 

Nuclear lamina 

Nuclear matrix, nucleus matrix Nuclear matrix 

Nuclear pore Nuclear pore complex 

Nuclear speckle Nuclear speckles 

Nucleolus, nucleolar Nucleolus 

Nucleoplasm Nucleoplasm 

Perinucleolar Perinucleolar compartment 

PML body, nuclear dots, PML-NBs, 
PML/ND10 bodies 

PML bodies 

Kinetochore Kinetochore 

Spindle apparatus, spindle microtubules, 
spindle midzone, spindle poles 

Spindel apparatus 

 

Databases HPRD [1], NMPdb [2], NOPdb [3], NPD [4], NSort/DB [5] and Swiss-Prot 
[6] annotate sub-nuclear proteins using synonyms for some terms. We extracted 
these terms and normalized them to 13 sub-nuclear localization classes. The 
normalization was done case-insensitive; terms of the same class are separated by 
comma. 

 

 

 

Table S7: Chosen hyperparameters for the 14 different SVM Profile Kernels 

 

 k  C tol 

Cajal Body 4 7 1.0 0.0001 

Chromatin 4 7 2.0 0.0001 
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Kinetochore 5 8 1.0 0.0001 

Nuclear Envelope 4 7 2.0 0.1 

Nuclear Lamina 4 7 2.0 0.1 

NPC 3 5 2.0 0.1 

Nuclear speckle 3 5 2.0 0.1 

Nuclear matrix 4 6 1.0 0.0001 

Nucleolus 4 9 2.0 0.0001 

Nucleoplasm 3 7 0.5 0.0001 

PML body 4 8 2.0 0.0001 

Perinucleolar 4 7 2.0 0.0001 

Spindle apparatus 4 7 1.0 0.0001 

Traveler 3 6 0.1 0.1 

 

For the Profile Kernel, we optimized the parameters k, the k-mer length, and , the 
conservation threshold. For the SVMs, we focused on optimizing C, the penalty 
parameter of the error term, and tol, the tolerance for the stopping criterion. We 
optimized all parameters for the 14 SVMs independently. 
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6. Conclusion

Elucidating a protein’s function is crucial to understand its overall role in the organism
and to shed light on the molecular mechanisms of life. Despite its importance, protein
function is not a well-defined concept because it is not only determined through the pro-
tein sequence but is also influenced by various other factors. Furthermore, determining
protein function experimentally remains difficult, while protein sequencing has become
cheaper and easier in the last couple of years, leading to a rapidly growing number of
available protein sequences without any functional annotations. Computational biology
has focused on bridging this sequence-annotation gap through prediction methods.

This dissertation focused on three different aspects to describe protein function, namely
Gene Ontology (GO) terms, binding residues, and sub-nuclear localization, and devel-
oped new methods to predict those aspects. To predict GO terms, we proposed go-
PredSim (see Chapter 3), a new method applying an unsupervised approach to transfer
annotations. It follows a similar concept as homology-based inference but uses embed-
ding similarity instead of sequence similarity to identify evolutionary related proteins.
Embeddings are derived from language models which were pre-trained on large sets of
sequences without using any annotations (self-supervised training). goPredSim clearly
outperformed homology-based inference indicating that embedding similarity captures
functional relations better than sequence similarity and allows for the identification of
more distant relatives. Therefore, goPredSim is a method to predict GO terms which
is much simpler than existing state-of-the-art methods while still achieving good per-
formance. In addition, it enables annotation transfer between proteins not captured
through sequence similarity making it broader applicable than homology-based infer-
ence.

Further, we developed bindPredictML17 (see Section 4.1), a method to predict binding
residues. It is based on an Artificial Neural Network (ANN) using evolutionary informa-
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6. Conclusion

tion derived from evolutionary couplings and mutation effect predictions. Being solely
based on sequence information, bindPredictML17 achieved F1 = 26.2 ± 0.8%, and the
predicted binding residues often formed spatial clusters in the protein structure. Such
predictions indicate that residues incorrectly predicted as binding could still be close to
the binding site and stabilize it, or could point towards missing binding annotations.

While bindPredictML17 achieved good performance, it relies on evolutionary informa-
tion that cannot be computed for all proteins. To improve upon bindPredictML17,
we proposed bindPredictDL (see Section 4.2) which replaced the ANN with a Convolu-
tional Neural Network (CNN) and does not rely on evolutionary information as input.
Instead, it uses a transfer learning approach utilizing embeddings. bindPredictDL distin-
guishes three different types of binding residues (binding to small molecules, metal ions,
or nucleic acids). It clearly outperformed bindPredictML17 by five percentage points.
Combining bindPredictDL with homology-based inference increased performance fur-
ther, leading to F1 = 44±2% for the binary task of predicting whether a residue binds a
ligand or not and F1 = 27±3%, F1 = 20±3%, F1 = 39±2% for the prediction of binding
residues for metal ions, nucleic acids, and small molecules, respectively. bindPredictDL
constitutes a method for binding residue prediction which is based on embeddings that
can easily be obtained for all available protein sequences. Therefore, bindPredictDL
is solely based on sequence information and does not require structural information or
hand-crafted features as input. Compared to other existing binding residue predictors,
it is not restricted to a certain ligand or set of ligands but allows predictions for vari-
ous different types of binding and can even distinguish between three major groups of
ligands.

To predict sub-nuclear localization, LocNuclei (see Chapter 5) uses a combination of
homology-based inference and a Profile Kernel SVM. It allows distinction of 13 different
compartments and also the assignment of multiple localizations to one protein. LocNu-
clei achieved an overall accuracy (Q13, Eqn. 5.1) of 62 ± 3%, and the predicted com-
partments matched the expected functions as described through GO terms. Therefore,
LocNuclei allows to predict protein localization on a fine-grained level for one specific
compartment, namely the nucleus. To account for the dynamic organization of the nu-
cleus, LocNuclei can predict multiple sub-nuclear compartments for one protein. The
resulting predictions allow to draw conclusions about a protein’s function.

In general, the methods presented in this dissertation reflect the diversity of protein
function by leveraging various Machine Learning (ML) techniques, each offering specific
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strengths. Homology-based inference remains an approach which achieves very high
performance for protein function prediction but is limited to a small subset of pro-
teins. Because of their complementarity, combining homology-based inference with ML
achieves the best performance for function prediction. While ML models often relied
on evolutionary information and difficult to compute features in the past, the rise of
Deep Learning introduces new possibilities and features that allow fast and accurate
predictions for large sets of protein sequences. Especially protein embeddings represent
a powerful new input replacing hand-crafted features. They can, for example, serve as
input to train supervised ML algorithms. Additionally, the inference based on embed-
ding similarity introduced in this dissertation can complement homology-based inference
and enable annotation transfer between evolutionary related proteins with low sequence
similarity. Future advances in the quality of protein embeddings could further improve
their predictive power and, therefore, boost performance of methods to predict protein
function. However, the applied concepts and developed methods do not only show that
ML can predict protein function but also highlight the large potential of ML for any pre-
diction task in computational biology. In fact, the study presented in Chapter 2 showed
the relevance of ML in biology and medicine through an assessment of published litera-
ture highlighting the vast number of possibilities for applications of ML in biology and
medicine, and the importance of collaborative research at the intersection of computer
science and life sciences.

In conclusion, this dissertation advanced prediction methods for three main aspects
of protein function: GO terms, binding residues, and sub-nuclear localization. To
do so, we developed different prediction methods utilizing heterogeneous ML concepts
by applying supervised learning based on hand-crafted features (LocNuclei, bindPre-
dictML17), transfer learning utilizing embeddings from pre-trained language models
(bindPredictDL), or unsupervised learning performing a simple annotation transfer be-
tween proteins with similar embeddings (goPredSim). Those methods achieve high pre-
diction performance, rely solely on sequence information, and are more broadly appli-
cable than other methods. In addition, the diversity of the applied concepts shows
the large potential of ML applications not only for protein function prediction, but for
computational biology in general.
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