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The Fast Multipole Boundary Element Method (FMBEM) reduces the O(N2) computational
and memory complexity of the conventional BEM discretized with N boundary unknowns, to
O(N log N) and O(N), respectively. A number of massively parallel FMBEM models have been
developed in the last decade or so for CPU, GPU and heterogeneous architectures, which are capable
of utilizing hundreds of thousands of CPU cores to treat problems with billions of degrees of freedom
(dof). On the opposite end of this spectrum, small-scale parallelization of the FMBEM to run on the
typical workstation computers available to many researchers allows for a number of simplifications in
the parallelization strategy. In this paper, a novel parallel broadband Helmholtz FMBEM model is
presented, which utilizes a simple columnwise distribution scheme, element reordering and rowwise
compression of data, to parallelize all stages of the fast multipole method (FMM) algorithm with
a minimal communication overhead. The sparse BEM near-field and sparse approximate inverse
preconditioner are also constructed and executed in parallel, while the flexible generalized mini-
mum residual (fGMRES) solver has been modified to apply the FMBEM matrix-vector products
and corresponding minimum residual convergence within the parallel environment. The algorith-
mic and memory complexities of the resulting parallel FMBEM model are shown to reaffirm the
above estimates for both the serial and parallel configurations. The parallel efficiency (PE) of the
FMBEM matrix-vector products and fGMRES solution for the present model is shown to be sat-
isfactory; achieving PEs up to 92.3% and 74.1% in the fGMRES solution using 3 and 6 CPU cores
respectively, when applied to models having > 104 dof per CPU core. The PE of the precalculation
stages of the FMBEM — in particular the FMM precomputation stage which is largely unparal-
lelized — reduces the overall PE of the FMBEM model; resulting in average efficiencies of 68.3%
and 47% for the 3-core and 6-core models when treating problems with > 104 dof per CPU core.

This is an Open Access article published by World Scientific Publishing Company. It is distributed under
the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
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The present model is able to treat large-scale acoustic scattering problems involving up to 107 dof
on a workstation computer equipped with 128 GB of RAM, while acoustic target strength (TS)
results calculated up to 3 kHz for the BeTSSi II submarine model demonstrate its capabilities for
large-scale TS modeling.

Keywords: FMBEM; broadband; parallel; target strength.

1. Introduction

The Fast Multipole Boundary Element Method (FMBEM) is one of the several ‘fast’ meth-
ods which reduces the O(N2) computational and memory complexity of the conventional
BEM when solving for N boundary unknowns. Other methods include, for example, the pre-
corrected FFT,1 the hierarchical adaptive cross approximation (ACA) method2 and hybrid
FMBEM-ACA methods.3 The Fast Multipole Method (FMM) was originally developed by
Rokhlin and Greengard for solving 2D Laplace Boundary Integral Equations (BIEs)4 and
particle interaction problems,5 respectively. The FMM was applied to the 3D Helmholtz
BEM by Coifman et al.6 A number of 3D Helmholtz FMBEM models have since been pro-
posed, which can be broadly classified as either ‘high-frequency’ formulations which are
based on the far-field signature functions and diagonal forms of Rokhlin’s translation meth-
ods,7 and ‘low-frequency’ formulations, which use the spherical basis functions and Rotation,
Coaxial translation, Rotation (RCR)8 or plane wave expansion9 translation methods. Imple-
mentations of both the high- and low-frequency FMBEMs for acoustic scattering/radiation
problems can be found in, for example, Refs. 10–12, while articles reviewing the FMBEM
literature were published in 2002 by Nishimura13 and 2011 by Liu et al.14

Both the high- and low-frequency FMBEMs cannot be readily applied across a broad
frequency range. The low-frequency FMBEM provides poor algorithmic scaling at higher
frequencies due to the cost of the translation operations, while the recursion relations for
the RCR translation method become unstable at high frequencies (although different meth-
ods15,16 have now be proposed to overcome this issue). Conversely, the multipole-to-local
translations in the high-frequency FMBEM break down at lower frequencies.6,13 These issues
have spurred the development of ‘broadband’ (or ‘wideband’) FMBEM models which com-
bine the high- and low-frequency formulations to provide a stable solution and optimal algo-
rithmic scaling at all frequencies. Jiang and Chew developed the first broadband FMBEM
(for electromagnetic problems) which utilized the respective far-field signature functions and
spherical basis functions in the high- and low-frequency regimes, respectively.17 A similar
model using the plane wave expansion translation method in the low-frequency regime was
proposed by Cheng et al.18 Wallén et al. appear to have first applied the broadband FMBEM
to acoustic scattering problems19 in 2006, and now a number of different broadband formu-
lations for acoustic scattering can be found in the literature.20–22 Alternatively, broadband
FMBEM models which modify the high- or low-frequency FMBEMs to make them suitable
at all frequencies have also been developed. Darve and Havé stabilized the high-frequency
diagonal translation method at lower frequencies,23 while Chaillat and Collino reduced the
computational cost of the low-frequency plane wave expansions.24
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Parallelization of the FMM algorithm has been pursued since the methods inven-
tion: Greengard and Gropp developed a parallel CPU implementation of the FMM25 in
1990, while Gumerov and Duraiswami implemented the first FMM implementation for
the GPU architecture26 in 2008. A number of massively parallel FMM algorithms have
since been developed for CPU,27 GPU28 and heterogeneous (mixed CPU–GPU) architec-
tures,29,30 with the more recent ‘extreme-scale’ models treating acoustic scattering prob-
lems with more than 2 billion dof on a supercomputer with ∼2 × 105 CPU cores.31 The
exa-scale FMBEM models developed by Yokota and Barba have also been made freely avail-
able under open-source licenses.32 Application of the parallel FMBEM for the Helmholtz
equation appears to have been largely pursued for electromagnetic scattering problems,
although several parallel FMBEM models for acoustic analysis can also be found in the
literature.21,33,34

This paper presents a broadband Helmholtz FMBEM which combines the high- and
low-frequency FMM expansion/translation methods18,20 for ‘large-scale’ acoustic scattering
and target strength (TS) modeling. The model executes all stages of the FMBEM algorithm
and iterative solver in parallel, and is designed for the multicore processors typically found
in standard workstation computers which are available to many researchers. This type of
small-scale parallelization allows for a number of simplifications in the data distribution
and communication between workers, which otherwise require more complex implementa-
tions to scale and optimize for larger parallel systems. Furthermore, the FMM algorithm
has been shown to provide very good parallel efficiency35 (PE) for smaller scale problems
(∼105–107 unknowns) distributed across a limited number of CPU cores (� 64). A novel
approach for parallelizing the FMM algorithm is presented here, based on a columnwise
distribution of the equivalent BEM matrix, element reordering and rowwise compression of
data, which minimizes the required data transfer between workers. Using this approach, a
standard workstation computer with an i7 hexacore CPU and 128 GB of RAM was able
to solve acoustic scattering problems involving up to 107 dof. Problems of this compu-
tational size and parallel scaling will be of interest to many researchers with access to
similar computer hardware. The present algorithm can also be readily applied to extend
the capabilities of other advanced BEM models, such as for acoustics involving viscous and
thermal losses,36 Non-Negative Intensity,37 or to accelerate the IGABEM for acoustic shape
optimization.38

The paper is organized as follows. Sections 2 and 3 introduce the Helmholtz BIE and the
present broadband FMBEM algorithm, respectively. The low- and high-frequency multipole
expansion and translation methods, transformation algorithm, truncation of expansions
in the multilevel FMBEM and the computational cost of the various components of the
broadband algorithm are discussed. Section 4 then describes the parallelization algorithm for
the FMBEM model. Numerical results are presented in Sec. 5 which exhibit the algorithmic
complexity and parallel performance of the model, and include TS modeling results for the
BeTSSi II generic submarine hull. The conclusions and recommendations for future work
are finally presented in Sec. 6.
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2. The Helmholtz BEM

The Helmholtz BIE for acoustic scattering exterior to a closed boundary surface S is

1
2
p(y) =

∫
S

[
∂G(x,y)
∂n(x)

p(x) − G(x,y)q(x)
]

dS(x) + pinc(y), (1)

where p is the total surface pressure, q = ∂p
∂n is its normal derivative, n is the surface normal

vector (pointing outward from S), pinc is the incident acoustic field, and x & y are points
on S (which is assumed to be locally smooth at y). The 3D Helmholtz Green’s function is
as follows:

G(x,y) =
eikr

4πr
, r = |y − x|, (2)

where k = 2πf/c is the wavenumber, f is the frequency, c is the sound speed and i =
√−1.

Equation (1) will break down at frequencies corresponding to the eigenfrequencies of the
adjoint interior problem.40,41 A stable solution is provided at all frequencies by combining
Eq. (1) with the normal derivative of this equation (evaluated at point y on S) to give42

1
2
[p(y) + αq(y)] = [M(x,y) + αM ′(x,y)]p(x)

− [L(x,y) + αL′(x,y)]q(x) + [pinc(y) + αqinc(y)], (3)

where qinc is the normal derivative of the incident acoustic field, α is the Burton–Miller
coupling coefficient and the L, M , L′ and M ′ integral terms are defined as follows:

L(x,y)q(x) =
∫

S
G(x,y)q(x)dS(x), (4)

M(x,y)p(x) =
∫

S

∂G(x,y)
∂n(x)

p(x)dS(x), (5)

L′(x,y)q(x) =
∫

S

∂G(x,y)
∂n(y)

q(x)dS(x), (6)

M ′(x,y)p(x) =
∂

∂n(y)

∫
S

∂G(x,y)
∂n(x)

p(x)dS(x). (7)

Equation (3) will provide a unique solution at all frequencies provided Im(α) �= 0, and
is chosen here to be proportional to + i

k as recommended by Marburg.43 The conventional
BEM discretizes Eq. (3) using (for example) the collocation or Galerkin methods,44 to yield a
set of N equations involving N boundary unknowns. Both the computational and memory
requirements for the iterative solution of the resulting matrix equation are proportional
to O(N2) as the BEM coefficient matrix is fully populated. This is a result of the BEM
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explicitly calculating every pairwise element interaction of unknowns on the discretized
boundary mesh. The FMBEM instead treats interactions between well-separated groups
of elements and this alleviates the need to explicitly construct the full coefficient matrix:
instead the matrix-vector product is directly calculated. As a result, the FMBEM has a
computational complexity of between O(N1.5) and O(N log N) (depending on the FMM
algorithm and frequency range of interest) and a memory complexity of O(N).39

3. The Broadband FMBEM Algorithm

The present broadband FMBEM model employs a switch between the functional representa-
tions of the multipole expansions in the low- and high-frequency regimes to provide a stable
solution at all frequencies. In the low-frequency regime, the spherical basis functions20,39 and
RCR method8 are used for the multipole expansions and translations respectively, while in
the high-frequency regime the far-field signature functions and diagonal translation meth-
ods7 are employed. The forward and inverse spherical transform is used to convert between
the low- and high-frequency representations. Figure 1 shows a schematic of the present
broadband FMBEM algorithm, compared to a reference implementation.20

The following sections present an overview of the theory for the broadband FMBEM
model in both the low- and high-frequency regimes, as well as the transformation between
the functional representations of the multipole expansions via the spherical transform. The
choice of the truncation number for the multilevel FMBEM and the corresponding algorith-
mic cost of the various components of the broadband model are also discussed.

(a) (b)

Fig. 1. The broadband FMBEM algorithm: Gumerov and Duraiswami’s implementation20 (a), and the
present broadband algorithm (b). The boxes represent the expansion types: the S and R spherical basis
functions and the far-field signature function F , while vectors indicate the translation operations: S |S, R |R
and S |R translations of the spherical basis functions and F |F , F |Fi and F |Ff diagonal translations of the
far-field signature functions. Interpolation and anterpolation (adjoint-interpolation: filtering) operations are
denoted by the i and f subscripts, respectively. The Sp and Sp−1 arrows indicate the forward and inverse
spherical transforms for converting the spherical basis to far-field signature functions, and vice versa.
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3.1. Broadband FMBEM : Low-frequency regime

3.1.1. Low-frequency FMBEM

The Helmholtz Green’s function, Eq. (2), can be expressed as the sum of two independent
series expansions constructed around the ‘expansion center’ c

G(x,y) = ik
∞∑

n=0

n∑
m=−n

R−m
n (y − c)Sm

n (x− c), (8)

provided that the source and receiver points meet the ‘well-separated’ criterion |y − c| <

|x − c|.39 R and S denote the regular and singular spherical basis functions, which are
defined in the spherical coordinate system r = r(sin θ cos φ, sin θ sinφ, cos θ) as

Rm
n (r) = jn(kr)Y m

n (θ, φ), Sm
n (r) = hn(kr)Y m

n (θ, φ), (9)

where jn(kr) and hn(kr) are, respectively, the spherical Bessel and Hankel functions of the
first kind, Y m

n (θ, φ) is the spherical harmonic function

Y m
n (θ, φ) = (−1)m

√
2n + 1

4π
(n − |m|)!
(n + |m|)!P

|m|
n (cos θ)eimφ, (10)

and P
|m|
n is the associated Legendre function. The degree n and order m have integer ranges

of n ≥ 0 and −n ≤ m ≤ n, respectively.39 Truncation of the infinite series expansions in
Eq. (8) determines the accuracy of the FMM algorithm. Assuming a truncation number p,
the L, M , L′ and M ′ integral terms in Eq. (3) between two well-separated plane triangular
elements containing the collocation points x and y at their centers can be approximated
using piecewise constant unknowns as∫

E
L(x,y)q(x)dE(x) ≈ ikAq(x)

p∑
n=0

n∑
m=−n

Sm
n (x − c)R−m

n (y − c), (11)

∫
E

M(x,y)p(x)dE(x) ≈ ikAp(x)
p∑

n=0

n∑
m=−n

[Sm
n (x − c)]n(x)R

−m
n (y − c), (12)

∫
E

L′(x,y)q(x)dE(x) ≈ ikAq(x)
p∑

n=0

n∑
m=−n

Sm
n (x − c)[R−m

n (y − c)]n(y), (13)

∫
E

M ′(x,y)p(x)dE(x) ≈ ikAp(x)
p∑

n=0

n∑
m=−n

[Sm
n (x − c)]n(x)[R

−m
n (y − c)]n(y), (14)

where A is the area of the boundary element E to be integrated, and [ ]n(x) and [ ]n(y) denote
the surface normal derivative of the (S,R) spherical basis functions39 at x and y, respec-
tively. The FMBEM treats element integrals between well-separated ‘far-field’ elements by
constructing multipole expansions for local element groups about common expansion cen-
ters. Interactions between element groups via Eqs. (11)–(14) are applied by shifting or
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‘translating’ the expansion centers to coincide. In the multilevel FMBEM a hierarchy of
element groups with different sizes on each level is constructed using an octree structure.
Elements which are spatially close to one another (i.e. not considered well-separated on the
lowest level of the octree) cannot be treated with the FMM. These ‘near-field’ integrals
are directly calculated and stored in a sparse BEM matrix using appropriate numerical
quadrature rules for the regular,45 near-singular46 and singular47 integrals.

3.1.2. Truncation of the multipole expansions

In the multilevel FMBEM, the truncation number p is selected on each octree level based
on the size of the corresponding octree boxes. Several methods for determining p based on
either empirical formulas6,48 or theoretical error bounds39,49,50 have been proposed. The
present broadband model selects p using the formula proposed in Ref. 20

pl = 1 − log(ε(1 − σ−1)3/2)
log(σ)

,

ph = kal +
3 log

(
1
ε

)2/3

2
(kal)1/3,

p = (p4
l + p4

h)1/4,

(15)

where σ = 2, ε is the specified accuracy of the multipole expansion and al is half the diagonal
box length on octree level l. Choosing p = n − 1 in Eq. (8) will yield p2 (n,m) coefficients.

3.1.3. Translation of the spherical basis functions

In the low-frequency regime, the translation of the expansion center for an established set
of S or R coefficients is conducted using the R |R, S |S and S |R translations

Rm
n (r + t) =

p∑
n′=0

n′∑
m′=−n′

(R |R)(t)(Rm′
n′ (r)), (16)

Sm
n (r + t) =

p∑
n′=0

n′∑
m′=−n′

(S |S)(t)(Sm′
n′ (r)), (17)

Sm
n (r + t) =

p∑
n′=0

n′∑
m′=−n′

(S |R)(t)(Rm′
n′ (r)), (18)

where r and t are the respective expansion and translation vectors, and |r| > |t| and |r| < |t|
for Eqs. (17) and (18), respectively.39 The S |S and R |R translations are used to translate
expansions between octree levels, while the S |R translations are used to translate between
well-separated expansions on each octree level. Direct application of Eqs. (16)–(18) will
cost O(p4) operations to translate a truncated series with p2 coefficients.8 The Rotation,
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Co-axial translation, Rotation (RCR) method reduces this cost to O(p3) operations, while
the required rotation and translation coefficients can be precalculated and stored in O(p3)
operations.8,39 The low-frequency FMBEM thus has a O(N1.5) algorithmic scaling and a
O(N) memory complexity.39 Finally, it should be noted that the RCR translation method
automatically incorporates the interpolation and anterpolation operations required to vary
the truncation number p between octree levels in the multilevel FMBEM.

3.2. Broadband FMBEM : High-frequency regime

3.2.1. High-frequency FMBEM

The Helmholtz Green’s function, Eq. (2), can be equivalently expressed in the high-
frequency regime using the far-field signature function defined on the unit sphere S2 as

G(x,y) =
ik

(4π)2

∫
S2

eiks·(y−c2)(F |F )(c2 − c1)eiks·(c1−x)dS(x), (19)

where the vector y − x is separated as c1 − x and y − c2 for the well-separated expan-
sion centers c1 and c2. (F |F )(c2 − c1) is the multipole-to-local translation of the far-field
signature function (equivalent to the S |R translation in Sec. 3.1.3), and s is an arbitrary
location on the sphere. The far-field signature functions thus have the form

f(θ, φ) = eiks·(c1−x). (20)

Analogous expressions to Eqs. (11)–(14) can thus be constructed with Eq. (20). The broad-
band FMBEM instead converts the spherical basis functions to the far-field signature func-
tions by applying the forward spherical filter on the switching octree level between the low-
and high-frequency regimes (see Fig. 1). Conversely, the inverse spherical filter transforms
the signature functions to spherical basis functions in the downward pass of the FMM.

Numerical integration of the signature function in Eq. (19) is applied on S2 using grid
points defined in the angular spherical coordinates (θj, φk) for j = 1, . . . , p and k = 1, . . . , 2p.
Grid points have the following angular positions: θj = cos−1 tj , φk = (k − 1)π

p , and Gauss

weights: wθ
j = wj, wφ

k = π
p , where (tn, wn) are the points and weights for the n-point

Gaussian quadrature rule. The quadrature weight at each spherical grid point is thus wθ
j w

φ
k .

3.2.2. The spherical transform and signature function filtering

The forward spherical transform18,51 is used to convert the spherical basis functions (F =
S,R) to the far-field signature function as follows:

βm
j =

p∑
n=|m|

Fm
n (r)

√
2n + 1

4π
(n − |m|)!
(n + |m|)!P

|m|
n (cos θj), j = 1, . . . , p̃, m = −j, . . . , j,

(21)

f(θj, φk) =
n∑

m=−n

βm
j eimφk , j = 1, . . . , p̃, k = 1, . . . , 2p̃, (22)
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where Eq. (21) has a computational cost of O(p̃2p) and Eq. (22) is applied using the FFT
in O(p̃2 log p̃) operations. The inverse spherical transform is applied as

βm
j =

2π
p̃

2p̃∑
k=1

f(θj, φk)e−imφk , j = 1, . . . , p̃, m = −p, . . . , p, (23)

Fm
n (r) =

p̃∑
j=1

wjβ
m
j

√
2n + 1

4π
(n − |m|)!
(n + |m|)!P

|m|
n (cos θj), n = 0, . . . , p, m = −p, . . . , p, (24)

where Eq. (23) is calculated using the FFT in O(p̃2 log p̃) operations and Eq. (24) has
a O(p2p̃) algorithmic complexity. The forward and inverse spherical transforms have an
algorithmic complexity of O(p3) and must each be applied once per octree box on the
switching octree level between the low- and high-frequency regimes. In the high-frequency
regime re-sampling of the far-field signature function is achieved by applying Eqs. (23)–
(24) with p = p̃ followed by Eqs. (21)–(22) with p �= p̃ to resample the far-field signature
function onto a finer or coarser grid of points. Combining Eqs. (21) and (24) using the
Christoffel–Darboux formula18,51 allows the combined equations to be directly applied in
O(p3) operations. This cost can be reduced by approximating the calculation using either a
one-dimensional FMM,18 nonequispaced FFT51 or fast Legendre transform.39 In the present
model the nonequispaced FFT (NFFT) is employed,51 yielding a O(p2 log p) algorithmic
complexity. However, in the present model the NFFT filter only becomes faster than the
direct O(p3) filtering operation for relatively large truncation numbers (p � 500) due to
the larger overhead in applying the NFFT.52 The NFFT filtering also reduces the memory
storage requirements of the spherical filters from O(p3) to O(p): a significant reduction for
large-p filters. Furthermore, these filters must be replicated across workers in the parallel
model. Thus, in the present formulation the NFFT filter is utilized for p ≥ 250.

3.2.3. Translation of the far-field signature functions

Translations of the far-field signature functions between octree levels (analogous to the S |S
and R |R translations) can be applied for an arbitrary translation vector c2 − c1 as

f2(θ, φ) = f1(θ, φ)eiks·(c2−c1), (25)

which has an O(p2) algorithmic complexity. The F |Fi and F |Ff diagonal translations
between octree levels are thus applied in the upward pass by first interpolating the signature
functions on the current level l and then translating to the ‘parent’ level l − 1, and in the
downward pass by translating to the ‘child’ level l + 1 and then anterpolating. The F |F
multipole-to-local diagonal expansions, (F |F )(c2 − c1) in Eq. (19), can be expressed as7

(F |F )(c2 − c1) =
p∗∑

n=0

in(2n + 1)hn(k|c2 − c1|)Pn

(
s · c2 − c1

|c2 − c1|
)

, (26)

where Pn is the Legendre polynomial of degree n and the truncation number should
be selected as p∗ = 2p to translate a signature function with degree p.18,20 The F |F
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translations thus require a (2p) × (4p) grid of sample points, which can again be con-
structed via spherical filtering. In the present model the truncation numbers above the
switching octree level are set to 2p, to minimize the number of O(p3) filtering operations
in the high-frequency regime. The F |F translations can then be applied without having to
resample to/from the finer translation grid. The disadvantage of this approach is that the
F |Fi and F |Ff translations between octree levels are also applied on an over-sampled grid
i.e. using a truncation number of 2p when p would suffice. However, the cost of applying
these translations is O(p2) compared to the O(p3) filtering operations, and so the reduc-
tion of the number of filtering operations is prioritized to minimize the overall cost of the
broadband FMBEM.

The F |F diagonal expansion is applied to the far-field signature functions as

f2(θ, φ) = (F |F )(c2 − c1)f1(θ, φ), (27)

which converts the multipole expansion centered at c1 to a local expansion centered at c2

(analogous to the low-frequency S |R translation), at a cost of O(p2) operations. The direct
calculation of the F |F translation coefficients in Eq. (26) has a O(p3) computational cost.
Here, an approximate O(p2) calculation method is employed,18 where the F |F coefficients
are tabulated as a function of the argument of the Legendre polynomial, and a nearest-
neighbor interpolation is applied at run time to calculate the translation coefficients.

The high-frequency FMBEM thus has an algorithmic complexity between O(N1.5) and
O(N log N) depending on the combination of O(p3) and O(p2 log p) filtering operations, and
a memory complexity of O(N). The combination of the low- and high-frequency FMBEMs
utilized in the broadband model will yield an algorithmic complexity between the O(N1.5)
and O(N log N) limits, depending on the frequency of the particular problem.

4. Parallelization Scheme for the FMBEM

The main computational work of the standard BEM is due to the repeated matrix-vector
products applied during the iterative solution. As the BEM explicitly builds and stores
the full coefficient matrix, an obvious distribution scheme to parallelize the matrix-vector
product using a number of CPU cores, or ‘workers’, is to distribute the BEM coefficient
matrix as contiguous blocks of rows across the workers, and replicate the vector across all
workers, as shown in Fig. 2(a). The output vector from this parallel operation is distributed
across the workers in blocks and does not require any further inter-worker communication
(e.g. ‘gathering operations’ across workers) to recover the distributed solution vector.

The FMBEM only explicitly constructs and stores the vector of unknowns, not the
full coefficient matrix, and so the matrix distribution scheme cannot be directly applied.
An alternative scheme for the FMBEM is to instead distribute the vector of unknowns.
Each worker may then apply the FMM algorithm in parallel to the section of the vector
stored locally on that worker. This scheme necessitates a columnwise distribution of the
coefficient matrix (see Fig. 2(b)) which results in a full vector being output on each worker.
Components from each of these vectors must then be gathered onto the correct worker in
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(a) (b)

Fig. 2. General parallel distribution schemes for a matrix-vector product operation utilizing four workers:
(a) rowwise distribution of the BEM coefficient matrix and (b) columnwise distribution of the equivalent
full coefficient matrix for the FMBEM.

a subsequent inter-worker communication step to reconstruct the distributed matrix-vector
product. The rowwise distribution requires the full vector of unknowns to be replicated
across all n workers, while the columnwise distribution only requires a 1/n fraction of the
vector to be transferred to each worker. However, in the subsequent inter-worker communi-
cation stage, each worker must both send and receive a n−1/n fraction of the vector. Thus,
the communication cost of the columnwise distribution is proportional to 2n−1/n, compared
to the n-proportionality of the rowwise distribution scheme.

In this work, a novel parallelization strategy for the broadband FMBEM algorithm,
based on the columnwise distribution of the equivalent FMBEM matrix is presented. This
strategy utilizes element reordering and rowwise compression of sparse vectors to minimize
the inter-worker communication. The FMBEM constructs local element groups to apply the
multipole interactions, but the order of the elements within the full element list is arbitrary.
Ordering the elements according to their octree box numbers (equivalent to the three-
dimensional Morton order53) yields a diagonally banded structure in the equivalent BEM
matrix. An example of the element reordering for a spherical mesh, and the corresponding
structure in the FMBEM sparse near-field matrix, is shown in Fig. 3.

The diagonal banding provided by the element reordering reduces the amount of inter-
worker communication required in the columnwise distribution scheme. In this case the
parallel matrix-vector product will yield sparsely populated vectors (Fig. 4(a)) which can
be row-compressed to minimize the output vectors on each worker (Fig. 4(b)). As a result the
main component of each vector is located on the correct worker and only a small component
must be transferred between the workers.

The bandwidth of the equivalent FMBEM matrix varies with the octree level, where
the lower octree levels involving small element groups have the narrowest bandwidth while
larger element groups at higher octree levels are separated by larger distances and so will
be located further from the main diagonal. The reduction in the inter-worker data transfer
afforded by the element reordering thus becomes less effective as the octree level increases.

The following subsections describe the main stages of the parallel FMM algorithm
(upward pass, downward pass and final summation), iterative solution and precalculation
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(a) (b)

(c) (d)

Fig. 3. Ordering the elements according to their octree box number (a) provides a diagonal banding in the
equivalent BEM matrix (c). An arbitrary element order (b) (using the same element color ordering as in
(a)) does not provide any structure in the equivalent matrix (d).

(a) (b)

Fig. 4. The diagonal banding from the element reordering yields sparse matrix-vector products on each worker
(a). Compression of the matrix blocks to remove the empty rows results in compressed output vectors (b),
thus minimizing the subsequent data transfer required to reconstruct the final distributed vector.
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(a) (b)

Fig. 5. The parallel S |S and R |R translations demonstrated for two workers. In the upward pass (a) the S
expansion sets for each level l octree box (rectangles, grouped according to their parent octree box) are S |S
translated to the parent level (l−1) and summed into a single expansion set per box. Data transfer between
workers is then applied to rebalance the distribution of expansion sets before applying the S |S translations
to level l−2. Conversely in the downward pass (b) the R |R translations from level l to level l+1 is followed
by an inter-worker communication step to reverse the data transfer applied in the upward pass.

procedures for the parallel implementation. Finally, an overview of the parallelization strat-
egy which considers the load balancing of the workers for the different components of the
broadband FMM algorithm is discussed. Full details on the implementation of the FMM
for the Helmholtz equation can be found in, for example, the textbooks on the method.39,55

4.1. Parallel FMBEM : Upward pass

The S-type spherical basis functions are calculated for every element in parallel using an
approximately equal partition. The exact distribution is selected to ensure that (a) all
elements contained within the same box on the lowest octree level l reside on the same
worker, and (b), that each set of boxes with same parent box reside on the same worker
(Fig. 5(a)). The expansions are first multiplied by the vector of unknown coefficients and
combined into a single expansion set per octree box. Each set of expansions is then S |S
translated to the center of the larger parent boxes on level l − 1 and again combined into
a single set per parent octree box. At this stage the distribution of expansions sets across
the workers may be somewhat nonuniform. An inter-worker data transfer is thus applied to
rebalance the number of S expansions sets across the workers. Again the repartition of the
data is chosen to ensure that the sets of l − 1 box expansions with a common parent box
on level l − 2 are retained on the same worker. This process is repeated up to octree level
2, yielding an approximately equal distribution of S expansion sets on every octree level.

The parallel implementation of the upward pass follows the same procedure in both the
low- and high-frequency regimes using the spherical basis functions and far-field signature
functions, respectively. At the switching octree level the spherical transform is applied before
the S |S translations to the parent octree level, as indicated in Fig. 1(b).
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4.2. Parallel FMBEM : Downward pass

The downward pass of the FMM algorithm applies the interactions between all well-
separated boxes (element groups) on every octree level, beginning at l = 2. The S expansion
sets for all well-separated ‘source’ boxes are S |R translated to each ‘receiver’ box; the trans-
lations also transform the S-type expansions to R expansions. The R expansions from all
well-separated boxes are each summed into a single set per receiver box and then R |R
translated from the parent box centers on level l to each of the children boxes on level
l+1. This process is then repeated on subsequent octree levels but with the additional step
that the sets of R expansions from the parent octree level l are first combined with the R

expansions on the current level, l + 1, before applying the R |R translations to level l + 2.
In the parallel algorithm each worker only stores part of the full set of box S expansions

on each octree level, whereas the well-separated interactions may involve source boxes which
are stored across several workers. However, the element reordering procedure ensures that
the boxes which are spatially close to one another will generally reside on the same worker,
as shown in Fig. 6(a). Therefore, in the parallel model each worker applies all S |R transla-
tions and summations for the set of source boxes residing on that worker to all receiver boxes
on the octree level, including those residing on other workers. An inter-worker communi-
cation step is then applied to transfer the partial sets of summed R expansions calculated
on each worker to the receiver boxes residing on other workers (see Fig. 6(b)). After the
communication step each worker contains the complete sets of R expansions for all of the
boxes residing on that worker. The R |R translations are then applied on each worker and
another data transfer is applied to reverse that conducted in the upward pass (see Fig. 5(b)).
This reversal ensures that the data partition of the level l R expansions will match that on
the below (l + 1) octree level (determined by the partition of the S expansions) and so the
expansions can be combined in the subsequent stage of the downward pass.

The parallel implementation of the downward pass in the broadband model follows the
same procedure for both the low- and high-frequency regimes. At the switching octree
level the far-field signature functions are converted to the spherical basis functions before
applying the downward R |R translations to the child octree level (see Fig. 1).

The present model employs translation stencils26 in both the low- and high-frequency
regimes for sets of eight, four and two receiver boxes, to reduce the number of applied
translations from 189 S |R to 71 S |R and 4 R |R translations per receiver box.54 The
required R |R translations for the stencils are applied on the same octree level (from the
center point of the local receiver group to each of the individual boxes), and so do not
require any resampling operations. To maximize the computational savings from the eight-
box stencils the S |R translations are applied on the parent octree level and then combined
with the parent-level R expansions before applying the R |R translations to the child octree
level as part of the standard procedure for the downward pass. In the low-frequency regime
the spherical basis functions with different truncation numbers (i.e. on the parent/child
octree levels) can be directly combined without requiring any additional operations. In
the high-frequency regime the far-field signature functions must be filtered to combine the
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(a) (b)

Fig. 6. The S |R translations in the parallel scheme between sets of well-separated source boxes and four
arbitrary receiver boxes in a two-dimensional domain (a) utilizing four workers. Octree boxes are represented
by squares, S |R translations by lines between box centers and the partition of the boxes amongst the four
workers is indicated by the dashed lines. The partitioning scheme ensures that the majority of the set of
well-separated boxes for a particular receiver box will be stored on the same worker (white translation boxes).
The S |R translations for the well-separated boxes stored on other workers (gray boxes) are calculated on
those workers. An inter-worker communication step is then applied to transfer the sets of R expansions
calculated on the other workers back to the worker which contains the receiver box (b).

signature functions with differing truncation numbers. Therefore, in the present model the
eight-box stencils in the high-frequency regime are applied on the current octree level and
then R |R translated from the center of the eight-box receiver group to each box. This
increases the cost of the translation stencils in the high-frequency regime to 71 S |R and
5 R |R translations per receiver box but avoids additional O(p3) filtering operations.

4.3. Parallel FMBEM : Final summation

At the conclusion of the downward pass the R expansions for each box on the lowest
octree level represent the integrals for all boundary elements except for those residing in
the nearest neighbor boxes. Elements contained within these boxes are directly applied via
the conventional BEM (i.e. as explicit pairwise element interactions). In the present model,
these element integrals are precalculated and stored in a distributed sparse matrix using
the columnwise distribution and row compression scheme indicated in Fig. 4(b). Thus, the
final summation proceeds by applying Eqs. (11)–(14) using the final sets of R expansions
for each receiver box and the corresponding S expansions for each element contained within
the box, to recover the far-field part of the discretized boundary integrals. The near-field
element integrals are calculated on each worker via a parallel sparse-matrix vector product
and added to the far-field result. The final result of the FMBEM procedure is the equivalent
matrix-vector product between the BEM coefficient matrix and vector of unknowns.
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4.4. Parallel FMBEM : Iterative solution

The FMBEM can be combined with an iterative solution method to solve large-scale acoustic
problems. The GMRES method has been shown to be an effective iterative solver for acoustic
problems modeled with both the BEM56 and FMBEM.57 The present model uses a flexible
GMRES58 solver, where a variable preconditioner is applied in each iteration of the solution.
The fGMRES is implemented in the present model as follows: for each iteration of the main
‘outer’ GMRES, an inner GMRES first solves the problem using the current iteration of the
solution vector from the outer GMRES. The resulting ‘preconditioned’ solution vector is
then used in the next outer GMRES iteration. The inner GMRES uses a fast low accuracy
FMBEM20 which is solved to a coarse convergence tolerance, and so the inner GMRES
acts as a fast approximate preconditioner. Conversely the outer GMRES is solved to a fine
convergence tolerance using the full accuracy fast multipole expansions.

Furthermore, the inner GMRES loop is also preconditioned using a sparse approximate
inverse (SAI) preconditioner59 constructed from the sparse matrix of near-field integrals.
The SAI preconditioner approximates the inverse of the BEM sparse near-field matrix by
calculating a local inverse for each boundary element using the BEM coefficients for that
element and its geometrical neighboring elements. This results in a small system of coef-
ficients for each boundary element which can be directly inverted using standard inverse
techniques for a small computational cost. The vectors of matrix inverse coefficients for each
element are then constructed into a global sparse preconditioner (SAI) matrix.

The present parallel fGMRES solver replicates the main GMRES operations across the
workers to locally update the distributed solution vector on each worker with minimal
inter-worker communication. The only part of the GMRES algorithm which requires inter-
worker communication is the calculation of the Euclidean norm of the solution vector in
each iteration. This is calculated in parts on each worker by taking the inner product
of the complex solution (stored in parts across the workers), gathering the results — a
single complex number per worker — into a vector replicated on every worker and then
calculating the magnitude of this vector. The other stages of the GMRES solution (modified
Gram–Schmidt orthonormalization, QR decomposition, etc.) are then calculated in parallel
across the workers for each section of the distributed solution vector. Similarly the SAI
preconditioner matrix is precalculated in parallel and stored as a distributed sparse matrix
(using the columnwise distribution and row compression scheme indicated in Fig. 4(b)) to
apply the SAI matrix-vector product in parallel. This approach minimizes the inter-worker
communication required during the fGMRES solution, as the distributed components of the
solution vector do not need to be copied to and from the host worker in each outer/inner
GMRES iteration. Furthermore, the initialization of the parallel calculation environment
must only be done once for the entire fGMRES solution. Once the outer GMRES has
converged to the specified convergence tolerance, the final distributed solution vector can
be gathered on the host worker for post-processing. It has been shown60 that redundantly
replicating the serial operations of the fGMRES reduces the PE. This is in contrast to
the present model, where replicating these operations yielded an improved PE compared
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to the additional communication overhead (and corresponding reduction in PE) required
to parallelize all stages of the fGMRES. These differences are likely due to the relative
communication overheads associated with the different programming languages.

Finally, it should be noted that the standard GMRES solver algorithm (as implemented
here) will break down for certain problem configurations which yield successive Krylov vec-
tors with rapidly increasing magnitudes61 and thus a poorly conditioned Krylov subspace.
Improved GMRES methods have been developed to alleviate this issue,61 and this is an
obvious avenue for future development of the present model.

4.5. Parallel FMBEM : Precalculation stage

The precalculation stage of the parallel FMBEM model constructs the octree structure,
multipole expansions and translation coefficients for each level of the octree. The sparse
distributed near-field BEM and SAI matrices are also precalculated and stored.

In the present model the S, R, and normal derivative of the S-type expansions are pre-
calculated and stored in parallel across the workers. The octree structure is then constructed
on the host worker (i.e. as a serial process), and both the level-dependent truncation num-
bers and switching octree level between the low- and high-frequency regimes are determined
by the problem frequency and the specified tolerances of the full and preconditioner mul-
tipole expansions.20 The sets of unique S |S and R |R multipole translation coefficients —
totalling 8 unique sets per octree level (from the children to the parent box center and vice
versa) — are calculated on the host and transferred to each worker. Similarly, the full sets
of unique S |R translations are calculated for each octree level on the host and replicated to
each worker. There are 316 unique S |R translation vectors per octree level in the complete
set of well-separated boxes. The translation stencils increase the total number of uniquely
defined translation vectors to several hundred, as the centers of the eight, four and two box
groups can be located at the corners, edges or side faces of the different group of receiver
boxes. In the low-frequency regime the sets of RCR translation coefficients are only cal-
culated and stored for the full accuracy FMBEM, while a subset of these coefficients can
be directly utilized for the smaller truncation numbers in the preconditioner FMBEM. In
the high-frequency regime separate sets of translation coefficients must be calculated and
stored for the full accuracy and preconditioner FMBEM. Finally, both the sparse matrix of
near-field integrals and the SAI preconditioner matrix are calculated in parallel across the
workers and stored in the column distributed and row-compressed format.

4.6. Parallel FMBEM : Choice of parallelization strategy

The present parallelization strategy prioritizes the equal distribution of the octree boxes
across the workers, in lieu of balancing the numbers of S |R translations applied by each
worker. This design choice balances the more costly filtering operations for the far-field
signature functions, which have an O(p3) or O(p2 log p) computational cost, compared to
the O(p2) translation operations in the high-frequency regime. In the low-frequency regime
both the filtering and translation operations have the same O(p3) computational cost. In
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practice the number of S |R translations per worker varies by ∼10% or less for boundary
element meshes with relatively uniform element distributions whose discretization is dic-
tated by the acoustic wavelength.62 This distribution scheme may become suboptimal for
highly nonuniform meshes treated via adaptive octree structures,39 or for highly parallel
(many core) implementations, where the smaller numbers of S |R translation per worker
may become significantly unbalanced. A more efficient strategy could be to prioritize the
distribution of the S |R translations in the low-frequency regime, and the number of octree
boxes (filtering operations) in the high-frequency regime. However, this approach would
necessitate increased worker communication and so the overall PE of the algorithm would
depend on the relative cost of the increased data transfer compared to the optimized load
balancing between workers. It will be shown in the next section that the data communica-
tion for the present model is a relatively small component of the total calculation time for
meshes which have > 104 dof per CPU core.

5. Numerical Results

The parallel broadband FMBEM model has been implemented in MATLAB. An analysis
of the algorithmic/memory complexities and PE of the model is presented in Sec. 5.1.
Target-strength modeling of the BeTTSi II generic submarine hull model is presented in
Sec. 5.2. The outer and inner loops of the fGMRES were set to convergence tolerances
of 10−4 and 0.15, respectively, and the truncation numbers were selected via Eq. (15) to
provide multipole expansion errors of 10−4 in the ‘full accuracy’ (outer) and 0.2 in the
preconditioner (inner) FMBEM calculations. All calculations were performed on a desktop
workstation equipped with an Intel i7 hexacore CPU running at 3.30 GHz, and 128 GB
of RAM. It should be noted that Intel’s automatic ‘turbo boost’ feature for this particular
processor allows a single CPU core to operate up to 3.60 GHz; allowing relatively faster serial
calculations and thus lower efficiencies for the parallel models (a theoretical maximum of
91.67% PE). However, it is shown in Sec. 5.1.2 that some parts of the model achieve close
to linear scaling, and so the effect of the turbo boost is assumed to be relatively small.

5.1. Algorithmic performance and efficiency of parallel implementation

5.1.1. Algorithmic and memory complexity of FMBEM model

This section presents the algorithmic complexity and PE of the present parallel broadband
FMBEM model. The problem configuration for a plane-wave scattering from spherical sur-
face under a rigid (Neumann) boundary condition, which has an analytic solution, is used to
characterize the model’s performance. Solutions are calculated over a range of wavenumbers
using mesh discretizations that provide a minimum of 10 constant elements per acoustic
wavelength (that is, the solution frequency increases with the number of dof to provide a
constant element per wavelength discretization). The boundary element meshes range from
103 to 107 elements/dofs, a maximum kD value of 1299 (where k is the wavenumber and D

is the size of the computational domain), and are solved using 1, 3 and 6 CPU cores. Model
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Fig. 7. The total calculation time of the parallel broadband FMBEM as a function of N , for a constant
number of elements per wavelength. Lines of best fit are shown for each set of model results.

results from Matlab’s implicit parallelization of its own inbuilt functions are also presented
for reference (denoted as ‘Implicit’). Relative error norms for the model solutions varied
between 1.18% and 6.75%, with a mean value of 2.16%. The largest solution error occurred
for the 107 element model, where a maximum of only 2 elements per lowest octree box was
used in the FMBEM calculation due to the memory limitations for running this model.

Figure 7 presents the total calculation time of the parallel broadband FMBEM as a
function of N , for a constant number of elements per wavelength. The total calculation
time includes all stages of the FMBEM model, including the set-up of the octree struc-
ture, near-field and SAI precalculations, and fGMRES solution time. Lines of best fit are
also presented in the figure for each serial/parallel model configuration. The broadband
model exhibits the expected N log2 N algorithmic complexity.20 Increasing the number of
CPU cores in the parallel solution reduces the scaling factor of the N log2 N slope (i.e. a
linear reduction in the calculation time) while the constant y-intercept increases due to
the increased overhead in setting up the parallel algorithm across multiple cores. For the
present problem configuration the parallel model becomes faster than the single-threaded
model for N ∼ 104.

Figure 8 shows the calculation time required for a single matrix-vector product (FMBEM
far-field and sparse BEM near-field) using the full accuracy multipole expansions (expansion
error = 10−4). The lines of best fit again show an algorithmic complexity proportional to
N log2 N . Furthermore, the parallel matrix-vector calculations are faster than the serial
model results for all problem sizes (and similarly for the ‘preconditioner accuracy’ matrix-
vector calculation times; not shown), indicating that the slower total calculation time of the
parallel model for N < 104 is due to the set-up of the model.

The memory storage requirements of the model are presented in Fig. 9 as a function
of N . In this case the results for the MATLAB implicit parallelization are identical to the
1-core results and so are not shown. The fitted lines indicate a memory scaling proportional
to N , which agrees with the theoretical prediction for the broadband FMBEM model.39 The
parallel model requires more memory as the number of CPU cores is increased, but this
inversely proportional to N (as indicated by the different slopes of the fitted lines). This is
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Fig. 8. Averaged calculation time for a single FMBEM matrix-vector product as a function of N , for a
constant number of elements per wavelength. Lines of best fit are shown for each set of model results.

Fig. 9. The memory storage requirements of the parallel broadband FMBEM in (GB) as a function of N .

due to the memory footprint being dominated by the translation and filtering matrices at
lower frequencies, which are replicated across the workers, and by the multipole expansions
and sparse near-field matrix at higher frequencies, which are distributed across the workers.
Finally, it should be noted that the instantaneous peak memory usage of the FMBEM is
somewhat larger than that indicated in Fig. 9 (typically by 10–20%) as various temporary
arrays are built during execution of the algorithm.

The results presented in this section thus reaffirm the expected algorithmic and memory
complexities of the broadband Helmholtz FMBEM. Comparative results for the parallel
FMBEM model indicate that the present parallelization strategy does not affect the overall
O(N log2 N) complexity, only the scaling and offset parameters of the line-fit (corresponding
to the total calculation and initialization times for the parallel models).

5.1.2. Parallel efficiency of the FMBEM model

This section presents results for the PE of the FMBEM, for both the total solution time
and the time required to perform the far-field part of a single matrix-vector product using
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Fig. 10. Components of the total calculation time of the parallel broadband FMBEM as a function of N ,
for a constant number of elements per wavelength. The bottom and top x-axes indicate the number of CPU
cores and the approximate number of dof for each group of bars, respectively.

the FMM algorithm. The FMM matrix-vector results were averaged over a number of cal-
culations (100 iterations for problems with N ≤ 106 and 25 iterations for problems with
N > 106) inside a single call to Matlab’s ‘spmd’ parallel execution environment to minimize
the time delay for initialising MATLAB’s parallel environment. The calculation time for
the sparse near-field matrix-vector product was negligibly small; ranging from 10−2–10−4%
of the total matrix-vector calculation time, and so was not included in the timing results.
This contrasts with some other Helmholtz FMBEM models in the literature,26 where the
near-field calculation contributed a significant cost to the total calculation time.

The PE for the total calculation time of the FMBEM model as a function of N , is
presented in Fig. 10. Each stack of bars indicates the constituent calculation times for the
main components of the FMBEM algorithm — the FMM precomputation, BEM sparse near-
field, SAI preconditioner and fGMRES calculation time — versus N , using different numbers
of CPU cores for the parallel algorithm (indicated by the groups of bars). The computational
time for each set of solutions has been normalized relative to the corresponding 1-core
solution for each problem size. Table 1 presents the corresponding parallel efficiencies for the
components of the FMBEM algorithm versus N . The PE ratio is defined as Time 1core

(Time Ccore×C) ,
where C is the number of CPU cores used in the parallel calculation and ‘Time 1core’ and
‘Time Ccore’ are the respective serial and parallel calculation times being compared.

Figure 10 shows that the total calculation time of the parallel models is dominated by
the FMM precomputation time at smaller values of N (lower frequencies). This is due to
the fact that the majority of operations in this stage are performed in serial and then trans-
ferred to the workers (thus making this stage slower than the single-threaded model). In the
case of the smaller models the data distribution cost is dominated by the constant overhead
in initiating the parallel operations. At higher frequencies, the parallel initialization cost
is relatively small compared to the larger data transfer, and so the precomputation scal-
ing improves as N increases. The parallel scaling from the near-field and SAI calculations
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Table 1. Parallel efficiencies of the components of the FMBEM algorithm versus N for the 3-core and
6-core solutions. All PE values are presented as percentages.

Total Time FMM Pre. NF Compute SAI Compute fGMRES

N 3-Core 6-Core 3-Core 6-Core 3-Core 6-Core 3-Core 6-Core 3-Core 6-Core

1.1 × 103 20.2 7.9 17.0 6.6 37.8 17.4 8.8 3.1 25.4 10.0

1.7 × 103 25.0 10.5 18.1 7.2 52.0 26.3 12.2 4.8 32.1 14.9

2.7 × 103 30.7 13.8 17.9 7.3 70.1 44.2 15.6 6.8 33.8 16.0

3.8 × 103 29.4 13.0 17.6 7.0 60.3 33.9 15.5 6.6 44.0 22.3

6.1 × 103 35.1 16.2 17.9 7.3 71.7 48.1 22.3 9.2 50.7 26.0

1.0 × 104 49.0 22.6 22.0 8.4 82.5 55.1 31.2 11.7 60.9 29.9

1.6 × 104 53.1 25.8 26.2 10.0 82.9 55.8 35.0 14.7 76.0 48.2

2.6 × 104 57.5 28.9 23.5 9.0 86.0 60.5 41.9 18.3 79.2 49.2

3.9 × 104 67.0 37.3 27.6 10.7 87.8 65.5 44.7 21.7 81.2 51.3

6.3 × 104 70.2 41.8 28.1 11.5 85.9 64.0 49.4 28.2 88.4 63.6

1.0 × 105 73.3 45.3 30.6 13.0 93.3 71.9 51.5 29.4 86.5 61.1

1.6 × 105 73.7 48.3 31.2 13.8 86.6 64.7 48.8 31.3 88.0 67.5

2.5 × 105 75.7 50.2 31.8 14.5 91.7 71.1 49.2 36.5 89.8 67.0

4.0 × 105 74.3 50.0 34.4 15.7 87.2 65.1 47.0 35.7 86.3 64.3

6.3 × 105 73.8 50.7 34.0 15.8 85.9 64.4 36.8 35.1 88.4 68.2

1.0 × 106 74.4 52.6 34.6 16.1 80.9 57.7 32.4 34.1 89.6 69.3

1.6 × 106 72.4 51.5 34.6 16.0 76.7 50.0 31.7 33.4 89.8 68.3

2.5 × 106 69.0 50.5 33.6 16.1 77.5 50.1 18.5 23.7 92.3 74.1

4.0 × 106 62.5 46.7 22.9 11.0 69.2 40.1 18.9 24.3 91.3 71.0

6.3 × 106 55.5 42.0 24.0 11.5 59.2 30.7 21.9 27.4 87.3 68.2

1.0 × 107 46.7 35.4 10.8 5.3 54.6 27.3 10.5 14.2 86.5 70.2

improve as N increases as they are performed in parallel and require minimal data-transfer
between workers: becoming faster than the serial model for relatively small problem sizes.
However, these gains appear to scale poorly with the number of cores: exhibiting average
parallel efficiencies of 50.7% and 21.4% for the 6-core near-field and SAI calculations, respec-
tively (see Table 1). The numerical results for the present model configuration indicate that
the fGMRES solution becomes the dominant computational cost for problems involving
� 3.9 × 104 dof. The fGMRES solution also exhibits good PE — up to 92.3% in the best
case — due to the large computational cost and minimized data-transfer for this part of
the model. The average PE of the parallel FMBEM model is 68.3% and 47% for the 3-core
and 6-core models respectively, for problems with > 104 dof per core. The poorer PE of the
set-up stages of the model clearly limit the overall PE achieved. Future work will focus on
improving the PE of these parts of the model.

Finally, it should be noted that the largest few models exhausted the available RAM
during the precomputation, as evidenced by the relatively slower set-up calculation times
(due to file paging) exhibited by those models. The other stages of the analysis were suc-
cessfully performed within memory but also suffered some latency as data was transferred
back into RAM. Thus the parallel efficiencies exhibited by the largest models is suboptimal.
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Fig. 11. Components of the FMM matrix-vector product calculation time versus N for the serial/parallel
models. The bottom and top x-axes indicate the number of CPU cores and the approximate number of dof
for each group of bars, respectively.

The calculation time for the FMM matrix-vector product versus N using the full accu-
racy multipole expansions is shown in Fig. 11. The main components of the FMM algo-
rithm are (1) the operations for the initial multipole summation (element grouping) and
final far-field evaluation at each element (denoted as ‘Multipole Summ.’), (2) the upward
and downward pass operations (‘Up/Down Pass’) for translations/filtering between octree
levels, and (3) the S |R translations across octree levels (‘S |R Trans.’) for interacting well-
separated element groups. The parallel models also show the worker communication times
in the upward/downward pass (‘Up/Down Comm.’) and S |R translation (‘S |R Comm.’)
stages of the algorithm. The computational times for the parallel solutions has been nor-
malized relative to the 1-core solution for each problem size. The percentage of the total
calculation time spent on inter-worker communication is indicated in Fig. 10 above the 3-
and 6-core results. The corresponding PEs for the components of the FMM matrix-vector
product versus N (including worker communication times, where appropriate) are presented
in Table 2.

Figure 11 shows that the S |R translations are the dominant computational cost of the
FMM matrix-vector product for all problem sizes considered, as expected. The combined
cost of the initial and final multipole summations constitutes only a relatively small compo-
nent of the total computational cost of the matrix-vector product, and this trend is inversely
proportional to N . Conversely, the calculation time required to apply the S |S and R |R
translations in the upward and downward passes increases with N . The number of octree
levels and associated translations between octree levels increases with N , and these have a
higher computational than the corresponding S |R translations. Thus, for the large models
with k ∝ N the S |S and R |R translations constitute a more significant component of
the total FMM matrix-vector calculation time. Figure 11 also shows that the inter-worker
communication is dominated by the S |R translations, while that for the S |S and R |R
translations is negligible for N > 104 or so. The average total communication time of the
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Table 2. Parallel efficiencies for the components of the FMM matrix-vector product versus
N for the 3-core and 6-core solutions. All PE values are presented as percentages.

Multipole Summ. Up/Down Pass S |R Trans.

N 3-Core 6-Core 3-Core 6-Core 3-Core 6-Core

1.1 × 103 73.2 101.7 50.5 26.3 67.9 27.8

1.7 × 103 80.0 115.5 82.3 37.8 74.1 39.0

2.7 × 103 81.1 61.3 71.0 34.0 74.0 35.1

3.8 × 103 84.2 64.9 87.0 39.6 74.3 41.5

6.1 × 103 94.7 73.7 75.8 49.4 82.1 47.0

1.0 × 104 95.8 78.6 76.2 48.1 83.2 51.9

1.6 × 104 95.2 80.4 99.6 70.0 93.2 64.7

2.6 × 104 96.2 81.4 104.2 73.5 92.4 65.9

3.9 × 104 97.0 81.2 100.4 64.4 94.7 64.3

6.3 × 104 96.4 79.4 90.9 67.8 96.8 74.2

1.0 × 105 96.3 78.5 94.5 67.1 90.5 65.6

1.6 × 105 96.5 79.3 89.9 67.2 92.3 74.2

2.5 × 105 97.5 80.3 91.5 66.8 92.4 74.0

4.0 × 105 99.6 84.9 90.9 69.4 86.9 68.6

6.3 × 105 96.2 78.3 92.1 69.8 90.8 72.8

1.0 × 106 101.4 83.0 92.8 74.9 88.1 69.4

1.6 × 106 98.8 81.0 95.1 75.6 86.7 66.6

2.5 × 106 95.8 81.4 99.4 81.1 92.9 75.9

4.0 × 106 94.2 77.6 98.8 82.2 88.6 70.5

6.3 × 106 94.9 76.4 95.3 79.7 84.9 66.9

1.0 × 107 112.9 85.7 91.7 78.5 88.1 72.3

FMM matrix-vector product is 8.4% and 18.1% for the 3-core and 6-core solutions respec-
tively, for models with > 104 dof per CPU core. Analogous results for the preconditioner
accuracy FMM matrix-vector products are 13.9% and 24.2%, respectively.

The parallel efficiencies for the main components of the FMM matrix-vector product
are shown in Table 2. The initial and final multipole summations do not require any worker
communication and so should present close to ideal (100%) scaling. This is indeed the
case for all but the smallest 3-core solutions, whereas the 6-core results exhibit a PE of
around 80% for models with N ≥ 104 dof. The initialization cost for the parallel execution
environment has been minimized in these tests, while any effect from Intel CPU’s turbo
boost feature would equally affect the PE of the 3-core results. Thus, it is not obvious what
additional effect causes the poorer PE in the 6-core results. One possible explanation is
that the operating system must share some utilization of the CPU cores when all cores are
used in the parallel FMBEM, and this causes additional latency in the parallel calculations.
Some multipole summation results in Table 2 also display apparent super-scaling (> 100%
efficiency). These are likely due to small errors in the average calculation times for the
smaller models, while the 112.9% PE for the 107 dof 3-core model is due to the fact that this
model exceeded the available RAM in the pre-calculation stage. The multipole expansions
are automatically transferred to hard disk storage when the memory is exceeded, and so
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transferring this data back into RAM during the first iteration of the multipole summation
timing calculations impeded the serial calculation speed. Conversely, the parallel models
transfer the multipole expansion data back into RAM when distributing the data to the
workers during the FMM precomputation stage, and so no similar delay is present in the
parallel model results. A similar effect is also apparent in the 6-core 107 dof model.

The combined upward and downward pass of the FMM matrix-vector product exhibits
good PE for models with N > 104 dof (see Table 2), which can be seen in Fig. 11 to
correspond to those models which have small ratios of worker communication to calculation
time in the upward/downward passes. The 6-core results again exhibit poorer PE than the
corresponding 3-core models. Finally, the larger component of inter-worker communication
for the S |R translations yields a reduced PE for this component: averaging 90.6% and 69.7%
for the 3-core and 6-core models with N > 104 dof. Excluding the S |R communication
time yields corresponding PEs of 101.4% and 89.1% respectively, which again suggests that
the parallel calculations are applied with suboptimal scaling for the 6-core model. This may
again be due to latency related to utilizing all available CPU core, or from a more significant
nonuniformity in the number of S |R translations applied by each worker (or both).

The PE of the present model is comparatively poor compared to others in the published
literature, mainly due to the inefficient precalculation steps, while that for the fGMRES solu-
tion (the most computationally expensive component for large-scale models) is relatively
good. This is due to the minimized inter-worker communication resulting from the colum-
nwise distribution, element reordering and row compression implemented in the present
algorithm. As a result, all stages of the FMBEM matrix-vector products exhibit good PE
for the model configurations considered. Future work will focus on improving the PE of the
precalculation steps of the model, while testing with larger multicore systems will resolve
any systematic latencies that are suspected in the present 6-core results.

5.2. TS modeling of the BeTSSi II submarine hull model

In this section, the parallel broadband Helmholtz FMBEM is applied to TS modeling of the
BeTSSi II generic submarine hull model, which was developed in 201463 to provide a generic
but realistic submarine hull shape for benchmarking various TS modeling approaches. A
summary of the results from the workshop can be found in Ref. 64. TS predictions for the
model have been presented from a number of modeling methods, including BEM, FMBEM,
H-matrix, SCSD and ray-tracing methods.65–70 The FMBEM is suitable for modeling the
submarine hull at low-to-mid frequencies (up to a few kHz), while at higher frequencies the
fast approximate methods (such as ray-tracing) are better suited, as they do not require an
explicit frequency-dependent discretization of the scattering surface. Monostatic TS mod-
eling results are presented here for the outer submarine hull at frequencies of 1 kHz and
3 kHz. It should be noted that the performance of the FMBEM can be improved for pre-
dominantly long and thin ‘1D-shaped’ objects by optimally placing the object within the
octree structure71: however these optimizations have not been pursued in the present anal-
ysis. The overall dimensions of BeTSSi II are 62 m length by 7m diameter (extending to
7.5 m for the flat deck) for the main hull (see Ref. 63 for full details).
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Fig. 12. Target strength results in dB re 1Pa for the BeTSSi II submarine hull model at 1 kHz. Results
from the present model are compared to digitized results from Ref. 66, as well as similar FMBEM results
calculated on a higher resolution mesh.

5.2.1. Monostatic TS modeling at 1 kHz

The monostatic TS of the outer BeTSSi II submarine hull as a function of incident angle
in the horizontal plane was calculated at 1 kHz using the FMBEM model, assuming a rigid
(Neumann) BC. The mesh consisted of 159 780 plane triangular boundary elements with
constant unknowns (corresponding to a mesh resolution of 10 elements per wavelength
at 1 kHz) and the FMBEM model was solved using 6 CPU cores. The TS of the model
was solved over the 0◦ to 180◦ azimuth angular range (from bow to stern) with a 0.25◦

resolution. The average calculation time (including initialization of the MATLAB parallel
environment) was approximately 725 s per model. Figure 12 presents the FMBEM TS results
versus backscatter angle, in comparison to analogous digitized numerical results published
by Hoffmann.66 Additionally, TS results in 5◦ increments over the angular range have been
calculated on a higher resolution mesh consisting of 1 538 580 plane triangular boundary
elements (10 elements per wavelength at 3 kHz).

It can be seen from Fig. 12 that the present model results and those from Hoffmann66 are
generally in good agreement, except near the bow (0◦) where the present model predicts
lower TS levels and a null at approximately 3◦. This may be due to variations in the
discretized curvature of the outer pressure hull (nose and top casing section which melds
into the flat deck). The 1 kHz TS results calculated on the higher resolution mesh also show
good agreement with those calculated on the 159 780 element mesh; indicating that the
TS results for the BeTTSi II model are sufficiently converged when using 10 elements per
wavelength.

5.2.2. Monostatic TS modeling at 3 kHz

Analogous monostatic TS results were calculated for the outer BeTSSi II submarine hull
at a frequency of 3 kHz using the higher resolution mesh (1 538 580 dof) introduced in the
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Fig. 13. Target strength results in dB re 1Pa for the BeTSSi II submarine hull model at 3 kHz.

Fig. 14. The absolute value of the total pressure field for the BeTSSi II submarine hull model for a 3 kHz
plane-wave impinging at broadside incidence.

previous section. The TS of the model was solved over the 0◦ to 180◦ azimuth angular
range with a 0.25◦ resolution. The average calculation time (including initialization of the
MATLAB parallel environment) was approximately 90 min per model run using 6 CPU
cores. Comparatively, the calculation time for the single-threaded model was approximately
300 min per model run, corresponding to a PE of approximately 56%. Figure 13 presents the
FMBEM TS results versus backscatter angle at 3 kHz, while Fig. 14 presents the absolute
value of the surface pressure field at 3 kHz and broadside incidence.

6. Conclusions

This work presents a parallel broadband Helmholtz FMBEM for large-scale acoustic
scattering problems, which employs a simple novel parallelization strategy based on the
column-wise distribution of the equivalent BEM matrix, as well as element reordering
and rowwise compression of data. This approach allows for the parallel calculation of the
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FMBEM matrix-vector products using a small number of CPU cores (≤ 64) with a mini-
mized communication overhead. The sparse BEM near-field and sparse approximate inverse
preconditioner are also constructed and executed in parallel, while the fGMRES solver has
been modified to execute within the parallel environment; thus minimizing the initialization
cost and data transfer for the parallel calculations. Numerical tests were conducted on a
workstation computer (Intel i7 hexacore, 128GB RAM) which demonstrated the broadband
FMBEM models expected O(N log N) computational cost and O(N) memory complexity.
Acoustic scattering problems with up to 107 dof and kD = 1299 were considered in the
analysis. The parallel fGMRES iterative solver exhibited good parallel efficiencies for large-
scale models with more than 10 000 dof per CPU core; up to 92.9% and 75.9% in the best
case for the 3-core and 6-core models, respectively. Furthermore, some test results indicated
that the models utilizing all available CPU cores may suffer from an additional latency
and a reduced PE due to the processors sharing resources with the background operations
(operating system, etc.). The precalculation stages of the FMBEM model (in particular, the
FMM precomputation stage) exhibited poor PE, and so the complete FMBEM model solu-
tion only achieved average parallel efficiencies of 68.3% and 47% for the 3-core and 6-core
models when treating problems with > 104 dof per CPU core. Future work will focus on
improving the parallel performance of the precalculation stages and to extend this analysis
to multi-core Xeon processors found in typical high-end workstations.
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