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Abstract

For engineers, recent developments in deep learning make it easier to detect or
segment instances of objects within an image. In particular, convolutional neural networks
can be trained in an end-to-end manner solely based on images where the expected
output is labeled as a bounding box or a pixel-precise mask. This saves time spent
for manual tuning of parameters, but shifts the work load towards the annotation of
thousands of instances within hundreds of images. In this thesis, we focus on few-shot
methods that only require few annotated images for training, but are accurate enough to
be successfully applied in an industrial application.

To be able to evaluate such approaches, we introduce D2S, a novel industrial dataset
for detection and instance segmentation. The dataset has high-quality annotations that
allow to judge the localization accuracy up to subtle differences and is designed to
encourage the development of few-shot methods. Moreover, we propose a change of the
predominant evaluation measure for object detection models, the mean average precision,
that includes the actual precision of methods and hence, penalizes the high number
of false positive predictions that has been mostly neglected so far. We show that with
class-specific confidence thresholds, which can be automatically computed with the new
measure, AP, the precision of current models can be significantly improved at almost
the same recall.

Moreover, we present methods that reduce the enormous annotation effort that is
required for the supervised models that are predominantly used today. On the one hand,
we introduce a simple yet efficient pipeline to generate large artificial training datasets
with minimal labeling effort. On the other hand, we change the models themselves
to be less data-hungry during training, but still predict very accurate results in terms
of classification and localization: First, we present a novel rotational convolution and
pooling module that extracts rotationally invariant features from an image. Second, we
combine a deep-learning-based oriented box detection method with a classic matching
approach in a hybrid model. This allows to train the model with a single template image
per class, and at the same time to predict results with sub-pixel precision efficiently. Third,
we use oriented boxes as basis to predict pixel-precise instance masks. With this novel
approach, we can predict more accurate masks and require fewer of the expensive mask
annotations during training. Fourth and finally, we present a method that simultaneously
predicts the amodal masks and occluded parts of each instance within an image. This
paves the way for a more effective grasping of objects with a robot.

With the presented methods in this thesis, the ease of use and accuracy of current
object detection and instance segmentation methods is improved, which helps to increase
their use in industrial applications.
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Zusammenfassung

Die jlingsten Entwicklungen im Deep Learning erleichtern Ingenieuren die Erken-
nung oder Segmentierung von Objekten innerhalb eines Bildes. Insbesondere kénnen
Convolutional Neural Networks in einem Stiick trainiert werden, und zwar ausschliefSlich
auf Basis von Bildern, in denen die erwartete Ausgabe mit umschlieSfenden Rechtecken
oder pixelgenauen Regionen eingezeichnet wurde. Dies spart Zeit, die bisher fiir die
manuelle Einstellung der Modellparameter notwendig war, verlagert aber den Arbeits-
aufwand auf die Annotation von Tausenden von Instanzen in Hunderten von Bildern.
In dieser Arbeit konzentrieren wir uns auf sogenannte “Few-Shot”-Methoden, die nur
wenige gelabelte Bilder zum Training benétigen, aber genau genug sind, um erfolgreich
in einer industriellen Anwendung eingesetzt zu werden.

Um solche Ansitze evaluieren zu konnen, stellen wir D2S vor, einen neuartigen
industriellen Datensatz fiir Objekterkennung und Instance Segmentation. Der Datensatz
verfiigt tiber qualitativ hochwertige Annotationen, die es erlauben, die Lokalisierungsge-
nauigkeit bis hin zu feinen Unterschieden zu beurteilen. Er ist so konzipiert, dass er die
Entwicklung von “Few-Shot”-Methoden férdert. Dariiber hinaus schlagen wir eine Ande-
rung des vorherrschenden Evaluationsmafies fiir Objekterkennungsmodelle, der Mean
Average Precision, vor, die die tatsdchliche Prazision der Methoden mit einbezieht und
somit eine hohe Anzahl an falsch-positiven Vorhersagen bestraft, die bisher unbeachtet
blieb. Wir zeigen, dass mit klassenspezifischen Konfidenz-Schwellenwerten, die mit dem
neuen Mafs, AP*, automatisch berechnet werden kdnnen, die Pridzision aktueller Modelle
bei nahezu gleichem Recall deutlich verbessert werden kann.

Des Weiteren stellen wir Methoden vor, die den enormen Annotationsaufwand
reduzieren, der fiir die heute meist genutzten tiberwachten Modelle erforderlich ist.
Einerseits prasentieren wir einen einfachen und effizienten Ansatz, um grofse kiinstliche
Trainingsdatensdtze mit minimalem Labelaufwand zu erzeugen. Andererseits verandern
wir die Modelle selbst so, dass sie wihrend des Trainings weniger datenhungrig sind, aber
dennoch sehr genaue Ergebnisse vorhersagen: Erstens prasentieren wir ein neuartiges
Rotational Convolution und Pooling-Modul, das rotationsinvariante Merkmale aus einem
Bild extrahiert. Zweitens kombinieren wir eine auf Deep Learning basierende Methode
zur Objekterkennung mit orientierten Boxen mit einem klassischen Matching-Ansatz in
einem Hybridmodell. Dies ermdglicht es, das Modell mit einem einzigen Beispielbild pro
Klasse zu trainieren und gleichzeitig effizient subpixel-genaue Ergebnisse vorherzusagen.
Drittens verwenden wir orientierte Boxen als Grundlage fiir die Instance Segmentation.
Mit diesem neuartigen Ansatz konnen wir genauere Regionen vorhersagen und benotigen
weniger der teuren Annotationen wihrend des Trainings. Viertens und letztens stellen
wir eine Methode vor, die gleichzeitig die amodalen Masken und verdeckten Teile jeder
Instanz innerhalb eines Bildes vorhersagen kann. Dies ebnet den Weg fiir ein effektiveres
Greifen von Objekten mit einem Roboter.

Mit den in dieser Arbeit vorgestellten Methoden werden die Benutzerfreundlichkeit
und Genauigkeit aktueller Methoden zur Objekterkennung und Instance Segmentation
verbessert, was dazu beitragt, ihren Einsatz in industriellen Anwendungen zu erhohen.
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Introduction

1.1 Background and Motivation

Today, machines are all around us and the use of robots! is increasing steadily. Industrial
robots? are already widely used, predominantly in the automotive and electronics
industries. In 2018, the worldwide annual installation count reached its maximum with
more than 422 000 units [139, p. 542]. However, for a majority of people around the world,
robots are still found rather seldom in their daily life. Today, domestic service robots
are mostly used for cleaning purposes (vacuum, pool, or window cleaning robots) or
outdoors, such as robotic lawn mowers [140, p. 27]. Also here, according to Miiller et al.
[140, p. 27] “[t]he total number of service robots for personal and domestic use increased by 34%
to more than 23.2 million units sold in 2019.” Also for professional service robots, which
are mainly used in logistics applications, but are also increasingly present in medical or
agriculture applications, the market is growing with equally high rates [140, p. 21ff]. A
key factor for the increased use of robots to solve difficult tasks is that they are equipped
with more and more intelligence. For example, this allows them to navigate in their
environment and take decisions autonomously.

Bringing intelligence to machines is a dream that goes back at least to the 1950s, when
the term Artificial Intelligence (AI) was born at the Dartmouth Summer Research Project
on Artificial Intelligence [133, 181]. According to the first report of the ‘One Hundred Year
Study on Artificial Intelligence’ [181], “Al is a science and a set of computational technologies
that are inspired by [...] the ways people use their nervous systems and bodies to sense, learn,
reason, and take action.” This thesis is focused on computer vision, which today involves
the first three categories sense, learn, and reason. Further, Stone et al. [181] claim that
computer vision “is currently the most prominent form of machine perception. It has been the
sub-area of AI most transformed by the rise of deep learning. For the first time, computers are able
to perform some vision tasks better than people.”

Certainly, recent developments in machine learning and in particular convolutional

ISiciliano and Khatib [173, p. 1] introduce robots as “machines that are skilled and intelligent.”

2 According to [139, p. 23], an industrial robot is defined by ISO 8373:2012 as “an automatically controlled,
reprogrammable multipurpose manipulator programmable in three or more axes, which may be either fixed in place or
mobile for use in industrial automation applications.”



CHAPTER 1: INTRODUCTION

neural networks (CNNs) [107] have led to breakthroughs in different fields of computer
vision. Among them are image classification [68, 95, 177], object detection [58, 120,
159], and semantic segmentation [126, 208], which are all used as key components of
more complex machine vision applications such as robot grasping, defect detection, or
automatic checkout systems in grocery stores. In this regard, deep neural networks
or deep learning (DL) plays an important role because it is presently the predominant
approach to tackle these challenges.

The evolution towards DL during the last decade was enabled mainly by the availabil-
ity of two essential ingredients. One is the improved compute power of modern graphics
processing units (GPUs) that enables to apply and train large CNNs with millions of
parameters in a manageable time. The second, and for this thesis more interesting
component, is data. Millions of images have not only been collected, but also have been
annotated, to form datasets that have driven the progress in computer vision during
the last years. Among them are ImageNet [28, 168] for classification of 1000 different
object categories, Pascal VOC [41] and COCO [118] for object detection, and ADE20k [211]
and cityscapes [22] for semantic segmentation. With these annotated images, CNNs can
learn to transform the input images into the desired output, i.e., a class label, bounding
boxes around the objects, or pixel-precise segmentations. Once the annotated data is
given, the challenges that are posed by the above mentioned datasets are restricted to
a domain where the machine can utilize its advantages, such as a large memory and
a fast processing time of samples during the learning process. This means that GPUs
and annotated data are like the motors and fuel to train networks for different tasks
efficiently.

One of the application fields where people expect an increased use of Al-based
systems within the next years is medical diagnosis and, in particular, cancer screening.
Let us consider the example of skin cancer: the expectations for the use of Al-based
systems are high because, on the one hand, there is a huge number of cancer cases (e.g.,
5.4 million new skin cancer cases per year in the US) leading to a high number of deaths
(10000 annually in the US), and, on the other hand, the detection of cancer at an early
stage leads to a dramatically higher chance to survive [37, p. 115]. According to Esteva
et al. [37, p. 115], “the estimated 5-year survival rate for melanoma drops from over 99% if
detected in its earliest stages to about 14% if detected in its latest stages.” Hence, non-invasive
techniques for the skin cancer screening are important. However, screening techniques
like dermatoscopy require the expert knowledge of a trained dermatologist. Back in
2017, Esteva et al. [37] were the first to reach a similar performance as 21 dermatologists
on the task to classify keratinocyte carcinomas vs. benign seborrheic keratoses, and
malignant melanomas versus benign nevi using Google’s Inception v3 CNN architecture
[184] (cf. Section 2.6), which was finetuned on 129 450 dermatologist-labeled images of
skin lesions and pretrained on almost 1.3 million annotated images of ImageNet [168]. In
subsequent years, this result has been extended, e.g., by Haenssle et al. [65] comparing a
more recent Inception v4 CNN architecture [185] to 58 dermatologists from 17 countries.
While the CNN outperformed the performance of a clear majority of the dermatologists
in dichotomous classification (i.e., differentiating between melanoma and benign nevi),

2



1.1 BACKGROUND AND MOTIVATION

the authors only suggest that “a CNN algorithm may be a suitable tool to aid physicians in
melanoma detection” and, further, they raise the concern that “operating physicians may not
follow the recommendations of a CNN they not fully trust, which may diminish the reported
diagnostic performance” [65, p. 1841]. In a recent study, Brinker et al. [13] use an ImageNet
pretrained ResNet 50 [68] CNN and reduce the training set for finetuning to 12378 open-
source images of melanoma and atypical nevi. On a test set of 100 images (containing 20
melanoma images), the CNN outperforms 136 of the 157 dermatologists from all levels
of the clinical hierarchy (from junior to chief physicians) of twelve university hospitals in
Germany. Despite the super-human performance, also here, the authors conclude that
“aritificial intelligence algorithms may successfully assist dermatologists with melanoma detection
in clinical practice which needs to be carefully evaluated in prospective trials” [13, p. 53].

This example shows that still a remarkable effort is necessary to outperform humans:
To obtain the ground truth labels for the training and evaluation images in [13, p. 48] the
diagnosis was either done by “histopathological examination of biopsies, by expert consensus,
or by another diagnosis method, such as a series of images that showed no temporal changes.”
Hence, a tedious annotation process was necessary to be able to train the CNN. Moreover,
the model was trained for 13 epochs (i.e., iterations over the whole training set), which
means that the model saw each of the 12378 images approximately thirteen times during
the training. A human would never have the endurance and memory to perform this
kind of training in reasonable time. Thus, the central question that we raise in this thesis
is: Could the algorithm also outperform the human if it had fewer training samples to
learn from?

Although the medical example above is not taken from a typical industrial application,
it vividly shows that despite the success of recent DL-based methods on the above
mentioned computer vision research datasets, in our experience, they are not yet ready
to be used in every industrial application. This is because the following requirements
for a method that should be used successfully within the industry are either greater or
somewhat complementary to the challenges that are posed by those datasets. Or, the
other way around, industrial datasets should be designed such that they can be used to
evaluate the requirements of industrial methods:

1. Localization Accuracy: In a production process, very small details or defects can
decide whether a part is okay or not okay. Therefore, a method running in an
industrial application must localize objects very accurately. Hence, an industrial
dataset should have high-quality annotations, such that the accuracy of models can
be compared up to subtle differences.

2. Fine-Grained Classification: In industrial classification problems, methods must
be capable to distinguish different categories based on small details. For example,
there might be two classes of screws that have the same color, the same length,
and the same head, but just differ marginally with respect to the widths of their
threads. However, due to a fixed acquisition setup within the production process,
the intra-class variations are often small in industrial applications, e.g., the length
of a particular screw type only differs due to changes in perspective. In contrast, in

3
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everyday photography as collected in COCO or VOC, a major challenge is given
by the large intra-class variations. For example, a person is articulated, can wear
different clothes, and can have different gender, age, or skin-color. The inter-class
variation is often large, i.e., a person can be clearly distinguished from a car.

3. Robustness: The model should identify objects correctly independent of nearby
clutter, a changed background, or other changes within the environment. For
example, if the lighting changes due to weather influences or because the light
source had to be replaced for some reason, the model should still predict correct
results. To evaluate the robustness of methods, the validation and test set of a
dataset should contain objects that are sampled at the boundary or outside of the
distribution of the training samples. In other words, there should be objects of the
known classes that have a slightly different appearance than those of the training
set and there should be clutter objects that do not belong to any of the classes
within the training set.

4. Reliability and Uncertainty Estimation: The user should be able to rely on the
model’s predictions. Regarding the example above, for physicians false positive
predictions could lead to unnecessary surgeries and hence to unnecessary pain for
patients and other side-effects, such as risk of infection and increased costs. Hence,
the number of false predictions with a wrong class or with an inaccurate localization
should be as small as possible. Moreover, the model should assign a high confidence
to a prediction only if this result is correct. Vice-versa, for objects that are unfamiliar
to the model, since they do not belong to the known categories of the training set,
no prediction should be made or the predicted confidence should be low. This
criterion is only indirectly related to the dataset requirements. It generally must
be measured using an appropriate evaluation protocol that penalizes the number
of false predictions. Moreover, false predictions with high confidences should be
penalized more than false predictions where the method is obviously unsure —
indicated by a low confidence. However, we can still infer a requirement for the
dataset from this method criterion: The dataset must be difficult enough such that
these hard cases and an appropriate number of false predictions occur. If there
is only a very small number of such cases, e.g., below twenty, we cannot clearly
decide whether an advantage of a method with respect to uncertainty estimation is
significant.

5. Ease of Use: The implementation effort to apply the method in a new application
should be low. If the product or application is changed, it should not be necessary
to finetune a lot of parameters manually. Moreover, engineers that adapt the
method to the new application or environment should get first and intermediate
results quickly, such that they can adapt the method and improve the results in
a reasonable time. For example, if a tedious annotation of many images needs
to be done, just to find out after the first training that the method does not meet
the accuracy requirements, this is annoying and expensive. Therefore, the model
should only need a few examples of each object to be trained, which we refer to as
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few-shot learning. To encourage the design of models that fulfill this criterion, the
challenge posed by the dataset should be set accordingly. That means, the training
set should be small and relatively easy to annotate such that a first training can be
done quickly. Few-shot methods should be favored. Moreover, the validation set
should be moderately sized such that evaluations are fast, but are still expressive
enough to answer whether the above criteria are met.

6. Scalability: In many industrial settings, there is not enough space to fit a large
GPU into the housing of the machine, a suitable power supply might not be given,
and the lost heat could be a problem. Therefore, the algorithm is often computed
on an embedded device with limited memory and computing power. At the same
time, the runtime needs to be low such that results can be computed in real-time,
e.g., such that it fits to the speed of a conveyor belt on which objects must be
detected. The method’s runtime and memory requirements should scale well with
the number of categories, the size of the input images, and the number of objects
within an image. Hence, with respect to the number of classes and the number of
objects within an image, an industrial dataset should be large-scale enough to get
an impression about the scalability. If the final application is already known, it is
enough if the dataset meets the requirements of this application. In most cases, it is
advisable to use several different datasets to measure the scalability.

Of course, for all of the above criteria, there is almost unlimited room for improvement
and most algorithms do not satisfy all of them. In particular, one can apply the method
to increasingly difficult images or one can try to locate objects that are very difficult to
separate from the background. Moreover, there will always be methods that perform
better than others in certain cases, but worse than others in different cases.

1.2 Objectives

In research, the machine learning recipe has been successfully applied to many different
problems for which annotated data is available. Of course, DL-based methods already
have found their way into industry and other commercial applications. For companies, it
is especially appealing that in comparison to classic, rule-based algorithms less expert
knowledge and engineering time is necessary to solve a problem. However, with deep
learning this engineering time is moved from manually deciding about rules and their
parameters towards data collection and annotation.

Because it is undesirable to spend weeks for data annotation before the first results
can be computed, the central research question of this thesis is: Is it possible to build
methods that learn from few annotated samples, but localize and classify objects
accurately?

This means that the focus of this work is on a combination of the criteria ease of
use, localization accuracy, and fine-grained classification. With this main objective in
mind, we also look at combinations of the remaining requirements within the following
chapters.




CHAPTER 1: INTRODUCTION

1.3 Outline and Contributions

CHAPTER 2: CONVOLUTIONAL NEURAL NETWORKS AND DEEP LEARNING

This chapter gives an overview of the used notation, introduces some of the basic
mathematical concepts, and provides an introduction to machine learning and
in particular to convolutional neural networks. Hence, this chapter explains the
general structure of the models and examines the process of how they are trained
and evaluated.

CHAPTER 3: ROTATIONAL INVARIANCE FOR CNNs

An approach to reduce the number of training samples is to build models that
are invariant to certain transformations of their inputs. This chapter shows how
rotationally invariant features can be learned by a CNN. This allows to correctly
classify arbitrarily rotated inputs independent of the rotation of the training images.

CHAPTER 4: AN INTRODUCTION TO OBJECT DETECTION

From this chapter onwards, we focus on object detection via bounding boxes
or pixel-precise masks. Therefore, this chapter gives a detailed introduction to
modern DL network architectures for bounding box object detection and instance
segmentation. It thoroughly describes their shared concepts and presents an
overview of recent works on datasets and methods.

CHAPTER 5: D2S: DENSELY SEGMENTED SUPERMARKET DATASET

This chapter presents a novel industrial dataset for detection and instance segmen-
tation with high-quality annotations that meets the above mentioned criteria for
industrial datasets. It encourages to build methods that generalize well with a
limited amount of training data and allows to measure differences between very
accurate methods.

Moreover, a detailed analysis of baseline models on this dataset is given and a
number of structural failure cases of current detection methods is identified. These
are the motivation for further work carried out in the following chapters.

CHAPTER 6: AP* — FixiNG THE RECALL B1As OF AVERAGE PRECISION

One conclusion of Chapter 5 is that seemingly successful models make a very
high number of wrong detections. This chapter reviews the computation of the
most frequently used detection evaluation measure AP and identifies several of its
shortcomings. Subsequently, certain changes that lead to an improved AP* measure
that directly takes the model precision into account are proposed. Hence, the
chapter addresses the need for reliable models with a good uncertainty estimation.
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CHAPTER 7: DATA GENERATION FOR FEW-SHOT DETECTION

This chapter presents the first step towards few-shot object detection models. It
presents simple, yet efficient methods for data generation to reduce the annotation
effort in DL-based object detection. The methods use only a handful of annotations
per category and generate large training sets. With artificial training data for the
networks, the robustness of models, e.g., to reflections or with respect to close-
packed objects, is improved while at the same time ease of use requirement is
met.

CHAPTER 8: ORIENTED Box DETECTION

This chapter explains how detection models can be extended from axis-aligned to
oriented boxes. Generally, oriented bounding boxes yield a better approximation
of the underlying objects than axis-aligned bounding boxes and thus, localization
accuracy of the methods is improved. The novel methods are evaluated on different
datasets and it is shown how they can be compared to the axis-aligned box detection
baselines.

CHAPTER 9: A COMPARISON TO SHAPE-BASED MATCHING

In most cases, classic rule-based algorithms need significantly fewer training ex-
amples than DL-based methods. Shape-Based Matching is an example that can
setup the model on a single image and yields very accurate results. The method
has been applied successfully in industrial applications for the last 20 years. This
chapter compares the accuracy and performance of DL-based object detection
with Shape-Based Matching. Moreover, Shape-Based Matching is combined with
DL-based object detection in a hybrid approach that predicts accurate results from
few training samples and has a good scalability with respect to the number of
classes.

CHAPTER 10: ORIENTED BOXxESs FOR FEW-SHOT INSTANCE SEGMENTATION

In this chapter, a novel method for instance segmentation based on oriented boxes
that increases the accuracy of mask predictions is presented. In comparison to their
axis-aligned counterparts, oriented bounding boxes are not only visually more
pleasant, but also lead to a higher mask to background ratio and to more consistent
mask targets. Moreover, the proposed model obtains the same quality of results,
while the number of annotated masks can be significantly reduced.

CHAPTER 11: AMODAL INSTANCE SEGMENTATION

Occluded objects pose a major challenge to current instance segmentation methods.
This chapter presents a novel network architecture for amodal instance segmenta-
tion that directly predicts the visible and occluded parts of an object. Moreover,
the D2S dataset of Chapter 5 is extended with annotations for amodal detection
and novel metrics to measure the performance of amodal instance segmentation
methods are introduced.




CHAPTER 1: INTRODUCTION

CHAPTER 12: CONCLUSION

14

We conclude the work by discussing open problems and possible extensions of the
presented methods.
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Convolutional Neural Networks
and Deep Learning

This chapter introduces the basic concepts, nomenclature, and notations used in this
thesis. Since very detailed explanations are beyond the scope of this thesis, we concentrate
on some specific topics that reappear in later chapters. A more detailed introduction can
be found in the standard works of Bishop [7], Goodfellow et al. [59], or Steger et al. [180].
Our contribution of this chapter is to briefly introduce the most important aspects that
are necessary to understand the ideas presented within the remainder of the work.

2.1 Notation

A summary of the general notation used within this thesis is displayed in Table 2.1. Most
of the concepts should be familiar, others are explained in this chapter.

Sets and Spaces

R Set of real numbers

V4 Set of integers

N ) Set of natural numbers (including zero)

]RZB) Set of positive real numbers (including zero)

{0,1} Set containing 0 and 1.

{0,...,n} Set of all integers between 0 and n.

(a,b] The real interval excluding a and including b.
Numbers and Arrays

X A scalar

X A vector (in column form)

W A matrix

xI, WT The transpose of x or W

X; Element i of x

Wi Element in row i and column j of W

11
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0y The k-th update of 0

Datasets, Distributions and Probability Theory

T a vector-valued random variable
xT~p x has distribution p
p(y|x) The probability of (output) y given (input) x
Pdata The data generating distribution
Pp The empirical distribution of set D
x(1) The [-th example (input) of a dataset
y) The label or target associated with x(!)
Functions
f:X=Y The function f with domain X and range Y
fog Composition of functions f and g
f(x,0) function depending on x and parameters 6.
Sometimes 6 is omitted
gl Derivative of y with respect to x
x
Ea)l Partial derivative of y with respect to x
x
Vxy Gradient of y with respect to x
gl Jacobian matrix | € R™*" of f : R" — R"
X
Evaluation
pp percentage points
P true positive
FP false positive
FN false negative

Table 2.1: General notation used throughout the thesis.

2.2 Machine Learning Overview

As humans, we have a very strong visual system. Without explicitly thinking about
it, when we scan our surroundings, we efficiently fulfill tasks, such as localizing and
simultaneously classifying objects. This is necessary to achieve higher-order goals, such
as drinking a cup of coffee. We need to find the cup and classify the content as coffee. Of
course, we not only use our visual system to do this, but it is a very important part of
the workflow. When we want to teach a service robot to bring us a fresh cup of coffee,
we need to transfer the visual part of the pipeline to an algorithm, such that the robot
can use his visual input, acquired by cameras, and make something useful out of it. To
make the problem more specific, let us assume that the cup has already been found, and
the robot can hold it in front of the camera such that the liquid within the cup is visible
in the images it acquires. Hence, we denote image input as x, and the task of the robot is
to decide if there is coffee within the cup, given x. To continue with the mathematical
modeling, we denote the true answer - yes if coffee is present, no, else - by y. Furthermore,

12
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i Inference :

: i Input Model Output E Target E

Pl xeX f(X,0) =Y yey || yey ||
Update L Loss J .

Figure 2.1: Machine learning pipeline. For inference, the model f takes input x and predicts
¥. During training (cf. Section 2.3), a loss L is calculated based on the difference of output § and
target y, and using the current model state an update Af is computed for the model weights 6.

we assume that there is a true solution to our problem. That means, we assume there
is a mapping f* from inputs x € {image of a cup} to y € {yes, no}. Unfortunately, f* is
unknown and therefore, we try to find an algorithm to approximate it.

For example, we could use a rule-based approach as follows: We assume the content
of the cup is always centered and extract the RGB color values within a circle around the
center of the image. If they are close enough to coffee brown, i.e., the absolute distance of
the mean RGB values from (39,19, 0) is not larger than (10,10, 10), the answer should be
yes, else no. This is a simple and fast algorithm, however, it is not very good: the cup
needs to be centered and there should be no reflections, crema, or other things on the
coffee to disturb the real coffee color. Also if these things can be assured, the algorithm
is not robust at all, as RGB is not a good color space to measure distances and if the
lighting or exposure time is only slightly changed the whole system collapses. Another
problem is that we have chosen the parameters of the coffee brown color (39,10,0) as
well as the channel-wise maximum difference (10,10, 10) using a mixture of intuition
and experience. Even if we could come up with more sophisticated color spaces and
distances, this major drawback of a rule-based algorithm remains: it is really difficult to
tune parameters by hand such that they fit not only for a single input, but such that the
rules generalize well for all new, previously unseen inputs. In this case, another class of
algorithms to approximate f* is very practical: machine learning.

In simple words “a machine learning algorithm is an algorithm that is able to learn from
data” [59]. In comparison to many rule-based algorithms, the benefit for the user is that
most of the model parameters do not have to be manually selected. Before we will see
many of the advantages and possible disadvantages of machine learning, in the following
we will introduce the general concept in a more formal way. Fig. 2.1 gives an overview
of the general machine learning pipeline.

Consider an input, e.g., an image or a feature vector x € R"”, where 7 is the input
dimension. For example, an image of size 960 x 720 in RGB color space has n =
960 x 720 x 3 = 2073600 dimensions. We assume that whenever we have discrete
input values, e.g., the intensity values of byte images, the input is converted, such that
x,€eR,i=1,...,n.

13
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The algorithm that should approximate f* is modeled as a mapping f : X C R" —
Y, f(x) = ¥, where for the target space Y typically it holds: Y C R or Y C INp. In other
words, during inference, i.e., when we apply the model, f takes x as input and predicts
y. For example, if we want to predict the number of bicycles within an image, we have
¥ € Y = Ny, but if we want to predict the speed of the (single) cyclist within an image,
we have § € Y = R, m = 1 (assuming the cyclist can only stand still or go forward).

The model f has parameters 8 € RY, and, in the settings within this thesis, N is
usually in the order of millions. Consider the simple model

9= f(x,0 ={W,b}) = Wx+b,

I
™=

Il
—_

yA] wjl-xi—i—b', j:1,...,m.

Here, the parameters & = {W, b} are the entries within the bias b € R" and the matrix
W € R™*". Because the inputs x; are weighted by W, model parameters are also denoted
as model weights.

To learn the parameters 8 and measure the quality of our model, we use a dataset
D= {{x(l),y(l)},l =1,..., np}, where each input x; is annotated or labeled in the sense

that we know the ground truth output or target y!!) that we want to obtain when we
apply f on x(V). y)) can be interpreted as measurements of f*(x(!)) that contain some
measurement noise.

Further, suppose that all images x, on which we want to apply our model, are drawn
from a true but unknown distribution pg,t. Hence, we have a random variable & ~ pgata-
However, as soon as we use a dataset D with a finite number of np samples, these samples
have an empirical distribution pp # pgata. Especially for large models, where the number
of parameters N is high, we can often easily achieve that f (x(l), 0) = y(l),l =1,...,np
holds. However, if we draw a new sample x ¢ D, we get f(x,0) # f*(x,0). In other
words, our model has learned the dataset D by heart, but does not generalize well to
unseen new data. This problem is referred to as overfitting. One way to avoid overfitting
is to enlarge the dataset, such that the distribution of the dataset is a good approximation
of the real data distribution pp ~ pgata- Apart from that, strategies exist to reqularize the
model such that it is less likely to overfit.

Given the current model with parameters 8, we can measure the difference of the
prediction § and labels y with a loss or objective function L : Y X Y — R. L should be
small or zero if the model is good and become large if predictions and targets do not
coincide. Examples for L are the L, losses (usually p € {1,2})

1
P

Ly(3,y) =y —yll, = (Z |9 —yj!p>
j:l

or
A m A
Leo(§,y) = max|7; = yjl.
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More examples for loss functions are given later in the context of specific applications.
Our goal is to find 6* such that we have

F(x,7) =g £ y0 2.1)

foralll =1,...,np. Generally, 8* is unknown. Using a loss, (2.1) can be reformulated
such that 6" is the solution to the following optimization problem:

6* =argming_o Y, L(f(x0)y):=argming_oL(f(0),D), (2.2)
{xy}eD

where O is the parameter space. In (2.2), we assume that 8* exists. We will see later that
for the types of models used within this thesis, this assumption is valid and we will see
that usually more than one solution exists for which (2.2) holds.

2.3 Training

As already mentioned, in machine learning, the number of model parameters N is large
and we cannot set the model weights by hand. Instead, they are learned from data
D. If no analytical solution for (2.2) exists, we use an iterative training scheme: At the
beginning, weights are initialized constant or randomly, e.g., by drawing from a Gaussian
distribution, to obtain 6y. For k € IN, we update the weights by

O = Or_1 + ALAby, (2.3)

where Ay is the learning rate or step size of the optimization method. Note that in practice
we limit k < K or stop when A8 is close to zero.

With L being our objective function, for a good update of the model weights A A#, it
holds that

L(f(6x), D) < L(f(6¢-1), D), (2.4)

i.e., we iteratively decrease the loss. Note that in most cases the objective function is
highly non-convex. Moreover, because the number of parameters N is large, it is not
feasible to use second order methods for the optimization. This would require O(N?)
operations and the respective storage to compute and store the Hessian matrix. Hence,
to solve (2.1), usually first order nonlinear optimization methods are used.

A well-known and simple optimization method to solve (2.2) is gradient descent, first
proposed by Cauchy in 1847 [16]: the negative gradient is used for the update direction.

0k = (0)k—1— Ak;;L(f(Okl),D), i=1,...,N (2.5)
Or = 01 — M VoL(f(6k-1),D) (2.6)

If in (2.5) Ay is chosen small enough, and [|Ax|| > 0, (2.4) holds, as long as VoL(f(6x_1), D)
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# 0, i.e., we are not directly at a local minimum or saddle point. However, exactly meeting
a local extremal point is very unlikely for the high dimension of ©.
We will see later that models used within this thesis are a composition of functions

f=fDofldDo 2o fM), (2.7)

where we denote f(!) a layer. An application of f is termed forward pass, since the input
is passed through the model step by step. Let us denote the parameters of () by 6.
We thus get

f(x,0) = fD(x,0) := f@ (f<d*1> (...f<2> (f<1>(x,9<1>) ,9(2>)...,0<d*1>) ,0<d>). (2.8)

To calculate the gradient of the loss with respect to the model weights in (2.5), for
neural networks backpropagation [166] is the method of choice. The idea is to first perform
a forward pass and store the intermediate results F 0 .= f () (x, H(Z)), forl=1,...,d.

If we define 6 := (9(1)T, ceey H(d)T)T, to update our model we need to compute the
partial derivatives of f with respect to all model weights. Using the chain rule, we get

of  of oF® of oFU+1) gf()

forall j =1,...,d and k. Hence, when we calculate the gradient, we apply the chain
rule and go from back to front, i.e., perform a backward pass. We start with the loss
and compute the gradient to the last layer’s activations. From there, for each layer, we
compute the gradient with respect to the weights and also propagate the error further by
calculating the gradient with respect to the layer’s inputs. This means that for each layer
we need to calculate 9F ) /9F!~1) and oF(") /9.

2.3.1 Stochastic Gradient Descent

In practice, the gradient computation is done for inputs x and targets y of the dataset D.
Taking only a single pair {x,y} € D, our model quickly overfits to this particular example.
On the other hand, averaging the gradient over the whole dataset D, is computationally
expensive. Therefore, stochastic gradient descent (SGD) is the method of choice, where a
small batch B C D of randomly chosen examples is used to approximate the model’s

gradient.
1
0 = 01— Adc— ). VoL(f(x,6¢-1),y) (2.10)
ng
{xy}eB
The number of examples ng = |B| is termed batch size, and during learning np/ng

iterations are referred to as one epoch. Hence, after one epoch the model has seen each
example in D once.

The preferred batch size depends on the variations of images and objects within the
dataset: For small variations, typically a small batch size is sufficient, whereas for larger
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variations a larger batch size might improve the result. Moreover, because for a larger
batch size the approximation of the gradient is better, usually also a larger learning rate
can be chosen.

Adaptive strategies for choosing the learning rate A, such as ADAM [92], adadelta
[205], adagrad [33] or RMSprop exist (see e.g., [165] for an overview). However, in many
cases the learning rate is initialized with a constant and only multiplied by a factor v < 1
at specific, manually chosen iterations. The steps of the learning rate are done when the
loss stagnates. However, to find these points of time requires to train the model multiple
times or a software interface that allows to adapt the learning rate online during training.

For networks with weights that are initialized randomly, the training can be very
unstable in the beginning, especially if the batch size is very small. Therefore, it is
common practice to start the training with a warmup learning rate scheme: first, the
initial learning rate is reduced by a warmup factor and then, it is iteratively increased
over the first ny warmup iterations [60].

2.3.2 Momentum

It is well known that gradient descent can be very slow if the problem is poorly condi-
tioned. In this case, the direction of the gradient is heavily changing from iteration to
iteration, especially if the learning rate is not set adaptively. This effect can be intensified
if the randomly chosen batches in SGD lead to gradients with opposite directions.

A popular method to reduce those effects is to average the latest gradients in SGD
with momentum [153, 182], where exponential smoothing is applied to the gradient:

vo =0, (2.11)
1

Bk =~ Y. VoL(f(x,6k-1),y), (2.12)
B {x,y}eB

Vi = Vi-1 — 8k (2.13)

0 = 0,1 + Ayvy, (2.14)

where 77 € [0,1) is the momentum hyperparameter. Typically, the momentum is set
relatively high to 0.9 or even 0.95.

2.3.3 Weight Decay

Since large deep learning models are very prone to overfitting, different regularization
techniques exist. These should help the model to generalize better to unseen data. The
idea of weight decay [71, 96, 138] is to add an additional L? norm penalty to the objective
function

1 o
L(6,B) = .- Y Lf(x0)+ 10l (2.15)
{xy}eB
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TRAIN VALIDATION TEST
e Learn parameters of the model: ¢ Tune hyperparameters: * Check generalization
* weights and * architectures * (Compare final models)
* biases of all layers * kernel size, stride,

¢ learning rate,
momentum, weight
prior
¢ Choose best model
¢ early-stopping
* initialization

Figure 2.2: Dataset splits. We learn the parameters on the training set, measure the quality of
the model and choose the best hyperparameters on the validation set, and finally measure how
well the model generalizes on the test set.

where 0 < & < 1 is referred to as weight prior. The norm penalty enforces a decay of the
parameter norm such that parameters are only increased if this helps to reduce the error
of the training examples. The gradient computation of the loss in (2.12) then changes to

8= Y VoL(f(x,61),y) +ab. (2.16)
B (xy}eB

2.3.4 Dataset Splits and Early Stopping

Another simple and natural way to regularize the model is the use of early stopping. Until
now, we have always referred to a single dataset D, but in practice it is important to split
this dataset into at least two disjoint sets: one to use for training the model and update
the parameters, and one to measure the current quality of the model and especially its
ability to generalize well to new and unseen data. As shown in Fig. 2.2, in machine
learning, we usually split the dataset into three disjoint sets: the training set Diain, the
validation set D,,;, and the test set Dicst.

We use Dipin for training the model, i.e., computing the loss and the gradient with
respect to the parameters on batches B € Dyin to apply SGD. During training, we can
evaluate the current model state on the validation set Dy, in intervals of K iterations. For
evaluation, we can either compute the loss or any other quality measure Q. It is important
to note that the parameters of the model are not updated during these intermediate
evaluations. Whenever the loss is lower or the quality measure Q is higher than during
the previous evaluation, we store the current model as the best model and write it to
disk. At some point during the training process, we will eventually start to overfit to
Dirain, i-€., the loss on Dy,in continues to decrease, but the loss on D, starts to increase
again. At the end of the training, we still know at which evaluation point we achieved
the best result and can use this best model as the final result.

The validation set is not only helpful for early stopping. The models also have
hyperparameters, such as the learning rate strategy, momentum, or weight prior. More-
over, we will see in the following sections, that different architectural choices can be
made by choosing other hyperparameters. In many cases, the model’s performance is
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also influenced by the random initialization of the models parameters. Also here, the
validation set can be used to choose the best model among differently initialized versions.
Since we are indirectly using the examples of the validation set to choose the best model
or tune the hyperparameters, this can be seen as another optimization.

Finally, if we are confident that for this type of model we have chosen a good set
of hyperparameters and selected a good initialization and the best iteration to stop the
training, we can evaluate how well this final model generalizes to the still unseen images
of the test split Diest. If the test split is a good representation of the real data distribution,
this directly relates to the expected error rate of our model when it is used within a
machine. In benchmarks or challenges, the test set is also used to compare different
models against each other. However, one needs to be careful not to use the test set to tune
the hyperparameters of a model as this would just make it another kind of validation set.

To get a better idea of these so far quite abstract introduced concepts, we will now
explain different types of models in the next sections.

2.4 Classifiers

Because different techniques to classify a feature vector x into one of . different categories
of interest will often reappear during the thesis, in this section we want to give a brief
overview of different classifiers.

2.4.1 Support Vector Machines

Support vector machines (SVM) [23] have been very popular before the massive use of
deep-learning-based end-to-end trainable neural networks. SVMs belong to the class
of maximum margin classifiers. In their initial form, they are built for a two-class
problem y € {—1,1}. For data points that are linearly separable, finding the hyperplane
that separates the points with maximum margin can be formulated as a quadratic
programming problem. It has been shown that instead of all data points, only a sparse
subset of support vectors has to be considered for the solution and, therefore, the large
problem can be split into some small subproblems which makes the method efficient.
If the data is not linearly separable, kernel functions are used to transform the features
into a higher-dimensional space such that linear separability is given. However, using
the kernel trick, this does not mean that computations have to be carried out in this
higher-dimensional space, but can be done in the input space. Because even with the
use of suitable kernels not all datasets are linearly separable, Cortes and Vapnik [23]
have added slack-variables to the problem formulation such that a solution can be found
while outliers are omitted.

Today, SVMs are often replaced by MLPs or CNN classifiers (see below). The reason is
that for multi-class classifications — which are the topic of this thesis — the classification
has to be split into 7 one vs. rest SVM classifiers or into n(n — 1) /2 one vs. one SVMs.
This is more complicated to evaluate than a simple MLP. For an in depth explanation of
SVMs, the interested reader is referred to Bishop [7] or Scholkopf and Smola [169].
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Figure 2.3: Graph of a neural network. (left) Example for a recurrent neural network with a
cycle. (right) Example for a feed-forward neural network or MLP with two hidden layers.
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2.4.2 Neural Networks and MLPs

Inspired by biological systems and in particular the human brain, neural networks have
been proposed as models that consist of a graph of interconnected neurons [134, 162, 198].
Each neuron or unit is a simple parameterized processing function that applies an
activation function (see below) to a weighted sum of the transformed inputs

zj = h(; wji(x;) + b)), (2.17)

where b = {b;} is the bias and W = {wj;} is the weight matrix. In its most frequently
used and simplest form, ¢ is the identity function, which leads to a linear combination of
the inputs to which the activation function & is applied:

n
zj = h(z wjix; + bj). (2.18)
i=1

1=

For general neural networks (NN), there are no further restrictions for the connections
of neurons within a graph. For example, in a recurrent neural network that is used for
processing of a sequence of input data, it is common that cycles occur and in particular a
neuron can be connected to itself.

However, in this thesis we are focused on directed acyclic graphs or feed-forward neural
networks that have one or several inputs x that are processed by the network step by step
going through multiple consecutive layers to produce outputs y. In the example in the
right of Fig. 2.3 we have that
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k=1 =1
> 3 > 2 2 1 1 2 3
:kle](Q (lzlw,ﬁ,) (le,(m)xm—i—bl( >) +b,§>) +b7. (2.19)

Using FO) := x, F® :=y, and defining

FO R S R FO(FODY = WO (D 4 (), (2.20)

1-1)

where n(=1) is the number of input and n(!) the number of output units for each layer,

(2.19) can be reformulated as

y = APV (x)) = f(x). (2.21)

From (2.21), the meaning of layers becomes clear and we can also see the feed-forward
structure. Because each neuron of the input is connected to each neuron of the current
layer, these layers are also named fully connected (fc) or dense layers. This particular
type of NNs is termed multi layer perceptron (MLP) [166, 197], in our example case with
two hidden layers in the middle. Those intermediate units are hidden, because their
“actual or desired states are not specified by the task” [166, p. 533], which is in contrast to an
elementary perceptron without hidden layers and a single output that can only take
values y € {—1,1} due to a thresholding activation function [162]. The total number of
layers is called the depth of a NN and as in recent years the depth of common NNs was
dramatically increased, the term deep learning arose.

But interestingly, Hornik et al. [75] have shown that already MLPs with a single hidden
layer are a class of universal approximators in the sense that they can approximate any
Borel measurable function from a finite dimensional space to another up to any desired
degree of accuracy if enough hidden units are present. However, if the input dimension
is large and the first hidden layer has a large number of neurons, the weight matrix W
gets very large in turn. Therefore, instead of increasing the dimension of a single hidden
layer, it is more common to find a good trade-off between layer dimension and depth of
the NN.

To compute the derivatives of a fc layer with respect to its inputs we denote o) =
oL/9F" and obtain

1+1 () (D) (141)
SIS ST ) S PSS WSS
] aF](l) P aFk(H_l) aF](l) aF](l) P ]
al) = W+ gl+1) (2.22)
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and similarly for the derivatives with respect to the weights and biases

()

I () @) | 1)
L S A PR [ A P ) (2.23)
ol Foarl ol T o o |
ji il ji ji
oy =oWE0T, and (2-24)
aL l
mza()_ (2.25)

Activation Functions

While in the original perceptron the activation function was a simple threshold

h(z) = {H’ ifz=0 (2.26)

—1, otherwise,

today there are many choices for activation functions. In a NN with multiple layers that
should approximate a nonlinear function, it is important that the activation function is
nonlinear. Otherwise, the network has only linear components and since the compostion
of linear functions is again linear, the MLP would be linear as a whole. Hence, it would
make no sense to use more than one layer. Moreover, we will see in Section 2.3 that for
the training of NNs the gradient needs to be computed. Therefore, activation functions
should be (at least partially) continuously differentiable. Moreover, to be useful within
the learning process and avoid vanishing gradients the gradient of the activation function
should be at least partially non-zero, which does e.g., not hold for the threshold in (2.26).

In earlier works [105, 106], mostly saturating functions, such as the hyperbolic tangent

& —e %
tanh(z) = oy (2.27)

or the sigmoid or logistic function, which is a scaled and shifted version of tanh

1 e* 1 z
0(2) = 7= = 7re = 5 (LHtanh3), (2.28)

were used. Note that the derivatives are convenient from a computational perspective
when the result of tanh(z) or ¢(z) has been stored:

d Z
o(z) = (1+67€)2 = o(2)(1 - o(2)), (2.29)
;Ztanh(z) = 1 — tanh?(z). (2.30)
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| (2)
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Figure 2.4: Activation functions and derivatives. ((2)—(c)) The most popular activation func-
tions are the bounded and continuously differentiable hyperbolic tangent and sigmoid functions
or the widely used unbounded ReLU or LReLU functions. ((e)—(f)) shows their derivatives. The
rapidly decaying derivative of tanh and o for large absolute values of z can lead to vanishing
gradients.

A more modern activation function is the rectified linear unit (ReLU) [66, 84, 144]

z, ifz>0,
ReLU(z) = (2.31)
0, otherwise.

Interestingly, ReLU is not continuously differentiable at z = 0

d 1, ifz>0,
= ReLU(z) = (2.32)
dz 0, otherwise,

but this does not harm its popularity due to its computational efficiency.

A variant of the ReLU with non-zero gradient for negative inputs is the leaky ReLU
(LReLU) [130] activation

z, ifz>0,
LReLU(z) = (2.33)
«z, otherwise,

where usually 0 < a < 1.

The introduced activation functions are shown in Fig. 2.4. Recently, several new
activation functions, such as SiLU [35], Swish [155], or Mish [137] have shown to be
outperforming ReLU in some cases, but not without some computational overhead.
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Softmax

In the context of MLP and classification we want to predict a probability for each of the 7,
different categories in our data. Therefore, the MLP has 1, output neurons zy, . .., z,, that
can take any value z; € R. One possibility to achieve that the outputs can be interpreted
as probabilities y; € [0,1] is to apply a sigmoid y; = 0(z;). However, in most cases, we
want that the probabilities for all different categories sum up to one. This is where the
softmax function can be used

exp(z;) ,
S::=softmax(z); = —————"—~, 1=1,...,n,, 2.34
j )= T exp(z)” ; 239
0 0
gsj =S5i(1— Sj), =S§; = =§;5;. (2.35)

j 9;

The use of the softmax is very popular and it generally works very well, as it outputs
high probabilities if the prediction is correct. However, if the model is unsure, i.e.,
two different logits z; and z; are on the same level, the exponential function inside the
softmax usually leads to a clear winner with a very high confidence. For example, for
z = (—5,-3,-2,10,12)T, we get softmax(z) ~ (0,0,0,0.12,0.88)T. As stated in [59], the
softmax is rather a continuously differentiable approximation of the arg max function
than the max function. Thus, the interpretation of the softmax as the model’s confidence
is very difficult.

2.5 CNNs for Feature Extraction

Consider an image of a pill that you want to classify into one of the three defect categories
contamination, crack, or good. A popular strategy to accomplish this task is visualized
in Fig. 2.5: A rule-based approach is used to extract features ¥ € RM from the input
image x € R". In a second, independent step, these features are fed into a classifier
that outputs for each class a probability how likely it is to be present, given the input
¥ = p(y|X) = p(y|x). In our setting with a labeled dataset D, for the second part we
have targets y, such that a machine learning approach can be used, while we do not
know what the intermediate outputs X should look like. Hence, the first part is in many
cases hand-crafted. That means, the engineer designs the feature extractor based on his
expert knowledge and intuition.

The goal of the feature extraction is to compress the information (M < n) and
obtain a representation of the image that is invariant to certain transformations, such
as translations, rotations, or deformations. Moreover, algorithms [6, 128, 164] have been
found that make X invariant to changes in illumination and scale or robust to noise. To
obtain the dimension reduction, feature descriptors are computed only at keypoints that
have to be found in turn. Today, there are numerous ways to identify keypoints in an
image [49, 67, 128, 111]. An example is shown in Fig. 2.6.

Both the descriptors and the keypoint detectors are often based on filtered versions

24



2.5 CNNs FORrR FEATURE EXTRACTION
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Figure 2.5: Rule-based workflow. From an input image x as shown on the left, first, features
X are extracted by a rule-based algorithm. Second, these features are fed into a trainable classifier
that outputs class probabilities p(y|X) = p(y|x). Typically, the first part is hand-crafted, while the
second part is a machine learning based classifier.

of the image, e.g., to approximate the image gradient or to smooth the image. For
multi-channel images I;, ., a filtering operation is nothing but a convolution of the image,
which can be written in its discrete form as

Fr,c - (K * I)r,c = Ezzlk,r—m,c—nKk,m,n s (236)
k m n

where K is a kernel and the summation for m and n over spatial dimensions is only done
over the domain where the kernel has non-zero values, in practice. Each kernel produces
a single-channel output. Note that a convolution is the same as a cross-correlation with a
flipped kernel. In machine-learning libraries the convolution layer is often implemented
as a cross-correlation because it is easier to read and for learned kernels it makes no
difference if the kernel is flipped or not. A comprehensive introduction to filtering is
given in [180, Section 3.2.3].

In Fig. 2.6, we show examples of images that are transformed applying convolutions.
For example, a discretized version of a two-dimensional symmetric Gaussian distribution
is often used to smooth an image, i.e., to remove sensor noise. For example, a discrete
filter-kernel of size 5 x 5 that approximates a Gaussian with ¢ = 1 is given by:!

1 4 7 4 1
1 4 16 26 16 4
=73 7 26 41 26 7 (2.37)
4 16 26 16 4
14 7 4 1)

Many low-level computer vision tasks are based on edges. Therefore, a single-channel
image is interpreted as a function that outputs gray values for each pixel-position I(i, j).
An edge can then be defined as connected positions within the image where the gradient

IR. Fisher, S. Perkins, A. Walker, and E. Wolfart, Hypermedia Image Processing Reference, 2003, https:
//homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm, accessed 2021-02-01.
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&.

Figure 2.6: Filters and keypoints. (From left to right) The input image, and after a convolution
with a Gaussian kernel of size 11 x 11. Edge amplitudes extracted with the Sobel operator.
Keypoints obtained with the Harris corner detector.

of this function reaches a local maximum. The simplest kernels that can be used to
approximate the one-dimensional directional derivatives into column and row directions
are K = [1,—1] and K = [1, —1]7, respectively. Depending on the origin of the filter, their
application is the same as applying the forward or backward finite differences algorithm
to approximate the directional derivative. Accordingly, K = [1,0, —1] or K = [1,0, —1]T
we obtain the central difference as numerical approximation to the directional derivatives.

The idea of the Sobel operator is to combine the central difference filters with a
perpendicular smoothing:

1 0 -1 1 2 1
Ge=12 0 2|, G = o 0 0 |. (2.38)
1 0 -1 -1 -2 -1

To infer the edge location efficiently, typically the pixel-wise edge magnitude ||G||» =
V(G # )2+ (G x1)2 or ||Gll1 = |(Gy * I)| + |(Ge % I)| is thresholded. The edge direction
can be obtained by ¢ = —atan2((G, = I), (G¢ x I)).

In the past, engineers came up with brilliant ideas to construct deterministic algo-

rithms that extract information from images such that they could solve their specific tasks.
Convolutions have often played an important role as only a small number of parameters,
HW for a single-channel filter of size H x W, have to be set. Moreover, especially for
separable or recursive filters, the convolution operation can be implemented efficiently.
Another important benefit of the convolution operation is its translational equivariance,
i.e.,, no matter where an object is located within the image, the same local answer to a
filter can be expected and thus the filter responses are only translated versions of each
other. More formally, if the input is translated by function 7t before the filter F is applied,
there exists a function 7 such that

F(n(x)) = #(F(x)). (2.39)

Note that invariance is a special case of equivariance, where 7 is the identity mapping.
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Figure 2.7: End-to-end workflow. From an input image x as shown on the left, the model
simultaneously extracts features and uses them inside a classifier to output class probabilities
p(y|x) in an end-to-end manner.

If an object can only be identified by more complex features, such as certain textures or
shapes, it can only be detected with large filter masks and robustly setting the parameters
of those is infeasible. Convolutional neural networks (CNN) [51, 103, 104] are a parameter
efficient way to address this issue by incorporating the feature extraction into the machine
learning approach. Instead of first extracting features and then applying a classifier, a
single model is used that takes an input image x and directly outputs class probabilities
p(y|x). Since the user has no direct insight into the intermediate features, these kinds of
models are referred to as end-to-end or blackbox models (cf. Fig. 2.7).

CNN s have the same layer-wise structure as MLPs and also here, no feedback loops
occur. The feature extraction part of a CNN usually consists of several consecutive blocks
that have the following repetitive structure: a convolution layer is applied, the output
is normalized by an affine transformation (e.g., batch normalization) and fed into an
activation function, before the next convolution, normalization and activation block starts.
After multiple such blocks, the output is downsampled by a max-pooling layer and
the process is continued, before finally an MLP-like classifier is attached. We will now
explain each of the new steps in more detail and explain certain design principles.

Convolution Layer

For image processing, convolutional layers are very effective as they can be efficiently
applied to inputs with a high spatial dimension. Moreover, as already mentioned, by
construction they bring a translational equivariance with them.

The I-th 2D convolution layer has d) different 3D filters K/),j = 1,...d") with
the same dimensions (D), H!), W(?)), where D) is the filter kernel depth that can be
directly inferred from the input dimensions (d(l_l) L pW, p-1), w(l_l)), and HO, w()
are its row and column spatial dimensions. Each filter produces a single-channel response,
referred to as a channel in the output feature map. Hence, each value in the output feature
map F() is one response of a filter kernel to the input feature map F(~1). Accordingly,
the depth of the output of a convolution layer is equal to the number of filters d(!). For
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convenience, we will omit the superscript (I) if it is clear that we mean the I-th layer. For
the output feature map, similar to (2.36), we have

0) 1d -1 Rt 1AZ2] N2 (1-1) (d)
Fd,r,c = (K( / ) % P( - ))T’,C = Z E Z Pk,rfm,cank,;n,n . (24:0)
k=0 m=—|H/2| n=—|W/2]

In the same way as for a dense layer, also here a bias term can be added. However,
modern networks are usually using batch normalization (see below), which makes the
bias within the convolution layer obsolete. Therefore, we neglect it here for convenience.
To preserve the spatial dimension of the input, the input feature map is padded with
half the kernel size P, = | H/2|, P. = |W/2], such that the kernel just fits into the feature
map when the convolution is applied to its border pixels. In most implementations, a
simple zero-padding is used, although the introduced edges can lead to artifacts that can
even be carried forward through multiple consecutive layers. Other methods, such as
constant padding, or mirroring add computational overhead and are used rarely.

The learnable parameters @ of a convolution layer are the kernel weights. They are
usually randomly initialized before the training starts. Moreover, the layer has certain
hyperparameters that affect the architecture of the network and that the user has to choose
either manually or by the use of an expensive meta-learning algorithm.

Larger spatial kernel dimensions H, W have access to a wider local context around the
center pixel. Especially when multiple convolution layers are connected, the area within
the input image that influences the value within the current feature map is systematically
enlarged. This area is also referred to as the receptive field. However, on the one hand, it
is not always preferable to have a large receptive field as the result might be influenced
by prominent objects in the neighborhood. On the other hand, the storage for the DHW
parameters is larger and the computational complexity O (h!~Dw(-Dgl-1DHOWWO) is
increased. Therefore, small kernel sizes of 3 x 3 up to 7 x 7 are the common choice.

An alternative to increase the receptive field without increasing the storage and
computation cost is to use a dilated convolution, which means that the kernel is spread
by L;, L. (omitting the exact summation bounds)

M _ (1-1) (1)
Fd,r,c - ; Z Z Fk,rfLym,chc-nKk,m,n : (2-41)
m n

In most cases, a symmetric dilation is used such that we can simply write L = L, = L.

The processing of an image can be accelerated if the feature map dimensions are
successively reduced. Another reason for the size reduction is that the algorithm is forced
to compress the essential information and only keep what is really necessary. One option
to obtain a spatial dimension reduction are strided convolutions, namely

n _ (1-1) (1)
Fd,i’,c - ;ZZFk,r-S,fm,c-Scank,m,n ’ (2-42)
m n

where S,, S; are the stride in row and column dimension and the dilation was omitted for
readability. Using a stride means that the filter is only applied at every S,-th and S.-th
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pixel location in row and column direction, respectively. For example, using a stride
S =5, = S; = 2 halves the feature map width and height and leads to a total dimension
reduction by a factor of four.

The derivatives of the convolution layer with respect to its inputs can be calculated as
follows:

(l+1)

M oL 9g,e
Qare =Sy ZZZBF ) ) (2.43)

drc a d’r’c’ drc

(Ld')
(1+1) aZkZmZn kr’ mc’—nKkmn

=L LY

7 OF,)
/
- ; Z/ Z adl’t’lc’ {Jllrt’?Y rc'—c T Z Z Z adl’—l;lkm c+ m 27
r ¢

— Y (rot180(K ")) af;“))r,c ,
d/

where rot180 is rotating the kernel by 180 degrees (which is the same as flipping in row
and column direction). Similarly, the derivatives with respect to the weights are

(1-1) (Ld)
0 Lo L Fy k’ r—m' c— n’Kk’ m! !

= L % "” = L L% (2.44)
aKkmn Kkmn aKlEm)n
_Zzadrc kr mc n _Zzadm+r’n+c’ kl,/cl/)

r/ C/

= (rotlSO(Fk( N )) * ag”)m,n

This shows that during the backward pass a number of single-channel convolutions with
flipped kernels have to be performed.

Transposed Convolutions

In some cases, such as networks for semantic segmentation or autoencoders, an encoder-
decoder architecture is used. That is, the spatial dimension of feature maps successively
decreases down to a so-called bottleneck of small dimension, before it is increased again
step by step. One option for upscaling a feature map is to use a bilinear zooming before
the output is further processed. Another option is to use a transposed convolution, where
each pixel of the input is multiplied by a kernel and the results are summed up like in
the backward pass of the normal convolution layer (2.43):

0 _ Ld)  pl=1)y (I=1) (L)
Fy) =Y (rot180Ky" «Fy )=y Y Y. EoKis . 45)
d' d' {ri: S,r'+i=r} {c',j: Scc'+j=c}

Also see [34] for visualizations and examples of different variations of transposed
convolutions (only for the case d) = D)) = 1). Note that in comparison to the normal
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Input Image — Conv 1 — Pool 1 ————— Conv 2 — TranspConv 3

Dim = (3,32,32) Dim = (64,16,16) Dim = (64,8,8) Dim = (96,8, 8) Dim = (96,16,16)
kernel size:  (3,5,5) (1,2,2) (64,3,3) (96,2,2)
stride: 2 2 1 2%
- dilation: 1 1 2 1
padding: 2 - 1 -
activation: RelU - ReLU RelU

Figure 2.8: Convolution types. (From left to right) In the first layer, a convolution is applied
to the input image. Each filter application results in a single pixel of the output feature map. A
pooling operation is used to reduce the feature dimension and introduce robustness to small
distortions. A dilated convolution leads to an increased receptive field. The feature map spatial
resolution is increased by a transposed convolution. *Note that for transposed convolutions it is
more intuitive to apply stride and padding to the output shape instead of the input.

convolution layer, the output depth is given by the kernel depth D) and the number of
kernels d(!) is equal to the input depth d!~1.

Grouped Convolutions

In modern architectures, the convolutions are frequently separated into groups. That
means, that the input depth dimensions d~1) are split into g distinct groups and the
filter kernels are split into kernels of depth d~1) /g. The first d) /¢ filters only act on
the first group of d~1) /g input-channels, the second group of filters act only on the
second group of input channels, and so on.

In an extreme case, the number of groups can be set to the number of input chan-
nels. This is done in depth-wise separable convolutions, where instead of performing a
convolution with kernel-size k, a grouped convolution with kernel size k and g = d(/~1)
is followed by a convolution with kernel size 1 x 1. The benefit of depth-wise separable
convolutions is that they are highly efficient. For example, for a convolution with stride
one, we have whd!"~Y (HW + d)) multiply-add operations instead of whd~V HWd().
Since d(!) is often in the range of 128 to 2048, depth-wise separable convolutions can lead
to remarkable speedups together with a reduction of storage costs of factor d(!).

Some examples and visualizations of most of the mentioned types of convolutions

are shown in Fig. 2.8.
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Pooling Layer

To handle large input dimensions, a common strategy is to distill the typically sparse
information within the input image by a suitable dimensionality reduction. A method
that has shown to work well is the introduction of pooling layers into the network. Pooling
layers act on patches of the input channels. As for convolution layers, the spatial patch
dimensions H x W, the stride S with which the pooling is applied, and the padding P
of the input can be chosen and have an influence on the output dimensions. Pooling
layers usually are applied channel-wise, and therefore, the depth of the patches equals
one. This leads to an output feature map depth that is equal to the input feature map
depth d(!) = g(=1),
A max-pooling layer computes the output F() as

B _ WA W e

dre m=—|H/2| n—|W/2] d,r-S+m,c-S+n ’ (2‘46)
and for an average-pooling layer we have
LH/2] w/2]
m _ 1 (I-1)
Fd,r,c T HW Z Z Fd,r~S+m,c~S+n : (2-47)

m=—|H/2| n=—|W/2]

According to (2.46) and (2.47), a pooling layer has no learnable weights. A pooling
layer introduces local invariance because it is not important at which position inside the
patch we pool from a specific input value occurs. Moreover, for a max-pooling another
nonlinearity in addition to the activation is introduced to the network. Additionally, one
can argue that max-pooling layers make the representation of the input more robust to
noise since small activations are filtered out. However, one should keep in mind that this
argument is based on the hypothesis that the important information is contained in large
activations and that only those should be forwarded through the network. The same
hypothesis is underlying the use of ReLU activation functions, which set all negative
inputs to zero.

The derivatives with respect to the inputs are for non-overlapping max-pooling with
S=H=W:

50 = {ar(il,ELr]/)HJ,Lc/WJ if (r,c) = arg max;i/—ZJLH/zj arg max}gizﬁw/z | E ag,lr)-s+m,c-s+n ’
0, otherwise.
Accordingly, if the pooling patches overlap, the gradient is propagated to the argmax
position and the sum over all overlapping patches is taken in the backward pass.
For average pooling, the gradient of the loss with respect to the output, !+ is
distributed with factor 1/HW to each pixel within the input gradient. Also here, if
patches overlap, the gradient of each patch has to be summed up.

If H and W are set (dynamically) to the input dimensions h!~1) and w(/~1)

, respec-
tively, we refer to the layer as global pooling layer. Hence, the output size of a global

pooling is always (d(!~1),1,1), independent of the input spatial dimension.
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Typically, within the first stages of a network 2 x 2 pooling layers with stride S = 2
are used and before the first fully connected layer of a classifier, a global pooling might be
used for the following reason: If a network only contains a combination of convolution,
activation, batch norm, or pooling layers up to this point, we are able to apply it on
arbitrary input image sizes. The intermediate feature map sizes are changing, but
the weight-shapes remain constant. However, for a fc-layer we need a constant input
dimension because the dimension of the weight matrix depends on it. The use of a global
pooling layer compresses the input feature map to a constant output size such that it fits
to the following fc-layer. Note that networks that only consist of convolution, pooling,
activation, or pooling layers, such that they can digest variable input sizes, are often
referred to as fully convolutional neural networks or FCNs [126], for short.

Dropout

Dropout [73] is an effective method to regularize large networks. By setting a hidden
neuron’s output to zero with a given dropout probability « during training, the model is
forced to not only rely on the activation of this particular neuron. This can also be seen
as a model averaging over all possible networks that have only 1 — « times the number
of neurons in the layer where dropout is used. Dropout is most often used in large fully
connected layers at the end of CNNs, but it can also be applied to convolution layers [52].

In its initial form, dropout was only used during training and was switched off during
inference. However, in some cases dropout is also used during inference to improve the
model’s output confidence: Instead of relying on the softmax output of a single forward
pass, the model is evaluated several times with dropout and the softmax outputs are
averaged [52, 90].

Batch Normalization

In each iteration of the training, the input changes according to the images within the
current batch. This leads to largely varying activations within the feature maps of all
layers from iteration to iteration. With backpropagation, we calculate the gradients of
the loss with respect to the weights of each layer. This gradient tells us the direction in
which we should adapt the weights of each layer to reduce the loss for the current batch
of images. However, thereby we assume that all other layers remain constant. In practice,
this is not the case because we update all layers simultaneously. This leads to a changing
distribution of the layer’s input, denoted as internal covariate shift [82]. In theory, higher
order optimization methods are a way to address this problem, but in practice they are
not feasible due to the large number of parameters that lead to exploding computational
and storage costs.

A popular method to reduce the internal covariate shift is batch normalization [82],
where the inputs to each convolution layer are normalized over each mini-batch B =

{X1,.-., Xm }:
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m hw

1
pE = Z Z Xij, (2.48)
i=1j=1

) 1 m hw )
of = ; g(xij — ps)%,

. Xij — 1B

Xij = —F——,

\/oE+€
yi=7%i+pB,

where x;j is a vectorized version along the spatial dimensions h,w of x;, € = 10 8 is a
small constant for numerical stability and y and B can be learned. Note that x;;, v, B, 15,
and op are of dimension 4, i.e., each depth-channel is handled separately. In practice, the
mean p3 and standard deviation o5 are updated as running averages during training
and fixed during inference. Thus, during inference they can be combined with 7 and 8,
leading to a single linear transformation.

Example Activations

Fig. 2.9 gives an impression how the activations inside a typical CNN for classification
of pill images look like. As has been empirically shown by Bau et al. [5], the first layers
respond to low-level features such as edges or colors, while the later feature maps show
higher-level features such as the pill’s outline, or a defect. In this particular example,
low-quality activation maps of the classes of interest are shown even though the model
was not trained for this task.

2.6 Modern CNN Architectures

Today, CNNs play an important role whenever strong features are necessary to solve
almost any computer vision task. Therefore, the underlying CNN-architecture to extract
those features is often called backbone of the model. Since the backbone is usually only
one module of many that together form the model, it is exchangeable based on the
users preferences. Usually, there exists a runtime-accuracy trade off depending on the
number of parameters and floating point operations (FLOPS) required to perform for
one forward pass. Research on CNN architectures is still evolving quickly and every
year new concepts are introduced where it is sometimes unclear if the proposed benefits
are statistically significant. To give an overview, in this section we briefly describe some
modern CNN architectures and design principles that were developed during the last
decade without claim for completeness.
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Figure 2.9: CNN activations. Different feature map channels of a SqueezeNet [81] applied to
an image of a pill containing a contamination defect. The first layers respond to low-level features,
such as color or edges. The later layers show more complex structures or even semantic concepts,
such as the pill’s outline or the contamination. Looking at layer conv10, the model seems not to
be absolutely sure if the defect is a crack or a contamination. However, the exponential within the
softmax clearly predicts class contamination.

2.6.1 AlexNet

In 2012, Krizhevsky et al. [95] won the ImageNet large-scale visual recognition challenge
(ILSVRC) with a novel CNN architecture, commonly referred to with respect to the first
author’s name as AlexNet. Their method reduced the top-5 error for this classification
problem with 1000 different categories from 26.2% to 15.3%. Although, some research on
CNNs was going on, this breakthrough led to a dramatic increase of the popularity of
CNNs in the computer vision field. Interestingly, this architecture with its seven layers is
often related to the raise of deep learning’s popularity. With hindsight, it is maybe not
due to the depth of the CNN, but because it was the first architecture that was designed
for the use with multiple GPUs, and additionally, because it was trained on a large scale
dataset like ImageNet.

CaffeNet, a slight variation of the architecture as implemented in the popular Caffe
framework [85], is depicted in Fig. 2.10. We abbreviate a kernel size of m x m with km,
and correspondingly a stride by sm. #m denotes the number of filters in convolution
layers and output neurons in fc layers, respectively. da is the dropout probability in the
fc layers if dropout is present.

In comparison to more recent architectures, the first layers have remarkably large
kernel sizes, which are computationally expensive. Also, the three adjacent fc-layers with
their high number of neurons make the model very large. The weight matrix of the dense
fc8-layer alone has 4096 x 4096 ~ 16 000 000 parameters.

The model also introduced a local response normalization (LRN) layer that normal-
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Figure 2.10: CaffeNet architecture. (Top) Sequence of layers from input to output with most
important hyperparameters. All convolution and fc layers are followed by a ReLU activation.
(Bottom) The corresponding output feature map dimensions of the respective layers.

ized the activation at position (r,c) within feature map d, a(d, r, ¢), with respect to the
activations of neighboring feature maps:

min(d(—Y —1,d4+n/2) P
LRN(d,r,c) =a(d,r,c)/ | k+« ) a(j,r,c)* |, (2.49)
j=max(0,d—n/2)

with k =2,n =5,a = 1074, and B = 0.75 chosen manually. Krizhevsky et al. empirically
found that LRN let to a significant reduction of the error. However, it has not been used
in many models since then.

2.6.2 Inception — GoogLeNet

Szegedy et al. [183] proposed the GoogLeNet or Inception architecture, which was the
winner of the ILSVRC 2014. The idea behind their model is to build a deeper network
while conserving the computational cost. Moreover, with the introduced Inception
modules (cf. Fig. 2.11), features responding to different receptive fields should be created.
Therefore, activations of convolutions with different kernel sizes are concatenated along
the depth axis and form the input of the following inception module or another layer
that is attached.

Throughout the network, heavy usage of 1 x 1 convolutions is made, with the
main goal to reduce the input depth, and therefore the kernel depth, of the following
convolution. This idea was first proposed in the network in network (NIN) architecture
of Lin et al. [117]. Another idea copied from the NIN model is to use a global pooling
before the final fc layer, again to reduce the feature dimension, but also to make the
model’s input image size variable.

When GoogLeNet was proposed, people were often struggling to train deep networks
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Figure 2.11: Inception module. The output of an Inception module consists of concatenated
activations of convolution and pooling layers with different kernel sizes. Intermediate 1 x 1
convolutions are used to reduce the computational cost.
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Figure 2.12: GoogLeNet architecture. (Top) Auxiliary loss branches are used during training
to address the vanishing gradients problem. (Middle) Sequence of layers from input to output
with most important hyperparameters. All convolution and fc layers are followed by a ReLU
activation. (Bottomn) The corresponding output feature map dimensions of the respective layers.

due to the vanishing gradients problem: when the gradient is back-propagated through
the network, due to small (conv layers), negative (ReLU), or non-maximal (max-pooling)
intermediate activations, the gradient becomes smaller and smaller until it eventually
vanishes. To address this problem, two auxiliary intermediate loss branches are attached
in the middle of the network. These loss branches are only used during training and
their respective gradients are summed to the gradient that comes from the final loss layer.
The Inception v1 architecture is visualized in Fig. 2.12.

The Inception modules have been further refined in [184], where convolution layers
with large kernel sizes, e.g., 5 X 5, have been replaced by two successive 3 x 3 convolution
layers. Moreover, three different kinds of Inception modules have been introduced,
where sometimes a 1 x n convolution has been replaced by an n x 1 followed by a 1 x n
convolution to further improve the efficiency.
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Figure 2.13: ResNet building blocks. (Left) A basic residual block as used in ResNets with a
comparably low number of layers such as ResNet18/34. (Right) A bottleneck block that is used in
very deep networks such as ResNet50/101/152.

Another important change that was incorporated from version two onward is the use
of intermediate batch normalization layers before every ReLU activation throughout the
whole network. This technique has proven to stabilize the training of deep networks and
is used in all recent architectures. The use of batch normalization also allowed to train
the version two network with only a single auxiliary loss.

2.6.3 ResNets

He et al. [68] noticed that deeper networks, seen as universal function approximators,
should always be able to approximate the a function at least as well as a shallower
counterpart. In the simplest case, the additional layers should be able to approximate
the identity function. Therefore, in theory a deeper network should converge to a lower
training set loss than a corresponding shallow network. However, naively constructed
very deep networks converged to states with worse performance on the training and
validation sets than their shallower counterparts. The reason could not only be the
vanishing gradient problem, since this was already addressed and fixed by normalized
inputs and batch normalization layers, as well as appropriate initialization of weights.
Led by these observations, the authors propose deep residual networks (ResNets). The
main idea of ResNet architectures is to introduce skip-connections throughout the network,
that simplify the gradient flow. Instead of learning functions y = f(x), a ResNet learns
functions y = f(x) + x. In practice, this is modeled by the building blocks shown in
Fig. 2.13. In very deep ResNets, the bottleneck block is used to avoid computationally
expensive operations. For both block types, a batch normalization and ReLU layer is
used before each convolution layer, i.e., normalization is done before the activation
(pre-activation [69]). To reduce the spatial dimension of feature maps, convolutions with
stride 2 are used instead of max-pooling layers. In this case, to avoid a representational
bottleneck, the number of filters is doubled. To avoid neglecting 75% of input activations,
in bottleneck building blocks the stride is applied to the 3 x 3 convolution. In the
case of strided convolutions or a change in the number of filter kernels, the depth and
spatial dimensions of input and output feature maps do not coincide. Therefore, a 1 x 1
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convolution with stride 2 is used within the skip-connection path.

ResNets are still very popular today, especially as efficient feature extractors in object
detection or semantic segmentation applications. To increase their classification accuracy,
they have been further extended to ResNext [201] by the use of grouped convolutions.
Moreover, squeeze-excitation (SE) networks [76] use rescaling branches to further improve
the performance, but at the cost of additional computations.
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Rotational Invariance for CNNs

Looking at the ImageNet [28, 168] pre-trained filters of AlexNet [95] (cf. Section 2.6.1) in
Fig. 3.1, many filters seem to be redundant because they are similar to rotated versions of
others. This is the brief motivation for the work that was done in this chapter, where we
look at classification CNNs with rotated filters. In particular, we investigate the rotational
invariance of CNNs. Moreover, we develop a model that is trained only on upright
images, but can be successfully applied to rotated versions of the input. This leads to
models that can be trained with fewer annotated training images. Hence, it is a step that
lowers the initial hurdle of labeling many training images for a user that wants to apply
a deep-learning-based classifier. The content of this chapter has been published in [44].

Despite breakthroughs in image classification due to the evolution of deep learning
and, in particular, convolutional neural networks (CNNSs), state-of-the-art models only
possess a very limited amount of rotational invariance. Known workarounds include
artificial rotations of the training data or ensemble approaches, where several models are
evaluated. These approaches either increase the workload of the training or inflate the
number of parameters. Further approaches add rotational invariance by globally pooling
over rotationally equivariant features.

Instead, we propose to incorporate rotational invariance into the feature extraction
part of the CNN directly. This allows to train on unrotated data and perform well on a
rotated test set. We use rotational convolutions and introduce a rotational pooling layer
that performs a pooling over the back-rotated output feature maps. We show that when
training on the original, unrotated MNIST training dataset, but evaluating on rotations
of the MNIST test dataset, the error rate can be reduced substantially from 58.20% to
12.20%. Similar results are shown for the CIFAR-10 and CIFAR-100 datasets.

3.1 Introduction

Deep learning and CNNs have lead to breakthroughs in various tasks such as image
classification [68, 95, 183] and object detection [58, 158, 159]. Due to the nature of
convolution- and max-pooling-layers, already the first CNNs built for handwritten
digit recognition [104] incorporated invariance to translations and to minor distortions.
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Figure 3.1: Convl-layer weights of AlexNet. Weights of the first convolution in the AlexNet
architecture [95] pre-trained on ImageNet [28]. Many filters look similar to rotated versions of
others. Figure taken from [95] with the friendly permission of Krizhevsky et al.
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Figure 3.2: Rotational invariance in image classification. (a) predicted output class of a
reference CNN-model (with an architecture similar to LeNet-5 [104]) depending on the rotation-
angle of the input image. Only for 6 of the 36 rotated images (in steps of 10°) the predicted class
is correct. (b) result when we replace the first convolution by a rotational convolution and pooling
module with 12 filter rotations. Here, in 34 of 36 rotations the model predicts the ground truth
class 9. For the remaining two rotations the most similar class 6 is predicted. (c) AlexNet [95]
trained on ImageNet can predict the correct class hourglass only for an upright or nearly 180°
rotated image.

However, even state-of-the-art networks are not invariant to rotations of the input. Since
most datasets used in the computer vision community, such as MNIST?, CIFAR-10?,
ImageNet [28], or Places [209], mainly include objects in an upright pose, this deficit
is not emphasized by common benchmarks such as the ILSVRC [168]. Nevertheless,
in recent years, CNN-based image classification and object detection algorithms have
started to be used in biomedical and industrial environments, where objects can occur in
an arbitrary orientation, e.g., in microscopic images or objects on a conveyor belt.

In typical CNNs, such as LeNet [104], AlexNet [95], GoogleNet [183], or ResNet [68]
(cf. Section 2.6), several modules of convolution and max-pooling layers are stacked on

Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of handwritten digits, 1998. http:
//yann.lecun.com/exdb/mnist/, accessed: 2017-05-19.

2A. Krizhevsky, V. Nair, and G. Hinton, The CIFAR-10 dataset, 2014. https://www.cs.toronto.edu/
~kriz/cifar.html, accessed: 2017-05-19.
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3.2 RELATED WORK

top of each other. They first extract low-, then mid-, and finally high-level features of the
image before these are fed into a classifier that usually consists of one or several fully
connected layers followed by a softmax. Convolutions with a small filter size and stride
(compared to the input feature maps) followed by max-pooling subsequently reduce
the feature dimension. At the same time, these feature extraction modules introduce
invariance to translations of the objects inside the input image and invariance to smaller
distortions and scale changes. Nevertheless, if the object is rotated by medium or large
angles, the activations of the filters change in most cases. Therefore, the classifier is not
able to predict the correct object category, as is visualized in Fig. 3.2c. For example, as
depicted in Fig. 3.2a, a model that is trained on unrotated MNIST data achieves an error
rate of 0.87% on unrotated test data. However, when each sample of the test set is rotated
36 times in steps of 10°, the same model only predicts the correct class 59.25% of the
time. Hence, the question arises, is it possible to train a CNN that can classify rotated
images, although it has only seen unrotated training examples?

In this chapter, we introduce a new module using rotational convolution and pooling
layers in order to generate features that are rotationally invariant. In the forward pass, the
ny filter masks of one layer are rotated 7, times and produce in total 7, - s feature maps.
In a second step, we back-rotate the feature maps by the negative angle by which their
generating filter was rotated with previously. We follow this layer by a rotational pooling
layer that performs pixel-wise max-pooling over the 7, feature maps corresponding to the
different rotations of a single filter. This leads to a module that is invariant to rotations of
the input.

The main contributions of this chapter are:

1. With rotational convolution and pooling over the back-rotated output feature maps,
we are the first to introduce a generalized convolution and pooling module for
CNN s that is approximately rotationally invariant.

2. Therefore, in comparison to equivariant models [20, 110], it is not necessary to
provide rotated training data to our model, even without the use of a global pooling
layer.

3. In our experiments, we show that we can outperform the current state of the art,
while at the same time being more parameter-efficient. In particular, the proposed
new module is evaluated on unrotated and rotated versions of the MNIST, CIFAR-
10, and CIFAR-100 datasets. When training on unrotated data and evaluating on
rotated data, the error can be reduced from 58.20% to 12.20% for MNIST, from
67.55% to 55.88% for CIFAR-10, and from 83.65% to 77.06% for CIFAR-100.

3.2 Related Work

Two notions often used in the literature are those of equivariant and invariant models.
For a rotation of the input, an equivariant model is expected to produce the same
rotation of the output. In contrast, an invariant model is expected to produce the exact
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same output for a rotation of the input. For example, for robust image classification
in industrial applications, a certain degree of invariance to deformations, translations
scale changes and rotations is essential. To tackle demanding tasks such as texture
classification or defect detection, early schemes were built on features that incorporated
certain invariances, such as SIFT [127], local binary patterns [147] or methods that are
based on bag-of-words, e.g., [146]. On the other hand, even though CNN-based methods
offer a great performance boost for general image classification tasks, they lack an
inherent invariance to rotations.

Ensemble approaches and data augmentation. Several approaches that introduce ro-
tational equivariance are based on feeding the network with transformed data T(x) for
various, sometimes randomly selected, transformations T. Ciresan et al. [19] introduce
multi-column deep neural networks, where a separate model is trained for each transfor-
mation of the input and the outputs of these models are averaged. Dieleman et al. [30]
transform the images of galaxies to generate artificial viewpoints and concatenate the
resulting feature maps as input to the classifier. The method of Laptev et al. [99] is quite
similar, as the input to the model is transformed and fed through siamese networks that
share feature weights. Instead of a concatenation, a max-pooling is performed over the
feature maps and the result is fed into the classifier. All these methods have in common
that the input to the CNN is transformed, and the gains in equivariance or invariance of
those nets are essentially data-driven.

Learning transformations. One of the first approaches to learn transformations was the
transforming autoencoder by Hinton et al. [72]. The building block of the transforming
autoencoder is a capsule. Each capsule learns a single simple transformation that relates
the input vector and a target output vector. For example, Hinton et al. [72] propose to
learn the translation of an input image. Similarly, Jaderberg et al. [83] propose spatial
transformer modules that learn transformations of the input data in a weakly supervised
manner. The differentiable module can be plugged into any part of a CNN. It applies
a transformation to the input image or feature map that is then passed through to the
later layers. Dai et al. [26] go a step further and allow arbitrary deformations of every
element of a filter in their deformable convolution and deformable Rol pooling modules. They
present impressive results for image segmentation. In contrast to our work, all of the
above mentioned modules need to see the possible transformations in the training stage.
Hence, it is not possible to train them on unrotated data and expect good results on a
rotated test set.

Steerable approaches. As opposed to methods that transform the input, the following
approaches transform the filters of a network. Those approaches aim to produce steerable
representations of the input that transform in a predictable linear manner under transformations
of the input [21]. Recently, a number of closely related works have proposed convolution
modules for rotational invariance with only subtle differences [20, 21, 199, 132, 213].
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In [21], Cohen and Welling provide a theoretical framework for steerable CNNs
and equivariant filter banks. They show that conventional CNNs are equivariant to
translations but not to rotations and reflections. Furthermore, in [20], they propose
group equivariant convolutional neural networks (GCNNSs) as a special case of steerable
CNNs. GCNNSs consist of group convolutions containing rotations of filters and pooling
operations over the rotations. Compared to our approach, the underlying transformations
are restricted to be elements of a certain symmetry group. In particular, the proposed
group convolutions are limited to 90° rotations and flips.

Harmonic Networks (H-Nets) [199] also use rotations of filters and extend GCNNs
as they are not limited to 90° degree rotations. Although they achieve a very compact
representation, they restrict the filters to be from the family of circular harmonics.
Another more recent type of equivariant models are Rotation Equivariant Vector Field
Networks (RotEqNet) by Marcos et al. [132]. In their orientation pooling, additionally to
the maximal activation, also the corresponding orientation is propagated through the
network. In their experiments on MNIST-rot they are able to outperform H-Nets as well
as Oriented Response Networks (ORN) [213]. Nevertheless, the authors rely on test time
data rotations to further improve their results. In contrast to our work, all of the above
networks consist of equivariant instead of invariant convolution modules and require a
global pooling in order to achieve invariance.

In comparison to the methods mentioned above, our goal is to train with non-
transformed inputs x exclusively, but evaluate the model with transformed data T(x).
Hence, we are indeed striving for a rotationally invariant module instead of an equivariant
one. From the above mentioned approaches, a similar experiment was conducted only
by Zhou et al. [213], where the authors train on MNIST and evaluate on MNIST-rot. In
ORN:s the feature maps and filters are extended by the number of base-filter rotations.
This leads to heavy models both in terms of memory and computation and restricts the
feasible size of filters to 3 x 3.

In our work we use filter rotations and pooling over orientations similar to GCNNSs,
but we do not restrict the transformations to be from a symmetry group acting on Z2.
Furthermore, our module is rotationally invariant. The key ingredient is to back-rotate the
feature maps that originated from a rotation of the filter before applying an orientation
pooling. This is in contrast to the ORAlign operation of ORNs, where all feature maps
corresponding to one base-filter are back-rotated by the orientation of the feature map
with maximal activation. In their experiments Zhou et al. [213] apply the ORAlign or
ORPooling operations only to the last feature-map before the classifier. Due to its spatial
size of 1 x 1, the back-rotation in their ORAlign layer degenerates to a permutation of
feature maps.

3.3 Rotational Convolution and Pooling

We propose to generalize the conventional convolution layer of CNNs in order to make
them less sensitive to rotations of the input. The presented module consists of an extended
convolution layer, named rotational convolution, that is followed by a rotational pooling
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Figure 3.3: Rotational convolution and pooling with feature map back-rotation. (Top)
Steps of rotational convolution and pooling module: First, the filters are rotated by #, different
angles and applied as in a conventional convolution layer. To gain rotational invariance, each
feature map is back-rotated with the negative angle the generating filter was rotated with
previously. Thereafter, a feature map pooling over the rotations is performed. The pooling over
the back-rotated feature maps is essential to gain rotational invariance. (Botforn) Toy example with
two different filters acting on a single-channel image. Note that for 90°, 180°, and 270° rotated
copies of the input, although the input to the rotational pooling are ordered differently, the final
output feature maps are identical.
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layer. The latter pools over the back-rotated feature maps of the preceding rotational
convolution layer. The whole module, together with a toy example, is visualized in
Fig. 3.3. In the following, we will think of images, feature maps, or filters as matrices or
vectors on a discrete and finite pixel grid in Z2. For rotations, we will always assume a 2D
rotation around the center of the filter, image, or feature map. Rotating a multi-channel
instance means rotating each of the channels individually.

3.3.1 Rotational Convolution

Let us consider the typical scenario of a convolution with input feature maps F € R?/>*®,
where /i - w is the number of pixels and 4 is the number of channels. Furthermore, we
denote the convolution kernels by K]- € RP*HXW, j=1...,n fr where H and W are the
spatial dimensions of the kernel and D = d. For convenience, we look at the case of
square filter kernels where H = W.

Note that we slightly change the notation here in comparison to Chapter 2 to avoid
misleading superscripts and indices: Suppose, we are talking about the I-th layer. We
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3.3 RoTaTIONAL CONVOLUTION AND POOLING

write F for FU~1) and we use Z to refer to the layer’s output features F(/). Moreover,
we omit the spatial indices 4, 7, ¢ of kernels K and we write K; for K@D, Instead, in this
chapter, the superscript K() refers to the i-th rotation of a kernel. Z ]@ is the feature map
that is obtained by applying the j-th kernel with rotation i to F, as we will introduce
shortly.

Similar to the group convolutions of Cohen and Welling [20], we propose to use 1,

rotations of the filters to obtain 7y - n, rotated filters
KO =R(K), i=1,...,m, j=1,..n1, (3.1)

with R; representing a rotation by the angle (i — 1) - 271/n,. One may also think of the
rotation of each filter channel as a coordinate transformation that can be represented
by a matrix multiplication RXK, where K is a vectorized version of a single channel of
K, and RX has dimension H? x H2. Note that for angles that are not multiples of 90°,
rotated coordinates do not lie directly on the pixel grid. Therefore, we use a bilinear
interpolation of the four neighboring pixel values. For convenience, we incorporate this
interpolation into R; when necessary, although R; is then no longer part of a symmetry
group which holds for 90° rotations. In particular, R; is no longer invertible.

We use correlations in the forward, and convolutions in the backward pass. Hence,
for each filter and rotation we can compute the feature map with a conventional planar
correlation as

ﬁozF*@% i=1...,m, j=1...n. (3.2)

It is shown in [20] that for the symmetry group of 90° rotations, the stack of feature
maps with respect to the n, rotations is group equivariant, but single feature maps are
not. Consider the toy example in Fig. 3.3. Every filter is rotated in 4 different angles, 0°,
90°, 180°, and 270°. As a result, for each filter, we obtain 4 feature maps.

Feature Map Back-Rotation

The next step for approximate rotation invariance is to back-rotate the stack of feature
maps generated by the rotations of each filter. Each feature map is individually back-
rotated by the negative angle its generating filter was rotated with in the previous
rotational convolution step. This is essential to ensure that the subsequent max-pooling
leads to rotational invariance. For example, if the input image is rotated by 90°, the
resulting feature maps Z ]@ are not only rotated by 90°, but are also permuted. A max-
pooling over the stack of feature maps in the following step results in the same output

for both the rotated and the unrotated input image (see Fig. 3.3).

)

Hence, to obtain back-rotated feature maps, we rotate the feature maps Z ](i backwards

by

(i) _ p—r5() P P
Z]. =R ( ; ), i=1,...,n, j=1...,np (3.3)
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Note that when you think of R;” as a matrix multiplication as explained above, the
dimension of the matrix is different than that of R;, because R; is applied to a feature
map, while R; is applied to a filter. For convenience, in the following, we omit the filter
index j and look at the case 1, = 4 and hence rotations R by 90° that form a symmetry
group. In particular, we have R* := Ro Ro Ro R is the identity. We use the result of
Equation 11 in Chapter 5 of [20]:

R(F) %K = R(E xR~ (K)), (3.4)

which means that the correlation of a rotated image R(F) with a filter K is the same as
the rotation by R of the image F correlated with the inverse-rotated filter R~ (K). To
show that the feature map back-rotation of (3.3) indeed leads to rotational invariance, we
define the mapping of a rotational convolution that takes a feature map F as input and
outputs 1, back-rotated feature maps as C(F) = (Z(),...,Z(")). We have that

FxK = FxK
_ ) RO (F*R(K)) = R’(FxR(K))
CE=N (R (reR(K) = RAEXRAK)) 42)
(R)~(FxR¥(K)) = R(FxR*(K)),
and using (3.4), we obtain
R(F)xK = R(F*R3(K))
_ ) R(R(F)xR(K)) = FxK
C(RF) = R%(R(F)*R%(K)) = R3(F*R(K)) (.6
R(R(F)xR*(K)) = R*(FxR*(K)).

This means that despite the fact that single output feature maps are not rotationally
invariant, the stack of output feature maps is.

As mentioned above, for rotations with angles different from multiples of 90°, we
approximate the inverse rotation by interpolation: R;” in (3.3) is the rotation with the
negative angle — (i — 1) - 27t/n, followed by the bilinear interpolation.

Backpropagation for Rotational Convolution

Now that the forward pass of a rotational convolution has been explained, we still have
to derive the gradient of the layer with respect to the shared weights and data. Following
the conventional backpropagation algorithm, we are able to calculate the gradient of the
loss function L with respect to the rotational convolution output feature maps oL/ E)Z]@
and are interested in dL/dF and dL/JK;.

Since both the derivative as well as the rotation with R; are linear operators, from

(3.3) we see that we can approximate

(3.7)
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where equality holds for rotations by multiples of 90°. This means that we just have to
rotate the incoming gradients oL/ BZ]@ forward. From there on, we can use the backward
pass of a conventional convolution to obtain the data and weight gradients with respect
to the rotated filters before we sum over the rotations.

3.3.2 Rotational Pooling

The last step of our module is rotational pooling. As the stack of back-rotated feature

(1) ()N » . . . . . .
maps (Z ARy Z i ) is approximately rotation-invariant, we perform a pixel-wise max-

pooling over the rotations to obtain the final output of our module:

Zi(r,c) = Iiéf( Z]@(r,c). (3.8)
Here, (r,¢) denotes the coordinates within the output feature maps. By the derivation
above, it follows that the rotational convolution and pooling module is a rotationally
invariant map for rotations with angles that are multiples of 90° and approximately
rotationally invariant for the general case 1, # 4.

In the backward pass, the gradient computation is the same as for a conventional
spatial max-pooling within a single feature map. The gradient is fully propagated to the
pixels that contained the maximum values. For all other pixels the gradient is set to zero.

3.4 Experiments

We evaluate the proposed module on rotated versions of the MNIST, CIFAR-10, and
CIFAR-100 datasets. Our main objective is to see whether we can train a model only on
unrotated data and still obtain reasonable results when evaluating on rotated versions of
the previously unseen images of the test set.

In general, rotational invariant features are less descriptive than rotational variant
ones, since they ignore the rotational information. This holds for all learned features
and handcrafted features simultaneously. Hence, in applications where the rotation
of the objects is a key discriminative feature, the use of rotational invariant features is
unfavorable. For example, usually it is reasonable to assume a car is standing on its 4
wheels. Nevertheless, in applications where the orientation of the object should have no
influence to the classification result, rotational invariant features are a key asset. Typical
examples include objects on a conveyor belt, and pick-and-place or overhead scenarios,
such as augmented or virtual reality applications in computer aided surgery.

The architectures used in our experiments are shown in Table 3.1. We compare our
model to a reference model without rotational convolution and poolings, to an extension
of a GCNN [20] with n, = 8 filter rotations, and to the ORN model of Zhou et al.
[213] using ORPooling. Additional results for other variants of GCNNS, e.g., without
rotational pooling, and our proposed models with feature map back-rotation can be
found in Appendix A. We denote models with rotational pooling by RP and models with
additional feature map back-rotation by RP_RF. Without the back-rotation of the feature
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CNN architectures

convl conv2 conv3 conv4
name RF ng 1y RP ng ny RP ng ny RP ny ny RP 1np
reference 10 1 20 1 40 1 80 1 130050
reference_large 80 1 160 1 320 1 80 1 382320
RP_1234 [20] 10 8 v |20 8 v |40 8 v |80 8 Vv | 130050
ORN [213] 10 8 20 8 40 8 80 8 v | 382320
RP_RF_1 (ours) vi10 8 v |20 1 v |40 1 v |80 1 v | 130050
RP_RF_1 MNIST (ours)| v (40 8 v [120 1 - - 1810000

Table 3.1: CNN architectures. Except for RP_RF_1 MNIST/CIFAR, all convolution kernels
are of size 3 X 3 and followed by a max-pooling layer with stride 2. For each model, the
convolution layers are followed by a fc-layer with 1024 units and Dropout with ratio 0.5. As
classifier, another fc-layer with 7. units and a softmax is used. A ReLU nonlinearity is applied to
the activations of the convolution- and first fc-layers. The columns 1 and 7, show the number of
learnable filters and the number of rotations, respectively. The checkmark in column RF indicates
that feature maps are back-rotated, RP denotes rotational pooling, and 7, the total number of
learnable parameters when applied to MNIST. Please see Appendix A for the detailed description
of RP_RF_1 MNIST/CIFAR and the computation of 7,,.

maps and with n, = 4 rotations, our module is similar to a group convolution. Hence, the
model RP_1234 is built of modules similar to those of model PACNNRotationPooling in
[20, Table 1], but uses eight instead of four rotations of the filters.

In order to compare our models with ORNs [213], we used a similar architecture
with 4 convolution layers and filter sizes of 3 x 3. We exchanged one or several of the
convolution modules by rotational convolution and pooling modules with feature map
back-rotation (RP_RF). For example, in model RP_RF_1, the first convolution of the
reference model is replaced by an RP_RF module.

Since ORNSs use filters that act on orientation-specific feature maps and only use a
rotational pooling after the last convolution layer, their models have approximately three
times as many learnable parameters as our models.

341 MNIST

Setup. To evaluate with respect to a large set of rotations, we expand the original
MNIST dataset by rotating each image from the training and test sets of MNIST 36 times
in steps of 10° and denote the resulting dataset by MNIST-rot36. Please note that it is not
the same dataset as mnist-rot proposed by [100], where each image is only rotated once
with a random rotation. Hence, the set-sizes of mnist-rot and MNIST-rot36 training and
test datasets are different.

Rotational invariance. The experiment of most interest is to train on the training set
of MNIST while evaluating on the test set of MNIST-rot36. For each architecture, we
trained with 5 different random initializations and training was performed for 30 epochs
using stochastic gradient descent with a base learning rate of 0.01, batch size of 256,
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Figure 3.4: MNIST training. Evolution of the mean test error on MNIST-rot36 on MNIST
for 5 randomly initialized runs. Only the model including feature map back-rotation and
rotational pooling in the first convolution layer (RP_RF_1) is able to learn a rotationally invariant
representation.

momentum of 0.9 and weight decay of 0.0005. The learning rate was multiplied by 0.1
after 20 epochs.

In Fig. 3.4, we visualize the evolution of the error on the MNIST-rot36 test dataset
when training on the unrotated MNIST training dataset. RP_1234, ORN, and RP_RF_1
models are compared to the reference model, as those are the ones with the smallest
error. All models come close to their lowest error after just a few epochs. While for
reference, ORN, and RC_1234 the error on the rotated dataset is almost stagnating
after around 10 epochs, the error for RP_RF_1 is slightly decreasing until the end of the
training. In general, RP_RF_1 clearly outperforms all other models already after the
second epoch.

The results for MNIST are summarized in Table 3.2. Our models, including feature
map back-rotation and rotational pooling in the first rotational convolution (RP_RF_1x),
are the only ones that are able to learn rotationally invariant representations in the sense
that they can predict the class of a rotated image correctly, although only trained on
upright images. By using the rotational convolution and pooling module with n, = 8 rota-
tions as the first feature extraction layer, we can reduce the error of the reference model
from 58.20% to 19.85%. In comparison, as shown in the previous section, models without
feature map back-rotation are only learning rotationally equivariant representations.
Therefore, without training on rotated data, the models cannot learn the equivariance
relation properly and show high error rates of 48.24% and 42.59% for the GCNN variant
RP_1234 and the ORN, respectively.

In order to see how far we can get, we also used another model RP_RF_1 MNIST
that does not contain a global pooling, nor a down-sized last feature map of size 1 x 1
that is fed into the classifier. The model uses significantly more parameters, especially
in the first fc-layer. A detailed description of the model can be found in Appendix A.
In combination with using n, = 32 number of rotations in the rotational convolution
module, the error can be reduced to 12.20%.
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Training on MNIST, evaluating on MNIST-rot36

min error min loss

model o o
test [%]  training RP_RF_1 MNIST
reference 58.20 0.019 -
n, min error [%]
RP_1234 [20] 48.24 0.021 test [%]
ORN (ORPooling) [213] 42,59 0.002 2
RP_RF_1 19.85 0.099 1 59.65
RP_RF_2 43.46 0'020 2 46.24
RP_RF_S 59.94 0.017 4 16.59
RP_RF_4 58.61 0.016 8 1411
- = ’ ’ 16 12.37
RP_RF_12 24.00 0.125
32 12.20
RP_RF_123 22.44 0.119
RP_RF_1234 23.71 0.124
RP_RF_1 MNIST n, = 32 12.20 0.026

Table 3.2: Results for MNIST. (Left) When training on unrotated, but evaluating on rotated
data, our models RP_RF_1x« clearly outperform all other models that do not use feature map
back-rotation or rotational pooling. The RP_RF-module is necessary in the first convolution.
(Right) A higher number of rotations within the rotational convolution and pooling module lowers
the minimal test error.

Influence of 1n,. We further evaluate the influence of the parameter for the number of
rotations n, for the best model RP_RF_1 MNIST. In order to reduce the training time,
we only train for 20 epochs in these experiments, and drop the learning rate already after
17 epochs. As the standard deviation of the error with respect to different initializations
is very low, we only use one repetition in this case.

The result is depicted in the right part of Table 3.2. Although, with an increasing
number of rotations 7,, the error can be monotonically reduced, the number of internal
calculations and the runtime is linearly increasing with #,.

Data augmentation. For reference, we also show results for models trained on MNIST-
rot36. As mentioned above, adding rotational invariance leads to a minor decrease in ac-
curacy. The results are displayed in Table 3.3. ORN outperforms RP_RF_1, reference
and RP_1234 but also has a lot higher number of learnable parameters. ORN also out-
performs reference_large, a usual CNN with the same number of parameters. All
models trained on the augmented data outperform the models only trained on upright
MNIST. This means that for cases where we can simulate the data transformations that
might occur in the test set, this possibility should be exploited.

3.4.2 CIFAR-10 and CIFAR-100

Setup. In the same manner as done for MNIST, we rotate CIFAR-10 and CIFAR-100 to
obtain the rotated versions CIFAR-10-rot36 and CIFAR-100-rot36, respectively. Several
post-processing steps are done to remove rotation artifacts as visualized and explained
in Fig. 3.5. The CNN architectures are similar to the architectures used on MNIST. On
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Train and evaluate on MNIST-rot36

model min error

test [%)]
reference 1.41
reference_large 1.34
RP_1234 [20] 1.44
ORN [213] 0.76
RP_RF_1 (ours) 3.51
RP_RF_1 MNIST (ours) 2.04

Table 3.3: Results for MNIST-rot36. When training on rotated and evaluating on rotated
data, the ORN model outperforms the other models. In general, adding rotational invariance
slightly decreases the accuracy when training on rotated data.

6
/. 4

(a) cat rotated 70° (b) ship, rotated 250° (c) ship, rotated 320° (d) dog, rotated 270°

Figure 3.5: CIFAR-10-rot36 example images. The object of the corresponding class is always
centered inside the image. In order to avoid boundary-artifacts when rotating, the images are
cropped by a circle with radius of half the image size. Note that we apply the same preprocessing
steps also to the unrotated training images. Additionally, at the boundary to the black background,
the cropped images are smoothed by a Gaussian with a kernel size of five pixels.

CIFAR, we always use 1, = 8 rotations for the rotational convolution modules, because
the trade-off between accuracy and additional computational effort was best for this case
on MNIST. Since the standard deviation of the minimal error for different initializations
was very low on MNIST, we only did one experiment per model on CIFAR.

CIFAR-10. As is shown in Table 3.4, using rotational convolutions and poolings clearly
improves the results compared to the reference model. The error on the CIFAR-10-rot36
test set can be reduced from 67.55% to 55.88% with our RP_RF_1 model using n, = 8
rotations. Analogously to MNIST, on CIFAR-10, the GCNN variant RP_1234 and the
ORN model are showing higher error-rates of 62.55% and 59.31% respectively.

CIFAR-100. Also for CIFAR-100-rot36, we significantly improve the accuracy on the test
set of the reference model from 16.35% to 22.94% by exchanging the first convolution
module with the proposed RP_RF module. But, in comparison to MNIST and CIFAR-10,
the relative improvement of RP_RF_1 to ORN and RP_1234 is only marginal (6% and
9%, respectively).

51



CHAPTER 3: RoTATIONAL INVARIANCE FOR CNNSs

Train on CIFAR, evaluate on CIFAR-rot36
CIFAR-10 CIFAR-100

model min error [%] min error [%]
reference 67.55 83.65
RP_1234 [20] 62.55 79.03
ORN [213] 59.31 78.36
RP_RF_1 (ours) 55.88 77.06

Table 3.4: Results for CIFAR-10 and CIFAR-100. All models are trained on unrotated, but
evaluated on rotated data. For CIFAR-10, the model RP_RF_1 reduces the error rate by 11.7, 6.7
and 3.4 percentage points compared to the reference, RP_1234 and ORN model, respectively.
For CIFAR-100, a similar behavior is observable, but the difference is less pronounced.

In general for CIFAR-10 and CIFAR-100, in line with MNIST, we obtain a substantial
improvement when feature maps are back-rotated. Nevertheless, the benefit of using the
rotational convolution and pooling module is less significant than for MNIST.

3.5 Conclusion

In this chapter, we presented the rotational convolution and pooling module, a general-
ization of the conventional convolution layer. By rotations of the convolution filters and
back-rotation of the corresponding feature maps, in combination with a pooling over the
different rotations, the module achieves approximate invariance to rotations of the input.
For the symmetry group of 90° rotations, exact invariance was derived.

Furthermore, we have shown that when we exchange the first, or the first few,
convolution layers in a CNN by rotational convolution and pooling modules with feature
back-rotation, it suffices to train the model on unrotated data to achieve good results
on the rotated test set. The resulting models are parameter and memory efficient.
Nevertheless, the error on the MNIST-rot36 test set could be reduced to 12.20%.

For the CIFAR-10-rot36 and CIFAR-100-rot36 datasets, the improvement was less
pronounced. This leaves room for further improvement on this rather difficult task.
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An Introduction to Object Detection

This part of the thesis is dedicated to a very helpful concept that is a fundamental part of
many computer vision algorithms: object detection. It can be defined as the simultaneous
localization and classification of objects within an image. To date, algorithms are restricted
to search for the presence of n. specific predefined categories of interest. In many
applications, n. = 1, i.e., only a single object is of interest. However, in comparison
to classification, due to the localization it is possible to distinguish every instance of a
category within the image — which makes it possible to count them.

As shown in Fig. 4.1, there are various ways to address the problem of detecting
objects. Many of the recent algorithms localize the objects by drawing an axis-aligned
bounding box around them. As these box detection methods are often the basis for more
advanced algorithms, we give an extensive introduction to them in Section 4.3. However,
there are also plenty of other ways to formalize the localization, such as using keypoints
or oriented bounding boxes (cf. Chapter 8). Therefore, it is often unclear where exactly
the border of object detection to other computer vision tasks is. In this thesis, we look
at methods that take 2D RGB or grayscale images as input. In comparison to matching
algorithms, e.g., shape-based matching [178, 179], the presented detection algorithms are
not restricted to rigid objects that are transformed by rigid transformations. Objects can
be deformable and the intra-class variations can be high.

Instance-aware semantic segmentation methods, where a pixel-precise mask is pre-
dicted for each object, are introduced in Section 4.4. The major difference of instance
segmentation to semantic segmentation is that a region is predicted for each instance
of the object. This allows to distinguish touching or overlapping objects and makes it
possible to count them like in the box detection approach. However, the pixel-precise
mask is often a much richer and more precise description of the objects location. Semantic
segmentation methods predict a category for each pixel within an image individually.
The context and the shape of objects is only learned indirectly by sharing features, which
have a large receptive field, in turn.

Keypoint detection, and in particular face detection or human pose detection, are
beyond the scope of this thesis. Although, the underlying algorithms are to some extent
similar.
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Figure 4.1: Different types of detection. For multi-class classification, each image is tagged
with the categories that are contained in the image. For box detection, a bounding box is drawn
around each object and the boxes are classified into one of 7, categories. In instance segmentation,
the bounding box is replaced by a pixel-precise mask for each object. In comparison, semantic
segmentation classifies each pixel into one of 1. + 1 classes (class 0 is background). This allows to
generate one region for each class, but touching or overlapping objects cannot be distinguished
(e.g., the pink region contains two pills). Keypoint detection predicts one or several keypoints
for each object (here, the center-point of each pill is visualized). In this work our focus is on box
detection and instance segmentation methods.

4.1 Detection Datasets and Challenges

To give the reader a sense what the object detection challenge typically looks like, we
start this part of the thesis with a short history of detection datasets and challenges in
the past 20 years. As we just want to give an impression how the field has changed
during the past years, we do not strive for completeness. Of course, with continuously
improving algorithms, the datasets and corresponding challenges that drive the progress
in object detection become more and more difficult. In Section 4.1.2, we introduce two
industrial datasets that are used for experiments within this thesis.

41.1 Benchmark Datasets

In earlier works, 1, is small and also the number of objects 7, that is present within an
image is small or only one. For example, in the Caltech-datasets [43, 196], images only
contain one or a few (1, < 10) instances of the object categories leave, cars (rear), cars
(side), human face, motorcycles, or airplanes, but no mixtures of categories are present. To
test the robustness of algorithms another dataset of background images was used. The
TUD cow dataset [109, 131] or the UIUC car dataset [2] are in similar style, but are more
difficult as the cows are articulated and the cars are appearing in different scales and with
occlusions. The methods that tried to solve these datasets were usually detectors for a
single category of interest. For example, a car detector was applied to the car dataset and
to the background dataset, but not to the motorcycles dataset, where a motorcycle detector
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Figure 4.2: Example images from UIUC cars. (Top) Car images, with the object centered and
without scale changes. (Bottom) Background images where no car is present to test the robustness
of the method. Images are in grayscale and have a low resolution of 100 x 40px.

Figure 4.3: Example images from VOC. In comparison to previous detection datasets, objects
appear with severe occlusions, in different scales and high intra-class variations. The number of
objects per image is varying a lot from single objects covering almost the whole image to multiple
tiny objects covering only a small portion of the image. Images also have very different aspect
ratios and resolutions. Ground truth annotations are indicated by colored boxes.

was applied instead. Therefore, the field was also termed object class recognition at that
time [43]. Some example images of UIUC cars are shown in Fig. 4.2.

Prominent datasets that paved the way for the evaluation of multi-class object detec-
tors are the different versions of the PASCAL Visual Object Classes Challenge (VOC), where
the more typical use case of 1 < n. < 100 is adressed. In 2005 VOC [39] started with a
collection of existing datasets for four categories: motorbike, bicycle, people, and cars. Eight
different tasks were formulated, four for classification, i.e., “does this image contain an
object of type x”, and the other four for object detection by an axis-aligned bounding
box. The four tasks differed in the training data, and the test set. The participants could
decide if they only use the provided training and validation data or if they use additional
training data from other sources. Moreover, one test set was more challenging with
objects appearing in different scales and with more objects per image, on average. To
lower the hurdle for contestants to participate, they were allowed to enter the challenge
only for a subset of the categories.

The VOC challenges! were refined over the following years by adding more categories
and collecting images with more variations from flickr? [40, 41]. From 2007, the dataset
contained objects of 20 categories and 4 supercategories: person (person), animal (bird, cat,
cow, dog, horse, sheep), vehicle (aeroplane, bicycle, boat, bus, car, motorbike, train), and indoor

IThe PASCAL Visual Object Classes Homepage. http://host.robots.ox.ac.uk/pascal/VoC/,
accessed 2021-02-07

Zhttps:/ /www.flickr.com/
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Figure 4.4: Example images from COCO. Images (top) and corresponding ground truth
instance mask and box annotations indicated by colored overlays (bottom). In comparison to
VOC, COCO has more images, more categories and more objects per image. The size of objects is
varying a lot and in many cases, objects can just be determined correctly given the context (e.g.,
the tennis racket in the hand of the tennis-player in the right image). Unfortunately the dataset is
not labeled consistently and masks are not always very accurate.

(bottle, chair, dining table, potted plant, sofa, tv/monitor). From 2007 to 2012, the train and
val splits have been increased from 4340 images with 10363 box annotations to 11 530
images with 27450 box annotations and 6929 pixel-precise mask annotations. Moreover,
additional annotations, such as a truncation or occlusion flag, or action classification
annotations have been added from year to year. Over time, segmentation and action
classification have been introduced as new tasks.

VOC also contributed by establishing the Average Precision (AP) evaluation measure
and the definition of true positives considering the intersection over union (IoU) (cf.
Section 4.2). Because the definition of the ground truth box was considered to be
"somewhat subjective, [...] for example for a highly non-convex object, e.g., a person with
arms and legs spread" [40, p. 314], the IoU threshold was set relatively low to 0.5.

In 2009, Deng et al. [28] published the large scale ImageNet dataset and the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [168] was held in conjunction with the
VOC challenges. The focus of ILSVRC was on image classification into one of 1000
different classes. With 1.2 million training images, 50K validation images and 100K
test images, a new order of magnitude in dataset size was reached. Moreover, in 2011,
a subset was labeled with bounding box annotations for over 350 000 instances and a
corresponding detection challenge was held as a taster competition [167]. Although in
most of the ImageNet images the object of interest is centered, Russakovsky et al. [167]
argue that a subset of the images have the same characteristics as the VOC images and
that a valuable contribution is given by the high number of classes to distinguish. In
particular, the dataset is the first to combine object detection with fine-grained recognition
in this scale. However, the ImageNet dataset is primarily known as a benchmark dataset
for classification and has not gained much popularity in the context of object detection.

In 2014, the next milestone in the development of object detection datasets was
reached with the introduction of the Microsoft Common Objects in Context (COCO) dataset
[118]. As the name already indicates, the hypothesis of the authors is that some —
especially small — objects like smartphones, can only be detected correctly if they are
seen in the context of other objects, e.g., persons holding them in their hands or close
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to their ears. Moreover, objects should occur in non-iconic views, i.e., not centered
in the image, but “in the background, partially occluded, or amid clutter - reflecting
the composition of actual everyday scenes”[118, p. 741]. Therefore, this challenging
dataset of natural images was collected with 2.5 million instances in 328 000 images from
91 categories.’ In addition to its large scale, another contribution that makes COCO
the preferred benchmark dataset to date, in particular for instance segmentation (c.f.
Section 4.4), is that every object is labeled with a pixel-precise segmentation mask. To
obtain this very large amount of annotated data, the authors propose a novel annotation
pipeline with heavy usage of Amazon Mechanical Turk* that allows to spread the labeling
effort to the crowd. Some example images are shown in Fig. 4.4.

Recently, Gupta et al. [62] relabeled the images of COCO with a large-scale vocabulary
of classes to obtain the LVIS dataset. In order to handle the more than 1000 categories
and allow a more precise and comprehensive labeling of the instance masks, the authors
propose a federated design of the dataset. This means that for each category c, there
exist two subsets of the whole dataset D, P, C D where instances of ¢ are exhaustively
annotated, and N, C D, where it is clear that N, is not present. During evaluation, each
category c is only evaluated on P, U N; and |P. U N.| < |D|. Since LVIS reuses the images
of COCO, some categories occur much more often than others. In particular, for a large
fraction of rare categories the number of instances within the training set is below 50.
Therefore, LVIS proposes a new challenge of large-scale few-shot detection.

ADE20K [211] is another natural images dataset with fewer images (25K), but much
more categories (2693) than COCO. It is worth mentioning that the whole dataset has
been labeled by a single annotator. In comparison to COCO, in ADE20K also stuff classes
like sky or wall, where instances cannot be distinguished, are annotated. Moreover, many
objects are labeled on a part basis. Because all annotations are given by a segmentation
mask and the class label, ADE20K is mainly used for instance segmentation and scene
understanding, but of course object detection can also be trained and evaluated on it.

But not all modern and challenging detection datasets have a large number of classes.
In many applications, such as counting of penguins [4], one is only interested in the
localization of one particular class n. = 1. Here, the difficulty is to handle the high
intra-class variations, to deal with severe occlusions and touching objects, and to be
robust to clutter in the background.

4.1.2 Industrial Detection Datasets

Today, industrial 2D object detection plays only a minor role in research. Industrial
images often give the impression that the task is rather easy as variations between the
images are often small. The objects, often parts of a product within the production
process, are lying on a conveyor belt or another background that can typically be kept
constant between different samples. Usually, the scenes are captured indoors and thus
the lighting is controlled. But the most important difference to everyday photography

3For the official COCO detection challenge, the number of categories had been reduced to 80.
4 Amazon Mechanical Turk, Inc., https://www.mturk . com/, accessed 2020-04-27.
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might be the following: the intra-class variations are negligible and mostly occur due to
reflections, perspective changes or deformations.

However, due to the high requirements for product quality, a method that “solves” a
research dataset such as VOC and has a reasonable runtime only starts to get interesting
for industrial purposes. In industry, constraints on the used methods are often measured
in parts per million (ppm), which means that a failure can only occur in a few of a million
applications of the algorithm.

Challenges of industrial detection datasets are often complementary to those of VOC,
COCO, or ADE20K. Methods need to deal with occluding and touching objects, and very
small inter-class variations, such as two types of screws that can only be distinguished
by their slightly different color. Moreover, the requirements for the classification and
localization accuracy are typically very high.

Another very important aspect is that methods should have a user centered design
(UCD), which involves having no or only a few parameters that need to be intuitive to
tune, and a low effort to apply the method on a new dataset. In particular, users want to
avoid the tedious and expensive task of labeling a lot of data, but prefer algorithms that
can be trained with only a few instances per class, termed few-shot learning.

In the following, we present two novel industrial datasets that show some, but not all
of the above mentioned characteristics. In particular, we will see that the datasets are
relatively small and do not have large variations between different images. Moreover,
the classes are balanced in the sense that the frequency of their occurrence is uniformly
distributed.

The datasets have been collected at MVTec as example datasets for the deep-learning-
based object detection feature released with HALCON 18.11 [141] (Pill Bags), and for the
deep-learning-based oriented object detection feature released with HALCON 19.05 [142]
(Screws). The development of these features and the design of the datasets was part of
the work that went into writing this thesis.

Pill Bags. The Pill Bags dataset contains 398 images of a textured background on which
a plastic bag with up to 10 different classes of pills are placed. All images are 8-bit three-
channel RGB color images. Examples are shown in Fig. 4.5. The categories are either
round or of approximately elliptic shape. They mainly differ in their texture, color, or
shape. Objects are frequently touching each other, but only rarely overlap. Annotations
for Pill Bags exist as pixel-precise masks for each pill, from which we can infer the
axis-aligned bounding boxes (AABBs) or oriented bounding boxes (OBBs) automatically.

Per-class examples and detailed statistics about the number of objects within the Pill
Bags dataset are given in Table 4.1. Each class is present in at least 74% of the images
and the relative number of instances for each category ranges from 8% to 13% in each
split, respectively. This also reflects the application that is addressed by the dataset: An
inspection system that controls whether each pill is present exactly once in each plastic
bag.
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Figure 4.5: Pill Bags example images. (Top) Objects are lying on a homogeneous textured
background and are inside a plastic bag. (Bottom) Ground truth annotations in AABB format.
Objects are frequently touching each other and sometimes overlap.

class  Magentabletten Omega-3 KMW Ginseng Ginko all

D.II

Number of objects per class and split (abs/rel[%])

train 278 / 10 280 / 10 295 /10 303 / 11 274 /10 2826
val 65/ 10 62 /10 52/ 8 67 /11 61/10 622
test 66 / 11 60 / 10 62 /10 65 /11 54/ 9 600

total 409 / 10 402 / 10 409 /10 435 /11 389 /10 4048

Number of images, in which each class is contained, per split (abs/rel[%])

train 238 / 86 229 / 82 235 /85  251/90 234 /84 278
val 56 / 92 50 / 82 48 / 79 56 / 92 52 /85 61
test 50 / 85 49 / 83 53 /90 53 /90 48 / 81 59

total 344 / 86 328 / 82 336 /84 360 /90 334 /84 398

class Cognivia  Glukosamin  Eisentabletten  Vitamin-B ~ Capsularum I all

Number of objects per class and split (abs/rel[%])

train 312 / 11 276 / 10 275 / 10 230/ 8 303 /11 2826
val 60 / 10 62 /10 79 / 13 49/ 8 65 /10 622
test 68 / 11 67 /11 60 / 10 48/ 8 50/ 8 600

total 440 / 11 405 / 10 414 / 10 327/ 8 418 / 10 4048

Number of images, in which each class is contained, per split (abs/rel[%])

train 246 / 88 226 / 81 225 / 81 207 / 74 239 / 86 278
val 51/ 84 50 / 82 58 / 95 44 / 72 51/ 84 61
test 52 / 88 54 /92 46 / 78 44 /75 47 / 80 59

total 349 / 88 330 / 83 329 / 83 295 / 74 337 / 85 398

Table 4.1: Pill Bags statistics. For each class, an example object and the absolute and relative
number of instances is shown, in total and per split, respectively. Moreover, the number of images
in which at least one object of the class is shown, also for each class and split.
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class  type 01  type_02  type 03  type 04  type_05  type 06  type 07 all

1 11 .

Number of objects per class and split (abs/rel[%])

train 219/ 7 219/ 7 221/ 7 219/ 7 270/ 9 270/ 9 252/ 8 3119
val 47/ 7 47/ 7 47/ 7 46/ 7 60/ 9 59/ 9 58/ 9 647
test 47/ 7 48/ 7 49/ 7 48/ 7 61/ 9 60/ 9 55/ 8 660

total 313/ 7 314/ 317/ 7 313/ 7 391/ 9 389/ 9 365/ 8 4426

Number of images, in which each class is contained, per split (abs/rel[%])

train 158 /59 158 /59 158 /59 158 /59 183 /68 183 /68 174/65 269
val 34/62 34/62 34/62 34/62 38/69 38/69 37/67 55
test 33/55 34/57 34/57 34/57 40/67 40/67 37 /62 60

total 225 /59 226 /59 226/59 226/59 261/68 261/68 248 /65 384

class  type_08  type_09  type 10  type 11  type_12  type_13 all

1 ® i 3

Number of objects per class and split (abs/rel[%])

train 254/ 8 232/ 7 249/ 8 249/ 8 232/ 7 233/ 7 3119
val 59/ 9 44/ 7 46/ 7 46/ 7 44/ 7 44/ 7 647
test 55/ 8 45/ 7 51/ 8 51/ 8 45/ 7 45/ 7 660
total 368 / 8 321/ 7 346/ 8 346/ 8 321/ 7 322/ 7 4426
Number of images, in which each class is contained, per split (abs/rel[%])
train 175 /65 159 /59 168 /62 168 /62 160 /59 160 /59 269
val 37/67 34/62 35/64 35/64 34/62 34/62 55
test 37/62 33/55 36/60 36/60 33/55 33/55 60
total 249 /65 226 /59 239 /62 239 /62 227/59 227 /59 384

Table 4.2: Screws statistics. For each class, an example object and the absolute and relative
number of instances is shown, in total and per split, respectively. Moreover, the number of images
in which at least one object of the class is shown, also for each class and split.

Screws. The screws dataset contains 384 images of a varying wooden background on
which 13 different types of screws and nuts are placed. All images are 8-bit three-channel
RGB color images. Examples are shown in Fig. 4.6. The categories differ in length and
width of the screw or the diameter of the nut, in the color of the metal, and in the shape
of the screw’s head, tip, or thread. Objects might be touching or overlapping each other
and the number of objects within an image varies.

Screws was specifically acquired to evaluate oriented object detection methods (cf.
Chapter 8). Therefore, the annotations are given as OBBs. For elongated screw classes,
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Figure 4.6: Screws example images. (Top) Objects are lying on a wooden background.
Instances can be isolated but are also frequently overlapping or touching each other.
(Bottom) The ground truth for Screws is given as OBBs.

the orientation is defined from the screw’s head to its tail, parallel to the thread. The
nut categories are symmetric. Thus, they have been labeled with AABBs to make their
orientation unambiguous. In comparison to Pill Bags, the dataset is not labeled with
pixel-wise mask annotations. Exemplary annotations are shown in Fig. 4.6.

Per class examples and detailed statistics about the number of objects within the
Screws dataset are given in Table 4.2. Overall, the dataset is very balanced: each class is
contained in approximately 60% to 70% of the images, and the total number of objects
per class is uniformly distributed, as well. At least 44 instances are present for each class
in the validation and test sets, such that a valid evaluation is possible.

4.2 Evaluation Metrics

In comparison to classification, where the predicted class can either be right or wrong, for
detection we get a new dimension of the evaluation with respect to the localization. To
measure how well a prediction A fits a ground truth box B, we measure the intersection
over union (IoU), i.e., the area of the intersection divided by the area of the union as
depicted in Fig. 4.7:

IoU (.,.) = |AN B

Figure 4.7: IoU. Intersection over union.
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For a prediction, the localization is correct if the IoU with a ground truth box is higher
than a threshold Tj,y. Depending on the necessary precision, Tj,y can be chosen higher
or lower.

To be a true positive (ITP), the prediction needs to have a correct localization and also
the correct class, i.e., the same as the ground truth box that it overlaps (the most).

Using this definition, there are a number of different false positive (FP) cases, as
depicted in Fig. 4.8. For example, there should be no other correct prediction that overlaps
more, since in this case the prediction is a duplicate FP. Most of the duplicate FP cases
can usually be filtered out using a non-maximum suppression algorithm. However, this
requires that the score of the box is reliable in the sense that a box with better localization
also obtains a higher score.

Note that except for the duplicate or the wrong class case, an FP prediction usually
leads to a false negative (FNN) GT instance.

For object detection, the case of a true negative (TN) would be background, i.e., no
object recognized as no object. Since background parts of the image are all parts where
no object is detected, this case is not explicitly present in the evaluation.

If we denote G as the set of all GT boxes, FN the set of FN boxes, P the set of all
predictions, 7P the set of all TP predictions, and FP the set of all FP predictions, we
have the following well-known relations:

TP TP
G| |TP|+|FN|

| TP| | TP

Recall = — .
P TP+ |FP|

Precision =

(4.2)

Mean Average Precision. To compare different detection methods on a dataset, the
authors of VOC [39] established the mean average precision (mAP) that summarizes the
detector quality in a single measure. Therefore, first, the average precision (AP) for each
category is calculated as the area under the interpolated precision-recall (PR) curve for
a given IoU threshold. The mAP is then the mean over the per-class AP values. For
convenience, we use the frequently used notation in the literature and write AP instead
mAP also for the class-averaged AP.

While on VOC only the IoU threshold of 0.5 is used to account for inaccurate anno-
tations, the predominant measure on COCO averages the area over 10 IoU thresholds
[0.5 : 0.05 : 0.95] in order to give more weight to accurate localizations.” If multiple
IoU thresholds are used, the AP is the average over the per-IoU threshold values. A
value at a specific threshold, e.g., 0.5, is indicated as AP@0.5, or AP5y. Moreover, we
show AP values as percentage numbers and sometimes neglect the %-sign within this
thesis, for convenience. If we mention an "X% AP" improvement, we usually refer to
an improvement by X pp. Only if we write about a "relative” improvement, we actually
mean the relative improvement in percent.

To obtain the PR curve for a given class, all predictions for that class are first sorted

5 Although this is the current standard measure in the research community, we doubt that the annotations
of COCO are accurate and consistent enough to justify the evaluation with IoU thresholds above 0.85. This
is further addressed in Chapter 6.
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Figure 4.8: Cases for true and false positives. (Left) A TP occurs when the correct class is
predicted and the IoU to the GT is high enough. (Right, from left to right, top to bottom) Different
failure cases: B is a FP if the class is wrong (cls), the class is correct, but the IoU is too low
(localization), or zero (background), the class is wrong and the localization is bad (multiple), or if
there is another correct prediction that achieves a higher IoU (duplicate).

decreasingly by their score or confidence. A set of used predictions is initialized as empty
set. Then, one-by-one the next highest scoring prediction is added to the used predictions
and a new precision-recall pair (at the given IoU threshold) is calculated from the used
predictions. Whenever a TP prediction is added, the recall increases and the precision
increases (if it is not already 1.0); if a false positive is added the recall stays the same, but
the precision decreases.

In the COCO evaluation protocol, the PR curve is interpolated as follows: For every

calculated precision value p;,j = 1,...,n4, where n, is the number of detections, the
interpolated precision is given by

pj = maxpi. (4.3)

To approximate the area under the curve, the interpolated precision is evaluated and
averaged at 101 (VOC: 11) equidistant recall values from 0.0 to 1.0.

Some examplary PR curves are shown in Fig. 4.9.
Today, COCO AP is the predominant measure for object detection and instance
segmentation within the community. We will mostly use AP for model comparisons

within this thesis, because this allows a comparison with other methods and benchmarks.
Moreover, we will propose a refinement of AP in Chapter 6.

63



CHAPTER 4: AN INTRODUCTION TO OBJECT DETECTION

100 rERIETE ‘ ; S

Redalls Recalls
U000 0.20 0.40 0.60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

Figure 4.9: Exemplary PR curves. PR curves are shown for two different IoU thresholds, (red)
without, and (blue) with interpolation. (Left) Evaluation with IoU threshold 0.75, (right) evaluation
with IoU threshold 0.85. The figure shows that a slightly increased IoU threshold can have a
large impact on the result. For better visibility of the differences, the non-interpolated PR curve is
shown linearly instead of as a left-continuous step function.

4.3 Box Detection Methods

Object detection models generally follow the workflow depicted in Fig. 4.10:
1. From the input image, features are extracted.

2. From the input image, region proposals, i.e., regions where objects might be located,
are extracted. Usually, the extracted features from the previous step are used as
input for this task. Typically, this step is configured to favor recall over precision,
such that at least one proposal is present for each object within the image. Regions
are typically given as boxes because this is the desired output.

3. Region proposals are classified into one of the possible categories or assigned to
the background (discarded). The extracted features (usually around/within the
region proposal) are used as input to the classifier.

4. The (usually coarse) region proposals are refined by a box regression. Therefore,
the difference between the proposal and the corresponding ground truth box
parameters are the targets of a regression during training. Hence, during inference
this module predicts individual parameter adaptions (deltas) to improve the box
accuracy. Also here, the extracted features (around/within the region proposal)
are input to the regression. The box regression can be done individually for each
predicted class (class-specific) or independent of the class (class-agnostic).

5. The regressed boxes are deduplicated by a non-maximum suppression (NMS) to
obtain the final result. As for the box regression, the non-maximum suppression
can be done class-specifically or class-agnostically.
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extract features classify objects .

image v v b apply NMS result
extract region

proposals regress boxes

Figure 4.10: General detection workflow. Up to small variations, most detection methods
follow the workflow shown here. Dashed connections indicate optional requirements. See text for
a detailed explanation.

We will describe each of the different steps in more detail, especially those for which
we propose changes in one of the subsequent chapters. Often, the differences between
the proposed methods only lie in one step of the workflow.

As with many computer vision fields, object detection algorithms have made a
massive progress at the beginning of the last decade, when deep CNNSs, such as Alexnet
[95], ZF net [206], and later Inception [183] and ResNet [68] have revolutionized the way
of feature extraction in images. Today, all state-of-the-art object detection methods rely
on deep features, but some of the pre-deep-learning age algorithms have led to very
impressive results at the time they were published. Also some concepts of that time
still remain until today and therefore it is worthwhile to have a brief overview of earlier
methods.

4.3.1 Classic Methods

The two methods we present here are just representatives of a number of early object
detection methods. They have in common that they follow a sliding window approach.
That means that a kind of filter is slid densely across the image or across one or several
feature maps that are calculated from the image in step one. The filter is supposed to
fire, i.e., produce a high activation, whenever an object is present and should have a low
answer to the input values when this is not the case. This dense sliding of the filter over
the image can be seen as step two of the general workflow presented above in the sense
that an object is proposed at every pixel of the feature map where the filter is centered.
Thresholding the filter activation leads to a classification into object and not object, i.e.,
workflow step three. We will see later that modern deep-learning-based methods are still
similar to such a sliding window approach, at least to some extent.

Histogram of oriented gradients. Similar to the SIFT keypoint descriptor [128], the
histogram of oriented gradients for person detection (HOG) approach [27] is based on
the gradient image. The image is therefor divided into small spatial regions where the
orientation of the image gradient directions are accumulated into a one-dimensional
histogram. Each such cell is then contrast-normalized over a block of neighboring cells.
The idea of the HOG detector is to learn the weights of a filter that can be applied to the
HOG feature map and should return a high response whenever the object is present and
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person

Figure 4.11: HOG and DPM models. (Left) The weighted filter response of the HOG person
detector. (Right) The learned two component DPM model trained on VOC, for a sitting (top)
and standing person (bottom). (From left to right) The root filter, the part filters, and the spatial
model which indicates the costs for variations of part filter locations with respect to the root filter.
Images are taken from [27] and [42], respectively.

a low response when not. The filter is of size 64 x 128 in width and height and can be
applied to different levels of an image pyramid to address scale-changes.

To train the filter weights for person detection, a linear SVM is used. The input
features are the accumulated HOG-features over the detection window. Cropped person
images are used as positive examples, while randomly sampled crops from person-free
images are used as negative set. Moreover, false positives from a preliminary detector
within the person-free images are used as hard negative examples.

During inference, the filter is slid over the entire HOG-feature map, at all levels
of the image pyramid to create weighted filter responses as shown in the left part of
Fig. 4.11. The neighboring pixels within a low resolution pyramid level correspond to
center locations with a higher stride in the input image. That means that large objects
should be found in low-resolution feature maps, while small objects are supposed to
be found in high-resolution feature maps. The HOG feature map calculation can be
attributed to the first feature extraction step of the general workflow. The obtained
score is thresholded to get the detections. Non-maximum suppression (cf. Subsection
4.3.2) is used to avoid duplicate detections. A box regression step is not done in the
HOG-approach.

Deformable Parts Model. Variants of the discriminatively trained deformable parts model
(DPM) [42] were the best performing models on VOC just before deep learning was used
for object detection.

Similar to the HOG detection approach [27] from the previous paragraph, filters are
applied within the HOG feature space. The features are computed efficiently by reducing
their dimensionality with a principal component analysis. Also here, first, features are
extracted from the input image and the filters are slid over the feature maps to obtain
a score map. This means that in the beginning, the hypothesis for each pixel location

66



4.3 Box DETECTION METHODS

is that there might be an object at the corresponding position of the input image. The
DPM model for one particular class and view consists of one root and several part filters.
High scores of the root filter indicate a high probability that the object is present at this
location and the hypothesis is true. In the same manner, the part filters are slid over
a feature map at twice the resolution to obtain hypotheses for detailed part locations
and strengthen or weaken the root filter hypothesis. A spatial model that indicates the
variability of part-locations with respect to the root filter location is used to calculate the
total score of the root filter location from the root score and the weighted part scores. A
model for one class can consist of several components, e.g., one for the front and one for
the side view of an object. The components are handled independently and could also be
seen as individual objects.

The root and part filters are learned during a training phase. They are instantiated
using the ground truth boxes of each class. The ground truth boxes of each class are
therefore sorted by their aspect ratio. One component is created for each group of aspect
ratios. Moreover, an image pyramid is used to assign different models to different scales,
depending on their size. During training a hypothesis is considered as a positive example
if the IoU between the root filter and a ground truth box of this class is above 0.5. All
other locations are considered as negative examples for this component. Training is
done with a coordinate descent approach, where iteratively the highest scoring positive
examples are chosen and for them the model, i.e., root filter, part filters, and spatial
model, is updated. An example for class person is shown in the right part of Fig. 4.11.

Models for the individual categories are initialized and trained separately. That means
that each category is only trained for the decision, yes, this category is present, or no, the
category is not present. This is in contrast to modern deep-learning-based approaches,
where the categories are trained all together such that the model can explicitly learn the
features that distinguish one class from another. However, the authors propose to rescore
the results of each proposed detection by a separate SVM classifier that takes as features
the (normalized) detection score and box location as well as the highest scores from all
other category classifiers within the image. Moreover, the DPM uses a linear regression to
infer the bounding box from the model filter parts. Input to the bounding box regression
are the root filter size and location in the input image as well as the location of all part
filters.

A detailed explanation of DPM goes beyond the scope of this work. However, the
interested reader is encouraged to read the paper and discover how many rules and
human-intuitions are involved in the DPM. Compared to deep learning approaches the
parameters of the model are comparably low, but the complexity of the model architecture
is a lot higher and a lot more difficult to understand.

4.3.2 Non-Maximum Suppression

Per se, most object detection methods are predicting multiple results for one ground
truth object. For example, consider the above mentioned classic methods. They are both
using a sliding window approach with highly overlapping detection windows (i.e., a
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small stride). Therefore, it is likely that also the neighboring windows of the best possible
location indicate a detection.

The idea of non-maximum suppression (NMS) is to suppress such suboptimal detec-
tions and only keep the best possible result. The underlying assumption is that the best
prediction also obtains the highest score.

The non-maximum suppression works greedily: A list of already checked detections
is initialized as the empty list C = @ and all predicted detections are added to the list of
remaining detections R. Then, iteratively until R = @, the detection with highest score
H is taken from R and added to C. With a user-defined threshold Tys, for all other
detections B € R, if IoU(B, H) > Tyums, we update R = R \ {B} (discard B).

Fast NMS. For close-packed objects, consider three objects diagonally aligned in a row,
where for three predictions A, B, and C, A significantly overlaps B and B significantly
overlaps C, but A does not ovlerap C (significantly). With the above notation, IoU(A, B) >
Tyms and IoU(B,C) > Tnus, but IoU(A,C) < Tyums. In the case that we have for the
score of A, S(A): S(A) > S(B) > S(C), the normal NMS does not discard C because B is
already discarded before it is chosen as the highest scoring detection. This is fine and
exactly what the NMS is supposed to do. However, although such cases are rare in most
datasets they prohibit a more efficient fast NMS: Suppose we have sorted all detections
descendingly by their score into a list L = (Hy, Ha, ..., H,). The normal NMS is called
sequentially, first checking all IoUs of H; with H;,i > 1, before eventually continuing
with H; to check the IoUs of H, with Hj,j > 3, and so on. Instead, if the situation
from above is not to be expected, the IoU checks for H;,i = 1,...,n — 1 can be done
simultaneously. This also has been proposed in [9], where they found that for real-time
detection methods the classic NMS with its quadratic cost can be a bottleneck concerning
the overall runtime.

4.3.3 Bounding Box Regression

An axis-aligned box can be parameterized by its row and column center coordinates
(r,¢)7,% and the box width and height (h,w)”. Generally, a proposal P = (r,, ¢y, hp, wy)"
that was classified as one of the object categories does not match the underlying ground
truth box G = (rg, Cq, hg, wg)T. The idea of bounding box regression is to improve P
by transforming it with a function d(P) such that the final detection D := d(P) better
matches the coordinates of G. Hence, d is an approximation of the real but unknown
mapping d(P) that converts each proposal to the assigned ground truth.

Obviously, a promising approach to get a good approximation d of the transformation
d is machine learning. Hence, we model the box regression as a function d that has
learnable weights 6, and takes some inputs x to predict D = d(x(P), 8y, P). x depends
on P in the sense that usually the input features x are chosen depending on P.

®In some implementations, the coordinates of the top-left corner of the box are used instead of the box
center coordinates.
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Girshick et al. [58] propose to model d such that

Gy = Dy = d,(P) = hpAr(x(P)) + 1»,
Ge = De = (P)—pr( (P)) + e,
Gy = Dy = dy(P) = hpexp(Ay(x(P))),
Gy =D :Jw(p) = wp exp(Ay(x(P))). (4.4)

The function d can be trained by a least-squares linear regression for (A,(x(P)),
Ac(x(P)), Ap(x(P)), Aw(x(P)))T. From (4.4), for a pair of proposal P and assigned
ground truth G, the targets (t,, tc, ty, tw)! for (A, (x(P)), Ac(x(P)), Ap(x(P)), Ayw(x(P)))T
are inferred as

rg—t
t, = GTPP'
f, =GP
wp
th = log(hc/hp),
tw = log(wg/wp). 4.5)

To avoid large regression targets, only proposals that satisfy IoU(P,G) > Ty are
used to train d. Ti,y is often set to 0.5. Cai and Vasconcelos [14] propose an iterative box
refinement trained with increasing thresholds Tj,y to improve the box quality. Depending
on what is considered as input features of the functions A, for x € {r,c,h,w} are
sometimes the identity, several layers of a CNN, or a linear function W,x. Independent of
the exact form of A,, a box regression loss Ly, is formulated and summed over each pair
of (overlapping) proposals and ground truth boxes By, = {(P, G)|IoU(P,G) > Tiou }:

Lhox(Bbox) = Z Lbox(X(P),P, G) = Z Z Lbox (t* - d*(X(P))) . (46)
(P'G)eBhox (P/G)EBbux *e{r,c,h,w}

In recent models, Ly, is usually chosen as a Huber loss [80] which in the context of
detection was first proposed in [57] (named Smooth L1 loss with 8 set to 1):

4.7)
Bly| —0.58% , otherwise.

2 .

Lbox(]/) = {O‘Sy /’B ' i |y| = ﬁ

As mentioned before, the box regression can be done for each class independently
(class-specific) or independent of the class (class-agnostic). The benefit of a class-specific
box regression is that specific features can be learned that better characterize the object
boundaries. This bears the potential of more accurate results. On the other hand, depend-
ing on the exact architecture, with a high number of classes the memory consumption
and runtime can be increasing a lot compared to a class-agnostic box regression setup. Of
course, in the class-specific case during training only proposals that fulfill both the IoU
threshold criterium and have the same predicted class as the underlying ground truth
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box are considered. Because the batch size is often rather small for detection models
(< 16), especially for rare categories a class-specific box regression can lead to very sparse
training signals: a loss and gradients for the part of the model that predicts the box deltas
for a specific class is only computed if this class is present within the batch and at least
one proposal surpasses the IoU threshold Tj,y.

4.3.4 Deep-Learning-Based Object Detection

In comparison to the presented classic methods, the first step that was based on deep
learning was the feature extraction part. Subsequently, with the progress in detection that
has been made during the past years, methods also made use of deep CNNs to model
some of the other steps within the general workflow. However, some parts, such as the
NMS or the box-regression are still very similar to the DPM.

R-CNN

Shortly after Krizhevsky et al. [95] achieved a breakthrough for classification in ILSVRC
with AlexNet in 2012, Girshick et al. [58] "bridged the gap from image classification to object
detection” with deep CNNs and obtained the same relative progress on VOC (from 33%
to 54% APsp). In comparison to previous methods, in the regions with CNN features
(R-CNN) approach the hand-crafted feature extraction part was exchanged by CNN-
based deep features. The pipeline of R-CNN is as follows: First, around 2000 so-called
region proposals are obtained by Selective Search [190] or any other method to generate
category-independent boxes at positions where objects are likely (e.g., [3, 15, 18, 36, 216]).
Second, each proposed box is used to crop the corresponding part out of the input image
and warp it to a fixed input size of the CNN that is used for feature extraction. With
fixed input size (e.g., 227 x 227 for AlexNet), also the obtained feature size is of fixed
length. These features are then fed into 1. independent SVMs that have been trained
to classify the box into one of the 1, possible classes of interest. Moreover, MLPs are
used to regress the region proposal box parameters to better fit the underlying object.
The box refinement is the same as in the DPM explained in more detail in the following
Subsection 4.3.3.

This means that in R-CNN, the first and the second step of the general workflow
(cf. Fig. 4.10) are interchanged. Moreover, the region proposal method, as a stand-alone
part of the algorithm, relies on features that are independent of the object classification
and box refinement. In comparison, the box refinement and classification SVMs use the
same features that are generated by the CNN. However, all trainable steps, i.e., feature
extraction, classification SVMs and box-regression SVMs are trained individually in a
stage-wise manner. In particular, the feature extraction CNN is even trained on a separate,
large-scale image classification dataset, such as ImageNet [28].
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input  backbone  feature maps with scaled Rols Rol pooled features output branches

Figure 4.12: Fast R-CNN pipeline with Rol pooling. (From left to right) The whole input
image is fed into a CNN to extract features. During Rol pooling, proposal boxes are scaled with
respect to the feature map spatial dimension and a grid is overlayed to each channel of the feature
map. For each proposal, and each bin of the grid a channel-wise max-pooling is performed to
obtain a fixed feature-length for each proposal. The output batch-size of the Rol pooling operation
is the number of proposals times the input batch-size. Fc layers are attached to use the Rol-pooled
features for classification and box regression. Feature maps are zoomed for better visibility.

Fast R-CNN

The results of R-CNN have improved previous baselines on benchmark datasets like VOC
significantly. However, the method is far from being real-time capable. During inference,
the region proposal method generates between 300 and 2000 proposal boxes, and each
of them is used to crop and warp a part of the image that is subsequently fed as input
to the CNN for feature extraction. After features have been extracted, they are used as
input for the classifier and for the class-specific bounding box prediction, that are both
also done sequentially proposal after proposal. At the time of publication, for inference
the whole detection pipeline of R-CNN took 47s per image on a GPU.

Rol pooling. The main idea of Fast R-CNN [57] to improve the runtime is to parallelize
the feature extraction, proposal classification, and box regression over all proposals within
one image. Therefore, the core contribution of the approach is a region of interest (Rol)
pooling. Rol pooling allows to process the whole input image with the feature extraction
CNN (backbone), independent of the individual instantiations of region proposals. For
classification and bounding box regression, two individual branches are attached to the
backbone via the Rol pooling layer and two subsequent fc-layers. The Rol pooling layer
pools the features of the backbone for each proposal (in parallel), as follows:

* Proposals are scaled to the last convolutional feature map before the (classification)
fc-layers, by multiplying their parameters (7, c, h, w) with the factor h i /h (where h f
is the height of the feature map and ’ the height of the input image).

* A grid with size k X k and depth dy is placed at each of the rescaled proposals
within the feature map.

* A max-pooling is done within each of the grid bins to obtain the pooled features
for each proposal. Thus, independent of the box proposal dimensions, a feature
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Figure 4.13: Rol pooling types. (Left) Subpixel-precise bins that are used in Rol Align. Within
each bin, four (two in horizontal and vertical direction) equally spaced sampling points are
distributed for which the features are bilinearly interpolated. Max- or average-pooling is done
based on the sampled features. (Middle) One option for normal Rol pooling is to quantize the
bin boundaries such that they match with the pixel-grid. (Right) Another option is to aim for
equally-sized bins but still use rounding for the bin boundaries, which typically leads to widely
overlapping bins.

map with fixed dimensions is obtained for further processing. The batch size of the
Rol pooling output feature map is n,b, where n, is the number of proposals within
the current image and b is the batch size.

Backpropagation for a Rol pooling layer is done as for a normal max-pooling layer:
for each Rol bin, the gradient of the output is propagated to the position where the
maximum value was present during the forward pass. The input gradient is the sum
over all propagated gradients of each Rol and all Rol bins.

The Fast R-CNN pipeline without the proposal generation is visualized in Fig. 4.12.
For classification and box regression of each proposal, two fc layers are connected to
the Rol pooling output and from there, two individual fc layers are attached, one for
classification with n. outputs and one for box regression with 4n, outputs in the class-
specific case. These last two branches can be seen as MLPs with two shared hidden
layers. The training of the model is done with a multi-task loss that adds the gradients
with respect to the class and box losses. Since the backpropagation for the Rol pooling
operation is no problem, the feature extraction CNN can be finetuned together with the
class and box branches.

The authors state that Fast R-CNN is up to 213 times faster during inference and 9
times faster during training than R-CNN (without the proposal extraction).

Rol Align. In the recent Mask R-CNN paper [70], the Rol pooling operation is enhanced
to the Rol Align operation. A problem of Rol pooling is that the proposal boxes are
given with subpixel-precise coordinates, but the Rol pooling operation requires pixel-
precise bins. Therefore, as shown in the middle and right of Fig. 4.13, the bins have to
be quantized to fit to the pixel grid. The approach in the middle has non-overlapping
bins, but largely different bin sizes that vary with the position of the proposal box.
The approach on the right has less variations in the bin size, but, especially for small
proposals, widely overlapping bins.

In comparison, in Rol Align, the bins are constructed with subpixel-precise boundaries
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a) RPN fg
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Figure 4.14: FRCNN workflow. See text for a detailed explanation. (Top-middle) Anchors
are classified at each position of a feature map, leading to densely distributed and overlapping
proposals across the whole image, here only visualized for one of the six indicated anchors.

and for each bin, four equally spaced sampling points, two in horizontal and two in
vertical direction, are distributed. The features for the sampling points are calculated
with bilinear interpolation and the max- or average-pooling operation is done based on
the sampling point features.

Faster R-CNN

The next important step towards an end-to-end trainable model was to incorporate the
proposal generation into the CNN. This step was done in Faster R-CNN [159]. The
benefit of replacing the proposal generation part lies not only within the end-to-end
trainable network, but also within another significant reduction in runtime: With the
introduced region proposal network (RPN), the proposal generation runtime is reduced
from 2 s to approximately 10 ms, resulting in a total runtime (depending on the backbone)
of approximately 100 ms/image.

With some modifications, Faster R-CNN (FRCNN) is still one of the most successful
detection architectures today. We will explain the main concepts in more detail because

they reappear during this thesis.

Anchor boxes and region proposal network. The main novelty of FRCNN is to incor-
porate the generation of region proposals directly into the CNN via a RPN. Therefore, box
templates of various scales and aspect ratios, so-called anchor boxes, are proposed densely
across the image. To judge whether a proposal covers an object or not, a mini-network
is attached to the features of the last convolution layer of the backbone CNN: First, a
convolution layer with kernel size n x n = 3 x 3, stride 1, and depth 256 is attached to
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the feature map to obtain intermediate features. Each position in the intermediate feature
map corresponds to a set of anchor boxes at that position within the input image. The
stride of the anchors, i.e., the distance between two neighboring anchors, depends on
the spatial dimension of the feature map compared to the input image dimension. For
example, in ZF-net [206], a stride of one in the intermediate feature map corresponds
to a stride of 16 in the input image. Second, from the intermediate features two 1 x 1
convolutions are branching off, one for anchor classification into foreground and back-
ground (fg/bg), and one for anchor regression (reg). Hence, if k is the number of anchors,
the number of filters is 2k and 4k for the fg/bg and reg branches, respectively. Using a
sigmoid activation instead of a softmax function for the fg/bg classification, the number
of filters can be reduced to k.

In the original paper, for input images with the shorter size rescaled to 600, the number
of anchors at each feature map position is set to nine: three scales (1282,2562,512%) and
three aspect ratios (0.5,1.0,2.0). If the input feature map of the RPN has a dimension of
37 x 50, this corresponds to a total number of anchors of 16 650.

An examplary workflow of FRCNN is shown in Fig. 4.14: From an input image
(1), first each anchor at each position of the image/feature map is classified to get the
foreground proposals (1a RPN fg). Second, the proposals are regressed (1b) and undergo
a first, class-agnostic NMS (1c) to obtain the final proposals as the RPN output (2).
Each proposal is then classified into one of the categories (or background) (2a), a second,
optionally class-specific, box regression (2b) is done and a second NMS is done (2c) to
obtain the final detections (3).

Anchor and proposal assignment. During training, the RPN with its fg/bg and box
branches needs targets to learn which proposals should be assigned to the foreground
or the background and to calculate the regression targets. In the same manner, for each
proposal, a class and final box regression target has to be determined.

The concept for both assignments is the same: In principle, anchors that have a
large overlap with a GT box should be assigned to this box, and hence be assigned
to the foreground (or the respective class of the GT box). Accordingly, anchors, that
do not have a large overlap with any GT box should be assigned to the background.
Therefore, the first step of the anchor assignment is to measure the IoU of each anchor
with each GT box. Then, all anchors that have an IoU > FgPosThresh are assigned
to the foreground. To avoid confusions for anchors for which the IoU is close to this
threshold, usually only anchors with an IoU in between [BgLowThresh, BgHighThresh],
where BgHighThresh < FgPosThresh, are assigned to the background.

During training, only those anchors or proposals that are assigned to the foreground
contribute to the box regression loss. The box regression predictions of all other anchors
or proposals are ignored.

The detailed decision rules for the anchor or proposal assignment are shown in
Fig. 4.15 (for the case of anchors). In particular, to avoid that no anchor is assigned to
a suboptimal GT box, it is always checked that there is no other GT box for which the
anchor achieves a higher IoU.
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Figure 4.15: Anchor assignment rules. The assignment of anchors to GT boxes is more
difficult than it looks at first sight. The default parameters of thresholds are indicated on the left.
If SetWeakBoxesToBg is set to false, also GT boxes with rare shape have a higher chance to get at
least one assigned anchor.

In the original anchor assignment, the parameter SetWeakBoxesToBg is set to true.
However, we noticed that especially for datasets where rare GT box shapes occur that
have a low IoU with all anchors, it happens that none of the anchors is assigned to these
GT boxes. Setting SetWeakBoxesToBg to false, the anchor P that achieves the highest IoU
is assigned to the GT box G, if IoU(P, G) > BgLowThresh.

During training, a majority of these proposals is assigned to be classified to the
background class. This leads to a highly imbalanced class distribution and hinders a
stable training, because assigning all proposals to belong to the background already
yields a good local optimum.

One strategy to resolve this problem is to increase the lower threshold for background
assignment BgLowThresh > 0.0, such that all anchors that do not overlap with any GT
box are ignored.

Another strategy is that during training a batch of n = 256 samples per image is
chosen with a ratio of, e.g., fg : bg = 1 : 3. The loss of all other samples is neglected.

This random sampling can be improved by online hard example mining (OHEM) [171],
where, during training, first the (classification) loss is computed for all proposals and
then only the first n = 256 samples with highest loss, independent of their class, are
chosen to contribute to the real loss, which is then recalculated. The idea is that with
this strategy, the model concentrates on the hard examples, where the current model has
difficulties to classify them correctly.
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Feature Pyramid Networks

The exploitation of different scales of the input image in an image pyramid is a well
known and widely used technique. Using multi-scale inputs to a detection network
is a valid approach when the runtime and memory consumption is not of importance.
However, for most real world applications this assumption does not hold and therefore
running a costly model multiple times is not an option.

The idea of a feature pyramid network (FPN) is to incorporate the information from
multiple scales directly into the CNN. However, this is done at the feature level and not
at the input level. Common classification CNN architectures that are used as backbone
for detection iteratively use strided convolutions or max-poolings to decrease the spatial
dimension of the feature maps and increasing the receptive field at the same time. We
can therefore assign a level L to each feature map as

L= L(FM) = Nog, (w® /w")], (4.8)

where w(?) is the width of the input image and w() is the width of the respective feature
map. This means that the input image corresponds to level 0 and the feature map just
before the third downsampling corresponds to level 2.

The idea behind FPNs is that the features from different levels have complementary
information: Lower-level features contain lower-level semantics, such as edges, corners,
or colors and contain information about small details, while higher-level features contain
higher-level semantics, such as information about objects, textures, or context and have
a wider receptive field. In order to fuse the information of both, the FPN-architecture,
as depicted in Fig. 4.16, contains a decoder path from high-level features back to low-
level features. The upsampling is done by transposed convolutions. To improve the
information-flow from lower levels of the feature pyramid, the features from skip connec-
tions with 1 x 1 convolutions are added to the upsampled features of the higher level.
Typically, the skip connections branch off from the last layer in a level, before the next
downsampling is done by a strided convolution or a pooling operation. For shallow
backbones with few levels, more levels are added by subsequent convolutions with stride
2 and usually a kernel size of 3 x 3. One global parameter determines the capacity of the
FPN: the number of kernels of all involved convolution layers, also referred to as FPN
dimension.

As shown in Fig. 4.16, the RPN can be based on the FPN features {P;,j > 2}. There-
fore, in each level of the FPN, one or several convolution layers are added to create
the intermediate features of the RPN as described above. Typically, for these con-
volutions, the same number of kernels is used as within the FPN. Optionally, the
weights of these layers can be shared across the different FPN levels, across the fore-
ground /background prediction and the box regression branches, or both. In the FPN-
based RPN, each level uses anchors of one base scale s(L) and k subscales or octaves to get
scales {s(1) - 217k, j = 0,...,k — 1}. The base scale of the next level is given by s(1) = 25(1).
This means that in high FPN levels large and in low levels small proposals are generated,
respectively. To avoid an overly large number of anchors, usually a minimum level of
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Figure 4.16: Detection with FPNs. (1.) A feature pyramid is used to fuse the information
from lower and higher level semantics. (2.) The RPN can be incorporated into the FPN by
proposing small boxes based on low levels and large boxes based on higher levels of the FPN. (3.)
For Rol pooling, the proposals are distributed to different levels of the FPN, such that their scaled
size matches the resolution of the feature map (here Lyin = 3 and Lmax = 5). (4.) The pooled
features can be used for further classification or box regression as in Faster R-CNN. The figure is
inspired by [119].

two is chosen, such that the spatial resolution of the feature map is not too large. The
base scale of the second level is chosen as 16, such that with the stride of four within the
input image the anchors overlap and cover the whole image. Anchor aspect ratios are
shared across all levels.

An FPN-based RPN usually provides a lot more proposals than the original RPN:
For the orignal RPN, 12k proposals are generated if the level 5 feature map is used, or
47k when using the level 4 feature map. In comparison, using levels 2-5 an FPN-RPN
generates ~ 200k proposals and hence, the computation costs can increase significantly.
Therefore, the necessary levels can be calculated based on the distribution of ground
truth box scales within the training set. Especially avoiding low FPN levels for proposal
generation can reduce the memory and runtime costs by a large factor.

When proposals have been generated, classified into foreground and background,
regressed, and non-maximum-suppressed, they are distributed back to dedicated levels
of the FPN features based on their scale:

L = max (min(Lc + loga(Vwh/s.) ], Lmax)erin) , (4.9)

where (h, w) are the proposal height and width, L, is the canonical level, to which boxes
of the canonical scale s, should be distributed, and Lyjn and Ly are the minimum
and maximum levels for Rol pooling. The default setting is in accordance with the
architecture of typical backbone networks such as ResNets [68]: s. is set to 224 and L, to
4 because an input image with spatial dimension of 224 x 224 leads to a feature map size
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of 7 x 7 in level 4, which corresponds to the default Rol pooling grid size.

According to the authors, the use of an FPN within FRCNN increases the single
model AP on the COCO test-dev set to 36.2% AP with a ResNet-101 backbone. FRCNN
using an image pyramid instead of an FPN only achieves 34.9% AP.

Recently, the FPN structure has been refined in various ways. Path aggregation networks
(PANets) [123] propose to extend the FPN by another bottom-up path that iteratively
decreases the intermediate feature maps from N, = P, to N5. Here, N;;1 = N; + P4,
where Nj is generated from a 3 x 3 convolution with stride 2 acting on N;. Moreover, the
authors propose to pool the features from all FPN levels and fuse the pooled features by
a max-pooling or summation to obtain an adaptive feature pooling mechanism.

Neural architecture search (NAS) FPN [55] propose to learn the network structure
with a meta-learning approach of the FPN instead of hand-designing it. This leads to an
unintuitive, but efficient architecture of connections within the FPN.

EfficientDet [187] uses a structure similar to PANet, but with skip connections be-
tween the top-down and bottom-up branches of the FPN. Moreover, they use several
concatenated FPN structures. In the spirit of the used EfficientNet [186] backbone, the
authors make massive use of depth-wise separable convolutions and compound scal-
ing to keep the network efficient. Currently, this leads to the best single model result
on COCO with up to 52.2% AP on the test-dev set (depending on the backbone and
compound scaling factor). While PANet uses an architecture similar to FRCNN with
some modifications, both NAS-FPN and EfficientDet use the single-stage architecture of
RetinaNet (see below).

Single-Stage Detectors

Detection methods similar to FRCNN contain two main stages: The first consists of the
proposal generation; the second stage classifies and regresses the boxes. Because also the
first stage contains a fg/bg classification, it is straightforward to extend the first stage to
contain the classification into the final categories.

SSD. Similar to the FPN-architecture, the single stage multi-box detector (SSD) [124] uses
feature maps of different scales to regress and classify anchors. However, unlike in a
real FPN, there are no skip connections and there is no upscaling path. Instead, the
intermediate features for box classification and regression are directly calculated from
the backbone features.

By default, SSD uses five aspect ratios {1,2,3,1/2,1/3} and only one scale per level,
except for aspect ratio 1, where two scales are used (one subscale in between the current
and the next level), which leads to six anchors per level. For some levels, the aspect ratios
{3,1/3} are omitted, resulting in only four anchors. Overall, for an input image size of
300 x 300 (SSD300), the model generates 8732 proposals.

We can regard single-stage detectors as a variation of RPNs where the classification is
done directly within the RPN and one of the two box regressions and non-maximum
suppressions is omitted, respectively. One benefit of a class-specific RPN is that one
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anchor can lead to one detection for each category. If objects are positioned very close to
each other and have a similar shape this can be an advantage. However, for the more
general case where objects do not overlap frequently, the NMS parameters of one-stage
detectors need to be carefully tuned in order to avoid many duplicate detections. In
comparison to a two-stage detector, one-stage detectors such as SSD do not need any
Rol pooling operations. The models are more light-weight with respect to memory
consumption and runtime. However, due to the refinements that can be done in the
second stage, two-stage detectors such as FRCNN are usually more accurate.

On the VOC 2012 test set, SSD300 achieves an AP@0.5 of 77.5% and outperforms the
original FRCNN baseline (75.9% AP@0.5 without FPN) while running at 46fps. Increasing
the input image size to 512 x 512, the AP@0.5 can be increased to 80.0% while increasing
the runtime to 22fps. SSD512 increases the number of proposals to 24 564. Note that a
major part of the runtime is dedicated to the backbone CNN. The numbers shown here
are for the original version with a relatively heavy VGG-16 [177] backbone.

RetinaNet. RetinaNet [120] is a very similar architecture to SSD, but uses a full, but
class-specific FPN-RPN as described above. It uses ResNet backbones with feature
pyramid levels 3 to 7 by attaching two additional levels to the last ResNet feature map
(level 5). As described above, this is done by two consecutive 3 x 3 convolutions with
stride 2.

In comparison to FRCNN, the proposal classification and regression is not done
with fc-layers but remains fully convolutional, where the class probabilities or regression
predictions are encoded in the output depth of the last convolution layer. The intermediate
features for the class and regression predictions are modeled as individual branches with
n = 4 convolution layers each.

By default, RetinaNet uses three subscales and three aspect ratios ({1/2,1,2}) per
level. The authors found that on COCO, sharing the weights of class and box regression
branches among different FPN levels improved the accuracy.

Focal loss. Generating proposals at multiple feature levels usually leads to a very high
number of proposals (e.g., = 200k for levels 2-5 and images with the smaller side length
scaled to 800 px). A majority of these proposals are not overlapping significantly with
an object and should be predicted as belonging to the background. That means that
the proposal classification problem is very unbalanced. Lin et al. [120] determined that
most of the background proposals are correctly classified, but as their confidence for the
background class is not exactly 1.0, the loss is still dominated by those easy samples.

The idea of the focal loss function [120] is to down-weight those easy samples by
reshaping the cross-entropy (CE) loss. Starting from the CE loss for binary classification,
where y = 1 means yes, the sample belongs to this class, y = —1, no it does not belong
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to this class,

—1lo Jify=1,
CE(p,y) = 8(p) Y (4.10)

—log(1—p) ,ify=-1,

we define

Jify =1,
p={0 Y (4.11)
1-p ,ify=-1.

Moreover, the CE loss can be balanced by down-weighting classes that occur often and
up-weighting rarely occurring classes. Therefore, a; € [0,1] is introduced, such that
Yo =17 Usually, a; can be set to the inverse class frequency. The a-balanced CE loss is
thus written as

CE(p) = —atlog(pt). (4.12)

Lin et al. [120] then define the a-balanced focal loss (FL) as

FL(p) = —ax(1 — ps)" log(py). (4.13)

They claim that while the a-balancing differentiates the importance of particular classes
and their contribution to the loss, the reshaping with, e.g., v = 2 shifts the attention away
from easy examples towards difficult examples, independent of the class. This stabilizes
the training, especially for detection models with thousands of potentially easy to classify
background proposals. The authors propose to set a; = 0.25,t =1,...,n. and vy = 2.

To further stabilize the training at the beginning, a prior probability is introduced that
makes it more likely for the model to predict the background class. This is implemented
by initializing the bias of the last convolution filters such that the class probabilities are
initially only 0.01.

Anchor-free Detection

Detection systems based on anchors like FRCNN or RetinaNet are still at the top of the
COCO leaderboard today. However, their construction is complex and they require a
relatively large amount of memory and runtime. That makes them hardly usable on
embedded platforms, especially without a GPU. Therefore, anchor-free methods become
more and more popular.

The first CNN-based anchor-free method that achieves reasonable results while being
real-time capable, is YOLO [158]. YOLO subdivides the image into 7 x 7 tiles and for each
tile, up to B = 2 boxes are predicted, as well as the probability of each out of n. classes
to be present within the tile. Hence, for each tile, B - 5 + n. values are predicted, the 5

7wt is seen here for all classes separately because in RetinaNet, a sigmoid activation is used instead

of a softmax. This means that it is only differentiated between the presence of the particular class or the
background, but each class is handled independently of other classes.
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values per box are (d,,d., dy, d, ISU). Four deltas, two for the offsets of the box center
relative to the tile center and the box width and height relative to the image dimensions,
and the predicted IoU of the box with the ground truth. Therefore, in comparison to
the thousands of proposals that must be evaluated in an anchor-based detection model,
in YOLO only 49 tiles are classified and an additional 98 box parameters are predicted.
Already at the time the method was published, it reached impressive 45 fps while having
an AP of 63.4% on VOC 2012. A faster, but less accurate variant even reaches 145 fps.
YOLO uses an input size of 448 x 448 which corresponds to twice the input side lengths
of the images that are used for pretraining the network on ImageNet.

The performance of YOLO has been improved in subsequent publications. In YOLO
v2 [156], the authors incorporate several ideas to improve the localization accuracy on
the VOC 2007 test set: batch normalization (+2% AP@0.5); increased image size for
classification pre-training (+4% AP@0.5); reduction of input size to 416 x 416, removal
of fc layers, and use of anchors (-0.3% AP@0.5,+6% recall); determination of anchor box
shapes with k-means on the training set to get better box priors, definition of anchor
center offsets relative to the grid cells, such that they are constrained between zero and
one (+5% AP@0.5); incorporating higher-resolution features (+1% AP@0.5). Overall this
lifts the performance of YOLO v2 to 73.4% AP@0.5 on the VOC 2012 test set, such that it
is on the same level as SSD and FRCNN, but still significantly faster.

In a third version, YOLO v3 [157] proposes another set of changes: the anchor
assignment only assigns the best matching anchor to each GT box and ignores all others.
The network is an FPN architecture with three different levels and only 3 anchors per level.
The backbone is changed to a heavier and modern architecture with skip connections.

Although from version two onwards the performance of YOLO has been increased
significantly, it also became an anchor-based method, similar to SSD or RetinaNet.

Modern anchor-free methods. Recently, several other anchor-free methods have been
proposed. We do not address them in this thesis, but we mention them here briefly for
completeness.

CornerNet [101] proposes to predict heatmaps for the locations of top-left and bottom-
right box corners. They also introduce a corner pooling method to address the problem
that box corners are often lying outside of the object itself. For a single-model evaluation
on COCO test dev the authors state 40.5% AP. The method is refined in [102] to improve
the efficiency by using other backbone networks and a box-related zooming strategy:.
The latter makes it a two-stage approach and removes the simplicity of the original
CornerNet.

The idea of ExtremeNet [212] is very similar to CornerNet, but instead of predicting
the top-left and bottom-right points of the box, ExtremeNet predicts the top-, left-,
bottom-, and right-most points of an object. The authors show that this can also be easily
extended to predict octagons instead of axis-aligned bounding boxes. Moreover, the
center of objects is predicted in order to assemble the keypoints together to form the
correct bounding box.

CenterNet [32] is an extension of CornerNet that also predicts a heatmap for the
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center points of detections. As in ExtremeNet, this helps to reduce the number of false
positives of the CornerNet results. Moreover, the corner pooling method is extended to a
center pooling method and to a cascaded corner pooling method.

In fully convolutional one-stage (FCOS) object detection [188], the detection problem
is framed as a regression from feature map pixel centers: For each point in a feature
map, the offsets to the top, left, bottom, and right (¢,1,b,7) borders of the box the pixel
is contained in are predicted. An FPN is used such that small and large boxes are
predicted in different levels and overlapping boxes can be handled (at least to some
extent). Moreover, similar as in CenterNet, a centered-ness score is predicted to help the
NMS and avoid the prediction of poorly localizing boxes.

Very similar to FCOS, FoveaBox [93] predicts offsets to the box boundaries. In
comparison, the classification targets are changed, such that only pixels within the inner
part of the box are assigned to the GT box class, feature map pixels further away from the
inner box area are assigned to the background, and pixels in between are ignored during
training. Thus, the thresholded class probabilities lead to fewer detections, making the
post processing more efficient.

The feature selective anchor-free (FSAF) [214] module is very similar to the anchor-
free box prediction branches of FoveaBox. In comparison, during training the authors
propose to predict all boxes within all feature levels, but only select the best level (i.e.,
the one with the smallest accumulated loss over the box center area) to contribute to
the loss computation. The authors propose to use an IoU loss for the box regression.
Moreover, they show that the FSAF module can be simply combined with an anchor-based
prediction to improve the overall performance.

4.4 Instance Segmentation Methods

The task of instance-aware semantic segmentation (instance segmentation, for short)
can be interpreted as the combination of semantic segmentation and object detection.
While semantic segmentation methods predict a semantic category for each pixel [126],
object detection focuses on generating bounding boxes for all object instances within
an image [159]. As a combination of both, instance segmentation methods generate
pixel-precise masks for all object instances in an image. While solving this task was
considered a distant dream a few years ago, the recent advances in computer vision
have made instance segmentation a key focus of current research [70, 116, 126]. This is
especially due to the progress in deep convolutional networks [107] and the development
of strong baseline frameworks such as FRCNN [159] and FCN [126].

Earlier instance segmentation methods did not propose category-specific instances,
but only modeled a single category object. They were also used in the sense of an object-
proposal algorithm, e.g., to replace the first step within an object detection method such
as Fast R-CNN [57].

One of the first deep-learning-based instance mask proposal generation method is
DeepMask [151]: In a sliding-window approach, a CNN is used to extract features from
an image pyramid. Whenever the patch is centered on an object that is fully contained
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within the patch, one subnetwork branch is used to classify the patch to belong to an
object. Another parallel branch is used to predict the instance mask for this patch. Both
branches are attached to the features of the last convolution layer of a VGG [177] backbone.
The branches consist of a 1 x 1 convolution followed by two subsequent fc layers. Since
the different scales of the image pyramid are handled individually, DeepMask needs a
merging strategy and a lot of effort to calculate the targets for training. Moreover, due to
the many involved large fc layers and the heavy backbone, the model is computationally
expensive, resulting in an average processing time of 1.5s/image on COCO.

The model has been extended to SharpMask [152] by changing the segmentation
branch of DeepMask to a fully convolutional decoder structure similar to the top-down
path within an FPN. However, the method still uses the same patch-based training and
inference strategy as DeepMask.

Dai et al. [24] also generate instance-aware mask proposals, but formulate the problem
in a fully convolutional network [126]. Their network has one branch to predict the
objectness of a sliding window on the feature map and one branch to predict position-
sensitive score maps. The position-sensitive score maps are trained to be active at the
relative locations of each instance. Therefore, the bounding boxes of the ground truth
instance masks are divided into a k x k (e.g., 3 x 3) grid. Each score map is then trained to
fire at one grid cell (e.g., the top-left, center, or right cell of the instance), but accumulated
over all instances within the image. During inference, for each sliding window position,
the k? score maps are assembled to obtain the instance mask at positions where the
objectness score is high enough.

To obtain a proper instance segmentation model that predicts a class for each instance
mask, Zagoruyko et al. [204] propose to feed box proposals obtained from DeepMask
instance masks into a variant of Fast R-CNN [57]. The resulting boxes are then fed again
into DeepMask to obtain a final classified instance mask. The authors state that the
second DeepMask application is optional and could be avoided together with the box
regression within Fast R-CNN.

At the same time, a significantly better result could be obtained by the multi-task
network-cascade (MNC) method [25]. MNC is a multi-stage approach consisting of three
main stages. The first stage generates box proposals, just as the RPN within FRCNN.
In the second stage, the box proposals are used to Rol pool features from the backbone
and regress a class-agnostic instance mask for each proposal using fc-layers. The third
stage again Rol pools features, but now the features are masked using an element-wise
multiplication with the obtained mask from the previous stage. These features are
used for the classification of each instance. Optionally, in the third stage, a second
box-regression can be added and stages two and three can again be applied to obtain a
five-stage network. The authors also propose a Rol warping module to replace the original
Fast R-CNN [57] Rol pooling operation. In comparison, during the backward pass, the
Rol warping layer also calculates the gradients with respect to the box-coordinates of the
used proposals and not only the gradients with respect to the feature map from which
the features are pooled. MNC won the COCO 2015 instance segmentation challenge with
an AP of 24.6% on the test dev set (using a single model with ResNet-101 backbone and

83



CHAPTER 4: AN INTRODUCTION TO OBJECT DETECTION

images zoomed such that the shorter side-length is 600 px).

The idea of MNC to propose instance masks by an integrated branch within an end-
to-end trainable box prediction network remains. Still today, most instance segmentation
methods are similar to the FRCNN [159] two-stage object detection architecture. The
first stage, i.e., the RPN stage, proposes axis-aligned class-agnostic boxes at all locations
where an object is likely to be found. The second stage pools box-specific features with a
region of interest (Rol) pooling and refines them to classify the proposals into one of the
target classes or background. A second, parallel branch (sometimes with shared weights)
is used to further improve the box coordinates via bounding-box regression. To predict
instance masks, a third stage is used that pools features with respect to the box proposals.
The methods mainly differ in the way the different branches are built, or where exactly
they are attached, or how they are connected to the backbone or the other branches.

The COCO 2016 segmentation challenge winner FCIS [116] proposes to predict two
position-sensitive score maps for each category, similar to the Instance FCN method [24].
One predicts an inside map that fires at positions where the object is present, the other
predicts the outside map that is active outside of the object’s boundary. Instead of using
a sliding window approach, as was done by [24], here the score maps are only assembled
at the best scoring Rols that are proposed by the RPN. For each Rol, the class-specific
instance mask is obtained by the softmax over the inside and outside map, evaluated at
the inside map index. The class score is obtained by first taking the pixel-wise maximum
over the inside and outside map and thereafter applying a spatial average pooling. FCIS
achieved a single model result of 29.2% AP for instance segmentation on the COCO test
dev set (using the same settings as MNC above).

In Mask R-CNN (MRCNN), He et al. [70] propose to Rol pool features using FPN-
RPN proposals [119] (Section 4.3) to simultaneously predict and regress the class-specific
box result, and to predict instance masks. Typically, for mask prediction a larger Rol
pooling grid size of 14 x 14 is used. The architecture of the mask prediction branch is
similar to the decoder of a fully convolutional network for semantic segmentation [126].
It consists of k = 4 intermediate 3 x 3 convolutions before a transposed convolution up-
samples the features by a factor of 2 in each spatial dimension. Finally, mask probabilites
are predicted using a sigmoid activation. The class score, which also reflects the model’s
confidence for each instance is predicted in the class head. In case of a class-specific mask
branch, the predicted box category is also used to choose the correct mask prediction.
Without the FPN, MRCNN already outperforms FCIS with 33.1% AP on COCO test dev.
Using an FPN and a ResNeXt-101 backbone [201], the AP can be improved to 37.1%.

PA-Net [123] optimizes the information flow within MRCNN by fusing the features
of several feature pyramid network (FPN) [119] levels to improve the quality, but at the
cost of runtime. This improves the AP on COCO test dev only marginally to 38.2%.

Mask Scoring R-CNN [79] learns to predict the quality of the mask predictions, which
improves the AP by re-calibrating the predicted scores such that low quality masks also
receive a lower score compared to higher quality masks. Thus, for Mask Scoring R-CNN,
the approximately 1% gain in AP on COCO is based on a better model uncertainty.

Among the more recent methods, YOLACT [8] improves the speed of instance
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segmentation by using a linear combination of prototypes for mask prediction and the
fast variant of non-maximum suppression. YOLACT runs at more than 30 fps, with 30%
AP on COCO. In a refined YOLACT++ version that incorporates deformable convolutions
[26] and a fast version of the mask re-scoring of Mask Scoring R-CNN, the result AP
is improved to 34%. Shape priors are also used in ShapeMask [97], mainly with the
goal to improve the generalizability of the model and to reduce the amount of necessary
annotated training data.

RetinaMask [50] extends the single-stage box detector RetinaNet [120] to instance
segmentation by adding a mask branch similar to MRCNN. Thus the model is highly
similar to MRCNN, with the only difference that the class prediction is already integrated
into the RPN stage. In RetinaMask a second box regression that is typically used in
FRCNN or MRCNN is omitted. RetinaMask mainly improves the box prediction of
RetinaNet. The mask prediction results are comparable to MRCNN.

4.5 HALCON Implementation

In this thesis, we are mainly carrying out our experiments using FRCNN and RetinaNet
for object detection, and MRCNN and RetinaMask for instance segmentation. For the
results shown in Chapter 5, Chapter 7, and Chapter 11, we initially used the Detectron
[56] framework to train and evaluate the networks. However, other ideas, such as the
oriented detection of Chapter 8, were implemented in HALCON and even have been
released as an official feature of the HALCON software [142]. Moreover, also the more
recent results in Chapter 6 to Chapter 10 are implemented in HALCON. To allow a
direct and fair comparison of results within this thesis, we have done new experiments
using HALCON that achieve consistency across Chapters 5 to 10 in the remainder of this
thesis. In the following, we first describe our used HALCON architectures in more detail
and then we summarize their differences to the Detectron architectures used in parts of
chapters 5, 7, and 11.8

4.5.1 Architectures

In our implementation, we basically use two different types of methods: The one-stage
architecture RetinaNet [120], and the two-stage detector FRCNN [159] (cf. Section 4.3).

In theory, the benefit of a single-stage detector is that the architecture is simpler
because the classification of proposals is already incorporated into the RPN. It is
straightforward to reduce the model capacity and runtime by reducing the number of
kernels or the number of intermediate convolution layers within the class prediction and
box regression heads of the network. Since the proposal confidences are obtained by
applying a sigmoid to the class activations of every anchor, RetinaNet can predict several
classes for each of them. Therefore, typically the number of predictions is a bit higher
and this can be reflected in a higher recall.

8For Chapter 5 and Chapter 7, we also provide HALCON results within a dedicated section. For the
more advanced architecture and evaluation in Chapter 11, this goes beyond the scope of this thesis.
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However, a two-stage detector has the benefit of a second refinement of the classifica-
tion and localization: The RPN only generates class-agnostic proposals that are classified
or sorted out (classified to the background) inside the class head using box-specific
features. Also, a second box regression is added inside the box head, which allows to
further refine the proposals. In comparison to RetinaNet, the class prediction in FRCNN
is modeled via a softmax applied to the output of the class prediction fully-connected
layer. Hence, each proposal is assigned to a unique class. Moreover, the number of
anchors is lower because FRCNN only uses a single subscale (or octave) per FPN level.
The anchor scale is larger by a factor of two, such that the anchors in level two of FRCNN
have the same size as the anchors in level three of RetinaNet. However, the resolution of
FPN level two is still higher than in FPN level three, which leads to a higher number of
anchors with lower stride.

For both models, we use an FPN-RPN as depicted in the middle parts of Fig. 4.17:
Inside the RPN, in our implementation, weights are not shared between the levels
and only for FRCNN they are shared between the class and box branches. One and
four intermediate convolutions are used within the RPN for FRCNN and RetinaNet,
respectively. The convolutions have a kernel size of 3 x 3 and stride one. An FPN
dimension of 256 filters per convolution is used. The box regression is done class-
agnostically to reduce the computation time and memory consumption. Note that the
depth of the box branch outputs is four times the number of anchor types. For RetinaNet,
the depth of the class branches is the number of anchor types times the number of classes,
while for FRCNN it equals the number of anchor types. To address the class imbalance
between background and foreground anchors, both models use a focal loss for the class
outputs instead of random box sampling within the RPN. We use FPN levels two to six
for all FRCNN and MRCNN models. For RetinaNet and RetinaMask, we configure FPN
levels three to seven because of the smaller anchor scale. Hence, all models have the
same underlying anchor box dimensions and only their stride differs.

As can be seen in Fig. 4.17, the RetinaNet architecture can be seen as a class-specific
FPN-RPN. While in RetinaNet the cls-outputs directly predict the class probability inside
the RPN, in FRCNN the fg/bg-outputs are just deciding for each anchor whether it
belongs to the foreground or to the background. The box proposals are then distributed
to the FPN levels in order to pool features with a Rol-pooling operation. Those features
are the input to an MLP with box regression and class prediction outputs. A softmax
cross-entropy loss is used to train the class prediction, while a Huber loss is used to
train the box regression. For FRCNN and MRCNN, we use 1024 neurons for each of the
hidden MLP fc layers when not otherwise mentioned. The hidden layers are shared for
the class and box prediction.

For both architectures, the final box proposal operation is only applied during
inference because the losses are applied directly to the class and box prediction outputs.
The box proposal operation is applying the predicted box-deltas in order to get the
final box coordinates, thresholding the box scores to filter out box predictions with low
confidence, applying an NMS (class-specific and class-agnostic), and finally restricting
the number of predictions to the given maximum number of detections. For FRCNN and
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Figure 4.17: HALCON detection and instance segmentation architectures. (7) RetinaNet,
(b) FRCNN, (c) RetinaMask based on (2), or MRCNN based on (b). For convenience, only FPN
levels three to five are shown. Multiple arrows within the backbone indicate that there are a
high number of intermediate convolutions. 3D boxes indicate the depth and spatial dimension of
outputs, boxes with dots in FRCNN show fc-layers. Losses are indicated in orange and only need
to be evaluated during training. On outputs that are fed into focal losses, sigmoid activations are
applied, while on the class outputs of FRCNN, a softmax is applied. All blue layers are always
evaluated, the green box proposal and mask processing operations are only evaluated during
inference and can be omitted during training. See the text for a detailed explanation.
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MRCNN, an intermediate box proposal operation is necessary to get the proposals for
the consecutive Rol pooling operation. Since the RPN is class-agnostic for FRCNN, also
the NMS can only be done class-agnostically. To decrease the memory consumption of
the following layers and to reduce the runtime of the NMS within the intermediate box
proposal operation, we set the parameters PreNMSTopN and PostNMSTopN. By default,
PreNMSTopN is set to 1000, such that only the 1000 highest scoring proposals per FPN
level are entering the consecutive NMS. Post NMS, only the PostNMSTopN = 512 highest
scoring boxes per image are used within all consecutive operations. Within the RPN of
FRCNN or MRCNN, we set the NMS parameter to 0.9 to filter out very similar duplicate
proposals for the same object. The Rol pooling for the Fast R-CNN heads of FRCNN and
MRCNN is done with a grid-size of 7 x 7.

Note that within the FRCNN and MRCNN architecture, the batch size changes from
the first stage of the model until the first box proposal operation to the second stage of
the model from the Rol pooling operation: Only PostNMSTopN boxes per image are used
within the second stage, if so many exist after applying the RPN score threshold and
the RPN-NMS. Typically, to ensure that enough boxes reach the second stage to train
the corresponding layers, the RPN box proposal score threshold is set rather low during
training, e.g., to 0.05. For proposal assignment in the Fast R-CNN heads of FRCNN,
we set the parameters SetWeakBoxesToBg to true, FgNegThresh to 0.5, and FgPosThresh to
0.7, such that only good proposals are assigned to the foreground. During training, we
sample 512 boxes per image randomly, where at most half of them have been assigned to
foreground (if that many are available). A loss is applied only for the sampled boxes. To
increase the AP but stay at reasonable evaluation times, we set the minimum confidence
of the output box proposal operation to 0.05.” We will see later in Chapter 6 that the
maximum AP would be achieved for a minimum confidence of 0.0, but in practice this
leads to a high number of false postive predictions, which we want to avoid.

For the instance segmentation models MRCNN and RetinaMask, another Rol pooling
operation with grid-size 14 x 14 is attached to the final box proposals that pools features
again from the FPN levels. Since the grid size is twice as large as the grid size of the first
Rol pooling operation in each dimension, we decrease the canonical level for FPN level
assignment from four to three. Both for RetinaMask and MRCNN, four intermediate
convolutions and a bilinear zooming to double the spatial dimensions follow to generate
mask specific features. Finally, a 1 x 1 convolution predicts the mask logits that are
activated with a sigmoid. We use a class-agnostic mask prediction.

To train the mask prediction branch, a focal loss is applied to each pixel of the
28 x 28 mask prediction map. Here the main reason to use the focal loss is not the class
imbalance between foreground and background, because foreground pixels have usually
approximately the same frequency as background pixels. Instead, the focal loss helps to
emphasize the loss on those pixels that are difficult to predict.

Mask targets are generated online, with a modified Rol-align operation: For each
ground truth instance, the mask is painted into one channel of a binary ground truth mask

9This is the score threshold of the first and only box proposal operation for RetinaNet and RetinaMask
models, and the second box proposal operation for FRCNN and MRCNN models, respectively.
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image. If a final box prediction is assigned to the foreground, the Rol-align operation
is applied only to the channel that corresponds to the assigned instance. This has the
benefit that the spatial dimension of the target fits exactly to the mask prediction. The
mask targets are thresholded at 0.5 such that they are binary and can be used within
the mask sigmoid focal loss. For final boxes that are assigned to the background, the
mask prediction is ignored by setting the pixel-wise loss weights to zero. For proposal
assignment in the mask head of MRCNN and RetinaMask, we use the same parameter
settings as in the Fast R-CNN head proposal assignment, but increase FgNegThresh to
0.6 such that only good proposals contribute to the mask head training. To ensure, that
the mask branch generates a meaningful loss just from the beginning of the training, we
append the ground truth boxes to the predictions in the training phase. This ensures
that at least the ground truth boxes are assigned to the foreground and a mask loss is
calculated for them.

During inference, the mask predictions are translated and zoomed according to the
corresponding box coordinates. Finally, a binary thresholding at 0.5 is applied to infer
the mask region.

Differences to Detectron Models

Major parts of the HALCON architectures described above are similar to the implemen-
tation of Detectron [56], but some details and hyperparameters have been changed. The
main differences to the architectures and hyperparameters of the Detectron framework
are summarized again in the following:

e Focal losses in RPN class head and mask head: In HALCON, we use the more
modern focal loss [120] (see above) instead of the sigmoid cross-entropy loss used
in Detectron.

¢ Class-agnostic box regression and mask prediction: In HALCON, we did not
find that a class-specific box regression or mask prediction improves the results.
However, it leads to a significantly higher memory consumption and runtime.
Detectron uses class-specific box regression and mask prediction per default.

¢ FPN-RPN weight sharing: In contrast to Detectron, in HALCON we do not share
the weights between different FPN levels.

¢ Anchor assignment: Per default, we set SetWeakBoxesToBg to false (cf. Section 4.3).

¢ Foreground/background assignment in RPN, Fast R-CNN, and mask heads: We
use different FgNegThresh and FgPosThresh values for assignement of proposals in
the first, second, and third stage of the model (see above).

¢ Mask head Rol canonical level: We adjust the Rol canonical level to three to account
for the larger grid size of the mask Rol pooling. Detectron uses the same canonical
level (four) for the Fast R-CNN heads and the mask head.
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NMS parameters: We use lower PreNMSTopN (1000) and PostNMSTopN (512) values
to speed up the NMS computations and reduce the batch size of subsequent layers.
We also adjust the maximum number of detections, as well as the class-specific
and class-agnostic NMS IoU thresholds. In comparison to Detectron, we use both a
class-specific and a class-agnostic NMS sequentially (in this order).

Image resolution: To highlight the influence of the image resolution, in HALCON
we carry out experiments with images of size 512 x 384, 768 x 512, and 1024 x 768.
We generally use an image size of 512 x 384 to reduce the runtime and allow to
perform the experiments in a reasonable time. Using Detectron, we usually rescale
the shorter image size to 800, leading to a resolution of 1066 x 800 for images with
an aspect ratio of 4:3.

Mirroring: While in the Detectron results, we only use horizontal reflections of the
images, in HALCON, we use both horizontal and vertical reflections of the images.
Therefore, during training, with 50% probability, the images are randomly flipped
at either the column, row, or both axes.

Batch size: In HALCON, we use a batch size of 2, unless otherwise mentioned.
For the Detectron results in Chapter 5, we used a batch size of 8. On D2S (cf.
Chapter 5), we did not find that an increased batch size helped to improve the
results. With this low batch size the memory consumption is reduced, such that the
models fit on a single GPU.
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D2S: Densely Segmented

Supermarket Dataset

In this chapter, we introduce the Densely Segmented Supermarket (D2S) dataset, a
novel benchmark for instance segmentation and object detection in an industrial domain.
It contains 21 000 high-resolution images with pixel-wise labels of all object instances. The
objects comprise groceries and everyday products from 60 categories. The benchmark is
designed such that it resembles the real-world setting of an automatic checkout, inventory,
or warehouse system. The training images only contain objects of a single class on a
homogeneous background, while the validation and test sets are much more complex
and diverse. To further benchmark the robustness of detection methods, the scenes are
acquired with different lightings, rotations, and backgrounds. We ensure that there are
no ambiguities in the labels and that every instance is labeled comprehensively. The
annotations are pixel-precise and allow using crops of single instances for articial data
augmentation. The dataset covers several challenges highly relevant in the field, such
as a limited amount of training data and a high diversity in the test and validation sets.
The evaluation of state-of-the-art object detection and instance segmentation methods
on D2S reveals significant room for improvement for current methods. The high-quality
pixel-precise annotations allow a proper evaluation with high IoU thresholds.

D2S was published in [46]. In comparison to the publication, we add baselines with
models implemented in HALCON [143] in Section 5.6. Moreover, we do an extensive
evaluation with respect to failure cases in Section 5.7. These failure cases motivate the
work of the following chapters.
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5.1 Introduction

All top-performing methods in common instance segmentation and object detection chal-
lenges are based on deep learning and require a large amount of annotated training data.
Accordingly, the availability of large-scale datasets, such as ADE20K [211], Cityscapes [22],
ImageNet [168], KITTI [53], COCO [118], Mapillary Vistas [145], VOC [41], Places [210], The
Plant Phenotyping Datasets [136], or Youtube-8M [1], is of paramount importance.

Most of the above datasets focus on everyday photography or urban street scenes,
which makes them of limited use for many industrial applications. Furthermore, the
amount and diversity of labeled training data is usually much lower in industrial settings.
To train a visual warehouse system, for instance, the user typically only has a few images
of each product in a fixed setting. Nevertheless, at runtime, the products must be robustly
detected in very diverse settings. Only few datasets focus on industry-relevant challenges
in the context of warehouses. The Freiburg Groceries Dataset [87], SOIL-47 [94], and
the Supermarket Produce Dataset [160] contain images of supermarket products, but
only provide class annotations on image level, and hence no segmentation. The Grocery
Products Dataset [54] and GroZi-120 [135] include bounding box annotations that can
be used for object detection. However, not all object instances in the images are labeled
separately. To the best of our knowledge, none of the existing industrial datasets provides
pixel-wise annotations on instance level.! In this chapter, we introduce the Densely
Segmented Supermarket (D2S) dataset, which satisfies the industrial requirements described
in Chapter 1. The training, validation, and test sets are explicitly designed to resemble
the real-world applications of automatic checkout, inventory, or warehouse systems.

Contributions. We present a novel instance segmentation dataset with high-resolution
images in a real-world, industrial setting. The annotations for the 60 different object
categories were obtained in a meticulous labeling process and are of very high quality.
Specific care was taken to ensure that every occurring instance is labeled comprehensively.
We show that the high-quality region annotations of the training set can easily be used
for artificial data augmentation. Using both the original training data and the augmented
data leads to a significant improvement of the average precision (AP) on the test set by
about 30 percentage points. In contrast to existing datasets, our setup and the choice
of the objects ensures that there is no ambiguity in the labels and an AP of 100% is
achievable by an algorithm that performs flawlessly. To evaluate the generalizability
of methods, the training set is considerably smaller than the validation and test sets
and contains mainly images that show instances of a single category on a homogeneous
background. Overall, the dataset serves as a demanding benchmark and resembles
real-world applications and their challenges. The dataset is publicly available.?

We provide a thorough evaluation of the baseline result and, in particular, point out
different types of failure cases for object detection and instance segmentation models on
D2S. These failure cases are addressed in subsequent chapters.

1To be more precise, we refer to none of the published datasets before the D2S publication [46] in 2018.
2https ://www.mvtec.com/research
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Figure 5.1: D2S image acquisition setup. Each scene was rotated ten times using a turntable.
For each rotation, three images under different illuminations were acquired.

5.2 The Densely Segmented Supermarket Dataset

The overall target of the dataset is to realistically cover the real-world applications of an
automatic checkout, inventory, or warehouse system. For example, existing automatic
checkout systems in supermarkets identify isolated products that are conveyed on a belt
through a scanning tunnel.>* Even though such systems often provide a semi-controlled
environment, external influences (e.g., lighting changes) cannot be completely avoided.
Furthermore, the system’s efficiency is higher if non-isolated products can be identified
as well. Consequently, methods should be able to segment also partly occluded objects.
Also, the background behind the products is not constant in many applications because of
different types of storage racks in a warehouse system or because of dirt on the conveyer
belt of a checkout system in the supermarket, for example.

For the D2S dataset, we acquired a total of 21 000 images in 700 different scenes with
various backgrounds, clutter objects, and occlusion levels. In order to obtain systematic
test settings and to reduce the amount of manual work, a part of the image acquisition
process was automated. Therefore, each scene was rotated ten times with a fixed angle
step and acquired under three different illuminations.

Setup. The setup used for the image acquisition is depicted in Fig.5.1. A high-
resolution industrial color camera with 1920 x 1440 pixels was mounted above a turntable.
The camera was intentionally mounted off-center with respect to the rotation center of
the turntable to introduce more variations in the rotated images.

Objects. An overview of the 60 different classes is shown in Fig. 5.2. The object
categories cover a selection of common, everyday products such as fruits, vegetables,

3ECRS. RAPTOR. https://www.ecrs.com/retail-pos/hardware/accelerated-checkout/,
accessed 2018-03-07.

4ITAB. HyperFLOW. https://itab.com/en/itab/checkout/self-checkouts/, accessed 2018-
03-07.
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vistar

Figure 5.2: D2S categories. Overview of the 60 different classes within the D2S dataset. The
second image in the first row shows an example of a lying bottle that must be stabilized by
surrounding objects to prevent it from rolling off the turntable.
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Figure 5.3: Rotation example. Each scene was acquired at ten different rotations in steps of
36°. The camera was mounted off-center in order to introduce more variation in the images.

cereal packets, pasta, and bottles. They are embedded into a class hierarchy tree. The
branches of the tree split the classes into groups of different packaging. This results
in neighboring leafs being visually very similar, while distant nodes are visually more
different, even if they are semantically similar products, e.g., single apples in comparison
to a bundle of apples in a cardboard tray. The class hierarchy can be used, for instance,
for advanced training and evaluation strategies similar to those used by YOLO9000 [156].
However, it is not used within the scope of this work.

Rotations. Each scene was rotated ten times in increments of 36°. The turntable allowed
to automate this process and to ensure that the rotation angles are precise. An example
of the ten rotations for a scene from the training set is displayed in Fig. 5.3.

Lighting. To evaluate the robustness of methods to illumination changes and different
amounts of reflection, each scene and rotation was acquired under three different lighting
settings. For this purpose, an LED ring light was attached to the camera. The illumination
was set to span a large spectrum of possible lightings. Hence, as displayed in Fig. 5.4
(top), the dark images were underexposed and the bright images overexposed.

Background. The validation and test scenes have a variety of different backgrounds that
are shown in Fig. 5.4 (bottom). This allows to evaluate the generalizability of approaches.
In contrast, the training set is restricted to images with a single homogeneous background.
It is kept constant to imitate the settings of a warehouse system, where new products are
mostly imaged within a fixed environment and not in the test scenario.

Occlusion and clutter. As indicated in Fig. 5.5, occlusions in the dataset may arise from
objects of the same class, objects of a different class, or from clutter objects. Clutter objects
have a category that is not present in the training images. They were added explicitly
to the validation and test images to evaluate the robustness of methods to novel objects.
Examples of the selected clutter objects are shown in Fig. 5.6.
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Figure 5.4: Lighting and background examples. (Top) Each scene was acquired under three
different lightings. (Bottom) As opposed to the training set (where a single uniform background
is used), the test and validation sets include three additional backgrounds. This allows for a
detailed evaluation of the robustness of the methods.

Figure 5.5: Occlusion. Objects appear with different amounts of occlusion. These may either
be caused by objects of the same class, objects of a different class, or by clutter objects not within
the training set.

Figure 5.6: Clutter. To test the robustness of approaches to unseen clutter objects, objects not
within the training set were added to the validation and test sets (e.g., a mouse pad and a black
foam block).
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5.3 Dataset Splitting

In contrast to existing datasets for instance-aware semantic segmentation, such as
VOC [41] and COCO [118], the D2S training set has a different distribution with re-
spect to image and class statistics than the validation and test sets. The complexity of
the captured scenes as well as the average number of objects per image are substantially
higher in the validation and test sets (see Table 5.1). The motivation for this choice of
split is to follow common industrial requirements, such as: low labelling effort, low
complexity of training set acquisition for easy replicability, and the possibility to easily
add new classes to the system.

The split is performed on a per-scene basis: all 30 images of a scene, i.e., all combi-
nations of the ten rotations and three lightings, are included in either the training, the
validation, or the test set. In the following, we describe the rules for generating the splits.

Training split. To meet the industrial requirements mentioned above, the training
scenes are selected to be as simple as possible. Hence, the scenes have a homogeneous
background and mostly contain only one object. Furthermore, the amount of occlusions
is reduced to a minimum. To summarize, we add scenes to the training split that

* contain only objects of one category,’

¢ provide new views of an object,

¢ only contain objects with no or marginal overlap, and

* have no clutter and a homogeneous background.
The total number of scenes in the training set is 147, resulting in 4380 images of 6900
objects. The rather small training set should encourage work towards the generation of

augmented or synthetic training data, for instance, using generative adversarial networks
[64, 78, 113, 172, 207].

Validation and test splits. The remaining scenes are split between the validation and
the test set. They consist of scenes with

* single or multiple objects of different classes,

¢ touching or occluded objects,

¢ clutter objects, and

e varying background.
These scenes were chosen such that the generalization capabilities of approaches can
be evaluated. Additionally, current methods struggle with heavy occlusion and clutter

objects that are not present within the training set. These issues are addressed by this
choice of splits as well. The split between validation and test set was performed on

5In order to provide similar views of each object class as they are visible in the validation and test set,
four scenes were added to the training set that contain two distinct classes.
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split all  train val test
# scenes 700 146 120 434
# images 21000 4380 3600 13020
# objects 72447 6900 15654 49893
# objects/image 3.45  1.58 4.35 3.83
# scenes w. occlusion 393 10 84 299
# scenes w. clutter 86 0 18 68
rotations v v v
lighting variation v v v
background variation v v
clutter v v

Table 5.1: Split statistics. Due to our splitting strategy, the number of images and the number
of instances per image is significantly lower for the training set. The complexity of validation and
test scenes is approximately the same.

subgroups of images containing the same number of total and occluded objects. This
ensures that both sets have approximately the same distribution. The ratio of the number
of scenes in the validation and test set is chosen to be 1:4. The reasons for this decision
are twofold: First, the evaluation of the model on a small validation set is faster. Second,
we do not want to encourage training on the validation set, but stimulate work on
approaches that require little training data or use augmentation techniques. The statistics
of the number of images and objects in the splits are visualized in Table 5.1.

5.4 Statistics and Comparison

In this section, we compare our dataset to VOC [41] and COCO [118]. These datasets
have encouraged many researchers to work on instance segmentation and are frequently
used to benchmark state-of-the-art methods.

Dataset statistics. As summarized in Table 5.2, D2S contains significantly more object
instances than VOC, but fewer than COCO. Specifically, although the D2S training set is
larger than that of VOC, the number of training objects is less than 1% of those in COCO.
This choice was made intentionally, as in many industrial applications it is desired to use
as few training images as possible. In contrast, the proportion of validation images is
significantly larger for D2S in order to enable a thorough evaluation of the generalization
capabilities. On average, there are half as many objects per image in D2S as in COCO.
However, for COCO this number is heavily biased since there is an disproportionately
large number of instances from the class person throughout the whole dataset, which
increases the number of objects per image dramatically (see also Fig. 5.7).
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Dataset vVOoC COCO D2S
# images all 4369 163957 21000
train 1464 118287 4380
val 1449 5000 3600
test 1456 40670 13020
# objects all - - 72447
train 3507 849941 6900
val 3422 36335 15654
test - - 49893
# obj/img 2.38* 7.19* 3.45
# classes 20 80 60

Table 5.2: Dataset statistics. Number of images and objects per split, average number of
objects per image and number of classes for D2S (ours), VOC 2012, and COCO. *For VOC 2012
and COCO, the object numbers are only available for the training and validation set.

Class statistics. Since the images of COCO and VOC were taken from flickr, the dis-
tribution of object classes is not uniform. In both datasets, the class person dominates,
as visualized in Fig. 5.7: 31% and 25% of all objects belong to this class for COCO and
VOC, respectively. Moreover, 10% of the classes with the highest number of objects are
represented by 51% and 33% of all objects, while only 5.4% and 13.5% of the objects
belong to the 25% of classes with the lowest number of objects. This class imbalance is
valid since both COCO and VOC represent the real world, where some classes naturally
appear more often than others. In the evaluation, all classes are weighted uniformly.
Therefore, the class imbalance inherently poses a challenge to learn all classes equally
well, independent from the number of training samples. For example, the COCO 2017
validation set contains nine instances of the class toaster, but 10 777 instances of person.
Nevertheless, both categories are equally weighted in the calculation of the AP, which is
the metric used for ranking the methods in the COCO segmentation challenge.

There is no such class imbalance in D2S. In the controlled environment of the
supermarket scenario, all classes have the same probability to appear in an image. The
class with the highest number of objects is represented by only 2.7% of all objects. Only
14% of the objects represent the 10% of classes with the highest number of objects, while
19% of the objects are from the 25% of classes with the lowest number of objects. The
class distribution of D2S is visualized in Fig. 5.8, where the number of images per class
is shown in total and for each split. As mentioned in the previous section, the number
of images for each class is rather low in the training split. This is especially the case for
classes that have a similar appearance for different views, such as kiwi and orange_single.
Note that, although the split choice between validation and test set is not made on the
class level, each class is well represented in both sets. The key challenge of the D2S
dataset is thus not the handling of underrepresented classes, but the low amount of
training data.
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Figure 5.7: Objects per class. Ratio of objects per class for D25 (orange), VOC (green) and COCO
(violet). In COCO and VOC, the class person is dominant and some classes are underrepresented.
In D2S, the number of objects per class is uniformly distributed. Note that for COCO and VOC
the diagram was calculated based on train and val splits.
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Figure 5.8: D2S Images per class. Number of images per class and split sorted by the total
number of images per class for D2S. The number of images per class is almost uniformly
distributed.

Label consistency. It is difficult to ensure that all object instances in large real-world
datasets are labeled consistently. On the one hand, it is hard to establish a reliable review
process for the labeling of large datasets, e.g., to avoid unlabeled objects. On the other
hand, some labels are ambiguous by nature, for instance a painting of a person. Fig. 5.9
shows examples for label inconsistencies from ADE20K [211], VOC, and COCO.

In D2S, the object classes are unambiguous and have been labeled by six expert
annotators. We ensured that all present objects are annotated with high quality labels.
A perfect algorithm that flawlessly detects and segments every object in all images of
the D2S dataset will achieve an AP of 100%. This is not the case for COCO, VOC, and
ADE20K. In these datasets, if an algorithm correctly detects one of the objects that is
not labeled, the missing ground truth leads to a false positive. Furthermore, if such an
object is not found by an algorithm, the resulting false negative is not accounted for. As
algorithms improve, this might prevent better algorithms from obtaining higher scores in
the benchmarks. It should be noted that in COCO, this problem is addressed using crowd
annotations, i.e., regions containing many objects of the same class that are ignored in the
evaluation. However, crowd annotations are not present in all cases.
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Figure 5.9: Inconsistent labels in large-scale datasets. Images (top) and labels (bottom).
Large real-world datasets are extremely difficult to label consistently. In the examples from
ADE20K, VOC, and COCO, some labels are missing (from left to right): a window, the sofa, some
donuts, and the painting of a person.

5.5 Benchmark

In this section, we provide first benchmark results for our dataset. We evaluate the
performance of state-of-the-art methods for object detection [159, 120] and instance
segmentation [70, 116]. We experiment with various training sets, which differ in the
number of rotations and the availability of under- and overexposed images. Furthermore,
we evaluate a simple approach for augmenting the training data artificially.

5.5.1 Evaluated Methods

Object detection. For the object detection task, we evaluate the performance of Faster
R-CNN (FRCNN) [159] and RetinaNet [120]. In this section, we use the official imple-
mentations of both methods, which are provided in the Detectron [56] framework. Both
methods use a ResNet-101 [68] backbone with FPN [119].

Instance segmentation. For the instance segmentation task, we evaluate the perfor-
mance of Mask R-CNN (MRCNN) [70] and FCIS [116]. In this section, we use the official
implementation of MRCNN in the Detectron framework and the official implementation
of FCIS provided by the authors.® MRCNN uses a ResNet-101 with FPN as backbone,
while FCIS uses a plain ResNet-101. Since both methods output boxes in addition to the
segmentation masks, we also include them in the object detection evaluation.

We provide more results of our own HALCON implementation for RetinaNet, FR-
CNN, and MRCNN, as well as RetinaMask [50] in Section 5.6.

bhttps://github.com/msracver/FCIS
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Training. All methods are trained end-to-end. The network weights are initialized with
the COCO-pretrained models provided by the respective authors. The input images
are resized to have a shorter side of 800 pixels (600 pixels for FCIS, respectively). All
methods use horizontal flipping of the images at training time. FCIS uses online hard
example mining [171] during training.

5.5.2 Evaluation Metric

The standard metric used for object detection and instance segmentation is mean average
precision (mAP) [41]. It is used, for instance, for the ranking of state-of-the-art methods in
the COCO segmentation challenge [118]. We compute the m AP exactly as in the official
COCO evaluation tool” and give its value in percentage points. The mAP is explained in
Section 4.2. The mAP is the mean over APs of all classes in the dataset. In the following,
we just use the abbreviation AP for the value averaged over IoUs and classes. When
referring to class-averaged AP for a specific IoU threshold, e.g., 0.5, we write APsy.

Due to the findings of this chapter, we will analyze the AP measure in detail in
Chapter 6. There, we also propose certain changes to the evaluation protocol that help to
identify models with fewer false positive predictions.

5.5.3 Data Augmentation

In order to keep the labeling effort low and still achieve good results, it is crucial to
artificially augment the existing training set such that it can be used to train deep neural
networks. Hence, we experiment with a simple data augmentation technique, which
serves as baseline for more sophisticated approaches. In particular, we simulate the
distribution of validation and test set using only the annotations of the training set.
For this purpose, we assemble 10000 new artificial images that contain one to fifteen
objects randomly picked from the training split. We denote the augmented data as aug
in Table 5.3. For each generated image, we randomly sample the lighting and number
of object instances. For each instance, we randomly sample its class, the orientation,
and the location in the image. The background of these images is the plain turntable.
We make sure that the instances’ region centers lie on the turntable and that occluded
objects have a visible area larger than 5000 pixels. Fig. 5.10 shows example images of the
artificially augmented dataset for all three different lightings. Due to the high-quality
annotations without margins around the object border, the artificially assembled images
have an appearance that is very similar to the original test and validation images.

5.5.4 Results

When trained on the full training set train and evaluated on the test set, the instance
segmentation methods provide solid baseline APs of 49.5% (MRCNN) and 45.6% (FCIS).
The object detection results are on a similar level, with APs of 46.5% (MRCNN), 44.0%
(FCIS), 46.1% (FRCNN), and 51.0% (RetinaNet). Tables 5.3 and 5.4 show the quantitative

"https://github.com/cocodataset/cocoapi
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Figure 5.10: Artificial images. The artificial augmented training set is generated by randomly
assembling objects from the basic training set.

Figure 5.11: Qualitative results. (Top) Ground truth annotations from the D2S val and test
sets. (Bottom) Results of MRCNN trained on the train set. The classes are indicated by colors.

results in full detail. We show qualitative results of the best performing MRCNN in
Fig. 5.11. More qualitative results of the Detectron MRCNN implementation trained on
the different D2S training splits are shown in Appendix B.

Ablation study. As mentioned previously, the D2S splits are based on scenes, i.e.,
all rotations and lightings for one placement of objects are included in the same split.
In order to evaluate the importance of these variations and the ability of the instance
segmentation methods to learn invariance with respect to rotations and illumination, we
perform an ablation study. For this purpose, we create three subsets of the full training
set train. The train rot0 set contains all three lightings, but only the first rotation of each
scene. The train light0 set contains only the default lighting, but all ten rotations of each
scene. The train rot0 light0 set contains only the default lighting and the first rotation for
each scene.

The resulting AP values of the instance segmentation methods MRCNN and FCIS
are summarized in Table 5.3 (top). As expected, we obtain the best results when training
on the full train set. Training only on the first rotation reduces the AP on the test set by
15.7% and 9.1% for MRCNN and FCIS, respectively. Training only with default lighting
reduces the AP slightly by 3.4% for MRCNN and increases the AP by a neglible 0.4%
for FCIS. Training on train rot0 lightO reduces the AP by 13.2% and 12.9%, respectively.
Overall, the results indicate that the models are more invariant to changes in lighting
than to rotations of the objects. Why MRCNN performs better when trained on train rot0
light0 than when trained on train rot0 remains unclear.

Data augmentation. As shown in Table 5.3, training on the augmented dataset aug
boosts the AP on the test set to 76.1% and 69.8% for MRCNN and FCIS, respectively.
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Figure 5.12: Data augmentation. Influence of number of artificially generated training images
on AP for validation and test set.

MRCNN FCIS

AP APs5 APrs AP APs5 APys
train 495 576 51.3 | 45.6 583 51.3
train rot0 33.8 416 356 | 365 475 41.8
train light0 46.1  54.8 48.0 | 46.0 593 52.0
train rot0 light0 | 36.3  45.1 386 | 327 434 38.1
aug 716 869 817 | 698 87.6 82.4
train+aug 79.9 89.1 85.3 72.5 88.1 83.5

Table 5.3: Instance segmentation benchmark results on the test set. (Top) Training on
different subsets of the train set. (Bottom) Training on augmented data yields the highest AP.

This is significantly higher than the 49.5% and 45.6% achieved by training on the original
train set. Combining the sets train and aug to train+aug further improves the AP by 8.3%
and 2.7%, respectively.

The aug split consists of 10000 artificially generated images. In order to evaluate the
influence of the number of training images, we used subsets of 2000, 4000, 6000, and
8000 images of aug, respectively, to train FCIS pretrained on ImageNet. The resulting
AP values for both validation and test set are shown in Fig. 5.12. It can be seen that
using more images results in better performance. However, already with 2000 generated
images the AP increases by over 20 percentage points compared to using train.

Object detection. We conduct the same ablation study for the task of object detection.
The resulting AP values for all training splits of the methods FRCNN and RetinaNet,
as well as the results of instance segmentation methods MRCNN and FCIS evaluated
on bounding box level, are summarized in Table 5.4. It is interesting to note that these
AP values are not always better than the AP values obtained for the more difficult
task of instance segmentation. For all methods, the overall performance is very similar.
Reducing the training set to only one rotation or only one lighting per scene results in
worse performance. Analogously, augmenting the dataset by generating artificial training
images results in a strong improvement.
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MRCNN FCIS FRCNN RetinaNet
AP APsy APy5| AP APsg APss| AP APsy AP | AP APsy APrs
train 46.5 583 535 (440 594 517 |46.1 552 49.7 |51.0 61.0 528
train rot0 341 425 383 [34.6 482 413 |36.7 469 415|329 398 345

train light0 455 557 495|440 603 519 (437 539 478 |51.7 62.0 53.6
train rot0 light0 | 35.7 46.0 40.5 |299 439 354 |343 443 39.0|31.6 389 332
aug 729 879 820 699 881 807|735 884 822|742 869 814
train+aug 783 89.8 849 |683 885 809 |78.0 903 84.8 |80.1 89.6 84.5

Table 5.4: Object detection benchmark results on the test set. Mean average precision
values for models trained on different training sets.

5.6 HALCON Baselines

In this section, we re-evaluate the performance of object detection and instance segmenta-
tion models on D2S using our own implementations in HALCON [142] (cf. Section 4.5).
In particular, this allows a fair comparison with more recent results in the following
chapters that are also obtained with HALCON. Moreover, we compare the influence
of using different backbone networks and the size of input images. The HALCON
implementations outperform their Detectron counterparts of the previous section and
thus can be used as a strong baseline. We provide a detailed analysis of the baseline
results before we look at failure cases and future work in the next section.

To get a feeling for the influence of choosing one or the other architecture and the
effects of some hyperparameters, we evaluate a number of models on D2S both for object
detection and instance segmentation. For all models, we train on the train + aug split.
Using the ground truth annotations of 1000 random samples from the validation set,
we determine the maximum overlap between objects of any class as 0.42 and between
objects of the same class as 0.41. In order to account for inaccurate results, we set the
NMS parameters to 0.5, both for the class-agnostic and class-specific case. We set the
maximum number of detections to 50 since there are at most 15 objects within one image
and we want to avoid an overly high number of false positives. Setting the maximum
number of detections too low can lead to the effect that some objects are found multiple
times, but others not at all, especially for models that perform poorly.

5.6.1 Object Detection

Table 5.5 shows the results for RetinaNet and FRCNN object detection baselines using
different weight initializations, backbone depths, and image resolutions. For a small
(S) image size of 512 x 384 and initializing only the backbone of the models with the
weights of a ResNet-50 classifier that has been pretrained on ImageNet [168], FRCNN
clearly outperforms RetinaNet with respect to all measures, especially at the higher IoU
threshold of 0.8. The advantage almost vanishes when the models are initialized with
COCO-pretrained weights.® But what remains is the ten to eleven-fold number of false

8To be more precise, we can only initialize those weights that have exactly the same shape. This does not
hold for the final prediction convolution layers where the output size depends on the number of classes.
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Model IoU[0.5:0.95] IoU[0.5] IoU[0.8]

AP AR AP AR TP FP | AP AR TP FP
Image dimension 512 x 384 (S)
RetinaNet R50 * | 68.5 743 | 83.7 884 44016 161631 | 73.6 78.5 38782 166865
RetinaNet R101 * | 72.1 774 | 86.0 90.0 44757 143939 | 77.5 82.0 40542 148154
FRCNN R50 * 741 798 | 841 872 43247 14024 | 779 82.6 40886 16385
FRCNN R101 * 762 820 |86.1 889 44072 16590 | 80.1 84.8 41965 18697
RetinaNet R50 76.8 815 | 86.3 89.7 44745 109185 | 80.2 84.1 41728 112202
RetinaNet R101 | 783 82.8 | 872 90.5 45107 104633 | 81.6 85.3 42317 107423
FRCNN R50 780 829 |86.3 89.0 44197 10557 | 81.2 85.2 42221 12533
FRCNN R101 79.0 838 |86.8 89.4 44426 12134 | 81.9 85.7 42544 14016
Image dimension 768 x 512 (M)
RetinaNet R101 | 80.8 849 | 88.6 915 45635 91371 | 83.6 87.1 43260 93746
FRCNN R101 81.2 85.7 | 88.0 90.3 44890 9285 | 83.5 87.2 43314 10861
Image dimension 1024 x 768 (L)
RetinaNet R101 | 81.6 85.6 | 88.9 91.7 45673 79014 | 83.9 87.1 43271 81416
FRCNN R101 81.1 85.0 | 86.8 89.1 44263 9090 | 83.0 86.0 42733 10620

Table 5.5: Box Detection: Influence of model choice, image size, backbone, and pre-
trained weights. Overall AP and AR for IoU thresholds [0.5:0.05:0.95] are shown on the D2S
test set, and together with the number of TPs and FPs at IoU thresholds 0.5 and 0.8, respectively.
For models marked with * only the backbone has been initialized with [mageNet pretrained
weights, all others have been initialized with weights from a model that has been pretrained on
COCO. Increasing the spatial dimension of the input images from small to medium resolution
leads to a large improvement of the AP, but there is no gain from medium to large resolution.
At a low minimum confidence of 0.05 RetinaNet has a very high number of false positives in
comparison to FRCNN, but this does not lead to a large difference in AP. A larger ResNet-101
backbone (R101) instead of a ResNet-50 backbone (R50) only slightly improves the result.

positives that RetinaNet predicts for a minimum confidence of 0.05 in comparison to
FRCNN.

Initializing all weights of the model from a COCO-pretrained model, leads to a
significant improvement of AP around between 2.8% (FRCNN R101) and 8.3% (RetinaNet
R50). With COCO-initialization, at IoU 0.5 and minimum confidence of 0.05, the overall
precision of RetinaNet R50 increases from 27% to a still very low value of 41% despite its
relatively high AP value. For COCO-pretrained models, the use of a heavier ResNet-101
backbone increases the AP by 1-1.5% in comparison to a ResNet-50 backbone.

Increasing the image resolution to 768 x 512 (M) adds another 2.5% and 2.2% AP
for RetinaNet R101 and FRCNN R101, respectively. While at IoU 0.5 RetinaNet and
FRCNN are almost on the same AP-level, FRCNN predicts more accurate boxes such
that it outperforms RetinaNet at higher IoU thresholds. For larger input images of
1024 x 768 (L) there is only a small increase in overall AP of 0.8% for RetinaNet and a
marginal reduction of -0.1% AP for FRCNN, respectively. At IoU thresholds 0.5 and 0.8
the measures are on the same level or below their counterparts for the medium image
size. However, for RetinaNet, there is a significant reduction of around 12000 FPs when
the image size is increased from M to L. Fig. 5.13 reveals that L models are stronger at
very high IoU thresholds > 0.8. Especially for FRCNN, where for both IoU 0.5 and 0.8
only the number of false positives reduces and the AP even decreases by 1.2% and 0.5%,
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Figure 5.13: AP per IoU and image size on D2S test. (Left) Box detection results of FRCNN
and RetinaNet for different image resolutions. While a change from small to medium image
size leads to a consistent improvement across all IoU thresholds, a change from medium to
large image size only leads to more precise localization and improves only the AP at high IoU
thresholds. For lower IoU thresholds, higher AP values are achieved using a medium image size.
(Right) Instance segmentation results of MRCNN and RetinaMask. Similar to detection, the best
results are achieved at medium image resolution. MRCNN S is by far the worst model. Generally,
instance segmentation models have a slightly lower AP then detection models already at IoU
threshold 0.5. Note that the right plot shows mask AP, but the left plot box AP.

respectively. The figure also shows that the most potential for an improved overall AP
lies in the improvement of the AP at high IoU thresholds. That means, only models with
very precise localization are able to significantly improve the AP. On the other hand, also
at IoU threshold 0.5 there is some room for improvement. A higher recall at this low IoU
threshold will potentially also have positive effects for higher IoU thresholds. To find
out what needs to be improved, we will look at qualitative results and a more detailed
analysis of the baselines and their failure cases in Section 5.7. Overall, for RetinaNet
the L model is the best choice, while for FRCNN, the M model yields the best trade-off
between memory consumption, runtime, and accuracy of the results.

The HALCON implementation of RetinaNet and especially FRCNN achieves higher
box AP results than the Detectron implementations from the previous section, both for
M and L models. Within Detectron, the used image resolution is slightly larger than the
HALCON L models. In comparison to Detectron, HALCON has lower APsy values, but
higher overall AP. This means that the HALCON box-predictions are more accurate,
leading to higher AP values at high IoU thresholds.

5.6.2 Instance Segmentation

Table 5.6 shows the results of our instance segmentation baselines. In general, the results
are very similar to their detection counterparts in Table 5.5. This is no surprise because
the instance segmentation results of both MRCNN and RetinaMask depend highly on
the predicted boxes.

However, while RetinaNet R101 S performs worse than FRCNN R101 S, RetinaMask
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Model IoU[0.5:0.95] IoUJ0.5] IoUJ0.8]
AP AR AP AR P FP | AP AR TP FP

Image dimension 512 x 384 (S)
RetinaMask R50 | 78.1 82.3 | 85.9 89.1 44316 92680 | 81.7 85.2 42268 94728
RetinaMask R101 | 79.3 83.5 | 869 90.0 44710 83192 | 83.3 86.7 43010 84892
MRCNN R50 766 819 | 858 885 43961 10932 | 80.3 84.7 42047 12846
MRCNN R101 777 835 | 865 89.7 44577 11289 | 81.7 86.5 42951 12915
Image dimension 768 x 512 (M)
RetinaMask R101 | 814 853 | 87.8 90.6 45040 74100 | 84.3 87.6 43502 75638
MRCNN R101 80.2 85.0 | 875 90.0 44721 9542 | 83.5 87.3 43369 10894
Image dimension 1024 x 768 (L)
RetinaMask R101 | 80.8 84.6 | 869 89.9 44749 78759 | 829 86.2 42890 80618
MRCNN R101 798 841 |864 888 44112 8532|824 858 42672 9972

Table 5.6: Instance segmentation: model choice, image size, and backbone depth.
Overall AP and AR are shown on the D2S test set, together with the number of TPs and FPs at
IoU thresholds 0.5 and 0.8, respectively. All models have been initialized with weights from a
model that has been pretrained on COCO.

R101 S is significantly stronger than MRCNN R101 S. Fig. 5.13 shows that here the overall
AP of MRCNN R101 S is decreased by the bad results for high IoU thresholds. This
means that a significant portion of the mask predictions is not accurate enough to count
as TPs at high IoU thresholds.

For instance segmentation models, our baselines do not improve with an increase
from medium (M) to large images (L). That is in contrast to the RetinaNet detection
results, where RetinaNet L clearly outperforms its M counterpart at high IoU thresholds
and achieves a higher overall AP. For MRCNN L and RetinaMask L, the overall AP
drops by 0.4% and 0.6%, respectively. Hence, for both MRCNN and RetinaMask the M
models have the best overall performance.

Also here, RetinaMask shows a very high number of FPs that does not affect the AP
measure significantly. Interestingly, for IoU threshold 0.8, RetinaMask R50 S has a lower
number of TPs (42268) and a much higher number of FPs (94728), but the same AP
(81.7%) as MRCNN R101 S (42951, 12915, respectively). A possible reason is that there
are specific categories where RetinaMask outperforms MRCNN significantly.

In comparison to the Detectron baselines from the previous section, here the mask
AP of MRCNN is 1.0-1.3% lower than the box AP of FRCNN. Still, the overall achieved
AP is on the same level or slightly higher than the Detectron result for M and L models
(despite slightly smaller image size).

5.7 Failure Cases

The results that we have seen so far are remarkable and already on a quite high level with
AP values above 80%. However, a closer look at the qualitative results reveals several
shortcomings of the evaluated models. In this section, we provide a detailed failure case
analysis and motivate the work of the following chapters.
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5.7.1 Object Detection

Many of the instance segmentation failure cases are based on wrongly or inaccurately
predicted boxes. Therefore, we start with an evaluation of box detection results. Table 5.5
shows that the overall AP averaged over classes and IoU thresholds is not sufficient for
the comparison of two models because the results may contain a high number of false
positives that do not reduce the AP.

Moreover, for detection methods the accuracy is measured in two dimensions. One
dimension concerns the classification accuracy and the other one the localization accuracy.
To get more insight with respect to the reasons for false predictions, we look at the
number of false positives (FPs) in different categories in the first row of Fig. 5.14: a false
positive can occur due to a wrongly predicted class (cls); the localization (loc) can be
bad, i.e., the prediction has an IoU below the given threshold with the ground truth
annotation; there can be predictions within the background (bg) that have an IoU of
0.0 with any annotation; there can be duplicate predictions (dup), i.e., there is another
TP that has higher score with the annotation; or there are multiple (mult) reasons for
the prediction to be a false positive, mostly with wrong class and bad localization. We
calculate these numbers for IoU threshold 0.5, since any prediction with bad localization
at this threshold will also be an FP for higher IoU thresholds.

In order to analyze the localization performance in more detail, the second row
of Fig. 5.14 shows the distribution of the obtained IoUs of the predictions with the
annotations. Moreover, we show a histogram of the predicted scores and a score versus
IoU scatterplot for FRCNN R101 S and RetinaNet R101 S in the third and forth row of
Fig. 5.14. To generate this plot we choose a minimum confidence of 0.05, such that the
AP values for IoU threshold 0.5 get close to their maxima.

The AP-values of FRCNN and RetinaNet are almost equal (86.8% and 87.2% on
test, 86.7% and 86.5% on val, respectively, Table 5.5). However, their distributions of
predictions and numbers of false positives are significantly different.

RetinaNet has a much higher number of FPs in general, but in particular for the
categories bg, dup, loc, and mult. Since the average recall is higher for RetinaNet than for
FRCNN, this means that these false positives are additional to the TPs and they are not
penalized within the AP measure. However, the scatterplot at the bottom of Fig. 5.14
reveals that just increasing the global minimum confidence threshold leads to a drop in
recall and would thus reduce the AP. We will further analyze this issue in Chapter 6.

While the total number of TPs is slightly higher for RetinaNet (44 839) than for
FRCNN (44 483), the histogram of IoUs with ground truth annotations reveals that
FRCNN predicts more accurate boxes and thus has higher AP-values at higher IoU
thresholds. The vast number of FPs of RetinaNet are mainly distributed over the IoU-
range from 0.0 to 0.55, which can also be seen from the fact that the majority of FPs is in
the categories loc and mult. FRCNN generally has a much lower number of FPs and they
are mainly caused by a wrong class prediction or a bad localization (or both).

The score histograms and the score vs. IoU scatterplots show another significant
difference between the two model types: While for RetinaNet the scores of predictions
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Figure 5.14: Distribution of detection failure modes, scores, and IoUs on D2S val. The
figures reveal that despite a very similar APsy value of 86.9% vs. 86.8% for FRCNN and RetinaNet,
respectively, the number of FPs and their score distribution is significantly different. See text for

further interpretations.
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start close to the minimum confidence, for FRCNN the majority of confidences are close
to 1.0. This can be explained by a different calculation of scores: FRCNN uses a softmax
on the output of the class prediction fc-layer and RetinaNet uses a sigmoid activation on
the activations of the class prediction convolution. This might also be a reason for the
significantly higher number of predictions and FPs of RetinaNet, because the sigmoid
activation is not exclusive, i.e., for each anchor within the RPN each class can be predicted.
In the architecture of FRCNN only the class with the highest activation is predicted and
all other categories are suppressed. Hence, in cases where the model is unsure whether
the underlying object belongs to class A or B, FRCNN will guess and by some chance be
right. If it is right, FRCNN predicts one TP, if it is wrong FRCNN predicts one FP and
gets one FN. In comparison, RetinaNet will most likely predict a box for both classes
A and B, leading to one TP and one FP, but no FN. This could also be the reason why
RetinaNet has a slightly higher AR than FRCNN (90.5% vs. 89.4% at IoU 0.5).

Fig. 5.15 shows some qualitative results of failure cases. Clearly, there are many more
FPs for RetinaNet than for FRCNN, but a closer look reveals that also a true positive is
present for almost all objects. Both models fail mainly in cases that have not explicitly
been part of the training data:

¢ FPs occur in the background when the background is different to the brown paper
background from the training set (6th and 7th row).

* The models have difficulties with touching or overlapping objects (1st and 2nd row).

¢ Both models fail if the object appearance is slightly different than known from the
training set. For example, for the Coca Cola bottle in the first or fourth row of
Fig. 5.15, the classification or the localization fails if the bottle appears in a side
view and empty instead of standing and filled. The same holds for some tea boxes,
where some of the categories are only captured from a specific view within the
training set. If the box is rotated and the printing is only slightly different to the
training set, the classification typically fails or the localization is wrong (5th row).

¢ Within the training set the objects are usually positioned close to the center of the
turntable. Objects that reach out of the image boundary are often not found at all
or wrongly classified (7th row).

¢ Within the validation and test set, oversaturated images occur due to reflections, a
long exposure time, or a light background. This can lead to a very low contrast for
some objects. In turn, this often leads to a bad localization or objects that are not
found at all (8th row).

5.7.2 Instance Segmentation

Since the instance segmentation models basically just add a mask prediction head to
the detection architectures, it is no surprise that the distributions of the instance mask
predictions of MRCNN and RetinaMask are close to the box prediction distributions
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FRC

Figure 5.15: Detection Failure Cases on D2S test. Failures occur due to occluding or
touching objects, wrong classifications, especially fine-grained classification problems, clutter
objects, unknown backgrounds, or inaccurate localizations. RetinaNet shows significantly more
false positives (best viewed digitally and with zoom).
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Figure 5.16: Distribution of instance segmentation failure modes, scores, and IoUs on
D2S val. RetinaMask predicts many more FPs than MRCNN, especially with very low IoU to
any annotation. Scores of RetinaMask are spread more uniformly across the interval from the
minimum confidence to 1.0. See text for further interpretations.
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of their detection counterparts FRCNN and RetinaNet, respectively. Fig. 5.16 shows
that RetinaMask has a much higher number of FPs than MRCNN, and scores are more
uniformly distributed over the whole range from zero to one. However, a comparison of
Fig. 5.16 with Fig. 5.14 reveals that there are some differences between the box detection
models and the instance segmentation ones:

For both MRCNN and RetinaMask, a majority of FPs have a maximum IoU with any
GT annotation in the range [0, 0.05]. This means that there are many mask predictions
solely within the background or there are predictions where no mask is present at all.
Moreover, for FRCNN a majority of TPs have an IoU in the range [0.95, 1]. For MRCNN,
still the largest fraction of TPs has a mask IoU within this range, but a significant portion
of TPs has moved to the [0.9, 0.95) IoU interval. This can have a large impact on the
overall AP since APy is dropping significantly with this change. The score vs. IoU scatter
plot of RetinaMask shows that in comparison to the RetinaNet detection model it predicts
more FPs that have a very high IoU but a low score. Presumably, these must be either
duplicate or wrong class predictions.

The qualitative results in Fig. 5.17 underline that when a box prediction has a bad
localization and mainly overlaps with the background, the mask prediction is either very
bad or it is surrounding the objects that it contains (6th to 8th row). It is interesting that the
mask head predicts a high mask probability within the background although it has never
been trained for that. A reason could be that the training set only contains a non-textured
background and hence any difference to the brown uniform paper background within
the training images indicates that there must be an object.

If a box prediction does not perfectly fit one of several neighboring objects, then the
predicted mask mostly covers parts of all of these objects instead of predicting a good
mask for only one of them (2nd and 6th row for FRCNN, almost all rows for RetinaMask).

Neighboring or touching objects are a challenge also in terms of mask prediction,
but in the case that the box is predicted correctly, both models can learn to predict an
instance mask that only covers the object of interest. However, for overlapping objects
the mask is often inaccurate at the locations of overlap (Ist and 2nd row).

For large objects that are diagonally aligned (the pasta bag in the 4th row) there are
subtle artifacts that result from upsampling the low resolution mask predictions to the
original box dimension within the input image.

A very common artifact is that whenever there is a clutter object that has not been part
of the training set, the models predict an almost perfect instance mask for these (the mouse
pad in the 7th and 8th row). Theoretically, a class-specific mask head could help to reduce
this problem, but we did not find that there is a significant improvement compared
to the used class-agnostic prediction. Moreover, the class-specific mask prediction is
computationally more expensive, especially during the training phase.

Of course, also for instance segmentation, a low contrast due to a light background
and a too long exposure time leads to inaccurate masks (3rd and 8th row).
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input image ground truth FRCNN R101 S  RetinaNet R101 S

Figure 5.17: Instance Segmentation Failure Cases on D2S test. Failure cases have similar
reasons as in the detection case. Additionally, if the box localization is bad this leads to cropped
masks. For boxes that reach over multiple objects or boxes within the background, usually the
mask predictions are not reasonable (best viewed digitally and with zoom).
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5.7.3 Summary of Issues and Further Work

In this and the previous section, we have seen several failure cases and issues of both the
detection and instance segmentation methods on D2S. We summarize them here once
again and refer to the following chapters, in which we address them:

e High AP values do not necessarily lead to a low number of false positives. Es-
pecially for RetinaNet and RetinaMask, despite high AP values, we have seen a
very low precision and many false positives with a low IoU to any ground truth
annotation. If we think about the typical application of the D2S scenario, i.e., an
automatic warehouse or supermarket checkout system, these predictions are items
that are on the customers invoice — either as additional items that are not really
present, or as wrongly classified objects. This issue will be addressed in Chapter 6.

* A large number of false positives occurs due to a domain gap between the training
data and the validation and test data. This is the case for the failure cases due to
neighboring objects, backgrounds that have not been part of the training data, and
failures due to reflections. One way to solve this issue is by using data augmentation
as shown in Chapter 7.

* Axis-aligned box detections often cover a large part of the background. Thus, when
multiple, close-packed objects are within the image, for a human it is sometimes
difficult to visually assign the detections to the underlying objects. Moreover, for
two-stage detection methods such as FRCNN, MRCNN, or RetinaMask, a significant
portion of the features that are used within the second or a consecutive stage are
pooled from the background or from neighboring objects. Hence, in Chapter 8,
we extend the box detection to oriented boxes and analyze whether this helps to
improve the class prediction.

e The AP is calculated as an average over different IoU thresholds in order to
highlight accurate models. So far, at high IoU thresholds, the models are weak.
That means, the predictions need to be more accurate to improve the overall AP.

- If applicable, matching algorithms can lead to very accurate subpixel-precise
detections. In Chapter 9, we compare a matching algorithm with deep-
learning-based oriented box detection and present a hybrid approach that
fuses both.

— Unfortunately, the matching approach is not suitable in the D2S case due to
perspective distortions and it also does not predict instance masks. Hence, we
present another method that fuses the oriented box detection with instance
segmentation for accurate mask prediction in Chapter 10.

* We have seen that many of the failure cases arise from touching or overlapping
objects. A method to predict instance masks beyond their visible parts is presented
in Chapter 11.
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5.8 Conclusion

We have introduced D2S, a novel dataset for instance-aware semantic segmentation that
focuses on real-world industrial applications. The dataset addresses several challenges
that are highly relevant in the field, such as dealing with very limited training data. The
training set is intentionally small and simple, while the validation and test sets are much
more complex and diverse. As opposed to existing datasets, D2S has a very uniform
distribution of the samples per class. Furthermore, the fixed acquisition setup prevents
ambiguities in the labels, which in turn allows flawless algorithms to achieve an AP
of 100%. We further showed how the high-quality annotations can easily be utilized
for artificial data augmentation to significantly boost the performance of the evaluated
instance segmentation methods from an AP of 49.5% and 45.6% to 79.9% and 72.5%,
respectively.

Moreover, we have done an extensive quantitative and qualitative result and failure
case analysis of our baselines. Our analysis reveals severe issues of current instance
segmentation methods that predict a high number of false positives. These are not all
taken into account by the current evaluation protocol AP, which makes it difficult to
rank different models in a meaningful way.

Overall, the benchmark results indicate a significant room for improvement of the
current state-of-the-art. We believe the dataset will help to develop more accurate
instance-aware segmentation methods and leverage new approaches for artificial data
augmentation as will be shown in the following chapters.
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AP* — Fixing the Recall Bias of
Average Precision

We have seen in Chapter 5 that comparing two models solely based on the overall
mean average precision (AP) measure in many cases is not sufficient. The models’
predictions can have widely different distributions of scores and IoUs with the ground
truth annotations although their AP is almost equal. In particular, our analysis has
shown that using the current form of AP as the selection criterion favors models with a
potentially very high number of false positives. In order to promote algorithms that are
reliable and usable in industrial applications (cf. Chapter 1), we propose to improve the
evaluation protocol that is used for the evaluation on datasets like COCO [118], LVIS [62],
and many other detection datasets and challenges. In this chapter, we provide additional
insights to potential problems of AP, especially for a low number of per-category ground
truth instances. We further propose certain changes to the way AP is calculated and
introduce the novel AP* measure that incorporates the actual precision of a method.
This makes AP* more reliable than AP and avoids selecting models that show a high
number of false positives. Moreover, in comparison to AP, AP* allows to calculate
optimal class-specific or class-agnostic score thresholds to be used in the application.

In our experiments on D2S, we show that if the score thresholds of RetinaNet are
optimized for AP* instead of AP, the actual average precision of the model can be
increased from 32.9% to 82.7%, while the AR is kept at a high value of 79.8%. The
same holds for FRCNN, where the precision increases from 78.5% to 86.4% with an
AR of 80.4%. On the one hand, with the proposed changes to AP, we strengthen its
expressiveness while we keep the benefits of the measure. On the other hand, the
extension of AP to AP* leads to more reliable models and thus AP* is a good alternative
to AP as an evaluation measure for detection and instance segmentation methods.

6.1 Introduction

Evaluation is potentially the most fundamental step of the model selection process
in every industrial application. Evaluation is mainly used to select the best model
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architecture among several possibilities, to tune hyperparameters, or to select the best
model state during the training process. The higher goal of an evaluation is usually to
predict how well the given model will perform on new, unseen data, e.g., when being
used in a machine during the online phase. As described in Chapter 2, the selection
of the best model state or hyperparameter setting is typically done with the help of
a validation set, and for the final model selection or comparison within a benchmark,
another disjoint test set is used. However, when looking at the evaluation results on the
validation and test sets, one should always keep in mind that these sets just contain a
finite number of samples. Those samples have (hopefully) been drawn from the same
image distribution as the images that the model will be faced with during the online
phase, but we do not always have a guarantee for that. Hence, with an evaluation we just
get a prediction of how well the model might perform in the underlying application and
this prediction might be wrong or at least contain a bias.

As introduced in Section 4.2, the evaluation of detection methods needs to incorporate
two dimensions at the same time: one is measuring the quality of localization, and the
other is measuring the accuracy of classification. Today, the predominant evaluation
measure in detection challenges, like COCO [118], LVIS [62], or the Robust Vision
Challenge,1 is AP, as introduced in VOC [40] and adapted by COCO.

AP handles the localization by introducing IoU thresholds that define when a predic-
tion is accurate enough to count as a true positive (TP). With respect to the classification
dimension, at the same time the predicted class needs to be equal to the class of the
underlying ground truth annotation. Setting an appropriate IoU threshold allows to
define how strict the localization should be judged. Choosing lower IoU thresholds can
be appropriate if the underlying data is difficult or ambiguous to annotate or if a very
precise localization is not important to solve the task at hand.

Generally, the benefit of using a single evaluation value like AP is that the comparison
and ranking of models is straightforward. But at the same time, all different aspects of
the model’s result are compressed into this single value and some aspects might be lost
or not be represented as much as others. For example, during the calculation of AP, the
AP values for individual IoU thresholds are averaged and they in turn are averages of
the per class APs. This means that two models where one has AP 1.0 for half of the
classes and AP 0.0 for the remaining classes has the same overall AP as another model
that gets an AP of 0.5 for all other categories. However, it is very difficult to reduce the
evaluation result to a single number and at the same time keep such information. Still,
when looking at the evaluation result, the user wants to see a difference between two
models with very different distributions of predictions.

Therefore, in this work, we take a closer look at the AP. In particular, we make the
following contributions:

¢ We explain why the AP in its current form has a bias towards recall and is not
penalizing many false positives with low scores.

lnttp://www.robustvision.net/index.php
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6.2 RELATED WORK

¢ We show that AP cannot be used to infer an optimal global nor class-specific score
thresholds because it always favors models with score thresholds set to 0.0.

e We introduce AP* as a refinement of AP that fixes the recall bias of AP and allows
to compute optimal global or class-specific score thresholds.

* We revisit the AP in detail and have a closer look at the PR-curve interpolation and
the subsampling that is done within the AP calculation.

* In our experiments, we show that using AP* instead of AP as the model selection
criterion leads to a drastically reduced number of FPs and hence to models with a
much better precision-recall trade-off.

* Finally, AP* allows a better comparison of different models without the need to set
score thresholds manually.

To showecase that the mentioned issues are not just theoretical, in Section 6.5, we look
at some examplary cases where the overall AP is very similar, but the result distribution
is very different. In particular, we show how the results from the previous chapter on D2S
can be significantly improved. For both RetinaNet and FRCNN, a majority of FPs within
the background or due to clutter objects can be suppressed by the use of optimal score
thresholds based on AP*. For example, with this modification, the mean precision on the
D2S test set can be increased from 78.5% to 86.4% for FRCNN and from 32.9% to 82.7%
for RetinaNet, respectively. At the same time, the average recall is only slightly reduced
from 83.8% to 80.4% for FRCNN and from 82.8% to 79.8% for RetinaNet, respectively.
AP~ also helps to obtain a more meaningful ranking of detection models because FPs
with low scores are not ignored in its calculation. For example, RetinaNet with a low
score threshold and many FPs only achieves an AP* of 53.2%, but if FPs are suppressed
with an appropriate score threshold, we can increase the AP* value to 72.1%.

6.2 Related Work

With the introduction of Pascal VOC, Everingham et al. [39, 40] first defined the mean
average precision (AP) as an evaluation measure for box detection methods. They
proposed to use a single and relatively low IoU threshold of 0.5 in order to account
for imprecise labels. Due to the popularity of the challenge, AP is still used today.
During the period of the VOC challenge, the way how the AP was computed as the area
under the precision-recall (PR) curve was changed: from 2010 onwards, the PR curve
subsampling has been removed (cf. Section 6.3.1). Lin et al. [118] slightly adapted the
AP again when they published the COCO dataset and detection challenge. We describe
the AP calculation of both VOC and COCO in Section 6.3.

Hoiem et al. [74] provide visualization tools to extend the evaluation of a detector
summarized in a single AP value. The tools do not change the evaluation measure, but
reveal the causes of errors that are made by a detector. Thus, this work can be seen as a
complementary contribution to the development of new detection measures.
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Oksuz et al. [148] propose the Localization Recall Precision (LRP) error metric as an
alternative to AP. The authors motivate their new measure by some of the issues that
we list in Section 6.4, e.g., non-penalized FPs (Section 6.4.1), interpolation of PR curves
(Section 6.4.2), and they claim that AP does not propose a (class-specific) score threshold.
To address these deficiencies, LRP does not average over all possible precision and recall
pairs. For a given IoU threshold Tj,y, the LRP at an optimal score threshold s per class
can be calculated. It represents a trade-off between localization, precision, and recall. For
a given threshold s, a set of ngr GT annotations G and the set of detections with score of
at least s D;, LRP error is computed as

1
LRP(G,D;) = 7 (wiouLRPioy + wrpLRPpp + wpNnLRPpN ), (6.1)

where Z = nrp + npp + ngr, LRPjoy is 1— the mean IoU of true positives, LRPrp is
1— precision, and LRPry is 1— recall. The weights are set to wi,u = nrp/(1 — Tiou),
wrp = |Ds|, and wpny = ngr. If the IoU threshold is fixed, the optimal score threshold s
for a detector is given by the optimal LRP:

0LRP(G,D) = min LRP(G, D), (6.2)
S

TERP = argmin LRP(G, Ds). (6.3)
S

Moreover, the authors claim that “[aJnother deficiency of AP is that it does not explicitly
include localization accuracy” [148, p. 505]. However, this is done by averaging over multiple
IoU thresholds. LRP uses the LRP,,y term to favor more accurate localizations, but the
IoU threshold parameter T,y remains.

LRP is a valid alternative for AP, but it is not widely used in the community. A certain
drawback of LRP is that it does not distinguish between FPs with high confidence and
those with low confidence, while this is incorporated in AP via the PR curve. Oksuz et al.
claim that “LRP represents the shape of the PR curve via its components” [148, p. 506] and
that “AP cannot distinguish between very different PR curves” [148, p. 515]. We believe the
opposite is true: by using the AP correctly (with proper sampling and no interpolation),
the AP is indeed different for different PR curves. Moreover, we do not see how LRP
does represent the shape of the PR curve, since it is just defined over the number of TPs,
false negatives (FN), and the mean IoU of TPs. We will show in Section 6.5 in a simple
example that LRP is not always intuitive to interpret.

Another aspect is that LRP is strictly penalizing detections with IoU < 1.0. We
claim that for datasets with low annotation reproducibility this should be avoided. In
comparison, for AP the preferred level of localization accuracy can be set via the used
IoU thresholds.

As stated in the survey papers of Liu et al. [122] and Zou et al. [217], apart from the
LRP and AP, there are no commonly used evaluation measures for detection methods.
Also in the recently introduced benchmark dataset and challenge of LVIS [62], AP is used
as defined by the COCO authors. Of course, also for detection methods we can compute
general measures, such as the precision or recall (cf. Section 6.3.1).
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6.3 Average Precision as Detection Measure

In this section, we explain AP as it is used in the current benchmark datasets like VOC,
COCO, or LVIS. We also go through the changes that have been made between the
definition in VOC and COCO. All definitions can be used both for detection methods
that predict boxes or instance masks — just interpret the box as a box-shaped mask.

6.3.1 Basics

For convenience, we repeat some of the definitions from Section 4.2 here:

In comparison to classification, where the predicted class can either be right or wrong,
for detection we get a new dimension of the evaluation with respect to the localization. To
measure how well a prediction A fits a ground truth box B, we measure the intersection
over union (IoU), i.e., the area of the intersection divided by the area of the union:

_ |ANB|

IoU(A, B) = AUB|

(6.4)

For a prediction, the localization is correct if the IoU with a ground truth box is higher
than a threshold Tioy. Depending on the necessary precision, Tioy can be chosen higher
or lower.

To be a true positive (TP), the prediction must have a correct localization and also
the correct class, i.e., the same as the ground truth box that it has been matched to. We
have seen in Section 4.2 and the previous chapter that there are various reasons for a
prediction to be a false positive (FP) and that usually an FP that has either a wrong class
or is a duplicate also leads to a false negative (FN).

If we denote G as the set of all ngt GT boxes, ngy as the number of FN boxes, D as
the set of all np predictions, nrp as the number TP predictions, and nrp as the number of
FP predictions, we can calculate the following well-known relations:

Recall = (G, D) = Z:; - nTP’T’nFN, (6.5)

Precision = p(G, D) = Zﬂ = nn% (6.6)
D TP FP

6.3.2 PR Curve

To form a precision—recall (PR) curve, all detections 4 in D are sorted by their score
s = s(d). We denote d; as the detection with the i-th highest score in D, and D; := {d; €
D|j < i} as the set of all highest scoring detections up to the i-th highest scoring one.
Iteratively, for i = 1,...,np, we can compute the precision-recall pairs (p;, ;) =
(p(G,D;),r(G,D;)). The PR curve is usually a left-continuous step function: we have
ngr + 1 recall-steps r; = j/ngr,j = 0,...,ngr. Forr € (r]-_l,r]-],j =1,...,ngr, the
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corresponding precision is then given by
p(r) = mlax{pi|(pz-, r)stri=rj rji1 <r<=rj}. (6.7)

An example of a PR curve is given on the left side of Fig. 6.1.

To the best of our knowledge, the intention of the left-continous step function is the
following: the PR curve is used to find a good precision-recall trade-off. This is done
by choosing a score threshold T; and suppressing all detections with s(d) < Ts. Instead
of choosing s(d;_1) < Ts < s(d;), based on the given evaluation the user should always
choose either T; = s(d;_1) or T; = s(d;) (compare with the left plot in Fig. 6.1):

If di_q is a TP and d; is a TP, we choose Ts = s(d;), since p; > p;—1 and r; > r;_1,

if d;_1 is a FP and d; is a TP, we choose Ts = s(d;), since p; > p;—1 and r; > r;_1,

if d; is a FP, we choose T; = s(d;_1), since p; < p;—1 and r; = r;_1, and

if d;_1 is also an FP, we can iteratively continue to increase T; until we come to the
next TP and the maximum precision for this recall is reached.

However, if we see our evaluation set as a predictor for the unknown online phase,
we question whether the use of a step function makes sense, especially for rare categories
where the evaluation set contains only a few GT annotations (e.g., ngr < 20). In this
case, we actually do not know much about the distribution of our predictions with
respect to their scores and their assignment to TPs and FPs. Hence, we also do not
know how the shape of the PR curve between the recall steps would look like if we had
a larger evaluation set. For increasing ngr, the differences between different kinds of
interpolation become smaller. Thus, we will stay with a left-continuous step function for
the PR curve in this work.

The value at rp = 0.0 of the PR curve is undefined if the first prediction is a TP
because precision is not defined if no detection is present, otherwise it is 0.0.

Another way to think of the PR curve computation is the following: It is built from np
precision-recall pairs (p, r). Whenever we add a new detection d; U D;_1 = D;, we make
a step. If d; is a TP, recall is increased and, therefore, we call this a recall step. In total,
for D, there are nyp < ngr of these. At the same time, for a TP, the precision increases if
it is not already at 1.0. In case of an FD, the precision decreases and the recall remains
constant. While the recall increments always have the same size of 1/n¢r, the precision
steps become smaller and smaller as the overall number of predictions increases. More
precisely, the i-th precision step is —1/(|D;_1| + |D;j|) if pi—1 > 0 and d; is an FP, and it
has the size of (1 — p;_1)/|D;] if d; is a TP. This means that those detections with the
highest scores have the largest influence on the precision, but only TPs have an influence
on the recall and it is always the same, independent of their score.

We refer to those FPs with high scores that appear on the left side of the PR curve as
early FPs and to those with low scores on the right side of the PR curve as late FPs. In
particular, early FPs are harmful during the use of our model because their scores are
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Figure 6.1: Exemplary PR curves. ngr = 5, the order of detections is (FP, TP, TP, FP, TP,
TP, FP, FP). (Left, red) A non-interpolated PR curve, leading to AP,y = 0.484. (Right, blue) The
interpolated counterpart with APjp; = 0.528, i.e., 0.044 increase of AP.

higher than most of the scores of TPs and thus they cannot be filtered out by increasing
the score threshold T; without significantly reducing the recall.

6.3.3 Mean Average Precision

To compare different detection methods on a dataset, the authors of VOC [40] established
the mean average precision (mAP) that summarizes the detector quality in a single
measure. Therefore, first, the average precision (AP) for each category is calculated as
an approximation of the area under the interpolated PR curve for a given IoU threshold.
The mAP is the mean over the per-class AP values.

PR curve interpolation. To interpolate the PR curve for every calculated precision value
pjs j=1,...,np, the interpolated precision is defined as

pj = maxp;. (6.8)
i>]
This makes the PR curve monotonically decreasing. We will explain in Section 6.4 why
we believe that PR curve interpolation should be avoided. In this and the following
section, to emphasize their differences, we denote the area under the non-interpolated
PR curve as AP and write AP for the area under the interpolated PR curve.

PR curve subsampling. Sometimes, instead of computing the real area under the
interpolated PR curve, the PR curve is subsampled at n; equally distant recall values
r](s) = j/(ns —1). The subsampled and interpolated average precision is then defined as
the mean over the precision values at the sampling points:

ni Z p(r) ) (6.9)
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In the Pascal VOC challenge up to 2010, the interpolated and subsampled AP with
ns = 11 was used. From 2010 to 2012, the subsampling was dropped “to improve precision
and ability to measure differences between methods with low AP” [38, Section 3.4.1, p. 12] and,
instead, the precision was evaluated at every recall step of the PR curve. This relates to
the real area under the interpolated PR curve, and we refer to it as AP,

6.34 COCO AP
In comparison to the 2012 Pascal VOC mAP, COCO introduced the following changes:

1. Rename mAP to AP, and speak of a class-specific AP whenever it is unclear
whether the per-class AP or mean AP is meant. We will stick to the convention of
COCO and only write mAP if we explicitly want to make clear that the mean AP in
comparison to the the per-class AP is meant.

2. While on VOC the single IoU threshold of 0.5 is used to account for inaccurate
annotations, the measure on COCO takes again an average over the individual
mAP values for ten IoU thresholds Tioy € [0.5 : 0.05 : 0.95] in order to highlight
models with accurate localizations.

3. Since the COCO validation and test sets are huge, for some of the frequently
occuring categories (e.g., person), it is computationally expensive to evaluate the PR
curve at every recall step. This might be a reason why COCO goes back to the pre-
VOC2010 subsampling of the PR curve at uniformly-spaced recall values. However,
the number of sampling points #; is increased from 11 to 101 ([0.0 : 0.01 : 1.0]). We
will discuss in Section 6.4.3 why subsampling leads to inaccurate approximations,
especially for rare categories.

Both COCO and LVIS use the subsampled and interpolated average precision AP1g;.
Note that within the COCO evaluation protocol,? the matching of predictions to GT
annotations is done greedily with respect to the score of predictions. This means that if
there are multiple correct predictions for one specific GT annotation, the one with the
highest score is matched and all others are counted as FPs (if they do not also match with
another GT annotation). Hence, the matching TP prediction is not always the one with
the highest IoU to the GT annotation. Furthermore, it means that for two IoU thresholds
TI((}[)J > TI(OZI)j, the TP predictions with respect to TI((}[)J are not always a subset of the TP
predictions with respect to TI(OZI)J. In particular, the minimum score of TPs for TI(O% can be

lower than the minimum score of TPs for TI(OZI)J.

6.4 ADP* — Fixing Issues of AP in its Current Form

In this section, we introduce a refined version of AP that resolves some of its issues: AP*.
In each of the following subsections, we explain the issue and our proposed solution.
Some problems have a large effect on the measure and the corresponding model selection,

2https://github.com/cocodataset/cocoapi
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while others do not change the values much in practice, but still have a theoretical
justification.

6.4.1 Non-Penalized FPs and Bias Towards Recall

An excellent example for a case where FPs are not penalized is given in the appendix
of the YOLOV3 preprint [157]. Non-penalized FPs are those late FPs that have a score
that is smaller than the minimum score of all TPs for the given class. By adding those
FP predictions, the corresponding recall remains the same and only the precision is
decreasing. This does not change the area under the PR curve and thus the AP is not
affected by their presence.

With respect to a given validation set, in theory, non-penalized FPs could be easily
filtered out by introducing a class-specific score threshold T;: For each class, starting from
0.0 the score threshold is increased to remove detections until the maximum recall that is
achieved with all available detections D, r* = max, ) cp 1, starts to decrease. Since this
threshold corresponds to the score range between the lowest scoring TP and the previous
FP with lower score, and it is chosen such that no TPs are suppressed, we denote it
by TIP. We write T."(val) to emphasize that these class-specific score thresholds are
hyperparameters and need to be calculated on the validation set.

There are two reasons why such a class-specific score threshold is not used in any of
the current state-of-the-art detection methods:

1. AP does not increase if we suppress late FPs.

2. Eventually, on another dataset (such as the private test set), there might be TPs with
a lower score than T!?(val) that are suppressed. Hence, the usage of T!” could
decrease the recall and, in turn, this will decrease APs (especially interpolated APs,
cf. Section 6.4.2).

An example from practice is given in Appendix B.1 of [62]: for the Mask R-CNN baseline
on LVIS, increasing the maximum number of detections and successively reducing
the score threshold (from an already low 0.05%) down to 0.0 leads to a remarkable
improvement of the AP from 15.7% to 20.9%. This finding is to be expected because
AP11(0.0) > APy (T;) for every T; > 0. In other words, a lower score threshold
will always result in an equal or higher AP1p;. However, the downside of using low
score thresholds is that the number of predictions and especially the number of FPs is
increasing substantially. For models like RetinaNet [120] that use a sigmoid activation
for all categories and each class-specific anchor, this can lead to huge numbers of false
positives (and possibly a much higher model runtime). A practical example for this issue
on D2S is given in Sections 5.7 and 6.5. To summarize, the current definition of AP has a
bias towards recall because AP will always reach its maximum for the maximum possible
recall that the model can achieve, no matter how low the actual precision is sinking.

31s a score threshold of 0.05 reasonable for an industrial application? How can we explain to the customer
that we believe that a 5% confidence is trust worthy?
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How can we incorporate the late FPs into the existing AP measure and remove the
recall bias? The goal is to reduce the number of late FPs, while keeping a good balance
between precision and recall. Therefore, we propose to include the real final precision
using all detections of the method p(D) into the AP. In order to avoid a bias towards
precision, we multiply it by the model’s recall (D) and compute AP* as:

AP*(A) = A- AP+ (1= A)puprap, (6.10)

where we set p,,, to zero if no detection is present for a class. Although we could tune A
according to our preference towards AP or the obtained (p, r) pair, we use A = 1/2 and
weight both components equally. We will thus omit A in our notation.

Geometrically, p,, 7y, is the area of the box that is enclosed by the actual precision
and recall and thus both components of AP* have the same dimension of an area with
respect to precision and recall.

In practice, AP* encourages to increase the score threshold Ts until a good trade-off
between precision and recall is found. The p,,,r,,,, term thus leads to a balance of both
dimensions and penalizes methods for which either the precision or the recall is very
low. The AP term allows to reward models that have a good uncertainty estimation in
the sense that for two models, for which the p;,r,,-term is equal, AP* favors the one
with a better ordering of TPs and FPs with respect to their score: the model where most
TPs have higher scores than most FPs will have a larger area under the PR curve. Hence,
models with fewer early FPs achieve higher AP* values. Examples are given in the next
sections.

Moreover, note that AP* is suitable to compute an optimal score threshold T}

Ty € [s(dj+),s(dj+1)), where (6.11)
j© = argmaxAP*(D;). (6.12)

j
This means that we can iteratively add predictions (with decreasing score) and
compute AP*(Dj) for each D;,j =1,...,|D|. We can then choose Ts somewhere between
the score of the prediction for which we achieved the highest APy, = AP*(Dj-) and the

score of the next prediction. This is a clear benefit over AP, for which we always get the
maximum value if we use all predictions.

6.4.2 Interpolation of the PR Curves

A possible intention behind the interpolation of the PR curve could be the following:
Suppose you have a trained, final detector. To use it inside a machine, you still have
to decide about your preference concerning the precision—recall trade-off. This can be
tuned by setting a score threshold Ts as explained in section 6.3. Effectively, each point
on the PR curve belongs to one such threshold and yields one possible precision and
recall pair (p,r) on the evaluation set. In practice, if we had the choice, we would never
opt for a sub-optimal PR pair. Instead, for a given recall r, one would increase the score
threshold to increase the precision p until r decreases. Likewise, for a given precision p,
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one would decrease the score threshold to increase the recall » until p decreases. In other
words, for two pairs of precision and recall, (p,r) and (p/,7"), if p > p' and r > 1/, clearly
we choose the option (p,r). For example, given the PR curve in Fig. 6.1, one would
always choose T, such that the last two FPs with lowest scores are avoided, leading to
(p,r) = (0.667,0.8).

But is this a reasonable explanation for PR curve interpolation? No. Because once
we have decided for a pair (p,r), our model will have certain numbers nrp and npp
that lead to precision p and recall 7, no matter what other (p,r) trade-offs are possible.
Moreover, within the AP calculation, we use the area under the PR curve to summarize
all (p,r) pairs to obtain a measure that is less affected by the exact choice of T;, but
should emphasize the ordering of TPs and FPs with respect to their score.

Instead, what PR curve interpolation does is that it reduces the penalty of early FPs.
This can be seen in the example in Fig. 6.1 or in the example in Fig. 6.2.

However, exactly those early FPs with high scores are the most painful and dangerous
ones in an application. With high confidence, the model tells us something that is wrong.
For example, the detector in an autonomously driving car is absolutely sure that the
traffic lights show "green", but they don’t. These early FPs are also one of the reasons
that prevent people from using deep learning (DL) based systems. Today, DL-based
models are often very bad when it comes to uncertainty estimation. The use of softmax
and sigmoid as classifiers or activation functions often leads to overconfident models.
For example, Ulrich et al. [194] (cf. Chapter 9) have shown that the score distribution of a
DL-based detection method such as RetinaNet [120] is almost binomial, independent of
the localization accuracy of the prediction.

In order to penalize early FPs more, we propose not to interpolate PR curves. In
particular, the AP-term in AP* is based on a non-interpolated PR curve.

In practice, the difference of AP based on an interpolated or a non-interpolated PR
curve becomes smaller for better models and where fewer early FPs are present.

6.4.3 Subsampling of the PR Curve

The statement of Pascal VOC authors [41] about subsampling of PR curves is somewhat
ambiguous: “The intention in interpolating [they mean what we call subsampling] the precision-
recall curve was to reduce the impact of the ‘wiggles” in the precision-recall curve, caused by small
variations in the ranking of examples. However, the downside of this interpolation was that the
evaluation was too crude to discriminate between the methods at low AP.” [41, p. 313]. We are
not sure what exactly is meant by wiggles, since the PR curve is a step-function. Using the
PR curve interpolation as proposed by VOC, the curve is even monotonically decreasing.

We claim that PR curve subsampling with n; sampling points is not advisable for a
small evaluation set with ngp < 1000.4

Let us consider the example in Fig. 6.3. The left plot shows the interpolated PR
curve subsampled at 11 sampling points [0.0 : 0.1 : 1.0] like in the first years of the VOC

4The threshold 1000 is arbitrarily chosen, but from 1000 onwards the error that is done by subsampling
at least only leads to changes of AP below 0.001
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Figure 6.2: PR Curve Interpolation and non-penalized FPs. ngr = 3, the order of detec-
tions is (TP, TP, FP, FP, FP, TP) (left) and (TP, FP, TP, TP, FP, FP) (right), both with scores (1.0, 0.92,
0.83, 0.75, 0.66, 0.58).

(Top) PR curves, with all (p, r) pairs indicated by the markers. The non-interpolated PR curve is
shown in red and the interpolated PR curve is shown in blue. For the left detector, interpolation
does not change the PR curve and we get max APy = 83.2% and max AP = 83.3%. The differ-
ence between APjg; and AP is due to PR curve subsampling. For the right detector, interpolation
reduces the penalty of the first FP, and we get max APy, = 83.4% and max AP = 80.6%. This
shows that without PR curve interpolation AP becomes a better measure for the model’s uncer-
tainty estimation. AP is lower because for the right detector the first FP occurs earlier and with a
higher score than most TPs.

(Bottom) the AP1g1, AP, AP*, and LRP measure is plotted against the score threshold T;. Note
that for LRP the values are not normalized to [0,1] and minimum values are optimal. While both
AP and AP indicate that a low threshold — T; € [0,0.58] for the left example and T; € [0,0.75]
for the right example — is optimal, LRP and AP* reach their optima if late FPs are suppressed.
Moreover, AP and APjp remain constant although FPs are suppressed with increasing Ts.

In comparison to LRP, where LRPpin = 16.7% for both detectors, AP* clearly favors the right
detector with AP}, = 77.8% vs. AP} . = 66.7%.

Overall, the right detector yields a better result since late FPs can be filtered out by setting T}
as score threshold which leads to a well balance between precision and recall, as indicated by
AP}

max-*
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Figure 6.3: Implications of PR curve subsampling. ngr = 7; the order of detections is (TP,
TP, FP, FP, TP, FP, FP, FP, FP, FP). The PR curve is shown interpolated (left, blue), and without
interpolation (right, red), a dashed line is used for recalls higher than r,, to indicate that the
precision is set to zero for those sampling points. Subsampling positions are indicated with blue
dotted lines. The axes are positioned at (-.05, -.1) for better visibility. The real area under the PR
curve is APy =2/7+3/5-1/7 = 0.371.

(Left, blue) VOC-style subsampling with ns = 11, leading to APy =1/11-(3-1+2-3/54+5-0) =
0.382; AP, = 0.370.

(Right, red) The proposed non-interpolated and precisely subsampled PR Curve with AP, , =
1/7-(2-143/5+4-0) = APpea.

challenge. Interpolation leads to the fact that the precision value at the first recall step is
evaluated twice, if the first detection is a TP. Additionally, since the sampling points do
not coincide with the recall steps, different parts of the PR curve get more or less weight,
just by chance.

Subsampling at ryp = 0.0 can be avoided because this doubles the impact of the first
predictions with highest scores. Moreover, if interpolation of the PR Curve is switched
off, the precision p(ry) might be undefined if d; is a TP. Otherwise, if the very first
predictions are FPs, they are already included in the precision at the first recall step p(r1)
that becomes lower the more FPs occur in the beginning.

We propose to either increase the number of subsampling points to n; > 1000 or to

dynamically set the number of subsampling points to n; = ngr and use the recall steps
as sampli i ©) = =1 btain AP,
pling points r;” = i/ngr,i = 1,...,n5, to obtain APy;.

plot, that this leads to the real area under the curve AP, , = AP;,. A compromise for

It is shown in the right

efficient evaluation could be to use n; = min(1000, ngr). In practice, the effects of this
change are often marginal, especially if ngr > 100. However, summing them up for
many categories and different IoU thresholds can make a difference.

As we have shown, the computational cost is not increased. In fact, for categories
with small evaluation sets it can even be reduced. Therefore, from a theoretical point of
view, the area under the PR curve should be calculated accurately using AP = AP,_,.
Another example where AP differs from AP;q; is shown in Fig. 6.2.
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6.4.4 Too High IoU Thresholds

When AP was introduced as an evaluation metric in the Pascal VOC challenge, the
authors decided to use only one low IoU threshold of 0.5 “set deliberately low to account for
inaccuracies in bounding boxes in the ground truth data” [40, p. 314]. In the COCO challenge,
the AP was made more strict by averaging over 10 IoU thresholds [0.5 : 0.05 : 0.95], but
the authors do not explicitly explain this choice (as also pointed out in [157]).

The intention of averaging the AP over several iteratively increasing IoU thresholds
emphasizes the importance of very accurate mask predictions. However, we claim that
this is only meaningful if the given GT annotations are as accurate as the used IoU
thresholds, in the sense of reproducibility. If annotations are not accurate, meaning that
the labels of two different annotators do not exceed an IoU of, e.g., 0.7, it is hard to
tell which of the two annotations are correct. Hence, it is likely that the prediction of a
model is different from the chosen “ground truth” and will also not exceed the 0.7 IoU
threshold, which does not necessarily mean that the model was wrong. However, the
model is penalized by the current definition of COCO AP because the prediction counts
as FP for all IoU thresholds greater than or equal to 0.7.

In the COCO publication [118], an analysis of the precision and recall of annotators
was carried out on a subset of the images: A high recall could be confirmed, but the
maximum precision of workers did not exceed an IoU of 0.85, while the mean precision
of workers was only around 0.75 IoU. Therefore, the choice of high thresholds of 0.8 and
above still seeks for an explanation.

On LVIS [62], a reproducibility study was carried out by running all 5k validation
images through the annotation process twice. The mean IoU between the two runs is
0.85, and only for approximately 5% of instances the (multiple) human annotators could
exceed the 0.95 IoU threshold. Thus, also on LVIS, it is not clear why such high IoU
thresholds should help to identify the best among several detection methods.

Therefore, the maximum IoU threshold used for the evaluation should be lowered.

If this is not desired, another approach is the following: The same reproducibility
analysis that was done for the validation set should also be done for the test set annota-
tions. The (mean) achieved IoUs for each annotation between different runs could then be
stored. A low IoU shows that the object is somewhat ambiguous or difficult to annotate
and we should not expect from any method to do “better” than the achieved IoU. During
the evaluation, each individual annotation could then only be evaluated up to the stored
IoU threshold and ignored for all higher IoU thresholds. The analysis of such a change
in the evaluation protocol goes beyond the scope of this work, but is an interesting topic
for future research. In particular, Gupta et al. [62] empirically found a bias of AP with
respect to the evaluation set size. This has to be kept in mind if evaluation sets become
smaller and smaller with increasing IoU thresholds.

6.4.5 AP has a Bias for Instance Size

Generally, IoU has the advantage that it is invariant to the scale of objects. This holds
as long as both ground-truth annotations as well as predictions are given in a subpixel-
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Figure 6.4: Small instance examples from COCO. (Top) Zoomed images with very small
instances below 322px. Instance masks are indicated by colored region boundaries, a class label is
shown at the center of each instance. (Bottom) The corresponding full images with the zoomed
image part indicated by a red box. Very small instances are difficult and often ambiguous to
annotate. Moreover, a small number of false mask pixel predictions has a large influence on the
IoU. Hence high IoU thresholds should be avoided for small instances (Best viewed digitally and
with zoom).

precise format. While this might be true for the ground-truth annotations, for current
methods such as Mask R-CNN [70], at least the intermediate predictions are predicted
and trained in a pixel-precise grid. The final mask is obtained by translation and scaling
to the subpixel-precise final box prediction but still is a pixel-precise region.

Especially for pixel-precise predictions and labels, high IoU thresholds are biasing
categories with smaller instances towards lower AP values. The same threshold is acting
more strictly on small instances, compared to large instances. For example, consider two
boxes A and B of size 322 and 162, respectively. Adding a one-pixel boundary to both
boxes to obtain A and B, we can calculate ToU(A, A) = 0.94 and ToU(B, B) = 0.89.

Very small instances have a much higher ambiguity when being annotated with masks
or boxes. Including several pixels close to the object’s boundary to the annotation or not
can make a large difference. Hence, for these objects the reproducibility is inherently
lower. We claim that when users are trying to detect very small objects in rather low-
resolution images, they should not expect to get a localization precision above, e.g.,
0.75IoU. Some examples of small instances with an area below 322 px are shown in
Fig. 6.4.

To compensate this problem, we propose to reduce the maximum evaluation IoU
threshold for small objects of size < 322 px. Another possibility would be to use the
same approach that has been indicated in the previous subsection: One could relabel the
images of the evaluation set and check the annotation reproducibility for each instance
by computing the IoU of the initial annotations with the new annotations. The maximal
IoU threshold that is used during the evaluation could then be set to the mean IoU of
the annotations of different annotators. However, this approach is very costly and the
ambiguity of mask labels remains.

To avoid effects of very small instances, our experiments are carried out on D2S,
where the annotations are very accurate and very small instances are not present.
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6.5 Experiments

We do our experiments on D2S (cf. Chapter 5). D2S is well suited since the annotations
are accurate such that an evaluation with respect to high IoU thresholds is meaningful.
Moreover, D25 is challenging and far from being solved.

We mainly look at box detection methods here, but it is straightforward to generalize
the results to instance segmentation methods because both are structurally similar.

To see the reason why APjo;, LRP, or AP* might be low or high, we also compute
the average recall AR and mean precision mPr

1 1

AR = ———— ARt . = e, (6.13
‘{TEU}’{%i} flou |{TEU}‘{HU} 2: )

1
mPr = ——— mPrr. . = c- (6.14
[ Tiou {n%} e {Tk’U}‘ {nzu} L )

If we look at a single IoU threshold, we will omit the Tj,y-threshold subscript in AR
and mPr for convenience. Moreover, in this section we will write AP for the COCO
AP = APy to avoid confusions with other chapters and publications.

When not explicitly mentioned otherwise, the IoU threshold for TPs is set to 0.5,
and the global minimum confidence to 0.05 in all plots independent of other stricter
class-specific score thresholds that might be applied. All models have been trained and
evaluated on images with resolution 512 x 384.

6.5.1 Global Confidence Threshold

Setting a global minimum confidence threshold TS is widely used when models are
used within an application. It is one of the main reasons why we actually build models
that return a confidence for each result. By looking at the score, we can suppress results
where the model is unsure. Unfortunately, deep-learning-based detectors or classification
models are often over-confident. That means, they predict wrong results with high
confidence values. One of the reasons is the use of softmax predictions or sigmoid
activations that are trained to predict a confidence of 1.0 for the ground truth class.
Hence, although the model might already predict the correct class with high confidence,
the loss is still positive and drives the model towards larger and larger activations. This
makes it difficult to interpret the scores of DL-based models and also makes it hard
to set a proper score threshold. In other words, DL-based models are often bad in
estimating their uncertainty. This emphasizes the need to incorporate properly tuned
score thresholds into the evaluation protocol. At the time of writing this work, the
opposite happens: some of the authors of the best methods in the 2020 LVIS challenge®
report that they reduce the score threshold from an already low 0.05 to 0.0.

In the previous sections, we have seen that AP does not encourage to set any score
threshold. AP is always maximal if a global score threshold TS is set to 0.0. Fig. 6.5
confirms that AP is monotonically decreasing with increasing TC. Moreover, as shown

5https://www.lvisdataset.org/challenge_2020
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Figure 6.5: Influence of T for different measures on D2S. Box detection results of FRCNN
and RetinaNet on the validation and test set. Note that here the AP and AP* values, averaged
over all IoU thresholds, are shown, but T} (val) was computed at IoU 0.5.

in Table 6.1, the AP values of FRCNN (F) and RetinaNet (R), with 79.0% and 78.3%,
respectively, are almost on the same level on the test set. However, their mean precision
at IoU 0.5 is very different, with 83.8% vs. 35.1%, respectively. At IoU threshold 0.5,
RetinaNet even has a higher AP value than FRCNN. While overall RetinaNet has 681
more TPs than FRCNN on all the test images, it also has 92499 FPs more than FRCNN.
With this low confidence threshold of Ts = 0.05, for every TP of RetinaNet, the model
also predicts almost two FPs, on average. In contrast to AP, AP* reveals this difference
with values of 72.8% and 53.2% overall, and 81.0% and 59.9% at IoU 0.5, for FRCNN and
RetinaNet, respectively.

Intuitively, the easiest way to filter out weak predictions is to suppress them by setting
a global score threshold T¢. This works if the scores are well calibrated in the sense that
for predictions with higher quality also their respective score is higher and for wrong
predictions, either due to a bad localization or due to the wrong class, the score should
be lower. We also see in the score histograms for RetinaNet and FRCNN in Fig. 6.8 that
this holds for most of the false positives, especially in the case of RetinaNet.

The left plot in Fig. 6.5 shows that for both FRCNN and RetinaNet, we can determine
an optimal global score threshold on the validation set if we use AP* as the underlying
quality measure. Evaluating AP* (as average over all IoU thresholds) at the global score
thresholds TS € {0.01,0.1,0.2,...,0.9}, we see that it is maximal if TS is set to 0.7 and 0.9
for RetinaNet and FRCNN, respectively. For example, for RetinaNet, on the validation
set this leads to an increase of AP* from 52.9% to 71.9% and of mPr from 33.1% to 81.9%,
respectively. At Tiouy = 0.5, the number of false positives can be reduced from 28 563 to
1799, while TS only leads to a small reduction of true positives from 14256 to 13795.
Although this yields a much better precision-recall trade-off, AP is significantly reduced
from 77.7% to 76.1% on the validation set. For FRCNN, the changes are less pronounced,
but still, using TSG, at Tioy = 0.5, mPr is increased from 84.5% to 90.4% while AR is only
slightly reduced from 89.9% to 87.8%. Overall, AP* increases from 73.4% to 74.6%.

The right plot in Fig. 6.5 shows the impact of setting a global score threshold on the
test set. With this, we evaluate how well the thresholds that we have computed on the
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validation set generalize. The figures confirm that the evaluation on the validation set
is just an approximation of the goodness of the model on unseen data. Therefore, it is
crucial that we always use the validation set to compute optimal thresholds and compare
the models with fixed hyperparameters on the test set. Of course, the optimum thresholds
on the validation set might differ from the generally unknown optimal thresholds on
the test set. Generally, a larger validation set should lead to optimal hyperparameters
that are close to the optimal hyperparameters on unseen data, but only if there is no bias
between the validation and test set. Another approach is to use cross-validation on the
validation set to determine the best score thresholds, but this goes beyond the scope of
this work.

6.5.2 T} Per-Class Thresholds Based on AP*

We have seen that to optimize AP*, setting a score threshold is crucial. We have also
seen that using a global score threshold, the number of FPs can be reduced significantly.
But is one global threshold meaningful for a large number of different categories? Some
classes might be easier to find than others, inter-class variations might be small for a
few categories, but large for others, some classes might only appear in a specific context
which might be helpful for the classification of these objects. That is why the score
distributions of different categories are very different as depicted in Fig. 6.6.

There are many possible heuristics that could be used to define per class score
thresholds. In the following, we will compare the thresholds TSTP , T, and TSLRP (6.3) that
all can be easily computed from a given validation set.

With respect to their underlying measure, i.e., recall for T, LRP for T:RP and AP*
for T, all three thresholds are optimal. However, this only holds for the evaluation set
and IoU threshold where T has been determined. For example, for a particular class,
it might hold that T)"(val) > T]"(test), such that some of the lowest scoring TPs in
the test set will be filtered out. Also for the other measures, it might be the case that
they are not optimal on the unseen test set. Hence, we also want to evaluate how good
class-specific score thresholds generalize and if they are useful in practice.

Fig. 6.6 reveals that the per-class thresholds are indeed very different for different
categories, both for FRCNN and RetinaNet. While TSTP is the most conservative threshold
that keeps almost all TPs, of course at the same time many FPs remain. On the contrary,
TERP is always the highest threshold of the three thresholds. In theory, one could also
implement T!" as the highest score of FPs such that all FPs are suppressed and maximum
precision is obtained. The figure shows however, that for almost all categories this would
reduce the recall significantly. Looking at the plots, a compromise between T.” and T!?,
e.g., selecting the 5% quantile of TPs or the 90% quantile of FPs (sorted increasingly
by scores), respectively, could be a reasonable choice. However, we aim for models
that produce a score distribution where FPs and TPs are separable, and in this case
both choices lead to suboptimal results and thus they generally are not meaningful.
Tr typically resides between T!” and TFRP, and sometimes is equal to either of them.
Clearly, T]? < T} always holds because to optimize AP* we need to filter out at least all
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Figure 6.6: Score vs. IoU distribution of predictions with class-specific score thresh-
olds on D2S. Predictions for some selected classes on the validation and test set of FRCNN
and RetinaNet, respectively. The optimal score thresholds T. ' (val), T} (val) and TERP (val) are
indicated by black-dotted, blue-dash-dotted and orange-dashed vertical lines, respectively. The
plots for the test set show that they do not always generalize well. RetinaNet scores are spread a
lot more across the interval [0,1] than for FRCNN. (Best viewed digitally and with zoom).
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Figure 6.7: Comparison of T-RF (val) and T7 (val) for FRCNN R101 S. For many categories
the computed optimal scores thresholds based on LRP and AP* are equal. For others the difference
is large due to the influence of the AP and the LRPj,y terms. Note that the score thresholds are
mainly determined by the lowest scoring TPs and their scores are outliers of a relatively dense
score distribution. Very high score thresholds close to 1.0 do not generalize well to the test set.
Also see Fig. 6.6.
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Model ToU[0.5:0.95] ToU[0.5]
AP AP* AR mPr moLRP | AP AP* AR mPr moLRP TP FP

Validation set
R 777 529 829 331 077 |86.5 594 903 359 070 14256 28563
R TS 761 719 80.8 819 047 |842 809 874 887 032 13795 1799
RTI? | 776 669 828 650 055 |8.5 755 903 705 042 14256 8602
RTIRP | 757 732 802 857 045 |837 822 867 927 029 13721 957
R T* 76.6 733 815 836 045 |850 827 883 907 029 13958 1386
F 79.1 734 844 792 045 |[867 814 89.8 845 032 14179 3142
F TS 777 746 828 850 042 |[850 823 878 904 028 13879 1558
FTI? |791 757 844 842 041 |[867 838 898 897 027 14179 169
FTLRP | 781 763 831 881 040 |854 842 881 936 025 13948 844
FT; 787 764 837 870 040 |861 844 889 926 026 14071 1040
Test set (using Ts(val))
R 783 532 828 329 077 |[872 599 905 358 070 45107 104633
R TS 765 72.0 805 815 047 |846 81.0 871 883  0.32 43238 6472
RTI? | 778 668 821 651 056 |865 753 894 705 043 44576 27341
RTIRP | 747 717 782 851 046 |824 804 844 919 031 4198 3715
R T 760 721 798 827 047 |841 81.0 864 894 031 43085 5567
F 79.0 728 838 785 046 |868 81.0 894 838 0.33 44426 12134
FTC 774 738 820 844 043 |848 817 871 89.8 029 43244 5834
FTIP | 774 736 821 837 043 |849 816 873 891 030 43516 6209
FTLRP | 753 732 795 878 042 |824 809 844 931 029 42080 3159
F T* 761 734 804 864 043 |833 812 854 918 029 42556 3967

Table 6.1: Results for different class-specific score thresholds. AP reaches its maximum
without class-specific or global score thresholds, however with low mPr for RetinaNet (R) and
FRCNN (F), respectively. This is indicated by low AP* and high moLRP. Models with class-
specific score thresholds lead to large improvements of the precision. T7 leads to the best balance
between AP, AR and mPr. For FRCNN, Ty does not generalize well from the validation to the
test set, as AR is reduced too much. However, the model has a good balance between AR and
mPr and obtains roughly the same moLRP as for TLRP.

FPs with smaller score than the smallest score of all TPs. Otherwise, the precision would
be unnecessary low without increased recall. On the other hand, TSLRP > T does not
necessarily hold. LRP contains components that reflect precision, recall, and localization
quality of TPs and hence also depends on the IoU distribution of TPs. As shown in
Fig. 6.7, for FRCNN R101 S on D2S, TLRP (val) > T (val) holds for all classes.

All three thresholds are mainly influenced by the lowest scores of TPs. For some
categories these scores are quite sparse and hence the difference between T.”, TFRP, and
Ty can be large. Moreover this leads to remarkable differences between T;(val) and
Ts(test) for all three measures.

Table 6.1 shows a comparison of different evaluation measures for the global and all
three class-specific thresholds. All score thresholds lead to a remarkable reduction of
FPs without a large reduction of AR. We see that for FRCNN the class-specific score
thresholds do not generalize as well as the global threshold for which we obtain the best
AP* result of 73.8%, which is a 1% improvement over the baseline result at T¢ = 0.05.
Although T; does not generalize very well, it still leads to overall AP* = 73.4%, an
improved mPr of 86.4%, with 688 less TPs and 1867 fewer FPs than the model using
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optimal TS (val) at IoU 0.5. TFRP has a slightly lower moLRP value with higher mPr but
lower AR and AP* = 73.2%. Generally, it is hard to tell which threshold is giving the
best compromise of recall and precision, but surely for FRCNN it is a problem that the
class-specific score thresholds do not generalize well to the test set.

For RetinaNet, scores are a bit more spread over the range from zero to one. This
leads to the fact that T} clearly leads to the best compromise between AP, AR and
mPr and overall AP* of 72.1%. At IoU 0.5, the number of FPs can be reduced from
104 633 to 5567 on the test set. This means that while with the initial low score threshold
TS = 0.05 more than two thirds of the predictions were FPs, now only roughly every
tenth prediction is a FP. As we have seen, TFR? thresholds are higher and thus increase
the precision even a bit further, while AR is reduced. As for FRCNN, TSLRP leads to a
slightly lower moLRP. For RetinaNet, all thresholds generalize somewhat better than for
FRCNN. However, RetinaNet performs slightly worse than FRCNN independent of the
chosen score threshold.

Looking at the results on the validation set, we get an impression how good the score
thresholds could work if they were better predictors for the score distributions on the
test set. Further, we believe that with better calibrated scores more FPs could be filtered
out without a reduction of recall.

The confidence vs. IoU plots in the first row of Fig. 6.8 show the benefit of a class-
specific score threshold like T} above a global score threshold TC. Ty is able to filter
out a significant portion of FPs in the bottom right part of the plot, while preserving
most of the TPs above. TS would just be a vertical line within this plot that filters out
all predictions on the left. FPs in the bottom right of the line would thus remain. The
confidence and IoU histograms in the second and third row underline that mostly FPs are
filtered out and the reduction in TPs is almost negligible. They also show the different
score distributions of RetinaNet and FRCNN. A major difference between the two models
is that RetinaNet uses a sigmoid to predict the score, while FRCNN uses a softmax layer.

The barplots in the bottom row of Fig. 6.8 reveal that T; mostly filters out FPs of type
background, duplicate, localization, or multiple, but that most of the FPs with respect
to a wrong class prediction remain. For FRCNN, a majority of these FPs have a score
in the interval (0.95,1.0]. Thus, it is very difficult to filter them out solely based on an
improved score threshold.

6.5.3 Qualitative Results

A number of qualitative examples from the D2S test set are shown in Fig. 6.9. The
application of T; clearly helps to suppress many FPs within the background, especially
for backgrounds that are not part of the training set (1st, 8th, and 9th row for FRCNN,
almost all rows for RetinaNet). Additionally, FPs due to clutter objects can be removed (1st
and 7th row). Generally, FRCNN is the better model with fewer FPs, but using T} the
results of FRCNN and RetinaNet are very close to each other.

Sometimes, the application of T} removes a TP instead of a FP (6th row). Moreover, if
no TP is present for an object, of course, the introduction of a score threshold does not
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Figure 6.8: Distribution of predictions with and without T} (val) on D2S test. The
figure shows a comparison of the distribution of detection model results, with and without
optimal per class min score thresholds Ty. (Top row) Confidence vs. IoU: With class-specific score
thresholds Ty many FPs are filtered out that have a larger score than the lowest scores of TPs.
(2nd and 3rd row) Score and IoU histograms. Applying T} only leads to a negligible reduction
of TPs, but to a remarkable reduction of FPs, also for those with high IoUs and scores. The
difference is more severe for RetinaNet. (Bottom row) Failure type distribution of FPs. Using T
leads to a significant reduction of FPs in the categories background, duplicates, localization and
multiple. Note the log-scale of the axis. For some categories the reduction is more than an order
of magnitude.

help to predict another class (2nd, 4th, 5th, or 7th row). Hence, in future work one could
incorporate the class-specific score threshold already within an earlier stage of the model,
such that the model can predict the second best alternative, which might be correct.

Failure cases that remain are often due to a wrong class with high score (bottles in 7th
row) or due to inaccurate box predictions (4th or 6th row). Overall, we believe that a better
uncertainty estimation with more reliable confidences could help a lot to improve the
results. This should also lead to a better generalization of calculated score thresholds
from the validation to the test set.
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ground truth FRCNN R101 RetinaNet R101
w/o Ts with TZ (val) w/o T; with T} (val)

Figure 6.9: Qualitative results on D2S test. T; helps to filter out many FPs within the
background or with bad localizations. Mainly FPs due to wrong class or due to touching objects
remain (best viewed digitally and with zoom).

141



CHAPTER 6: AP* — FixING THE REcALL Bias OF AVERAGE PRECISION

Model I0U[0.5:0.95] IoUJ[0.5]
AP AP* AR wmPr moLRP | AP AP* AR mPr moLRP TP Fp

Validation set
R 804 578 850 408 071 |87.2 632 90.7 434 064 14306 20749
RTI? |804 71.0 849 71.0 051 |872 778 907 756 038 14306 6497
RTLRP | 787 763 827 874 042 |848 833 877 927 027 13873 1027
R T 795 765 838 856 043 |859 837 89.1 91.1 027 14065 1345
M 80.0 747 850 80.7 045 |874 825 905 861 031 14268 2609
MTI? |80.0 767 850 849 042 |874 847 905 90.6 027 14268 1582
M TIRP | 789 773 836 889 040 |86.0 851 888 946 025 14036 713
M T 79.6 775 845 875 041 |869 854 899 932 025 14192 990
Test set (using Ts(val))
R 814 586 853 413 071 |87.8 637 90.6 438 0.63 45040 74100
RTI? 809 712 846 711 051 |870 774 89.7 751 039 44596 22586
RTLRP | 782 754 814 872 043 |838 817 859 919 029 42836 4217
R T 795 758 829 851 043 |853 824 87.6 899 029 43659 5513
M 80.2 748 850 809 045 |875 823 90.0 857 031 44721 9542
MTIP | 794 758 841 849 043 |865 833 889 89.8 028 44271 5775
M TIRP | 774 756 817 89.0 042 |842 829 863 940 027 42927 2805
M T 787 763 833 876 042 |858 838 88.0 926 027 43754 3715

Table 6.2: Instance segmentation results for different class-specific score thresholds.
The RetinaMask R101 M (R) and MRCNN R101 M (M) models behave very similar to the
detection results of Table 6.1. Using AP*, the ranking of the models changes, even when most
FPs of RetinaMask are filtered out.

6.5.4 Instance Segmentation

For completeness, we also show results with class-specific score thresholds and AP*
evaluation for RetinaMask R101 M and MRCNN R101 M in Table 6.2. Those have been
the best instance segmentation baselines on D2S in Chapter 5.

Without using score thresholds, RetinaMask has a 1.2% higher AP on the test set than
FRCNN. However, again due to the high number of FPs, AP* is 16.2% lower. Here, it
is remarkable that even with the use of class-specific score thresholds, the AP* values
remain lower than those of FRCNN. For example, using T; RetinaMask and MRCNN
achieve an AP* of 75.8% and 76.3%, respectively.

However, and maybe even more importantly, when AP is replaced by AP*, the
ranking of the two models changes. Thus, AP* is able to show that FRCNN yields the
better trade-off between precision and recall. The AP* difference is large with a naive
global score threshold TS = 0.05 and can be reduced with the use of properly chosen
global or class-specific score thresholds.

6.6 Conclusion

We revisited the mean average precision, the predominantly used evaluation measure
for object detection. We have shown a number of issues that occur when using AP as
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objective for model optimization and propose corresponding changes to the evaluation
protocol. In particular, we introduced an adapted version of average precision, AP*, that
leads to a better balance between precision and recall. Moreover, AP* can be used to
compute optimal class-specific score thresholds T;. In our experiments, we have seen
that they reduce the number of false positives remarkably, e.g., from 104 633 to 5567 for
RetinaNet on D2S, while preserving a high average recall. AP* fixes AP’s bias towards
recall and will encourage the design of models with properly adjusted score thresholds
and meaningful uncertainty estimation. Our experiments for instance segmentation show
that AP* leads to a different ranking of models that better incorporate their precision.
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Data Generation for Few-Shot
Detection

Despite the great success that deep-learning-based object detection has brought to many
challenging application areas, one substantial hurdle still remains: the tedious annotation
process. In comparison to image classification, where a single label per image is sufficient,
for object detection each object instance within the image has to be annotated with a class
label and with a bounding box. For some applications, e.g., in a medical or biological
context, or for specific types of defects on an industrial product, the labeling requires
expert knowledge. This results in significant costs that occur directly at the beginning of
the method’s implementation. For the user, this means that the annotation investment
has to be made before it is clear how well or if at all the method will be successful for the
task at hand.

But even if everything works out and the user can achieve his goal, what if the task
changes? For example, the number of categories to be detected changes from 13 to 15
because two new products are being manufactured, or the biologist is interested in new
cell types. Then, the process starts all over again and images have to be relabeled or they
have to be acquired and annotated from scratch, again without any guarantee of success.

Hence, we are interested in methods that work without much annotation effort. On
the one hand, this means that we want to train our algorithm with only a small number
of images, but on the other hand, and more importantly, with only a few labeled object
instances per class. Methods that work under these circumstances are termed few-shot
detection methods. They certainly improve the ease-of-use aspect of DL-based algorithms.

In this chapter, we neither change the algorithm, nor do we restrict the total number of
training images. However, we aim to reduce the number of manually annotated instances
and, instead, we artificially augment our data to increase the number of labeled training
images. In particular, we try to use only a few instances or a single instance per category
as a basis. Using these samples, we generate artificial images that are close to the images
we expect in the test set and use them to train and validate our model. Because only a
fraction of the training data has been annotated manually and the annotations might be
incomplete, these approaches are referred to as weakly supervised methods.
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Figure 7.1: Few-shot data generation pipeline. (From left to right) Acquisition of template
images for automatic labeling, generation of artificial training images, and application on real test
images. The training step is not visualized.

Of course, there is a domain gap between the real test images and the artificially
generated training images. Hence, the goal is to reach the performance of the results that
we achieve when using real training data.

The proposed pipeline consists of the following steps as depicted in Fig. 7.1:

* Acquisition of template images for each object category.
* Generation of artificial training images.

* Training of the model using the generated data.

¢ Application of the model on real images.

We will only describe the first two steps in more detail because the third and fourth step
are the same as when training on real images except that the training set is changed.

In this chapter, we evaluate the weakly generated annotations against the baseline
trained with fully-supervised training data on D2S (cf. Chapter 5). Due to partially
different objects, a slightly different acquisition setup, and lighting changes, there is a
domain shift to the validation images. Nevertheless, we find that the proposed method
achieves 68.9% AP, compared to 80.1% AP of a fully-supervised baseline without domain-
shift. Hence, we show that it is possible to produce competitive segmentation results with
a very simple acquisition setup, virtually no label effort, and suitable data augmentation.

The content of this chapter has been partly published in [46], [47], and [194]. For the
comparison of the results to other chapters within this work, we have added Section 7.5.

7.1 Related Work

Weakly supervised instance segmentation. Solving computer vision tasks with weakly
annotated data has become a major topic in recent years. It can significantly reduce
the amount of manual labeling effort and thus make solving new tasks feasible. For
example, Deselaers et al. [29] learn generic knowledge about object bounding boxes from
a subset of object classes. This is used to support learning new classes without any
location annotation. This allows them to train a functional object detector from weakly
supervised images only. Similarly, Vezhnevets et al. [195] attempt to learn a supervised
semantic segmentation method from weak labels that can compete with a fully supervised
one. Recently, there has been work that attempts to train instance segmentation models
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from bounding box labels or by assuming only parts of the data is labeled with pixel-
precise annotations. For example, the work by Hu et al. [77] attempts to train instance
segmentation models over a large set of categories, where most instances only have box
annotations. They merely assume a small fraction of the instances have mask annotations
that have been manually acquired. Khoreva et al. [91] train an instance segmentation
model by using GrabCut [163] foreground segmentation on bounding box ground truth
labels.

In contrast to the above works, our weak supervision only assumes the object class
of each training image to be known and does not require bounding boxes of the single
objects or their pixel-precise annotations. We use basic image processing techniques and
a simple acquisition setup to learn competitive instance segmentation models from weak
image annotations.

Data augmentation. Since we restrict the training images to objects of a single class
on a homogeneous background, it is essential to augment the training data with more
complex, artificial images. Otherwise, state-of-the-art instance segmentation methods
fail to generalize to more complex scenes, different backgrounds, or varying lighting
conditions. This is often the case for industrial applications, where a huge effort is
necessary to obtain a large amount of annotated data. Hence, extending the training
dataset by data augmentation is common practice [176]. Augmentation is often restricted
to global image transformations such as random crops, translations, rotations, horizontal
reflections, or color augmentations [95]. However, for instance-level segmentations, it is
possible to extend these techniques to generate completely new images. For example, in
[48, 114, 215], new artificial training data is generated by randomly sampling objects from
the training split of COCO [118] and pasting them into new training images. However,
since the COCO segmentations are coarse and the intra-class variation is extremely
high, the augmentation brings limited gain. On the other hand, in the D2S dataset
[46] (Chapter 5), it is difficult to obtain reasonable segmentation results without any
data augmentation. The training set is designed to mimic the restrictions of industrial
applications, which include little training data and potentially much more complex test
images than training images.

Analogously to the above works, we perform various types of data augmentation to
increase complexity and the amount of the training data. However, we go a step further
and address specific weaknesses of the state of the art on D2S by explicitly generating
artificial scenes with neighboring and touching objects. To further gain robustness
to changing illumination, we also render the artificial scenes under different lighting
conditions by exploiting depth information.

7.2 Acquisition of Template Images

Independent of the algorithm, some input to the model is necessary. In our setting, we
are dealing with end-to-end trainable models and thus the input to the model are images
and the corresponding labels, consisting of bounding boxes.
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When training on real images, we require that

¢ all different combinations of neighboring objects from different categories should
be captured such that the distribution of the test set is captured as well as possible;

¢ the background and environment is as close as possible to the expected setting in
the test images. If different backgrounds are present in the test setting, also the
training images should capture these differences; and

* objects should be captured in various different orientations and scales as present in
the test set.

A valid and frequently used strategy to fulfill these requirements is to use a running
system and acquire the images from exactly the setup for which the algorithms should
be applied later.

For our approach, the first step is to acquire a set of template images for each of the
object classes that we want to detect. In comparison, to the use of real images, we capture
the templates with following rules:

* Only objects of a single category should be present within an image.

¢ The background should be of homogeneous color, texture-less, and such that the
objects can be clearly distinguished from it.

* Objects should be captured without touching or overlapping each other.

¢ Objects should be captured with all different poses that are present in the test set.
Different rotations or scales are only required if they add information about the
object that is not present in other views. For example, a box with two different
prints on each side should be captured from both sides, while a banana that looks
the same from both directions only needs to be captured once.

The first rule is important for the annotation process. If users only capture template
images containing objects of a single category, they just need to label the whole image
with the category. Each instance within the image can than be assigned to this class.
Because users usually know which category of objects they are currently capturing, this
labeling only adds a negligible cost. For example, in our acquisition script the user just
has to press one button if he changes to the next class of objects that are listed according
to the order the objects are captured.

In this case, if the test environment is used to acquire the templates, one needs to
make sure that a homogeneous background is present according to the second rule.
However, in this work, we use a specific acquisition setup similar to the one shown in
Fig. 5.1. To be able to reduce the label and acquisition effort to a bare minimum, the image
acquisition setup is constructed in a very basic manner. A high-resolution industrial RGB
camera with 1920 x 1440 pixels is mounted above a turntable. The turntable allows to
acquire multiple views of each scene without any manual interaction. To increase the
perspective variation, the camera is mounted off-center with respect to the rotation center
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of the turntable. Additionally, a stereo camera that works with projected texture is fixed
centrally above the turntable. In Section 7.3, we show how the depth images may be
used to extend the capabilities of data augmentation.

To make the automatic label generation as simple and robust as possible, the back-
ground of the turntable is set to a plain colored brown surface. In an initial step, we keep
the background color fixed for every training image. In a next step, we further use a
lighter brown background to improve the automatic segmentation of dark or transparent
objects such as avocados or bottles. The corresponding generated datasets are denoted
with the prefix weakly and weakly cleaned, respectively.

Note that, although the acquisition setup is very similar to that of the original D2S
setup, there is a domain shift between the new training images and original D2S images.
In particular, the camera pose relative to the turntable is not the same and the background
and lighting differ slightly. Maybe the most significant difference is, however, that some of
the captured objects are different from those in original D2S. For example the vegetables
and fruit categories have a slightly different appearance and some packaging, e.g., for
the classes clementine or apple_braeburn_bundle are not the same as in D2S. The reason
is that we had to buy these fruits again for the experiments in this chapter and their
packaging had changed. The two classes oranges and pasta_reggia_fusilli were not available
for purchase with a similar packaging anymore and therefore, the respective D2S training
scenes (without labels) are used.

In the following, we will see that the second and third rule allow to retrieve pixel-
precise segmentations of each object. One option is to use a very basic image processing
pipeline that mainly consists of background subtraction from the captured template
images. To evaluate this simple algorithm, we also compare it to a more sophisticated
saliency detection method.

7.2.1 Background Subtraction

We utilize the simple setting of acquired images and automatically generate pixel-precise
segmentations by background subtraction. To account for changing illumination of the
surrounding environment, an individual background image is acquired for each scene.
By subtracting the background image from each image, a foreground region can be
generated automatically with an adaptive binary threshold [149]. Depending on the
object and its attributes, we either use the V channel from the HSV color space, or the
summed absolute difference of each of the RGB channels. The results for both color spaces
can be computed with negligible cost. Therefore, they can already be shown during the
acquisition process and the user can choose the better region online. To ensure the object
is not split into multiple small parts, we perform morphological closing with a circular
structuring element on the foreground region. The instance segmentations can then be
computed as the connected components of the foreground. The automatic segmentation
method assumes that the objects are not touching or occluding each other, and generally
works for images with an arbitrary number of objects. A schematic overview of the
region generation is shown in Fig. 7.2.
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Figure 7.2: Background subtraction. Schematic overview of the generation of pixel-precise
segmentations for objects in the template images.

7.2.2 Saliency Detection

As an alternative to the algorithmically simple background subtraction, the characteristics
of the template images also invite to use saliency detection methods to identify the
instances. Currently, the best methods are based on deep learning and require fine-
tuning to the target domain [10, 112]. Hence, they require manually labeling at least
for a subset of the data. A more generic approach is that of the Saliency Tree [125]. It is
constructed in a multi-step process. In a first step, the image is simplified into a set of
primitive regions. The partitions are merged into a saliency tree based on their saliency
measure. The tree is then traversed and the salient regions are identified. The salient
region generation requires no fine-tuning to the target domain and achieves top ranks in
recent benchmarks [10, 112].

We use the Saliency Tree to generate saliency images for each of the template images.
The foreground region is then generated from the saliency image by a simple thresholding
and an intersection with the region of the turntable in the acquisition setup. Also here,
morphological closing and opening with a small circular structuring element is used to
close small holes and smooth the boundary. Analogously to the background subtraction,
the single instances are computed as the connected components of the foreground region.
Qualitatively, we found that a threshold of 40 was a good compromise between too large
and too small generated regions. For some rather small objects, using this threshold
results in regions that almost fill the whole turntable. To prevent these artifacts, we
iteratively increase the threshold by ten until the obtained total area of the regions is
smaller than 30% of the turntable area. However, even with this precaution, in some
cases the obtained instances may be degenerated. A few examples and failure cases of
both the background subtraction and the saliency detection are displayed in Fig. 7.3. We
denote the annotations obtained with the saliency detection method by saliency cleaned.

A few example classes where the lighter background of the cleaned setup significantly
improved the automatic labels are displayed in Fig. 7.4.

7.3 Generation of Training Images

One of the challenges of applying deep-learning-based CNNss is the large amount of
training data that is required to obtain competitive results. In the real-world applications
discussed in this work, the acquisition and labeling of training data can be expensive

150



7.3 GENERATION OF TRAINING IMAGES

Saliency Tree

Background

Figure 7.3: Saliency Tree vs. background subtraction. The primitive regions of the Saliency
Tree method not always correspond to semantically different regions but can also occur due to
shadows or reflections (Ist row). The automatic segmentations for saliency detection (2nd row)
and background subtraction (3rd row) are displayed. In general, the saliency detection and the
background subtraction return similar results (Ist column). In rare cases, the saliency detection
outperforms the background subtraction and returns more complete regions. In the third and
fourth column some typical failure cases of the saliency detection scheme are displayed. Either it
fails completely (4th column) or it is hard to find a reasonable threshold (3rd column).

because it requires many manual tasks. To mitigate this issue, we use data augmentation,
where additional training data is created automatically based on a few manually acquired
simple images. The generated images simulate the variations and complexity that
commonly occur when applying the trained network.

Mostly, we are using data generation techniques here because we synthesize new
images. In comparison to the term data generation, in the literature, augmentation mostly
denotes applying transformations to an image without changing the scene. Because
we are not synthesizing new images from scratch, but use realistic backgrounds and
reuse parts of existing images, we are somewhere in between data generation and
augmentation. Hence, we use the terms generation and augmentation as if they were
synonyms throughout this chapter.

To augment the training data, we randomly select between 3 and 15 objects from the
training set, crop them out of the training image utilizing the generated annotation, and
paste them onto a background image similar to the one from the D2S training images.
The objects are placed at a random location with a random rotation. This generates
complex scenes, where multiple objects of different instances may be overlapping each
other. Exemplary images using the manual annotations for cropping are shown in
Fig. 5.10. However, since certain failure cases in the D2S validation and test set remain (cf.
Section 5.7), we also introduce two new augmentation techniques to specifically address
these challenges, namely touching objects and reflections.
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weakly

weakly cleaned
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Figure 7.4: Weakly vs. weakly cleaned. Examples where the light background used for
weakly cleaned significantly improves the automatic segmentations over those from the dark
background used for weakly. In these examples the background subtraction method is used to
derive the segmentations.
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Figure 7.5: Touching objects and reflections. Examples for generated images with touching
objects (top) and reflections using a simulation of a spotlight (bottom).

7.3.1 Touching Objects

In the validation and test set of D2S, there are many instances of the same class that
touch each other. The existing instance segmentation schemes have difficulties to find
the instance boundaries and often return unsatisfactory results. Frequently, if objects
are close, the methods only predict a single instance or the instances extend into the
neighboring object. Hence, we specifically augment the training set by generating new
images where instances of the same class are very close to or even touching each other. We
denote the respective dataset with the suffix neighboring. Fig. 7.5 shows some examples
of augmented touching objects.

7.3.2 Reflections

To create even more training data, we augment the original data by rendering artificial
scenes under different lighting conditions. For this, we use the registered 3D sensor
and RGB camera to build textured 3D models of the different object instances. Random
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subsets of these instances are then placed at random locations to create new;, artificial
scenes. Since we do not know the surface characteristics of the individual objects, we use
a generic Phong shader [150] with varying spotlight location and spotlight and ambient
light intensity to simulate real-world lighting. We use this approach also because in
real-world scenarios, lighting can vary drastically compared to the training setup. For
example, different checkout counters can have different light placements, while others
might be close to a window such that the time of day and the weather influence the local
lighting conditions. We denote the respective dataset with the suffix reflections. Example
images of the reflections set are shown in Fig. 7.5.

7.4 Experiments

All of the experiments are carried out on D2S [46], as the datasets” splits are explicitly
designed for the use of data generation and augmentation. In comparison to the vali-
dation and test sets, the complexity of the scenes in the training set are a lot lower in
terms of object count, occlusions, and background variations. Moreover, the techniques
introduced in Section 7.3 are well-suited for an industrial setting, where the intra-class
variations are mainly restricted to rigid and deformable transformations of the objects
and background or lighting changes.

Our focus is the analysis of the weakly supervised setting and the different augmenta-
tion techniques. Therefore, we use the competitive instance segmentation method Mask
R-CNN [70] (cf. Chapter 4) for our experiments. We choose the original Detectron [56]
implementation in order to make the results easy to reproduce. For the comparison with
results from the previous and the following chapters, we additionally show HALCON
results in Section 7.5.

Setup. To speed up the training and evaluation process, we downsized D2S by a factor
of four, which results in an image resolution of 480 x 360 px. Note that we also adapted
the image size parameters of Mask R-CNN accordingly, such that no scaling has to be
carried out during training or evaluation.

All models were trained using two NVIDIA GTX1080Ti GPUs. We used the original
hyperparameters from Detectron except for the following: a batch size of five images per
GPU (resulting in ten images per iteration) and a base learning rate of 0.02 (reduced to
0.002 after 12k iterations). We trained for 15000 iterations and initialized with weights
pretrained on COCO.

For the evaluation of our results, we used the D2S validation set. The COCO AP is
used as the performance measure (cf. Section 4.2) and we also show some comparisons
using AP* (cf. Chapter 6).

Baseline. As a baseline for the weakly supervised setting, we use the high quality,
manually generated annotations from the D2S training set using the original split as
provided in [46] (Chapter 5). To better compare and separate the effect of the data
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. baseline | weakly weakly | saliency
Training Set cleaned | cleaned
train 48.3 8.5 15.9 16.5
train + augm 2500 77.0 62.8 64.8 55.7
train + augm 5000% 77.8 62.2 61.9 55.4
train + augm 10000 78.4 65.0 63.0 55.8
train + augm 20000 78.4 65.0 62.7 59.7
*+ NB 78.5 63.7 62.5 59.2
*+ RB 78.5 64.9 68.0 58.7
*+ RE - - 66.9 59.7
*+ NB + RB 80.1 66.8 68.9 60.2
*+ NB + RB + RE - - 68.5 61.9

Table 7.1: Results. Ablation study for different ways of generating the annotations and different
augmentations. The performance is given in terms of AP percentage values. * indicates the
set that gave the best results in combination with specific augmentations. Abbreviations for
augmentation types are as follows: neighboring (NB), random background (RB), reflections (RE).

generation from the effect of having better training data, we also augment this high-
quality training set. Except for reflections (which requires depth information), the
generation can be done analogously to the weakly supervised setting. Because the
annotations fit almost perfectly, the object crops contain only a very small amount of
background surroundings compared to the crops from the weak annotations. Therefore,
one can expect the best results for the baseline.

Results. For all types of underlying annotations, baseline, weakly, weakly cleaned, and
saliency cleaned, we made similar experiments. First, we trained the model only on the
training images, denoted as train. Second, we augmented 2500, 5000, 10 000, or 20 000
images as described at the beginning of Section 7.3 and added them to train, respectively
(augm). Third, we generated 2000 images both with touching objects (neighboring) or on a
random background (random background). Additionally, for weakly cleaned and saliency
cleaned, we generated 2000 images and augmented them with reflections (on random
background). The corresponding AP values on the D2S validation set (in quartersize) are
shown in Table 7.1.

The images obtained for our weakly supervised training are significantly less complex
than the D2S validation images; there are no touching or occluding objects and always
only one category per image. This large domain shift results in a very poor performance
of the models trained only on train compared to the baseline (cf. row 1 of Table 7.1).
Normal augmentation by cropping and randomly pasting the objects strongly improves
the results, e.g., from 8.5% to 65.0% for weakly. Note that for the normal augmentation,
the annotation quality seems to be less important, as weakly cleaned is on the same AP
level as weakly. Only saliency cleaned performs significantly worse, probably due to some
corrupt automatically generated annotations. The specific augmentation types neighboring
(NB), random background (RB), and reflections (RE) further help to improve the result to
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ground truth train + augm 5000 + specific

Figure 7.6: Qualitative Results. Improvements for weakly cleaned using specific augmentations:
(top) random backgrounds, (middle) neighboring objects, (bottom) reflections.

68.9% for weakly cleaned, which is more than four times better than the train result. NB, RB,
and RE are indeed complementary augmentation types as each of them consistently helps
to improve upon train + augm 5000. In Fig. 7.6, some qualitative results are displayed.
They show that using the specific augmentations indeed helps to improve on the typical
failure cases that they address. Also note that the relative improvement using specific
augmentations is higher in the weakly supervised setting than for the baseline (e.g., 7%
for weakly cleaned vs. 2.3% for baseline).

Usually with a higher number of training data, the results of models with a high
number of parameters are improved. However, we found that the best results are obtained
if the specific augmentation sets of step three and four are added to train + augm 5000. A
possible reason is the domain shift between D2S validation and the augmented images.
For completeness, we show results for augm 2500 and augm 10000 in Appendix C.

7.5 Improving the D2S Baselines

In Section 5.7, we saw that a high number of false positives (FPs) arise from the domain
gap between the training set and the validation and test sets of D2S. In this section,
we want to use the augmentation techniques for touching objects and with different
backgrounds to improve our baselines on D2S. Therefore, we add the baseline NB and
BG sets to the training images. For a fair comparison, we reduce the number of epochs,
such that the baseline models from Chapter 5 and the new models are trained with
approximately the same number of iterations.

In Table 7.2, we compare the results for the two box detection methods RetinaNet and
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Model 1oUJ[0.5:0.95] IoUJ0.5] ToUJ0.8]

AP AR AP AR TP FP | AP AR TP FP
validation set
RetinaNet 77.7 82.9 86.5 90.3 14256 28563 | 81.3 85.8 13547 29272
RetinaNet + RB + NB 80.1 85.2 88.2 91.8 14476 18602 | 84.0 884 13943 19135
FRCNN 79.1 84.4 86.7 89.8 14179 3142 | 81.7 86.3 13643 3678
FRCNN + RB + NB 81.5 86.6 88.4 914 14427 2038 | 84.6 88.7 14018 2447
RetinaMask 79.5 84.1 87.3 90.8 14300 22542 | 83.5 875 13773 23069
RetinaMask + RB + NB | 81.0 85.5 88.3 91.7 14454 15738 | 85.1 89.0 14032 16160
MRCNN 77.7 83.2 86.5 89.7 14169 3124 | 82.0 86.5 13674 3619
MRCNN + RB + NB 80.6 85.6 88.8 91.7 14459 1938 | 85.1 88.9 14039 2358
test set
RetinaNet 78.3 82.8 87.2 905 45107 104633 | 81.6 85.3 42317 107423
RetinaNet + RB + NB 80.5 84.8 88.6 91.2 45461 66203 | 84.1 87.5 43470 68194
FRCNN 79.0 83.8 86.8 89.4 44426 12134 | 81.9 85.7 42544 14016
FRCNN + RB + NB 81.4 86.0 88.5 90.8 45171 7642 | 84.4 88.1 43759 9054
RetinaMask 79.3 83.5 869 90.0 44710 83192 | 83.3 86.7 43010 84892
RetinaMask + RB + NB | 81.3 85.1 88.2 90.8 45178 55403 | 85.3 88.4 43867 56714
MRCNN 77.7 83.5 86.5 89.7 44577 11289 | 81.7 86.5 42951 12915
MRCNN + RB + NB 80.1 85.0 88.2 90.6 44998 7510 | 84.6 88.3 43791 8717

Table 7.2: Baseline improvements with data augmentation. All measures are calculated
with respect to box IoU for detection models RetinaNet and FRCNN and mask IoU for instance
segmentation models RetinaMask and MRCNN, respectively. Using the introduced augmentation
techniques for touching objects or random backgrounds we can increase the AP and significantly
reduce the number of FPs.

Model IoU[0.5:0.95] IoUJ0.5] IoU[0.8]

AP AP~ AP AP* TP FP | AP AP~ TP Fp
RetinaNet 760 721 | 841 81.0 43085 5567 | 79.5 754 41065 7587
RetinaNet + RB + NB 786 754 | 86.0 83.6 44019 4778 | 822 79.1 42455 6342
FRCNN 76.1 734 | 833 812 42556 3967 | 789 76.1 40965 5558
FRCNN + RB + NB 803 777 | 872 85.0 44562 4220 | 83.3 80.7 43210 5572
RetinaMask 774 735 | 844 812 43265 5807 | 81.5 77.5 41906 7166
RetinaMask + RB+ NB | 79.8 76.6 | 863 83.7 44123 5047 | 83.8 80.7 43075 6095
MRCNN 754 730 | 838 819 43119 4158 | 793 76.8 41684 5593
MRCNN + RB + NB 786 764 | 865 84.6 44101 3824 | 83.1 80.8 42980 4945

Table 7.3: AP* results on D2S test using T} (val). Gains from the specific neighboring and
random backgrounds augmentations are remarkable and consistent across IoU thresholds and
different model types.

FRCNN as well as for the two instance segmentation models RetinaMask and MRCNN.
Here, the baseline results without specific augmentations are from the same models as in
Table 5.5 for detection and Table 5.6 for instance segmentation. All models use a ResNet
101 backbone and are trained and evaluated on images of size 512 x 384 px.

For all models, the AP can be increased by 1.5% (RetinaMask) to 2.9% (MRCNN).
At the same time, the number of FPs is reduced by around 30% for all models without
the use of score thresholds. The gains are even higher at IoU threshold 0.8 than at IoU
threshold 0.5. This indicates that the localization accuracy of results is improved.

To allow a comparison with the results of Chapter 6, we show AP* results in Table 7.3.
Note that for all models, we used class-specific score thresholds T} computed to optimize

156



7.6 CONCLUSION

APz, Here, the baseline results without specific augmentations are from the same models
as shown in Table 6.1 for detection and Table 6.2 for instance segmentation. Since AP*
includes the actual model precision directly, the FP reduction and higher recall leads to a
significant increase in AP* between 3.1% (RetinaMask) and 4.3% (FRCNN).

7.6 Conclusion

We have presented a system that allows to train competitive instance segmentation meth-
ods with virtually no label effort. By acquiring very simple training images, we were able
to automatically generate reasonable object annotations for the D2S dataset. To tackle the
complex validation and test scenes, we propose to use different types of data augmenta-
tion to generate artificial scenes that mimic the expected validation and test sequences.
We present new augmentation ideas to help improve scenes where touching objects and
changing illumination is a problem. The results indicate that weakly supervised models
yield a very good trade-off between annotation effort and performance. This paves the
way for cost-effective implementations of instance segmentation approaches by lifting
the requirement of acquiring large amounts of training images.

Using imperfect annotations, we also found that increasing the number of augmented
images does not always improve the result. We believe that reducing the domain shift
to the test set by generating more realistic augmentations is an open topic that could
resolve this problem. Additionally, we found that data augmentation can be beneficial
even if the number of labeled training images is already large.
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Oriented Box Detection

While so far we have built models that are invariant to the objects” orientation, now we
explicitly want to predict the orientation of each object within an image. In this chapter,
we show how current object detection methods, such as RetinaNet or FRCNN, can be
adapted to predict oriented boxes instead of axis-aligned ones. In many applications,
such as bin-picking or where the found objects need to be aligned for further processing,
this can be a requirement for the detection method. Moreover, we will see that the
prediction with oriented boxes contains some more benefits that make it more usable
than axis-aligned box detection for some tasks.

Oriented box detection as described within this chapter has been implemented and
released as a major new feature of HALCON 19.05 [142].

8.1 Introduction

Generally, an axis-aligned bounding box (AABB) is a very coarse 2D approximation of an
object within an image. For example, think of an articulated person or animal the body
might be in the center of the AABB and only the legs and arms are stretched out and
touching the boundary of the box. But also for box-shaped objects that are not aligned
with the image axes, AABBs do not fit well due to their orientation. While for the first
case of articulated objects, an oriented bounding box (OBB) might not fit much better
than an AABB, for box-shaped objects or thin and elongated parts like a screw or pencil
this is the case. Moreover, predicting the orientation can be of interest, e.g., when the
object should be grasped by a robot. This can also be the case for objects with a circular
shape — think of a circle that has a small printing on one side that defines the orientation.

Today, in most detection datasets, such as VOC [41], COCO [118], Openlmages [98],
or D2S (Chapter 5), the ground truth annotations are either given as instance masks or
as AABBs. Compared to an OBB, the instance mask captures the object more precisely,
but is much more expensive to annotate. AABBs can be labeled faster than OBBs and
they can be uniquely derived from an instance mask. This is not always the case for
OBBs, as shown by Bottger et al. [12]. The increased annotation effort and the sometimes
ambiguous orientation of OBBs might be the main reasons why detection with OBBs has
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not gained much popularity so far.

However, oriented box detection (OD) certainly has some advantages over axis-
aligned box detection (AAD): The best possible intersection over union (IoU) an oriented
bounding box can achieve for an arbitrary mask is typically much higher than the IoU
of the axis-aligned bounding box [12]. This means that, independent of an object’s
orientation, most of the bounding box area overlaps with the instance of interest. This
avoids large overlaps with neighboring objects. In theory, for two-stage detectors like
Faster R-CNN [159], features that are pooled for the second stage should contain less
background influences. Since the box is tighter around the object, the given resolution
of the pooling grid is used more effectively. In this work, we analyze if this helps to
improve the classification results. We have seen in Chapter 5 that a wrong classification
is one of the main reasons of detection failure cases.

Bounding box aspect ratios become invariant to an object’s rotation, which makes it
easier to set the parameters of anchor boxes. For example, for a dataset with few object
categories and where perspective distortions are negligible, the anchor aspect ratios can
be set according to the object’s dimensions. For non-overlapping objects, OBBs overlap
significantly less than AABBs. This avoids erroneously filtering out candidate boxes
by NMS and makes it more intuitive to tune NMS hyperparameters. Moreover, the
detection results of OBBs are visually more appealing as it is easier to assign the box to
the underlying object.

Therefore, in this chapter we propose using oriented as opposed to axis-aligned
bounding boxes for object detection. The main contributions of this chapter are: We
show how current AAD methods need to be adapted for OD. Our approach can easily be
applied to existing models based on AABBs. We describe how to adapt architectures for
OD and explain necessary changes to different parts of the model compared to baseline
AAD models. Further, we introduce rloUgg, an adapted version of the well-known IoU
that allows to compare AAD and OD models on a fair basis. In our extensive experiments
section we evaluate OD models on Screws, Pill Bags, and D2S. We provide ablation studies
for our design choices and show that OD predictions are in many cases a much better
abstraction of the underlying objects than AAD results. Finally, with our experiments on
D2S, we show that also for datasets where many categories do not have a clear orientation,
OD still leads to comparable results as the AAD baseline. Moreover, for some categories,
such as bottles, zucchinis, bananas, or oranges, the results can be significantly improved.

8.2 Related Work

The idea of oriented box detection has been introduced in the context of scene text
detection. Existing methods are all based on Faster RCNN [159]. Jiang et al. [86] still
use an axis-aligned box RPN but infer an oriented final box output by regressing the
orientation. In [129], Ma et al. extend the RPN to use oriented anchors and the Rol
pooling to pool features with respect to oriented boxes. Oriented box detection has been
demonstrated to perform well on other domains than in OCR. For example, Ding et al.
[31] have set a new benchmark on the oriented object detection dataset DOTA [200]. In
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Figure 8.1: Exemplary OD architecture. (Blue, left) Input image and backbone for feature
extraction. (Red, middle) Oriented RPN. (Violet, right) Features are pooled with respect to oriented
proposals to feed RCNN heads for final oriented box output. While the overall architecture is very
similar to the AAD counterpart, it is important to change several details such that the method
works as expected.

contrast to our work and [129], they do not use oriented anchors but propose a Rol
Transformer module before pooling with respect to the oriented box. Another application
that benefits from the use of oriented boxes is ship detection in satellite images [202],
where the authors propose a dense FPN with oriented anchors.

The most similar approach to ours is that of [129], but we use the angle-related IoU
[121] for the anchor target generation and certain other small but logic changes to their
approach. We incorporate the idea of [31] to pool features with respect to the oriented
box proposals. Moreover, we explain our design both for a two-stage detector, such as
FRCNN [159], and a one-stage detector, such as RetinaNet [120].

In comparison to previous oriented object detection methods, we explicitly allow to
set classes without orientation: Since not all classes might have a well-defined orientation,
we include the option that the model falls back to predict an AABB for some user-defined
classes, which stabilizes the training.

8.3 Oriented Box Detection

In the following, we present the key components to make the idea of OD work efficiently.
Our approach is applicable to all AAD methods. Exemplary OD architectures based on
FRCNN and RetinaNet are depicted in Fig. 8.1: In a first step, the backbone is applied to
the input image to extract features that are used for the one or two following stages: For
FRCNN, the first stage is the RPN, which predicts for each of a number of template anchor
boxes whether it is likely that an object with similar bounding box is present or not (fg/bg
branch) and if so, how the anchor should be refined to better match the underlying object
(box branch). The second stage are the RCNN heads, where the oriented box proposal
outputs of the RPN are used to Rol pool the features for class prediction (class branch)
and further box refinement (box branch). In the one-stage RetinaNet version, the fg/bg
branch is exchanged by a class branch that directly predicts the category for each of the
anchor boxes. This makes the second stage obsolete.

For FRCNN, the Rol pooling layer pools from the oriented grid aligned with the
input boxes. Since the output feature maps are upright, usual convolutions can be used
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in the subsequent layers.
In the following, we explain all adaptions and design choices in more detail.

Box representation. We use a five-parameter representation for boxes b = (r,¢, 11,12, ¢),
where (7, c) denote the subpixel-precise center point row and column coordinates, (I,12)
the semi-axes lengths of the oriented box, and ¢ the orientation pointing in the direction
of the major axis. ¢ is given as an angle in radians between the positive horizontal axis
and the [;-axis in mathematically positive sense. In contrast to the parametrization used
in [129], we generally do not enforce that I; > I, such that sudden flips of the orientation
for boxes with aspect ratio close to one are avoided. More precisely, only when we are
not interested in the exact orientation (IgnoreDirection is true, see below), we use the
longer box-side as ;. In this case, we also swap the axes of output boxes such that /; > I,
holds.

Ignore direction. We differentiate between two scenarios: The first scenario is that we

are interested in the exact orientation of boxes, i.e., ¢ € (—7t, 7t]. In the second scenario,
-3.3
not important, but only a tight oriented bounding box of the instance (mask) is the goal.

¢ is limited to the range ( ], which is suitable if the actual orientation of the box is
In this case, predictions with ¢ outside of the range can be corrected by subtracting or
adding 7. To differentiate the two scenarios, we use a parameter IgnoreDirection that is
set to true in the latter case. Note that it is important that also the ground truth given in
the dataset at hand is annotated in accordance with IgnoreDirection. In particular, if the
oriented ground-truth boxes are generated as the smallest bounding boxes (SBB) of an
instance mask, we do not know which of the four options is the correct direction of the
orientation. Hence, in this case, we always use IgnoreDirection set to true.

8.3.1 RPN and Anchor Assignment

Because we want to predict oriented boxes, the region proposal network is fed with
oriented anchors with different orientations, aspect ratios, and subscales. Ding et al. [31]
argue that this leads to a massively higher number of anchors compared to axis-aligned
boxes. However, in many cases, we can choose the orientation of the ground-truth (GT)
boxes such that it is aligned with the longer box side length.! Therefore, in comparison
to AAD, only aspect ratios smaller or equal to one are necessary, which almost halves
the number of anchors. Moreover, if one is not interested in the exact orientation of the
box (IgnoreDirection is true), three orientations such as (—%, 0, %) are sufficient in most
situations. We did experiments using only three orientations in the case that the full
orientation range is of interest. We found that using (—%71, 0, %7{) is often also sufficient
when IgnoreDirection is set to false.

As usual, the anchor target assignment is based on the IoU between anchors and GT,
as explained in Section 4.3. With a naive implementation, we noticed that for OD the

However, this is not the case if the object’s orientation is defined by a printing or other mark on the
object and not given by its shape.

162



8.3 ORIENTED Box DETECTION

GT = (0, 0, 100, 20, rad(45°))
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arloU(GT, A): 0.41 arloU(GT, B): 0.15 arloU(GT, C): 0.00

Figure 8.2: arloU and box target example. (Left) GT box (black) and oriented anchors (red,
blue, green). Although for the blue anchor the coordinates /1, ], and ¢ differ substantially, the
exact IoU is higher than for the red anchor where only ¢ differs by 20°. Moreover, the exact IoU
for the green anchor is the highest, but its direction is almost opposite to the GT direction. These
issues are solved by the use of the arloU for anchor assignment. (Right) Our box center targets
ensure that the targets are consistent for anchors with different orientation but the same center
coordinates.

training is very unstable or converging to a bad local minimum due to the following
reasons: On the one hand, the number of foreground anchors can be very low or in some
cases there is not a single anchor assigned to a particular GT instance. On the other hand,
the exact oriented box IoU sometimes leads to very inefficient assignments (cf. Fig. 8.2).

Angle-related IoU. To fix the latter problem, we replace the exact IoU by the angle-
related IoU (arloU [121]) for anchor assignment:

arloU(A, B) = max(0, cos(¢4 — ¢3)) IoU(A, B), (8.1)

where A is the box (ra,calia o4, ¢p). First, we see that anchors that point into the
opposite direction of the GT box obtain an arloU of zero although their naive IoU might
be large. This helps to avoid very large targets d,, for the orientation regression. Moreover,
the right part of (8.1) can be evaluated as an IoU between axis-aligned boxes (since the
axis can be chosen parallel to /1 g) and is therefore much more efficient to compute than
the exact IoU of two oriented boxes.

Set weak boxes to background. Although, the arloU can fix the problem of wrong
anchor assignment, the second problem of a low number of foreground instances remains
because its values can still become small for anchors that have only slightly different
parameters than the GT box. To fix this problem and increase the number of foreground
anchors, we evaluate the influence of setting weak boxes to background (swb2bg): If swb2bg
is set to false, anchors that achieve the highest arloU with a GT box, but where the arloU
is below f¢NegThresh, are still assigned to the foreground (cf. Fig. 4.15). By changing
swb2bg, we ensure that all GT instances contribute to the training, even if none of the
anchors fits very well. Hence, instead of increasing the number of anchors, this change
offers an efficient way to address all available GT box shapes. Effectively, this leads to
a more stable training because enough foreground examples are present. Moreover, if
for some GT boxes no anchor is assigned to the foreground, the model is told to learn
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that no object is present at that position although there obviously is one and the image
features are indicating it. This can lead to an unstable training.

In theory, more anchors could also be assigned to the foreground by relaxing the
negative and positive thresholds fgNegThresh and fgPosThresh. However, we found that
these hyperparameters are much more difficult to tune and we could not improve the
overall results by adapting them.

The relaxation of swb2bg is only used within the RPN. For the RCNN heads (if
present), we only want good box proposals to generate a loss. This is in line with the
findings of Cascade R-CNN [14], where the assignment thresholds are increased in
several iterative box refinements.

Oriented box targets. The correct definition of training targets is a crucial ingredient
for oriented box detection, as minor modifications can have a large impact on the training
convergence. We use the following box target calculations for the row and column
coordinate deltas:

dr = T 7 dC = = (8‘2)

where (7%, c*) are coordinates of the GT box, (7, ¢) are anchor or box-proposal coordinates,
and [ = (I +I2)/2 is the mean axis length of the anchor or box-proposal for which
the deltas should be calculated. By using [, the normalization does not depend on the
orientation of the box. In previous work, such as [31, 129], I, is used to normalize d, and
I; to normalize d. instead of the mean value [. However, if a box is oriented with p=>7
the meaning of /; and I, with respect to r and c is flipped. This is avoided by the use of /.

For the target delta of the orientation ¢, we use the angular difference, but we make
sure that the smaller of both possible difference angles is used:

d(p _ " — ¢, |¢* - (P’ < T(P (8.3)

¢* — ¢ +2sgn(¢)Ty, otherwise,

where T, = 71/2 if IgnoreDirection is true and otherwise Ty = 71. Note that (8.3) can lead
to predictions that have an orientation outside of the possible range and hence we need
to correct them by adding or subtracting 2T as long as ¢ is not within the angle range
(=7, 7t} or (=27, 2] if IgnoreDirection is true or false, respectively).
Moreover, in the calculation of dg, we avoid large regression targets by ensuring that
7Tt

dy is in the range (—%, Z) due to the use of the arloU during the assignment phase.? In
practice, the targets are often smaller, depending on the number of anchor orientations.

Classes without orientation. In many applications, we have objects without a uniquely
defined orientation. If we use the smallest oriented bounding box as GT for symmetric
or round objects, their GT orientations are varying between different instances without a

2The interval boundaries are excluded here because an angular difference with |dy| = 7 leads to an
arloU of zero (see (8.1)).
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Figure 8.3: Example for classes without orientation. For a symmetric object like the shown
nut, the correct orientation is ambiguous to annotate. Therefore, we assign it to be a class without
orientation.

hint for the model why this is the case. This can lead to a destabilization of the training.
Therefore, we propose to assign these classes to a set of classes without orientation.

For these categories, we annotate the GT boxes as the smallest AABB of the GT
instance masks with ¢ = 0. An example is shown in Fig. 8.3.

8.3.2 Evaluation of Oriented Box Detection Methods

Of course, generally, OD methods can also be evaluated by AP or AP* (cf. Chapter 4,
Chapter 6). However, the additional component of the box orientation brings a new
challenge. Moreover, the direct comparison of OD and AAD approaches only by looking
at AP or AP~ is often not very meaningful, as described in the following.

Score of angular precision — SoAP. The normal evaluation with AP or AP* might in
some cases be misleading for oriented boxes. Also here, a true positive (TP) is defined as
a prediction that exceeds the given IoU threshold with a GT box and has the correct class.
However, the IoU can be large or even one although the two boxes point into opposite
directions. Therefore, we can additionally measure the score of angular precision (SoAP):

S0AP = Z min(|cp3 - (PG|,27T — |(PB - (PGD, (84)
BEBiouso
SOAPTP = Z min(|ch — 47G|,27T — |(PB — ¢G|)/ (85)
BeBrp

where ¢ is the orientation of the matched GT box G if the prediction B is a TP and
otherwise it is the GT box G with which B overlaps the most. Bj,yso is the set of
predictions that overlap with at least one GT box and hence S0 AP excludes background
boxes that do not overlap with any GT box. SoAPrp only includes TP predictions for
the given IoU threshold. In the same way as in the definitions of AP or AP*, SoAP or
SoAPrp can be an average over the respective measure at multiple IoU thresholds.

Relative IoU for bounding boxes. As we will see later in Chapter 10, oriented box
detection might be only a subpart of a larger network. In this particular case, we are not
interested in the orientation of boxes, but want to make use of OD because of the tighter
fit of the oriented boxes around the object mask compared to AAD. However, it is not
straight forward to select a good model using the normal AP or AP* metric based on the
usual IoU computations. In some cases, the box that leads to a maximum IoU with the
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instance’s mask has no unique orientation. There might also be bounding boxes with
different orientations that lead to almost the same IoU between the box and the mask.

To this end, Bottger et al. [12] introduced the relative IoU for axis-aligned and oriented
boxes that compares the actual IoU of a box B and a mask M to the best possible IoU
that can be achieved for M by any box B’, IoU,,:(M):

ToUgpt (M) = max IoU(B', M), (8.6)
‘e
ToU(B, M)
rloU(B,M) = —————, 8.7
( ) IOUOPt(M) ( )

where B is the set of all possible boxes with any parameters b and are not necessarily
bounding boxes of the mask M. In particular, independent of the shape of the mask M,
rloU leads to a value between zero and one, where one is always achievable (e.g., by
Byt that solves (8.6)). Hence, if instance masks are available, we can replace IoU by rloU
during the evaluation and avoid penalizing boxes disproportionally that have a different
orientation than the ground truth box but still achieve a high IoU with the ground-truth
instance mask.

However, using rloU as in (8.7) as the objective for model optimization leads to box
predictions that are generally no bounding boxes, but cut away thin parts of the mask
boundary that do not contribute much to the overall mask area. Further, IoU,,:(M)
cannot be computed in closed form and needs a multi-start iterative optimization scheme.
Most instance-segmentation methods, like MRCNN or RetinaMask, require bounding
boxes of the mask because the mask prediction is only carried out within the predicted
box. Therefore, we propose the usage of the relative bounding box IoU:

SBB(M, ¢) = argmaxy (1 g ¢ 0U(B, M), (8.8)
SBB(M) = argmaxp sy ps) l0U(B', M), (8.9)

rloUgg (B, M) = min (IoU (B,SBB(M, ¢5)) , min <1, IO[JI(OS%;B(%? i )) . (8.10)
where B(M, BB, ¢) in (8.8) is the set of bounding boxes of M with orientation ¢. Hence,
SBB(M, ¢) is the smallest bounding box of M with orientation ¢. It can be computed by
rotating M by —¢ and computing the smallest axis-aligned box around the rotated M
before transforming the coordinates back with the inverse rotation. SBB(M) from (8.9) is
the bounding box with any orientation that achieves the maximum IoU for M. It is hence
the smallest bounding box (SBB) of the mask M. Finally, rloUgp (B, M) is computed as the
minimum of two components: The first component on the left reflects how well the box
B is a bounding box for the mask M. Here, we compute the axis-aligned IoU between
the box B and the smallest bounding box of M with the orientation ¢p of B. The second
component on the right reflects the goodness of the IoU between the box B and the mask
M. Since we want to obtain an optimum for bounding boxes, we set the value to one
whenever IoU(B, M) is higher than the IoU of SBB(M) with M. Also here, SBB(M) can
be computed efficiently, e.g., using the rotating calipers algorithm [170, 189].
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8.4 Experiments

In this section, we show results on different datasets that have been labeled for oriented
detection (e.g., Screws) or that have accurate mask annotations from which the OBBs
can be inferred (e.g., Pill Bags or D2S). In particular, we provide ablation studies for the
design choices that we made and explained in the previous section. For all experiments
within this section, we show the results of the best model state that is selected by early
stopping (cf. Section 2.3.4). For each model, the results of three experiments (Exp) that
only differ in the random seed for weight initialization and SGD-mini-batch selection are
shown.

8.4.1 Screws

As described in Section 4.1.2, Screws contains thirteen different categories of screws and
nuts on a wooden background. The four nut categories are symmetric such that their
orientation is ambiguous to annotate. Hence, they are assigned to be classes without
orientation. In contrast, for all screw categories, the orientation can be uniquely defined
to point from the head along the thread to the tail of the screw.

The dataset is split in the ratio 70% : 15% : 15% to the training, validation, and test
sets. All models are trained on images of size 512 x 384 for 60 epochs with batch size
two. During the training the images are mirrored vertically or horizontally (or both)
with a probability of 50%. The initial learning rate is set to 0.001 and reduced by a
factor of 0.1 after 30 and 50 epochs. We use a warmup (cf. Section 2.3.1) with a factor
of 0.3333 for 500 iterations. The momentum and weight decay are set to 0.9 and 107>,
respectively. Unless mentioned otherwise, we use a maximum number of detections of
60 and a minimum confidence threshold of 0.05. During NMS, we filter boxes of the
same class if they have a lower score and exceed the IoU threshold of 0.4 and of any class
if they exceed the IoU threshold of 0.5. For RetinaNet, we use FPN levels three to seven
and generally use anchors with three subscales, aspect ratios (0.1,0.3,0.9), and angles
(=2m/3,—m/3,0,7t/3,2m/3, ). This results in a quite high number of 3-3-6 = 54
anchors per pixel in the FPN feature maps. With the given image size and chosen levels,
this leads to an overall number of (64-48 +32-24+16-12+8-6+4-3) - 54 = 220968
anchor boxes per image.

Influence of backbone and pretrained weights. Also for OD models, the choice of
backbone architecture and pretraining of model weights can have a large influence on the
quality of results as depicted in Table 8.1. The models in the top part of the table have
class-specific score thresholds T; to optimize APZ, on the validation set (cf. Chapter 6).

A memory and runtime efficient choice is to use a SqueezeNet [81] backbone. On
Screws, this leads to comparable results as when a ResNet 50 [68] is used. The use of
an even larger ResNet 101 backbone slightly increases AP*, especially at higher IoU
thresholds, mainly due to a reduced number of FPs. However, at IoU threshold 0.5, the
recall is lower than for the ResNet 50 counterparts.
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Model Exp | IoU[0.5:0.95] IoU[0.5] 1oU[0.8]
AP AP* | AP AP* TP FP | AP AP* TP FpP

With TZ (val)
SqueezeNet Openlmages

65.6 632 |91.8 90.0 618 39 | 657 624 494 163
653 629 |928 911 626 44 | 63.7 59.8 478 192
654 631 |927 913 626 351624 586 475 186
663 637 |91.6 89.5 616 43 | 66.1 628 492 167
659 63.1 |923 901 617 42 | 63.2 594 474 185
654 636 |90.8 89.8 608 22 1637 609 480 150

ResNet50 Openlmages

ResNet50 ImageNet 69.0 660 |940 918 629 41 | 69.7 65,5 510 160
68.1 654 |919 898 615 37 | 686 65.0 502 150
ResNet50 COCO 748 726 |962 953 640 18 | 79.0 753 559 99

747 722 | 959 943 638 27 1792 752 559 106
744 726 | 954 947 635 14 | 80.0 769 564 85
68.6 66.1 |909 892 607 35725 686 520 122
68.7 668 |922 913 615 18 1711 679 511 122
67.7 657 |90.8 899 606 19702 669 507 118
749 733 | 945 942 629 11 | 805 77.5 562 78
758 737 | 950 938 631 22 | 814 78.0 566 87
753 737 | 945 940 628 12 | 821 79.6 572 68

ResNet101 ImageNet

1
2
3
1
2
3
1
2
3 679 651 |925 904 617 351688 655 509 143
1
2
3
1
2
3
ResNet101 COCO 1
2
3

Without T (val)
SqueezeNet Openlmages

679 449 |96.0 632 651 2388|671 447 505 2534
67.0 440 |962 629 650 2409 | 647 424 486 2573
672 435 | 958 619 651 2302 | 63.6 41.0 484 2469
76.8 482 [98.0 619 651 2069 | 819 51.1 572 2148
773 487 | 976 619 649 1990 | 824 51.7 574 2065
772 485 979 620 651 2012 | 835 523 583 2080

ResNet101 COCO

Table 8.1: Influence of backbones and pretrained weights on Screws test. All models
are RetinaNet. Also for OD models, the chosen backbone and pretrained model weights can have
a large influence on the results. Only for COCO-pretrained models, the weights of the FPN and
the class and box regression heads are pretrained; for all others they are initialized randomly.

Pretraining of weights has a much larger impact on the model’s performance than
the backbone choice. AP and AP* can be improved by approximately three percentage
points (pp) when the ResNet 50 backbone is pretrained on ImageNet [168] instead of
Openlmages [98]. Moreover, a remarkable additional gain of approximately six pp is
achieved when the whole model has been pretrained on COCO [118]. In this case, the
main advantage might not come from better features extracted by the backbone, but from
the fact that the FPN, class-head, and box-regression-head layers are also initialized with
pretrained weights from a model that has already learned to predict boxes and classify
them. Note that in this case, due to the different number of anchors and classes used on
COCO and Screws, the last prediction convolution layers of both the class and box heads
are still initialized randomly due to the mismatch of the number of kernels. A large
advantage of COCO-pretrained weights is visible at IoU threshold 0.8, while the number
of TPs is only slightly higher at IoU threshold 0.5. Hence, the boxes are predicted with a
better localization accuracy than, e.g., for ImageNet-pretrained weights.
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Model Exp IoU[0.5:0.95] ToUJ[0.5] 1oU[0.8]
AP AP* SoAP | AP AP* TP FP| AP AP* TP FP
RNet R50 COCO 1 748 726 847 |962 953 640 18 |79.0 753 559 99
2 747 722 862 | 959 943 638 271|792 752 559 106
3 744 726 848 | 954 947 635 14800 769 564 85
RNet R50 COCOFA 1 744 712 826 |96.0 940 638 37 |781 731 547 128
2 742 712 851 [ 953 931 634 40| 796 749 556 118
3 749 716 855 |962 940 640 40 |782 731 551 129
RNet R101 COCO 1 749 733 896 | 945 942 629 11 |805 775 562 78
2 758 737 910 |95.0 938 631 22|8l4 780 566 87
3 753 737 866 | 945 940 628 121|821 796 572 68
RNet R101 COCOFA 1 736 710 891 | 942 927 627 29 |770 734 543 113
2 745 718 883 |949 934 631 30|796 758 556 105
3 743 712 858 [ 949 930 633 377|786 742 552 118

Table 8.2: OD with few anchors (FA). FA models use only 18 instead of 54 anchor boxes. FA
models have only slightly lower AP*, but more FPs, especially at higher IoU thresholds.

Model Exp | NVIDIA GTX 1080Ti | NVIDIA RTX 2080Ti
mem[MB] time[ms] | mem[MB] time[ms]
RNet R50 COCO 1 2981 66 3235 55
RNet R50 COCOFA 1 2779 45 3025 32
RNet R101 COCO 1 4099 77 4455 63
RNet R101 COCO FA 1 3897 56 4245 38

Table 8.3: Performance of OD with few anchors (FA). FA models need less memory on the
GPU and can be significantly faster. Shown are the average runtimes per image across the Screws
test set. The batch size has been set to one. Both GPUs are built into the same server and hence
use the same CPUs (Intel Xeon Silver 4114 CPU@2.2GHz).

For completeness, we also show results of the worst and the best configuration where
T¢ (val) is replaced by a low global confidence threshold of 0.05 in the bottom part of
Table 8.1. The AP values are increased with a slightly higher overall recall, but the
number of FPs is increased up to a factor of almost 200.

OD with fewer anchors. Because for OD, anchor boxes have to be setup with different
orientations, generally, more anchors are necessary than for AAD. When low FPN levels
with high feature map resolutions are used, the number of anchors can have a large
impact on the training and inference runtime. Therefore, in this paragraph, we compare
our baseline models against models with significantly fewer anchors (FA). Instead of six
orientations (—27t/3,—m/3,0,7/3,27t/3, ) and three aspect ratios (0.1,0.3,0.9), for FA
models, we only use three orientations (—27/3,0,27t/3) and two aspect ratios (0.25,0.9).
This leads to only 18 instead of 54 different anchor boxes per feature map pixel and
73 656 instead of 220968 anchors per image.

Table 8.2 shows that by using fewer anchors, the quality of the results is only
marginally lower. Generally, FA models predict a bit more FPs, but have a compa-
rable recall to the models with a higer number of box templates. However, as shown in
Table 8.3, reducing the number of anchors leads to approximately 200MB less memory
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Model Exp 10U[0.5:0.95] ToUJ[0.5] train
AP AP* SoAP SoAPrp | AP AP* TP FP SoAPrp | time [s]

748 726 847 98.3 962 953 640 18 97.3 4234
747 722 862 98.5 959 943 638 27 97.4 4024
744 726 848 98.5 954 947 635 14 97.5 4590
498 475 776 92.3 735 704 530 192 89.7 8508
505 479 747 92.0 73.8 704 537 279 90.1 8349
49.1 469 780 94.7 725 69.7 534 188 89.4 8679

RNet R50 arloU

RNet R50 exact IoU

W N RWDN =

Table 8.4: Comparison of arloU and exact IoU for anchor assignment. RNet R50 arloU
is the same as ResNet 50 COCO from Table 8.1. The exact IoU model uses the same initialization
and hyperparameters, but arloU is replaced by the exact OBB IoU during anchor assignment.

consumption on the GPU.? Moreover, a speedup of 30% on the older NVIDIA GTX 1080Ti
GPU, and of 40% on the newer NVIDIA RTX 2080Ti GPU can be achieved. Hence, the
overall performance of a model with fewer anchors that includes accuracy, runtime, and
memory consumption, might even be better than for a model with many anchor boxes.

Angle-related IoU vs. exact IoU. To evaluate the influence of using arloU during
anchor assignment, we take the exact same model as ResNet 50 COCO from Table 8.1
and replace the arloU computation within the anchor assignment by the exact OBB IoU.
All other hyperparameters are the same. The results in Table 8.4 show a remarkable
improvement of the accuracy with respect to AP* and SoAP for the arloU model: The
orientation of the predictions is much more accurate and also the recall is significantly
higher.

The usage of the arloU for anchor assignment does not only lead to higher AP*
values, but is also much more efficient. As shown in the last column of Table 8.4, the
total training time can be halved if the arloU is used. The runtime comparison has been
done on the same machine, where for both methods the anchor assignment is computed
on the CPU (Intel Xeon E5-2637 v4 @3.5GHz), but the remaining parts of the CNN are
run on the GPU (NVIDIA GTX 1080 Ti). Moreover, with a GPU implementation of the
box target generation, the arloU training time can be further reduced to approximately
1600 seconds (~ 27min). Note that this difference is present even though for both IoU
types we directly set the IoU to zero if an anchor has no chance to overlap a GT box.
Therefore, we first check the distance of each anchor center to each GT box center within
the IoU computation and only compute the box IoU or arloU if there is any chance that
the two boxes overlap.

Influence of SetWeakBoxesToBg during anchor assignment. Generally, only anchors
with high IoU to a GT box are assigned to the foreground (cf. Fig. 4.15). As we have
seen, in comparison to AABBs, slight differences in orientations of OBBs can reduce the
IoU to a GT box significantly. This can lead to a low number of foreground anchors per

3We explicitly choose the same type of cuDNN convolution algorithm throughout the network for this
comparison. In practice, if the convolution algorithm is not set deterministically, the internal cuDNN
optimization might lead to varying memory consumptions across models and GPUs that do not always
reflect the theoretical number of weights and activations of a model.
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SWB Neg Pos Exp | IoU[0.5:0.95] IoU[0.5] IoUJ[0.8]
AP AP | AP AP* TP FP| AP AP* TP FP

RetinaNet R50 ImageNet-pretrained

v 1 585 56.7 |786 777 528 61 |594 569 434 155
59.2 572 790 779 530 45|60.1 57.1 435 140
59.0 571 |793 783 532 58 |614 587 442 148

69.0 660 |[94.0 91.8 629 41|69.7 655 510 160
68.1 654 |919 898 615 37|686 650 502 150
679 651 |925 904 617 35|688 655 509 143

RetinaNet R50 COCO-pretrained

v 649 636 |81.0 805 541 233|704 683 491 283
65.1 635 |812 804 542 227|709 684 492 277
648 634 |81.0 80.6 541 219|704 682 492 268
731 713 |941 935 627 17778 749 554 90
723 706 |93.0 922 618 16|76.7 738 547 87
723 703 |93.8 927 625 22|771 740 550 97
63.1 617 | 813 80.8 543 141|674 653 480 204
629 615 |812 80.7 543 128 | 67.6 65.6 483 188
63.0 613 |81.3 803 543 134|679 655 484 193
713 693 |944 936 627 15|753 721 535 107
725 707 |95.0 947 631 110|757 73.0 536 105
712 692 |93.8 930 625 19|738 706 527 117

748 726 |962 953 640 18 |79.0 753 559 99
747 722 | 959 943 638 27792 752 559 106
744 726 |954 947 635 14|800 769 564 85
740 725 |943 939 628 11800 774 562 77
736 720 | 946 942 630 11 |780 755 557 84
744 728 | 955 949 635 112|786 76.0 555 92

W N R W N

Q\
(\
(\
W N RWONRFR[ITWNRWLWNRWONRWQDNR

Table 8.5: Influence of SetWeakBoxesToBg and anchor assignment thresholds. A check-
mark (v') indicates that SetWeakBoxesToBg (SWB) is set to true, that FgNegThresh (Neg) is reduced
to 0.3, or that FgPosThresh (Pos) is reduced to 0.4. Using our default SetWeakBoxesToBg set to
false clearly gives the best results. Reducing FgNegThresh or FgPosThresh does not match the
performance of SetWeakBoxesToBg set to false.

image and can lead to GT boxes where not a single anchor is assigned to the foreground.
To compensate this effect, especially for elongated objects such as screws, we would
need a large set of anchors, where for all GT boxes at least one anchor has an IoU above
FgNegThresh. However, we have seen above that this increases the memory consumption
and runtime. A workaround is to set SetWeakBoxesToBg to false such that at least the
best fitting anchor for each GT box is set to the foreground. Alternatively, to increase
the number of foreground anchors, we can reduce the thresholds FgNegThresh and
FgPosThresh, respectively, or both at the same time. In Table 8.5, we investigate the
influence of each parameter on Screws.

For RetinaNet with a ResNet 50 backbone and the given anchor configuration, the best
performance is reached when SetWeakBoxesToBg is set to false. When ImageNet-pretrained

171



CHAPTER 8: ORIENTED Box DETECTION

weights are used, setting SetWeakBoxesToBg to true lowers AP and AP* by approximately
9pp. For COCO-pretrained weights, the effect is even slightly larger.

Further, by reducing FgNegThresh from 0.4 to 0.3, the difference can be reduced to
approximately 1 pp AP*, but still the recall is lower. Setting FgPosThresh from 0.5 to 0.4
in order to increase the number of anchors that are assigned to the foreground leads to
significantly worse results. A combination of setting SetWeakBoxesToBg to false together
with the reduction of FgNegThresh leads to similar AP* values with a higher precision
but slightly lower recall.

Overall, this shows that setting SetWeakBoxesToBg to false is a good alternative to the
use of an overly large set of anchor boxes. Since the reduction of FgNegThresh did not
significantly improve the results, we leave it at its default value of 0.4 in all remaining
experiments (also for other datasets).

Qualitative results. Fig. 8.4 shows qualitative results of OD on Screws for a selection of
the above mentioned models. In the tables from the previous paragraphs, these are the
models of the first experiment (Exp 1), respectively.

The exact IoU model fails to predict a correct orientation for many objects, even
within the easier images where the screws and nuts are clearly separated. Often, for one
screw there are several predictions with varying orientations where most of them hardly
overlap the underlying screw.

On easier images, the SqueezeNet model predicts similar results to the ResNet 101
model, but in some cases the boxes are less accurate, in particular for the longer screws.
In some cases, the direction of the box is opposite to the ground truth, i.e., pointing from
tail to head instead of from head to tail.

When screws are overlapping and the overlapped screw is separated into two con-
nected components, the models often make two separate wrong predictions for each
visible screw part. Also when the objects are touching or are lying very close to each
other, all models have difficulties.

Similar to the AAD detection results on D2S in Chapter 6, also here T, does not
generalize very well from the validation to the test set such that some correct predictions
might be filtered out due to a confidence below the class-specific thresholds.

8.4.2 Pill Bags

Pill Bags (cf. Section 4.1.2) is a rather easy dataset with low intra-class variations in which
all images have a similar appearance. However, also here we can see differences between
AAD and OD methods. Some pills have an elliptic or elongated shape and thus, if
they are diagonally aligned, OBBs certainly have a better fit than AABBs. Since Pill
Bags is labeled with high-quality instance masks, we can compare the OD and AAD
methods using rloUgg. Moreover, we showcase the advantage of OD when tuning NMS
thresholds.

On Pill Bags we set IgnoreDirection to true because for most of the pills, the exact
direction of the pill is only uniquely defined modulo 7t. Moreover, we set round pill
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GT ResNet 50 COCO SqueezeNet ResNet 101 COCO

Figure 8.4: Qualitative results on Screws test with T} (val). ResNet 50 COCO trained with
exact IoU for anchor assignment shows significantly worse results. For most images the ResNet
101 COCO model shows more accurate results than the SqueezeNet Openlmages model. All
models have difficulties with occluding and touching screws.
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types to classes without orientation and for them we use the box parameters of the smallest
axis-aligned bounding box of the instance mask as GT. For all other categories, the GT
orientations and box parameters are obtained as those of the smallest oriented bounding
box of the instance mask.

Unless mentioned otherwise, all models are trained with the following hyperparame-
ters: Initial learning rate 0.001, momentum 0.9, weight decay 10~2; we train with batch
size two for 60 epochs and reduce the learning rate after 30 and 50 epochs by a factor
of 0.1, respectively; we use linear warmup with a factor of 0.1 for 200 iterations. In this
subsection, we use RetinaNet with FPN levels three and four. We use a maximum number
of 50 detections per image. We use vertical and horizontal mirroring during training.
The class-agnostic NMS threshold is set to 0.5 and class-specific NMS is switched off
during training. For AAD, we use anchors of three subscales and with aspect ratios (0.5,
1.0, 2.0). For OD, we only use two anchor subscales; the aspect ratios are set to (0.5, 1.0)
and the orientations to (—%, 0, %) Hence, with nine and twelve anchors for AAD and
OD, respectively, the total number of anchors is comparable.

Quantitative comparison of AAD and OD. Table 8.6 shows a comparison of RetinaNet
setup for AAD and OD and with a SqueezeNet or ResNet 50 backbone, respectively. For
SqueezeNet models, we load only weights of the backbone that have been pretrained
for classification on Openlmages. For the ResNet 50 models, we use COCO-pretrained
weights of RetinaNet. In this case, also the convolution weights of RetinaNet’s class- and
bounding-box-prediction heads as well as the FPN convolutions are initialized. Since
the pretrained model was trained for AAD on COCO, the AAD models might have a
small advantage at the beginning of the training. For each model, we run three different
experiments to evaluate how reliable the results and differences between the models are.
We can see that differences are present, but they are smaller than the differences between
different backbones or the choice of model type. For all models, we use the optimal
NMS thresholds that we compute on the validation set: 0.1 for both class-agnostic and
class-specific thresholds in case of OD and 0.2 and 0.1 in case of AAD, respectively (see
next paragraph). We use a global minimum score of 0.05 and no class-specific score
thresholds.

OD models generally achieve higher AP than AAD models at low IoU thresholds.
At very high IoU thresholds the opposite must hold because the overall AP is slighly
lower for the SqueezeNet backbone and three to four percentage points lower for the
COCO-pretrained ResNet-50 model. OD models mostly predict fewer FPs and thus
obtain higher AP*.

However, the comparison of AAD and OD models with AP or AP* values based on
the exact IoU might be misleading: In Table 8.6, we compare AABB measures with OBB
measures. A slightly wrong prediction of the box orientation can lead to a relatively
large impact on the IoU of prediction and GT box. At the same time, the predicted box
can still be a good fit for the underlying instance mask or at least a fit that is comparable
to the AAD result or the OBB GT. For this reason, we also compute the AP and AP*
measures based on rloUgp as shown in Table 8.7. In comparison to the measures based
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Model Exp | IoU[0.5:0.95] 1oUJ[0.5] IoU[0.8]
AP AP AP AP* TP FP| AP AP TP FP
Validation set
AAD SqueezeNet Openlmages 1 862 816 | 978 934 611 76 |972 927 607 80
2 858 801 | 972 917 608 98 |96.5 90.8 603 103
3 85.7 805 | 972 920 608 95|96.6 914 604 99
AAD R50 COCO 1 955 947 | 978 973 611 121|978 973 611 12
2 954 945 | 978 973 611 121978 973 611 12
3 954 945 | 978 972 611 113|978 972 611 13
OD SqueezeNet Openlmages 1 8.1 833 | 996 984 620 18 |97.7 96.1 611 27
2 8.3 836 | 996 984 620 17976 96.1 611 26
3 852 834 | 998 987 621 116|954 93.8 603 34
OD R50 COCO 1 914 90.7 |1000 99.8 622 3]994 992 619 6
2 915 90.8 | 1000 99.7 622 4996 993 620 6
3 914 90.7 | 1000 998 622 3993 99.1 619 6
Test set
AAD SqueezeNet Openlmages 1 839 786 | 953 903 578 82944 891 573 87
2 839 783 | 953 899 577 89 |945 889 573 93
3 835 777 | 955 897 579 96 |934 874 570 105
AAD R50 COCO 1 929 920 | 953 947 577 111|953 947 577 11
2 93.0 920 | 953 946 577 13953 946 577 13
3 93.0 922 | 953 948 577 101|953 948 577 10
OD SqueezeNet Openlmages 1 83.6 817 | 980 965 591 24954 936 581 34
2 838 822 | 984 972 593 18 |95.0 934 580 31
3 842 824 | 984 971 593 19 |957 940 582 30
OD R50 COCO 1 895 887 | 982 979 592 7977 972 589 10
2 895 886 | 982 979 592 8977 972 589 11
3 89.4 885 | 982 979 592 7977 972 58 10

Table 8.6: Pill Bags AAD and OD detection results. OD models clearly outperform AAD
at low IoU thresholds. For large IoU thresholds OD models obtain lower AP and AP*. Note
that here we compare the AABB measures of AAD models with OBB measures of OD models.
Generally, very high BB IoUs are more difficult to obtain in the OD setting due to the high
influence of the orientation on the IoU.

on IoU, the overall results are slightly reduced. Moreover, now the results of OD models
at very high rloUpp thresholds are better than those of AAD models, which indicates that
the predicted OBBs are a better fit to the underlying instance masks than the AABBs.

Tuning NMS thresholds. For detection methods, it is crucial to tune NMS thresholds
carefully for two reasons: First, most approaches predict many duplicate predictions
for each object within the image. Second, in many cases, there are objects that are easy
to find and objects that are difficult to find within the same image. Moreover, there is
a maximum number of detections to avoid large runtimes and memory consumption.
Hence, if we do not suppress duplicates for the easy objects, it can be the case that the
easier objects are found very often with high scores and the detection limit is reached
before the results for more difficult objects with lower scores are returned.

Fig. 8.5 shows the influence of setting class-specific and class-agnostic NMS thresholds.
Note that in our implementation the class-specific and class-agnostic NMS are done
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Model Exp | IoU[0.5:0.95] ToUJ[0.5] 10UJ[0.8]

AP  AP* AP AP TP FP| AP AP TP FP
Validation set
AAD
SqueezeNet Openlmages 1 814 771 978 934 611 761|968 923 605 82
R50 COCO 1 86.6 856 | 978 973 611 121|976 971 610 13
OD
SqueezeNet Openlmages 1 829 812 | 99.6 984 620 18964 948 606 32
R50 COCO 1 882 875 |100.0 998 622 3|986 982 615 10
Test set
AAD
SqueezeNet Openlmages 1 792 742 | 953 903 578 82|940 884 571 89
R50 COCO 1 84.6 836 | 953 947 577 11|951 945 576 12
OD
SqueezeNet Openlmages 1 81.8 798 | 980 965 591 24|952 931 580 35
R50 COCO 1 86.6 857 | 982 979 592 7973 96.7 588 11

Table 8.7: rloUpp Pill Bags detection results. In comparison to the IoU-results of Table 8.6,
if we evaluate with rloUpg, the results of OD do not fall short of AAD results even at high IoU
thresholds. Since we observed only minor fluctuations between different experiments, we only
show the results of the first experiment here.

sequentially and in this order. Here, we compare an OD RetinaNet with Openlmages-
pretrained SqueezeNet backbone against the corresponding AAD method. Evaluations
have been carried out based on rloUgp, and with AP and AP*, respectively. In all cases,
if no NMS is used, i.e., both NMS thresholds are set to 1.0, the AP and AP* values drop
to values between 19% and 41% for both AAD and OD models. This indicates that the
recall has dropped. Without NMS, both AP and AP* are approximately ten pp higher
for OD than for AAD. A possible reason is that, on average, less anchors per object are
assigned to the foreground and thus there are also fewer predictions per object during
the inference. Hence, because both approaches have the same maximum number of
detections, OD can get a higher recall.

Moreover, as the main goal of NMS thresholds is the suppression of FPs, AP is not a
useful measure to select these hyperparameters because it does not take low-scoring FPs
into account (cf. Chapter 6). Instead, we use AP* and see a much more differentiated
image in columns two and three of Fig. 8.5 than for AP in the first column. When most
duplicates are filtered out due to a low NMS threshold, the AP* value gets close to its
maximum. For OD, the NMS parameters are easier to tune in the sense that they better
refer to the overlap of objects that we actually see within the images: The pills are often
touching, but overlap rarely. Hence, the NMS thresholds should be low. Moreover, if we
increase or decrease each of the class-agnostic or class-specific thresholds by 0.1, the effect
on AP~ is not as high as it is for AAD. For example, for ADD, AP* on the validation set
drops from 77% to 68% if the class-agnostic IoU threshold is lowered from 0.2 to 0.1. The
respective changes for OD are less pronounced.

For both OD and AAD methods, the optimal NMS thresholds generalize well to

176



8.4 EXPERIMENTS

AP AP* AP*

NMS Threshold Class Agnostic
NMS Threshold Class Agnostic

0218l 8 8l 8 8 8 8 8 8 82 . 75 75 75 74 73 73 73 73 73

03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09 10
NMS Threshold Class Specific NMS Threshold Class Specific

01 02 03 04 05 0.6 07 08 09 1.0
NMS Threshold Class Specific

test

10{8 83 83 83 83 83 83

09183 8 83 8 83 83 83

.8{83 83 83 83 83 83 83 82 82 82

e e
3

7{8 83 8 83 83 8 83 8 83 83

6183 8 83 83 83 83 83 83 83 83

OD

NMS Threshold Class Agnostic

0.
0.

5183 83 83 83 83 83 83 83 83 83

o

=

0.

0.

04183 8 83 8 83 83 83 83 83 83
0.

e o
w

3183 8 83 8 83 8 83 83 83 83

NMS Threshold Class Agnostic
NMS Threshold Class Agnostic

02183 8 83 8 83 83 8 83 83 83 77 78 77 76 76 75 75 75 75 02478 76 76 76 75 75 74 74 74 74 0.3

e
o
o
3

0148 83 8 8 83 83 83 8 83 83

°
®
=

81 81 81 81 81 81 81 81 81 01480 80 8 8 79 79 79 79 79 79

01 02 03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 0.6 07 08 09 1.0
NMS Threshold Class Specific NMS Threshold Class Specific NMS Threshold Class Specific

Figure 8.5: Influence of NMS thresholds on Pill Bags. AP and AP* results based on
rloUpp for different class-specific and class-agnostic NMS thresholds. Both models are RetinaNet
with SqueezeNet backbone pretrained on Openlmages. The use of AP is not suitable to choose
NMS thresholds as FPs are not thoroughly taken into account (st column). For OD, the best result
is obtained with both thresholds set to 0.1; for AAD, the class-agnostic threshold should be set
to 0.2, while the class-specific threshold should be 0.1 (2nd column). For both models, the found
thresholds generalize well to the test set (3rd column) (best viewed digitally and with zoom).

the test set. The main reason for this might be the low variance of images and object
alignment within Pill Bags — most images look more or less the same. Moreover, the
comparison of the second and third column in Fig. 8.5 reveals that for OD, the obtained
AP* values on the validation set are almost matched on the test set. This is not the case
for the AAD model.

Qualitative results. At first sight, the results on Pill Bags in Fig. 8.6 look very good for
both AAD and OD models. The boxes are very accurate and the class prediction is mostly
correct. A closer look reveals that some pills are not found in the AAD case if they are
touching and diagonally aligned. Both models have problems with pills that overlap,
such as in the third or fourth row. These cases are rarely found within the training set.

For humans, OD results are visually more pleasant because it is easier to assign the
box predictions to the underlying pills: The boxes are tighter and usually only their
corners overlap. Moreover, if a robot was used to grasp the objects, the orientation could
be used to align the gripper with the pills which could lead to a higher success rate.

8.4.3 D2S

Of course, we also evaluate if OD is helpful on a larger dataset, such as D2S. For this
we have used the instance masks to generate the OBB GT as smallest enclosing OBB.
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Figure 8.6: Qualitative results on Pill Bags test. OD boxes are tighter and fewer TPs are
mistakenly filtered out by too strict NMS thresholds. Overlapping pills are challenging for both
model types.

For our experiments, we use the same training and model hyperparameters as those
described for object detection in Section 5.6. For OD, we use anchor boxes with aspect
ratios (0.4,0.9) and three orientations (—7/3,0, 7t/3). We set IgnoreDirection to true and
use no classes without orientation. We use images of size 512 x 384 in this subsection.

Backbone and model choice. Table 8.8 shows a comparison of different AAD and OD
models and backbones: Averaged over all IoU thresholds, the RetinaNet and FRCNN
AAD models achieve 15pp and 13 pp higher AP values, respectively. AP* values are
approximately 11-12 pp higher. However, at IoU 0.5, OD results are almost on the level
of AAD and OD FRCNN R101 achieves the highest APZ,. OD FRCNN has fewer FPs
than AAD FRCNN at IoU 0.5, but this does not hold for RetinaNet. The reason could be
that the OD model has twice the number of anchors and because of the low minimum
confidence there are more FPs. In contrast, FRCNN can use its second stage classification
to filter out wrong proposals and with the used softmax low scores are less likely as we
have already seen in Chapter 6. For the higher IoU threshold 0.8, the AAD models are
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clearly better than OD models, which means that AAD models predict results that have
higher IoU to the GT boxes. One major reason for this behavior is that several object
categories of D2S have no clear orientation because they are round (e.g., apples, single
oranges, or clementines) or quadratic (e.g., corny boxes). Hence, the predicted orientation
might differ from the GT, which can lead to a low IoU. Therefore, we evaluate rloUgp
below.

In the middle part of Table 8.8, we use T (val) to filter out FPs. This mainly improves
the AP* results of the RetinaNet models but does not affect the overall ranking signifi-
cantly. OD FRCNN R101 is still the best model at IoU 0.5, but at higher IoU thresholds,
for OD models, the ambiguous orientation for round or quadratic objects leads to an
advantage for the AAD models.

The evaluation with rloUgg, shown in the bottom part of the table, closes the gap
between AAD and OD models further. Since the ambiguity of the GT orientation for
symmetric objects is now taken into account, AP and AP* of OD FRCNN R101 are now
almost on the same level as for the AAD models. Still, overall the OD models lag behind,
in particular for the RetinaNet architecture.

Anchor assignment parameters. In D2S, the majority of objects is not elongated and
thus an AABB in most cases leads to a good fit. Surely, this also holds for the anchor boxes,
where for most GT objects at least one anchor gets assigned to the foreground since its IoU
is above FgNegThresh. However, we want to avoid an extensive hyperparameter search for
every new dataset that we use. Hence, we investigate whether using SetWeakBoxesToBg
set to false does any harm if uncommon box dimensions are rare as in D2S.

For both FRCNN and RetinaNet with ResNet 101 backbone, the results in Table 8.9
confirm that SetWeakBoxesToBg has no significant influence on the results on D2S. We also
try to lower FgPosThresh to 0.465, such that the average number of foreground anchors
per GT box on the training set approximately equals this statistic for the AAD model.
However, for FRCNN this has almost no influence, while for RetinaNet this only leads to
a slight improvement of AP, but worsens the result at the higher IoU threshold 0.8.

Per-class comparison. The overall AP* value is just an average of per class AP* values.
To get further insights, we compare the per-class AP* values based on rloUgg in Fig. 8.7.
The plots show that OD is better especially for elongated objects such as bottle categories,
banana_bundle, and zucchini. But also the results for oranges is much better than for AAD.
In some cases, OD results are on the same level or slightly better than AAD for the lower
IoU threshold 0.5, but the opposite holds for the higher IoU threshold 0.8. Hence, the
OD results are not as accurate as AAD results.

Note that still the AP* values are highly influenced by a correct class prediction.
Therefore, we also run an evaluation where for all predictions that have at least IoU 0.5
with a GT box, we set the class prediction to the class of the GT box. Hence, in this
evaluation, all FPs only arise from a bad localization, duplicates, or predictions within
the background. The results are shown in Fig. 8.8. The comparison with Fig. 8.7 reveals
that indeed some of the bottle categories, banana_single, and oranges are better found with
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Model ToU[0.5:0.95] ToU[0.5] ToU[0.8]
AP AP* | AP AP* TP FP| AP AP* TP FP

IoU without TF

AAD FRCNN R50 780 719 |86.3 80.6 44197 10557 |81.2 75.0 42221 12533
AAD FRCNN R101 |79.0 72.8 |86.8 81.0 44426 12134819 755 42544 14016
AAD RetinaNet R50 |76.8 51.7 |86.3 58.7 44745 109185 |80.2 53.9 41728 112202
AAD RetinaNet R101 | 78.3 53.2 |87.2 59.9 45107 104633 |81.6 55.5 42317 107423

OD FRCNN R50 653 602 |84.4 795 43331 9913 |66.6 60.3 36685 16559
OD FRCNN R101 673 620 |86.4 813 44178 10237 |68.6 62.0 37588 16827
OD RetinaNet R50 61.6 39.2 |85.7 554 44541 179012 |59.3 36.9 33368 190185
OD RetinaNet R101 | 63.3 409 |86.3 56.8 44913 150411 | 62.0 39.1 34688 160636

IoU with T (val)

AAD FRCNN R50 764 731 |843 8l.6 43122  4781|79.6 76.3 41345 6558
AAD FRCNN R101 |76.1 734 |83.3 812 42556 3967|789 76.1 40965 5558
AAD RetinaNet R50 |74.4 70.0 |829 794 42535 6086|779 734 40300 8321
AAD RetinaNet R101 | 76.0 72.1 |84.1 81.0 43085 5567 |79.5 754 41065 7587

OD FRCNN R50 642 612 |826 802 42322 4651|658 61.8 36140 10833
OD FRCNN R101 66.6 63.6 |851 828 43507 4552|679 64.0 37216 10843
OD RetinaNet R50 60.1 56.1 |828 794 42660 6612|585 53.0 32853 16419
OD RetinaNet R101 |61.4 578 |829 80.1 42671 5573 |60.8 55.7 33858 14386

rloUpp with T} (val)
AAD FRCNN R50 745 713 |843 8l.6 43110 4793|794 759 41218 6685
AAD FRCNN R101 |741 715 |83.3 81.2 42549 3974|787 759 40867 5656

AAD RetinaNet R50 |72.4 682 |829 794 42526 6041 |77.6 732 40196 8371
AAD RetinaNet R101 | 73.7 699 |84.1 81.0 43077 5575|79.3 75.1 40959 7693

OD FRCNN R50 684 65.6 |82.6 80.3 42354 4608|749 715 39486 7476
OD FRCNN R101 709 68.1 |852 829 43539 4510|774 741 40736 7313
OD RetinaNet R50 641 60.1 |829 794 42712 6663 |69.5 64.3 36974 12401
OD RetinaNet R101 | 652 61.8 |83.0 80.1 42740 5710|713 66.8 37913 10537

Table 8.8: Model and backbone comparison on D2S test. On average over all IoU thresh-
olds, AAD models outperform OD models. The difference is smaller for rloUgg. OD FRCNN
R101 achieves the best AP* at IoU threshold 0.5. At higher IoU thresholds, e.g., 0.8, AAD has
better results, which indicates that the predicted OBBs of OD models are less accurate.

Model IoU[0.5:0.95] IoU[0.5] IoUJ[0.8]
AP  AP* | AP AP* TP FP| AP AP~ TP FP

FRCNN R101 SWB 662 634 |85.0 82.8 43268 4027|674 63.5 36917 10378
RetinaNet R101 SWB | 61.5 575 |83.2 799 42725 6070 |60.6 55.0 33626 15169
FRCNN R101 FgPos | 66.6 63.6 |853 82.8 43518 4507 |67.9 63.9 37241 10784
RetinaNet R101 FgPos | 61.5 57.6 |83.6 80.4 42944 6071 |60.7 55.2 33803 15212
FRCNN R101 66.6 63.6 |85.1 82.8 43507 4552|679 64.0 37216 10843
RetinaNet R101 614 578 |829 80.1 42671 5573 |60.8 55.7 33858 14386

Table 8.9: Influence of anchor assignment hyperparameters on D2S. All models are
evaluated based on IoU and with T} (val). SWB: SetWeakBoxesToBg — true; FgPos: FgPosThresh™,
0.465. On D2S, different anchor assignment hyperparameters do not lead to significant changes.
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OD. However, some of the very elongated objects, such as cucumber or roma_vine_tomatoes,
where one would hope for a much better fit by OD, are not found very well in practice.
For these long objects, the orientation and also the box coordinates seem to be more
difficult to predict very accurately.

The comparison of Fig. 8.7 and Fig. 8.8 also shows that for many categories, such
as apples, bottles, or tea-boxes, the fine-grained classification is the major challenge
that remains. On the other hand, for categories like banana_bundle, banana_single, and
(roma_J)vine_tomatoes none of the methods reaches a good AP* at higher IoU thresholds.

Qualitative results. Some exemplary results are shown in Fig. 8.9. Overall, as the
quantitative numbers from previous paragraphs indicate, the results are approximately
on the same level. Of course, in most images, the OD predictions have less overlap than
the AAD results. In some cases, the orientation of the GT boxes and the predictions are
differing (2nd, 3rd, and 4th row). This reduces the IoU drastically, but as the predictions
still lead to a good bounding box for the underlying objects, rloUpg should stay high. In
many cases, the OD boxes for long objects, such as the cucumber in the second row or
the vine_tomatoes in the fifth row, do not match the object mask accurately. In the latter
case, this can be attributed to the plastic packaging that is hard to differentiate from the
background.

Both models have difficulties with objects that reach out of the image boundary.
Especially for OD predictions, this leads to many inaccurate results because the orienta-
tion of the GT box highly depends on how the instance mask intersects with the image
boundary: Sometimes the GT orientation is parallel to the image boundary, but in other
cases the orientation is parallel to the longest edge of the object within the image (6th
row, compare pasta on the bottom and grapes on the top). It is difficult for the model to learn
how the orientation actually should be.

Interestingly, the remaining failure cases are often the same for AAD and OD: Clutter
objects often lead to FPs (when not filtered out using T). Both models struggle with
fine-grained classification problems, e.g., the correct class of tea box or type of apple is
often not found. Overlapping objects, such as shown in the bottom two rows, cannot be
solved satisfactory by either of the models.

8.5 Conclusion

In this chapter, we introduced oriented box detection. Compared to axis-aligned bounding
boxes, in particular for elongated objects that are not aligned with the image boundaries,
oriented boxes describe the objects” location much better. We showed how current models
need to be adapted such that they can be used for oriented detection. Additionally, we
presented the concept of classes without orientation, such that a single model can be used
to describe objects that have a clear orientation and objects for which the orientation is
ambiguous.

Moreover, with rloUgp we introduced a measure to compare axis-aligned box detec-
tion with oriented box detection more fairly. In our extensive experiments, we evaluated
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Figure 8.7: Per class AP*rloUgg comparison on D2S test. AAD (blue) vs. OD (orange).
For some categories, e.g., bottles, banana, or zucchini, OD is significantly better than AAD. In
comparison to AAD, OD results are sometimes better at IoU threshold 0.5, but worse at IoU
threshold 0.8. Rarely, the opposite is true, e.g., for class pear or gepa_bio_caffe_crema.
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Figure 8.8: Per class AP*rloUgg comparison on D2S test — class corrected. For a
majority of the classes, the localization accuracy of AAD (blue) and OD (orange) models is on
par. For some categories, e.g., adelholzener_alpenquelle_naturelle_075, coca_cola_05, and oranges, OD

clearly performs better.
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Figure 8.9: AAD vs. OD results on D2S test. Both models are without T (val), except for
the results in the 6th row. OD certainly leads to less overlapping predictions. Generally, results
are comparable; often both approaches struggle with the same images. See text for further
interpretations.
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our modeling choices and gave further insights when oriented detection is to be preferred.

On Screws, the results indicate that the orientation of the objects can be inferred with
a high precision, even if the model uses only a relatively small number of orientations
for the anchor boxes.

On Pill Bags, oriented detection leads to very promising results that are not only
visually more appealing than the axis-aligned box detection results, but also leads to
boxes that better fit to the underlying instance masks. For example, AP*(rloUgg) of the
oriented box detection model is 2 pp higher than for the axis-aligned detection model.

The evaluations on D2S show that also for larger datasets, where many categories
do not have an explicit orientation, the oriented detection approach is applicable and
leads to results that are at least on the same level as the axis-aligned baseline. Further,
the per-class comparison reveals that for some categories, large gains can be made and
AP;, can be increased from 81.2% to 82.9% for an FRCNN R101 model. However, the
hypothesis that oriented detection models also improve the classification accuracy must
be rejected on this dataset.
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A Comparison to Shape-Based
Matching

Matching, that means determining the exact 2D pose (i.e., position and orientation) of
objects, is still one of the key tasks in machine vision applications like robot navigation,
measuring, or grasping an object. There are many classic approaches for matching, based
on edges or on the pure gray values of the template. In recent years, deep learning has
been utilized mainly for more difficult tasks where the objects of interest are from many
different categories with high intra-class variations and classic algorithms are failing.
In this chapter, we compare one of the latest deep-learning-based object detectors with
classic shape-based matching. We evaluate the methods both on a matching dataset as
well as an object detection dataset that contains rigid objects and is thus also suitable
for shape-based matching. We show that for datasets of this type, where rigid objects
appear with rigid transformations, shape-based matching still outperforms recent object
detectors regarding runtime, robustness, and precision if only a single template image
per object is used. On the other hand, we show that for the application of object detection,
the deep-learning-based approach outperforms the classic approach if annotated data
is used for training. Ultimately, the choice of the best suited approach depends on the
conditions and requirements of the application. Finally, for the case where both kinds of
algorithms are applicable, we show that their combination can exploit the advantages of
both, leading to an improved accuracy while the runtime can be reduced.

Parts of this chapter have been published in [194]. For this thesis, the publication has
been extended by the hybrid approach in 9.6.

9.1 Introduction

CNNs have led to a breakthrough in object classification [95], detection [58], and semantic
segmentation [126, 161]. Recently, deep neural networks also became part of industrial
machine vision algorithms [180, Chapter 3.15.3.4]. However, this development was driven
by benchmarks on large datasets like ILSVRC [168], COCO [118], or Cityscapes [22], and
by more and more powerful hardware as these models typically are trained on one or
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several GPUs. Moreover, the improvements are achieved on datasets with categories
that are mostly deformable or exhibit large intra-class variations. The main challenge
of benchmarks is often to predict the correct category, whereas, for example, in object
detection tasks, the approximate axis-aligned bounding box of the object is sufficient to
count a prediction as true positive.

In comparison, in industrial problems, e.g., in bin picking or measuring applications,
we are interested in the exact, possibly subpixel-precise, pose of the object. Objects are
often rigid and intra-class variations are small. Exact object annotations for these types of
problems are time-consuming and expensive to obtain. Thus, the algorithms should be
trainable from only a few example images. Due to the constraints given in a production
pipeline, possibly using an embedded platform, models should be lightweight, run in
real-time, be very precise, and robust to occlusions or illumination changes.

Recently, Siegfarth et al. [174] have compared a CNN-based regression and classifica-
tion method to a shape-based matching (SBM) [180, Chapter 3.11.5.6] approach, which
does not include a machine learning component. In their experiments, they show that of
the CNN-based methods, only the regression works reasonably well, but by far worse
than SBM.

In this chapter, we compare SBM against the modern deep-learning-based (DL-based)
object detection method from Chapter 8 that is capable of predicting 2D rotated bounding
boxes. On the one hand, we evaluate the robustness and the pose accuracy on a matching
dataset. On the other hand, we compare the methods on a typical object detection
problem, but where the objects and their transformations are mainly rigid. We show that
a DL-based matching approach based on a single training image can locate the object of
interest with subpixel precision. However, SBM still outperforms the DL-based method
in terms of robustness, precision, and runtime. Regarding the detection application, we
show that one can achieve very good results using SBM and that the DL-based approach
only outperforms SBM in case a labeled dataset is used for training the model.

Moreover, we show that the best result can be obtained by combining both methods.
Therefore, first the DL-based method is applied. The results are then used in a second
step to restrict the search space of SBM and refine the box-positions obtained in the first
step. Overall, this leads to a better average precision, while at the same time the runtime
of SBM can be reduced significantly.

9.2 Methods

For our comparison of classic and DL-based methods, we use SBM [180, Chapter 3.11.5.6]
as the classic representative and the one-stage detection CNN architecture RetinaNet
[120] extended for oriented box detection (cf. Chapter 8) as the DL representative. Both
methods are implemented in the HALCON software [142], which we use for our eval-
uations. We introduce SBM briefly within this section. The RetinaNet architecture is
described in Section 4.3 and Chapter 8 and we only explain certain parameter choices
here.
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9.2.1 Object Detection: RetinaNet

For our purposes of comparing the algorithm against a classic approach, we choose
RetinaNet for the following reasons: On the one hand, we want to have a model with a
small memory footprint such that running the model is possible also on an embedded
device. On the other hand, we want to achieve runtimes that are as small as possible
since the longer runtime of DL algorithms compared to classic algorithms is usually
one of the major drawbacks. To get a similar 2D pose output as for SBM, the bounding
box prediction of RetinaNet is enhanced by predicting rotated instead of axis-aligned
bounding boxes, as explained in Chapter 8.

As backbone, we use a SqueezeNet architecture [81] (referred to as the DL model
in the following) and append further 3 x 3 convolutions with stride 2 for FPN levels
higher than four. It is beyond the scope of this work to do a full benchmark of all
state-of-the-art detection architectures. For DL-based object detectors, there is typically a
tradeoff between accuracy on the one hand and speed and memory consumption on the
other hand. With RetinaNet, we choose one representative architecture that has shown to
be working well on large-scale object detection datasets such as COCO [118] and at the
same time allows to be configured such that it has a low memory footprint and small
runtimes. To give an impression of the influence of using a heavier architecture, we
additionally run our experiments with a ResNet-50 [68] backbone (referred to as DLR in
the following).

9.2.2 Shape-Based Matching

Robustly and efficiently finding objects in an image is one of the most important machine
vision tasks. SBM [180, Chapter 3.11.5.6] is a template matching approach that uses a
similarity measure that is robust to occlusions, clutter, and illumination changes [178, 179].
It can be used to recognize and locate instances of planar objects in an image. Because of
its accuracy, efficiency, and robustness [191, 192, 193], it is one of the most widely used
matching methods for industrial applications.

In SBM, the model of an object is defined by a set of points and associated direction
vectors. The model is generated from an image of the object (model image) in which
the object is specified by an arbitrary region of interest (Rol). The model points and
their associated direction vectors are obtained by extracting subpixel-precise edges
in the model image within the Rol and computing the gray value gradients at these
points. The model is used to efficiently find instances of the object in a runtime image,
where the gray value gradient is computed at each pixel. In the matching process,
transformed models are compared to the image at a particular location by computing the
dot product of the normalized direction vectors of the model and the runtime image at
the transformed model points. Depending on the application, these transformations may
cover translations, rigid transformations, similarity transformations, or even arbitrary
affine transformations. By using image pyramids and applying sophisticated search
heuristics, matching becomes extremely efficient. As result, SBM returns transformation
parameters and a score value ([0, 1]) for all found instances of the object in the image.
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Figure 9.1: Matching application. Training image of the chip that is used to generate or train
a model (left). The user specifies the object of interest by drawing a rectangular region of interest
into the training image (shown in green). The robustness of the model is measured on images with
occlusions (middle) or different illuminations (right).

9.3 Application 1: Matching

The first application to compare SBM against DL-based object detection is a matching
scenario that is typical for industrial applications. As shown in Figure 9.1, an IC must
be found within an image and its position and orientation must be determined. All
images in this applications are 8-bit single-channel images of size 652 x 494 pixels. The
user must define a Rol within a single training image (model image) and the task of the
algorithm is to generate a model from this template in order to precisely and robustly
find the Rol within other test images. We describe the Rol using the subpixel-precise
center coordinates (7, c) as well as the Rol’s orientation (p) in degrees. We are interested
both in the accuracy of the matching result with respect to r,c, and p as well as in the
robustness of the algorithm with respect to partial occlusions of the object or illumination
changes. Therefore, we evaluate both methods on four different test sets: move_vert,
move_rot, overlap, and illu [192, 193]. For each of the sets, a single image without any
disturbances is chosen as training image where a ground truth rectangle is drawn. For
further information on the test sets, refer to Table 9.1.

For the test sets move_vert and move_rot, the IC was mounted on a table that can be
shifted with an accuracy of 1 ym and rotated with an accuracy of 0.0117°. For the test
set move_vert, the IC was shifted 50 times in 10 ym steps in the vertical direction. For
the test set move_rot, the IC was rotated 50 times in 0.117 ° steps. At each position and
orientation, 10 images were acquired to be able to measure the precision of the methods
in addition to the accuracy. For the test set overlap, the IC was occluded by various objects
to different degree, while for the test set illu, the IC was illuminated by multiple diffuse
and directed light sources of various intensities.

9.3.1 DL-Based Matching

Training a machine learning algorithm on a single example is very prone to overfitting.
However, a comparison to the SBM approach would be unfair if more training images
were used to train RetinaNet for the matching task. Therefore, we apply multiple data
augmentation techniques to increase the training set without having to annotate any
further images:
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category ‘ description # test imgs ‘ evaluation ‘ dl-augm
move_vert | vertical movement by 6px 500 | accuracy and precision | ¢, 1, n
move_rot | rotation by 6° 510 | accuracy and precision | ¢, 1, n, r
overlap occlusion with various objects 500 | robustness c,n, 0
illu illumination changes 200 | robustness ¢, 1l n

Table 9.1: Matching test sets. # test imgs shows the number of images of the test set (including
the training image). dl-augm shows the types of augmentation techniques that were used for the
different categories: cropping (c), lighting (1), noise (n), occlusion (o), rotation (r).

lighting: Multiply gray values by a factor between 0.1 and 6.0 in order to simulate
different illuminations.

* occlusion: Overlay random crops from other gray value images. The cropping
domains consist of the union of randomly generated rings, ellipses, and rectangles.

* noise: Globally add Gaussian white noise to the image to simulate sensor noise.

* cropping: Randomly crop the image such that the object appears at various different
positions.

* rotation: Randomly rotate the image such that the object appears with various
different orientations.

For cropping and rotation, we mirror the training image at its borders such that fewer
artificial edges occur. All of the augmentation techniques can be combined depending
on what is to be expected in the test images. The constellations of augmentations for
different test set categories are summarized in the right column of Table 9.1.

For each of the categories, we generate 700 training and 300 validation images
and train RetinaNet using stochastic gradient descent with the following optimization
hyperparameters: Initial learning rate 0.0001, batch size 2, momentum 0.9, no weight
prior. We train for a maximum of 70 epochs and multiply the learning rate at epoch 60
and 67 with a factor of 0.1. We evaluate the AP on the validation set after every epoch
and always choose the best model on the validation set for the evaluation on the test set.!
Note that also the validation images are generated from the single training image and
therefore no additional annotations are necessary.

Concerning the model hyperparameters, we reduce the number of convolutions in
the box prediction and classification heads to one (default: four) and the number of filters
of these convolutions to 64 (default: 256) to reduce memory footprint and runtime. We
can infer the single used FPN level and the anchor aspect ratio directly from the single
ground truth annotation of the IC. All other model hyperparameters are left at their
default values as described in [120].

IWe did not use AP* to select the best model because the experiments of this chapter were done before
we developed AP*. Moreover, in some experiments we tried to use AP* instead of AP as the selection
criterion: although the AP and AP* values differed significantly, the same model state (best epoch) was
selected by AP* as for AP. This finding should be confirmed with more evaluations in future work.
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Figure 9.2: Accuracy and precision. Position error (left) and orientation error (right) over the
test sets move_vert and move_rot, respectively. The error bars display the standard deviations over

10 images. Note that for the DL-based approach, only the results of the SqueezeNet backbone
(DL) are visualized for clarity reasons.

9.3.2 SBM

For SBM, a model of the print on the IC was generated for each of the four datasets
as described in Section 9.2.2. Because the IC does not change its orientation in the test
sets move_vert, overlap, and illu, we restrict the transformations during the matching to
translations. In contrast, rigid transformations are selected for the test set move_rot, while
the range of searched orientations is restricted to 15 degrees. Because this application
represents a typical industrial setup for which SBM is optimized, the parameters of SBM
can be left at their default values.

9.3.3 Results
Accuracy and Precision

The results of the accuracy and the precision test of both methods are shown in Fig. 9.2
and Table 9.2. Although the DL-based approach (DL) achieves remarkable accuracy
values, the root mean square (RMS) error of SBM is still lower by a factor of 8 for
the position accuracy and by a factor of 32 for the orientation accuracy. Similarly, the
precision of SBM is significantly higher compared to that of the DL-based approach: the
standard deviation of SBM is lower approximately by a factor of 80 for the position and by
a factor of 40 for the orientation. By using the ResNet-50 backbone (DLR), both accuracy
and precision can be slightly improved, however, at the cost of an approximately five
times higher runtime. Still, the results are far from those obtained by SBM. Consequently,
for applications with high demands on accuracy, SBM is the first choice.

Implementation Effort and Computation Time

Table 9.2 also compares the working hours that were necessary to create an appropriate
image processing solution for this application. Because for this application, the default
parameters of SBM worked sufficiently well, it only took approximately 1 hour to create
the solution with HALCON [142]. The main working time for the DL-based approach
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| SBM | DL | DIR

effort for solution creation [h] 1 4 4
position accuracy model creation time [s] 01 | ~1000 | ~5000
(move_vert) mean recognition time CPU [ms] 1.8 66.4 338.6
mean recognition time GPU [ms] - 5.9 39.4
RMS [pixel] 0.028 | 0.220 | 0.172
mean standard deviation [pixel] | 0.003 | 0.240 | 0.167
orientation accuracy model creation time [s] 0.1 ~1000 | ~5000
(move_rot) mean recognition time CPU [ms] | 2.3 53.9 340.9
mean recognition time GPU [ms] - 5.9 39.5
RMS [deg] 0.006 | 0.191 | 0.128
mean standard deviation [deg] 0.002 | 0.086 0.061

Table 9.2: Result of the accuracy test of application 1. The root mean square (RMS) error is
a measure of accuracy, the mean standard deviation is a measure of precision. The model creation
times refer to a CPU implementation of SBM and a GPU implementation of DL (SqueezeNet
backbone) and DLR (ResNet-50 backbone).

had to be invested to write an automated script to augment the input training image with
the different types of variations (cropping, lighting, noise, occlusions, rotation) to generate a
training and validation set (~3 h). Setting the hyperparameters of the object detection
model can be mostly done automatically based on the Rol parameters within the training
image. Approximately 1h was invested to adjust solver parameters (maximum number
of epochs, when to reduce the learning rate) and to optimize the augmentation script.

Because SBM does not contain a learning component, the runtime to create the model
is only 0.1 s compared to 1000s or 5000s for the DL-based approaches. For the DL-based
approaches, this includes the automatic augmentation of the training and validation
images (DL: ~1.5min) as well as the training time (DL: ~15min). The average runtime
for recognizing the object in an image is approximately 2 ms for SBM. For the DL-based
approaches, it is 6ms for DL and 40ms for DLR, both on a GPU. On the CPU, the
inference runtime of the DL-based approaches increases to about 60 ms for DL and
340 ms for DLR. All time measurements for the SBM were performed on an Intel Core
i7-6820HQ with 2.7 GHz. For the CPU implementation of the DL-based approaches, an
Intel Xeon Silver 4114 CPU with 2.2 GHz was used while the GPU implementations were
run on an NVIDIA GTX 1080 Ti GPU.

Robustness

Fig. 9.3 shows the robustness with respect to partial object occlusions and illumination
changes. Here, the proportion of true and false positives are plotted for different values of
the minimum score (see below). A result was interpreted as a true positive if the returned
object pose was wrong by at most 8 pixels in position and 4 degrees in orientation.

For SBM, the minimum score is a parameter that determines the score a potential
match must at least have to be regarded as an instance of the model in the image. It
can be set by the user very intuitively as it approximately corresponds to the degree of
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Figure 9.3: Robustness to occlusions (left) and illumination changes (right). The ro-
bustness is represented by the proportion of true positives and false positives. The values are
plotted for different values of the minimum score. Note that SBM and DLR do not return any
false positives when testing the robustness to illumination changes, and hence have identical
curves.

occlusion that must be expected in the application. For example, if at most 30 % of the
object is expected to be occluded, the minimum score should be set to a value of at most
0.7. The minimum score should not be chosen too small, as this increases the runtime
and the risk of false positive matches. For the DL-based approaches, the minimum score
is a threshold on the returned confidence of the result.

Both plots of Fig. 9.3 show that for SBM, the number of true positives decreases with
increasing values of minimum score. For the occlusion case, this is immediately clear
from the above definition of the minimum score. In the illumination case, parts of the
object are under- or overexposed in some test images. This has a similar effect as partial
occlusions, and hence also results in a decreasing number of true positives for higher
minimum score values. It should be noted that SBM did not return any false positives in
the two test sequences.

In contrast to SBM, the number of true positives of the DL-based approaches only
marginally changes with the minimum score. For lower values of the minimum score,
the DL-based results are worse compared to SBM, while for higher minimum score
values, the DL-based approaches perform better. It should be noted, however, that the
DL-based approaches also return a significant proportion of false positives in all cases.
For illumination changes, the use of the heavier ResNet-50 backbone definitely improves
the results: Independent of the minimum score, the true positive rate is the same as the
maximum value of SBM and there are no false positives.

To investigate the reason for the different behaviors with respect to a changing
minimum score, we plotted the score values (i.e., the confidence value for the DL-based
approaches) with respect to the estimated object visibility for all images in the test set
overlap (see Fig. 9.4). For all approaches, the minimum score was set to 0.3. The score
value of false negatives is set to 0 in the plots, while false positives are not displayed.
For SBM, there is a significant correlation between the object visibility and the returned
score value (the correlation coefficient is 0.95). Furthermore, objects with a high visibility
are recognized with a high robustness by SBM. In contrast, there is hardly any such
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Figure 9.4: Correlation between object visibility and score. While for SBM a significant
correlation is evident (correlation coefficient of 0.95), there is almost no correlation for the
DL-based approaches (correlation coefficient of 0.41 (DL) and 0.17 (DLR)).

correlation for the DL-based approaches (the correlation coefficients are 0.41 (DL) and
0.17 (DLR)). For RetinaNet, the confidence is only taking the classification of the object
into account (i.e., object vs. background) and does not explicitly model the confidence
with respect to the object localization or the quality of the match. The internally used
sigmoid function often results in confidence values that are either 1 or 0. Also, several
objects with a high visibility could not be recognized. Compared to DL, DLR is detecting
many more objects with low visibility. However, also here the score is very close to 1,
independent of the visibility. In general, it is very difficult to interpret the score value
that is returned by the DL-based approaches. Consequently, it is very difficult to choose a
meaningful value for the minimum score. Also, while the minimum score in SBM can be
used to balance the number of false positives versus the number of false negatives, this is
not possible for the DL-based approaches. However, balancing this ratio is important
in many practical applications. In bin picking applications, for example, the number of
false positives must not exceed a certain predetermined threshold while a higher number
of false negatives is less critical.

9.4 Application 2: Object Detection

For the second application, we use the Screws dataset. Exemplary images are shown
in Fig. 4.6: The goal is to detect and localize different kinds of screws and nuts on a
structured wooden background. All images in this applications are 8-bit three-channel
RGB color images resized to 960 x 720 pixels. The dataset consists of 384 images in total.
Of these, 15% are used as test set. Only to create a DL-based baseline (supervised models,
Section 9.4.3), we use 70% for training and the remaining 15 % for validation.

Each object must be classified into one of the 13 possible object types and located by
its rotated bounding box. The categories differ in the length and width of the screw or
the diameter of the nut, in the color of the metal, and in the shape of the screw’s head,
tip, or thread. Objects might be touching or overlapping each other and the number of
objects varies. For screws, the orientation is defined from the center to the tip. Because
the orientation of a nut is not well defined due to their symmetries, the orientation is
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Figure 9.5: Screw and nut template images. Each column contains four cropped images
of one object type that are used for model training or data augmentation. The borders of the
automatically generated regions are shown in color (best viewed digitally and with zoom).

labeled parallel to the positive horizontal axis (cf. classes without orientation, Chapter 8).
For the evaluation, we are using the COCO AP (cf. Section 4.2) and AP* (cf. Chapter 6).

9.4.1 DL: Training with Weak Annotations

A drawback of DL-based systems is that they typically require a large number of
annotations. Depending on the application, these can be tedious and time-consuming
to obtain. As shown, e.g., in Chapter 7, one can circumvent this problem using data
generation in combination with weak annotations: Instead of labeling the objects in
images of the test set, each object is acquired separately on a homogeneous white
background (Fig. 9.5). The object region can thus be extracted by thresholding and the
class can be documented with minimal additional cost when the object is positioned
for acquisition. In the experiments, for the training images five to twenty objects are
sampled from thirteen object types and placed with random orientation on a random
empty background similar to those in the test set. To prevent smaller objects from being
fully concealed by larger regions, a maximum IoU of 0.3 is introduced. By employing
this method, an arbitrarily large number of synthetic images can be generated nearly
free of cost. In the following, the effect of the amount of generated training samples in
the training set is evaluated (Fig. 9.6). Furthermore, we investigate whether using four
template images of the same object taken from different viewing angles improves the
model performance compared to the use of a single template per object type. Cropping
the objects and pasting them onto the background causes sharp and visually unpleasant
edges. A promising approach is to apply Gaussian smoothing to the edges of the objects
to generate more natural object boundaries and to reduce artifacts.

Note that in case of using weak annotations, we do not use any images from the
original training or validation set. The validation set that is used to choose the best
model is generated in the same manner as the training set. Thus, we do not require any
hand-labeled images to train the model. Generally, the number of synthetically generated
training images is unlimited. To see how much information gain is achieved by adding
more images, we do experiments using 1500, 3000, 6000, and 10 000 training images. We
always use the same generated validation set consisting of 400 images.
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Further experiments are carried out, in which we add the original annotated training
set of 269 images to the generated training set. We also evaluate how much it changes
the performance if the original annotated validation set of 55 images is merged to the
generated validation set.

To cover the different scales, shapes, and lengths of the screw types, we use FPN
levels three and four and aspect ratios of (0.1, 0.16, 0.35, 1.0) in this application. We
also use the default value of four convolutions in the box prediction and classification
heads and use the default number of filters for these convolutions (256). The anchor
orientations are set to (—2m/3,—m/3,0,7t/3,27t/3, ) to ensure that the full range of
possible orientations is covered. We set the initial learning rate to 0.0075 and multiply
it by factors of 0.5 and 0.01 after 35 and 50 epochs, respectively, as the loss stagnates at
these epochs. Momentum was set to 0.99 in this application.

All DL-based models are trained and evaluated using images of size 512 x 384 to
avoid overly long training times. The models are evaluated after each epoch and the
model with the best AP on the validation set is chosen as the final model (early stopping).

94.2 SBM

Because in this application the objects may appear at arbitrary positions and orientations,
we choose rigid transformations with a full orientation range of 360 degrees as the
transformation class. SBM is intended for (approximately) planar objects. However,
the distinct 3D shapes of the objects cause perspective distortions of the imaged objects
depending on their position and orientation in the image, which cannot be covered by
the 2D transformations of SBM. Furthermore, because of the screw threads, the shape
of the screws in the image varies slightly depending on the screw’s rotation around
its longitudinal axis. Therefore, in this application, extensive parameter tuning was
necessary to obtain satisfying results.

To apply SBM, all images are transformed into gray-scale images. We test two
different cases: In the first case, we create a single model for each object type from one of
the images shown in Fig. 9.5. In the second case, we create four models for each object
type using each of the images in Fig. 9.5 as a model image. The second case is intended
to better cover the small perspective variations of the 3D objects.

The shapes of two object types (screws in columns 5 and 6 in Fig. 9.5) are almost
identical. Because the screws only differ in brightness, it is impossible to distinguish them
solely based on the SBM result. To solve this problem, we apply a simple post-processing
to all found instances of the two object types: We set the result class based on the mean
gray value within a small central region of the found instance. This is feasible because
the illumination of the scene does not change too much in this application.
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9.4.3 Results
Evaluation Measurement

For the comparison of the methods on the object detection application, we evaluate them
on the unseen test images and calculate AP and AP* values for different IoU thresholds.
A low IoU threshold means that the evaluation is not as strict regarding the localization,
whereas for a high threshold the models prediction has to overlap almost perfectly
with the ground truth box. Additionally, independent of the localization accuracy, the
predicted class has to be correct if the prediction should count as a true positive.

Average Precision

As depicted in Fig. 9.6 and Table 9.3, SBM has the highest AP values when only a single
template image is used to generate the model (SBM 1) and the minimum score is set
to a relatively low value of 0.5 (SBM 1-0.5). SBM returns a very exact match in case
the prediction is correct and, therefore, the performance is almost independent of the
IoU threshold. This comes at the cost of a relatively large number of false positives as
multiple screws are detected on a single screw head or predictions are made within the
textured background. The AP measure suppresses these false positives if their score is
lower than the score of most of the true positives. However, using the lower minimum
score of 0.5, these false positives will also be present during the online use of the model,
which is not desirable in practical applications. Therefore, in another parameter set (SBM
1-0.6), we increase the minimum score to 0.6 such that the number of false positives
could be reduced from 192 to 12. At the same time, the AP slightly dropped from 82% to
78% and the number of true positives from 646 to 614. However, with respect to AP*,
SBM 1-0.6 outperforms SBM 1-0.5 since it achieves a better compromise between recall
and precision. This confirms the result of Chapter 6 that AP* indeed can change the
ranking of models.

Increasing the number of models per object type to four (SBM 4-0.6) only marginally
improves the AP value (over SBM 1-0.6) but increases the runtime by a factor of three.
The reason is that the runtime of SBM for a larger number of models increases almost
linearly with the number of models to search. Also here, the slightly lower AP* value
compared to SBM 1-0.6 indicates that the increased recall comes together with a higher
number of false positives.

Training RetinaNet in the weakly supervised setting as described in Section 9.4.1
leads to a significantly lower performance. Training on 6000 generated images from one
template per object type or four templates per object type leads to an overall AP value of
69% and 73%, respectively. Generally, the weakly supervised results are comparable, but
slightly worse than training in the supervised setting (DL SV, AP 75%).

In the left plot of Figure 9.6 we show that using four instead of one template per
object type increases the performance. Also Gaussian smoothing to prevent sharp edges
when pasting the objects consistently improves the results. Furthermore, we show
that increasing the number of generated images also increases the AP, but the value
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Figure 9.6: Detection evaluation. AP (averaged over all IoU thesholds) depending on the
number of generated images and the number of templates per object type that were used for
generation (left). AP for each IoU threshold separately for different models, training, and
validation methods (right). For SBM, a single template per object type was used and the minimum
score was set to 0.5. This corresponds to SBM 1-0.5 in Table 9.3. In the right figure, results are
shown for DL and DLR (with ResNet-50 backbone) trained on 6000 and 10 000 generated images,
respectively.

approximately saturates at 6000 images for the SqueezeNet backbone. With the larger
ResNet-50 backbone, the use of 10000 generated images for training helps to increase the
AP to 80% (DLR 4 gen 10000), which is even higher than training the same model in the
supervised setting (DLR SV, AP 79%). The overall AP* value for DLR 4 gen 10000 of 77%
is equal to that of SBM 4-0.6 and only 1 pp lower than for SBM 1-0.6.

The DL-based approaches only outperform SBM if annotated images from the original
training set are added to the training set. This leads to an increased AP value of 83%
(DL SV + 4 gen 6000) with a lower number of false positives compared to SBM. The
reduced number of false positives also reflects in a significantly higher AP* value of 82%
compared to 78% for SBM 1-0.6 and 77% for DLR 4 gen 10000. Using annotated images
also in the validation set does not improve the result significantly (DL SV + 4 gen 6000%).
Our best result is achieved with the use of a ResNet-50 backbone (DLR SV + 4 gen 10000%,
86% AP). This model clearly outperforms all others with an AP* of 85%. Note that the
runtime of the best DL-based models using the SqueezeNet backbone is comparable to
SBM on the CPU. Better models generally tend to be slightly faster as the postprocessing
(including non-maximum-suppression of results) has to filter out fewer predictions.

Implementation Effort and Computation Time

Regarding the implementation time, the main effort for the DL-based approach was
to acquire the template image and some empty background images similar to those
of the test images (~0.5h). The generation of training images could be done using
an automated script that only has to be written once and can be reused for different
applications with different templates and backgrounds. The model training times vary
substantially depending on the number of training images, the number of training
iterations and the used hardware (GPU). For our setting with a NVIDIA GTX 1080 Ti
GPU, it took between 15 min for the DL SV model to 7h for DL SV + 4 gen 10000. The
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Model all ToU IoU@0.75 IoU@0.9 Runtime [ ms]
AP AP~ | AP TP FP|AP TP FP|GPU CPU

SBM models

SBM 1-0.5 82 75| 96 646 192 | 50 422 4l6 - 110

SBM 1-0.6 79 78 1 92 614 12| 48 406 220 - 78

SBM 4-0.6 8 77| 95 633 65| 52 431 267 - 331

DL-based supervised models

DL SV 75 73| 87 592 66| 39 335 323 14 130

DLR SV 79 77| 91 615 50| 50 404 261 20 170

DL-based weakly supervised models

DL 1 gen 6000 69 66| 8 578 109 | 32 297 390 12 122

DL 4 gen 6000 73 70| 88 592 85| 35 313 364 12 122

DLR 4 gen 10000 80 77| 95 633 53| 49 400 286 19 175

DL-based weakly supervised + supervised models

DL SV + 4 gen 6000 8 82| 97 646 14| 52 439 221 12 108

DL SV + 4 gen 6000* 8 82| 97 646 15| 58 462 199 11 105

DLR SV +4gen 10000* | 86 85| 98 652 10| 63 496 166 19 170

Table 9.3: Evaluation results of application 2. Overall AP and AP* values, AP values,
number of true positive (TP) and false positive (FP) predictions are given for IoU thresholds 0.75
and 0.9 on the test set, respectively. Overall, 660 object instances are contained in the test set. The
runtime is averaged over all test samples. Note that SBM is only running on CPU. For DL, <k>
gen <n> means that n images have been generated from k templates for training. Models marked
with * used the annotated validation set to select the best model while training. All DL models in
this table were trained on generated training data with Gaussian smoothing to reduce artifacts.
DLR denotes a model with ResNet-50 backbone instead of SqueezeNet. For SBM, we applied
three different setups: in two of them, we used a single model image per object type (SBM 1),
while in a third setup, we used four model images per object type (SBM 4). Furthermore, we
applied a minimum score of 0.5 in one setup (-0.5) and a minimum score of 0.6 (-0.6) in the two
other setups.

mean recognition time is about 12ms for the SqueezeNet backbone and 19 ms for the
ResNet-50 backbone. Using the CPU, these runtimes increase to approximately 120 ms
and 170 ms, respectively (cf. Table 9.3).

SBM can be optimized to a specific application by adjusting several parameters [142].
For typical applications, no manual parameter tuning is necessary. The parameters
are either automatically estimated by SBM based on the model image or can be left at
their default values. In this challenging application, however, a manual tuning of the
parameters was indeed beneficial. Furthermore, some special cases had to be addressed
and an appropriate solution had to be implemented. The overall implementation time
including several optimizations was about 10 hours for a computer vision expert. The
model creation took about 100 ms for each of the 13 or 52 models, respectively.

Note that for each new application that is similarly challenging as the present applica-
tion, a similar implementation effort for the SBM must be expected again. In contrast, the
implementation effort for the DL-based approaches is minimal once the above described
template is available. The training time of the DL-based approaches, of course, must be
spent for each new application again.
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9.5 SUMMARY

SBM DL-based
Pose accuracy high low
Pose precision high low
Model creation/training fast slow
Recognition very fast fast (GPU) / slow (CPU)
GPU required? no yes (for reasonable runtimes)
Suited for embedded vision? yes limited
Memory requirement low high
Can be applied to mostly rigid planar objects | rigid and deformable objects
Returns meaningful score? yes no
Used features object shape features are trained
Geometric transformations up to projective (2D) arbitrary
Runtime scales with #transformations | linearly sublinearly
Runtime scales with #objects linearly sublinearly
Required user knowledge moderate little
Effort for solution development moderate low
Labeled training data not needed advantageous

Table 9.4: Summary of the comparison between SBM and a DL-based approach.

9.5 Summary

Table 9.4 summarizes the results of our comparison. When it comes to selecting the
appropriate algorithm in an application, our general advice is to prefer SBM over the
DL-based approaches whenever the prerequisites for SBM are fulfilled. In this case, the
application benefits from the advantages of SBM: high accuracy and precision, high
speed, low memory and power consumption, short training time, an intuitive meaningful
score value, and the possibility to easily adjust the performance (i.e., the ratio between
false negatives and false positives) by choosing an appropriate score threshold.

In all other cases, the DL-based approaches are a promising alternative: applications
in which a large number of different objects needs to be searched simultaneously, appli-
cations in which the objects are non-rigid or might undergo transformations in the image
that are more general than a projective 2D transformation, and applications in which the
object shape is not a suitable feature for recognition (e.g., to distinguish an apple from
an orange, which both have a circular shape). Moreover, the DL-based approaches are
to be preferred in cases where SBM will not work, for example, when detecting highly
deformable or articulated objects such as animals in wildlife [45].

Another aspect that should be considered when choosing between a classic approach
and a DL-based approach is the question whether a GPU can be used in the application.
The use of GPUs in the machine vision industry might sometimes be difficult because
the cooling system of most GPUs is not suited for dirty environments and because many
GPU models on the market are available only for a short period of time, typically less
than one year. Furthermore, the current trend in the machine vision industry towards
embedded vision (e.g., smart devices) asks for algorithms with a high power efficiency.
Although the inference of deep neural networks is possible on embedded platforms,
runtimes that are acceptable in practice can often only be reached with small networks.
Furthermore, GPUs are still necessary to train the networks at reasonable time.
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Figure 9.7: DL and SBM result examples. DL-based result (top-left) in comparison to a SBM
result (top-right). The correctly found matches of SBM are usually very accurate. However, there
are duplicate predictions with wrong orientation or textures within the background that lead to
additional false positives. In case of DL, there are some wrong classifications and some inaccurate
results with slightly wrong orientations or the wrong box size (bottom row).

9.6 SBM and DL-Based Detection — A Hybrid Approach

In the previous sections, we have seen that both approaches have their strengths and
weaknesses (compare Table 9.3). On the one hand, for SBM the true positive predictions
are usually very accurate, but the model also predicts a rather high number of false
positives within the background (e.g., for model SBM 1-0.5). In particular, SBM has
difficulties with the very small screws because edges or textures within the background
frequently lead to false positives. On the other hand, the DL-based detection only leads
to very good results when we add fully annotated data (supervised models). Often, false
positives occur because the orientation is not predicted exactly along the thread of the
screw or because the classification fails.

Concerning the runtime, when using a GPU, the DL-based approach has advantages
over SBM. The main reason for the comparably long runtime of SBM is that all different
classes have to be searched within the whole image and with all possible orientations.

However, the strengths of both approaches are complementary to each other and thus
here we combine both models in a hybrid approach. In the following, we describe the
combination of DL-based detection with SBM step by step as visualized in Fig. 9.8. We
denote the hybrid model combining the DL model (with a SqueezeNet backbone) and
SBM 1-0.5 as Hybrid, and the combination of DLR and SBM 1-0.5 as HybridR.

202



9.6 SBM AND DL-BAsSeED DETECTION — A HYBRID APPROACH

Figure 9.8: Steps of the hybrid approach. (From left to right, top to bottom) Step 1: run the
DL-based detection. Step 2: restrict the search space of SBM. Step 3: Search for all similar
categories and use the DL results whenever they are good. Step 4: Enjoy the final results.

9.6.1 Step 1: DL-Based Detection

The first step is to run the DL-based detection model. Since SBM is applied in a later
step, here a high recall is of higher interest than a high precision. Inaccurate results can
still be corrected in a later step.

9.6.2 Step 2: Restricting the Search Space of SBM

In order to avoid a large number of false positives in the background or duplicate results
with wrong orientation, we restrict the search space of SBM using the DL predictions of
step 1. The restricted search space for each result of the DL-based detection is given by
an oriented box with 0.3 times the side lengths and with the center and orientation of
the result. In order to account for inaccurate predicted orientations, the search range for
the orientation is set to +7.5° for screw and £45° for nut categories. For each predicted
category, we take the union of these search boxes for all predictions of this class as the
final search space for the corresponding shape model.
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Figure 9.9: Results of the hybrid approach. The results contain almost no false positives,
the predictions are accurate and have the correct class.

9.6.3 Step 3: Correct DL and SBM Mistakes

In case of the Screws dataset, we found that for some of the easier categories, like the
larger nut classes, the DL results are already very accurate and hence we use them as the
final result. Moreover, SBM struggles to find the very small screws of type 12 correctly
and thus the DL predictions are also used as final result for this class.

However, for other categories, we have seen that the DL-based detection sometimes
misclassifies them to another class with similar appearance. Hence, instead of just looking
for the single predicted categories, we use all shape models of the categories with similar
appearance. In case of Screws, those search clusters are given by the three largest screws,
the three medium-sized screws, and the two smallest nut categories. This allows to
correct classification mistakes of the DL-based detection.

9.6.4 Step 4: Enjoy the Results

Both quantitatively and qualitatively, the proposed hybrid approach leads to excellent
results. Fig. 9.9 shows some example images. The number of false positives can be
significantly reduced, predictions usually have the correct class label, and the orientation
is along the thread of the screw.

Table 9.5 also confirms this quantitatively, where here also the AP* values are shown
(cf. Chapter 6). Using the combination of a weakly supervised DL-based detection model
with SBM, the results are on the same level as the weakly and fully supervised models
from Table 9.3. Moreover, the precision of the hybrid models is very high at IoU 0.75,
which leads to very high AP7; values of 98% for HybridR in comparison to 89% for
the SBM model. Also, the overall AP* can be significantly improved to 82% for the
HybridR model from 75% for SBM 1-0.5. However, the combination of SBM with a
fully supervised DL-based detection model does not increase the AP further and only
slightly improves the AP;,. There are two theoretical reasons for this: First, SBM only
uses a single template image to create the shape models. The viewpoint of the template
screw does not always match the viewpoint of the screws in the test images. Therefore,
sometimes the predicted boxes are too short or too long. Second, it might be the case that
the ground truth labels are less accurate than the predictions. This could be the case for
long objects, since it is very difficult to annotate the exact center of the bounding box and
the correct orientation. In those cases, the prediction might be better than the ground
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9.7 CONCLUSION

Model all IoU IoU@0.75 TIoU@0.9 Runtime [ ms]
AP AP*| AP AP* TP FP|AP AP* TP FP combined

SBM model

SBM 1-0.5 82 75 | 96 89 646 192| 50 42 422 416 110

Hybrid weakly supervised models

Hybrid 4 gen 6000 81 80 | 96 96 639 3| 49 46 409 233 23

HybridR 4 gen 10000 83 82 | 97 98 646 3| 52 49 429 220 32

Hybrid weakly supervised + supervised models

Hybrid SV + 4 gen 6000 83 82 | 97 97 645 3| 52 49 433 215 22

Hybrid SV + 4 gen 6000* 82 82 | 97 97 643 4| 53 50 432 215 22

HybridR SV + 4 gen 10000* | 83 83 | 98 98 647 2| 54 50 436 213 33

Table 9.5: Evaluation results of hybrid models. The evaluations are explained in Table 9.3.
All hybrid models used the SBM 1-0.5 settings. Hybrid models that only use weakly annotated
data are on the same level as models trained with manually labeled data. The hybrid approach
significantly reduces the number of false positives.

truth, which could count as false positives for very high IoU thresholds (> 0.85).

Another benefit of the hybrid models is that, due to the restricted search space, the
runtime of SBM can be reduced approximately by a factor of 10 such that the total
runtime of 22-33 ms is realtime-capable.

9.7 Conclusion

In this chapter, we have compared SBM, a classic method without a machine learning
component, against a modern DL-based object detector. Both methods have been eval-
uated on two typical industrial datasets: One for matching and another one for object
detection. The results show that for rigid objects that appear with rigid transformations,
SBM outperforms the DL-based object detectors in terms of runtime, accuracy, precision,
and robustness.

On the other hand, we have shown that for datasets with low intra-class variations, a
DL-based object detector can locate objects with subpixel precision when trained only
using annotations of a single training image. The same holds for a detection application,
where four templates of each object type in combination with data generation leads to
very promising results. However, adding more annotated training images from the target
domain improves the results even further.

With the combination of a DL-based and a classic approach in a hybrid model, the
advantages of both worlds can be combined: The DL-based approach is suited for a
larger variety of object types and scales better with the number of objects and with
more general object transformations. The classic approach provides higher accuracy and
precision and returns more meaningful score values. Moreover, in the hybrid model,
the search space of the shape-based matching can be reduced such that the runtime is
significantly faster. Overall, this leads to very accurate results with few FPs. The hybrid
model can be trained only from augmented images in a weakly supervised manner and
achieves similar results to the supervised setting.
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10

Oriented Boxes for Few-Shot
Instance Segmentation

To be useful in industrial applications, our methods should be reliable. Reliability in
the context of instance segmentation means that methods should predict a low number
of false positives and that the true positives should be accurate. To evaluate the latter,
accurate ground truth labels are required. In Chapter 5, we presented D2S as a new
dataset with high-quality instance mask annotations that allow to measure the instance
mask accuracy properly. We saw that current approaches have a relatively high recall
but a rather low precision. In the following chapters, we worked towards models that
require fewer annotated training images but still achieve the same result quality.

In this chapter, we present a new method that aims to predict more accurate instance
masks and at the same time fixes some of the remaining failure cases that we found in the
baseline evaluations of Chapter 5. While issues like FPs within the textured backgrounds
of the validation and test splits could already be addressed by changing the training data,
in this part of the thesis, we change the model itself to improve the accuracy of results.
At the same time, the proposed model requires fewer mask annotations which saves the
user a substantial amount of tedious labeling time and costs.

State-of-the-art instance segmentation algorithms use axis-aligned bounding boxes
as an intermediate processing step to infer the final instance mask output. This often
leads to coarse and inaccurate mask proposals due to the following reasons: Axis-aligned
boxes have a high background-to-foreground pixel-ratio, there is a strong variation of
mask targets with respect to the underlying box, and neighboring instances frequently
reach into the axis-aligned bounding box of the instance mask of interest.

In this chapter, we overcome these problems by proposing to use oriented boxes as
the basis to infer instance masks. All current instance segmentation methods, such as
the ones discussed in Section 4.4, are based on axis-aligned bounding box predictions.
We show that oriented instance segmentation improves the mask predictions, especially
when objects are diagonally aligned, touching, or overlapping each other. We evaluate
our model on the Screws, Pill Bags, and D2S datasets and show that we can significantly
improve the mask accuracy compared to instance segmentation using axis-aligned bound-
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Figure 10.1: Benefits of oriented instance segmentation. Qualitative comparison of our

proposed method based on oriented boxes and the baseline based on axis-aligned boxes. Oriented
boxes contain fewer background pixels and do not reach far into neighboring instances. The

resulting instance masks use the mask prediction resolution more effectively and are more
accurate.

ing boxes. Further, on Pill Bags, we outperform the baseline using only 30% of the mask
annotations and on Screws, we perform on the same level as the baseline using only half
the amount of training images with instance mask labels.

10.1 Introduction

The accurate localization of objects in natural images is fundamental for many industrial
tasks, such as bin-picking or object counting. The detection is often done using axis-
aligned bounding boxes [120, 159]. However, if objects are deformable, articulated, or
diagonally oriented, axis-aligned bounding boxes are often only a very coarse approxi-
mation of the objects’ locations. Instance segmentation tries to overcome this limitation
by predicting a pixel-precise mask for each of the instances. However, recent instance
segmentation methods that are at the top of challenge leaderboards, such as FCIS [116]
or variants of Mask R-CNN [70], rely on axis-aligned box proposals to infer the instance
mask per box.

This intermediate axis-aligned box detection step introduces several limitations to the
final instance mask output. Some of them are similar to the problems that we discussed
in Chapter 8, but some only apply to instance segmentation methods.

Depending on an object’s orientation, a majority of the box covers the background or
another instance that is not of interest for the mask prediction. As features are pooled
with respect to the box, this can lead to false classifications or mask predictions reaching
into neighboring objects, as shown in Fig. 10.1.

If an object is rotated, the bounding box aspect ratio can vary significantly. For asym-
metric objects, this leads to highly varying mask targets with respect to the bounding box,
even for very accurate box predictions, which are generally not given. As a consequence,
more pixel-precise annotated instances are necessary to learn these variations.

For large and diagonally oriented instances, the relatively coarse resolution often used
for mask prediction can lead to inaccurate mask boundaries because of interpolation
artifacts. The use of finer grids can resolve this issue to some extent, but comes at the
cost of higher computation time and memory consumption.

Therefore, in this work, we propose using oriented as opposed to axis-aligned
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bounding boxes to infer instance masks. Oriented instance segmentation (OIS) solves the
aforementioned issues of axis-aligned instance segmentation (AAIS), which are visualized
by the examples in Fig. 10.1:

* The best possible IoU an oriented bounding box can achieve for an arbitrary
mask is typically much higher than the IoU of the axis-aligned bounding box ([12],
Chapter 8). Hence, independent of an object’s orientation, most of the bounding box
area overlaps with the instance of interest. This increases the mask-to-background
ratio for mask targets and avoids large overlaps with neighboring objects.

* Bounding box aspect ratios become invariant to an object’s rotation and the mask
exhibits significantly smaller variations with respect to the pooling grid. This leads
to more consistent mask targets and a better conditioned training.

* For objects with non-overlapping masks, oriented bounding boxes overlap signif-
icantly less than axis-aligned bounding boxes. This prevents false positive mask
predictions within neighboring objects.

* Especially for large, elongated and diagonally aligned objects, the accuracy of mask
predictions at their boundaries is increased because long edges are aligned with
the oriented box.

The main contributions of this chapter are: We propose to predict accurate instance
masks based on oriented box detections (cf. Chapter 8). Our approach can be easily
applied to existing models based on axis-aligned boxes to enhance their performance. In
particular, when trained with partial mask supervision, the models require significantly
fewer pixel-precise instance mask annotations. We describe how to adapt architectures
for OIS and explain necessary changes to different parts of the model compared to the
baseline AAIS models. Our evaluation on the four datasets D2S (Chapter 5), Screws
(Chapter 4), Screws Gen (Section 10.3.1), and Pill Bags (Chapter 4) shows that the mask
accuracy is improved significantly. This leads to an increase in overall AP* from 77.5% to
79.6% on D2S val with a Mask RCNN architecture [70] and from 79.6% to 81.5% with
a RetinaMask architecture [50]. On Screws Gen, AP* is improved from 83.5% to 86.0%.
Moreover, we show that on Screws we obtain reasonable mask predictions when only
20 generated images with mask annotations are added to the training set. This is in
line with the results on Pill Bags, where for OIS only 10% of the mask annotations are
required to perform as well as the AAIS baseline and with 30% of the mask annotations,
it can clearly be outperformed.

10.2 Oriented Instance Segmentation

The major change to transform an AAIS model to an OIS is to replace all axis-aligned
bounding box prediction modules by oriented bounding box prediction modules, as
described in detail in Chapter 8. This makes our approach applicable to all AAIS methods.
Before we describe further key components of OIS models below, we give an overview
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Figure 10.2: Exemplary OIS architecture. (Blue, center-left) Input image and backbone for feature
extraction; (red, top) oriented RPN. (Violet, bottom) Features are pooled with respect to oriented
proposals to feed RCNN heads for final oriented box output. (Cyan, middle) Features are pooled
with respect to final boxes to feed the branch for mask prediction. Finally, mask probabilites are
fit to the oriented box output and thresholded. (Green, bottom-right) During training, mask targets
are calculated by Rol pooling the GT masks.

of a typical OIS architecture based on MRCNN [70], as depicted in Fig. 10.2: In a first
step, the backbone is applied to the input image to extract features that are used for the
three following stages: The first stage is the RPN, which predicts for each of a number of
oriented template anchor boxes whether it is likely that an object with similar bounding
box is present or not (fg/bg branch) and, if so, how the anchor should be refined to better
match the underlying object (box branch). The second stage is the RCNN heads, where
the oriented box proposal outputs of the RPN are used to Rol pool the features for class
prediction (class branch) and further box refinement (box branch). The third stage uses
the final RCNN head oriented box output to again Rol pool the features to feed the mask
prediction head that outputs a pixel-precise mask for each of the final boxes. All Rol
pooling layers pool from the oriented grids that are aligned with their input boxes. Since
the output feature maps are upright, usual convolutions can be used in the subsequent
layers. We use oriented Rol Align operations for bilinear interpolation during pooling.

For an OIS version of RetinaMask [50], the same strategy can be applied. The only
difference is that the RCNN heads of the second stage are fused with the RPN stage that
directly outputs class probabilities and the final boxes.

Oriented mask prediction. For each predicted oriented box, features are pooled with
an oriented Rol pooling layer, such that the batch size of the mask branch equals the input
batch size times the maximal number of predictions. The pooled feature maps with size
m X m = 14 x 14 are fed into a sequence of n convolutions with ReLU activation followed
by an upsampling transposed convolution. Finally, a sigmoid activation is applied to get
the mask probability of each pixel within the warped box. Mask prediction is done class-
agnostically since it has already been shown in [70] that a class-specific mask prediction
does not improve the results significantly but comes at a higher computational cost. In
our experiments on D2S, we show that for a mask prediction head that is initialized
randomly using batch-normalization (BN) layers between the ReLU and the following
convolution layer is crucial for the model to converge. Those BN-layers can be omitted if
COCO pretrained weights are used to initialize the mask head convolution weights.
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Figure 10.3: Mean and deviation of GT masks and comparison of mask targets and
results. (a) The mean and standard deviation of the first 3000 instance masks that are pooled
to a size of 28 x 28 with respect to the GT boxes. (b) Mask targets (fop) and mask probabilities
(bottom) for AAIS (left) and for OIS (right), respectively. The low resolution (28 x 28) of mask
targets and predictions is used much more efficiently for oriented boxes, where mask targets are
more detailed. Moreover, the targets are much more consistent even for totally different instances.
This simplifies both the training and the prediction. Shown are the bottom-left four screws of the
image below. (c) Final mask output for AAIS (left) and OIS (right) on a Screws Gen image (best
viewed digitally and with zoom).

For target generation, the GT masks are painted into a multi-channel binary image,
where each channel contains the GT mask of one instance. Given the final box predictions,
the assignment to the GT instances is done in the same way as in the oriented RPN based
on the arloU (cf. Chapter 8). In this separate assignment step, we increase both IoU
thresholds such that only good final boxes contribute to the training of the mask branch.
If a final box is not assigned to any GT instance, the corresponding weights in the mask
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prediction loss are set to zero such that the predicted mask is ignored. To obtain the mask
probability targets for the predicted boxes during training, we use a modified oriented
Rol Align operation (cf. Chapter 4) on the multi-channel GT mask image that only pools
within the channel indices of the assigned GT masks (cf. bottom-right of Fig. 10.2). A
sigmoid cross-entropy loss is used to train the mask branch. Therefore, the pooled mask
targets are thresholded at 0.5, such that the targets are binary.

As in [70], a final grid size of 28 x 28 pixels for mask targets and prediction is used.
This low resolution limits the detailedness of the output masks. However, since the
oriented boxes generally contain much less background than the axis-aligned boxes,
the given resolution is used much more efficiently. This is visualized in Fig. 10.3a and
Fig. 10.3b, where for OIS the targets” and predictions’ variance between different instances
is significantly lower than for AAIS. On the one hand, OIS models can learn a stronger
prior for the mask prediction since especially in the middle of the object it is very likely
that the object is present. The capacity of the model can be focused on the boundary of
the instances, where they differ the most. On the other hand, the mask prediction is done
based on a higher resolution relative to the instance size. This gives the model more
flexibility to capture fine details of the instance shape.

During inference, the upright output mask probabilities are rotated, translated and
zoomed (with bilinear interpolation) according to the corresponding predicted box.
Finally, the transformed mask probabilities are thresholded at 0.5 to obtain the output
mask regions.

Enlarged GT boxes. The oriented box detection results tend to be very tight around the
instance masks. On the one hand, this is exactly what we are aiming for because we want
to use the resolution of the mask predictions as effectively as possible. On the other hand,
as we have seen in Chapter 8, oriented box detection is more difficult than axis-aligned
detection. In many cases, the oriented boxes do not fit accurately and clip parts at
the boundary of the underlying objects. Since the boxes are aligned with the object
orientation, this often means that a relatively large fraction of the object mask reaches
outside of the predicted box. For AAIS, these artifacts are less severe, because in most
cases only a small tip or a corner of the object is clipped by an imprecise box prediction.
We hypothesize that enlarging the GT boxes by a few pixels has several advantages: First,
the model learns to predict oriented boxes that do not clip the object mask. Second,
the model learns that the mask is not always connected to the box, although in most
cases it is really close. Third, we believe that AAIS models have one major advantage
during the mask prediction. The boundary of the objects is in most cases given by sharp
edges that are clearly within the box for AAIS. For OIS, these edges are either directly
at the box boundary or they are very close. By enlarging the GT boxes, these edges are
again within the box proposals and can hence be used within box regression or mask
prediction heads of the model. Therefore, we evaluate models that are trained on models
with enlarged boxes (box++). We enlarge the GT boxes by 10 px for small images of
resolution 512 x 384 px, by 15 px for medium images of resolution 768 x 512 px, and
by 20 px for images of resolution 1024 x 768 px. For the small images, we also tried an
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Figure 10.4: Examples where enlarging the GT boxes helps for OIS. If boxes are very
tight, there is a higher chance to clip parts of the object boundary (top, top-left corner of the coffee
package). Using enlarged boxes, the model avoids clipping the object boundaries and learns that
the mask is not necessarily connected to the box. (bottom). Note the upsampling artifacts in
the AAIS case: the waved mask boundary is visible but does not lower the IoU significantly
(bottom-left).

enlargement by 20 px, but this did not improve the results. A detailed study to find the
optimal enlargement, which may be relative to the box size, should be done in future
work.

Fig. 10.4 shows two examples where the box++ model has an advantage. At first
sight, the improvement of the box++ model compared to the OIS model might seem
marginal, but sometimes a well predicted corner of a small instance mask might tip the
scales for a prediction to be a TP at high IoU thresholds. A quantitative analysis of the
effects of enlarging the GT boxes is carried out below in Section 10.3.3.

Partial mask annotations. Box-based instance segmentation models can be easily mod-
ified to be trainable only with mask GT available for a fraction of the training instances:
Whenever the mask GT is not available for an instance, we set the loss weights of this
instance within the mask branch to zero. Therefore, the prediction for this instance will
be ignored during the loss computation.

OIS models require fewer pixel-precise mask annotations to obtain the same result
quality as an AAIS method because the mask targets are more consistent between different
instances and there is less noise from neighboring objects within the pooled features for
mask prediction. Therefore, we show experiments with fewer GT mask annotations on
Pill Bags and on Screws in Section 10.3.

We present two approaches to label instance masks only partially. The first is to label
all instance masks within an image but only for a subset of the training images. The
second is to label only a fraction of the instance masks but at least for some objects within
each image. This second approach is similar to the class-agnostic setting in [77]. Of course,
a combination of both approaches is possible, where only a fraction of the objects have
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mask annotations and only a subset of all training images contain mask labels at all.

Generally, partial mask annotations lead to sparse training signals for the mask
prediction head of the network. If these signals are too seldom and the other losses for
the box regression and classification are still high, the model might do well without
predicting masks at all. Hence, at least with a decent probability, the batch should contain
at least some mask annotations such that a mask loss is generated regularly. For both the
OIS and AAIS models, we left the mask loss weight at its normal value, although it could
help to increase it if fewer mask annotations are contained in the training set.

It is important to mention that still each object needs a box GT annotation. Otherwise,
during training, the model would be told to assign the area containing the object to the
background. This could destabilize the training and reduce the model performance.

10.3 Experiments

In the following subsections, we evaluate our OIS model on three different datasets: D2S
(Chapter 5), Screws, and Pill Bags (Chapter 4). Screws does not have manually labeled
instance masks, but we use the data generation technique of Chapter 7 to generate
training and evaluation images with pixel-precise masks (Screws Gen, see below). Hence,
all datasets have high-quality annotations such that a potentially improved mask accuracy
can be measured.

An indicator for the potential benefit of OIS compared to AAIS is the comparison
of the average IoU of the instance masks with the smallest AABB and smallest OBB,
respectively. The mBMIoU averages these IoUs for the whole dataset:

15 1 N
mBMIoU = — } " — ) "ToU(B;, M;), (10.1)
C c=1 N i=1

where C is the number of classes, N, is the number of instances per class and IoU(B;, M;)
is the IoU of the bounding box B; with the ground truth mask M; of instance i. The
absolute mBMIoU value can also be interpreted as the average mask-to-background
ratio of all pixels within the bounding box. Hence, a high or low mBMIoU does not
automatically yield an easy or difficult mask prediction. However, the relative comparison
of mBMIoU values in Table 10.1 reveals that on average, oriented bounding boxes are
indeed tighter around the instances. For all datasets, the difference is significant and this
indicates that the resolution of the mask prediction feature maps could be used more
effectively for OIS. In the following, we show that this potential can indeed be utilized.

dataset | axis-aligned | oriented
Screws Gen 45% 53%
Pill Bags 72% 82%
D2s 61% 80%

Table 10.1: Mean box mask IoU. mBMIoU values computed on the validation set. For all
three datasets, oriented bounding boxes have a much higher foreground-to-background ratio
during mask prediction than axis-aligned bounding boxes.
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10.3.1 Screws and Screws Gen

Since in Screws, the nut classes are symmetric and their orientation is not well-defined,
these four classes are assigned to classes without orientation. In this dataset for screw
classes, the exact orientation pointing from the screws head to its tail is of interest.
Therefore, IgnoreDirection is set to false such that box orientations are in the range (—, 7).
Unless mentioned otherwise, on Screws and Screws Gen, all training hyperparameters of
RetinaMask (RMask) and MRCNN are used similar to the RetinaNet and FRCNN models
used on Screws in Chapter 8: we train the models for 60 epochs with initial learning
rate 0.001 that is dropped by a factor of 0.1 after 30 and 50 epochs, respectively. We use
horizontal and vertical mirroring. We use RPN levels three to six for RMask and two to
five for MRCNN due to the higher anchor scale of MRCNN (8 instead of 4). For OIS,
we use anchors with aspect ratios(0.1,0.3,0.9) and orientations (—27/3, —7/3,0,77/3,
27t/3, ). AAIS models use the default anchors with three aspect ratios (0.5,1.0,2.0). For
RMask, both model types use three anchor subscales, for MRCNN, only one is used. The
class-specific NMS IoU threshold is set to 0.4 and the class-agnostic to 0.5.

Generated data — Screws Gen. Because the pixel-precise annotation of instance masks
is tedious and time-consuming, we follow the approach of Chapter 7 and Chapter 9 to
generate artificial training images. Therefore, each category is captured on a homo-
geneous white background where a relatively precise instance mask can be obtained
by thresholding. In this weakly-supervised setting, we use a single template image
per category and generate 1000 images (600 train, 200 validation, 200 test) by cropping
and pasting random instances onto empty wooden backgrounds similar to those of the
original dataset. Images are generated with the resolution 512 x 384 px. Example images
of this generated dataset Screws Gen are shown in Fig. 10.3 and Fig. 10.6.

To train and evaluate AAIS, we obtain the box ground truth annotations as the
smallest axis-aligned bounding box of instance masks. The oriented box ground truth
for categories with orientation is generated as follows: The orientation of the box is
calculated based on the second moments of the instance mask (cf. Appendix D.1). To get
the orientation pointing from the screws head to its tail, the orientation is corrected by
adding or subtracting 7t if the orientation from the center of gravity to the most distant
point on the mask boundary is pointing into the opposite direction. To have consistent
box dimensions for objects that reach out of the image (long screws), we use the amodal
mask (cf. Chapter 11) to obtain the initial coordinates of the amodal OBB. Then, we keep
the orientation and only adjust the center and one of the semi-axes lengths, such that at
least three of the OBB corner points are within the image. Thus, the final OBB is a tight
bounding box for the cropped mask, but with the orientation of the amodal mask.

Quantitative results. The top part of Table 10.2 shows box detection results of OIS and
AAIS models with COCO pretrained ResNet 101 backbones on the Screws Gen test set
based on rloUgg. The AAIS models consistently predict better bounding boxes for the
instances than the OIS models, in particular at higher rloUgp thresholds. At rloUgg
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Model Exp | IoU[0.5:0.95] IoU[0.5] 1oUJ0.8]
AP  AP* | AP AP TP FP| AP AP TP FP
Box rloUgg
AAIS RMask 1 76.6 752 |975 974 2160 251|791 771 1862 323
AAIS MRCNN 1 786 782 |981 987 2172 0822 81.3 1931 241
OIS RMask 1 71.0 688 |976 962 2165 88|726 692 1749 504
OISMRCNN 1 754 747 | 986 986 2179 15|80.7 79.0 1934 260
Mask IoU
AAIS RMask 1 825 815 |97.0 96.7 2151 34|89.7 882 2044 141
2 824 815 |968 96.7 2151 32892 879 2039 144
3 825 815 |967 964 2147 33 |89.4 88.0 2040 140
AAIS MRCNN 1 838 832 |977 98.0 2164 8928 92.0 2097 75
2 842 835 |982 984 2170 6929 91.8 2097 79
3 839 834 |978 981 2163 5933 923 2100 68
OIS RMask 1 84.8 827 |982 96.8 2172 81923 89.6 2070 183
2 844 828 |975 96.8 2157 49922 90.3 2067 139
3 847 831 |97.8 971 2166 501|925 905 2075 141
OISMRCNN 1 864 85.8 |98.8 989 2183 111|960 955 2141 53
2 862 859 |985 989 2179 3961 958 2142 40

3 86.6 86.0 [99.2 993 2189 7|964 959 2146 50
Without classes without orientation
OIS RMask 1 838 819 |975 965 2162 66913 88.8 2058 170
834 817 974 965 2157 541|910 888 2052 159
836 81.8 |973 964 2154 54908 88.7 2050 158
859 854 |98.6 989 2179 95.3 948 2127 58
86.0 854 |989 99.0 2183 954 948 2129 63
85.7 853 |983 987 2174 95.5 95.0 2126 50

OIS MRCNN

W N =W
N O O

Table 10.2: Box and mask results on Screws Gen test with T;. AAIS models predict more
accurate bounding boxes than OIS models (fop). However, the OIS models clearly outperform the
AAIS counterparts when the mask predictions are evaluated (middle). Setting nut categories to
classes without orientation further improves the results (bottom).

threshold 0.5, AAIS MRCNN has 100% precision (no FPs), but OIS MRCNN has a slightly
higher recall. OIS RMask predicts significantly more FPs than all other models, probably
because of the large number of anchor boxes and the used class-specific score thresholds
T¢ (val) that do not generalize very well to the test set. Hence, these results are in line
with the findings of Chapter 8.

However, the situation is turned around with the evaluation of the mask IoU in the
lower part of Table 10.2. Here, the OIS models clearly outperform their AAIS counterparts
and the mean AP* is increased between 1.2 pp and 2.5 pp. For all models, the mask IoU
result at threshold 0.8 is much higher than the corresponding rloUgp results. This means
that if the boxes are inaccurate, often only small parts of the objects are clipped and the
models still predict most of the mask area correctly.

Classes without orientation. In Chapter 8, we have seen that setting classes without
orientation can help to get consistent oriented box detection results for classes where
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the orientation is ambiguous. Therefore, on Screws and Screws Gen, we assign the nut
categories to classes without orientation. However, for instance segmentation models, the
IoU of the predicted masks to the given GT is of interest. Hence, in theory, classes without
orientation are not necessary to set because independent of the predicted bounding box
orientation, the model can still predict a correct mask.

For the experiments shown at the bottom of Table 10.2, we do not use classes without
orientation. Instead, for all categories the orientation of the bounding box is inferred from
the GT mask. The results indicate that on Screws Gen, we get competitive instance mask
results even without using classes without orientation. However, at higher IoU thresholds,
our proposed model that uses the AABBs as GT for the nut categories achieves slightly
better results both for the RMask and MRCNN architecture.

Partial mask annotations. To evaluate a model with partial mask annotations, we
randomly sample a number of generated training images with mask labels from the
Screws Gen training set and add them to the Screws training images that do not have
any instance mask labels. This means that in these experiments some images contain
mask annotations for all objects within the image and some images do not have any
mask annotations. We use the Screws Gen validation and test sets for model selection
(early stopping) and the quantitative analysis. Moreover, we successively add more
generated images with mask annotations to the training set to see the dependence of
the results on the number of images with mask supervision. We add 20, 50, 100, 300,
and all 600 training images from Screws Gen to the 269 training images of Screws. To
have a fair comparison, all experiments run for approximately 34 700 iterations, which
is the equivalent of 40 epochs for the dataset with all 600 Screws Gen training images.
The learning rate is initialized at 0.001 and dropped to 0.0001 after 26 000 iterations (30
epochs for the largest training set). We perform three runs for each experiment, where
each of the runs uses a different random selection of generated images. To ensure a fair
comparison, the selection of images is the same for AAIS and OIS models.

We show the mean AP* and standard deviation over the runs in Fig. 10.5: OIS needs
significantly fewer generated images to obtain the same results as AAIS. On average, the
AAIS model needs approximately twice the number of images with masks in the training
set to reach the same AP* as the OIS model. Hence, due to less variation in the mask
targets and predictions, the OIS model needs significantly fewer mask annotations. This
is a great benefit for the user, who can reduce the labeling time and potentially use a
smaller dataset for training.

The comparison between COCO and ImageNet pretrained weights shows that a
pretrained mask head is mainly useful if only few images contain labeled instance
masks. If more generated images are added (>100), the ImageNet BN model consistently
outperforms the COCO pretrained model. ImageNet BN model uses batch normalization
layers within the mask head; also see the analysis on D2S below.

Qualitative results. Results for MRCNN R101 COCO on Screws Gen are shown in
Fig. 10.6. Due to the low variance of object appearance, for all models the quality of
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Figure 10.5: Screws (Gen) partial mask supervision. The results are for MRCNN R101
COCO (left) and ImageNet BN (right) using Ty (val). Markers show the mean and error bars (hardly
visible) the standard deviation for three runs of each experiment; see text for further explanation.
We successively add more generated training images with mask annotations from Screws Gen to
the Screws training set. For OIS, with only half the number of additional generated images, AP*
is on the same level as for AAIS.

OIS wo cwo

Figure 10.6: Screws Gen qualitative results. Generated input image, results of AAIS, results
of OIS, results of OIS without classes without orientation (from top to bottom). OIS improves the
mask accuracy, especially at fine details such as the screw heads. Using classes without orientation
leads to consistent box orientations, but improves the mask precision only slightly.
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Figure 10.7: Screws qualitative results. AAIS predicts too wide masks for the thin screws
that are diagonally aligned. Already with 20 additional generated images, OIS predicts very
accurate masks (best viewed digitally and with zoom).

predicted masks is high. In some cases, AAIS struggles if objects are very close or
overlapping and predicts the overlap only very coarsely. In those cases OIS is usually
better. However, both models often confuse which object is lying on top of the other.
Sometimes, objects are not found by all models, maybe due to a high T} (val) threshold
(the large nut in the bottom row).

Additionally, we show results on Screws for models that have been trained with partial
mask annotations in Fig. 10.7. For these models, the mask prediction head has only been
trained on the generated images that have been added to the training set. Although there
is a domain gap between Screws and Screws Gen, the results are accurate. If the AAIS
model is trained with few generated images, it cannot predict the screw heads properly
and the masks for diagonally aligned screws are too wide. This is improved if more
generated images are added to the training set. In comparison, the OIS model already
predicts accurate masks with only 20 generated images added to the training set. There
is hardly any visual difference between the results of OIS + 20 and OIS + 600. Also here,
sometimes results might be filtered out due to high TJ (val) values that are calculated on
the Screws Gen validation set.
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10.3.2 Pill Bags

Also on Pill Bags, we use the same training setup as in Chapter 8. For mask prediction,
we use a RetinaMask architecture with a SqueezeNet backbone that has been pretrained
on Openlmages. In this case, we use a lightweight mask head with only two intermediate
convolution layers (instead of four) and a feature map depth of 128 (instead of 256).
Moreover, we reduce the training to 25 epochs and reduce the initial learning rate by
a factor of 0.1 after 10 and 20 epochs, respectively. We will see that due to the small
variations between the samples, this suffices to obtain strong results on this dataset. At
the same time, using an NVIDIA RTX 2080 Ti GPU leads to training times of one model
well below 10 minutes.

Partial mask supervision. Like in a typical industrial application, all images of Pill
Bags have more or less the same appearance. Moreover, the pills do not have many
deformations and their shape is close to that of an ellipse. Therefore, it is not surprising
that the instance segmentation task can already be solved quite well with AAIS. However,
also on Pill Bags, it is tedious to annotate the full training set with pixel-precise masks.
Hence, we analyze how many of the instance mask labels are necessary to obtain a good
result. Therefore, we delete all but a fraction of the annotated GT instance masks and
whenever the mask is not available during training, we set the corresponding mask loss
weight to zero. This allows to train with a fraction of the expensive instance mask labels.
Note that we delete the GT masks randomly from the training set, i.e., it could happen
that by chance for some categories only a few or even no mask annotations are present
within the training set. However, due to the relatively high number of instances per class
in the training images (at least 230 per class for Pill Bags, cf. Section 4.1.2), this is very
unlikely.

Fig. 10.8 shows that for OIS we can already successfully train instance segmentation
if only 10% of the masks are annotated in the training set — without a large reduction in
mask AP* on the test set. Using 30% of the annotations, OIS already outperforms the
AAIS model with all annotations by 3 pp. In comparison, the AAIS method requires more
annotations to obtain a reasonable result. Even when using all annotations, the AAIS
AP* is only 1pp higher than the 10% counterpart of OIS. This can be explained by the
higher variance of the mask within the axis-aligned bounding boxes. The comparison to
the AP values reveals that both model types predict only few FPs on Pill Bags.

Qualitative results. Some qualitative results on Pill Bags are shown in Fig. 10.9. When
the AAIS model is trained with only 10% of the instance mask annotations, the predictions
are very weak: Masks reach into neighboring objects and often contain holes (2nd column).
The results are significantly better when all mask labels are used during training, but
still for some predictions, the mask reaches out of the object boundary (3rd column). This
is not the case for the OIS 10% model, where the mask predictions are bounded by tight
oriented bounding boxes. Sometimes the predicted mask is too narrow, in particular
when objects are touching (4th column). This issue is less severe for the OIS model trained
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Figure 10.8: Pill bags partial mask supervision. For OIS, if only 10% of the boxes contain
a mask ground truth, the AP is on the same level as with all mask annotations for AAIS. AAIS
needs at least 30% of the boxes labeled with instance masks to obtain reasonable results.

input AAIS 10% AAIS 100%

OIS 10% OIS 100%

Figure 10.9: Pill Bags qualitative results. Images are cropped to show result details. The
models in the second and fourth column have been trained with only 10% of the GT instance

masks available. OIS models predict clearly more accurate instance masks. See text for further
explanations.
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with all mask labels that clearly outperforms all other models. However, even this model
struggles with occluded pills that are rarely occuring within the training set (5th column).

10.3.3 D2S

In D2S (Chapter 5), there are elongated objects such as lying bottles, boxes, or certain
vegetables like carrots or zucchinis, but also round or highly deformable objects, such
as standing bottles, apples, or nets filled with oranges. We have seen in Chapter 8 that
the orientation of some objects is ambiguous and oriented box detection results are
slightly worse than axis-aligned box detection results on D2S. Hence, in comparison to
the datasets above, it is unclear if OIS can lift its potential also on this dataset.

Data preparation and model settings. Unless mentioned otherwise, to have a fair
comparison, we use exactly the same settings as in our baseline experiments in Section 5.6.
For D2S, we do not use classes without orientation and set IgnoreDirection to true. For OIS
and AAIS, we use the same anchor boxes that we have used in Section 8.4 for OD and
AAD on D2S, respectively.

Mask prediction only. To get a first impression how large the potential of OIS is on D25,
we train only the mask prediction head of both model types (AAIS and OIS). Therefore,
we use a RetinaMask architecture where we replace the RPN by feeding the GT boxes
into the model and only predict the mask for the given GT boxes.

Since training only the mask prediction is an easier task than training the whole
box detection and mask prediction pipeline, we shorten the training time from 30 to
15 epochs and reduce the initial learning rate by a factor of 0.1 after 8 and 13 epochs,
respectively. We train both models with ImageNet and COCO pretrained weights. For
ImageNet-pretrained weights, we had to change the convolution+ReLU blocks within the
mask head to convolution+ReLU+BN blocks. Without this change, the mask predictions
were either empty or covered the whole GT box. We also evaluate if the additional batch
normalization layers within the mask head help for COCO-pretrained weights.

Table 10.3 shows that using GT boxes OIS improves the mask prediction consistently.
However, the gain on D2S is not as large as the advantage with respect to mBMIoU in
Table 10.1 suggests. For ImageNet-pretrained weights both model types require additional
BN layers within the mask head. If those are used, the mask prediction is on the same
level as with COCO-pretrained weights. Using BN layers with COCO-pretrained weights
does not further improve the results. Increasing the oriented GT boxes by 10 px (box++)
further improves the OIS model despite a slightly worse mask-to-background ratio.

Mask and class prediction. The results in Chapter 8 have shown that oriented detection
is more difficult than axis-aligned detection. However, in theory, the pooled features from
oriented boxes contain less noise from neighboring objects than for axis-aligned boxes.
Hence, OIS could also lead to better classification results. To investigate this in practice,
we again run experiments based on the GT boxes. This time, we use an MRCNN-like
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R50 R101

Weights | INet INet Ccoco INet Coco coco coco
Model Exp BN BN BN box++
AAIS 1 31.6 92.6 93.0 93.2 93.6 93.5

2 31.6 92.7 93.1 93.2 93.4 93.4

3 31.6 924 93.0 93.2 93.4 93.5
OIS 1 68.9 94.1 94.1 94.4 94.4 944 94.5

2 68.9 94.0 94.1 94.4 94.2 94.2 95.1

3 68.9 94.0 94.2 94.4 94.3 94.5 95.0

Table 10.3: AAIS vs. OIS mask prediction. The table shows AR values in % on the D2S
validation set with small images. OIS consistently improves the mask prediction by 1pp AR.

Model Exp IoU[0.5:0.95] IoU[0.5] IoU[0.95]
AP AP* AR | AP AP* AR | AP AP* AR

AAIS R101 ImageNet BN 1 785 76.0 821|863 845 88.0|390 348 515
79.0 765 827|872 853 888|382 344 516
779 752 818|856 835 876|383 343 517
80.3 779 839|873 856 89.1|425 38.8 555
786 761 823|855 835 875|417 377 544
793 767 830|863 843 882|420 381 552
785 76.0 820|857 839 876|353 314 485
79.0 76.7 825|857 840 875|403 362 53.0
79.6 771 83.0|865 846 882|404 362 53.1
80.6 782 838|867 849 884|445 405 56.8
796 773 834|859 841 881|432 39.1 56.1
804 779 839|865 846 884|441 400 56.6
809 784 84.0|869 849 885|470 427 5838
809 785 843|868 849 887|471 429 59.0
80.7 783 839|867 849 884|471 429 59.1

AAIS R101 COCO

OIS R101 ImageNet BN

OIS R101 COCO

OIS R101 COCO box++

W NP WODNRPRPWONRPRPLRWODNDRWODN

Table 10.4: AAIS vs. OIS mask and class prediction. The table shows results using T, (val)
on the D2S test set (S). On average, OIS improves the accuracy of the instance segmentation
results based on GT boxes somewhat, but obviously the class prediction is not significantly better
than for AAIS models. The model with enlarged GT boxes clearly outperforms the AAIS baseline.

architecture where the RPN is replaced by using the GT boxes as proposals directly. In
this case, we only use the GT box parameters and use a Fast R-CNN classification head to
predict the box category and an MRCNN mask head to predict the pixel-precise instance
masks.

Mask and class prediction results are shown in Table 10.4. Since the evaluated models
predict a score (the confidence of the class prediction), we can calculate meaningful AP
and AP* values. This allows to compare the results to the full model results below.

Both for AAIS and OIS models, the different training runs lead to more variance
in the results than for the only mask prediction models. Moreover, in contrast to the
models that predict only masks of Table 10.3, now the OIS models are not consistently
outperforming their AAIS counterparts. On average, the OIS models are still performing
better, but now the advantage shrinks to below one percentage point. This indicates that
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Model 512 x 384 px (S) 768 x 512 px (M) 1024 x 768 px (L)

val test val test val test
AP AP*| AP AP*|| AP AP*| AP AP*|| AP AP*| AP AP*
AAIS RMask 784 754|774 7351|795 765 |79.5 75.8| 783 75.1|783 742
AAIS MRCNN 771 748|754 73.01796 775|787 763|799 777|782 75.6
AAIS RMask* 804 77.7179.8 76.6 (823 79.8 822 789 82.6 80.3|826 799
AAIS MRCNN* 80.3 78.2|78.6 764|827 80.9|81.4 79.4 82.0 80.3|82.0 80.0
OIS RMask 773 741|748 712|785 755|783 745 78.6 751|774 733
OIS MRCNN 782 757 |76.0 73.2|80.7 788|784 76.0|79.7 77.8|77.7 75.3
OIS RMask box++ 79.0 75.6 |769 73.0(793 763|787 749/ 80.2 769 |78.8 749
OIS MRCNN box++ |[79.1 769|763 73.7 ||81.5 79.6 |79.0 76.6 ||81.5 795|787 764
OIS RMask* box++ 81.3 78.3|80.0 76.8 (/822 79.9|81.8 79.21 83.2 80.6 821 79.3
OIS MRCNN* box++ || 81.1 79.0 | 789 76.7 || 83.4 81.5|82.4 80.2 |83.6 82.0|81.0 79.1

Table 10.5: OIS vs. AAIS results on D2S val and test. All models use a ResNet 101 backbone
and T (val) score thresholds; models marked with * use the random background and neighboring
augmentation from Chapter 7. OIS is clearly better on the validation set, but the benefit does not
transfer in the same amount to the test set. Still, with enlarged GT boxes, the OIS MRCNN model
achieves the highest AP* values.

OIS models are not better classifiers than the AAIS models. A possible reason might be
that the oriented Rol Align operation introduces artifacts into the features that are used
for the classification head and thus the theoretical advantage due to a more effective use
of the given feature resolution does not translate to any gains in practice.

However, for the highest IoU threshold 0.95, OIS R101 COCO still yields a 1-2 pp
AP and AP* improvement above the AAIS model. The OIS box++ model predicts even
more accurate masks and further improves the results at the 0.95 IoU threshold by
approximately 3 pp. Moreover, the OIS box++ model has much less variance over the
three different runs and gives a significant improvement above the AAIS baseline.

Results of the full OIS model on D2S. Table 10.5 shows a quantitative comparison
between the RetinaMask (RMask) and MRCNN AAIS baselines and our OIS models on
D2S. For the box++ models, the GT boxes have been enlarged by 10 px, 15 px, and 20 px
for the S, M, and L image sizes, respectively. The table reveals that using enlarged GT
boxes improves the results of the OIS RMask and MRCNN models across all image sizes.

Overall, OIS MRCNN box++ is the best model with the highest AP and AP* values
in most cases. For small and medium image size, the clear advantage over AAIS MRCNN
does not generalize to the test set. For RMask, the OIS version is better for the large
image size, but not on small or medium images. Here, both model types are on the same
level on the validation set. However, on the test set, AAIS RMask is better. To get further
insights for the possible reasons of this behavior, we carry out a per-class analysis below.

In comparison to the experiments using GT boxes in Table 10.4, OIS MRCNN box++
(S) only falls short around 5pp AP* and 4pp AP. On the one hand, this means that
the model’s localization accuracy is very high. On the other hand, unless the predicted
bounding boxes clip a large fraction of the object area, we do not need perfectly accurate
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Figure 10.10: Comparison per IoU threshold on D2S. OIS MRCNN box++ clearly outper-
forms AAIS MRCNN on the validation set. On the test set, the benefit is less pronounced but still
present for all image sizes (top). For RetinaMask, the OIS box++ model is only significantly better
for a large image size (bottom). Note that an increased image size mainly improves AP* at higher
IoU thresholds (from left to right).

boxes to predict accurate instance masks.

If the images with specific neighboring or random background augmentations from
Chapter 7 are added to the training set, the models improve by up to 3.4pp AP*. OIS
MRCNN* box++ (M) in the bottom row of Table 10.5 achieves the highest AP* value
of 80.2%. This is a 3.9 pp improvement to the baseline model AAIS MRCNN (M) from
Chapter 5. However, for image size L, the AAIS models are again better on the test set.

Fig. 10.10 shows that in most cases OIS consistently improves the AP* across all loU
thresholds. In other cases, AAIS is better for the lower IoU thresholds but slightly worse
at IoU 0.95. Increasing the image size mainly improves AP* at high IoU thresholds.

Per-class comparison. It is unclear why the improvement of OIS MRCNN box++ over
AAIS MRCNN on the validation set does not transfer directly to the test set. Hence, we
do a per-class analysis to see if the effect occurs for all categories in the same manner
or only for some of them. Fig. 10.11 reveals that indeed the AP* gains of OIS MRCNN
box++ (M) on the validation set are due to small improvements for the majority of the
categories and large improvements for some classes (e.g., augustiner_weissbier, coca_cola_05,
banana_bundle, banana_single, orange_single). Only for a few of the bottle or tea categories,
AAIS MRCNN is significantly better.

Still, on the test set, for the majority of the categories OIS and AAIS are on the
same AP* level, with a slight advantage for OIS, which also reflects the overall AP*
improvement of 0.3 pp. However, for some of the categories, the situation turns around on
the test set: While the OIS model is clearly better on the validation set, it performs only on
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Figure 10.11: Per-class AP* comparison on D2S. AP* values on the validation and test set of
the AAIS MRCNN (M) and OIS MRCNN box++ (M) models (blue and orange). We further provide
test set results at IoU 0.8 to see if the differences are related to more accurate localizations. For
some categories, there is a clear improvement on the validation set that turns into a disadvantage
on the test set (e.g., adelholzener_alpenquelle, augustiner_weissbier).
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the same level as the AAIS model on the test set (e.g., orange_single) or is even significantly
worse (e.g., augustiner_weissbier, banana_bundle). There are also some classes where an OIS
disadvantage on the validation set turns into an advantage on the test set, but usually
the test set advantage is less pronounced (e.g., adelholzener_classic, ethiquable_gruener_tee)
There could be several reasons for these effects: Classification errors, Localization errors,
a generally higher number of additional FPs that reduce the precision, or a bias within
the validation and test sets that favors one or the other method. For the latter reason
it is hard to find out if such a bias exists. Clearly, it would be less pronounced if both
evaluation sets and, in particular, the relatively small validation set of D2S were larger.

In Fig. 10.12, we analyze the distribution of predictions for categories with large AP*
differences between the validation and test set: For adelholzener_alpenquelle_naturell_075 in
the first two rows, it is hard to see any difference between the validation set distributions
of the AAIS and OIS models. The number of FNs and FPs is slightly lower, the number
of TPs somewhat higher. This means that the relatively large AP* advantage of OIS
arises from only a few instances that the model predicted correctly. On the test set,
OIS still has slightly fewer FPs, but also a lower recall than AAIS, which explains the
disadvantage with respect to AP*. We see that probably a lower class-specific score
threshold would lead to a better recall for OIS and an improved overall result. Also
for augustiner_weissbier in the third and fourth row, T} (val) fits better for AAIS than
OIS on the test set. Moreover, the precision of OIS is much worse on the test set. This
class is also very often confused with the very similar class augustiner_lagerbraeu_hell.
As above, it seems that if a handful of instances were predicted with the correct class,
both the precision and recall would increase significantly. On the one hand, this means
that OIS does not improve the fine-grained classification on D2S. On the other hand,
larger evaluation and test sets could help to get a clear judgement which of the two
methods is better or whether they are just equally good for this category. The class
banana_bundle in row five and six is another category that belongs to one of these twin
categories because it is frequently confused with banana_single (and vice-versa). Here,
OIS clearly has a better recall and precision on the validation set. However, on the test
set there are certainly more FPs with a bad localization that just fall under the 0.5 IoU
threshold. We show an example of such a case in the qualitative results below. The
class gepa_bio_und_fair_kraeuter_tee shown in the bottom two rows is one of the tea box
categories that are often confused among each other. Thus, the number of TPs and FNs
is approximately on the same level for both AAIS and OIS on the validation set. Here,
OIS has a small advantage, but both approaches perform weakly. On the test set, we get
the same picture, but this time with the better end for AAIS. Also, this shows that OIS
does not perform significantly better with respect to fine-grained classification on D2S.

The per-class comparison in Fig. 10.11 also shows that for approximately half of the
categories the results are already at a very high level and that one has to get rid of these
poor-performing classes within the bottles and tea boxes group in order to significantly
improve the overall result.
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Figure 10.12: D2S examples where validation results do not match the test set. Score
vs. IoU plots (Ist and 3rd columns) and categories of predictions (2nd and 4th column). For some
categories, the OIS advantage does not generalize to the test set.
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AAIS MRCNN

OIS MRCNN box++

Figure 10.13: Qualitative results on D2S. Results for small images of the test set and with
TZ (val). Generally, the model predictions of AAIS and OIS box++ are approximately on the same
level. The models often struggle exactly with the same items due to reflections or oversaturated
images (3rd and 5th row). The class banana_bundle is challenging because it is visually almost
identical to the class banana_single (2nd row). Interestingly, in some cases, objects that seem to be
very easy to find are not detected or the prediction is filtered out by T} (7th row).
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Qualitative results. We show some exemplary qualitative results from the D2S test set
for AAIS MRCNN S and OIS MRCNN box++ S in Fig. 10.13. Of course, with very similar
AP and AP~ values, also the mask results are very similar for most instances. There
are objects that are only found by OIS and not by AAIS and vice-versa (e.g., carrot in
the 1st row, bottles in the 2nd and 3rd row, pasta, oranges, and grapes in the 7th row). At first
sight, the classification of the OIS model is slightly better than for AAIS (rocket in the 4th
row), but this impression is not confirmed in the overall quantitative evaluation results.
There are also many images where all objects are almost perfectly found (8th row). In
those images, there are only subtle differences between the OIS and AAIS results, in
particular for overlapping objects. Theoretically, OIS should have an advantage in these
cases because the mask prediction resolution is higher to predict small holes and notches
within the mask correctly. However, it is sometimes surprising how well the AAIS model
can predict touching masks with the given resolution (package of grapes in the 8th row).
Still, for both models oversaturated images (5th row) and objects that are clipped at the
image boundary (7th row) are challenging. Moreover, if the box prediction fails, also the
mask prediction is not meaningful (bananas in the 2nd row or bottles in the 4th row).

Both models are confused if there are reflections or sharp edges within the images
(coffee package at the top of the 3rd row). Since the augmented training images of D2S contain
many overlapping objects the models learn that holes within the masks are likely. To
address this issue, in Chapter 11 we introduce a model that additionally predicts amodal
masks and the occluded areas simultaneously with the modal masks shown here.

10.4 Conclusion

In this chapter, we presented an instance segmentation model that predicts instance
masks based on oriented bounding boxes. The use of oriented boxes leads to more
consistent mask targets than for axis-aligned bounding boxes with a higher foreground-
to-background ratio. Moreover, the resolution of the mask prediction feature maps can be
used more effectively, which results in very accurate mask predictions. We have shown
that the overall mask AP and AP* on Pill Bags and Screws can be improved significantly
even if the underlying boxes are not very accurate. The predicted instance masks achieve
better results, in particular at high IoU thresholds.

Moreover, with the use of oriented boxes, the instance segmentation task is better
conditioned, such that fewer annotations are required. On Pill bags, only 10% of the
instance mask annotations can be used to perform on the same level as the baseline
that is based on axis-aligned boxes. Also on Screws, we have shown that the oriented
instance segmentation model needs only approximately half the amount of generated
training images with mask annotations to obtain competitive results with the axis-aligned
baseline.

Also on D25, where many categories do not have a unique orientation, the models
based on oriented boxes are slightly better than the baseline. However, the significant
improvement on the validation set does not transfer to the test set. In our extensive result
analysis, we have shown that on D2S, for some categories a remarkable improvement
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can be achieved on the validation set, while on the test set the baseline is slightly better
than our proposed approach. We believe that there are three main reasons for this issue:
First, we need better fine-grained classification models that generalize well to samples
at the boundary of the training data distribution. In particular, for various fine-grained
bottle and tea categories, the predicted class sometimes seems to be randomly chosen
for both the axis-aligned and oriented instance segmentation models, which makes it
difficult to compare them. Second, more reliable confidences of the predictions would
allow to calculate score thresholds that better generalize to the test set. And third, there
is still much room for improvement concerning the oriented box prediction quality that
serves as the basis of current instance segmentation models.
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11

Amodal Instance Segmentation

The results of previous chapters have shown that current methods have large difficulties
to predict accurate object masks whenever the objects are touching or overlapping each
other. The idea of this chapter is to predict the instance mask beyond its visible parts
and add awareness of the occluded parts of objects to the model. On the one hand, the
occlusion prediction improves the localization accuracy. For example, it helps a grasping
robot to decide which of the objects to take first. On the other hand, we believe that the
prediction of occluded object parts allows to visualize better how the model is reasoning.
Therefore, it also addresses the reliability of the model.

Semantic amodal segmentation is a recently proposed extension to instance segmen-
tation that includes the prediction of the invisible region of each object instance. We
present the first all-in-one end-to-end trainable model for semantic amodal segmentation
that predicts the amodal instance masks as well as their visible and invisible part in a
single forward pass.

In a detailed analysis, we provide experiments to show which architecture choices are
beneficial for an all-in-one amodal segmentation model. On the COCO amodal dataset,
our model outperforms the current baseline for amodal segmentation by a large margin.
To further evaluate our model, we provide two new datasets with ground truth for
semantic amodal segmentation, D2S amodal and COCOA cls. For both datasets, our model
provides a strong baseline performance. Using special data augmentation techniques, we
show that amodal segmentation is possible with reasonable performance, even without
providing amodal training data. Parts of this chapter have been published in [48].

11.1 Introduction

Humans, with their strong visual system, have no difficulties reasoning about foreground
and background objects in a two-dimensional image. At the same time, humans have
the ability of amodal perception, i.e., to reason about the invisible, occluded parts of
objects [89, 108]. Robots that should navigate in their environment and pick or place
objects need to know if the objects are occluded or hidden by one or several other
instances. This problem leads to the task of semantic amodal segmentation, i.e., the
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occluder

\

amodal mask

7 .
7 % visible/modal mask

Z
/ invisible mask

Figure 11.1: Learning the invisible. (Top) Explanation of different mask types; (bottom, from
left to right) input image, ground-truth amodal instance annotations, predictions of our model:
amodal instance masks and occlusion masks. The mask color encodes the object class and
occlusion masks are highlighted in light color.

combination of segmenting each instance within an image by predicting its amodal mask
and determining which parts of the segmented instances are occluded and what the
corresponding occluder is. A typical example is shown in Fig. 11.1.

The amodal mask is defined as the union of the visible mask (which we will also refer
to as modal mask) and the invisible occlusion mask of the object (cf. Fig. 11.1). Predicting
amodal and visible masks simultaneously provides a deeper understanding of the scene.
For example, it allows to calculate regions of occlusion and lets the robot know which
objects have to be removed or in which direction to move in order to get free access to
the object of interest.

Predicting the invisible part of an object is difficult: If the object is occluded by an
object from another category, the model has no visual cues how to extend the visible
mask into the occluded object part. There are generally no edges or other visual features
that indicate the contour of the occluded object. In contrast, if the object is occluded by
another instance of the same category;, it is very hard for the model to judge where to
stop expanding the mask into the occlusion part as the category-specific features are
present all around.

We propose a model that can predict the visible, invisible, and amodal masks for each
instance simultaneously without much additional computational effort. In summary, this
chapter contains the following contributions:

* To the best of our knowledge, we are the first to propose an all-in-one end-to-end
trainable multi-task model for semantic segmentation that simultaneously predicts
amodal masks, visible masks, and occlusion masks for each object instance in a
single forward pass.
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* We provide the new semantic amodal segmentation dataset D2S amodal, which
is based on D2S [46], with guaranteed annotation completeness and high-quality
annotations. In comparison to the class-agnostic COCO amodal dataset [215], D2S
amodal contains 60 different object categories and allows to predict amodal and
occlusion masks class-specifically.

* By merging the categories of the modal COCO dataset with the instances of COCO
amodal, we obtain the new amodal dataset COCO amodal cls with class labels.

* Our architecture ORCNN outperforms the current baseline on COCO amodal [215]
and sets a strong baseline on D2S amodal. We provide extensive evaluations in order
to compare different architectural choices.

¢ The training set of D2S allows to apply extensive data augmentation. This allows to
train a semantic amodal method without any amodally annotated data. The model
achieves competitive results on D2S amodal.

Note that throughout the chapter, we will call annotations containing only visible
masks and models predicting visible masks modal, in contrast to amodal annotations and
methods. We will also use the terms occlusion masks and invisible masks as synonyms.

11.2 Related Work

The topic of amodal perception has already been addressed in various fields of computer
vision research.

Semantic segmentation and 3D scene reconstruction. Two tasks, for which amodal
completion has already been used for some years, are semantic segmentation and 3D
scene reconstruction. The task of semantic segmentation is to predict a category label for
each pixel in an image. Semantic segmentation does not take different object instances
into account, but returns a single region for each of the possible classes. Classes are
often related to background or stuff, such as sky, water, ground, wall, etc. In [61], Guo and
Hoiem describe a method to infer the entire region of occluded background surfaces.
Their algorithm detects the occluding objects and fills their regions with the underlying
or surrounding surface.

In 3D reconstruction, parts of the scene often cannot be reconstructed because of
occlusions. Gupta et al. [63] combine depth information, superpixels, and hierarchical
segmentations for amodal completion of semantic surfaces. Also Silberman et al. [175]
address the problem of surface completion in the setting of a 2.5D sensor. They use a
conditional random field in order to complete contours. The completed contours are
subsequently used for surface completion.

In contrast to the above mentioned semantic segmentation methods, our work does
not deal with the amodal completion of background regions or 3D object surfaces, but
focuses on object instances in 2D images.
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Object detection. In the context of object detection, Kar et al. [88] use a CNN to predict
amodal bounding boxes of objects. By additionally estimating the depth of the bounding
boxes and the focal length of the camera, object dimensions can be derived. However,
neither the object mask nor the occluded part of the object is predicted.

Instance segmentation. More recent methods extend the object detection task to the
more challenging instance segmentation task to predict the category and visible segmen-
tation mask of each object instance in an image [116, 70, 115]. Yang et al. [203] propose a
probabilistic model that uses the output of object detectors to predict instance shapes
and their depth ordering. However, no occlusion regions are predicted. In [17], Chen
et al. propose a graph-cut algorithm with occlusion handling in order to improve the
quality of visible masks. However, they neither predict occlusion nor amodal masks.

Amodal instance segmentation. Research on amodal instance segmentation or seman-
tic amodal segmentation has just started to emerge. Li and Malik [114] were the first
to provide a method for amodal instance segmentation. They extend their instance
segmentation approach [115] by iteratively enlarging the modal bounding box of an
object into the directions of high heatmap values and recomputing the heatmap. Due to
the lack of amodal instance segmentation ground truth, they use modally annotated data
and data augmentation in order to train and evaluate their model.

In [215], Zhu et al. provide a new and pioneering dataset COCO amodal for amodal
instance segmentation based on images from the original COCO [118] dataset. The
authors did not restrict the annotations to the usual COCO classes and annotators could
assign arbitrary names to the objects. Therefore, all objects in the dataset belong to a
single class object and the variety of objects in this class is very large. Additionally, the
authors provide annotations of background regions, which are sometimes extending
to the full image domain, labeled as stuff. In order to provide a baseline, Zhu et al.
use AmodalMask, which is the SharpMask [152] model trained on the amodal ground
truth. The model suggests object candidates with a relatively high recall. However, the
predictions of the model are class-agnostic. They also trained a ResNet-50 [68] to predict
the foreground object given two input object masks and the corresponding image-patches.

In contrast to [114] and [215], our model is class-specific, end-to-end trainable,
lightweight, and can predict amodal, visible, and invisible instance masks in a single
forward pass.

11.3 Prediction of Amodal, Visible, and Invisible Masks

11.3.1 Architecture

We name our method Occlusion R-CNN (ORCNN) because the architecture is based on
Mask R-CNN [70] (MRCNN). In the ORCNN architecture we extend MRCNN with
additional heads for the prediction of amodal masks (amodal mask head) and the
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Amodal Mask Prediction
amodal amodal
4x Conv mask mask
RPN i logits sigmoid
Occlusion Mask Prediction
Backbone Rols occlusion invisiﬁle
mask logits mask
ReLU sigmoid
{ o -
| visible visible
Input 4x Conv mask mask
logits sigmoid
Visible Mask Prediction

Figure 11.2: ORCNN architecture. ORCNN predicts the visible, amodal, and invisible masks
simultaneously with its three respective branches. See text for a detailed explanation.

occlusion mask (occlusion mask head). An overview of the ORCNN architecture is
shown in Fig. 11.2.

The visible mask head and the amodal mask head share the same architecture and
use four 3 x 3 convolutions and ReLU layers to generate meaningful features for mask
prediction. Their inputs are the extracted features from the Rol Align [70] layer. Note that
during training and inference, the amodal and visible mask prediction heads of ORCNN
share the same box proposals generated by the region proposal network (RPN). The
target ground-truth masks of the RPN are the bounding boxes of the amodal instances.
Therefore, the visible mask prediction head has to predict the visible mask of an instance
from the amodal bounding box. This is a major difference to a modal model that is
trained using the bounding boxes of the modal, i.e., visible masks of the instances.

A key component is that we link the modal and amodal mask heads with the occlusion
mask head. The occlusion mask head essentially subtracts the visible from the amodal
mask logits in order to obtain the occlusion mask logits. It is crucial to apply a ReLU
operation on the visible mask logits before subtraction to avoid occlusion mask prediction
for pixels where neither the amodal nor the modal mask are predicted.

Mounting both the modal as well as the amodal head on the same Rol feature
extraction module leads to several advantages: First, this makes the additional amodal
and occlusion mask prediction light-weight as only five additional convolution modules
and two sigmoid layers are necessary. Second, using the same Rols for the amodal and
visible mask prediction guarantees that both predicted masks correspond to the same
object prediction. In comparison, if one uses an ensemble of two separate models for
amodal and visible mask predictions, it is not straightforward to fuse the results of these
models. And third, by sharing the same architecture for the amodal and visible mask
prediction head, we can initialize both heads with the same weights that have been
pretrained on a large modal instance segmentation dataset, such as COCO.
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11.3.2 Training

In order to obtain meaningful predictions for the visible, invisible, and occlusion masks,
we have to formulate the corresponding losses for each of the tasks. As the tasks are
similar and only the ground truth differs, we use a similar sigmoid-cross-entropy loss
for all three mask types, first applying a per-pixel sigmoid and thereafter an average
binary cross-entropy loss like in [70]. In combination with the losses for the class (cls)
and bounding box (box), we obtain the total loss L:

L = Lgs + Lpox + Lam + Lvm + Livam, (11.1)

where AM, VM, and IVM are abbreviations for amodal, visible, and invisible mask,
respectively. In theory, one of the three losses Lays, Lysm, and Ly is redundant because
for the ground-truth masks it holds that IVM = AM — VM. Nevertheless, adding an
additional loss for occlusion masks leads to amodal mask logits and visible mask logits
that are on the same scale. Otherwise, consider the case that for a pixel we have high
probability for the amodal and the visible mask. For example, let the logit activations be
14 and 10, respectively. This leads to a probability of 1/(1 4 e~ (14710)) = 0.982 for the
occlusion mask to be present at this pixel, although occlusion should not be predicted.

In order to test the influence of adding the visible and invisible mask losses, we
experiment with four different model variants: standard ORCNN is using a loss for
each of the three mask types (amodal, visible, and invisible). For ORCNN (w/o Ljy)
and ORCNN (w/o Ly), the loss for invisible or visible mask prediction is switched off.
ORCNN (independent) is a model including Ly and Ly, but where the gradients with
respect to Ljy and Ly are not propagated to the amodal mask head nor to the Rol feature
extraction part.

As an alternative to including the invisible mask prediction into the model, we will
also show results where the invisible masks are computed as the difference between
the amodal and visible mask outputs. However, for ORCNN, the direct prediction of
invisible masks comes at negligible cost.

11.3.3 Evaluation

To judge which model is the best for the task of amodal instance segmentation, we propose
to extend the mean average precision (AP) and mean average recall (AR) evaluation
measures commonly used for instance segmentation, e.g., on Pascal VOC [41] and COCO
[118] benchmarks.! For brevity, in the following we will describe the extension of the
measure only for the case of AP. The extension for AR is straightforward. As in the
COCO benchmark, we compute the final AP by taking the mean of the per-category APs.

In order to evaluate the individual tasks, we calculate the AP values independently
for amodal and visible masks to obtain AP4 and APy, respectively. We can then include
both of the masks into the definition of a true positive instance to obtain a combined AP

IBecaue AP* was developed after the experiments of this chapter were done, we did not evaluate with
AP* here. The integration of AP* into the evaluation of amodal instance segmentation models is left for
future research.
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measure APyy (amodal-visible AP). For example, in order to obtain a true positive result
in the AP,y setting, for a given IoU threshold Tj,y, we need the correct predicted class
and additionally, IoU(AMS, AMP) > T,y and ToU(VM®, VMP) > T,y both need to be
satisfied. Here, AM® and AM?® denote the amodal mask ground truth and the amodal
mask prediction, respectively.

The invisible masks are included only indirectly into the overall measure AP,y due
to the following issues: First, for non-occluded objects, the invisible mask is not present
and it is not straightforward to define recall on something that is not present.? Second,
for most objects in COCO amodal or D2S amodal, the invisible mask areas are rather small
compared to the amodal or visible masks. Hence, small differences in invisible mask
predictions have a large influence on the IoU.

To measure the quality of predicted occlusions, we do separate evaluations, where
we ignore all non-occluded ground-truth objects. For these evaluations, we also calculate
the average precision of invisible masks APS3? at IoU threshold 0.5. We use a low
IoU threshold since the invisible masks are often very small and to take the difficulty
of the task into account. For the calculation of AP;y, we only use results where the
amodal segmentation has an IoU higher than 0.5 with a ground-truth amodal mask of an
occluded object. Hence, if the predicted amodal mask is a false positive, we ignore the
corresponding invisible mask.

For models that do not predict any visible or invisible masks, we calculate the
measures AP,y and APy by using amodal masks also as predictions for the visible masks.
When invisible masks are calculated as the difference of amodal and visible masks, we
denote the corresponding measure APy diff.

11.4 Experiments

In the following, we compare our models to previous results on COCO amodal (COCOA)
and set new benchmarks for the new semantic amodal datasets COCO amodal cls and D2S
amodal. All models were trained using the Detectron [56] framework. More information
on the settings can be found in Appendix E.

1141 COCOA

COCOA [215] is the first dataset with ground truth for semantic amodal segmentation.
The dataset consists of 2500 training, 1323 validation, and 1250 test images. In each image,
most objects and background stuff areas are annotated with amodal masks. Occluded
objects are additionally annotated with visible and invisible masks. All objects belong to
a single category object and have an additional stuff label.

Amodal mask prediction. As a baseline result for amodal semantic segmentation, we
train MRCNN with a ResNet-50 or ResNet-101 backbone on the amodal annotations.

2Generally, recall is increasing with more proposals. In case of an empty invisible mask, this is not the
case, which prevents the usual way of computing the AP measure.

239



CHAPTER 11: AMODAL INSTANCE SEGMENTATION

all things stuff
APy ARy | APy ARy | APy ARy
AmodalMask [215] | 5.7 434 | 59 458 | 0.8 36.7
ARCNN-50 29.9 45.8 |33.2 504 | 58 33.0

Table 11.1: Baseline results for COCOA. Amodal mean average precision and average recall
values for AmodalMask [215] compared to ARCNN.

We call these models ARCNN-50/ARCNN. Table 11.1 compares ARCNN to the baseline
AmodalMask of [215] using their evaluation tool. ARCNN outperforms AmodalMask by
a large margin in terms of average precision. AmodalMask achieves a high recall, since it
always predicts 1000 regions for each image. Nevertheless, ARCNN achieves even higher
recall while predicting only 30 results per image on average. An exception is the category
stuff, since stuff regions are often very large areas in the background of the image and
ARCNN predicts no object proposals for these areas.

In the following, our focus is on things because masks for stuff are hard to define
and, therefore, the variance of annotations between different annotators is high. Thus, in
COCOA no stuff, we exclude stuff annotations during training and evaluation. We found
that for ARCNN and ORCNN, AR is generally in line with AP since recall is already
captured within the AP measure. Therefore, for the following evaluations we will just
show AP values. In order to highlight the performance on occluded objects, we also
evaluate the architectures ignoring all non-occluded instances.

Occlusion prediction. As a baseline for a model like ORCNN that can predict amodal,
visible, and invisible masks at the same time, we use ARCNN and standard MRCNN.
Since both models only predict amodal or visible masks, respectively, in the evaluation,
we use the amodal masks also as visible mask predictions and vice-versa.

To combine the benefits of MRCNN and ARCNN, we also use an ensemble approach
by applying both models and merging the results (merged AMRCNN). Therefore, we
match the modal results to the amodal results greedily: We merge the modal result with
highest IoU to the amodal result (if IoU > 0.5) if the predicted classes match. The score
of a match is set to the mean of amodal and visible mask scores. If an amodal result is
not matched, the amodal mask is used as visible mask and the invisible mask is set to an
empty region. The best results are obtained if the unmatched modal results are ignored.

The results on COCOA are summarized in the top two sections of Table 11.2. The
multi-task model ORCNN improves the quality of visible masks compared to ARCNN
and sometimes even compared to MRCNN, while at the same time predicting occlusion
masks. The best result for the combined measure AP,y is obtained using the variant
ORCNN (independent). This variant combines the benefits of the ensemble merged AM-
RCNN into a single model with only a slight performance decrease for some of the
measures. Standard ORCNN is the best choice for the prediction of invisible masks.
Qualitative results for COCOA are shown in Appendix E.2.1.
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all occluded
dataset & model APy APy APy | APy, APy APy APYY  APS? diff
COCOA
AmodalMask [215] 3.7 57 48 1.2 32 26 - -
MRCNN [70] 17.0 186 21.7 8.6 10.6 15.3 - -
ARCNN 241 313 261 | 11.8 21.6 16.2 - -
merged AMRCNN 225 285 27.0(| 125 195 185 - 0.3
ORCNN 212 257 26.7| 115 17.0 184 1.3 1.7
ORCNN (independent) | 25.0 31.1 28.8| 13.7 21.6 19.9 1.0 0.5
COCOA no stuff
MRCNN [70] 22.0 239 279 124 15.0 21.6 - -
ARCNN 27.8 35.6 294 | 14.7 254 185 - -
merged AMRCNN 281 33.6 33.6| 168 235 244 - 0.4
ORCNN 251 30.1 30.0| 143 20.8 214 3.0 1.9
ORCNN (independent) | 29.0 35.1 32.8| 16.6 25.0 23.0 1.0 0.5
COCOA cls
MRCNN [70] 390 398 449 | 254 265 349 - -
ARCNN (agn) 371 404 38.6| 239 28.7 26.8 - -
ARCNN 38.8 41.7 405 249 292 28.0 - -
merged AMRCNN 40.1 425 45.7| 27.7 30.0 34.9 - 1.0
ORCNN (agn) 343 362 393| 231 250 295 1.8 1.4
ORCNN 351 376 394 | 237 258 299 2.0 14
ORCNN (independent) | 38.0 40.7 41.0| 26.0 289 305 0.2 1.0

Table 11.2: COCOA results. Note that only ORCNN is predicting visible and invisible masks
in addition to the amodal masks. For all other models, the predicted amodal mask was used for
the evaluation of AV and V measures. Models marked with (agn) are using class-agnostic mask
prediction heads.

11.4.2 COCOA cls

For amodal completion, the model has to get some intuition about the common shape
of objects. We evaluate whether the prediction of amodal masks is a class-specific task.
Therefore, we generated a new dataset COCOA cls by merging the usual COCO 2014
annotations with the COCOA dataset. COCOA contains many objects of categories (e.g.,
sandals, sneakers, or stuff categories) that are not part of COCO. Although each object in
COCOA has a name tag, the annotators were free to choose a name. Furthermore, not all
objects present in the ground truth of COCO have been annotated in COCOA. Therefore,
to assign a class label to the objects in COCOA, we calculate the IoUs of the visible masks
with the masks given for the corresponding image-id in COCO. Only annotations, for
which the IoU between visible mask and any COCO annotation exceeds a threshold of
0.75 (and not labeled as stuff or crowd), were kept for COCOA cls. Overall, COCOA
cls has 3501 images with 10592 objects compared to the 3823 images and 34 916 objects
of COCOA. Note that using this merging scheme, some COCO classes, e.g., hairdryer,
are not present in the training set of COCOA cls. Furthermore, for many images not all
COCO annotations can be matched to a corresponding COCOA label.

As shown in Table 11.2, models perform much better on COCOA cls than on COCOA.
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ground truth ORCNN

Figure 11.3: COCOA cls results. (Left) Ground truth annotations for images of the validation
set; (right) exemplary qualitative results of our ORCNN model trained on the train split. Predicted
invisible masks are indicated by a white overlay. Note that ORCNN sometimes predicts instances
or invisible masks correctly that are not part of the ground truth. These count as false positives in
the evaluation or at least lead to reduced APxy and APy values.

242



11.4 EXPERIMENTS

On COCOA cls, the ensemble merged AMRCNN is the best choice, slightly increasing the
performance compared to the multi-task model ORCNN (independent). The ensemble is
in favor, as it averages the scores of both predictions: Only if both models are confident,
the final score is high. Also, false positive predictions of MRCNN are filtered out in
merged AMRCNN if there is no corresponding false positive of ARCNN. This reduces
the total number of false positives.

In order to see if class-specific mask prediction improves the results, ARCNN and
ORCNN were also trained using class-agnostic mask proposals. On COCOA cls, using
class-specific mask proposals helps for almost all measures both in the case of ARCNN
and ORCNN. For occluded objects, class-agnostic ORCNN achieves the best average
precisions in terms of invisible masks.

Generally, the interpretation of AP values for COCOA and COCOA cis results is
difficult because for both datasets the annotations are incomplete. For example, as
shown in Fig. 11.3, there are some cases where ORCNN makes correct predictions but
the ground truth does not contain the corresponding annotations.

11.4.3 D2S amodal

Since for D2S (Chapter 5), only minor occlusions are present in the training set, the
generation of reasonable artificial images can be done by cropping instances from the
training set and pasting them onto an empty background (cf. Chapters 5 and 7). We
annotated all images of D2S amodally to obtain D2S amodal. The annotations contain the
category, amodal mask, and additional visible and invisible masks for occluded objects.
For images where the amodal masks are reaching out of the image boundary, a zero
padding is used such that all amodal masks are fully contained in the image.

Splits. Because the D2S amodal training split only contains minor occlusions, it is
not suitable to train semantic amodal models that predict occlusion masks also for
moderately to heavily occluded objects. Hence, we use data augmentation similar to
the data augmentation described in Chapters 5 and 7. D2S amodal augmented consists of
1562 augmented images, where only objects from D2S train that do not reach out of the
image boundary have been used for augmentation. The D2S amodal train set is then the
combination of D2S amodal train rot0 with D2S amodal augmented splits resulting in a total
of 2000 images.

To evaluate if an amodal model can be trained only from modal annotated data,
we augmented another 2000 images in the same way, but using the modal annotations
from D2S train to obtain D2S amodal modal augmented. For all splits of D2S amodal, the
statistics are given in Table 11.3. As is common for D25, the number of images containing
occlusion is much higher for the val set compared to the train rot0 set. By adding the
augmented set to train rot0, the resulting amodal train split contains many objects which
have a higher frequency of occlusion and a higher average per-object occlusion rate than
for the val and test splits. Exemplary ground truth annotations are shown in Fig. 11.4.
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Figure 11.4: D2S amodal ground truth. Exemplary ground truth annotations for different
splits of the D2S amodal dataset. Two images with different backgrounds from val (top), two
generated images from augmented, and an image generated from modal annotations modal
augmented (bottom, from left to right).

Results. The qualitative results of ORCNN shown in Fig. 11.5 are very promising. The
model predicts occlusions correctly in many cases, especially for objects lying completely
on top of another one or objects reaching out of the image boundary. This shows that the
model is able to learn the common shape of object classes.

The quantitative analysis given in Table 11.4 shows that the prediction of invisible
masks is very difficult. On the one hand, if the ground-truth invisible masks are small,
small differences of the invisible mask proposal already lead to a low IoU value. On the
other hand, if the ground-truth invisible mask is large, it is very difficult for the model to
generate the correct shape of the invisible mask prediciton, again leading to a low IoU
value. In both cases, if the IoU value is below 0.5, this leads to a false positive prediction
and in most cases to a false negative as the corresponding ground truth is not matched.

On D2S amodal, ORCNN (independent) achieves comparable results to merged AMR-
CNN and even outperforms the ensemble with respect to AP4y on occluded objects. For
invisible mask prediction, standard ORCNN is the best choice. Interestingly, ORCNN
achieves a higher AP;? when the invisible mask is predicted directly instead of using
the difference between amodal and visible mask (APIOVSdiff).

Some failure cases of ORCNN on D2S amodal are shown in Fig. 11.6. False positive
occlusion predictions are often caused by reflections or lighting changes. When objects
are lying next to each other and touching, the amodal and invisible masks are sometimes
extended into neighboring instances. For other cases, occlusions are not predicted at all.

In summary, ORCNN (independent) yields the best compromise for the prediction
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ground truth

Figure 11.5: D2S amodal results. (Left) Ground truth annotations for images of the val set;
(right) exemplary qualitative results of our ORCNN model trained on the amodal train split.
Predicted invisible masks are indicated by a white overlap. In most cases, the results are

promising, especially for objects lying on top of each other or reaching beyond the original image
boundary. More results are in Appendix E.2.2.
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split name augmented train rot0 train val modal
augmented
num imgs 1562 438 2000 3600 2000
num imgs w/ occl 1507 57 1564 2520 1930
img OR [%] 96 13 78 70 96
num objs 12376 690 13066 15654 15851
num objs occl 8798 66 8864 7473 11302
obj OR [%] 71 9 68 47 71
avg OR / reg (all) [%] 23 0 22 8 23
av. reg (occl) [%
g OR / reg (occl) [%] 33 4 33 18 33

Table 11.3: D2S amodal splits. Image and occlusion statistics for the splits used with D2S
amodal (from top to bottom): number of images, number of images with at least one occluded object,
rate of images that contain any occlusion, total number of objects, number of occluded objects,
rate of objects that are occluded, average occlusion rate per object region for all objects, average
occlusion rate per object only for occluded objects.

all occluded
dataset & model APy APy APy | APyy APy APy AP} APS? diff
ARCNN (agn) 634 722 648| 48.0 622 50.8 - -
ARCNN 63.8 726 653| 487 63.0 51.6 - -
MRCNN (agn) 647 652 77.7| 487 493 713 - -
merged AMRCNN (agn) 69.2 727 755| 582 628 68.2 - 13.2
ORCNN (w/o Ly) 340 68.6 347| 268 589 280 0.1 0.0
ORCNN (w/o Ly) 11.0 66.1 11.1 75 567 76 58 0.0
ORCNN (agn) 623 652 71.0| 525 552 653 14.7 13.8
ORCNN 589 621 662| 481 512 589 87 8.9
ORCNN (independent, agn) | 69.2 723 743 | 59.1 625 67.6 0.8 9.2
ORCNN (modal aug) 563 599 626| 479 510 576 7.8 -

Table 11.4: D2S amodal results. Models marked with (agn) are using class-agnostic mask
prediction heads. ORCNN (modal aug) is a ORCNN only trained on D2S amodal modal augmented.
All values are calculated for the D2S amodal val set.

of visible and invisible masks at the same time (highest AP,y and APy). This comes at
the cost of a slightly lower APy value compared to a model that only predicts visible
masks, like MRCNN. Note that compared to ORCNN, merged AMRCNN has a much
higher memory consumption (2 x 7600 MB vs. 8300 MB), as well as significantly longer
inference runtime (2 x 170 ms vs. 180 ms, nvidia GTX1080Ti GPU). Furthermore, there is
an additional overhead for the merging strategy (=~ 10 ms), which depends on the number
of output results. In contrast to COCOA, for D2S amodal, ORCNN (agn) outperforms the
ORCNN model that predicts a class-specific mask.

Table 11.5 also shows the result of ORCNN when training only on artificially aug-
mented data obtained from D2S train, D2S amodal modal augmented. The model performs
only slightly worse than ORCNN trained on D2S amodal train. Thus, it is possible to train
a competitive model without the need of amodally annotated data.
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Figure 11.6: D2S failure cases. Exemplary qualitative results where our ORCNN model fails.
Predicted invisible masks are indicated by a white overlap. (Top) occlusion is falsely predicted,
possibly due to reflections or lighting changes; (bottom-left) the amodal and invisible mask of this
instance is extended into the neighboring object of the same class (only this instance is visualized);
(bottom-right) the occlusion caused by the plastic bottle is not detected.

11.5 Conclusion

We proposed an end-to-end trainable, instance-aware model for semantic amodal segmen-
tation. Our model, ORCNN, simultaneously predicts amodal, visible, and invisible masks,
and the category of each instance in a single forward pass. By merging annotations of
COCO with COCOA, we obtain a category-specific semantic amodal dataset based on
COCO images: COCOA cls. We provide semantic amodal ground truth for D2S splits
resulting in D2S amodal. ORCNN (independent) outperforms previous work on COCOA
and sets strong benchmarks on COCOA cls as well as D2S amodal. The light-weight,
all-in-one model is able to achieve comparable performance to an ensemble approach.
Furthermore, we show that it is possible to train a competitive amodal model only using
modal annotations and data augmentation. Our experiments and results show that it
is possible to predict the invisible masks of occluded objects even in areas without any
visual cue. Thus, our model can indeed learn to see the invisible.

The results show that the prediction of amodal and in particular invisible masks
is a difficult task that needs further research to reduce the number of false positive
predictions of occlusions. Once the occlusion predictions are reliable, they can help a
grasping robot to navigate first to the objects without occlusions which leads to a more
efficient application.
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Conclusion

This chapter summarizes the contributions of this work and potential directions for future
research in this area.

12.1 Summary

In this work, we looked at the application of DL-based methods and, in particular,
CNN:s to solve industrial classification, object detection, and instance segmentation prob-
lems. In this regard, we evaluated our proposed ideas with respect to the requirements
of successful industrial algorithms as stated in Chapter 1: localization accuracy, fine-
grained classification, robustness, reliability and uncertainty estimation, ease of use, and
scalability. The focus was on the ease of use, localization accuracy, and fine-grained
classification requirements as the central research question of this thesis was: Is it possible
to build methods that learn from few annotated samples, but localize and classify objects
accurately?

To answer this question, first we presented a thorough introduction to the use of
machine learning methods in general and to modern classification CNNs in Chapter 2.

To reduce the number of necessary training samples, in Chapter 3 we built a novel
rotational convolution and pooling module for classification CNNs. We showed that the
module extracts approximately rotationally invariant features from images and thus, it
allows to train the network only with a single orientation of each class. Still, the network
is capable to classify the classes correctly if they occur in an arbitrarily rotated version.
On this task, we could significantly outperform related work that relies on training
data that contains all possible orientations of the objects as they are shown within the
validation and test sets. Hence, our model certainly improves the ease of use of CNNs,
as the user does not have to think about the possible orientations in which the different
categories might occur.

However, we saw that creating features that are invariant to certain transformations
reduces their expressiveness. For example, our proposed model leads to inferior results
compared to rotationally equivariant models on MNIST-rot36 when being trained on
rotated inputs. We have to admit that in practice, if rotated variants of the inputs are to
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be expected within the application, the easier and better performing choice is to simply
rotate the input data.

From Chapter 4 onwards, we turned our attention towards the more complex task of
object detection and instance segmentation. To get a better understanding of the models
that we extended in subsequent chapters, we investigated and compared the design of
recent object detection and instance segmentation models in detail in Chapter 4.

To be able to evaluate the above mentioned criteria for algorithms in industrial
applications, we started by introducing the novel D2S dataset on which industrial
methods can be evaluated properly. The dataset’s design encourages the use and
development of few-shot detection methods that meet the ease of use requirement.
Further, with its high-quality annotations, clutter objects, and severe occlusions, it is
suitable to evaluate the localization accuracy and robustness of methods. The small
inter-class variations between some of the bottle and tea categories pose a challenge with
respect to fine-grained classification.

Our extensive experiments and failure case analysis of the current models revealed
that the localization accuracy requirement can only be met for rather easy images where
objects are positioned on a familiar background and without overlaps. But even in
this setting, fine-grained classification is a major challenge for the models because they
frequently confuse classes with similar appearance, such as the different sorts of tea boxes
in D2S. The robustness requirement is also not met satisfyingly: unknown backgrounds,
clutter objects, reflections, or objects in unknown views lead to a high number of false
positives. This is directly related to the fact that current models estimate their uncertainty
badly and are not reliable. A huge portion of the false positives is predicted with a high
confidence such that it is not possible to filter out false positives based on their score.
Moreover, it is hard to tell in which cases the model is unsure about its predictions. The
failure cases that we identified in Chapter 5 were addressed in the following chapters.

In Chapter 6, we investigated the predominantly used evaluation measure for object
detection and instance segmentation methods — the average precision (AP). We found
several issues in the current computation of the measure and, more importantly, that
a majority of the false positives that a model might predict is not penalized by AP. In
order to better include the reliability and uncertainty estimation into the evaluation and
ranking of models, we proposed a novel AP* measure that includes the actual model
precision into the evaluation. In our extensive experiments that re-evaluated the D2S
baselines from Chapter 5, we showed that using AP*, indeed the ranking of the models
changes. Moreover, AP* allows to compute optimal class-specific score thresholds that
suppress a large amount of false positives. For example, with these, the number of false
positives on the D2S test set could be drastically reduced from 104 633 to 5567 and from
74100 to 5513 for RetinaNet and RetinaMask, respectively.

We came back to the ease of use requirement and the reduction of the amount of
hand-labeled images in Chapter 7. Instead of changing the model, as was done in
Chapter 3, here the idea was to change the training data. We proposed to use artificially
generated training images instead of real and manually annotated images. Moreover,
we introduced a simple, time- and cost-efficient pipeline for the training of instance
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segmentation methods in a weakly supervised setting. This allowed to quickly generate
large training sets for instance segmentation methods without a tedious annotation
process and obtain competitive results. Moreover, we showed that specific augmentations
of the generated images can be used to further address certain failure cases, such as
touching objects or reflections. With these specific augmentations, the baselines from
Chapter 5 could be improved by over 3pp AP*.

Chapter 8 presented the concept of oriented box detection. Generally, oriented boxes
better approximate the shape of objects in comparison to axis-aligned boxes. For example,
an oriented box prediction allows to grasp an object in the correct direction and align it
with others. Since oriented boxes are generally tighter around the object than axis-aligned
boxes and thus, they contain less noise from the background or neighboring objects,
we proposed that oriented boxes could also improve the fine-grained classification. We
showed the necessary steps to change detection models to predict oriented boxes instead
of axis-aligned ones. Moreover, we introduced the idea of classes without orientation
that allows to apply oriented box detection in applications where only a subset of the
classes has a clearly defined orientation. Further, we provided insights how axis-aligned
and oriented boxes can be compared using an evaluation based on the relative bounding
box IoU — rloUgg. Our experiments on Screws, Pill Bags, and D2S revealed that accurate
oriented box detection is challenging and mainly improves the localization of objects
with a well defined orientation. However, on D2S, the hypothesis that oriented detection
also improves the classification had to be rejected.

In Chapter 9, we compared the DL-based oriented detection method of Chapter 8 to
Shape-Based Matching, a classic, rule-based approach that is known to be accurate and
efficient. Moreover, we explored the limits of reducing the manually labeled annotations
and only used a single template image to generate the training set of the DL-based
method. The comparison revealed that both methods have their strength and weaknesses.
While Shape-Based Matching predicts much more accurate results, it also has more false
positives in the background and requires some manual tuning of the model hyperpa-
rameters. On the contrary, the DL-based model is easy to setup — at least if enough
annotations exist — and its runtime scales better with an increased number of object
classes. To get the best of both worlds, we presented a novel method that fuses both
approaches in a hybrid model: the DL-based model is used to restrict the search space of
the Shape-Based Matching and for some categories, where it performs better or equally
well, we can directly use the DL results. In the second stage, we apply Shape-Based
Matching that is now significantly faster due to the restricted search space, but still
predicts very accurate results and returns more reliable scores.

In Chapter 10, we presented a novel instance segmentation method based on oriented
box prediction that we had developed in Chapter 8. We saw that the model has the
advantage that the comparably low resolution of the mask prediction head is used more
effectively and that mask targets become invariant to the orientations of the objects
within the image. In our experiments on Screws and Pill Bags, we showed that this makes
the instance mask prediction better conditioned and thus, fewer of the expensive mask
annotations are necessary to obtain very accurate results. For example, on Pill Bags,
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the oriented instance segmentation model could outperform the axis-aligned baseline
with only 30% of the objects labeled with instance masks. Moreover, on Screws, with
only half the amount of generated images with mask annotations, the oriented instance
segmentation method performed on the same level as its axis-aligned baseline. Also
on D2S, where many of the categories do not have a uniquely defined orientation, our
proposed method could outperform the baseline.

Next to the difficult fine-grained classification problems, severe occlusions are one of
the main remaining sources of failure on D2S. Hence, in Chapter 11, we built a novel
model that directly predicts the visible, invisible, and the amodal instance mask of each
object within an image simultaneously. In our experiments on COCO amodal (COCOA)
and COCOA cls, our model could significantly outperform the previous baselines on this
very challenging task. To this end, we also presented novel measures to evaluate such
methods. Further, we extended D2S with amodal annotations and setup first baselines
for amodal instance segmentation. While previous work only evaluated the recall of
their methods, our evaluations revealed that there is much room for improvement, in
particular, the precision of existing models must be increased.

Overall, our proposed models and data generation methods make object detection and
instance segmentation better usable in industrial applications. The presented algorithms
certainly improve the ease of use aspect of current methods since they significantly
reduce the amount of necessary hand-labeled instance mask annotations. This saves the
user time directly at the beginning of the model setup and reduces costs. Moreover, the
presented data augmentation techniques allow to adjust the training set very quickly for
new classes or classes that have a different appearance due to a product line change. We
showed that our models based on oriented boxes can be either used in a hybrid approach
with, e.g., a Shape-Based Matching algorithm, or can be used to improve the accuracy of
mask predictions with few annotated data. Hence, we can say yes, it is indeed possible to
get high-quality results with only a few annotated training samples.

12.2 Future Work

Our work can be considered as one of many steps that need to be taken such that current
object detection and instance segmentation can be seamlessly integrated into industrial
applications.

With D2S, we provide a high-quality dataset for one application scenario in the context
of a supermarket or warehouse setting, but there are many more application areas that
could be addressed. For example, there are cases where the product portfolio consists of
several thousands of categories and where the images are not colored, but in grayscale.
Other application areas include agriculture, electric components, or pharmaceuticals,
where different categories are often only defined based on subtle differences to others.
Generally, in quality inspection systems defect detection and segmentation play an
important role. The segmentations allows to compute the area of the erroneous region
and thus, it can be decided if the defect is severe or not. There is always a need for
high-quality datasets in industrial domains that are still underrepresented in today’s
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computer vision research.

In our extensive evaluations within this thesis, we saw that a major challenge for
current methods is fine-grained classification. For example, in an object counting task
the results are only of limited use if we cannot rely on the class predictions because they
are frequently confused with similar categories. Therefore, in future work, ideas for
fine-grained classification should be brought to detection methods, such as hierarchical
classification approaches that make use of supercategories.

In our opinion, the robustness requirement is directly related to the uncertainty
estimation. Of course, in a perfect world, our models should also predict correct results
for objects with an uncommon appearance. However, as we have seen in many of
the failure cases throughout this work, mostly for clutter objects or objects with an
uncommon appearance, the models predict wrong results. Hence, for the state of current
models it would already be a large gain if those predictions could be clearly identified as
‘unsure’ predictions, indicated by lower confidences.

Another topic, where research is still in its infancy, is occlusion prediction or amodal
instance segmentation. Although for some cases the results of our proposed model in
Chapter 11 are impressive, there is still a huge room for improvement. Predicting the
occlusions reliably and accurately would be a large improvement, e.g., for bin-picking
applications: the robot could grasp objects in a meaningful order and thus, avoid losing
the objects if they are covered by others. This would lead to a much more efficient
application and save costs.

Within this thesis, we proposed two different ways to reduce the amount of labeled
images that is necessary to train a model successfully. The first approach was to change
the models themselves such that they require fewer training samples. The second
way changed the data that was artificially generated including pixel-precise instance
segmentation masks. Concerning the first, it remains an open challenge to build few-shot
models that can learn from few data, but are still powerful enough to generalize to a
large variety of different test cases. Concerning the second, our experiments on D2S
have shown that training in a weakly-supervised setting, without a single hand-labeled
segmentation, the models are competitive, but still lag behind the fully supervised
baselines by about 11 percentage points AP. Possible reasons are that the automatically
generated instance mask annotations are not as accurate as the manually annotate ones
and that there is a domain gap between the artificially generated training images and the
original images of the validation and test sets. Hence, a topic for future research is to
generate artificial training data with a more realistic appearance, such that the domain
gap between the artificial and real data is closed. Moreover, currently, the data generation
leads to a random assembly of objects within an image. While the statistics of object
categories that are present within the images could be considered if they are known, the
positioning of objects, such that they reflect a realistic scenario, is a more difficult task
that should be addressed in future work.

Finally, one of the requirements of industrial algorithms that certainly should be
addressed in future work is reliability and uncertainty estimation. Today, for most
users, DL-based models are still mysterious black boxes. Only if the predictions of these
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methods are meaningful and the models are able to show that they are unsure in certain
cases, users will start to trust them. For example, if physicians see that a CNN only
predicts a very high confidence if it is absolutely sure about its diagnosis, they might
be willing to take the CNN’s prediction as a second opinion. In contrast, if the CNN
also returns high scores for false predictions, the physicians are not able to rely on the
model’s outputs at all, even if statistically the CNN is outperforming humans.
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Rotational Invariance for CNNs

In this supplementary material for Chapter 3, we add the descriptions of all networks
that we used in our ablation study. For some examples, we show in more detail how we
calculate the number of learnable parameters. Additionally, we also provide results of
different CNN architectures for all models that we trained on MNIST, CIFAR-10, and
CIFAR-100.

A.1 CNN architectures

The architectures of different CNNs we used for MNIST are summarized in Table A.1.
Note that in Table 1 of the submitted paper version there is a mistake for model RP_RF_1,
where for conv2, conv3, and conv4, the number of rotations #, should be 1 instead of 8.

The architecture for the RP_RF_1 MNIST model is as follows: We use a rotational
convolution and pooling module with ny = 40 filters and, depending on the setting,
n, = 1,2,4,8,12,16, or 32 rotations. The second convolution layer is a conventional
convolution with n¢ = 120 filters. Both convolution layers have filter size 5 x 5 and stride
1 and are followed each by a 2 x 2 max-pooling with stride 2. The classifier consists of a
fully-connected layer with 500 neurons that is followed by a ReLU nonlinearity and by a
second fully-connected layer with 10 neurons. Finally, a softmax is applied.

Exemplary calculations of the number of learnable parameters 7, are shown in
Table A.2.

A.2 Results

MNIST Results of different models on the MNIST dataset are shown in Table A.3.
CIFAR Results of different models on the CIFAR-10 and CIFAR-100 datasets are shown

in Table A.4. Note that for CIFAR, we did not train RC or RC_RF models, as those were
not performing well on MNIST.
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CNN architectures

convl conv2 conv3 conv4
name RF | n f Ny RP ny n, RP | n L RP | n f nr RP np
reference 10 1 20 1 40 1 80 1 130 050
reference_lrg 80 1 160 1 320 1 80 1 382 320
RC_RF_1 v |10 8 20 1 40 1 80 1 142 650
RC_RF_2 v |10 1 20 8 40 1 80 1 180 450
RC_RF_3 v |10 1 20 1 40 8 80 1 331 650
RC_RF_4 v [ 10 1 20 1 40 1 80 8 703 490
RC_RF_12 v |10 8 20 8 40 1 80 1 193 050
RC_RF_123 v |10 8 20 8 40 8 80 1 394 650
RC_RF_1234 v |10 8 20 8 40 8 80 8 968 090
RP_RF_1 v |10 8 v 20 1 40 1 80 1 130 050
RP_RF_2 v [ 10 1 20 8 v 40 1 80 1 130 050
RP_RF_3 v |10 1 20 1 40 8 v |80 1 130 050
RP_RF_4 v |10 1 20 1 40 1 80 8 v’ | 130 050
RP_RF_12 v |10 8 v 20 8 v 40 1 80 1 130 050
RP_RF_123 v |10 8 v 20 8 v 40 8 v | 80 1 130 050
RP_RF_1234 v |10 8 v 20 8 v 40 8 v |8 8 v’ | 130 050
RC_1 [20] 10 8 20 1 40 1 80 1 142 650
RC_2 [20] 10 1 20 8 40 1 80 1 180 450
RC_3 [20] 10 1 20 8 40 8 80 1 331 650
RC_4 [20] 10 1 20 8 40 1 80 8 703 490
RC_12 [20] 10 8 20 8 40 1 80 1 193 050
RC_123 [20] 10 8 20 8 40 8 80 1 394 650
RC_1234 [20] 10 8 20 8 40 8 80 8 968 090
RP_1 [20] 10 8 v 20 1 v 40 1 v |8 1 130 050
RP_2 [20] 10 1 v 20 8 v 40 1 v |80 1 130 050
RP_3 [20] 10 1 v 20 1 v 40 8 v |80 1 130 050
RP_4 [20] 10 1 v 20 1 v 40 1 v |80 8 v’ | 130 050
RP_12 [20] 10 8 v 20 8 v 40 1 80 1 130 050
RP_123 [20] 10 8 v 20 8 v 40 8 v |80 1 130 050
RP_1234 [20] 10 8 v 20 8 v 40 8 v | 80 8 v’ | 130 050
ORN [213] 10 8 20 8 40 8 80 8 v | 382320

Table A.1: CNN architectures.
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Number of parameters and activations.

reference RP_RF_1 ORN RC_1234

layer ny size np|ny size np|ny size np|ny size ny

data raw 1x28x28 1x28x28 1x28x28 1x28x28
extend - - 8x28x28 -

— filter |10 1x3x3 90|10 1x3x3 90|10 8x3x3 720(10 1x3x3 90
£ act 10x26x26 80x26x26 80x26x26 80x26x26
© RP 10x26x26
pooll act 10x13x13 10x13x13 80x13x13 80x13x13
~ filter |20 10x3x3 1800|20 10x3x3 1 800|20 80x3x3 14 400(20 80x3x3 14 400
% act 20x11x11 160x11x11 160x11x11 160x11x11
© RP 20x11x11
pool2 act 20x6x6 20x6x6 160x6x6 160x6x6
- filter |40 20x3x3 7200|40 20x3x3  7200{40 160x3x3 57600[40 160x3x3 57 600
% act 40x6x6 320x6x6 320x6x6 320x6x6
© RP 40x6x6
pool3 act 40x3x3 40x3x3 320x3x3 320x3x3
- filter |80 40x3x3 28 800|80 40x3x3 28 800|80 320x3x3 23040080 320x3x3 230 400
g act 80x1x1 640x1x1 640x1x1 640x1x1
© RP 80x1x1 80x1x1
— wghts 80x1024 81920 80x1024 81920 80x1024 81920 640x1024 655 360
< nrons 1024 1024 1024 1024
~ wghts 1024x10 10240 1024x10 10240 1024x10 10240 1024x10 10240
< nrons 10 10 10 10
sum 1, 130 050 130 050 382 320 968 090

Table A.2: Exemplary calculation of number of learnable parameters 1, for some
CNN architectures. The abbreviations are as follows: dimension of activations (act), dimension
of weights (wghts), number of neurons (nrons).
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MNIST-rot36
model min error
test [%]
reference 58.20
RC_1 [20] 58.92
RC_2 [20] 58.20
RC_3 [20] 56.81
RC_4 [20] 58.05
RC_12 [20] 58.12
RC_123 [20] 56.85
RC_1234 [20] 57.21 mboxCIFAR-rot36
RP_1 [20] 28.17 CIFAR-10 CIFAR-100
RP_2 [20] 57.90 model . o
3 120 57 81 min error test [%]
EE_4 {20} 58'61 reference 67.55 83.65
RP_12 [20] 58.99 RP_1 [20] 66.91 83.40
RP_l 23 [20] 58'54 RP_2 [20] 66.72 82.53
- ' RP_ 3 [20] 67.23 83.02
RP_1234 [20] 48.24
ORN (ORPooLing) [213] 1259 RP_4 [20] 67.41 82.94
n .
e 00-1h9 oo Re_12[20] 65.90 82.23
RC_RF_Z 58‘72 RP_123 [20] 66.41 82.03
RC—RF—3 57'66 RP_1234 [20] 62.55 79.03
- = ' ORN (ORPooling) [213] 59.31 78.36
RC_RF_4 58.05
RP_RF_1 55.88 77.06
RC_RF_12 60.41
RP_RF_2 65.45 78.98
RC_RF_123 59.81
RC RE 1234 6143 RP_RF_3 67.37 81.80
RP_RF_l 19'85 RP_RF_4 67.41 82.94
- = ’ RP_RF_12 57.69 79.23
RP_RF_2 43.46
RP_RF_123 58.43 79.49
RP_RF_3 59.94
RP_RF_1234 58.62 80.25
RP_RF_4 58.61
RP_RF_12 24.00
RP_RF_123 2244 Table A.4: Results for CIFAR-10/100. Mod-
RP_RF_1234 23.71 els are trained on CIFAR-10/100, but evaluated on
RP_RF_1 MNIST 1, = 1 59.61  CIFAR-10/100-rot36.
RP_RF_1 MNIST n, =2 46.24
RP_RF_1 MNIST n, =4 16.59
RP_RF_1 MNIST n, =8 14.11
RP_RF_1 MNIST n, =12 12.84
RP_RF_1 MNIST n, =16 12.37
RP_RF_1 MNIST n, = 32 12.20

Table A.3: Results for MNIST. Models
are trained on MNIST, but evaluated on
MNIST-rot36.
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D2S: Densely Segmented
Supermarket Dataset

We provide the following supplementary material:

* Qualitative results of the instance segmentation models.
* Per-class results.
¢ The class tree.

¢ A video showing the quality of annotations and the variation of the dataset is
available at https://www.mvtec.com/company/research/datasets/mvtec-d2s.

B.1 Qualitative Results

Fig. B.1 shows qualitative instance segmentation results of MRCNN (Detectron [56]). The
model has been trained on different splits of the D25 dataset. Note that the model trained
on train+aug performs significantly better than the model trained only on train, especially
for objects with occlusion. All models struggle with textured background and reflections.

B.2 Per-Class Results

Table B.1 shows the per-class AP values for MRCNN (Detectron [56]), for all 60 classes
and all training splits. In general, the highest APs are achieved for classes with large
objects and no reflections, such as lettuce, salad_iceberg or oranges. The data augmentation
boosts particularly the worst-performing classes, such as banana_single, cucumber, zucchini
and all gepa_bio_und_fair_*-classes.

B.3 Class Tree

The class tree assigns superclasses to classes according to their appearance or packaging
in a hierarchical manner. It is visualized in Fig. B.2.
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ground truth rot0 light0 train train+aug

rot0 light0

tefled el el

Figure B.1: MRCNN (Detectron [56]) qualitative results. A collection of exemplary
results of MRCNN trained on different splits. Note that complex backgrounds often lead to false
detections. The object classes are color-coded.
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Figure B.2: Class Tree. Objects are sorted based mainly on their appearance and packaging
rather than on their content. For example, different kinds of coffee are close to each other since
they all have a textured, soft plastic packaging. But they are far from all sorts of tea, which is
packaged in cardboard.
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class train rot0 light0  rot0_light0 aug train+aug
adelholzener_alpenquelle_classic_075 40.6 16.4 28.2 9.4 43.1 44.8
adelholzener_alpenquelle_naturell_075 53.8 23.8 37.1 23.1 72.1 76.3
adelholzener_classic_bio_apfelschorle_02 57.7 12.1 56.7 4.7 65.8 759
adelholzener_classic_naturell_02 48.5 11.3 59.3 36.3 68.4 79.0
adelholzener_gourmet_mineralwasser_02 69.9 36.9 61.4 45.7 76.2 86.8
augustiner_lagerbraeu_hell_05 48.6 17.1 57.0 17.9 49.8 70.1
augustiner_weissbier_05 15.6 12.7 219 13.0 41.2 50.5
coca_cola_05 45.8 23.7 48.8 16.4 53.2 61.2
coca_cola_light_05 389 16.7 35.1 9.1 55.3 70.8
suntory_gokuri_limonade 67.1 51.6 67.2 54.0 59.4 83.0
tegernseer_hell_03 44.8 11.7 38.5 6.0 47.7 67.8
corny_nussvoll 53.6 45.1 49.2 55.3 93.0 96.6
corny_nussvoll_single 70.9 40.8 64.2 329 77.6 84.2
corny_schoko_banane 45.2 12.5 379 29.8 84.1 90.1
corny_schoko_banane_single 23.6 14.1 24.0 19.2 59.7 64.0
dr_oetker_vitalis_knuspermuesli_klassisch 489 28.7 24.8 24.6 83.4 91.0
koelln_muesli_fruechte 51.1 24.3 53.8 26.7 88.8 93.3
koelln_muesli_schoko 57.8 44 38.6 8.1 85.3 90.2
caona_kakaohaltiges_getraenkepulver 56.9 45.3 44.9 56.0 82.0 88.0
cocoba_fruehstueckskakao_mit_honig 51.0 43.0 44.9 36.4 76.1 86.7
cafe_wunderbar_espresso 39.3 12.8 445 37.1 83.0 88.2
douwe_egberts_professional_kaffee_gemahlen 45.8 38.2 42.2 38.7 71.5 75.1
gepa_bio_caffe_crema 40.4 315 415 41.9 819 82.1
gepa_italienischer_bio_espresso 59.3 30.9 52.5 19.6 61.9 65.5
apple_braeburn_bundle 59.8 56.8 60.7 66.2 82.3 91.7
apple_golden_delicious 78.2 72.8 66.4 73.0 76.1 91.3
apple_granny_smith 725 714 65.9 66.4 75.5 87.4
apple_roter_boskoop 79.4 712 76.6 79.8 78.1 94.1
avocado 73.0 60.6 76.2 74.2 84.2 93.4
banana_bundle 51.4 47.5 55.8 46.9 76.8 86.6
banana_single 27.4 18.0 28.6 20.6 55.9 579
clementine 54.6 57.5 58.4 59.8 79.7 83.0
clementine_single 59.5 65.0 60.4 59.9 81.2 89.7
grapes_green_sugraone_seedless 44.0 294 27.8 34.2 68.9 77.2
grapes_sweet_celebration_seedless 61.5 54.9 514 46.8 75.7 80.7
kiwi 45.5 60.0 55.6 54.0 68.9 88.7
orange_single 69.6 70.5 66.5 72.7 81.5 91.2
oranges 61.1 51.1 61.2 65.8 81.3 86.3
pear 56.4 40.7 74.8 70.5 76.5 85.1
pasta_reggia_elicoidali 43.1 233 48.2 38.8 88.5 90.5
pasta_reggia_fusilli 48.8 23.7 51.6 38.4 76.7 76.5
pasta_reggia_spaghetti 55.4 28.3 45.0 28.5 85.0 90.5
franken_tafelreiniger 48.2 33.4 39.8 34.1 52.8 67.7
pelikan_tintenpatrone_canon 30.5 25.6 27.2 32.1 69.1 75.8
ethiquable_gruener_tee_ceylon 52.3 35.9 48.1 18.6 77.8 86.4
gepa_bio_und_fair_fencheltee 19.3 5.0 14.7 10.9 50.2 55.9
gepa_bio_und_fair_kamillentee 32.7 17.9 233 18.4 64.4 71.1
gepa_bio_und_fair_kraeuterteemischung 27.0 10.1 17.8 9.4 58.1 72.6
gepa_bio_und_fair_pfefferminztee 37.5 52 24.5 7.9 69.3 77.2
gepa_bio_und_fair_rooibostee 47.3 29.1 45.0 21.9 70.4 77.3
kilimanjaro_tea_earl_grey 46.1 31.6 38.4 25.4 64.1 75.6
cucumber 29.9 239 33.0 27.6 714 77.6
carrot 54.1 445 42.8 445 62.7 72.1
feldsalat 49.5 33.2 40.5 34.8 774 84.0
lettuce 51.6 55.0 34.7 38.4 93.4 96.2
rispentomaten 45.0 394 45.2 52.3 71.9 78.0
roma_rispentomaten 38.8 33.7 375 40.2 71.6 73.7
rucola 38.9 15.8 41.0 12.8 71.7 76.1
salad_iceberg 55.7 53.4 529 66.8 77.9 86.4
zucchini 494 239 51.0 24.8 68.7 84.0

Table B.1: MRCNN (Detectron [56]) AP values per class. The AP values of the MRCNN
models trained on different training sets are calculated on the fest set. The mean AP is calculated
over all 60 classes. The highest class AP values are highlighted in bold.
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Data Generation for Few-Shot
Detection

This is the appendix for Chapter 7. In Tables C.1, C.2, and C.3 we show the influence
of augmenting a different amount of images and adding specific augmentations for
baseline, weakly, and weakly cleaned, respectively. The performance is given in terms of
AP percentage values. Abbreviations for augmentation types are as follows: neighboring
(NB), random background (RB), and reflections (RE). The models have been trained using
the same settings as in Section 7.4.

augm | augm | augm augm | augm | augm
Training Set | 2500 | 5000 | 10000 Training Set | 2500 | 5000 | 10000
train 483 | 483 | 483 train 85 | 85 | 85
train + augm | 77.0 | 77.8 | 78.4 train + augm | 62.8 | 62.2 | 65.0
+ NB 773 | 785 | 78.3 + NB 64.0 | 63.7 | 65.8
+RB 782 | 785 | 79.1 + RB 64.0 | 649 | 63.5
+ NB + RB 793 | 80.1 | 79.9 + NB + RB 64.0 | 66.8 | 65.3
Table C.1: Baseline results Table C.2: Weakly results.
augm | augm | augm

Training Set 2500 5000 10000

train 15.9 15.9 159

train + augm 64.8 61.9 63.0

+ NB 65.0 62.5 64.7

+RB 65.9 68.0 65.8

+RE 68.1 66.9 65.3

+ NB + RB 65.9 68.9 66.9

+ NB + RB + RE 68.4 68.5 66.9

Table C.3: Weakly cleaned results
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Oriented Boxes for Few-Shot

Instance Segmentation

D.1 Calculation of orientation

In this section, we show the calculation of a region’s orientation as used in Section 10.3
and provided by the HALCON operator orientation_region [143]. Consider a region R
consisting of n pixels with row coordinates r; and column coordinates ¢;, i = 1,...,n. We
denote the center of gravity by ¢ = (1o, co) (see HALCON operator elliptic_axis [143]):

S|
.M:

Il
—

(ro,c0) = (ri,¢i). (D.1)

Further, the second moments of R, M;; are given by:

My= Y (ro—r)(co—c). (D.2)
(rc)eR

We calculate the orientation ¢ of R by fitting an ellipse to the region that has the same
aspect ratio and orientation and get:

1
¢ = —EataI’IZ(ZMll,Moz — Mz()) (D.3)

An example where this method to extract the orientation has benefits is given in
Fig. D.1. To obtain the bounding box with orientation ¢ calculated as above, we rotate
the mask to be axis-aligned, get the axis-aligned bounding box, and rotate it back.

Figure D.1: Orientation of a region. Region R of a screw (black), smallest OBB (red), and
OBB with the region’s orientation (greern). It points from the screw’s head to its tail and is more
consistent over different screw instances.
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Amodal Instance Segmentation

The following is provided as supplementary material for Chapter 11:
* Description of training configuration.
e Qualitative Results COCOA.

¢ Qualitative Results D2S amodal.

E.1 Training Setup

For the training of ARCNN as well as ORCNN we used the Detectron [56] framework
built on caffe2! / caffe [85].

Batch size and image size. For all trainings, two NVIDIA GTX 1080 Ti GPUs were
used. On D2S amodal we used a batch size of one image per GPU, while on COCOA
and COCOA cls, two images per GPU were used in a batch. The batch size of regions
of interest (Rols) per image was set to 256. The maximum number of Rols per image
before the non-maximum suppression in the region proposal network was set to 1000 per
feature pyramid level. The images were scaled such that the shorter side of each image
was set to a maximum of 800 pixels while the longer side was not exceeding 1111 pixels.

Finetuning. Each training was using the weights from a COCO-pretrained model as
provided by Detectron. For the case of COCOA and D2S amodal, the final output layers
that are class-specific had to be initialized randomly since the number of classes and
their semantic meaning did not fit to the number of classes of COCO.

Solver settings. Training was performed for 10000 iterations with a base learning rate
of 0.0025 and a weight decay of 0.0001. The same warm-up period and settings as
described in the Mask R-CNN paper [70] were used for the learning rate. The learning
rate was multiplied by v = 0.1 at 6000 and 8000 iterations, respectively.

Thttps:/ / github.com/ caffe2 / caffe2
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E.2 Qualitative Results

In this section, qualitative results are shown on COCOA no stuff, COCOA cls, and
D2S amodal. ORCNN, a model that can predict amodal, invisible, and visible masks
simultaneously, is compared against ARCNN, which is only capable to predict amodal
masks.

E21 COCOA

Qualitative results for COCOA no stuff and COCOA cls are shown in Fig. E.1 and Fig. E.2,
respectively. Please note that the ground truth annotations are sometimes wrong or
incomplete. Hence, the models sometimes find annotations correctly that have not been
annotated in the ground truth. In the case of COCOA cls, missing annotations are also
generated by our merging strategy. We do not show qualitative results for COCOA
because the ground truth and results for stuff regions make it very difficult to visualize
and interpret the results.

Generally, we observe that the predicted amodal regions are slightly better for ARCNN
compared to ORCNN. This is also confirmed by the quantitative evaluation in the chapter.
However, the occlusion predictions of ORCNN are often very promising and better than
the relatively low APy values indicate.

E.2.2 D2S

For D2S amodal, we show qualitative examples for the class-agnostic mask versions of
ARCNN and ORCNN in Fig. E.3. It is difficult to see a qualitative difference between the
amodal masks of ARCNN and ORCNN. The predicted invisible masks of ORCNN are
often at the correct location but their IoU with the ground truth invisible masks is rather
low. This explains the low APy values.
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E.2 QUALITATIVE RESULTS

original image ground truth

Figure E.1: COCOA no stuff results. (From left to right) Input image, ground truth annotations,
results of ARCNN, results of ORCNN. Note that for all images, the minimal score of results was

set to 0.8. The ordering of the result overlays might be different to the ordering of the ground
truth annotation overlays.

271



CHAPTER E: AMODAL INSTANCE SEGMENTATION

Figure E.2: COCOA cls results. (From left to right) Input image, ground truth annotations,
results of ARCNN, results of ORCNN. Note that for all images, the minimal score of results was
set to 0.5. The ordering of the result overlays might be different to the ordering of the ground
truth annotation overlays.
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original image ground truth

Figure E.3: D2S amodal results. (From left to right) Input image, ground truth annotations,
results of ARCNN, results of ORCNN. Note that for all images, the minimal score of results was
set to 0.8. The ordering of the result overlays might be different to the ordering of the ground
truth annotation overlays.
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