
 

 

 
Dissertation 

 
 

 

 

Homo- and Heterobimetallic Complexes of the 
PDIxCy ligand system;  

Synthesis, Characterization and Reactivity 
 

 

 

 

 

Andreas Joseph Hofmann 

 

  



 

Technische Universität München 

Fachgebiet Bioanorganische Chemie 

 

Homo- and Heterobimetallic Complexes of the 
PDIxCy ligand system;  

Synthesis, Characterization and Reactivity 
 

Andreas Joseph Hofmann 

 

Vollständiger Abdruck der von der Fakultät Chemie der Technischen Universität 

München zur Erlangung des akademischen Grades eines 

 

Doktors der Naturwissenschaften (Dr. rer. nat.)  

 

genehmigten Dissertation. 

Vorsitzende(r):    Prof. Dr. Roland A. Fischer 

Prüfer der Dissertation:  1. Prof. Dr. Corinna R. Hess 

2. Hon.-Prof. Dr. Richard W. Fischer 

 

Die Dissertation wurde am 15.02.2021 bei der Technischen Universität München 

eingereicht und durch die Fakultät für Chemie am 30.03.2021 angenommen. 



 

  



 

Die vorliegende Arbeit wurde im Fachgebiet Bioanorganische Chemie der 

Technischen Universität München in der Zeit von Juni 2017 bis Februar 2021 

angefertigt.  

 

 

 

 

 

Teile dieser Arbeit wurden bereits veröffentlicht: 

Andreas J. Hofmann, Christian Jandl, Corinna R. Hess “Structural Differences and 

Redox Properties of Unsymmetric Diiron PDIxCy Complexes” European Journal of 

Inorganic Chemistry 2020, 2020, 499-505. 

 

Andreas J. Hofmann, Lukas Niederegger, Corinna R. Hess “Neighbouring effects on 

catalytic epoxidation by Fe-cyclam in M2-PDIxCy complexes” Dalton Transactions 

2020, 49, 17642-17648. 

 



 

  



 

 

Mein besonderer Dank gilt meiner Doktormutter 

 

Frau Prof. Dr. Corinna R. Hess 

 

für die Aufnahme in ihren Arbeitskreis und die Möglichkeit, an dieser interessanten 

Themenstellung zu arbeiten. Außerdem möchte ich Frau Prof. Hess für die 

wissenschaftliche Betreuung und das mir entgegengebrachte Vertrauen danken. 

 



vii 
 

1.1 Danksagung 

Mein Dank gilt:  

Lukas Niederegger, der mich in der ganzen Zeit meiner Promotion unterstützt hat, für 

seine hilfreichen Tipps und sein großes Engagement, das er für jedes Thema 

aufbrachte. Seine Freude an der Forschung bereicherte den ganzen Arbeitskreis.  

Dr. Ruth Haas, welche mich in den ersten Monaten unter ihre Fittiche nahm, für ihre 

Vorarbeit in diesem Thema und für zahlreiche Tipps auch nach Verlassen unseres 

Arbeitskreises.  

Allen Mitarbeitern des AK Hess, mit denen ich stets die Mittagspause genoss und die 

meinen Gesang im Labor ertragen mussten. Vielen Dank für die gute Zusammenarbeit. 

Stuart Boyce und Ceren Tok, welche stets bemüht waren mein Englisch zu verbessern.  

Meinen Bacheloranten, Praktikanten und Masteranten, Ümit, Matthias, Tjark, 

Mykhaylo, Kara und Julian, welche sich erfolgreich in dieses schwierige Thema 

eingearbeitet haben und gute Arbeit leisteten.  

Dr. Christian Jandl und Dr. Alexander Pöthig, für die Unterweisungen in der 

Kristallographie und das Beantworten meiner Fragen diesbezüglich. 

Allen Mitarbeitern der anderen Lehrstühle, sowie den Technikern der TUM, welche zu 

zahlreich wären, um sie alle zu nennen, ohne die Gefahr jemanden zu vergessen. 

Vielen Dank für die Einweisungen, Messungen und Unterstützung in den letzten 

Jahren.   



viii 
 

Deutscher Abstract 

Diese Arbeit handelt über das Ligandsystem PDIxCy (PDI: Pyridin diimin, x: linker, Cy: 

Cyclam) und seine homo- und heterobimetallischen Komplexe. Das zuvor entworfene 

PDIpCy (p: Propyl) wurde durch Verkürzen der Linkerlänge zum PDIeCy (e: Ethyl) 

modifiziert. Mehrere PDIxCy Komplexe wurden synthetisiert und auf ihre 

spektroskopischen, strukturellen und redoxaktiven Eigenschaften untersucht. Des 

Weiteren wurden sie auf ihre katalytische Aktivität in Oxidationsreaktionen getestet. 

Auswirkungen durch die modifizierte Linkerlänge auf die Komplexe wurden anhand der 

bimetallischen Eisenkomplexe beider Liganden untersucht. Hierbei zeigten die PDIxCy 

Komplexe simultane Resultate in ihren spektroskopischen und redoxaktiven 

Eigenschaften. Beide Systeme zeigten Temperaturabhängigkeit sowohl in ihren 

elektronischen Spektren, als auch in ihrer magnetischen Suszeptibilität.  

Strukturelle Unterschiede durch den verkürzten Linker, wie die Ausbildung eines 

verbrückenden Triflates zwischen den Eisenatomen des PDIeCy Komplexes und 

einem verkürzten Metall−Metall Abstand von 5.6 Å anstatt 8.0 Å, wurden mittels 

Kristallstrukturen gezeigt. Anhand 19F‐NMR konnte die Existenz der verbrückten 

Triflate auch in nicht-koordinierenden Lösemittel bewiesen werden.  

Des Weiteren konnte die bereits für reduzierte PDIpCy Komplexe bewiesene 

Ladungstrennung innerhalb des Komplexes bestätigt werden, jedoch erstmals an 

einem zweifach reduzierten Komplex. Hierbei ergab die chemisch oder 

elektrochemisch zweifach reduzierte Spezies des dinuklearen Eisen PDIeCy 

Komplexes, einen zweivalenten Komplex mit einem formalen Fe0 im PDI-Teil und 

einem Fe2+ in der Cy-Seite. 
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Im zweiten Teil dieser Arbeit wurden weitere homo- und heterobimetallische Komplexe 

des PDIeCy Liganden synthetisiert. Strukturelle Untersuchungen verifizierten die 

Ausbildung der Brückentriflate unter Verwendung des kürzeren Linkers. Auch konnte 

für heterobimetallische Komplexe eine Methode zur gezielten Positionierung der 

unterschiedlichen Metalle in die jeweiligen Bindungsstellen des Liganden entwickelt 

werden. Mittels selektiver Metallierung konnten so gezielt die Stereoisomeren der 

Eisen-Zink PDIeCy Komplexe synthetisiert werden. Die unterschiedlichen 

Positionierungen der Metalle äußerten sich in ihren spektroskopischen Eigenschaften, 

wie auch in der katalytischen Aktivität für die Epoxidation von Olefinen. So wurde 

gezeigt, dass nur Komplexe mit einem im Cylam gebundenen Eisenatom eine 

katalytische Aktivität aufweisen. Als aktive Spezies wird ein Fe(IV)−oxo Cylam 

vermutet, welches durch Zugabe von Wasserstoffperoxid zu den 

[ZnPDIFeCy(PDIeCy)(OTf)4] bei -80 °C beobachtet wurde. Der Einfluss durch das zweite, 

in dem PDI gebundene Metall konnte für α,β-ungesättigte Ketone nachgewiesen 

werden. So wurden unter gleichen Bedingungen mit den bimetallischen PDIxCy 

Komplexen bessere Umsätze erzielt als mit dem mononuklearen Eisen Cyclam 

Komplex. Aufgrund nur geringer Abweichungen zwischen dem mononuklearen und 

der dinuklearen Komplexe in ihrer Aktivität für Olefinoxidation in Abwesenheit einer 

elektronenziehenden Carboxyl-Gruppe am Olefin postulieren wir einen 

aktivitätssteigernden Einfluss der PDI-Seite durch Aktivierung des Substrates in 

räumlicher Nähe zur aktiven Eisen Cyclam Seite.  
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English Abstract  

This work focuses on the ligand system PDIxCy (PDI: pyridine diimine, x: linker, Cy: 

cyclam) and its homo- and heterobimetallic complexes. The previously designed 

PDIpCy (p: propyl) was modified by shortening the linker length to the PDIeCy (e: ethyl). 

Complexes from both, PDIpCy and PDIeCy were synthesized and their spectroscopic, 

structural and redox properties, such as their catalytic activity in oxidation reactions 

were characterized. 

For the investigation of how the modified linker length affects the system the two 

homobimetallic iron complexes of both ligands were compared to each other. Similar 

results were observed in both cases for their spectroscopic and redox properties. Both 

complexes exhibit temperature dependency in their electronic spectra and magnetic 

susceptibility.  

Differences between the complexes were observed in their molecular structure in the 

form of a bridging µ-triflate between the metal ions, which was only present in the 

PDIeCy complex. The ethyl linker further causes a smaller metal-to-metal distance of 

5.6 Å compared to 8.0 Å using the propyl linker. Based on 19F‐NMR it was verified that 

the µ-triflate also persists in non-coordinating solvents.  

Similar to the PDIpCy complexes, charge separated species were generated with 

complexes using the PDIeCy ligand. The dinuclear PDIeCy complex was two-electron 

reduced by chemical and electrochemical methods. The electronic spectra indicated 

that reduction occurred at the PDI site. Thus, the reduced complex contains a formal 

PDI-Fe0 beside an Fe2+ in the cyclam site. 

For the second part of this work other homo- and heterobimetallic complexes were 

synthesized with the PDIeCy ligand. The series demonstrated that the bridging µ-
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triflate is a typical structural feature of PDIeCy complexes. The selective positioning of 

metals into the binding sites of the PDIeCy could be achieved. Controlled selective 

metalation enables the synthesis of the respective stereoisomers of iron-zinc 

complexes. Variation of the metal positions led to differences in their spectroscopic 

behavior and in the catalytic activity with respect to olefin epoxidation. Herein, we 

demonstrate that only complexes containing iron in the cyclam site possess catalytic 

activity towards epoxidation. We propose an iron(IV)-oxo cyclam as active species, 

which we obtained in the treatment of [ZnPDIFeCy(PDIeCy)(OTf)4] with hydrogen 

peroxide at -80 °C. An influence by the PDI bound metal was observed for the 

epoxidation of α,β-unsaturated ketones. Our dinuclear iron complexes possess a 

higher conversion of enones to epoxides than the monometallic iron cyclam complex 

under the same conditions.  

Because of the similar results obtained in the reactivity of mono- and dinuclear 

complexes toward olefins without the electron deficient carboxyl group, and the lack of 

activity for complexes with a zinc cyclam, we propose that the enhanced reactivity 

toward enones is caused by the PDI-site, which activates the enones in close proximity 

of the active iron. 
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1 INTRODUCTION 

Life, in even its simplest form, has been estimated to have originated 3.5 billion years 

ago.1 Since then, all species have appeared to follow, to a certain degree, a path of 

evolution supported by the concept of natural selection. This path, guided by nature, 

has provided the required chemically and biologically optimized materials.2 Our 

understanding of the first step, which connects biology with the synthetic chemistry, 

can be traced to 200 years ago. Until 1820 the theory of vis vitalis (lat. vital force) was 

common, postulating that organic compounds could not be produced without this force. 

In 1828 Friedrich Wöhler was able to produce urea by treating silver cyanate with 

ammonium chloride.3 This successful synthesis of urea was regarded as the first 

organic compound artificially produced from inorganic starting materials, without the 

involvement of living organisms. This was evidence enough to discredit the theory that 

chemicals of living organisms are fundamentally different from those of inanimate 

matter.3  

This discovery is widely regarded as the birth of modern biochemistry. Five years later 

Payen and Persoz isolated the first enzyme, called diastase, and went on to formulate 

some basic principles of enzyme action.4 However, initial insight into the mechanisms 

of such complex systems was only acquired in 1894 when Emil Fischer introduced the 

lock-key-principle.5 As interest in understanding the mechanistic pathways of enzymes 

grew, so did that in mimicking these complex systems, spawning the field of 

 

Scheme 1 Synthesis of urea from inorganic starting materials, without the involvement of living 

organism.3 
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biomimicry.6-12 Traditionally, biomimicry concerns novel structural and functional 

breakthrough technologies that are inspired by nature. One example is given by the 

selective oxidation of organic molecules. This reaction is an essential step of many 

biological processes and further is important for industrial processes.13-14 Epoxides 

represent a particularly useful class of intermediates in this field, since they are 

valuable for the synthesis of fine chemicals and pharmaceuticals due to the multiplicity 

of modifications they can undergo (Figure 1).15-20  

 

Figure 1  Examples of products that can be derived from epoxides.18 

 

Therefore, oxygen activating enzymes were studied to understand their mechanism 

and to likewise develop synthetic complexes with high selectivity and efficiency in 

catalysis.  
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1.1 Enzymes for oxygen activation 

The oxygen activation mechanisms for hydrocarbon oxidations by metalloenzymes 

have fascinated chemists and biochemists since Mason and Hayaishi´s independently 

published papers in the Journal of the American Chemical Society in 1955, which 

established the important role O2 plays in oxidative metabolism.21-22 The most 

commonly found metal at the active site of metalloenzymes that participate in metabolic 

O2 activation and oxygenation reactions is iron, because of its high abundance, its 

inherent electronic properties and accessible redox potentials.23-24 

 

Figure 2 Abundance of elements in the geosphere.25 

 

The most extensively studied oxygen-activating iron enzymes are cytochromes P450, 

which play a key role in oxidative transformations in a variety of organisms and 

constitute powerful catalysts in the oxidation of several substrates including alkenes, 

alkanes or aromatic compounds with molecular oxygen.26-30 Another well-studied 

enzyme is the horseradish peroxidase (HRP), which catalyze a wide variety of organic 

and inorganic compounds utilizes hydrogen peroxide.31 Similar to P450, HRP is a 

heme enzyme, characterized by the presence of an iron ion coordinated to a porphyrin 

or a closely related system which in turn acts as a tetradentate ligand, with one or two 



4 
 

additional axial ligands.32 In contrast to heme sites where the porphyrin macrocycle 

leaves only one axial position for oxygen activation, the non-heme sites have additional, 

exchangeable positions that can also allow the possibility of substrate binding to the 

iron center.33 Furthermore, other coordination modes for oxygen activation are 

possible.10 

 

Figure 3 Representative structures for heme and non-heme active sites. Left: cytochrome 

P450 (heme)26, 34 Right: methane monooxygenases (non-heme)35 

 

Despite the size and mechanistic variety of mononuclear non-heme iron enzymes, the 

majority presents a common structural arrangement. There the iron center is 

octahedral coordinated by two histidines (His) and a carboxyl group, forming the 

characteristic 2-His/1-Carboxylate facial triad.33 Ligands in non-heme enzymes, such 

as histidine, carboxylate and H2O are also much less covalently ligated, with more 

limited π-interactions with the iron compared to porphyrin, which can greatly modify 

the electronic structure of the active site and, hence, its activation of oxygen.36 

Typically, these enzymes contain mono- or binuclear iron sites and catalyze a variety 

of oxidation reactions including  hydrogen atom abstraction (HAA) for hydroxylation, 

halogenation, desaturation, peroxidation, epoxidations, ring closure, electrophilic 

aromatic substitution for mono or dioxygenation, or even phosphate-bond hydrolysis.9, 

37-46 
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Rieske oxygenases are examples for mononuclear non-heme enzyme. They catalyze 

the cis-dihydroxylation of arenes to cis-dihydrodiol products.46 In the last decade, 

Rieske oxygenases have also been shown to play important roles in natural product 

biosynthesis by catalyzing oxidative carbocyclisation, N-oxygenation, C-hydroxylation 

and C–C desaturation.46 Another example for a mononuclear non-heme iron enzyme 

is lipoxygenase, which catalyzes the addition of oxygen to polyunsaturated fatty acids 

to form hydroperoxides.47 Lipoxygenases have food-related applications in bread 

making and aroma production.48  

As mentioned before non-heme enzymes can also contain binuclear iron sites. 

Commonly they feature histidine and carboxylate as bridging ligands.41, 49 Enzymes, 

such as soluble methane monooxygenase (sMMO)9, 38-39, 45, alkene monooxygenase 

(AMO)40, aldehyde deformylating oxygenase (ADO)41 and toluene/o-xylene 

monooxygenase (ToMO)42 are examples of non-heme dinuclear iron moieties in 

biology. They are involved in numerous metabolic functions but also catalyze a variety 

of chemical reactions, which are relevant for industry. Table 1 shows heme and non-

heme mono- and binuclear iron enzymes with their reactions and proposed biological 

functions. In particular, the methane monooxygenases (MMO), the most studied 

dinuclear enzymes, are responsible for both the methane metabolism and carbon 

fixation in methanotrophic bacteria.35 The diiron center catalyzes the conversion of 

methane to methanol using dioxygen as oxidant.9, 38-39, 45 Its ability to oxidize a wide 

range of hydrocarbons including C1 − C8 n-alkanes, alkenes and molecules such as 

benzene, styrene, naphthalene, ethylbenzene, and cyclohexane,50-55 makes it 

attractive for synthetic applications.54 Methanotrophic bacteria using the unique 

isoenzymes of MMO (particulate methane monooxygenase (pMMO); sMMO, soluble 

methane monooxygenase (sMMO)), can produce biomass in the form of formaldehyde 
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or formate by utilizing C1 sources more reduced than formic acid as sources of carbon 

and energy.56-59 In this regard MMOs have attracted intense attention in recent years 

as potential targets for new gas-to-liquid methane bioconversion processes (see 

Figure 4).54 

 

Figure 4  Simplified pathway for the oxidation of methane and assimilation of formaldehyde. 

Major enzymes are presented in green. Abbreviations: PQQ, pyrroloquinoline quinone; MDH, 

methanol dehydrogenase; H4MPTP, methylene tetrahydromethanopterin pathway; FDH, formate 

dehydrogenase. Reprint with permission.54 

 

Non-heme diiron enzymes are also of industrial interest due to their involvement in 

important metabolic pathways. For example, AMO constitutes the first step in alkene 

metabolism through which it catalyzes the epoxidation of aliphatic alkenes. AMO is 

also known to catalyze the oxidation of C3 – C4 chain length 1- and 2-alkenes, styrenes 

and even chloroalkenes.60-61 The tendency to form predominantly R enantiomers has 

attracted increasing attention in recent years, since optically active epoxides are of 

interest in the development of pharmaceutical compounds.62-63 Therefore synthetic 

complexes bearing chiral backbones were investigated to enhance the 

enantioselectivity.64-68  
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1.2 Biomimicking catalyst for epoxidation 

Since epoxides can undergo a variety of modifications, they are effective intermediates 

for the synthesis of fine chemicals and pharmaceuticals.15-20, 62-63 Methodologies for 

selective oxidation of alkane C−H bonds are numerous because they enable novel 

straightforward synthetic strategies.69-71 This, and the rich chemistry of the iron 

oxidases and oxygenases, inspired the development of hydrocarbon catalysts in the 

last decades.23, 72-77 The aim is to understand the high activities and selectivities of 

enzymes and to be able to develop environmentally friendly and efficient systems using 

this knowledge. Key features such as mild activation conditions, found in biological 

systems are also a target for synthetic catalysts, because less decomposition occurs 

at lower temperature. Regarding to industrial application a lot of money can be saved 

through lower energy consumption. Also the choice of oxidant plays a key role, since 

oxygen and hydrogen peroxide generate no environmentally unfriendly side products 

and are easier to produce than alkyl peroxides.78 Therefore, this exposes a key feature 

for the development of industrial catalysts regarding green chemistry and low cost 

production. Even organometallic compounds, containing palladium, rhodium, iridium 

and ruthenium are well established catalysts for a broad spectrum of reactions, the 

precious metals bear several disadvantages like toxicity and rareness leading to high 

costs, which make them unattractive for large scale applications in industry.24, 79 The 

low cost of iron and its non-toxicity makes iron not only relevant for biology but also for 

biomimicry catalysts.24, 80 As an inexpensive and relatively nontoxic metal, iron meets 

the economic and environment requirements the community requests.24 

The first application of iron in oxidation chemistry has already been known for more 

than a century. The oxidation of tartaric acid in the presence of iron salts was described 

by Henry Fenton.81 Decades later Haber and Weiss were able to identify the hydroxyl 
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radical as the actual oxidant for Fenton-type reactions, generated by the reaction of 

peroxide with iron cations.82  

 

Scheme 2 Fenton-type reaction of hydrogen peroxide in the presence of iron cations.82 

 

Nowadays this kind of oxidation process finds applications in water cleaning among 

other purposes.83 Because Fenton-type radical reactions result in a drastic loss in 

selectivity, researchers aim to develop catalyst that can suppress such processes and 

perform selective oxidation reactions.23, 84 

The first biomimetic iron catalyst exhibiting selective oxidation was published in 1979 

by Groves et al., mimicking the enzyme P450.85 The heme iron catalyst was able to 

transfer an oxygen from to cyclohexene but with a low selectivity towards the epoxide. 

Only 55% of the consumed PhIO was used to generate the epoxide and 15% led to 

formation of cyclohexenol. Higher selectivities were obtained using stilbene where a 

conversion of even 82% to the respective epoxide was achieved. Metalloporphyrins 

without protecting steric groups was discarded due to their very fast oxidative 

degradation.86 Modification of heme iron catalysts was carried out on the meso position 

of the porphyrin sites. Functionalization of the meso position with bulky groups 

hindered the self-oxidation of the highly reactive position. The use of steric groups also 

inhibits the formation of the catalytically inactive oxo-bridged dimer.87 Further 

modifications were made to influence the electronic properties of the porphyrin by 
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introducing electron withdrawing groups, such as halides87-89 or nitro groups,90 to the 

ligand.  

 

Figure 5 Stereo-electronic influence on the catalytic reaction progression via porphyrin 

modification on its meso position.89  

 

Because non-heme complexes reveal more possibilities for their ligand structure than 

heme and related systems, the field of non-heme iron complexes is considerably 

broader. Furthermore, the inherent modular nature of non-heme iron complexes 

enables a simple manipulation of their structure, enabling their fine-tuning for different 

oxidation reactions. In synthetic metal complexes, the active oxygen-transferring 

intermediates can be more stable than in their enzymatic prototypes, which enables 

more detailed insight to the reactivity of active species and clarification regarding their 

role in catalysis.91 Unravelling the key features of the mechanisms of iron oxygenases 

due to synthetic iron systems advances the synthetic strategy for biomimicking catalyst 

itself. Substantial improvements with respect to the breadth of activities, yields and 

selectivities of bioinspired mononuclear non-heme complexes were made, 

demonstrating the potential for oxidative catalysis at a single metal center.11, 23, 73-77 In 

1991 Nam and coworkers reported the catalytic activity of olefin epoxidation by iron 

complexes with the tetratendate ligand cyclam (cyclam = 1,4,8,11-

tetraazacyclotetradecane) and related ligands.92 Their work showcased high turnover 
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numbers (TON; up to 20), high percent yields based on hydrogen peroxide, stability 

against water, stereospecifity and only small amounts of side products.  

 

Figure 6 Ligands for iron complexes bearing firstly catalytic activities towards olefin 

epoxidation with high TONs, reported by Nam et al.92 

 

The highest TON was achieved by complexes of cyclam itself, while the complexes 

with the ligand 2 - 4 only achieved TONs of 10, 5 and 2 respectively. With ligands 5 

and 6 no epoxidation was observed, suggesting a participation of N−H in the catalysis 

of iron cyclam. Nowadays, iron complexes with tetratendate ligands are still regarded 

as valuable functional models of natural non-heme oxygenases. They form a large 

group of efficient and selective catalysts, mediating highly challenging reactions such 

as stereospecific hydroxylation and (cis)- dihydroxylation and the epoxidation of olefins 

with hydrogen peroxide.23, 91, 93-99  

The most relevant epoxidation systems regarding applicability are simple systems that 

utilize pyridine-2,6-dicarboxylic acid (H2pydic).100-103 A variety of olefins could be 

epoxidised by hydrogen peroxide and complex generated in situ from H2pydic and 

different amines (pyrrolidine, benzylamines, imidazoles) or formamidines with 

FeCl3·6H2O, under mild conditions.100-103 Further studies showed that complexes 

achieved by the combination of chiral diamines with H2pydic and FeCl3·6H2O are able 

to catalyze asymmetric epoxidation. The use of the respective diamine enantiomer 

results in the opposite asymmetric epoxides.104-105 
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Asymmetric epoxidation of olefins is a very interesting reaction in synthetic organic 

chemistry, because chiral epoxides can be easily converted to further chiral products 

and building blocks.15-20 Therefore, new iron complexes bearing chiral backbones were 

investigated to enhance the enantioselectivity.62, 67-68 Sun et al. discovered that the 

enantioselective induction of their complexes can be enhance by using carboxylic 

acids. Bulkier acids provide higher enantioselectivities for diverse substrates. Although 

they achieve high conversion, the substrate scope for high enantioselectivity is limited 

to chalcone and its derivatives.67 

A non-heme iron complex that catalyzes highly enantioselective epoxidation of a 

broader range of olefins is described by Costas et al., who investigated the impact of 

varying the electronic properties of the catalyst on their catalytic performance. 

Electronic effects, induced to the iron center by the ligand, in combination with catalytic 

amounts of carboxylic acids promoting efficient O−O cleavage and generate epoxides 

with high chemo- and enantioselectivity in high yields.106 The more electron-rich 

catalysts providing the better yields and enantioselectivities. For instance, complex 

Me2N1 achieved 87% yield with 62% enantiomer excess (ee) for the epoxidation of 

cis-β-methylstyrene, while CO2Et1 only achieved yields of 31% with 21% ee. This 

 

Figure 7 Non-heme iron complexes utilize by Costas et al. for investigation of electronic effects 

towards catalytic performance regarding to epoxidation.106 
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tendency was observed for several classes of substrates, such as electron-deficient 

cyclohexenone, chromene and tetralone derivatives. 

The practical use is only one of the major targets of biomimicry. The understanding of 

the mechanism and the associated characterization of intermediates are also essential. 

The insight gained in this way can in turn be used for the further development of new 

systems.  

This work investigates the intramolecular communication of two metals in a 

biomimicking complex. The well-studied Cy site was combined with a PDI unit. This 

work summarizes advances in biomimicry and reveals the role of cyclam. The following 

section provides an overview of iron-oxygen intermediates, their characterization, their 

catalytic activities, and strategies for improving these in bio-inspired compounds with 

a focus on the role of cyclam complexes.   
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1.3 Iron oxygen intermediates  

Bioinspired systems are indispensable in the understanding of the mechanism of 

enzymes. The high reactivity of enzymes goes hand in hand with the short life of their 

active intermediates. This impedes the isolation and characterization of the active 

species in the original form of enzymes. This problem motivates one major target of 

biomimicry: the investigation of the active site of the enzymes by synthesizing their 

simplified replica with similar structural properties, but without their protein part.107 

Research on the structural properties and reactivities of oxidase and oxygenase 

replicas has yielded a large extended understanding of iron oxygen intermediates. 

Stabilization by macrocyclic and acyclic ligands, has resulted in the isolation and 

characterization of iron oxygen species, such as metal−superoxo, 

−peroxo,−hydroperoxo, and −oxo.10, 89, 93, 108-110 The different binding modes of oxygen 

are a main factor in determining the reactivity of the intermediates.10 

The reduced size of synthetic bioinspired compounds, enables more accessible 

strategies to isolate and spectroscopically study the active intermediates. Furthermore, 

steric and electronic modifications of the ligand environments are more simplified and 

lead to insights into the catalytic mechanisms and structural properties of biological 

systems.111 Also biomimicry could be employed for the development of better catalysts 

with potential applications due their simplified modification.112   

 

Figure 8 Different binding modes observed for iron-oxygen intermediates.  
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1.3.1 Iron−superoxo 

Compared to the high valent iron oxygen intermediates, lower valent superoxo 

complexes are only modestly studied, with few reports of synthetic non-heme iron 

superoxo compounds. So was the structure of a non-heme superoxo not reported until 

thirty years after the structure of its heme counterpart.113-114 The structural and 

spectroscopic characterization of the iron(III)−superoxo in heme containing proteins 

and synthetic iron porphyrins revealed that these species bind the O2 unit in an end-

on manner.113, 115-116 It is assumed that the reduced accessible surface of iron due to 

the planar heme group caused the end-on binding of oxygen.117 Superoxo species of 

hemes is rarely proposed as a reactive species in oxygenase reactions unless the 

substrate is highly activated as, for example, in the final step of the nitric oxide synthase 

cycle.118 Dey et al. report the first synthetic heme iron−superoxo, which is able to 

perform hydrogen atom transfer (HAT) in 2019.119 It is generally thought that the heme 

superoxo is first converted to a peroxo, hydroperoxo, or high-valent oxo intermediate.  

 

Figure 9 Right: End-on superoxo of an iron porphyrin complex.113 Left: Side-on superoxo of 

the non-heme iron complex [FeIII(O2)(TAML)]2-.114 

 

In contrast to heme, the crystal structure of the non-heme iron complex proposed to 

be in a side-on mode such as published by Nam et al.114 The presented 

[FeIII(O2)(TAML)]2- showed reactivity in both electrophilic as well as nucleophilic 

reactions. Also the superoxo iron complexes published by Lee et al. such as that from 
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Hikichi et al. show electrophilic reactions.120-121 In general, iron−superoxo complexes 

undergo electrophilic reactions such as C−H and O−H bond activation.122-123 

Metal−superoxo species can participate directly in substrate oxidation reactions, or can 

be one-electron reduced by either an exogenous reductant or a second reduced metal 

center to form a metal−peroxo.  
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1.3.2 Iron−peroxo 

Iron−peroxo complexes are commonly cited as the key intermediates in heme and non-

heme iron enzyme catalyzed oxidation reactions, carrying out a variety of nucleophilic 

and electrophilic reactions.116, 124-125 Iron−peroxo species act as the active oxidant in 

many cytochromes P450.126-128 Mechanistic studies of the reactions of enzymes and 

biomimicking iron−peroxo porphyrin compounds reveal the nucleophilic character for 

this iron−oxygen species in heme compounds.116, 129 Iron−peroxo species was also 

proposed to be the active oxidant in non-heme enzymes, such as in the catalysis of 

aromatic cis-dihydroxylation by Rieske dioxygenase.124, 130 The first crystal structure of 

a synthetic FeIII(O2)2- was reported by Nam et al. with a non-heme iron system.131 The 

iron complex with the TMC (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) 

ligand bound the oxygen in a side-on mode and shows sluggish activity towards 

nucleophilic deformylation. The lower activity compared to its corresponding 

hydroperoxo complex is caused by the binding of the oxygen, since the end-on mode 

is more reactive.129, 132 In a further report Nam et al. were able to tune the reactivity in 

electron-transfer, electrophilic, and nucleophilic reactions of [(TMC)FeIII(O2)]+ by 

binding of redox-inactive metal ions (Mn+) in a side-on/side-on manner to the oxygen.133 

The Lewis acidity of the redox-inactive metal ions affect the reactivities of the 

iron(III)−peroxo complex in electron-transfer, electrophilic, and nucleophilic reactions.  
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1.3.3 Iron−hydroperoxo 

Protonation the iron(III)−peroxo species could be generated into iron(III)−hydroperoxo 

species.16 Another formation of iron(III)−hydroperoxo is generated from an 

iron(III)−superoxo species by HAA from substrates.10, 114, 134 The reaction of iron(II)/(III) 

with hydrogen peroxide as oxidant directly forms iron−hydroperoxo.135-136  

While there is a general consensus that heme iron(III)−superoxo systems are sluggish 

oxidants,137-138 debate still exists as to the “typical” reactivity of these compounds.107 It 

has been shown that, for example, while synthetic low-spin Fe(III)−OOH complexes 

behave as sluggish oxidants for sulfides, olefins, and aldehydes,139 a high-spin 

[(TMC)FeIII(O2H)]2+ compound showed comparably good reactivity in nucleophilic and 

electrophilic oxidative reactions.131  

 

Figure 10 Formation of iron−hydroperoxo from iron−superoxide via protonation and vice versa 

utilizing base.131  

 

Another debate of iron(III)−hydroperoxides is the heterolysis versus homolysis 

cleavage of the O−O bond, leading to the more reactive iron−oxo. Despite extensive 

investigation of the O−O bond cleavage mechanisms in heme systems,89, 124, 140-141 

such mechanistic studies in non-heme iron(III)−hydroperoxo species have been 

conducted only recently.  
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1.3.4 Iron−oxo 

High-valent oxoiron species have been proposed, and identified, as key reactive 

intermediates in enzymes, which combine the activation of dioxygen with the oxidation 

of substrates.108 The reactions range from hydroxylation, halogenation, cyclization, 

epoxidation and desaturation to vital processes like respiration, catabolism and 

angiogenesis.12, 36-37, 142-144 Iron−oxo species have been trapped in enzymes with heme 

and non-heme monometallic and bimetallic active sites. In 1986 the first evidence of 

high-valent oxoiron species involved in enzymatic activity was reported for the heme 

peroxidases.145-146  

 

Figure 11 Epoxidation mechanism of cytochrome P450 enzymes using O2 and H2O2 as 

oxidant.26, 34, 147 

 

Nowadays crystal structures of the active sites of various heme-enzymes are known, 

including horseradish peroxidase, cytochrome P450 and catalase.148 The detected 

iron−oxo intermediates consist of an iron(IV) center, with an intermediate spin S = 1, 

coupled to a cationic radical, either located in the porphyrin ring or in the amino acid 
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residue near the heme ring.26, 34, 148 For example, for Cytochrome P450 the active 

species is to an FeIV=O porphyrin radical [(por•)FeIV=O]+ (Figure 11, compound 1).26, 

34, 147, 149-150 

When the iron(IV) center is coupled ferromagnetically or antiferromagnetically to the 

radical, the overall spin is S = 3/2 or S = 1/2, respectively.108 Vast attempts have been 

made to model these crucial intermediates in the last few decades. In 1981 Groves et 

al. reported the first fully characterized synthetic iron−oxo complex.151 The oxidation of 

[(TMP)FeIII(Cl)] (TMP = meso-tetramesityl porphinate anion) with meta-

choroperbenzoic acid at −78 °C yielded the iron(IV)−oxo porphyrin cation radical 

[(TMP●+)FeIV(O)(X)]+ with a spin state of S = 1 for iron. The complex was active in olefin 

epoxidation and alkane hydroxylation reactions.85 A great number of iron(IV)−oxo 

porphyrin radicals followed this, which have been synthesized, spectroscopically 

characterized and exhaustively researched in a variety of oxidation reactions.152 The 

oxidizing power of iron–oxo porphyrins is controlled by the electronic nature of 

porphyrin ligands. Iron–oxo species with electron-deficient porphyrins are better 

oxidants in the oxygenation of organic substrates.153 While in the active species of 

heme compounds iron shows spin intermediate S = 1, in all of the non-heme enzymes 

the iron center has been found to be in the high-spin S = 2 state.142 It has been 

suggested that this is due to weak ligand field from the ligands histidine and 

carboxylate.93, 108 Taurine α-KG dioxygenase (TauD) was the first non-heme iron 

enzyme revealing the active iron(IV)−oxo species (TauDJ), as an active oxidizing 

species.154 Mössbauer measurements for TauDJ exhibited a high spin iron center S = 

2.144  
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Figure 12 Examples of heme and nonheme intermediates containing iron−oxo cores in 

synthetic model systems, discussed in this section.151, 155-159 

 

Studies of synthetic non-heme iron−oxo turned out to be more difficult, compare to the 

iron−oxo complexes with porphyrin, since non-heme iron−oxo species exhibit a lack of 

suitable spectroscopic signatures detectable with routine spectroscopy techniques.89, 

93 This is reportedly the reason why the first non-heme iron−oxo was characterized 

decades after the heme analogue.151, 155 The first evidence was demonstrated by 

Wieghardt et al. by treating [(cyclam-acetato)FeIII(O3SCF3)]+ with ozone at -78 °C.155 

Another milestone was set by Nam et al. three years later with the first crystal structure 

of this species.158 Again the starting compound was an iron cyclam complex 

[(TMC)Fe]2+, which was trapped in its active species after the oxidation with PhIO in 

acetonitrile at -40 °C. Beside crystallographic also spectroscopic characterization, 

such as UV/Vis, EPR, Mössbauer, and mass spectrometry were done to study the 

active species [(TMC)FeIV(O)]2+. Characterization reveals the spin state of S = 1 for 

iron, unlike the imitated iron−oxo found in enzymes. Despite this the complex from 
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Nam et al. found also to be active for the oxidation of substrates, such as PPh3, but 

not for epoxidation or HAT. The non-methylated iron cylam complex, was already 

known to be active for epoxidation and HAT in 1991,92 however its iron−oxo 

intermediate was demonstrated as the active species in 2019.160  

Many new iron−oxo complexes have been synthesized and characterized in the last 

twenty years.75, 89, 93, 108, 142, 156-157, 160-167 Such as for Fe-TMC the majority of the 

bioinspired Fe(IV)−oxo cores have S = 1 ground state, unlike the enzymatic 

intermediates. But recent efforts have also led to the characterization of iron(IV)−oxo 

complexes with spin S = 2.157, 163 Iron(IV)−oxo complexes with spin S = 2 have been 

proposed by density functional theory (DFT) calculations to be much more reactive 

towards C−H bond activation than compounds with S = 1.108, 168-170 This agrees with 

nature’s preference for non-heme enzymes that utilize high-spin iron centers. 

This factor is also obvious for synthetic complexes. The [(Me3NTB)FeIV(O)(MeCN)]2+ 

(Me3NTB = tris((N-methylbenzimidazol-2-yl)methyl)amine)) and 

[(TQA)FeIV(O)(MeCN)]2+ (TQA = tris(2-quinolyl-methyl)amine)) are the most reactive 

iron−oxo models synthesized and completely characterized.156-157 Indeed 

[(Me3NTB)FeIV(O)(MeCN)]2+ has an intermediate-spin S = 1, but has a highly 

accessible S = 2 high-spin state.156 Thus it has extremely low activation barriers and 

high reactivity. [(TQA)FeIV(O)(MeCN)]2+ reveal a high-spin (S = 2) quintet ground 

state.171 Its reactivity rates are comparable to those of the natural intermediate TauD-

J.157 The trapping of the highly reactive [(TQA)FeIV(O)(MeCN)]2+ complex was 

achieved by the use of bulky tripodal ligand, with weaker-field donors such as 

quinolones.172 The enforcement of the trigonal-bipyramidal geometry by bulky tripodal 

ligand were shown to stabilize species with high-spin configurations such as the use 

of weaker ligand field environments.173-174 This example reveals the advantage of 
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bioinspired compounds, to be more accessible for modification to tune the activity to 

be either less active, enabling characterization, or to enhance the activity for catalytic 

applications. 

Other than in mononuclear enzymes, where the iron(III)−superoxo species forms an 

iron(III)−hydroperoxo intermediate by consuming a proton and an electron followed by 

the subsequent O−O bond cleavage yields the reactive iron−oxo species,12, 37, 144 in 

dinuclear enzymes no proton or electron is necessary to form the active species. The 

oxygen is directly activated at a diiron(II) center to form either closed bis(μ-oxo)diiron(IV) 

or open O=FeIV−O−FeIV=O forms, without the necessity of any additional proton or 

electron donors.12, 45, 175-176  

 

Figure 13 Unified mechanisms for dioxygen activation at mononuclear and dinuclear active 

sites.10 

 

In the conversion of methane to methanol with MMO the formation of the catalytically 

active diiron(IV) di-oxo intermediate was also observed.45 Altogether dinuclear iron 

enzymes bind dioxygen very similar but activate it for different catalytic purposes.39, 73 

The first characterization of a diiron(IV) di-oxo synthetic intermediate was investigated 

on dinuclear iron complexes [(HO(TPA*)Fe–O–Fe(O)(TPA*)] with TPA* = tris((4-

methoxy-3,5-dimethylpyridin-2-yl)methyl)amine), reveals a valence-delocalized 

[Fe3.5(μ-O)2Fe3.5]3+ diamond core.177 The dinuclear complex is 100-fold less effective 
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in carrying out HAT of DHA than its mononuclear analogue. Conversion from the 

diamond core complex into a complex with a valence-localized [HO−FeIII−O−FeIV=O]2+ 

open core, changed the spin state from low spin S = 1 into high spin S = 2, resulting in 

a million-fold higher reactivity for the C−H cleavage.159 Similar to mononuclear 

examples dinuclear non-heme biomimicries also reveal the tendency for higher activity 

for compounds with high spin S = 2.159, 170, 177-178 
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1.4 Fe-cyclam complexes  

Cyclam and its derivates are well-studied and play a great role in bioinspired chemistry. 

Crystal structures of iron oxygen intermediates in non-heme complexes were first 

reported for iron complexes which utilized TMC, as a ligand.131, 158 Subsequent studies 

with cyclam derivates helps unravelling the debate between homolytic and heterolytic 

cleavage in the formation of non-heme iron−oxo.109, 179-182 Valentine and coworkers 

discovered the potential of iron complexes, with cyclam and cyclam related ligands 

catalyzing the epoxidation of alkenes in the presence of hydrogen peroxide in 1991.92 

Before this discovery no complexes were known, that could convert olefins into the 

corresponding epoxides with high product yields and stereospecificity. The observed 

color change in the catalytic reaction initially led to the conclusion that several 

intermediates are involved in this reaction. An iron(III)−hydroperoxo was mistakenly 

proposed as the active species without any strong spectroscopic evidence. The lack 

of activity with alkyl peroxides led to this conclusion, since the O−O bond is stronger in 

H2O2 than in ROOH.183 In 2019 Ray, Nam and coworkers were able to trap and 

characterize spectroscopically the actual active species responsible for olefin 

epoxidation.160 They synthesized the active species [(cyclam)FeII(O)(CH3CN]2+ by 

oxidizing [(cyclam)FeII]2+ with 1.5 eq. sPhIO in acetonitrile at -40 °C. Characterization 

was completed through means of: (1) UV/Vis spectroscopy, which revealed a typical 

peak at 737 nm; (2) MS, with point a signal at m/z = 421.08 with the right isotope 

pattern for the complex with an additional oxygen, shifting two mass units by using 

sPhI18O; (3) 1H-NMR spectroscopy, which exhibited a cis-V cyclam configuration; (4) 

EXAFS, which demonstrated results typical for S = 1 iron(IV)−oxo complexes; and 

finally (5) Mössbauer spectroscopy, which was used to validate the S = 1 iron(IV)−oxo 

species. Addition of cyclohexene to [(cyclam)FeII(O)(CH3CN]2+ at -20 °C caused a 
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decrease in the intensity of the peak at 737 nm in the electronic spectra, thus 

confirming the iron(IV)−oxo as the active species.  

 

Figure 14 Formation of an iron(IV)−oxo cyclam complex with hydrogen peroxide and 

epoxidation of alkene showing interaction with N−H.160 

 

Normally synthetic iron(IV)−oxo compounds prefer allylic oxidation over epoxidation of 

cyclohexene184-188 and are often not kinetically competent to perform the rapid 

oxidation observed in iron-catalyzed epoxidation and hydroxylation reactions such as 

in biological catalysts.10, 75, 142, 170, 189-193 Thus, cyclam represents a key ligand for the 

investigation of nature chemistry. In a more recent paper, Ray et al. were able to 

crystallize [(cyclam)FeII(O)(CH3CN]2+ in trans configuration.194 Although both species 

represent an iron(IV)−oxo with the same ligand, the trans configuration exhibits worse 

reactivity towards oxygen atom transfer (OAT) and HAA than the cis-configuration. 

Therefore, the cis-configuration can be described as an essential feature for the 

reactivity in olefin epoxidation. Complexes with TMC exhibit greater stability for the 

iron(IV)−oxo species than complexes with the non-methylated cyclam. 
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Figure 15 Different configurations observed for [(cyclam)FeII(O)(CH3CN]2+.160, 194 

 

This enables the synthesis of this oxo complex with H2O2 at -40 °C, stable for at least 

1 month at this temperature. Compared to this, the synthesis of 

[(cyclam)FeII(O)(CH3CN]2 with hydrogen peroxide instead of sPhIO was only feasible 

at -80 °C due to spontaneous decay to bis-(hydroxo)diiron(III) at higher 

temperatures.160 

Differences are also observed at the formation of the iron−oxo complexes with 

hydrogen peroxide. Compare to the formation of the cyclam iron−oxo complex the 

[(TMC)FeIV=O]2+ is very slow with 4 h. The slower formation depends on the absence 

of H-bonding interaction between N−H and H2O2, which is proposed as an intermediate 

to the formation of the iron(IV)−oxo species in [(cyclam)FeII(O)(CH3CN]2+. It was shown 

by Que et al. that addition of base encourages the hemolytic cleavage to form 

[(TMC)FeII(O)(CH3CN]2+.195-196 The slower formation with the TMC complexes 

simplifies the exploration of the mechanism behind this. Nam and coworkers were able 

to demonstrate the formation of the iron(IV)−oxo via heterolysis after the one-electron 

reduction from iron(III)− to iron(II)−hydroperoxo.180  
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Notably, the differences in reactivity between the methylated versus non-methylated 

forms is striking. The HAT performed by iron TMC complexes also proceeds two orders 

of magnitude slower than the cyclam analogue. Olefin epoxidation was only observed 

for [(cyclam)FeII(O)(CH3CN]2+ - the higher reactivity may arise from kinetic and 

thermodynamic factors.197   

 

Figure 16 Homolytic and heterolytic cleavage of iron−hydroperoxo in the formation of 

iron(IV)−oxo.180 
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1.5 PDIxCy system 

Cyclam and its related derivates with late transition metals have been used in a variety 

of biomimetic systems. 109, 179-182 Ligand system bearing a pendant arm on the 

macrocyclic ring offers additional application.195, 198-199 In 2017 Haas and coworkers 

presented the first generation of the PDIxCy ligand, which expanded the macrocyclic 

cyclam by another binding site.200 The pincer site is able to bind a second metal 

physically connected via the propyl linker to the metal in the cyclam site, but 

electronically uncoupled. The homobimetallic dinickel and dizinc complexes and the 

heterobimetallic Ni-Zn, containing Ni in the PDI-site, were synthesized and 

characterized in this study. (see Figure 17)  

 

Figure 17 Reduction of the PDIpCy complexes to the charge seperated species.200  

 

Haas and coworkers demonstrated the ability to store electrons close to the cyclam 

site by the redox-active PDI unit in the bimetallic system. Investigation concerning the 

redox properties involved the one-electron reduction of the complexes chemically. 

Characterization of the reduced species by UV/Vis- and EPR-spectroscopy showed 

that the one electron reduction of the complexes takes place on the PDI site, and either 
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as metal-centered or ligand centered reduction can occur with formation of the PDI•- 

radical. This study demonstrated that the unique sites are electronically uncoupled, 

suggesting the function of either site would not be influenced by the adjacent metal 

site.  
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1.6 Pyridine diimine  

PDI´s represent a well-known class of “non-innocent” ligands that confer additional 

redox activity to coordination complexes beyond metal-centered 

oxidation/reduction.201 It was shown that PDI can accept up to four electrons via its 

diimine π* orbitals, associated with the electron-transfer series, [PDI]0  [PDI]4−.202  

Haas et al. have already shown that this feature is transferable to the PDIxCy system 

for the one electron reduction.200 This enhances the redox inactive cyclam with a redox 

active feature for PDIxCy complexes. Since the reduction of [(TMC)FeIII(O2H)]2+ 

influences the formation of the iron−oxo species, it is conceivable that the formation of 

an iron−oxygen intermediate might be influenced by the redox active site, for example 

activating substrates.  

The application of binding a high variety of elements, such as main group elements, 

transition metal ions, lanthanides and actinides, makes it a versatile supplement in the 

PDIxCy system,202 offering the possibility for a wide range of dinuclear complexes. 

Furthermore, it was already shown for cyclam complexes that the coordination of a 

second metal to the iron-peroxo center affects the catalytic activity for this complex in 

electron-transfer, electrophilic, and nucleophilic reactions.133 Perhaps forced proximity 

of the two metals could influence the reactivity further. Also it seems feasible to use 

the additional metal as anchor for substrates to bind/activate the substrate in close 

proximity to the active center. Such a system is already reported for dinuclear titan 

complexes, where one site binds the substrate and the other site activates the oxidant 

to form the respective epoxide from enones.203 
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Complexes of the PDI ligand exhibit a wide range of catalytic activity,204-212 which might 

support or might be supported by the activity of the Cy site. The system of PDIxCy was 

developed in our group to combine the applications of PDI and Cy complexes. 

Modification in the linker length was carried out to connect both sites in a more compact 

fashion. 
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2 RESULTS – PUBLICATIONS 

2.1 Structural Differences and Redox Properties of Unsymmetric 

Diiron PDIxCy Complexes 

Andreas J. Hofmann, Christian Jandl, Corinna R. Hess 

European Journal of Inorganic Chemistry 2020, 2020, 499-505. 

DOI: 10.1002/ejic.201901173 

 

This publication presents the synthesis and characterization of homobimetallic 

complexes [Fe2(PDIeCy)(OTf)4] (1) and [Fe2(PDIpCy)(THF)(OTf)4] (2). Herein we 

introduce our modified ligand system PDIeCy, which connecting the unique binding 

sites Cy and PDI with an ethyl- instead of a propyl- unit as utilize in PDIpCy. The use 

of the smaller linker leads to a significant structural change, revealed by crystal 

structure and 19F-NMR.  

Unlike 2 and other PDIpCy complexes,200 1 exhibits a bridging µ-triflate between the 

iron ions, observable in the crystal structure shown in Figure 18. The existence of the 

µ-triflate appearing also in non-coordinating solvents was verified by 19F‐NMR. The 

use of the smaller linker further leads to a smaller metal-to-metal distance of 5.6 Å 

compare to 8.0 Å, which was observed for 2. The smaller distance and the 

performance of the bridging µ-triflate, clearly demonstrates the potential for 

cooperative substrate interactions for 1. 

The iron centers of 1 and 2 are high-spin, which are electronically uncoupled as verified 

by Mössbauer and magnetic susceptibility measurements (SQUID) in the solid. Based 

on Evan´s method the magnetic susceptibilities of 1 and 2 in solution decrease with 

lower temperature from 7.0 µB (1) and 7.1 µB (2) to 5.8 µB (1) and 5.7 µB (2). Also the 
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electronic spectra of 1 and 2 show temperature dependency in acetonitrile (MeCN), 

noticeable by a significant increase of the extinction coefficient at lower temperature. 

Since the magnetic susceptibilities are constant between -20 °C and 90 °C, the origin 

of the spectral changes could not be due to that. 

 

Figure 18 Molecular structure of 1 (left) and 2 (right) in the solid state (50 % probability 

ellipsoids). Hydrogen atoms, solvent molecules and partial disorder are omitted for clarity. Reprint 

with permission.213 

 

Additionally, redox properties were determined for both complexes. Two electron 

reduction of 1 was carried out chemically and electrochemically. The similarity in the 

electronic spectra towards two electron reduced monometallic iron complexes with PDI 

ligand214 indicate that a formal “FePDI
0” site exists alongside an FeCy

II center. This 

property might be helpful for reactivity toward multi‐electron processes.  
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2.2 Neighbouring effects on catalytic epoxidation by Fe-cyclam in 

M2-PDIxCy complexes 

Andreas J. Hofmann, Lukas Niederegger and Corinna R. Hess 

Dalton Transactions 2020, 49, 17642-17648 

DOI: 10.1039/d0dt03758c 

 

Three more complexes with the PDIeCy ligand were synthesized and characterized, 

[ZnPDIFeCy(PDIeCy)(OTf)4], [FePDIZnCy(PDIeCy)(OTf)4] and [Zn2(PDIeCy)(OTf)4] 

(Figure 18; 3, 4 and 5, respectively). Based on the synthesis of Fe-Zn-PDIeCy we were 

able to demonstrate, for the first time, the ability to control the metalation of the 

individual coordination sites in this system. Crystal structures obtained for 4 and 5 

proves that the bridging ligand is a common feature of all PDIeCy structures.213  

 

Figure 19 PDIxCy complexes used for oxidation catalysis. Reprint with permission.215 

  

The reactivity of 1 - 5 toward olefin epoxidation was examined and compared to the 

monometallic complex [Fe(Cy)(OTf)2].92 1 – 3, containing iron in the cyclam site, show 

activity towards olefin epoxidation, while 4 and 5 are inactive for this kind of oxidation 

chemistry. This indicates that the iron cyclam unit is the active center and that the PDI-

site alone is inert. Treatment of 3 with two equivalents of hydrogen peroxide at -80 °C 

in acetone leads to a band in the electronic spectrum similar to the bands for 
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[FeIVO(Cy)(OTf)2],160 indicate an iron(IV)−oxo at the cyclam site to be the active 

species. This explains the similar behavior to [Fe(Cy)(OTf)2] towards olefin epoxidation.  

The bimetallic PDIxCy complexes show an increase in activity toward α,β-unsaturated 

ketones. Since neither 4 nor 5 show any activity towards epoxidation, the enhancement 

is not due to activity of the PDI site. Our current hypothesis for the greater activity of 

the bimetallic PDIxCy complexes toward α,β-unsaturated ketones is that the adjacent 

M-PDI unit likewise binds the substrate carbonyl group, bringing the alkene group in 

close proximity to an iron(IV)−oxo at the cyclam site.  
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3 CONCLUSION AND OUTLOOK 

In conclusion we modified the PDIpCy ligand system by its linker length to the more 

compact PDIeCy. Characterization of homo- and heterobimetallic complexes of both 

systems reveals significant differences between the complexes of PDIeCy and PDIpCy. 

The smaller distance in the ligand backbone enables triflate to perform as additional 

bridging ligand between the metal ions, which was observed in the crystal structures 

of the PDIeCy complexes. Based on 19F‐NMR it was verified that the µ-triflate also 

persist in non-coordinating solvents. This demonstrates the potential for cooperative 

substrate interactions in complexes containing the smaller linker.  

The influence of the second site could be already shown for PDIxCy complexes 

towards the epoxidation of α,β-unsaturated ketones. Hereby the PDI site operates as 

anchor for the electron deficient substrates, while the Cy act as oxidant. Further it was 

shown that the PDI site on its own is inert to oxidation reaction. 

The selective metalation developed in this work was beneficial to understand the 

different roles played by the Cy and PDI site in oxidation catalysis. 

This method could be used to synthesize a series of heterobimetallic complexes by 

placing different metals in the PDI site. This opens the door for more complexes with 

a wide range of activity and enables us to determine trends and unravel the mechanism 

behind these reactions.  

It seems feasible that in other PDIxCy systems the PDI site could interact with the 

iron−oxygen intermediate directly, which would affects the catalytic activity as shown 

for [(TMC)FeIII(O2)]+,133 or could enhance the formation of the iron−oxo species by 

contributing an electron.180 The close proximity of the two metals might affect the 

activity further.  
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Access to a wide range of redox states through the combination of the redox active 

PDI with the redox inactive Cy part enables the formation of a two-electron separated 

species, and bodes promise for reactivity toward other multi‐electron processes, such 

as CO2 and hydrogen activation.211-212 In this case the PDI site acts as an active center 

and the Cy part would play a supporting role, for example as a Lewis acid. 
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