
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik

Perception for Human Action: 3D Hand Pose
Estimation and Camera Localization

Shile Li

Vollständiger Abdruck der von der Fakultät für Elektrotechnik
und Informationstechnik der Technischen Universität München

zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften (Dr.-Ing.) genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Eckehard Steinbach

Prüfer der Dissertation:
1. Prof. Dongheui Lee, Ph.D.
2. Prof. Dr. Angela Yao
3. Priv.-Doz. Dr. Rudolph Triebel

Die Dissertation wurde am 03.03.2021 bei der Technischen Uni-
versität München eingereicht und durch die Fakultät für Elek-
trotechnik und Informationstechnik am 30.09.2021 angenommen.

1

Abstract
For Learning from Demonstrations, the most intuitive way to show hu-

man demonstrations to a robot is through computer vision. For a successful
demonstration of daily tasks, such as object grasping, human hand and ob-
jects are two major components to understand the actions, observing them
accurately is a vital precondition for the robot to successfully imitate human
demonstration. To obtain object models, this thesis investigates how to lo-
calize the camera from image sequences for the purpose of object scanning.
To achieve camera localization, a novel Iterative Closest Point based visual
odometry method is proposed, which improves the selection, matching and
weighting stages of conventional methods. On top of that, dynamic envi-
ronment can be robustly handled by the proposed static point weighting al-
gorithm. Experiments on public dataset have shown state-of-the-art perfor-
mance of proposed camera localization methods, which is also tested in an
object scanning application. To estimate 3D hand pose, this thesis explores
deep learning based methods, which use different types of input data: depth
image, point cloud, multi-modal data (RGB, depth image, point cloud). In
particular, this thesis contributes in the following aspects for hand pose es-
timation: i) embedded physical constraint in a deep learning framework, ii)
novel network design for unordered point cloud input and iii) network de-
sign for multi-modal input. Furthermore, this thesis investigates how to uti-
lize clean hand dataset and scanned object model to design hand pose esti-
mation method for hand-object interaction cases, where an object augmenta-
tion strategy has shown its feasibility to solve this task. As result, this thesis
provides a fast and accurate camera localization pipeline for object scanning
application, and proposes several accurate deep learning based methods for
different types of input data.

3

Zusammenfassung
Für das Lernen aus Demonstrationen ist die intuitivste Möglichkeit, einem

Roboter menschliche Demonstrationen zu zeigen durch Computer Vision.
Für eine erfolgreiche Demonstration einer alltäglichen Aufgabe wie das Griff
von Objekten sind menschliche Hand und Objekte zwei Hauptkomponen-
ten, um die Aktionen zu verstehen. Eine genaue Beobachtung ist eine wichtige
Voraussetzung für die erfolgreiche Nachahmung menschlicher Demonstra-
tionen durch den Roboter. Um Objektmodelle zu erhalten, wird in dieser
Arbeit untersucht, wie die Kamera aus Bildsequenzen zum Zweck des Ob-
jektscannens lokalisiert werden kann. Um eine Kameralokalisierung zu er-
reichen, wird ein neuartiges Visuelle Odometrie auf der Basis der Iterative
Closest Point Methode vorgeschlagen, das die Auswahl-, Anpassungs- und
Gewichtungsstufen herkömmlicher Verfahren verbessert. Darüber hinaus
kann die dynamische Umgebung durch den vorgeschlagenen statischen Punk-
tgewichtungsalgorithmus robust gehandhabt werden. Experimente mit öf-
fentlichen Datasets haben gezeigt, dass die vorgeschlagenen Methoden für
Kameralokalisierung auf dem Stand der State-of-the-art sind und auch in
einer Objekt-Scan-Anwendung getestet werden. Um die 3D Posen der Hand
abzuschätzen, werden in dieser Arbeit Methoden untersucht, die auf Deep
Learning basieren und verschiedene Arten von Inputdaten verwenden: Tiefen-
bild, Punktwolke, multimodale Daten (RGB, Tiefenbild, Punktwolke). Ins-
besondere trägt diese Arbeit zu den folgenden Aspekten der Handposen-
schätzung bei: i) eingebettete physikalische Einschränkung in einem Deep-
Learning-Framework, ii) neuartiges Netzwerkdesign für ungeordnete Punk-
twolkeneingaben und iii) Netzwerkdesign für multimodale Eingaben. Darüber
hinaus wird in dieser Arbeit untersucht, wie mithilfe eines sauberen Hand-
datensatzes und eines gescannten Objektmodells eine Handposenschätzmeth-
ode für Hand-Objekt-Interaktionsfälle entworfen werden kann, bei denen
eine Data Augmentation gezeigt hat, dass diese Aufgabe machbar ist. Als
Ergebnis bietet diese Arbeit eine schnelle und genaue Kamera-Lokalisierungs-
Pipeline für die Objekt-Scan-Anwendung und schlägt mehrere genaue Deep-
Learning-basierte Methoden für verschiedene Arten von Inputdaten vor.

5

Acknowledgements
First, I would like to thank my supervisor Prof. Dongheui Lee, for her patient
and consistent guidance during the running of this project.

Moreover, I would like to thank all members from the HCR lab, past and
present, for their companionship. Working in a heterogeneous team helped
me to think things from different perspectives. Special thanks to Jan Wöhlke
and Haojie Wang, for their collaborative effort to this project.

I would also like to thank Linlin Yang and Prof. Angela Yao, for the fruitful
discussions and collaboration in the hand pose estimation project.

Thank you to Yueli Chen, for all her love and support.

Special thanks to my parents, who set me off on this road a long time ago.

7

Contents

Abstract 1

Zusammenfassung 3

Acknowledgements 5

List of figures 13

List of tables 15

1 Introduction 17
1.1 Motivations . 17
1.2 Challenges . 19
1.3 Overview of the thesis . 20
1.4 Contributions . 22

2 Camera localization for object modelling 25
2.1 Fast visual odometry . 25

2.1.1 Motivation . 25
2.1.2 Related works . 26
2.1.3 Preliminaries . 28
2.1.4 Intensity assisted iterative closest point 29
2.1.5 Experimental results . 38
2.1.6 Summary and Conclusion 42

2.2 RGBD-SLAM in dynamic environment 44
2.2.1 Motivation . 44
2.2.2 Related Works . 44
2.2.3 IAICP for dynamic environment 46
2.2.4 Integration to SLAM . 54
2.2.5 Experimental results . 55
2.2.6 Summary and Conclusion 60

2.3 Application for object modeling 60
2.4 Conclusion and future works 64

3 Hand pose estimation using depth image 67
3.1 Introduction . 67
3.2 Method . 69
3.3 Experimental results . 73
3.4 Summary . 74
3.5 Discussion and future works 74

8 Contents

4 Hand pose estimation using point cloud 77
4.1 Motivation . 77
4.2 Related works . 79

4.2.1 Deep learning for hand pose estimation 79
4.2.2 3D Deep learning . 80

4.3 Method . 80
4.3.1 Pre-processing with view normalization 80
4.3.2 Residual Permutation Equivariant Layers 81
4.3.3 Point-to-pose voting . 82
4.3.4 Segmentation using importance term 85
4.3.5 Training Loss . 85

4.4 Experimental results . 85
4.4.1 Self-comparison . 86
4.4.2 Comparison to state-of-the-art methods 88
4.4.3 Segmentation using importance term 90
4.4.4 Runtime and model size 91

4.5 Summary . 91
4.6 Discussion and future works 91

5 Hand pose estimation using multiple modalities 95
5.1 Motivation . 95
5.2 Related Works . 97
5.3 Strategies for mutli-modality input data 98

5.3.1 S1: Baseline with cross-modal VAE 98
5.3.2 S2: Mutli-task learning 99
5.3.3 S3: Alignment to multi-modal latent space 99
5.3.4 S4: Alignment using Gaussian product 100

5.4 Details of implementation . 101
5.4.1 Data pre-processing and augmentation 101
5.4.2 Encoder and decoder modules 102

5.5 Experimental results . 103
5.5.1 Datasets and evaluation metrics 104
5.5.2 Qualitative results . 104
5.5.3 RGB 3D Hand Pose Estimation 105

5.6 Summary . 108
5.7 Discussion and future works 108

6 Hand pose estimation for hand-object interaction cases 111
6.1 Motivation . 112
6.2 Related works . 112
6.3 Augmented autoencoder for hand object interaction cases . . 115

6.3.1 Data augmentation . 115
6.3.2 Point cloud encoder . 116
6.3.3 Decoders and training loss 117

6.4 Experimental results . 119
6.4.1 Datasets and evaluation metrics 119
6.4.2 Comparison to state-of-the-art 120
6.4.3 Ablation study . 121

Contents 9

6.4.4 Qualitative Results . 122
6.5 Summary . 123
6.6 Discussion and future works 124

7 Conclusion and future research direction 127

A Presented and Published Papers 131

Bibliography 133

11

List of Figures

1.1 Applications of hand pose estimation 18
1.2 Overview of the thesis . 20

2.1 Comparison of estimated camera trajectories on "fr1/desk" se-
quence from TUM RGB-D benchmark [115]. Our method im-
proves the conventional ICP greatly. 26

2.2 Visual odometry method estimates the camera motion by align-
ing the scene points observed from different frames. (a): The
scene points are rigidly transformed with T in the camera co-
ordinate. (b): The corresponding camera motion in the world
coordinate is the inverse of T. 28

2.3 Intensity assisted ICP overview 30
2.4 IAICP: residual weighting . 31
2.5 Search pattern for each ICP iteration 34
2.6 IAICP: salient points selection 35
2.7 Point pair matching for a translated scene. 36
2.8 Reconstructed scene from TUM benchmark sequences based

on estimated visual odometry. 43
2.9 Overview of visual odometry system for dynamic environment 47
2.10 Foreground and background depth edge 48
2.11 Depth edge . 48
2.12 Static Weight . 50
2.13 Initialization and update of static weight 51
2.14 Effectiveness of static points weighting 56
2.15 Examples of estimated trajectories from the SLAM system. . . 58
2.16 Object scanning scenario . 61
2.17 CoRBS benchmark . 62
2.18 Object scanning results on CoRBS dataset 63

3.1 Overview of the proposed depth based method 69
3.2 Network architectures of depth based method 70
3.3 Kinematic hand modeling: Number of DoFs associated with

the individual joints are indicated in the circles. Finger angles
θi,n and bone lengths ri,n exemplary are indicated for the thumb. 72

3.4 Appearance normalizing effect of STN: First row: input images. Sec-
ond row: transformed image after STN 74

12 List of Figures

4.1 The proposed method takes point cloud as input. Then each
point predicts the hand pose and its importance weights for
different pose dimensions. The final pose is obtained through
weighted fusion from each point’s pose prediction. Using the
importance weight, the hand can be clearly segmented into
different parts, although no segmentation ground-truth was
used during training. 78

4.2 Overview of the point cloud based method for hand pose esti-
mation . 80

4.3 View normalization as pre-processing step. 81
4.4 Residual network of permutation equivariant layer (ResPEL) . 83
4.5 Two different versions for point-to-pose votin 84
4.6 Comparison with state-of-the-arts on NYU [123] dataset. Top:

mean errors of different joints. Down: proportion of correct
frames based on different error thresholds. 89

4.7 Segmentation results based on importance weights (best viewed
in color). Points: input point cloud, color indicates depth value,
blue points are more distanced and red points are more closer
to the camera. Segmentation: each part of the hand is indi-
cated with an different color, palm (red), thumb (green), index
(blue), middle (yellow), ring (cyan), pinky (pink) and irrele-
vant points with low importance weight for all parts (gray). . 92

5.1 Strategy1:Baseline with cross-modal VAE 98
5.2 Strategy2: Mutli-task learning 99
5.3 Strategy3: Alignment to multi-modal latent space 99
5.4 Strategy4: Alignment using Gaussian product 100
5.5 3D pose estimation and point cloud reconstruction for RHD

(left) and STB (right) dataset . 105
5.6 Latent space interpolation. 106
5.7 Comparisons of 3D PCK results of different strategies on RHD

dataset. 107
5.8 Comparison to state-of-the-art methods on the RHD dataset. 108
5.9 Comparison to state-of-the-art methods on the STB dataset . . 109
5.10 Mean EPE of our model on the weakly-supervised setting. . . 110

6.1 The raw data are captured from a RGB-D camera. Only the
depth image is used to acquire the input point cloud. The
RGB image is only used for visualization. For the output, be-
sides the predicted pose, a clean hand is simultaneously re-
constructed. (Brightness in point cloud indicates depth, where
darker denotes larger distance to the camera.) 113

6.2 Overview of augmented autoencoder based framework 115
6.3 Data augmentation process. Step 1: combine hand point cloud

and object; Step 2: project combined point cloud to depth im-
age; Step 3: convert depth image to occluded hand point cloud.
(Brightness in point cloud indicates depth, i.e. darker denotes
further.) . 116

List of Figures 13

6.4 Network structure of the point cloud encoder 117
6.5 Comparison to state-of-the-art method on EgoDexter bench-

mark. 120
6.6 Proportion of correct frames with respect to different error thresh-

olds. 122
6.7 Comparison to baseline on SynthhandsTest: Mean errors of

different joints. 123
6.8 Qualitative results compared with baselines on SynthHands.

(Brightness in point cloud indicates depth, i.e. darker denotes
further.) . 124

6.9 Qualitative results on real data. (Color in point cloud indicates
depth, where darker indicates larger distance to the camera.) . 125

15

List of Tables

2.1 Incremental contribution of diffrent components in IAICP . . 39
2.2 RMSE of translational drift (m/s): comparison with other RGB-

D based method . 39
2.3 RMSE of translational drift (m/s): comparison with other depth

alone based methods . 40
2.4 Comparison of computation time per frame [ms] vs. hardware

setting vs. image resolution . 41
2.5 Different parameters vs. precision vs. computation time 42
2.6 Visual odometry results: translational drift and rotational drift

on TUM RGB-D dataset . 57
2.7 SLAM results: RMSE of Absolute Trajectory Error [m] 60
2.8 Distance between scanned points and ground-truth object model

[m] . 64

3.1 Average per joint error of different models 73
3.2 Joint angle constraint violation with and without kinematic

hand model layer . 74

4.1 Self-comparison result on Hands2017Challenge dataset: mean
joint error [mm] . 87

4.2 Self-comparison result on NYU dataset: : mean joint error [mm] 87
4.3 Self-comparison of different network structures on NYU dataset

(three views) . 87
4.4 Comparison of our method with state-of-the-art methods on

the Hands2017Challenge dataset 90
4.5 Comparison of our method with state-of-the-art methods on

the NYU dataset . 90
4.6 Comparison of runtime and hardware 91

5.1 Comparison of different training strategies on the RHD dataset.
The mean EPE values are obtained from monocular RGB im-
ages. (R: RGB, C: point cloud, P: pose, H: heatmap). Poses
estimated from monocular RGB images can be improved by
increasing number of different encoders and decoders during
training. 106

5.2 Comparison to state-of-the-art on the RHD and STB with mean
EPE [mm]. Ours refers to S4 in Table 5.1 (RC2CHP). 107

6.1 Comparison of different training methods on SynthHands. . . 121
6.2 Comparison with baselines on SynthHands. 122

17

Chapter 1

Introduction

1.1 Motivations

Nowadays, robots don’t just repeat hard-coded motions anymore, they start
to gain the ability to learn and adapt to novel tasks more quickly. The most
important way to learn a novel task without complicated engineering is the
technique called Learning from Demonstration (LfD) [13], in which the hu-
man demonstrates the robot how to perform a task and the robot learns to en-
code the demonstrated skills to its own “language", or representation, such
that it can later reproduce a certain skill with the encoded representation.
The research field of LfD is flourishing, where researchers are trying to make
the learning process as intuitive as possible for the end-users. For an intu-
itive demonstration, one can use kinaesthetic teaching to physically move
the robot [70], or use a simulation environment with a haptic device as input
[96], or use a computer vision system to capture human’s movement directly
with a camera [69, 46]. Among all the demonstration options, computer vi-
sion is the most intuitive option for the end-users as it only requires a camera,
where the human can perform the task as he/she usually does in daily life.
In such a computer vision system, the task relevant environment information
has to be observed robustly, which includes human motions, object identities,
object poses etc..

Among all the environment information, human hand pose plays the key
role in LfD, where it is usually the imitation target of the robot’s gripper for
many tasks, such as object grasping [103], object handling [2] (Figure 1.1(c)),
in which the hand could be interacting with other objects (hand-object inter-
action case) or floating in the air without touching other objects (clean hand
case). Besides that, hand pose estimation is also used in many other appli-
cations. For example, in Augmented Reality, the head-mounted camera cap-
tures the image of human hand, then different kinds of avatar hands can
replace the human hand’s appearance (Figure 1.1(a)), with the accurate hand
pose estimation as a prerequisite. Another example is the usage in gesture
recognition, where the robot can understand human’s intention from specific
gestures. For example, Figure 1.1(b) shows a single hand can posture differ-
ently for the number from 0 to 9 1. Furthermore, hand pose estimation can be
also used for a controlling interface between human and machine, e.g. leap

1https://i.pinimg.com/originals/9d/37/13/9d3713bd57ab331f85ceb473b553cf2d.jpg

18 Chapter 1. Introduction

(a) (b)

(c) (d)

FIGURE 1.1: Applications of hand pose estimation. (a) Oculus VR. (b) Chinese ges-
tures for numbers. (c) Hand pose retargeting to robotic hand [2]. (d) Leap Motion.

motion system can be used a "virtual mouse" to control the laptop (Figure
1.1(d)).

Apart from the hand pose, object also plays a vital role in LfD, where
semantic information can be extracted from object’s identity and pose. Fur-
thermore, if the hand is interacting with the object, a known object model
can benefit the hand pose estimation as well. For many other algorithms
related to object observation, the object model needs to be known in prior.
To generate the object’s model, the first step is to scan the object with the
camera, where the object is captured from different viewpoints to cover the
whole surface and the observations are merged into the final object model.
The key-step in the scanning process is to estimate the camera’s relative pose
between the different viewpoints. In this thesis, visual odometry is used to
estimate the its ego-motion, where the camera is moved around the static ob-
ject to capture image sequences and each image frame’s camera pose relative
to the first frame has to be estimated.

The need of observation of human hand and object motivates us to inves-
tigate the following research topics in this thesis:

• How to estimate camera’s ego-motion from image sequences, in order
to generate object models?

• How to estimate human hand pose using different types of sensor data,
for a clean hand without object?

• How to utilize clean hand dataset and scanned object model to design
hand pose estimation method hand-object interaction cases?

1.2. Challenges 19

1.2 Challenges

Hand pose estimation using image data is a challenging task. Firstly, the hu-
man hand is a complex and articulated object. If we consider it as a robotic
gripper, its own Degrees of Freedom (DoF) is more than 25 [145], on top of
that, the global position and orientation of the hand also take additional six
DoF. This means at least 31-dimensional parameter has to be estimated from
a single image. In addition to the high degrees of freedom, each individual
person has a different hand shape, where the hand scale, bone length, skin
color, finger length ratio etc. can be very different among the population.
Another difficulty is that the hand’s appearance in the image suffers from
occlusion issue, where not all hand’s surface can be observed from single im-
age. The fingers occlude each other in many cases, moreover, if the hand is
grasping an object, the object also creates severe occlusion to the hand. The
object occlusion makes the problem even harder, where the appearance of
hand is mixed up with the object. To tackle the above mentioned difficul-
ties, traditionally, researchers have used tracking based methods [67, 39, 94],
which rely on sequence of data and a good initialization pose for this prob-
lem, then each frame’s estimation is optimized from the previous frame’s es-
timates. However, these methods are prone to tracking failure, which cannot
be recovered because tracking methods themselves cannot provide initializa-
tion pose. In recent years, deep learning proves to be successful in different
research fields. Hand pose estimation is no exception, as state-of-the-art re-
sults are all coming from deep learning based methods [127, 152, 75, 33, 101].
Relying on large annotated datasets, deep learning methods are suitable to
find out the the highly non-linear mapping function between a single input
image and the hand pose output. This thesis also follows the usage of deep
learning, in which different types of input data are explored, including depth
image, point cloud and RGB image. Using these input data, 2 different sce-
narios are considered: i) a "clean" hand alone in the air without touching an
object, and ii) the hand is interacting with an object.

Camera localization for object scanning is also a non-trivial task, where
the relative motion between frames has to be estimated from the change of
values of the high-dimensional camera sensor data. In particular for this the-
sis, in order to scan the object, RGB-D (RGB-Depth) data is used for indoor
camera localization. The challenges for camera localization are following.
Firstly, the dimensionality of input data is high, e.g. for Kinect sensor, at each
time step, two 640x480 images (color and depth) are received. To achieve the
real-time online performance, the algorithm has to be designed sophisticat-
edly to handle this large amount of data stream. Furthermore, in most cases,
there is no global marker or map as reference system because there is no prior
knowledge of the environment. Therefore, only relative motion between con-
secutive frames can be directly estimated. This leads to the drift problem, as
the frame-to-frame estimation error can be accumulated. The solution for this
problem is to use a SLAM (Simultaneous Localization And Mapping) system
to incrementally create a global map and correct the potential drift problem.
In this thesis, for the purpose of object scanning, a novel fast visual odometry

20 Chapter 1. Introduction

Camera Localization Hand Pose Estimation
Clean Hand Pose Estimation Hand Pose Estimation

for Hand Object
Interaction Cases

Visual Odometry&SLAM

trajectory

Object Model

depth image hand pose
forward

kinematics

point cloud

RGB image

reconstruction

hand pose

point cloud

hand pose

segmentation

Chapter 2

Chapter 3

Chapter 4 Chapter 5

Chapter 6

FIGURE 1.2: An overview of this thesis. (Camera localization): this part presents
method for estimating camera’s ego-motion, in order to generate object models.
(Hand pose estimation): this part investigates deep learning based method of hu-
man hand pose estimation from camera data. For (Clean Hand Pose Estimation),
different types of input data are used, including depth image, point cloud and multi-
modal input. For (Hand Object Interaction Cases), object models are used to train a
hand pose estimation system that is invariant to objects.

method is developed and integrated to a SLAM system.

1.3 Overview of the thesis

Figure 1.2 gives an overview of the thesis and the connection between differ-
ent parts.

Camera localization

Chapter 2 presents approaches for indoor camera localization with a RGB-D
camera. The first part presents a visual odometry method to estimate cam-
era’s ego-motion. A novel visual odometry method, Intensity assisted Itera-
tive Closest Point (IAICP), is proposed. The second part presents two exten-
sions to IAICP, which includes handling of dynamic objects and integration
to SLAM system. In the end, this chapter also describes how to merge the ob-
servation from different viewpoints to construct object models. The material
presented in this chapter is published in:

• Shile Li and Dongheui Lee. "RGB-D SLAM in dynamic environments using
static point weighting." IEEE Robotics and Automation Letters 2.4 (2017):
2263-2270.

• Shile Li and Dongheui Lee. "Fast visual odometry using intensity-assisted
iterative closest point." IEEE Robotics and Automation Letters 1.2 (2016):
992-999.

1.3. Overview of the thesis 21

Clean Hand Pose Estimation

Chapter 3-5 present deep learning based hand pose estimation methods for
the clean hand cases using different types of input data.

Chapter 3 introduces a depth image based method, in which physical con-
straint of the hand is embedded into a deep learning structure. The material
presented in this chapter is published in:

• Shile Li*, Wöhlke Jan* and Dongheui Lee. "Model-based hand pose estimation
for generalized hand shape with spatial transformer network." European Con-
ference on Computer Vision (ECCV), Extended Abstract Presentation in 4th
International Workshop on Observing and Understanding Hands in Action
(HANDS2018). 2018. *equal contribution

• Wöhlke Jan*, Shile Li* and Dongheui Lee. "Model-based hand pose estimation
for generalized hand shape with appearance normalization." arXiv preprint
arXiv:1807.00898 (2018). *equal contribution

Chapter 4 proposes a 3d point cloud based hand pose estimation method,
in which a deep learning structure, Residual Permutation Equivariant Layer
(ResPEL), is proposed. The network structure is designed to be invariant
to the input points’ order and still able to be able to extract complex and
meaningful features from input data. The material presented in this chapter
is published in:

• Shile Li and Dongheui Lee. "Point-to-pose voting based hand pose estima-
tion using residual permutation equivariant layer." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

Chapter 5 presents a hand pose estimation method using multi-modal
data as input, in which different modalities of hand data (e.g. RGB images,
depth maps, point clouds, 3D poses, heat maps and segmentation masks)
are considered to formulate a cross-modal inference problem. In particu-
lar, a multi-modal variational autoencoder (VAE) is used to encode and de-
code different modalities, where the latent space of individual modalities are
aligned using Gaussian product. The developed method is flexible such that
it can be trained using multi-modality data (RGB and point cloud) and can
be deployed using only RGB data. The material presented in this chapter is
published in:

• Linlin Yang*, Shile Li*, Dongheui Lee and Angela Yao. "Aligning Latent
Spaces for 3D Hand Pose Estimation." Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2019. *equal contribution

Hand pose estimation for hand object interaction cases

Chapter 6 presents a hand pose estimation method for hand-object interac-
tion cases. The backbone of this method is the point cloud based method
from Chapter 4. For training this method, augmented autoencoder is used
to add artificial random object model to clean hand dataset, such that the
trained model can be used for real hand-object cases.

22 Chapter 1. Introduction

• Shile Li*, Haojie Wang* and Dongheui Lee, Hand Pose Estimation for Hand-
Object Interaction Cases using Augmented Autoencoder, in Proc. IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2020. *equal
contribution

1.4 Contributions

The contributions of this work are listed as following:

Camera localization

The first section of Chapter 2 presents a fast and robust ICP based visual
odometry method that uses both intensity and depth data. The proposed
method improves the conventional ICP [8] significantly. In the second sec-
tion, the proposed visual odometry method is extended to dynamic envi-
ronment, in which a novel efficient static weighting method is proposed to
reduce the influence of dynamic objects on pose estimation. Experiments on
TUM RGB-D benchmark [115] shows that for both static and dynamic se-
quences, the proposed method outperforms previous state-of-the-art meth-
ods: DVO [57], Motion-Removal [116] and BaMVO [61].

Clean Hand Pose Estimation

Chapter 3 presents a deep learning based method using depth image as in-
put. For handling of different human hand shapes, it uses a novel kinematic
layer, where the hand shape parameters (palm shape, bone lengths) become
variables whose values are regressed from the input image.

Chapter 4 presents a deep learning based method for an unordered point
cloud. To deal with the unordered structure of the point cloud, the Permua-
tion Equivariant Layer (PEL) [105] is used as the basic element to construct
a residual network version of PEL to train the hand pose estimation task.
Compared to previous point cloud based methods, our method doesn’t re-
quire tedious steps such as normal estimation, nearest neighbour estimation.
A point-to-pose voting scheme is proposed to merge the information from
point-wise local features, which also generates weakly-supervised segmen-
tation results without the need of segmentation ground-truth.

Chapter 5 presents a method using multi-modal data, which includes 2D
RGB image and 3D point cloud. It learns a joint latent representation that
leverages other modalities as weak labels to improve RGB-based hand pose
estimation, where experiments on public benchmarks: STB and RHD dataset
[149, 152] show that encoding and decoding the point cloud of the hand sur-
face can improve the quality of the joint latent representations.

1.4. Contributions 23

Hand pose estimation for hand object interaction cases

Chapter 6 presents a method for handling hand-object interaction cases. It
uses an augmentation strategy to simulate hand object interaction cases uti-
lizing existing large clean hand datasets. An auxiliary clean hand reconstruc-
tion decoder is proposed to improve the quality of the latent space, which in
turn improves the hand pose accuracy.

25

Chapter 2

Camera localization for object
modelling

In order to scan an object to generate object models, camera’s ego-motion
has to be estimated, such that observation from different viewpoints can be
merged in a common coordinate system. This chapter presents camera local-
ization methods for a RGB-D camera. In the first section, visual odometry
method for static environment will be introduced. Then in the second sec-
tion, the extension for dynamic environment, as well as the integration to
a SLAM system will be presented. Finally, the application usage in object
modeling will be shown. This chapter includes the content of following pub-
lications:

• Shile Li and Dongheui Lee. "RGB-D SLAM in dynamic environments using
static point weighting." IEEE Robotics and Automation Letters 2.4 (2017):
2263-2270.

• Shile Li and Dongheui Lee. "Fast visual odometry using intensity-assisted
iterative closest point." IEEE Robotics and Automation Letters 1.2 (2016):
992-999.

2.1 Fast visual odometry

2.1.1 Motivation

Six degrees of freedom (DOF) odometry estimation from visual data, i.e. es-
timation of camera’s position and orientation from images, is one of the most
active research area in the last decade [57, 88, 87, 38, 64, 135, 114]. Visual
odometry is important for a wide range of robotic applications such as local-
ization and mapping tasks. Furthermore, understanding ego-motion from
visual odometry can provide additional sensor information for tasks such as
obstacle avoidance [110], object pose estimation [65], scene flow estimation
[130]. Especially visual odometry provides 3D pose, whereas wheel odome-
try or GPS navigation provide only 2D pose. In the context of this paper, the
estimated 3D pose of camera serves as the prerequisite for object scanning
application.

This section presents a novel method for visual odometry estimation from
a RGB-D camera. The camera motion is estimated by aligning a source to a

26 Chapter 2. Camera localization for object modelling

(a) Visual odometry estimated from the con-
ventional ICP method [8]

(b) Visual odometry estimated from the pro-
posed ICP method

FIGURE 2.1: Comparison of estimated camera trajectories on "fr1/desk" sequence
from TUM RGB-D benchmark [115]. Our method improves the conventional ICP
greatly.

target RGB-D frame using an intensity assisted Iterative Closest Point (ICP)
algorithm. As the example shown in Figure 2.1, the proposed method im-
proves the conventional ICP significantly. The proposed method differs from
the conventional ICP with following aspects:

• An intelligent salient point selection method for the source frame is
proposed, where points that provide valuable information for ICP are
selected. With the reduced point number, substantial computation time
is saved.

• With robust statistics on the real data [48], intensity values are inte-
grated into correspondence estimation and correspondence weighting
stages of ICP.

• The proposed method runs with a single CPU thread in real-time (78
Hz) with state-of-the-art accuracy on the TUM dataset [115].

The proposed method runs real-time with single core CPU thread, hence it
is suitable for applications with limited computation resources. The evalu-
ation on TUM RGB-D benchmark shows that in the majority of the tested
sequences, the proposed method outperforms state-of-the-art accuracy in
terms of translational drift per second with a computation speed of 78 Hz.

2.1.2 Related works

In the last decade, the availability of lightweight RGB-D sensors such as Asus
Xtion raised the popularity of visual odometry estimation from both color
and depth images or depth images alone. The recent proposed depth based
visual odometry algorithms can be categorized into two groups.

2.1. Fast visual odometry 27

Pixel-wise energy minimization

The first group formulates the task as an energy minimization problem [58,
57, 124, 83]. The energy function is devised from pixel-wise photometric
and/or depth residual error between the target image and the warped source
image, where "warping" is performed by rigid transforming the source image
and projection onto the target image. This problem is iteratively solved by
numerical optimization such as gradient descent method, where linearized
Jacobian matrix with respect to the 6 DOF motion is required for each opti-
mization iteration. These methods are efficient to solve, however, it is based
on a strong assumption that the energy function is locally smooth with re-
spect to the 6 DOF pose, which is often not true due to the non-linear na-
ture of image and sensor noises. Therefore a coarse-to-fine strategy is used in
most methods, where large motion is recovered using coarser level and small
motion is estimated using finer level, but this will require extra computation
time to build the image pyramid and time to estimate the image gradient for
each pyramid level.

Iterative Closest Point based methods

The second group [88, 43] relies on the classic registration method: Itera-
tive Closest Point (ICP) [8]. Corresponding points between the source and
the target frames are first estimated based on a certain metric. Then the rel-
ative transformation is estimated with a closed-form solution to minimize
the distances between correspondences. The above two steps are performed
iteratively until a convergence criterion or the maximum iteration number
is reached. However ICP suffers from the risk to be trapped in a local mini-
mum, especially in cases of large camera motion or lack of 3D structure in the
observed scene. One option to avoid local minimum is to use a feature (such
as SIFT [78], SURF[7]) based alignment first and use ICP only as a refinement
step [43, 23]. The feature based method improves the probability of conver-
gence in the global minimum, however detection, description and matching
of sophisticated keypoint require substantial computation time that hinders
the performance to keep up the camera frame rate. Another option is to es-
tablish correspondences using normal projection instead of finding nearest
points [88, 134, 135], which helps ICP to avoid some local minimum. How-
ever surface normal estimation requires even more computation than a fea-
ture based method, because the surface normal is densely needed for each
pixel. Meilland et. al. [83] choose 3D pixels which best condition the 6 de-
grees of freedom of the camera, but their method still needs to compute the
image Jacobian.

Real-time requirement

Dealing with a large amount of color and depth data, achieving real-time per-
formance that keeps up the camera frame rate (30 Hz) is challenging. In or-
der to perform online visual odometry, some approaches that only use single
core CPU [58, 57, 52], need to perform their algorithms on lower resolution

28 Chapter 2. Camera localization for object modelling

scene observed
by target frame scene observed

by source frame

xc
yc

zc

camera
coordinate

(a) static scene observed by camera in two
different frames

camera postion
by source frame

camera position
by target frame

scene
points

xw

yw

zw

world
coordinate

(b) corresponding camera motion in the
world coordinate

FIGURE 2.2: Visual odometry method estimates the camera motion by aligning the
scene points observed from different frames. (a): The scene points are rigidly trans-
formed with T in the camera coordinate. (b): The corresponding camera motion in
the world coordinate is the inverse of T.

images than the original sensor data to compromise between accuracy and
processing time. Some other approaches that directly perform on the origi-
nal resolution [88, 38, 135] require state-of-the-art Graphics Processing Unit
(GPU) to parallelize their algorithms, however not every mobile platform is
equipped with a GPU.

2.1.3 Preliminaries

Camera model

Given a 3D point p = (x, y, z, 1)T in homogeneous coordinate relative to
the camera, the image pixel coordinate x = (u, v)T (u ∈ [0, height − 1], v ∈
[0, width− 1]) of p is calculated with the camera projection function π:

x = π(p) = (
x fx

z
+ ox,

y fy

z
+ oy)

T, (2.1)

where height and width are the pixel number in image’s x- and y- direction,
fx, fy are the camera focal lengths and ox, oy are the camera center coordi-
nates.

As shown in Figure 2.2, in the camera coordinate, if the scene points are
rigidly transformed with a transformation matrix T ∈ R4×4, then a camera
motion T−1 in the world coordinate is implied. In the camera coordinate,
the point p is then changed to: p′ = Tp, and its pixel coordinate becomes
x′ = π(p′) = π(Tp).

At time step t, an intensity image It and an organized point cloud Pt with
the resolution width× height are obtained, where Pt(i) indicates the ith point
in Pt. Intensity value of pixel x is It(x) ∈ [0, 255], the pixel x’s corresponding

2.1. Fast visual odometry 29

3D point p is indicated as Pt(ind(x)), where ind() is a function that maps
a image coordinate to a point index of a one-dimensional list of organized
point cloud:

ind(x) = ind((u, v)T) = u× width + v, (2.2)

To retrieve the image coordinate x of a point index i, the inverse function is:

x = ind−1(i) = (b i
width

c, i− b i
width

cwidth)T. (2.3)

Conventional ICP

Let us consider two subsequent frames that need to be aligned as < I1, P1 >
for the source frame and < I2, P2 > for the target frame. The conventional
ICP method [8] uses the point cloud pair P1, P2 to iteratively find the optimal
relative rigid transformation matrix T∗, such that after transforming P1 with
T∗, the source observation will be aligned with the target observation (Figure
2.2). ICP is an iterative method, the matrix T∗ is initialized as an identity
matrix, the kth iteration of the ICP algorithm can be summarized as follows:

1) Search for each point of the source cloud a closest point in the target
cloud as correspondence. For the ith point in P1, the index of the correspond-
ing point in P2 is denoted as c(i), where

c(i) = argmin
j
‖T∗P1(i)− P2(j)‖. (2.4)

2) Compute the optimal incremental transformation Tk that minimizes
the distances between the established correspondences:

Tk = argmin
T

∑
i
‖TT∗P1(i)− P2(c(i))‖ (2.5)

This is usually solved with a closed-form solution [22] such as Singular Value
Decomposition [4].

3) Update T∗ as:
T∗ ← TkT∗. (2.6)

The above steps are performed iteratively until the incremental transfor-
mation is smaller than a threshold or the maximum allowable iteration num-
ber has reached.

2.1.4 Intensity assisted iterative closest point

Overview

Rusinkiewicz et. al. discussed in [108] about ICP variants, where the variants
differ in the following stages: selection, matching, weighting, rejection, error
metric and minimizing. Based on the categorization from [108], the proposed
ICP method differs from the conventional ICP in the following stages.

• Selection - Salient points selection is performed on the source frame,
where points that provide valuable information for ICP are selected.

30 Chapter 2. Camera localization for object modelling

Salient point
selection

Source
frame

Target
frame

Correspondence
matching

Correspondence
weighting

Incremental
transformation

estimation

ICP loop

Final
resultif

converged

if not
converged

FIGURE 2.3: Intensity assisted ICP overview

For the target frame, the original image resolution is kept without any
sampling.

• Matching - The search of correspondences is performed by examining
nearby points in the image coordinate, where the matching point is de-
termined by considering both intensity and geometric distance.

• Weighting - Weighting of corresponding pairs is performed based on
robust statistic [48]. This improves the robustness of ICP against false
correspondences. Additionally, the sensor noise model of the depth
camera is also considered for the weighting.

The overview of the proposed method is illustrated in Figure 2.3.

Robust correspondence weighting

With the proposed correspondence matching algorithm, correspondences be-
tween source and target frames are established, where corresponding point
of the ith point in source frame P1(i) is P2(c(i)). In practice, not every cor-
respondence is determined correctly. The resulting outliers have a bad in-
fluence on the accuracy of the estimated transformation. Moreover the pre-
cision of depth value depends on the distance to the camera, where a more
distanced point has lower precision for depth value. In the proposed method,
robust weighting function is applied to reduce the influence of outliers and to
adapt to the sensor noise model, where the ith corresponding pair a weight
w(i), thus Equation (2.31) changes to:

Tk = argmin
T

∑
i

w(i)‖TT∗P1(i)− P2(c(i))‖. (2.7)

2.1. Fast visual odometry 31

(a) 220th frame of ’fr1/room’ (b) 221st frame of ’fr1/room’

intensity residual

-100 0 100

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

histogram
t-distribution

(c) intensity residual by 1st iteration

intensity residual

-100 0 100

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

histogram
t-distribution

(d) intensity residual by 30th iteration

spatial distance [m]
0 0.05 0.1 0.15

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

histogram
t-distribution

spatial distance [m]

(e) spatial distance by 1st iteration

spatial distance [m]
0 0.05 0.1 0.15

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

histogram
t-distribution

spatial distance[m]
spatial distance [m]

(f) spatial distance by 30th iteration

FIGURE 2.4: (a)(b): The illumination of the 221st frame is lower than the 220th frame
due to auto-exposure, the average intensity has dropped by 43 in 221st frame. (c)(d):
The intensity residual distribution changes towards the true illumination model as
iteration number grows. (e)(f): The distribution of spatial distance between corre-
spondences moves from larger value toward zero as iteration number grows.

32 Chapter 2. Camera localization for object modelling

Intensity residuals between the correspondences are considered for weight-
ing, the intensity residual r(I)

i of the ith pair is calculated as:

r(I)
i = I1(ind−1(i))− I2(ind−1(c(i))). (2.8)

Inspired by [58], the Student’s t-distribution (a M-Estimator function) is used
to weight each intensity residual. Following [68], the derived weighting func-
tion based on the t-distribution is:

wI(r
(I)
i) =

ν + 1

ν + ((r(I)
i − µ(I))/σ(I))2

, (2.9)

where ν is the degree of freedom of t-distribution, ν = 5 is used as the same
in [58]. The mean µ(I) of all intensity residuals, is estimated as the median
value:

µ(I) = Med({r(I)
i }N

i=1), (2.10)

where N is the number of correspondences. The standard deviation σ(I) is
estimated using the median absolute deviation:

σ(I) = 1.4826 Median({|r(I)
i − µ(I)|}N

i=1). (2.11)

The t-distribution fits the real data nicely as shown in Figure 2.4(c)(d), which
gives outliers very small weights. An important reason to weight the corre-
spondences based on the statistics over all residuals is to consider the chang-
ing illumination caused by auto-exposure of the camera. Figure 2.4 gives
an example from ’fr1/room’ sequence of TUM dataset, the average pixel in-
tensity value has dropped by 43 from Figure 2.4(a) to Figure 2.4(b). By first
iteration, the mean value of intensity residuals is still almost zero (Figure
2.4(c)), as iteration number grows, the intensity residual distribution changes
towards the correct illumination difference value (Figure 2.4(d)). Then the
statistic based weighting ensures larger weights for the correct intensity resid-
uals.

Another component of the weighting function is based on the spatial dis-
tance between correspondences. It follows the same procedure as intensity
based weighting, where spatial distance is considered as residual:

r(G)
i = ‖T∗P1(i)− P2(c(i))‖. (2.12)

The computation of wG(r
(G)
i) follows the same as the weighting for intensity

residual.
wG(r

(G)
i) =

ν + 1

ν + ((r(G)
i − µ(G))/σ(G))2

. (2.13)

The t-distribution also fits the distribution of spatial residuals nicely as shown
in Figure 2.4(e)(f). By the first iteration (Figure 2.4(e)), the spatial distance is
relative large due to the camera motion, the variance is also large due to the
rotation component of the camera motion. By later iteration (Figure 2.4(f)),

2.1. Fast visual odometry 33

the current transformation estimate T∗ gets closer to the true transformation,
thus the mean spatial residual value is closer to zero and the variance is also
much smaller.

To compensate the noises caused by depth sensor model, another weight
wS(i) is assigned. The sensor noise model devised from [89] is used without
considering the influence of surface normal. The weight for the ith corre-
sponding pair is computed based on the average depth value of P1(i) and
P2(c(i)):

wS(i) =
1

0.0012 + 0.0019(eT
z P1(i)+eT

z P2(c(i))
2)2

, (2.14)

where eT
z = (0, 0, 1, 0).

The total weight w(i) for ith corresponding pair combines the three weights
from intensity difference, spatial distance and sensor noise model:

w(i) = wI(r
(I)
i)wG(r

(G)
i)wS(i), (2.15)

where the three weight components are complementary to downweight out-
lying correspondences and correspondences with higher sensor noise. The
multiplication in Equation (2.15) ensures that only corresponding pairs that
have relative larger weight in all three components, are assigned with large
total weight.

Intensity assisted point matching

The conventional ICP method establishes correspondences only based on
spatial distance (Equation (2.4)). In this paper, intensity difference and spa-
tial distance are both used to determine "closest" point by considering the
robust statistic obtained from Equation (2.10)(2.11). Given the query point
pair < P1(i), P2(j) >, the score function for this query pair is:

s(i, j) = wI(I1(ind−1(i))− I2(ind−1(j)))
w(0)

G (‖T∗P1(i)− P2(j)‖), (2.16)

wI() and w(0)
G () are the robust function derived from the previous ICP itera-

tion (Equation (2.9) (2.13)). w(0)
G () has the form:

w(0)
G (r) =

ν + 1
ν + ((r− 0)/σ(G))2

, (2.17)

where the mean value is set to zero, because we adopt the assumption from
the conventional ICP [8], where closer point is more probable to be the cor-
respondence. In case of a large camera motion, where closest point assump-
tion does not necessarily hold, the intensity weight term in Equation (2.16)
provides an additional constrain compared to the conventional ICP. For the
first iteration, where the robust statistic is not available, µ(I) is set to zero,
and σ(I), σ(G) are initialized with 10 and 0.04m in our implementation. The
matching point for P1(i) is then the point that results in the highest score:

34 Chapter 2. Camera localization for object modelling

FIGURE 2.5: The search pattern for matching point: the blue points within the circle
of the radius 3l in the image coordinate are examined

c(i) = argmax
j

s(i, j). (2.18)

Taking advantage of the organized point cloud, the search of matching
point is performed in the image coordinate. Based on the current known
transformation T∗ from last iteration, P1(i) is warped onto target frame to
determine the area of search, where P1(i)’s image coordinate in the target
frame is x′ = π(T∗P1(i)). With x′ as the center, the search pattern is illus-
trated in Figure 2.5, where the blue points within the circle of the radius 3l
are examined.

The offset parameter l ∈ Z+ (Figure 2.5) is used to control the size of the
search area. To cope with large camera motion, the search area should be
larger in the initial iterations, thus l is set with larger values. As the iteration
number grows and ICP converges, l decreases accordingly until 1, which
brings a decreasing search area and increasing precision as ICP proceeds.
Notice although a coarse-to-fine scheme is used here, no subsampling is per-
formed on the target image, therefore precision is retained even for coarser
levels.

Salient point selection

Due to 3D motion between two frames and projective nature of image, some
points in P1 might be occluded in P2. If occluded points from P1 are used
for correspondence estimation, the established correspondences is definitely
wrong, which influences the accuracy of estimated pose (Equation (2.31)).
Therefore, by correspondence estimation, the points from P1 which have high
probability to be occluded in P2, are discarded. These points are background
points that are near the edges of foreground region, where a subtle motion
might cause the occlusion. The point P1(ind(x)) is considered to have high

2.1. Fast visual odometry 35

criterion 1:
intensity residual

criterion 2:
intensity gradient

criterion 3:
depth gradient

selected salient points of

FIGURE 2.6: Salient point selection. Top: the source and the target frame. Middle:
selected salient points based on three different criteria. Down: all salient points
combining three criteria.

occlusion probability, and is discarded if it satisfies:

eT
ZP1(ind(x))− eT

ZP1(ind(x + (0, 5)T)) > τr,
or eT

ZP1(ind(x))− eT
ZP1(ind(x + (0,−5)T)) > τr,

or eT
ZP1(ind(x))− eT

ZP1(ind(x + (5, 0)T)) > τr,
or eT

ZP1(ind(x))− eT
ZP1(ind(x + (−5, 0)T)) > τr,

(2.19)

which implies that P1(ind(x)) is discarded if it has a much larger depth value
than a nearby point.

After background point rejection, a lot of the remaining points in the
source frame still might fail to find their correct correspondences in the target
frame. In particular, the source frame points that lie in homogeneous regions
of intensity image or depth image, have higher probability to be matched
to false correspondences. Figure 2.7 illustrates example cases of correspon-
dence matching result for a translated scene. For a source frame point in
homogeneous region of depth image, the target frame points near the cor-
rect match are sometimes closer to the query point (Figure 2.7a), thus many
false matches can occur. Even with intensity assisted matching term (Equa-
tion (2.18)), a lot of source frame points in homogeneous region of intensity

36 Chapter 2. Camera localization for object modelling

image can still be matched to wrong points (Figure 2.7b). Figure 2.7c shows
that by neglecting homogeneous regions, the ratio of correct matches can be
increased. With higher ratio of correct matches, the correspondences based
incremental transformation result (Equation (2.31)) will be more accurate. To
avoid homogeneous regions, three selection criteria are used to determine
whether a point in the source frame should be considered.

source frame

target frame
actual translation

from source to target

(a) Conventional ICP

source frame

target frame

(b) Conventional ICP + weighting with Equation (2.18)

salient points

target frame

(c) Conventional ICP + weighting with Equation (2.18) + salient point selection

FIGURE 2.7: Point pair matching for a translated scene. (a): Correspondences are
established using all points with nearest neighbour criterion, the ratio of correct
matches is low. (b): Using our matching score function (Equation (2.18)), some
mismatches are corrected, because the matching score includes an intensity term.
(c): The ratio of correct matches is further increased, if the homogeneous regions in
depth or intensity image are avoided.

Intensity residual based: The first criterion is intensity residual. By com-
puting intensity residual of same pixel between two frames, pixels in homo-
geneous regions of intensity image do not result in large intensity difference.
In contrast, pixels in textured regions or border of homogeneous regions,
might result in large intensity residual from camera motion. Therefore the
first criterion for salient points is:

|I1(x)− I2(x)| > τ1. (2.20)

Intensity gradient based: Points inside homogeneous region have low in-
tensity gradient, therefore points with high intensity gradient are selected:

|I1(x + (0, 2)T)− I1(x + (0,−2)T)| > τ2,
or |I1(x + (2, 0)T)− I1(x + (−2, 0)T)| > τ2,

(2.21)

where either gradient in x-direction or y-direction of the image coordinate
should be greater than the gradient threshold τ2. Based on the intensity term
from Equation (2.16), these points have higher probability to distinguish their

2.1. Fast visual odometry 37

Algorithm 2.1 Salient point selection
Require: - Source frame < I1, P1 > and target frame < I2 >
Ensure: - List list that contains indexes of salient points from P1.

- list← ∅
for u = 1 : 4 : width do

for v = 1 : 4 : height do
- get the point to be checked: P(ind((u, v)T)) with intensity I((u, v)T)
if P(ind((u, v)T)) satisfies rejection criterion (Equation (2.19)) then

continue;
end if
for c=1:3 do

if P(ind((u, v)T)) satisfies cth criterion (Equation (2.20) or (2.21) or
(2.22)) then

- list.append(ind((u, v)T));
- continue;

end if
end for

end for
end for

correct correspondence.

Depth gradient based: Similar to intensity, points inside a homogeneous
depth space also have ambiguity to find its correct correspondence. There-
fore the third criterion is depth gradient, where points that contains variation
in the depth space are selected:

|eT
ZP1(ind(x+(0,2)T))−eT

ZP1(ind(x+(0,−2)T))|
eT

ZP1(ind(x))
> τ3,

or |eT
ZP1(ind(x+(2,0)T))−eT

ZP1(ind(x+(−2,0)T))|
eT

ZP1(ind(x))
> τ3.

(2.22)

In summary, for salient point selection, one rejection criterion and three ac-
ceptance criteria are used. The algorithm to retrieve the salient points is
described in Algorithm 1. The salient point selection is efficient, because a
salient point only needs to meet one of the three criteria. As soon as the
point fits one criterion, the algorithm skips the rest of criteria and proceeds
to check next point. The salient points selected based on different criteria are
illustrated in Figure 2.6.

As in Algorithm 2.1, only every 16th source frame point is checked for
its saliency by only checking every 4th row and 4th column. This reduces
the computation time for salient point selection stage by a factor of 16, but
the lost of accuracy is not too much because no subsampling is performed on
the target frame < I2, P2 >. In contrast, optimization methods that involves
dense pixel-wise energy minimization have to [57][52] perform subsampling
on both source and target frames to reduce computation cost, which results
in a relative higher accuracy lost.

38 Chapter 2. Camera localization for object modelling

For each ICP iteration, a different subset of salient points is randomly
selected. Then only the subset of salient points is used for registration. The
reason of the random selection for each iteration is: firstly, it further reduces
the computation cost by using less points per iteration; secondly, all selected
salient points should have equal possibility to contribute in registration. The
number of this randomly selected subset per iteration is set as ca. 100− 200,
where it is enough to generate accurate 6 DOF pose from this amount of
correspondences.

2.1.5 Experimental results

The proposed method is evaluated using the TUM RGB-D benchmark [115].
The benchmark contains 89 RGB-D video sequences, for each video sequence,
accurate ground truth for camera motion is provided by a motion capture
system. We evaluated our method on 14 video sequences, which are com-
monly used in the previous publications. For evaluation of visual odometry
accuracy, the root mean square error (RMSE) of translational drift in m/s is
used, which is a standard metric to measure accuracy of visual odometry
method [115].

In the following, the proposed method is first compared with other RGB-
D based visual odometry methods [57, 135, 38] that use both intensity and
depth data. Then further comparison with depth only based methods [98,
52] is performed, where all intensity related process are turned off. The com-
putation performance is also evaluated with different parameter settings. Fi-
nally we show some qualitative result of reconstructed scenes based on our
visual odometry method.

The experiments are performed on a desktop computer with Ubuntu 12.04,
equipped with Intel Core i7-4790K CPU (4 GHz) and 16GB RAM. Notice that
our implementation only runs on a single CPU thread.

Accuracy

For evaluation, commonly used video sequences from TUM datasets in pre-
vious publications are selected. For each ICP iteration, a subset of 100 salient
points are used. In total, 30 iterations of ICP are performed: 3 levels with 10
iteration per level. For the first 10 iterations, the offset l for correspondence
search is set to 6, for the second 10 iterations l is set to 3 and for the last 10 it-
erations l is set to 1. Every 5th frame is used as the source frame (< I1, P1 >),
and the current frame is used as the target frame (< I2, P2 >). The threshold
values for selecting salient points: < τr, τ1, τ2, τ3 > (Equation (2.20-2.22)) are
empirically set as < 0.02, 30, 30, 0.03 > and are fixed in all experiments.

To prove the contribution of each component in our method, ’fr1/desk’
and ’fr1/desk2’ sequences are used. Selection (s), matching (m) and weight-
ing (w) component of our method are incrementally added to the conven-
tional ICP method, Table 2.1 shows that each component provides an incre-
mental improvement on the accuracy. Among the three components, the
selection component contributes the most by neglecting the source frame

2.1. Fast visual odometry 39

TABLE 2.1: On the two ’fr1’ desk sequences, each of the three algorithm components
provides incremental contribution to the accuracy.

Method RMSE of translational drift[m/s] Average improvement
fr1/desk fr2/desk

ICP 0.175 0.182 0%
ICP+s 0.045 0.056 71.7%
ICP+s+w 0.044 0.051 73.4%
ICP+s+m 0.029 0.041 80.39%
ICP+s+m+w 0.021 0.038 83.25%

TABLE 2.2: RMSE of translational drift (m/s): comparison with other RGB-D based
method

Sequence
average
velocity
[m/s]

average
angular
velocity

[◦/s]

Our
Method

[74]

RGB
+D
[57]

RGB
+D

+KF
[57]

RGB
+D

+KF
+Opt
[57]

ICP
+RGBD

[135]

Inverse
depth
[38]

fr1/desk 0.413 23.327 0.0217 0.036 0.030 0.024 0.0393 0.026
fr1/desk2 0.426 29.30 0.0381 0.049 0.055 0.050 - 0.0387
fr1/room 0.344 29.882 0.0416 0.058 0.048 0.043 0.0622 0.0491
fr2/desk 0.193 6.388 0.0204 - - - 0.0208 0.0121
fr1/xyz 0.244 8.920 0.018 0.026 0.024 0.018 - -
fr1/rpy 0.062 50.147 0.031 0.040 0.043 0.032 - -
fr1/360 0.210 41.600 0.072 0.119 0.119 0.092 - -

fr1/floor 0.258 15.071 0.10 fail 0.090 0.232 - -
fr1/teddy 0.315 21.320 0.048 0.060 0.067 0.043 - -
fr1/plant 0.365 27.891 0.018 0.036 0.036 0.025 - -
fr3/office 0.249 10.188 0.016 - - - - -

fr3/
nostructure

_texture
_far

0.299 2.890 0.047 0.073 - - - -

fr3/
structure

_notexture
_far

0.166 4.000 0.034 0.038 - - - -

fr3/
structure
_texture

_far

0.193 4.323 0.023 0.039 - - - -

40 Chapter 2. Camera localization for object modelling

TABLE 2.3: RMSE of translational drift (m/s): comparison with other depth alone
based methods

fr1/desk fr1/desk2 fr1/room fr2/desk
Our method
(depth only) 0.0297 0.384 0.0484 0.0330

Sparse depth [98] 0.058 0.073 0.073 0.028
Fast 3-D [52] 0.0366 0.0528 0.0489 0.0313

points that have higher probability to be incorrectly matched. The match-
ing component provides the second largest contribution by combining in-
tensity term for more accurate correspondence matching process. Although
the weighting component provides a small contribution for accuracy, it is es-
sential for providing the parameters of matching score function (Equation
(2.16)), which are needed for the matching component.

Table 2.2 shows the comparison of our method and other state-of-the-art
visual odometry methods based on both depth and intensity, where in Table
2.2, ’-’ means that result is not provided in the corresponding literature. Since
the optimal parameter settings of other methods are unknown, for fair com-
parison, we only listed the reported values from the original publications [57,
135, 38]. The proposed method, IAICP, provides the best accuracy in 11 of
the 14 tested sequences, and even outperforms the method RGB+D+KF+Opt
from [57] that uses loop closure detection and global pose optimization. This
is because the proposed method can avoid some local minimum by using
sparse and distinctive salient points, while energy minimization based meth-
ods rely on all image pixels.

There is another group of methods that only uses depth information, the
comparison with two recent ones [98, 52] are conducted. For comparison,
depth only based method is simulated by setting all pixels’ color to a same
value. As shown in Table 2.3, the proposed IAICP method outperforms in
most sequences. This indicates that IAICP can also handle poor lightening
condition and textureless scene.

Computation time vs. Performance

Real-time capability is crucial for online application, therefore some algo-
rithms require GPU for parallelization and some others operate on lower
resolution image and hence loose some accuracy. In contrast, our method
uses intelligent salient point sampling method without sacrificing accuracy.
Due to sparse sampling in the source image, a high frame rate of 78 Hz using
only single CPU thread is achieved. The frame rate is expected to be even
higher if GPU programming is used, however 78 Hz is enough for the real-
time requirement. The reported computation time of different methods and
the hardware settings are compared in Table 2.4, where the computation time
of our method is obtained by using parameter settings from the previous "Ac-
curacy" subsection. The ’-’ symbol in Table 2.4 means that GPU programming
is not used. Table 2.4 shows that our method is the only one that performs on

2.1. Fast visual odometry 41

TABLE 2.4: Comparison of computation time per frame [ms] vs. hardware setting
vs. image resolution

Time CPU GPU Resolution
Our method 12 i7-

4790K
@4.0GHz

- 640×480

RGB+D+KF [57] 32 i7-
2600
@3.4GHz

- 320×240

ICP+RGB-D [135] 18 i7-
3960X
@3.3GHz

NVIDIA
GeForce
680GTX

640×480

Inverse depth [38] 47 i5-
2500
@3.3GHz

NVIDIA
GeForce
660GTX

640×480

Sparse depth [98] 67 i7-
2860QM
@2.5GHz

- VoxelGridFilter
voxel size:
1cm

Fast 3-D [52] 28 i7-
3820
@3.6GHz

- 320×240

the original image resolution (640 × 480) without GPU programming which
can keep up the camera frame rate.

Furthermore, different number of iterations and amount of salient points
are tested and the influence for accuracy and computation performance are
compared. We use three fixed levels of offset l in the correspondence search-
ing stage. For each level, the number of iterations varies. And for each iter-
ation, the number of salient point used for correspondence estimation is also
varied.

Table 2.5 shows that our method performs well with a small number of
iteration and a small number of salient points. Our method achieved rea-
sonable result even using only 10 salient points per ICP iteration, achieving
100 Hz, which is much higher than the camera frame rate, saving a lot of
computational resource for additional tasks such as scene reconstruction. As
the number of iteration grows, the drift error does not change much. As the
number of salient point per iteration grows, the drift error decreases. This
implies that the number of salient point is more important than the number
of iteration for visual odometry.

Qualitative result

To illustrate the performance of our method qualitatively, Figure 2.8 shows
four reconstructed scenes from TUM dataset. The quality of scene reconstruc-
tion from video sequence is sensitive to the accuracy of visual odometry, the
error of frame-to-frame registration result can be accumulated to a large drift.
Therefore the usual remedy to correct large drift error is to use loop closure
detection and global pose graph optimization [57]. However, to show the
accuracy of the proposed visual odometry method, no loop closure detection

42 Chapter 2. Camera localization for object modelling

TABLE 2.5: Different parameters vs. precision vs. computation time

Iterations
per level

#Salient
points

per iteration
RMSE of translational drift [m/s] Time [ms]

fr1/
desk

fr1/
desk2

fr1/
room

fr2/
desk

mean max

10 100 0.0217 0.0381 0.0416 0.0204 12.8 17.9
2 100 0.0255 0.0450 0.0425 0.0240 9.3 13.6
5 100 0.0219 0.0369 0.0442 0.0225 10.9 15.0
20 100 0.0218 0.0389 0.0440 0.0184 17.8 22.9
50 100 0.0219 0.0373 0.0455 0.0188 30.4 34.0
100 100 0.0226 0.0389 0.0554 0.0182 58.7 67.6
10 10 0.0274 0.0400 0.0781 0.0312 9.5 12.9
10 20 0.0260 0.0382 0.0467 0.0236 9.9 13.7
10 50 0.0226 0.0384 0.0466 0.0200 11.8 13.6
10 200 0.0219 0.0379 0.0430 0.0195 16.7 22.4
10 500 0.0217 0.0367 0.0415 0.0196 27.3 31.9

and no global pose graph optimization are performed for generating the re-
sults of Figure 2.8. The colored point cloud of each frame is simply added
into a global point cloud based on the estimated visual odometry result. The
estimated visual odometry result is still accurate enough to reconstruct the
scene without large drift.

2.1.6 Summary and Conclusion

In this section, a fast and robust visual odometry estimation method based
on intensity assisted ICP (IAICP) is presented. By contributing in the selec-
tion, matching and weighting stages, IAICP improves the conventional ICP
significantly. Intelligent salient point selection is performed on the source
frame, thus drastically reduced the computation time. Correspondences are
established by searching nearby points in the image coordinate. With weight-
ing function devised from statistics, robustness against outlying correspon-
dences is ensured. The proposed method was evaluated on the TUM Dataset
both quantitatively and qualitatively. In terms of translational drift, it outper-
forms state-of-the-art methods in 11 out of the 14 tested video sequences. Our
method runs with an average frame rate of 78 Hz using a single CPU thread.
Experimental results showed that our proposed approach achieved overall
better accuracy than approaches with GPU parallelization. With changes of
parameter settings, our method can even achieve 107 Hz by loosing ca. 12%
precision of drift error. With the achieved high frame rate, substantial com-
putation resources can be saved for other online tasks.

Although the proposed visual odometry method can provide reconstruc-
tion result with good quality (Figure 2.8), it still suffers from the certain
drawbacks. Firstly, the frame-to-frame motion estimation still suffers from
estimation error, where this error can be accumulated as the camera moves

2.1. Fast visual odometry 43

(a) fr1/desk (b) fr1/room

(c) fr3/nostructure_texture_far (d) fr3/structure_texture_far

FIGURE 2.8: Reconstructed scene from TUM benchmark sequences based on esti-
mated visual odometry.

around the object. The accumulated error is called the drift problem, which
is not correctable with a pure visual odometry method. Therefore, if the
camera traverses with a long trajectory, the accumulated drift could be ex-
tremely large to deteriorate the reconstruction result. Secondly, the success
of IAICP method is based on the assumption that the entire environment
is static, where the only movable object is the camera itself, thus the whole
scene moves rigidly with respect to the camera. However, in practice, many
dynamic objects exist in the world, such as human, robot manipulator. These
dynamic objects violate the static assumption, causing inconsistent rigid mo-
tion of the scene, therefore causing failure of camera ego-motion estimation.

44 Chapter 2. Camera localization for object modelling

2.2 RGBD-SLAM in dynamic environment

In the previous section, the pure visual odometry method, IAICP (Intensity
Assisted Iterative Closest Point) was introduced, which is designed for static
environment. As discussed in the last section, it suffers from the "drift" prob-
lem and influence of dynamic objects. In this section, in order to handle these
limitations, extension to IAICP is proposed to handle dynamic environment.
Furthermore, the visual odometry method is integrated to a SLAM frame-
work to correct the potential "drift" problem.

2.2.1 Motivation

To simplify the problem formulation, most state-of-the-art visual odometry
methods only consider a static environment. However, dynamic objects, such
as human, exist in many real life environments. While small portion of dy-
namic objects can be filtered by viewing them as noise, large proportion of
dynamic objects will violate the static environment assumption strongly, thus
many existing visual odometry methods are limited for the usage of real ap-
plications. This section proposes a real-time depth edge based RGB-D SLAM
system for dynamic environment. The proposed method is based on frame-
to-keyframe registration, where only depth edge points are used. To reduce
the influence of dynamic objects, a static weighting method is proposed for
edge points in the keyframes. Static weight indicates the likelihood of one
point being part of the static environment. This static weight is added into
the Intensity Assisted Iterative Closest Point (IAICP) method (Chapter 2.1)
to perform the registration task. Furthermore, the extended visual odometry
method is integrated into a SLAM (Simultaneous Localization and Mapping)
system, where an efficient loop closure detection strategy is used. Both the vi-
sual odometry method for dynamic environment and the integrated SLAM
system are evaluated with challenging dynamic sequences from the TUM
RGB-D dataset [115]. Compared to state-of-the-art methods [57, 61, 116], the
proposed method reduces the estimation error significantly.

The key features of the proposed method are:

• A novel efficient static weighting method is proposed to reduce the in-
fluence of dynamic objects on pose estimation. It calculates the likeli-
hood of each keyframe point being part of the static environment.

• The static weighting terms are integrated into the IAICP method. This
leads to a real-time RGB-D visual odometry method for dynamic envi-
ronment.

2.2.2 Related Works

Current RGB-D visual odometry methods can be roughly categorized into
two groups. To handle dynamic objects, different strategies are used for these
two groups.

2.2. RGBD-SLAM in dynamic environment 45

Dense visual odometry

The first group is dense visual odometry [58, 57, 124, 83]. These methods
formulate the task as an energy minimization problem. The energy function
is usually the sum over pixel-wise intensity/depth difference between the
target image and warped source image. The camera’s 6 DOF motion will be
then iteratively optimized using the defined energy function. Unfortunately,
this form of energy function strongly depends on the static environment as-
sumption, where the whole scene moves rigidly with respect to the camera.
In a dynamic environment, even with the correct motion, many pixels from
warped target frame do not align with the source frame due to the incon-
sistent movement of the dynamic objects, resulting in large intensity/depth
difference, thus the energy function does not have a minimum at the correct
motion. To compensate potential dynamic objects, they need to be detected
and their influence need to be removed from the optimization process. Wang
et al. calculate dense optical flow from RGB images, and dynamic objects
can be then found by clustering the image based on point trajectories [131].
The pixels of dynamic objects are then excluded for energy function min-
imization. Their method improves the robustness against dynamic object
effectively, but the optical flow estimation and clustering require heavy com-
putation, thus their method cannot be performed in real-time. Sun et al. [116]
use intensity difference image to identify the boundaries of dynamic objects.
Then dense dynamic points are segmented using the quantized depth im-
age. Their method achieves stable performance for highly dynamic scenes,
however, the segmentation process takes half second for each frame, which
severely limits the real-time applicability. Kim et al. [61] propose to use depth
difference between the current frame and multiple warped previous frames
to calculate a static background model, where pixels with large depth dif-
ference will be considered as dynamic pixels. However, the effectiveness of
their method is limited to forward-backward motion with respect to the cam-
era. If the dynamic object moves parallel to the image plane, only the bound-
ary of dynamic object can be found effectively using depth difference due to
the aperture problem. Therefore the influence of dynamic object cannot be
totally removed with their method.

Correspondence based method

The second group is correspondence based method [88, 43, 44, 23]. In these
methods, correspondences are firstly matched between the source and target
frames. Then the camera’s ego-motion is estimated using closed-form solu-
tion from the correspondences. The correspondence can be found by match-
ing feature descriptors of sparsely detected keypoints (such as SIFT, SURF)
[44], or for Iterative Closest Point [8] based methods [88, 50], correspondences
are densely established using a certain distance metric. Since the majority of
points from the static environment follow the same rigid motion (inverse mo-
tion of the camera ego-motion), RANSAC regression is usually used to filter
out dynamic objects [60, 71]. However, if dynamic feature points are the ma-
jority in a frame, RANSAC has a low success rate, which results in wrong

46 Chapter 2. Camera localization for object modelling

estimate of the set of static points.

To compensate dynamic objects, all above mentioned methods require
a correspondence matching step, where either dense or sparse correspon-
dences are needed. While accurate dense correspondences matching is time
consuming [131], fast approximation [61] suffers from the aperture problem.
Accurate matching of 2D keypoints can be performed in real-time [60, 71].
However, sparse 2D keypoints can be distributed unevenly in the environ-
ment. If a dynamic object has many texture, then the dynamic keypoints will
outnumber static keypoints, which may result in failure in RANSAC regres-
sion. Therefore additional IMU sensor data are often used to compensate this
issue [60, 71].

2.2.3 IAICP for dynamic environment

Considering the trade-off between dense methods and sparse keypoints based
methods, semi-dense depth edge is chosen to find correspondences. Depth
edge contains the structure information of the environment. It was shown
that accurate visual odometry can be estimated based on depth edge [9, 17].
Moreover, depth edge points are sparsely present, therefore they can be effi-
ciently matched and the amount of depth edge points is more balanced than
2D keypoints. In the proposed method, edge points between frames will be
matched by using both geometric and intensity distances [74] (Chapter 2.1).
Upon matched edge points, a novel static weighting method is proposed to
downweight dynamic points for the visual odometry method.

Notation

Given a 3D point p = (x, y, z, 1)T in homogeneous coordinate relative to
the camera, the image pixel coordinate x = (u, v)T (u ∈ [0, height − 1], v ∈
[0, width− 1]) of p is calculated with the camera projection function π: x =

π(p) = (x fx
z + ox, y fy

z + oy)T, where height and width are the pixel number in
image’s x- and y- direction, fx, fy are the camera focal lengths and ox, oy are
the camera center coordinates.

Due to the ego-motion of the camera, a 3D point p in the keyframe (timestep
k) coordinate is rigidly transformed in the current frame (timestep t) with the
transformation matrix Tt

k ∈ SE(3). The point’s new coordinate in the current
camera coordinate frame is then:

p′ = Tt
kp =

[
Rt

k tt
k

0 1

]
p (2.23)

The pixel x’s corresponding 3D point p is indicated as Pt(ind(x)), where
ind() is the mapping from the image coordinate to the point index in the
organized point cloud’s one-dimensional list: ind(x) = ind((u, v)T) = v ×
width + u. To find out the image coordinate x of a point index i, the inverse
mapping is: x = ind−1(i) = (i − b i

widthcwidth, b i
widthc)T, where b·c denotes

the floor operator.

2.2. RGBD-SLAM in dynamic environment 47

Keframe Edge Points

Current Frame

Keyframe Static Weights

Edge Points of Current Frame

IAICP
Correspondence

matching

Correspondence
weighting

Incremental
transformation

estimation

Static weights
estimation

Estimated TransformationInitialize or Update

Foreground depth
edge extraction

FIGURE 2.9: Overview of the proposed visual odometry system for dynamic envi-
ronment.

Overview

The overview of the proposed visual odometry method is illustrated in Fig
2.9. For each incoming frame (current frame), foreground edge points are
first extracted, where only extracted edge points are used for odometry es-
timation. Every Nth frame is chosen to be a keyframe. Alternatively one
can consider to select keyframe based on camera motion. In highly dynamic
environment, however, the visual content changes drastically even when the
camera does not move. In this case, there might not be enough common visi-
ble points to estimate the relative pose, thus it can fail to estimate camera mo-
tion. For each keyframe, static weights for the edge points are estimated and
updated. The static weight indicates how likely a point belongs to the static
environment. Then the relative coordinate transformation from the keyframe
to the current frame is estimated using IAICP algorithm (Chapter 2.1), where
static weights are integrated to IAICP’s correspondence weighting process,
in order to reduce the effect of dynamic moving objects to the transformation
estimation. The static weights for the keyframe will keep updating based on
the estimated motion, until the next keyframe is generated.

48 Chapter 2. Camera localization for object modelling

background environment

foreground object

background environment

foreground object

FIGURE 2.10: Two types of depth edge points exist. The first type is foreground
depth edge (green points), these edges present the boundary of foreground object.
By changing the camera viewpoint, the location of the foreground depth edge re-
mains stable. Another type is occluded depth edge (red points). This type of edge
is caused by occlusion of other objects. The position of occluded depth edge is very
sensitive to camera viewpoint.

FIGURE 2.11: Foreground depth edge extraction and static weighting examples
taken from "fr3/walking" sequences. First row: the original RGB image. Second
row: foreground depth edge. Third row: static weighting result, where green indi-
cates static and red indicates dynamic.

Foreground depth edge extraction

Depth edge points are points that have large depth discontinuity in their
neighourhood. Two types of depth edge points exist: foreground edge points
and occluded edge points (Figure 2.10). Foreground edge points present
boundaries of objects, which are in front of other objects. Occluded edge
points are part of background objects, which do not represent the actual ge-
ometry boundaries, they exist due to the occlusion of foreground objects. The
foreground edge points are stable to a moving camera, because they capture
the actual surface boundaries of the objects. The occluded edge points are
sensitive to a moving camera, therefore they need to be excluded for estimat-
ing camera trajectory.

Foreground depth edge points play an important role for iterative closest
point method. As evidenced in [74, 9], using foreground depth edge points
can improve the accuracy of point cloud registration task. Because by using
depth edge points, the probability of finding correct correspondence is higher
than using uniformly sampled points. Moreover, correct correspondences
will be also crucial for the static weighting process, which will be introduced
later.

2.2. RGBD-SLAM in dynamic environment 49

Given the point cloud Pt, a set Bt consisting of foreground edge point
indices is constructed. Firstly the depth differences {hi}4

i=1 between each
point and its four neighbours are computed:

hi = eT
ZPt(ind(x))− eT

ZPt(ind(x + oi)), (2.24)

where eZ = (0, 0, 1, 0)T is used to extract depth value of one point and the
four offset vectors < o1, o2, o3, o4 > are < (0, b)T, (0,−b)T, (b, 0)T, (−b, 0)T >.
An offset b > 1 is used here, because a lot of depth difference between direct
neighours (b = 1) cannot be computed due to a lot of NaN (Not a Num-
ber) value pixels that exist near the depth discontinuous area. On the other
hand, a larger b value causes more points to be detected as depth edge, re-
sulting in thicker edges. Balancing between the NaN value avoidance ef-
fect and the thickness of depth edge, b = 4 is empirically set. A point is
then considered as foreground edge points and added into the edge point set
Bt = {Bt, ind−1(x)}, if it fulfills the following conditions:

max(h1, h2, h3, h4) < eT
ZPt(ind(x))τb,

max(abs(h1 − h2), abs(h3 − h4)) > eT
ZPt(ind(x))τf .

(2.25)

The first condition rejects occluded edge points, because occluded points
have a much larger depth than their neighbours, where eT

ZPt(ind(x))τb is the
depth depended threshold. With a very large τb, no occluded point can be
rejected. If τb is too small, a lot of actual foreground edge points can be also
rejected due to slightly larger depth than neigbouring pixels. The second
condition checks whether a point can be considered as edge point by check-
ing the depth discontinuity with a threshold eT

ZPt(ind(x))τf . If τf is too large,
then no edge points can be detected and if τf is too small, almost every point
is detected as edge. In the experiments, τb and τf are set as 0.015m and 0.04m
respectively. In the second row of Figure 2.11, some examples of foreground
depth edge extraction are illustrated.

Static weight estimation

Two types of points exist in the environment: points from static object and
points from dynamic moving object. Due to the ego-motion of the camera,
observed points are constantly moving in the camera’s coordinate. Compar-
ing point clouds from two frames, static points are moved with same rigid
transformation, which is the inverse of camera’s ego-motion, while dynamic
points do not follow the same rigid transformation due to their own move-
ments.

The static weights for a source point cloud Psrc are estimated by compar-
ing it to a target point cloud Ptgt. The static weight is only estimated for
the foreground depth edge points {Psrc(i)}i∈Bsrc , where Bsrc is the set of edge
point indices. The static weight of Psrc(i) is denoted as wsrc,tgt

i , and it is esti-
mated based on the Euclidean distance between Psrc(i) and the correspond-
ing point Ptgt(c(i)) in the target cloud:

di =
∥∥∥T̂tgt

srcPsrc(i)− Ptgt(c(i))
∥∥∥ ,

50 Chapter 2. Camera localization for object modelling

where c(i) ∈ Btgt is the found correspondence point index in the target cloud
and T̂tgt

src is the estimated transformation that aligns the source cloud to the
target cloud. In case that c(i) cannot be found in the close vicinity of Psrc(i),
di is set to a large constant value D.

A static point Psrc(i) after transformation becomes T̂tgt
srcPsrc(i). Assuming

that c(i) and T̂tgt
src are both correct, T̂tgt

srcPsrc(i) should be aligned perfectly on its
corresponding point Ptgt(c(i)). Therefore for a static point, di should be zero,
or a small value due to sensor noises. Taking advantage of this characteristic,
the static points can be distinguished from the dynamic points based on the
statistic over {di}i∈Bsrc . Following [57], the static weight wsrc,tgt

i is estimated
based on the Student’s t-distribution

wsrc,tgt
i = ν0+1

ν0+((di−µD)/σD)2 , (2.26)

σD = 1.4826 Median{|di − µD|}di 6=D (2.27)

ν0 is the degree of freedom of t-distribution, where a larger ν0 results in
steeper decrease of wsrc,tgt

i with increasing di. Notice that points without a
valid correspondence in the close neighbourhood (Psrc(i)di=D) are not used
for computing σD. In the experiments, ν0 is empirically set to 10. The mean
value µD is manually set to zero, because smaller distance indicates a more
static point. The variance σD is estimated using the median absolute devia-
tion.

Figure 2.12 shows an example of the histogram of correspondence dis-
tance and t-distribution. The chosen distribution fits the actual experimental
data nicely. A zero valued di indicates highest static likelihood, a small di is
caused by sensor noises or discrete sampling of the environment, and a large
di is caused by dynamic movement that differs from the camera motion. The
procedure to estimate the static weights {wsrc,tgt

i }i∈Bsrc is summarized in Al-
gorithm 2.2.

Distance to correspondence [m]

p
ro

b
a
b

ili
ty

FIGURE 2.12: Histogram of correspondence distance and pdf of t-distribution. The
pdf of t-distribution fits the actual data nicely.

2.2. RGBD-SLAM in dynamic environment 51

In the proposed visual odometry method, the static weights are only es-
timated for keyframes, where keyframes are always set as the source frame.
Assuming that the latest keyframe is Pk with k as the index of the keyframe,
the static weight of keyframe points are calculated by comparing the keyframe
to two other target frames: one is the previous keyframe Pk−N, another one
is the latest frame at time step t: Pt. The static weight for the point Pk(i) is
defined as wS(i):

wS(i) = αwk,k−N
i + (1− α)wk,t

i , (2.28)

where wk,k−N
i is computed by setting last keyframe Pk−N as the target cloud

in Algorithm 2.2, and wk,t
i is computed by setting the current frame Pt as

target cloud. In the experiments, α is empirically set as:

α =

{
1 if t = k
0.5N/(N + t− k) otherwise (2.29)

As shown in Figure 2.13, if the keyframe is the current frame, the static
weights are initialized with wk,k−N

i . With passage of time, more influence
from current frame is considered where the initialization term wk,k−N

i and
the update term wk,t

i are complementary to each other .

FIGURE 2.13: Initialization and update setting of static weighting for keyframe k.

The update term wk,t
i is used for two reasons. i) Previously static ob-

ject can start moving after the keyframe has been defined, where previously
static points can convert to dynamic points. If only the initialization term
is used, the new dynamic points can only be detected by the time of the
new keyframe k + N. This would result in drift problem in the time inter-
val [k + 1, k + N − 1]. ii) Due to occlusion of foreground objects, the visi-
ble part of the environment always changes. Newly occluded part from the
keyframe cannot find correct correspondences in the new frame Pt, there-
fore newly occluded part should be avoided in the transformation estimation
process. Occluded points usually have large distance to their falsely found
correspondences, thus by using wk,t

i , they can be efficiently downweighted.
The initialization term is important as well as the update term. It is es-

timated by comparing the keyframe with last keyframe. If only the update
term is used, dynamic objects with small velocity cannot be distinguished
effectively. For instance, for the time step k + 1, dynamic points with small

52 Chapter 2. Camera localization for object modelling

Algorithm 2.2 Static weighting for depth edge points

Require: - a source cloud Psrc and edge point set Bsrc
- a target cloud Ptgt
- corresponding point index for source cloud edge points {c(i)}i∈Bsrc

- current transformation estimate T̂tgt
src

Ensure: - static weights: wsrc,tgt
i for i ∈ Bsrc

for i ∈ Bsrc do
Calculate distance di between warped source point T̂tgt

srcPsrc(i) and its
corresponding point Ptgt(c(i))

end for
Calculate variance σD of {di}i∈Bsrc (eq. (2.27))
for i ∈ Bsrc do

Estimate static weight wsrc,tgt
i (eq. (2.26))

end for

velocity is not moved too far within one frame (usually 30 [ms]), the dis-
tance between correspondences might land in the "small noise" range of static
points. On the contrary, the initialization term is calculated with a relative
larger time difference N, thus the di for small velocity objects is larger and
more distinguishable from static points.

In the third row of Figure 2.11, some examples of estimated static weights
are illustrated. It shows that our method can effectively downweight dy-
namic points for different cases, including one person moving, two persons
moving and part of one person moving.

Motion estimation using IAICP

The motion estimation is performed using Intensity Assisted Iterative Clos-
est Point (IAICP) method (Chapter 2.1). IAICP utilizes intensity informa-
tion of each point in the correspondence matching and weighting stages. For
dynamic environment, the static weight is combined into original IAICP to
reduce the influence of dynamic object on the transformation estimation.

Given a source frame < Psrc, Isrc > and a target frame < Ptgt, Itgt >, IAICP
estimates the relative transformation that aligns the source cloud Psrc to the
target cloud Ptgt. IAICP is an iterative method, where the transformation
matrix T∗ is usually initialized with identity matrix or with a motion predic-
tion. In the experiments, T∗ is initialized with first order motion prediction.
Then the optimal transformation value T∗ is searched iteratively, where the
kth iteration can be summarized as:

• Search for each depth edge point Psrc(i)i∈Bsrc of the source cloud a point
in the target cloud as correspondence. For Psrc(i), the index of the
corresponding point index in the target point cloud Ptgt is denoted as
c(i) ∈ Btgt, where

c(i) = argmin
j
‖T∗Psrc(i)− Ptgt(j)‖. (2.30)

2.2. RGBD-SLAM in dynamic environment 53

• Compute the optimal incremental transformation Tk that minimizes
the sum of weighted Euclidean distance between the established cor-
respondences:

Tk = argmin
T

∑
i

W(i)‖TT∗Psrc(i)− Ptgt(c(i))‖, (2.31)

where W(i) is a weighting term that indicates the quality of correspon-
dence. The equation is usually solved with a closed-form solution [22]
such as Singular Value Decomposition [4]. For efficient computation,
not all edge points are used to compute eq. (2.31), instead we randomly
select 120 depth edge points for each ICP iteration.

• Update T∗ as: T∗ ← TkT∗.

In the following, the computation of weighting term W(i) and correspon-
dence matching term c(i) will be explained.
Correspondence weighting: In practice, not every established correspon-
dence is determined correctly. The outliers badly influences the transforma-
tion estimation. To compensate outliers, a weighting term W(i) for corre-
sponding pair < Psrc(i), Ptgt(c(i)) >, is estimated. The weighting is based
on an intensity term wI(i) (Equation 2.9), a geometric term wG(i) (Equation
2.13) and also the static weighting term wS(i) (Equation 2.28):

W(i) = wI(i)wG(i)wS(i). (2.32)

Using the proposed weighting terms, outlying correspondences with large
intensity difference or having large geometric distance are intuitively down-
weighted. Furthermore, the static weight is responsible to downweight the
influence of dynamic object.
Correspondence matching: Taking advantage of the organized point cloud,
the search of matching point is performed in the image coordinate. By warp-
ing the source frame point Psrc(i) with the current estimate of T∗, the im-
age coordinate of the warped point is x′ = π(T∗Psrc(i)). Then target depth
edge points Psrc(j)j∈Bt in the neighbourhood of x′ are considered as candi-
date of correspondence for Psrc(i), where neighbourhood N(x′) is defined as
a square around image coordinate x′.

Having a query pair < Psrc(i), Ptgt(j) > to check, a score function for this
pair is given as:

s(i, j) = wI(Isrc(ind−1(i))− Itgt(ind−1(j)))
w(µ=0)

G (‖T∗Psrc(i)− Ptgt(j)‖). (2.33)

wI(·) (Equation (2.9)) and w(µ=0)
G (·) (Equation (2.17)) are weighting functions

derived from last ICP’s iteration, where w(µ=0)
G sets the mean value to zero,

because more closer point is more probable to be true corresponding point.

54 Chapter 2. Camera localization for object modelling

Then the correspondence is taken as the point that maximizes the score func-
tion:

c(i) = argmax
j∈(Btgt∩N(x′))

s(i, j). (2.34)

2.2.4 Integration to SLAM

A pure visual odometry system suffers from the drift problem, because cur-
rent absolute pose is obtained by accumulating previous ego-motion esti-
mates, which also accumulates the estimation errors. To compensate the drift
problem, the visual odometry method is integrated into a pose graph based
SLAM system [35]. In the pose graph, consecutive keyframes are connected
with a pose constraint, that is from the visual odometry method. In addition
to that, if a keyframe detects previously seen environment, new constraints
are added to previous keyframes, thus the accumulated drift can be corrected
using graph optimization considering all constraints. (refer to [35] for details
about pose graph optimization.) In the following, the procedure of loop clo-
sure detection will be presented.

As a new keyframe Pk is set, loop closures of Pk with 10 randomly selected
previous keyframe Pr are checked. A loop closure is detected between Pk and
Pr, when three conditions are fulfilled.

• Geometric proximity: The estimated camera positions of the two keyframes
should not be too far away from each other:

‖transl(T̂r
k)‖ < τdistance (2.35)

where transl(T) extracts the translation vector from the transformation
matrix T, and the threshold τdistance is set to 1.5m in the experiments.
This is because distanced keyframes have lower probability of viewing
same part of the environment.

• Common visible part: The two keyframes should have common visible
environment in view. A point from Pk, Pk(i) is also possibly visible in
Pr, if the warped point is still inside the image border:

π(T̂r
kPk(i)) ∈ {[0, width− 1]× [0, height− 1]}. (2.36)

For efficient checking, 100 edge points are randomly selected from Pk.
If less than 30% of points are visible, no loop closure between Pk and Pr
is defined.

• Forward-backward consistency check: If the previous two conditions
are satisfied, the pair-wise registration is then performed using above
described visual odometry method. The registration is performed twice
by setting Pr as source frame in one time and as target frame in the other

2.2. RGBD-SLAM in dynamic environment 55

time. Two registration results T̂r
k and T̂k

r are compared for forward-
backward consistency. The consistency check can be passed if:

‖transl(T̂r
kT̂k

r))‖ < τdistanceDi f f ,

‖rotation(T̂r
kT̂k

r))‖ < τangleDi f f ,
(2.37)

where thresholds are set as τdistanceDi f f = 0.02m and τangleDi f f = 3◦.

If the keyframe pair < Pk, Pr > fulfills all three conditions, a new relative
pose constraint T̂r

k between them is added into the pose graph, which means
detection of a new loop closure.

2.2.5 Experimental results

The experiments are conducted with TUM RGB-D dataset [115]. Many pre-
vious papers [57, 58, 74, 38, 135] evaluated their methods on this dataset
and achieved good results, however the sequences containing dynamic ob-
jects were not often used for evaluation. In these sequences, people move in
the environment, while the camera also moves with different patterns (static,
xyz, rpy and halfsphere). These sequences are challenging due to the large
proportion of dynamic parts in the observation, where in extreme case more
than half of the image is occupied with dynamic object. Figure 2.11 shows
some example frames taken from the "walking" sequences. To handle the
high dynamic environment, previous methods require non real-time method
to segment dynamic part [116, 131] or suffer from large drift [61].

For testing the effectiveness of proposed method, the "sitting", "walking"
sequences from the TUM dataset are used. In "sitting" sequences, people
move their body parts while sitting on chairs, therefore they are considered
as low dynamic sequences. In "walking" sequences, people walk around a
table, creating large proportion of dynamic parts in the observed images.
Therefore "walking" sequences are considered as high dynamic sequences.

In the following, the visual odometry method and SLAM system are eval-
uated and compared with previous methods [58, 61, 116]. All the experi-
ments are performed on a desktop computer with Intel Core i7-4790K CPU
(4GHz) and 16 GB RAM. The visual odometry method only uses one CPU
core, and for SLAM system, an additional CPU core is used for loop closure
detection and graph optimization.

Evaluation of visual odometry method

For the evaluation of visual odometry, Relative Pose Error (RPE) metric is
used. The following will firstly investigate the effectiveness of the proposed
static weighting strategy and then compare the proposed method with pre-
vious methods.

56 Chapter 2. Camera localization for object modelling

Effect of static weighting: To verify the effectiveness of the proposed static
weighting strategy, the visual odometry method is tested both with and with-
out the static weight term wS(I) in the IAICP part (eq. (2.32)). The compar-
ison is shown in Table 2.6, where "Depth edge + IAICP" means our method
without static weighting. In "Depth edge + RANSAC + IAICP", a RANSAC
based outlier rejection procedure is used, where the RANSAC procedure uses
100 iterations and has a outlier threshold of 1.5cm. The static weighting term
improves the visual odometry result in most of the sequences and works bet-
ter than the RANSAC based outlier rejection method. The average improve-
ment in terms of translational drift for low-dynamic sequences is 8%, and for
high-dynamic sequences, the average improvement is 52%. This verifies that
our static weighting strategy effectively reduces the influence of dynamic ob-
jects, especially for high-dynamic environments.

Effect of static weight initialization: The static weight initialization with

(a) without the initialization term (b) with the initialization term

0 0.5 1
static weight

0

500

1000

1500

2000

2500

3000

3500

n
u
m

b
e
r

o
f

p
o
in

ts

(c) without the initialization term

0 0.5 1
static weight

0

500

1000

1500

2000

2500

n
u
m

b
e
r

o
f

p
o
in

ts

(d) with the initialization term

FIGURE 2.14: Effectiveness of static points weighting: Static weight of 401th frame
(keyframe) in "fr3/walking_xyz" sequence at time step t = 402. (a)(b) show the
visualization of static weights and (c)(d) show the histogram of static weights.

previous keyframe is important as explained above. To verify the impor-
tance of the initialization, experiments are also performed by setting α in eq.
(2.28) to zero. An example case is illustrated in Figure 2.14(a)(b), where a

2.2. RGBD-SLAM in dynamic environment 57

TA
B

L
E

2.
6:

V
is

ua
lo

do
m

et
ry

re
su

lt
s:

tr
an

sl
at

io
na

ld
ri

ft
an

d
ro

ta
ti

on
al

dr
if

to
n

TU
M

R
G

B-
D

da
ta

se
t

se
qu

en
ce

s
R

M
SE

of
tr

an
sl

at
io

na
ld

ri
ft

[m
/s

]
R

M
SE

of
ro

ta
ti

on
al

dr
if

t[
◦ /

s]

D
V

O
Ba

M
V

O
D

ep
th

ed
ge

+
IA

IC
P

D
ep

th
ed

ge
+

R
A

N
SA

C
+

IA
IC

P

O
ur

m
et

ho
d

D
V

O
Ba

M
V

O
D

ep
th

ed
ge

+I
A

IC
P

D
ep

th
ed

ge
+

R
A

N
SA

C
+

IA
IC

P

O
ur

m
et

ho
d

st
at

ic
fr

2/
de

sk
0.

02
96

0.
02

99
0.

01
74

0.
01

70
0.

01
73

1.
39

20
1.

11
67

0.
73

25
0.

71
45

0.
72

66
fr

3/
lo

ng
-o

ffi
ce

0.
02

31
0.

03
32

0.
02

00
0.

01
93

0.
01

68
1.

56
89

2.
15

83
0.

90
01

1.
06

83
0.

80
12

lo
w

dy
na

m
ic

fr
2/

de
sk

-p
er

so
n

0.
03

54
0.

03
52

0.
02

45
0.

01
89

0.
01

73
1.

53
68

1.
21

59
1.

03
89

0.
83

10
0.

82
13

fr
3/

si
tt

in
g-

st
at

ic
0.

01
57

0.
02

48
0.

01
98

0.
02

10
0.

02
31

0.
60

84
0.

69
77

0.
58

23
0.

62
20

0.
72

28
fr

3/
si

tt
in

g-
xy

z
0.

04
53

0.
04

82
0.

02
56

0.
02

54
0.

02
19

1.
49

80
1.

38
85

0.
91

52
0.

97
91

0.
84

66
fr

3/
si

tt
in

g-
rp

y
0.

17
35

0.
18

72
0.

10
58

0.
10

76
0.

08
43

6.
01

64
5.

98
34

5.
21

57
10

.4
39

2
5.

62
58

fr
3/

si
tt

in
g-

ha
lf

sp
he

re
0.

10
05

0.
05

89
0.

06
24

0.
05

83
0.

03
89

4.
64

90
2.

88
04

2.
52

47
2.

74
27

1.
88

36

hi
gh

dy
na

m
ic

fr
3/

w
al

ki
ng

-s
ta

ti
c

0.
38

18
0.

13
39

0.
11

92
0.

04
96

0.
03

27
6.

35
02

2.
08

33
2.

94
75

1.
37

91
0.

80
85

fr
3/

w
al

ki
ng

-x
yz

0.
43

60
0.

23
26

0.
18

02
0.

14
82

0.
06

51
7.

66
69

4.
39

11
3.

47
78

3.
89

04
1.

64
42

fr
3/

w
al

ki
ng

-r
py

0.
40

38
0.

35
84

0.
28

55
0.

30
31

0.
22

52
7.

06
62

6.
33

98
5.

57
04

11
.4

64
0

5.
69

02
fr

3/
w

al
ki

ng
-h

al
fs

ph
er

e
0.

26
28

0.
17

38
0.

20
16

0.
07

99
0.

05
27

5.
21

79
4.

28
63

4.
50

76
4.

59
12

2.
40

48

58 Chapter 2. Camera localization for object modelling

fr2/desk_with person fr3/walking_xyz fr3/walking_halfsphere

(a
)

w
it

h
st

at
ic

 w
ei

gh
t

fr2/desk_with person fr3/walking_xyz fr3/walking_halfsphere

(b
)

w
/o

 s
ta

ti
c

w
ei

gh
t

FIGURE 2.15: Examples of estimated trajectories from the SLAM system. (a) Esti-
mated trajectories with the proposed static weighting term. (b) Estimated trajecto-
ries without the proposed static weighting term.

person is walking to the right. In this example, static weights are estimated
for the keyframe Pk (k = 401). At time step t = 402, the person’s movement
is not that large between consecutive frames, because the velocity of the per-
son is not that large. Therefore if the weight initialization is not applied, then
some parts (especially the left part of the right leg) of the human body are
considered as a static part (green). If the initial value is considered, which
are obtained by comparing the keyframe with last keyframe (t = 396), then
the human body is more distinguished as a dynamic object by leveraging a
larger distance during the 5 frames. The effectiveness is also clearly visible
in the histograms (Figure 2.14(c)(d)) of the static weights.

Comparison with previous methods: The proposed visual odoemtry method
is compared with Dense Visual Odometry (DVO) [58] method and model-
based dense-visual-odometry (BaMVO) [61] method. DVO is a state-of-the-
art RGB-D visual odometry method for static environment, which can only
handle small amount dynamic objects. BaMVO is specially designed to han-
dle dynamic environment. The comparison results are shown in Table 2.6,
our result outperforms in almost all dynamic sequences. Even for the static
environment sequences, the proposed visual odometry method still outper-
formed DVO, which takes the static environment assumption. For the highly
dynamic sequences, our method outperforms significantly. The proposed
method improves the visual odometry performance by 74.6% compared to
DVO, and by 58.2% compared to BaMVO.

The sources of improvements are twofold: firstly by using sparse fore-
ground depth edge points, correct correspondences can be efficiently found,
where a higher correct ratio results in a more accurate transformation esti-
mation; secondly, using these correspondences, the proposed static weight-
ing strategy effectively reduces the influence of dynamic objects. Compared

2.2. RGBD-SLAM in dynamic environment 59

to the proposed method, DVO takes the static environment assumption in
their problem formulation and cannot perform normally in highly dynamic
sequences. In BaMVO, static weights are calculated based on depth differ-
ence, where points on the same image coordinate are simply approximated
as correspondence. This approximation might cause the aperture problem
for parallel dynamic motion to the image plane.
Computation time: The proposed visual odometry method using static points
weighting is performed on VGA image resolution (640× 480) and requires
only one CPU thread. The average computation time per frame is 22ms.
In comparison, DVO requires 32ms per frame (320× 240 resolution, i7-2600
CPU with 3.40GHz) and BaMVO requires 42ms per frame (320× 240 reso-
lution, Intel i7 CPU with 3.3GHz). The computation time of the proposed
method is less because no dense operation is needed as in DVO and BaMVO,
both static weighting and transformation estimation are only performed on
sparse depth edge points. The real-time performance makes the proposed
method suitable for on-line applications.

Evaluation of SLAM system

Finally, the performance of the integrated SLAM system, which includes loop
closure detection and map optimization. is evaluated. For evaluating SLAM
system, Absolute Trajectory Error (ATE) [115] metric is used. The estimated
trajectories are compared to ground truth, and some examples are shown
in Figure 2.15. In the first row of Figure 2.15, the trajectories are estimated
with the proposed weighting term, and in the second row of Figure 2.15, the
trajectories are estimated without the proposed weighting term. It is notable
that for the low-dynamic sequence "fr2desk_with_person" the improvement
with static weighting is small, and for high-dynamic sequences the trajectory
error is reduced greatly.

The integrated SLAM system is compared to a non real-time method [116],
which is a recent state-of-the-art RGB-D SLAM method for dynamic envi-
ronment. In [116], dense dynamic object segmentation is performed for each
frame, which takes half second per frame. The authors segment dynamic
objects from each frame, and directly use the segmented frames as input for
DVO-SLAM system [57]. The comparison is shown in Table 2.7. The first
column shows the sequence name from the TUM Dataset, where both low-
dynamic "sitting" sequences and high-dynamic "walking" sequences are used
for comparison. Our SLAM system works better in most of the sequences.
The improvement for low-dynamic sequences is 15.2%, and the improve-
ment for high-dynamic sequences is more notable with 24.7%.

The average computation time for the whole SLAM system takes ca. 45ms
per frame, including visual odometry estimation, loop closure detection and
pose graph optimization. Compared to this, the method from [116] cannot be
applied for real-time application, since their segmentation procedure alone
already takes half second per frame.

60 Chapter 2. Camera localization for object modelling

TABLE 2.7: SLAM results: RMSE of Absolute Trajectory Error [m]

sequence Motion Remvoal+
DVO SLAM [116] Our SLAM system

RMSE standard
deviation RMSE standard

deviation
fr3/walking_halfsphere 0.1252 0.0903 0.0489 0.7266
fr3/walking_rpy 0.1333 0.0839 0.1791 0.1161
fr3/walking_static 0.0656 0.0536 0.0261 0.0122
fr3/walking_xyz 0.0932 0.0534 0.0601 0.0330
fr3/sitting_halfsphere 0.0470 0.0249 0.0432 0.0246
fr3/sitting_xyz 0.0482 0.0282 0.0397 0.0206
fr2/desk_with_person 0.0596 0.0239 0.0484 0.0237

2.2.6 Summary and Conclusion

In this section, a real-time RGB-D visual odometry method is proposed, which
can handle highly dynamic environment such as the "walking" sequences
from TUM Dataset [115]. The method uses foreground depth edge point to
compute pair-wise point cloud registration. A robust static weighting strat-
egy is proposed based on depth edge correspondences distance. Fusing the
static weighting strategy into the intensity assisted ICP (Chapter 2.1), the
visual odometry system handles dynamic environment robustly. Further-
more, loop closure detection and map optimization are integrated, resulting
a real-time SLAM system suitable for dynamic environment. The accuracy
and computation efficiency are tested on the dynamic sequences from TUM
Dataset [115]. Compared to state-of-the-art real-time method [61], in terms
of translational drift per second, the proposed method improves the visual
odometry accuracy by 58% in challenging "walking" sequences. The perfor-
mance of the SLAM system is also proven using the TUM Dataset, which
shows better performance than recent non real-time method [116].

The proposed method highly depends on the quality of foreground depth
edges. Therefore, the proposed method is limited to geometry rich environ-
ments. For a scene with only large plane structures, the proposed method
might fail due to the the lack of foreground depth edges. In the future work,
it is worth to investigate how to efficiently propagate the sparsely estimated
static weights to the entire image, such that denser information can be used
for registration. Nevertheless, the proposed method fulfills the requirement
for the object scanning applications, where the scanned objects contains rich
foreground depth edges. In the next section, object scanning application us-
ing the proposed SLAM system will be shown.

2.3 Application for object modeling

The previous sections introduced camera localization methods for an un-
known environment. Using these techniques, the camera can be robustly
localized with respect to the first frame’s camera coordinate. This camera lo-
calization approach builds the foundation for object modelling application,
where the object will be captured from different viewpoints and merged into

2.3. Application for object modeling 61

keyframe：

non-keyframe：

refinement：

camera trajectory:

FIGURE 2.16: Object scanning scenario. The keyframes are refined with following
non-keyframes.

a whole model. In the following, the object modelling pipeline will be de-
scribed and some modelling results will be shown.

Object modeling pipeline

Figure 2.16 shows the object scanning scenario. The camera moves around
the object and capture RGB-D image pairs at a frequency of 30 Hz, where the
RGB-D pairs can be transformed to organized point cloud format (Equation
2.1). The camera’s ego-motion is constantly updated as the camera moves
and if the camera has been moved for more than 15cm or rotated for more
than 20◦, a new keyframe is selected.

Since the RGB-D camera contains uncertain measurement [89], the cap-
tured surface point cloud is noisy, which is undesired for the generated object
model. Given the fact that the same part of object surface is captured multi-
ple times with the RGB-D video, we decide to smooth all the keyframes using
the whole video sequence. With the estimated camera pose of one keyframe,
the point clouds of its following non-keyframes can be transformed into one
common global coordinate. These point clouds are then be merged to reduce
noise.

The refinement merges the frames at depth image level. A point Pt(i) in
a non-keyframe t will be firstly transformed and projected to the keyframe’s
image coordinate, (ui, vi)

T = π(Tk
t Pt(i)). Then the depth value of the pro-

jected coordinate will be refined using a weighting factor λt(i). Algorithm
2.3 describes the refinement process in detail.

To merge the i-th point into keyframe, we consider its measurement un-
certainty based on its traveled distance d from the keyframe:

d = ||Pt(i)− Tk
t Pt(i)||,

and the weighting factor for it is:

λ = min(0.016/d, 20.0), (2.38)

which means less traveled point has a lower uncertainty and will be therefore
assigned with a higher weighting factor.

As the visual odometry method runs, loop closure detection and map
graph optimization is also performed, resulting in a global map graph, where

62 Chapter 2. Camera localization for object modelling

Algorithm 2.3 Keyframe refinement
Require: - Keyframe Pk as organized point cloud.

- Weighting factors W with W(i) for the i-th point Pk(i)
- Following T non-keyframes {Pt}t=1,...,T

Ensure: - Refined keyframe Pk
- initialize weighting factors:
for i = 1 : N do

W(i) = 100
end for
for t = 1 : T do

for i = 1 : N do
- transformation to keyframe coordinate: Pt(i)′ = Tk

t Pt(i)
- projection to image coordinate: x = Tk

t Pt(i)
- get point index j corresponding to x: j = ind(x)
- calculate update weighting factor of the point to be merged λ (Equa-
tion 2.38).
- merge the depth value and update weighting factor:
depth(Pk(j))← depth(Pk(j))W(j)+depth(Pt(i)′)λ(j)

W(j)+λ(j)
W(j)←W(j) + λ(j)

end for
end for

each keyframe is connected to several other keyframes. A connected pair
indicates that the same part of the scene is seen twice from different view-
points, and the model of that part of scene can be refined by integrating the
keyframes. Therefore, as a final step, each keyframe will be refined by con-
necting keyframes, using the same procedure described above.

Modelling results

FIGURE 2.17: [CoRBS benchmark [133]. Top row shows the raw color images and
the second row shows the color coded depth images.

2.3. Application for object modeling 63

FIGURE 2.18: Object scanning results on CoRBS dataset. First row: ground-truth ob-
ject model provided by the dataset. Second row: scanned objects using the proposed
camera localization methods. Third row: the distance between scanned models and
ground-truth models, where blue means close and red means more distanced.

To test the proposed object modeling pipeline, the CoRBS (Comprehensive
RGB-D Benchmark for SLAM) benchmark dataset [133] is used. The dataset
contains object scanning sequences with ground truth trajectories and groud-
truth object models, where the RGB-D sequences are captured with a Kinect
v2 camera (Figure 2.17).

We use the proposed pipeline to estimate camera trajectories and smooth
the keyframes’ point cloud measurement. Then the combined point cloud is
compared to the ground truth object model and the distance between each
point and ground truth object model’s surface is used as the evaluation met-
ric. As seen in Figure 2.18, the generated object models are very close to the
ground-truth models, where the average distance to ground truth model is
around 5 mm. The quantitative results are shown in Table 2.8.

64 Chapter 2. Camera localization for object modelling

TABLE 2.8: Distance between scanned points and ground-truth object model [m]

human electrical cabinet desk
mean median mean median mean median
0.0047 0.0030 0.0075 0.0054 0.0060 0.0024

Summary

This section described an object scanning pipeline using the earlier proposed
camera localization methods. The accurate camera ego-motion estimation
ensures successful scanning process. In addition, a surface smoothing pro-
cedure is proposed to reduce the noisy measurement of the keyframes. To
clarify, the generated object models are not perfect as models designed using
CAD (Computer-aided design), but it provides flexibility to quickly generate
models for unknown objects, which will become more often for an intelligent
robotic learning scenario.

2.4 Conclusion and future works

Conclusion

For the purpose of object scanning, this chapter presented camera localiza-
tion methods using RGB-D camera. In the first section, the fast and robust vi-
sual odometry estimation method based on intensity assisted ICP (IAICP) is
presented. By contributing in the selection, matching and weighting stages,
IAICP improves the conventional ICP significantly. In the second section, an
extension to IAICP is proposed, which can handle highly dynamic environ-
ment such as the "walking" sequences from TUM Dataset [115]. The method
uses foreground depth edge point to compute pair-wise point cloud registra-
tion. A robust static weighting strategy is proposed to down-weight dynamic
points in the framework of IAICP. Furthermore, loop closure detection and
map optimization are integrated, resulting a real-time SLAM system suitable
for dynamic environment. The proposed framework in the first two sections
was used to construct a object scanning pipeline in the third section.

Discussion and Future works

The proposed visual odomery method is fast and accurate with a single core
CPU. In comparison, previous methods have to rely on dense pixel-wise op-
timization, which require either GPU computation [38] or sophisticated code
optimization and downsampled inputs to achieve real-time performance [57].
In comparison, the fast performance with 78 Hz of the proposed visual odom-
etry method is gained from the choice of semi-dense salient points of the
source frame and random sampling at each iteration. By using the illumi-
nation component in all stages in the ICP framework, the performance is
significantly improved compared to the conventional ICP method [8]. The

2.4. Conclusion and future works 65

choice of semi-dense feature point was also the key factor for successful static
point weighting. The foreground depth edge points are distinctive enough
for the static weighting process. Furthermore, compared to sparse SIFT like
keypoints, the semi-dense key-points are more evenly distributed the envi-
ronment, such that it is more robust against highly textured dynamic objects
which attracts too much keypoints on the dynamic object.

Despite the success of the proposed method, it has also its limitations. The
proposed method highly depends on the quality of foreground depth edges.
Therefore, the current method is limited to geometry rich environments. For
a scene with only large plane structures, the proposed method might fail due
to the the lack of foreground depth edges. Therefore, in the future work, it is
worth to investigate how to improve the keypoint detection module in differ-
ent ways. First, we can investigate how to efficiently propagate the sparsely
estimated static weights to the entire image, such that denser information can
be used for registration. For example, the static weights could be combined
with an optical flow estimation process to propagate the staticness informa-
tion to the whole image [138].

The second way for an improved keypoint detection module is to replace
manually designed keypoint detection method with machine learning meth-
ods. With the thrive of deep learning research in the past few years, many
different works have shown the ability to detect robust, distinctive and repet-
itive keypoints. Previous works have shown success in both 2D RGB im-
age [21, 19] and in 3D point cloud [79, 5, 73]. Using pose alignment losses,
these deep learning frameworks are trained to extract keypoints which con-
tribute the most to robust motion estimation. A further benefit of deep learn-
ing based method is that some of these methods could be trained even in a
self-supervised way [73, 21], without the need of labeled ground-truth data.
However, current deep learning methods are designed for mono-modal in-
put, either for RGB data alone or for point cloud alone. A new research di-
rection could be to follow the similar idea in this chapter, i.e. to combine
the RGB and point cloud information for training a method that can detect
robust key-points in RGB-D domain.

Apart from the keypoint detection part, using deep learning based meth-
ods, another future research direction could be how to filter out dynamic
objects using a trained model. Two possible options could be investigated.
The first option is to detect static keypoints from semantic information, e.g.
[79] is trained on autonomous driving scenario, such that the keypoints will
be never occur on statistically moving objects, such as cars and pedestrians.
The second option is to train a correspondence matching network [109], such
a network takes the feature descriptor and keypoint coordinates as input,
and can predict whether they are from static background or dynamic objects.

The object modelling pipeline could be also investigated more in the fu-
ture. To fulfill the object modelling requirement, we have simply concate-
nated the point cloud taken from different viewpoint into a common coor-
dinate system and performed voxelization and smoothing operation. How-
ever, this is far from generating a high quality object model. In future work,
deep learning based method could be also used for object model generation.

66 Chapter 2. Camera localization for object modelling

A key technology from recent research, called differentiable rendering [77,
55] can be used for the object modelling task. This technology can render
a mesh model, while keeping the gradient values at each operation, such
that it can be used in the back-propagation process of a deep learning frame-
work. Using differentiable rendering, the object mesh model, camera poses,
lighting conditions etc. can be all viewed as trainable parameters. Then all
parameters can be optimized in a single framework, using image reconstruc-
tion loss between different viewpoints.

67

Chapter 3

Hand pose estimation using depth
image

This chapter includes the content of following publications: Article:

• Shile Li*, Jan Wöhlke* and Dongheui Lee. "Model-based hand pose estimation
for generalized hand shape with spatial transformer network." European Con-
ference on Computer Vision (ECCV), Extended Abstract Presentation in 4th
International Workshop on Observing and Understanding Hands in Action
(HANDS2018). 2018. *equal contribution

Other contributors:

• Jan Wöhlke (Master student)

• Dongheui Lee (Thesis supervisor)

Author contributions

• SL and JW developed the method and wrote the code jointly, where SL
is more responsible for designing the method and implementing the
appearance normalization layer and JW is more responsible for imple-
mentation of the variable kinematic layer. SL wrote the main body of
the article. SL, JW, DL analyzed the results and revised the article.

3.1 Introduction

This chapter introduces a deep learning based hand pose estimation method.
The proposed method uses depth image as input and regresses the hand
joints’ Cartesian coordinate.

Motivation

Hand pose estimation is an important precondition for many tasks in fields
such as human computer interaction or augmented reality. Therefore, the
3D hand pose estimation problem has attracted many researchers’ interest in
the last ten years [24, 118, 146]. The availability of cheap commercial depth
cameras has especially increased the interest in 3D hand pose estimation, be-
cause depth provides additional geometry information compared to RGB im-
age and furthermore depth image has similar data structure as RGB image,

68 Chapter 3. Hand pose estimation using depth image

such that mature deep learning elements for images (Convolutional Neu-
ral Networks) can be directly applied. However, the hand pose estimation
task remains challenging due to several reasons: the kinematic complexity of
the hand, which results in a large number of DoFs, self-occlusions, different
viewpoints, and shape variations across different persons.

Hand pose estimation approaches can be divided into three categories: 1)
the generative, model-driven approaches that fit a hand model to the image
observations by minimizing a cost function [59, 111, 113, 54], 2) the discrim-
inative, data-driven approaches that directly predict the 3D joint locations
from the images [15, 20, 34, 31, 37, 80, 91, 90, 84], and 3) the hybrid ap-
proaches that combine discriminative and generative elements [92, 123, 127,
150].

Discriminative methods play an important role because they are needed
to initialize generative tracking methods and to recover in the case of track-
ing failure. State-of-the-art discriminative methods use deep learning com-
ponents such as 2D [15, 34, 37, 80, 91, 92, 90, 123, 143, 150] or 3D [20, 31, 84]
Convolutional Neural Networks (CNN) that also might incorporate residual
modules [15, 37, 84, 90]. Relying on a large annotated training dataset, the
discriminative methods either directly regress joint locations [15, 20, 31] or
output a probability density map for each joint [123, 34, 84]. Most discrim-
inative approaches do not explicitly consider the kinematics and physical
constraints of the human hand. As a result, implausible hand pose estimates
can occur in the regression results. For example, the physical limits of the fin-
ger joint angles can be violated. To ensure physically plausible results, hybrid
models that incorporate a generative component can be used. For example,
Zhou et al. [150] integrate a generative forward kinematics hand model into
their deep learning approach and impose physical constraint losses on the
estimated hand parameters. However, in [150], the palm shape and bone
lengths are fixed to a specific user so that the approach cannot generalize
towards new hand shapes.

Since the emergence of large annotated datasets [147], state-of-the-art hand
pose estimation methods have been mostly based on discriminative learn-
ing [146]. In 2016, a hybrid approach has embedded a kinematic layer into
the deep learning structure in such a way that the pose estimates obey the
physical constraints of human hand kinematics [150]. However, the exist-
ing approach relies on a single person’s hand shape parameters, which are
fixed constants. Therefore, the existing hybrid method has problems to gen-
eralize to new, unseen hands. In this chapter, a extended method to [150] is
proposed, in which:

• the kinematic layer is extended to make the hand shape parameters
adaptable. In this way, the learnt network can generalize towards arbi-
trary hand shapes.

• Furthermore, the Spatial Transformer Network (STN) [51] is also ap-
plied, such that the performance of a regression task can be also im-
proved by 6%.

3.2. Method 69

Spatial Transformer
Network

Residual Netowrk
+Fully Connect

Hand Parameters

Kinematic Layer Back-transformation

STN transformation parameters

output

FIGURE 3.1: Overview of the proposed method.

The effectiveness and limitations of the proposed approach are evaluated on
the Hands 2017 challenge dataset [147].

Spatial Transforer Networks

Hinton et al. [45] propose a transforming autoencoder as a generative model
that models 2D affine transformations. The generative model learns to gener-
ate a transformed image of the input image, where the target pose is defined
during the training. Zimmermann et al. [152] estimate the hand pose in a
normalized coordinate system. The global transformation parameters are re-
gressed separately. Jaderberg et al. [51] introduce a dynamic mechanism,
the Spatial Transformer Network, that is trained end-to-end with the rest of
the network without changing the loss function. A localization network re-
gresses the transformation parameters from the input image, which are then
used by the grid generator to transform a regular grid into a sampling grid.
This sampling grid is applied to the input image to obtain the warped output
image. In this thesis, considering the goal of regressing 3D poses, a Spatial
Transformer Network for rigid transformation is applied.

3.2 Method

Overview

An overview of the proposed method is shown in Figure 3.1. The pre-processed
depth input images are appearance-normalized using Spatial Transformer
Network. Then, hand parameters Λ are estimated using Residual Network
module, which are fed into a differentiable kinematic layer that maps Λ to
joint locations. Finally, the joint locations are back-transformed into the ini-
tial coordinate system.

Pre-processing

First, a coarse 3D bounding box containing the hand is determined from the
joint location ground truth annotation Jgt (or the bounding boxes are pro-
vided by the dataset), where the depth pixels inside the bounding box are
converted to 3D points. Then the 3D points are demeaned by the 3D center
of mass. Finally, the 3D points are back-projected to a depth image and re-
sized to 128× 128 pixels. For smoothing, 3× 3 median filtering is applied.
Afterwards, the depth values are normalized to the range [−1, 1].

70 Chapter 3. Hand pose estimation using depth image

During training, online data augmentation is applied. The images are
scaled, rotated, and translated by random factors drawn from the following
distributions:

• scaling: normal N (1.0, 0.075) within range [0.75, 1.25]

• rotation: uniform U (−180◦, 180◦)

• translation: normal N (0, 4) mm within range [−15, 15] mm for x-, y-,
and z-direction individually

Network architectures

Due to its simplicity and computational efficiency, a basic CNN architecture
is used for the Spatial Transformer Network. The detailed structure is illus-
trated in Figure 3.2(a).

To extract complex image features for the sake of higher pose estimate
accuracy, residual network is used to regress the hand parameters out of the
appearance normalized image. The detailed structure is illustrated in Figure
3.2(b).

In
p
u
t

12
×
(5
,5
)

C1

(4
,4
)

P1

12
×
(5
,5
)

C2

(2
,2
)

P2

12
×

(3
,3
)

C3

#
#

10
24

#
#

FC1
#

#
10
24

#
#

FC2

#
l

#
OUT

(a) CNN architecture used for Spatial Transformer Network

In
p
u
t

32
×
(5
,5
)

C1

(2
,2
)

P1

3
×
32
×
(3
,3
)

R1

4
×
64
×
(3
,3
)

R2

6
×
12
8
×
(3
,3
)

R3

3
×
25
6
×
(3
,3
)

R4

#
#

20
48

#
#

FC1

#
#

20
48

#
#

FC2

#
l

#

OUT

(b) Residual network architecture used for regressing hand parameters

FIGURE 3.2: Network architectures. C: convolutional layer with number of feature
maps and kernel size in brackets, FC: fully-connected layer with number of units,
OUT: linear output layer with l output units, P: max pooling with kernel size in
brackets, R: residual module with the number of bottleneck blocks, the number of
feature maps (bottleneck layer), and kernel size of bottleneck layers.

3.2. Method 71

Spatial Transformer Network

We apply a Spatial Transformer Network (STN) [51] to the input image. The
STN estimates a 2x3 matrix

TSTN =

[
a11 a12 a13
a21 a22 a23

]
(3.1)

to transform the images to a similar distribution of appearance. In order
to preserve the validity of the hand kinematic layer, the spatial transforma-
tion parameters are constrained to rigid motion that contains rotation, scal-
ing and translation, where a11 = a22 and a12 = −a21. This is achieved by
estimating the scaling factor s, sine and cosine value of the rotation angle α
separately:

TSTN = s
[

cosα −sinα a13
sinα cosα a23

]
, (3.2)

To ensure that sine and cosine values are valid for the same α value, a
constraint is added into the loss function:

Lstn = |1− cos2
α + sin2

α| (3.3)

During training, with the estimated STN parameters, the corresponding
ground truth data are also transformed accordingly for correct loss computa-
tion. For inference, the estimated joint positions can be also back-transformed
in a straight forward way.

Kinematic layer for arbitrary hand shapes

The kinematic hand model layer implements the forward kinematics of the
hand and therefore represents a mapping from hand parameters Λ to 3D joint
locations J. It is parameter free and differentiable to allow back-propagation.

The inputs Λ to the kinematic layer divide into four groups (Figure 3.3)
listed below.

• 6D global pose and orientation of the middle finger MCP (Metacar-
pophalangeal) joint, which we define as the hand base b (6D)

• finger base positions in the local hand coordinate, vi, (i =5
1) (15D)

• 15 finger bone lengths ri,n, (i =5
1, n =3

1), where i indicates the index of
the five fingers and n indicates the index of the three links per finger
(15D)

• 25 finger joint angles θi,n, (i =5
1, n =5

1), where each finger has 5 DoFs,
where i indicates the index of the five fingers and n indicates the index
of the five DoFs per finger (25D)

The residual network in front of the kinematic layer regresses the 61 hand
parameters Λ. The 3D joint locations J are calculated using the hand param-
eters Λ by a cascade of transformation matrices. Each joint is considered to

72 Chapter 3. Hand pose estimation using depth image

be the origin of its own local coordinate system. In order to back-transform
these local coordinates to global world coordinates, kinematic transforma-
tions must be applied. For example, the 3D joint location of the thumb’s
(i = 1) tip’s position j̃1,TIP is

j̃i,TIP = TBASE (b)TVEC,1 (v1)
5

∏
n=1

TDH,1,n (θ1,n, r1,n) (0 0 0 1)T, (3.4)

The kinematics of the fingers are modeled using the DH (Denavit Harten-
berg) convention, where TDH,n,i(θ, r) is a joint specific transformation estima-
tor, which is predefined according to hand’s structure. It takes the joint angle
and bone length as input and outputs a transformation matrix. TBase,n,i(b)
extracts global transformation matrix out of the global pose parameters. For
the convenience of notation, TVEC(v) converts translation parameter to a ho-
mogeneous transformation matrix.

0 2
2

1
0

θ1,1, θ1,2

θ1,3, θ1,4

θ1,5r1,2

r1,4

r1,5
3

1

1
0

3

1

1
0

3

1

1
0

3

1
1

0

TIP
DIP
PIP

MCP
WRIST

FIGURE 3.3: Kinematic hand modeling: Number of DoFs associated with the in-
dividual joints are indicated in the circles. Finger angles θi,n and bone lengths ri,n
exemplary are indicated for the thumb.

The procedure of chaining transformation matrices is computationally ef-
ficient, as many intermediate results can be re-used for the coordinate trans-
formation of other joints along the same finger. For training using back-
propagation, the gradients of the layer are automatically calculated in Ten-
sorFlow [1], using its support of auto-differentiation.

Training losses

To learn the correct hand pose, L2 losses are enforced on the final pose Jest in
Cartesian coordinate, as well as on the hand shape parameters best and vest,
where est stands for estimated value and gt stands for ground-truth value.

Lpose = ‖Jest − Jgt‖2

Lshape = ‖best − bgt‖2 + ‖vest − vgt‖2 (3.5)

3.3. Experimental results 73

In order to force the finger joint angles θ to stay within physically valid
limits, physical constraint losses on the estimated joint angles θest, is are used.
The physical constraint loss term which penalizes violations of upper and
lower joint angle limits θup and θlow is

Lconstr = ∑
batch

(||min
((

θest − θlow
)

, 0
)
||2

+||max
((

θest − θup
)

, 0
)
||2)

. (3.6)

3.3 Experimental results

The proposed method is evaluated on the Hands 2017 challenge dataset [147].
It is currently (at the time of writing this thesis, Aug. 2020) the largest and
most diverse real-captured dataset available. Its training set contains 957032
depth images of five different hands. Therefore, it is suited for learning to
regress hand parameters for various hand shapes. The test set consists of
295510 depth images of ten different hand shapes, of which five are the same
as in the training set and five are entirely new.

The proposed pipeline is implemented using TensorFlow [1]. The net-
works are trained on a PC with an AMD FX-4300/Intel Core i7-860 CPU and
an Nvidia GeForce GTX1060 6GB GPU. For training, the Adam optimizer is
used with a learning rate of 1× 10−4. The batch size is 32.

As evaluation metric, the average per joint error is used:

ejoint =
1

Nimages

1
Njoints

∑
images

∑
joints
||jest

i,k − jgt
i,k.|| (3.7)

In addition to that, the joint angle limit violation is also used to evaluate
the physical plausibility of the estimation result:

eviolation =
1

Nimages

1
Ndofs

∑
images

∑
dofs

max(θest
i,k −θ

upper
k , 0)+max(θlower

k −θest
i,k , 0)

(3.8)
Table 3.1 compares the pose estimation result of different methods. Three

different errors are given: 1) the average across the complete test set (Avg
test), 2) the average across the test set images of hand shapes seen during
training (Seen test), and 3) the average across the test set images of unseen
hand shapes (Unseen test). The Kinematic version achieves a good accuracy of

TABLE 3.1: Average per joint error of different models

Approach Avg test [mm] Seen test [mm] Unseen test[mm]
Direct Regression 10.97 8.98 12.62
Kin 12.98 10.71 14.86
STN+Kin 12.12 9.93 13.95

12.98 mm, indicating that the kinematic layer can generalize to different hand
shapes successfully. Adding the STN, the error reduces to 12.12 mm, showing

74 Chapter 3. Hand pose estimation using depth image

FIGURE 3.4: Appearance normalizing effect of STN: First row: input images. Second
row: transformed image after STN

that the STN can be also applied to improve regression tasks. The STN shows
an appearance normalizing effect on the hand pose estimation task (Figure
3.4), where the STN tends to rotate the hand such that the hand points to the
upper-right direction. The direct regression of hand poses using a Residual
Net achieves even lower error of 10.97 mm. However, by fitting the result of
direct regression using inverse kinematic, there are 8.32% of estimated joint
angles that violate physical limit of human hand (Table 3.2). Using the the
proposed approach with kinematic constraints, the joint angle limit violation
is reduced to 0.057%.

TABLE 3.2: Joint angle constraint violation with and without kinematic hand model
layer

Approach
Violated
joint limits

Avg violation in
case of violation

Avg violation
in total

Direct Regression 8.32% 35.57◦ 5.77◦

Our Approach 0.057% 0.51◦ 0.00◦

3.4 Summary

This chapter introduced a depth based hand pose estimation method. This
method incorporates an embedded differentiable kinematic layer into the
deep learning networks. Apart from joint angles, the proposed kinematic
layer also takes hand shape parameters as input, thus it generalizes on dif-
ferent hand shapes. Experiments on public benchmark shows the pose es-
timation accuracy is proven to be accurate as 12mm. Furthermore, by us-
ing kinematic layer, the number of physically implausible results is reduced.
We have also shown that applying appearance normalization using Spatial
Transformer Network, the pose estimation accuracy can be further improved.

3.5 Discussion and future works

This chapter applied differentiable kinematic layer for hand pose estimation.
The proposed differentiable kinematic layer improved the limitation of pre-
vious work by making the hand shape also trainable parameters, thus the
proposed method could generalize to different subjects’ hand. The major

3.5. Discussion and future works 75

benefit of using a kinematic layer is that the output poses are constrained by
physical limitation of human hand. The joint angle limitation violation of the
direct regression method could be effectively eliminated. However, there is
a trade-off between the robustness and average accuracy, by considering the
joint limit, the accuracy of hand pose in Euclidean space is worse. There-
fore, in practice, one might needs need to consider the application scenario
to choose which type of method to use. For example, for entertainment ap-
plication with Virtual Reality, the hand shape obeying joint limit is obviously
more important, since a hand with physical implausible pose will harm the
user experience a lot. Another example is computer vision based learning
by demonstration, where the robot has to imitate human motion precisely to
perform certain task, such as grasping a cup. In this scenario, precise Eu-
clidean position of finger tips is important to let the the robot achieve the
grasping task [103], because inaccurate finger tip pose will result in failure of
imitating the task.

To reduce the variation of appearance in the input data, this chapter has
applied Spatial Transformer Network (STN). The reduced variation eases the
complexity requirement of the subsequent networks. Indeed, the experiment
results have shown the hand pose accuracy is improved by using STN. How-
ever, there are two shortages of using STN in practice. Firstly, it introduces
additional computation overhead, which consumes more memory and com-
putation time. Secondly, the training process for our task requires careful
tuning of hyper-parameters, because the network easily gets diverged. Pos-
sible reason is that the rigidity constraint on the network output might cause
instability for the training process. In future work, it is worth to investigate
other rotation representation, such as predicting the quaternion representa-
tion.

Due to the hardware limitations, this work has used a shallow ResNet
structure with 18 layers that is trained from scratch. In future work, it is
worth to try a more complex deep neural network, e.g. ResNet-50, to see
whether there could be an improvement. Furthermore, we could use pre-
trained weights on ImageNet’s RGB images as starting point for training.
However, the ImageNet has a different domain (RGB) than our data (depth),
in future work, it is worth to investigate on domain transfer strategies to see
whether it is possible to still benefit using the pre-trained weights from RGB
images, e.g. using a domain classifier [26]

This work uses a differentiable kinematic layer using DH convention. Our
extension to previous work makes the hand size and bone lengths as vari-
ables, such that it can adapt to different subjects. However, this work still
cannot control the complete hand’s appearance, e.g. the finger thickness,
shape of the muscle tissue, skin colors etc. Since the end of this work, a more
complex hand model, MANO [106], was made differentiable and used for
deep learning based method in several works [40, 10]. The MANO is a de-
formable hand model, which can create near-realistic 3D mesh model of hu-
man hand. In the future work, the MANO model could substitute the simple
kinematic layer in various hand pose related researches.

In this work, Residual Networks and CNN structures, which are usually

76 Chapter 3. Hand pose estimation using depth image

used for 2D RGB images, are used for the depth image, because depth image
shares the similar structure with the RGB image. However, the depth camera
actually provides 3D geometry information of the environment. Using same
method, which was designed for RGB image, could limit the performance.
Therefore, in the next chapter, deep learning method using point cloud will
be presented.

77

Chapter 4

Hand pose estimation using point
cloud

The presented method in the last chapter uses depth image as input, which
provides the conveniences to use the well developed convolutional neural
networks or residual networks. However, methods using 2D images as input
cannot fully utilize 3D spatial information in the depth image. Furthermore,
the appearance of the depth image is dependent on the camera parameters,
such that the trained model using one camera’s image cannot generalize well
to another camera’s image. On the other hand, 3D data is more "direct" and
"distinctive" than depth image because the appearance of 3D data is unique
and invariant to camera intrinsic parameters. For the purpose of hand pose
estimation, this chapter presents a 3D data based method using unordered
point cloud as input format. This chapter includes the content of the follow-
ing publication:

• Shile Li and Dongheui Lee. "Point-to-pose voting based hand pose estima-
tion using residual permutation equivariant layer." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

4.1 Motivation

Hand pose estimation plays an important role in human-robot interaction
tasks, such as gesture recognition and learning grasping capability by hu-
man demonstration. Recently, methods using 3D data as input have shown
the outperformance over depth image based methods [146]. One way to use
3D input data is to convert 2D depth image to volumetric representation,
such as 3D voxels [84] [20], where occupied 3D voxel is set to 1 and voxels
with empty space is set to 0. Using the voxelized data brings the convenience
to directly use 3-dimensional CNN learning structure. However, the vox-
elization requires large amount of memory to represent the input and output
data, which prevents the deployment of a very deep structure.

Another way to use 3D input data is to use unordered point cloud as
input [33, 30, 16]. Recently, PointNet, a deep learning structure for point
cloud, has shown its success in different tasks. The PointNet estimates point-
wise features for individual points and extract global feature from individual
points using a max-pooling layer, such that the network is invariant to the
order of points. Ge et al. use PointNet [99, 101] as backbone to estimate hand

78 Chapter 4. Hand pose estimation using point cloud

input points point-wise
pose predictions

point-to-pose importance weight

hand pose

segmentation

weighted
fusion

FIGURE 4.1: The proposed method takes point cloud as input. Then each point
predicts the hand pose and its importance weights for different pose dimensions.
The final pose is obtained through weighted fusion from each point’s pose predic-
tion. Using the importance weight, the hand can be clearly segmented into different
parts, although no segmentation ground-truth was used during training.

pose from point cloud [33]. However, tedious pre-processing steps such as
surface normal estimation and k-nearest-neighours search are required for
[33]. Moreover, the final max-pooling layer in the PointNet neglects many
informations that might be crucial for pose estimation.

In this chapter, a more flexible learning structure for unordered point sets,
the permutation equivariant layer (PEL) [105, 148], is explored. The PEL is
a deep learning structure that can be applied for unordered points. In PEL,
point-wise features are computed, where each point’s feature does not only
depend on its own input, but also the global maximum value. Using PEL as
the basic element, a residual network version of PEL is proposed to construct
a deep network for hand pose estimation task. Moreover, a point-to-pose vot-
ing scheme is proposed to merge point-wise features, which eliminates the
use of max-pooling layer to extract global feature, thus avoiding the loss of
information. Furthermore, the generated point-to-pose importance weights
can be also used for the hand segmentation task (Fig. 4.1), where clear seg-
mentation result can be obtained even without the segmentation ground-
truth. The proposed method is evaulated on Hands2017 Challenge dataset
and NYU dataset, where state-of-the-art performance is shown. It achieved
the lowest pose error on the Hands2017 Challenge dataset before November
2018. The contributions of this chapter are:

• A novel deep learning based hand pose estimation method for un-
ordered point cloud is proposed. Using Permuation Equivariant Layer
as the basic element, a residual network version of PEL is used to solve
the hand pose estimation task. Compared to PointNet [101] based meth-
ods, the proposed method doesn’t require tedious steps such as normal
estimation, nearest neighbour estimation.

4.2. Related works 79

• A point-to-pose voting scheme is proposed to merge the information
from point-wise local features, which also generates weakly-supervised
segmentation results without the need of segmentation ground-truth.

• The proposed method is evaluated on Hands2017 Challenge dataset
and NYU dataset, where state-of-the-art performance is shown.

4.2 Related works

A lot of research about hand pose estimation has been done in the last decade,
which can be categorized to generative, discriminative and hybrid methods.
Generative methods rely on a hand model and an optimization method to fit
the hand model to the observations [106, 122, 102, 93]. Discriminative meth-
ods use learning data to learn a mapping between observation and the hand
pose [91, 123, 84, 20, 16, 90, 111, 120]. Hybrid methods use a combination
of the generative and discriminative methods [92, 111, 143]. The proposed
method in this chapter is a learning based method thus falls into the second
category.

4.2.1 Deep learning for hand pose estimation

With the success of deep learning methods for 2D computer vision, depth
image based deep learning methods also showed good performance in hand
pose estimation task. Tompson et al. use 2D CNN to predict heatmaps of
each joint and then rely on PSO optimization to estimate the hand pose [123].
Oberweger et al. [91] uses 2D CNN to directly regress the hand pose out
of the image features, where a bottleneck layer was used to force the pre-
dicted pose obey certain prior distribution. In a later work, Oberweger and
Lepetit [90] replaced CNN to a more sophisticated learning structure, Resid-
ualNet50, to improve the performance of feature extraction. Zhou et al. [150]
regress a set of hand joint angles and feed the joint angles into an embed-
ded kinematic layer to obtain the final pose. Ye et al. [142] use a hierarchical
mixture density network to handle the multi-modal distribution of occluded
hand joints.

Recently, 3D deep learning has been also applied for the hand pose es-
timation task. Moon et al. use 883 voxels to represent hand’s 3D geometry
and use 3D CNN to estimate hand pose [84]. Their method achieved very
accurate result, however, 3D voxelization of the input and output data re-
quires large memory size, such that their method only runs at 3.5 FPS. Ge et
al. [33, 30] use 1024 3D points as input, and rely on PointNet [101] structure
to regress the hand pose. Their method achieved satisfying performance, but
tedious pre-processing steps are required, which includes oriented bounding
box (OBB) calculation, surface normal estimation and k-nearest-neighbours
search for all points. Chen et al. improves Ge’s method by using a spatial
transformer network to replace the OBB and furthermore added a auxiliary
hand segmentation task to improve the performance [16]. Their method can

80 Chapter 4. Hand pose estimation using point cloud

J

pose

residual PEL network
N

x3

N
x1

0
2
4

input points point-wise features

point-to-pose voting

detection version or regression version

FIGURE 4.2: Overview of the proposed method.

be trained end-to-end without OBB, but the segmentation ground-truth data
require a extra pre-computation step from the pose data.

4.2.2 3D Deep learning

Since 3D data cannot be directly fed into a conventional 2D CNN, some meth-
ods project the 3D data onto different views to obtain multiple depth images
and perform CNN on all images [34, 100] [42, 144]. Another way to process
the 3D data is to use volumetric representation and process the data with 3D
CNN [32, 137, 82, 84]. These methods can capture the feature of input data
more effective, but they require large memory size. Qi et al. developed Point-
Net to handle unordered point cloud [99]. The PointNet estimates point-wise
local features and obtains global features with a max-pooling layer. Later on,
PointNet++ extends PointNet by hierarchically upsampling the local features
into higher levels [101].

Other recent methods taking 3D points as input include point-wise CNN
[47], Deep kd-Networks [63], Self-Organizing Net [72] and Dynamic Graph
CNN [132]. Despite their good performance for different tasks, they all re-
quire extra steps to estimate k-nearest neighbours or construct kd-tree, which
are not required in our proposed residual PEL network.

4.3 Method

The overview of the proposed method is illustrated in Fig. 4.2. The network
takes N 3D points P ∈ RN×3 with arbitrary order as input, and regresses
the vectorized 3D hand pose y ∈ RJ in the end, where J = 3× #joints. To
estimate the hand pose, the residual permutation equivariant layers (PEL)
(Fig. 4.4) first extract features from each point. Using the point-wise local
features, point-to-pose voting is applied to estimate the final pose output,
where two versions for point-to-pose voting are developed, which are the
detection version and the regression version.

4.3.1 Pre-processing with view normalization

For pre-processing, first, the depth pixels in the hand region are converted to
3D points. The next step is to create a 3D bounding box for the hand points
to obtain normalized coordinate of these points. A usual pre-processing

4.3. Method 81

method will simply create a bounding box aligned with the camera coor-
dinate system (Fig 4.3a). However, because of self-occlusion of the hand, this
will result in different set of observation points for the exact same pose label,
which creates one-to-many mapping of the input-output pairs.

camera camera

a) w/o view normalization b) with view normalization

sample 1 sample 2 sample 1 sample 2

FIGURE 4.3: View normalization as pre-processing step. Red skeletons indicate
ground-truth pose, green points indicate observed points of the camera. a) The same
hand pose results in different observations due to different view directions, thus the
resulted training samples will contain one-to-many mappings. b) With view nor-
malization, the different observations will also have different pose labels, thus the
input-output pairs will have a one-to-one mapping.

To maintain the one-to-one mapping relation of the input-output pairs,
we propose to use view normalization to align the bounding box’s z-axis
[0, 0, 1]T with the view direction towards the hand centroid point c ∈ R3. The
alignment is performed by rotating the hand points with a rotation matrix
Rcam:

αy = atan2(cx, cz),
c̃ = Ry(−αy) · c,

αx = atan2(c̃y, c̃z),
Rcam = Ry(−αy) · Rx(αx).

(4.1)

After rotating the observation points and ground truth pose with Rcam, the
hand is rotated such that it appears right in front of the camera. As illustrated
in Fig. 4.3b), the one-to-many mapping problem is then avoided.

4.3.2 Residual Permutation Equivariant Layers

The feature extraction module in our method is called Residual Permuta-
tion Equivariant Layers. The basic element is the permutation equviariant
layer (PEL), which follows the design from [105]. A PEL takes a set of un-
ordered points as input and computes separate features for each individual
input point.

82 Chapter 4. Hand pose estimation using point cloud

Assuming that the input for a PEL is x ∈ RN×Kin and the output is x′ ∈
RN×Kout , where N is the number of points and Kin, Kout are the size of input
and output feature dimensions. The output x′ of the PEL is:

x′ = σ(1N βT + (x diag(λ) + 1NxT
max diag(γ))W), (4.2)

where λ ∈ RKin ,γ ∈ RKin are weighting terms for the point’s own feature
and the global maximum value respectively, and xmax ∈ RKin is a vector rep-
resenting maximum values for each column of x. W ∈ RKin×Kout is the weight
term and β ∈ RKout is the bias term and 1N ∈ RN is a vector full of ones.
Furthermore, an activation function σ(·) is applied to provide non-linearity,
where a sigmoid function is used later for the proposed hand pose estimation
method.

This layer is invariant to input order because the output value of each
individual point only depends on its own input feature and the global maxi-
mum values in each feature dimension, whereas the global maximum values
are also invariant to the order of input points.1 In this way, each point’s local
feature is not only computed based on its own input feature, each point also
exchanges information with other points through the weighted summation
of xmax.

For the practical side, four elements need to be trained, which are β, λ,
γ and W. In total, the number of parameters needed for one layer is Kout +
(Kout + 2)Kin, which is only slightly more than a fully-connected layer, thus
it is feasible for training in practice.

In order to extract very complex features, we construct a residual network
with 39 PEL layers. As illustrated in Fig. 4.4, we use three residual blocks,
whereas each residual block consists of 13 PELs and four short-cut connec-
tions.

4.3.3 Point-to-pose voting

With the residual PEL module, features F of points are computed, where each
row of F represents local feature for one point. Using these local point-wise
features, the hand pose y ∈ RJ will be estimated using a point-to-pose voting
scheme. Two versions for point-to-pose voting are explored, which are the
detection based version and the regression based version. The performance
of these two versions will be compared in the experiment section.

Detection version

In the detection version (Fig. 4.5), probability distributions of each pose di-
mension is firstly detected and the pose is then integrated from the distribu-
tions. We use two separate fully connected modules to estimate two matrices:
an importance term G ∈ RN×J and a distribution term D̂ ∈ RN×J×B. An el-
ement of importance matrix Gnj represents the confidence level of nth input
point to predict the jth output pose dimension. In other words, each of the

1The detailed proof of the invariance for PEL can be found in [105].

4.3. Method 83

PEL 3x64

PEL 64x64

residual block 3x64

Residual PEL Networks

residual block (3x64)

residual block (64x256)

residual block (256x1024)

BatchNorm

BatchNorm

BatchNorm

PEL 64x64

BatchNorm

PEL 64x64

PEL 64x64

BatchNorm

BatchNorm

PEL 64x64

BatchNorm

PEL 64x64
BatchNorm

Points:

 Features:
PEL 64x64

BatchNorm

PEL 64x64

BatchNorm

PEL 64x64

BatchNorm

PEL 64x64
BatchNorm

PEL 64x64
BatchNorm

PEL 64x64

FIGURE 4.4: Residual network of permutation equivariant layer

N points predicts J B-dimensional distributions and J corresponding impor-
tance weights. Notice that the final layer of the two fully connected modules
are sigmoid functions, such that all elements of G and D̂ are in the range of
[0, 1].

D̂ represents the output pose distributions, where each point makes its
own predictions to J output dimensions. Each of the output pose dimension
is represented as discrete distribution using a B bins, representing the value
range in [−r,+r] with the resolution per bin ∆d = 2r/B. For the jth dimen-
sion of the output pose yj, the corresponding bin index for itself is then:

indexgt
j = d(ygt

j + r)/∆de,

and the ground truth distribution is defined as:

Dgt
jb =

{
1, if b ∈ [indexgt

j − 1, indexgt
j + 1]

0, otherwise
(4.3)

whereas the three bins around ground truth pose are set to one and all other
bins are set to zero.

The final distribution for the J-dimensional output D ∈ RJ×B is then ob-
tained by merging the predictions of all N points:

Djb =
∑N

n=1(GnjD̂njb)

∑N
n=1 Gnj

. (4.4)

84 Chapter 4. Hand pose estimation using point cloud

J

pose

residual PEL network

N
x3

N
x1

0
2
4

input points point-wise features

point-to-pose voting

point-to-pose voting: detection version

NxJ

N
x(

Jx
B
)

NxJxB

weighted
fusion JxB

pose estimation
from distribution

point-to-pose
importance term

point-to-pose
distributions estimates

dimensional
pose distributions

point-wise
fully-connect

point-wise
fully-connect

point-to-pose voting: regression version

NxJ

NxJ

weighted
fusion

point-to-pose
importance term

point-to-pose
estimates

point-wise
fully-connect

point-wise
fully-connect

FIGURE 4.5: Two different versions for point-to-pose voting.

And the final pose y is estimated with integration over the distribution:

yj =
∑B

b=1(b− 0.5)Djb

∑B
b=1 Djb

, (4.5)

where b− 0.5 represents the bin center position.

Regression version

In the regression version (Fig. 4.5), each point will directly predict the pose
without the intermediate distribution detection. Similarly to the detection
version, two separate fully connected modules are used to estimate the im-
portance term G ∈ RN×J and the point-to-pose estimates ŷ ∈ RN×J . Then
the final pose output is merged as the weighted average over all points’ pre-
dictions:

yj =
∑N

n=1(Gnjŷnj)

∑N
n=1 Gnj

. (4.6)

4.4. Experimental results 85

4.3.4 Segmentation using importance term

The importance term G ∈ RN×J is estimated automatically without the ground-
truth information. However, it still provides vital information of each point’s
importance to the pose output. Therefore, the obtained importance term can
be also used for the hand segmentation task based on the most contributed
pose dimension. For the n-th point having the importance terms g = Gn, the
point’s most contributed pose dimension is:

jmax = argmax
j

gj,

where the pose dimension jmax can be categorized to a specific hand part. In
this work, we categorized the J pose dimensions to palm, thumb, index, ring
and pinky fingers.

4.3.5 Training Loss

The only training loss for the detection version is the logarithm loss of the
pose distributions:

Ldet = −
J

∑
j=1

B

∑
b=1

Dgt
jb log(Djb + ε)

+(1−Dgt
jb)(1− log(Djb + ε)),

(4.7)

where ε = 10−7 is a small offset to avoid feeding zero to the logarithm oper-
ator.

The only training loss used for the regression version is the L2 loss be-
tween predicted pose and ground-truth pose:

Lreg =
1
2

J

∑
j=1

(ygt
j − yj)

2. (4.8)

Notice that for both detection and regression versions, the importance
term G ∈ RN×J is estimated automatically without the ground-truth infor-
mation.

4.4 Experimental results

The proposed hand pose estimation method is evaluated on the Hands2017
Challenge dataset [147] and the NYU [123] dataset. The Hands2017 Chal-
lenge is composed from parts of the Big Hand 2.2M dataset [145] and the
First-person Hand Action Dataset (FHAD) [28], it is currently the largest
dataset available. Its training set contains 957032 depth images of five dif-
ferent hands. The test set consists of 295510 depth images of ten different
hand shapes, of which five are the same as in the training set and five are

86 Chapter 4. Hand pose estimation using point cloud

entirely new. The NYU dataset contains 72757 training images of a single
subject’s hand and 8252 test images that include a second hand shape be-
sides the one from the training set. The NYU dataset provides depth images
from three different views, we trained the method with two opitons, one uses
only frontal view data and the other one uses all three views. For testing, we
test only using the frontal view.

The proposed method is implemented using TensorFlow [1]. The net-
works are trained on a PC with an AMD FX-4300/Intel Core i7-860 CPU and
an nVidia GeForce GTX1060 6GB GPU. We train 100 epochs for the NYU
dataset and train only 20 epochs for the Hands 2017 challenge dataset since
the challenge dataset has a large size. For both datasets, the first 50% of
the epochs are trained with smaller number of points (N = 256) to boost
the training speed. The remaining epochs are trained with a point size of
N = 512. The Adam optimizer is used for training with an initial learning
rate of 10−3 and the learning rate is decreased to 10−4 for the last 10% of the
epochs. For the detection version, we set r = 15mm and B = 60. Online aug-
mentation was performed with random translation in all three dimensions
within [−15, 15]mm, random scaling within [0.85, 1.15] and random rotation
around z-axis within [−π, π].

4.4.1 Self-comparison

In this subsection, we perform self-comparison to show the effects of differ-
ent components in our method. The detailed comparison can be found in
Table 4.1 and Table 4.2.

View normalization. To validate the necessity of view normalization, we
trained our method using both view normalized data and original data for
the detection version. It is evident from Table 1 that view normalization de-
creases the pose estimation error by about 1.5 mm for the Hands2017 Chal-
lenge dataset.

Detection vs. regression. Yuan et.al. indicates that detection based meth-
ods work in general better than regression-based methods [146], therefore we
implemented both detection-based (ours/distribution) and regression-based
(ours/regression) variations. As seen from in Table 4.1 and Table 4.2, in both
datasets, both variations show similar performance, where regression-based
variation slightly outperforms the detection-based counterpart. Possible rea-
sons for this can be quantization effect of the binary distribution and the sim-
plification of 1-dimensional heat vectors compared to 2D or 3D heat maps
used in previous works. However, the 1D heat vector representation is much
more efficient than the 3D heatmap representation. For the heat vectors, we
need B× J values to represent the pose output, whereas 3D heatmaps require
J × B3 values [84]. In future work, it is worth to investigate more different
loss types and heat map representations.

Number of points. Taking advantage of the PEL structure and voting-
based scheme, our method is very flexible to the input point cloud size. Al-
though the network was trained with 512 points, arbitrary number of points
can be used at the testing stage. For an online application, this property can

4.4. Experimental results 87

detection detection w/o
view normalization regression

256 points 11.34 13.14 11.21
512 points 10.23 11.93 10.11

1024 points 9.93 11.67 9.82
2048 points 9.93 11.69 9.87

TABLE 4.1: Self-comparison result on Hands2017Challenge dataset: mean joint error
[mm]

detection/
single view

regression/
single view

regression/
three views

256 points 9.82 9.45 9.05
512 points 9.33 9.06 8.49

1024 points 9.25 8.99 8.35
2048 points 9.32 9.08 8.35

TABLE 4.2: Self-comparison result on NYU dataset: : mean joint error [mm]

be beneficial to choose an arbitrary number of points based on the computa-
tional resources available. As seen from in Table 4.1 and 4.2, different number
of points were tested for both datasets. Our method can achieve good per-
formance with only 256 points, the mean joint error only increased by 0.11
mm compared to 512 points. In general, more points provides better per-
formance, but it doesn’t improve any more after 1024 points. Therefore, we
choose 1024 points for testing to compare our method with other state-of-the-
art methods.

Comparison of different network structures. We also performed self-
comparison at the initial exploration stage to verify the advantage of Re-
sPEL network. From Table 4.3, the incremental improvements of residual
version and voting scheme can be shown. 4PELs is a shallow network with
four PELs with (64,256,512,1024) hidden neurons and Maxpooling means the
voting scheme is replaced by a max-pooling layer and 4 consequent fully-
connected layers to regress the hand pose. By replacing the shallow network
with residual version (ResPEL+Maxpooling), the pose error is reduced signif-
icantly. Further improvement can be achieved by using our proposed voting
scheme (ResPEL+Voting).

4PELs+
Maxpooling

ResPEL+
Maxpooling

ResPEL+
Voting

mean joint error [mm] 16.60 11.02 8.35

TABLE 4.3: Self-comparison of different network structures on NYU dataset (three
views)

88 Chapter 4. Hand pose estimation using point cloud

4.4.2 Comparison to state-of-the-art methods

Hands2017 Challenge dataset. Since the ground-truth data for the testing
set publicly available, some previous papers divide the training set on their
own to create their own testing set. Therefore, for fair comparison, we only
compare to those methods, who have also tested on the official testing web-
site (status: November 2018). In Table 4.4, we compare our method with five
other top performing methods on the Hands2017 Challenge dataset, which
include both methods using 3D input data and methods using 2D depth im-
age. RCN-3D [146], THU VCLab [15] and Vanora [146] use depth image as
input data. V2V-PoseNet [84] uses voxel representation for both input data
and output heatmaps. Oasis [33] also uses 3D point cloud as input and their
method is constructed based on PointNet [99]. Three different errors are used
for comparison: 1) the average across the complete test set (avg test), 2) the
average across the test set of seen subjects’ hand during training (seen test),
and 3) the average across the test set images of unseen subjects’ hand (un-
seen test). Currently, our method achieves the lowest overall mean joint error
on the test dataset of 9.82 mm. For seen subjects’ hand and unseen subjects’
hand, the mean joint errors are 7.15 mm and 12.04 mm respectively, which
shows the generalizability of the proposed method even without regulariza-
tion on the parameters. In comparison to other 3D data based methods, our
method is slightly better than V2V-PoseNet, whereas V2V-PoseNet requires
10 good GPUs to run realtime and our method requires only one moder-
ate GPU. Compared to oasis, which also uses 1024 3D points as input, our
method is 1.48 mm better, where oasis requires more input information like
surface normal and k-nearest neighbours.

4.4. Experimental results 89

FIGURE 4.6: Comparison with state-of-the-arts on NYU [123] dataset. Top: mean
errors of different joints. Down: proportion of correct frames based on different
error thresholds.

NYU dataset. For the NYU dataset, we only compared to recent state-
of-the-art methods after 2017. For testing the performance, only the frontal
view was used. Following previous works [91][123][30], only 14 joints out of
36 joints provided were used for evaluation. For a fair comparison, we only
compared to the methods trained solely on the NYU dataset without addi-
tional data. The compared methods include depth image based methods
(DeepPrior++ [90], DenseReg [20]), 3D voxel based methods (3DCNN [32],
V2V-PoseNet [84]) and point cloud based methods (SHPR-Net [16], Hand-
PointNet [33], Point-to-Point [30]). The comparison is shown in Figure 4.6,
where our method performs comparably good as V2V-PoseNet [84] and Point-
to-Point [30], and outperforms all other methods. A closer comparison of
the mean joint error value can be found in Table 4.5, where the our method

90 Chapter 4. Hand pose estimation using point cloud

method avg test seen test unseen test
Ours/regression 9.82 7.15 12.04
Ours/detection 9.93 7.18 12.22

V2V-PoseNet [84] 9.95 6.97 12.43
RCN-3D [146] 9.97 7.55 12.00

oasis [33] 11.30 8.86 13.33
THU VCLab [15] 11.70 9.15 13.83

Vanora [146] 11.91 9.55 13.89

TABLE 4.4: Comparison of our method with state-of-the-art methods on the
Hands2017Challenge dataset

method mean joint error (mm)
Ours/regression/singleView 8.99
Ours/regression/threeViews 8.35

Ours/detection 9.25
DeepPrior++ [90] 12.23

3DCNN 14.11
DenseReg [20] 10.21

V2V-PoseNet [84] 8.42
SHPR-Net [16] 10.77

SHPR-Net (three views) [16] 9.37
HandPointNet [33] 10.54
Point-to-Point [30] 9.04

TABLE 4.5: Comparison of our method with state-of-the-art methods on the NYU
dataset

trained with single view is the second best, and our method trained with
three views outperforms all recent state-of-the-art methods.

4.4.3 Segmentation using importance term

Besides showing the quantitative results relying on the ground-truth data,
we also show some qualitative result of the segmentation using the automat-
ically inferred importance term. As seen from Figure 4.7, the segmentation
result is shown alongside the original point cloud. The samples are taken
from the Hands2017 Challenge dataset. Both samples with all visible fingers
and samples with different levels of self-occlusion are shown. In all cases, the
fingers are clearly segmented with each other, even the fingers are twisted to-
gether. The points has no contribution to any joint has very small importance
values and they are classified as background. As Figure 4.7 shows, the arm
and the background points are clearly segmented in gray. Notice that the seg-
mentation result is obtained without the ground-truth data for segmentation.
This leads to a future research question about whether we can perform this
method on hand-object interaction cases, where the influence of the object
can be automatically removed.

4.5. Summary 91

our method V2V-PoseNet [84] Hand3D [20] P2P-Regression [30]
GPU GTX1060 Titan X Titan X Titan Xp

time

detection regression

285.7 ms 33.3 ms 23.9 ms256 points 3.5 ms 2.9 ms
512 points 6.9 ms 5.5 ms

1024 points 12.5 ms 10.7 ms

TABLE 4.6: Comparison of runtime and hardware

4.4.4 Runtime and model size

Compared to depth image based methods, our method requires more com-
putation time and memory storage, this limits our training to use only 512
points (batch size=32) on our hardware setting. To store the learned mod-
els, the proposed method takes 38 MB for the regression version and 44 MB
for the detection version. Compared to 420MB for a 3D CNN based method
[20], our model size is much smaller. For the testing stage, the runtime of
our method is 12.5 ms and 10.7 ms per frame for the detection and regression
version respectively, where 1024 points are used as input. When less input
points is used, the runtime can be further reduced with a small performance
loss. Table 4.6 shows a comparison of runtime to other state-of-the-art 3D
methods [84, 20, 30]. Although the other methods all used a more powerful
GPU than ours, our method require the least processing time.

4.5 Summary

This chapter proposes a novel neural network architecture, ResidualPEL, for
hand pose estimation using unordered point cloud as input. The proposed
method is invariant to input point order and can handle different numbers of
points. Compared to previous 3D voxel based methods, our method requires
less memory size. And compared to PointNet based methods, our method
does not require surface normal and K-nearest-neighours information. A
voting-based scheme was proposed to merge information from individual
points to pose output, where the resulting importance term can be also used
to segment the hand into different parts. The performance is evaluated on
two datasets, where the proposed method outperforms the state-of-the-art
methods on both datasets. In future work, the proposed ResidualPEL and
voting scheme can be also applied to similar problem such as human pose
estimation and object pose estimation.

4.6 Discussion and future works

This work has shown two strategies to predict the pose in the final layer, the
"direct regression" strategy and "detection" from heatmap strategy. Initially,
we have expected that the "detection" version would outperform, since it is
usually the case in previous work [146]. However, the "regression" version
slightly outperforms in the experiments. We suspect that the simplified 1D
heat vector representation could be the cause of slightly worse performance

92 Chapter 4. Hand pose estimation using point cloud

Po
in
ts

S
e
g
m
e
n
ta
ti
o
n

Po
in
ts

S
e
g
m
e
n
ta
ti
o
n

Po
in
ts

S
e
g
m
e
n
ta
ti
o
n

FIGURE 4.7: Segmentation results based on importance weights (best viewed in
color). Points: input point cloud, color indicates depth value, blue points are more
distanced and red points are more closer to the camera. Segmentation: each part of
the hand is indicated with an different color, palm (red), thumb (green), index (blue),
middle (yellow), ring (cyan), pinky (pink) and irrelevant points with low importance
weight for all parts (gray).

for "detection" strategy. However, the 1D representation is much more effi-
cient than the 3D counterparts. Moreover, the heatmap representation also
provides an additional benefit, where it can represent distribution with mul-
tiple local maxima intuitively. This can be quite useful to predict occluded
joints’ position as a probability distribution instead of a single average value.
Therefore, in the future work, it is worth to investigate on how to improve
the performance on the "detection" strategy, e.g. to add an additional net-
work component after the "detection" layer, to see whether there could be
potential improvement.

This works proposed to use a voting layer to aggregate point-wise predic-
tion based on their importance weights. The importance weights provides
promising semi-supervised segmentation results, which is significant on its
own. We didn’t investigate too much for the segmentation because the main
focus of this work was hand pose estimation, and the segmentation cannot

4.6. Discussion and future works 93

be evaluated properly due to the lack of ground-truth. In the future work,
we could investigate the segmentation performance on other datasets which
also provide segmentation ground-truth.

The proposed method is very flexible on the size of input point cloud, it
could be trained and tested using different number of input points, which
is not possible with structured input data, such as RGB image, depth im-
age or 3D voxels. This provides a benefit for online application, where the
application can choose the number of input points based on current com-
putation load adaptively. The experiment has shown that with increasing
number of input points, the pose estimation accuracy also improves. How-
ever, when the input size surpass 1024, the improvement is marginal. We
are currently not sure about the exact reason of the saturated performance
with more points. Our guess is that the complexity of the hand appearance
could already perfectly represented by 1024 points, such that more points
just provide redundant information.

The proposed network structure of this work can be also potentially mi-
grated to other similar tasks. Probably the most similar task would be human
pose estimation, where both hand and human body are articulated objects
with many DoFs. Apart from that, the proposed ResPEL and voting layer
can be potentially used for other point cloud based tasks, such as object de-
tection and object pose estimation.

This chapter and the previous chapter used depth image and point cloud
as input respectively. We have chosen to use them because they provide 3D
geometry information, which is less ambiguous than RGB images. However,
many real testing scenarios can only provide RGB image as input, such as
mobile phone camera or robot camera without depth sensors. In the next
chapter, we will explore how to train a pipeline using both 3D and RGB data
and test only using RGB data, such that the testing performance can be im-
proved.

95

Chapter 5

Hand pose estimation using
multiple modalities

This chapter includes the content of the following publication:
Article:

• Linlin Yang*, Shile Li*, Dongheui Lee and Angela Yao. "Aligning Latent
Spaces for 3D Hand Pose Estimation." Proceedings of the IEEE International
Conference on Computer Vision (ICCV). 2019. *equal contribution

Other contributors:

• Linlin Yang (PhD student)

• Dongheui Lee (Thesis supervisor)

• Angela Yao (Supervisor of Linlin Yang)

Author contributions

• LY and SL organized the study. LY and SL developed the method and
wrote the code jointly, where LY is more responsible for developing the
idea and SL is more responsible for implementing the framework and
experiments. LY and SL wrote the main body of the article. SL, LY, DL
and AY analyzed the results and revised the article.

This chapter presents a hand pose estimation method using multi-modality
data as input. In particular, the developed method is flexible such that it can
be trained using multi-modality data (RGB and point cloud) and can be de-
ployed using only RGB data.

5.1 Motivation

Hand pose estimation plays an important role in areas such as human ac-
tivity analysis, human computer interaction, and robotics. Depth-based 3D
hand pose estimation methods are now highly accurate [127, 76, 141] largely
due to advancements from deep learning. Despite depth sensors being more
common, high-quality depth maps can still only be captured with limiting
sensing range, thereby limiting the environments in which depth-based meth-
ods can be deployed. Furthermore, simple RGB cameras, as well as existing

96 Chapter 5. Hand pose estimation using multiple modalities

RGB footage are still far more ubiquitous than depth cameras and depth data.
As such, there is still a need for accurate RGB-based 3D hand pose estimation
methods, especially from monocular viewpoints. Therefore, it is essential to
have a hand pose estimation method using RGB image.

Unfortunately, RGB-based hand pose methods, in particular monocular
ones, suffer from geometric ambiguities, which is not present in depth based
method. To tackle this problem, previous works for monocular RGB image
have relied on large amounts of training data [152, 85]. However, gains from
purely increasing dataset size tend to saturate, because it is very difficult to
obtain accurate ground truth pose for RGB images. Annotating 3D hand joint
positions accurately is a difficult task and there is often conflicted annotation
between human annotators [118]. While several methods have been devel-
oped to generate synthetized images [85], there still exists a large domain gap
between synthesized and real-world data, limiting the usability of synthetic
data.

Even though accurate ground truth for RGB data is hard to collect, there
exists plenty of unlabelled RGB-D hand data which can be leveraged together
with labelled depth maps. Cai et. al. [11] first proposed the use of labelled
depth maps as regularization to boost RGB-based methods. Yang et. al. [139]
introduced a disentangled representation so that viewpoint can be used as a
weak label. Inspired by these works, we aim to leverage multiple modalities
as weak labels in the training process to enhance the performance of RGB-
based hand pose estimation.

In the proposed method, different modalities of hand data (e.g. RGB im-
ages, depth maps, point clouds, 3D poses, heat maps and segmentation masks)
are considered, where RGB-based hand pose estimation is formulated as a
cross-modal inference problem. In particular, a multi-modal variational au-
toencoder (VAE) is used to encode and decode these modalities. VAEs are
an attractive class of deep generative models which can be learned on large-
scale, high-dimensional datasets. They have been shown to capture highly
complex relationships across multiple modalities [119, 126, 136] and have
also been applied to RGB-based pose estimation in the past [112, 139]. How-
ever, previous works [112, 139] learn a single shared latent space and as a
result must compromise on pose reconstruction accuracy.

In this chapter, instead of using a shared latent space among modali-
ties, multiple latent spaces from individual modalities will be aligned. More
specifically, we derive different objectives for three diverse modalities, namely
3D poses, point clouds, and heat maps, and explored different ways to align-
ing their associated hand latent spaces. While such a solution may appear
more complicated than learning one shared latent space directly, this learn-
ing scheme through alignment offers more flexibility in working with non-
corresponding data and also weak supervision. The resulting latent repre-
sentation allows for estimating highly accurate hand poses and synthesizing
realistic-looking point clouds of the hand surface, all from monocular RGB
images.

Furthermore, we explore non-conventional inputs such as point clouds
and heat maps for learning the latent hand space and show how they can be

5.2. Related Works 97

leveraged for improving the accuracy of an RGB-based hand pose estimation
system. A side product of our framework is that we can synthesize realistic-
looking point clouds of the hand from RGB images.

Experiments on two publicly available benchmarks show that the pro-
posed method makes full use of auxiliary modalities during training and im-
proves the accuracy of RGB pose estimates for testing. The resulting pose ac-
curacy surpass state-of-the-art methods on monocular RGB-based hand pose
estimation, with a 19% improvement on the challenging RHD dataset [152]

5.2 Related Works

One way to categorize hand pose estimation approaches is according to ei-
ther generative or discriminative methods. Generative methods employ a
hand model and use optimization to fit the hand model to the observations
[102, 93, 122]. They usually require a good initialization; otherwise they are
susceptible to getting stuck in local minima. Discriminative methods learn a
direct mapping from visual observations to hand poses [123, 139, 76, 91, 152,
11]. Thanks to large-scale annotated datasets [152, 147, 123], deep learning-
based discriminative methods have shown very strong performance in the
hand pose estimation task.

In particular, works using depth or 3D data as input are the most accu-
rate. Oberweger et. al. [91] use 2D CNNs to regress the hand pose from
depth images, using a bottleneck layer to regularize the pose prediction to a
certain prior distribution, which is initialized by principal component analy-
sis. Moon et. al. [84] use 3D voxels as input and regress the hand pose with a
3D CNN. More recent works [76, 33] apply 3D point clouds as input and can
estimate very accurate hand poses.

3D data is not always available either at training or at testing stage. Some
recent works have started to explore the use of monocular RGB data. For
example, Zimmermann et. al. [152] regress heatmaps for each hand keypoint
using RGB images and then regress the 3D hand pose from these heatmaps
with fully-connected layers. Mueller et. al. [85] follow a similar approach,
but obtain the final 3D hand pose by using a kinematic skeleton model to fit
the probability distribution of predicted heat maps.

More recent monocular RGB-based methods leverage depth information
for training [11, 112], even though testing is done exclusively with RGB im-
ages. The proposed method also falls into this line of work. Cai et. al. [11]
propose an additional decoder to render depth maps from corresponding
poses to regularize the learning of an RGB-based pose estimation system.
This architecture is essentially two independent networks with a shared hand
pose layer. This shared layer however cannot leverage data without pose
annotations. Spurr et. al. [112] propose a VAE-based method that learns a
shared latent space for hand poses from both RGB and depth images. How-
ever, its alternating training strategy from the different modalities ignores the
availability of corresponding data and leads to a slow convergence speed.

98 Chapter 5. Hand pose estimation using multiple modalities

5.3 Strategies for mutli-modality input data

Our goal is to capture relationships between different modalities so that it
is possible to obtain information of target modalities given observations of
some other modalities, such that training can be performed for multi-modal
data and testing can be performed using unimodal data. In the following,
for the purpose of single modal testing, 4 different training strategies (S1-S4)
will be explored to handle multi-modal data.

The input modality is denoted as x, whereas the target output modal-
ity is denoted as y. Any additional corresponding modality is denoted as
w1, w2, ..., for the sake of simplicity, we firstly only consider a single addi-
tional modality w. In the case of hand pose estimation, x is the RGB image, y
is the 3D hand pose and w is the corresponding point cloud data.

5.3.1 S1: Baseline with cross-modal VAE

x: input modality
(RGB image)

RGB
Encoder

Pose
Decoder

y: output modality
(3D pose)

FIGURE 5.1: Strategy1:Baseline with cross-modal VAE

The simplest baseline is to ignore the availability of w and construct a
cross-modal VAE framework to regress (Figure 5.1). Given data sample x
from the input modality, the system aims to estimate its corresponding target
value y in a target modality. It comprises of an encoder part and a decoder
part:

Enc : z ∼ Enc(x) = q(z|x), Dec : y ∼ Dec(z) = p(y|z)
The VAE reconstructs y to be as close as possible to the input x, at the same
time a prior is enforce on the latent space distribution p(z), where an Gaus-
sian prior is used. Therefore, the total loss function for the VAE is:

LS1 = Lpose
recons + βLprior,

Lpose
recons = −Eq(z|x)[log p(y|z)],
Lprior = DKL(q(z|x)||p(z)),

(5.1)

where DKL is the is the Kullback-Leibler divergence and β is a weighting
factor to tune the importance between reconstruction accuracy and prior dis-
tribution. This baseline simply encodes the RGB image to the latent space
and reconstruct 3D pose out of it, where available point cloud information
is totally ignored.

5.3. Strategies for mutli-modality input data 99

5.3.2 S2: Mutli-task learning

RGB
Encoder

Pose
Decoder

Point Cloud
Decoder

x: input modality
(RGB image)

y: output modality
(3D pose)

w: additional modality
(Point Cloud)

FIGURE 5.2: Strategy2: Mutli-task learning

The second strategy is to take the additional modality as a multi-task
learning target (Figure 5.2) Using the latent variable z ∼ q(z|x), both 3D
pose y and point cloud w will be reconstructed. The total loss then becomes:

LS2 = Lpose
recons + Lcloud

recons + βLprior, (5.2)

where details of point cloud reconstruction loss will be introduced later (Equa-
tion 5.4.2). Compare to the baseline (Figure 5.1), the latent space contains
richer information with reconstructing point cloud using the shared latent
space.

5.3.3 S3: Alignment to multi-modal latent space

RGB
Encoder

Pose
Decoder

Point Cloud
Decoder

x: RGB image

x and w: combined input

 joint
Encoder

FIGURE 5.3: Strategy3: Alignment to multi-modal latent space

We consider to learn a multi-modal latent space using concatenated input
(x, w), obtaining a multi-modal latent variable: zx,w ∼ q(zx,w|x, w) and then
reconstruct the 3D pose out of it: yx,w ∼ p(yx,w|zx,w). The multi-modal latent
space contains richer information than using unimodal input and thus can
produce more accurate pose result. However, for testing, only x is available,

100 Chapter 5. Hand pose estimation using multiple modalities

which hinders the usability of the trained model. Therefore, the third strat-
egy (Figure 5.3) proposes to train a unimodal cross-VAE simultaneously and
then align the two latent spaces by reducing the KL divergence loss between
them:

Lalign = DKL(q(zx,w|x, w)||q(zx|x)) (5.3)

Then the total loss becomes:

LS3 = Lpose
recons(yx) + Lpose

recons(wx,w)

+ Lcloud
recons(wx) + Lcloud

recons(wx,w)

+ β′Lalign

(5.4)

This strategy forces the unimodal latent distribution p(zx) to be as close
as possible to the multi-modal latent distribution p(zx,w), thus improves the
quality of the unimodal path. However, this strategy suffers from two limita-
tions. Firstly, as the number of additional modalities increases, the combined
input x, w becomes difficult to learn. Secondly, it cannot leverage on the data
pair (w, y), which is a pity because a lot of large, accurate dataset only con-
tains depth image data. To overcome these limitations, the fourth strategy
uses the Gaussian product as an alternative form of alignment.

5.3.4 S4: Alignment using Gaussian product

Align with
Gaussian
Product

RGB
Encoder

Point Cloud
Encoder

Pose
Decoder

Point Cloud
Decoder

x: input modality
(RGB image)

w: other corresponding
 modality (Point Cloud)

FIGURE 5.4: Strategy4: Alignment using Gaussian product

It was proven in [136] that the joint posterior is proportional to the prod-
uct of individual posteriors, i.e. q(z|x, w) ∝ p(z)q(z|x)q(z|w). To that end,
we can estimate the joint latent representation from unimodal latent repre-
sentations (Figure 5.4), in which each input modality is encoded separately
to zx and zw, and then the joint latent space is constructed using Gaussian
product

zjoint = GProd(zx, zw),

where the product of two Gaussian experts is also Gaussian with mean µ and
variance σ. Suppose that q(z|x) = N (µ1, σ1) and q(z|w1) = N (µ2, σ2). The

5.4. Details of implementation 101

product of the two is also Gaussian with mean µ and variance σ where

µ = (µ1T1 + µ2T2)/(T1 + T2), and
σ = 1/(T1 + T2), where T1 = 1/σ1, T2 = 1/σ2.

Note that all operations in GProd(·) are element-wise. In this way, we can
build a connection between zjoint and zx, zw , forcing them all into one joint
latent space.

These three latent variables will then use shared decoders to reconstruct
y and w, resulting in the loss function:

LS4 = Lpose
recons(yzx) + Lpose

recons(yzw) + Lpose
recons(yzx,w)

+ Lcloud
recons(wzx) + Lcloud

recons(wzw) + Lcloud
recons(wzx,w)

+ βDKL(q(z|x)||N (0, 1)),

(5.5)

This strategy is more flexible than Strategy 3, because the encoders of dif-
ferent modalities can be trained individually, even using data from different
datasets, while for S3, the encoder for multi-modal input must be trained on
the complete (x, w) pairs.

Notation for hand pose estimation

In the context of RGB-based hand pose estimation, x represents RGB im-
ages and y represents 3D hand poses. Other modalities like heatmaps, depth
maps, point clouds and segmentation masks can be used as w during train-
ing to improve the learning of the latent space and thereby leading to more
accurate hand pose estimates from RGB inputs. In this paper, we use point
clouds (C) and heat maps (H) as additional modalities w to improve the cross
modal inference of RGB (R) to 3D poses (P). In the following, we use the
format “A2B” to represent the estimation of target modality “B” from input
modality “A” during training. For example, R2CHP represents the estima-
tion of point clouds, heat maps and 3D poses from RGB input. Note that
unless indicated otherwise, the test settings use RGB images as the input
modality and 3D hand poses as the output modality.

5.4 Details of implementation

5.4.1 Data pre-processing and augmentation

From the RGB image, the region containing hand is cropped from ground
truth masks and resized to 256×256. The corresponding region in the depth
image is converted to point clouds using the provided camera intrinsic pa-
rameters. For each training step, a different set of 256 points are randomly
sampled as training input.

Viewpoint correction. After cropping the hand from the RGB image, the
center of the hand in the image moves from some arbitrary coordinates to the

102 Chapter 5. Hand pose estimation using multiple modalities

center of the image. As such, the 3D hand pose and associated point cloud
must be rotated such that the viewing angle towards the hand aligns with
the optical axis. As indicated in Chapter 4.3.1, this correction is necessary to
remove the many-to-one observation-pose pairings. We follow the approach
given in Chapter 4.3.1 with slight modification. Assuming that the crop’s
center coordinates on the original image is [uc, vc], the rotation matrix Rvc ∈
R3×3 to correct for the viewing angle can be obtained as follows:

αy = atan2(uc − ox, f),

c̃ = Ry(−αy) · [uc − ox, vc − oy, f]T,
αx = atan2(c̃2, c̃3),

Rvc = Ry(−αy) · Rx(αx),

(5.6)

whereas f is the camera focal length, ox, oy are the camera center coordinates,
c̃ is an intermediate result and αx,ys are rotation angles around correspond-
ing axis. After viewpoint correction, the 3D poses and point clouds are sub-
tracted with the hand’s centroid point and normalized to a canonical size.

Data augmentation was performed online during training. The images
are scaled randomly between [1, 1.2], translated [−20, 20] pixels and rotated
[−π, π] around the camera view axis. Furthermore, the hue of the image is
randomly adjusted in the range of [-0.1, +0.1]. The point clouds are rotated
randomly around the camera view axis and the 3D pose labels are also ro-
tated accordingly.

5.4.2 Encoder and decoder modules

The proposed method in strategy 4 (S4) is highly flexible and can integrate
many different modalities to construct a common latent space. In total, the
following modules are learned for S4, encoders for RGB images and point
clouds, decoders for 3D hand poses, point clouds and heat maps of the 2D
hand key points on the RGB image. We choose to convert the 2.5D depth in-
formation as 3D point clouds instead of standard depth maps, due to its su-
perior performance in hand pose estimation, as shown in previous works [76,
16, 30] and Chapter 4. Heat maps are chosen as a third modality for decod-
ing to encourage convergence of the RGB encoder, since the heat maps are
closely related to activation areas on the RGB images.

For encoding RGB images, Resnet-18 from [41] and two additional fully
connected layers are used to predict the mean and variance vector of the
latent variable. For encoding point clouds, the ResPEL network [76] is em-
ployed, which is an learning architecture that takes unordered point cloud as
input. While we use same number of PEL layers as in Chapter 4, the number
of hidden units are reduced by half to ease the computational load.

To decode the heatmaps, the decoder architecture of the DC-GAN [104]
is used. The loss function used for the heatmaps is the L2 loss function of

5.5. Experimental results 103

pixel-wise difference between prediction and ground-truth:

Lheat =
J

∑
j=1
||Ĥj − Hj||, (5.7)

whereas Hj is the ground-truth heatmap for the j-th hand keypoint and Ĥj is
the prediction. For decoding point clouds, we follow the FoldingNet archi-
tecture [141] and try to reconstruct a point cloud representing the visible sur-
face of the hand. To learn the decoder, we use two different loss terms based
on the Chamfer distance and Earth Mover’s distance (EMD). The Chamfer
distance is the sum of the Euclidean distance between points from one set
and its closest point in the other set and vice versa:

LChamfer =
1
|P| ∑

p∈P
min
p̂∈P̂
|| p̂− p||+ 1

|P̂| ∑
p̂∈P̂

min
p∈P
|| p̂− p||. (5.8)

For the Earth Mover’s distance, one-to-one bijective correspondences are es-
tablished between two point clouds, and the Euclidean distances between
them are summed:

LEMD = min
φ:P→P̂

1
|P| ∑

p∈P
||p− φ(p)||, (5.9)

In both Eq. 5.8 and 5.9, P̂, P ∈ R3 represent the predicted point clouds and
the ground truth point clouds respectively and the number of points in both
clouds are 256.

The point cloud reconstruction loss is then the sum: Lcloud
recons = LChamfer +

LEMD.
The decoder for 3D pose consists of 4 fully-connected layers with 128 hid-

den units for each layer. To learn the pose decoder, we use an L2 loss:

Lpose
recons = ||ŷ− y||, (5.10)

where ŷ, y are the predicted and the ground truth hand poses describing the
3D locations of 21 keypoints.

5.5 Experimental results

In the experiments, the dimensionality of latent variable z is set to 64, λheat
to 0.01, λcloud to 1 for all cases and β′ to 1 for Equation 5.4. The proposed
method is implemented with Tensorflow. For training, an Adam optimizer is
used with an initial learning rate of 10−4 and a batch size of 32. The learning
rate is lowered by a factor of 10 two times after convergence. The value of β
is annealed from 10−5 to 10−3.

104 Chapter 5. Hand pose estimation using multiple modalities

5.5.1 Datasets and evaluation metrics

The proposed method is evaluated on two publicly available datasets: the
Rendered Hand Pose Dataset (RHD) [152] and the Stereo Hand Pose Tracking
Benchmark (STB) [149].

RHD is a synthesized dataset of rendered hand images with 320×320
resolution from 20 characters performing 39 actions. It is composed of 41238
samples for training and 2728 samples for testing. For each RGB image, a cor-
responding depth map, segmentation mask, and 3D hand pose are provided.
The dataset is highly challenging because of the diverse visual scenery, illu-
mination, and noise.

STB contains videos of a single person’s left hand in front of six differ-
ent real-world backgrounds. The dataset provides stereo images and RGB-D
pairs with 640 × 480 resolution and 3D hand pose annotations. Each of the
12 sequences in the dataset contains 1500 frames. To make the 3D pose anno-
tations consistent for RHD, we follow [152, 11] and modify the palm joint in
STB to the wrist point. Similar to [152, 11, 112, 139], we use 10 sequences for
training and the other 2 for testing.

To evaluate the accuracy of the estimated hand poses, two common met-
rics are used: mean end-point-error (EPE) and area under the curve (AUC)
on the percentage of correct keypoints (PCK) curve. EPE is measured as
the average Euclidean distance between predicted and ground-truth hand
joints, whereas AUC represents the percentage of predicted keypoints that
fall within certain error thresholds compared with ground-truth poses. To
compare with the state-of-the-art methods in a fair way, we follow the sim-
ilar condition used in [112, 49, 11, 139] to assume that the global hand scale
and the hand root position are known in the experimental evaluations, where
the middle finger’s base position is set as the root of the hand.

5.5.2 Qualitative results

Using the flexible design, the networks are trained by exploiting all the avail-
able modalities and tested using only limited modalities. Some qualitative
examples of poses and point clouds decoded from the zrgb are shown in Fig-
ure 5.5. The 3D poses and point clouds can be successfully reconstructed
from the same latent variable z. The reconstructed point clouds’ surfaces
are smoother than the original inputs, since the inputs are sub-sampled from
raw sensor data, while the reconstructed point clouds hold some structured
properties from the FoldingNet decoder.

We further evaluate the ability of trained model to synthesize hand poses
and point clouds. From two RGB images of the hand, corresponding latent
variables z1,2 are estimated, and then multiple intermediate points are sam-
pled by linearly interpolating between these two. Corresponding 3D hand
poses and point clouds are then reconstructed using the learned decoders as
shown in Figure. 5.6. The learned latent space reconstructs a smooth and
realistic transition between different poses, with changes in both global rota-
tions and local finger configurations.

5.5. Experimental results 105

FIGURE 5.5: 3D pose estimation and point cloud reconstruction for RHD (left) and
STB (right) dataset. From top to bottom: RGB images, ground-truth poses in blue,
estimated poses from zrgb in red, ground-truth point clouds, reconstructed point
clouds from zrgb. The color for point clouds decodes the depth information, closer
points are more red and further points are more blue. Note that the ground-truth
point clouds are not used for inference, they are shown here only for the comparison
purpose.

5.5.3 RGB 3D Hand Pose Estimation

Note that even though our network is trained with multiple modalities, the
results provided here are based only in monocular RGB inputs.

Training Strategy. We first compare different training strategies (S) in
Table 5.1:

• S1. Baseline method to only use RGB-pose pairs for training.

• S2. Training with multiple decoders, where the latent variables zrgb re-
construct more modalities (heatmaps and point clouds) besides poses.

• S3. Training with an additional encoder for point clouds, where the
different latent variables are aligned with Equation 5.4.

• S4. The alignment method in S3 is changed to the Gaussian product.

The comparison results with AUC metric are shown in Figure 5.7. Compar-
ing S1 to the other strategies, we observe that the baseline performance can
be improved by training with increasing number of additional encoders or
decoders. Comparing S4 to S3, the alignment with the Gaussian product
outperforms the intuitive KL-divergence alignment method by capturing a
better joint posterior of different input modalities.

Furthermore, we emphasize the necessity of viewpoint correction. We
applied both view corrected and uncorrected data for training the baseline

106 Chapter 5. Hand pose estimation using multiple modalities

FIGURE 5.6: Latent space interpolation. Two examples of reconstructing point
clouds and hand poses from the latent space. The most left and most right column
are RGB images and their corresponding ground-truth poses. Other columns are
generated point clouds and poses when interpolating linearly on the latent space.

Strategy Encoder Decoder Mean EPE [mm]

S1 R P 16.61

S2 R H+P 16.10
R C+P 15.91
R C+H+P 15.49

S3 R+C C+H+P 14.93

S4 R+C C+H+P 13.14

TABLE 5.1: Comparison of different training strategies on the RHD dataset. The
mean EPE values are obtained from monocular RGB images. (R: RGB, C: point cloud,
P: pose, H: heatmap). Poses estimated from monocular RGB images can be improved
by increasing number of different encoders and decoders during training.

strategy “R2P” (S1). The difference can be seen from Figure 5.7, where the
view corrected data clearly improves the AUC metric.

Comparison to state-of-the-art. In Table 5.2, we compare the EPE of our
method with VAE-based methods [112, 139] which are most related to our
method as well as other state-of-the-art [152, 49]. On both datasets, the pro-
posed method achieves the best results, including an impressive 1.61mm or
19% improvement on the STB dataset.

We also compare the PCK curve of our approach with other state-of-
the-art methods [112, 139, 152, 49, 85, 95] in Figure 5.8 and Figure 5.9. For
both datasets, our method achieves the highest AUC value on the 3D PCK.
We marginally outperform the state-of-the-art [49, 11] on the STB dataset,
whereas on the RHD dataset, we surpass all reported methods to date [152,
139, 11, 112] with a significant margin. Note that the STB dataset contains
much less variation in hand poses and backgrounds than the RHD dataset
and that performance by state-of-the-art methods on STB has become satu-
rated. As such, there is little room for improvement on STB, whereas the
benefits of our method is more visible on the RHD dataset.

5.5. Experimental results 107

20 25 30 35 40 45 50
Error threshold (mm)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

3D
 P
CK

R2P w/o vc (AUC=0.869)
R2P w/ vc (AUC=0.898)
R2CHP (AUC=0.905)
RC2CHP(Eq.3) (AUC=0.931)
RC2CHP(Eq.4) (AUC=0.943)

FIGURE 5.7: Comparisons of 3D PCK results of different strategies on RHD dataset.
“vc” stands for “view correction”

Method RHD STB

VAE-based
Spurr et. al. [112] 19.73 8.56
Yang et. al. [139] 19.95 8.66

Ours 13.14 7.05

Others Z&B [152] 30.42 8.68
Iqbal et. al. [49] 13.41 \

TABLE 5.2: Comparison to state-of-the-art on the RHD and STB with mean EPE
[mm]. Ours refers to S4 in Table 5.1 (RC2CHP).

Weakly-supervised learning. Thanks to flexibility of the proposed method,
(surface) point clouds can be also used as “weak” labels for unlabelled data to
aid the training process. We tested our method under a weakly-supervised
setting on the RHD dataset, where we sample the first m% samples as la-
belled data (including RGB, point clouds and 3D poses) and the rest as unla-
belled data (including RGB, point clouds) by discarding 3D pose labels. We
compare the supervised setting with the weakly-supervised setting for the
“RC2CHP” networks (S4 in Table 5.1). In the supervised training setting, the
networks are trained with only m% samples, In the weakly-supervised set-
ting, besides fully supervised training on m% data, we also train the “RC2C”
sub-parts with the rest (100-m)% samples simultaneously. The percentage of
labelled data is varied from 5% to 100% to compare the mean EPE between
supervised and weakly-supervised settings. From Figure 5.10 we can see that
our method makes full usage of additional unlabelled information, where the
improvement is up to 6%.

108 Chapter 5. Hand pose estimation using multiple modalities

20 25 30 35 40 45 50
Error threshold (mm)

0.5

0.6

0.7

0.8

0.9

1.0

3D
 P

CK

Zimmermann (AUC=0.675)
Spurr (AUC=0.849)
Yang (AUC=0.849)
Cai (AUC=0.887)
Ours (AUC=0.943)

FIGURE 5.8: AUC: Comparison to state-of-the-art methods on the RHD dataset.
Ours refers to S4 in Table 1 (RC2CHP).

5.6 Summary

In this chapter, for the purpose of hand pose estimation, we have explored
how to utilize multi-modal data to boost the performance of unimodal test-
ing, in which we show different ways of aligning associated latent spaces of
different input modalities with a joint one. The developed final strategy (S4)
is highly flexible, it can exploit different modalities as prior knowledge to im-
prove the performance of RGB-based hand pose estimation as well as lever-
age weakly labelled data. Experiments on two publicly available datasets
demonstrate that the alignment approach using Gaussian product (S4) out-
perform previous state-of-the-art methods. Moreover, the model size and
runtime of the desgined architecture is kept the same as other VAE-based
hand estimation methods at test time.

5.7 Discussion and future works

In this chapter, we have investigated on several strategies for multi-modal
training and unimodal testing. The final strategy (S4) uses Gaussian product
for the latent vectors, showing the best performance. The S4 is highly flexible
to be trained using arbitrary numbers of input modalities and can be tested
using only a subset or a single input modality. For training S4, we utilize cor-
responding data pairs to align the latent space. With the aid of corresponding
data, S4 can converge much faster and get better joint representations. If S4
uses only non-corresponding data in a semi-/weakly-supervised setting, this
deteriorates the quality of the latent alignment, where pose accuracy is re-
duced by 2mm. Corresponding data is generally required for joint objective
training. This is not too much of a restriction in practice because there are
several existing multi-modal datasets for hand pose estimation (e.g. NYU,

5.7. Discussion and future works 109

20 25 30 35 40 45 50
Error threshold (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

3D
 P

CK PSO (AUC=0.709)
ICPPSO (AUC=0.748)
CHPR (AUC=0.839)
Zimmermann (AUC=0.986)
Panteleris (AUC=0.941)
Spurr (AUC=0.983)
Mueller (AUC=0.965)
Yang (AUC=0.991)
Cai (AUC=0.994)
Iqbal (AUC=0.994)
Ours (AUC=0.996)

FIGURE 5.9: AUC: Comparison to state-of-the-art methods on the STB dataset. Ours
refers to S4 in Table 1 (RC2CHP).

SynthHands, HandDB) and synthetic multimodal data is easy to obtain. If
corresponding data is limited, different encoders can be pre-trained on large
amounts of non-corresponding data separately and then aligned using lim-
ited amount of corresponding data. The semi-/weakly-supervised setting
only needs small number of RGBD-pose pairs to align the latent space and
the majority of training relies only on RGB-depth pairs (by setting the weight-
ing of the pose estimation loss to zero), which can be easily recorded with any
RGBD sensor. Compared to our baseline S1 which is fully supervised, we are
more accurate with only 25% of labelled RGBD-pose pairs.

The proposed method focused on multimodal training and unimodal test-
ing scenarios and achieved good performance. However, if multimodal in-
put data is also available for testing cases, there could be more ways to utilize
multi-modal data. Taking the example of merging RGB and point cloud, dif-
ferent ways of for merging exist. E.g., for object pose estimation, Wang et.
al. [129] firstly compute pixel-wise features for RGB image and point-wise
features for 3D point cloud, then use camera projection model to associate
each RGB pixel with a 3D point and concatenate the features from different
modalities for further processing. Another example from object detection: in
a region proposal network, Ku et. al. [66] merges anchors generated from
different modalities to generate more reliable 3D object proposals. In future
works, these multimodal fusion ideas could be also applied for our hand
pose estimation tasks.

Another future work direction is to further boost the performance of weakly
supervised learning or eventually achieve fully self-supervised learning for
hand pose estimation. Although the proposed S4 enables weakly supervised
training, a certain amount of labeled data is still required. The labelling of
hand pose data is a complex process and it always requires human inter-
vention in the end to ensure accurate labelling. Very recent works start to
use the differentiable rendering technique [77, 55] to perform self-supervised

110 Chapter 5. Hand pose estimation using multiple modalities

20 40 60 80 100
Labelled percentage (%)

13

14

15

16

17

18

Av
er

ag
e

EP
E

(m
m

)

Supervised
Weakly-supervised

FIGURE 5.10: Mean EPE of our model on the weakly-supervised setting. The pro-
posed method makes full use of unlabelled data, as the weakly-supervised setting
performs almost as well as the supervised one.

learning. The main idea is to estimate a hand mesh model using input image
and render a reconstructed input image. Then the image reconstruction loss
can be used for guiding self-supervised learning. This removes the require-
ment of labelled input hand images. This could be a very interesting future
research direction, since unlimited data can be produced for self-supervised
learning, thus the performance of trained model will not be limited to the
size of the dataset anymore, but will be more upper bounded by the network
complexity.

In this chapter, despite the usage of multi-modal data, the method pre-
sented in this chapter only considers clean hand pose estimation, where hand-
object interaction cases can not be properly handled. However, in the pro-
gramming by demonstration application, the detailed hand pose observation
is especially required when the hand is interacting with other objects. The
inclusion of object will make the hand pose estimation task much harder, be-
cause the object creates severe occlusion to the hand. In the next chapter, the
hand object interaction cases will be investigated.

111

Chapter 6

Hand pose estimation for
hand-object interaction cases

This chapter includes the content of the following publication:
Article:

• Shile Li*, Haojie Wang* and Dongheui Lee, Hand Pose Estimation for Hand-
Object Interaction Cases using Augmented Autoencoder, in Proc. IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2020. *equal
contribution

Other contributors:

• Haojie Wang (Master student)

• Dongheui Lee (Thesis supervisor)

Author contributions

• SL and HW developed the method and wrote the code jointly, where
SL is more responsible for designing the method and experiment setup
and HW is more responsible for implementation. SL and HW wrote the
main body of the article. SL, HW, DL analyzed the results and revised
the article.

Hand pose estimation with objects is challenging due to object occlusion
and the lack of large annotated datasets. To tackle these issues, we propose
an Augmented Autoencoder based deep learning method using augmented
clean hand data. Our method takes 3D point cloud of a hand with an aug-
mented object as input and encodes the input to latent representation of the
hand. From the latent representation, our method decodes 3D hand pose and
we propose to use an auxiliary point cloud decoder to assist the formation of
the latent space. Through quantitative and qualitative evaluation on both
synthetic dataset and real captured data containing objects, we demonstrate
promising performance for hand pose estimation with objects, even using
only a small number of annotated hand-object samples.

112 Chapter 6. Hand pose estimation for hand-object interaction cases

6.1 Motivation

Hand pose estimation plays an important role in many human-robot inter-
action tasks, such as teleoperation, virtual/augmented reality and robot imi-
tation learning [53, 97, 3, 12]. These applications require real-time and accu-
rate hand pose estimation in 3D space. Recently, deep learning based meth-
ods have made significant progress in this area, which can be categorized
to depth-based approaches [146, 75, 33, 34, 31, 127, 128, 91] and RGB-based
approaches[10, 95, 140]. Despite the success of these methods, they rarely
concern the hand-object interaction cases. These methods typically fail in
manipulation tasks because of the occlusions caused by the grasped object.

Several previous works took object occlusion problems for hand pose es-
timation task into consideration. The majority are tracking based approaches
[67, 39, 94]. The robust performance of these methods relies on tracking al-
gorithms to exploit the temporal constraints between consecutive frames in
input sequence. However, a good initialization is required for the first frame,
and sometimes tracking drift happens. Other conventional methods [94, 6,
125] resort to multi-camera setups to reduce the influence of object occlusions
from multiple viewpoints. However, it is expensive and complex to set up a
synchronous and calibrated system with multiple sensors.

Currently, hand pose estimation for hand-object interaction cases is lim-
ited by existing available datasets. Public large-scale datasets with reliable
3D ground-truth annotations are lacking due to the complexity of annotating
3D hand pose. Although some large-scale datasets, like Hands2017 Chal-
lenge [147], have accurate 3D pose annotations, they are entirely composed
from clean hand samples. Therefore, it is worth considering how to utilize
existing clean hand datasets for hand-object cases.

In this following, a novel deep learning framework will be presented, it
uses Augmented Autoencoder to tackle hand-object interaction problem in
hand pose estimation tasks. The proposed method takes 3D occluded hand
point cloud as input, which is obtained by a random data augmentation pro-
cess from clean hand samples. The encoder extracts point-wise features and
fuses them to a latent vector. Addressing the problem of object occlusion
in hand-object interaction cases, an auxiliary decoder is used to reconstruct
the clean hand point cloud from the latent vector (Figure 6.1), and another
decoder estimates simultaneously the 3D hand pose from the same latent
vector.

6.2 Related works

In the following, hand pose estimation works on both clean hand and hand-
object interaction cases will be firstly reviewed. Then the backbone of the
proposed framework, Augmented Autoencoder and FoldingNet will be briefly
introduced.

6.2. Related works 113

FIGURE 6.1: The raw data are captured from a RGB-D camera. Only the depth image
is used to acquire the input point cloud. The RGB image is only used for visualiza-
tion. For the output, besides the predicted pose, a clean hand is simultaneously re-
constructed. (Brightness in point cloud indicates depth, where darker denotes larger
distance to the camera.)

Clean hand pose estimation

In the past few years, a lot of 2D deep learning based methods for clean hand
pose estimation has been proposed [128, 91, 127, 152, 112, 139]. In particu-
lar, 2D depth image based methods demonstrate robust performance. Ober-
weger et. al. [91] use 2D CNN to estimate the hand pose from the image
features, where they introduce a bottleneck layer to force the predicted pose
obey certain prior distribution. Wan et. al. [128] estimate hand pose with
a proposed pose parameterization strategy, which decomposes the pose pa-
rameters into a set of per-pixel estimations, i.e. 2D/3D heat maps and unit
3D directional vector fields, to leverage the 2D and 3D properties of the input
depth map.

Recently, 3D deep learning methods gain more attention due to the abun-
dant information in the input data [75, 33, 101, 34, 31]. Ge et. al. [33]
present a PointNet [101] based approach that directly takes point cloud as
input to regress 3D hand joint locations. In order to handle variations of
hand global orientations, they introduce the oriented bounding box (OBB)
to normalize the hand point clouds. Li et. al. [75] propose a point-to-pose
voting based residual permutation equivariant network for hand pose esti-
mation task. Without the need of complex preprocessing steps, their method
takes unordered 3D point cloud as input to compute point-wise features and
through weighted fusion to obtain final hand pose estimates. Despite their
good performance on hand pose estimation, they commonly ignore the cru-
cial hand-object interaction cases.

114 Chapter 6. Hand pose estimation for hand-object interaction cases

Hand pose estimation with object interaction

There are some previous works that have taken the problem of object occlu-
sion in hand pose estimation task into account [142, 27, 81, 121]. The work by
Tekin et. al. [121] has impressive success of 3D hand pose estimation jointly
with other parallel tasks. Their method takes a sequence of frames as input
and outputs per-frame 3D hand and object pose predictions along with the
estimates of object and action categories for the entire sequence, whereas it
relies too much on a frame sequence rather than a single image. Gao et. al.
[27] propose an object-aware method to estimate 3D hand pose from a single
RGB image, where they rely on a deep structure to infer the category of the
grasped object shape under the assumption that objects of a similar category
are grasped in a similar way. Boukhayma et. al. [10] propose to use ex-
tracted hand parameters to control a mesh deformation hand model MANO
[106] and project it into image domain to train the network. A similar model
based method by Hasson et. al. [40] uses a contact loss to describe the spatial
state of hand and object when a hand manipulates object, i.e. using a repul-
sion loss to penalize interpenetration and an attraction loss to encourage the
hand to be in contact with the object. Nevertheless, these methods all require
complex annotation process and could not fully utilize existing annotated
clean hand datasets for hand-object interaction cases.

Augmented autoencoder and 3D shape reconstruction

Augmented Autoencoder is the backbone of our method, which is firstly
proposed by Sundermeyer et. al. [117] in their real-time RGB-based pipeline
for object detection and 6D pose estimation. In order to remove the effects of
object occlusions and background clutters, they use an augmentation process
to generate input data, which superimposes artificial occlusions and clutters
to the clean data. Their work demonstrates that this training procedure is
able to enforce the invariance of the encoded latent variable against a variety
of different input augmentations. Encouraged by the idea of augmentation
invariance, we apply a random augmentation process on clean hand samples
of existing datasets to generate "noisy" input, and then recover correspond-
ing clean hand samples with an auxiliary 3D shape reconstruction decoder.
3D shape reconstruction using deep learning has made a lot of advancement
in recent years [18, 36, 141, 25]. Yang et. al. [141] propose a folding-based net-
work, FoldingNet, which deforms a canonical 2D grid onto the underlying
3D target surface of a point cloud with two consecutive folding operations.
For network complexity, FoldingNet consumes only about 7% parameters
of a fully-connected layer based neural network to reconstruct a 3D target.
Their method achieves low reconstruction errors even for targets with deli-
cate structures. Therefore, the FoldingNet is chosen for the clean hand recon-
struction decoder.

A critical challenge in 3D shape reconstruction is to evaluate the predicted
point cloud. The loss function should be not only computationally efficient

6.3. Augmented autoencoder for hand object interaction cases 115

FIGURE 6.2: Overview of the proposed method. The input of our network is oc-
cluded hand point cloud, which is obtained by a random augmentation process from
clean hand point cloud. The encoder encodes the input hand to a latent vector. The
obtained latent vector is then used to reconstruct clean hand point cloud by the aux-
iliary Cloud Decoder and predict 3D hand pose by the Pose Decoder. There are three
losses in our VAE based framework, which are the KL loss, reconstruction loss and
pose loss. (Brightness in point cloud indicates depth value.)

but also differentiable with respect to point coordinates. The Chamfer Dis-
tance (CD) and the Earth Mover’s Distance (EMD) [107] are chosen to com-
pare the reconstructed clean hand point cloud with ground-truth.

6.3 Augmented autoencoder for hand object inter-
action cases

The overview of the proposed method is illustrated in Figure 6.2 (left). The
framework is based on the structure of Variational Autoencoder (VAE) [62].
The encoder takes 3D occluded hand point cloud as input, which is obtained
by an augmentation process from clean hand and random objects. The en-
coder extracts point-wise features and fuses them to a latent vector, which is
the latent representation of the input hand. Then, the acquired latent vector
is used to reconstruct clean hand point cloud by the auxiliary Cloud Decoder
and predict 3D hand pose by the Pose Decoder.

6.3.1 Data augmentation

The motivation behind the Augmented Autoencoder based hand pose esti-
mation framework is to control what the latent vector encodes and which
properties to be ignored. To take advantages of current large-scale clean
hand dataset, a random augmentation process is applied by superimposing
random objects from the ShapeNet [14] on clean hands to simulate hand-
object interaction scenarios in reality. Simultaneously, the clean hand point

116 Chapter 6. Hand pose estimation for hand-object interaction cases

cloud also serves as the ground-truth for reconstructed points by the auxil-
iary Cloud Decoder. Through this approach, the latent representation will be
invariant to object occlusions when a hand is interacting with an object.

FIGURE 6.3: Data augmentation process. Step 1: combine hand point cloud and
object; Step 2: project combined point cloud to depth image; Step 3: convert depth
image to occluded hand point cloud. (Brightness in point cloud indicates depth, i.e.
darker denotes further.)

The random augmentation process is shown in Figure 6.3. In step 1, a
randomly selected object from ShapeNet is superimposed on a clean hand
point cloud sample with random rotation, scaling and translation. Step 2
renders the combined point cloud to a depth image. Finally, step 3 converts
the depth image back to point cloud format, which simulates the real hand
object interaction cases.

6.3.2 Point cloud encoder

The Residual Permutation Equivariant Layer (PEL) (Chapter 4) is used as
backbone to encode the input point cloud (Figure 6.4. The input, the oc-
cluded hand point cloud Pa ∈ RN×3 is represented by N unoredered 3D
points, it passes firstly through a residual PEL module, which consists of 3
residual PEL blocks. Then point-wise feature F1 ∈ RN×1024 is computed for
each individual input point, where each row of F1 represents the local fea-
ture for one point. The obtained F1 is imported to two separate point-wise
fully-connected modules respectively, resulting in two separate terms, an im-
portance term G ∈ RN×256 and a new point-wise feature term F2 ∈ RN×256,
where the local feature dimension for each point is shrunk to 256. Each el-
ement of G indicates the weight for corresponding feature value in F2 and
provides vital information of the importance of current feature value. Then,
with a weighted fusion module, the information of both terms are fused to a
global feature vector F3 ∈ R256:

fi =
∑N

n=1(GniF2ni)

∑N
n=1 Gni

, (6.1)

6.3. Augmented autoencoder for hand object interaction cases 117

FIGURE 6.4: Network structure of the point cloud encoder.

where fi stands for the i-th dimension of F3.
In order to extract complex features, a network with 5 fully-connected

layers is used to encode F3 to the final K-dimensional latent vector, which
consists of a latent mean vector µ ∈ RK, and a latent standard deviation vec-
tor σ ∈ RK. During training stage, a reparameterization process to sample
from the distribution of the latent vector [62] is needed:

z = µ + σ � ε,

where ε ∈ RK, ε ∼ N (0, I) and � denotes element-wise multiplication. The
final latent vector z ∈ RK is Gaussian distributed and z ∼ N

(
µ, σ2).

6.3.3 Decoders and training loss

The obtained latent vector z from encoder is fed into the decoders. The clean
hand reconstruction one, Cloud Decoder, is based on FoldingNet [141]. The
Pose Decoder consists of multiple fully-connected layers.

Cloud Decoder is a FoldingNet [141] that transforms ("folds") 2d grid
points of a square into 3D point cloud with two folding operations. In the
folding operation, each grid point’s coordinate is concatenated with the la-
tent vector z and fed into a 4-layer perceptron to construct a more complex
shape compared to the input. The final reconstructed points P̂ are evaluated
by Chamfer Distance (CD) and Earth Mover’s Distance (EMD) [107] with re-
spect to the ground-truth clean hand point cloud P ∈ RN×3. Note that the
number of points in P̂ is required to be the same as P.

118 Chapter 6. Hand pose estimation for hand-object interaction cases

The Chamfer Distance is defined as:

LCD
(
P̂, P

)
=

1
|P̂| ∑

p̂∈P̂

min
p∈P
‖ p̂− p‖+ 1

|P| ∑
p∈P

min
p̂∈P̂
‖ p̂− p‖ , (6.2)

where the CD algorithm finds for each point the nearest neighbor in the other
point cloud and sums up the Euclidean distances.

The Earth Mover’s Distance requires that P̂ and P contain the same num-
ber of points, i.e. |P̂| = |P|, and it is defined as:

LEMD
(
P̂, P

)
=

1
|P| min

φ:P→P̂
∑
p∈P
‖p− φ (p)‖ , (6.3)

where φ denotes one-to-one bijective correspondences from the ground-truth
P to the predicted point set P̂. The Euclidean distances of all matched point
pairs are then summed.

Both loss functions have their own intrinsic characteristics. For example,
while EMD roughly captures the shape corresponding to the mean value of
the hidden variable of the hand point cloud, CD tends to give a splashy shape
that blurs the shape’s geometric structure [25]. To make the Cloud Decoder
more expressive, both loss functions are used during training time. There-
fore, implicitly, the proposed method requires the reconstructed clean hand
points have the same size N as the ground-truth.

For 3D hand pose prediction, Pose Decoder, which consists of 5 fully-
connected layers, takes the reparameterized latent vector as input and out-
puts the vectorized 3D hand pose ŷ ∈ RJ , where J = 3× #joints. The training
loss between predicted hand pose ŷ and ground-truth pose ygt ∈ RJ is the
L2 loss:

Lpose =
1
2

J

∑
j=1

(
ŷj − ygt

j

)2
. (6.4)

As the proposed framework is based on VAE, a KL (Kullback–Leibler diver-
gence) loss is essential to force the computed latent vector z given observed
occluded data to be close to the centered isotropic multivariate Gaussian
N (z; 0, I) (Figure 6.2). The KL loss is defined as:

LKL =
1
2

K

∑
k=1

(
µ2

k + σ2
k − log

(
σ2

k

)
− 1
)

, (6.5)

where K denotes the number of dimensions of the latent vector z, µk is the
k-th dimension of the latent mean µ and σk denotes the k-th dimension of the
latent standard deviation σ.

The resulting total loss for our method is the summation of LCD, LEMD,
Lpose and weighted LKL terms:

Ltotal = LCD + LEMD + Lpose + αLKL, (6.6)

where α is the weight factor.

6.4. Experimental results 119

6.4 Experimental results

The networks are implemented using the TensorFlow framework with an
ADAM optimizer. The learning rate is tapered down from 0.01 to 0.00001
during the course of training. For all experiments, we use an input and re-
construction point size of N = 625 for training, and N = 900 for testing. For
the latent vector z ∈ RK, the number of dimension is set to K = 64 and the KL
Loss is weighted using a factor of α = 0.001. Before the object augmentation
process, each clean hand sample is randomly translated in all three dimen-
sions within [−15, 15] mm, randomly scaled within [0.75, 1.25] and randomly
rotated around z-axis within [−π, π] radian. The trained model can be em-
ployed for real-time applications, since the network backbones, the ResPEL
[75] and FoldingNet [141], are both real-time capable.

6.4.1 Datasets and evaluation metrics

Datasets

For training and evaluating the proposed network, Hands2017 Challenge
dataset [147], SynthHands dataset [86] and EgoDexter dataset [86] are used.
The Hands2017 Challenge is collected from parts of the BigHand2.2M [145]
and the First-Person Hand Action (FHAD) [29]. The training set contains
957032 depth images, and the test set contains 295510 depth images. All
samples in Hands2017 Challenge are clean hands, where the hands are not
in contact with objects. The egocentric dataset SynthHands is a synthetic
dataset created by posing a photorealistic hand model with real hand motion
data. It captures multiple variations in natural hand motion, such as pose,
skin color, shape, texture, background clutter as well as camera viewpoint.
This dataset contains accurate annotated 92536 RGB-D images of clean hands
and 91600 RGB-D images of hands interacting with objects, of which we use
69402 clean samples and 68700 interacting hand samples for training. Ex-
cept the training samples, the rest 23134 clean samples serve as our clean test
set and 22900 interacting samples as our interacting test set. The benchmark
dataset EgoDexter consists of four real sequences with hand-object interac-
tions (Rotunda, Desk, Kitchen, Fruits), which contain in total 1485 frames
with 3D finger tip annotations. We compare the accuracy to the state-of-the-
art method in [86] using this dataset. Notice that the Kitchen sequence is
excluded from the experiment due to its many annotation errors, and use the
other three sequences for evaluation.

For the random augmentation process for clean hand samples, object mod-
els from ShapeNetCore are used, which is a subset of the object repository
ShapeNet [14] and covers 55 object categories with about 51300 unique 3D
models. As preprocessing, we sample these 3D models to point clouds.

120 Chapter 6. Hand pose estimation for hand-object interaction cases

Evaluation metrics

We evaluate the performance qualitatively on real data for the trained model
on Hands2017 Challenge, because it contains no annotated samples for hand-
object interaction cases. For the SynthHands dataset, two standard metrics
are used for evaluation. The first one is the mean joint error (mm), which
measures the average Euclidean distance error for all joints across the whole
test set. The second metric is correct frame proportion, which indicates the
percentage of frames that have all joint errors within a certain threshold
compared to the ground-truth. The correct frame proportion metric is chal-
lenging, since a single joint violation will cause an incorrect frame. For the
EgoDexter dataset with only finger tip annotations, finger tip error is used
for evaluation, which is the mean joint error for 3D finger tip positions.

6.4.2 Comparison to state-of-the-art

FIGURE 6.5: Comparison to state-of-the-art method on EgoDexter benchmark.

Since the EgoDexter dataset is only annotated on 3D finger tip positions,
only finger tip error is used to compare the performance of our method with
the kinematic pose tracking method proposed by Mueller et. al. [86]. We
follow the same training dataset in their work, where all samples in Synth-
Hands are used. As shown in Figure 6.5, our method outperforms the state-
of-the-art method on the test sequences, achieving the average error of 28.70
mm. Note that the objects in EgoDexter are different from the objects in Syn-
thHands training data. It shows the generalization ability of the proposed
method to unknown objects.

6.4. Experimental results 121

6.4.3 Ablation study

In the first ablation experiment, we mix different proportions of interacting
hand samples to training set to compare the effect on performance of differ-
ent trained models.

Using the training samples from SynthHands, 4 different training datasets
are chosen with varying percentages of hand-object interaction samples:

• Dataset A: 100% clean hand samples.

• Dataset B: 75% clean + 25% interacting hand samples.

• Dataset C: 50% clean + 50% interacting hand samples.

• Dataset D: 25% clean + 75% interacting hand samples.

Note that the interacting hand samples are not augmented during training
time. Also, note that the performance of interacting hand is usually much
worse than the clean hand samples due to occlusion.

The detailed comparison of mean joint errors on our both test sets can
be found in Table 6.1. We can already obtain a reasonably good result on
100% clean hand Dataset A. Even if using only augmented hand samples
from clean hand without any interacting hand samples, the error on interact-
ing test set is 19.13 mm, which indicates the effectiveness of the augmentation
strategy.

Furthermore, the best performance is achieved with training Dataset B,
which contains 25% interacting hand samples. Compared to Dataset A, the
mean joint error is decreased for 5 mm on interacting hand test set by mix-
ing only a small proportion of real interacting hand samples in the train-
ing dataset. However, with the increasing proportion of interacting hand
for training, the results become slightly worse, even on the interacting test
set. The possible reason for this is that the decrease of clean hand propor-
tion leads to less data augmentation, which means less random objects are
seen for the training process, resulting in less generalizability on the unseen
objects in the test set. Moreover, for the interacting training samples, hand
reconstruction part were not trained since there is no available clean hand
ground-truth to guide reconstruction, this leads to insufficient training of the
reconstruction decoder and in turn influences the quality of the latent space.
This experiment shows that, in practice, people can utilize large clean hand
dataset and mix a small proportion of interacting hand samples, which are
expensive to annotate, to achieve robust performance.

TABLE 6.1: Comparison of different training methods on SynthHands.

Training Dataset Error on Test Dataset (mm)
clean hand interacting hand

A 9.67 19.13
B 9.63 14.16
C 10.69 14.35
D 12.52 15.99

122 Chapter 6. Hand pose estimation for hand-object interaction cases

FIGURE 6.6: Proportion of correct frames with respect to different error thresholds.

In the second ablation study, the proposed method is compared to the
following baseline methods to show the effects of the data augmentation and
points reconstruction approaches:

• Baseline 1. Ours without object augmentation.

• Baseline 2. Ours without clean hand reconstruction.

Both baselines are trained using Dataset B. As seen in Figure 6.6 and 6.7, our
method outperforms the two baselines on both clean hand test set and inter-
acting hand test set. Table 6.2 shows that the results of baselines are worse
even on clean hand test set. The possible reason for this is that the latent rep-
resentation in baselines is implicitly correlated to the mixture of clean hands
and interacting hands rather than clean hands alone in our Augmented Au-
toencoder based framework. By this result, we demonstrate the significant
effects of the augmentation component and the reconstruction component in
our method.

TABLE 6.2: Comparison with baselines on SynthHands.

Model Error on Test Dataset (mm)
clean hand interacting hand

Our method 9.63 14.16
Baseline 1 15.44 20.78
Baseline 2 19.60 23.46

6.4.4 Qualitative Results

For the SynthHands dataset, the qualitative comparison of our method with
two baselines is shown in Figure 6.8 on the interacting test set.

6.5. Summary 123

FIGURE 6.7: Comparison to baseline on SynthhandsTest: Mean errors of different
joints.

For the Hands2017 Challenge dataset, as the training set and test set con-
tain only clean hands, the model is trained only with augmented data. Fig-
ure 6.9 shows qualitative results on real captured interacting cases, where the
hand interacts with different objects, such as ball, bucket, phone, paper box,
which are not seen during training. Although the model is trained only with
clean hand data on the Hands2017 Challenge dataset, the results shows good
performance. Note that high quality point cloud reconstruction is not strictly
required in our method. Figure 6.9 shows that occluded objects are roughly
removed after reconstruction, indicating the importance of the Cloud De-
coder for the formation of the latent space of the clean hand.

6.5 Summary

In this chapter, a novel deep learning framework using Augmented Autoen-
coder is presented to handle hand pose estimation tasks for hand-object in-
teraction cases. The proposed method consumes 3D hand point cloud and
predicts accurate 3D hand pose. The augmentation process and auxiliary
clean hand reconstruction decoder implicitly force the latent representation
of the pose only to be correlated to clean hand and the reconstructed clean
hand despite the object occlusion in hand-object interaction cases. Further-
more, the proposed hand pose estimation training strategy is able to utilize
existing clean hand datasets to tackle hand-object interaction cases. Quanti-
tative and qualitative evaluation results show that the proposed framework
is capable of achieving low joint errors on both clean hand input (∼ 9 mm)
and interacting hand input (∼ 14 mm).

124 Chapter 6. Hand pose estimation for hand-object interaction cases

FIGURE 6.8: Qualitative results compared with baselines on SynthHands. (Bright-
ness in point cloud indicates depth, i.e. darker denotes further.)

6.6 Discussion and future works

In the experiments, we have trained a model using synthetic dataset (Synth-
Hands) and tested the trained model directly on real-captured dataset (EgoDex-
ter). The average finger tip error on the real-captured data is by 9 mm worse
than the performance on synthetic test data (28.7 mm vs. 19.5). This im-
plies that there is a domain gap between the synthetic data and real-captured
data. Since annotated synthetic data is easy to obtain, an interesting future
research direction would be to use domain transfer method to close the do-
main gap between synthetic and real data. For example, domain adaptation
method like CycleGAN [151] could be used in the future to firstly transform
synthetic images to photo-realistic images, and then perform hand pose esti-
mation tasks on transformed images. Another possibility would be to trans-
form real-captured data to synthetic domain and then the model trained on
synthetic data could be used directly.

This paper presents an augmentation method to superimpose artificial
object with the "clean" hand samples, which shows success to utilize "clean"
hand dataset to train a model for hand-object interaction cases. However, in
the proposed augmentation method, the object is placed at a random loca-
tion around the hand, which does not match the reality. E.g. the hand and
the object could penetrate each other, or the object is not firmly grasped by
the fingers. Despite of the simple and unrealistic augmentation process, it
has showed success to test on hand-object samples. But to further improve
the performance of the augmented autoencoder, the augmentation process
should be more realistic in the future works. We can obtain realistic aug-
mentation from synthetic data, where annotated hand-object samples with
physically plausible grasping pose can be created. To synthetize physically
plausible data, object shape and pose also play important roles. In this re-
gard, object shape and pose annotation is also available for the synthetic data.
Therefore, an interesting future research direction is to estimate hand pose

6.6. Discussion and future works 125

FIGURE 6.9: Qualitative results on real data. (Color in point cloud indicates depth,
where darker indicates larger distance to the camera.)

and object pose simultaneously, where in a recent pioneer work [40], Hasson
et.al. demonstrated promising result of joint hand pose estimation and object
shape reconstruction.

Joint hand-object pose estimation is challenging because of the difficulty
to annotate. Therefore, another trend to tackle this task is to rely on self-
supervised learning to directly learn on real-captured data without annota-
tions. Recently, the differentiable rendering techniques become popular, it is
a novel field which allows the gradients of 3D objects to be calculated and
propagated through images [56]. Using a differentaible renderer, the whole
pipeline could be trained end-to-end in a self-supervised manner, where in
our case, the parameters of hand and object will be extracted form input im-
age to construct 3D model of hand and object. Then the 3D hand model and
object model will be rendered to reconstruct the input image, where the im-
age reconstruction loss will be used to guide the network parameters to be
learned.

127

Chapter 7

Conclusion and future research
direction

Motivated by the need of human hand motion observation, this thesis aimed
to investigate the following aspects:

• How to localize the camera from image sequences, in order to generate
object models?

• How to estimate human hand pose using different formats of sensor
data, for a clean hand without object?

• How to utilize clean hand dataset and scanned object model to design
hand pose estimation method for hand-object interaction cases?

Camera localization

The camera localization is achieved by proposed visual odometry and SLAM
algorithms. Chapter 2.1 presents a novel visual odoemtry method using
RGB-D image sequences, it is a fast and robust visual odometry estimation
method based on intensity assisted ICP (IAICP). By contributing in the selec-
tion, matching and weighting stages, IAICP improves the conventional ICP
significantly. Intelligent salient point selection is performed on the source
frame thus drastically reduced the computation time. Correspondences are
established by searching nearby points in the image coordinate. With weight-
ing function devised from statistics, robustness against outlying correspon-
dences is ensured. The proposed method was evaluated on the TUM Dataset
both quantitatively and qualitatively. In terms of translational drift, it out-
performs state-of-the-art methods in 11 out of the 14 tested video sequences.
Furthermore, IAICP runs with an average frame rate of 78 Hz using a single
CPU thread, thus it can be used on a mobile device with limiting computa-
tion power, which is a crucial factor for object scanning application. With
changes of parameter settings, IAICP can even achieve 107 Hz by loosing
ca. 12% precision of drift error. Experimental results showed that the pro-
posed approach achieved overall better accuracy than approaches with GPU
parallelization.

On top of the visual odometry method, Chapter 2.2 presented extensions
to the IAICP method to allow existence of dynamic objects in the environ-
ment. The extended method uses foreground depth edge point to compute

128 Chapter 7. Conclusion and future research direction

pair-wise point cloud registration. A robust static weighting strategy is pro-
posed based on depth edge correspondences distance. Fusing the static weight-
ing strategy into the IAICP, the visual odometry system can handle dynamic
environment robustly. Furthermore, loop closure detection and map opti-
mization are integrated, resulting a real-time SLAM system suitable for dy-
namic environment. The accuracy and computation efficiency are tested on
the dynamic sequences from TUM Dataset. Compared to state-of-the-art
real-time method [61], in terms of translational drift per second, the proposed
method improves the visual odometry accuracy by 58% in challenging "walk-
ing" sequences. The performance of the SLAM system is also proven using
the TUM Dataset, which shows better performance than recent non real-time
method [116].

With the developed robust and fast camera localization system, object
scanning can be performed using the camera localization results. Chapter 2.3
presented the object modelling pipeline and a surface smoothing procedure
is proposed to reduce the noisy measurement of the keyframes. Some suc-
cessful scanning results are shown using the CoRBS dataset [133].

The proposed visual camera localization methods in this thesis are based
on the Iterative Closest Point framework, which is a traditional geometry
based methods. In recent years, researchers are starting to combine deep
learning methods into the geometry world in camera localization. For ex-
ample, the correspondence matching algorithm used in this thesis is purely
based on predefined distance metric, this could be replaced by a more sophis-
ticated feature based method, where the features can be learned using a deep
learning method. Moreover, this thesis can only filter out the depth edges of
dynamic objects. To densely segment dynamic objects, a deep learning based
semantic segmentation method can be used for this task. Furthermore, this
thesis focused on camera localization in an unknown environment, whereas
future research could investigate more on how to localize the camera in a
predefined map.

Clean hand pose estimation

Chapter 3-5 presented deep learning based hand pose estimation methods
for the clean hand cases, where the hand is not touching or occluded by other
objects.

Firstly, Chapter 3 introduced a depth map based method. It incorporates
an embedded differentiable kinematic layer into the deep learning networks.
Apart from joint angles, the proposed kinematic layer also takes hand shape
parameters as input, thus it generalizes on different hand shapes. Experi-
ments have shown that by using kinematic layer, the number physically im-
plausible results is reduced, furthermore we have also shown that applying
appearance normalization using Spatial Transformer Network, the pose esti-
mation accuracy can be further improved.

Chapter 4 proposed a novel neural network architecture, ResidualPEL,
for hand pose estimation using unordered point cloud as input. The point
cloud based method has shown superior performance compared to depth

Chapter 7. Conclusion and future research direction 129

image based methods. The proposed method is invariant to input point or-
der and can handle different numbers of points. Compared to previous 3D
voxel based methods, it requires less memory size and compared to PointNet
based methods, it does not require surface normal and K-nearest-neighours
information. A voting-based scheme was proposed to merge information
from individual points to pose output, where the resulting importance term
can be also used to segment the hand into different parts. The performance
is evaluated on two datasets, where the proposed method outperforms the
state-of-the-art methods on both datasets.

Finally, Chapter 5 explored explored how to utilize multi-modal dataset
in training to boost the performance of unimodal testing, in which different
ways of latent space alignment are shown and evaluated. The developed
Gaussian product based alignment strategy is highly flexible, it can exploit
different modalities as prior knowledge to improve the performance of RGB-
based hand pose estimation as well as leverage weakly labelled data to fur-
ther boost pose estimation performance.

For hand pose estimation, several deep learning based methods were pre-
sented. Their success all rely on the availability of large, annotated dataset.
In future work, to overcome the limitation of the size and quality of dataset,
self-supervised learning method should be researched more. For example,
many recent works start to use the differentiable hand model, MANO [106],
to estimate a 3D hand mesh model from input image. Combining the MANO
model and differentiable rendering pipeline, end-to-end self-supervised learn-
ing of hand pose can be a very interesting future research topic.

Hand pose estimation for hand-object interaction cases

Chapter 6 presented a novel deep learning framework using Augmented Au-
toencoder to handle hand pose estimation tasks for hand-object interaction
cases. The proposed method consumes 3D hand point cloud and predicts
accurate 3D hand pose. The augmentation process and auxiliary clean hand
reconstruction decoder implicitly force the latent representation of the pose
only to be correlated to clean hand and the reconstructed clean hand despite
the object occlusion in hand-object interaction cases. Furthermore, the pro-
posed hand pose estimation training strategy is able to utilize existing clean
hand datasets to tackle hand-object interaction cases. Quantitative and qual-
itative evaluation results show that the proposed framework is capable of
achieving low joint errors on both clean hand input (∼ 9 mm) and interacting
hand input (∼ 14 mm).

Targeting at the limitation of dataset, augmentation technique was used
to simulate hand object interaction cases. Although this method provides
reasonably good results, however, the augmented samples are not realistic
compared to real captured data, which can be a limiting factor on the per-
formance. In future research, self-supervised learning methods can be also
applied on hand object interaction cases, where object pose and hand pose
can be jointly optimized relying on differentiable rendering and physical con-
straint between the hand and the object. Furthermore, the relation between

130 Chapter 7. Conclusion and future research direction

object shape and hand grasp pose should be investigated more, since the ob-
ject shape provides a vital prior information on the grasp type. Eor example,
with the help of Mixture Density Networks, a prior distribution of grasp pose
can be firstly obtained from the object information, and then the distribution
can be refined with the observation of human hand.

131

Appendix A

Presented and Published Papers

• Shile Li and Dongheui Lee. "RGB-D SLAM in dynamic environments
using static point weighting." IEEE Robotics and Automation Letters
(RA-L) 2017

• Shile Li and Dongheui Lee. "Fast visual odometry using intensity-
assisted iterative closest point." IEEE Robotics and Automation Letters
(RA-L) 2016

• Shile Li*, Wöhlke Jan* and Dongheui Lee. "Model-based hand pose es-
timation for generalized hand shape with spatial transformer network."
European Conference on Computer Vision (ECCV), Extended Abstract
Presentation in 4th International Workshop on Observing and Under-
standing Hands in Action (HANDS2018) 2018. *equal contribution

• Shanxin Yuan, Guillermo Garcia-Hernando, Björn Stenger, Gyeongsik
Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz,
Sina Honari, Liuhao Ge, Junsong Yuan, Xinghao Chen, Guijin Wang,
Fan Yang, Kai Akiyama, Yang Wu, Qingfu Wan, Meysam Madadi, Ser-
gio Escalera, Shile Li, Dongheui Lee, Iason Oikonomidis, Antonis Ar-
gyros, Tae-Kyun Kim. "Depth-based 3d hand pose estimation: From
current achievements to future goals." IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) 2018.

• Shile Li and Dongheui Lee. "Point-to-pose voting based hand pose esti-
mation using residual permutation equivariant layer." IEEE Computer
Vision and Pattern Recognition (CVPR), 2019.

• Linlin Yang*, Shile Li*, Dongheui Lee and Angela Yao. "Aligning Latent
Spaces for 3D Hand Pose Estimation." IEEE International Conference
on Computer Vision (ICCV) 2019. *equal contribution

• Anil Armagan, Guillermo Garcia-Hernando, Seungryul Baek, Shreyas
Hampali, Mahdi Rad, Zhaohui Zhang, Shipeng Xie, MingXiu Chen,
Boshen Zhang, Fu Xiong, Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei
Ren, Weiting Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk
Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee, Angela Yao,
Weiguo Zhou, Sijia Mei, Yunhui Liu, Adrian Spurr, Umar Iqbal, Pavlo

132 Appendix A. Presented and Published Papers

Molchanov, Philippe Weinzaepfel, Romain Brégier, Gregory Rogez, Vin-
cent Lepetit, Tae-Kyun Kim. "Measuring Generalisation to Unseen View-
points, Articulations, Shapes and Objects for 3D Hand Pose Estimation
under Hand-Object Interaction." European Conference on Computer
Vision (ECCV) 2020

• Shile Li*, Haojie Wang* and Dongheui Lee. "Hand Pose Estimation for
Hand-Object Interaction Cases using Augmented Autoencoder." IEEE
International Conference on Robotics and Automation (ICRA) 2020.
*equal contribution

133

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems”. In: arXiv:1603.04467 (2016).

[2] Dafni Antotsiou, Guillermo Garcia-Hernando, and Tae-Kyun Kim. “Task
oriented hand motion retargeting for dexterous manipulation imita-
tion”. In: Proceedings of the European Conference on Computer Vision (ECCV).
2018.

[3] Brenna D Argall et al. “A survey of robot learning from demonstra-
tion”. In: Robotics and autonomous systems 57.5 (2009), pp. 469–483.

[4] K Somani Arun, Thomas S Huang, and Steven D Blostein. “Least-
squares fitting of two 3-D point sets”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 5 (1987), pp. 698–700.

[5] Xuyang Bai et al. “D3Feat: Joint Learning of Dense Detection and De-
scription of 3D Local Features”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2020, pp. 6359–6367.

[6] Luca Ballan et al. “Motion capture of hands in action using discrimi-
native salient points”. In: European Conference on Computer Vision. 2012,
pp. 640–653.

[7] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up
robust features”. In: European conference on computer vision. Springer.
2006, pp. 404–417.

[8] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”.
In: Robotics-DL tentative. International Society for Optics and Photon-
ics. 1992, pp. 586–606.

[9] Laurie Bose and Arthur Richards. “Fast depth edge detection and
edge based RGB-D SLAM”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2016, pp. 1323–1330.

[10] Adnane Boukhayma, Rodrigo de Bem, and Philip HS Torr. “3d hand
shape and pose from images in the wild”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 10843–
10852.

[11] Yujun Cai et al. “Weakly-supervised 3d hand pose estimation from
monocular rgb images”. In: ECCV. 2018.

[12] S. Calinon and D. Lee. “Learning Control”. In: Humanoid Robotics:
a Reference. Ed. by P. Vadakkepat and A. Goswami. Springer, 2019,
pp. 1261–1312. DOI: 10.1007/978-94-007-6046-2_68.

https://doi.org/10.1007/978-94-007-6046-2_68

134 Bibliography

[13] Sylvain Calinon and Dongheui Lee. “Learning Control, Humanoid
Robotics: a Reference, P. Vadakkepat and A. Goswami (eds.)” In: (2017).

[14] Angel X Chang et al. “Shapenet: An information-rich 3d model repos-
itory”. In: arXiv preprint arXiv:1512.03012 (2015).

[15] Xinghao Chen et al. “Pose Guided Structured Region Ensemble Net-
work for Cascaded Hand Pose Estimation”. In: arXiv preprint: 1708.03416
(2017).

[16] Xinghao Chen et al. “SHPR-Net: Deep Semantic Hand Pose Regres-
sion from Point Clouds”. In: IEEE Access 6 (2018), pp. 43425–43439.

[17] Changhyun Choi, Alexander JB Trevor, and Henrik I Christensen.
“RGB-D edge detection and edge-based registration”. In: IEEE/RSJ
International Conference onIntelligent Robots and Systems (IROS). 2013,
pp. 1568–1575.

[18] Christopher B Choy et al. “3d-r2n2: A unified approach for single and
multi-view 3d object reconstruction”. In: European conference on com-
puter vision. Springer. 2016, pp. 628–644.

[19] Peter Hviid Christiansen et al. “Unsuperpoint: End-to-end unsuper-
vised interest point detector and descriptor”. In: arXiv preprint arXiv:
1907.04011 (2019).

[20] Xiaoming Deng et al. “Hand3d: Hand pose estimation using 3d neural
network”. In: Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE (2018).

[21] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “Su-
perpoint: Self-supervised interest point detection and description”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2018, pp. 224–236.

[22] David W Eggert, Adele Lorusso, and Robert B Fisher. “Estimating 3-D
rigid body transformations: a comparison of four major algorithms”.
In: Machine Vision and Applications 9.5-6 (1997), pp. 272–290.

[23] Felix Endres et al. “3-d mapping with an rgb-d camera”. In: IEEE
Transactions on Robotics 30.1 (2014), pp. 177–187.

[24] Ali Erol et al. “Vision-based hand pose estimation: A review”. In: Com-
puter Vision and Image Understanding 108.1-2 (2007), pp. 52–73.

[25] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A point set gener-
ation network for 3d object reconstruction from a single image”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2017, pp. 605–613.

[26] Yaroslav Ganin and Victor Lempitsky. “Unsupervised domain adap-
tation by backpropagation”. In: International conference on machine learn-
ing. PMLR. 2015, pp. 1180–1189.

[27] Yafei Gao et al. “Variational Object-Aware 3-D Hand Pose From a Sin-
gle RGB Image”. In: IEEE Robotics and Automation Letters 4.4 (2019),
pp. 4239–4246.

Bibliography 135

[28] Guillermo Garcia-Hernando et al. “First-Person Hand Action Bench-
mark with RGB-D Videos and 3D Hand Pose Annotations”. In: arXiv:
1704.02463 (2017).

[29] Guillermo Garcia-Hernando et al. “First-person hand action bench-
mark with rgb-d videos and 3d hand pose annotations”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 409–419.

[30] Liuhao Ge, Zhou Ren, and Junsong Yuan. “Point-to-point regression
pointnet for 3d hand pose estimation”. In: ECCV. 2018, pp. 475–491.

[31] Liuhao Ge et al. “3d convolutional neural networks for efficient and
robust hand pose estimation from single depth images”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 1991–2000.

[32] Liuhao Ge et al. “3D Convolutional Neural Networks for Efficient and
Robust Hand Pose Estimation From Single Depth Images”. In: IEEE
conference on computer vision and pattern recognition. 2017, pp. 1991–
2000.

[33] Liuhao Ge et al. “Hand PointNet: 3d hand pose estimation using point
sets”. In: CVPR. 2018.

[34] Liuhao Ge et al. “Robust 3d hand pose estimation in single depth im-
ages: from single-view cnn to multi-view cnns”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016, pp. 3593–
3601.

[35] Giorgio Grisetti et al. “A tutorial on graph-based SLAM”. In: IEEE
Intelligent Transportation Systems Magazine 2.4 (2010), pp. 31–43.

[36] Thibault Groueix et al. “A papier-mâché approach to learning 3d sur-
face generation”. In: Proceedings of the IEEE conference on computer vi-
sion and pattern recognition. 2018, pp. 216–224.

[37] Hengkai Guo et al. “Towards Good Practices for Deep 3D Hand Pose
Estimation”. In: arXiv:1707.07248 (2017).

[38] Daniel Gutierrez-Gomez, Walterio Mayol-Cuevas, and J.J. Guerrero.
“Inverse depth for accurate photometric and geometric error minimi-
sation in RGB-D dense visual odometry”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 83–89.

[39] Henning Hamer et al. “Tracking a hand manipulating an object”. In:
2009 12th International Conference on Computer Vision. IEEE. 2009.

[40] Yana Hasson et al. “Learning joint reconstruction of hands and ma-
nipulated objects”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 11807–11816.

[41] Kaiming He et al. “Deep residual learning for image recognition”. In:
CVPR. 2016.

136 Bibliography

[42] Xinwei He et al. “Triplet-Center Loss for Multi-View 3D Object Re-
trieval”. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2018.

[43] Peter Henry et al. “RGB-D mapping: Using depth cameras for dense
3D modeling of indoor environments”. In: Experimental robotics. 2014,
pp. 477–491.

[44] Peter Henry et al. “RGB-D mapping: Using Kinect-style depth cam-
eras for dense 3D modeling of indoor environments”. In: The Interna-
tional Journal of Robotics Research 31.5 (2012), pp. 647–663.

[45] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. “Transform-
ing auto-encoders”. In: International Conference on Artificial Neural Net-
works. Springer. 2011, pp. 44–51.

[46] Kai Hu and Dongheui Lee. “Prediction-based synchronized human
motion imitation by a humanoid robot”. In: at-Automatisierungstechnik
60.11 (2012), pp. 705–714.

[47] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. “Pointwise Con-
volutional Neural Networks”. In: The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2018.

[48] Peter J Huber. Robust statistics. Springer, 2011.

[49] Umar Iqbal et al. “Hand pose estimation via latent 2.5 d heatmap re-
gression”. In: ECCV. 2018.

[50] Shahram Izadi et al. “KinectFusion: real-time 3D reconstruction and
interaction using a moving depth camera”. In: Proceedings of the 24th
annual ACM symposium on User interface software and technology. 2011,
pp. 559–568.

[51] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial
transformer networks”. In: Advances in neural information processing
systems. 2015, pp. 2017–2025.

[52] M. Jaimez and J. Gonzalez-Jimenez. “Fast Visual Odometry for 3-D
Range Sensors”. In: IEEE Transactions on Robotics PP.99 (2015), pp. 1–
14.

[53] Youngkyoon Jang et al. “3d finger cape: Clicking action and position
estimation under self-occlusions in egocentric viewpoint”. In: IEEE
Transactions on Visualization and Computer Graphics 21.4 (2015), pp. 501–
510.

[54] David Joseph Tan et al. “Fits like a glove: Rapid and reliable hand
shape personalization”. In: IEEE Conference on Computer Vision and
Pattern Recognition. 2016, pp. 5610–5619.

[55] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3d
mesh renderer”. In: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. 2018, pp. 3907–3916.

[56] Hiroharu Kato et al. “Differentiable rendering: A survey”. In: arXiv
preprint arXiv:2006.12057 (2020).

Bibliography 137

[57] Christian Kerl, Jurgen Sturm, and Daniel Cremers. “Dense visual slam
for rgb-d cameras”. In: 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 2100–2106.

[58] Christian Kerl, Jurgen Sturm, and Daniel Cremers. “Robust odometry
estimation for RGB-D cameras”. In: 2013 IEEE International Conference
onRobotics and Automation (ICRA), pp. 3748–3754.

[59] Sameh Khamis et al. “Learning an efficient model of hand shape vari-
ation from depth images”. In: IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 2540–2548.

[60] Deok-Hwa Kim, Seung-Beom Han, and Jong-Hwan Kim. “Visual odom-
etry algorithm using an RGB-D sensor and IMU in a highly dynamic
environment”. In: Robot Intelligence Technology and Applications 3. Springer,
2015, pp. 11–26.

[61] Deok-Hwa Kim and Jong-Hwan Kim. “Effective Background Model-
Based RGB-D Dense Visual Odometry in a Dynamic Environment”.
In: IEEE Transactions on Robotics 32.6 (2016), pp. 1565–1573.

[62] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”.
In: arXiv preprint arXiv:1312.6114 (2013).

[63] Roman Klokov and Victor Lempitsky. “Escape from cells: Deep kd-
networks for the recognition of 3d point cloud models”. In: Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE. 2017, pp. 863–
872.

[64] Sebastian Klose, Peter Heise, and Aaron Knoll. “Efficient composi-
tional approaches for real-time robust direct visual odometry from
RGB-D data”. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1100–1106.

[65] Seongyong Koo, Dongheui Lee, and Dong-Soo Kwon. “Unsupervised
object individuation from RGB-D image sequences”. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2014),
pp. 4450–4457.

[66] Jason Ku et al. “Joint 3d proposal generation and object detection from
view aggregation”. In: 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE. 2018, pp. 1–8.

[67] Nikolaos Kyriazis and Antonis Argyros. “Physically plausible 3d scene
tracking: The single actor hypothesis”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2013, pp. 9–16.

[68] Kenneth L Lange, Roderick JA Little, and Jeremy MG Taylor. “Robust
statistical modeling using the t distribution”. In: Journal of the American
Statistical Association 84.408 (1989), pp. 881–896.

[69] Dongheui Lee and Yoshihiko Nakamura. “Motion recognition and re-
covery from occluded monocular observations”. In: Robotics and Au-
tonomous Systems 62.6 (2014), pp. 818–832.

138 Bibliography

[70] Dongheui Lee and Christian Ott. “Incremental kinesthetic teaching of
motion primitives using the motion refinement tube”. In: Autonomous
Robots 31.2-3 (2011), pp. 115–131.

[71] Tung-Sing Leung and Gerard Medioni. “Visual navigation aid for the
blind in dynamic environments”. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops. 2014, pp. 565–572.

[72] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. “SO-Net: Self-Organizing
Network for Point Cloud Analysis”. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2018.

[73] Jiaxin Li and Gim Hee Lee. “Usip: Unsupervised stable interest point
detection from 3d point clouds”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2019, pp. 361–370.

[74] Shile Li and Dongheui Lee. “Fast Visual Odometry Using Intensity-
Assisted Iterative Closest Point”. In: IEEE Robotics and Automation Let-
ters 1.2 (2016), pp. 992–999.

[75] Shile Li and Dongheui Lee. “Point-to-pose voting based hand pose
estimation using residual permutation equivariant layer”. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 11927–11936.

[76] Shile Li and Dongheui Lee. “Point-to-Pose Voting based Hand Pose
Estimation using Residual Permutation Equivariant Layer”. In: CVPR.
2019.

[77] Shichen Liu et al. “Soft rasterizer: A differentiable renderer for image-
based 3d reasoning”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 7708–7717.

[78] David G Lowe. “Object recognition from local scale-invariant features”.
In: Proceedings of the seventh IEEE international conference on computer
vision. Vol. 2. Ieee. 1999, pp. 1150–1157.

[79] Weixin Lu et al. “Deepvcp: An end-to-end deep neural network for
point cloud registration”. In: Proceedings of the IEEE International Con-
ference on Computer Vision. 2019, pp. 12–21.

[80] Meysam Madadi et al. “End-to-end global to local cnn learning for
hand pose recovery in depth data”. In: arXiv:1705.09606 (2017).

[81] Meysam Madadi et al. “Occlusion aware hand pose recovery from
sequences of depth images”. In: 2017 12th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2017). IEEE. 2017, pp. 230–
237.

[82] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional
neural network for real-time object recognition”. In: Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE.
2015, pp. 922–928.

Bibliography 139

[83] Maxime Meilland, Andrew Comport, Patrick Rives, et al. “A spherical
robot-centered representation for urban navigation”. In: 2010 IEEE/RSJ
International Conference onIntelligent Robots and Systems (IROS), pp. 5196–
5201.

[84] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. “V2v-posenet:
Voxel-to-voxel prediction network for accurate 3d hand and human
pose estimation from a single depth map”. In: CVPR. 2018, pp. 5079–
5088.

[85] Franziska Mueller et al. “GANerated hands for real-time 3D hand
tracking from monocular RGB”. In: CVPR. 2018.

[86] Franziska Mueller et al. “Real-time hand tracking under occlusion
from an egocentric rgb-d sensor”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision Workshops. 2017, pp. 1284–1293.

[87] Richard A Newcombe and Andrew J Davison. “Live dense recon-
struction with a single moving camera”. In: 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE. 2010, pp. 1498–
1505.

[88] Richard A Newcombe et al. “KinectFusion: Real-time dense surface
mapping and tracking”. In: 2011 10th IEEE international symposium on
Mixed and augmented reality (ISMAR), pp. 127–136.

[89] Chuong V Nguyen, Shahram Izadi, and David Lovell. “Modeling kinect
sensor noise for improved 3d reconstruction and tracking”. In: 2012
Second International Conference on 3D Imaging, Modeling, Processing, Vi-
sualization and Transmission. IEEE, pp. 524–530.

[90] Markus Oberweger and Vincent Lepetit. “Deepprior++: Improving
fast and accurate 3d hand pose estimation”. In: ICCV workshop. Vol. 840.
2017, p. 2.

[91] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. “Hands Deep
in Deep Learning for Hand Pose Estimation”. In: WACV. 2015.

[92] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. “Training a
feedback loop for hand pose estimation”. In: IEEE International Con-
ference on Computer Vision. 2015, pp. 3316–3324.

[93] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. “Effi-
cient model-based 3d tracking of hand articulations using kinect.” In:
BMVC. 2011.

[94] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. “Full
dof tracking of a hand interacting with an object by modeling occlu-
sions and physical constraints”. In: 2011 International Conference on
Computer Vision. IEEE. 2011, pp. 2088–2095.

[95] Paschalis Panteleris, Iason Oikonomidis, and Antonis Argyros. “Us-
ing a single rgb frame for real time 3d hand pose estimation in the
wild”. In: WACV. 2018.

140 Bibliography

[96] Affan Pervez et al. “Motion encoding with asynchronous trajectories
of repetitive teleoperation tasks and its extension to human-agent shared
teleoperation”. In: Autonomous Robots 43.8 (2019), pp. 2055–2069.

[97] Thammathip Piumsomboon et al. “User-defined gestures for augmented
reality”. In: IFIP Conference on Human-Computer Interaction. Springer.
2013, pp. 282–299.

[98] Sai Manoj Prakhya et al. “Sparse Depth Odometry: 3D keypoint based
pose estimation from dense depth data”. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4216–4223.

[99] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3d classi-
fication and segmentation”. In: Proc. Computer Vision and Pattern Recog-
nition (CVPR), IEEE 1.2 (2017), p. 4.

[100] Charles R Qi et al. “Volumetric and multi-view cnns for object classi-
fication on 3d data”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016, pp. 5648–5656.

[101] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in Neural Infor-
mation Processing Systems. 2017, pp. 5099–5108.

[102] Chen Qian et al. “Realtime and robust hand tracking from depth”. In:
CVPR. 2014.

[103] Zeju Qiu et al. “Hand Pose-based Task Learning from Visual Observa-
tions with Semantic Skill Extraction”. In: IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN). 2020.

[104] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks”. In: arXiv preprint arXiv:1511.06434 (2015).

[105] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. “Deep learn-
ing with sets and point clouds”. In: arXiv preprint arXiv:1611.04500
(2016).

[106] Javier Romero, Dimitrios Tzionas, and Michael J Black. “Embodied
hands: Modeling and capturing hands and bodies together”. In: ACM
Transactions on Graphics (TOG) 36.6 (2017), p. 245.

[107] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. “The earth mover’s
distance as a metric for image retrieval”. In: International journal of
computer vision 40.2 (2000), pp. 99–121.

[108] Szymon Rusinkiewicz and Marc Levoy. “Efficient variants of the ICP
algorithm”. In: Third International Conference on 3-D Digital Imaging and
Modeling, 2001. Proceedings. IEEE. 2001, pp. 145–152.

[109] Paul-Edouard Sarlin et al. “Superglue: Learning feature matching with
graph neural networks”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 4938–4947.

Bibliography 141

[110] Matteo Saveriano and Dongheui Lee. “Distance based dynamical sys-
tem modulation for reactive avoidance of moving obstacles”. In: 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 5618–
5623.

[111] Toby Sharp et al. “Accurate, robust, and flexible real-time hand track-
ing”. In: Proceedings of the 33rd Annual ACM Conference on Human Fac-
tors in Computing Systems. ACM. 2015, pp. 3633–3642.

[112] Adrian Spurr et al. “Cross-modal deep variational hand pose estima-
tion”. In: CVPR. 2018.

[113] Srinath Sridhar et al. “Fast and robust hand tracking using detection-
guided optimization”. In: IEEE Conference on Computer Vision and Pat-
tern Recognition. 2015, pp. 3213–3221.

[114] Jörg Stückler and Sven Behnke. “Multi-resolution surfel maps for ef-
ficient dense 3D modeling and tracking”. In: Journal of Visual Commu-
nication and Image Representation 25.1 (2014), pp. 137–147.

[115] Jürgen Sturm et al. “A benchmark for the evaluation of RGB-D SLAM
systems”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 573–580.

[116] Yuxiang Sun, Ming Liu, and Max Q-H Meng. “Improving RGB-D SLAM
in dynamic environments: A motion removal approach”. In: Robotics
and Autonomous Systems 89 (2017), pp. 110–122.

[117] Martin Sundermeyer et al. “Implicit 3d orientation learning for 6d ob-
ject detection from rgb images”. In: Proceedings of the European Confer-
ence on Computer Vision (ECCV). 2018, pp. 699–715.

[118] James S Supancic et al. “Depth-based hand pose estimation: data, meth-
ods, and challenges”. In: ICCV. 2015.

[119] Masahiro Suzuki, Kotaro Nakayama, and Yutaka Matsuo. “Joint mul-
timodal learning with deep generative models”. In: arXiv preprint arXiv:
1611.01891 (2016).

[120] Danhang Tang et al. “Opening the black box: Hierarchical sampling
optimization for estimating human hand pose”. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 3325–3333.

[121] Bugra Tekin, Federica Bogo, and Marc Pollefeys. “H+ o: Unified ego-
centric recognition of 3d hand-object poses and interactions”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2019, pp. 4511–4520.

[122] Anastasia Tkach et al. “Online generative model personalization for
hand tracking”. In: ACM Transactions on Graphics (TOG) 36.6 (2017),
p. 243.

[123] Jonathan Tompson et al. “Real-time continuous pose recovery of hu-
man hands using convolutional networks”. In: ACM Transactions on
Graphics (TOG) 33.5 (2014), p. 169.

142 Bibliography

[124] Tommi Tykkälä, Cédric Audras, Andrew Comport, et al. “Direct iter-
ative closest point for real-time visual odometry”. In: 2011 IEEE In-
ternational Conference on Computer Vision Workshops (ICCV Workshops),
pp. 2050–2056.

[125] Dimitrios Tzionas et al. “Capturing hands in action using discrimina-
tive salient points and physics simulation”. In: International Journal of
Computer Vision 118.2 (2016), pp. 172–193.

[126] Ramakrishna Vedantam et al. “Generative models of visually grounded
imagination”. In: arXiv preprint arXiv:1705.10762 (2017).

[127] Chengde Wan et al. “Crossing nets: Combining GANs and VAEs with
a shared latent space for hand pose estimation”. In: CVPR. 2017.

[128] Chengde Wan et al. “Dense 3d regression for hand pose estimation”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 5147–5156.

[129] Chen Wang et al. “Densefusion: 6d object pose estimation by iterative
dense fusion”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 3343–3352.

[130] Wei Wang and Darius Burschka. “Dense and Deformable Motion Ex-
traction in Dynamic Scenes Based on Hierarchical MRF Optimization
in RGB-D Images”. In: 2015 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 1115–1122.

[131] Youbing Wang and Shoudong Huang. “Towards dense moving object
segmentation based robust dense RGB-D SLAM in dynamic scenar-
ios”. In: 13th International Conference on Control Automation Robotics &
Vision (ICARCV). IEEE. 2014, pp. 1841–1846.

[132] Yue Wang et al. “Dynamic graph CNN for learning on point clouds”.
In: arXiv preprint arXiv:1801.07829 (2018).

[133] Oliver Wasenmüller, Marcel Meyer, and Didier Stricker. “CoRBS: Com-
prehensive RGB-D benchmark for SLAM using Kinect v2”. In: 2016
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE.
2016, pp. 1–7.

[134] Thomas Whelan et al. “Kintinuous: Spatially Extended KinectFusion”.
In: ().

[135] Thomas Whelan et al. “Robust real-time visual odometry for dense
RGB-D mapping”. In: 2013 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5724–5731.

[136] Mike Wu and Noah Goodman. “Multimodal generative models for
scalable weakly-supervised learning”. In: NIPS. 2018.

[137] Zhirong Wu et al. “3d shapenets: A deep representation for volumet-
ric shapes”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 1912–1920.

Bibliography 143

[138] Jonas Wulff, Laura Sevilla-Lara, and Michael J Black. “Optical flow in
mostly rigid scenes”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 4671–4680.

[139] Linlin Yang and Angela Yao. “Disentangling Latent Hands for Image
Synthesis and Pose Estimation”. In: CVPR. 2019.

[140] Linlin Yang et al. “Aligning latent spaces for 3d hand pose estima-
tion”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2019, pp. 2335–2343.

[141] Yaoqing Yang et al. “Foldingnet: Point cloud auto-encoder via deep
grid deformation”. In: CVPR. 2018.

[142] Qi Ye and Tae-Kyun Kim. “Occlusion-aware hand pose estimation us-
ing hierarchical mixture density network”. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). 2018, pp. 801–817.

[143] Qi Ye, Shanxin Yuan, and Tae-Kyun Kim. “Spatial attention deep net
with partial PSO for hierarchical hybrid hand pose estimation”. In:
European conference on computer vision. Springer. 2016, pp. 346–361.

[144] Tan Yu, Jingjing Meng, and Junsong Yuan. “Multi-View Harmonized
Bilinear Network for 3D Object Recognition”. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2018.

[145] Shanxin Yuan et al. “Bighand2. 2m benchmark: Hand pose dataset
and state of the art analysis”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 4866–4874.

[146] Shanxin Yuan et al. “Depth-based 3d hand pose estimation: From cur-
rent achievements to future goals”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2018, pp. 2636–2645.

[147] Shanxin Yuan et al. “The 2017 hands in the million challenge on 3d
hand pose estimation”. In: arXiv preprint arXiv:1707.02237 (2017).

[148] Manzil Zaheer et al. “Deep sets”. In: Advances in Neural Information
Processing Systems. 2017, pp. 3391–3401.

[149] Jiawei Zhang et al. “A hand pose tracking benchmark from stereo
matching”. In: ICIP. 2017.

[150] Xingyi Zhou et al. “Model-based deep hand pose estimation”. In: Twenty-
Fifth International Joint Conference on Artificial Intelligence. AAAI Press.
2016, pp. 2421–2427.

[151] Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2223–2232.

[152] Christian Zimmermann and Thomas Brox. “Learning to estimate 3d
hand pose from single rgb images”. In: ICCV. 2017.

	Abstract
	Zusammenfassung
	Acknowledgements
	List of figures
	List of tables
	Introduction
	Motivations
	Challenges
	Overview of the thesis
	Contributions

	Camera localization for object modelling
	Fast visual odometry
	Motivation
	Related works
	Preliminaries
	Intensity assisted iterative closest point
	Experimental results
	Summary and Conclusion

	RGBD-SLAM in dynamic environment
	Motivation
	Related Works
	IAICP for dynamic environment
	Integration to SLAM
	Experimental results
	Summary and Conclusion

	Application for object modeling
	Conclusion and future works

	Hand pose estimation using depth image
	Introduction
	Method
	Experimental results
	Summary
	Discussion and future works

	Hand pose estimation using point cloud
	Motivation
	Related works
	Deep learning for hand pose estimation
	3D Deep learning

	Method
	Pre-processing with view normalization
	Residual Permutation Equivariant Layers
	Point-to-pose voting
	Segmentation using importance term
	Training Loss

	Experimental results
	Self-comparison
	Comparison to state-of-the-art methods
	Segmentation using importance term
	Runtime and model size

	Summary
	Discussion and future works

	Hand pose estimation using multiple modalities
	Motivation
	Related Works
	Strategies for mutli-modality input data
	S1: Baseline with cross-modal VAE
	S2: Mutli-task learning
	S3: Alignment to multi-modal latent space
	S4: Alignment using Gaussian product

	Details of implementation
	Data pre-processing and augmentation
	Encoder and decoder modules

	Experimental results
	Datasets and evaluation metrics
	Qualitative results
	RGB 3D Hand Pose Estimation

	Summary
	Discussion and future works

	Hand pose estimation for hand-object interaction cases
	Motivation
	Related works
	Augmented autoencoder for hand object interaction cases
	Data augmentation
	Point cloud encoder
	Decoders and training loss

	Experimental results
	Datasets and evaluation metrics
	Comparison to state-of-the-art
	Ablation study
	Qualitative Results

	Summary
	Discussion and future works

	Conclusion and future research direction
	Presented and Published Papers
	Bibliography

