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1 Introduction

While the parameters of the flavor sector of the Standard Model of particle physics have

essentially all been determined experimentally, the origin of “flavor” remains a mystery.

Models with traditional (discrete) flavor symmetries have provided various fits for masses

and mixing angles of quarks and leptons [1]. More recently, it was suggested that (discrete)

modular symmetries might describe the flavor structure of the lepton sector [2]. This

bottom-up (BU) description is based on the consideration of finite modular groups ΓN
with N = 2, 3, 4, 5. Typically, in these models, some of the lepton multiplets are described

by nontrivial singlets or irreducible triplets of ΓN . This suggestion has an important impact

on the field of lepton flavor physics [3–41].

To understand the origin of flavor and modular symmetries we need to consider addi-

tionally a top-down (TD) approach, based on ultraviolet complete theories. Recently, such

attempts have studied modular symmetries in string derived standard-like models based on
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heterotic orbifolds [42, 43] and magnetized D-branes [44–47] in connection with the stan-

dard discrete flavor symmetries within this framework [48]. This leads to a hybrid picture

where the traditional flavor group and the finite modular group combine (as a nontrivial

product1) to a generalized flavor group which we call “Eclectic Flavor Group”. It contains

the traditional flavor group (which acts universally in moduli space) as well as the corre-

sponding modular flavor structure ΓN . This picture includes the mechanism of “Local Fla-

vor Unification” of flavor, CP and modular symmetries with enhanced symmetries at certain

locations in moduli space [42, 43], see also ref. [34]. Furthermore, it potentially incorporates

a different flavor structure for the quark- and lepton-sector of the Standard Model.

In the present paper we want to analyze possible relations between the bottom-up (BU)

and the top-down (TD) approaches. At first sight, we are confronted with some potential

obstructions. First of all, it seems to be difficult to find nontrivial singlets and irreducible

triplet representations of finite modular groups within the TD approach. Such triplets, as

used in the BU-case, can be identified more easily for traditional flavor groups, as e.g. in

∆(54) of ref. [48]. In addition, the TD picture does not always lead to ΓN itself (as the

finite modular group), but to its double cover (T ′ in case of Γ3, see refs. [42, 43]). Although

we have studied up to now only a limited number of TD-models, we can emphasize the

following key observation:

The full eclectic flavor group is a nontrivial product of the traditional flavor

group, a corresponding finite modular group and a CP-like transformation. We

cannot treat these symmetries separately (as mostly done in the BU-approach)

and have to be aware of restrictions (for superpotential and Kähler poten-

tial [33]) from all of these components.

As a step in our search for a connection between BU- and TD-approaches, we shall

develop a classification method to obtain all allowed eclectic flavor groups. This is the

main goal of the present paper. We shall show that this combination of traditional flavor

group and finite modular group cannot be arbitrary but has to satisfy severe consistency

conditions. This can be seen already from the results of previous work [42, 43], where it was

observed that candidate eclectic flavor groups derive from the traditional flavor group and

its outer automorphisms.2 Based on this observation, we shall classify the possible eclectic

flavor groups in a bottom-up way (for a class of prominent traditional flavor groups) and

show that there is only a limited number of possibilities.

The paper is structured as follows. In section 2 we shall discuss the interplay of tradi-

tional flavor and modular symmetries and derive relevant consistency conditions. Section 3

discusses the question of “Local Flavor Unification” from the point of view of allowed mod-

ular symmetries. In section 4 we give a specific example (closely related to the T2/Z3

orbifold) with traditional flavor group ∆(54) and its eclectic extension by T ′ (being the

double cover of Γ3). Other explicit examples are relegated to the appendices, where we

also show that there is no eclectic extension of ∆(54) with Γ2 (as a result of the consistency

conditions derived in section 2). Our results are displayed in table 2, where one can read off

1In the TD approach, the traditional flavor group does not commute with the finite modular group.
2This is connected to the outer automorphisms of the Narain space group [49] as explained in refs. [42, 43].
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level without CP with CP
N ΓN GAP Γ′N GAP Γ∗N GAP Γ′∗N GAP

2 S3 [6, 1] S3 [6, 1] S3 ×Z2 [12, 4] S3 ×Z2 [12, 4]

3 A4 [12, 3] T ′ [24, 3] S4 [24, 12] GL(2, 3) [48, 29]

4 S4 [24, 12] SL(2, 4) [48, 30] S4 ×Z2 [48, 48] GL(2,Z4) [96, 195]

5 A5 [60, 5] SL(2, 5) [120, 5] A5 ×Z2 [120, 35] SL(2, 5) oZ2 [240, 93]

Table 1. Overview of finite modular groups without and with a CP-like transformation (see

section 2.2 for the details on CP). The column GAP labels the groups according to ref. [50], where

the first number gives the order of the group. We remark several group isomorphisms: Γ2
∼= Γ′2

∼= S3,

Γ∗2
∼= Γ′∗2

∼= S3 ×Z2
∼= D12, SL(2, 2) ∼= S3 and SL(2, 3) ∼= T ′.

the allowed eclectic flavor groups for representative examples of several traditional flavor

groups. Section 6 gives conclusions and outlook.

2 Extending flavor symmetries by modular symmetries

The modular group SL(2,Z) can be defined by the presentation [51]3

SL(2,Z) =
〈
S,T | S4 = 1, (ST)3 = 1, S2T = TS2

〉
, (2.1)

and a choice of SL(2,Z) generators S and T is given by

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
. (2.2)

Under a modular transformation γ ∈ SL(2,Z) both, the modulus τ and matter fields ψ,

transform in general nontrivially according to

τ
γ7−→ a τ + b

c τ + d
, ψ

γ7−→ (c τ + d)−k ρ(γ)ψ for γ =

(
a b

c d

)
∈ SL(2,Z) . (2.3)

Here, k ∈ Q is the so-called modular weight4 of ψ and ρ(γ1 γ2) = ρ(γ1)ρ(γ2) is a represen-

tation of the finite modular group ΓN or of its double cover Γ′N [22] for N ∈ {2, 3, 4, 5}.
These finite groups are defined by the presentations

ΓN =
〈
S,T | S2 = 1, (ST)3 = 1, TN = 1

〉
, (2.4a)

Γ′N =
〈
S,T | S4 = 1, (ST)3 = 1, TN = 1, S2T = TS2

〉
. (2.4b)

All finite modular groups ΓN and Γ′N with N = 2, 3, 4, 5 are listed in table 1.

3See page 81 using S = SSerre and T = SSerreT
−1
SerreS

3
Serre.

4In contrast to modular forms Y (τ), fields can have fractional weights as realized in string theory [52–54].
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The symmetry group of a modular invariant theory is SL(2,Z). This symmetry has

different realizations for the various fields of the theory: the τ modulus feels only PSL(2,Z)

since ±γ ∈ SL(2,Z) yield the same transformation (2.3) for τ . In contrast, a matter field

ψ transforms twofold:

i) by the automorphy factor (c τ+d)−k that distinguishes between γ and −γ for general

modular weight k, and

ii) by a linear transformation ρ(γ) that can distinguish between γ and −γ only in the

case Γ′N with N > 2, where ρ(γ) 6= ρ(−γ) if ρ(−1) = ρ(S2) 6= 1 is nontrivial.

Finally, due to the transformation of the τ modulus, Yukawa couplings Y (τ) are in general

modular forms and transform similar to eq. (2.3) as

Y (τ)
γ7−→ Y

(
aτ+b

cτ+d

)
= (cτ+d)kY ρY (γ)Y (τ) for γ=

(
a b

c d

)
∈ SL(2,Z) , (2.5)

where ρY (γ) is also a representation of the finite modular group. For a given modular weight

kY (with kY ∈ 2N for ΓN or kY ∈ N for Γ′N ), the number of independent Yukawa couplings

Y (τ) is finite and their τ -dependence and transformations ρY (γ) are explicitly known, see

e.g. [2, 5, 6, 10, 15, 22, 40]. Hence, in order to fully specify a modular invariant theory

one has to choose the finite modular group ΓN or Γ′N that shall host the representation

matrices ρ(γ) and ρY (γ).

Now, since the matrices ρ(γ) in eq. (2.3) and ρY (γ) in eq. (2.5) must build a (reducible

or irreducible) representation of ΓN or Γ′N , they have to satisfy the respective presenta-

tion (2.4a) or (2.4b), i.e.

(ρ(S))NS = 1 , (ρ(T))N = 1 , (ρ(S T))3 = 1 , and ρ(S2T) = ρ(T S2) , (2.6)

with N ∈ {2, 3, 4, 5} and NS = 2 for ΓN or NS = 4 for Γ′N .

Let us stress that the τ modulus transforms nontrivially under modular transforma-

tions eq. (2.3). In contrast to the modular group, we define the traditional flavor group Gfl

by those discrete transformations g ∈ Gfl that leave τ invariant at all points in τ moduli

space, i.e. for all τ

τ
g7−→ τ , ψ

g7−→ ρ(g)ψ , (2.7)

where ρ(g) is a (reducible or irreducible) representation of Gfl. Hence, Yukawa couplings

Y (τ) are invariant under transformations from Gfl for all τ .

As we show next, traditional flavor groups are naturally connected to finite modular

groups. To see this, we apply the modular S transformation eq. (2.3) twice and obtain

τ
S7−→ −1

τ

S7−→ τ , (2.8a)

ψ
S7−→ (−τ)−kρ(S)ψ

S7−→
(

1

τ

)−k
(−τ)−k (ρ(S))2 ψ = (−1)−k (ρ(S))2 ψ . (2.8b)

Since the τ modulus is invariant under S2, S2 is by definition part of the traditional flavor

group. Moreover, the matter fields ψ transform in general nontrivially, (−1)−k(ρ(S))2 6=1,

– 4 –



J
H
E
P
0
2
(
2
0
2
0
)
0
4
5

see also appendix A. Thus, finite modular groups naturally yield traditional flavor groups,

and one might wonder how one can in general combine a traditional flavor group consis-

tently with a finite modular group.

To answer this question, we derive a constraint on the extension of a traditional flavor

group by a finite modular group, inspired by the discussions in refs. [17, 55–57], where

symmetries are extended by CP . In detail, we start with a given traditional flavor group

Gfl and try to extend this group consistently by two generators ρ(S) and ρ(T) of some

finite modular group. To do so, let us consider two chains of transformations of the form

“modular, flavor, inverse modular”,

ψ
S7−→ (−τ)−k ρ(S)ψ

g7−→ (−τ)−k ρ(S) ρ(g)ψ
S−1

7−→ ρ(S) ρ(g) ρ(S)−1 ψ , (2.9a)

ψ
T7−→ ρ(T)ψ

g7−→ ρ(T) ρ(g)ψ
T−1

7−→ ρ(T) ρ(g) ρ(T)−1 ψ , (2.9b)

for g ∈ Gfl. The τ modulus is invariant under both chains of transformations. Since we do

not want to enhance the traditional flavor group Gfl to a larger traditional flavor group G′fl
by including new generators ρ(S)ρ(g)ρ(S)−1 and ρ(T)ρ(g)ρ(T)−1, we see from eq. (2.9) that

ρ(S) ρ(g) ρ(S)−1 ∈ Gfl and ρ(T) ρ(g) ρ(T)−1 ∈ Gfl (2.10)

must belong to the traditional flavor group Gfl for all g ∈ Gfl. In other words, due to

eq. (2.10) the traditional flavor group Gfl must be a normal subgroup of the combined group

generated by ρ(S), ρ(T) and ρ(g), which we call the eclectic flavor group. Moreover, we find

〈ρ(S) ρ(g) ρ(S)−1 | g ∈ Gfl〉 ∼= 〈ρ(T) ρ(g) ρ(T)−1 | g ∈ Gfl〉 ∼= Gfl . (2.11)

Thus, we can sharpen the constraint (2.10) as

ρ(S) ρ(g) ρ(S)−1 = ρ(uS(g)) and ρ(T) ρ(g) ρ(T)−1 = ρ(uT(g)) , (2.12)

where due to eq. (2.11) the maps uS and uT are automorphisms of the traditional fla-

vor group Gfl. Since ρ(S) and ρ(T) are assumed to generate a finite modular group, it

follows from eq. (2.12) that the automorphisms uS and uT have to satisfy the defining

relations (2.6), i.e.

(uS)NS = 1 , (uT)N = 1 , (uS)2 ◦ uT = uT ◦ (uS)2 and (uS ◦ uT)3 = 1 , (2.13)

with NS = 2 for ΓN and NS = 4 for Γ′N . Note that the identity 1 in eq. (2.13) has to

be understood as the trivial automorphism, 1: g 7→ g for all g ∈ Gfl, and not as an inner

automorphism. As a consequence, the finite modular group defined by eq. (2.13) must be

a subgroup of the full automorphism group of the traditional flavor group Gfl.

Now, we can consider two cases. First, if the traditional flavor group commutes with

the finite modular group, eq. (2.12) yields

ρ(g) = ρ(uS(g)) and ρ(g) = ρ(uT(g)) , (2.14)

for all g ∈ Gfl. Thus, both modular transformations S and T in eq. (2.12) correspond to

the trivial automorphism of Gfl, uS = uT = 1, and the eclectic flavor group is just given by

the direct product extension Gfl × ΓN or Gfl × Γ′N . In this case, the finite modular group

can be chosen freely.
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Motivated by the TD approach however, we are interested only in the case where

the traditional flavor group does not commute with the finite modular group. In order

to satisfy condition (2.12) in this case, the traditional flavor group must have nontrivial

automorphisms as candidates for uS and uT. In general, an automorphism can be inner or

outer, where for an outer automorphism u there exists no hu ∈ Gfl such that

u(g) = hu g h
−1
u for all g ∈ Gfl . (2.15)

Thus, we have to decide whether uS and uT are inner or outer automorphisms of the

traditional flavor group Gfl.

Let us first assume that uS and uT are inner automorphisms of the traditional flavor

group Gfl. In this case, the automorphisms uS and uT would be defined as

uS(g) = hS g h
−1
S , uT(g) = hT g h

−1
T , (2.16)

for some fixed hS, hT ∈ Gfl. Now, assume that uS and uT satisfy eq. (2.13) and, hence,

generate some finite modular group. Then, the action of the modular generators S and T

can always be compensated by an element of the flavor group. To be specific, consider the

transformations

ψ
S7−→ (−τ)−kρ(S)ψ

h−1
S7−→ (−τ)−k 1ψ , (2.17)

and similarly for T, where we used ρ(S) = ρ(hS) that follows from eqs. (2.12) and (2.16).

Hence, the generators of the finite modular group can be redefined such that the repre-

sentation of the finite modular group on matter fields ψ is trivial, ρ(γ) = 1. Since this

group would be a trivial extension, we demand in the following that uS and uT are outer

automorphisms.

Once this requirement is met, uS and uT are subject to eqs. (2.12) and (2.13), which

impose strong constraints on the possible extensions of the traditional flavor group by a

finite modular group.

2.1 The eclectic extension

From our previous discussion, one can classify for a given traditional flavor group5 Gfl all

nontrivial extensions by finite modular groups as follows:

i) First, one determines the automorphisms of Gfl and chooses two particular outer

automorphisms uS and uT, whose specific properties shall be motivated and explained

in detail in the next section in the context of CP .

ii) Then, one checks whether uS and uT satisfy the presentation of a finite modular

group as given in eq. (2.13).

iii) Finally, for a given representation ρ(g) of the traditional flavor group, one constructs

ρ(S) and ρ(T) explicitly using eq. (2.12) such that ρ(S) and ρ(T) satisfy the presen-

tation eq. (2.6) of the same finite modular group as uS and uT.

5See e.g. [58] for an extensive list of possible traditional flavor groups.
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The multiplicative closure of the traditional flavor group Gfl and its compatible finite mod-

ular group ΓN (or Γ′N ) is called eclectic flavor group, where a potential extension by a

CP-like transformation will be discussed in the next section. Let us stress that the eclectic

flavor group is not a direct product of Gfl and ΓN (or Γ′N ) — in other words, Gfl does not

commute with ΓN (or Γ′N ).

2.2 Combining with CP

One can combine the modular group SL(2,Z) with a CP-like transformation by introducing

a new generator K∗, which, on the level of the 2 × 2 matrices given in eq. (2.2), can be

realized as

K∗ =

(
1 0

0 −1

)
, (2.18)

such that SL(2,Z) is enhanced to GL(2,Z) [17]. Under K∗, the τ modulus and the matter

fields ψ(x) transform as

τ
K∗7−→ − τ , ψ(x)

K∗7−→ ρ(K∗)ψ(xP ) , (2.19)

see ref. [42] and also [17, 43, 59]. Demanding that the CP-like transformation be of order

2, i.e. (K∗)
2 = 1, implies6

ψ(x)
K∗7−→ ρ(K∗)ψ(xP )

K∗7−→ ρ(K∗) ρ(K∗)
∗ ψ(x)

!
= ψ(x) (2.20)

and therefore

ρ(K∗) ρ(K∗)
∗ = 1 ⇔ ρ(K∗)

∗ = ρ(K∗)
−1 . (2.21)

In general, the additional generator ρ(K∗) of CP does not commute with ΓN (or Γ′N ).

To see this, let us first consider the chain of transformations

ψ(x)
K∗7−→ ρ(K∗)ψ(xP )

S7−→ (−τ)−kρ(K∗) ρ(S)∗ ψ(xP ) (2.22a)
K∗7−→ (+τ)−kρ(K∗) ρ(S)∗ ρ(K∗)

−1 ψ(x) (2.22b)
!

= (+τ)−kρ(γ)ψ(x) , (2.22c)

for some modular transformation γ ∈ SL(2,Z) that we determine next. Under the chain

of transformations eq. (2.22) the τ modulus transforms as τ 7→ −1/τ . Thus, γ = S or S−1

from eq. (2.2). Eq. (2.22c) implies that the solution is γ = S−1. In summary, we have

found that K∗ S K∗ = S−1 on the level of GL(2,Z). Consequently, the finite modular group

has to be extended by ρ(K∗) satisfying

ρ(K∗) ρ(S)∗ ρ(K∗)
−1 = ρ(S)−1 . (2.23)

6Note that it is in principle possible that CP is not of order 2 [55–57]. However, in this case K2
∗ acts as

τ 7→ τ and ψ(x) 7→ ρ(K∗)ρ(K∗)∗ψ(x), which implies that ρ(K∗)ρ(K∗)∗ is from the traditional flavor group.

As we do not want to extend the traditional flavor group by further traditional flavor transformations (like

ρ(K∗)ρ(K∗)∗), we focus on the case (K∗)2 = 1.

– 7 –
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By repeating these steps for T, we find K∗T K∗ = T−1 and, as the final result, that the

conditions (2.6) get extended by

ρ(K∗)
∗ = ρ(K∗)

−1 , (2.24a)

ρ(K∗) ρ(S)∗ ρ(K∗)
−1 = ρ(S)−1 , (2.24b)

ρ(K∗) ρ(T)∗ ρ(K∗)
−1 = ρ(T)−1 . (2.24c)

This enhances the finite modular group ΓN to Γ∗N (and enhances Γ′N to Γ′∗N ), defined as

Γ∗N =
〈
S,T,K∗ | S2 = 1, (ST)3 = 1, TN = 1,

K2
∗ = 1, K∗ S K∗ = S−1, K∗T K∗ = T−1

〉
, (2.25a)

Γ′∗N =
〈
S,T,K∗ | S4 = 1, (ST)3 = 1, TN = 1, S2T = TS2,

K2
∗ = 1, K∗ S K∗ = S−1, K∗T K∗ = T−1

〉
. (2.25b)

All finite modular groups with a CP-like extension and N = 2, 3, 4, 5 are listed in table 1.

Next, we discuss how Γ∗N can be made compatible with the traditional flavor group

Gfl, cf. [55–57]. With the additional element K∗, our previous discussion proceeds directly.

First, eq. (2.9) includes now also the chain of transformations

ψ(x)
K∗7−→ ρ(K∗)ψ(xP )

g7−→ ρ(K∗) ρ(g)∗ ψ(xP )
K−1

∗7−→ ρ(K∗) ρ(g)∗ ρ(K∗)
−1 ψ(x) , (2.26)

which implies ρ(K∗) ρ(g)∗ ρ(K∗)
−1 ∈ Gfl when we prevent Gfl from being trivially extended

by the elements ρ(K∗) ρ(g)∗ ρ(K∗)
−1. It then follows that there exists an automorphism

uK∗ , such that

ρ(K∗)ρ(g)∗ρ(K∗)
−1 = ρ(uK∗(g)) . (2.27)

As shown in ref. [57], eq. (2.27) is satisfied by a class-inverting outer automorphism of

the traditional flavor group Gfl. However, one can also have a situation in which not all

irreducible representations of Gfl appear in the theory and there exists an automorphism

uK∗ satisfying eq. (2.27) only for the representation(s) ρ present in the spectrum. Such an

automorphism could then be seen as a ρ-restricted class-inverting automorphism.7 Now,

since this type of outer automorphisms necessarily doubles the dimensions of (some of)

the representations and because in the TD approach they give rise to CP-like transforma-

tions [42, 43], we reserve these ρ-restricted class-inverting automorphisms of Gfl exclusively

for CP .

Consequently, the automorphisms uK∗ , uS and uT of the traditional flavor group Gfl

have to satisfy (in addition to eq. (2.13)) the conditions

(uK∗)2 = 1 , uK∗ ◦ uS ◦ uK∗ = u−1
S , uK∗ ◦ uT ◦ uK∗ = u−1

T . (2.28)

In more detail, by applying the definitions of the automorphisms uS and uK∗ in eqs. (2.12)

and (2.27), the second relation is obtained as follows:

ρ (uK∗ ◦ uS ◦ uK∗(g)) = ρ(K∗)ρ (uS ◦ uK∗(g))∗ ρ(K∗)
−1

= ρ(K∗)ρ(S)∗ρ (uK∗(g))∗ ρ(S)∗−1ρ(K∗)
−1

= ρ(K∗)ρ(S)∗ρ(K∗)
−1ρ(g)ρ(K∗)ρ(S)∗−1ρ(K∗)

−1

= ρ(S)−1ρ(g)ρ(S) = ρ(u−1
S (g)) . (2.29)

7We thank Andreas Trautner for useful comments on the properties of class-inverting automorphisms.
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As before, for each traditional flavor group Gfl, it is possible to classify all finite modular

groups Γ∗N (and Γ′∗N ), endowed with a CP-like transformation, that are compatible with Gfl.

One must first create all automorphisms of Gfl and choose outer automorphisms uS, uT and

uK∗ satisfying the presentation of an enhanced finite modular group given by eqs. (2.13)

and (2.28). Finally, one must explicitly find the representations ρ(S), ρ(T) and ρ(K∗) that

fulfill eqs. (2.12), (2.24) and (2.27).

Let us make a remark on the non-Abelian structure of the CP-like extension of finite

modular groups. Despite the fact that eq. (2.25a) indicates that, for N > 2, the gener-

ator K∗ of CP does not commute with S and T, the CP-like extension of ΓN becomes

Γ∗N = ΓN ×Z2 for several finite modular groups. In detail, the Z2 factors in the Γ∗N fi-

nite modular groups S3 × Z2, S4 × Z2 and A5 × Z2 are generated by K∗, (T2S)2K∗ and

S(T2ST)2TK∗, respectively, see table 1.

3 Local flavor unification

We are considering a setting, where modular and traditional flavor symmetries do not

commute. This gives rise to the picture of “Local Flavor Unification” [42, 43]: at so-called

self-dual points or lines in moduli space 〈τ〉 the finite modular symmetry is broken sponta-

neously to those subgroups that leave 〈τ〉 invariant. In contrast, the traditional flavor sym-

metry, by definition, leaves the modulus τ invariant and, hence, remains unbroken every-

where in moduli space. As modular and traditional flavor symmetries do not commute, the

unbroken modular transformations yield nontrivial enhancements of the traditional flavor

symmetry to the so-called unified flavor symmetries at the self-dual points in moduli space.

Let us begin the discussion with the finite modular group ΓN or Γ′N , i.e. without taking

CP-like transformations into account. Then, if the modulus is stabilized at 〈τ〉 = i, the

following modular transformation remains unbroken

〈τ〉 S7−→ − 1

〈τ〉
= 〈τ〉 at 〈τ〉 = i , (3.1)

see also the related discussion in ref. [34]. At this point in moduli space, matter fields

transform as

ψ
g7−→ ρ(g)ψ for g ∈ Gfl and ψ

g7−→ (−i)−kρ(g)ψ for g = S . (3.2)

Thus, at 〈τ〉 = i the traditional flavor symmetry Gfl is enhanced by the generator S. Since

ρ(S) is either of order NS = 2 or NS = 4, see eq. (2.6), the unified flavor symmetry at

〈τ〉 = i is a nontrivial extension of Gfl by ZNS
[42, 43], or even of higher order depending

on the modular weight k ∈ Q.

If the modulus is stabilized at 〈τ〉 = exp (2πi/3), we find the following unbroken modular

transformation

〈τ〉 S T7−→ − 1

〈τ〉+ 1
= 〈τ〉 at 〈τ〉 = exp (2πi/3) for S T =

(
0 1

−1 −1

)
. (3.3)
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Thus, at 〈τ〉 = exp (2πi/3) the traditional flavor symmetry is enhanced by S T and matter

fields transform as

ψ
g7−→ ρ(g)ψ for g ∈ Gfl and ψ

g7−→ exp (2πik/3) ρ(g)ψ for g = S T (3.4)

under the unified flavor symmetry at 〈τ〉 = exp (2πi/3). Note that ρ(S T) = ρ(S)ρ(T) is of

order 3, see eq. (2.6). Thus, the unified flavor symmetry at 〈τ〉 = exp (2πi/3) is a nontrivial

product of Gfl and a Z3 generated by S T (if k ∈ Z).

If one includes the CP-like transformation, additional modular transformations can

remain unbroken. For example, at vertical lines in moduli space given by 〈τ〉 = nB/2+i
√

3r/2

with nB ∈ Z and r ∈ R we find that TnB K∗ remains unbroken [42, 43], i.e.

〈τ〉 TnB K∗7−→ nB − 〈τ〉 = 〈τ〉 at 〈τ〉 =
nB
2

+ i

√
3

2
r for TnB K∗ =

(
1 −nB
0 −1

)
. (3.5)

In particular, for nB = 0, i.e. on the vertical line 〈τ〉 = i
√

3r/2 we obtain an unbroken

modular transformation K∗, while at 〈τ〉 = i eq. (3.1) yields an unbroken S transformation.

Moreover, if one moves away from 〈τ〉 = i but stays on the circle 〈τ〉 = exp(iα), only the

combined transformation K∗S remains unbroken

〈τ〉 K∗S7−→ 1

〈τ〉
= 〈τ〉 at 〈τ〉 = exp(iα) for K∗S =

(
0 1

1 0

)
. (3.6)

At these lines in moduli space, a CP-like transformation is unbroken. However, it is easy

to break CP spontaneously by moving 〈τ〉 away from these symmetry enhanced lines in

moduli space.

4 Example: ∆(54) and modular symmetries

As an example, let us discuss the possible extensions of the traditional flavor symmetry

∆(54) [60–63]. ∆(54) is a non-Abelian group of order 54 that has three-dimensional rep-

resentations suitable for the three generations of quarks and leptons. In detail, ∆(54) can

be generated by three generators A, B, and C subject to the presentation

∆(54) = 〈A,B,C | A3 = B3 = C2 = (AC)2 = (BC)2 = (AB)3 = (AB2)3 = 1〉 . (4.1)

A three-dimensional representation of ∆(54) is given by

ρ(A) =

 0 1 0

0 0 1

1 0 0

 , ρ(B) =

 1 0 0

0 ω 0

0 0 ω2

 , ρ(C) =

−1 0 0

0 0 −1

0 −1 0

 , (4.2)

where ω := exp 2πi/3. Since the group of outer automorphisms8

Out (∆(54)) ∼= Aut(∆(54))/Inn(∆(54)) ∼= S4 (4.3)

8Using GAP [50] we obtain Aut (∆(54)) ∼= [432, 734] and Inn (∆(54)) ∼= [18, 4] being the generalized

dihedral group.
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is nontrivial, there are outer automorphisms that might in principle lead to eclectic exten-

sions of the traditional flavor symmetry ∆(54). It turns out that ∆(54) can be extended

only in two ways: either by the finite modular group Γ′3
∼= T ′ in the case without CP or by

Γ′∗3
∼= SL(2, 3) in the case with CP . The details are given in the following:

Finite modular symmetry Γ′
3. We can choose the outer automorphisms of ∆(54)

uS(A) = B2 , uT(A) = B A B , (4.4a)

uS(B) = A , uT(B) = B , (4.4b)

uS(C) = C , uT(C) = C . (4.4c)

Using the presentation eq. (2.6), one can verify that uS and uT generate the finite modular

group Γ′3
∼= T ′ ∼= SL(2, 3). For the three-dimensional representation eq. (4.2) of ∆(54)

these outer automorphisms can be written by conjugation with9

ρ(S) = − i√
3

 1 1 1

1 ω ω2

1 ω2 ω

 and ρ(T) =

ω 0 0

0 1 0

0 0 1

 , (4.5)

see eq. (2.12), where possible phases have been fixed by demanding that ρ(S) and ρ(T)

generate the same finite modular group Γ′3
∼= T ′ ∼= SL(2, 3) as uS and uT. By inspecting

the character table of T ′, it is easy to see that eq. (4.5) corresponds to the 1⊕ 2′′ irreducible

representations of T ′. Furthermore, we note that (ρ(S))2 = ρ(C) and the three-dimensional

reducible representation eq. (4.5) of T ′ is an irreducible representation of the eclectic flavor

group generated by ρ(A), ρ(B), ρ(S) and ρ(T), being

Ω(1) ∼= [648, 533] , (4.6)

see ref. [64] for the definition of Ω(1) and refs. [65, 66] for flavor model building based on this

symmetry group. Following the discussion in section 3, the eclectic flavor group Ω(1) is bro-

ken spontaneously to various unified flavor subgroups at different points in τ moduli space:

generic point : Ω(1) → ∆(54) ∼= [54, 8] (4.7a)

〈τ〉 = i : Ω(1) → Σ(36× 3) ∼= [108, 15] (4.7b)

〈τ〉 = exp (2πi/3) : Ω(1) → Ỹ (0) ∼= [162, 10] (4.7c)

where the flavor groups are defined as follows:

i) ∆(54) is generated by ρ(A), ρ(B) and ρ(C),

ii) Σ(36× 3) ∼= [108, 15] is generated by ρ(A), ρ(B) and ρ(S) (see ref. [67]), and, finally,

iii) Ỹ (0) ∼= [162, 10] is generated by ρ(A), ρ(B), ρ(C) and ρ(S T) (see ref. [64]).

As a remark, all of these groups have three-dimensional irreducible representations.

9Note the change of convention compared to ref. [43].
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CP-like modular extension. Following the discussion of section 2.2, it is possible to

extend the identified modular symmetry T ′ with a CP-like transformation K∗ based on the

∆(54) outer automorphism

uK∗(A) = A , uK∗(B) = B2 , uK∗(C) = C (4.8)

that satisfies the conditions (2.28) with uS and uT given by eqs. (4.4). In this case, one

can see from eq. (2.27) that the representation ρ(K∗) of eq. (2.19) relating the field ψ(x) in

the 3 representation of ∆(54) with its conjugate ψ(xP ) in the 3 representation is given by

ρ(K∗) = 13×3 . (4.9)

Since K∗ relates ψ(x) and ψ(xP ), it is more convenient to rewrite S, T and K∗ in the 3⊕3

representation as

ρ6(S) =

(
ρ(S) 0

0 ρ(S)∗

)
, ρ6(T) =

(
ρ(T) 0

0 ρ(T)∗

)
, ρ6(K∗) =

(
0 ρ(K∗)

ρ(K∗)
∗ 0

)
, (4.10)

where ρ(S) and ρ(T) are given by eq. (4.5) and ρ(K∗) by eq. (4.9). One can easily verify

that ρ6(S), ρ6(T) and ρ6(K∗) generate the finite modular group Γ′∗3
∼= GL(2, 3) and the

resulting eclectic flavor group is [1296, 2891].

In extra-dimensional models, the traditional flavor symmetry ∆(54) can originate from

strings on a T2/Z3 orbifold [48, 68]. As shown in refs. [42, 43], ∆(54) is accompanied

nontrivially in this setting by a T ′ or a GL(2, 3) modular symmetry, depending on whether

the CP-like transformation K∗ is taken into account, in full agreement with our discussion

here, see also ref. [69].

5 Results

We have selected a representative set of traditional flavor symmetries that have been used

in model building. These include

S3, Q8, Z3×Z3, A4, S3×Z2, T7, S4, T ′, ∆(27), Z9 oZ3
∼= [27, 4], SL(2, 4),

∆(54), A5, Σ(36× 3) ∼= [108, 15], Σ(168) ∼= [168, 42] and Σ(72× 3) ∼= [216, 88].

This list is not exhaustive, but covers the most promising traditional flavor symmetries con-

sidered so far. More examples could be added and analyzed upon request. We then classify

for each group all nontrivial extensions by finite modular symmetries that fulfill the restric-

tions discussed in section 2. This then allows the identification of allowed eclectic flavor

groups that could be obtained in a bottom-up procedure. Our results are listed in table 2.

Surprisingly it turns out that many prominent traditional flavor symmetries, such as S3,

D12
∼= S3 ×Z2, T7, S4, Z9 oZ3, SL(2, 4) and A5, do not allow for any nontrivial modular

extension and thus are not included in table 2. Among the groups we have studied, only

Q8, Z3 ×Z3, A4, T
′, ∆(27) and ∆(54)
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flavor group GAP Aut(Gfl) finite modular eclectic flavor

Gfl ID groups group

Q8 [ 8, 4 ] S4 without CP S3 GL(2, 3)

with CP – –

Z3 ×Z3 [ 9, 2 ] GL(2, 3) without CP S3 ∆(54)

with CP S3 ×Z2 [108, 17]

A4 [ 12, 3 ] S4 without CP S3 S4

S4 S4

with CP – –

T ′ [ 24, 3 ] S4 without CP S3 GL(2, 3)

with CP – –

∆(27) [ 27, 3 ] [ 432, 734 ] without CP S3 ∆(54)

T ′ Ω(1)

with CP S3 ×Z2 [108, 17]

GL(2, 3) [1296, 2891]

∆(54) [ 54, 8 ] [ 432, 734 ] without CP T ′ Ω(1)

with CP GL(2, 3) [1296, 2891]

Table 2. Examples of traditional flavor groups, their extensions by finite modular groups and

the resulting eclectic flavor groups. For details, see appendix B. Aut(Gfl) denotes the group of

automorphisms of the traditional flavor group Gfl.

allow for eclectic extensions and local flavor unification. Furthermore, among those, only

the traditional flavor groups

Z3 ×Z3, ∆(27) and ∆(54)

admit a CP-like transformation in the eclectic flavor group.

This is a quite restrictive situation. A nontrivial extension of the traditional flavor

group (as required from the top-down argumentation) is limited to just a few specific

cases. Flavor model building should thus be based on very few examples with an eclectic

flavor group that includes a nontrivial finite modular group. Since our list of traditional

flavor groups is not exhaustive, it remains to be seen in future work whether more nontrivial

cases can be found. Traditional flavor groups with a sizable group of outer automorphism

are particularly suited for an eclectic extension.

6 Conclusions

In the present paper we made an effort to match the bottom-up (BU) and top-down (TD)

approaches of flavor models based on finite discrete modular symmetries. Up to now, the

BU-approach considered finite modular groups ΓN , where some of the quarks and leptons
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transform as (irreducible) triplet or nontrivial singlet representations of ΓN . This led to an

excellent description of the flavor structure of the lepton sector. Efforts towards an ultra-

violet completion (TD approach) were based on string theory. Up to now only few explicit

TD models have been constructed. The analysis within string theory, however, leads to a

general qualitative picture with the clear message that finite modular symmetries do not

appear in isolated form, but are accompanied by a traditional (non-modular) flavor group.

This then leads us to the concept of “Eclectic Flavor Groups” as a nontrivial product of

traditional flavor symmetry and finite modular symmetry.

Given this observation, we might now reconsider the BU-approach and classify can-

didates for eclectic flavor groups from bottom-up. Surprisingly, the number of these can-

didates turns out to be very small. Only a few examples are known (see table 2). This

is the main result of the present paper. The fact that we cannot disentangle traditional

flavor symmetries and modular symmetries is consistent with the picture of “Local Flavor

Unification”, where we find an enhanced symmetry at specific regions in moduli space.

This would naturally allow different flavor structures for quarks and leptons, where quarks

(leptons) are predominantly described by traditional (modular) flavor groups.

It should be stressed that the concept of eclectic flavor groups is more predictive than

the consideration of modular symmetries alone. Terms allowed by the modular group

might be forbidden by the selection rules of the traditional flavor group. In the ∆(54)-

example discussed in section 4, four independent trilinear superpotential couplings (of 2′′⊕1

representations of T ′) allowed by the T ′ modular symmetry are reduced to a single one

due to the presence of ∆(54) [70]. The enhanced restrictions from eclectic flavor groups

are especially relevant for the form of the Kähler potential. In ref. [33] it was pointed

out that general terms in the Kähler potential reduce the predictivity of models based on

finite modular symmetries. This problem could be solved within the eclectic flavor picture

with more restrictions on the Kähler potential due to the nontrivial combination of finite

modular groups and traditional flavor groups.
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A Remarks

In this appendix, we comment on some inaccuracies in the literature on modular symmetries

in model building. First, it is important to note that the modular S transformation is, in

general, not of order 2, even though S2 acts trivially on τ . In detail, from eq. (2.3) we get

τ
S7−→ −1

τ
, ψ

S7−→ (−τ)−k ρ(S)ψ for S =

(
0 1

−1 0

)
, (A.1a)

τ
S−1

7−→ −1

τ
, ψ

S−1

7−→ (+τ)−k ρ(S)−1 ψ for S−1 =

(
0 −1

1 0

)
. (A.1b)

Then, S2 acts as

τ
S7−→ −1

τ

S7−→ τ , (A.2a)

ψ
S7−→ (−τ)−k ρ(S)ψ

S7−→
(

1

τ

)−k
(−τ)−k ρ(S)2 ψ = (−1)−k ρ(S)2 ψ , (A.2b)

while

τ
S7−→ −1

τ

S−1

7−→ τ , (A.3a)

ψ
S7−→ (−τ)−k ρ(S)ψ

S−1

7−→
(

1

τ

)−k
(τ)−k ρ(S) ρ(S−1)ψ = ψ , (A.3b)

as expected. Let us compare eq. (A.2b) and eq. (A.3b) in some detail. In eq. (A.2b), the

transformation by ρ(S)2 is trivial for ΓN but can be nontrivial for Γ′N . Moreover, the factor

(−1)−k is nontrivial for a general modular weight k ∈ Q that is not even. Consequently, we

see that in general S and S−1 are different transformations for matter fields, even though

they act identically on the τ modulus.

B Explicit examples

B.1 Traditional flavor symmetry Q8

Let us consider the traditional flavor symmetry Q8 of order 8 (GAP ID [8,4]). We choose

the irreducible two-dimensional representation of Q8 given by [58]

ρ(A) =

(
i 0

0 −i

)
, ρ(B) =

(
0 i

i 0

)
. (B.1)

The full automorphism group of Q8 is S4 with 24 elements. Out of these, we can identify

two outer automorphisms that generate the finite modular group S3, i.e.

uS(A) = A3 , uT(A) = B , (B.2a)

uS(B) = A B , uT(B) = A . (B.2b)
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Then, there are two choices of matrices ρ(S) and ρ(T) that realize these automorphisms

via eq. (2.12) and generate S3, being

ρ(S) = α

(
0 exp 2πi/8

exp−2πi/8 0

)
, ρ(T) =

α√
2

(
−1 −1

−1 1

)
, (B.3)

for α = ±1. For both choices of α, ρ(S) and ρ(T) build a doublet of S3. Moreover, the

eclectic flavor group, generated by ρ(A), ρ(B), ρ(S) and ρ(T), turns out to be GL(2, 3). It

is interesting to note that the Q8 traditional flavor symmetry does not allow for an eclectic

extension with CP .

B.2 Traditional flavor symmetry Z3 × Z3

We choose a (reducible) three-dimensional representation of Z3 ×Z3 given by

ρ(A) =

ω 0 0

0 1 0

0 0 ω2

 , ρ(B) =

 1 0 0

0 ω 0

0 0 ω2

 . (B.4)

The full automorphism group of Z3 ×Z3 is GL(2, 3) with 48 elements. Since the group of

inner automorphisms of Z3×Z3 is trivial, all elements of GL(2, 3) are outer automorphisms.

It turns out that there are two classes of outer automorphisms that generate finite modular

groups, either without or with CP :

i) Without CP , we can choose the outer automorphisms

uS(A) = A2 , uT(A) = B , (B.5a)

uS(B) = A2B , uT(B) = A , (B.5b)

which generate the finite modular group S3. One possibility to realize these outer

automorphisms via conjugation with matrices ρ(S) and ρ(T) is given by the choice

ρ(S) =

 0 0 −i

0 −1 0

i 0 0

 , ρ(T) =

 0 −1 0

−1 0 0

0 0 −1

 , (B.6)

see eq. (2.12). This three-dimensional representation of S3 decomposes into a 2⊕ 1′.

Interestingly, the eclectic flavor group, generated by ρ(A), ρ(B), ρ(S) and ρ(T), is

∆(54) and the representation eq. (B.4) and eq. (B.6) is three-dimensional.

ii) Moreover, when combining eq. (B.5) with the outer automorphism

uK∗(A) = A2 , uK∗(B) = B2 (B.7)

we see that the CP-enhanced finite modular group is Γ∗2
∼= S3×Z2, where K∗ can be

represented as

ρ(K∗) =

 1 0 0

0 1 0

0 0 −1

 , (B.8)
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which satisfies eq. (2.24). The action on the matter fields (ψ, ψ)T is realized by rewrit-

ing all modular generators in the six-dimensional representation, as in eq. (4.10). In

this six-dimensional representation, one can easily confirm using GAP that the eclec-

tic flavor group including CP is [108,17].

B.3 Traditional flavor symmetry A4

The generators of the traditional flavor symmetry A4 (GAP ID [12,3]) can be given in the

triplet representation by the matrices

ρ(A) =

 1 0 0

0 −1 0

0 0 −1

 , ρ(B) =

 0 1 0

0 0 1

1 0 0

 . (B.9)

The full automorphism group of A4 is S4, which contains only two finite modular groups

generated by the outer automorphisms:

i) Two outer automorphisms that generate the finite modular group Γ2
∼= S3 are

uS(A) = B2 A B , uT(A) = B A B2 , (B.10a)

uS(B) = B2 , uT(B) = B2 . (B.10b)

In the representation (B.9), these automorphisms can be expressed as

ρ(S) =

 0 1 0

1 0 0

0 0 1

 , ρ(T) =

 0 0 1

0 1 0

1 0 0

 . (B.11)

The generators ρ(A), ρ(B), ρ(S) and ρ(T) generate the eclectic flavor group S4, which

is isomorphic to the full automorphism group S4.

ii) Two outer automorphisms that generate the finite modular group Γ4
∼= S4 are

uS(A) = B2 A B , uT(A) = B A B2 , (B.12a)

uS(B) = B2 , uT(B) = B A B . (B.12b)

In the representation (B.9), these automorphisms can be expressed as

ρ(S) =

 0 1 0

1 0 0

0 0 1

 , ρ(T) =

 0 0 1

0 −1 0

−1 0 0

 , (B.13)

and the eclectic extension of the traditional flavor symmetry A4 by the Γ4
∼= S4 finite

modular group yields the eclectic flavor group S4.

Let us conclude this example with two remarks, both related to the fact that the group

of outer automorphisms of A4 is Z2, i.e. very small. First, the A4 traditional flavor group

does not allow for an eclectic flavor group with CP . Secondly, for both eclectic extensions

of the traditional flavor group A4 by either by S3 or S4 the eclectic flavor group is S4. Note

that, even though the eclectic flavor groups are identical (i.e. S4), the eclectic extensions

of A4 by S3 or S4 yield different theories, since, for example, Yukawa couplings have to be

modular forms of either S3 or S4.
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B.4 Traditional flavor symmetry T ′

The generators of the traditional flavor symmetry T ′ (GAP ID [24,3]) can be given in the

1⊕ 2 representation by the matrices

ρ(A) =

 1 0 0

0 ω2 0

0 0 ω

, ρ(B) =

 1 0 0

0 −1 0

0 0 −1

, ρ(C) =
−i√

3

 i
√

3 0 0

0 1
√

2

0
√

2 −1

, (B.14)

where ω := exp 2πi/3. The full automorphism group of T ′ is S4. One can choose the following

two outer automorphisms of this group to generate the finite modular group Γ2
∼= S3:

uS(A) = A2 , uT(A) = A2 , (B.15a)

uS(B) = B , uT(B) = B , (B.15b)

uS(C) = C A C A2 , uT(C) = C B . (B.15c)

In the representation (B.14), these automorphisms are given by

ρ(S) =

α 0 0

0 0 β iω

0 −β iω2 0

 , ρ(T) =

α 0 0

0 0 β i

0 −β i 0

 , (B.16)

for α = ±1 and β = ±1. The generators ρ(A), ρ(B), ρ(C), ρ(S) and ρ(T) generate the

eclectic flavor group GL(2, 3).

Note that the T ′ traditional flavor symmetry does not allow for an eclectic flavor group

with CP .

B.5 Traditional flavor symmetry ∆(27)

Next, we choose the traditional flavor symmetry ∆(27) (GAP ID [27, 3]). It can be gener-

ated in a triplet representation by the matrices

ρ(A) =

 0 1 0

0 0 1

1 0 0

 , ρ(B) =

ω 0 0

0 1 0

0 0 ω2

 , ρ(C) =

ω2 0 0

0 ω 0

0 0 1

 , (B.17)

where ρ(C) = ρ(A)2 ρ(B) ρ(A), see ref. [58]. Out of the full group of automorphisms with

GAP ID [432, 734] we identify two classes of outer automorphisms that generate finite

modular groups.

i) We can choose

uS(A) = A2 , uT(A) = A2 , (B.18a)

uS(B) = B2 , uT(B) = A2 B2 A . (B.18b)

These automorphisms generate S3. Then, there are two choices of matrices that

generate S3 and realize these outer automorphisms by conjugation, eq. (2.12), being

ρ(S) = α

 0 0 1

0 1 0

1 0 0

 , ρ(T) = α

 1 0 0

0 0 1

0 1 0

 , (B.19)
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for α = ±1. In both cases, ρ(S) and ρ(T) generate the finite modular group Γ2
∼= S3,

where the triplet of ∆(27) builds a 2⊕ 1 of S3 if α = 1, or 2⊕ 1′ if α = −1. In both

cases, the eclectic flavor group is ∆(54).

Incorporating the CP-like transformation K∗ can be done by including the outer

automorphism

uK∗(A) = A , uK∗(B) = B A2 B , (B.20)

which, together with eq. (B.18), leads to the CP-enhanced finite modular group

S3 ×Z2. In the representation eq. (B.17), it can be written as

ρ(K∗) =
i√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

 , (B.21)

which satisfies eq. (2.24). The action on the matter fields (ψ, ψ)T is realized by rewrit-

ing all modular generators in the six-dimensional representation, as in eq. (4.10). In

this case, the eclectic flavor group including CP is [108,17].

ii) Furthermore, we can choose

uS(A) = B2 A , uT(A) = B A , (B.22a)

uS(B) = (A B)2 , uT(B) = B . (B.22b)

These outer automorphisms generate T ′. Then, there are three choices of matrices

that generate T ′ and realize these automorphisms by conjugation, being

ρ(S) = − i√
3

 1 ω ω

ω2 ω ω2

ω2 ω2 ω

 , ρ(T) = ωk

 1 0 0

0 ω2 0

0 0 ω2

 , (B.23)

for k = 0, 1, 2. In these cases, the eclectic flavor group results in Ω(1) (with GAP ID

[648, 533]).

Incorporating the CP-like transformation K∗ can be done by including the outer

automorphism

uK∗(A) = A2 B , uK∗(B) = A2 B A , (B.24)

which, together with eq. (B.22), leads to the CP-enhanced finite modular group

GL(2, 3). In the representation eq. (B.17), it can be written as

ρ(K∗) = eiγ

ω2 0 0

0 0 1

0 1 0

 , (B.25)

which satisfies eq. (2.24) with γ ∈ R. The action on the matter fields (ψ, ψ)T is

realized by rewriting all modular generators in the six-dimensional representation, as

in eq. (4.10). The resulting eclectic flavor group is [1296, 2891].
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B.6 Trivial extension of the traditional flavor symmetry ∆(54)

As discussed before section 2.1, inner automorphisms can only produce a trivial extension

of a traditional flavor symmetry. To illustrate this scenario, let us entertain the possibility

of ∆(54) being extended by a Γ2
∼= S3 finite modular symmetry generated by the ∆(54)

inner automorphisms

uS(A) = A2 , uT(A) = A2 , (B.26a)

uS(B) = B2 , uT(B) = A2B2A , (B.26b)

uS(C) = C , uT(C) = AC ; (B.26c)

see section 4. For the three-dimensional representation eq. (4.2) of ∆(54), these are given

in terms of eq. (2.12) by the matrix representations

ρ(S) = −

 1 0 0

0 0 1

0 1 0

 and ρ(T) = −

 0 1 0

1 0 0

0 0 1

 . (B.27)

From eq. (2.6), one can easily see that ρ(S) and ρ(T) generate the finite modular group

Γ2
∼= S3. Notice however that ρ(S) = ρ(C) and ρ(T) = ρ(A)2ρ(C). As in eq. (2.17), we

observe here that the action of the S3 modular generators is compensated by the ∆(54)

elements represented by ρ(C)−1 and ρ(A2C)−1. Therefore, the action of the finite modular

group S3 based on inner automorphisms can be given by the trivial representation ρ(γ) = 1,

which amounts to a trivial extension of the traditional flavor symmetry.

As a side remark, a careful inspection reveals that there are no outer automorphisms

of ∆(54) that generate a Γ2 finite modular group and simultaneously satisfy eqs. (2.6)

and (2.12). Thus, the ∆(54) traditional flavor group cannot be enhanced nontrivially by a

Γ2 finite modular group.
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