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Abstract: The mechanism of CP violation remains one of the puzzles in particle physics.

Key to understanding this phenomenon are nonleptonic B decays, especially multibody

decays which exhibit large CP asymmetries in various regions of phase space. A full QCD-

based theoretical description of these decays is still missing, requiring the use of models to

fit the data. In this paper, we suggest a model ansatz which reflects the underlying physics

and the known mechanism of CP violation via the CKM matrix. In addition, since CP

violation is driven by the interference between amplitudes with and without valence charm

quarks, we argue that the opening of the open-charm threshold may play an important

role in generating CP violation in the high invariant mass region. We present a natural

extension of the isobar model to incorporate these effects. We suggest an analysis of

nonleptonic three-body B decay data including this extension, which would be interesting

as it may give new hints to the sources of CP violation both at low and high invariant mass.
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1 Introduction

The violation of CP symmetry is one of the main puzzles of contemporary particle physics.

In the Standard Model (SM) of particle physics, CP violation in the electroweak interaction

is described by a complex parameter in the quark-mixing (CKM) matrix. On the other

hand, the strong CP problem, namely the absence of (flavour diagonal) CP violation in

strong interactions, remains a mystery. Flavour physics experiments over the last two

decades confirm this picture, which is, however, not a theory of CP violation but rather a

parametrization of the observations.

An important source of information on CP violation are B decays, for which large

amounts of data are available from BaBar, Belle(II) and LHCb. For the charmless non-

leptonic two-body decays the method of QCD factorization (QCDF) [1–4] has been es-

tablished, which is set up as a double expansion in αs and ΛQCD/mb and allows the

computation of branching ratios and CP asymmetries.

A large part of the nonleptonic B decays are however three- and more-body decays.

These have the added benefit that the strong phases and therefore also the CP asymmetries

differ across the phase space. Recently, the QCDF framework has been applied to three-

body B decays [5, 6]. First attempts to calculate decay rates and CP asymmetries within

this framework show that the leading order in QCDF can reproduce the gross features for

the Dalitz distributions for differential rates, but do not seem to describe the corresponding

CP asymmetries. This may indicate the importance of subleading power corrections, for

which currently no systematic description exists.

Until a sound theoretical approach exists, the description of multibody B decays relies

to a large extent on modelling (see e.g. [7–15]). Therefore, we revert the usual arguments.

Instead of using data to extract the parameters of CP violation, we assume that CP vio-

lation is described by the SM. In that way, the measured CP asymmetries can be used to

determine the hadronic matrix elements and improve our understanding of QCD.

In this paper, we propose a new parametrization for nonleptonic three-body B decay

amplitudes that reflects the SM mechanism of CP violation by dividing the amplitude

into Au and Ac, which contain valence u and c quarks, respectively. CP violation is
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driven by the interference between these amplitudes. At high invariant mass, dominant

contributions to Ac could be charm resonances, but also charmonium-like exotic states.

These contributions may be described by the standard 2 + 1 description, where the decay

is described as a pseudo two-particle decay. Besides such effects, threshold singularities,

for example generated by the opening of the DD̄ threshold may constitute a large part

of Ac and thus play an important role in the description of CP violation, as we already

pointed out in [6]. Such threshold effects in three-body B decays were recently studied in

refs. [13–15] using a mesonic model, which generates a sharp strong phase change when

crossing the DD̄ threshold.

The key point of the current paper is to emphasize the importance of charmed reso-

nances and threshold effects. As such effects are challenging to describe in QCD, we propose

a simple extension of the standard isobar model to parametrize charm threshold effects.

Using a simple example, we show the CP violation such threshold effects could generate.

Whether these effects play indeed an important role can only be determined using a full

analysis of the three-body B decay data using our new model ansatz. This in turn would

then generate new insights which would help to further improve the parametrization and

allow us to gain insights into charm effects in nonleptonic B decays.

2 Modelling the three-body amplitudes

We focus on B+(pB)→ π+(p1)π−(p2)π+(p3), but our approach can easily be extended to

B → hhh with h = π,K decays. In the SM, the decay is described by the weak effective

Hamiltonian for the b→ d flavour transition [16], which can be split into two RG invariant

contributions with different CKM elements

Heff =
GF√

2
[VubV

∗
udOu + VcbV

∗
cdOc] , (2.1)

where Ou,c contain current-current and penguin operators. Using the convention that

the CP-violating weak phase of the CKM matrix enters via Vub = |Vub|e−iγ , the decay

amplitude can be written as

A±(s12, s23) ≡ 〈B±|Heff |πππ〉 = Au(s12, s23) e∓iγ +Ac(s12, s23) (2.2)

with Aq(s12, s23) = GF /
√

2 |VqbV ∗
qd|〈B|Oq|πππ〉 and where the subscript ± refers to the

charge of the B meson. The amplitudes A±, Aq are complex valued functions of the

kinematic variables s12 and s23, where sij ≡ m2
ij = (pi + pj)

2, and thus contain CP-

conserving strong phases. Direct CP violation is induced by the interference of the matrix

elements of the two operators Ou and Oc.

The matrix elements Aq cannot be calculated reliably, therefore their values have to

be extracted from data by means of an amplitude analysis. In general, A+ and A− are

fitted separately using a model ansatz. Frequently used are isobar (inspired) models, which

parametrize the three-body amplitudes as pseudo two-particle decays, where one of the two

particles is a resonance that subsequently decays into two stable particles. Schematically;

A±(s12, s23) =
∑
k

c±k P
(`)
k (s12, s23)

s12 −m2
k + imkΓk

+
∑
l

c±l P
(`)
l (s12, s23)

s23 −m2
l + imlΓl

. (2.3)
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This holds for charged decays, where resonances only occur in two channels. For neutral

decays the crossed channel can also interfere. Here P (`) are the Legendre polynomials

describing the spin of the decaying resonances with masses mk/l and widths Γk/l. In the

simplest isobar model the propagators of the decaying resonances are described by Breit-

Wigner shapes. The model contains the complex parameters c±k which are assumed to be

constant, such that all the kinematic dependence arises from the Breit-Wigner form. Thus

the strong phases extracted from the Dalitz distribution for the differential rates depend

strongly on the model assumption used to fit the data.

A similar approach is used in D decays, where CP violation can safely be ignored in the

amplitude analysis. However, in B decays there is additional information through the CP

distributions. As the weak CKM phase γ is constant throughout the Dalitz plane, the CP

distribution gives a direct measure of the strong phase differences between the amplitudes

Au and Ac. This difference is driven by the mass of the charm quark, if the charm and

up-quark mass would be equal, the CP asymmetry would vanish, since then Au and Ac
become identical.

In the isobar model, the kinematical dependence of the phases in Au and Ac arise

from the Breit-Wigner shapes and are related to the asymptotic final-state interactions

of the decay products of the resonance. These asymptotic interactions are not related to

CP violation, which is evident since both interfering amplitudes will have the same Breit-

Wigner phase. Therefore, the fact that the thresholds for charm states are fundamentally

different from light-quark states will manifest itself in the CP asymmetry close to the charm

thresholds. Such effects would contribute to Ac, while they would be absent (or strongly

suppressed) in Au. Interestingly, the distribution of CP violation for B → πππ obtained

by the LHCb Collaboration [17–19] shows pronounced structures in the center of the Dalitz

plot close to the invariant mass of cc̄ states.

Therefore, the parameterization of the amplitudes in Au and Ac seems a natural choice

in which the known mechanisms of CP violation in the SM are incorporated. We therefore

propose to perform the analysis using not the amplitudes A+ and A− but rather Au and

Ac. Specifically this implies

A±(s12, s23) =
∑
k

(a
(u)
k e∓iγ +a

(c)
k )P

(`)
k (s12, s23)

s12−m2
k+ imkΓk

+
∑
l

(a
(u)
l e∓iγ +a

(c)
l )P

(`)
l (s12, s23)

s23−m2
l + imlΓl

, (2.4)

with the same set of complex fit parameters a(u) and a(c) for both amplitudes.

In addition, the benefit of a set up using Au and Ac is, that charm effects which

are expected to play a dominant role above the open-charm threshold can be included

systematically. We discuss the inclusion of these threshold effects in the next section.

We note that the isobar-model parametrization has a few interesting features. First of

all, in the case of very narrow resonances (meaning that their width is small compared to

the mass spacing between the different resonances) the relation in eq. (2.4) implies

d2Γ±
ds12 ds23

=
∑
k

δ(s12 −m2
k)P

(`)
k (m2

k, s23)Br(B± → πRk) + (s12 → s23) (2.5)
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where

Br(B± → πRk) =
1

Γtot
|a(u)
k e∓iγ + a

(c)
k |

2 , (2.6)

is the branching ratio of the two-body decay B → πRk. In this approximation, the rate

asymmetry is thus completely determined by those of the two particle decays. Therefore,

if only low lying resonances with masses well below the charm threshold are taken into

account, the narrow width example clearly shows that the complex structure in the CP

asymmetries at high-invariant masses can hardly be accounted for.

A second remark needs to be made concerning the current fits of the data. In the

most recent analysis of the LHCb Collaboration [17, 18] the residues of the resonances are

parametrized as

c±k = a
(u)
k e∓iγ + a

(c)
k = xk ± δxk + i(yk ± δyk) , (2.7)

with real parameters xk, yk, δxk, δyk and where a(q) = |a(q)|eiφ(q) . Equation (2.7) shows that

the two parameterizations are related and contain the same information. We emphasize,

however, that when using x, y, δx, δy the assignment to the matrix elements appearing in the

effective Hamiltonian is not evident any more. In practice, the fit values are extracted with

respect to the ρ resonance [17, 18]. This means that yρ and δyρ are fixed to 0 corresponding

to a phase choice, because the overall phase of amplitude A± is not observable. For our

parametrization this implies that φ
(u)
ρ = 90◦. In addition, for the isobar fit xρ is fixed to 1,

so the values of x, y, δx, δy for other resonances are in units of the value for the ρ resonance.

The relative strength of two matrix elements Au and Ac is then given by

|a(u)
ρ |
|a(c)
ρ |
' δxρ ' O(10−3) , (2.8)

where the numerical factor can be obtained by using the fit result for δxρ from [18]. The

smallness of the ratio seems to indicate that the amplitude for the ρ resonance is driven by

Ac. This seems counter-intuitive as the ρ could be immediately formed from the valence

u quarks in Au. Therefore, we would expect the ratio in eq. (2.8) to be much bigger. The

small ratio may very well be an artefact of the analysis as charmed resonances are not

included. In fact, rewriting the fit parameters x, y, δx, δy from [18] for the σ S-wave and

f2 D-wave resonance leads also to a small ratio a(u)/a(c). This could be an indication that

charmed resonances and threshold effects play a role. Finally, we note that the integrated

CP asymmetry in the high-s region seems well described by the LHCb amplitude fits [18],

however, it would be interesting to see if the amplitude analysis can reproduce the full

CP landscape.

In the next section, we suggest a simple parametrization to include also charm threshold

effects in the isobar fit. We expect that the proper inclusion of charm threshold effects will

change the ratio in eq. (2.8) to more plausible values.
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(a) (b)

Figure 1. (a) Sketch of color-octet contribution in QCD factorization, where the blobs correspond

a single or two-pion states. (b) Example of a mesonic diagram corresponding to (a).

3 Parametrization of threshold effects

To parametrize the impact of the open-charm threshold effects, we concentrate on the

current-current part of the operator Oc, which we write as

〈B+|Oc|πππ〉 =
∑
n

〈B+|Oc|n〉 〈n|πππ〉, (3.1)

where |n〉 is an intermediate state. The sum over these intermediate states can be split

into the states with and without valence charm quarks. We will assume that the difference

between the matrix elements of the operators Oc and Ou is mainly driven by the states

involving valence charm quarks and hence focus on them.

We naively factorize the matrix element 〈B+|Oc|n〉, by fierzing the four-quark opera-

tor as

〈Oc〉 =
1

Nc
〈b̄γµ(1− γ5)d〉〈c̄γµ(1− γ5)c〉+ 〈b̄γµT a(1− γ5)d〉〈c̄γµT a(1− γ5)c〉 . (3.2)

The invariant mass of the intermediate states |n〉 must be close to the B meson mass,

and therefore the lowest possible (hadronic) state with valence charm quarks is a cc̄ res-

onance Rcc̄ and a pion. At leading order in the Fock state, the cc̄ resonance is in a color

singlet state, thus only the first term in eq. (3.2), which is 1/Nc suppressed, contributes.

Furthermore, the cc̄ resonance Rcc̄ is in a V −A isopin-zero state. The (axial)-vector cur-

rent generates a tower of J/ψ (1−−) (and orbitally excited charmonium) resonances which

decay into two pions, but only with small branching ratios.

The color-allowed second term in eq. (3.2) produces the two charm quarks in a

color-octet state. Its leading contribution arises through intermediate states containing

a D(∗)D̄(∗) pair. A similar picture emerges in QCD factorization of two body decays,

where the charm loop drives the CP asymmetry. This is sketched in figure 1, where the

cut shows that the DD̄ states can appear as intermediate states. In two-body decays, the

loop momentum q has q2 = m2
B and therefore this contribution is subleading in 1/mb.

However, in three-body decays such DD̄ intermediate state can rescatter into two pions

which leads to a threshold behaviour once the invariant mass of the two pions crosses the

value 2mD. In general, the amplitude Ac will thus contain — aside from Breit-Wigner like

– 5 –
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contributions as modelled in the isobar model — also threshold-like singularities

Ac = 〈B+|Oc|Rcc̄π〉 〈Rcc̄π|πππ〉+ 〈B+|Oc|DD̄X〉 〈DD̄X|πππ〉, (3.3)

where for simplicity we only consider the DD̄ threshold. We denote the intermediate

DD̄X-state by R, where R contains the cc̄ pair in a color-octet configuration. The second

term in eq. (3.3) is challenging to calculate, even if one constructs a mesonic model based on

heavy-meson chiral perturbation theory. The same applies to a dispersive treatment, where

additional subtraction constants need to be introduced, limiting the predictive power of the

approach. Therefore, we propose a simple model ansatz for these threshold contributions.

The intermediate state R can be described with a modified propagator corresponding

to a two-point function of a quantum field

TR(s12) =
1

s12 − (mbare
R )2 + Σ(s12)

=
1

s12 −m2
R + [ΣR(s12)− Re ΣR(m2

R)]
, (3.4)

where ΣR(s12) is the self energy of the state R. To ensure that the pole is located at the

physical mass mR, the bare mass is renormalized by Re ΣR(m2
R).1 Here we focus on the

contributions from the open-charm loops to the self-energy, which entail the standard bub-

ble summation diagrams. These loops would generate a dynamical width for the resonance

above the open-charm threshold. The underlying assumption of this parametrization is

that the self energy of the intermediate state R that decays into two pions is dominated

by the open-charm threshold contribution, which can be described by a the part of the

standard two-particle loop function:

ΣR(s12) = gRmR

√
sthres − s12 arctan

 1√
sthres
s12
− 1 + iε

 , (3.5)

which generates the imaginary part once the open-charm threshold sthres is crossed. Here

gR and mR are the coupling and the mass of the intermediate state R to the considered

open-charm system. All open-charm thresholds (DD̄, D∗D̄, etc.) can be described using

this parametrization by adjusting the correspoding threshold sthres and the coupling of the

decaying state gR. Figure 2 shows the real and imaginary part of the proposed threshold

function TR below and above the open-charm threshold. Note that TR acquires an imagi-

nary part, once sthres is crossed, while the real part has a cusp there. We emphasize that

this parametrization is chosen in order to generate a non-trivial imaginary part above the

open-charm threshold. In order to describe non-trivial CP violation, the phase difference

generated by TR is crucial. Figure 2 shows the phase of TR in comparison with a stan-

dard Breit-Wigner shape. This shows that the strong phase introduced from the threshold

is fundamentally different from that in a standard Breit-Wigner parametrization. This

sharp sign change at the DD̄ threshold was also found in [13, 15]. As a consequence, our

parametrization generates much larger structures in the CP distribution. We note that

in principle the coupling gR can be fixed once the width of R can be determined from

experiment, however, also effects of composite states could be described by eq. (3.5).

1We do not explicitly consider the field renormalization, as these terms would only alter the residue of

the propagator which is a model parameter.
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Figure 2. Illustrations of the behavior of the threshold function TR (a) shows the real and

imaginary parts of the modified propagator TR below and above the open-charm threshold. When

the imaginary part is generated, the real part of TR acquires a cusp shown by the kink. (b) Crucial

for CP violation is the difference between the strong phases of TR (blue) and a standard Breit-

Wigner shape (red).

Finally, the threshold effects described by TR are accounted for via

Ac(s12, s23) =
∑
R

aRe
iφR
(
P

(`)
R (s12, s23)TR(s12) + (s12 ↔ s23)

)
+ . . . , (3.6)

where aR and φR are constant normalization constants and phases, the dots indicate low-

lying resonances that can be parametrized in the usual way. In principle, mR, gR, aR and φR
are fit parameters that should be determined from the amplitude analysis. This new way of

parametrizing the charm effects goes beyond the standard Breit-Wigner parameterization

by allowing for more dynamical phases. In fact, it captures effects that would generate

kinematical dependences in the functions c± which were previously considered constant.

The charm amplitude Ac in eq. (3.6) now includes general states R which contains a

cc̄ pair in a color-octet configuration, that decays into pions (in the case of B → πππ). We

stress that our new parametrization is not set up to discuss or even extract properties of

charmed intermediate states, rather to understand the complex features of the CP distribu-

tion close to the charm threshold. This being said, known exotic charmonium resonances

can be explicitly included. For example X(3872) or Zc(3900), which decay predominantly

into a pair of open-charm states (like DD̄, DD̄∗, . . .) and lie very close to their respec-

tive thresholds. Finally, we emphasize that these DD̄ threshold effects may be even more

pronounced in B → KKK or B → Kππ decays. The above discussion can be similarly

applied to these decays and our model ansatz for Ac in eq. (3.6) could directly be applied

to these analyses as well.

4 Discussion and conclusion

Our simple model ansatz for the threshold effects should be tested in a full analysis of the

B → hhh data to see if the CP asymmetries in the high-energy region can be described.

As discussed, it would be specifically interesting to see if the fit results for the lower-lying
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(a) (b)

Figure 3. CP distributions from the resummed propagator TR (a) for the S-wave resonance

χc0(3860) (b) the P -wave resonance X(3872).

resonances then change to be more in line with the expectation that they are dominated

by Au. In addition, it would be interesting to see these effects taken into account for the

B → KKK amplitude analysis.

A full analysis of the experimental data lies beyond the scope of this paper, as it also

requires the inclusion of the lower-lying resonances and specific S and D wave parametriza-

tions as done by the LHCb Collaboration (see [17, 18] for a recent elaborate study). Nev-

ertheless, to illustrate that the sharp change in strong phase due to the opening of the DD̄

threshold can generate interesting CP patterns, we will discuss four simple examples.

First, we show in figure 3 the effect of TR in the high-s region by assuming that

Au is constant and by considering the effect of one resonance in Ac. To emphasize the

difference between S and P -wave contributions, we consider as an example the scalar

χc0(3860) and the vector X(3872) described by the resummed propagator TR where the

relevant thresholds are DD̄ and DD̄∗, respectively. We emphasize that these states are

just examples to illustrate the effect of TR. In fact, our parametrization is not limited to

these known resonances and can be applied more general by letting the mR and gR free

in the analysis. Here, we fixed mR to the value of the respective resonance and assumed

gR = 0.1. Our new model ansatz generates large patterns of CP violation of O(1) above

the open-charm threshold. Similar large effects were found in the recent analysis of [15],

where a model based on hadronic charm loops combined with a χc0 resonance is discussed.

Therefore, including these effects in the experimental analysis seems timely.

Of course, taking Au constant is a large simplification, as in a full fit, this ampli-

tude would contain a series of low-lying resonances (in fact also Ac would contain such

resonances). To illustrate the effect that the interference of these resonances with Ac
could have, we include a ρ resonance parametrized by a Breit-Wigner shape in the am-

plitude Au. In figure 4, we show the corresponding CP distributions again for both the

scalar χc0(3860) and the vector X(3872) described by the resummed propagator TR. Even

though we parametrize the Au in this simplistic way, the obtained distributions show a

– 8 –
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(a) (b)

Figure 4. CP distributions from interference of a ρ resonances and the resummed propagator TR
(a) for the S-wave resonance χc0(3860) (b) the P -wave resonance X(3872).

(a) (b)

Figure 5. CP distributions from interference of a ρ resonances and Breit-Wigner parametrizations

(a) for the S-wave resonance χc0(3860) (b) the P -wave resonance X(3872).

wide variety of CP violation in different regions of the Dalitz and the model generates

O(1) CP violation in the high-energy region. To stress the difference of our model with a

standard Breit-Wigner parametrization, we give in figure 5 the corresponding plots using

Breit-Wigner parametrizations for the ρ and the χc and X resonance. As the resonances

are very narrow, CP violation is only observed in its vicinity.

We conclude that our simple model ansatz to include effects from open-charm threshold

states can indeed cause intricate structures with O(1) CP violation. Moreover, we suggest

to perform the amplitude analysis in terms of the amplitudes Au and Ac, instead of A+ and

A−. This allows to better distinguish effects from different physical sources and directly

probe the strong phases, which need to be better understood. From the experimental point

of view, once data becomes more precise, it will be relevant to include open-charm effects

and exotic states like χc0(3860) or X(3872), which can be easily done in our framework.
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Employing our new model ansatz into a full amplitude analysis may in fact give valuable

insights and help improve the theoretical description of multibody decays not only in the

high invariant mass region but also for the full phase space.
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