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Abstract

Floods caused by heavy rain pose a threat to people due to their sudden occurrence and
destructive power. Flash floods are triggered by small-scale, short but intense precipita-
tion events that are challenging to forecast. Moreover, floods resulting from heavy rain
are not necessarily bound to water bodies, which further complicates their prediction.
Therefore, identifying areas of particular risk is a critical precautionary measure.
In 2016, the state of Bavaria (Germany) was severely affected by a series of flood events
triggered by heavy rain, in which seven people died. The flood events of 2016 underlined
the need to identify susceptible areas throughout Bavaria. However, a new approach
had to be developed for this purpose, since a nationwide hazard assessment using hy-
drodynamic modeling was not possible due to the high computational demands.
In the context of this dissertation, a data-driven approach was developed that identi-
fies pluvial and flash flood-prone areas in Bavaria based on historical events and area
and catchment characteristics. The developed approach covers all necessary steps from
event dataset generation through data management and event analysis to model setup
and model evaluation.
First, a dataset comprising nearly 23,800 German pluvial and flash flood events was
generated, which forms the basis of the data-driven model. To generate an event dataset
suitable for susceptibility modeling, a documentation procedure was developed, ranging
from event definition through the identification of sources to the schematic event docu-
mentation. The key feature of this procedure is a documentation scheme that specifies
what event information to document and how. To create a high-quality event dataset, it
is necessary to assess information quality, report event information separated by source,
and use predefined categories for attribute description.
Then, a spatial event database was developed to link the event dataset to geodatasets
and perform spatiotemporal event analyses. All relevant aspects of database design were
exemplified, from database requirements and system architecture to table and attribute
design and the definition of keys and relationships. Of particular importance is the con-
sideration of the spatiotemporal and content-related accuracy of the event information.
The evaluation of the generated event dataset proved that pluvial and flash floods occur
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everywhere in Germany, with northern Germany tending to be affected less frequently.
Heavy rain-induced flood events in Germany mostly occur in summer and between mid-
day and late afternoon. Across Germany, seven hotspots (i.e., regions that experience
particularly numerous events) were identified, located in both densely populated and
mountainous areas.
A machine learning approach was developed for the identification of areas in Bavaria at
risk from pluvial and flash flooding. To this end, a CatBoost model was trained using
1,864 affected and unaffected locations and 11 spatially distributed and six catchment-
related influencing factors. To achieve good model performance, it proved necessary to
ensure good spatial coverage of the Bavarian state territory and to represent the four
major landscapes in the training and test set. Particularly susceptible regions were
identified in northern Bavaria (metropolitan area of Nuremberg, Würzburg and its sur-
roundings, along the Main River) and southeastern Bavaria (Alpine foothills, Munich
and its surroundings, the southern part of the eastern low mountain range).
This dissertation improves the hazard understanding of pluvial and flash floods in Ger-
many and introduces a new data-driven approach to identify areas at risk. Detailed
guidance is provided on how to document, process, and evaluate event information for
susceptibility modeling and event assessment that extends the methods in flash flood re-
search. In the context of flood risk management and spatial planning, the newly gained
knowledge about endangered areas in Bavaria and the spatiotemporal characteristics of
pluvial flash floods can be used. An application of the methodology to other (federal)
states is possible.
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Zusammenfassung

Durch Starkregen verursachte Hochwasser stellen aufgrund ihres plötzlichen Auftretens
und ihrer Zerstörungskraft eine Bedrohung für Menschen dar. Sturzfluten werden durch
kleinräumige, kurze aber intensive Niederschlagsereignisse ausgelöst, die schwer vorher-
zusagen sind. Darüber hinaus sind Hochwasser infolge von Starkregen nicht zwingend an
Gewässer gebunden, was ihre Vorhersage weiter erschwert. Daher ist die Identifizierung
von besonders gefährdeten Gebieten eine entscheidende Vorsorgemaßnahme.
Im Jahr 2016 wurde der Freistaat Bayern (Deutschland) von einer Serie von starkre-
genbedingten Hochwasserereignissen schwer getroffen, bei denen sieben Menschen star-
ben. Die Hochwasserereignisse von 2016 unterstrichen die Notwendigkeit, gefährdete Ge-
biete in ganz Bayern zu identifizieren. Dafür musste jedoch ein neuer Ansatz entwickelt
werden, da eine landesweite Gefahrenbewertung mittels hydrodynamischer Modellierung
aufgrund der hohen Rechenanforderungen nicht möglich war.
Im Rahmen dieser Dissertation wurde ein datengetriebener Ansatz entwickelt, der auf
Grundlage von historischen Ereignissen sowie Gebiets- und Einzugsgebietseigenschaften
sturzflutgefährdete Gebiete identifiziert. Der entwickelte Ansatz umfasst alle notwendi-
gen Schritte von der Erstellung des Ereignisdatensatzes, dem Datenmanagement und
der Ereignisanalyse bis hin zum Modellaufbau und der Modellauswertung.
Zunächst wurde ein Datensatz mit knapp 23.800 deutschen Sturzflut- und pluvialen
Hochwasserereignissen erstellt, der die Grundlage für das datengetriebene Modell bildet.
Um einen für die Anfälligkeitsmodellierung geeigneten Ereignisdatensatz zu erstellen,
wurde ein Dokumentationsverfahren entwickelt, das von der Ereignisdefinition über die
Identifikation der Quellen bis hin zur schematischen Ereignisdokumentation reicht. Das
zentrale Element dieses Verfahrens ist ein Dokumentationsschema, das festlegt, welche
Ereignisinformationen wie zu dokumentieren sind. Um einen qualitativ hochwertigen
Ereignisdatensatz zu erstellen, ist es notwendig, die Informationsqualität zu bewerten,
die Ereignisinformationen nach Quellen getrennt zu dokumentieren und vordefinierte
Kategorien für die Attributbeschreibung zu verwenden.
Anschließend wurde eine räumliche Ereignisdatenbank entwickelt, um den Ereignis-
datensatz mit Geodatensätzen zu verknüpfen und um raumzeitliche Ereignisanalysen
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durchzuführen. Alle relevanten Aspekte des Datenbankdesigns wurden exemplarisch
dargelegt, von den Datenbankanforderungen und der Systemarchitektur über das Tabellen-
und Attributdesign bis hin zur Definition von Schlüsseln und Beziehungen. Von beson-
derer Bedeutung ist die Berücksichtigung der raumzeitlichen und inhaltlichen Auflösung
der Ereignisinformationen. Die Auswertung des erstellten Ereignisdatensatzes zeigte,
dass pluviale Hochwasser und Sturzfluten überall in Deutschland auftreten, wobei Nord-
deutschland tendenziell seltener betroffen ist. Starkregenbedingte Hochwasserereignisse
treten in Deutschland meist im Sommer und zwischen den Mittagsstunden und dem
späten Nachmittag auf. Deutschlandweit wurden sieben Hotspots (d. h. Regionen, in
denen besonders viele Ereignisse auftreten) identifiziert, die sowohl in dicht besiedelten
als auch in gebirgigen Regionen liegen.
Für die Identifizierung von Gebieten in Bayern, die durch pluviales Hochwasser und
Sturzfluten gefährdet sind, wurde ein Machine-Learning-Ansatz entwickelt. Dazu wurde
ein CatBoost-Modell mit 1.864 betroffenen und nicht betroffenen Orten und 11 räumlich
verteilten und sechs einzugsgebietsbezogenen Einflussfaktoren trainiert. Um eine gute
Modellperformance zu erreichen, erwies es sich als notwendig, eine gute räumliche Ab-
deckung des bayerischen Staatsgebietes zu gewährleisten und die vier Naturräume im
Trainings- und Testdatensatz zu berücksichtigen. Besonders gefährdete Regionen wur-
den in Nordbayern (Großraum Nürnberg, Würzburg und Umgebung, entlang des Mains)
und Südostbayern (Alpenvorland, München und Umgebung, südlicher Teil des östlichen
Mittelgebirges) identifiziert.
Diese Dissertation verbessert das Gefahrenverständnis von pluvialem Hochwasser und
Sturzfluten in Deutschland und führt einen neuen datengetriebenen Ansatz zur Identi-
fizierung gefährdeter Gebiete ein. Es wird eine detaillierte Anleitung zur Dokumenta-
tion, Verarbeitung und Auswertung von Ereignisinformationen für die Gefährdungsmod-
ellierung und Ereignisauswertung gegeben, die die Methoden der Sturzflutforschung er-
weitert. Im Rahmen des Hochwasserrisikomanagements und der Raumplanung können
die neu gewonnenen Erkenntnisse über gefährdete Gebiete in Bayern und die raumzeit-
lichen Charakteristika von pluvialem Hochwasser und Sturzfluten genutzt werden. Eine
Anwendung der Methodik auf andere (Bundes-)Länder ist möglich.
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1 Introduction

1.1 Background & motivation

Floods triggered by heavy rain pose a deadly threat to people all over the world. Whether
in mountainous or flat terrain, in rural or urban areas – heavy rain-induced floods claim
lives worldwide every year and cause millions of dollars in damage. Megacities can be just
as affected (e.g., Mumbai 2005, Beijing 2012) as deserts (e.g., Atacama 2015) or moun-
tain regions (e.g., Krasnodar (Russia) 2012, Uttarakhand (India) 2013) (Kron, 2016).
Germany is also threatened by heavy rain-induced floods. Between 2002 and 2017, heavy
rain events in Germany destroyed residential property values worth about e6.7 billion
(GDV, 2019). In the last decade, 2016 was particularly severe for Germany, with 1,025
documented pluvial and flash flood events causing 17 fatalities and 138 injuries (Kaiser
et al., 2020b; Kaiser et al., 2021). For 2016, Munich Re (2017) estimated the overall loss
from the heavy rain-induced flood events in Germany at e2.6 billion. Although heavy
rain-induced floods occur only locally, their average annual overall loss is comparable to
a 100-year event on major rivers (Munich Re, 2005). In contrast to heavy rain-induced
floods, riverine floods are caused by prolonged, large-scale precipitation and can last for
days to weeks.
Due to climate change and ongoing urbanization, the hazard from heavy rain-induced
floods in Germany will further increase. Regional climate models suggest that the fre-
quency and intensity of heavy precipitation events will change in many regions of Europe
and Germany in the future (Aalbers et al., 2018; Martel et al., 2020; Wood and Ludwig,
2020). Although quantitative statements regarding change signals in heavy precipitation
in Germany are subject to greater uncertainty (Kunz et al., 2017), an increase in winter
heavy precipitation and a decrease in summer heavy precipitation are expected (Ma-
raun, 2013; Brienen et al., 2020). In addition to climate change, ongoing urbanization
will exacerbate the flood hazard. Due to land use/land cover change and the increasing
population and infrastructure density in cities, urban areas are becoming more vulner-
able to pluvial and flash flooding (e.g., Yang et al., 2013; Q. Huang et al., 2017; Zhou
et al., 2019).
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Researchers generally distinguish between two types of floods that are triggered by heavy
precipitation: flash floods and pluvial floods. Although there is no unified definition of
flash floods or pluvial floods in the scientific community (see Kobiyama and Goerl, 2007;
Sene, 2013; Bernet et al., 2017), these two flood types can be roughly distinguished as
follows. Typically, flash floods are floods that originate from the creek or river, while
pluvial floods are characterized by surface water flowing toward the river network stem-
ming from overwhelmed drainage systems, saturation or Hortonian overland flow (Bernet
et al., 2017). Pluvial and flash flooding may be promoted by steep slopes, sealed or hy-
drophobic soils, and high antecedent soil moisture (Bronstert et al., 2018), which favor
surface runoff formation. Since both flood types are triggered by short, high-intensity
rainfall, pluvial floods and flash floods can occur simultaneously and are thus hard to
distinguish.
Besides numerous varying definitions of flash floods and pluvial floods, researchers also
use different terms. Flash floods are sometimes referred to as pluvial flash floods to spec-
ify their origin from heavy rain (e.g., Yin et al., 2016; Zanchetta and Coulibaly, 2020), as
opposed to flash floods triggered by dam failures, ice breakups, or snowmelt. Common
terms for pluvial flood include surface water flood (e.g., Bernet et al., 2017; Gradeci
et al., 2019), urban pluvial flood (e.g., Löwe et al., 2017; G. Huang et al., 2019), urban
flood (e.g., Zhao et al., 2019; Wang et al., 2018), and urban water logging (e.g., Tang
et al., 2019; Q. Zhang et al., 2021). In addition, researchers use the term urban flash
flood, whereby it is often unclear whether they are referring to a flash flood occurring in
an urban area or a pluvial flood (e.g., Portugués-Mollá et al., 2016; Xing et al., 2019;
Guillén et al., 2017). The various definitions and terms used in the scientific community
illustrate the difficulty in distinguishing between flash floods and pluvial floods. In this
thesis, we use the terms flash flood and pluvial flood. We further summarize the two
types under the term heavy rain-induced floods as they are hardly to distinguish in na-
ture.
The dangerousness of flash floods results from their suddenness and destructiveness.
Within minutes to a few hours, a heavy precipitation event can turn a small creek into a
raging torrent. In the literature, a lag time (i.e., the duration between the precipitation
onset and the time of peak discharge) of less than 6 hours is often assumed to distinguish
flash floods from river floods (e.g., Georgakakos, 1986; Marchi et al., 2010; Gourley et al.,
2010). Due to their high flow velocity, flash floods can carry trees, boulders, and debris,
turning them into destructive and deadly bodies of water. The power of water could be
observed in the Braunsbach flash flood (Baden-Württemberg) in 2016, where layers of
debris up to 3m high covered the roads along the river channel (Laudan et al., 2017).
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In post-event analyses, Ozturk et al. (2018) estimated that 42,000m3 of coarse sediment
was mobilized during the Braunsbach flash flood, of which 1,000m3 was woody debris
(Lucía et al., 2018).
Although pluvial floods are not characterized by a raging torrent as flash floods, pluvial
floods are no less dangerous or damaging. In the recent past, Germany has experienced
numerous destructive and deadly pluvial floods. The pluvial flood of Münster is prob-
ably among the most known in Germany due to its severe impact. On 28 July 2014,
292mm poured down on the city of Münster in 7 hours, claiming two lives. Due to the
masses of rain, the fire departments in Münster received 13,000 emergency calls within
8 hours. In total, insurers paid e140 million for 30,000 claims caused by the heavy rain,
mainly in Münster (Burghoff et al., 2015).
The major issue of pluvial and flash flood risk management is the prediction. Plu-
vial and flash floods are triggered by small-scale, short convective precipitation that is
challenging to forecast and therefore subject to large uncertainties (Collier, 2007). In ad-
dition to short-range quantitative precipitation forecasts, flash flood prediction requires
a hydrological-hydrodynamic model that delineates potential inundation areas over large
spatial scales (Borga et al., 2011). In contrast to riverine flood forecasting, flash flood
forecasting has short lead times and must consider every stream within a large region
as potentially flash flood-prone (Borga et al., 2011). Although flash flood forecasting
has improved significantly in recent decades (see Hapuarachchi et al., 2011; Zanchetta
and Coulibaly, 2020), it is still not possible – and may never be possible – to reliably
predict when and where heavy rain-induced floods will occur. For these reasons, early
identification of areas at particular risk from pluvial and flash flooding is an essential
complementary measure to forecasting.
In contrast to the inundation areas of major rivers, the potential pluvial and flash flood-
ing areas in Germany are not identified nationwide. Due to the European Floods Direc-
tive (2007/60/EC), all member states must prepare flood hazard maps for rivers with
significant flood risk, which indicate humans and assets at risk (see European Union,
2007). However, since the European Floods Directive excludes heavy rain-induced floods
and the heavy rain risk management in Germany is the responsibility of the municipal-
ities, pluvial and flash flood risk maps only exist where individual municipalities have
already taken measures.
Still, the flash flood susceptibility assessment for areas larger than a municipality poses
problems. Generally, researchers use hydrodynamic models to delineate the inundation
areas of a study site for different heavy precipitation scenarios (e.g., Li et al., 2019;
Hofmann and Schüttrumpf, 2020). However, since the hydrodynamic model setup is
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time-consuming and the modeling is computationally expensive, applying hydrodynamic
models for vast areas, such as federal states, is not feasible. Therefore, to identify areas
at risk from pluvial and flash flooding for large territories, we need a new, fast modeling
approach.

1.2 Research objectives & hypotheses

Floods triggered by heavy rain in the state of Bavaria (Germany) were an underesti-
mated natural hazard. According to GDV (2019), 1,866 heavy rain events occurred in
Bavaria between 2002 and 2017, causing damages of e1,485 million. However, despite
the numerous flood events in the past, the hazard posed by pluvial and flash floods re-
ceived little attention from the public and those responsible for flood risk management.
This is because people tend to underestimate the threat to life posed by an onrushing
stream or the force of flowing water. For this reason, and due to the local occurrence of
heavy rain-induced floods, authorities, municipalities and citizens are not aware of the
risk from heavy rain (Goderbauer-Marchner and Sontheimer, 2015).
It was not until a series of severe pluvial and flash flood events occurred across Bavaria
within a few weeks in 2016 that the need for action was recognized. In 2016, over 410
heavy rain-induced flood events were documented, with impacts such as blocked streets,
flooded cellars, and destroyed houses (Kaiser et al., 2020b). The Simbach flash flood
alone killed seven people and flooded about 5,000 households (Munich Re, 2017). It was
this series of heavy rain-induced floods in 2016 that underlined the urgency of investi-
gating and assessing pluvial and flash flood risk in Bavaria.
To support pluvial and flash flood risk management in Bavaria, there is a need to identify
areas susceptible to flooding caused by heavy rain within the state. Since the Bavar-
ian state territory covers 70,500 km2, a state-wide risk assessment using hydrodynamic
modeling is not feasible due to the high computational demands. Instead, a faster and
easier to implement method for deriving pluvial and flash flood hazard areas is needed.
Therefore, the overall objective of this dissertation is to develop a data-driven approach
to identify pluvial and flash flood susceptible areas in the state of Bavaria. This data-
driven approach should cover all necessary steps from dataset generation through data
management and data analysis to model setup and evaluation. This dissertation aims at
providing guidance on how to transform pluvial and flash flood event information into
a susceptibility map and an improved hazard understanding. From the overall aim, we
derive the following five research objectives:
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1.2 Research objectives & hypotheses

(1) To establish a unified documentation approach for pluvial and flash flood events.

(2) To set up an event database supporting a wide range of analyses.

(3) To analyze the generated event dataset regarding the spatiotemporal characteris-
tics.

(4) To identify pluvial and flash flood susceptible areas in Bavaria.

(5) To investigate factors influencing pluvial and flash flood occurrence in Bavaria

There are several research questions associated with the development of the data-driven
modeling approach. Since the event dataset is the crucial foundation of a data-driven
model, special attention must be paid to its generation. The generation of a pluvial
and flash flood event dataset includes not only the collection but also the preparation
and homogenization of event information from different sources that are not equally
reliable. Therefore, the question is how to structure the documentation of pluvial and
flash flood events to generate a high-quality event dataset suitable for hazard evaluation
and susceptibility modeling.
In addition, a database for managing and linking the event dataset to geodatasets is
essential. The database facilitates the collection of heavy rain-induced flood events,
and also supports their spatiotemporal analysis. However, since the table and attribute
design has a significant impact on the analysis capabilities, it is necessary to develop a
database design that is suitable for pluvial and flash flood event studies.
To support pluvial and flash flood risk management in Bavaria, it is not only crucial to
identify endangered areas, but also to enhance our understanding of heavy rain-induced
floods. In this context, we still know little about frequency, temporal evolution, spatial
distribution and patterns, fatalities and injuries, as well as the seasonality of heavy
rain-induced floods in Germany. For effective flood risk management, we further need
to know what area and catchment characteristics favor the occurrence of heavy rain-
induced flooding.
The following fundamental hypotheses are related to the identification of pluvial and
flash flood susceptible areas in Bavaria using a data-driven model:

(1) A standardized documentation procedure is required to generate an event dataset
suitable for hazard evaluation and susceptibility modeling.

(2) The design of a database for heavy rain-induced floods must consider the spa-
tiotemporal and content-related accuracy of the event information.
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(3) Heavy rain-induced floods in Germany show distinct spatiotemporal characteris-
tics.

(4) Machine learning algorithms can be used to identify pluvial and flash flood sus-
ceptible areas in Bavaria.

(5) Area and catchment characteristics influence the occurrence of heavy rain-induced
floods in Bavaria.

These hypotheses are addressed in three publications that build on each other. Fig. 1.1
summarizes the research objectives and hypotheses of this dissertation, and assigns them
to the corresponding chapters and publications.

Figure 1.1: Overview of the research objectives, hypotheses, chapters, and publications of this
dissertation.
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1.3 Thesis outline

1.3 Thesis outline

This cumulative thesis is divided into five chapters. The introduction is followed by the
three main chapters, which are based on the three publications. Chapters 2 through 4
address the research questions and represent the manuscripts that have been published
or are currently under review in the peer-reviewed Journal of Hydrology.
In Chapter 2, we propose a structured documentation procedure for pluvial and flash
flood events. To this end, we first review current documentation approaches based on
11 published flash flood datasets. Based on the review findings, we propose a structured
4-step approach for event documentation. We exemplify the proposed documentation
approach based on a German pluvial and flash flood dataset. The key feature of the
proposed approach is a documentation scheme indicating what event information to re-
port and how.
In Chapter 3, we illustrate how an event database for the investigation of heavy rain-
induced flood occurrences can be created. Based on the event dataset generated in
Chapter 2, we exemplify the database design regarding database requirements and sys-
tem architecture, table and attribute design, as well as key and relationship definition.
By means of the database, we explore the spatiotemporal characteristics of floods caused
by heavy rain in Germany. We investigate the collected pluvial and flash flood events
regarding the temporal occurrence, spatial distribution, fatalities and injuries, and sea-
sonality.
In Chapter 4, we identify the areas in Bavaria that are susceptible to pluvial and flash
flooding using a tree-based ensemble model. The ensemble model is trained and vali-
dated with a flood inventory extracted from the event database (Chapter 3) and selected
influencing factors. Using model-specific and model-agnostic methods, we investigate the
interaction of the influencing factors and their impact on the occurrence of pluvial and
flash floods in Bavaria.
Chapter 5 discusses the main findings and contributions of this thesis, including prac-
tical recommendations and suggestions for future research.
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2 Providing guidance on efficient flash
flood documentation: an application
based approach

This chapter is published as:

Kaiser, M., Günnemann, S., Disse, M., 2020. Providing guidance on efficient flash flood
documentation: an application based approach. Journal of Hydrology. 581, 124466.
https://doi.org/10.1016/j.jhydrol.2019.124466.

Abstract Flash flood research crucially relies on historical event information for hy-
pothesis testing. However, flash flood science suffers from data scarcity. Due to the high
effort for event data collection, few long-term and comprehensive flash flood datasets ex-
ist. Yet, to advance flash flood research, scientists should spend time on creating event
datasets. Therefore, to reduce the data collection and preparation effort, this paper
takes a first step towards structuring the flash flood documentation procedure. In this
context, we first investigate the current documentation approaches by reviewing 11 pub-
lished flash flood datasets. We found great differences between the flash flood datasets
regarding temporal and spatial scope, information density, flash flood definition, and us-
ability by others. Based on the review findings and the cross-industry standard process
for data mining, we propose a structured 4-step approach for flash flood documenta-
tion. We provide recommendations on efficient flash flood documentation and exemplify
a possible implementation based on a German flash flood dataset, starting from flash
flood definition through the identification of sources to the schematic event documenta-
tion. The key feature of our approach is a documentation scheme specifying what event
information to report and how. Within the documentation scheme, it proved particu-
larly helpful to use fixed categories for attribute description, to rate information quality,
and to document events separated by source. Following our approach, we were able
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to create a comprehensive event dataset composed of a variety of sources. In addition
to flash flood events, our dataset also includes surface runoff events triggered by heavy
rain, adding up to nearly 23,800 German events. Scientists can employ this approach to
document flash floods more efficiently in the future.

2.1 Introduction

Flash flood research starts with a journey into the past. Based on historical flash flood
events, we aim to learn for the future. However, being able to learn from past events
requires documentation of the generation, course, and impacts of flash flood events.
Therefore, event documentation marks the beginning of flash flood research and thus
is of fundamental importance. Regardless of whether researchers want to advance flash
flood understanding, modeling, or forecasting, they rely on historical event information
for their investigations. Recently, researchers used flash flood event datasets for verifica-
tion of forecasts and warnings (e.g., Creutin et al., 2009; Calianno et al., 2013; Gourley
et al., 2017; Auer et al., 2019), for investigations of flash flood characteristics (e.g.,
Gaume et al., 2009; Marchi et al., 2010; Tarolli et al., 2012; He et al., 2018), for studies
on flood risk management (e.g., Einfalt et al., 2009), and for identification of flood prone
areas (e.g., Vinet et al., 2016; Saharia et al., 2017).
In recent years, researchers have increasingly used post-flood field surveys and hydrome-
teorological networks to collect flash flood data. Post-flood investigations help to repro-
duce the mechanisms and the course of a flash flood event. Besides the reconstruction of
the event, the post-flash flood surveys focus on understanding the damage processes (e.g.,
Laudan et al., 2017), investigating the geomorphic response (e.g., Lucía et al., 2018), an-
alyzing the hydrometeorological forcing (e.g., Marchi et al., 2009; Ruiz-Villanueva et al.,
2012; Bronstert et al., 2018), and reconstructing the hydrograph (e.g., Segura-Beltrán
et al., 2016; Bačová Mitková et al., 2018). There is also a growing number of scientific
papers investigating data collected from radar–rain gauge networks with regard to flash
floods (e.g., Bouilloud et al., 2010; Boudevillain et al., 2016; Varlas et al., 2019). In
particular, radar images, private rain gauge networks, unmanned aerial vehicles, and
citizen science offer new opportunities for data collation (e.g., B. Smith and Rodriguez,
2017; Diakakis et al., 2019; Seibert et al., 2019).
Despite the increasing number of possible data sources, long-term flash flood datasets
are still limited (Braud et al., 2016). Therefore, in the editorial of the special issue of
Journal of Hydrology entitled “Flash floods, hydro-geomorphic response and risk man-
agement”, Braud et al. (2016) call on the community to intensify data collection efforts
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for advancing knowledge gain. Conceivable reasons for the lack of data inventories are
manifold but certainly include (i) the high effort for data collection and preparation, (ii)
lack of data, especially weather radar data, (iii) lack of funds, and (iv) lack of recognition.
One reason why flash flood documentation is time-consuming is because event informa-
tion is usually scattered among different sources e.g., agencies, media, and action forces.
Furthermore, no documentation guidelines exist describing the dataset generation pro-
cess. Also, the few published datasets provide little information on how to document
flash floods. While lack of funds and lack of recognition are difficult to solve, flash flood
science should try to facilitate dataset generation.
To tackle data scarcity in flash flood research, we are convinced that it is necessary to
simplify and clarify the process of flash flood documentation. A structured documenta-
tion approach, for instance, makes data preparation more efficient, ensures data quality,
and facilitates data use by third parties. Therefore, we aim to streamline the process of
flash flood documentation to increase the number of available flash flood datasets and
thus foster flash flood research.
In this paper, we demonstrate how to document flash flood events by following a struc-
tured approach that applies a comprehensive and flexible documentation scheme. First,
we prove why a structured approach is needed by highlighting key differences and lim-
itations of existing flash flood datasets and databases (Section 2.2). Subsequently, we
propose a structured approach for flash flood documentation to make dataset genera-
tion more efficient (Section 2.3). Following, we give recommendations for flash flood
documentation based on the conducted dataset review and our experience in flash flood
dataset generation (Section 2.4). We exemplify the practical implementation of our rec-
ommendations based on a German dataset. Then we shortly present the created flash
flood dataset (Section 2.5). Finally, we discuss our findings from dataset creation and
review (Section 2.6) and provide concluding remarks (Section 2.7).

2.2 Current flash flood documentation – A review

2.2.1 Comparison of published flash flood datasets and databases

Several published datasets exist that document flash flood and surface runoff events
triggered by heavy precipitation. Most of these flash flood datasets are results from sci-
entific studies and projects. However, institutions such as the European Severe Storms
Laboratory (ESSL), the National Severe Storms Laboratory (NSSL), or the National
Weather Service (NWS) of the United States also operate topical databases. According
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to our review, only eleven published flash flood datasets exist (Table 2.1).
The purposes of these eleven flash flood datasets vary greatly. Some datasets serve as
a basis for modeling studies and advancing process understanding (cf. EuroMedeFF;
FLASH). Other flash flood datasets are created to raise awareness and to improve pre-
paredness and action planning (cf. SINATRA; URBAS; Vennari et al., 2016; Vinet et
al., 2016). Also, researchers collect flash flood information to verify warnings and to
forecast events (cf. ESWD; HYDRATE; SHAVE; Storm Events Database). Another
reason to set up a flash flood dataset is the investigation of flash flood characteristics
on a larger scale, e.g. at state level or for a climate region (cf. FLASH; He et al., 2018,
HYDRATE). As a result of the different objectives and applications, the flash flood
datasets differ regarding structure, accuracy, and scope. A flash flood dataset suitable
for historical event modeling, for example, requires detailed and accurate spatial infor-
mation on precipitation and discharge. For global investigations, in contrast, it may be
sufficient to have aggregated and less detailed space-time event information. Hereafter,
we will elaborate on the dataset differences in more detail.
We compared the eleven flash flood datasets regarding their spatial and temporal ex-
tent, content and event numbers, event definitions, and accessibility (Table 2.1). The
flash flood datasets vary regarding to their spatial and temporal extent. Seven of the 11
listed datasets document flash flood events in Europe, three datasets concern the United
States, and one dataset covers China (Table 2.1). Most of the European datasets cover
the Mediterranean region, where flash floods tend to be more intense than in Continental
Europe (Gaume et al., 2009). Furthermore, the flash flood datasets comprise different
periods. While the shortest dataset by He et al. (2018) covers 5 years, the most com-
prehensive dataset by Vennari et al. (2016) starts in 1540.
The datasets also differ in regard to content and number of events. For instance, the
smallest dataset, the EuroMedeFF dataset, includes 49 flash flood events, whereas the
larger datasets such as the SHAVE dataset and the Storms Event Database comprise
several thousand events. As a rule, the fewer entries a flash flood dataset has, the more
detailed the event information. Still, the content of the datasets is not completely iden-
tical, since some researchers interpret the term flash flood more broadly or tackle the
hazard from a different perspective. The Vict-in dataset by Vinet et al. (2016), for
instance, reports indirectly about flash floods as it documents flash flood fatalities. Fur-
thermore, the datasets by Archer et al. (2019) and He et al. (2018) comprise more than
flash flood events. While Archer et al. (2019) include additionally surface runoff events
triggered by heavy rain, He et al. (2018) also consider landslides and debris flows caused
by heavy precipitation. Regarding content, the European Severe Weather Database
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(ESWD) is also a special case, since the ESWD amongst others reports heavy precipita-
tion events having caused an extreme impact or exceeding a defined threshold amount
(Table 2.1). The ESWD therefore covers the entire range from surface runoff through
flash flood events to landslides caused by heavy precipitation.
The differences among the flash flood datasets emerge when comparing the applied event
definition. Depending on the study objective and climatic region investigated, the ap-
plied flash flood definitions vary greatly. Most researchers define event thresholds for
considered catchment size (50 to 3,000 km2) and causative rainfall duration (up to 48 h).
Conversely, the FLASH dataset limits the flooding rise time to 6 h and the catchment size
to 250 km2, whereas a flash flood must have posed a potential threat to life or property
and moving and standing water must have exceeded 0.15m and 0.91m, respectively for
inclusion into the Storm Events Database. Overall, the hazard and damage aspect con-
trols the flash flood definition in several datasets (see Storm Events Database; ESWD;
URBAS; He et al., 2018; Vinet et al., 2016). However, for some datasets it remains
unclear which event definition has been applied since the definition is not stated in the
dataset description (cf. Vennari et al., 2016; Vinet et al., 2016; Archer et al., 2019).
With the exception of the datasets by Vinet et al. (2016) and He et al. (2018), the
presented flash flood datasets are available either through an online database or a pub-
lication. For many datasets, a bulk data download is possible facilitating the use by
other researchers. Although the ESWD, URBAS, and SINATRA datasets are online, a
download of selected entries or the entire dataset is not possible. This lack of a download
possibility severely complicates the dataset use. Researchers can get access to the events
of interest only by manual extraction. Alternatively, the ESWD offers event data for
sale. However, the ease of use pays off. The HYDRATE, FLASH, and SHAVE datasets,
which allow for easy use by third parties, have already served as the basis in several
studies.
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Table 2.1: Comparison of published datasets and databases on flash flood events triggered by heavy precipitation. The comparison reveals major differences between the
datasets regarding content, event number, event definition, spatial and temporal extent, and accessibility.

Organization/
project/study

Name of
database/
dataset

State, region Documented
time

Content and number of
datasets

Definition of event URL Applications/ stud-
ies using the dataset

European Severe
Storms Laboratory
(ESSL)

European Se-
vere Weather
Database
(ESWD)

Europe varies depending
on country and
event type

heavy precipitation
events, wind gusts, torna-
does, hail, funnel clouds,
gustnadoes, whirlwinds;
number of events differs
from country to country

• heavy precipitation event must have
caused an extreme impact OR

• a measurement of extreme rainfall must be
given: P ≥ 2

√
5 · d

P = precipitation amount [mm],
d = duration [min] 0.5 h < d < 24 h

Excluded are:
• flooding along rivers
• flooding due to thaw and rain
• falling rocks to which the rainfall may

have contributed
• events with P < 25mm or d < 30min

http://www.
eswd.eu/

Dotzek et al., 2009;
Groenemeijer et al.,
2017; Llasat et al.,
2010

He et al., 2018 – China 2011–2015 782 flash floods, including
river floods, landslides
and debris flows caused by
heavy precipitation

• causative rainfall < 6 h
• catchment < 400 km2

• flash floods, including river floods, land-
slides and debris flows caused by heavy
precipitation that caused fatalities

– He et al., 2018; Ma
et al., 2018

Hydrometeorologi-
cal Data Resources
And Technologies
for Effective flash
flood forecast-
ing (HYDRATE)
project

HYDRATE Europe 1946–2007 578 flash flood events • causative rainfall < 24 h
• catchment < 500 km2 (with some excep-

tions)

http://www.
hydrate.tesaf.
unipd.it/

Creutin et al., 2009;
Gaume et al., 2009;
Marchi et al., 2010;
Borga et al., 2011;
Tarolli et al., 2012

HYdrological cycle
in the Mediter-
ranean EXperi-
ment (HyMeX)

EuroMedeFF
database

Europe,
Mediterranean
Region

1991–2015 49 flash flood events • storm duration ≤ 48 h
• catchment ≤ 3,000 km2

• unit peak discharge ≥ 0.5m3 s−1 km−2

https://doi.
org//10.6096/
MISTRALS-HyMeX.
1493 (Amponsah
et al., 2018b)

Amponsah et al.,
2018a

http://www.eswd.eu/
http://www.eswd.eu/
http://www.hydrate.tesaf.unipd.it/
http://www.hydrate.tesaf.unipd.it/
http://www.hydrate.tesaf.unipd.it/
https://doi.org//10.6096/MISTRALS-HyMeX.1493
https://doi.org//10.6096/MISTRALS-HyMeX.1493
https://doi.org//10.6096/MISTRALS-HyMeX.1493
https://doi.org//10.6096/MISTRALS-HyMeX.1493


Table 2.1: Continued.

Organization/
project/study

Name of
database/
dataset

State, region Documented
time

Content and number of
datasets

Definition of event URL Applications/ stud-
ies using the dataset

National Severe
Storms Laboratory
(NSSL)

Flooded Loca-
tions And Sim-
ulated Hydro-
graphs (FLASH)

United States 1927–2010
streamflow data,
2006–2011 NWS
storm reports,
2008–2010
SHAVE dataset

• SHAVE dataset
• NWS Storm data
• event-based streamflow

measurements from
USGS

• flooding rise time < 6 h
• catchment < 250 km2

https://blog.
nssl.noaa.gov/
flash/database/

Gourley et al., 2013;
Špitalar et al., 2014;
Saharia et al., 2017;
Gourley et al., 2017

National Severe
Storms Laboratory
(NSSL)

Severe Haz-
ards Analysis
and Verifica-
tion Experiment
(SHAVE)

United States 2008–2015 9,369 flash flood reports
of no flooding, non se-
vere flooding, and severe
flooding

A flash flood survey was conducted, if any of
the following criteria were met:

• 6 h precipitation accumulation exceeded
flash-flood guidance values less than 24 h
ago

• a flash flood warning or urban/small
stream advisory was issued by an NWS
forecast office during the past 24 h

• a survey for a different severe weather
threat indicated flash flooding was a prob-
lem

https://www.
nssl.noaa.gov/
projects/shave/

Ortega et al., 2009;
Gourley et al., 2010;
Gourley et al., 2012;
Calianno et al.,
2013

National Weather
Service (NWS)

Storm Events
Database

United States 2006–2010 15,999 flash flood reports • a flash flood event begins within min-
utes to multiple hours of the causative
event such as moderate to heavy rain, dam
break, or ice jam release.

Indicators for flash floods:
• flash flood posed a potential threat to life

or property
• moving water > 0.15m
• standing water > 0.91m

https://www.
ncdc.noaa.gov/
stormevents/

Gourley et al., 2012;
Calianno et al.,
2013; Marjerison et
al., 2016; Schroeder
et al., 2016; Terti
et al., 2017

Susceptibility of
catchments to in-
tense rainfall and
flooding (SINA-
TRA) project

– England,
northern and
south-western
region

1700–2013 3,706 flash flood events
including surface water
and fluvial flooding

• no information about the used flash flood
definition

http://
ceg-fepsys.
ncl.ac.uk/fc

Archer et al., 2019

https://blog.nssl.noaa.gov/flash/database/
https://blog.nssl.noaa.gov/flash/database/
https://blog.nssl.noaa.gov/flash/database/
https://www.nssl.noaa.gov/projects/shave/
https://www.nssl.noaa.gov/projects/shave/
https://www.nssl.noaa.gov/projects/shave/
https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
http://ceg-fepsys.ncl.ac.uk/fc
http://ceg-fepsys.ncl.ac.uk/fc
http://ceg-fepsys.ncl.ac.uk/fc


Table 2.1: Continued.

Organization/
project/study

Name of
database/
dataset

State, region Documented
time

Content and number of
datasets

Definition of event URL Applications/ stud-
ies using the dataset

Urbane Sturzfluten
(URBAS) project

URBAS Germany 1954–2008 350 flash flood events • causative rainfall < 6 h
• catchment < 50 km2

• within the period from April to September
• flash flood event must have caused damage

in urban area

http://www.
urbanesturzfluten.
de/ereignisdb/
ereignisse/
ereignisse_view

BMBF, 2008; Ein-
falt et al., 2009

Vennari et al.,
2016

– Italy, Campa-
nia region

1540–2015 477 flash flood events • no information about the used flash flood
definition

– Vennari et al., 2016

Vinet et al., 2016 Vict-in France,
Mediterranean
region

1988–2015 244 fatalities due to flash
floods

• direct and indirect fatalities caused by
flash floods: causal relation between flood-
ing and death must exist

• no information about the used flash flood
definition

– Vinet et al., 2016

http://www.urbanesturzfluten.de/ereignisdb/ereignisse/ereignisse_view
http://www.urbanesturzfluten.de/ereignisdb/ereignisse/ereignisse_view
http://www.urbanesturzfluten.de/ereignisdb/ereignisse/ereignisse_view
http://www.urbanesturzfluten.de/ereignisdb/ereignisse/ereignisse_view
http://www.urbanesturzfluten.de/ereignisdb/ereignisse/ereignisse_view
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2.2.2 Collected event information

The investigated flash flood datasets contain differently detailed event information de-
pending on the purpose of use. While some datasets include a wide range of facts,
others only provide basic information about event time and location, as well as an event
description. However, the event description usually focuses on the damage aspect indi-
cating the occurred losses and the number of injured and killed people. Except for the
US-American datasets and the dataset by Vinet et al. (2016), all datasets provide quan-
titative information about the triggering precipitation such as amount and duration.
However, some flash flood datasets go beyond that precipitation information, specifying,
for example, the peak amount and duration, 6 h, 12 h, and 24 h accumulated rainfall
(cf. ESWD) or the number of rain gauges and the spatial extent (cf. HYDRATE) if
available. Furthermore, the FLASH, SHAVE, HYDRATE, and EuroMedeFF datasets
report about the flooding and discharge of the event. While the SHAVE and the FLASH
dataset provide estimated values for water depth and bank overflow, the HYDRATE and
EuroMedeFF databases indicate mostly modeled flood hydrographs and reconstructed
peak discharges, as well as measurements from gauging stations. Moreover, the FLASH
and HYDRATE datasets specify catchment characteristics such as concentration time,
average slope, or land use.
Typically, flash flood datasets are of qualitative, descriptive information referring to a
point, namely the impacted town or city. Event reports therefore usually provide no
information on affected areas or event extent. The only exceptions to this are the Storm
Events Database, which has been specifying bounding polygons of flash flood impact
and the SHAVE dataset, which estimates the spatial event extent since 2008 (Calianno
et al., 2013). The HYDRATE and EuroMedeFF datasets do not provide event extents
but indicate peak discharge estimations for various locations in the catchment. How-
ever, spatially distributed precipitation and discharge information as provided by the
HYDRATE and EuroMedeFF datasets remain the exception.
The ESWD dataset is distinguished from the other investigated datasets, since the
ESWD rates the quality of the event reports. Each event entry submitted via the public
ESWD interface undergoes quality control (QC) by the ESSL. According to the QC-
levels, the ESSL classifies the event report “as received” (QC0), “plausibility checked”
(QC0+), “report confirmed” (QC1), or “event fully verified” (QC2) (Dotzek et al., 2009).
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2.2.3 Concluding remarks on the available flash flood datasets

The available flash flood datasets reveal large differences regarding scope, content, and
usability. However, the greatest difference is the spatiotemporal resolution of the pro-
vided precipitation and runoff information. Among the eleven flash flood datasets, the
precipitation-runoff information ranges from no information through aggregated point
information to spatially distributed estimates and measurements. It generally applies
the more detailed and higher the resolution of the hydro-meteorological data, the smaller
the dataset.
Flash flood records underestimate reality by nature, as they only cover a subset of oc-
curred events. Furthermore, flash flood documentation naturally focuses on urban areas,
since this is where the damage occurs and where the events are witnessed. As a result,
flash flood events outside of settlements or without damages are often less documented.
Overall in flash flood documentation, we report positive events rather than false alarms.
However, the investigation of events, where no flash flood occurred despite enough heavy
precipitation, could improve the process understanding of flash floods.
Another dataset issue is the inherent uncertainty in event information due to subjec-
tivity in reporting. In particular, the perception of affected persons may be distorted
(Gourley et al., 2013; Calianno et al., 2013). Therefore, Gourley et al. (2013) consider
reports from the general public as unreliable. According to Dotzek et al. (2009), media
reports are sometimes exaggerated and should thus be treated with caution. Since these
uncertainties can hardly be eliminated, researchers have to consider them in the evalu-
ation of the datasets.
In order to advance flash flood research, scientists rely on using existing datasets in
particular since available flash flood datasets are still rare. However, due to differences
in event definition and collected event information, investigating existing datasets or
combining several datasets for further research is challenging. Besides, data integration
is hampered by the different focuses of the datasets and resolutions of the information.
Furthermore, flash floods are highly region and climate dependent, which complicates
the merging of datasets as temporal and spatial scales of the flash floods may vary.
Nevertheless, dataset pooling across climate regions is possible but requires documen-
tation of the hydro-meteorological differences of the flash flood events in the database.
Using existing flash flood datasets is further complicated by the fact that simple reuse
of datasets by third parties is often not foreseen by the authors. Following a consistent
and structured approach of flash flood documentation would however facilitate dataset
use by others.
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2.3 A structured approach for flash flood documentation

Data collection and preparation are of fundamental importance for knowledge gain. Be-
fore researchers gain insights from a dataset, they must perform many preparatory steps.
However, these preparatory steps, such as data gathering, cleaning, and transformation,
require a considerable amount of time. It is assumed that data collection and prepara-
tion take 70 to 90% of the total investigation time. Consequently, the time scientists
spend on analyses leading to findings is comparatively low. Scientists therefore lay the
foundation for future results during the data collection and preparation process.
To support the entire process from data preparation to data insights, we propose a
structured, step-by-step approach. Our approach is based on the first three steps of the
cross-industry standard process for data mining, known as CRISP-DM (Chapman et al.,
2000). We adapted the approach to the processes of flash flood documentation. Our
process model consists of four steps, with no strict order of the steps (Fig. 2.1). The
result of each step determines which step, or which task of a step, must be carried out
next.

Figure 2.1: Proposed 4-step approach for structured documentation of flash flood events
adapted from the cross-industry standard process for data mining, known as
CRISP-DM (Chapman et al., 2000).

The first step is to define the study targets. To this end, we determine as precisely
and as measurably as possible what the documentation goals are and how we measure
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the target achievement. The purposes and applications of flash flood datasets are man-
ifold, ranging from modeling studies through action planning to verification of forecasts
(cf. Section 2.2.1). Depending on the study target, the requirements for the structure,
resolution, and scope of the dataset change. Furthermore, we reflect on how to ensure
the sustainability of the dataset. What needs to be considered so that other researchers
can understand and use the dataset subsequently? What needs to be considered if the
dataset should be published later? Data journals support the scientifically recognized
publication of datasets today, which not only acknowledges data collection efforts but
also fosters research progress.
The second step is to collect and to understand the data. First, in order to en-
sure dataset consistency, we must establish a flash flood definition considering the local
conditions of the study region. For example, flash floods in the Mediterranean region
tend to have a greater spatial extent and a longer duration compared to the Continental
flash floods (Gaume et al., 2009). Thus, climatic differences lead to different flash flood
thresholds in studies (e.g., Gaume et al., 2009; Marchi et al., 2010; Braud et al., 2014;
Amponsah et al., 2018a). In addition, it should be defined how flash floods are distin-
guished from river floods (cf. Section 2.4.1). After the definition has been set, possible
data sources must be identified (cf. Section 2.4.2). Prior to data collection however, a
documentation scheme must be developed (cf. Section 2.4.3). A documentation scheme
supports targeted data collection by listing attributes of interest and their respective
units. After the required data has been collected and described, the data is explored.
The process of data exploration is crucial for scientific knowledge gain, since it helps to
understand content and characteristics of the dataset. Furthermore, researcher should
verify the quality of the collected data, so that erroneous values or other inconsistencies
can be eliminated from the dataset. In addition, the uncertainty of the data should be
quantified, e.g. using a range of values (cf. Section 2.4.4).
In the third step, the collected data is prepared and the flash flood dataset is cre-
ated. For this purpose, the data required for the documentation scheme is selected and
cleaned. An important task in data preparation is data supplementation (cf. Section
2.4.6), since data supplementation often enables more detailed and complex analyses.
For instance, catchment information or derived discharge parameter could be used to
enrich the event dataset. Subsequently, the selected data is transformed into the format
or structure needed by the documentation scheme. A dataset description ensures that
other researchers, who may want to use the dataset in the future, can understand the
data and the processes undertaken.
During the last of the four steps, the created flash flood dataset is validated. It is
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assessed if and to what degree the determined success criteria were achieved. At the end,
the entire process is reviewed to check dataset quality. If necessary, individual steps are
repeated and further data is requested and processed. After completing the flash flood
dataset, the next steps are planned.

2.4 Exemplified recommendations for efficient flash flood
documentation

Documentation is an important task in flash flood research, since we improve our under-
standing by studying historical events. To improve scientific knowledge gain, we provide
recommendations on how to document flash flood events efficiently. By efficient docu-
mentation, we mean the creation of a high-quality dataset created in a reasonable amount
of time and with a reasonable amount of effort that is reusable by other researchers. Our
recommendations are based on the conducted dataset review and our experience from
creating a flash flood dataset. We first explain every recommendation theoretically and
then exemplify a possible implementation based on our created dataset. Our dataset was
created in the framework of the HiOS (Hinweiskarte Oberflächenabfluss und Sturzflut,
engl. Reference Map for Surface Runoff and Flash Floods) project and comprises Ger-
man flash flood and surface runoff events triggered by heavy rain. The primary goal
of the HiOS dataset is the geostatistical investigation of flash flood characteristics and
triggering factors in Germany with a focus on Bavaria. We plan to publish the HiOS
dataset at the end of the project. Previously, however, publication rights must be clar-
ified, as the HiOS dataset combines event information from different sources for which
different legal restrictions may apply.

2.4.1 Recommendation 1: Clearly state the flash flood definition
applied

A clear event definition is of crucial importance to enable dataset use by third parties,
since the event definition clarifies when a flash flood event was included or discarded
from the dataset. Frequently used thresholds in the event definitions concern catchment
size, triggering rainfall duration and amount, as well as time to peak. However, these
thresholds are guiding values, since the transition between flash floods and river floods is
seamless. In addition, the strong regional dependence of flash floods makes it difficult to
define thresholds that can be uniformly applied over large spatial scales. Investigating
European flash floods, for instance, requires different thresholds for Continental than for
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Mediterranean flash floods (cf. Gaume et al., 2009). Therefore, the study objective and
spatial scope are decisive for the definition of flash flood. However, a clear flash flood
definition not only supports dataset reuse by other researchers but also ensures dataset
consistency.
The first step in flash flood documentation is the determination of an event. A critical
point hereby is the decision whether a past flood event has been a flash flood or a river
flood, particularly since the transition is seamless. Nevertheless, flash floods and river
floods differ in their generation and spatiotemporal spread. We have therefore based our
distinction between a flash flood and river flood on (i) event trigger, (ii) event speed,
and (iii) catchment size, although, the most important distinguishing feature is the event
trigger, i.e. the precipitation event. Here, we distinguish whether a short, intense or a
long-lasting precipitation caused a flood event. Since we are using the ESWD dataset for
Germany, we are applying the ESWD precipitation threshold (ESSL, 2014). Accordingly,
we consider heavy precipitation events lasting between 30 minutes and 24 h and apply
the following as the precipitation threshold:

P ≥ 2
√

5 · d (2.1)

where P is the precipitation amount in mm and d is the duration in min.
Since it is not always possible to classify the precipitation event by means of newspaper
articles or measurements, we are using two additional criteria, namely event speed and
catchment size. Therefore, when flooding occurs within a few hours, we consider this as
an indication for a flash flood or surface runoff event triggered by heavy rain. In case the
flooding rise time of the event is unknown, we are using little to no early warning time
as a flash flood indicator. In addition, when the affected catchment is small, the event is
likely to have been a flash flood. As upper threshold, we are applying a catchment size
of 500 km2. We are further assuming an occurrence period for flash floods in Germany
from April to October. Kaiser et al. (2020a) demonstrated by means of a discharge
investigation that these spatiotemporal thresholds are reasonable for Bavaria. We are
supposing that these thresholds are transferable to all of Germany. To summarize, we
are defining a flash flood as a sudden flood event triggered by heavy precipitation, which
lasted no longer than 24 h and exceeded a given minimum precipitation amount, in a
catchment up to 500 km2 within the period from April to October.
Besides flash flood events, our dataset also contains surface runoff events due to heavy
precipitation, which follow the thresholds defined in the previous paragraph. We docu-
mented debris flows and landslides as cascading effects of a flash flood event but not as
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standalone events.
In our dataset, we uniquely define a flash flood event based on event date and affected
settlement area, with settlement size ranging from a village through a small town to a
city. According to our event definition, only one event per day and affected settlement
area can be documented. Since it is highly unlikely that two flash flood events occur on
the same day in the same city, our definition is consistent. However, the event linkage
to the affected settlement area results in a concentration on urban areas.

2.4.2 Recommendation 2: Combine event information from different
sources

To obtain a comprehensive picture of past events, we recommend compiling information
from a variety of sources. As in most countries, and also in Germany, the documen-
tation of flash floods is still unregulated and required event information is scattered
among various sources. Consequently, no government agencies exist that centralize and
schematically document flash flood events. To facilitate the search for data, we listed
possible starting points (Table 2.2). Conceivable sources range from agencies through
action force archives to insurance companies and media. However, the sources differ con-
siderably in regard to accessibility, preparation effort, and information quality. Newspa-
per articles, archives of storm spotter networks and weather services are usually readily
available online. To get access to event information from ministries, municipalities, or
non-public archives of action forces is typically more complicated, since it requires a
personal contact. Furthermore, access to the most valuable information, namely high-
resolution insurance data, is usually denied. Regarding the applied preparation effort,
the less structured the event information is, the more complex is information extraction.
This is especially true for continuous text like articles or surveys and interviews.
For generation of the HiOS dataset, we requested various sources for flash flood infor-
mation. We requested information from agencies and institutions at state and federal
level in Germany, as well as from institutions at the European level. In addition, we
requested information from the German Weather Service and insurance companies. In
total, we sent out 37 requests and obtained flash flood information in about 20% of
the cases. However, the returned event information varied greatly in scope and quality
and was therefore not uniformly useful. Among the obtained information, the data of
the ESWD, the Bavarian Environment Agency, the SV SparkassenVersicherung, and the
URBAS project was particularly extensive.
The spatiotemporal scope of the used event datasets varies widely. While many flash
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flood events of the HiOS dataset are available from the 2000s, the first entry of the
ESWD dataset, for instance, dates to the year 346 (Table 2.3). Although our dataset
comprises all of Germany, some datasets only cover certain federal states. As a result,
some federal states are overrepresented in regard to the event numbers. This applies, for
instance, to the federal states covered by the SV SparkassenVersicherung dataset, which
contains by far the most events with 16,900 entries. In addition, Bavarian flash flood
events may also be slightly overrepresented, since HiOS is a Bavarian project, and we
therefore collected more information on Bavaria. In total, we generated a dataset with
23,752 German flash flood and surface runoff events triggered by heavy precipitation.
For 1,462 events, information originates from more than one source.
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Table 2.2: List of possible sources on flash flood event information assessed regarding accessibility and preparation effort.

Possible source Accessibility Access via Preparation effort Annotations

Agencies, institutions, ministries
(e.g., agriculture/forestry, environment,
finance, infrastructure, emergency
management)

with effort,
barely/no

internet, personal
contact

low to high • event information often scattered between agencies de-
pending on area of responsibility

• access eventually to highly aggregated information with
little benefit

Archives of action forces (e.g., fire
department, technical relief organization)

easy, with effort internet, personal
contact

medium to high • quality of report and event type must be checked

• often only operation description, little event information

General public, affected residents with effort surveys, interviews high • great effort to gain information, which is subjective

• uncertain information due to perceptions and occasional
embellishment

Insurance companies barely/no personal contact low • access to high-resolution information on damages usually
denied

• access eventually to highly aggregated information with
little benefit

Media (e.g., newspaper, TV, YouTube) easy internet high • quality of report event type must be checked

• accuracy of reports varies strongly from highly aggregated
to very detailed informatio

Municipalities (e.g., department of
urban planning, civil protection, waste
water management)

with effort personal contact high • sometimes event reports from water management offices or
engineering companies available with high quality

Scientific literature and projects easy, barley/no internet low to medium • acquisition of information may be difficult to impossible
due to different underlying event definitions and access
restrictions

Storm spotter networks easy internet, personal
contact

high • quality of report and event type must be checked

• event description varies strongly depending on spotter

Weather services (national, private) easy, with effort internet, personal
contact

medium • great effort for precipitation interpolation for one event

• sometimes annual reports include prepared precipitation
information for extreme events



Table 2.3: Sources used to compose a dataset of German flash flood and surface runoff events triggered by heavy precipitation.

Source Temporal
resolution

Spatial
resolution

Description of dataset Number of
events

Accessibility Access via Preparation
effort

Annual reports of the Ger-
man Weather Service, the
Deutsche Rückversicherung
(reinsurance)

2007–2016 Germany Review of the most important natural
hazards of the past year

17 easy internet high

Archive of the Federal
Agency for Technical
Relief

2016–2017 Germany Extract from the mission archive in
connection with severe weather opera-
tions

163 with effort personal
contact

high

Bavarian Environment
Agency

2016 Bavaria (Germany) Collection of reports, newspaper arti-
cles, and photos of flash flood events

224 easy personal
contact

high

Deutsche Rückversicherung
(reinsurance)

2007–2017 Germany Collection of reports and newspaper
articles of flash flood events

143 with effort personal
contact

medium

European Severe Weather
Database (ESWD)

346–2017 Germany Database on heavy precipitation events
having caused extreme impact or ex-
ceeded a given threshold

6,349 easy internet,
personal
contact

medium

Historische Analyse von
Naturgefahren (HANG)
project

1905–2017 Bavaria (Germany) Database on past natural hazards in
the Bavarian Alps

70 easy internet,
personal
contact

medium

SV SparkassenVersicherung
(insurance)

2002–2017 Thuringia, Baden-
Wuerttemberg, Hesse,
Rhineland-Palatinate
(Germany)

Reimbursed damages due to flooding
caused by heavy precipitation

16,900 with effort personal
contact

low

Urbane Sturzfluten
(URBAS) project

1954–2009 Germany Database on urban flash flood events 2,318 with effort internet medium
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2.4.3 Recommendation 3: Use a sophisticated documentation scheme

Setting up a sophisticated documentation scheme before data collection, makes dataset
generation more efficient. Since a documentation scheme determines what information
is collected, what units the information has, and how the information is categorized, it
helps to focus on the required data. Data collection and preparation are more targeted
that way. However, the elaboration of a documentation scheme strongly depends on the
study purpose. Nonetheless, it is helpful to determine the required mandatory informa-
tion for the documentation of an event independent of the study purpose. In this regard,
the defined flash flood definition facilitates the decision of whether an event is included
or discarded.
Within the HiOS project, we followed a comprehensive and flexible scheme for the docu-
mentation of an event. Our goal was to develop a documentation scheme that supports
as many analyses as possible while minimizing the loss of event information. Therefore,
our documentation scheme must be able to handle the different accuracy of the informa-
tion, such as descriptions, estimates, and measurements. In addition, our scheme covers
a wide range of possible event information. By supporting the preprocessing of event
information, our documentation scheme also simplifies later analyses.
For each event, we gathered comprehensive event information on space and time, me-
teorology, hydrology, and damage (Table 2.4). By specifying the attributes to collect,
the scheme supported targeted data collection. Therefore, it was already known during
information retrieval that e.g. the start of the flooding and the type of flotsam is of
interest. In total, we defined five mandatory attributes for an event entry: date, vil-
lage/town/city, ZIP code, source, and information quality.
For attribute description, we used free text and fixed categories. Overall, we utilized
three types of fixed categories: the description with (i) yes, no, or null, (ii) default op-
tions, and (iii) text blocks. In our documentation scheme, we omitted free text options
whenever possible. For several reasons, free text information is disadvantageous in event
documentation. On the one hand, there is the risk of information loss if the editor
does not write down all of the relevant information. For instance, it is easy to forget
to document non-occurrences. On the other hand, it is difficult to evaluate free text
information automatically since texts do not follow rules. The evaluation of descriptive
texts therefore often remains a time-consuming human task. However, to document in-
formation that does not fit given categories or to have an additional option, we used free
text entries for the “Comment” fields.
The yes-no-null category records the occurrence or non-occurrence of attributes such
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as landslides, hail, or disaster alert. By stating “null”, we recorded that the needed
information is unknown. To report false alarms (meaning heavy precipitation events of
sufficient magnitude that did not cause surface runoff or a flash flood), we documented
the non-occurrence by indicating “no” flooding. In addition, we described some at-
tributes with default options. This for example includes the attribute “highest affected
floor”, for which the default options are basement, first floor, second floor, and third
floor.
In the meteorology section of the documentation scheme, we suggest a set of attributes
to describe the triggering processes of a flash flood. In addition to heavy rain events, we
document occurrences of further weather phenomena such as storm, lightning, and hail.
In summer, heavy rain events are often accompanied by hail, which can cause major
damage to cars and buildings. For damage estimation, we therefore document the max-
imum and average hail diameter, as well as the layer thickness of the hail. Furthermore,
we record precipitation information derived from weather radar and rain gauge measure-
ments. If available, we recommend documenting the precipitation start and end, which
is valuable information combined with the flooding onset to determine the response time
of the catchment. The visual assessment or automated procedure applied to determine
the start and end of the rain event can be described in the comment field. Besides total
precipitation amount and duration, we record precipitation sums for different time steps
as well as the amount and duration of the precipitation peak. For a flash flood event,
either an interpolated value or multiple station values can be specified. In any case, we
recommend describing relevant information such as the interpolation method applied in
the “comment on precipitation”. Furthermore, the convection of the rain event and the
weather condition are valuable event information that should be characterized.
With regard to hydrological impacts, we propose to describe occurring cascade effects
and technical failures as well as the flooding. Flash floods and cascade effects such as
debris flows, landslides, and sediment transport often occur together. Further possible
consequences of flash floods are sewer overflow, water pollution, and dike breaks. We
therefore recommend documenting these event impacts with regard to potential dam-
age assessments and event classifications. For hydrological investigations, it is crucial
to consider the initial condition of the catchment, as snow cover, ground frost, and ini-
tial soil moisture can strongly influence flood behavior. As with precipitation, we also
document the flooding onset and end in the affected town with regard to the response
time of the catchment. Furthermore, we recommend describing in the “comment on
flooding” whether the event was a pluvial flood or rather a flood wave originating from
the catchment. Besides this qualitative information, we also document measurements
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and estimates of peak discharges and water levels at gauging stations or cross-sections,
whereby the estimation method applied should be stated in the comment field. Further-
more, measurements from flood marks can be reported.

Table 2.4: Documentation scheme for flash flood events. The documentation scheme facilitates
data collection and preparation by prescribing the needed information and its format.
Mandatory attributes for event description are asterisked.

Attribute Possible entries/unit

T
im

e-
Sp

ac
e

Date* DD-MM-YYYY
Village/town/city*
Affected city district(s)
ZIP code*
UTM coordinates
Municipality
Administrative district
Federal state
Temporal accuracy 5min, 15min, 30min, 1 h, 3 h, 6 h, 12 h,

1 d
Spatial accuracy 1 km, 3 km, 10 km, 20 km, 100 km
Event extent very local, local, regional, supraregional,

national
Source*
Information quality* QC0, QC0+, QC1, QC2
Comment on event free text

M
et
eo
ro
lo
gy

Storm yes/no/null
Lightning yes/no/null
Rain on snow yes/no/null
Hail yes/no/null
Max. diameter of hail [cm]
Average diameter of hail [cm]
Layer thickness of hail [cm]
Comment on meteorology free text
Date of precipitation DD-MM-YYYY
Start of precipitation HH:MM
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Table 2.4: Continued.

Attribute Possible entries/unit

End of precipitation HH:MM
Return period of precipitation
Comment on precipitation free text
Precipitation measurement yes/no/null
Rain gauge/radar station free text
Precipitation duration [h]
Precipitation amount [mm]
Convection uncertain, convective, partly convective,

non-convective
Max. 30min precipitation [mm]
Max. 1 h precipitation [mm]
Max. 3 h precipitation [mm]
Max. 6 h precipitation [mm]
Max. 12 h precipitation [mm]
Max. 24 h precipitation [mm]
Amount of precipitation peak [mm]
Duration of precipitation peak [h]
Weather condition free text

H
yd

ro
lo
gy

Flooding yes/no/null
Start of flooding DD-MM-YY HH:MM
End of flooding DD-MM-YY HH:MM
Duration of flooding [h]
Comment on flooding free text
Cause free text
Debris flow yes/no/null
Landslide yes/no/null
Sedimentation yes/no/null
Type of contamination oil, sewage, chemicals, other
Flotsam yes/no/nulll
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Table 2.4: Continued.

Attribute Possible entries/unit

Type of flotsam green waste, wood, trees, debris, silage
bales, oil tanks, vehicles, container, hail,
other

Log jam yes/no/null
Comment on log jam free text
Dike failure yes/no/null
Traffic congestion yes/no/null
Sewerage system overload yes/no/null
Catchment free text
Initial condition of catchment snow cover, ground frost, high soil mois-

ture, dry
River free text
Gauging station free text
Measured max. water level at gauge [m]
Estimated max. water level at gauge [m]
Measured peak discharge at gauge [m3 s−1]
Estimated peak discharge at gauge [m3 s−1]
Flood mark coordinates
Max. water level at flood mark [m]
Cross-section coordinates
Estimated peak discharge at cross-
section

[m3 s−1]

Comment on estimation method free text
Highest affected floor basement, first floor, second floor, third

floor

D
am

ag
e

Description of damage low/average/serious/exceptional total
damage

Comment on damage free text
Total damage e

Number of fatalities
Number of casualties
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Table 2.4: Continued.

Attribute Possible entries/unit

Evacuation yes/no/null
Advance warning yes/no/null
Disaster alert yes/no/null
Damage of buildings e

Number of claims
Description of building damages text blocks
Comment on building damages free text
Damage of forestry/agriculture e

Description of forestry/agricultural
damages

text blocks

Damage of infrastructure e

Description of infrastructural damages text blocks
Comment on infrastructural damages free text
Damage of business e

Description of business damages text blocks
Comment on business damages free text
Other damages e

Description of other damages text blocks
Comment on other damages free text

We documented event damages using text blocks consisting of an adjective and a noun.
To be more precise, the text block specifies the damage degree with the adjective and the
damaged object with the noun (Fig. 2.2). The damage degree ranges from minor over
medium to severe. However, we consider minor damages to be temporary restrictions
stated by adjectives such as “flooded”, “overloaded”, and “blocked”. When medium
damage occurs, buildings need to be partially rebuilt or renovated, which we expressed
with the adjective “damaged”. In contrast, severe damage means that buildings e.g.
were completely “destroyed” and need to be rebuilt. Following this concept, possible
damage descriptions are, for instance “flooded basements”, “damaged stores”, or “eroded
agricultural land”. We documented damages in the categories of buildings, forestry and
agriculture, infrastructure, business, and others. Damage information not fitting the
text blocks is recorded in the comment column.
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Figure 2.2: Damage categorization by using text blocks consisting of an adjective and a noun.
Whereas the adjective describes the damage degree and the noun specifies the
affected object.

For our documentation scheme, we adopted some attributes and default options from
the ESWD. For instance, we took over the attributes ‘temporal accuracy’, ‘spatial ac-
curacy’, and information quality as well as their default options. The attribute spatial
accuracy specifies in which radius of the reported settlement area the event has occurred,
for example within 10 km. The specification of the temporal accuracy works similarly.
Here, the indicated time states the period in which the event had likely occurred. The
time of one hour implies that the event has likely occurred up to 30 minutes earlier or
later than the indicated time. Furthermore, we inherited most of the meteorological
attributes from the ESWD.
In addition to the information contained in the scheme, we recommend saving all avail-
able original and describing data of the documented flash flood events. This concerns hy-
drological data such as measured and modeled hydrographs, estimated peak discharges,
and water levels at gauging stations or cross-sections. Concerning the precipitation in-
formation, we recommend the storage of radar images, rainfall maps, and rain gauge
measurements. Newspaper articles, database extracts, and reports from engineering
companies and agencies should be stored as well. To ensure sustainable documentation
of internet sources, we recommend offline storage or export as PDF. Photos and videos
also provide valuable insights into the course and extent of the documented flash flood
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event. Videos of flash floods, for example, are suitable for estimating flow velocity, sedi-
ment transport, and flotsam. Pictures, in turn, help to document flood marks, culverts,
and damages. Several papers exist that can provide guidance on post-flash flood field
investigations. Gaume and Borga (2008), for example, propose steps for data collation
and data analysis after a flash flood event. In addition, there are numerous examples of
photographs of (i) slope failures and erosion rills (e.g., Gaume and Borga, 2008; Santo et
al., 2017), (ii) sediment transport and debris processes (e.g., Segura-Beltrán et al., 2016;
Bronstert et al., 2018; Lucía et al., 2018), (iii) channel-bed widening (e.g., Marchi et al.,
2009; Lucía et al., 2018), and (iv) bridges and flood marks (e.g., Gaume and Borga,
2008; Segura-Beltrán et al., 2016; Bačová Mitková et al., 2018). Moreover, Marchi et al.
(2009) describe the evaluation of a flash flood video for flow velocity estimation.

2.4.4 Recommendation 4: Rate information quality and data
uncertainty

Since information quality can differ strongly depending on the source, we recommend
rating the reliability of the event information. Particularly, newspaper and eyewitness
reports can be subjective and exaggerated as pointed out by Dotzek et al. (2009). Re-
garding later analyses, it is thus advisable to assess the information quality, e.g. similar
to the QC-levels of the ESWD (Section 2.2.2), leaving the option to exclude uncertain in-
formation. In addition, event documentation separated by source prevents accuracy loss
due to information aggregation, since it has to be decided, for instance, which reported
damage sum of which source is more reliable or how to summarize the different given
damage information when aggregating event information. In addition to the verification
of the event information, uncertainties, especially concerning hydrometeorological data,
should be quantified and reported. Flood damage, which is commonly estimated, is often
reported as a range of values reflecting uncertainty. Overall, the quantification of the
data uncertainty already during the documentation is beneficial for the later evaluation
and use of the flash flood dataset.
Regarding quality estimation of event information, we adopted the four levels “as re-
ceived” (QC0), “plausibility checked” (QC0+), “report confirmed” (QC1), and “event
fully verified” (QC2) presented by Dotzek et al. (2009). The HiOS dataset consists
mainly of already quality-controlled datasets. We verified questionable events reported
in the media or indicated in the archive of the Federal Agency for Technical Relief based
on trusted sources when possible. Overall, two-thirds of the HiOS dataset (67%) are
fully verified and conform to the highest quality level QC2. More than a quarter of
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the dataset (27%) is verified by a trusted source. However, only 6% of the dataset
meets either the low-quality level of QC0 (as received) or QC0+ (plausibility checked).
Regarding data uncertainty, a range of values indicates possible values for quantitative
attributes such as “max. discharge”, “precipitation amount”, or “damage of buildings”.
Further information concerning data uncertainty can be specified in the comment fields.

2.4.5 Recommendation 5: Report false alarms and minor events

To study the rainfall–runoff process in its entirety, researchers should not focus only on
extreme cases but document the entire event spectrum including false alarms. However,
researchers naturally concentrate on positive events, especially catastrophic flash flood
events. Yet, studies should also include negative events, meaning heavy precipitation
events of sufficient magnitude that did not cause surface runoff or flash floods since
studying negative events will help us understand why no flash flood was caused in certain
catchments or under certain conditions. Contrasting positive and negative events will
give researchers the greatest insight into causative processes. In addition to false alarms,
researchers should also document minor flash flood events, not only disasters. Flash
floods cover a wide range of possible magnitudes and impacts. The question of when one
refers to a flash flood therefore plays an important role, particularly for early warning.
From the perspective of protection planning, minor events are especially relevant, since
much damage can be prevented by self-provision.
In accordance with our documentation scheme, we documented false alarms by indicating
“no” flooding. However, this was only the case for five heavy rain events. Since we did
not have access to flash flood warnings, finding out about heavy rain events sufficient
to trigger flash flooding was virtually impossible. In addition, the data was often not
accurate enough to determine with certainty that no flash flood had occurred. Since we
also documented surface runoff events triggered by heavy rain, our dataset contains a
large number of minor events.

2.4.6 Recommendation 6: Supplement the dataset

Data supplementation is an important step in data mining, since it extends analysis
options and thus increases knowledge gain. Several ways exist to supplement an event
dataset that describes space, time, and impacts of past flash floods. On the one hand, it
is possible to supplement discharge attributes of the flash flood events. Since the event
hydrograph contains a lot of information, it is crucial for flash flood investigation to
include this information when available. To obtain a robust flash flood classification,
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it is advisable to derive additional descriptive parameters from the event hydrograph
besides the return period. For instance, the time to peak and the specific peak discharge
help to classify the flash flood event.
Precipitation data also improve the information value of a flash flood dataset. In addi-
tion to precipitation data such as sum and intensity, the return period and the convective
storm trajectory might be of interest. Precipitation, especially in combination with dis-
charge, adds a lot of information. With precipitation and discharge data, it is possible
to determine the runoff coefficient and to investigate the catchment response to the trig-
gering rain.
Flash flood classification facilitates the estimation of event magnitude and event com-
parison in the dataset. Currently, there are two ways to classify flash floods. The clas-
sification either uses parameters derived from event discharge and precipitation (e.g.,
Bhaskar et al., 2000; B.-S. Kim and H.-S. Kim, 2014; Saharia et al., 2017) or the classi-
fication categorizes flash flood impacts (e.g., Schroeder et al., 2016).
In addition, supplementation of spatial data is crucial for flash flood investigation. In
particular, catchment information is needed to understand the catchment response to
heavy rain. In this regard, data describing catchment characteristics such as soil and
land use distribution as well as catchment parameters such as average slope, river den-
sity, or basin shape are valuable.
We supplemented our event dataset by administrative data, catchment information (e.g.,
boundaries, streams and gauges) and catchment characteristics, as well as soil and land
use maps. In addition, we derived discharge attributes (time to peak, specific peak dis-
charge, volume, gradient, peak to volume) from the event hydrographs as described by
Kaiser et al. (2020a). Overall, the supplementation of event information by measure-
ment and catchment data gives us the opportunity to link different datasets and perform
holistic analyses.

2.5 The HiOS flash flood dataset

2.5.1 Occurrence of flash flood events in Germany from 2000

The amount of documented events increases steadily towards recent decades, with most
events documented from the 2000s. This is probably due to the internet, which has
drastically simplified the search for past flash flood events. In addition, there has been
a marked increase in public interest in natural hazards over the past decade, not least
because of recurring severe events.
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Figure 2.3 states the flash flood and surface runoff events collected per year and by
federal state. However, it has to be noted that Bavarian events are probably slightly
overrepresented in Fig. 2.3, since two datasets that we used only cover Bavaria (cf. Table
2.3). To obtain a reasonably comparable dataset throughout Germany, we excluded the
insurance dataset (~ 16,900 events) from the figure, which covers only 4 out of 16 federal
states. Furthermore, the size of the insurance data would skew the color bar. Figure
3 highlights that some federal states such as Baden-Wuerttemberg and Bavaria in the
South, and North Rhine-Westphalia in the West of Germany have been affected more
often than others. In addition, eventful years like 2007, 2011, 2014, and 2016 are striking.
Yet, not all federal states were equally affected in those eventful years. In 2007 and 2014,
North Rhine-Westphalia and Hesse were hit particularly hard with more than 150 events
each. However, in 2011, large parts of Germany were affected with five federal states
having experienced more than 100 events. For Bavaria, the year 2016, for which we
documented 410 flash flood and surface runoff events, was particularly severe.

Figure 2.3: Number of flash flood and surface runoff events collected per year and federal
state of Germany from the 2000s. (Data sources: THW, 2017; Deutsche Rück,
2018a; Deutsche Rück, 2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b;
URBAS, 2018).

2.5.2 Relationship between watershed area and unit peak discharge

The watershed area significantly influences the peak discharge. Therefore, the inves-
tigation of the peak discharge–watershed area relationship provides insights into the
catchment behavior. For reasons of comparison, the unit peak discharge (as the ratio
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of the peak discharge and the upstream catchment area) and the watershed area are
plotted in a log-log diagram. In literature, the upper limit of this relationship is usually
described by empirically derived envelope curves (e.g., Marchi et al., 2009; Borga et al.,
2011; Amponsah et al., 2018a).
Figure 2.4 shows 50 measured flash flood events of Bavaria, which are contained in the
HiOS database. For classification into the climatic regions of Europe, we also plot the
envelope curves for Mediterranean, Alpine-Mediterranean, and Inland Continental flash
floods derived by Amponsah et al. (2018a). We further display the envelope curve for
Bavarian flash floods derived from a discharge study by Kaiser et al. (2020a). The re-
ported flash flood events have mostly unit peak discharges less than 1m3 s−1 km−2 and
are thus far from the upper limit of the Mediterranean and Alpine-Mediterranean flash
floods. According to Borga et al. (2011), these differences in intensity can be explained
by the different spatial and temporal resolution of the generating heavy rain events in
the different climatic and orographic regions. Therefore, it is not surprising that the
upper bounds for Bavarian and Inland Continental flash floods lie close together. Over-
all, a decline in unit peak discharge with increasing watershed area is noticeable for the
Bavarian events.

Figure 2.4: Unit peak discharges versus watershed areas for measured flash flood events in
Bavaria (Germany). The envelope curves for Mediterranean, Alpine-Mediterranean,
and Inland Continental flash floods are reported by Amponsah et al. (2018a). The
envelope curve for Bavarian flash floods is reported by Kaiser et al. (2020a).
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2.6 Discussion

2.6.1 Insights from flash flood dataset creation

Data request and collection proved to be more tedious and difficult than expected. Since
flash flood documentation is not regulated in Germany, we requested flash flood docu-
mentation from relevant federal offices, as well as from all environment ministries and
agencies of the 16 German federal states. However, the data return was sobering. Only
two federal states could provide a list of a few flash flood events. The main reasons given
for the lack of documentation were unclear responsibility and lack of funds.
Particularly time-consuming was information extraction from reports, archive entries,
and newspaper articles. In contrast, data migration was less time-consuming when
datasets stemmed from databases and were thus preprocessed, such as the ESWD or the
SV SparkassenVersicherung dataset. In addition, event validation was a complex matter.
Overall, we spent more than one year on data request, collection, and preparation.
Furthermore, the level of detail of the event descriptions varies widely. The event de-
scriptions range from mere event naming to detailed event information on damage and
hydro-meteorological conditions. For 6% of the collected flash flood events, we do not
know more than the place and date. On average, five describing attributes per event
have been collected additionally to place and date in which damage descriptions are
usually available. However, half of the events (53%) are described with 2 to 5 additional
attributes, less than a third (28%) with 6 to 10 attributes. Only 1% of the events are
described with at least 11 additional attributes.
By documenting event information separated by information quality and source, we
maintain flexibility for later analyses. Separation by source allows us to easily remove
information from the HiOS dataset, such as the confidential insurance record. Further-
more, we can exclude data from less trusted sources from analyses. This flexibility,
however, is no longer assured once event information is mixed. The indication of in-
formation quality offers similar benefits. The HiOS dataset contains event information
of different quality levels. We included uncertain event information (QC0) because we
believe that insecure information can also provide valuable indications on event course
and magnitude. Since scientists have to deal with data uncertainty regularly, we are
convinced that scientific users can be offered uncertain event information. Moreover, by
indicating information quality, scientists can decide for themselves whether they include
uncertain event information or not. Non-expert users, however, should only be provided
with fully verified event information (QC2).
After completing the HiOS dataset, we have to summarize that only scarce and vague
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information exists about most events. While information comes from several detailed
reports of water management offices and engineering companies for a few events, most
events are described rudimentarily in newspaper articles. Furthermore, estimated losses
given in newspaper articles are often aggregated for the entire affected county. There-
fore, loss allocation to individual cities is usually uncertain or impossible. In addition,
the evaluation of damage descriptions causes problems when several affected cities are
described together in articles. Frequently vague are also the documented times for pre-
cipitation and flooding onset and end.
We estimate that the HiOS dataset from the 2000s is roughly comprehensive and rep-
resentative for Germany. Still, we do not consider the HiOS dataset to be suitable for
studies or statements on climate change, since comprehensive data collection has only
taken place in the last two decades. The collected German flash flood events show a
pronounced Inland Continental character. With most of the reported events having unit
peak discharges smaller than 1m3 s−1 km−2, German flash floods are much less intense
than Alpine-Mediterranean and Mediterranean flash floods.

2.6.2 Findings from flash flood dataset review

In the context of data scarcity and the simultaneously growing importance of flash flood
research, discussing and defining documentation standards for flash floods becomes in-
creasingly important. However, as the comparison of existing datasets proves, current
flash flood documentation does not follow a uniform approach. Depending on the objec-
tive of the planned investigations, flash flood datasets vary with regard to information
quantity, quality, and resolution.
Regarding current literature, our proposed documentation scheme is more comprehensive
in terms of number and variability of attributes than many existing flash flood datasets.
By collecting information about space and time, meteorology, hydrology, and damage,
we cover the entire flash flood event from its origins to its impacts. While some available
flash flood datasets provide comprehensive event information (e.g., EuroMedeFF, HY-
DRATE), others only document the information required for the study objective (e.g.,
Vinet et al., 2016, SHAVE) or give a rudimentary event overview (e.g., SINATRA, Storm
Events Database). In contrast, our scheme specifies exactly which attributes should be
reported and how. Despite the attribute specifications, our approach can be flexibly
applied to different types of reports and information. In addition, the documentation
scheme also supports the evaluation of qualitative information by using default options
and text blocks for attribute description. Overall, we believe it is necessary to document
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flash floods as comprehensively as possible in terms of knowledge gain and dataset sus-
tainability.
There are several potential applications and users of our proposed approach. One target
group are environmental agencies that want to establish a central flash flood documen-
tation. Provided that the information is available, the agency can use our approach to
create a comprehensive dataset that is useful for various stakeholders. Furthermore, the
detailed attribute specifications make it easier for less experienced users and non-experts
to collect and prepare flash flood information. Other potential users are scientists who
want to create a comprehensive dataset that can serve multiple study purposes as well
as interdisciplinary investigations. Our documentation scheme allows for damage assess-
ments but does not support damage modeling at house level. In addition, hydrological
modeling of past events is only possible if measured rainfall-runoff measurements are
available.
The findings of this study however have to be seen in the light of some limitations. The
primary limitation of our proposed approach is the use of a documentation scheme apply-
ing fixed categorical descriptions. While our documentation scheme facilitates collection
and preparation of event data by its specifications, it simultaneously fosters information
loss. Although standardizing of event information is beneficial for later analyses, uni-
fication reduces the information content. Using categorical descriptions for attributes
may further lead to misclassification due to inappropriate class boundaries. Especially
outliers and information with seamless transitions can hardly be categorized adequately.
Consequently, the inflexibility of categorical descriptions regarding complex information
is disadvantageous. We have therefore added comment fields in which we documented
relevant information not fitting the default categories to reduce information loss.
To summarize, the application of a documentation scheme for flash flood events implies
both advantages and disadvantages. However, to further improve the proposed scheme,
the tradeoff between unifying information on the one hand, and necessary complexity
on the other should be investigated. Furthermore, the proposed documentation scheme
needs to be applied and adapted to different climatic conditions to reach generalizability
and especially damage categorization.

2.7 Conclusion

Historical event documentation is the starting point of flash flood research. However,
flash flood science still suffers from data scarcity, increasing the need of researchers
for structured, high-quality event datasets. Yet, there are few published flash flood
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datasets, of which only some allow reuse by other researchers. Furthermore, the existing
flash flood datasets differ significantly in flash flood definition to dataset content, since a
consistent documentation approach is missing. To support the process of data collection
and preparation, we suggest a 4-step approach for flash flood documentation based on
the cross-industry standard process for data mining. The key aspects of our approach
include determination of the documentation goals, definition of a flash flood event, and
application of a documentation scheme. In this paper, we demonstrated application of
the proposed approach based on the generation of a German flash flood and surface
runoff event dataset. We developed a documentation scheme indicating the attributes
to be collected in regard to space and time, meteorology, hydrology, and damage. By us-
ing yes-no-null categories, default options and text blocks for the attribute description,
we simplify and structure event documentation. Furthermore, indicating information
quality and uncertainty, and keeping information separated by source helps to generate
a high-quality dataset. Due to the internet and increasing interest in natural hazards, it
is easier to collect event information from the 2000s. Nonetheless, the collection of flash
flood information remains an arduous task that often ends with little and vague event
information, especially for minor events. Reviewing our experiences from dataset com-
parison and dataset generation, we can make the following recommendations to improve
future documentation of flash floods: (1) follow a clearly defined flash flood definition,
(2) compose event information from different sources, (3) apply a sophisticated docu-
mentation scheme, (4) estimate information quality and data uncertainty, (5) include
false alarms and minor events in your documentation, and (6) enrich your event dataset
with measurement and catchment data.
To enhance sustainability and knowledge gain, future work should focus on a unifica-
tion of flash flood datasets. For this purpose, we need to discuss the documentation
process and define standards. To push the generation of event datasets, we further have
to simplify data collection by e.g. publishing peer reviewed data articles or contribut-
ing to topical open data platforms. In the end, flash flood science will benefit from
these well-organized and structured event datasets. With this paper, we hope to estab-
lish a discussion on data collection in flash flood science, which will further clarify the
importance of event documentation for flash flood research.
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This chapter is published as:

Kaiser, M., Günnemann, S., Disse, M., 2021. Spatiotemporal analysis of heavy rain-
induced flood occurrences in Germany using a novel event database approach. Journal
of Hydrology. 595, 125985. https://doi.org/10.1016/j.jhydrol.2021.125985.

Abstract Flash floods are a worldwide threat to humans, which is why they are be-
ing intensively studied using historical event records. As measurements and event data
increase, databases are becoming increasingly important for flash flood research. How-
ever, the recent literature on flood databases lacks technical details as well as discussions
about a suitable database design for scientific investigations. In this paper, we thus show
how an event database for the investigation of heavy rain-induced flood occurrences can
be created. Based on the HiOS dataset (a German dataset with ~ 23,800 flash flood and
pluvial flood events), we exemplify the database design and explore the spatiotemporal
characteristics of floods caused by heavy rain in Germany. We outline all aspects relevant
to database setup: from database requirements and system architecture through table
and attribute design to a key and relationship definition. Furthermore, we clarify why
a spatial database with interfaces for GIS softwares should be chosen, why a damage-
based event definition is preferable to a hydrometeorological definition, and how table
attributes support differentiated analyses. By means of the database, we investigated
frequency, temporal evolution, spatial distribution and patterns, fatalities and injuries,
as well as the seasonality of heavy rain-induced floods in Germany. The results indicate
that floods caused by heavy rain occur throughout Germany but with a tendency toward
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fewer events in the northern direction. Across the country, we identified seven hot spots
in urbanized and mountainous regions. Although heavy rain-induced floods in Germany
take place mostly between noon and late afternoon, most people are injured and killed
in events starting in the evening. Our investigation indicates an increased incidence of
flash flood and pluvial flood-related injuries and fatalities in the identified hot spots.
Overall, we observe a pronounced summer seasonality of the heavy rain-induced flood
events. This study highlights the importance of event databases for flash flood research
and advances our understanding of heavy rain-induced flood occurrences in Germany.

3.1 Introduction

Flash flood research requires a comprehensive documentation of past events. With the
help of measurements, photos, and witness statements, researchers reconstruct the ini-
tial conditions, course, and intensity of flash flood events (e.g., Santo et al., 2017; Varlas
et al., 2019; Bačová Mitková et al., 2018). In flash flood research, event data is used to
test hypotheses or to calibrate and validate models. Therefore, flash flood event data
forms the basis for research on, e.g., forecasting and warning (e.g., Bouilloud et al.,
2010; Boudevillain et al., 2016), controlling factors (e.g., Diakakis et al., 2019; Xiong
et al., 2019), data-driven spatial prediction (e.g., Khosravi et al., 2019; Bui et al., 2019a),
geomorphological processes (e.g., Ozturk et al., 2018; Segura-Beltrán et al., 2016) and
damage modeling (e.g., Arrighi et al., 2020; Alipour et al., 2020).
Due to the need for event data, more and more researchers and institutions have be-
gun to compile flash flood inventories during the last decade. Some thematic event
databases and inventories already exist, such as ESWD (Dotzek et al., 2009), SHAVE
(Ortega et al., 2009), FLASH (Gourley et al., 2017), and HYDRATE (Gaume et al.,
2009). However, the existing flash flood datasets differ greatly regarding scope, content
and usability, and not all of them are accessible (Kaiser et al., 2020b).
Although most existing flash flood inventories are organized in databases, little or noth-
ing is known about their underlying database designs. As the current literature on flash
flood datasets primarily focuses on dataset evaluation, data management is scarcely ad-
dressed. In addition, database setup is probably considered known, not relevant or not
of interest. Furthermore, the enormous effort required to generate an event dataset and
build a database is seldom recognized (Llasat et al., 2013; Kaiser et al., 2020b). These
reasons probably explain the knowledge gap regarding scientific flash flood database de-
sign.
Databases are crucial for effectively collecting and analyzing flash flood events. Not only
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do databases facilitate data collection and management, but they also support data in-
vestigation. By linking event information and geodata, databases enable spatiotemporal
analyses and damage assessments. Since the database design affects data preparation
and aggregation, its design significantly influences the analysis. However, despite its
influence, the table and attribute design of event databases has hardly been discussed
in the literature so far.
Although Germany has been affected by flash floods in the past, the frequency, tempo-
ral occurrence, spatial distribution, and seasonality of floods caused by heavy rain in
Germany have not yet been investigated. So far, only a few event-specific studies have
been conducted for Germany, e.g., for the Braunsbach (Bronstert et al., 2018; Laudan
et al., 2017; Lucía et al., 2018; Vogel et al., 2017) or Simbach flash flood events (Hübl,
2018; Mayr et al., 2020) and the Starzel river basin (Ruiz-Villanueva et al., 2012). Fur-
ther studies have examined individual pluvial flood events in Germany (e.g., Rözer et
al., 2016; Spekkers et al., 2017). In a joint project, the German Insurance Association
(GDV) and the German Weather Service (DWD) recently investigated the relationship
between insured losses and small-scale heavy rain events in Germany (GDV and DWD,
2020). In this project context, Lengfeld et al. (2019) evaluated radar data regarding the
characteristic spatial extent of hourly and daily rain events in Germany. To answer these
fundamental questions about the spatiotemporal occurrence of heavy rain-induced floods
in Germany and thus provide background information for a better risk assessment, we
need a database for flood events caused by heavy rain.
In this paper, we illustrate how to design a database for heavy rain-induced floods that
supports the systematic collection of event information and a wide range of spatiotempo-
ral analyses to enhance the understanding of the flood hazards from extreme precipita-
tion in Germany. By means of the HiOS database (a German event database with ˜23,800
flood events caused by heavy rain; abbreviation for Hinweiskarte Oberflächenabfluss und
Sturzflut), we explain the database structure and illustrate the database’s use for flood
hazard evaluation in Germany. First, we specify the database purpose and requirements,
as well as the system architecture of the HiOS database (Section 3.2). Then, we out-
line the database design considerations (Section 3.3) and the methods applied (Section
3.4). Subsequently, we perform spatiotemporal analyses on heavy rain-induced flood
occurrences in Germany using the HiOS database (Section 3.5). Finally, we discuss our
findings from database design and spatiotemporal investigations (Section 3.6) and give
concluding remarks (Section 3.7).
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3.2 The HiOS database

In May and June 2016, a series of extreme flash flood events occurred in southern and
central Germany causing a flood loss of e2.6 billion (Munich Re, 2017). The German
state of Bavaria experienced a multitude of events, which claimed seven lives (LfU,
2017e). The loss of the worst affected administrative district in Bavaria was estimated
at e1.25 billion (LfU, 2017e). As a consequence of these flash flood events, the Bavarian
State Ministry of the Environment and Consumer Protection funded the HiOS project
(Hinweiskarte Oberflächenabfluss und Sturzflut, Reference Map for Surface Runoff and
Flash Floods). The main project objective is the creation of a reference map for Bavaria,
which indicates possible hazards from pluvial floods and flash floods triggered by heavy
rain. For the investigation of the characteristics and triggering factors of heavy rain-
induced floods, we compiled a dataset comprising about 23,800 German flash flood and
pluvial flood events (cf. Kaiser et al., 2020b). To enable spatiotemporal analyses that
improve our understanding of the hazards from heavy precipitation in Germany, we de-
signed a database that effectively manages event information and geodata. It is planned
to publish the HiOS dataset after the end of the project. Prior to the publication, how-
ever, publication rights of the individual datasets have to be checked as varying legal
restrictions may apply.

3.2.1 Database purpose and required data

We pursue two goals with the HiOS database: the systematic collection and the scientific
evaluation of past flood events triggered by heavy rain. The database must therefore
support the systematic documentation and organization of event data from sources as
diverse as reports, newspaper articles, storm spotter networks, and mission archives.
This requires a table and attribute design that enables unified storage of event informa-
tion while maintaining the spatial, temporal and content-related accuracy of the event
information. Furthermore, the database is used to investigate frequency, temporal evo-
lution, spatial distribution and patterns, fatalities and injuries, as well as the seasonality
of heavy rain-induced floods in Germany. To support spatial analysis, the database
must be able to aggregate datasets based on linking event information with geographical
data, such as political boundaries or catchments. Since we process geodata like digital
elevation models, the database’s ability to handle large data volumes and return spatial
queries quickly is a prerequisite.
The various spatiotemporal analyses require different event information and geodata
sets. Information about the date of the event and the affected location is the prerequi-
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site for the evaluation of historical events with regard to frequency, spatial distribution,
hot spots, and seasonality. More detailed temporal analyses require additional informa-
tion on the beginning and end of the triggering rain and the resulting flooding. Based
on losses, damage descriptions and the number of injuries and fatalities, a damage anal-
ysis can be performed. To classify events in a hydrometeorological context, we need
event information on the amount, duration and intensity of the triggering precipitation,
and/or discharge and water level measurements or estimates. Furthermore, for spatial
event aggregation in these analyses, we require data on political boundaries, convective
cell extents or catchments.

3.2.2 System architecture and interfaces

The implemented system consists of a relational database management system that is
accessible via various front-end software (Fig. 3.1). We made several demands on the
chosen database management system (DBMS). The DBMS should (i) be able to store
and process geographic data in vector and raster format, (ii) should be supported by Ar-
cGIS Pro and QGIS, and (iii) should be free and open-source. Due to these requirements,
we selected the relational DBMS PostgreSQL (version 12.3 64-bit) with its geospatial
extension PostGIS (version 2.5).
The applied system architecture retains flexibility regarding data entry, manipulation,
and retrieval as well as connection to other applications. Depending on the investiga-
tion objective, the HiOS database can be accessed via different front-end software. For
database development and administration, for example, we use the management tool
pgAdmin 4 for PostgreSQL databases. To carry out spatial analyses or create maps, the
GIS software ArcGIS Pro and QGIS are suitable. Moreover, the Python scripting lan-
guage offers a variety of options for database editing and analyses. We access the HiOS
database via the library Psycopg 2 and perform spatial operations on geographic data
using the library GeoPandas. Using the open-source web application Jupyter Notebook,
we run analyses and create maps directly in the browser.
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Figure 3.1: System architecture of the HiOS database system. PostgreSQL extended by Post-
GIS provides flexibility via interfaces to various front-end solutions such as pro-
gramming languages and GIS software.

3.3 Design and implementation of the HiOS database

Our objective was to develop an effective and sustainable database system that supports
systematic event collection and spatiotemporal hazard analyses. By effective, we mean a
flexible database system that enables the targeted analyses. A flexible database system
can answer all possible questions and is easy to expand or adapt to new datasets. To
be effective, the database system needs to return query results quickly and assist in
performing event analyses by providing aggregated and systematic datasets. In addition
to effectiveness, the sustainability of the database design is vital. To ensure long-term
use, the database structure must be easy for third parties to understand and expand. In
addition, a comprehensible and detailed documentation of the database structure with
its tables, attributes and relationships is essential.

3.3.1 Event definition

To obtain a consistent dataset, we have to define which flood events are considered in
the database. The HiOS dataset includes flood events that have been caused by heavy
precipitation, i.e. flash flood and pluvial flood events. A pluvial flood occurs when
heavy precipitation triggers a flood event independent of an overflowing water body.
Pluvial flooding is usually caused by infiltration excess and overwhelmed drainage sys-
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tems. Flash floods are triggered by short but high-intensity rainfall, which causes a
torrent of high velocity. Although flash floods and pluvial floods are both triggered by
heavy precipitation, they behave differently. While flash flooding usually arises from a
watercourse, pluvial flooding is caused by water flowing towards watercourses. Since
flash floods and pluvial floods can occur simultaneously and the available event informa-
tion usually does not allow a distinct assignment, we do not differentiate between flash
floods and pluvial floods in our database. Therefore, to address both flood types, we
speak of heavy rain-induced floods.
In our database, we apply the flash flood definition outlined by Kaiser et al. (2020b),
which is adapted to Continental conditions. Since most of our event data containing
precipitation information originates from the ESWD, we have adopted the ESWD pre-
cipitation threshold to obtain an overall dataset that is as uniform as possible. Therefore,
according to our definition, a flash flood event is triggered by a heavy rainfall event that
lasts between 30min and 24 hours and exceeds a given minimum rain amount. According
to ESSL (2014), we define as the threshold for a heavy precipitation event:

P ≥ 2
√

5 · d (3.1)

where P is the precipitation amount in mm and d is the duration in min. Regarding
spatiotemporal occurrence, Kaiser et al. (2020b) limit flash flood occurrence to catch-
ments of up to 500 km2 in size and to the period between April and October. In case the
precipitation amount is unknown, a short flooding rise time and/or little to no warn-
ing time as well as a small catchment size are used as proxy indicators (Kaiser et al.,
2020b). We apply the same thresholds for the identification of pluvial floods. With
the difference that if no precipitation measurement is available, the heavy precipitation
event must have caused flooding and an extreme impact to be documented. According
to ESSL (2014), extreme impacts are characterized by several firefighting operations,
cascade effects such as landslides, flooded basements, disruption of public transport, or
closed roads.
For the database, the way a flash flood or pluvial flood event is uniquely stored also needs
to be defined. According to Kaiser et al. (2020b), an event can be uniquely identified by
the affected city and the occurrence date. In this context, the term city stands for any
settlement size ranging from a village to a city that can still be uniquely identified. Since
we consider it highly unlikely that two heavy rain-induced flood events will occur on the
same day at the same location, we consider our definition valid. According to this defini-
tion, the relationship between the cities and events tables is a one-to-many relationship:
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a flash flood or pluvial flood event occurs in one city, and a city has experienced zero,
one or more flash flood / pluvial flood events.

3.3.2 Database tables

For comprehensive analyses, the HiOS database combines information on flash flood
and pluvial flood events with relevant geographic data. Geographic information relevant
for flood investigations includes catchment information and measurements, information
on administrative structures, geodata such as maps, and digital elevation models. In
total, the HiOS database consists of 34 tables, four of which are pure geodata tables.
The database tables can be grouped into the following categories: event description,
event documentation, administration structure, catchment information, measurements,
claims, geodata and metainformation (Table 3.1).
The database tables are either reference or data tables. Reference tables contain general,
steady information related to an object. The federal states table, for example, holds in-
formation on each federal state including name, official code, population and size. Data
tables, in contrast, contain the collected measurements and event information that may
change with each entry. As an example, each flood event is documented as a new event
entry in the events table, including occurrence date, city name and official municipality
code. In the following, we explain the database tables of each category in detail. For
reasons of clarity, we write table names in italics and enclose attributes in quotation
marks below.
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Table 3.1: List and description of the HiOS database tables. Database tables containing vector or raster data are asterisked.

Category Table name Description Data source

Event description events List of flood events caused by heavy rainfall in Germany THW, 2017; Deutsche Rück,
2018a; Deutsche Rück, 2018b;
DWD, 2018; ESWD, 2017;
HANG, 2018; LfU, 2017b;
URBAS, 2018

space_time, meteorology, hydrology,
damage

Description of spatiotemporal extent, hydrological effects, damages of the flood
event and the triggering heavy rain

entries Description of the event entry regarding source type, quality level, editor, entry
date and last review

sources Description of the event information sources regarding right of use and citation

Event documentation documents, videos, photos, websites Metainformation on descriptive documents, videos, photos and websites

Administrative
structure

federal_states*, government_districts*,
rural_districts*, municipalities*, cities*

Information on the administrative structure of Germany from federal state over
government and rural district, to municipality and city

BKG, 2015; BKG, 2017

zip_codes* ZIP code areas of Germany OpenStreetMap contributors,
2018

water_authorities* Information on Bavaria’s water authorities including contact details and area of
responsibility

LfU, 2017a

Catchment
information

lakes* Description of the characteristics of the German lakes

watercourses* Description of the characteristics of the German watercourses
gauges* List of the German gauging stations
catchments* List of the official catchments of Germany with indication of catchment charac-

teristics
gauge_catchments* Table of the gauge catchments of Bavaria self-derived

Measurements discharge_measurements Measurement time series of the Bavarian discharge gauges in hourly resolution LfU, 2018
discharge_investigation List of measured flash flood events with derived discharge parameters Kaiser et al., 2020a
heavy_rain_hours Indication of heavy rain hours since 2001 per ZIP code area, considering rain-

fall events that exceeded 25 l/m2 in 1 h or 35 l/m2 in 6 h
GDV and DWD, 2018

Claims claims_frequency Description of the damage frequency due to heavy precipitation in Germany for
the years 2002–2017, aggregated at the rural district level

GDV and DWD, 2019

Geodata elevation_model* Digital Elevation Model of Germany in 25m resolution EEA, 2016
landcover* CORINE Land Cover of Germany in 10 ha resolution BKG, 2016
soil* Topsoil map of Germany (1:1,000,000) BGR, 2008
natural_region* Natural classification of Germany BfN, 2020

Metainformation geodata_descriptions, table_descriptions,
attribute_descriptions

Description of the stored geodatasets, database tables, and table attributes
including unit, basic dataset and source, if applicable
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The central component of the HiOS database is the collection of event information in
the tables of the event description. A flood event is described via entries in the events,
space_time, meteorology, hydrology, damage, entries, and sources tables. In the events
table, we list all events by date and location. In the space_time table, we describe the
event’s spatiotemporal extent and evaluate the temporal and spatial accuracy of the
event information. We document the event’s meteorological conditions in the meteo-
rology table. Not only is information on the heavy rain event recorded (e.g., duration,
amount, intensity, start, end), but also the information on the accompanying phenomena
of thunderstorms such as hail, lightning and storms. Documenting the meteorological
conditions helps to better assess the occurred damage and its cause. In the hydrology
table, we specify the hydrological effects of the heavy rain event. In addition to infor-
mation on flooding and discharge (e.g., highest affected floor, water level, discharge), we
document the occurrence of cascade effects such as flotsam, landslides or dike breaches.
All losses and damages are recorded in the damage table. We document financial losses
and describe the occurred damages separated for buildings, businesses, infrastructure,
forestry and agriculture. Furthermore, we record the number of injuries and fatalities.
Documenting early warnings, disaster alerts or evacuations helps to better assess the
event magnitude and the occurred damage. In addition, we specify the accuracy of mea-
surements and estimates in the comment attributes of the meteorology, hydrology, and
damage tables.
The sources and entries tables store important metainformation. We store information
about the used sources regarding usage rights, citations, as well as a dataset description,
in the reference sources table. Metainformation about the event entry is recorded in the
entries table. In addition to the editor, we store the source type, the entry date and the
last review date for each event entry. Furthermore, we evaluate the quality of the event
information.
In addition to event information, we also archive information on the source documents
in our database. For event documentation, the documents, videos, websites, and photos
tables are available. In these tables, we archive important metainformation about the
source documents and the accompanying material of the event. The tables not only
indicate the usage rights, citation, author and quality of the source document, but also
describe the source file and the storage location. Videos and photos of flash flood and
pluvial flood events are important because they provide much better insight into the
event’s course and severity than a purely textual event description. For later analyses,
it is essential to document the original sources adequately.
We use the federal_states, government_districts, rural_districts, municipalities, cities,
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and zip_codes tables to classify the events into the German administrative structure.
Since Germany is a federal republic, it is divided into 16 federal states. The four federal
states of Baden-Wuerttemberg, Bavaria, Hesse, and North Rhine-Westphalia are further
subdivided into government districts, which serve as mid-level local government units.
The next subdivision level of the federal states or government districts is the rural dis-
trict. Rural districts, in turn, are composed of municipalities, which can include several
villages, towns, and cities. Major cities in Germany usually form their own rural dis-
trict. The table rural_districts thus contains both rural districts, which are composed
of municipalities, and major cities with district status. For reasons of simplicity, we
call the table cities, although it includes settlements of any size. The administrative
structure tables contain the official names, abbreviations, and identification numbers as
well as the bounding shapefiles and population numbers. The geographical dimension
of cities/towns/villages is specified by official bounding boxes. Regarding geographic
information, we indicate the center and average altitude of each city. ZIP codes and
associated shapefiles are stored in the zip_codes table. In the water_authorities table,
we reference information on the Bavarian water authorities, whose areas of responsibility
are based on the government districts. Due to the federal system, the water management
administration is organized differently in the 16 federal states. Within the scope of the
project, we only had access to official, detailed information about the Bavarian water
management administration.
The catchments, watercourses, lakes, gauges, and gauge_catchments tables enable the
hydrological classification of flood events. In the lakes and watercourses table, we store
official information on the German lakes and watercourses along with their delimiting
polygons and polylines. The information available in the lakes table includes, e.g., the
number of inflows, the maximum depth and the residence time. For watercourses, we
hold information on, e.g., the river order, length, and width in the database. In the
catchments table, we describe the characteristics of the German catchments using pa-
rameters such as mean slope, form factor, and relief. In addition, the catchments table
holds the official catchment polygons, which were provided by the respective federal
states. In the gauge_catchments table, we store the catchments of the gauging stations.
In addition to the gauge location, we store information such as catchment area, gauge
type, gauge quality or gauge zero in the gauges table.
The category measurements include the discharge_measurements, discharge_investiga-
tion, and heavy_rain_hours tables. Since we could only obtain the discharge mea-
surements for Bavaria, the discharge_measurements and discharge_investigation tables
only contain information about the state of Bavaria. The heavy_rain_hours table, on the
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other hand, reflects all of Germany. For 486 Bavarian gauges, we save the discharge time
series in hourly resolution for their entire measurement periods in the discharge_mea-
surements table. The discharge_investigation table contains the results of a discharge
study. The study by Kaiser et al. (2020a) investigated the discharge time series of 342
gauging stations regarding flash floods. The flash flood determination was based on the
discharge characteristics defined by a specific peak discharge ≥ 0.3m3 s−1 km−2, a time-
to-peak ≤ 20 h, and a period of occurrence from April to October (Kaiser et al., 2020a).
In the discharge_investigation table, we save each identified flash flood hydrograph of
this study along with the identified event begin, peak and end, as well as the discharge
values of begin, peak and end. Furthermore, we indicate the hydrograph-describing pa-
rameters, which are percent increase, time-to-peak, specific peak discharge, gradient,
volume, peak-to-volume, return period, and corresponding flood discharge. In addition,
we store the results of a freely available dataset from the GDV and the DWD in the
heavy_rain_hours table. This dataset sums up all periods of heavy rain in Germany
based on the weather radar records from 2001 to 2016.
The claims_frequency table contains information on insurance claims due to heavy rain
in Germany for the years 2002–2017. The insurance claims are aggregated at the rural
district level. This dataset by the GDV and DWD specifies the number of heavy rain
events, the damages per building, the average damage, as well as the number of affected
buildings per 1,000 buildings.
Geodatasets for spatial analyses are in separate tables in the HiOS database. The geo-
data group includes the elevation_model, natural_region, landcover, and soil tables. We
store both vector and raster datasets. Since the table attributes are dataset-specific,
they are not described further here.
Information about the database design is stored in the table_descriptions, attribute_-
descriptions and geodata_descriptions tables. These tables support the sustainability of
the database, as they contain important metainformation for understanding the database
structure. In table_descriptions, we indicate the content of each database table. Simi-
larly, the attribute_descriptions table describes each table attribute regarding content,
unit and, if applicable, the underlying dataset and source. Accordingly, the geodata_de-
scriptions table contains the official names and abbreviations as well as a brief description
of the datasets.
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3.3.3 Table attributes and attribute domains

The table attributes significantly influence the later analysis options. The choice of the
non-key attributes is essential since the descriptive attributes determine which questions
can be answered. When choosing the non-key attributes, it is of fundamental importance
to anticipate potential questions and to know the information and datasets to be stored.
To answer future questions, attributes must provide flexibility. Attributes that are too
general entail the risk of losing information and restricting analyses, whereas attributes
that are too specific complicate analyses. Therefore, ensuring flexibility often implies an
increased complexity and number of attributes.
We chose the table attributes based on the used datasets and collected information,
as well as on potential questions. Table A.1 in the Appendix lists the table attributes
together with their data type, constraints and keys. However, we do not list the at-
tributes of the geodata tables in Table A.1, as their attributes are dataset-specific and
therefore not of general interest. We adopted nationwide reference systems such as state
codes, names, and abbreviations. Information from various datasets was standardized
and summarized in attributes. Due to German federalism, each state provided differ-
ently organized hydrological information. To obtain a German dataset, we therefore
had to summarize the information for the catchments, watercourses, and lakes tables.
The challenge of homogenization is to define attributes that summarize the information
without overly generalizing it.
To facilitate the automated evaluation of stored information, we defined attribute do-
mains for most non-key attributes. This domain specification is particularly important
for the attributes of the event description tables, since this information forms the basis
of the analyses. Free text is generally hard to evaluate, as it is unstructured. Therefore,
Kaiser et al. (2020b) suggest using fixed categories besides free text for attribute descrip-
tion. They propose three types of attribute domains: (i) yes/no/null, (ii) given attribute
values, and (iii) text blocks. The “yes”, “no”, and “null” attribute values document, for
example, the occurrence or non-occurrence of sedimentation, landslides or dike failures.
Kaiser et al. (2020b) further suggest attribute-specific domains, such as basement, first
floor, second floor, third floor for the “highest affected floor” attribute or oil, sewage,
chemicals, other to describe the type of contamination. For damage description, Kaiser
et al. (2020b) use text blocks consisting of an adjective and a noun, where the adjective
describes the extent of the damage and the noun specifies the affected object. Possible
attribute values are, for example, “destroyed houses”, “flooded streets”, or “eroded agri-
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cultural land”. The attribute domains proposed in Kaiser et al. (2020b) were applied to
the attributes of the space_time, hydrology, meteorology, and damage tables.

3.3.4 Table relationships and keys

Most entities in the HiOS database are connected by a one-to-many relationship. A
one-to-one relationship exists only between the claims_frequency and rural_districts,
heavy_rain_hours and zip_codes, gauges and gauge_catchments entities. Due to high
maintenance efforts, we largely avoided the use of many-to-many associations. How-
ever, a few many-to-many relationships exist, such as between the event documentation
entities (e.g., documents, videos) and the events entity. Fig. 3.2 shows the Entity-
Relationship (ER) diagram, which represents the associations between the entities of
the HiOS database. Thematically related entities are grouped and marked with the
same color (cf. Table 3.1). For reasons of clarity, we only listed the key attributes of the
entities.
Regarding manageability and consistency, we implemented only the necessary relation-
ships between the database entities, and not all the possible ones. Therefore, for some
queries, detours via other entities have to be accepted when no direct association is
implemented. However, entities holding geographic data can also be linked via spatial
relationships. For example, the lakes and catchments entities can be connected using
the PostGIS function ST_Within. The only entities without association are the metain-
formation entities, since the table_descriptions, geodata_descriptions, and attribute_-
descriptions entities serve as pure information tables.
To increase the usability of the HiOS database, we employed simple, intuitive, and non-
composed primary keys wherever possible. To this end, we inherited natural keys that
were already contained in the datasets, such as the 12-digit municipality keys or the
state names. Adopting natural keys has the advantage that the key also has a meaning
outside the database and is therefore often easier for the user to remember and inter-
pret. We only introduced surrogate, sequential primary keys when merging different
datasets in one table, as in the catchment information tables, or when creating an own,
new dataset. The table_descriptions, geodata_descriptions, and attribute_descriptions
entities are an exception to this rule since these entities have the entity and attribute
names they describe as primary keys. Table A.1 and Fig. 3.2 indicate the primary and
foreign keys of the database tables.
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Figure 3.2: Entity-relationship diagram of the HiOS database.
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In eight tables, we use composite primary keys consisting of two or four attributes. For
example, the primary key of the cities entity is composed of the “name” and the 12-
digit “municipality_no”. In the attribute_descriptions table, “table” and “attribute”
together form the primary key, since some attribute names occur in several tables. The
discharge_measurements entity contains the discharge time series of the Bavarian gaug-
ing stations. To uniquely identify a measured discharge value, we query the “gauge_no”
and the “timestamp”. The discharge_investigation table holds discharge parameters on
identified flash flood events from Kaiser et al. (2020a). By using the “gauge_no” and
“number” attributes, we retrieve discharge information on a specific flash flood hydro-
graph. The space_time, meteorology, hydrology, and damage tables use the same com-
pound key. The compound key consists of the four attributes “event_no”, “source_no”,
“info_no”, and “zip_code”. We will clarify the use and advantages of this composite
key in Section 3.3.5.

3.3.5 Documentation of event information

To guarantee sustainability, it is important to ensure traceability, comprehensibility and
editability of the generated event dataset. For this reason, we document metainforma-
tion about the event information and sources, and store source documents, if available.
Although this metainformation may seem unnecessary for the event investigation, it
contributes to an understandable and editable event dataset. Most importantly, this
metainformation allows users to get the most out of the dataset for their purposes.
The sources table contains information about the sources used, their usage rights and
citation, and gives a dataset description. To comply with formalities, we document
specifications on data sharing and publication in the “usage_rights” attribute. In addi-
tion, we use the "dataset_description" attribute to describe the dataset creation and the
changes we have made to it. By not allowing null entries in the sources table, we force
editors to think about the underlying publication rights and restrictions of the datasets
used. Overall, the sources table supports compliance with good scientific practice, which
in turn contributes to a responsible and sustainable dataset generation and use.
Like the sources table, we store metainformation about each event entry in the entries ta-
ble, where we specify the “source_type” as literature, report, website, newspaper article,
damage report, photo/video, TV/radio. With the “quality_level” attribute, we assess
the quality of the event information using the four categories QC0, QC0+, QC1, QC2,
as proposed by Dotzek et al. (2009). QC0 stands for event information that is adopted
“as received”, QC0+ describes events that are “plausibility checked”, QC1 stands for
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“event confirmed” and QC2 means “event fully verified” (Dotzek et al., 2009).
Considering the source type and quality assessment, we can better estimate the reliability
of the event information. Furthermore, we note the “editor” of each event entry together
with the “entry_date” and the “last_review” date. Specifying the editor maintains the
flexibility to alter event entries if, for example, an editor applied a different flood defi-
nition or made a systematic mistake in event documentation. The indication of the last
review date further allows retracing when the event information was last changed. The
documents, videos, websites, and photos tables serve a purpose similar to the sources ta-
ble. In these tables, metainformation about the original documents regarding “author”,
“usage_rights”, “citation”, “quality”, and “storage_location” is stored. We also note a
“description” and “comment” about the source documents.
Since event documentation for scientific investigations is a central task of the database,
we attached particular importance to the flexible design of the involved tables. We use a
primary key composed of four attributes for the space_time, hydrology, meteorology, and
damage tables. The compound key uses the “event_no”, source_no”, “info_no”, and
“zip_code” attributes and allows for different aggregation levels of the event dataset.
The “event_no” uniquely identifies each event in the events table. To query all available
information about one specific event, regardless of the source, we search for the event
number. Using the event number, we can aggregate all event information stored in the
database on a specific event. For each event entry, we indicate the source using the
“source_no” attribute. Specifying the source enables to hide sensitive information such
as insurance data, or to exclude sources from analyses considered less reliable (Kaiser
et al., 2020b). We further indicate the “zip_code” of the affected city. For large cities,
we can differentiate damages by ZIP code areas and thus maintain spatial accuracy. For
towns with only one ZIP code, we specify the district in which flooding occurred in the
“districts” attribute. To avoid information loss, we introduced the “info_no” attribute,
which is a continuous integer. We use the “info_no” attribute to record several items of
information on the same event. This is, for example, the case when we document sev-
eral starts of the triggering precipitation event with different precipitation amounts and
durations. To summarize, only the composition of the “event_no”, source_no”, “info_-
no”, and “zip_code” attributes enables the unique identification of an event in the event
information tables. Using parts of this composed key enables different aggregation levels
of the event information providing the greatest possible query flexibility.
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3.3.6 Data sources

Our database contains 23,752 flash flood and pluvial flood events that were triggered by
heavy rainfall in Germany. We composed the event dataset from a variety of sources.
The event information originates from insurance companies, mission archives, scientific
projects, agencies, and media. Our flood record starts in 346 and ends in 2017. However,
most events are available from 2000 onwards. It should be mentioned that events in the
federal states of Thuringia, Baden-Wuerttemberg, Hesse, and Rhineland-Palatinate are
potentially overrepresented since an insurance dataset with 16,900 events was obtained
for these federal states (Kaiser et al., 2020b). Kaiser et al. (2020b) present the HiOS
event dataset in detail, together with a description of the temporal and spatial resolution
and the number of extracted events from the various sources used.
For spatial analyses, we store various geodatasets covering Germany in the database.
In addition to a digital elevation model, we archive a topsoil map, a land cover map
and the natural regions of Germany (Table 3.1). The environment ministries of the
respective federal states provided official information on lakes, watercourses, gauges and
catchments, including point, line and polygon shapefiles. The database also contains the
German administrative structure. In addition to the official reference data, the bounding
polygons and centers of the various administrative levels are stored.
The HiOS database also contains measurements. Regarding discharge, we store the
discharge time series of 486 Bavarian gauges in hourly resolution for the respective total
measurement period. From the study by Kaiser et al. (2020a), we have the identified
discharge time series of several thousand flash floods together with parameters describing
the discharge event, such as specific peak discharge, time-to-peak or percent rise. We
further use two datasets published by the German Weather Service and the German
Insurance Association. One dataset indicates the sum of heavy rain hours in Germany
since 2001 per ZIP code area. Heavy rain considered in this study had to exceed 25 l/m2

in 1 h or 35 l/m2 in 6 h, which corresponds to the warning level 3 of 4 of the German
Weather Service. The second dataset describes the damage frequency due to heavy rain
in Germany for the years 2002-2017, aggregated at the rural district level.

3.4 Methods

3.4.1 Event rate

To ensure the comparability of the number of events between cities, we have normalized
the number of events. The number of inhabitants correlates moderately with the num-
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ber of flash flood and pluvial flood events, meaning that larger cities tend to experience
more heavy rain-induced floods (cf. Section 3.5.3). To find out which cities are most
frequently affected, regardless of their size, we used a normalized variable that eliminates
the population bias in the number of events. For reasons of comparability, we introduced
the dimensionless event rate, which is defined as the quotient of the number of events
and the logarithm of the population to the basis 10:

Event rate = Number of events

log10 Population
(3.2)

The population distribution of Germany has a strong right-skewed distribution. There-
fore, to resolve skewness and obtain a small divisor, we applied a log transformation to
the population data. The only disadvantage of the event rate compared to the number
of events is the loss of intuitive comprehensibility.

3.4.2 Hot spot analysis

We investigated the hot and cold spots of heavy rain-induced floods in Germany using the
Global Moran’s I and Getis-Ord-Gi* statistics. Both approaches are implemented in the
Spatial Statistics toolbox of the GIS software ArcGIS Pro. The “Spatial Autocorrelation
(Global Moran’s I)” tool measures spatial autocorrelation for a given set of weighted
spatial features using the Global Moran’s I statistic. The Moran’s I Index evaluates
whether the data shows a dispersed, random or clustered pattern. A positive Moran’s
Index value implies a tendency toward clustering, while a negative index value suggests
dispersion. The global Moran’s I Index is defined as follows:

I = n

S0

∑n
i=1

∑n
j=1wi,j(xi − x)(xj − x)∑n

j=1(xj − x)2 (3.3)

where wi,j is the spatial weight between feature i and j, n is equal to the total feature
number, and S0 is the aggregate of the spatial weights:

S0 =
n∑

i=1

n∑
j=1

wi,j (3.4)

The z-score is computed as:
z = I − E[I]√

V ar[I]
(3.5)
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where E[I] and V ar[I] are given as:

E[I] = −1/(n− 1) (3.6)

V ar[I] = −E[I2]− E[I]2 (3.7)

For each feature, the Gi* statistic is calculated, and a z-score and p-value are returned.
A statistically significant z-score is obtained when the local sum differs greatly from
the expected local sum and the difference is too large to be the result of randomness.
A statistically significant hot spot is a feature with a high value that is surrounded by
other features with high values. A significant cold spot is in contrast described by a low
negative z-score and a small p-value. In geosciences, the Moran’s I and Getis-Ord-Gi*
statistics have been widely applied, e.g., to assess heavy-metal concentrations (S.-M. Kim
and Choi, 2017), to detect landslides (Lu et al., 2019), or to improve forest management
(Rossi and Becker, 2019). Khajehei et al. (2020) recently applied hot spot analysis to
cluster gauging stations in the U.S. regarding the magnitude, duration, frequency and
severity of measured flash floods.

3.4.3 Event binning

To better explore the event dataset, we used feature binning using ArcGIS Pro. Fea-
ture binning is a method to aggregate and visually represent point data. By grouping
the event points into bins, the dense information is summarized. A bin represents all
events within its boundaries and is displayed wherever there is at least one event in it.
We chose bins with a size of 100 km2 as a compromise between resolution and graphic
representability. Using bins rather than political boundaries for event aggregation is
preferable. By using bins of equal size, we avoid visually emphasizing areas, as would
be the case, for example, with unevenly sized rural districts.

3.5 Investigations on heavy rain-induced floods in
Germany

Due to its good spatial and temporal coverage, the HiOS dataset enables the holistic
investigation of heavy rain-induced floods in Germany. We used the database’s func-
tionalities to manipulate the collected data for our flood analyses. Using SQL queries,
we generated the datasets required for our investigations from the HiOS dataset. To
illustrate how a database supports spatiotemporal investigations, we provide the SQL
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queries applied in the Appendix. These SQL statements can serve as examples and
inspiration for others who wish to conduct similar investigations.

3.5.1 Spatial distribution and frequency

Many fundamental questions regarding the spatial occurrence of floods caused by heavy
rain in Germany are still unanswered, such as: Where did flash floods and pluvial floods
occur in Germany? Do they occur everywhere in Germany? Which cities had the most
events in the past? We can now address these questions, thanks to the availability of
the HiOS dataset.
For our investigations, we created a table view of the events table entitled events_-
analysis containing only the events relevant to our analyses (B.1). To ensure valid
investigations, we excluded possibly irrelevant events that did not occur between April
and October, which is considered the season of heavy rain-induced floods for Germany
(see Section 3.5.5). Overall, the flood events investigated below comply with the event
definition given in Section 3.3.1. However, we would like to point out that the flood
events are not, due to missing information, differentiated according to their magnitude
or flood type. Therefore, minor and severe flood events, as well as flash floods and
pluvial floods, are treated equally. To avoid distortions of the investigation, we further
excluded the events from the insurance dataset, since it only covers 4 of the 16 federal
states. Without the insurance dataset, we obtain a roughly representative dataset of
heavy rain-induced floods for Germany with 8,718 events. Unless otherwise stated in
the following sections, we used the events_analysis table view as a data basis.
To investigate the spatial distribution of heavy rain-induced flood events in Germany,
we created a dataset that summarizes the number of flood events for each affected city
(B.2). For this purpose, we joined the events_analysis table view on the cities table.
Using the SQL statement in Appendix B.2, we also queried the city centers from the
HiOS database for mapping.
Fig. 3.3 shows the number of documented flash flood and pluvial flood events per city
in Germany. We find that floods caused by heavy rain occurred all over Germany,
although not all regions were affected equally often in the past. In total, the HiOS
dataset documents events for 4,875 cities. Of these cities, 70% were affected once, 17%
twice, 6% three times, and 7% more than three times. On the median, the affected cities
were hit once, with the 95% quantile being 5 events and the 99% quantile 11 events.
Regarding the distribution of the more frequently affected cities, there appears to be a
slight north-south gradient with less heavy rain-induced flood events in the Northern
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German Plain (Fig. 3.4). This decrease of events from south to north seems plausible
given the flat orography of the Northern German Plain.

Figure 3.3: Number of flood events caused by heavy rain in Germany until 2017, collected in the
HiOS project (data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche Rück,
2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS, 2018).

Many events particularly occurred in metropolitan areas such as the Rhine-Ruhr area or
the Rhine-Main area with 11 and 6 million inhabitants, respectively. Most events were
reported for the metropolises of Berlin (65), Munich (59), and Hamburg (54) (Fig. 3.3).
With regard to the event rate, the top 10 are: Berlin (13), Munich (12), Hamburg (11),
Frankfurt (8), Aachen (7), Nuremberg (7), Cologne (6), Dresden (6), Düsseldorf (6),
Dortmund (6). Overall, the top 10 most frequently affected cities are only those with
more than 250,000 inhabitants, both in terms of event numbers and normalized event
rates. However, not all highly urbanized regions stand out with a particularly large
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number of events, as can be seen from the metropolitan areas of Northwest (Bremen-
Oldenburg and surroundings, 3 million inhabitants) and Hanover-Brunswick-Göttingen
(4 million inhabitants).

Figure 3.4: Metropolitan areas in Germany and topographic details.

3.5.2 Temporal analysis

Fig. 3.5 shows the annual frequency of floods caused by heavy rain as well as the number
of people injured and killed by flash floods and pluvial floods in Germany in the period
1990–2017. We summarized the number of events, injuries, and fatalities per year since
1990 using the SQL statement from B.3. For these 28 years, we collected 8,256 events in
which 583 people were injured and 89 died. Statistically, people were injured in 7% and
killed in 1% of the flood events. The most documented events so far occurred in the year
2011 (1,065 events) and 2016 (1,025 events). Although most events were documented
for 2011, this year did not cause the most deaths and injuries. In the period considered,
the events of 2016 and 2006 caused 24% and 23% of the documented injured people,
respectively. Most deaths were reported for the years 1990 (24) and 2016 (17). However,
relative to the number of events, 1990 was more extreme with seven events claiming 50
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injuries and 24 deaths. Regarding the number of events, the years 1990, 1991, and 1996
had the highest death rates with 3.43, 0.13, and 0.10 deaths per event. The highest rates
of injuries were documented for the years 1990 (7.14), 1994 (0.20), and 2006 (0.25).

Figure 3.5: Time series of heavy rain-induced floods, injuries and fatalities in Germany in
the period 1990–2017 (number of events: n = 8, 256, fatalities: n = 89, injuries:
n = 583, data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche Rück, 2018b;
DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS, 2018).

To better understand the temporal occurrence of heavy rain-induced floods, we analyzed
the documented floods regarding their onset. Using the extract function of PostgreSQL,
we grouped the events by the hour of occurrence and counted the number of events,
fatalities, and injuries (B.4). The start time of 8,150 events is known. This refers to
the flooding onset and not to the beginning of the triggering precipitation. The first
inundations outside creeks and river banks mark the beginning of the flood event. It
should be noted, however, that in most cases the flooding onset cannot be reliably
measured or determined. Therefore, the start time is usually an estimate with high
uncertainties.
Fig. 3.6 shows the frequency of the flood onset for each hour of the day using one-hour
bins. The local times given hereinafter refer to Central European Summer Time, which
is valid in Germany from March to October and corresponds to UTC+2. Most of the
documented heavy rain-induced flood events occurred at 15:00 local time. Almost half
of all events began between 14:00 and 18:00 local time. During the night and in the
early morning, floods triggered by heavy rain rarely occurred.
Investigating the onset of the events, in which people were injured or killed, provided us
with insights into the influence of flood timing on human losses. Fig. 3.6 indicates that
most people were killed in floods starting around 12:00 (93 deaths) and 21:00 local time
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(67 deaths), whereas people were mostly injured between 18:00 and 19:00 local time (20
and 22 injuries). Overall, the frequency of injuries and fatalities increases roughly with
the frequency of the events.

Figure 3.6: Diurnal distribution of flood onset and the number of people injured or killed during
heavy rain-induced flood events (number of events: n = 8, 150, fatalities: n = 257,
injuries: n = 121, data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche Rück,
2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS, 2018).

3.5.3 Influence of population

Fig. 3.3 raises the question to what extent population influences heavy rain-induced flood
occurrences. Since flash floods and pluvial floods often cannot be recorded automatically,
e.g., at gauging stations, their flood reporting generally relies on human observation
(Marjerison et al., 2016). Therefore, one may hypothesize that the number of reported
heavy rain-induced flood events is higher for larger cities where more people can report
them. In addition, population may influence heavy rain-induced flood occurrence, as
the proportion of impervious area generally increases with population, which is known
to facilitate surface runoff. Thus, we are interested to know whether the event frequency
correlates with the population and whether regions with a high proportion of built-up
area report more events.
To answer these questions, we investigated the relationship between event frequency
and population as well as event frequency and sealing percentage. Due to the resolution
of the population data, we aggregated the events at the rural district level. For this
analysis, we used the information on population density, rural district area and sealing
percentage contained in the rural_districts table. We joined the events_analysis table
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view on the rural_districts table and grouped the events by the 401 German rural
districts. From this intermediate table, we queried the necessary district information,
including the shapefiles (B.5).
Fig. 3.7 shows the population density of the rural districts, superimposed over the
associated number of events. We observe tendencies that higher population densities are
associated with more reported events. Especially in the densely populated metropolitan
regions of Rhine-Ruhr, Rhine-Main, Stuttgart and Munich, we notice a high number
of flood events caused by heavy rain. However, contrary trends are also evident when
looking at the area of the Ore Mountains, the Alpine Foothills and the Northeastern
German Plain. In these regions, we have comparatively high event frequencies but
rather low population densities.

Figure 3.7: Correlation between population density and heavy rain-induced flood events ag-
gregated at rural district level (data sources: THW, 2017; Deutsche Rück, 2018a;
Deutsche Rück, 2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; UR-
BAS, 2018).
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To assess the correlation, we plotted the number of flood events against the number
of inhabitants (Fig. 3.8). For better representation, we transformed the number of
inhabitants with the logarithm of the basis 10. According to the Pearson correlation
coefficient, a moderate positive correlation (r = 0.62, p = 3.33 · 10−44) exists between the
number of heavy rain-induced flood events and the number of inhabitants, which is also
apparent in Fig. 3.7. Therefore, a population increase often leads to a higher frequency of
flash flood and pluvial flood events. Contrary to expectations, our event dataset indicates
no correlation between the number of heavy rain-induced flood events and the degree of
sealing (r = 0.07, p = 9.07 · 10−11). However, the number of heavy rain-induced flood
events correlates weakly with the district area (r = 0.32, p = 1.63 · 10−1). We would
expect a strong correlation between the district area and the number of floods, if heavy
rain-induced flood occurrence were a random process, meaning that the number of flood
events would increase as the district area increases as well. However, the districts seem
to be spatially too homogeneous and furthermore do not take hydrological relationships
into account. Given a weak correlation with the district area, we can assume that
the aggregation level of the events does not distort the correlation between heavy rain-
induced flood events and population.

Figure 3.8: Correlation between number of heavy rain-induced flood events and number of
inhabitants, area and share of built-up area at the rural district level, with the
95% confidence interval for the regression estimate (n = 401, data sources: THW,
2017; Deutsche Rück, 2018a; Deutsche Rück, 2018b; DWD, 2018; ESWD, 2017;
HANG, 2018; LfU, 2017b; URBAS, 2018).

3.5.4 Hot spots and cold spots

To better cope with the flood hazards from heavy rain, we need to identify particularly
endangered regions. The first step is thus to analyze the spatial pattern of heavy rain-
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induced flood occurrences in Germany. Regarding prevention, it is essential to discover
the regions that experience particularly numerous or few flood events and to localize
these hot and cold spots. Since we are interested in finding significant hot and cold
spots independently of city size, we use the event rate instead of the number of events.
We calculated the event rate for each city in Germany using the SQL statement in B.6
of the Appendix. By joining the cities table on the events_analysis view, we linked the
information on the number of events and the city population required for this analysis.
If a city has not yet been affected, we set the event rate to 0. Taking advantage of
the SQL CASE expression, we computed the event rate for all German cities (B.6). To
reduce the bias in our event dataset towards positive cases, we considered all German
cities regardless of whether an event was documented for the city. As the HiOS dataset
lacks confirmed not yet affected cities, we assumed in a simplified approach that the
non-listed cities have not been so far affected by a flash flood or pluvial flood event.
As the flood events are linked to the city they affected, we need to analyze whether the
spatial distribution of the cities influences that of the flood events. If the spatial pattern
of the cities affects the heavy rain-induced flood distribution, the hot spot analysis
will reveal the pattern of the cities, not of the events. Therefore, we investigated the
spatial pattern of the German cities using the “Average Nearest Neighbor” tool. The
tool calculates the nearest neighbor index that is given as the ratio of the observed mean
distance of each city to its nearest neighboring city to the expected mean distance in case
of random distribution of the cities. The nearest neighbor index of the German cities is
1.2, which indicates that the observed average distance between the cities is greater than
a hypothetical random distribution (Table 3.2). German cities thus show a dispersed
pattern. Calculating the nearest neighbor ratio only for the affected cities yields 1.0,
indicating that affected cities are randomly distributed over Germany (Table 3.2). As
German cities show a dispersed pattern but affected cities are randomly distributed, we
can conclude that the location of the cities does not distort the spatial distribution of
the flash flood and pluvial flood events. Using the Global Moran’s I statistic, we further
investigated the spatial patterns of the German cities regarding population, number of
events and event rate. We found that population, number of events and event rates show
a statistically significant clustered pattern over Germany (Table 3.3).
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Table 3.2: Investigation of the spatial patterns of the German cities and the cities affected by heavy rain-induced floods using the average nearest neighbor index.

Feature Observed mean distance Expected mean distance Nearest Neighbor Index z-score p-value Distance method Null hypothesis Interpretation

German cities 1,695.22 m 1,398.96 m 1.212 86.693 0.000 Euclidean rejected dispersed pattern
Affected cities 4,316.57 m 4,297.93 m 1.004 0.578 0.563 Euclidean not rejected random pattern

Table 3.3: Investigation of the spatial patterns of the German cities considering population, number of heavy rain-induced flood events and event rates (number of events
divided by log10 of population) using the Global Moran’s I statistic.

Feature Attribute Moran’s Index Expected Index Variance z-score p-value Conceptualization Null hypothesis Interpretation

German Cities Population 0.060 -0.00002 0.000 252.581 0.000 Fixed distance rejected clustered pattern
German Cities Number of events 0.008 -0.00002 0.000 34.386 0.000 Fixed distance rejected clustered pattern
German Cities Event rate 0.010 -0.00002 0.000 40.323 0.000 Fixed distance rejected clustered pattern



3 Spatiotemporal analysis of heavy rain-induced flood occurrences in Germany

Fig. 3.9 shows the identified hot and cold spots of heavy rain-induced floods for Germany.
In sum, we localized seven hot spots and two cold spots. Some hot spots are found in
more urbanized regions, such as around Berlin, in the Rhine-Ruhr metropolitan region,
and in the conurbations of Rhine-Main, Rhine-Neckar and Stuttgart. However, other
hot spots are located in the less populated but hilly terrain of the Bavarian Alpine
foothills, in the Ore Mountains, and in the region between the Thuringian Forest and the
Harz Mountains. Two statistically significant cold spots are found in the Northwestern
German Plain (except Hamburg) and in North-Central Bavaria north of the Danube.
We further note that not all metropolitan areas are hot spots. Hamburg and Hanover-
Brunswick-Göttingen, for example, do not have statistically significant event rates, and
the metropolitan regions Northwest and Nuremberg lie in a cold spot.

Figure 3.9: Statistically significant hot and cold spots of heavy rain-induced flood events in
Germany (data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche Rück, 2018b;
DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS, 2018).
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It is further of interest whether injuries and fatalities occur more frequently in hot rather
than in cold spots. Therefore, we superimposed the hot and cold spots over the number
of injuries and fatalities (Fig. 3.10). Using the SQL statement of B.7, we summarized
the number of injured and killed people per city. During the period 1900–2017, flash and
pluvial floods killed 499 and injured 583 people. In general, we find that few injurious
and fatal events have occurred in the Northern German Plain compared to the rest of
Germany. Central Bavaria, where a cold spot has been identified, also appears to be
less affected. In particular, many deadly events happened in the Ore Mountains hot
spot, mostly due to two major events in 1927 and 2010 that affected several cities. The
injuries within the Ore Mountains hot spot, in contrast, are due to recent flood events
caused by heavy rain in 2003, 2006 and 2012. Also in the Rhine-Ruhr and Rhine-Main
to Stuttgart hot spots, many people have been injured and killed by heavy rain-induced
floods in the past. The four cities with the most reported injuries were all caused by
one flood event that was caused by heavy rain: Neuhausen ob Eck (BW) 82 injuries
on 24.06.2016, Balingen (BW) 41 injuries on 24.06.2005, Wenden (NW) 37 injuries on
09.06.2007, and Kaiserslautern (RP) 35 injuries on 27.05.2016.
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3 Spatiotemporal analysis of heavy rain-induced flood occurrences in Germany

Figure 3.10: The identified hot and cold spots of heavy rain-induced flood events superimposed
over the number of flood-related injuries and fatalities (1900–2017: fatalities: n =
499, injuries: n = 583, data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche
Rück, 2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS,
2018).

3.5.5 Seasonality

We are further interested to know when floods triggered by heavy rain mostly occur
in Germany. Is there a season for heavy rain-induced floods? Which months have the
most flood events caused by heavy rain? And does the seasonality differ for different
regions in Germany? To investigate the seasonality, we summarized the seasonal heavy
rain-induced flood occurrence for the individual federal states (B.8) and for the whole
of Germany (B.9).
Germany has a pronounced summer season with regard to floods caused by heavy rain
(Fig. 3.11). Most documented flash flood and pluvial flood events occurred in the
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summer months of June, July and August, followed by events in spring (March to May).
In contrast, flood events triggered by heavy rain rarely occurred in autumn (September
to November) or winter (December to February). With 68.5% of the documented events,
summer is the predominant flood season in Germany. Overall, 90% of the documented
events took place in summer or spring, which indicates that autumn (6.9%) and winter
events (3.1%) play a negligible role in Germany.

Figure 3.11: Proportion of heavy rain-induced flood events per season for the federal states of
Germany (BW: n = 902, BY: n = 1, 768, BE: n = 102, BB: n = 540, HB: n = 26,
HH: n = 85, HE: n = 763, MV: n = 378, NI: n = 661, NW: n = 1, 289, RP:
n = 649, SL: n = 85, SN: n = 690, ST: n = 448, SH: n = 212, TH: n = 461;
Germany: n= 9, 059; data sources: THW, 2017; Deutsche Rück, 2018a; Deutsche
Rück, 2018b; DWD, 2018; ESWD, 2017; HANG, 2018; LfU, 2017b; URBAS,
2018).
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3 Spatiotemporal analysis of heavy rain-induced flood occurrences in Germany

Although summer is the predominant season of flash and pluvial floods throughout Ger-
many, the proportion of events in the individual seasons varies considerably between the
federal states (Fig. 3.11). We note that the proportion of spring events in the eastern
central German states are well above the average of 20%, with 30% in Saxony (SN), 35%
in Saxony-Anhalt (ST), and 38% in Thuringia (TH). While the share of spring events
is larger in southern and central states, spring events occur less frequently in northern
Germany. Mecklenburg-Western Pomerania (MV) and Berlin (BE) had particularly few
events in spring (7 and 10%, respectively). Regarding summer events, there is a slight
trend towards more summer events in a northerly direction. On average, almost 7% of
the documented German events occurred in autumn, with a tendency towards slightly
more autumn events in central Germany. Heavy rain-induced floods in winter are rare
in Germany. In most federal states, winter events do not account for a significant share.
Exceptions to this are the state of Saarland (26%, SL), and the northern city-states
of Hamburg (15%, HH) and Bremen (12%, HB), whose sample sizes, however, are too
small to ensure statistical significance.
Furthermore, we investigated the regional seasonal patterns of heavy-rain induced floods
in Germany (Fig. 3.12). To study the monthly patterns throughout Germany, we first
counted the number of heavy rain-induced flood events per month for each city using the
SQL statement in B.10. We then grouped the events into bins and determined for each
bin the month with the most events. For the investigation of the monthly patterns, we
focused on the events that occurred during the main season from April to October. Fig.
3.12 shows the regional seasonality patterns in Germany by displaying the month with
the most documented flash flood and pluvial flood events. Overall, July and June are
the months most often affected. The main season runs from late spring to early autumn,
with April and October marking the beginning and end of the heavy rain-induced flood
season.
Throughout Germany, the summer events in June and July dominate. However, May
events are particularly frequent in eastern Germany (Ore Mountains, Thuringian Forest,
Harz) and the Rhine-Neckar metropolitan region. The state of Bavaria (BY) has also ex-
perienced some spring events in the past. Autumn events rarely dominate but occurred
in central Germany along a single strip and sporadically in southwest Germany. In the
state of North Rhine-Westphalia (NW), we find an accumulation of events in late sum-
mer. Overall, we observe slight differences in the regional patterns of flood seasonality
in Germany.
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Figure 3.12: Seasonality of heavy rain-induced flood events over Germany. Indication of the
month with the most events aggregated in bins of 100 km2 (data sources: THW,
2017; Deutsche Rück, 2018a; Deutsche Rück, 2018b; DWD, 2018; ESWD, 2017;
HANG, 2018; LfU, 2017b; URBAS, 2018).

3.6 Discussion

3.6.1 Insights from event database setup

Most articles about flood and flash flood databases omit the technical details of the un-
derlying database. Therefore, information on the database management software used,
the event definition or the database design itself is rare. The lack of technical details
hampers the comparison of the HiOS database with other event databases, but under-
lines the importance of the article.
To fully profit from setting up a database for floods caused by heavy rain, a spatial
database should be chosen. Using a spatial database, such as PostgreSQL, enables
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merging and maintaining all required information in one place: geographical data, event
data, and metadata. Nevertheless, it is also possible to separate event information and
geodata. Barnolas and Llasat (2007) and Papagiannaki et al. (2013), for example, used
MS Access for their event databases and stored the geoinformation in a GIS software.
However, a GIS software is no longer necessary when using a spatial database. We used
PostGIS functions, for example, to derive the mean slope and elevation of the catch-
ments using the stored catchment shapefiles and the DEM. Therefore, separating event
and geographic data unnecessarily complicates analyses, as spatial databases can hold
spatial and non-spatial data and provide spatial functions.
Furthermore, it is important to choose a spatial database that provides interfaces to
several front-end solutions. Effective flood investigations require interfaces to common
GIS software (e.g., ArcGIS Pro, QGIS), programming languages (e.g., Python, R), and
database management software. With this variety of front-end software, researchers can
select the system best suited for a given task. In some cases, for example, spatial queries
in PostgreSQL were faster than calculations in ArcGIS Pro. Furthermore, we generated
datasets that required programming within Jupyter Notebook and the python libraries
Psycopg 2 and GeoPandas. These datasets could not have been created within the
database environment since databases are not created to support complex programming
tasks. In addition, Python offers a variety of easy-to-use libraries and functions for sci-
entists that facilitate data analysis. However, dataset processing outside the database
requires knowledge of another programming language and maintenance of an additional
system.
To uniquely define a flood event, a space and time reference is required. While the
occurrence date is clear as a temporal reference, the spatial reference of a flood event
is controversial. For the HiOS database, we chose a damage-based definition, which
uses the affected city as the spatial reference and the time of occurrence in the city
as the event date. However, other researchers use meteorological or hydrological event
definitions in their flood databases. Barnolas and Llasat (2007), for example, group
flood events under the same event ID if they were triggered by the same meteorological
event. Thus, the size of the rain cell defines the spatial event extent. Consequently, the
initial and final date of the triggering rainfall marks the beginning and end of the event
(Barnolas and Llasat, 2007). Adhikari et al. (2010), in contrast, apply a hydrological
event definition to their Global Flood Inventory. Therefore, affected cities in the same
catchment obtain the same event ID and the event start corresponds to the start date
of the flood event.
Hydrometeorological event definitions are impractical since documenting flash flood and
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pluvial flood events in a hydrometeorological context requires prior analyses of convec-
tive cells and catchments. It is also not possible to add new flood events without first
finding out whether the event already exists in the database and what the event ID is.
However, when applying a damage-based definition, we can still aggregate the events
hydrometeorologically. By using the stored catchment shapefiles or radar images and
the event date, we can group flood events according to the meteorological or hydrological
context.
The design of the database tables influences the later event analyses. To avoid restrict-
ing subsequent analyses, the database design should maintain the spatial accuracy of
the event information. As soon as the event information is entered into the database in
aggregated form, e.g., summarized for the municipality or rural district, distinct damage
analyses for individual cities or catchments become impossible. We therefore advocate
documenting event information at the city level with the possibility to further differen-
tiate the affected districts by specifying the postcodes (for major cities) or the affected
urban areas (for cities). In addition, inundated areas or affected houses can be specified
by polygons and points (e.g., Gourley et al., 2017; Diakakis, 2014). However, preserving
the spatial accuracy of event information requires a more complex database design as
well as more effort for data preparation.
A complex event database, like the HiOS database, may not be required for every study.
It is therefore advisable to weigh the effort for database creation against the study objec-
tives. Setting up an event database for a few simple analyses is probably not worthwhile.
However, an event database offers further advantages that should be considered, besides
data management. For example, the database could be integrated into a website where
researchers or interested parties can view and/or download event data (e.g., ESWD,
Storm Events Database). Furthermore, people could report events via an online form,
which are entered directly into the event database. To maintain quality standards, pub-
lic reports would have to be reviewed and verified by trained personnel or experts. In
this way, the ESWD, for example, enlarges its event dataset (Dotzek et al., 2009). In the
future, methods of machine learning can help increase flood datasets. One possibility
to do so is, for example, automatically extracting flood event information from online
newspaper articles (cf. Yzaguirre et al., 2015; Zarei and Nik-Bakht, 2019) and subse-
quently updating the event database. However, a final quality control of the extracted
event information by an expert would remain necessary.
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3.6.2 Findings from spatiotemporal investigations

Our investigations show that heavy rain-induced flood occurrences are randomly dis-
tributed over Germany, which the recent findings of the GermanWeather Service (Lengfeld
et al., 2019) on short-term heavy precipitation also show. The analysis of radar data
from 16 years (2001–2016) revealed that short heavy precipitation events occur with a
similar frequency and intensity throughout Germany (Lengfeld et al., 2019). Lengfeld
et al. (2019) have proven that hourly precipitation is equally likely in both flat and
mountainous areas, as short precipitation events appear to be hardly controlled by orog-
raphy. Consequently, every German region can be affected by pluvial floods and flash
floods triggered by heavy rain.
We cannot make statements about trends regarding the number of heavy rain-induced
flood events in Germany. This is because we estimate the time series to be too short
for a reliable trend analysis, as the HiOS dataset can only be considered comprehensive
from 2000 onwards (Kaiser et al., 2020b). Nonetheless, the 10-year moving average of
documented heavy rain-induced flood events per year has increased from 42 in 2000 to
555 in 2017. This increase in flood events may be attributed to increased press cov-
erage of natural hazards (Llasat et al., 2009) as well as to the advent of the Internet
(Wirtz et al., 2014), which facilitated the search for events and thus made more event
information available. Furthermore, climate change could lead to an increase in heavy
rain-induced floods, as a significant increase in heavy precipitation events is projected
for Europe (Kovats et al., 2014). Concerning the development of deaths and injuries
related to floods caused by heavy rain, our time series suggests neither a decrease nor
an increase.
Floods triggered by heavy rain in Germany seem to occur more likely between noon
and late afternoon, with a peak at 15:00 local time. For western U.S., Ahmadalipour
and Moradkhani (2019) found a similar diurnal distribution with more flash flood events
starting between 15:00 and 20:00 local time. With regard to the atmospheric processes,
this diurnal distribution of heavy rain-induced flood events appears plausible, since con-
vective precipitation in summer is often associated with thunderstorms. Thunderstorms
usually form in the late afternoon or early evening, when warm, humid air near the
ground has heated up due to strong solar radiation and is forced to rise into colder lay-
ers of air.
The most injurious and deadly flood events caused by heavy rain in Germany started
around noon and late in the evening. Previous studies by Špitalar et al. (2014) and Terti
et al. (2017) have proven an accumulation of injurious and fatal events in the evening.
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Špitalar et al. (2014) examined 21,546 flash flood events in the U.S. from 2006 to 2012
and discovered that flash floods claimed most injuries and fatalities when they occurred
in the late evening. Špitalar et al. (2014) observed that the most fatal events occurred
at 21:00 local time. Terti et al. (2017) investigated 1,075 flash flood deaths in the U.S.
from 1996 to 2014 and showed that 63% of the deaths were related to vehicles. Their
analysis revealed a peak in vehicle-related fatalities between 19:00 and 21:00 local time.
Terti et al. (2017) assumed that people are often unwilling to leave their cars, e.g., when
commuting to/from work, even when the streets are flooded. This assumption is sup-
ported by the fact that many of the victims in the study died trying to drive through the
floodwaters (Terti et al., 2017). Špitalar et al. (2014) hypothesized that poor visibility
in the twilight hours leads to more motorists driving into flooded roadways by accident.
The unwillingness to leave the car and poor visibility seem to be plausible reasons for the
high number of victims in the evening hours, also for Germany. However, it is unclear
why there were also many victims in the midday hours in Germany. This could possibly
have to do with the fact that at lunchtime many people are outdoors (e.g. end of shift,
lunch break, end of school) and are thus outside of protective buildings. However, this
remains speculation, as the circumstances of death are not recorded in our database. In
addition, the beginning of the event and the time of death are not necessarily the same
and can therefore be far apart.
Our investigation indicates a moderate correlation between the number of inhabitants
and the number of flash floods and pluvial floods. This correlation is probably the reason
why several studies use the population as one of several predictors to explain the spatial
distribution of flash floods (Marjerison et al., 2016; Liu et al., 2018; Ma et al., 2019).
Further studies have investigated the correlation between population density and flash
flood impacts (Calianno et al., 2013) or have predicted flash flood human impacts using
population density as one of the explanatory variables (Terti et al., 2019). Although
we showed a relationship between heavy rain-induced flood events and population, we
cannot say what constitutes this relationship. At the rural district level, we could not
find a correlation between the number of heavy rain-induced floods and the sealing de-
gree. In the study by Marjerison et al. (2016), however, the share of the impervious area
was positively correlated with the number of flash flood reports in Binghamton, New
York. Still, Marjerison et al. (2016) conclude that the relationship between population
and soil sealing is not straightforward and that the sealing degree thus only partially
explains the correlation with the population. As the relationship between flash floods
and human activities is complex (Liu et al., 2018), further detailed analyses are needed
to understand its nature.
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Although short heavy precipitation events occur with a similar frequency and intensity
in Germany (Lengfeld et al., 2019), we detected that some regions are more frequently
affected than others. Therefore, the occurrence of hot and cold spots of heavy rain-
induced floods evidences that catchments are susceptible to flash and pluvial flooding
in different ways. If the catchment characteristics had no influence on the occurrence
and magnitude of a flash flood, the regions would be affected about equally often. This
seems plausible, since other studies have been able to predict the occurrence of flash
floods using catchment properties (e.g., Bui et al., 2019a; Costache, 2019b; Marjerison
et al., 2016; Ma et al., 2019; Janizadeh et al., 2019).
We identified a relatively good spatial correspondence between identified hot spots and
human-impacting events. Still, injurious and fatal events also occurred in cold spots or
statistically non-significant areas. In this regard, we must keep in mind that every injury
and death is the result of unique circumstances and thus cannot be directly attributed
to the location. Yet in regions with frequent heavy rain-induced flood occurrences, the
probability of people being injured or killed increases. When investigating more than
20,000 flash flood events in the U.S., Špitalar et al. (2014) found that fatalities – and
especially injuries – were more frequent in rural than urban areas. However, when
human-impacting events occurred in urban regions, they caused more injuries and fatal-
ities per event than in rural areas (Špitalar et al., 2014). To confirm these observations
for Germany, more detailed analyses would have to be carried out.
Our study showed that there is a summer seasonality of floods caused by heavy rain for
Germany, confirmed by the seasonality patterns evidenced in previous studies (Gaume
et al., 2009; Kaiser et al., 2020a). Various studies confirm that the flash flood seasonal-
ity of Mediterranean and Inland Continental countries in Europe differ from each other.
While the main flash flood season is autumn for Mediterranean countries (Gaume et al.,
2009; Llasat et al., 2014; Tarolli et al., 2012; Papagiannaki et al., 2015), Inland Conti-
nental countries experience most flash flood events in the summer (Gaume et al., 2009;
Kaiser et al., 2020a). England also has a pronounced summer seasonality (Archer et al.,
2019) and is thus comparable with the seasonality of Central European countries such
as Germany, Austria, Slovakia and Romania.
When interpreting the results of our investigations, we have to consider potential in-
herent biases in the HiOS dataset. One shortcoming of our event database might be a
temporal bias, which leads to an increase in natural hazard events over time (Gall et al.,
2009). According to Gall et al. (2009), this temporal upward trend can be attributed to
the increase in population and prosperity, especially in high-risk areas, as well as progress
in hazard monitoring and reporting. Kron et al. (2012) assume, however, that the tem-
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poral bias of hazard reporting for Western Europe has not been too pronounced over
the past 30 to 40 years. In addition, flood events that happened in densely populated
areas might be overrepresented in the HiOS dataset (geography bias) (Gall et al., 2009).
Finally, we must also bear in mind that in our analyses pluvial floods and flash floods,
as well as different event magnitudes are considered together. This is largely because
the event type or magnitude of most documented events, apart from well-documented
catastrophic events, cannot be reliably determined by the given event information.

3.7 Conclusion

This paper illustrates how to design an effective event database suitable for flash flood
research. Using the HiOS database, we exemplified the considerations and assumptions
required to set up a relational database for investigations on heavy rain-induced floods
in Germany. After defining the database’s purpose and requirements, we described
the system architecture with its front-end solutions. We further explained in detail
the table design, attributes, and relationships of the HiOS database. We investigated
the spatiotemporal occurrence of heavy rain-induced floods in Germany by creating
necessary datasets using the database.
By providing details on the database design, we provided a starting point for those
who wish to set up a similar event database. For scientific investigations, we need a
flexible database structure supporting all targeted analyses. Reviewing our experiences,
we can make the following recommendations for designing an effective flash flood event
database:

(1) Choose a database management system that offers interfaces to a GIS software
(e.g., ArcGIS Pro, QGIS), a programming language (e.g., Python, R), and a
database management tool (e.g., pgAdmin). A system architecture with multi-
ple front-end solutions offers the flexibility to use the software best suited for the
investigation.

(2) Use a spatial database system to bundle all required information and data in one
place: event information, geodata (e.g., DEM, soil, land use), measurements (e.g.,
discharge, precipitation), reference data (e.g., administration structure), hydrolog-
ical information (e.g., catchments, rivers), metainformation (e.g., sources, quality
estimation).
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(3) Implement an event definition that allows the documentation of flood events with-
out the need for prior hydrometeorological analyses. Avoid storing events aggre-
gated by catchment or triggering precipitation event.

(4) Design database attributes in such a way that they enable differentiated event
documentation. Implement attributes to allow for differentiation of flash flood
impacts within cities, e.g., by specification of ZIP codes and city districts.

Furthermore, we investigated the documented flash flood and pluvial flood events using
the HiOS database. We examined the occurrence of heavy rain-induced floods in Ger-
many regarding spatial distribution and patterns, temporal evolution and seasonality.
The main findings from the study are summarized as follows:

• Floods caused by heavy rain occur throughout Germany, both in flat and in moun-
tainous terrain. However, there is a slight tendency toward the Northern German
Plain experiencing less flash flood and pluvial flood events.

• Heavy rain-induced flood events occurred most frequently at 15:00 local time.
Overall, the occurrence of heavy rain-induced floods is more likely between noon
and late afternoon (14:00–18:00 local time) than at night or in the early morning.
Most people died in heavy rain-induced floods that started around noon or 21:00
local time. Injuries were most common during floods with onsets between 18:00
and 19:00 local time. Commute and bad visibility during twilight are suspected to
increase the injury and death rates in the late evening.

• There is a moderate positive correlation (r = 0.62) between the number of heavy
rain-induced flood events and the number of inhabitants. In our study, the share
of impervious area did not explain the correlation between heavy rain-induced
flood events and population. Therefore, further analyses investigating the complex
relationship between heavy rain-induced floods and human activity should consider
other factors, such as the number of culverts, the degree of river obstruction, land
use and topographic features.

• The flash flood frequency shows a clustered pattern over Germany. We identified
seven hot spots, four attributed to mostly metropolitan areas and three to the
less populated, mountainous regions. The Northwestern German Plain and North-
Central Bavaria are cold spots with particularly few flash flood and pluvial flood
events.
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• There is an increased incidence of injuries and fatalities in identified hot spots.
Injurious and fatal flash flood and pluvial flood events were less frequent in the
Northern German Plain and Central Bavaria, where cold spots were identified.

• Flash floods and pluvial floods occur in Germany mainly between April and Oc-
tober, with summer being the predominant season. Autumn and winter events
hardly occur. There is a tendency towards more summer events in Northeastern
Germany, while Central-Germany has a more pronounced spring season.

We benefit from our findings with regard to flood risk management and public relations.
Now that flood hot spots have been identified, we can prioritize detailed investigations
and adapt local flood risk management. Knowledge of the diurnal and seasonal occur-
rence of heavy rain-induced floods and high-risk areas is valuable information to improve
risk assessment and decision-making. In addition, the knowledge gained about heavy
rain-induced flood occurrences in Germany helps to describe the characteristics of the
natural hazard to the public.
This paper demonstrates that event databases are essential scientific tools that help to
advance our understanding of flood hazards from heavy precipitation. By ensuring the
usability and quality of event data, databases are valuable instruments for various appli-
cations in flash flood research, such as damage modeling, risk assessment, socio-economic
analyses, or climate change studies. Due to climate change and the associated need to
better understand flash flood hazards, the importance of event databases will continue
to increase.
To enable concrete prevention measures derived with the help of the event database, we
have to carry out site-specific analyses of factors promoting and triggering flash floods
and pluvial floods. These analyses must link catchment characteristics, topography, soil
properties, and land use with the occurrence of flash and pluvial floods to evaluate the
influence of the area properties. The result of this regional risk assessment could be
presented in a map indicating the flood hazards from heavy precipitation, as planned
for the state of Bavaria within the HiOS project.
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4 Predicting pluvial and flash flood
susceptible areas in the state of
Bavaria (Germany) using tree-based
classifiers

This chapter is submitted as:

Kaiser, M., Günnemann, S., Disse, M., 2021. Predicting pluvial and flash flood sus-
ceptible areas in the state of Bavaria (Germany) using tree-based classifiers. Submitted
to Journal of Hydrology (under review).

Abstract Flood events triggered by heavy rain, such as pluvial and flash floods, are
a common threat in the state of Bavaria (Germany). However, it is unknown which
areas and cities in Bavaria are particularly vulnerable to flooding caused by heavy rain.
To improve flood risk management, we aimed at identifying susceptible areas within the
state territory (70,500 km2) using machine learning models. To this end, we trained
a Random Forest (RF), a Gradient Boosting Decision Tree (GBDT), and a CatBoost
model (CB) using 1,864 flood and non-flood locations and 11 spatially distributed and
six catchment-related influencing factors. Regarding performance metrics, all three mod-
els performed equally well (CB: AUC=0.819, RF: AUC=0.816, GBDT: AUC=0.813),
with the CatBoost model performing best. Although we had only three sample points
per 100 km2, we achieved good model performance. This is because we have ensured
homogeneous spatial coverage of Bavaria and representation of the four major land-
scapes in the training and testing set. We found that the particularly vulnerable regions
are located in southeastern Bavaria (Alpine foothills, Munich and its surroundings, the
southern part of the eastern low mountain range) and northern Bavaria (metropolitan
area of Nuremberg, Würzburg and its surroundings, along the Main River). Based on
the pluvial and flash flood susceptibility assessment, we calculated an overall susceptibil-

87



4 Predicting pluvial and flash flood susceptible areas in the state of Bavaria

ity score for the Bavarian cities, which evidences that 16% of the Bavarian cities are at
high risk. Those responsible for spatial planning and flood risk management can use the
susceptibility map generated to identify pluvial and flash flood-prone areas in Bavaria.

4.1 Introduction

Since flash floods pose a deadly threat to humans, researchers are looking for ways to
improve flash flood forecasting and warning. Yet protecting against the natural hazard
is challenging as flash floods are difficult to predict and can occur anywhere. Nonethe-
less, researchers have succeeded in establishing early warning systems using weather
radar, hydrologic and hydrodynamic models, and drainage network monitoring (e.g.,
J. A. Smith et al., 2007; Javelle et al., 2010; Looper and Vieux, 2012; Bartos et al.,
2018; Hofmann and Schüttrumpf, 2020). For warning purposes, researchers identify
flash flood-prone areas using various modeling techniques, such as GIS, hydrodynamic
models, or data-driven models (e.g., Iosub et al., 2020; Nguyen et al., 2020; Li et al.,
2019)
For several years, researchers have increasingly used machine learning (ML) models in-
stead of hydrodynamic or physical models in flood modeling. According to Mosavi et al.
(2018), the increasing popularity is because ML models can describe the flood events’
nonlinearity based on historical data alone, without having to consider physical pro-
cesses. In addition, ML models are less costly and faster to set up than hydrodynamic
models. Meanwhile, researchers have successfully derived flood and flash flood suscepti-
bility maps using ML models (e.g., Bui et al., 2019a; Chen et al., 2019; Tien Bui et al.,
2020). The ML algorithms applied in (flash) flood susceptibility modeling are diverse:
logistic regression (e.g., Costache, 2019a), decision trees (e.g., Costache and Tien Bui,
2019), support vector machines (e.g., Tehrany et al., 2014), Naïve Bayes (e.g., Khos-
ravi et al., 2019), ensemble methods (e.g., Bui et al., 2019b), artificial neural networks
(e.g., Ngo et al., 2018). To further improve prediction performance, researchers have
hybridized ML algorithms with bivariate models (e.g., Frequency Ratio, Weights-of-
Evidence, Shannon’s Entropy), multi-criteria decision methods, or GIS techniques (e.g.,
Wang et al., 2019; Khosravi et al., 2016; Costache et al., 2020c)
The state of Bavaria (Germany) has been affected by heavy rain-induced floods in the
past, yet it is not known which areas are prone to pluvial and flash flooding. In the re-
cent past, the year 2016 stands out with 410 documented pluvial and flash flood events
(Kaiser et al., 2020b). Most of these heavy rain-induced flood events occurred in May
and June, claiming seven lives and causing e1.25 billion in damage in the most affected
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district (LfU, 2017e). To better assess pluvial and flash flood hazards, it is necessary to
generate a susceptibility map for Bavaria, which provides information on areas at risk.
To identify endangered regions in Bavaria, we need to derive a susceptibility map for
pluvial and flash floods using a modeling technique that is affordable, quick, and can
process a large study area. In this paper, we illustrate how to generate a pluvial and
flash flood susceptibility map for the state of Bavaria using tree-based ensemble models
and appropriate explanatory factors. First, we review the influencing factors applied in
flash flood susceptibility studies (Section 4.2). This is followed by a description of the
study area (Section 4.3). We then introduce the datasets and methods used (Section
4.4) and present the study results (Section 4.5). Finally, we discuss our findings from
susceptibility map generation for a state using tree-based algorithms (Section 4.6) and
provide concluding remarks (Section 4.7).

4.2 Influencing factors on flash flood occurrence

To set up a good predictive model, it is crucial to choose robust explanatory features.
Several studies have proven that it is possible to predict whether a location was affected
by a flash flood in the past based on area characteristics (Bui et al., 2019a; Nguyen et al.,
2020; Pham et al., 2020a). To find out the most frequently applied explanatory features,
we compared 23 recent studies on flash flood modeling that applied machine learning
algorithms. For direct comparison, we listed the explanatory features used in each of
these studies in Table 4.1. We summarized the influencing factors in the categories of
topography, soil and geology, land cover, river network, precipitation characteristics, and
anthropogenic factors.
In the studies examined, the number and type of influencing factors applied varied. We
identified a total of 37 different influencing factors, 12 of which were topography-related.
The explanatory factors applied cover a broad spectrum and range from elevation and
soil type through the fraction of vegetation cover and river density to the sealing degree.
The studies reviewed used between 6 and 15 influencing factors for flash flood modeling,
with 10 factors representing the median.
Topographic parameters were the most frequently used explanatory factors in these stud-
ies (Table 4.1). The studies examined applied between 2 and 7 topographic parameters
(5 parameters on average). The slope, as the only explanatory factor, was used by each
of the 23 studies reviewed. Other frequently considered topographic parameters were
aspect, elevation, and the Topographic Wetness Index (TWI), which were applied in 16,
15, and 14 studies, respectively.
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We attributed five explanatory factors to the category land cover, namely Normalized
Difference Vegetation Index (NDVI), fraction of vegetation cover, land use, curve num-
ber (a combination of soil type and land use), and surface roughness. Usually, one of
these five land cover parameters was used to explain the flash flood occurrence. In 61%
of the studies, the explanatory factor land use was chosen, which makes it the fifth most
frequently used parameter besides TWI.
In the studies investigated, six parameters were used to describe the characteristics of
the river network. Most often the parameter river density was applied, followed by the
distance to the river and the convergence index. The flow direction, in contrast, was
only considered in the study by Pham et al. (2020b). In three studies, a maximum of
three river network parameters was considered simultaneously, while the study by Tang
et al. (2019) completely disregarded parameters of the river network in its modeling.
Precipitation characteristics and anthropogenic factors were used far less often as ex-
planatory factors compared to the other categories. Only 61% of the studies used
precipitation information to explain flash flood occurrence, and only three studies con-
sidered anthropogenic factors. We counted population, sealing degree, gross domestic
product, and flash flood prevention investments among the anthropogenic factors. The
studies, in which precipitation was considered, generally used information on the mean
annual precipitation for different durations and the rainfall amount of a defined interval,
in most cases the event.
According to our literature review, it is at least necessary to describe an area’s topog-
raphy, lithology, land use, and river network to explain the occurrence of flash flooding
with an ML model. Since topography has a significant influence on the occurrence of a
flash flood, the topography of an area must be comprehensively described by several pa-
rameters (e.g., slope, aspect, elevation, TWI) in the ML model. The comparison of the
studies also suggests that lithology is an essential parameter in explaining flash flooding,
often used in combination with soil type or hydrological soil group. The characteristics
of the river network should also be considered in the ML model (e.g., via river density,
distance to the river, convergence index), although no river network parameter, such
as slope or lithology, has prevailed in previous studies. However, how well the chosen
parameters can explain flash flood occurrence depends not least on the combination of
parameters, the quality of the underlying datasets, and the characteristics of the study
area.
The investigated studies were carried out in six different countries: Vietnam (Bui et
al., 2019b; Ngo et al., 2018; Nguyen et al., 2020; Pham et al., 2020b; Tien Bui et
al., 2019; Tien Bui et al., 2020), Romania (Costache and Tien Bui, 2020; Costache,
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2019a; Costache, 2019b; Costache and Zaharia, 2017; Costache et al., 2019; Costache
et al., 2020a; Costache et al., 2020b; Costache et al., 2020c), Iran (Hosseini et al., 2020;
Janizadeh et al., 2019; Khosravi et al., 2016; Chapi et al., 2017; Pham et al., 2020a;
Khosravi et al., 2018), China (Tang et al., 2019; Ma et al., 2019; Chen et al., 2019),
Saudi Arabia (Youssef et al., 2016), and Greece (Diakakis et al., 2016). Of the 23 stud-
ies, 9 studies were performed in Europe and 14 at study sites in Asia. Although the
studies cover different climate zones, there is no discernible difference in the choice of
the influencing factors based on the site location. However, the influencing factors may
have had different feature importances in the models of the different regions, which we
have not examined.
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Table 4.1: Influencing factors used in various studies on flash flood susceptibility.
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Topography
Aspect x x x x x x x x x x x x x x x x
Circularity ratio x
Curvature x x x x x x x x
Elevation x x x x x x x x x x x x x x x
L-S factor x x x
Plan curvature x x x x x x x x
Profile curvature x x x x x x x x
Slope x x x x x x x x x x x x x x x x x x x x x x x
Topographic Position Index x x x x x x x x
Topographic Roughness Index x
Topographic Wetness Index x x x x x x x x x x x x x x
Toposhade x x x

Soil & geology
Hydrological soil group x x x x x x
Lithology x x x x x x x x x x x x x x x x x x x
Soil depth x
Soil moisture x
Soil type x x x x x x x x x x
Soil water capacity/retention x

Land cover
Curve number x x x x
Fraction of vegetation cover x x



Table 4.1: Continued.
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Land use x x x x x x x x x x x x x x
Normalized Difference Vegetation Index x x x x x x x
Surface roughness x

River network
Convergence index x x x x x x x x
Distance to river x x x x x x x x
Flow accumulation/contributing area x x x
Flow direction x
River density x x x x x x x x x x
Stream power index x x x x x x

Precipitation characteristics
Max. precipitation intensity of diff. durations x x
Mean annual precipitation of diff. durations x x x x x x
Modified Fournier index x x
Precipitation amount (of event) x x x x x x

Anthropogenic factors
Gross domestic product x
Population x
Prevention investments x
Sealing degree x x

Number of influencing factors 12 8 9 10 10 10 10 10 12 7 15 8 10 11 12 12 10 8 10 6 12 9 7



4 Predicting pluvial and flash flood susceptible areas in the state of Bavaria

4.3 Description of the study area

The state of Bavaria is located in southern Germany. With an area of 70,542 km2,
Bavaria is the largest state among the 16 German states. Bavaria has the second most
inhabitants of all the federal states with 13.12 million inhabitants (Destatis, 2020a). The
capital Munich is the largest metropolitan area in the Bavarian state. Another metropoli-
tan region is found around the city of Nuremberg in Northern Bavaria. Bavaria has 2,056
municipalities, including 317 cities (Destatis, 2020b).
Bavaria can be divided into four major landscapes: the Alps, the Alpine foothills, the
eastern and south-western low mountain range (Fig. 4.2). The Alps in southern Bavaria
are the smallest major landscape regarding area. The Bavarian Alps are characterized
by high mountains with heights between 1,500 and almost 3,000m. The Alpine foothills
(elevation range 300–800m) describe the region north of the Alps and south of the
Danube, which is characterized by glacial deposits. South of the Danube, there is fertile
hilly country to which an area with numerous lakes connects further in the south. The
eastern low mountain range is located in the northeast of Bavaria and the south-western
low mountain range is found in north-west Bavaria. The low mountain ranges are moun-
tainous areas with rounded, wooded ridges and elongated valleys.
Bavaria is characterized by a warm-moderate climate, as it is located in the transition
zone between the maritime climate of Western Europe and the continental climate of
Eastern Europe. Bavaria’s climate is influenced by the different altitudes and the struc-
ture of the low mountain ranges, the Alpine foothills, and the Bavarian Alps (StMUV,
2015). The altitudes range from 100m, in the northwestern part of Bavaria, to nearly
3,000m in the Alps.
Differences between the seasons are clear but not extreme in Bavaria. In the period
1971–2000, the annual average temperature in Bavaria was 7.8 ◦C. The average summer
temperature in Bavaria was 16.2 ◦C, the average winter temperature 0.5 ◦C. In the ref-
erence period 1971–2000, July was the warmest month, and January the coldest. Due
to the altitude dependence, however, the annual average temperatures vary greatly over
Bavaria (StMUV, 2015).
The average annual precipitation amount in Bavaria is 945mm, but regional differences
are large. The highest average annual precipitation amount with 1,800mm are recorded
in the Alpine region. With an average of 600 to 700mm per year, it rains the least in
central and northwest Bavaria. High rainfall amounts are common for the low moun-
tain ranges, the Alpine foothills, and the Alps. With 111mm on average, July is the
month with the most precipitation, whereas February is the month with the fewest pre-
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cipitation (56mm) (StMUV, 2015). Overall, the warmer, dry Northwest contrasts the
precipitation-rich regions of the south and east of Bavaria. The pluvial and flash flood
season in Germany is summer, with July being the month with the most events. The
state of Bavaria also experiences heavy rain-induced flood events in spring. With 59
recorded events until 2017, Munich was the second most affected city after Berlin (65)
(Kaiser et al., 2021).
Bavaria is a water-rich state with about 100,000 km of flowing waters. Large waters
of national importance account for 4,200 km, another 4,800 km are waters of regional
importance (LfU, 2017d). About 91,000 km are small waters that considerably influence
the formation of flash floods. A main European water divide runs through Bavaria,
separating the Danube, Rhine, and Elbe River basins. The Danube is Bavaria’s largest
river, which is characterized by its water-rich tributaries originating from the Alps and
the Bavarian Forest in the eastern low mountain range (StMUV, 2012). The Danube
drains most of Bavaria from the south, while the Main drains the north-west of Bavaria.
Agriculture and forestry are an important economic sector in Bavaria. More than half
of the state area (53.4%) is used for agriculture, 65% of which is arable land and
35% is grassland (BBV, 2020). Forests and near-natural areas account for 37.9% and
are mainly found in the alpine region and the low mountain ranges in east and south-
western Bavaria. Wetland and water bodies sum up to 1.2% of the area. The built-up
area makes up 7.5% of the state territory. In 2015, the degree of soil sealing in Bavar-
ian municipalities was between 27 and 75%. In relation to Bavaria’s total settlement
and traffic area, the proportion of sealed surfaces amounts to 50.9% (Üreyen and Thiel,
2017).
Based on their runoff potential, the Bavarian soils can be divided into the four hydro-
logical soil groups A, B, C, and D. The hydrological soil group A, which corresponds to
sand, loamy sand, or sandy loam types of soils, occurs on 13% of the Bavarian area.
The hydrological soil groups B (silt loam or loam) and C (sandy clay loam) have an area
share of 14 and 49%, respectively. The hydrological soil group D, which are soils of clay
loam, silty clay loam, sandy clay, silty clay or clay, covers 24% of Bavaria. The soils of
group D are characterized by very low infiltration rates and thus favor the generation
of surface runoff. These soils with high runoff potential are mainly found in the alpine
region and the south-western low mountain ranges. Overall, the soils with low and very
low infiltration rates (C and D) account for 73% of the total area.
To sum up, the study area has a large extent and includes a variety of different natu-
ral landscapes. Bavaria combines a great diversity regarding land use, soil, vegetation,
morphometry, and climatic conditions. Therefore, low mountain ranges and cultural
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landscapes stand for Bavaria as much as large forests, a multitude of rivers and lakes,
and the Alpine region.
However, the large natural heterogeneity of Bavaria poses a challenge for the ML model.
To achieve high model performance, the selected explanatory factors must comprehen-
sively describe the different characteristics of the four major landscapes. In addition, a
sufficient amount of training data in the different major landscapes is necessary to learn
the relationships in a sound way.

4.4 Data and methods

4.4.1 Methodical approach

For the generation of the pluvial and flash flood susceptibility map of Bavaria, we fol-
lowed the steps shown in Fig. 4.1. The overall workflow consists of the following steps:
(i) feature selection based on literature review, multicollinearity analysis, and feature im-
portance, (ii) feature preparation including handling of missing data, standardization,
and Weight-of-Evidence encoding, (iii) construction of the training and test datasets, (iv)
model training and validation using performance statistics, (v) final model selection, and
(vi) generation of the pluvial and flash flood susceptibility map. In the following sections
we describe each step in detail.

4.4.2 Flood inventory, training and test dataset

The derivation of the flash flood susceptibility for a given area using machine learning
models requires the knowledge of formerly affected and unaffected locations. Based on
the affected and unaffected locations, the model learns which area characteristics and
conditions favor the occurrence of flash floods. In this study, we use the pluvial and flash
flood dataset generated within the framework of the HiOS project. Kaiser et al. (2020b)
created a dataset of past German pluvial and flash flood events triggered by heavy rain
using a variety of sources ranging from agencies over mission archives and insurance
companies to media reports. According to this dataset, 932 Bavarian settlements and
cities were affected by one or more pluvial and flash flood events by 2017.
To prevent introducing bias into the model, we chose the same number of unaffected
locations as affected locations. We randomly selected 932 locations from the remaining
Bavarian towns, assuming that we know all affected locations and that the remaining
locations have therefore not been affected. To ensure the representativeness of the major
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Figure 4.1: Flow chart of the methodical approach.

landscapes, we selected as many unaffected locations in each major landscape as affected
locations were known.
Subsequently, we split the generated pluvial and flash flood dataset of 1,864 samples
into a training and test dataset. For the training dataset, we randomly selected 80% of
the dataset. The remaining 20% of the dataset was used as a test dataset (Fig. 4.2).
Since this is a binary classification problem, the values “1” and “0” were assigned to the
flood and non-flood samples, respectively. At each sample point, we also extracted the
values of the influencing factors. We calculated the catchment-related factors for 12,964
catchments whose average size was 5 km2 and their median size was 2 km2. Since flash
floods mainly occur in small catchments, we chose a catchment scale that can finely
represent the catchment characteristics of Bavaria.

4.4.3 Chosen influencing factors

Based on the literature study and data availability, we preselected possible influencing
factors. We then used multicollinearity analysis and the classifiers’ feature importance
to gradually reduce the over 30 influencing factors to 17. Although tree-based models
are insensitive to collinear predictors, we reduced the number of influencing factors as
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Figure 4.2: The study area, the state of Bavaria (Germany), with the training and test loca-
tions.

much as possible. We aimed at reducing the model complexity to make them easier
to understand. To ensure the acceptance of the flash flood susceptibility map, it is
important to use models that are as simple and comprehensible as possible.
We applied the indicators variance inflation factor (VIF) and tolerance (TOL) to evaluate
collinearity among the predictors. In the literature, VIF>10 and TOL<0.1 are often
considered as thresholds for the presence of multicollinearity (Dormann et al., 2013).
Table 4.2 shows that all 17 selected influencing factors except the product of the X-
and Y-coordinate meet these thresholds. However, we do not consider this to be a
problem, since on the one hand tree-based classifiers are tolerant of multicollinearity
and on the other hand the high VIF was caused by the inclusion of products of two
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Table 4.2: Multicollinearity analysis of the flash flood influencing factors. The (c) indicates
catchment-related influencing factors.

Factor Variance inflation factor Tolerance

X*Y coordinate 12.170 0.082
Relief (c) 4.229 0.236
Melton number (c) 3.759 0.266
Heavy rain hours 2.034 0.492
Length-area-relation (c) 1.990 0.503
Elevation 1.806 0.554
Distance to river 1.756 0.569
Height above the nearest drainage 1.686 0.593
Built-up area share (c) 1.661 0.602
Agricultural area share (c) 1.500 0.667
Sealing degree 1.292 0.774
Slope 1.215 0.823
Land use 1.212 0.825
Permeability of upper aquifer 1.157 0.864
Landforms 1.053 0.950
Saturated hydraulic conductivity 1.023 0.978
Elongation ratio (c) 0.872 1.147

variables. Furthermore, the predictor X*Y coordinate is a combined predictor that
implicitly considers two predictors simultaneously and thus adding value to the model.
Using multicollinearity analysis and feature importance, we gradually reduced the num-
ber of influencing factors to 17. While reducing the input features, we took care to
retain explanatory variables from all domains that can explain the occurrence of plu-
vial and flash floods. Thus, we retained features describing topography, land use, soil
and geology, river network, heavy precipitation, and catchment properties. Overall, we
selected the following influencing factors: elevation, slope, landforms, land use, sealing
degree, distance to river, height above the nearest drainage, the permeability of the
upper aquifer, saturated hydraulic conductivity, the product of X- and Y-coordinates,
heavy rain hours, and the catchment-related variables relief, Melton number, elonga-
tion ratio, length-area-relation, built-up area share, and agricultural area share. Table
4.3 lists the sources, resolution and original format of the datasets used to derive the
influencing factors. For the study, we converted the influencing factors into raster of
25m.
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Table 4.3: Sources and resolutions of the datasets used.

Derived factor Name of input data and
official abbreviation

Scale /
resolution

Original
format

Data source / reference

Built-up share Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Agricultural share Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Melton number Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Relief Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Elongation ratio Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Length-area-relation Catchments (EZG25) 1:25,000 Vector LfU, 2014a
Landforms Digital Elevation Model (DEM) 25m Raster BVV, 2017
Slope Digital Elevation Model (DEM) 25m Raster BVV, 2017
Elevation Digital Elevation Model (DEM) 25m Raster BVV, 2017
X*Y coordinate Digital Elevation Model (DEM) 25m Raster BVV, 2017
Land use CORINE Land Cover 5 ha (CLC5) 5 ha Vector BKG, 2020
Sealing degree Imperviousness density 2015 (IMD) 100m Raster Copernicus, 2018
Saturated hydraulic conductivity Soil map (ÜBK25) 1:25,000 Vector LfU, 2017c
Permeability of the upper aquifer Hydrogeological Map (HÜK 200) 1:200,000 Vector BGR and SGD, 2016
Distance to river River network (FGN25) 1:25,000 Vector LfU, 2014b
Height above the nearest drainage River network (FGN25) 1:25,000 Vector LfU, 2014b
Heavy rain hours Heavy rain hours since 2001 per zip code

area
Zip code area Vector GDV and DWD, 2018

Pluvial and flash flood inventory Settlements and cities affected by pluvial
and flash floods in Germany until 2017

Point LfU, 2017b; HANG, 2018; ESWD,
2017; Deutsche Rück, 2018a;
Deutsche Rück, 2018b; DWD, 2018;
THW, 2017; URBAS, 2018
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Topography controls the hydrological processes of an area to a large extent. Researchers
consider the slope to be the most important factor influencing the occurrence of flash
floods (Tehrany et al., 2013; Vaezi et al., 2017; Diakakis et al., 2016). The higher the
slope, the less the soil infiltration and the higher the surface runoff. While high slopes
promote runoff concentration, flat areas favor flooding. In addition to slope, elevation
is a good explanatory factor for flash flooding. Since water follows the gradient, the
lower-lying areas of a catchment tend to be more often affected by flooding than the
higher-lying areas (Tehrany et al., 2015; Chapi et al., 2017). For our study, we derived
the slope and elevation using the 25 m digital elevation model (DEM) using ArcGIS Pro
(Fig. 4.3).
To assess inundation areas, evaluating the overall topographic setting is crucial since
the surface shape influences the flow accumulation (MacMillan and Shary, 2009). The
division into landforms offers the possibility of a quantitative classification into different
landscapes. Landform types can be determined by the characteristic terrain pattern,
which manifests through variation of the geomorphic features in shape, size, and scale
(MacMillan and Shary, 2009). We applied the approach by Weiss (2001), in which
landforms are differentiated based on discrete slope position classes using the standard
deviation of the Topographic Position Index (TPI). To determine the TPI, the elevation
of each cell of a DEM is compared to the mean elevations in the predefined vicinity of
the cell (Weiss, 2001). Weiss (2001) distinguishes 10 landform types: canyons, midslope
drainages, upland drainages, u-shape valleys, plains, open slopes, upper slopes, local
ridges, midslope ridges, and mountain tops. We derived the landforms using the ArcGIS
topography toolbox by Dilts (2015) (Fig. 4.4).
Land use influences the formation of runoff. Depending on the type of land use, the
nature of the topsoil changes and with it the infiltration capacity and surface roughness
(e.g., Chandler et al., 2018; Sofia et al., 2019). Studies have shown that forests reduce
the runoff volume and lower the peak discharge (e.g., Hundecha and Bárdossy, 2004;
Hümann et al., 2011), while urbanization leads to an increase in peak flows (e.g., Miller
and Hess, 2017; Pumo et al., 2017). Niehoff et al. (2002) have further proven that the
impact of land use on the runoff generation depends on the precipitation characteristics.
Accordingly, the influence of land use on storm runoff generation is greater for convective
storm events than for advective ones (Niehoff et al., 2002; Bronstert et al., 2002). For
the influencing factor land use, the CORINE Land Cover dataset served as the data
basis, which was aggregated to the following classes: built-up area, agricultural area,
forests and near-natural areas, wetlands, water surfaces (Fig. 4.3).
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Figure 4.3: Pluvial and flash flood influencing factors: elevation, slope, permeability of the
upper aquifer, saturated hydraulic conductivity of the topsoil, land use, sealing
degree.
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As a supplement to land use, we also considered the sealing degree in our models. Be-
cause the higher the degree of sealing, the less water can infiltrate and the more surface
runoff forms. Diakakis et al. (2016) found that the sealing degree and the slope were the
most important factors in explaining flash flooding in Athens (Greece). For our models,
we used the dataset of imperviousness density from Copernicus (2018), which gives the
percentage of soil sealing for each pixel (Fig. 4.3).
The porosity and permeability of the soils and rocks are decisive for the infiltration per-
formance, since the soil texture influences the hydraulic conductivity. To account for
the influence of the soil, we incorporated the saturated hydraulic conductivity of the
topsoil in the models. In Bavaria, the saturated hydraulic conductivity varies between 0
and 156 cm/d and averages 20 cm/d (Fig. 4.3). Regarding lithology, we considered the
permeability of the upper aquifer in our models. The hydrogeological map by BGR and
SGD (2016) divides the upper aquifers of Bavaria into 10 permeability classes ranging
from high (10−2 – 10−3 m/s) to extremely low (<10−9 m/s)(Fig. 4.3).
The distance to a river is a good proxy of the probability of being affected by a flash
flood and is thus a frequently chosen explanatory factor (Janizadeh et al., 2019; Hosseini
et al., 2020; Khosravi et al., 2018). Because regions near streams are more likely affected
by flooding than regions far away from any river. However, regions remote from streams
can also be flooded by concentrated surface runoff. We calculated the distance to the
nearest stream using the “Euclidean Distance” tool of ArcGIS Pro and the official river
network of Bavaria (Fig. 4.4).
In addition to the distance to a river, we considered the metric Height Above the Nearest
Drainage (HAND). The HAND value returns the “hydrologic” height by calculating the
height of each catchment cell above the nearest river into which it flows (Nobre et al.,
2011). In summary, the HAND value normalizes the terrain heights with regard to the
river network. The HAND value is often used to map susceptibility to flooding and gully
erosion (Arabameri et al., 2020; Carvalho et al., 2020; Olorunfemi et al., 2020; Garousi–
Nejad et al., 2019). All in all, the HAND value is a valuable predictor for susceptibility
to flash flooding that supplements the feature distance to a river. We derived the HAND
metric using the ArcGIS toolbox by Dilts (2015), the DEM and the official river network
of Bavaria (Fig. 4.4).
Heavy rain is the trigger of a flash flood and is therefore an important influencing factor
(Hapuarachchi et al., 2011). Generally, short and high-intensity rains are associated with
the occurrence of flash floods (Gaume et al., 2009; Borga et al., 2011). Lengfeld et al.
(2019) have shown based on radar measurements of 16 years that hourly precipitation
events in Germany are significantly less influenced by the orography than daily precip-
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itation events. To incorporate the rainfall in our models, we used the dataset heavy
rain hours from GDV and DWD (2018) (Fig. 4.4). This dataset sums up all hours of
heavy rain that occurred in Germany since 2001 per zip code area. To qualify as heavy
rain, the rain event had to exceed 25 l/m2 in 1 h or 35 l/m2 in 6 h (GDV and DWD, 2018).

Figure 4.4: Pluvial and flash flood influencing factors: distance to river, height above the near-
est drainage, heavy rain hours, landforms.

Since there is a relationship between the catchment geomorphology and its hydrologic
response (Costa, 1987; Harlin, 1984; Patnaik et al., 2015), it is crucial to consider
catchment properties as influencing factors. We thus incorporated the catchment char-
acteristics regarding shape, topography, and land use in our models. It is known that the
catchment shape affects the time of runoff concentration (Costache, 2019b). A rounded
catchment will have a shorter concentration time than an elongated catchment (Schumm,
1956). Due to the shorter concentration time and the simultaneous drainage to the catch-
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ment center, round catchments represent the greater risk for high peak discharges. For
each catchment, we determined the elongation ratio, which is a dimensionless parameter
that quantifies the basin shape (Fig. 4.5). According to Schumm (1956), the elongation
ratio E of a catchment is defined as follows:

E = 2 ∗
√
A/π

Lb
(4.1)

where A is the catchment area in km2 and Lb is the basin length in km. The elongation
ratio of a catchment can be classified as follows: more elongated (< 0.5), elongated
(0.5–0.7), less elongated (0.7–0.8), oval (0.8–0.9), circular (> 0.9) (Schumm, 1956).
For further description of the catchment properties, we applied Hack’s Law, which is an
empirical scaling law for river networks (Sassolas-Serrayet et al., 2018) (Fig. 4.5). Based
on fractal mathematics, Hack (1957) described the relationship between catchment size
and mainstream length as a power function, assuming that the mainstream length scales
with the catchment size. Hack’s Law has been intensively studied and applied since its
publication (e.g., Maritan et al., 1996; Reis, 2006; Sassolas-Serrayet et al., 2018). Hack’s
Law is defined as follows:

L = 1.4 ∗A0.6 (4.2)

where A is the catchment area in km2 and L is the mainstream length in km.
In addition to the shape, the topography of the catchment also plays a role in the
runoff formation. The basin relief allows conclusions about the geomorphological and
hydrological characteristics of a catchment. We used the relief to describe the terrain of
the catchments (Fig. 4.5). The catchment relief R is computed as the difference of the
maximum catchment height Hmax and the minimum catchment height Hmin (Schumm,
1956):

R = Hmax −Hmin (4.3)

As another topography indicator, we applied the Melton ruggedness number (Fig. 4.5).
The Melton ruggedness number is a slope index describing the relief conditions of a
catchment. In geomorphology, the Melton ruggedness number is mostly used to assess
sediment transport processes within basins (e.g., Scally and Owens, 2004; Marchi and
Dalla Fontana, 2005). To quantify the ruggedness of a basin, Melton (1965) proposed
the following dimensionless ratio:

M = R/
√
A (4.4)
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where A is the catchment area in km2 and R is the basin relief in km. The Melton number
can vary from zero to some large number, although it rarely exceeds one. Melton numbers
between 2 and 3 indicate a very rugged area for a first-order catchment (Melton, 1965).
To further describe the catchment response to heavy rain, we considered the land use
distribution within the catchments. To do so, we included the percentage of built-up
area and agricultural area of a catchment derived from the CORINE Land Cover dataset
(Fig. 4.5).
The spatial relationship between the sample points plays an important role. Because as
we know from Tobler’s first law of geography: “everything is related to everything else,
but near things are more related than distant things” (Tobler, 1970). To account for
the spatial dimension in the model, we included the X- and Y-coordinate as explanatory
features. However, to reduce the number of features and minimize collinearity, as well
as to increase the informative value of the predictor, we used the product of the X- and
Y-coordinates.
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Figure 4.5: Pluvial and flash flood influencing factors related to the catchment: share of built-
up area, share of agricultural area, length-area-relation, elongation ratio, Melton
number, relief.
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4.4.4 Feature preparation

We prepared the influencing factors with the GIS software ArcGIS Pro 2.6. For further
feature processing, we used the Python library scikit-learn (Pedregosa et al., 2011). To
avoid losing valuable samples, we replaced missing values in the dataset. For categorical
features, we used the function SimpleImputer to replace missing values with the most
frequent feature value. Missing numerical values were replaced using the mean value
from the five nearest neighbors in the dataset (KNNImputer), where two samples are
close if the features that are not missing in both samples are close.
We transformed the three categorical features (i.e., landforms, land use, permeability of
the upper aquifer) into numbers using Weight-of-Evidence (WoE) encoding (Table 4.4).
The WoE method is a bivariate Bayesian statistical approach that has been widely used
in flood susceptibility studies (e.g., Tehrany et al., 2014; Hong et al., 2018; Costache,
2019b). Using the WoE method, we can measure the predictive power of an independent
variable (an influencing factor) regarding the dependent variable (pluvial and flash flood
occurrence). In the case of flood modeling, the WoE coefficient is computed based on
the relationship between the non-occurrence and occurrence of pluvial and flash floods
within each class of the categorical feature. The WoE coefficient for each categorical
class is calculated as follows:

WoE = ln B/A
B̄/Ā

(4.5)

where B indicates the number of flood pixels in the given class and A the total number
of flood pixels of all classes. Accordingly, the number of non-flood pixels within the
investigated class is given by B̄, and the number of non-flood pixels of all classes is
represented by Ā.
We scaled all features using standardization (StandardScaler), which is less affected by
outliers than min-max scaling. In some flood susceptibility studies, the numerical fea-
tures are discretized using the natural breaks or quantile method (e.g., Costache, 2019b;
Tien Bui et al., 2019; Tang et al., 2020). However, we did not group the continuous
features, as tree-based classifiers are good at determining complex relationships between
the independent and dependent variables.
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Table 4.4: Weights-of-Evidence coefficients of categorical influencing factors.

Explanatory factor Class WOE coefficient WOE standardized coefficient

Land use Built-up area 0.30 1.41
Forests and near-natural areas −1.39 −0.67
Agricultural areas −1.44 −0.74

Landforms Canyons, deeply incised streams −0.04 0.76
Midslope drainages, shallow valleys −0.41 −1.22
Upland drainages, headwaters −0.41 −1.22
U-shape valleys −0.13 0.27
Plains 0.21 2.09
Open slopes −0.19 −0.06
Upper slopes, mesas −0.09 0.51
Local ridges, hills in valleys −0.11 0.40
Midslope ridges, small hills in plains −0.41 −1.22
Mountain tops, high ridges −0.24 −0.31

Permeability of the upper aquifer High (10−2 – 10−3 m/s) 0.00 −0.71
Medium (10−3 – 10−4 m/s) 1.22 1.38
Medium to moderate (10−3 – 10−5 m/s) −0.41 −1.41
Moderate (10−4 – 10−5 m/s) 0.33 −0.14
Moderate to low (10−4 – 10−6 m/s) 0.29 −0.22
Low (10−5 – 10−7 m/s) 0.39 −0.04
Very low (10−7 – 10−9 m/s) 0.06 −0.61
Low to extremely low (<10−5 m/s) 0.46 0.07
Extremely low (<10−9 m/s) 0.42 0.01
Highly variable 1.81 2.38
Waters 0.00 −0.71



4 Predicting pluvial and flash flood susceptible areas in the state of Bavaria

4.4.5 Classifiers applied

In this study, we compare the ensemble methods Random Forest, Gradient Boosting
Decision Tree, and CatBoost. Before choosing these three classifiers, we tried several
different machine learning algorithms (e.g., Naïve Bayes, support vector machines, neural
networks, AdaBoost Decision Tree) without optimizing their hyperparameters. Based
on the first classification results, we selected the three most promising of all classifiers.
In the following subsections, we briefly describe the three classifiers used in this study.
A comprehensive description of the underlying principles can be found in the literature
(e.g., Kuhn and Johnson, 2016; Bentéjac et al., 2020; Bonaccorso, 2020).

4.4.5.1 Random Forest

In 2001, Leo Breiman first introduced the Random Forest (RF) model (Breiman, 2001).
A Random Forest model consists of a large number of decision trees that are as uncor-
related as possible. To generate an uncorrelated forest of trees, the Random Forest uses
bagging and feature randomness in the formation of the decision trees. This means that
each tree receives a random sample that is drawn from the training set with replacement
(bootstrapping). Each tree also only receives a random subset of the features. Due to
this implemented randomness, the prediction of the Random Forest model is often more
accurate than the predictions of any individual decision tree (Breiman, 2001).
The Random Forest classifier is one of the most frequently used classification algorithms.
This is probably because Random Forest models are powerful ensemble methods that are
not sensitive to multicollinearity and can handle missing and unbalanced data. Random
Forests have been applied in many studies of flood susceptibility mapping and achieved
high predictive accuracies (Chen et al., 2020; Costache et al., 2020a; Hosseini et al.,
2020; Hong et al., 2018; Tang et al., 2020).
In this study, we used the RandomForestClassifier from the machine learning library
scikit-learn (Pedregosa et al., 2011) for the Python programming language. Unlike the
original publication by Breiman (2001), the scikit-learn implementation averages the
probabilistic prediction of the decision trees (soft voting) rather than using the major-
ity decision of the classifier votes (hard voting) (Pedregosa et al., 2011). Compared to
hard voting, soft voting often achieves higher performance because it accounts for the
uncertainty of each classifier in the final decision (Géron, 2017).

110



4.4 Data and methods

4.4.5.2 Gradient Boosting Decision Tree

Boosting is a method to create ensemble models. Under boosting we understand the
training of several weak learners in a sequential and adaptive manner to obtain a stronger
learner (Kuhn and Johnson, 2016). At first, one initial model is fitted to the data.
Then, a second model is trained concentrating on improving the shortcomings of the
previous model, and so on. The underlying assumption is that the combination of the
models is better than one model alone, since each subsequent model tries to improve
the shortcomings of the combined ensemble model. Many boosting algorithms exist,
however, AdaBoost and Gradient Boosting are among the most popular (Géron, 2017).
The Gradient Boosting algorithm was first presented by Breiman (1997) and further
developed by Friedman (2001). Gradient Boosting fits the new learner to the residual
errors of its predecessor. The predecessor’s shortcomings are identified by the gradient
(e.g., residual) of an exponential loss function. After the current model is added to the
previous model, a new model is fit to the residuals to minimize the loss function, and so
on (Kuhn and Johnson, 2016).
In our study, we applied the classGradientBoostingClassifier of scikit-learn (Pedregosa et
al., 2011) that uses decision trees as base estimators by default. The Gradient Boosting
algorithm has not yet been used in a flood susceptibility study. However, Bui et al.
(2019b) already applied the boosting algorithms AdaBoost and LogitBoost for flash
flood susceptibility modeling.

4.4.5.3 CatBoost

The third classifier applied in this study also uses gradient boosting on decision trees
and is called CatBoost for “Categorical Boosting” (Prokhorenkova et al., 2018). The
CatBoost classifier is available as an open-source library for Python provided by the
technology and Internet services company Yandex. The CatBoost algorithm differs
from classical gradient boosting in two ways. First, CatBoost applies ordered boosting,
which is a permutation-driven alternative to the standard gradient boosting algorithm
(Prokhorenkova et al., 2018). At each training step, CatBoost uses the independent
permuted historical samples and thus achieves unbiased boosting. Second, CatBoost
uses ordered target statistics to encode categorical features (Hancock and Khoshgoftaar,
2020). Both techniques were implemented to combat target leakage, a specific type of
overfitting that occurs in all classical gradient boosting algorithms (Dorogush et al.,
2018; Prokhorenkova et al., 2018).
Due to the two algorithmic advances, CatBoost has advantages over other implementa-
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tions of gradient boosted decision trees. Dorogush et al. (2018) proved that CatBoost
outperforms other gradient boosting algorithms such as XGBoost, LightGBM, or H2O
on popular datasets. Besides, CatBoost handles heterogeneous datasets with categorical
features well and is easy to use (Hancock and Khoshgoftaar, 2020).
In geosciences, the CatBoost algorithm has recently been used to classify formation
lithology (Dev and Eden, 2019) and to estimate reference evapotranspiration (G. Huang
et al., 2019; Y. Zhang et al., 2020). Kang et al. (2020) also applied CatBoost to cal-
culate an hourly wildfire risk index. In a comparative study of four gradient boosting
algorithms for landslide susceptibility mapping, CatBoost achieved the highest predictive
ability (Sahin, 2020). Recently, Hancock and Khoshgoftaar (2020) reviewed studies from
various disciplines that employed the CatBoost algorithm to analyze its effectiveness and
shortcomings.

4.4.6 Performance measures

We assessed the predictive ability of the selected classifiers using various performance
metrics. The Receiver Operating Characteristic (ROC) curve is used to assess binary
classifiers (Altman and Bland, 1994; Brown and Davis, 2006; Fawcett, 2006). The ROC
curve plots the false positive rate (FPR) on the x-axis against the true positive rate
(TPR) on the y-axis. The true positive rate, also called recall or sensitivity, is the ratio
of positive samples correctly identified by the classifier:

TPR = TP

TP + FN
(4.6)

where TP is the number of true positive samples, and FN is the number of false negative
samples. Conversely, the false positive rate describes the ratio of negative samples that
are incorrectly identified as positive:

FPR = FP

FP + TN
= 1− TNR (4.7)

where TN is the number of true negative samples, and FP is the number of false positive
samples. The FPR is equal to one minus the true negative rate (TNR), which is also
called specificity. The TNR is the proportion of negative samples correctly classified as
negative:

TNR = TN

TN + FP
(4.8)
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The ROC curve displays the classifier’s ability to discriminate between a flood and a
non-flood event. The diagonal of the ROC curve represents a random classifier. The aim
is to obtain a classifier that is as far away from the diagonal as possible. However, there
is a trade-off as higher true positive rates come along with more false positive predic-
tions. For visual comparison, the classifiers’ ROC curves are superimposed graphically.
To compare the classifiers’ ROC curves quantitatively, we used the area under the ROC
curve (AUC) (see Fig. 4.6). The AUC value measures the two-dimensional area under-
neath the ROC curve and thus aggregates the classifier’s performance for all possible
candidate thresholds. Possible AUC values range from 0 to 1. The higher the AUC
value, the better the predictive power of the classifier, while an AUC value of 1 repre-
sents the perfect classifier. When comparing the models, the most effective model is the
one with the largest area under the ROC curve. We further evaluated the classifiers’
performances using the metrics accuracy and Cohen’s Kappa, also called Kappa statistic.
The accuracy measures the correctly identified samples and is defined as follows:

Accuracy = TP + TN

TP + FP + TN + FN
(4.9)

However, the disadvantage of the accuracy metric is that it does not differentiate be-
tween the types of error being made. Cohen’s Kappa, in contrast, considers the class
distributions of the training set (Kuhn and Johnson, 2016). Cohen’s Kappa measures
the agreement between two raters on a classification problem, taking into account the
accuracy that would result from chance alone (Cohen, 1960). The Kappa statistic can
be computed as:

κ = O − E
1− E (4.10)

where O is the observed accuracy, and E is the expected accuracy by chance. Cohen’s
Kappa can take values between -1 and 1; while 1 means perfect agreement and 0 means
no agreement between the observations and predictions. If the Kappa statistic is less
than 0, than the classifier is worse than agreement by chance. Landis and Koch (1977)
proposed the following classification of the Kappa statistic: < 0 no agreement, 0–0.20
slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1 almost per-
fect agreement.

4.4.7 Model-specific and model-agnostic interpretation methods

In this paper, we applied model-specific and model-agnostic methods to interpret the
trained classification model. As model-specific methods, we used feature importance
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and pairwise feature importance, also called feature interaction. The feature importance
describes the strength of the relationship between the predictor and the outcome. In
most tree-based models, feature importance is an intrinsic measure that monitors the
performance as each feature is added to the model (Kuhn and Johnson, 2016). The
feature importance ranges between 0 and 1, and the sum of the importance of all fea-
tures is 1. In addition to feature importance, we computed feature interaction, which is a
two-way interaction measure indicating the interaction strength for each pair of features.
The feature interaction is a dimensionless statistic based on Friedman’s H-statistic and
describes the proportion of the variance explained by the interaction (Friedman and
Popescu, 2008).
As a model-agnostic method, we applied SHapley Additive exPlanations (SHAP) by
Lundberg and Lee (2017). SHAP is a unified framework for interpreting individual pre-
dictions by assigning an importance value to each feature (Lundberg and Lee, 2017).
SHAP computes Shapley values (Shapley, 1953) from coalitional game theory, which
describe how much each “player” (= feature) contributed to the “game” (= prediction)
(Molnar, 2019). To understand how much the classification model relies on each in-
fluencing factor for making predictions, we used the training data to calculate feature
importance, feature interaction, and SHAP.

4.5 Results

4.5.1 Model validation and comparison

We validated the three ensemble models using the 373 flood and non-flood locations of
the test set. All three models performed equally well on the test set and achieved simi-
lar performance statistics (Table 4.5). The CatBoost model correctly detected the most
flood and non-flood locations of the three models (281). The Gradient Boosting Decision
Tree model achieved the highest sensitivity with 76.9%, followed by the CatBoost and
Random Forest model with 75.3% each. Regarding predictive accuracy, the CatBoost
model performed best (75.3%), followed by the Random Forest model (75.1%) and the
Gradient Boosting Decision Tree model (74.8%). According to the Kappa classification
by Landis and Koch (1977), all three models achieved a moderate agreement, with the
CatBoost model having the highest Kappa value (0.51).
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Table 4.5: Performance of the proposed tree-based ensemble models on the test set.

Statistical measure CatBoost Random Forest Gradient Boosting
Decision Tree

True positive 140 140 143
True negative 141 140 136
False positive 46 47 51
False negative 46 46 43
Positive predictive rate [%] 75.27 74.87 73.71
Negative predictive rate [%] 75.40 75.27 75.98
Sensitivity [%] 75.27 75.27 76.88
Specificity [%] 75.40 74.87 72.73
Accuracy 75.34 75.07 74.80
Cohen’s Kappa 0.51 0.50 0.50

We evaluated the global performance of the ensemble methods using the AU-ROC
method. Fig. 4.6 compares the three classifiers’ ROC curves and indicates their AUC
values. The CatBoost, Random Forest, and Gradient Boosting Decision Tree models all
achieved high AUC values for the test set. However, the CatBoost model has the highest
predictive power (AUC = 81.9%), followed by the Random Forest (AUC = 81.6%) and
the Gradient Boosting Decision Tree model (AUC = 81.3%).
Overall, we find that all three models proved to be powerful in identifying the general
pattern of pluvial and flash flood susceptibility in the state of Bavaria. The predictive
power of the classifiers is comparably good, and thus no classifier significantly outper-
forms the others. Regarding accuracy, AUC, and Kappa statistic, the CatBoost model is
the best performing. Regarding the statistical measures, we therefore rank the CatBoost
model first, the Random Forest model second, and the Gradient Boosting Decision Tree
model third. Since the CatBoost model has the highest predictive power, we used it to
derive Bavaria’s pluvial and flash flood susceptibility.
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Figure 4.6: ROC curves with associated AUC values for three tree-based models computed
from the test set.

4.5.2 Model interpretation

Based on the feature importance, we rank the 17 influencing factors (Fig. 4.7). By far,
the highest predictive power is attributed to the sealing degree (16.8%) and the built-up
area share of a catchment (11.7%). The importance of the 15 remaining influencing
factors ranges between 7 and 2%. The Melton number of a catchment (7.2%) and
the hours of heavy rain (7.1%) are equally important, followed by X*Y coordinate
(6.4%), HAND (6.0%), and the proportion of the agricultural area of a catchment
(5.9%). Contrary to our expectations, the slope is not among the most predictive
explanatory factors. On the contrary, the slope ranges in the lower third with 4.1%.
According to the feature importance, the catchment-related influencing factors are as
important for model prediction as the spatially distributed ones. Among the three most
influential explanatory factors, two are catchment-related (built-up area share, Melton
number). However, catchment-related variables describing land use distribution and
relief conditions in the catchment are more important than variables describing the
catchment shape. The distance to the river is the least contributing influencing factor
with 2.4%.
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Figure 4.7: Feature importance of the influencing factors in the CatBoost model. The (c)
indicates catchment-related influencing factors.

For model interpretation, we also investigated pairwise feature importance. Of the 136
possible pairs of influencing factors, we plotted the top 15 interaction pairs in Fig. 4.8.
These 15 pairs contain 11 different influencing factors, four of which are catchment-
related. The sealing degree and the built-up area share, which had the highest feature
importance, occur in 9 and 6 of the 15 interaction pairs, respectively. Interestingly, the
factor agricultural area share appears in the second and third strongest pair with the
sealing degree and the proportion of the built-up area, although its feature importance
was not so high. However, the agricultural area share probably complements the sealing
degree and the proportion of the built-up area. Although the slope’s single feature
importance was only ranked 12th, the slope forms strong pairs with the built-up area
share, the sealing degree, and the heavy rain hours. Similarly, the saturated hydraulic
conductivity, which was only ranked 10th regarding feature importance, forms a strong
pair with the sealing degree (ranked 5th).
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Figure 4.8: Pairwise feature importance of the first 15 interaction pairs of the CatBoost model.
The (c) indicates catchment-related influencing factors.

To investigate the relationship between the influencing factors and the prediction, we
used a SHAP summary plot. The summary plot in Fig. 4.9 orders the features on the
y-axis according to their importance. Each point represents a SHAP value for a feature
value and a prediction instance. The continuous color scale indicates low to high feature
values. In the case of overlapping points, the points were jittered in the direction of the
y-axis.
Sealing degree and built-up area share are the only factors that reach absolute SHAP
values above 1, and thus can strongly influence the prediction result in one direction
or the other. A high sealing degree significantly increases the risk of flooding, while
medium to low sealing degrees reduce flood risk. A high percentage of built-up area in
a catchment generally increases flood risk. In addition to the sealing degree and the
built-up area share, six other influencing factors can significantly affect the prediction
(absolute SHAP values above 0.5): heavy rain hours, X*Y coordinate, Melton number,
agricultural area share, elevation, and saturated hydraulic conductivity. It is plausible
that a high number of heavy rain hours increases the risk of flooding. The less rugged a
catchment is (low Melton number), the lower the risk of being affected by flash flooding.
Interestingly, a high percentage of agricultural land in a catchment leads to a decrease
in flood risk and, conversely, a low percentage of agricultural area to an increase. This
can probably be attributed to the fact that the proportion of agricultural land is related
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to the proportion of built-up land, and thus a low proportion of agricultural land could
mean a high proportion of built-up area. The summary plot also reveals that low-lying
areas are more susceptible and high values of saturated hydraulic conductivity reduce
flood hazard.
Overall, the classification model seems to confirm relationships between influencing fac-
tors and flash flood occurrence that are known or suspected among hydrologists. Ac-
cording to the summary plot, elongated catchments with little ruggedness, low relief,
and a low proportion of built-up areas should be less susceptible to flash flooding. In
addition, highly permeable topsoils and upper aquifers can reduce the risk of flooding.

Figure 4.9: SHAP summary plot indicating the effects of the influencing factors on the pre-
diction outcome. Each point represents a SHAP value for a feature value and a
prediction instance. The (c) indicates catchment-related influencing factors.
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Although we can now better understand the relationship between the influencing factors
and the prediction result, we should be cautious about deriving general rules from the
summary plot. Since the influencing factors affect each other, each prediction instance
is the result of all feature values. Therefore, a low proportion of built-up area in a
catchment does not necessarily reduce flood risk (Fig. 4.9). As shown in Fig. 4.8, the
built-up area share interacts strongly with the sealing degree, the agricultural area share,
the heavy rain hours, the Melton number, the relief, and the slope. The same is true
for slope, for example. There is a tendency for high slope values to increase the risk
of flooding (Fig. 4.9). However, there are also cases where the flood risk was reduced
despite high slope values, probably due to the strong interaction of the slope with the
built-up area share, the sealing degree, and the heavy rain hours (Fig. 4.8).

4.5.3 Susceptibility map

Using the CatBoost model, we determined the susceptibility of all raster pixels of
Bavaria. As an indication of susceptibility, we used the predicted probability of each
raster pixel to be assigned to class 1 (affected) returned by the CatBoost model. The
predicted probability is the result of weighting each tree in the ensemble, which in turn
calculate a probability of class 1 for each of their leaves. The susceptibility values ranged
from 0.20 to 0.99. The methods quantile or natural breaks are usually chosen for clas-
sifying flash flood susceptibility maps (e.g., Costache, 2019a; Khosravi et al., 2018; Ngo
et al., 2018; Youssef et al., 2016). With the natural breaks classification method, classes
are based on natural groupings within the dataset. Class boundaries are set in such a
way that similar values are summarized and differences between the classes are max-
imized. Since our susceptibility values have a skewed distribution, the natural breaks
classification is more appropriate than the quantile classification. Using the natural
breaks method, we divided the prediction dataset into four susceptibility classes, labeled
low (≤ 0.20), moderate (> 0.20–0.35), high (>0.35–0.53), and very high (> 0.53–0.99).
The susceptibility classes low and moderate cover 37% and 33% of the Bavarian state,
respectively. According to our model, 21% of Bavaria is considered highly susceptible.
The highest susceptibility class makes up 8% of the state territory. Overall, 30% of the
state of Bavaria is at high or very high risk of pluvial and flash flooding (Fig. 4.10).
Regions with high and very high risk occur throughout Bavaria. The most flood-prone
areas are identified in the Alpine region, in the south of the Alpine foothills, and in
the border region of southeast Bavaria. Furthermore, we find highly susceptible areas
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in northern Bavaria, especially along the Main River and toward the state of Hesse in
northwestern Bavaria. Less susceptible areas are identified in central Bavaria.

Figure 4.10: Map showing the susceptibility for pluvial and flash flooding for the state of
Bavaria (Germany) with superimposed river network.
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4.5.4 Endangered cities

To compare the hazard situation among cities, we calculated an overall susceptibility
score for all Bavarian cities. The susceptibility score of the cities may help decision-
makers on regional or state level to prioritize cities for detailed investigations. We calcu-
lated the overall susceptibility of a city using the smallest circumscribing rectangles—so-
called bounding boxes—of the cities. The dataset by BKG (2015) provides the bounding
boxes for all German cities, which we used as an approximation of the city area. Within
each bounding box, we determined the area-weighted average of the four susceptibility
classes, which was used as the city’s overall susceptibility. When calculating the overall
susceptibility of a city, we assume that the proportions of the susceptibility classes within
the bounding box approximate the city’s hazard situation. Consequently, a city with a
large number of high to very high-classified raster pixels is more at risk than a city with
a large number of low to moderate classified pixels.
We determined the overall susceptibility of all Bavarian cities (Fig. 4.11). Similar to
the pluvial and flash flood susceptibility map, we classified the city scores into four sus-
ceptibility classes (low, moderate, high, very high) using the natural breaks method.
According to this classification, 28% and 32% of the cities are considered to be at low
and moderate risk, respectively. Classified as highly susceptible are 24% of the cities.
In the highest susceptibility class are 16% of the Bavarian cities.
The cities at particularly high risk are distributed across Bavaria, but cluster in specific
regions (Fig. 4.11). Especially in the southern part of the natural region eastern low
mountain range, many cities are classified as very endangered. The border region with
neighboring Austria in southeastern Bavaria also has many cities colored red. Further-
more, the southern part of the Alpine foothills, as well as Munich and its surrounding
area, are endangered. In the north of Bavaria, the Nuremberg metropolitan region stands
out with the major cities of Nuremberg, Fürth, and Erlangen. In addition, Würzburg
and the region toward the state of Hesse along the Main River are classified as highly
endangered. However, not all major cities are automatically classified as being at highest
risk, as the regions around Augsburg and Ingolstadt show.
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Figure 4.11: Pluvial and flash flood susceptibility classification of the Bavarian cities and towns,
indicating the cities with more than 100,000 inhabitants.

In histograms, we compare the distribution of the susceptibility scores of the Bavarian
cities in the training and test set (Fig. 4.12). In both the training and the test set, the
distribution of the susceptibility scores is roughly balanced. However, when differenti-
ating the cities according to their affectedness, it becomes apparent that affected cities
tend to be assigned a higher and unaffected cities a lower susceptibility score. This
tendency is evident in both the training and test set, although it is more pronounced in
the training set. The histograms suggest that the overall classification of the cities can
be considered plausible.
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Figure 4.12: Susceptibility classification of the cities of the training and test set differentiated
by affectedness.

4.6 Discussion

To the best of our knowledge, only one study exists to date in which a flash flood sus-
ceptibility map was derived for an area larger than Bavaria (70,500 km2). Ma et al.
(2019) generated a susceptibility map for Yunnan Province (China) that covers an area
of 380,000 km2. In recent flash flood susceptibility studies (cf. Table 4.1), investigation
areas generally range from 200 to 4,000 km2 and focus on watersheds rather than polit-
ical entities. An exception is the study by Hosseini et al. (2020), which investigates the
flash flood hazard in the Gorganroud River Basin (Iran), covering an area of 11,300 km2.
Compared to the other studies listed in Table 1, the density of our sample points was
lower. The reviewed studies used between 7 and 213 sample points per 100 km2, with
a median of 42 points per 100 km2. In our study, we had only 3 points per 100 km2

available. Consequently, the investigation sites in comparable studies are usually not
only smaller, but there are also more data points available for training and testing.
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The comparatively low point density of our sample data certainly reduces the perfor-
mance of our model. This is because our model has to learn the complex relationships
within four different major landscapes covering low mountain ranges, cultural landscapes,
and the Alps with only a few data. Therefore, compared to other flash flood suscepti-
bility studies, differences in performance are apparent. Some ML models achieved AUC
values above 0.85 and even above 0.95 (cf. Janizadeh et al., 2019; Bui et al., 2019a;
Khosravi et al., 2018; Tien Bui et al., 2020). However, our performance metrics are
in similar ranges as in the study by Ma et al. (2019), whose winning model achieved
a Kappa value of 0.59, an AUC value of 0.81, and an accuracy of 0.79. Nevertheless,
due to the spatially homogeneous distribution of the sample data and attention to the
representativeness of major landscapes, our model achieved good performance even at
low sample point density. An increase in model performance would only be conceivable
with more training and test data so that the heterogeneity of the study area could be
better learned and reproduced.
Compared to similar flash flood studies, we included more influencing factors in our
model. The studies we examined used between 7 and 12 influencing factors (Table 4.1),
while we used 17 influencing factors. A further reduction in the number of influencing
factors led to a performance decrease so that 17 influencing factors were necessary to
achieve the best possible model performance. We assume that the large heterogeneity
in the study area and the small amount of learning data necessitated a higher number
of different influencing factors.
In contrast to comparable studies, we included catchment-related influencing factors
in addition to spatially distributed ones. The studies listed in Table 4.1 do not use
catchment- related factors, with exception of the study by Costache (2019b). Costache
(2019b) used the catchment’s circularity ratio among other spatially distributed influ-
encing factors. Yet, there are also studies that derived flash flood susceptibility maps
based only on catchment-related influencing factors, but these use GIS techniques and
not machine learning (e.g., Abdelkareem, 2017; Abdo, 2020; Adnan et al., 2019). In our
model, the catchment-related influencing factors are crucial for prediction performance.
According to the feature importance, the built-up area share and the Melton number,
both catchment-related factors, are the second and third most contributing influencing
factors.
Due to the use of catchment-specific influencing factors, entire catchments are sometimes
assigned to the same susceptibility class. This is the case when important catchment-
specific influencing factors, such as the built-up area share or the Melton number, assume
critical values. Furthermore, the representation of the map in four susceptibility classes
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makes minor differences disappear. Since our susceptibility map is intended to provide
initial indications and is not a substitute for a detailed site investigation, we decided
to retain the catchment-related influencing factors. In the end, we prioritized a higher
degree of accuracy over representation.
Due to the high complexity of the model relative to the small amount of training data,
there is a risk of overfitting. To reduce the risk of overfitting, we constrained the models.
Therefore, we reduced the number of explanatory factors in the model to a minimum.
We also simplified the models by limiting the size of the decision trees (e.g., maximum
depth, number of features, the minimum number of samples required to be at a leaf
node). Using 5-fold cross-validation, the values of the regularization parameters were
found.

4.7 Conclusion

In this study, we assessed the pluvial and flash flood susceptibility of the state of Bavaria
(Germany) using a CatBoost model and 17 influencing factors. For this purpose, we
first compared the model performance of three state-of-the-art machine learning models:
Random Forest, Gradient Boosting Decision Tree, and CatBoost. We trained the models
using 11 spatially distributed and six catchment-related influencing factors. All three
models performed well with AUC values above 0.8. Comparing the performance mea-
sures, however, the CatBoost model achieved the best performance and was therefore
used to derive the pluvial and flash flood susceptibility map.
We aimed at generating a susceptibility map to identify pluvial and flash flood-susceptible
areas within the state territory. For this, we investigated how to generate a suscepti-
bility map for a vast state territory, which is covering four major landscapes, using a
machine learning model. Our findings from the susceptibility study can be summarized
as follows:

• We achieved good model performance despite low sample point density (3 points
per 100 km2) by ensuring a homogeneous spatial coverage of Bavaria and the rep-
resentation of the four major landscapes in the training and test set.

• To capture the natural heterogeneity of Bavaria, we required a larger number
of spatially distributed and catchment-related influencing factors than otherwise
applied in previous studies.

• There are area characteristics that can reduce susceptibility to flash flooding. Elon-
gated catchments with low ruggedness and relief, a low proportion of built-up areas,
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and highly permeable topsoils and upper aquifers are likely to be less susceptible
to flash flooding.

• By averaging the susceptibility classes within a city area on an area-weighted basis,
an overall susceptibility classification for a city can be provided. This overall
susceptibility score allows for comparison between cities, e.g., for prioritization
purposes.

• We found that the following regions of Bavaria are particularly vulnerable to pluvial
and flash flooding: the southeast of Bavaria with the Alpine foothills, Munich and
its surrounding area, and the southern part of the eastern low mountain range.
In northern Bavaria, the metropolitan region of Nuremberg, Würzburg and its
surroundings, and the region toward the state of Hesse along the Main River are
highly endangered.

Nevertheless, the validity of our susceptibility assessment is affected by the small amount
of training data and the non-consideration of time-variable influences. In our model, we
neglected time-variant influencing factors such as triggering precipitation, antecedent
soil moisture, or phenology of crops, which can severely impact event magnitude. In
addition, the susceptibility map only indicates the actual state, since influencing factors
such as the sealing degree and the proportion of built-up area in the catchment can
change over the years.
With the help of the susceptibility map, those responsible for spatial planning and flood
risk management in the Bavarian administrative authorities and water management
offices can identify pluvial and flash flood-prone areas. Furthermore, in-depth investi-
gations can be prioritized and initiated based on the overall susceptibility classification
of the Bavarian cities. In addition, we have proven that machine learning models can
handle naturally heterogeneous, large study areas even with a small amount of training
data.
Further work should elaborate whether these new machine learning-derived maps are un-
derstood and applied by the public and those in charge. Since distrust of machine learn-
ing is still high among the public, researchers should also improve on the interpretability
of the underlying models and the traceability of the derived flash flood susceptibility
maps. To increase trust, it is necessary to communicate the strengths and weaknesses
of the machine learning model and explain the model decisions with examples.
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5.1 Findings & main contributions

The overall objective of this thesis was to develop a data-driven approach to identify
pluvial and flash flood susceptible areas in the state of Bavaria. To this end, a de-
veloped four-step documentation procedure was applied to generate a dataset of flood
events caused by heavy rain in Germany. To manage and link the event dataset with
the required geodata, an event database was set up. The analysis of the generated
event dataset provided new insights into the spatiotemporal characteristics of heavy
rain-induced floods in Germany. Based on the event dataset and selected influencing
factors, a machine learning (ML) model was developed and applied to map pluvial and
flash flood-prone areas in Bavaria.
In the following, the five hypotheses of the doctoral thesis are addressed. It is presented
how the hypotheses were confirmed, what insights were gained, and what contributions
were made.

Hypothesis 1: A standardized documentation procedure is required to gen-
erate an event dataset suitable for hazard evaluation and susceptibility mod-
eling.
In this thesis, it was shown that a unified and structured event dataset is required for the
hazard evaluation of past heavy rain-induced flood events and susceptibility modeling.
To be able to create a suitable event dataset, a standardized documentation procedure
is needed that covers the entire documentation cycle from data collection to data prepa-
ration. For both hazard evaluation and susceptibility modeling, the documented events
must be equivalent in that they satisfy a given event definition. In addition, event infor-
mation, which comes from a variety of sources, must be evaluated regarding its informa-
tion quality to support differentiated hazard investigations and the selection of reliable
events for susceptibility modeling. For hazard evaluation, it proved necessary to process
event information on meteorology, hydrology, damages, and spatiotemporal characteris-
tics in a uniform manner using fixed categories for attribute description. Furthermore,
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susceptibility modeling requires a distinct and consistent spatial definition of the heavy
rain-induced flood events to ensure uniformity of the training and test dataset. To be
able to link the flood events to the influencing area and catchment properties, the docu-
mentation scheme must specify the smallest, unambiguous spatial delineation possibility
(the city) along with a classification of the spatial accuracy of the event information.
A new standardized procedure for the documentation of pluvial and flash flood events
has been proposed that can serve several potential applications and users. Based on the
documentation scheme environmental authorities, for example, can establish a central
event documentation. Less experienced users or laypersons, e.g., at the municipality
level, can also document events using the details provided regarding possible sources,
required event information, and attribute categories. Scientists can employ this docu-
mentation procedure to create an event dataset suitable for, e.g., damage assessments,
spatiotemporal analyses, or hydrological modeling of historical events. The proposed
documentation procedure is suitable for different types of information and reports de-
spite the attribute specifications.

Hypothesis 2: The design of a database for heavy rain-induced floods must
consider the spatiotemporal and content-related accuracy of the event infor-
mation.
It proved necessary to reflect the spatiotemporal and content-related accuracy of event in-
formation in the database design to prevent information aggregation. Failure to consider
the resolution of event information in the database design results in a loss of accuracy
and information, limiting subsequent analyses and uses of the event dataset. Therefore,
to maintain unrestricted use of the event dataset, unnecessary spatiotemporal and con-
tent aggregation of event information must be prevented by the table, attribute, and key
design. Regarding content, it is necessary to allow separation of event information by
source and to specify categories and text blocks for attribute description, supplemented
by a comment option. Regarding spatial resolution, the database design must allow
events to be documented using the smallest administrative unit (the city) and allow
further specification using the postal code (for major cities) and affected urban areas
(for small cities). Regarding temporal resolution, it must be possible to specify multiple
start times, durations, and intensities of heavy rain events per flood event. Of particular
importance is the implementation of a damage-based event definition in the database,
which, unlike a hydrological or meteorological event definition, does not aggregate event
information based on catchments or thunderstorm cells.
This thesis provides detailed guidance on setting up a database for pluvial and flash
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flood events, from database requirements and system architecture through table and
attribute design to key and relationship definition. The developed database design sup-
ports damage assessments, spatiotemporal analyses, and susceptibility modeling, among
others. However, the database is not only suitable for scientists, but also for environmen-
tal agencies or municipal administrations seeking event documentation for different uses.

Hypothesis 3: Heavy rain-induced floods in Germany show distinct spa-
tiotemporal characteristics.
We investigated the characteristics of heavy rain-induced floods in Germany based on
the created event dataset regarding seasonality, temporal occurrence, and spatial distri-
bution. The collected pluvial and flash flood events were analyzed using spatial queries
in the database and geostatistical analyses in the GIS software ArcGIS Pro.
The evaluations of the event dataset proved that heavy rain-induced floods in Germany
have characteristic spatiotemporal properties. The main period for the occurrence of
pluvial and flash floods in Germany is between April and October, with summer being
the predominant season. In contrast to Mediterranean countries, autumn and winter
events are rare in Germany. Within Germany, there are slight shifts in seasonality,
with Northeastern Germany tending to experience more summer events and Central-
Germany more spring events. Regarding temporal occurrence, it was found that heavy
rain-induced floods most often start in the afternoon between 2 and 6 pm, with a peak at
3 pm. Heavy rain-induced floods occur throughout Germany, with slightly fewer events
occurring in the Northern German Plain. There are regions in Germany where pluvial
and flash floods occur particularly frequently and rarely, respectively. Of the seven lo-
calized hot spots, four are in mostly metropolitan areas (surroundings of Berlin, Rhine-
Ruhr metropolitan region, conurbations of Rhine-Main, Rhine-Neckar and Stuttgart)
and three are in rural, mountainous areas (Bavarian Alpine foothills, Ore Mountains,
between the Thuringian Forest and the Harz Mountains). The Northwestern German
Plain and North-Central Bavaria are particularly rarely affected in a Germany-wide com-
parison, and thus form cold spots.
The analysis of thousands of pluvial and flash flood events at the national level has im-
proved our hazard understanding. The spatiotemporal delineation of heavy rain-induced
floods in Germany also allows a better differentiation of river floods on small streams.
Knowledge of the regions at risk and the diurnal and seasonal occurrence of pluvial and
flash floods is relevant not only for flood risk management but also for communication
with the public.
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Hypothesis 4: Machine learning algorithms can be used to identify pluvial
and flash flood susceptible areas in Bavaria.
In this thesis, it was proven that machine learning algorithms can be used to identify
pluvial and flash flood susceptible areas in Bavaria. The methodological approach to
delineate the areas at risk consisted of six steps. First, appropriate influencing factors
were selected based on literature review, multicollinearity analysis, and feature impor-
tance. Eleven spatially distributed and six catchment-related influencing factors were
needed to holistically cover Bavaria’s natural heterogeneity. Second, the features were
prepared, including the imputation of missing data, standardization, and Weight-of-
Evidence encoding of categorical features. Third, the training and test locations were
chosen so that good spatial coverage of Bavaria and the representation of the four major
landscapes were ensured. Fourth, a Random Forest, a Gradient Boosting Decision Tree,
and a CatBoost model were trained and validated using performance statistics. Fifth,
the CatBoost model was selected as the model with the best performance regarding the
accuracy (75.3%), AUC (81.9%), and Kappa statistic (0.51). Sixth, the pluvial and
flash flood susceptible areas in Bavaria were mapped using the CatBoost model.
A new methodology has been developed to identify pluvial and flash flood-prone ar-
eas in Bavaria using machine learning. This ML-based method provides an estimate of
an area’s susceptibility based on spatially distributed and catchment-related influencing
factors without consideration of event precipitation or preconditions. It was proven that
machine learning models can be applied in flash flood susceptibility studies in addition
to hydrological and hydrodynamic models. The identified areas at risk can inform spa-
tial planning and flood risk management in Bavaria. Based on the identified pluvial and
flash flood-prone areas, a prioritization of detailed investigations can be made.

Hypothesis 5: Area and catchment characteristics influence the occurrence
of heavy rain-induced floods in Bavaria.
It was proven that the occurrence of pluvial and flash floods in Bavaria can be predicted
based on area and catchment properties alone using a CatBoost model. Conversely, this
means that area and catchment characteristics influence the occurrence of heavy rain-
induced floods in Bavaria. The influence of individual properties and their interaction
was investigated based on the trained machine learning model and model-specific and
model-agnostic methods.
The influence and interaction of spatially distributed properties and catchment char-
acteristics that promote the occurrence of heavy rain-induced floods is complex. To
determine the susceptibility of an area in Bavaria, a comprehensive description of the
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topography, soil and geology, land use, water bodies, catchment and precipitation charac-
teristics is necessary. Eleven spatially distributed and six catchment-related influencing
factors are required to capture the natural heterogeneity of Bavaria: elevation, slope,
landforms, land use, sealing degree, distance to river, height above the nearest drainage,
the permeability of the upper aquifer, saturated hydraulic conductivity, spatial location
(expressed by the product of X- and Y-coordinate), heavy rain hours, and the catchment-
related variables relief, Melton number, elongation ratio, length-area-relation, built-up
area share, and agricultural area share. Among the influencing factors, the sealing degree
and the built-up area share of a catchment have the highest predictive power, followed
by the Melton number (a basin ruggedness index expressed by the quotient of the relief
and the square root of the basin area), the heavy rain hours, the spatial location, and
the height above the nearest drainage. The relief conditions and land use distribution
of a catchment have a greater influence on the occurrence of pluvial and flash floods
than the shape of a catchment. The investigations indicate that elongated watersheds
with low relief and ruggedness, a low percentage of built-up areas, and highly permeable
topsoils and upper aquifers are less susceptible to pluvial and flash flooding. The inves-
tigations also proved that the area and catchment characteristics influence each other.
For example, the slope interacts strongly with the sealing degree, the built-up area share
of a catchment, and the heavy rain hours. Due to these interactions, it is crucial to
evaluate the characteristics of all influencing factors jointly to be able to make a reliable
statement about the susceptibility of an area.
The investigation of the influence of spatially distributed properties and catchment char-
acteristics on the occurrence of heavy rain-induced floods brought new insights. Fur-
thermore, some correlations between area characteristics and susceptibility to pluvial
and flash floods, which are suspected or known among hydrologists, could be confirmed.
These study findings not only improve our hazard understanding but underline the suit-
ability of machine learning for basic hydrological research.

5.2 Discussion

In the following, the potentials and limitations of the proposed data-driven approach are
discussed in a broader context. In addition, unresolved questions are presented that can
be addressed in future research. The following discussion follows the thesis structure,
starting with the documentation procedure, followed by the event database and event
analyses, and concluding with the model application.
The developed documentation scheme needs to be applied and further improved to in-
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crease its general applicability in pluvial and flash flood research. Other research fo-
cuses may require the collection of more information and/or a higher level of detail than
provided in the proposed documentation scheme. For example, an extension of the doc-
umentation scheme is necessary to capture the circumstances of flood fatalities. Data
relevant to fatality studies could include, for example, the age and sex of the victim, time
of death, and a description of the situational circumstances (see Terti et al., 2017; Terti
et al., 2019). Studies on the relationship of preparedness, response, and recovery from
heavy rain-induced floods may require additional information on, e.g., flood experiences,
socio-economic variables, preventive and protective measures implemented (see Rözer
et al., 2016; Spekkers et al., 2017).
For a holistic risk management approach, a next step could be to include other natural
hazards such as debris flows, droughts, or forest fires in the event database. Not least
due to climate change, the need to investigate interactions between natural hazards is
gaining in importance. We are already experiencing that droughts can be followed by
floods (e.g., Ward et al., 2020) or that burned landscapes promote the occurrence of flash
floods (e.g., Kean et al., 2012). Murphy et al. (2018) have shown that droughts, fires, and
floods can change flow paths and water quality, highlighting the need for multi-hazard
assessments (e.g., Pourghasemi et al., 2020). A spatial database links not only different
datasets and types but also different natural hazards, making it an interdisciplinary tool.
So far, we are still in the early stages of exploiting the evaluation capabilities of an event
database in geoscience.
The generated dataset of past pluvial and flash flood events in Germany could be refined
and extended. To enable more differentiated analyses, the collected events must be clas-
sified according to their severity and intensity. Event severity could be estimated using
event information stored in the database on monetary losses, type of flotsam, highest
affected floor, and damages. Similarly, the event intensity may be classified using in-
formation on precipitation, discharge (e.g., return period, precipitation intensity), and
cascade effects (e.g., clogging, landslide, dike break). Schroeder et al. (2016) and Di-
akakis et al. (2020), for example, propose a flash flood severity index based on damage.
For events with discharge and precipitation measurements, an event classification based
on derived discharge and precipitation parameters would be possible (e.g., Bhaskar et
al., 2000; B.-S. Kim and H.-S. Kim, 2014; Saharia et al., 2017). However, the event
dataset should not only be refined but also extended to increase the amount of training
data for data-driven approaches and thus model performance. To this end, methods of
natural language processing could be applied to automatically extract information on
past pluvial and flash flood events from online newspaper articles (cf. Yzaguirre et al.,
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2015; Zarei and Nik-Bakht, 2019).
The collected damage information of the event dataset has not been evaluated yet.
Comprehensive information is available on the damage that occurred to buildings, agri-
culture, forestry, infrastructure, and businesses in the event database. Based on the
descriptive text blocks, consisting of an adjective and a noun, an automated evaluation
of the frequency and type of damage caused by heavy rain-induced floods is possible.
Of particular interest is the relationship between event characteristics and the occurred
damage. To investigate these complex interactions, detailed information on the trigger-
ing precipitation (e.g., amount, duration, intensity, spatial distribution) is needed from
radar and ground measurements. Information from discharge measurement (e.g., time
to peak, specific peak discharge, return period) can also help to establish a relation-
ship between event magnitude and damage pattern. In addition, the influence of area
characteristics on the type and severity of damage could be investigated (e.g., rugged
vs. flat watersheds). Furthermore, machine learning approaches can be applied in flash
flood damage analysis. Alipour et al. (2020), for example, demonstrate how flash flood
damage in the southeastern U.S. can be predicted using a Random Forest model and
features explaining exposure, vulnerability, and hazard.
Our analyses have proven that anthropogenic factors significantly influence the occur-
rence of heavy rain-induced floods. Aggregated at the rural district level, we found a
positive moderate correlation between the number of inhabitants and the number of
flood events triggered by heavy rain. However, there was no correlation between the
sealing degree of a rural district and its reported events. Among the 17 chosen influ-
encing factors of the ML model, the sealing degree and the built-up area share of a
catchment were the two most influential factors. On average, the sealing degree and the
built-up area share contributed nearly 17 and 12% to the final decision of the decision
tree. It can be assumed that the rural districts were spatially too homogeneous to prove
a correlation between the sealing degree of a rural district and the number of its events.
This is also shown by the fact that the share of built-up land related to the catchment
area is an influential factor in the ML model.
The developed classification model disregards event-specific influencing factors and thus
neglects an essential component in the analysis of factors influencing the occurrence of
pluvial and flash floods. To close this gap, further analyses must consider event-specific
factors such as triggering precipitation, antecedent soil moisture, and crop phenology. A
major challenge here is to obtain this measurement data for a sufficiently large number
of events to be able to evaluate them statistically. Another question that needs to be
addressed is how to incorporate these event-specific influencing factors into the classifi-
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cation model. For example, do different susceptibility maps have to be created for the
different event preconditions, or can event-specific influencing factors be taken into ac-
count using statistical frequencies? Once these issues are resolved, we can investigate to
what extent the event-specific influencing factors contribute to the occurrence of heavy
rain-induced floods, as opposed to the susceptibility imposed by area characteristics.
Methodological and data uncertainties must be considered when interpreting the gen-
erated susceptibility map. The derivation of the pluvial and flash flood susceptibility
map of Bavaria is based solely on spatially distributed and catchment-related influencing
factors and does not consider event-specific influencing factors. Therefore, it cannot be
ruled out that areas classified as having low susceptibility to heavy rain-induced floods
may experience a devastating flash flood under unfavorable conditions, such as high
antecedent soil moisture and extreme precipitation amounts. Furthermore, the derived
susceptibility map is a representation of the current state. A significant change in time-
variant influencing factors, such as the sealing degree, could lead to a higher or lower
susceptibility in the future. The training and test locations of the unaffected locations
also contain uncertainties. In the case of the unaffected locations, it cannot be excluded
that they do not include affected locations, since the absence of an event report in the
database does not necessarily mean that there was no event in the past. In this respect,
when evaluating model performance, attention must be paid to the statistical measures
describing the correct identification of affected locations (e.g., sensitivity, false-negative
count).
Further insights can be expected from scenario modeling using the developed classifica-
tion model (e.g., Avand et al., 2020). In our analysis, we found that the sealing degree
and the proportion of built-up area in a catchment have a significant influence on the oc-
currence of heavy rain-induced floods. Looking ahead to future changes, it is important
to understand how the susceptibility of an area changes when area characteristics such
as the sealing degree, the share of built-up area in a catchment, or the land use change
over time. Regarding mitigation measures, scenario modeling could help quantify the
influence of these time-variant influencing factors.
Finally, we need to explore the strengths and weaknesses, possibilities and limits of data-
driven models for flash flood susceptibility modeling, just as we do with hydrodynamic
and hydrological models. This requires sensitivity analyses and plausibility checks of the
relationships found by the machine learning model. Regarding model sensitivity, the in-
fluence of the predictor’s spatial resolution (e.g., sealing degree, slope, elevation) on the
model performance should be investigated (e.g., Knegt et al., 2010; Bradter et al., 2013).
Also, the placement and size of the flood training and test locations could be varied,
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e.g., by choosing buffer areas around the city center instead of individual raster cells. In
addition, we need to investigate the internal logic of the black-box models developed and
examine why predicted flash flood susceptibility is high or low for a specific area. For
this purpose, an increasing number of model-agnostic and model-specific interpretation
methods are available, e.g., Partial Dependence Plots, Counterfactual Explanations, Lo-
cal Surrogate Models, Influence Functions (Carvalho et al., 2020; Molnar, 2019). To
further improve the prediction accuracy of data-driven models in hydrology, integrating
spatial awareness and physical approaches into traditional machine learning techniques
becomes inevitable (Jiang et al., 2020; Nearing et al., 2020; Talebi et al., 2020). Also,
incorporating expert knowledge into ML models using fuzzy logic can help to improve
flash flood susceptibility modeling (e.g., Hong et al., 2018; Bui et al., 2019b).

5.3 Outlook & practical recommendations

Due to the increasing availability of data in geosciences, event databases and machine
learning models will continue to grow in importance. Increasingly large and complex
data, also from new data sources, are available for evaluating past pluvial and flash
flood events. These include for example satellite imagery, photos and videos from social
media, newspaper articles, crowd-sourced stream level observations, radar images, and
simulation results. To take full advantage of these datasets, we need event databases
on the one hand that manage, structure, and link these different types of data. On the
other hand, we need machine learning models to, e.g., extract inundation areas and water
depths from satellite imagery (e.g., Ngo et al., 2018; Geyman and Maloof, 2019), assess
flood severity from social media photos (e.g., Pereira et al., 2020), or estimate discharges
(e.g., Petty and Dhingra, 2018). Machine learning will help us improve our predictive
understanding of the complex relationships in geosystems (Bergen et al., 2019).
Event databases are not only of great benefit to research but also to society. Integrated
into a website, flash flood event databases can serve as an information platform for inter-
ested parties, support science communication, and raise awareness of the danger posed
by heavy rain-induced floods. In addition, citizens can get actively involved by, e.g.,
reporting events via an online form or investigating events in a map viewer. Especially
to promote private precaution and hazard awareness, it is important to make the threat
of pluvial and flash flooding tangible to citizens.
Due to their importance for science and society, event databases should be hosted sus-
tainably. Databases of heavy rain or flash flood events are repeatedly created in scientific
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projects in Germany. The first German flash flood database was the URBAS database
that was created in 2008 (BMBF, 2008). In addition to the HiOS database, a “Climate
Event Portal” is set up in the project BAYSICS since 2018, holding event information
on forest fires, flash floods, and landslides in Bavaria (bayklif, 2018). Also, the project
CARLOFF, which started in 2019, aims at developing a database on convective precip-
itation events in Germany (climXtreme, 2020). However, linking the event databases to
the projects is not sustainable because the databases are usually not maintained after the
project ends and thus access is no longer possible. It is therefore recommended to host
event databases at a national or international institution—such as the German Climate
Computing Center, the International Centre for Water Resources and Global Change, or
the Global Runoff Data Center operating under the auspices of the World Meteorological
Organization—where long-term use is guaranteed, and other projects and international
scientists can also gain access.
To advance the collection of flash flood event information, we need to make event doc-
umentation a community task. To this end, event databases should be publicly accessi-
ble to both the scientific community and society. Since collecting event information is
time-consuming, it is important to distribute this task among as many stakeholders as
possible. In the context of data collection, not only researchers but especially agencies
and municipalities play an important role. Since agencies and municipalities usually
have information on local events within their jurisdiction, it is important to encourage
them to contribute to data collection. Agencies such as water management offices could
submit their event information via an online form and upload photos, videos, and re-
ports. After quality control by experts, the submitted event information could be added
to the database. In return for their contribution to the data collection, agencies and
municipalities could use the event database for their research and analysis.
Machine learning approaches have been widely applied in flood research for years (see
Mosavi et al., 2018), but have yet to prove themselves in practice. This also holds true
for flash flood susceptibility maps that are derived using classification algorithms. Cur-
rently, there is still a lack of experience from the application of flash flood susceptibility
maps in flood risk management. This includes feedback from water management agen-
cies, municipalities, and citizens on the comprehensibility, usefulness, and accuracy of
the maps, which in turn can be used to improve the maps. Regarding the flash flood
susceptibility maps, the knowledge transfer from science to practice and back still needs
to take place. However, compared to flood hazard maps derived using computation-
ally expensive hydrodynamic models, flash flood susceptibility maps have the advantage
that they can be generated in a short time for a large study area using machine learn-
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ing. Thus, flash flood susceptibility maps are an urgently needed complement to flood
hazard maps by enabling a holistic hazard assessment of entire countries. Due to the
rapid advancement of ML approaches, increasing availability of event information, and
short computation time, flash flood susceptibility modeling using machine learning will
become an integral part of flood risk management in the near future.
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Table A.1: List of the table attributes of the HiOS database including data types, data lengths, constraints, and keys.

Category Table name Attribute Data type Length Nullable Constraints Keys

Administrative structure cities municipality_no character varying 12 no foreign key primary key
Administrative structure cities federal_state character varying no
Administrative structure cities government_district_no character varying 3 yes foreign key
Administrative structure cities rural_district_no character varying 5 yes foreign key
Administrative structure cities name character varying no foreign key primary key
Administrative structure cities bounding_box geometry yes
Administrative structure cities zip_code character varying 5 yes foreign key
Administrative structure cities height integer yes
Administrative structure cities name2 character varying yes
Administrative structure cities population integer yes
Administrative structure cities point geometry yes
Administrative structure federal_states name character varying no foreign key primary key
Administrative structure federal_states state_no character varying 2 no unique
Administrative structure federal_states population integer yes
Administrative structure federal_states shapefile geometry no
Administrative structure federal_states abbreviation character varying 2 yes
Administrative structure government_districts government_district_no character varying 3 no foreign key primary key
Administrative structure government_districts federal_state character varying no
Administrative structure government_districts name character varying no foreign key
Administrative structure government_districts shapefile geometry no
Administrative structure municipalities municipality_no character varying 12 no foreign key primary key
Administrative structure municipalities federal_state character varying no
Administrative structure municipalities government_district_no character varying 3 yes foreign key
Administrative structure municipalities rural_district_no character varying 5 no foreign key
Administrative structure municipalities name character varying no foreign key
Administrative structure municipalities shapefile geometry yes
Administrative structure municipalities name2 character varying yes
Administrative structure municipalities zip_code character varying 5 yes foreign key
Administrative structure municipalities population integer yes
Administrative structure rural_districts rural_district_no character varying 5 no foreign key primary key
Administrative structure rural_districts government_district_no character varying 3 yes foreign key
Administrative structure rural_districts federal_state character varying no
Administrative structure rural_districts name character varying no foreign key
Administrative structure rural_districts shapefile geometry no
Administrative structure rural_districts population integer yes
Administrative structure rural_districts sealing_share real yes
Administrative structure water_authorities name character varying no primary key
Administrative structure water_authorities government_district_no character varying 3 yes foreign key
Administrative structure water_authorities address character varying yes
Administrative structure water_authorities telephone_number character varying yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Administrative structure water_authorities fax_number character varying yes
Administrative structure water_authorities email_address character varying yes
Administrative structure water_authorities website character varying yes
Administrative structure water_authorities shapefile geometry no
Administrative structure zip_codes zip_code character varying 5 no foreign key primary key
Administrative structure zip_codes shapefile geometry yes
Catchment information catchments state_no character varying no foreign key
Catchment information catchments area_code character varying yes
Catchment information catchments name character varying yes
Catchment information catchments name2 character varying yes
Catchment information catchments catchment_type character varying yes
Catchment information catchments in_state character varying yes
Catchment information catchments from character varying yes
Catchment information catchments to character varying yes
Catchment information catchments river_name character varying yes
Catchment information catchments river_order character varying yes
Catchment information catchments comment text yes
Catchment information catchments shapefile geometry yes
Catchment information catchments max_height real yes
Catchment information catchments avg_height real yes
Catchment information catchments std_height real yes
Catchment information catchments river_density real yes
Catchment information catchments catchment_no integer no primary key
Catchment information catchments area double precision yes
Catchment information catchments perimeter double precision yes
Catchment information catchments relative_perimeter double precision yes
Catchment information catchments length_area_relation double precision yes
Catchment information catchments compactness double precision yes
Catchment information catchments circularity_ratio double precision yes
Catchment information catchments relief double precision yes
Catchment information catchments relief_ratio double precision yes
Catchment information catchments melton_number double precision yes
Catchment information catchments avg_slope double precision yes
Catchment information catchments max_slope double precision yes
Catchment information catchments std_slope double precision yes
Catchment information catchments builtup_areas real yes
Catchment information catchments agricultural_areas real yes
Catchment information catchments forest_near_natural_areas real yes
Catchment information catchments wetland_area real yes
Catchment information catchments water_area real yes
Catchment information catchments terrain_undulation_index real yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Catchment information catchments melton_ruggedness real yes
Catchment information catchments length real yes
Catchment information catchments form_factor real yes
Catchment information catchments elongation_ratio real yes
Catchment information catchments catchment_center geometry yes
Catchment information gauges lake_code character varying yes
Catchment information gauges station_name character varying yes
Catchment information gauges measurement_start date yes
Catchment information gauges operator character varying yes
Catchment information gauges catchment_area real yes
Catchment information gauges river_kilometer real yes
Catchment information gauges river_side character varying yes
Catchment information gauges gauge_type character varying yes
Catchment information gauges gauge_quality character varying yes
Catchment information gauges gauge_zero real yes
Catchment information gauges remark text yes
Catchment information gauges website character varying yes
Catchment information gauges low_water_level real yes
Catchment information gauges high_water_level real yes
Catchment information gauges comment text yes
Catchment information gauges gauge_no integer no foreign key primary key
Catchment information gauges owner character varying yes
Catchment information gauges data_maintenance character varying yes
Catchment information gauges remote_data_transmission character varying yes
Catchment information gauges name_river character varying yes
Catchment information gauges river_code character varying yes
Catchment information gauges location_river_course character varying yes
Catchment information gauges area_code character varying yes
Catchment information gauges avg_water_level real yes
Catchment information gauges hq1 real yes
Catchment information gauges hq2 real yes
Catchment information gauges hq5 real yes
Catchment information gauges hq10 real yes
Catchment information gauges hq20 real yes
Catchment information gauges hq50 real yes
Catchment information gauges hq100 real yes
Catchment information gauges mq real yes
Catchment information gauges state_no character varying yes foreign key
Catchment information gauges point geometry yes
Catchment information gauges hq1000 real yes
Catchment information gauge_catchments shapefile geometry yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Catchment information gauge_catchments area double precision yes
Catchment information gauge_catchments lake_area double precision yes
Catchment information gauge_catchments gauge_no integer no primary key
Catchment information lakes lake_code character varying yes
Catchment information lakes state_no character varying no foreign key
Catchment information lakes name character varying yes
Catchment information lakes area_ha real yes
Catchment information lakes island_area_ha real yes
Catchment information lakes catchment_area real yes
Catchment information lakes drainage_influenced character varying yes
Catchment information lakes origin character varying yes
Catchment information lakes main_inflow character varying yes
Catchment information lakes outflow character varying yes
Catchment information lakes number_inflows smallint yes
Catchment information lakes shoreline_km real yes
Catchment information lakes volume_hm3 real yes
Catchment information lakes max_depth_m real yes
Catchment information lakes residence_time_d real yes
Catchment information lakes height_asl_m real yes
Catchment information lakes volume_bankful real yes
Catchment information lakes inland_catchment_area real yes
Catchment information lakes catchment_area_main_inflow real yes
Catchment information lakes area_code character varying yes
Catchment information lakes main_use character varying yes
Catchment information lakes shapefile geometry yes
Catchment information lakes comment text yes
Catchment information lakes main_inflow_code bigint yes
Catchment information lakes lake_no integer no primary key
Catchment information watercourses watercourse_no integer no primary key
Catchment information watercourses state_no character varying yes foreign key
Catchment information watercourses river_code character varying yes
Catchment information watercourses lake_code character varying yes
Catchment information watercourses area_code character varying yes
Catchment information watercourses name character varying yes foreign key
Catchment information watercourses name2 character varying yes
Catchment information watercourses river_order character varying yes
Catchment information watercourses location_info character varying yes
Catchment information watercourses length_km real yes
Catchment information watercourses river_width character varying yes
Catchment information watercourses slope real yes
Catchment information watercourses catchment_area real yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Catchment information watercourses river_type character varying yes
Catchment information watercourses affected character varying yes
Catchment information watercourses use character varying yes
Catchment information watercourses location_source_and_estaury character varying yes
Catchment information watercourses comment text yes
Catchment information watercourses shapefile geometry yes
Catchment information watercourses length double precision yes
Event description damage event_no integer no foreign key primary key
Event description damage source_no integer no foreign key primary key
Event description damage entry_no integer yes foreign key
Event description damage description_damage text yes
Event description damage comment_damage text yes
Event description damage total_damage real yes
Event description damage fatalities integer yes
Event description damage injured integer yes
Event description damage evacuation character varying yes
Event description damage advance_warning real yes
Event description damage disaster_alert character varying yes
Event description damage building_damages real yes
Event description damage number_claims integer yes
Event description damage description_building_damages character varying yes
Event description damage comment_building_damages character varying yes
Event description damage forestry_agricultural_damages real yes
Event description damage description_forestry_agricultural_damages character varying yes
Event description damage comment_forestry_agricultural_damages character varying yes
Event description damage infrastructural_damages real yes
Event description damage description_infrastructural_damages character varying yes
Event description damage comment_infrastructural_damages character varying yes
Event description damage business_damages real yes
Event description damage description_business_damages character varying yes
Event description damage comment_business_damages character varying yes
Event description damage other_damages real yes
Event description damage description_other character varying yes
Event description damage comment_other character varying yes
Event description damage zip_code character varying 5 no foreign key primary key
Event description damage info_no integer no primary key
Event description entries entry_no integer no primary key
Event description entries source_type character varying yes
Event description entries quality_level character varying no
Event description entries editor character varying no
Event description entries entry_date date no



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Event description entries last_review date yes
Event description events event_no integer no primary key
Event description events municipality_no character varying 12 no unique, foreign key
Event description events date date no unique
Event description events city_name character varying no unique
Event description hydrology event_no integer no foreign key primary key
Event description hydrology source_no integer no foreign key primary key
Event description hydrology entry_no integer yes foreign key
Event description hydrology flooding character varying yes
Event description hydrology return_period character varying yes
Event description hydrology river character varying yes
Event description hydrology gauging_station character varying yes
Event description hydrology comment_flooding character varying yes
Event description hydrology cause character varying yes
Event description hydrology debris_flow character varying yes
Event description hydrology landslide character varying yes
Event description hydrology sedimentation character varying yes
Event description hydrology contamination_type character varying yes
Event description hydrology flotsam character varying yes
Event description hydrology flotsam_type character varying yes
Event description hydrology log_jam character varying yes
Event description hydrology comment_log_jam character varying yes
Event description hydrology dike_failure character varying yes
Event description hydrology traffic_congestion character varying yes
Event description hydrology sewerage_system_overload character varying yes
Event description hydrology initial_condition_catchment character varying yes
Event description hydrology heighest_affected_floor character varying yes
Event description hydrology zip_code character varying 5 no foreign key primary key
Event description hydrology info_no integer no primary key
Event description meteorology event_no integer no foreign key primary key
Event description meteorology source_no integer no foreign key primary key
Event description meteorology entry_no integer yes foreign key
Event description meteorology storm character varying yes
Event description meteorology lightning character varying yes
Event description meteorology rain_on_snow character varying yes
Event description meteorology hail character varying yes
Event description meteorology max_diameter_hail real yes
Event description meteorology avg_diameter_hail real yes
Event description meteorology layer_thickness_hail real yes
Event description meteorology comment_meteorology text yes
Event description meteorology date_precipitation date yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Event description meteorology start_precipitation time without time zone yes
Event description meteorology end_precipitation time without time zone yes
Event description meteorology return_period character varying yes
Event description meteorology comment_precipitation text yes
Event description meteorology duration real yes
Event description meteorology amount real yes
Event description meteorology convection text yes
Event description meteorology precipitation_measurement character varying yes
Event description meteorology measuring_station character varying yes
Event description meteorology max_30min_precipitation real yes
Event description meteorology max_1h_precipitation real yes
Event description meteorology max_3h_precipitation real yes
Event description meteorology max_6h_precipitation real yes
Event description meteorology max_12h_niederschlag real yes
Event description meteorology max_24h_niederschlag real yes
Event description meteorology amount_precipitation_peak real yes
Event description meteorology duration_precipitation_peak real yes
Event description meteorology weather_condition text yes
Event description meteorology zip_code character varying 5 no foreign key primary key
Event description meteorology info_no integer no primary key
Event description sources source_no integer no foreign key primary key
Event description sources source_name character varying no
Event description sources usage_rights text no
Event description sources dataset_description text no
Event description sources citation character varying no
Event description space_time event_no integer no foreign key primary key
Event description space_time source_no integer no foreign key primary key
Event description space_time entry_no integer yes foreign key
Event description space_time zip_code character varying 5 no foreign key primary key
Event description space_time info_no integer no primary key
Event description space_time start_flooding time without time zone yes
Event description space_time end_flooding time without time zone yes
Event description space_time duration_flooding real yes
Event description space_time temporal_accuracy character varying yes
Event description space_time urban_district character varying yes
Event description space_time spatial_accuracy character varying yes
Event description space_time event_extent character varying yes
Event description space_time comment text yes
Event documentation documents document_no integer no primary key
Event documentation documents author character varying no
Event documentation documents usage_rights text yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Event documentation documents comment text yes
Event documentation documents citation text yes
Event documentation documents quality character varying yes
Event documentation documents description text yes
Event documentation documents storage_location character varying no
Event documentation photos photo_no integer no primary key
Event documentation photos author character varying no
Event documentation photos usage_rights text yes
Event documentation photos comment text yes
Event documentation photos citation text yes
Event documentation photos quality character varying yes
Event documentation photos description text yes
Event documentation photos storage_location character varying no
Event documentation websites url_no integer no primary key
Event documentation websites author character varying no
Event documentation websites usage_rights text yes
Event documentation websites comment text yes
Event documentation websites citation text yes
Event documentation websites quality character varying yes
Event documentation websites description text yes
Event documentation websites storage_location character varying no
Event documentation websites url character varying yes
Event documentation websites accessed_on date no
Event documentation videos video_no integer no primary key
Event documentation videos author character varying no
Event documentation videos usage_rights text yes
Event documentation videos comment text yes
Event documentation videos citation text yes
Event documentation videos quality character varying yes
Event documentation videos description text yes
Event documentation videos storage_location character varying no
Measurements discharge_investigation gauge_no integer no foreign key primary key
Measurements discharge_investigation number integer no primary key
Measurements discharge_investigation event_begin timestamp without time zone yes
Measurements discharge_investigation event_peak timestamp without time zone yes
Measurements discharge_investigation event_end timestamp without time zone yes
Measurements discharge_investigation discharge_begin double precision yes
Measurements discharge_investigation discharge_peak double precision yes
Measurements discharge_investigation discharge_end double precision yes
Measurements discharge_investigation percent_increase double precision yes
Measurements discharge_investigation time_to_peak double precision yes



Table A.1: Continued.

Category Table name Attribute Data type Length Nullable Constraints Keys

Measurements discharge_investigation specific_discharge double precision yes
Measurements discharge_investigation gradient double precision yes
Measurements discharge_investigation volume double precision yes
Measurements discharge_investigation peak_to_volume double precision yes
Measurements discharge_investigation catchment_area double precision yes
Measurements discharge_investigation return_period character varying yes
Measurements discharge_investigation flood_discharge real yes
Measurements discharge_investigation comment character varying yes
Measurements discharge_measurements timestamp timestamp without time zone no primary key
Measurements discharge_measurements discharge real yes
Measurements discharge_measurements gauge_no integer no foreign key primary key
Measurements heavy_rain_hours zip_code character varying 5 no foreign key primary key
Measurements heavy_rain_hours heavy_rain_hours real yes
Metainformation attribute_descriptions table character varying no primary key
Metainformation attribute_descriptions attribute character varying no primary key
Metainformation attribute_descriptions attribute_description text yes
Metainformation attribute_descriptions unit character varying yes
Metainformation attribute_descriptions name_dataset text yes
Metainformation attribute_descriptions dataset_description text yes
Metainformation attribute_descriptions source character varying yes
Metainformation attribute_descriptions comment text yes
Metainformation geodata_descriptions dataset_no integer no primary key
Metainformation geodata_descriptions name_dataset character varying no
Metainformation geodata_descriptions abbreviation_dataset character varying yes
Metainformation geodata_descriptions description text yes
Metainformation geodata_descriptions storage_location character varying yes
Metainformation table_descriptions name character varying no foreign key primary key
Metainformation table_descriptions description text no



B SQL queries

B.1 View of event list

To exclude noise from possibly irrelevant events, we only considered flash flood and
pluvial flood events in our analyses that occurred between April and October. Further-
more, we excluded the events from the insurance dataset (with source number 5), as
this dataset does not cover Germany uniformly and thus would distort the results. For
reasons of manageability, we created a table view of the events table containing only
those events relevant to our analyses.

1 CREATE VIEW events_analysis
2 AS
3 SELECT DISTINCT e.event_no ,
4 e. municipality_no ,
5 e.date ,
6 e. city_name
7 FROM events e
8 JOIN space_time s
9 ON e. event_no = s. event_no

10 WHERE Date_part (’month ’, date) > 3
11 AND Date_part (’month ’, date) < 11
12 AND s. source_no <> 5
13 ORDER BY event_no ASC
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B SQL queries

B.2 Number of events per affected city

The following SQL statement summarizes the number of events per affected city, as
shown in Fig. 3.3.

1 SELECT e.city_name ,
2 e. municipality_no ,
3 Count (*) AS event_number ,
4 c.point
5 FROM events_analysis e
6 JOIN cities c
7 ON c. municipality_no = e. municipality_no
8 AND c.name = e. city_name
9 GROUP BY e.city_name ,

10 e. municipality_no ,
11 c.point
12 ORDER BY ( Count (*) ) DESC;

B.3 Time series of heavy rain-induced floods, injuries, and
fatalities

This SQL statement summarizes the number of events, injuries, and fatalities per year
since 1990, as shown in Fig. 3.5.

1 SELECT Date_part (’year ’, date) AS year ,
2 Count (*) AS events ,
3 Sum( fatalities ) AS fatalities ,
4 Sum( injured ) AS injured
5 FROM events e
6 JOIN damage d
7 ON d. event_no = e. event_no
8 WHERE e. event_no IN( SELECT DISTINCT event_no
9 FROM space_time

10 WHERE source_no <> 5)
11 AND Date_part (’year ’, date) >= 1990
12 GROUP BY year
13 ORDER BY year ASC
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B.4 Time of event occurrence and number of injuries and fatalities

B.4 Time of event occurrence and number of injuries and
fatalities

This SQL statement groups the heavy rain-induced flood events, injuries and fatalities
by event onset, as shown in Fig. 3.6.

1 SELECT Extract (’hour ’ FROM start_flooding ) AS hour ,
2 Count (*) AS events ,
3 Sum( fatalities ) AS fatalities ,
4 Sum( injured ) AS injured
5 FROM ( SELECT DISTINCT event_no ,
6 start_flooding
7 FROM space_time ) m
8 JOIN damage d
9 ON d. event_no = m. event_no

10 WHERE start_flooding IS NOT NULL
11 GROUP BY hour
12 ORDER BY hour ASC
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B.5 Population density and events aggregated at the rural
district level

The following SQL statement queries the number of events, population density, popula-
tion, sealing proportion, area and shapefiles of the rural districts (see Fig. 3.7 and Fig.
3.8).

1 SELECT r.name ,
2 r. rural_district_no ,
3 Count (*) AS events ,
4 Cast(r. population / ( St_Area (r. shapefile ) /1000000) AS INTEGER ) AS

population_density ,
5 Log (10, r. population ) AS log10_population ,
6 St_Area (r. shapefile ) /1000000 AS area_km2 ,
7 r. sealing_share ,
8 r. shapefile
9 FROM ( SELECT DISTINCT date ,

10 LEFT( municipality_no , 5) AS rural_district_no
11 FROM events_analysis
12 ORDER BY rural_district_no ASC) m
13 JOIN rural_districts r
14 ON r. rural_district_no = m. rural_district_no
15 GROUP BY r.name ,
16 r. rural_district_no ,
17 population_density ,
18 r.population ,
19 area_km2 ,
20 r. sealing_share
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B.6 Event rate of the German cities

B.6 Event rate of the German cities

For each German city, we calculated the event rate as the quotient of the number of
events and the logarithm of the population to base 10. Cities without events were
assigned an event rate of 0. This dataset was the basis for Fig. 3.9.

1 SELECT l.name ,
2 l. municipality_no ,
3 ( CASE
4 WHEN m. events IS NULL THEN 0
5 ELSE m. events / Log (10, l. population )
6 END ) AS event_rate ,
7 l.point
8 FROM ( SELECT e.city_name ,
9 e. municipality_no ,

10 Count (*) AS events
11 FROM events_analysis e
12 JOIN cities c
13 ON c. municipality_no = e. municipality_no
14 AND c.name = e. city_name
15 GROUP BY e.city_name ,
16 e. municipality_no
17 ORDER BY ( Count (*) ) DESC) m
18 RIGHT JOIN cities l
19 ON l.name = m. city_name
20 AND l. municipality_no = m. municipality_no
21 ORDER BY event_rate DESC
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B.7 Flood-related injuries and fatalities per city

This SQL statement summarizes the number of injuries and fatalities by city (see Fig.
3.10).

1 SELECT c.name ,
2 c.zip_code ,
3 Sum( fatalities ) AS fatalities ,
4 Sum( injured ) AS injured ,
5 point
6 FROM damage d
7 JOIN events e
8 ON e. event_no = d. event_no
9 JOIN cities c

10 ON c.name = e. city_name
11 AND c. municipality_no = e. municipality_no
12 WHERE fatalities > 0
13 OR injured > 0
14 GROUP BY c.name ,
15 c.zip_code ,
16 point
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B.8 Events per season and federal state

B.8 Events per season and federal state

The following SQL query summarizes the number of events per season for each federal
state, as shown in Fig. 3.11.

1 SELECT f.name ,
2 Sum(CASE
3 WHEN Date_part (’month ’, e.date) = 12
4 OR Date_part (’month ’, e.date) = 1
5 OR Date_part (’month ’, e.date) = 2 THEN 1
6 ELSE 0
7 end) winter ,
8 Sum(CASE
9 WHEN Date_part (’month ’, e.date) = 3

10 OR Date_part (’month ’, e.date) = 4
11 OR Date_part (’month ’, e.date) = 5 THEN 1
12 ELSE 0
13 end) spring ,
14 Sum(CASE
15 WHEN Date_part (’month ’, e.date) = 6
16 OR Date_part (’month ’, e.date) = 7
17 OR Date_part (’month ’, e.date) = 8 THEN 1
18 ELSE 0
19 end) summer ,
20 Sum(CASE
21 WHEN Date_part (’month ’, e.date) = 9
22 OR Date_part (’month ’, e.date) = 10
23 OR Date_part (’month ’, e.date) = 11 THEN 1
24 ELSE 0
25 end) autumn ,
26 f. shapefile
27 FROM events e
28 JOIN federal_states f
29 ON LEFT( municipality_no , 2) = f. state_no
30 WHERE event_no IN( SELECT DISTINCT event_no
31 FROM space_time
32 WHERE source_no <> 5)
33 GROUP BY f.name
34 ORDER BY f.name ASC;
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B.9 Events per season in Germany

This SQL queries the number of events in Germany for each season (see Fig. 3.11).

1 SELECT Sum(CASE
2 WHEN Date_part (’month ’, e.date) = 12
3 OR Date_part (’month ’, e.date) = 1
4 OR Date_part (’month ’, e.date) = 2 THEN 1
5 ELSE 0
6 end) winter ,
7 Sum(CASE
8 WHEN Date_part (’month ’, e.date) = 3
9 OR Date_part (’month ’, e.date) = 4

10 OR Date_part (’month ’, e.date) = 5 THEN 1
11 ELSE 0
12 end) spring ,
13 Sum(CASE
14 WHEN Date_part (’month ’, e.date) = 6
15 OR Date_part (’month ’, e.date) = 7
16 OR Date_part (’month ’, e.date) = 8 THEN 1
17 ELSE 0
18 end) summer ,
19 Sum(CASE
20 WHEN Date_part (’month ’, e.date) = 9
21 OR Date_part (’month ’, e.date) = 10
22 OR Date_part (’month ’, e.date) = 11 THEN 1
23 ELSE 0
24 end) autumn
25 FROM events e
26 WHERE event_no IN( SELECT DISTINCT event_no
27 FROM space_time
28 WHERE source_no <> 5)
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B.10 Seasonality of heavy rain-induced flood events

B.10 Seasonality of heavy rain-induced flood events

The following SQL query summarizes the number of events per month for each affected
city. This dataset was the basis for Fig. 3.12. We aggregated the cities into bins of
100 km2 using ArcGIS Pro and determined the month with the most events for each bin
using Python’s Pandas library.

1 SELECT e.city_name ,
2 e. municipality_no ,
3 Sum(CASE
4 WHEN Date_part (’month ’, e.date) = 4 THEN 1
5 ELSE 0
6 END) april ,
7 Sum(CASE
8 WHEN Date_part (’month ’, e.date) = 5 THEN 1
9 ELSE 0

10 END) may ,
11 Sum(CASE
12 WHEN Date_part (’month ’, e.date) = 6 THEN 1
13 ELSE 0
14 END) june ,
15 Sum(CASE
16 WHEN Date_part (’month ’, e.date) = 7 THEN 1
17 ELSE 0
18 END) july ,
19 Sum(CASE
20 WHEN Date_part (’month ’, e.date) = 8 THEN 1
21 ELSE 0
22 END) august ,
23 Sum(CASE
24 WHEN Date_part (’month ’, e.date) = 9 THEN 1
25 ELSE 0
26 END) september ,
27 Sum(CASE
28 WHEN Date_part (’month ’, e.date) = 10 THEN 1
29 ELSE 0
30 END) october ,
31 c.point
32 FROM events_analysis e
33 JOIN cities c
34 ON c. municipality_no = e. municipality_no
35 AND c.name = e. city_name
36 GROUP BY e.city_name ,
37 e. municipality_no ,
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38 c.point
39 ORDER BY e.city_name ,
40 e. municipality_no ASC;
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