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Isothermal transformations are minimally dissipative but slow processes, as the system needs to remain
close to thermal equilibrium along the protocol. Here, we show that smoothly modifying the system-bath
interaction can significantly speed up such transformations. In particular, we construct protocols where the
overall dissipation Wdiss decays with the total time τtot of the protocol as Wdiss ∝ τ−2α−1tot , where each value
α > 0 can be obtained by a suitable modification of the interaction, whereas α ¼ 0 corresponds to a
standard isothermal process where the system-bath interaction remains constant. Considering heat engines
based on such speed-ups, we show that the corresponding efficiency at maximum power interpolates
between the Curzon-Ahlborn efficiency for α ¼ 0 and the Carnot efficiency for α → ∞. Analogous
enhancements are obtained for the coefficient of performance of refrigerators. We confirm our analytical
results with two numerical examples where α ¼ 1=2, namely the time-dependent Caldeira-Leggett and
resonant-level models, with strong system-environment correlations taken fully into account. We highlight
the possibility of implementing our proposed speed-ups with ultracold atomic impurities and mesoscopic
electronic devices.
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I. INTRODUCTION

Isothermal transformations play a fundamental role in
thermodynamics, being the building block of optimal
processes such as the Carnot engine [1]. In principle,
however, they are infinitesimally slow; this means in practice
that the total time of the process needs to be much larger
than the timescale of thermalization τeq over which the
system of interest equilibrates with its thermal environment.
These processes can then be sped up by increasing the
system-environment coupling, which naturally reduces τeq.
However, modifying the interaction also induces additional
dissipation, which prohibits the nonphysical possibility of
performing an isothermal process arbitrarily quickly [2–5]
(note that increasing the coupling can lead to power output
enhancements [2,3,6]). Given this nontrivial trade-off, the
goal of this article is to develop quantum-thermodynamic

protocols that smoothly modify the system-bath interaction
in order to speed up an isothermal process while keeping the
overall dissipation constant. This enables us to increase the
power of finite-time heat engines and refrigerators without
compromising their efficiency, a well-known challenge in
thermodynamics [7–15].
The idea of speeding up different thermodynamic

processes by external control has received a lot of attention
in the past years. Particularly relevant are shortcuts to
adiabaticity, which speed up unitary (and, hence, closed-
system) evolutions [16], making them suited to improve the
adiabatic part of thermodynamic cycles [17–19]. For open
quantum systems, speed-ups of the evolution to a particular
target state [20–23], such as an equilibration or thermal-
ization process [24–29], have also been developed. For
classical systems, such equilibration speed-ups (the so-
called engineered swift equilibration [30–32]) have been
experimentally tested [30,31]. Furthermore, these ideas
have been extended to full isothermal classical processes,
so that the state remains in the desired Gibbs distribution
along the whole process [33–35]. These ideas have also
been recently applied to the optimization of a finite-time
Carnot cycle [36], Otto engines [37,38], and refrigerators
[39]. In general, such speed-ups are possible by adding a
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time-dependent term to the Hamiltonian which, in the
presence of a thermal bath, leads to a new source
of dissipation. Indeed, speed-ups of equilibration and
thermalization generally come with an extra work cost
[26,29,30,38] (see also the discussion in Ref. [40] for
thermodynamic computing).
Here, our aim is to design speed-ups to isothermal

processes which do not come at the price of higher
dissipation or work cost. As a consequence, our speed-
ups to isothermality (SI) can be readily used to maximize
the power of finite-time Carnot engines [7,9,13–15] and
refrigerators [41–47] while keeping their efficiency con-
stant. Because of the extra control of the system-bath
interaction, we find that the dissipationWdiss for optimal SI
can asymptotically decay as

Wdiss ∝
1

τ2αþ1
tot

; ð1Þ

where τtot is the total time of the process, and different
α > 0 can be obtained by a suitable SI. In particular, we
provide two explicit examples where α ¼ 1=2. The decay
in Eq. (1) can substantially outperform the standard scaling
for large τtot, Wdiss ∝ τ−1tot , commonly found in protocols
where no control on the system-bath interaction is possible
[6–10,48–50]. Furthermore, we show how the scaling in
Eq. (1) leads to a new family of efficiencies at maximum
power that interpolate between the Curzon-Ahlborn effi-
ciency (for α ¼ 0) and the Carnot efficiency (for α → ∞);
see also Ref. [51]. Analogous enhancements are obtained
for the coefficient of performance of refrigerators [41–43].
These results are obtained through a twofold approach.

First, we analytically derive protocols for speeding up
isothermal processes by assuming both slow driving
(i.e., the timescale of the driving is slower than the time-
dependent equilibration timescale) and that the (time-
dependent) coupling g remains weak but non-negligible
along the whole process. Second, the above approximate
but analytical approach is supported by explicit calculations
for two general models of dissipation, covering both
bosonic and fermionic baths. In particular, we consider
quantum Brownian motion [52,53], where a quantum
harmonic oscillator with time-dependent frequency inter-
acts with a time-dependent coupling to a large (but finite)
set of bosonic modes, and the resonant-level (RL) model
[54–58], where a single fermionic level with a time-
dependent energy couples to an infinite bath of fermionic
modes via a time-dependent interaction. By employing
exact nonperturbative approaches to simulate such systems,
we explicitly evaluate all sources of dissipation, including
those introduced by the time-dependent system-bath inter-
actions away from weak coupling. These complementary
analyses confirm our analytical findings based on heuristic
assumptions, and show that such ideas can be applied
beyond the regime of weak coupling and slow driving.

As an application of our results, we demonstrate that the
time of a Carnot-like engine or refrigerator cycle can be
significantly reduced without increasing the dissipation by
controlling the system-bath coupling appropriately, such
that both power and efficiency can be simultaneously
improved. Our protocol could thus enhance the perfor-
mance of quantum thermal machines in systems where the
system-reservoir coupling can be controlled. We identify
and discuss two promising experimental platforms, namely
impurities immersed in ultracold gases [59–61] and meso-
scopic electronic devices [62–65]. However, numerous
other possibilities can be envisaged which leverage reser-
voir engineering techniques, such as trapped ions
[66–68], superconducting circuits [69], and nanomechan-
ical systems [70,71]. We also show that our SI protocols are
robust against control errors.
The paper is structured as follows. In Sec. II, we

introduce the basic tools needed to describe isothermal
processes. In Sec. III, we develop the speed-ups to
isothermality and optimize them to find the scaling in
Eq. (1). In Sec. IV, we use our findings from the previous
sections to derive the efficiency at maximum power for
general decays as in Eq. (1). In Sec. V, we illustrate these
general considerations numerically for quantum Brownian
motion and the resonant-level model. In Sec. VI, we
demonstrate the experimental feasibility and robustness
of our proposal. We finally conclude in Sec. VII.

II. ISOTHERMAL PROCESSES

Consider a driven Hamiltonian,

HðtÞ ¼ HðSÞðtÞ þ gðtÞV þHðBÞ; ð2Þ

where HðSÞðtÞ is the Hamiltonian of the system S, on
which one has experimental control, while HðBÞ is the
Hamiltonian of the bath B and V is the interaction between
the two, whose strength is governed by the (possibly time-
dependent) parameter g. The whole information of system
and bath together (SB) is contained in the density matrix ρ.
Consider a transformation between an initial Hamiltonian

Hð0Þ ¼ Hi and final one HðτtotÞ ¼ Hf. Without loss of
generality we can normalize the parameter t to the unit
interval by introducing the compact notation Xs ≡ XðsτtotÞ,
with s ∈ ½0; 1�, τtot the duration of the process under
consideration, and X ¼ H;HðSÞ; ρ, etc. The average work
associated to this transformation is given by the expression

W ¼
Z

1

0

dsTrðρs _HsÞ; ð3Þ

where ρs describes the instantaneous state of SB.
Suppose first that the integrand is well described by the

equilibrium value at all times, i.e., Trðρs _HsÞ ¼ Trðρths _HsÞ,
with
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ρths ≡ e−βHs

Z
; ð4Þ

and Z ¼ Trðe−βHsÞ. It follows that

W ¼
Z

1

0

dsTrðρths _HsÞ ¼
1

β
ln

Zi

Zf
≕ΔF; ð5Þ

where Z is the partition function, Zi=f ¼ Trðe−βHi=fÞ, and
F ¼ −ð1=βÞ logðZÞ is the free energy of SB. Equation (5)
is fulfilled in the limit τtot → ∞ and when the driven
observables _H thermalize (as expected for local observ-
ables). Note that the quantities in Eq. (5) depend on the
Hamiltonian (2) of the system and bath together, in general.
In the slow driving limit, i.e., for large but finite τtot,

Eq. (5) no longer holds as some work is dissipated
into the bath because ρs ≠ ρths along the trajectory. In order
to quantify the dissipated work, one introduces Wdiss≡
W − ΔF ≥ 0, which tends to zero as τtot → ∞. Expanding
Wdiss in powers of 1=τtot, one obtains at first order in 1=τtot
(this corresponds to the linear-response regime with respect
to the driving speed)

Wdiss ¼
1

τtot

Z
1

0

dsGρths
ð _Ht; _HsÞ þO

�
1

τ2tot

�
; ð6Þ

where Gρths
is a bilinear form evaluated at equilibrium ρths .

The form Gρths
was previously studied in different contexts.

It was obtained through linear-response theory [10,72–74],
by master equation approaches [49,75–77], or directly from
the partition function [78,79]. For clarity of the exposition,
here we focus on the latter, but our (heuristic) arguments
can be extended to more general Gρths

(see Appendix A).
Furthermore, for this work it is enough to consider time-
dependent Hamiltonians satisfying Hs ¼ _λsH̃, where H̃ is
some (time-independent) observable and λs is the control
parameter. In this case, we can write [76,78,79]

Wdiss ¼
τeqβ

τtot

Z
1

0

ds _λ2scovρths ðH̃; H̃Þ þO
�
τ2eq
τ2tot

�
; ð7Þ

where τeq is the timescale of relaxation [associated to
TrðρsH̃Þ], and

covρths ðH̃; H̃Þ ¼ 1

β2
∂2 lnZ
∂λ2 ; ð8Þ

which can be expressed in terms of the generalized
covariance defined as

covρths ðA;BÞ ¼ Tr

�
A
Z

1

0

dyðρths Þ1−y½B− Trðρths BÞI�ðρths Þy
�
:

ð9Þ

Equation (8) [and, hence, Eq. (7)] gives the standard notion
of a thermodynamic metric commonly used to describe
dissipative systems near equilibrium [78,79], and it pro-
vides us with a simple analytical form which depends on a
single timescale τeq.
In this work we are interested in modifications of the

system-bath interaction strength g, assuming initially weak
coupling. In this regime, we can expand around g ¼ 0,
corresponding to replacing the thermal state of the inter-
acting system ρths by the noninteracting one ρth0 . In par-
ticular, for covρths ðA; AÞ, we have

covρths ðA; AÞ ¼ cð0ÞA þ cð1ÞA gþ cð2ÞA g2 þ � � � ; ð10Þ

where we note that a similar expansion can be performed
for the more generalGρths

in Eq. (6). We also assume that the
thermalization time τeqðgÞ is related to the strength of the
interaction g introduced in Eq. (2) via

τeqðgÞ ∝
1

g2
; ð11Þ

which is expected in common dissipative evolutions [80].
Given Eqs. (7) and (11), it is clear that the dissipated

work Wdiss may be reduced by increasing g and, hence,
decreasing the thermalization timescale τeqðgÞ. However,
any modification of the Hamiltonian will require additional
work to be performed, leading to a nontrivial trade-off
between speed and dissipated work. In what follows we
develop strategies to optimally modulate gs in order to
speed up the process while keeping the overall dissipation
constant.

III. SPEED-UPS TO ISOTHERMALITY

Let us rexpress Eq. (2) in terms of the adimensional
parameter s ∈ ½0; 1�:

Hs ¼ HðSÞ
s þ gsV þHðBÞ; ð12Þ

where both HðSÞ
t and the interaction strength gs can be

externally controlled. We focus on protocols comprising
the following three steps.
(1) The interaction between system and bath is in-

creased from g0 to gf in a time τon, keeping the
system Hamiltonian constant.

(2) An isothermal transformation HðSÞ
0 → HðSÞ

1 is per-
formed in a time τiso, while the interaction strength is
kept constant at gf.

(3) The interaction between the system and the bath is
reduced to the initial value g0 in a time τoff , again
holding HðSÞ constant.

In Fig. 1 we give a schematic representation of the
thermodynamic protocol for different coupling strengths.
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For simplicity we assume τoff ¼ τon. Since both τon and
τiso are finite, work is dissipated during each step of the
protocol. We callWon

diss,W
iso
diss, andW

off
diss the dissipated work

in steps 1, 2, and 3, respectively. The total dissipation reads
Wdiss ¼ Won

diss þWiso
diss þWoff

diss, and the total duration of the
protocol is given by

τtot ¼ τon þ τiso þ τoff ¼ 2τon þ τiso: ð13Þ

Our goal is to optimize τon, τiso and the interaction strength
gf such that τtot is reduced and the dissipated work Wdiss

stays (approximately) constant.

A. Steps 1 and 3: Taming the dissipation when the
interaction is increased or decreased

We consider a family of protocols where the system-
bath interaction strength changes polynomially in time
according to

gs ¼ gi þ ðgf − giÞsα; ð14Þ

for α > 1 and s ∈ ½0; 1�. Throughout this section, we take
gi ¼ g0 and gf ¼ kg0, with g0 > 0 a reference (weak)
coupling strength. The assumption of a small, no-zero
initial interaction strength is technically necessary here to
ensure that we remain in the slow-driving regime,
i.e., τeqðgsÞ=τon ≪ 1 ∀ s. However, we will later see in
numerical simulations that taking gi ¼ 0 leads to similar
results.
In order to quantify the dissipation during the trans-

formation we make use of an expansion analogous to
Eq. (7), which is valid in the linear-response regime,

Won
diss ¼

β

τon

Z
1

0

dsτeqðgsÞ _g2scovρths ðV; VÞ; ð15Þ

where we have introduced a time-dependent equilibration
timescale τeqðgsÞ. Furthermore, through Eq. (11) we have

τeqðgsÞ ¼
τeqðg0Þ

½1þ ðk − 1Þsα�2 : ð16Þ

In order to evaluate Eq. (15), we follow a twofold approach.
First, we approximate the covariance as in Eq. (10) to deal
with corrections of the weak coupling regime (i.e., kg0 non-
negligible but satisfying kg0 ≪ 1). Second, we obtain an
upper bound on Won

diss using a nonperturbative approach
based on the norm of V.

For the first approach, we assume that cð1ÞV ¼ 0 in
Eq. (10), since TrðVρth0 Þ ¼ 0 holds exactly in a broad class
of relevant open quantum systems, such as the examples
discussed in Sec. V. Let us now consider two cases

separately: keeping only the lowest-order term (cð0ÞV ) or

retaining also the second-order one (cð2ÞV ).

1. Zeroth order

In this case, by replacing covρths ðV;VÞ by c
ð0Þ
V in Eq. (15),

we obtain

Wð1Þ
diss ¼

βg20τeqðg0Þcð0ÞV

τon
Fð1Þðα; kÞ; ð17Þ

with

Fð1Þðα; kÞ ¼
Z

1

0

ds
α2ðk − 1Þ2s2ðα−1Þ
½1þ ðk − 1Þsα�2 ; ð18Þ

an integral that admits a solution in terms of the incomplete β
function. For large k [while keeping kg0 ≪ 1 for consistency
with Eq. (10)], we can approximate Fð1Þðα; kÞ as

Fð1Þðα; kÞ ≈ πðα − 1Þ
sin ðπ=αÞ k

1=α; ð19Þ

with α > 1, whereas Fð1Þð1; kÞ ¼ ðk − 1Þ2=k. This approxi-
mation, which works reasonably well even for low k,
provides an intuition of how Fð1Þðα; kÞ grows with k.
Examining Eq. (17), we see that by choosing τon to be a

function of k, such that τon ∝ Fð1Þðα; kÞ, the dissipated
work becomes independent of k. To make this more
precise, we introduce τweakon as a reference timescale
for turning on the interaction to a relatively weak
value with k > 1, such that only a small amount of
dissipation is incurred. For larger values of k, the dis-
sipation remains small so long as the interaction is switched
on over a time

τon ¼ Fð1Þðα; kÞτweakon : ð20Þ

FIG. 1. Schematic representation of the protocol. We
consider the family of thermodynamic protocols from an initial

Hamiltonian H0 ¼ HðSÞ
0 þHðBÞ þ g0V to a final Hamiltonian

H1 ¼ HðSÞ
1 þHðBÞ þ g0V. For each protocol we choose an

interaction strength gf ¼ kig0.
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This indicates how to scale up τon with k in such a way that
the dissipation stays constant at leading order in g when the
interaction is increased.

2. Second order

One can also consider a more conservative choice than

the one in Eq. (20) by accounting for cð2ÞV in Eq. (10). The

dissipation Wð2Þ
diss induced by the second-order term corre-

sponds to

Wð2Þ
diss ¼

βg40τeqðg0Þcð2ÞV

τon
Fð2Þðα; kÞ; ð21Þ

with Fð2Þðα; kÞ ¼ ðk − 1Þ2α2=ð2α − 1Þ. For large k (with
kg0 ≪ 1), we can assume for simplicity,

Fð2Þðα; kÞ ≈ α2

2α − 1
k2: ð22Þ

Thus, by taking

τon ¼ Fð2Þðα; kÞτweakon ; ð23Þ

we ensure that Wð2Þ
diss is independent of k. Note that this

choice is more conservative since Fð2Þðα; kÞ ≥ Fð1Þðα; kÞ
for k ≥ 1.

3. Beyond weak coupling: A nonperturbative approach

In principle, one can extend the previous considerations
to find more conservative choices of τon as a function of k
by accounting for higher orders in Eq. (10). However, for
stronger couplings a more useful approach is to use the fact
that covρths ðV; VÞ ≤ 2kVk2, in order to bound the (exact)
dissipation (15) as

Wdiss ≤
βg20τeqðg0Þ2kVk2

τon
Fð1Þðα; kÞ: ð24Þ

Hence, in models where g20kVk2 is finite (and possibly
small), it appears plausible that the choice (20) is in fact
already sufficient to keep the dissipation controlled [note
that with Eq. (20) the upper bound becomes independent
of k]. Importantly, the bound (24) also works for strongly
correlated and non-Markovian systems, suggesting that our
considerations also apply for strongly correlated systems
that thermalize [81]. This will be confirmed later through
exact numerical examples at strong coupling for fermionic
and bosonic baths. In particular, the bound (24) can become
tight for finite-dimensional and locally interacting systems,
such as fermionic or spin models, where kVk is of the order
of the system-bath boundary and independent of the size of
the bath. In such cases, the scaling of the equilibration time

might differ from Eq. (11), but our framework can be easily
adapted to account for that.

4. Discussion

Summarizing, in this section we showed how to scale up
τon with k to ensure that Wdiss does not increase as we
increase the interaction. We followed two complementary
approaches. First, taking a perturbative expansion of Wdiss
for weak coupling, we derived two possible choices:
Eq. (20) and Eq. (23). The former ensures Wdiss stays
constant at leading order in the expansion (zeroth order),
whereas the latter ensures that Wdiss does not increase with
k up to second order in g. Second, we showed that one can
also upper bound Wdiss by a k-independent bound by
combining Eqs. (24) and (20), a bound which holds at
arbitrary strong coupling (i.e., large g) as long as kVk is
finite. In Sec. V, we test these choices for fermionic and
bosonic baths (see Fig. 8), showing that these generic
considerations work well in relevant physical models even
at reasonably strong coupling.

B. Step 2: Isothermal part of the process

Now we focus on the isothermal part of the protocol.
The protocol consists of modifying the Hamiltonian of the

systemHðSÞ
t while keeping the coupling strength g constant.

We introduce τweakiso as the time spent to perform the
isothermal part of the protocol for k ¼ 1, i.e., in the
absence of modulations of the interaction. By assuming
the scaling in Eq. (11) and by using the expansion in
Eq. (7), we can choose the time τiso of the isothermal
process for k > 1 as

τiso ¼
τweakiso

k2
ð25Þ

in order to keep the dissipation constant for any value of k.
Similar to the previous section, this is strictly valid at
leading order in g0, i.e., when keeping only the first term in
Eq. (10). This appears justified in the dissipative systems
we consider in this work (see Sec. V).

C. Full protocol

Collecting all the considerations above, we have devised
choices of τon and τiso as a function of k which guarantee
an overall constant dissipation. The total time of the
protocol reads

τtot ¼ 2FðiÞðα; kÞτweakon þ τweakiso

k2
; ð26Þ

where FðiÞðα; kÞ is given by either Eq. (18) or Eq. (22), the
latter being more conservative than the former in order to
not increase the dissipation (see Sec. V for examples). In
Fig. 2 we show the behavior of Eq. (26) for different values
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of the dimensionless ratio T ¼ τweakiso =τweakon , and for both
choices Eqs. (18) and (22). Note that for large T , as in
realistic situations (normally the isothermal process is
much longer than the time spent switching the system-
bath interaction on and off), we obtain substantial improve-
ments on the time of protocol. Our proposal hence provides
a way of substantially speeding up isothermal processes
through control of the system-bath interaction, which
crucially does not come at the price of increased dissipation
or work cost.

D. Optimal protocols and decay of dissipation

Above, we designed a family of protocols in which the
dissipation remains constant, while the total time of the
process can be adjusted as a function of k (see also Fig. 2).
Let us now minimize the expression in Eq. (26) to find the
fastest isothermal process for a given dissipation.
We first consider the zeroth-order expansion from

Sec. III A 1. To obtain an analytical expression, we use
the large-k approximation in Eq. (19) to obtain

τtot ¼ 2Dαk1=ατweakon þ τweakiso

k2
; ð27Þ

where Dα ¼ πðα − 1Þ csc ðπ=αÞ. This expression can be
minimized with respect to k, yielding

k ¼
�

ατweakiso

Dατ
weak
on

�
α=ð2αþ1Þ

; ð28Þ

and the corresponding minimal time

τtot ¼ Cατ
weak
iso

�
τweakon

τweakiso

�
2α=ð2αþ1Þ

;

where Cα is the constant

Cα ¼ ð2αþ 1Þ
�
Dα

α

�
2α=ð2αþ1Þ

: ð29Þ

For a standard isothermal process at k ¼ 1 in the weak
coupling regime, in which the interaction is not modified,
at leading order in 1=τweakiso the dissipated work can be
expressed as [9,14,76]

Wweak
diss ¼ Σ

τweakiso

; ð30Þ

where Σ > 0 can be obtained from the integral expression
in Eq. (7), where we note we have neglected the cost of
turning on or off the interaction due to the weak coupling
(the importance of this assumption will be discussed in
more detail in Sec. V, where all work costs are evaluated
explicitly). By construction, the family of protocols in
Eq. (29) will dissipate the same Wdiss ¼ Wweak

diss . If we
combine this observation with Eqs. (29) and (30), we
obtain that

Wdiss ¼ ΣC2αþ1
α

ðτweakon Þ2α
τ2αþ1
tot

; ð31Þ

with α > 0. For constant τweakon , the dissipation decays as

τ−ð2αþ1Þ
tot in the total time τtot of the process, which can
greatly outperform the standard decay in Eq. (30).
Naively, the decay in Eq. (31) may suggest that one can

make the dissipation arbitrary small simply by increasing α.
This is not the case, however, due to the contribution of the
constant Cα, which diverges exponentially as α increases.
As a consequence one can show that for any τ there exists
an optimal α, which scales logarithmically in τ. Hence, one
needs exponentially long protocols in order to choose
larger α.
Next, we discuss the case where τon is scaled as in

Eq. (22), in order to account for contributions to the
dissipated work at second order in g. Using the large-k
approximation in Eq. (22), the total time now reads as

τtot ¼ 2Bατ
weak
on k2 þ τweakiso

k2
; ð32Þ

where Bα ¼ α2=ð2α − 1Þ. Following the same steps
as before, we find that the total time is minimized
when we choose k4 ¼ τweakiso =ð2Bατ

weak
on Þ, yielding τtot ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Bατ
weak
iso τweakon

q
. This leads to a decay of the efficiency

given by

FIG. 2. The total time τtotal in Eq. (26) as a function of k, for
different values of T ¼ τweakiso =τweakon : T ¼ 20 (blue), T ¼ 50

(orange), T ¼ 100 (green), and α ¼ 1. The dashed line corre-
sponds to Fð2Þ and the solid line to Fð1Þ. Results for both Fð2Þ and
Fð1Þ are exact, the former being obtained through the exact
integral expression (18).
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Wdiss ¼
8α2Στweakon

ð2α − 1Þτ2tot
: ð33Þ

Therefore, for a fixed τweakon , the dissipation decays with the
total time as τ−2tot , in contrast to the standard decay (30).

IV. EFFICIENCY AT MAXIMUM POWER
THROUGH SPEED-UPS TO ISOTHERMALITY

In this section, we study the implications of optimal
shortcuts to isothermality for thermodynamic cycles. In
Sec. III, we presented different possible protocols for
speeding up an isothermal process. Here, we use a general
form for the decay of the dissipated work which encom-
passes all regimes considered in Sec. III. Indeed, let us
assume that the dissipation decays as

Wdiss ¼
Σγ

τγtot
; ð34Þ

with γ ≥ 1 and τtot is the time of the process. For the
optimal shortcuts to isothermality, we have that γ ¼ 2αþ 1

with α > 0 and Σγ ¼ ΣC2αþ1
α ðτweakon Þ2α, whereas for the

more conservative choice in Eq. (22) we have γ ¼ 2 and Σγ

given in Eq. (33).

A. Heat engines

We consider a finite-time Carnot-like cycle between two
thermal baths at different temperatures Th and Tc
[9,14,15,43]. Furthermore, when the (finite-time) iso-
thermal part of the cycle is carried out, we assume a decay
as in Eq. (34). Using QþW ¼ ΔES, the heat exchanged
between the system and each of the two thermal baths reads

Qc ¼ Tc

�
−ΔS −

Σγ

τγc
þ � � �

�
;

Qh ¼ Th

�
ΔS −

Σγ

τγh
þ � � �

�
; ð35Þ

where τc;h are the times of the isothermal processes (with
the cold, hot bath, respectively), and we have assumed a
symmetric cycle such that the constants Σγ are equal for
each isothermal process [9,14,15]. The efficiency of the
engine is given by

η ¼ 1þ Qc

Qh
; ð36Þ

whereas the power reads

P ¼ Qh þQc

τh þ τc
: ð37Þ

In the case of γ ¼ 1, i.e., Wdiss ∝ τ−1tot , the efficiency at
maximum power η� is given by the Curzon-Ahlborn

efficiency [7,9]. We want to compute η� for a generic
value of γ; see also Ref. [51] for a similar analysis.
The maximum power is obtained by imposing the two
conditions:

∂P
∂τc ¼ 0;

∂P
∂τh ¼ 0: ð38Þ

The system has a unique real and positive solution for τc;h
given by

τc ¼
θ1=ðγþ1Þ

θ1=ðγþ1Þ þ 1

�
Σγðγ þ 1Þθðθ−1=ðγþ1Þ þ 1Þγþ1

ΔSð1 − θÞ
�1=γ

;

τh ¼
τc

θ1=ðγþ1Þ ; ð39Þ

where we used the notation θ ≔ Tc=Th. The corresponding
efficiency at maximum power reads

η�γ ¼ 1 −
θ1=ðγþ1Þ½ðγ þ 1Þθγ=ðγþ1Þ þ γθ þ 1�

ðγ þ 1Þθ1=ðγþ1Þ þ γ þ θ
; ð40Þ

which depends only on the ratio of temperatures θ and γ.
This formula has two interesting limits: for γ → 1, one
obtains the Curzon-Ahlborn efficiency η�1¼1−

ffiffiffi
θ

p ≡ηCA,
while for γ → ∞, we regain the Carnot efficiency
η�∞ ¼ 1 − θ≡ ηC. The efficiency at maximum power inter-
polates between these two regimes as γ varies, as illustrated
in Fig. 3. If we expand Eq. (45) around θ → 1 (i.e.,
ηC → 0), we obtain

η�γ ¼
γ

γ þ 1
ηC þ γ

2ðγ þ 1Þ2 η
2
C þOðη3CÞ: ð41Þ

FIG. 3. Efficiency at maximum power. η�γ for γ ¼ 1; 2; 4; 8;∞,
with γ ¼ 1 and γ ¼ ∞ corresponding to Curzon-Ahlborn (ηCA)
and Carnot efficiency (ηC), respectively.
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The expansion in Eq. (41) neatly shows how η�γ approaches
ηC as γ increases. Notice that for the optimal SI that we
defined in the previous section, the time of the process in
Eq. (39) is proportional to Cγ , and hence tends to infinity as
η�γ → ηC, preventing the possibility of achieving a Carnot
cycle with finite power.

B. Refrigerators

Now we consider a refrigerator, in which input power is
used to extract energy from the cold bath (i.e., to reverse the
natural heat flow) [41–44]. The cooling power is given by

Pc ¼
Qc

τh þ τc
; ð42Þ

whereas the figure of merit corresponding to the efficiency
is given by the coefficient of performance (COP),
defined as

ϵ ¼ Qc

Win
≤ ϵC; ð43Þ

where Win ¼ −Qc −Qh is the input work [minus the
extracted work in Eq. (37)], and ϵC is the Carnot COP,
given by ϵC ≔ ðθ−1 − 1Þ−1. As in the previous section, our
goal is to extent previous results in the low-dissipation
regime for the COP at maximum cooling power [41–44] to
the more generic decay of dissipation given in Eq. (34).
We first note from Eq. (42) that the maximum condition

Eq. (38) would lead to the unphysical solution τh ≡ 0. For
this reason it is convenient to maximize Pc for a fixed ratio
R ≔ τh=τc. In this case, the maximization of Eq. (42) also
has a unique real and positive solution for τc;h given by

τc ¼
�ðγ þ 1ÞΣγ

−ΔS

�
1=γ

;

τh ¼ Rτc: ð44Þ

The corresponding COP at maximum power reads

ϵ�γ ¼
1

1þγþR−γ

γθ − 1
; ð45Þ

which depends only on the ratio of temperatures θ, γ, and R.
Again, in the limit of γ → ∞ we regain the Carnot COP, if
R > 1, i.e., τh > τc [note that this condition also appears
for consistency of the solution (44): for R < 1, the second
term of Qh in Eq. (35) diverges, hence making the power
expansion in the low-dissipation regime unjustified]. The
dependence of ϵ�γ on γ is illustrated in Fig. 4, where it is
observed how γ > 1 enables higher COP at maximum
power. Moreover, if we expand for θ → 0 (i.e., ϵC → 0),
we obtain

ϵ�γ ¼
1

ð1 − R−γÞγ−1 þ 1
ϵC

þ 2ð1 − RγÞ
Rγγ½ð1 − R−γÞγ−1 þ 1�2 ϵC

2 þOðϵC3Þ; ð46Þ

which also shows how ϵ�γ continuously approaches ϵC as γ
increases.

V. NUMERICAL RESULTS

In the previous sections we have combined heuristic
and rigorous arguments to show that the time of an
isothermal process in Eq. (26) can be considerably reduced
by suitably modifying the coupling between system and
bath. The goal of this section is to illustrate these consid-
erations for exactly solvable models. Specifically, we
consider two complementary examples: a bosonic envi-
ronment described by the Caldeira-Leggett model and a
fermionic bath described by the resonant-level model. The
quadratic nature of their corresponding Hamiltonians
allows us to simulate the systems exactly at arbitrarily
strong coupling and driving speed, hence going beyond our
previous analytical considerations.
With the Caldeira-Leggett (CL) model, we study a

problem with bosonic degrees of freedom using exact
calculations but with a finite, discretized bath (the bath
is large enough that our statements about thermalization
remain meaningful). In this context, we quantitatively
demonstrate that the heuristic assumptions underlying
our analytical results hold to an excellent approximation,
even with relatively fast driving and coupling strength.
Then we move to a resonant-level model with fermionic
degrees of freedom, which is analyzed using an approxi-
mate analytical approach. This allows us to study both the

FIG. 4. Efficiency at maximum power. ϵ�γ for γ ¼ 1; 2; 4; 8;∞,
and R ¼ 10, with γ ¼ ∞ corresponding to Carnot COP (ϵC),
respectively.
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slow-driving and fast-driving regimes in order to demon-
strate a genuine speed-up for isothermal processes at strong
coupling. Finally, we consider a full Carnot cycle using the
resonant fermion level as a working medium, demonstrat-
ing explicitly that SIs allow for increased power without
compromising on efficiency.

A. Caldeira-Leggett model

We start by illustrating our results with the Caldeira-
Leggett model [52,53,80], a prototypical example of a
quantum Brownian motion. The CL model describes a
Brownian quantum particle of mass m in a harmonic
potential. The full Hamiltonian consists of four terms,

H ¼ HðSÞ þHðBÞ þHðSBÞ þHðRÞ; ð47Þ

where the Hamiltonian of the system S reads

HðSÞ ¼ 1

2

�
mω2

Sx
2 þ p2

m

�
; ð48Þ

where x and p are the position and momentum operators;
the Hamiltonian of the bath B is

HðBÞ ¼ 1

2

XN
n¼0

�
p2
n

mn
þmnω

2
nx2n

�
; ð49Þ

where ωn ¼ ðn=NÞðωmax − ωminÞ þ ωmin are the frequen-
cies of the modes in the bath, and we defined ωmax ¼ 2ωS

and ωmin ¼ ωS=N. The interaction HðSBÞ between the
system and the bath is defined as

HðSBÞ ¼ x
X
n

γnxn; ð50Þ

where γn are the coupling constant between system and
bath. The relevant bath properties are characterized by
the spectral density JðωÞ ¼ 2π

P
nðγ2n=ωnÞδðω − ωnÞ. In

the remainder we assume all the masses m;mn ¼ 1,
and that the couplings satisfy γn ¼ gωn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmax=ð2πNÞp

,
which leads to an Ohmic spectral density with hard cutoffs
in the continuum limit N → ∞ (see, e.g., Appendix G of
Ref. [3]):

JðωÞ ¼ g2ωΘðωmax − jωjÞ: ð51Þ

Here, g is a time-dependent coupling strength, leading to
a characteristic dissipation rate g2, while ΘðzÞ is the
Heaviside step function. The last term HðRÞ in Eq. (47)
is a renormalization term which ensures the positivity ofH,

HðRÞ ¼ x2
X
n

γ2n
mnω

2
n
; ð52Þ

which may be absorbed within HðSÞ.
The CL Hamiltonian in Eq. (47) is quadratic. This

enables us to diagonalize it efficiently and to describe
the time-evolved state by covariance matrices (of size
2N × 2N for systems composed of N particles), allowing
us to reach large but finite baths. Thus, the dynamics
induced by the CL Hamiltonian in Eq. (47) can be
simulated without making any assumption on the coupling
strength g (see, e.g., Ref. [82] for details).

1. Thermalization in the CL model

We first study the dependence of the thermalization time
on g for observables on the system. In the simulation, we
take as an initial state the thermal state of the noninteracting
Hamiltonian ρthβ ðt ¼ 0Þ ¼ ρthβ ðHðSÞÞ ⊗ ρthβ ðHðBÞÞ, and then
perform a quench to a finite interaction strength g ¼ kg0,
and consider the corresponding relaxation to the new
equilibrium state.
In particular, in Fig. 5, we compute the relative entropy

SðρkσÞ ¼ Tr½ρðlog ρ − log σÞ� between the marginal of the
time-evolved state ρðSÞðtÞ ¼ TrB½ρðtÞ� and the thermal state
of the system ρthðSÞðtÞ ¼ TrB½ρthβ ðHðtÞÞ�. The relative entropy
decays exponentially in time,

FIG. 5. Relaxation to the thermal state. We compute the relative
entropy S½ρðSÞðtÞkρthðSÞðtÞ� between the reduced state ρðSÞðtÞ ¼
TrB½ρðtÞ� of the total time-dependent density matrix and thermal
state of the system ρthðSÞðtÞ. For a wide range of values of k, the

time-evolved state approaches the thermal equilibrium exponen-
tially: S½ρðSÞðtÞkρthðSÞðtÞ� ∼ e−t=τeqðgÞ. Inset: We extrapolate the

decay of the relaxation time with a power law τeqðgÞ∼
τeqðg0Þk−ν. The optimal fit corresponds to ν ¼ 2.06 and
g20τeqðg0Þ ¼ 0.59. Parameters are N ¼ 300 and g20=ωS ¼ 0.01.
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S
h
ρðSÞðtÞkρthðSÞðtÞ

i
∼ e−t=τeqðgÞ; ð53Þ

where τeqðgÞ is the relaxation timescale for a given coupling
strength g. As we expect, the slope becomes increasingly
steeper for stronger couplings. In order to understand the
behavior of τeqðgÞ as a function of g, we assume a power-
law decay τeqðgÞ ¼ τeqðg0Þk−ν, where τeqðg0Þ corresponds
to the relaxation time for k ¼ 1 and ν quantifies the scaling
with interaction strength. In Fig. 5 (inset), we fit the
function log½τeqðgÞ� ¼ log½τeqðg0Þ� − ν logðkÞ with a
straight line, which confirms the scaling predicted by
Eq. (11) with ν ≈ 2 even for rather large coupling strengths
up to g2=ωS ≈ 0.25.
Similarly, we need to verify that the interaction energy

thermalizes and satisfies Eq. (11). This is shown in Fig. 6,
where we plot ΔV ¼ hVðtÞi − hVeqi for different values of
the coupling gmaxðkÞ, and where hVðtÞi is the exact value of
the interaction energy for the unitary-evolved state and Veq

is its thermal equilibrium value (with respect to the global
thermal state). By performing an extrapolation as the one
of Fig. 6, we confirm the scaling in Eq. (16) up to the
relatively large interaction strength of g2=ωS ≈ 0.25.

2. Generalized covariance

In Fig. 7 we show the behavior of the covariance
from Eq. (9) for the relevant quantities HðSÞ and V as a
function of the interaction strength g. One observes that

covðHðSÞ; HðSÞÞ stays essentially constant, which means
that only cð0Þ in Eq. (10) contributes, hence also justifying
Eq. (25). On the other hand, covðV; VÞ does vary with g,
suggesting that higher-order terms in the expansion (10)
can play a role.

3. Speed-ups to isothermality

In order to confirm the intuition given by the generalized
covariance, as a last step we simulate the full thermody-
namic protocol and compute the associated dissipation. We
vary g by a linear ramp of the form given by Eq. (14) with
α ¼ 1. We take a very small initial coupling g2i ¼ 10−8ωS
and a final coupling strength gf ¼ kg0. Here, g0 is a weak
reference interaction strength that differs from gi, unlike in
Sec. III. Nevertheless, as expected we find the same scaling
of the dissipation with gf ∝ k.
First, in Fig. 8(a) we show the total dissipation Wdiss for

increasing and decreasing the interaction between system
and bath while holding ωS constant. The switching time is
varied according to τon ¼ k2τweakon in order to account for
higher-order corrections to covðV; VÞ, as discussed in
Sec. III A 2. One observes that Won-off

diss either decreases
or stays constant with k, as expected from our analytic
reasoning. Furthermore, in Fig. 8(b) we show the total
dissipated work for the full thermodynamic protocol
behaves in a similar way. As we increase the interaction
strength, the dissipation remains constant or drops close to
zero, and as shown in Fig. 2 the time substantially
decreases. Hence, we have obtained the desired speed-
ups. Regarding the timescales of the process, note that the
times shown in Fig. 8 are comparable to the thermalization
times in Figs. 5 and 6. This shows that the heuristic
arguments of Sec. III hold even for relatively fast driving.

FIG. 6. Thermalization of the potential. Moving average of the
expectation value of the potential as a function of time for
different coupling strengths. The value of hΔVðtÞi decays
exponentially as a function of time. The slope becomes increas-
ingly steeper for stronger coupling gmaxðkÞ; i.e., the thermal-
ization is faster. Inset: We extrapolate the decay of the relaxation
time with a power law log½τVeqðgÞ� ¼ log½τVeqðg0Þ� − νV logðkÞ.
The optimal fit corresponds to νV ¼ 1.97 and g20τ

V
eqðg0Þ ¼ 1.1.

Parameters are N ¼ 300, g20=ωS ¼ 0.01.

FIG. 7. Bounds on the dissipated work: Covariance matrices. In
Eqs. (9) and (7) we bounded the dissipated work by employing
the covariance covωt

ðH̃; H̃Þ. Note that the covariance ofHs and V
stays bounded for very large values of k.
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B. Resonant-level model

In this section, we benchmark our predictions using the
analytically tractable resonant-level (RL)model. Specifically,
the system of interest comprises a single distinguished
fermionic mode coupled to an infinite collection of reservoir
modes, also fermionic. The total system-bath Hamiltonian
reads as H ¼ HðSÞ þHðBÞ þHðSBÞ, with

HðSÞ ¼ εa†a; ð54Þ

HðBÞ ¼
X
k

ωkb
†
kbk; ð55Þ

HðSBÞ ¼
X
k

λkða†bk þ b†kaÞ: ð56Þ

Here, a annihilates a fermion with time-dependent energy
εðtÞ,whilebk annihilates a fermion in thebathwith energyωk.
We take coupling constants of the form λk ¼ gλ̄k, where gðtÞ
is a time-dependent parameter characterizing the overall
interaction strength and the λ̄k are time-independent weights.
The relevant bath properties are characterized by the spectral
density JðωÞ ¼ 2π

P
k λ

2
kδðω − ωkÞ [83], assumed to be of

the form

JðωÞ ¼ g2ΘðΛ − jωjÞ; ð57Þ

where Λ is a high-frequency cutoff.

1. Solution for the dynamics

Exact solutions for the RL model have recently
been presented in the context of a debate regarding
heat in strongly coupled open quantum systems, with
particular emphasis on the wideband limit Λ → ∞ [54–
58]. Note, however, that the system-bath interaction
energy is proportional to Λ, and thus formally divergent
in this limit (this can be seen easily using the reaction-
coordinate representation [84], for example). We thus
take Λ to be finite but much larger than all other energy
scales.
Under this assumption, we use a quantum Langevin

approach to solve for the open-system evolution, detailed in
Appendix B. Our approximate analysis requires that the
dynamics proceeds much more slowly than the inverse
cutoff scale Λ−1, but otherwise allows for arbitrary driving
protocols and strong system-bath coupling. Taking a
factorized system-bath density matrix at the initial time,
ρð0Þ ¼ ρðSÞð0Þρthβ ðHðBÞÞ, we find the level occupation
nðtÞ ¼ ha†ai and the system-bath interaction energy
vðtÞ ¼ hHðSBÞi to be given by

nðtÞ ¼ 1

2
þ jKðt; 0Þj2

�
nð0Þ − 1

2

�
ð58Þ

−
1

2

Z
t

0

ds
Z

t

0

ds0Kðt; sÞgðsÞϕðs − s0Þgðs0ÞK�ðt; s0Þ;

vðtÞ ¼ Im
Z

t

0

dsK�ðt; sÞgðtÞϕðt − sÞgðsÞ: ð59Þ

These expressions are written in terms of the
propagator

Kðt; t0Þ ¼ exp

�Z
t

t0
ds

�
−iεðsÞ − gðsÞ2

2

��
; ð60Þ

and the noise correlation function

ϕðtÞ ¼ 1

iβ

�
1

sinhðπt=βÞ −
cosðΛtÞ
πt=β

�
: ð61Þ

Note that the second, cutoff-dependent contribution to
ϕðtÞ is essential to regulate the divergence of the
integrand in Eq. (59) as s → t, but plays essentially
no role in Eq. (58) for large Λ. In Appendix B we show
that the results for the dissipated work obtained within
this approach converge to a Λ-independent value for
sufficiently large Λ.
It follows immediately from Eq. (60) that the relaxation

timescale is given by τeq∼1=g2, in agreement with Eq. (11),
even though the evolution is non-Markovian, in general.
Note also that, since Eq. (59) contains one propagator while
Eq. (58) includes two factors of Kðt; t0Þ, the relaxation
timescale of the interaction energy is twice as long as that of

FIG. 8. (a) Dissipated work for turning on and off the
interaction in the CL model. For different values of τweakon , the
error induced by going to the strong coupling regime decreases to
zero. Parameters are N ¼ 300, g20=ωS ¼ 0.01, and βωS ¼ 1.2.
(b) Dissipated work for full protocols. The total dissipation
decays as the interaction increases. For different values of τweakon ,
the error induced by going to the stronger coupling regime
decreases to zero. The protocol consists on modifying the
frequency of the systems from ωi

S ¼ ωS to ω
f
S ¼ 2ωS. Parameters

are N ¼ 300, g20=ωS ¼ 0.01, g20τ
weak
iso ¼ 0.5, and βωS ¼ 1.2.
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nðtÞ. This is in accordance with the relaxation behavior of
the CL model shown in Figs. 5 and 6.

2. Dissipated work

We now compute the dissipated work during an iso-
thermal protocol, during which the level energy εðtÞ is
linearly ramped from an initial to a final value εi → εf,
while interacting with the bath. The dissipated work is
given byWdiss ¼ W − ΔF, whereW is found from Eqs. (3),
(58), and (59), while ΔF ¼ εf − εi þ β−1 ln ½fðεfÞ=fðεiÞ�,
with the Fermi-Dirac distribution fðωÞ ¼ ðeβω þ 1Þ−1. At
the start and end of the protocol, the system-bath interaction
energy is switched on according to Eq. (14) with α ¼ 1,
gi ¼ 0, and gf ¼ kg0, and switched off via the reverse
procedure. Note that here again we have g0 ≠ gi, unlike in
Sec. III, yet as expected we find a similar behavior of
dissipation with the final coupling strength gf ∝ k.
To confirm this scaling, we plot Wdiss for several

different parameters as a function of k in Fig. 9. We
see that the dissipation grows sublinearly with k for
τon ¼ kτweakon , while the dissipation strictly decreases for
the more conservative choice of τon ¼ k2τweakon . This sug-
gests that, as in the Caldeira-Leggett model, the generalized
covariance covðV; VÞ does depend on g, necessitating
higher-order terms in the expansion (10) to be taken into
account. Nevertheless, the results confirm that control over
the system-bath interaction can indeed reduce the time
taken by an isothermal process without incurring additional
dissipation (cf. Fig. 2 showing the time of the isothermal
process).
We now consider how the dissipated work scales with

the total time of the protocol in the optimal case, as

discussed in Sec. III D. In particular, we focus on protocols
where τon is proportional to k2 in order to ensure that the
dissipated work is nonincreasing as k increases. Following
the procedure outlined below Eq. (32), we compute the
optimal Wdiss as a function of τtot, holding τweakon fixed. The
results are plotted in Fig. 10, showing that the dissipated
work decays as a power law, Wdiss ∝ τ−νtot , to a good
approximation over the range of times considered. As
the time to turn the system-bath interaction on and off is
increased, the power-law exponent ν → 2, as predicted in
Sec. III D. Faster switching of the interaction incurs addi-
tional dissipation which was not accounted for in Eq. (30),
thus leading to smaller exponents ν < 2. Alternatively, one
could also obtain ν ≈ 2 by reducing g0, i.e., by working in
the weak coupling regime (in our simulations g20 ¼ 0.1εi,
which is certainly non-negligible). It is also important to
note that a better scaling of Wdiss does not necessarily
correspond to less overall dissipation. Indeed, for the
parameter regime considered in Fig. 10, Wdiss for a given
τtot is minimized by choosing a smaller value of τweakon , since
this allows more time for the isothermal part of the process
to take place slowly.
So far in this section we have focused on the regime

of slow driving where g20τtot ≫ 1. We now show that
our approach also works in the complementary fast-
driving regime. In Fig. 11 we plot the total time versus
dissipated work, comparing sped-up protocols with
k ¼ 2 to reference protocols with k ¼ 1. For a given
dissipation, the SI significantly reduces the total time
taken for the isothermal transformation, even when
g20τtot < 1. This represents further evidence that our
proposed SI work well outside of the slow-driving
regime assumed in Eq. (7).

FIG. 9. Dissipated workWdiss over an entire protocol in the RL
model for various switching times and values of k. As a function
of k, the isotherm time is reduced as τiso ¼ τweakiso =k2, while the
switch-on and switch-off times are increased either as τon ¼
kτweakon (dashed lines) or τon ¼ k2τweakon (solid lines). Parameters are
εf ¼ 2εi, g20=εi ¼ 0.1, βεi ¼ 1, and Λ=εi ¼ 100.

FIG. 10. Decay of the optimal dissipated work as a function of
the total protocol time in the RL model. The optimal k for each
τtot is found following the procedure discussed below Eq. (32).
Circles show numerical results, lines indicate power-law fits
to the function WdissðτtotÞ ¼ Cτνtot. Parameters are εf ¼ 2εi,
g20=εi ¼ 0.1, βεi ¼ 1, and Λ=εi ¼ 100.
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3. Carnot cycle

As a final demonstration of our speed-ups to isother-
mality, we show that the power of a quantum thermal
machine can be improved without sacrificing its efficiency.
We consider the Carnot-like engine cycle indicated in
Fig. 12, which proceeds by the following steps: (i) adiabatic
expansion ε1 → ε2, (ii) isothermal compression ε2 → ε3 in
contact with a cold bath at inverse temperature βc,
(iii) adiabatic compression ε3 → ε4, (iv) a final isothermal
expansion ε3 → ε4 in contact with a hot bath at inverse
temperature βh. The density matrix of the system mode
commutes with the Hamiltonian at all times during the

adiabatic steps. It is therefore possible to perform the
adiabatic steps arbitrarily quickly without affecting the rest
of the protocol, and in the following we assume that the
adiabats are instantaneous.
As in the previous section, we consider isothermal

protocols of the form of Eq. (14) with α ¼ 1, gi ¼ 0,
and gf ¼ kg0. We focus on cycles where ε2=ε1 ¼ ε3=ε4 ¼
βh=βc. This choice ensures that the system is close to
equilibrium with the new bath temperature at the start of
each isotherm, thus minimizing the dissipation incurred
by switching on the coupling to the bath. We use Eqs. (58)
and (59) to describe the evolution during the hot and cold
isotherms, assuming that the corresponding bath relaxes
back to equilibrium over the course of the subsequent
isotherm. Since the working medium is pushed far from
equilibrium during engine operation, we need to repeat the
engine cycle several times until a limit cycle is reached. In
our calculations, the cycle is repeated until the initial and
final level occupation differ by less than 1%.
For a given τweakon and τweakiso , we study how the power and

efficiency of an engine cycle scale with k. We consider two
different scenarios, as shown in Fig. 13. By scaling the
switch-on and switch-off time as τon ∝ k, we obtain a large
improvement in power due to the significant reduction in the
total cycle time. However, this comes at the cost of losing
some efficiency because the work dissipated during each
isotherm increases with k [see Fig. 9]. On the other hand, if
we instead use the more conservative choice τon ∝ k2, we
find that both power and efficiency can be improved by
increasing k, since both the total time of the protocol and the
dissipation decrease. However, this more conservative scal-
ing naturally corresponds to smaller enhancements of power.
One may also realize a refrigerator by operating the

Carnot cycle in the opposite direction. As an example, the
inset of Fig. 13(a) shows the coefficient of performance as a
function of cooling power for the reverse cycle. We find
very similar qualitative characteristics to the corresponding
engine. Our approach can therefore also be used to boost
the power of Carnot-like refrigerator cycles while retaining
efficient performance.

VI. EXPERIMENTAL FEASIBILITY
AND ROBUSTNESS

The implementation of our proposal requires the ability
to smoothly modulate both the Hamiltonian of the system
and its coupling to the environment. In this section, we
discuss two experimental platforms where such control is
feasible. We also show that our protocol is robust against
unavoidable control errors.

A. Impurities in cold atomic gases

A promising candidate system is a cold atomic gas with
impurity atoms of another species immersed within it. Such
binary mixtures of cold atoms have been studied in

FIG. 11. Total protocol time as a function of dissipated work in
the RL model. Each curve is generated by varying g20τ

weak
tot ∈

½0.5; 5� while holding τweakiso =τweakon ¼30 fixed. The curves for k¼2
show both linear scaling, τon ¼ kτweakon , and quadratic scaling,
τon ¼ k2τweakon . Parameters are εf ¼ 2εi, g20=εi ¼ 0.01, βεi ¼ 1.1,
and Λ=εi ¼ 100.

FIG. 12. Carnot cycle for the RL model showing the level’s
energy εðtÞ versus its occupation nðtÞ. For finite system-bath
interaction strengths (blue and orange solid lines), correlations
with the bath lead the system state during the isotherms to deviate
significantly from equilibrium (dotted line). The protocol is the
same as Fig. 13(a) with g20τ

weak
on ¼ 25.
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numerous experiments in recent years [59–61,85–91]. The
impurities behave as controllable open quantum systems
interacting with their ultracold gas environment [92–99].
Examples of useful thermodynamic cycles in this context
include refrigeration of the impurities [100] or of the
surrounding gas [101].
The control required for our scheme may be implemented

by confining the impurities by a species-selective dipole
potential that can be dynamically modulated [59,87,90].
Crucially, moreover, the system-bath coupling can be con-
trolled by tuning the s-wave scattering length describing
interspecies collisions via a Feshbach resonance [102]. This
allows the scattering length to be gradually [103] or suddenly
[60] varied over several orders of magnitude or even set to
zero without affecting the environment properties [59].
To be concrete, let us consider a setup similar to the

experiments reported in Ref. [59], where an impurity atom is
embedded in a Bose-Einstein condensate (BEC) of a differ-
ent species. The open system is thus a harmonic oscillator
corresponding to vibrations of the trapped impurity, which is
damped by collisions with the BEC atoms. Phonon excita-
tions in the BEC behave like a bosonic bath [92,93,95,96]
and the impurity-BEC system can be described by the CL
model of Sec. VA if the dynamics of the condensate mode is
neglected [98,104]. Translating the experimental para-
meters of Ref. [59] into our notation gives an impurity
trapping frequency of ωS ¼ 2π × 1.0 kHz, a temperature of
βωS ≈ 0.02, and measured damping rates on the order of
τeqðgÞωS ≳ 10. All of the ingredients necessary for the
implementation of SI have therefore already been demon-
strated in the context of ultracold gases.

B. Semiconductor quantum dots

Another potential platform to realize our scheme is a
mesoscopic electronic device, such as a quantum dot or

metallic island connected to a conducting electron reservoir
[105]. Here, the charge state localized on the dot or island
exchanges particles and energy with the reservoir via
tunneling processes. This is similar to the RL model
considered in Sec. V B, albeit with an additional feature:
the Coulomb interaction typically plays an important
role in mesoscopic electronics. Nonetheless, our general
arguments still apply to these systems. Numerous thermo-
dynamic protocols have already been experimentally
implemented in this context, including a Szilard engine
[62,63], a refrigerator [64], and an autonomous heat
engine [65].
Both the dot’s energy level and the tunnel barriers that

define its coupling to the reservoir can be independently
[106,107] and dynamically [62,63] tuned by applying
appropriate gate voltages to different parts of the system.
Control over the tunneling rate spanning several orders of
magnitude has been demonstrated [108]. Typical exper-
imental parameters can be estimated from Ref. [65],
which reports dot energies relative to the chemical potential
on the order of ε≲ 1 meV, comparable temperatures of
βε≳ 1, and tunneling rates on the order of g2 ∼ 10 GHz∼
0.01 meV. Therefore, mesoscopic electronic devices seem
equally promising for the implementation of SI.

C. Robustness against error

Any real experimental implementation suffers from
unavoidable noise and control errors. It is therefore crucial
to ensure that our scheme is robust against such imperfec-
tions. Assuming that the thermal bath represents the
dominant source of dissipation and decoherence in the
system, the key remaining issue is the extent to which the SI
is affected by fluctuations in the applied control fields.
Since the analytical arguments of Sec. III rely on

perturbative arguments and were shown to hold for a broad

FIG. 13. Efficiency versus power for the quantum Carnot cycle depicted in Fig. 12. Each curve shows engine performance for a fixed
value of τweakon and τweakiso and various values of k ∈ ½1; 8�, with arrows indicating increasing k. The switching on and off of the interaction
is scaled differently in the two plots, with (a) τon ¼ kτweakon and (b) τon ¼ k2τweakon . Parameters are ½ε1; ε2; ε3; ε4� ¼ ½1; 0.5; 1.5; 3�,
g20=ε1 ¼ 0.1, g20τ

weak
iso ¼ 50, ðβcε1Þ−1 ¼ 1.1, ðβhε1Þ−1 ¼ 2.2, and Λ=ε1 ¼ 100. The inset of (a) shows a near-identical refrigerator

performance characteristic for the reverse cycle.
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family of protocols, we expect the SI to remain robust
under small errors that do not lead to large and discon-
tinuous changes in the control fields. In order to quanti-
tatively demonstrate this, we consider a specific yet
realistic kind of noise: namely, imperfect timing of the
control operations. In particular, we assume that the
duration of each step of the protocol is given by
τα ¼ τ̄α þ δτα, where α ¼ on; off; iso and fδταg are three
independent random variables with zero mean and variance

δτ2α ¼ σ2ατ
2
α. For concreteness, we take a uniform distribu-

tion of δτα and choose the same relative error for each
stroke, σα ¼ σ.
In Fig. 14 we plot the results of a simulation of 100

random realizations of such a noisy protocol in the RL
model. As one might expect, small timing errors lead to
small changes in the overall dissipated work. Our results
show that the resulting fluctuations in the dissipated work
are of the same relative order as the error in the timing σ.
This holds true even for quite large relative errors σ ∼ 10%

and relatively fast driving where g2τtot ∼ 1. For the param-
eters of Fig. 14, the protocol with k ¼ 2 is approximately 2
times faster than the k ¼ 1 case. Hence, the SI remains
advantageous since timing errors increase the dissipation
by at most a few percent.

VII. CONCLUSIONS

We have put forward the idea of a speed-up to iso-
thermality, where an isothermal process is sped up by
smoothly increasing (and decreasing) the system-bath
interaction. This leads to faster isothermal processes while
keeping the overall thermodynamic dissipation constant.

As a consequence, our proposal allows for increasing
the power of a finite-time Carnot cycles [7–9,13–15]
and refrigerators [41–44] without compromising their
efficiency.
To obtain these results, we followed a twofold approach.

First, we analytically constructed SI under two main
assumptions:
(1) slow driving, allowing for an expansion of the

dissipation as in Eq. (6),
(2) the timescale of thermalization satisfies τeq ∝ g−2,

where g quantifies the strength of the system-bath
interaction, as expected in dissipative systems [80].

Under these assumptions, we have shown that SI can
decrease the time of a given isothermal process by several
orders of magnitude; see Eq. (26) and Fig. 2. This leads to
faster decays of the dissipation with time (Sec. III D) and
higher efficiencies at maximum power of finite-time Carnot
engines and refrigerators (Sec. IV).
Second, we have tested the analytically derived SI for

two generic models of dissipation covering both bosonic
and fermionic baths. In both cases, we exactly simulated
the system-bath evolution at strong coupling in order to
account for all sources of dissipation. The obtained results
confirm the validity of our analytical considerations, while
strongly suggesting that SI can even be applied beyond the
weak coupling and slow driving regime. An analytical
characterization of SI in these regimes is an interesting
and challenging future research direction. In this sense, it
seems promising to combine the ideas presented here
with open systems techniques to deal with strong, time-
dependent coupling such as the reaction-coordinate
mapping [2,5,84,109–111], or more sophisticated tensor-
network methods [112–115].
Another interesting direction is to characterize the work

fluctuations due to such SI, which have been characterized
in, e.g., shortcuts to adiabaticity [116], and other trade-offs
between thermodynamic cost and time enhancements
[117,118]. Indeed, because SIs allow for accessing larger
energy scales, one expects that they shall generate higher
work fluctuations [116]. In this sense, we note that one
expects a competing effect in the work fluctuations gen-
erated by a SI: because we are accessing stronger coupling
and hence larger energy scales, one expects stronger
fluctuations; however, for a fixed time, SI allow for
decreasing dissipation, and in the quasistatic regime the
minimization of dissipation comes together with the min-
imization of fluctuations, at least for commuting protocols
[77]. A further interesting possibility is to combine these
considerations with geometric optimal paths [10,75–77].
Quantum heat engines have been experimentally realized

in a range of different architectures, including trapped ions
[66,68], nanomechanical resonators [70], nitrogen-vacancy
centers [119], and quantum dots [65]. Our theoretical
results are applicable to platforms where the system-bath
coupling can be tuned. We have discussed two specific

FIG. 14. Dissipated work for noisy protocols in the RL model.
Each data point represents 100 realizations of a random protocol
with relative error σ in the timing of each stroke (see main text
for details). The points show the mean while the error bars show
the variance of the dissipated work for a noisy protocol with
k ¼ 2 and quadratic scaling of the switch-on and switch-off
times: τon ¼ τoff ¼ k2τweakon and τiso ¼ τweakiso =k2. Dotted lines
show the work done for noiseless reference protocols with
k ¼ 1. Parameters are εf ¼ 2εi, βεi ¼ 1.1, g20τ

weak
on;off ¼ 0.15,

g20τ
weak
iso ¼ 1.5, and Λ=εi ¼ 100.
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possibilities—ultracold atomic impurities and mesoscopic
electronic devices—but other setups may also be feasible.
For example, reservoir engineering is possible in trapped-
ion systems by controlling the vibrational degrees of
freedom of the ions [67]. It is also worth stressing that
the proposed speed-ups are robust to imperfections in the
control or timing of the driving, as enhancements are found
for a large family of protocols. We have demonstrated this
explicitly, showing that SI protocols remain advantageous
even when the system-bath coupling strength or the timing
of the strokes is noisy. Enhanced quantum heat engines via
speed-ups to isothermality thus appear feasible with current
or near-future technology.
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APPENDIX A: EXTENSIONS TO MORE
GENERAL DISSIPATIONS

In this appendix, we consider the case in which the
dissipation is of the form as in Eq. (6):

Wdiss ¼
1

τ

Z
1

0

dtGρtht
ð _Ht; _HsÞ þO

�
τ2

τ2

�
; ðA1Þ

where Gρtht
is a bilinear form which depends only on the

base point ρtht . This expression is generic, and it arises in the
expansion of the entropy production rate _σt in the quasi-
static limit [76,78,79]:

_σt ¼ Gρtht
ð _Ht; _HsÞ þO

�
τ2

τ2

�
: ðA2Þ

In particular, if the dynamics is described by the time-
dependent Liouvillian equation,

ρ ¼ Lt½ρ�; ðA3Þ

where Lt has for every t only one thermal steady state and,
moreover, the real part of all its eigenvalues is negative
(these two conditions are sufficient to ensure thermal-
ization), then the integrand in Eq. (A1) is given at first
order by [76]

Gρtht
ð _Ht; _HsÞ ¼ −βTr½ _HtL

þ
t ½Jρthβ ðHsÞ½ _Ht���; ðA4Þ

where we defined the two operators:

Jρ½A� ≔
Z

1

0

dsρ1−sðA − Tr½ρA�IÞρs; ðA5Þ

Lþ
t ½A� ≔

Z
∞

0

dνeνLtðρthβ ðHsÞTr½A� − AÞ: ðA6Þ

Before going on, it should be noted that the operator Jω is
related to the generalized covariance through the equality:

covρðA;BÞ ¼ Tr½AJρ½B��: ðA7Þ

Moreover, carrying out the integral in Eq. (A6) in the
eigenbasis of Lt shows that the eigenvalues of Lþ are
directly connected with the different thermalization time-
scales in the system. In particular, in the case in which all
the observables thermalize at the same rate, Eq. (A4)
reduces to Eq. (7).
Considering again the simplified case in which the

derivative of the Hamiltonian is given by _H ¼ _λtX, we
have the chain of inequalities:

jWdissj ¼
β

τ

����
Z

1

0

dt _λ2tTr½XLþ
t ½Jρthβ ðHsÞ½X���

���� ≤
≤
β

τ
sup
t∈½0;1�

covρtht ðX;XÞ
Z

1

0

dt _λ2t τmax
gðtÞ ; ðA8Þ

where we indicate with τmax
gðtÞ the biggest eigenvalue of Lþ

t .

Since during the turning on and off procedure we want to
keep track of the dependence of the thermalization time-
scale on the interaction strength, we keep this term inside
the integral. This expression should be compared with
Eqs. (15) and (17) in the main text.
As a final remark, the bound in Eq. (17) on the

covariance can be improved to [120]

sup
t∈½0;1�

covρtht ðF;FÞ ≤ 2 sup
t∈½0;1�

ðhV2iρtht − hVi2
ρtht
Þ: ðA9Þ

This quantity is expected to be finite even in the limit in
which kVk → ∞.
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APPENDIX B: SOLUTION OF THE
RESONANT-LEVEL MODEL

In this appendix, we detail our approach to solve the
resonant-level model described in Sec. V B. Starting from
the Hamiltonian given in Eqs. (54)–(56), we derive the
Heisenberg equations:

_aðtÞ ¼ −iεðtÞaðtÞ − igðtÞ
X
k

λ̄kbkðtÞ; ðB1Þ

_bkðtÞ ¼ −iωkbkðtÞ − igðtÞλ̄kaðtÞ: ðB2Þ

The second equation can be formally solved to give

X
k

λ̄kbkðtÞ ¼ ξðtÞ − i
Z

t

t0

dt0χðt − t0Þgðt0Þaðt0Þ; ðB3Þ

where we defined the noise operator,

ξðtÞ ¼
X
k

λ̄ke−iωkðt−t0Þbkðt0Þ; ðB4Þ

whose Gaussian statistics with respect to the initial state
define the memory kernel χðt − t0Þ ¼ hfξðtÞ; ξ†ðt0Þgi and
the noise correlation function ϕðt − t0Þ ¼ h½ξðtÞ; ξ†ðt0Þ�i.
These are given explicitly by

χðtÞ ¼
Z

dω
2π

e−iωtJ̄ðωÞ; ðB5Þ

ϕðtÞ ¼
Z

dω
2π

e−iωtJ̄ðωÞ tanh½βðω − μÞ=2�; ðB6Þ

where we defined a reduced (time-independent, dimension-
less) spectral density J̄ðωÞ¼2π

P
k λ̄

2
kδðω−ωkÞ¼JðωÞ=g2.

According to Eq. (57), this is given by the tophat function:

J̄ðωÞ ¼ ΘðΛ − jωjÞ: ðB7Þ

Note that in Eq. (B6), for completeness, we allow for a
finite chemical potential μ. In the wideband limit Λ → ∞,
the chemical potential can be set to zero without loss of
generality by simply redefining all energies relative to μ,
which justifies our choice of μ ¼ 0 in the main text.
To obtain a tractable description, we approximate the

memory kernel as

χðtÞ ¼ sinðΛtÞ
πt

≈ δðtÞ: ðB8Þ

This is an exact equality (in the distributional sense) in the
limit Λ → ∞, and is a good approximation for finite Λ so
long as slowly varying functions and large times relative to

the cutoff scale Λ−1 are considered. The noise correlation
function is approximated as

ϕðtÞ ¼
Z

Λ

−Λ

dω
2π

e−iωt tanh½βðω − μÞ=2�

≈
Z

∞

−∞

dω
2π

e−iωt tanh½βðω − μÞ=2�

−
Z

∞

Λ

dω
2π

e−iωt þ
Z

−Λ

−∞

dω
2π

e−iωt

¼ 1

iβ

�
e−iμt

sinhðπt=βÞ −
cosðΛtÞ
πt=β

�
: ðB9Þ

In the second equality, the integration domain is partitioned
into three parts, and the approximation tanhðzÞ ≈�1 for
�z ≫ 1 is made. The first integral is essentially the Fourier
transform of tanhðzÞ, which is calculated by a standard
contour integration, resulting in a geometric sum over
Matsubara frequencies that evaluates to the first term in
Eq. (B9). The remaining two integrals yield the second
term in Eq. (B9) with the help of the Sokhotski-Plemelj
theorem. Note that this second term regulates the 1=t
divergence as t → 0 but is negligible (in the distributional
sense) for timescales t ≫ Λ−1. It can be shown that, within
these approximations, the fluctuation-dissipation relation
ϕ̃ðωÞ ¼ χ̃ðωÞ tanh½βðω − μÞ=2� between the Fourier com-
ponents of the memory kernel χ̃ðωÞ and the noise spectrum
ϕ̃ðωÞ holds for all jωj < Λ.
As a consequence of Eq. (B8), Eq. (B1) reduces to a

time-local differential equation,

_aðtÞ ¼
�
−iεðtÞaðtÞ − 1

2
gðtÞ2

�
aðtÞ − igðtÞξðtÞ; ðB10Þ

which can be easily solved to find

FIG. 15. Convergence of the work done over an entire protocol,
where τon ¼ kτweakon and τiso ¼ τweakon =k2, for various values of the
cutoff Λ. Parameters are εf ¼ 2εi, g20=εi ¼ 0.1, βεi ¼ 1,
g20τ

weak
on ¼ 2.5, and g20τ

weak
iso ¼ 50.
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aðtÞ ¼ Kðt; t0Þaðt0Þ − i
Z

t

t0

dt0Kðt; t0Þgðt0Þξ̂ðt0Þ; ðB11Þ

where the propagator is given by Eq. (60). Combining
this with Eqs. (B3), (B8), and (B9), and the fact that
ha†ðt0Þbðt0Þi ¼ 0 for a factorized initial condition at
t0 ¼ 0, we deduce Eqs. (58) and (59).
Our analysis relies on two approximations, given by

Eqs. (B8) and (B9). The former assumes that the dynamics
is much slower than Λ−1, while the latter requires that the
temperature and chemical potential are much smaller than
Λ. In particular, we require that εðtÞ, gðtÞ2, β−1, jμj, and
jμ� β−1j are all much smaller than Λ. For sufficiently
large Λ, the work done over a complete isothermal
protocol converges to a Λ-independent value, as we
demonstrate in Fig. 15. This confirms that our results
are independent of the cutoff, which merely regulates the
system-bath interaction energy that would otherwise
diverge.
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