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Abstract
Introduction: Modern, data-driven biomedical research requires integrating a broad range
of data types from various sources, across and within institutions. Clinical and translational
data warehouses, which store transformed replicates of data from heterogeneous sources in a
central database optimized for efficient ad-hoc analyses, are essential building blocks of the
IT infrastructures that make this possible. However, provisioning clinical and translational
data warehouses entails several challenges: (1) the complexity of these systems’ management
and ETL (extract-transform-load) processes impede agile provisioning processes; (2) existing
formal methods for privacy protection are difficult to combine with the data processing
models of modern ETL environments; (3) data collected in clinical care are often incomplete,
inaccurate, or miscoded, raising concerns about the level of evidence generated from these
data.
Objectives: The work presented in this cumulative dissertation addresses these challenges
by (1) providing novel methods for facilitating agile provisioning of clinical and translational
data warehouse platforms; (2) integrating formal anonymization and privacy risk evaluation
methods into ETL pipelines; (3) offering a flexible and comprehensive architecture for data
quality assessment and monitoring.
Methods: To reach these objectives, we (1) developed software container images, bundled
with a clear and comprehensive configuration and management façade, allowing administra-
tors to orchestrate multiple warehouse instances of different types efficiently; furthermore, we
created an ETL pipeline implementing a declarative configuration paradigm and providing
a high automation degree of data preprocessing and cleansing tasks; (2) developed a novel
cell suppression algorithm that allows for combining different threat scenarios in one ETL
workflow; (3) developed a data quality monitoring architecture which comprises an API for
capturing data quality issues, a multidimensional data store and an interface for modern
monitoring systems to provide alerting mechanisms and configurable dashboards.
Results: The solutions presented in this thesis include (1) a warehouse management and data
loading platform for clinical and translational data warehouses; (2) a plugin for a widely used
ETL environment that enables seamless integration of formal anonymization methods directly
into the ETL processes; (3) an implementation of the developed data quality monitoring
architecture. The methods developed to achieve this have been evaluated analytically and
experimentally or are successfully used in large, national research projects, for instance, in
the DIFUTURE consortium of the German Medical Informatics Initiative.
Discussion: Experimental evaluations, comparisons with existing solutions, and our ex-
periences in the projects mentioned above have shown that (1) the developed warehouse
management and ETL platform can significantly reduce the complexity of the provisioning
process and is the only solution fulfilling a wide range of requirements necessary for agile data
warehousing provisioning processes in high-security environments like hospital information
systems; (2) the developed plugin is the only solution that integrates formal anonymization
methods directly into ETL processes while outperforming comparable solutions in terms of
scalability and risk-utility trade-offs provided; (3) our monitoring architecture is the only
existing approach that meets a wide range of requirements for comprehensive data quality
monitoring in clinical and translational data warehouses.
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CHAPTER 1

Introduction

Modern, data-driven biomedical research promises new insights into the development
of diseases and to enable preventive, predictive, and personalized medicine (Hood and
Friend, 2011). A learning health system, in which data initially collected for facilitating
individual patient care can be re-used (in a secured and trusted manner) for generating
new knowledge and which (in reverse) accelerates “the progression of knowledge from
the laboratory bench to the patient’s bedside”, plays an essential role in this devel-
opment (Friedman et al., 2010). By utilizing patient data at comprehensive breadth
and depth, modern data analytics methods can help identify unknown correlations
between biomedical variables and develop decision support systems to infer diagnoses,
recommend treatments, or predict outcomes (Schneeweiss, 2014; Esteva et al., 2019).
The acquisition and provision of the large and high-quality datasets needed to realize
this vision require comprehensive information integration across and within institu-
tions. Data warehouses, which store transformed replicates of various types of data
(e.g., clinical or omics data) from heterogeneous sources in a central database opti-
mized for efficient ad-hoc analyses, have become an essential building block of data
integration concepts in data-driven clinical and translational research projects (Canuel
et al., 2015). Important representatives of these so-called clinical and translational
data warehouse platforms include Informatics for Integrating Biology and the Bedside
(i2b2) (Murphy et al., 2010) and tranSMART (Scheufele et al., 2014), which is in signif-
icant parts based on i2b2. The former is well suited for the representation and analysis
of longitudinal clinical data; the latter is designed for processing high-throughput data
as well as structured research data and offers comprehensive functionalities for cohort
comparison and ad hoc graphical data analysis, supporting numerous omics data types
such as gene expression and protein arrays and various genomic variant types.
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CHAPTER 1: Introduction

Background
Providing unified views on information originating from multiple, distributed, au-
tonomous sources entails overcoming heterogeneity on multiple levels, including dif-
ferences in the source systems’ query languages and communication protocols (tech-
nical heterogeneity); character encodings and binary number formats (syntactic het-
erogeneity); which data models (e.g., XML, relational, object-oriented) are used for
representing information (data model heterogeneity); how the elements of these data
models are used to represent specific subject matters (schematic heterogeneity); and
differences in meanings and interpretations of terms, concepts, and values (semantic
heterogeneity) (Leser and Naumann, 2007).

Approaches to information integration can be distinguished between virtual and
materialized integration. In virtual integration, the data remain distributed in the
source systems until a query gets executed, and only the data necessary to answer the
query are accessed and integrated on-demand. Important representatives of this type
of integration are federated database systems (Sheth and Larson, 1990). In material-
ized integration, transformed replicates of data from multiple heterogeneous sources
get materialized at regular intervals in a central database optimized for complex ad-hoc
queries on large data volumes. Heterogeneity is resolved at the time of the database’s
population, and queries are executed directly on the replicated data, so the source sys-
tems are no longer involved at the time of the query. Such systems can be summarized
under the term data warehouses. They have been used for many years in strategic
corporate planning and decision support and are, in recent years, increasingly being
used in biomedical research.

Dimension
Age

Dimension
Diagnosis
(ICD-10)

Dimension
Medication

Fact: 128 Patients between 50 
and 74 years of age, diagnosed 
with multiple sclerosis, and ha-
ving received treatment with In-
terferon

0-24 25-49 50-74 75-99

0-49 50-99

0-99

G35

G36.0-
G36.9

G37.0-
G37.9

G35-
G37

Interferon
Fingolimod

Glatirameracetat  
Natalizumab  

128

Figure 1.1: Schematic illustration of a data cube.
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CHAPTER 1: Introduction

Data warehouses typically implement multidimensional data models, which repre-
sent data as multidimensional data cubes, as illustrated in Figure 1.1. Here, data
are categorized either as facts or dimensions. Facts are associated with numerical
measures; dimensions characterize and provide the necessary context for the facts.
Examples for data that can be organized into dimensions include patients, visits, med-
ication, or diagnoses. Dimensions are also used to select and aggregate data at the
required level of detail. To this end, they can be organized into hierarchies composed
of specific levels, each representing a certain level of detail for analyses. An example of
a hierarchy that can be used for organizing a dimension is the International Classifi-
cation of Diseases (ICD). The combinations of dimension elements define the different
cells of a cube. Each cell that contains an associated numerical value (e.g., a count,
average, minimum, or maximum) represents a fact. Facts represent the subject to be
analyzed and are often implicitly defined by combinations of dimension elements. An
example of a fact (illustrated in Figure 1.1) is the number of patients between 50 and
74 years of age that have been diagnosed with multiple sclerosis and received treatment
with Interferon.

F_Observation

Diagnosis_ID (FK)
Patient_ID (FK)
Medication_ID (FK)
Encounter_ID (FK)
Lab_ID (FK)
Numerical_Value

D_Patient

Patient_ID (PK)
Vital_Status
Birth_Date
Death_Date
Sex
ZIP_Code

D_Diagnosis

Diagnosis_ID (PK)
Code
Label

D_Encounter

Encounter_ID (PK)
Start_Date
End_Date
Location

D_Medication

Medication_ID (PK)
Code
Label
Dose
Frequency

D_Lab_Results

Lab_ID (PK)
Code
Label
Measurement_Unit

Figure 1.2: Simplified star schema.

Multidimensional database models can be implemented as a (relational) star schema,
in which data are stored in one fact table and several dimension tables. Figure 1.2
illustrates a simplified star schema. Each row in the fact table represents a fact in
the cube. The fact table contains a column for each measure, holding the value for
the corresponding fact. Furthermore, each dimension is represented by a column that
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CHAPTER 1: Introduction

contains a foreign key to the corresponding dimension element in the related dimension
table (Pedersen and Jensen, 2001). Thus, the patient counts illustrated in Figure 1.1
can be obtained with a simple count query on the fact table. Note that this simplified
example does not cover the representation of hierarchies mentioned before. There
are various ways for expressing dimensional hierarchies in a relational schema. A
representation used in several biomedical data warehouse platforms is to code each
dimension element’s full path within the hierarchy into its primary key. For instance,
the dimension element representing ‘Multiple Sclerosis’ in an ICD hierarchy would have
the primary key ‘/Diagnoses/Diseases of the nervous system (G00-G99)/Demyelinating
diseases of the central nervous system (G35-G37)/Multiple sclerosis’.

Source 1 Source 2 Source n

ETL-Pipeline

Extract

Load

..….

Data
Warehouse

Syntactic
Harmonization

Semantic 
Harmonization

Data
Cleansing

Structural 
Harmonization

Transform

Figure 1.3: Dataflow in a typical data warehouse architecture.

Data warehouses are typically populated through pipelines of procedural operations.
These operations are grouped into the three phases Extract-Transform-Load (ETL). In
the extract phase, data are replicated from the original data sources into a staging area,
which typically involves overcoming technical heterogeneity. In the transform phase,
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data are converted into a form optimized for later analysis, which typically involves
syntactic harmonization, structural harmonization (i.e., overcoming data model and
schematic heterogeneity), semantic harmonization, and data cleansing. In the load
phase, the data are transferred into the central database. Figure 1.3 shows a typical
data warehouse architecture with the data flowing from the source systems at the
top into the data warehouse at the bottom. Because designing, implementing, and
managing these complex processes is not trivial, several platforms have been developed
for coping with this complexity. Examples include Pentaho Data Integration (Casters
et al., 2010) and Talend Open Studio (Bowen, 2012). These platforms typically provide
graphical user interfaces, comprehensive libraries of connectors (to source and target
systems) and transformation methods for designing and implementing these processes,
and run-time environments for initiating and monitoring their execution.
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CHAPTER 2

Objectives

Integrating clinical and translational data using data warehouse platforms entails nu-
merous challenges. The work described in this dissertation aims to overcome some of
these challenges located in three diverse (albeit intersecting) subject areas: the agility
of these systems’ provisioning process (Killcoyne and Boyle, 2009); data quality (Ver-
heij et al., 2018); and privacy (Malin et al., 2010). These areas and their intersections
are illustrated in Figure 2.1.

For each of these subject areas, this chapter describes the specific challenges, outlines
the state of the art, points out remaining gaps, and derives the respective objectives
of this thesis.

Data Quality

Agility Privacy

Figure 2.1: Subject areas covered by this thesis.

Agility
Medical information processing takes place in a highly complex system in which dy-
namic interactions between technology, people in very different roles, and complex
organizational structures occur, as new diagnostic and therapeutic procedures and
the general conditions of financing in the health care system are constantly chang-
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CHAPTER 2: Objectives

ing (Wurst et al., 2009). In order to facilitate optimal adaptability to these changes,
adequate software development methods need to be applied (Lenz and Kuhn, 2004).

Agile software development methods acknowledge Boehm’s life cycle cost differen-
tials theory (the cost of change increases during the project lifecycle) (Boehm, 1976)
not by avoiding change, but by embracing it as an inherent aspect of software devel-
opment and thus reducing the cost of change throughout the project (Highsmith and
Cockburn, 2001). This is achieved by applying adaptive planning techniques and prac-
tices to identify and incrementally implement requirements in a highly participatory
process involving interdisciplinary and self-organizing teams composed of highly qual-
ified software developers and (representatives of) project stakeholders. Agile software
development methodologies have gained increased popularity by the publication of the
Manifesto for Agile Software Development (Beck et al., 2001). It promotes a set of
values and principles that constitute the foundation of a variety of software develop-
ment methodologies already in place at that time, including eXtreme Programming
(Beck, 1999) and Scrum (Schwaber and Beedle, 2002). Each methodology can be char-
acterized by a specific combination and emphasis on several practices. These practices
include iterative and incremental development (Larman and Basili, 2003), continuous
integration (Meyer, 2014), and test-driven development (Janzen and Saiedian, 2005).

For determining whether project management should follow an agile or a plan-driven
approach or when to mix agile and plan-driven methods, Boehm and Turner identify
several discriminating factors: first, agile methods match well to small products and
teams, while plan-driven methods have evolved to handle large products and teams.
Second, agile methods have not been tested much on safety-critical products, whereas
plan-driven methods have proven to handle highly critical products. Third, simple
design and continuous refactoring are ideal practices in highly dynamic environments;
the detailed plans and sophisticated preliminary design of plan-driven methods are
best used in highly stable environments. Finally, the successful use of agile methods
requires the continuous presence of a critical mass of highly qualified experts. Plan-
driven methods also need a minimum number of highly qualified team members during
project definition but can work with fewer later in the project (Boehm and Turner,
2003b).

Data warehouse development projects in biomedical research exhibit various char-
acteristics that suggest the use of agile software development methods (Boehm and
Turner, 2003a; Killcoyne and Boyle, 2009). However, existing environments and tools
lack essential features for provisioning and managing these platforms, resulting in sub-
stantial manual effort and consequently impeding an agile software development ap-
proach. The key challenges here are the complexity of (1) the analytics components’
deployment and (2) the development of the ETL process. Simultaneously, both pro-
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cesses are characterized by a high degree of repetitiveness in manual activity, which
offers enormous optimization potential. This potential could be leveraged by providing
a solution consisting of two components:

A data warehouse management platform which

• facilitates the deployment and management of multiple instances of the well-
known analytics platforms Informatics for Integrating Biology & the Bedside
(i2b2) and tranSMART with a compact but comprehensive set of commands
and configuration options;

• provides essential security features such as secure default passwords, password
management, host-based access control, and transport-layer-encryption by de-
fault;

• is built upon authenticatable and verifiable software to support deployments in
high-security environments of hospital information systems;

a versatile data loading pipeline which

• is capable of loading data into i2b2 and tranSMART with a single and concise
set configuration directives;

• supports processing of data from heterogeneous sources with varying degrees
of cleanliness and structure, including data from the research context, complex
longitudinal data from the health care context, and highly structured accounting
data;

• can perform automatic preprocessing and cleansing tasks, such as automatic
detection of encoding schemes, format, and syntax of input data, and can cope
with missing and duplicate data.

Data Quality
Large biomedical research networks such as PCORnet (Qualls et al., 2018), OHDSI
(Hripcsak et al., 2015), and the German Medical Informatics Initiative (Semler et al.,
2018) rely on the re-use of data from electronic health records (EHR) that were col-
lected in the course of clinical care and whose later use was unknown at the time of
data entry. The circumstances under which these data were entered into the EHR
system are often not clear. These data can be incomplete, miscoded, or inaccurate.
Reasons include but are not limited to time pressure, lack of training on the use of the
EHR system, lack of IT skills, lack of support (from the EHR system’s vendor or within
the workplace), or lack of automated system checks during data entry. Therefore, it
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is vital to understand the quality characteristics of the data from the various sources
before they can be considered “fit for use” (Juran, 1989), integrated, and provisioned
to data consumers. “Unless data quality issues are better understood and unless ad-
equate controls are embedded throughout the data lifecycle, data-driven health care
will not live up to its expectations” (Verheij et al., 2018).

In order to enable consistency of terms in discussions about data quality, to facili-
tate systematic approaches to measuring data quality, and to foster the development
and sharing of best practices (Weiskopf and Weng, 2013), several conceptual frame-
works have been proposed. These include the hierarchical data quality framework by
Wang and Strong (1996), which is based on a survey with data consumers. In this
framework, 15 data quality dimensions (e.g., accuracy, completeness, interpretability,
access security) are grouped into the four quality categories intrinsic, contextual, rep-
resentational, and accessibility quality. Weiskopf and Weng (2013) also grouped data
quality terms into several categories (completeness, correctness, concordance, plausi-
bility, currency) but based their work on a literature review in which methodologies
for assessing data quality of electronic health records are discussed. Similarly, Johnson
et al. (2015) based their work on a literature review but used an ontological approach to
harmonize and redefine existing data quality concepts using constraints and relation-
ships between concepts. Also, Kahn et al. (2016) proposed a harmonized terminology
and conceptual framework based on existing data quality publications. However, the
authors also considered operation manuals of mature research networks utilizing EHR
data as well as input collected from interviews and workshops with stakeholders of
established data quality programs, analytics, and informatics experts. As a conceptual
extension to previous frameworks, the data quality categories and subcategories were
defined depending on the context of use: verification (e.g., with organizational data)
and validation (e.g., against accepted gold standards). Today, Kahn et al.’s approach
is used in the EHR-based research networks mentioned at the beginning of this sec-
tion (Qualls et al., 2018; Hripcsak et al., 2015; Semler et al., 2018). The latest notable
refinement of existing conceptual frameworks is derived from Kahn et al.’s approach:
Henley-Smith et al. (2019) introduce an additional axis concerning different contexts of
use: regarding the data’s initial purpose; regarding the transformations in the context
of the ETL process; and regarding the subsequent intentions for the data’s secondary
uses.

While various implementations exist to assess the quality of data provided by data
warehouses, these implementations do not acknowledge the role of the ETL process in
the data quality management process or exhibit substantial limitations for practical
use. However, comprehensive data quality management for data warehouses requires
a software architecture which

10
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• considers the complete data lifecycle, in particular (1) the source data, (2) the
ETL process, and (3) the data in the warehouse itself;

• is based on well known and established data quality measures and is highly cus-
tomizable to enable integration into existing data quality management processes;

• can monitor multiple warehouse instances–which can be based on different platforms–
simultaneously;

• supports capturing and analyzing the temporal evolution of data quality measures
to be able to follow up on corrective measures and to help discover data anomalies
that otherwise would not be visible;

• stores information about reported quality issues in a form and at a level of detail
that enables tracing them back to their origin.

Privacy
The increasing amount and complexity of data collected for biomedical research not
only holds enormous potential for improving health care outcomes. It also raises con-
cerns about possible violations of patients’ and probands’ privacy due to the misuse
of their data. These concerns are addressed by several national and international laws
and regulations, e.g., by the Privacy Rule of the Health Insurance Portability and Ac-
countability Act (HIPAA) in the United States (US Department of Health and Human
Services, 2002) or–in the European Union–the Charter of Fundamental Rights (Euro-
pean Convention, 2012) and the General Data Protection Regulation (GDPR) (Euro-
pean Parliament and Council of the European Union, 2016). Under Article 9 of the
GDPR, genetic data and data concerning health belong to the data categories subject
to exceptional protection.

Following privacy risk types that are recognized as essential for anonymization (Ar-
ticle 29 Data Protection Working Party, 2014): Singling Out corresponds to the ability
of an adversary to isolate a subset or all records of an individual whose data is rep-
resented in a dataset; Linkability refers to the possibility to link two or more records
concerning an individual or a group of individuals, whereas these records can be stored
in the same or different datasets; Attribute Inference denotes the ability to infer (with
sufficient probability) the value of a specific attribute from the values of one or several
other attributes.

In order to address these risks, organizational and contractual measures must be
combined with technical solutions for enhancing data security and privacy. An impor-
tant representative of these technical solutions is data anonymization, which means
that data transformation methods are applied to input data to reduce privacy risks

11
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to an acceptable degree (ISO/IEC 20889:2018). Since clinical and translational data
warehouse platforms are typically based on relational database management systems,
the focus of this dissertation lies on methods suitable for protecting tabular data. When
transforming biomedical data, it is essential to retain the input data’s truthfulness and
plausibility. Therefore, this work focuses on non-perturbative transformation meth-
ods. These methods include attribute generalization, which replaces attribute values
of the input data with less specific but semantically consistent values and which typ-
ically involves the definition of so-called generalization hierarchies. Further truthful
transformation methods include attribute-suppression, in which all values of a par-
ticular variable are suppressed; cell-suppression, which refers to the suppression of
specific data points; character-suppression, which typically replaces parts of a data
point with predefined characters; and record-suppression, which denotes the suppres-
sion of complete records of data. Non-truthful transformation methods include noise
addition, random shuffling, microaggregation, and random data generation. Transfor-
mation methods can be used on their own or in combination to achieve a better balance
between analytic data utility and residual privacy risks, for instance, when combining
random sampling (a special case of record-suppression) with generalization (Bild et al.,
2018).

Transforming data using the techniques mentioned above inevitably reduces ana-
lytic data utility. Therefore, a significant challenge in data anonymization is finding an
optimal balance between data privacy and data utility. Various models exist for quan-
tifying these antagonizing demands. Hence, finding this balance can be considered an
optimization problem, in which data utility is to be maximized while predefined risk
thresholds have to be met. Privacy risk measures help to quantify the susceptibility
of datasets to different privacy threats. A well-known measure is k-anonymity, which
calculates the maximum size of sets of indistinguishable records concerning specific
attributes (so-called quasi-identifiers) and helps to estimate the probability that the
identity of an individual represented in the dataset can be inferred by linking it with
external data sources (Samarati and Sweeney, 1998). Another well-known approach
to quantifying privacy risks is differential privacy. Differentially private anonymiza-
tion algorithms guarantee that their output changes only to a negligible degree when
information about an individual is added or removed (Dwork, 2006). Data utility
measures typically either calculate statistical properties of the output data to esti-
mate their amount of information (e.g., the average size of sets of indistinguishable
records (LeFevre et al., 2006)), or capture differences between statistical properties
of the input and output data (e.g., by determining the relative sizes of attribute do-
mains (Iyengar, 2002)).
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Integrating privacy protection methods into ETL processes is cumbersome, as ex-
isting anonymization tools require the anonymization process to be conducted within
their own specific working environments, and existing ETL tools do not support formal
anonymization methods. To facilitate the integration of privacy preserving methods
into ETL processes, a solution is required which

• uses formal anonymization methodologies that retain truthfulness of the input
data, require minimal configuration, are widely accepted in the expert community
and by data protection officers;

• supports the processing of very large datasets and data streams;

• enables to combine different threat scenarios in one ETL pipeline;

• directly integrates these methods into common development and execution envi-
ronments for ETL processes.

Furthermore, although there is a considerable body of research concerning the im-
plications of anonymization on the usability of output data when protecting biomedical
data against singling out and linkage, guidance regarding the use of methods for pro-
tecting data against attribute disclosure is missing. For being able to use existing
methods for protecting biomedical data against attribute inference, it needs to be
investigated,

• when it is feasible at all to apply these methods;

• how to select appropriate methods;

• how to parameterize them.

13





CHAPTER 3

Methods and Results

The work presented in this cumulative thesis addresses fundamental challenges in the
three described subject areas by (1) presenting a versatile infrastructure that enables
the provisioning of biomedical data warehouses in an agile manner; (2) developing
a flexible architecture that that facilitates comprehensive data quality monitoring for
data warehouses; (3) examining techniques for protecting biomedical data against at-
tribute disclosure and developing novel methods for integrating such techniques directly
into ETL processes.

PrivacyAgility

Data Quality

Ref.A.4
Protec�ng Data Against 

A�ribute Inference

Ref.A.3
Privacy-enhancing

ETL-Processes

Ref.A.2
Con�nuous Data

Quality Improvement

Ref.A.1
Agile Data and

Analy�cs Provisioning

Figure 3.1: Assignment of this thesis’ contributions to the subject areas.

In all three areas, innovations were achieved through the concepts and methods pre-
sented in these contributions. They have been published as full papers in international,
peer-reviewed journals and conference proceedings and are referred to as Ref.A.1
through Ref.A.4. They describe conceptual solution approaches and present methods
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and implementations which have been evaluated analytically and experimentally or are
in productive use in various large, national research projects. Figure 3.1 shows how
these contributions are assigned to the three subject areas agility, data quality, and
privacy. This chapter summarizes each of these publications–focussing on the methods
used and the results achieved–and lists this thesis’s author’s individual contributions.
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3.1 Agile Data Warehousing
Modern biomedical data warehouse platforms offer support for a broad range of use
cases by integrating numerous third-party software solutions based on complex multi-
tier architectures. As a result, setting up such systems for professional use requires
significant technical expertise. Concurrently, significant medical expertise is required
to make sure that the data are represented in an appropriate structure with adequate
semantics. Following agile methods in software engineering, the approach described in
Ref.A.1 aims at bridging the resulting interdisciplinary gaps by enabling to conduct
data warehouse provisioning using an agile development process.

To meet this goal, we identified system requirements necessary for achieving agility,
focusing on platform management and data loading, and implemented a platform ful-
filling these requirements. It consists of a container-based warehouse development and
provisioning infrastructure offering a comprehensive set of tools for managing multiple
instances i2b2 and tranSMART warehouses and a versatile and easy-to-configure ETL
pipeline implementing a declarative configuration paradigm.

The warehouse management infrastructure utilizes the OS-level virtualization plat-
form Docker and supports integrated management of an arbitrary number of instances
of i2b2 and tranSMART by providing a compact configuration façade. The solution
stack’s full source code is publicly available, allowing verification for use in high-security
environments. The loading pipeline supports populating both tranSMART and i2b2
instances with a single, concise configuration and can automatically handle heteroge-
neous data with varying levels of cleanliness and structure.

Based on an experimental evaluation, we could show that our solution is able to
process data that cannot be processed with other tools unless significant manual data
cleansing and preprocessing is performed. We could also show that the declarative ap-
proach enables a reduction of configuration efforts (measured by lines of configuration)
by orders of magnitude. A comparison with related tools and environments showed
that our warehouse management infrastructure and loading pipeline is the only solution
that supports all requirements we have identified for agile data warehouse provisioning.

These results are consistent with our experiences in several data warehousing projects,
where the platform helped to significantly reduce the efforts needed for administrating
warehouse instances and loading data; for instance, in two large biomedical research
projects that use a broad spectrum of different types of data (Prasser et al., 2018;
Haller, 2020).
Individual Contributions of Thesis Author: Problem definition; literature survey;
analysis, design, prototyping, and implementation; composition, revision, and editing
of the manuscript.
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3.2 Data Quality Monitoring
It is well-known that agile software development processes rely on early detection and
correction of (software) quality issues. In data warehousing projects, the need for tight
quality monitoring also applies to the data provisioned. In biomedical research, this
need is emphasized by the fact that, particularly when re-using health-care data, con-
trolled data collection procedures and clear data definitions are often lacking, making
it even more challenging to ensure the level of data quality required for research.

The work described in Ref.A.2 addresses this problem by presenting a flexible ar-
chitecture that helps capture, report, and monitor the results of data quality screenings
performed during the execution of ETL processes. The architecture comprises (1) an
application programming interface (API) which enables developers of ETL processes to
log results of data quality screenings, (2) a multidimensional data store as the founda-
tion for efficient analyses, (3) an audit-service, which calculates quality metrics based
on the content of the data store, and (4) a monitoring component which provides con-
figurable dashboards and alerting functionalities. The API and the data store support
capturing and analyzing data quality issues occurring at different stages of the data
lifecycle. Data about these issues are stored at a level of detail that allows for tracing
them back to their origin. This architecture enables monitoring of the temporal evolu-
tion of data quality metrics and supports various important biomedical data warehouse
platforms. Moreover, it facilitates the integrated monitoring of multiple instances of
these warehouses and can be used with many ETL environments. As proof of concept,
we provide a turnkey implementation in the form of a self-contained stack of containers
with (1) template screen types based on Kahn et al.’s well-known data quality assess-
ment framework (Kahn et al., 2016), (2) a set of pre-configured quality metrics to be
calculated by the audit-service, and (3) a pre-configured dashboard for presentation
and analysis of these metrics.

Implementations of this architecture are used in three large biomedical research
projects for analyzing the data quality of warehouses containing up to 100k patients,
300k visits, and 6m facts (Prasser et al., 2018; Haller, 2020; Kamdje-Wabo et al., 2019).
The data are loaded with the ETL pipeline described in Ref.A.1, which we have inte-
grated with the quality monitoring architecture. This solution enables a quantification
of the degree to which the data has been cleansed. The degree of cleansing matches our
expectations, taking into account the data’s various origins. The software is publicly
available under an open-source license (Spengler, 2020b).
Individual Contributions of Thesis Author: Problem definition; literature sur-
vey; analysis, design, and implementation; composition, revision, and editing of the
manuscript.
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3.3 Privacy-Enhancing ETL-Processes
In Ref.A.3, we present an integration of well-known and flexible risk assessment and
anonymization methods into ETL processes by providing a plugin for a widely used
ETL platform. It is based on a novel cell suppression algorithm that enforces risk
thresholds by suppressing individual attribute values and thus preserves the input
data’s schematic properties. Combined with the use of different, context-dependent
ways of interpreting suppressed values, this makes it possible to protect data against
multiple threats by assembling different instances of the plugin. Furthermore, this
method reduces the required configuration to the definition of the risk thresholds and
the declaration of quasi-identifiers. Specifically, no generalization hierarchies need to
be defined. Moreover, the algorithm retains the plausibility and correctness of the data,
which is particularly important in biomedical research. The definable risk thresholds
are derived from El Emam’s widely used methodology which makes use of the prose-
cutor, journalist, and marketer attack models. In order to support the processing of
very large datasets, the plugin leverages the row-oriented processing pipeline of the
underlying ETL platform. However, this row-oriented processing paradigm conflicts
with the fact that the methods we use for risk assessment and anonymization require
a holistic view of the dataset. Therefore, we implemented a technique termed row-
blocking, which means that incoming sets (or blocks) of records of a defined size are
materialized and then anonymized as a whole before the processed block is fed back
into the processing pipeline. Our work shows that it is possible to integrate expert-
level anonymization methods into ETL workflows for biomedical data warehouses. By
combining different anonymization operations in one ETL process, it is possible to pro-
tect data from several threats simultaneously. An experimental evaluation shows that
our implementation can process very large datasets and that it outperforms existing,
generalization-based approaches in terms of scalability and information loss. Further-
more, the software enables to conduct quantitative assessments of re-identification risks
and thus document privacy threats, which is an essential aspect regarding compliance
with current privacy laws, e.g., the European General Data Protection Regulation (Eu-
ropean Parliament and Council of the European Union, 2016; Prasser et al., 2019). The
software is publicly available under a non-restrictive open-source license (Spengler and
Prasser, 2020).
Individual Contributions of Thesis Author: Problem definition; literature sur-
vey; analysis, design, prototyping, and implementation; formal proof of algorithm’s
correctness; composition, revision, and editing of the manuscript.
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3.4 Protecting Against Attribute Inference
Anonymization methods reducing re-identification-risks are widely used but are often
not sufficient to protect against the inference of sensitive information from published
data (also termed attribute inference). Although various privacy models exist that can
be used to quantify the risk of a successful inference attack and transform the data
so that risks are below a defined threshold, the relevance of such models has been
doubted. It has been argued that applying these models involves substantial data
transformations to such an extent that the data’s usability is severely limited.

In Ref.A.4, we studied the ability of different well-known privacy models to help
find an optimal trade-off between utility and privacy risks and identify essential factors
in this process. To this end, we conducted an experimental evaluation in which we used
these models to anonymize different real-world datasets with comparable schemata but
different statistical properties using different parameterizations and measured data
utility and residual privacy risks of the output data. We normalized the results with
respect to two very simple protection methods: (1) to only protect the datasets against
re-identification, but not against attribute inference, and (2) to completely remove all
values of the sensitive attribute. Based on these normalized data, we used risk-utility
curves to visualize the effects of different parameterizations on risk and utility when
using different privacy models for protecting the datasets. By analyzing these curves,
it was possible to estimate and compare how well a particular privacy model is suited
for protecting a dataset with specific statistical properties.

As expected, for datasets with high skewness in the distribution of the sensitive
attribute (measured by the index of dispersion), it was challenging to find a reasonable
balance between risk and utility. However, for datasets with low skewness, it could be
shown that–in contrast to popular opinion–it is feasible to improve the balance between
risk and utility using truthful and well-known anonymization methods. Interestingly
enough, the most intuitive and simple model, distinct `-diversity, often yielded bet-
ter trade-offs than sophisticated models like β-likeness, even when protecting highly
skewed data, for which the latter has specifically been developed.

However, when selecting the appropriate protection method, the dataset’s specific
properties and the circumstances of the data’s use must be considered, which requires
in-depth analysis. The approach described in Ref.A.4 uses the dispersion index of the
sensitive attribute and normalized risk-utility curves for selecting appropriate meth-
ods and parameterizations. It can be used as a blueprint for further analyses. The
corresponding source code is available online (Spengler, 2020a).
Individual Contributions of Thesis Author: Literature survey; analysis and im-
plementation; experimental evaluation; manuscript composition, revision, and editing.
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Discussion

4.1 Assessment and Prior Work

Agility

A variety of implementations exist for streamlining the warehouse deployment and
management process, most notably, the i2b2 Wizard of the Integrated Data Reposi-
tory Toolkit (IDRT), a shell-script based tool with a simple graphical user interface
for installing and administrating a single i2b2 warehouse instance (Bauer et al., 2016)
and i2b2 Quickstart, a shell-script based command-line tool for installing i2b2, which
has been published by core members of the i2b2 development community (Wagho-
likar et al., 2018). Furthermore, several data loading tools exist to simplify the pop-
ulation of the complex database schemata of i2b2 and tranSMART. These include
tranSMART-ETL, which is shipped together with tranSMART and utilizes the Pen-
taho Data Integration platform (i2b2 tranSMART Foundation, 2018), tMData-loader,
which uses stored procedures (Clarivate Analytics Life Sciences, 2020), and transmart-
batch, which leverages the Spring Batch framework (i2b2 tranSMART Foundation,
2016).

Ref.A.1 contains structured comparisons of these implementations regarding their
suitability for facilitating agile warehouse provisioning processes. The comparisons’
results can be summarized as follows: all existing warehouse management infras-
tructures either support i2b2 or tranSMART, not both. None of them supports man-
aging multiple warehouse instances of the same type. None of them provides transport
layer encryption, integrated password management, and secure default passwords in
their standard setups. The existing solutions based on OS-level virtualization cannot
be used within high-security perimeters of hospital information systems because their
authenticity cannot be verified. Most of the existing implementations are actively
maintained. IDRT’s codebase has not been updated for over three years. Regard-
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ing data loading pipelines, only transmart-batch can load data both into i2b2 and
tranSMART. However, even for transmart-batch, the target platforms’ formats differ
significantly, resulting in a duplicated configuration effort. None of the existing tools
can handle different data types, encodings, and syntaxes in the same ETL process,
resulting in significant data preprocessing required before the data can be processed
by these tools. Only one existing tool can handle missing or invalid data. IDRT and
tranSMART-ETL are the only tools that can handle duplicate data. IDRT does not
provide EAV support at all, while all other existing tools do not support more than
one attribute column. Most of the existing implementations are actively maintained.

In summary, both comparisons have shown that none of the existing approaches
fulfill all requirements necessary for supporting agile warehouse deployment and man-
agement processes.

Data Quality

The most notable practical implementations for assessing data quality for biomedical
data warehouses include Achilles Heel (Schuemie et al., 2020) and Data Quality Dash-
board (Blacketer et al., 2020). Both employ Kahn et al.’s conceptual framework (Kahn
et al., 2016) and are utilized in the Observational Health Data Sciences and Informatics
(OHDSI) Initiative (Hripcsak et al., 2015). The Sentinel Initiative (Ball et al., 2016)
follows a holistic approach with Sentinel Operations Centers supporting technical as
well as processual aspects of data quality management in the context of comprehensive
Data Quality Review and Characterization Process and Programs (Maro, 2019).

Ref.A.2 contains a structured comparison of existing approaches to measuring or
monitoring data quality in clinical and translational data warehouses, which can be
summarized as follows: the only approaches that consider the complete data lifecy-
cle (in particular the ETL processes) either require membership in specific research
networks (i.e., Sentinel), require the data to be transformed to a specific data model
(i.e., OMOP Common Data Model or Sentinel Common Data Model), or do not pro-
vide a publicly available solution; furthermore, only two of the existing approaches
allow to capture, analyze and monitor the evolution of data quality measures over
time. However, also their use is tied to the application of a specific data model or
even membership in a specific research network; furthermore, none of the research net-
work’s independent solutions is known to support simultaneous monitoring of multiple
warehouses.

In summary, none of the existing approaches fulfills all criteria necessary for flexible
and comprehensive data quality monitoring of clinical and translational data ware-
houses.
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Privacy

Privacy-enhancing ETL Processes

Existing work in the area of privacy-enhancing ETL processes concerns data masking,
synthetic data generation, and anonymization. Like anonymization, data masking
aims at reducing privacy risks by applying transformations to input data. While the
transformations used are similar, data masking methods do not consider the analytic
utility of the output data.

Simple masking operations, including different forms of suppression and random
data generation, are available as standard transformations in common platforms for
developing and executing ETL processes as well as in several standalone solutions.
The latter provide slightly more complex masking and data generation operations.
More sophisticated masking operations and methods for synthetic data generation are
implemented by sdcMicro (Templ et al., 2015) and are, for instance, able to preserve
specific statistical properties of the original data. However, this tool is very hard
to integrate into typical ETL processing pipelines, as it is designed to be used from
within the R statistical computing environment. The only solution known to integrate
formal anonymization methods directly into ETL processes is a commercial software
called Eclipse Risk (Privacy Analytics, Inc., 2020). However, little is known about the
methodologies used, as publicly available information about this solution is scarce.

Regarding the privacy risk types singling out, linkability, and attribute inference,
most research focuses on protection against singling out and linkability. Research
considering protection against attribute inference mostly presents single methods for
measuring related disclosure risks (e.g., `-diversity (Machanavajjhala et al., 2007) and
t-closeness (Li et al., 2007)). However, except for the work authored by Brickell
and Shmatikov (2008), a comprehensive overview of available methods is missing.
The authors compared anonymization based on several privacy measures with triv-
ial anonymization methods regarding output data utility in this work. They argue
that applying these privacy measures provides no advantage over trivial anonymiza-
tion like attribute suppression without severely compromising privacy. However, their
work has several weaknesses: they measure the relative data utility using statistical
classification by merely comparing the k-fold cross-validation results on the input data
with k-fold cross-validation on the anonymized data. To get a more realistic esti-
mation of relative classification performance, the model evaluation should rather be
performed on (transformed) input data, not on the already anonymized data (Inan
et al., 2009); furthermore, they consider statistical classification only for evaluation of
data utility and not as a potential tool of an attacker; finally, Cao and Karras (2012)
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have shown that applying the privacy model recommended in this work (δ-disclosure
privacy) overprotects the data, as it imposes a constraint on negative information gain.

4.2 Future Work

Agility

While the infrastructure for enabling agile data warehouse provisioning processes pre-
sented in Ref.A.1 resulted in a significant decrease in efforts required for providing
initial and subsequent releases of warehouse instances, the next step will be the devel-
opment of a continuous integration and deployment (CI/CD) infrastructure to shorten
the release intervals further. Moreover, the support for different types of warehouses
is currently limited to i2b2 and tranSMART. Supporting cBioPortal and the analytics
tools provided by OHDSI would further increase the range of use cases covered by
our infrastructure. As these tools are already available as Docker containers, their
integration will not be too complex.

However, due to the high degree of normalization of the underlying database models,
the ETL pipeline’s extension in this direction will require significantly more work.
Here, in the nearer future, we plan to provide support for incremental data loading, the
possibility to load additional high-dimensional data types, and to implement interfaces
to ontology and terminology services. Finally, for deployments with large numbers of
users, support for single sign-on technologies, such as OAuth2 (IETF, 2020), is planned
to be implemented.

Data Quality

The methods for data quality monitoring presented in Ref.A.2 were developed and
refined in the context of several successful data warehouse projects, where they have
already proven to be effective (e.g., (Kuhn et al., 2017; Prasser et al., 2018; German
Biobank Alliance (GBA), 2020)). However, to show the generalizability of these meth-
ods, a detailed evaluation has yet to be performed. To this end, feedback loops with
the data providers of ongoing warehousing projects are currently being established.
Furthermore, as will be outlined below, there is significant potential in integrating the
monitoring architecture with the contributions presented in Ref.A.3.

Privacy

The methods and implementations for providing privacy-enhancing ETL processes pre-
sented in Ref.A.3 are particularly well suited for the protection of data that is rather
infrequently collected or relatively stable over time (Malin et al., 2010, 2011). For pro-
tecting frequently changing or longitudinal data, specific measures have to be imple-
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mented (Terrovitis et al., 2008). Furthermore, we plan to implement additional trans-
formation techniques like data swapping, data generalization, and micro-aggregation
into our plugin. Moreover, the methods presented in Ref.A.3 could easily be inte-
grated into the ETL pipeline presented in Ref.A.1. Based on this integration, the
monitoring architecture presented in Ref.A.2 can also be used to report and monitor
the results of privacy risk and data utility analyses. Finally, the integration of further
risk models like differential privacy or the privacy measures for quantifying risks of
attribute inference presented in Ref.A.4 into the ETL pipeline represents interesting
avenues for future research.

While we could show the feasibility of the methods for protecting biomedical data
against attribute inference in Ref.A.4, using them is still cumbersome and requires
significant technical expertise. To increase usability and support the described pro-
cesses more directly, we plan to integrate these methods into the data anonymization
tool ARX (Prasser and Kohlmayer, 2015), for instance, through its graphical user
interface (Spengler and Prasser, 2019).
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Abstract

Background: Modern data-driven medical research provides new insights into the development and course of diseases and
enables novel methods of clinical decision support. Clinical and translational data warehouses, such as Informatics for Integrating
Biology and the Bedside (i2b2) and tranSMART, are important infrastructure components that provide users with unified access
to the large heterogeneous data sets needed to realize this and support use cases such as cohort selection, hypothesis generation,
and ad hoc data analysis.

Objective: Often, different warehousing platforms are needed to support different use cases and different types of data. Moreover,
to achieve an optimal data representation within the target systems, specific domain knowledge is needed when designing
data-loading processes. Consequently, informaticians need to work closely with clinicians and researchers in short iterations.
This is a challenging task as installing and maintaining warehousing platforms can be complex and time consuming. Furthermore,
data loading typically requires significant effort in terms of data preprocessing, cleansing, and restructuring. The platform described
in this study aims to address these challenges.

Methods: We formulated system requirements to achieve agility in terms of platform management and data loading. The derived
system architecture includes a cloud infrastructure with unified management interfaces for multiple warehouse platforms and a
data-loading pipeline with a declarative configuration paradigm and meta-loading approach. The latter compiles data and
configuration files into forms required by existing loading tools, thereby automating a wide range of data restructuring and
cleansing tasks. We demonstrated the fulfillment of the requirements and the originality of our approach by an experimental
evaluation and a comparison with previous work.

Results: The platform supports both i2b2 and tranSMART with built-in security. Our experiments showed that the loading
pipeline accepts input data that cannot be loaded with existing tools without preprocessing. Moreover, it lowered efforts significantly,
reducing the size of configuration files required by factors of up to 22 for tranSMART and 1135 for i2b2. The time required to
perform the compilation process was roughly equivalent to the time required for actual data loading. Comparison with other tools
showed that our solution was the only tool fulfilling all requirements.

Conclusions: Our platform significantly reduces the efforts required for managing clinical and translational warehouses and
for loading data in various formats and structures, such as complex entity-attribute-value structures often found in laboratory
data. Moreover, it facilitates the iterative refinement of data representations in the target platforms, as the required configuration
files are very compact. The quantitative measurements presented are consistent with our experiences of significantly reduced
efforts for building warehousing platforms in close cooperation with medical researchers. Both the cloud-based hosting infrastructure
and the data-loading pipeline are available to the community as open source software with comprehensive documentation.
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Introduction

Background
Digitalization of health care promises to enable personalized
and predictive medicine [1]. On the basis of digital data that
characterize patients and probands at comprehensive depth and
breadth [2], modern methods of data analytics can be used to
detect unknown relationships between biomedical parameters,
discover new patterns, and enable decision support systems by
using this knowledge to infer or predict parameters, for example,
diagnoses or outcomes [3,4]. A learning health system [5],
which makes health care data available for secondary research
purposes, is an important building block of this development.
By comprehensive data integration within and across sites, a
massive change in clinical and research processes is envisioned,
which will accelerate translation and lead to measurable benefits
for patients [6]. In this study, we focus on the integration of
structured, that is, typically tabular, clinical and research data.

Multiple technical challenges must be addressed to provide the
large, high-quality data sets needed for such purposes. Data
from distributed and heterogeneous sources must be integrated
at the technical, structural, and semantic levels [7]. To this end,
a 3-step extraction-transformation-loading (ETL) process is
often implemented:

1. Data from research and health care systems are transferred
into a staging area in the form of nearly exact copies of data
extracted from the source systems [8].

2. Within the staging area, the structure, syntax, and semantics
of these data extracts are then normalized into a common
data model (CDM) using standard terminologies. These
common data representations typically implement a specific
database schema, which efficiently and effectively supports
complex analytical query processing.

3. Finally, the data are loaded into the target system.

Important examples include clinical and translational data
warehousing platforms, such as Informatics for Integrating
Biology and the Bedside (i2b2) [9], tranSMART [10], and the
Observational Medical Outcomes Partnership (OMOP) CDM
[11]; federated and distributed solutions, such as the Shared
Health Research Information Network [12]; and the tools
provided by Observational Health Data Sciences and Informatics
(OHDSI) [11], which can be deployed on top of these analytical
databases.

These existing biomedical data analytics platforms offer a wide
range of functionalities and integrate different software solutions
for data storage, workflow orchestration, and data analysis using

multi-tier architectures. As a result of this complexity,
considerable technical expertise is required to set them up in a
secure manner. These challenges increase even further when
organizations run several data-driven research projects and
hence need to set up, configure, and maintain multiple
warehouse instances. Moreover, ensuring that input data are
represented in the analytics platforms in a sound structure with
reasonable semantics requires significant medical expertise. It
is well known that bridging the interdisciplinary gap between
these two worlds requires iterative development processes, in
which different solutions are evaluated in short feedback cycles
[13]. As we will show later, existing data-loading tools for the
aforementioned platforms, however, typically require complex
configuration files and input data that adhere to specific formats
and structures. Consequently, substantial data restructuring and
cleansing is required before data loading can be started and
initial feedback can be collected.

In an ideal world, upfront efforts for project-specific technical
setup, data cleansing, and data structuring can be avoided, and
development starts rapidly, while repeated discussions with
clinicians and medical researchers are carried out in parallel
[14]. Technical solutions that facilitate this approach have been
called dataspace management systems [15]. The key idea is to
implement a pay-as-you-go approach to data integration. A
comparison with traditional approaches is presented in Figure
1. It illustrates how the traditional approaches are characterized
by an initial development phase in which the data are being
integrated on a syntactic, structural, and semantic level, and no
service is provided to the users. In contrast, the pay-as-you-go
approach provides some initial functionality from the beginning,
which is then incrementally extended to better meet the
requirements [15,16]. This means that the associated
development process can be carried out in an agile manner,
involving close cooperation and short feedback cycles with end
users. This comes with multiple benefits for the parties involved:
clinicians or medical researchers are provided with initial
functionalities much more quickly, and feedback can be
provided to the development team more often. This is
particularly important for data loading because it has been
estimated that the development of ETL processes accounts for
up to 70% of the total effort required to set up data warehouses
[7,17]. For both end users and developers, this can also lead to
the reduction of duplicate and redundant work, thus significantly
reducing the efforts required. The approach is related to agile
methods of software engineering, in which software evolves
through continuous collaboration between developers and users.
It is well known that this can also help to better bridge the
interdisciplinary gaps [18].
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Figure 1. Schematic comparison of traditional approaches to data integration and the pay-as-you-go approach.

Objectives
The aim of this study was to implement a platform that enables
the deployment and customization of well-known clinical and
translational data warehousing solutions in close cooperation
with end users in an agile approach. Our solution consists of 2
parts with the following unique features:

1. A cloud-based warehouse management infrastructure, which
supports the installation and maintenance of i2b2 and
tranSMART in an integrated manner by providing a
common set of commands; implements security-by-default
features, including transport layer encryption, host-based
access control, and password management; and is based on
verifiable and authenticatable software to enable
installations within high-security perimeters of hospital
information technology (IT) environments.

2. A flexible data-loading pipeline, which supports loading
data into both i2b2 and tranSMART; is able to process
heterogeneous data with different degrees of structure and
cleanliness; and performs automated data cleansing and
preprocessing, including automatic detection of the syntax
and format of input data, and has the ability to handle
different encodings as well as missing and duplicate data.

The complete software stack is available to the community as
open source software [19,20]. In this study, we provide readers
with an overview of the most important system requirements
and design decisions. To demonstrate that our solution enables
an agile approach to be implemented in a professional context,
we present the results of a structured comparison with existing
management infrastructures and data-loading pipelines as well
as an experimental evaluation of data-loading processes. Our
results show that our management infrastructure is the only
publicly available open source implementation that supports all
the abovementioned features, which is essential for secure
deployments in professional IT environments. Moreover, the
experimental evaluation showed that no other open source
data-loading pipeline was able to process 3 different benchmark
data sets, including structured research data, complex

longitudinal clinical data, and highly structured billing data, in
their raw form. The experiments also showed that our solution
is feasible from a computational perspective. We believe that
the software presented in this study can be an important tool to
support medical informaticians with realizing data warehousing
projects and that the methods implemented can provide system
developers with novel ideas for the development of future
platforms.

Methods

Selection of Target Systems
Clinical and translational data warehouses provide users with
efficient analytical access to integrated data sets [21,22]. As an
initial step, we decided to utilize an infrastructure supporting
i2b2 and tranSMART as both of these have a broad installed
base and strong community support. For example, the integrated
solution of Hôpital Européen Georges-Pompidou [23] uses i2b2
and tranSMART, integrating data from electronic patient
records, including aggregated, anonymized, and deanonymized
patient data. The tranSMART platform [10] is based on the i2b2
framework, and its suitability for data from clinical studies has
already been demonstrated in various projects [24]. In
combination, they can be used to support a wide range of use
cases.

The i2b2 platform is very well suited for representing
longitudinal and often semistructured clinical data, and it
supports complex features such as temporal queries against time
series data [9]. TranSMART was built over the i2b2 data model
to provide improved support for high-dimensional data. The
system is well suited for integrating structured research data as
well as high-throughput data, and it provides comprehensive
support for ad hoc graphical data analysis and cohort comparison
[10]. TranSMART offers built-in support for various types of
omics data, such as protein and gene expression arrays,
single-nucleotide polymorphism data, and certain types of
genomic variants. With the recent merger of the i2b2 Foundation
and the tranSMART Foundation, a process has been started to
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unify both platforms. Until a combined solution becomes
available, installations of both systems are needed to support
different use cases and to handle different types of data.

The 2 systems offer web-based graphical user interfaces.
TranSMART employs a classical three-tier information system
architecture, whereas i2b2 consists of an extendable framework
consisting of several cells. Both platforms can be installed on
top of different database management systems. As we focus on
open source software, we decided to use PostgreSQL, an open
source relational database management system.

Cloud Infrastructure for Managing i2b2 and
tranSMART

Rationale and Requirements
Both i2b2 and tranSMART offer a wide range of functionalities,
and they are based on a software architecture that integrates
components for data storage, workflow orchestration, and data
analysis. Consequently, installation, configuration, and
maintenance procedures are complex and require solid technical
expertise. Concurrently, documentation is often lacking. As an
example, the number of tranSMART software dependencies is
very large, which regularly leads to some dependencies not
being up to date or having become incompatible with the
underlying (operating) system infrastructure, requiring manual
changes to installation scripts. In contrast, the i2b2 installation
process is fairly robust, well documented, and up to date [25].
However, it can be quite challenging to debug configuration
errors of i2b2 owing to its highly modular architecture, which
involves exchange of complex data via web services. These
challenges increase significantly when a larger number of
instances need to be set up, configured, and maintained.
Furthermore, when deploying such systems in production
environments, additional aspects such as transport encryption
and password management need to be considered. These and
further functionalities are not supported by existing cloud-based
deployment solutions for i2b2 and tranSMART, such as the
Integrated Data Repository Toolkit (IDRT) [26], i2b2 Quickstart
[27], or the prebuilt images available on Docker Hub [28] (see
the Discussion section for an in-depth comparison).

We, therefore, decided to employ clean virtual containers,
ideally together with associated maintenance scripts to quickly
boot up, configure, and shut down instances of i2b2 and
tranSMART in a uniform manner. The most important
requirements were as follows:

1. Robust installation of a trusted runtime environment: The
solution developed shall streamline the complex installation
process of tranSMART and enable rapid instantiation of
new instances of tranSMART and i2b2.

2. Unified installation and maintenance: The solution shall
provide a façade encapsulating important configuration
options and make the effective management of multiple
instances of i2b2 and tranSMART straightforward by
providing easy-to-use common commands for both
platforms.

3. Built-in security: The solution shall significantly improve
the security of i2b2 and tranSMART by enabling transport

encryption and host-based access control by default as well
as by automatically setting nontrivial passwords.

Technical Design
The cloud infrastructure has been designed to run on a physical
or virtual machine with a standard Linux operating system. In
this system, Docker needs to be installed as a virtualization
platform that enables the provisioning of software in deployment
units called containers. Each container encapsulates a complete
software stack together with all required dependencies, such as
libraries and configuration files. Docker employs OS-level
virtualization, which means that in contrast to full virtualization,
where each virtual machine contains and runs its own operation
system, Docker containers can share one single operating system
instance and are thus more lightweight than virtual machines.
Although containers are isolated from each other, they can be
enabled to communicate through definable channels (eg,
Transmission Control Protocol ports). Containers can quickly
be instantiated and customized via runtime parameters in this
process.

We chose Docker for the following reasons: (1) it enables
describing and documenting installation processes in a machine
and human-readable format, thus fulfilling our requirement for
robust installation and quick instantiation; (2) it allows
customizing running containers by means of runtime parameters
(eg, access permissions, passwords, and instance names), thus
fulfilling our requirement to provide uniform configuration and
maintenance scripts for both platforms; (3) its efficient use of
resources allows rapid booting up and shutting down instances;
and (4) it integrates well with common software development
infrastructures, such as GitLab.

As a gateway component to provide transport encryption,
host-based access control, and data routing for the particular
warehouse instances, we decided to include the Apache HTTP
Server into the host environment utilizing its proxy and virtual
host modules.

Meeting Requirement 1: Robust Installation of a Trusted
Runtime Environment

The solution can be used to host an arbitrary number of i2b2
and tranSMART instances. Each host system includes the
following containers per instance: (1) a database server for i2b2,
(2) an application server for i2b2, (3) a web server for i2b2, and
(4) a complete tranSMART software stack. It can be accessed
via specific URLs. The subdomain in this URL denotes the
warehouse instance, for example, dwh01 or dwh02. Each
subdomain is represented by a dedicated Apache virtual host
and provides one instance of i2b2 and one instance of
tranSMART. As an example, the URL-pattern
[http|https]://dwh02.example.org/i2b2/ denotes the web
front-end of i2b2 instance 02, which is exposed by the Apache
virtual host dwh02.example.org.

Both tranSMART and i2b2 expose specific ports to provide
specific services. These include their web front-ends and various
web services. To avoid port clashes when running multiple
warehouse instances and their respective containers, the ports
used by each container are mapped to corresponding ports on
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the host system using specific offsets such that a certain set of
ports uniquely identifies each service of each container.

Figure 2 illustrates the components used by the environment
and their interactions. The actual instances of i2b2 and
tranSMART are implemented as (stacks of) Docker containers
(black boxes). Access to these containers is relayed by an

Apache web server, which acts as a gateway. Each warehouse
instance is represented by a virtual host of the gateway and is
identified by the first part of the hostname contained in the URL
of the request. Detailed installation instructions along with
well-documented configuration files are available on the web
[19].

Figure 2. Schematic overview of the components for the provisioning of multiple warehouse instances and their interaction.

Meeting Requirement 2: Unified Installation and
Maintenance

To support unified management for instances of both types of
systems, we have developed 2 configuration scripts that can be
parameterized. Target instances are identified by their type and
consecutive numbers (eg, i2b2-04). The first script can be used
to set up new warehouse instances and to reset existing
instances. It does so by creating configurations for Apache’s
proxy and virtual host modules and environment files for the
Docker compose scripts. If needed, the resulting files can be
edited by the administrator (eg, to replace randomly generated
passwords) before the new instances are created. The second
script can be used for starting, stopping, and deleting warehouse
instances as well as associated disk volumes. It has been
implemented as a wrapper for Docker compose commands that
access the environment variables defined in the associated
environment files.

Meeting Requirement 3: Built-In Security

The setup process implements several crucial security measures,
including transport layer encryption, server authentication,
restricted access paths, and nontrivial default passwords.

Access to the services running on each server is only permitted
indirectly via the Apache HTTP Server, which acts as a central
gateway. This component takes care of the transport encryption
and server authentication mentioned above as well as
address-based access control. The only service that can be
reached without having to pass the gateway is the database
system to enable efficient data loading. Here, access control is
implemented at the database level. Permission to access the
database has to be granted explicitly, which includes the
declaration of address ranges with specific access rights. To

simplify the Transport Layer Security configuration, we make
use of the subject alternative name extension to the X.509 server
certificates [29], which our platform uses for authenticating the
data warehouses and for transport layer encryption. Embedded
plain text secrets and the fact that the source and content of
many images cannot be verified have been identified as major
risks for system components based on container technologies
[30]. This impedes the use of prebuilt images in high-security
IT environments. Our infrastructure does not suffer from these
shortcomings as we employ Docker Content Trust [31] to verify
the authenticity of all base images used. As the current images
for i2b2 and tranSMART do not support this authentication
mechanism, we decided to build our own images based on
authenticated sources (by verifying Pretty Good Privacy
signatures of binaries used and/or building them from source).
Secure default passwords are automatically created via a random
password generator [32] with a default length of 10 characters
and injected into the containers at runtime.

Generic and Agile Data-Loading Pipeline for i2b2 and
tranSMART

Rationale and Requirements
Populating i2b2 and tranSMART with data is cumbersome and
requires significant expertise regarding the underlying database
schema and how both systems use it. For this reason, several
tools have been developed to simplify this process, including
tranSMART-ETL [33], tMDataLoader [34], transmart-batch
[35], Integrated Curation Environment (ICE) [36], IDRT [26],
transmart-copy [37], and TranSMART data curation toolkit
(tmtk) [38]. However, none of these tools fulfill the requirements
needed to implement agility (see the Discussion section for an
in-depth comparison).
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First, all available data loaders except transmart-batch are
strongly tied to 1 of the 2 target systems. As both are often
needed in parallel, this introduces additional preprocessing and
configuration efforts. The main reason is that loaders for
different systems make different assumptions about the degree
of structure and cleanliness of import data. In addition, different
loaders use different configuration mechanisms. Moreover,
existing tools follow imperative configuration paradigms, where
it must be specified how the loading process should be executed,
making this process complex and requiring substantial technical
expertise as well as domain knowledge. Finally, to support agile
and fast loading, tools should be able to automatically handle
heterogeneity and errors in input data, such as differences in
data encoding and syntax as well as missing and duplicate data.
To address these challenges, we needed a data-loading pipeline
fulfilling the following requirements:

1. Platform independence: The data-loading pipeline shall be
designed independent of a specific target system, enabling
the loading of data into both i2b2 and tranSMART with the
same pipeline using the same configuration files.

2. Support for different types of data: The pipeline shall
support heterogeneous data with different degrees of
structure and cleanliness, such as structured research data,
complex longitudinal clinical data, and highly structured
billing data, without requiring complex preprocessing or
configuration efforts.

3. Automated data cleansing and preprocessing: The pipeline
shall automatically detect the syntax and format of input
data and handle different encodings as well as missing and
duplicate data. This significantly reduces efforts and
improves agility when providing warehousing solutions.

Technical Design
The most important design decision made to fulfill the
requirements listed above was to center the tool around a
declarative and model-driven way of configuring the import
process. The basic idea was to enable users to match data to an
entity-relationship (ER) model that describes the desired target
representation of the data. The tool then automatically
determines how the input data must be interpreted, transformed,
and loaded to reflect this model in the target database. This
includes the automatic creation of the ontologies required by
i2b2 based on this model. This is in stark contrast to the
imperative configuration paradigm found in most ETL tools for
i2b2 and tranSMART and significantly reduces the complexity
of configuration files and hence efforts (see the Results and
Discussion sections). Moreover, the approach enables our tool
to automatically perform a wide range of data transformation
and cleansing tasks, thus fulfilling our requirements to support
different types of data and automate data cleansing. To fulfill
the requirement of platform independence, our tool acts as a
compiler for configuration files to be used for different ETL
tools for i2b2 and tranSMART.

The data-loading tool has been developed in Java using the
Spring Batch framework for robust, maintainable, and extensible
orchestration of the individual steps of the ETL process; the

Univocity parser for reading and writing comma-separated
values (CSV) files; and juniversalchardet, a Java port of
Mozilla’s library, for the automatic detection of file encodings.
Access to the target relational database systems has been
implemented using Java Database Connectivity.

Meeting Requirement 1: Platform Independence

As some powerful loading tools for the different target platforms
have already been developed, we decided to implement a
meta-loading process consisting of 2 phases: the first is the
staging phase, in which data are transformed into an
intermediate staging representation and configuration files are
compiled into the target configuration language for the
respective loading tool, which we term back-end loader in the
context of our meta-loading process. We refer to the transformed
data and the configuration files created in this phase as staging
files. The second is the loading phase, in which the staging files
are used to execute the respective back-end loader for the chosen
target platform.

Figure 3 illustrates a typical staging and loading process. The
staging phase is divided into 3 subphases: data extraction, data
transformation, and data writing. In the data extraction subphase,
our tool reads the declarative configuration, which describes
the structure of data to be represented in the target system. On
the basis of this configuration, it reads and parses the input data.
Details are presented in the 2 subsequent sections. In the data
transformation subphase, different data cleansing steps are
performed, which are also be presented in the 2 subsequent
sections. The last subphase involves writing the transformed
data into intermediate files, which are consumed by the back-end
data loaders in the loading phase. In the case of i2b2, visit data
are written separately. This is followed by writing the associated
configuration files, describing how the staging data are to be
loaded. In the case of i2b2, this (pre-)final step is concluded by
writing data describing the underlying ontologies into separate
files. In the loading phase, the actual data loading is performed
by executing the user-defined back-end loaders. If i2b2 has been
selected as the target system, this step is preceded by loading
the ontology trees into the target system. Currently, our tool
supports the following 2 back-ends for data loading:

• tMDataLoader, which has been implemented in Groovy
and in stored procedures of the underlying database system
to automate data loading for tranSMART [34]. The tool
relies on a specific directory structure, containing the data
sets and configurations, thus following the convention over
configuration approach. It supports the full spectrum of
features provided by tranSMART, including the annotation
of selected values with timestamps.

• transmart-batch, which is implemented in Groovy using
Spring Batch and which has been designed to support both
tranSMART and i2b2. It requires a specific set of files to
be provided about subjects and visits as well as further files
containing the actual payload data. It supports fewer features
of tranSMART than tMDataLoader and requires significant
data cleansing to be performed upfront to provide data in
the syntax and structure required.
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Figure 3. Overview of data staging and loading with the tool developed. i2b2: Informatics for Integrating Biology and the Bedside.

Meeting Requirement 2: Support for Different Types of
Data

As mentioned before, the configuration is performed using a
declarative approach [39]. This means that users do not need
to specify how data should be loaded, but instead map an ER
model to the data files to describe the relationship between input
and output data. Consequently, the tool can perform a wide
range of data transformations automatically without prior
normalization, including the automatic creation of the target
ontology. Although users are less flexible in defining how data
should be represented in the target system, a decent
representation can typically be achieved for almost all of the
data items, as we will show later, with just a fraction of the
effort required to use a more versatile loader. If needed, users
can still modify and fine-tune the intermediate staging files to
achieve an optimal representation.

The tool developed was designed in such a way that the
maximum degree of the work that needs to be done for
successful loading is automated. There are just a few
assumptions that are made about input data: (1) data must be
tabular, as this is in our experience the most typical format in
which clinical and research data can be provided; (2) every line
within a file must contain data for a specific patient, visit, or
encounter; (3) patients, visits, or encounters must be identified
by (composite) keys or timestamps; (4) one file must contain
information about the patients or probands—a file describing
visits or encounters is optional; and (5) entities may be related
to patients, visits, or encounters. Providing information on time
points is optional but recommended.

Figure 4 provides an example of how the tool is configured. As
can be seen, users are able to specify entities that are related to

a certain patient or visit and that have attributes. Attributes can
be mapped to specific columns in the input files. Attributes can
be annotated with meta-attributes, which are attributes that
further specify a specific value for an attribute of a specific
entity. In i2b2, these are mapped to modifiers. Although there
is no direct support for meta-attributes in tranSMART, they can
in some cases be represented by creating multiple variants of
an attribute that encodes the values of the associated
meta-attributes. In addition, there are specific attributes for
specifying timestamps and patient or visit identifiers.

The figure also shows an example of how data stored in an
entity-attribute-value (EAV) model can automatically be
denormalized. The EAV model is often used in data collection
systems when a large number of different observations are
recorded but only a few of them typically apply to a specific
patient or proband (eg, lab values). To support this, an additional
property value is introduced, which can be used to specify how
data in EAV form should be denormalized. In the example, one
entity will be created in the target systems for each instance of
the column Parameter having the value from the column Result
and being annotated with meta-attributes Unit and Norm range.
This is implemented by parsing the input files and populating
the configuration with automatically generated parameters for
each EAV-encoded data item.

By specifying basic patient, visit, and observational data, the
specified EAV entities, the patient data, the observations, an
internal model of the ontology, and optionally the associated
visits are automatically created. Furthermore, by mapping
patients to visits and by relating entities to visits or patients,
implicit relationships between the different types of data are
constructed. These will also be reflected within the target
systems.
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Figure 4. Simplified example of an annotation of input files with entities, attributes and relationships. LDL: low density lipoprotein.

Meeting Requirement 3: Automated Data Cleansing and
Preprocessing

There are multiple additional features that have been added to
the tool based on our experiences with loading a wide range of
real-world data sets, which help enforce the syntactic and
structural integrity of the input data and which are particularly
important due to the heterogeneity of the data sources with
respect to these parameters. Important examples include the
automated detection of charsets and syntax of input data as well
as the automated detection of data types of variables. Features
that help enforce semantic integrity include the detection and
handling of duplicate data, inconsistent timestamps, and missing
values. Finally, support for data filtering and methods for
handling uncertainty in timestamps are provided. On a technical
level, these tasks are executed as part of either the data loading
or the data transformation subphase.

Experimental Design
We evaluated our solution by performing an experimental
evaluation of our data-loading approach using different
real-world data sets. In the experimental evaluation, we focused
on 3 different aspects:

1. Flexibility: To demonstrate that our loading tool is able to
perform automated data cleansing and restructuring, we
used it to load three different types of data sets with varying
degrees of structure and cleanliness. Moreover, we also
tried to load these data sets using existing data-loading tools
to demonstrate that they are not able to process them
without prior data cleansing.

2. Reduced efforts: To demonstrate that the declarative
configuration paradigm of our loading tool significantly
reduces the effort required, we compared the number of
lines in the configuration files for our tool with the number
of lines of the configuration files generated for and needed
by existing data-loading tools.

3. Scalability: To demonstrate that our approach is
computationally feasible, we compared the time needed for
automated data cleansing and preprocessing with the time
required for actual data loading.

In the experiments, we used real-world data sets from 3 different
previous projects: (1) a research data set including microbiome
profiles, (2) clinical data on multiple sclerosis, and (3) billing
data.

The microbiome profile data set was collected in a study context
by our internal medicine department in 2019 and included
general information about the probands, lifestyle information
obtained through questionnaires, and microbiome profiles
(species identified by 16S rRNA gene sequencing) generated
from sampled stool, feces, and esophagus tissue. The multiple
sclerosis data set was collected by our neurology department
since 2010 in the health care context and consisted of
longitudinal clinical data, including diagnoses, procedures,
clinical scores, medication, lab values, references to biosamples,
and metadata of imaging tests. The billing data set consisted of
discharge data collected in our hospital in the years 2015-2017
containing demographics and visit data including ventilation
time, diagnoses, and procedures. Further details on the projects
and use cases supported by these data sets are presented in the
Discussion section.
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For loading data into i2b2, we used the transmart-batch backend,
and for loading data into tranSMART, we used the
tMDataLoader backend of the pipeline. The experiments were
performed with the warehouse instances hosted on a server with
Intel Xeon central processing units (CPUs) running at 2.4 GHz
with 80 cores, along with 512 GB RAM and 16 TB hard-drives
using kernel-based virtual machines provided by Quick
EMUlator 2.5.0 running on Ubuntu 18.04. The ETL processes
were executed on a desktop machine equipped with a quad-core
3.2 GHz Intel Core i5 CPU running a 64-bit Windows NT
kernel, with a 32-bit Java Virtual Machine (1.8.0_202_x86),
and with the data input files located on the local file system.

Results

Experiment 1: Flexibility of the Loading Process
In this section, we present results on the flexibility of the loading
process for our evaluation data sets and both i2b2 and
tranSMART as target systems. The basic properties of the data
sets and their representations in the target systems are shown
in Table 1.

The microbiome data set originates from a study context and is
highly structured. For this reason, and as can be seen in Table
1, i2b2 and tranSMART were both fully able to represent the
data set as is. The multiple sclerosis data set, in contrast, was
collected in the health care context and consisted of longitudinal
clinical data with less structure and a multitude of detailed
measurements, such as laboratory values. As can be seen in
Table 1, tranSMART could only capture parts of these data
(fewer facts by a factor of 6 compared with i2b2) because of
missing support for complex time series data and meta-attributes.
The billing data set was also highly structured and contained
dates of admission and discharge as well as coded diagnoses
and procedures. In general, these data could be represented well
in i2b2 as well as tranSMART, but the latter system was not
able to capture meta-attributes, for example, of diagnoses,
resulting in some loss of information.

We emphasize that loading into the different target systems was
achieved using the same configuration files. We conclude that
our tool provides a high degree of flexibility but that the
different target systems are not able to capture all aspects of
input data. In general, i2b2 is more suited for representing
longitudinal clinical data, and tranSMART is better suited for
analyzing highly structured research data.

We further emphasize that our loading pipeline was the only
tool with which we were able to load all the data sets described
in their raw form without prior transformations or preprocessing.
In the remainder of this section, we will briefly cover the issues
encountered when using existing open source loading software.
We present a detailed comparison with our approach in the
Discussion section.

When loading the data sets into i2b2, we encountered the
following issues: transmart-batch for i2b2 requires the extraction
and loading of concept trees into i2b2 before the import of the
actual facts. This process is not supported by the tool, and import
files also need to be annotated with codes associated with the
ontology nodes in the database in an additional preprocessing
step. The loading pipeline of IDRT is no longer maintained
(over 2.5 years old) and is not compatible with i2b2 1.7.09c and
higher, resulting in various errors during data loading. When
loading the data sets into tranSMART, we noticed the following
problems: tMDataLoader, tmtk, transmart-batch, and ICE could
not load the clinical data set where multiple values were
provided for the same variable and subject in the same visit.
Furthermore, values are required to conform to predefined
formats (eg, “yyyy-mm-dd hh:mm:ss” for dates), requiring
preprocessing. Transmart-copy could not load any of the data
sets used in our experiments without significant preprocessing
at the structural and syntactical level, as it required input data
to precisely conform to the target schema. TranSMART-ETL
could also not load the clinical data set as it was not able to
handle missing values. Moreover, it required specific column
separators and number formats to be used, requiring input files
to be preprocessed accordingly.

Table 1. Overview of the properties of the data sets used in the projects.

Billing dataMultiple sclerosisMicrobiome profilesData set

111915Number of input files

2524971Size of input files in MB

~100,000~7000~50Patients

~300,000~40,000~100Visits

~6,200,000~4,600,000~90,000Facts in i2b2a

~3,800,000~750,000~90,000Facts in tranSMART

ai2b2: Informatics for Integrating Biology and the Bedside.

Experiment 2: Reduction of Efforts
In this section, we present the results of the reduction of efforts
that can be achieved by using our loading tool. We captured
this aspect by analyzing the size of files used for actual data
loading, which are shown in Table 2. It shows the complexity
of configuration files required for data loading with our tool

compared with the complexity of the configuration files
generated for the backing data loaders. As can be seen, the tool
presented in this study generated a large number of files for the
different specified entities. Moreover, as a result of the
automated denormalization of EAV data and the automated
detection of data types, configuring data loading with our tool
required significantly fewer lines of configuration parameters
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than what would have been required using transmart-batch or
tMDataLoader. The configuration files for tranSMART for the
multiple sclerosis and the billing data sets were much smaller
than the corresponding files for i2b2, as they did not include
specifications for meta-attributes.

For the microbiome data set, configuration files for our tool
were smaller by factors of between 17.7 (i2b2) and 22.1
(tranSMART). For the multiple sclerosis data set, configuration

files for our tool were smaller by factors of between 3.9
(tranSMART) and 216.1 (i2b2). For the billing data set,
configuration files where smaller by factors of between 1.2
(tranSMART) and 1135.0 (i2b2). We note that the sizes were
(roughly) equal only for the billing data set and tranSMART,
which is because this data set is highly structured and because
this type of data is well supported by tranSMART. We conclude
that our tool can significantly reduce the efforts required for
configuring the loading process.

Table 2. Comparison of input required for data loading.

Billing dataMultiple sclerosisMicrobiome profilesData set

831090496LOCa input

94,213235,5828772LOC staging, i2b2b

99427210,976LOC staging, tranSMART

111915Input files

3110342207Staging files, i2b2

188542194Staging files, tranSMART

aLOC: lines of configuration.
bi2b2: Informatics for Integrating Biology and the Bedside.

Experiment 3: Scalability
In this section, we present the results on the scalability of our
tools with respect to increasing volumes of data. The execution
times measured in the experiments are provided in Table 3.

The table shows the time needed for staging and loading the
data from the 3 evaluation data sets for i2b2 and tranSMART.
As can be seen, the execution times scaled roughly linearly with
the number of facts loaded into the target systems. Moreover,
the relative time needed for data staging was the highest for the
multiple sclerosis data set, which is also the data set with the
highest complexity, thus requiring the most preprocessing.

Figure 5 provides an overview of the relationship between the
times needed for staging and loading. As can be seen, the
(relative) staging times for tranSMART were generally higher
than those for i2b2. This can be explained by the fact that more
data normalization and restructuring were needed to be
performed by the tool to ensure that the data could be loaded
into the target system. In addition, more complicated procedures
for duplicate detection were needed, as there is little support
for the time axis in tranSMART. In summary, we conclude that
our approach is scalable and can be used to process large data
sets.

Table 3. Execution times of data-loading processes in seconds.

Billing dataMultiple sclerosisMicrobiome profilesData set

tranSMART

9168713Staging time

5687413109Loading time

57781100122Total time

i2b2a

79080411Staging time

61,41713,895144Loading time

62,20814,699155Total time

ai2b2: Informatics for Integrating Biology and the Bedside.
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Figure 5. Percentage of loading and staging times regarding the complete process. i2b2: Informatics for Integrating Biology and the Bedside.

Discussion

Principal Findings
We have presented a comprehensive cloud-based platform and
a flexible data-loading pipeline to enable the agile provisioning
of clinical and translational data warehousing solutions. We
have presented an extensive experimental evaluation, dealing
with different types of data and targeting platforms with different
data analytics capabilities. The results of our analysis show that
the presented platform significantly simplifies the management
of the supported data warehousing solutions and enables quick
loading of data in various representations. This enables the
development of such platforms in close cooperation with users
based on short feedback cycles. The cloud-based hosting
infrastructure and the data-loading pipeline are available as open
source software.

The infrastructure and tools presented in this study and the data
sets used in our experimental evaluation have been used to
support a variety of real-world projects. In particular, the
infrastructure is being used to support a large clinical research
center [40] that studies shifts in the composition and activity of
the microbial ecosystem focusing on clinical endpoints that are
associated with well-documented changes in the gut microbiome
(inflammation and cancer). For this purpose, a platform is being
set up to provide researchers with integrated access to different
types of data generated within the consortium. Moreover, our
platform is being used within the DIFUTURE (Data Integration
for Future Medicine) project to improve data availability and
accessibility through an integrated view on health care and
research resources, such as biobanks [6]. An important example
of one of the use cases of the project is the development of an
infrastructure for personalized optimal treatment of multiple
sclerosis combined with efforts to better understand the disease
in general. Finally, the billing data set has been used in a
nationwide cross-site analysis aiming at the reproduction of
published comorbidity scores and the descriptive analysis and
visualization of the distribution of comorbidity scores as well
as the distribution of rare diseases in Germany [41].

Comparison With Prior Work

Analytics Platforms
Currently, our solutions support i2b2 version 1.7.09c and
tranSMART version 16.3. In future work, we plan to add support

for further warehousing platforms and further versions to support
further use cases. An important system of interest is
i2b2-tranSMART, which is the result of an initiative to integrate
tranSMART with the i2b2 cohort selection services and
improved support for managing time series data [42]. In theory,
this would obviate the need to support 2 different systems (i2b2
and tranSMART) with a similar technological basis. However,
i2b2-tranSMART is still under active development and is not
yet suitable for deployment in production environments. It is
planned to release this software directly as a Docker container;
therefore, we expect little effort to integrate it into the presented
environment.

The OMOP CDM and OHDSI toolset also provide an interesting
target platform [11]. OHDSI is an international collaborative
initiative aimed at making clinical data accessible to analytics
efforts, also in distributed settings, to generate actionable
insights for improving health care. The OMOP CDM is a CDM
for consistently representing health care data from diverse
sources by making the relationships between different concepts
explicit [11]. The OHDSI project provides a wide range of
analytics front-ends, such as ACHILLES (Automated
Characterization of Health Information at Large-scale
Longitudinal Evidence Systems) or Atlas, an open source
application developed as a part of OHDSI intended to provide
a unified interface to patient level data and analytics. Both are
aimed at end users and can be deployed over the OMOP CDM.
Supporting OMOP/OHDSI within the described cloud-based
hosting infrastructure will not be too complex. Implementing
an agile loading process, however, will be challenging as the
OMOP CDM requires a significant amount of data normalization
and encoding with standard terminologies. Finally, cBioPortal
would be an important additional system to support as it
provides a platform for interactive exploration of
multi-dimensional genomics data sets, intending to also support
rapid, intuitive, and high-quality access to molecular data and
clinical data [43]. A dockerized version for the presented cloud
environment has already been implemented, but integrating the
software with our data-loading pipeline requires more work.

Cloud-Based Infrastructures
Regarding cloud-based management infrastructures for clinical
and translational data warehousing, most studies focus on i2b2
only. The i2b2 Wizard, which is part of the IDRT, as well as
i2b2 Quickstart aims to simplify installation, setup, and
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administration of single i2b2 instances. There are also images
available on Docker Hub. However, as neither the source code
of these images is publicly available in full nor can their
authenticity be verified (eg, using Docker Content Trust [DCT]),
we could not use them as a base for further development because
of security considerations. For tranSMART, a large number of
images are available on Docker Hub. However, they have not
been maintained for some time, contain artifacts with unclear
provenance, or their documentation leaves out important aspects.

We compared these alternative solutions with our approach with
respect to the following criteria:

1. Supported target platforms indicates whether a solution
can be used for the current major version of i2b2 (ie, 1.7.x)
and/or tranSMART (ie, 16.3).

2. Container-based denotes whether the solution is
encapsulated using container virtualization, which
significantly increases the ease and robustness of the
installation procedures.

3. Security by default covers 3 subcriteria—whether transport
encryption is part of the default deployment, whether the
solution automatically provides strong default passwords
and whether these can be changed in an integrated way,
that is, without risking to break the application (password
management), and whether the solution uses or provides
means to verify the trustworthiness of the installation
package, for example, by using digital signatures or by
providing the source code (trusted runtime environment).

4. Unified interface shows whether the solution helps manage
multiple warehouse instances of different types.

5. Sustainability covers 2 subcriteria—full availability of
source code is important for customizing the solution to
local requirements and the last update of the installation
package is an indicator of whether the solution is actively
maintained by the provider of the solution or by the
community.

The results of the comparison are presented in Tables 4-5.

As can be seen, our infrastructure is the only off-the-shelf
solution supporting both i2b2 and tranSMART. Moreover, our
software, the IDRT i2b2 Wizard, and i2b2 Quickstart are the
only solutions that fulfill requirement 1 (robust installation of
a trusted runtime environment), as the other (cloud-based)
solutions are not capable of providing a trusted runtime
environment due to the reasons explained above. However, i2b2
Wizard and i2b2 Quickstart are not container-based solutions
but rather script-based solutions and thus are significantly less
flexible than our tool, which is based on container virtualization.
Furthermore, our tool is the only solution that fulfills
requirement 2 (unified installation and maintenance) because
it provides integrated support for both i2b2 and tranSMART
through common commands. Finally, our tool is the only
solution that fulfills requirement 3 (built-in security) as it is the
only solution that provides out-of-the-box support for multiple
important security features, such as transport encryption and
strong passwords. The IDRT i2b2 Wizard is quite outdated and
has not received updates in more than 2 years.

Table 4. Comparison of provisioning infrastructures: Our solution, IDRTa and i2b2b Quickstart.

i2b2b Quickstart [27]IDRTa [26]Our solutionFeature

Supported target platforms

YesNoYesi2b2 (current major version)

NoNoYestranSMART (current major version)

NoNoYesContainer based

Security by default

NoNoYesTransport encryption

NoNoYesPassword management

YesYesYesTrusted runtime environment

Unified interface

NoNoYesCentral multi-instance management

Sustainability

YesYesYesFull availability of source code

February 2020August 2017March 2020Last update

aIDRT: Integrated Data Repository Toolkit.
bi2b2: Informatics for Integrating Biology and the Bedside.
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Table 5. Comparison of provisioning infrastructures: i2b2a on Dockerhub, tranSMART on Dockerhub, and manual installation.

Manual installationtranSMART on Dockerhubi2b2a on Dockerhub [28]Feature

Supported target platforms

YesNoYesi2b2 (current major version)

YesYesNotranSMART (current major version)

NoYesYesContainer based

Security by default

YesNoNoTransport encryption

YesNoNoPassword management

YesNoNoTrusted runtime environment

Unified interface

NoNoNoCentral multi-instance management

Sustainability

YesNoNoFull availability of source code

April 2020October 2019February 2020Last update

ai2b2: Informatics for Integrating Biology and the Bedside.

Data-Loading Tools
In addition to transmart-batch and tMDataLoader, which are
both used by our solution, there are further data loaders for
tranSMART and i2b2. First, transmart-ETL is the standard
loading tool for tranSMART. It is included in the standard
software installation of tranSMART and is based on the Pentaho
Data Integration platform. Second, ICE is a data loading and
curation tool supporting a graphical user interface [36]. Third,
transmart-copy is a very lightweight loading tool that copies
data provided in a tabular form into the tables of the tranSMART
database. tmtk is the solution most similar to our approach. It
is a Python-based solution that enables the integration of data
via a high-level language and several classes. It is typically used
in Jupyter notebooks. Analogous to our solution, it uses
transmart-batch as a loading tool. It also supports flexible means
for organizing data into entities and attributes through an
additional graphical tool called the Arborist. Moreover, for i2b2
only, there are other loading tools available. The most
comprehensive is the IDRT Import and Mapping Tool [26]. The
tool supports various import formats, such as CSV files;
provides access to structured query language databases, such
as Clinical Data Interchange Standards Consortium (CDISC)
Operational Data Model (ODM) [44,45]; and provides direct
support for CDMs, that are, for example, used for billing
purposes. Talend Open Studio is used for all ETL processes.

We compared these tools with our approach with respect to the
following criteria:

1. As in the previous section, the criterion supported target
platforms shows whether a solution can be used for the
current major version of i2b2 (ie, 1.7.x) and/or tranSMART
(ie, 16.3).

2. The criterion EAV schema support indicates whether the
tool supports EAV input data with multiple attribute
columns (multi-column) or with only one attribute column
(basic).

3. Automated data cleansing and preprocessing covers
subcriteria indicating whether the tool can handle different
encodings, data types, and syntaxes for different data
sources or if the tool requires all incoming data to conform
to a single, predefined specification, and the subsequent
subcriteria show whether the tool can handle missing or
invalid data and duplicate data or whether the ETL process
is aborted if it encounters one of these anomalies.

4. The criterion loading strategy indicates whether the tool
employs other data-loading tools (meta) or whether the tool
implements its own loading procedures (direct).

5. Configuration paradigm indicates whether the tool
configuration follows a declarative approach or an
imperative approach.

6. The criterion sustainability, as in the previous section,
covers 2 subcriteria with the same semantics—full
availability of source code and the last update.

The results of the comparison are provided in Tables 6-7.
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Table 6. Comparison of extraction-transformation-loading tools: Our solution, tranSMART-ETLa, tMData-loader, and transmart-batch.

transmart-batch [35]tMData-loader [34]tranSMART-ETLa [33]Our solutionFeature

Supported target platforms

YesNoNoYesi2b2b (current major version)

YesYesYesYestranSMART (current major version)

BasicBasicBasicMulti-columnEAVc schema support

Automated data cleansing and preprocessing

NoNoNoYesDifferent encodings, data types, and syntaxes

NoNoNoYesMissing or invalid data

NoNoYesYesDuplicate data

DirectDirectDirectMetaLoading strategy

ImperativeImperativeImperativeDeclarativeConfiguration paradigm

Sustainability

YesYesYesYesSource code fully available

June 2016December 2017March 2018March 2020Last update

aETL: extraction-transformation-loading.
bi2b2: Informatics for Integrating Biology and the Bedside.
cEAV: entity-attribute-value.

Table 7. Comparison of extraction-transformation-loading tools: Integrated Curation Environment, Integrated Data Repository Toolkit, transmart-copy,

and tmtka.

tmtka [38]tranSMART-copy [37]IDRTc [26]ICEb [36]Feature

Supported target platforms

NoNoNoNoi2b2d (current major version) 

YesYesNoYestranSMART (current major version) 

BasicNoNoBasicEAVe schema support

Automated data cleansing and preprocessing

NoNoNoNoDifferent encodings, data types, and syntaxes 

YesNoNoNoMissing or invalid data 

NoNoYesNoDuplicate data 

MetaDirectDirectMetaLoading strategy

ImperativeImperativeImperativeImperativeConfiguration paradigm

Sustainability

YesYesYesNoSource code fully available 

February 2020December 2019August 2017July 2016Last update 

atmtk: TranSMART data curation toolkit.
bICE: Integrated Curation Environment.
cIDRT: Integrated Data Repository Toolkit.
di2b2: Informatics for Integrating Biology and the Bedside.
eEAV: entity-attribute-value.

As can be seen, our solution and transmart-batch are the only
tools to support both i2b2 and tranSMART and thus to fulfill
requirement 1 (platform independence). Requirement 2 (support
for different types of data) is strongly connected to requirement

3 (automated data cleansing and preprocessing). At the
structural level, our tool is the only tool to support EAV schema
resolution in which multiple columns can be combined (eg, lab
analytes together with units of measurement) and thus is the

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e15918 | p. 14https://medinform.jmir.org/2020/7/e15918
(page number not for citation purposes)

Spengler et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

52



only one to fulfill requirement 2 (support for different types of
data). Moreover, our tool is also the only one that is capable of
automatically detecting and handling multiple input data
properties, such as encodings, syntaxes, and data types, and
thus to ingest heterogeneous data often encountered in the
clinical context. Our tool and tranSMART-ETL are both capable
of automatically handling duplicate data. In addition to our tool,
tmtk and ICE are also meta-loading tools; however, they have
fewer data cleansing functionalities. tMDataLoader, ICE, and
IDRT are quite outdated and have not received updates in more
than 1.5 years.

We conclude that our set of tools is the only solution that
supports all requirements outlined in the Methods section.
Moreover, our solutions are fully open source software, allowing
users to maintain their own version if needed, thus decreasing
the risks of adoption and improving sustainability.

Limitations and Future Work
In future work, we plan to address the limitations of the current
version of the infrastructure. First, the current implementation
does not scale to huge data volumes. At the infrastructure level,
this would require support for shared databases. On the
data-loading layer, support for processing data in the form of
smaller blocks or chunks is needed. Extending the data-loading
pipeline with this feature will be relatively straightforward.
However, the loading tools used as backends need to support
incremental loading, which is currently only supported for i2b2
with the transmart-batch backend. In general, the pipeline would
benefit significantly from incremental loading capabilities;
therefore, we are exploring options to integrate an incremental
loading procedure directly into the software.

An additional area of future improvements is authentication and
authorization management. For deployments with a large user
base, the use of single sign-on concepts, such as OAuth2 [46],
will become relevant. As tranSMART uses Spring Security
[47], which supports OAuth2, this should be straightforward to
accomplish. However, the software stack used by i2b2 does not
support OAuth2 natively. Therefore, we plan to evaluate the
approach described by Wagholikar et al [48]. Another limitation
in terms of information security is that our use of DCT [31] is
currently restricted to checking the authenticity and integrity
of the base images when building the images. In future versions,
we plan to use DCT to sign images as well, which is particularly
important when publishing them on the internet.

The current version of the infrastructure focuses on clinical data
or selected genomic variants. TranSMART, however, has
built-in support for a wide range of high-dimensional data types
(see the Selection of Target Systems section). In future work,
we plan to add support for loading these types of data as well.
Although this will require some effort, such data are typically
much more structured and represented in standardized formats
than the data considered in this study.

Currently, our loading pipeline focuses on automated structural
and syntactic harmonization. Automated mapping procedures
to standard terminologies are not yet implemented, mainly
because in a first step, we have developed the pipeline following
our project-specific requirements. Here, all data sets integrated
until now have mostly either been (1) collected in a structured
form, using standard terminologies as they were captured; (2)
mapped to standard terminologies before they were fed into our
pipeline; or (3) loaded for use cases that did not require mapping
to semantic standards. However, semantic harmonization is a
very important process, and the implementation of interfaces
to terminology and ontology services directly into our pipeline
is part of our development roadmap.

Finally, we also plan to integrate a wide range of
privacy-enhancing technologies into the pipeline. In previous
work, we have already integrated a flexible method for data
anonymization into an earlier version of our software [49].
Currently, we are working on integrating the pipeline with a
HL7 FHIR (Health Level Seven Fast Healthcare Interoperability
Resources)–based pseudonymization component.

Summary and Conclusions
In this paper, we have presented a flexible infrastructure that
supports the agile development and provisioning of translational
data analytics platforms to researchers. Our solution helps to
bridge the interdisciplinary gap between clinicians and
informaticians by enabling the creation of data warehousing
solutions in an iterative process involving short feedback cycles
following a pay-as-you-go approach [15]. We have achieved
this by combining a Docker-based (private) cloud infrastructure
for managing warehouse instances with a flexible and
easy-to-use loading pipeline based on a declarative configuration
paradigm. We have used the platform successfully to support
a wide range of projects that used different types of data, which
we used in our experiments. The solutions described in this
paper are available to the community as open source software
[19,20].
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Abstract—Clinical and translational data warehouses are
important infrastructure building blocks for modern data-
driven approaches in medical research. These analytics-oriented
databases have been designed to integrate heterogeneous biomed-
ical datasets from different sources and to support use cases
such as cohort selection and ad-hoc data analyses. However,
the lack of clear definitions of source data and controlled data
collection procedures often raises concerns about the quality of
data provided in such environments and, consequently, about the
evidence level of related findings.

To address these problems, we present an architecture that
helps to monitor data quality issues when importing data into
warehousing solutions using ETL (Extraction, Transformation,
Load) processes. Our approach provides software developers
with an API (Application Programming Interface) for logging
detailed and structured information about data quality issues
encountered. This information can then be displayed in dynamic
dashboards, the evolution of data quality can be monitored over
time, and quality issues can be traced back to their source. Our
architecture supports several well-known data quality dimen-
sions, addressing conformance, completeness, and plausibility.

We present an open-source implementation, which is compat-
ible with common clinical and translational data warehousing
platforms, such as i2b2 and tranSMART, and which can be used
in conjunction with many ETL environments.

Index Terms—data warehouses, data quality, monitoring, i2b2,
tranSMART, architecture

I. INTRODUCTION

A. Background

Modern data-driven approaches in medical research promise
new advances in the prevention, diagnosis, and treatment
of diseases [1]. Clinical and translational data warehous-
ing platforms are important infrastructure building blocks
for providing medical researchers with unified access to
the large datasets needed to realize this. These analytics-
oriented databases have been designed to integrate hetero-
geneous biomedical datasets from different sources and to

The work was, in parts, funded by the German Federal Ministry of
Education and Research (BMBF) within the “Medical Informatics Funding
Scheme” under reference number 01ZZ1804A (DIFUTURE).

support use cases such as cohort selection and ad-hoc data
analyses [2], [3]. Important platforms include Informatics for
Integrating Biology and the Bedside (i2b2) [4] and its deriva-
tive tranSMART [5], the Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM) [6] and
the tools provided by OHDSI [6], which can be deployed on
top of this data model, as well as federated and distributed
solutions, such as the Shared Health Research Information
Network (SHRINE) [7].

Data are typically replicated into these warehouses using
Extract-Transform-Load (ETL) processes [8], [9]: (1) they are
extracted from source systems, (2) cleansed, harmonized and
transformed into a form suitable for analyses, and (3) loaded
into the target platform. Since source data have often been
collected for other purposes initially, e.g., for clinical care or
quality improvement [10], [11], the problem of overcoming
heterogeneity at the technical, structural, and semantic level
is often aggravated by a lack of uniform and controlled data
collection procedures and clear data definitions. Therefore,
data cleansing, i.e., the process of detecting and correcting
– as far as possible – data quality issues is an important part
of ETL processes.

However, this also raises concerns about data quality in
warehousing platforms and, as a consequence, about the level
of evidence of the findings generated from these data [12],
[13]. There is a considerable body of work on data quality in
medical research [13]–[16], which has been well characterized
by the statement “unless adequate controls are embedded
throughout the data lifecycle, data-driven health care will not
live up to its expectations” [17]. To solve the problem, a
number of data quality frameworks have been proposed [14],
[18]–[20]. Kahn et al. have summarized these approaches into
a common framework [15], which has for example been used
by projects from the OHDSI program [6] or PCORnet [21].
We use this framework as a theoretical foundation for our
approach and describe it in more detail in Section III-A. In the
next section, we provide an overview of existing architectures

©2020 IEEE. Reprinted, with permission, from Helmut Spengler, Ingrid Gatz, Florian Kohlmayer, Klaus A. Kuhn, Fabian Prasser,
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and implementations, together with their limitations.

B. Related work

Achilles Heel [22] and the Data Quality Dashboard [23]
have both been developed in the context of OHDSI [24],
provide comprehensive tools for data quality checks, but are
strongly tied to the OMOP CDM and cannot be used for
monitoring i2b2 or tranSMART or for integrated monitoring
of multiple warehouse instances. Furthermore, they do not
provide mechanisms to capture quality problems encountered
during the ETL process. Of the two, only Achilles Heel is able
to analyze the evolution of data quality metrics over time. The
latter two limitations also apply to the approaches by Bialke
et al. [25] and Juárez et al. [26].

The Sentinel Initiative [27] has established a comprehensive
data quality review and characterization process [28], which
also includes tools for data quality assessment and which
covers all important aspects of data quality management.
However, usage of this process and its tools is strongly coupled
to the membership in the according network. For instance,
it depends on services provided by the Sentinel Operations
Center (SOC) and the tools require data to be modeled
according to the Sentinel Common Data Model (SCDM).
Furthermore, licenses for the SAS statistical software suite
are required. Altogether, this strongly limits the possible
applications outside the initiative.

The MIRACUM approach [29] considers the ETL processes
as an important factor for data quality analysis and thus
quality improvement. The authors describe an implementation
that supports different clinical and translational warehousing
platforms, such as i2b2, tranSMART, or the OMOP CDM.
However, it is left open, if the approach allows analyzing the
temporal evolution of data quality metrics, how exactly data
quality issues found during the ETL process are registered and
stored, and their software has not been published.

We conclude that although practical approaches to improv-
ing data quality in medical research exist, many approaches
(e.g., Data Quality Dashboard and the approaches by Bialke
et al. and Juárez et al.) focus on covering the measurement of
quality parameters at a certain stage of the data lifecycle – they
do not provide facilities for fine-grained logging of data quality
issues encountered during the ETL process, nor the monitoring
of the effectiveness of correctional activities. Some are only
available for certain data warehousing platforms (e.g., Achilles
Heel, Data Quality Dashboard, Sentinel). The only alternative
approach that does not exhibit these limitations (MIRACUM),
leaves open, whether the evolution of data quality over time
can be monitored and how flexible the logging capabilities are.
Furthermore, no publicly available implementation has been
provided so far.

II. CONTRIBUTION AND OUTLINE

The aim of the work described in this article was to close
these gaps by developing a software system which integrates
(1) well-known methods for data cleansing for data ware-
houses with (2) methodologies of measuring data quality in

medical research and (3) modern methods of monitoring soft-
ware systems and thus facilitates an iterative and continuous
process of improving data quality in medical research. To this
end, we provide ETL developers with an error event logging
facility to store detailed and structured information about
data quality issues encountered during the loading process
for later analysis. An auditing service analyzes these events
and displays the results together with well-known metrics
reflecting the quality of data loaded into the target warehouse.

We present an implementation, which fulfills three major
goals. Firstly, we wanted to be able to display and monitor
the evolution of the results of data quality audits over time
and thus facilitate the discovery of anomalies in loading
processes that would otherwise not be visible. Secondly, our
solution should be able to provide an integrated view of the
results of several data marts, supporting different warehousing
platforms. Thirdly, our solution should be able to ingest and
store coordinates (e.g. source file and attribute names, row-Ids)
of noteworthy data points of the source data in a structured
form in order to facilitate tracing back data quality issues to
their source.

The remainder of this paper is structured as follows: in
Section III we describe the general design of our solution,
including the data quality metrics used, the architecture and
its different components. Next, we present our implementation
in Section IV. Finally, we conclude our article and give an
outlook on future work in Section V.

III. OVERALL DESIGN

A. Data quality metrics

We decided to use the widely accepted data quality frame-
work proposed by Kahn et al., because it well reflects our
needs for capturing data quality in our integration projects,
e.g., in the context of the German Medical Informatics Initia-
tive, which aims at providing cross-site access for researchers
to integrate data on a national level [30]. The second reason
is to maintain compatibility with other initiatives in the field,
e.g., OHDSI [6] or PCORnet [21]. The data quality framework
defines the following categories for quality measures [15]:

Conformance: Data quality measures in this category quan-
tify compliance with internal or external formatting, relational,
or computational rules. They only assess whether present val-
ues meet structural or syntactic constraints, not their complete-
ness or plausibility. This assessment is often done on the basis
of a data dictionary or metadata repository, which provides
information about the required format and the allowed values
for each data element. This category is divided into three
subcategories: Value conformance, Relational conformance,
and Computational conformance. Value conformance mea-
sures adherence to the specifications regarding data format,
allowed values, data domains, and data types. Relational
conformance quantifies compliance with structural constraints
defined by the database schema like primary and foreign
key relationships. Computational conformance denotes the
accordance between derived values from existing variables and
the intended results.
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Fig. 1. Overall architecture of our solution for a single data mart in the context of a typical data warehouse architecture. Components marked in gray represent
artifacts of our implementation.

Completeness: This category subsumes data quality mea-
sures quantifying the frequencies of data attributes without
reference to a value. This includes the absence of data at a
single moment or at multiple moments in time. The underlying
concept from the statistics literature [31] is termed miss-
ingness. This category does not include measures capturing
structure or plausibility aspects. These are considered in the
data quality categories Conformance and Plausibility.

Plausibility: Data quality measures in this category cap-
ture the truthfulness or believability of values in a dataset.
This can be done on the basis of the value itself, within
the context of the value of other variables or regarding
temporal sequences or state transitions. While the categories
Conformance and Completeness measure the compliance with
respect to syntactical and structural constraints, Plausibility
captures the adherence to semantic rules. It comprises the
subcategories Uniqueness plausibility, Atemporal plausibility,
and Temporal plausibility. Uniqueness plausibility quantifies
the frequencies of undesired duplications of objects, e.g.
different records of person master data referring to the same
person. Atemporal plausibility measures the adherence of
data values to common knowledge or to definitions provided
by an external source. Temporal plausibility measures the
compliance with expectations regarding time-related variables
(e.g., patient admission date must be before patient discharge
date).

B. High-level architecture

Our general architecture is inspired by the approach pro-
posed by Kimball [32], in which data quality is measured
during the ETL workflow by applying diagnostic filters on
data flows (so-called quality screens), which generate error
events that are stored in the fact table of a star schema [8].
The fact table is linked to an audit dimension, which facilitates
analysis of the stored events.

In our approach, data quality auditing is more decoupled
from this event store in that, we provide a dedicated auditing
sub-system, which assesses the set of events generated and
additionally provides methods for monitoring data quality
issues. The overall architecture of our approach is shown in

Fig. 1. It is divided into four components for (a) registration of
fine granular data quality issues in the form of events – since
we refer to the tests, that generate these events as screens, we
term it screen API, (b) a database based event-store; to avoid
disturbances of the operation of the data warehouse system
(e.g., due to high-frequency event registrations), it should be
decoupled from the warehouse – these components aim at
fulfilling our third design goal, (c) the audit service, which
calculates quality measures based on the linkable event and
final warehouse data, and (d) a monitoring component, which
comprises a visualization server that provides a configurable
user interface for interactively analyzing the data quality
metrics – the latter two components aim at fulfilling our first
and our second design goal.

C. Error event registration

The ETL component is typically responsible for screening
data quality issues in the context of data cleansing [33]. We
therefore provide an API, which can be used by the developers
of the ETL process to register identified issues in the event
store (see the next section).

In contrast to a typical logging API, the registered infor-
mation is way more structured. Parameters include, e.g., a
predefined screen type, which is uniquely assigned to one
of the quality categories defined in [15] together with the
coordinates of the data point (specification of the data object,
identifying attributes, etc.) causing the issue. Furthermore, the
API offers a means for registering baseline values (such as
the number of input data objects for specified object types),
which later can be used for calculating error rates, etc. for the
dashboard.

D. Event store

At the core of our architecture is the event store, which is
designed to contain detailed information for monitoring, ana-
lyzing and correcting quality issues. Following the approach
described in [32], it implements a star schema. A simplified
version of the star schema of the event store is illustrated
in Fig. 2. Each registered quality issue is represented by an
(event) fact (table event_fact). Dimensions include the
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Fig. 2. Illustration of the details of the star schema of the event store. Some entities have been omitted due to space limitations.

screen type (which is assigned to exactly one quality category
as defined in [15], table screen_dimension), the ETL-
job providing the context (table job_dimension), baseline
information about record counts in the source entity (table
baseline_dimension – not contained in the figure due to
space limitations) and the coordinates of the data point causing
the issue (columns source_entity_name, etc.). Further-
more, the action performed (e.g., IGNORE, CORRECT) and
a severity score is stored in the fact table. Based on the data
contained in the event store, detailed reports can be generated
that provide information, in which input data source and where
in this data source, data quality issues have originated.

E. Audit service

The audit service is responsible for conducting quality
audits by integrating and aggregating the data residing in the
research schema and the event store. It is also able to provide
an integrated view of more general parameters of the data
mart, such as the number of contained data items or execution
times of the ETL processes.

The audits can be defined by the system operator in the form
of SQL queries against the research schema and the event store
(checks.yml). For each check, different queries for differ-
ent research schemata (e.g., i2b2, tranSMART, OMOP CDM)
can be defined. Depending on the configured target database,
the service determines the proper SQL to execute. The result is
transformed into a format suitable for the monitoring system.

F. Monitoring system

By leveraging intrinsic functions of modern monitoring sys-
tems, our architecture facilitates observing how the different
quality dimensions evolve over time and supports monitoring
and comparing different data marts in an integrated manner.
Further advantages include a flexible alerting mechanism and
easily configurable dashboards. These dashboards typically
offer web-based, interactive graphical analytics features.

IV. IMPLEMENTATION

As proof of concept, we provide an open-source imple-
mentation, which includes (1) the API for capturing data
quality events from within the ETL processes, (2) a relational
star schema representing the event store, (3) an HTTP based
audit service, which contains an initial set of quality check
templates, and (4) configuration templates for the monitoring
component. As one of our goals is to make the results of

our work available to software developers and informatics
researchers, all of the components of our reference architecture
are based on open-source software, which consequently also
applies to our implementation [34].

In this section, we describe the technology stack used for
this implementation and the supported target environments as
well as the different templates that can be used as a starting
point when setting up a data quality monitoring infrastructure.
Finally, we describe how we use this implementation in our
medical research projects.

A. Base technology stack

We chose to base the screen API and the audit server
on the Java ecosystem, as it offers a widely used cross-
platform development environment. The event store is based
on the PostgreSQL relational database management system.
The monitoring component is based (1) on the Prometheus
systems monitoring and alerting toolkit, which provides a
multidimensional database model, a flexible query language,
and an HTTP API and (2) on Grafana, a feature-rich and
interactive web-based dashboard software.

To facilitate the adoption of our implementation, we chose
Maven as a build system for the Java-based artifacts, which
makes it easy to include the API in other projects. The audit
server and the monitoring component are prepared for use
as Docker containers, including a docker-compose.yml
with a definition of a self-contained service stack.

B. Supported target environments

Our implementation supports the data models of important
data warehouse platforms (i.e., i2b2, tranSMART, and OMOP
CDM) and can be used from within the majority of the
currently available ETL platforms used in this context (i.e.,
Talend Open Studio, Pentaho Data Integration, Spring Batch).
Current loading tools for these platforms (e.g., transmart-
batch, etc.) can be easily enhanced to leverage our architecture.

The monitoring system integrates well with modern IT
infrastructures and can, therefore, be used for integrated mon-
itoring of other system parameters (e.g., system load, number
of currently logged in users, etc.). Furthermore, it allows for
integrated monitoring of different data marts.

C. Provided templates

1) Screen types: As mentioned in Section III-C, developers
of the ETL system are responsible for implementing the logic
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of the screens to be performed during the execution of the
ETL process. The design of the API forces them to assign
generated events to one of the predefined screen types. This
restriction allows for structured analysis and aggregation of
the data quality issues found.

We provide a set of template screen types (e.g., for value
range violations or invalid data types), which can easily be
extended, and which are mapped to the quality categories
defined in [15] for further processing by the audit service.

2) Audit checks: In our implementation, we distinguish
between three types of audit checks: (a) generic audit checks,
which can be applied independently of the underlying ware-
house architecture and concrete data mart instance (e.g.,
calculating measures capturing the frequency of patients for
which observations exist, but no entry in the patient table),
(b) system-specific audit checks, which can be applied only
within the context of a specific warehouse platform but are still
invariant with respect to different instances (e.g., calculating
measures capturing the frequencies of encounters without pa-
tient information – the former is typically maintained in i2b2,
but not in tranSMART), (c) instance-specific audit checks (e.g.,
calculating measures capturing data quality aspects that are
specific to the research question underlying the instantiation of
a particular data mart). We provide templates for generic and
system- (i.e., i2b2/tranSMART/OMOP CDM) specific audit
checks, which can be rolled out together with the docker-
compose service stack (e.g., count queries for assessing the
number of violations of integrity constraints). The latter are
in small parts based on [24] and [35]. Instance-specific audit
checks can be created and deployed individually based on the
generic and system-specific templates.

3) Dashboard: Our implementation also includes a basic
dashboard definition for Grafana. Fig. 3 shows a screenshot
of a dashboard, which displays different system parameters of
an i2b2 warehouse. The smaller panels defining the upper right
angle of the dashboard display general system parameters: the
upper three panels display the number of different types of
objects stored in the data mart, the panel titled Num. patients
by sex displays a patient distribution, and the panel titled ETL
job duration displays the execution time of the last successful
ETL process. The panel Num. data quality issues in final
data provides an overview of uncategorized data quality issues
found in the data mart. The panel Num. data quality issues
in source data provides an aggregation of the numbers of
data quality issues encountered during the last successful ETL
process, grouped with respect to the data quality categories
defined in [15]. The bottom panel shows the development of
these data over time.

D. Real-world applications

We used the described implementation for monitoring the
quality of data marts created for three different medical
research projects. These data marts contain up to 6m facts
about up to 100k patients, and 300k visits. The data originated
from different sources: (1) a research dataset including lifestyle
information and microbiome profiles, (2) clinical data about

Fig. 3. Basic dashboard template of our implementation monitoring an i2b2
data source.

health care for patients with multiple sclerosis, (3) hospital
billing data. The datasets were loaded using an ETL pipeline
that supports automated data cleansing [36]. We integrated that
pipeline with the quality monitoring component described in
this article to analyze the amount of data cleansing performed.
The number of data quality issues identified corresponded
with our expectations considering the different origins of the
datasets. We identified issues for 0.1% of the facts in the
billing dataset, 0.05% of the facts in the research dataset, and
6% of the facts in the dataset containing clinical documenta-
tion. The most frequent issues identified were missing values
and invalid categories. We are currently establishing feedback
loops to implement an iterative data quality improvement
process.

V. CONCLUSIONS AND FUTURE WORK

We have described an architecture for improving data qual-
ity in clinical and translational data warehouse infrastruc-
tures. Our approach enables monitoring the evolution of data
quality over time using configurable dashboards and alerting
mechanisms for important medical research platforms such as
i2b2, tranSMART, and warehouses based on the OMOP CDM.
Furthermore, this architecture enables integrated monitoring of
multiple data marts. Developers of ETL processes are provided
with an event logging API that helps to store detailed and
structured information on data quality issues for later analysis.

As proof of concept, we provide an implementation, which
we use in current medical research projects, and which is
available to the public as open-source software [34]. While we
are currently working on a detailed evaluation, our experiences
to date indicate that our implementation can be used as a
starting point for implementing infrastructures for continuous
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and iterative data quality improvement in further data-driven
medical research projects.

While the event store provides detailed and structured
information for generating reports which facilitate root cause
analyses of data quality issues, this reporting capability is
not yet integrated into the monitoring component. We plan
to provide this integration in a future release. Furthermore,
we plan to enhance the screen API (1) to be able to interact
with a metadata repository for semantic integrity checks and
(2) to further assist the ETL developers’ workflow regarding
identification and tracking of quality issues.
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A B S T R A C T

Background: Modern data-driven approaches to medical research require patient-level information at compre-
hensive depth and breadth. To create the required big datasets, information from disparate sources can be
integrated into clinical and translational warehouses. This is typically implemented with Extract, Transform,
Load (ETL) processes, which access, harmonize and upload data into the analytics platform.
Objective: Privacy-protection needs careful consideration when data is pooled or re-used for secondary purposes,
and data anonymization is an important protection mechanism. However, common ETL environments do not
support anonymization, and common anonymization tools cannot easily be integrated into ETL workflows. The
objective of the work described in this article was to bridge this gap.
Methods: Our main design goals were (1) to base the anonymization process on expert-level risk assessment
methodologies, (2) to use transformation methods which preserve both the truthfulness of data and its schematic
properties (e.g. data types), (3) to implement a method which is easy to understand and intuitive to configure,
and (4) to provide high scalability.
Results: We designed a novel and efficient anonymization process and implemented a plugin for the Pentaho
Data Integration (PDI) platform, which enables integrating data anonymization and re-identification risk ana-
lyses directly into ETL workflows. By combining different instances into a single ETL process, data can be
protected from multiple threats. The plugin supports very large datasets by leveraging the streaming-based
processing model of the underlying platform. We present results of an extensive experimental evaluation and
discuss successful applications.
Conclusions: Our work shows that expert-level anonymization methodologies can be integrated into ETL
workflows. Our implementation is available under a non-restrictive open source license and it overcomes several
limitations of other data anonymization tools.

1. Introduction

Modern medical research requires data of comprehensive depth and
breadth to improve our understanding of the development and course
of diseases and to ultimately develop methods for prevention, targeted
diagnosis and therapy. In a learning health system “every clinical en-
counter contributes to research and research is being applied in real
time to clinical care” [1]. To implement this on a large scale, data must
be made accessible, harmonized and integrated [2,3]. This also requires
using data for secondary applications that go beyond the initial purpose
of collection [4,5].

Data integration and in particular data warehouses are central to
these efforts. In this context, database systems are set up that integrate
disparate data into a common layout which efficiently supports

complex analyses. The i2b2 platform [6] is a well-known example of a
system that focuses on data generated by clinical and health services
and by epidemiological studies [7]. A related platform is tranSMART,
which has been developed for the analysis of integrated clinical and
‘omics’ data for translational research [8]. Some institutions, such as
the Vanderbilt University Medical Center [5], have also developed
custom solutions.

Data is typically replicated from routine systems into warehouses
using ETL processes [9,10]: (1) data is extracted from source systems,
(2) cleansed, harmonized and transformed into a form suitable for
analyses, and (3) loaded into the analytics solution. To manage the
complexity of such processes, they are often implemented using specific
environments, which offer libraries of connectors to different types of
sources, transformation operators and a graphical workbench for
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combining them into complex workflows. Well-known solutions are
Pentaho Data Integration (PDI, also known as Kettle) [11], which is the
standard tool for loading data into tranSMART, and Talend Open Studio
(TOS) [12], which is a central component of the Integrated Data Re-
pository Toolkit (IDRT) [13] for creating i2b2-based warehouses.

When pooling medical data or when re-using it for secondary pur-
poses, privacy concerns and legal requirements need careful con-
sideration. Privacy protection involves ethical, legal and societal issues
(ELSI) and several layers of technical and non-technical measures are
typically required to implement it [14]. On the technical side, the
privacy of patients and probands is often protected by data anonymi-
zation, which means that datasets are altered in a way that prevents
successful re-identification. National and international privacy regula-
tions address data anonymization. In the United States, the Safe Harbor
method of the Privacy Rule of the Health Insurance Portability and
Accountability Act (HIPAA) provides a catalog of attributes for which
values need to be removed or modified [15]. In addition, the Expert
Determination method permits the use of formal and statistical methods
for assessing and managing re-identification risks, which is similar to
the way in which data anonymization needs to be implemented in the
European Union [16].

Data anonymization is a complex process in which the resulting
reduction of re-identification risks needs to be balanced against a re-
duction of data utility [14,17]. A wide variety of different models and
methods for data transformation, risk assessment and utility estimation
have been proposed to address this trade-off. To manage this complex
process, a number of tools have been developed, including sdcMicro
[18], which focuses on official statistics, and ARX [19], which has
specifically been designed for applications to biomedical data by im-
plementing methods which have been recommended in the field
[19–21]. Both tools offer a high level of maturity and they have been
included into official guidelines, e.g. from the European Union Agency
for Network and Information Security (ENISA) [22] and the European
Medicines Agency (EMA) [23].

1.1. Objectives and outline

Performing data anonymization and re-identification risk analyses
as part of ETL workflows is a common requirement (see Section 4.1).
Typical application scenarios include the loading of data into clinical
and translational warehouses, the extraction of data from cross-in-
stitutional research registries, and the sharing of data with external
research groups. However, ETL platforms such as TOS or PDI do not
provide modules which support formal methods of data anonymization
and re-identification risk analysis. Although anonymization tools such
as sdcMicro or ARX can be used for these purposes, they are based on
their own working environments which cannot easily be integrated into
ETL platforms (see Section 2).

To bridge this gap, we have developed a plugin for an ETL platform,
which supports data anonymization and re-identification risk assess-
ment. The most important design goals were (1) to utilize expert-level
risk assessment methodologies, (2) to implement a data transformation
method which preserves both the truthfulness of input data and its
schematic properties (e.g. data types), (3) to utilize an anonymization
process which is easy to understand and intuitive to configure, and (4)
to achieve high scalability.

To meet these design goals we had to overcome various challenges.
First, we needed to decide on a suitable design and execution en-
vironment for ETL processes. Second, we needed to select and integrate
methodologies for risk assessment and anonymization which are well-
known, flexible and easy to understand. This involved managing the
complex interplay of methods for measuring and reducing privacy risks.
Finally, we had to develop an efficient implementation.

The remainder of this paper is structured as follows: in Section 2 we
describe the methods for risk assessment that we build upon, present a
novel anonymization method, and describe how we have implemented

and integrated it into an existing ETL platform. In Section 3 we describe
how we designed our experiments and present the results. In Section 4
we discuss the principal results, applications in practice, and perform a
conceptual comparison with prior work. In Section 5 we conclude and
point out directions for future work.

2. Materials and methods

Our method for integrating data anonymization and risk assessment
into ETL processes is based on established methods for estimating re-
identification risks of medical data, which we present in the first part of
this section. In the second part we present a novel anonymization al-
gorithm which we have developed in order to facilitate an effective
integration of these methods into ETL platforms. The last part of this
section focuses on how we implemented these methods and how we
integrated them into a concrete ETL platform.

2.1. Common models for risk assessment

Re-identification is the primary threat addressed by laws and reg-
ulations [15,16] and models for quantifying related risks are therefore
central to data anonymization and privacy risk management. Re-iden-
tification can be understood as a linkage process [24]: the uniqueness of
(combinations of) attributes is exploited to link records of datasets with
additional data or background knowledge of the adversary. Attributes
that can be used for establishing a link are termed quasi-identifiers [25].
Typical examples include demographic data and other information that
is likely to be known to adversaries, such as educational or employment
status [21]. Implementing protection requires to consider various fac-
tors, e.g. the objectives of likely attackers, the replicability and distin-
guishability of the data to be protected, and the availability of back-
ground knowledge [26,27].

Three different threat scenarios can be distinguished [28]. Under
the prosecutor model, the adversary is assumed to target a specific in-
dividual and to know that data about this individual is contained in the
dataset. The risk of a successful attack can be calculated, based on the
distinguishability of records in the dataset regarding the quasi-identi-
fiers [26]. It has been shown, however, that this method significantly
over-estimates risks in most cases [29]. Under the journalist model, the
adversary is assumed to target an arbitrary individual without prior
knowledge about membership. Often, this background knowledge is
much more realistic than in the prosecutor model, as the set of in-
dividuals represented in a dataset is just a sample of a larger population.
However, the fact that knowledge about the population is typically not
available makes it also difficult to reliably determine and manage the
risk of successful journalist attacks. Finally, under the marketer model,
the adversary is assumed to aim at re-identifying as many individuals as
possible. Thus the risk of a successful attack can be expressed as the
expected average number of re-identified individuals.

El Emam has proposed a methodology that combines estimates of
risks under these established models [28]. As journalist risk cannot be
quantified in most cases, the methodology makes use of the fact that
prosecutor risk is always an upper bound for journalist and marketer
risk. Prosecutor risk is quantified for all records and aggregated into
three global measures. The first measure is the Highest Risk (Rh). It
quantifies risks in the worst case scenario, i.e. a prosecutor attack
against the record with the highest re-identification risk in the whole
dataset. For each record r, the re-identification risk is calculated as

f
1

r
,

where fr is the number of records in the dataset that are indis-
tinguishable from r regarding the quasi-identifiers (including r itself).
As noted before, this is also an upper bound for risks in the other sce-
narios, i.e. for journalist or prosecutor attacks. Even when this risk is
bound by a threshold, an attacker can expect to re-identify a certain
number of individuals by random linkage to matching records. This is
captured by the second measure, Average Risk (Ra), which provides a
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more tight bound for marketer risks. To account for the fact that the
prosecutor model is based on worst-case assumptions, a third measure,
called Records at risk (Rr) can be used to slightly relax the protection
requirements. It expresses the frequency of records that are associated
with a re-identification risk higher than a given threshold θ. Formal
definitions of these three risk measures are provided in Section A of the
supplementary file.

With this methodology and just a single user-specified parameter
(θ), three intuitive risk measures can be derived that quantify the sus-
ceptibility of data to all types of attacks considered. At the same time,
the model facilitates a balancing of privacy protection and the useful-
ness of data, as it enables the user to permit that a fraction of records
has a risk that is higher than the threshold θ. Given a sufficiently small
θ and a sufficiently small fraction of records at risk, a high degree of
protection can be assumed, as it is very unlikely that the record targeted
in a (prosecutor or journalist) attack is one of the records that exceeds
the threshold [28]. Thresholds τa for the average risk Ra and τh for the
highest risk Rh can be introduced in addition to θ to specify protection
levels which must be satisfied by a data anonymization procedure.

2.2. A novel anonymization method

Automatically altering data such that it meets user-specified risk
thresholds is complex and requires integrating risk models with data
transformation techniques and methods for measuring data utility.
Producing truthful output data implies that input data is not perturbed
and that no synthetic data is generated, which is particularly important
in medical research where plausibility and correctness are central [30].
Therefore, we decided against transformation schemes which employ
noise addition [31] or aggregation of data [32]. Moreover, we wanted
to ensure that our method can be integrated into existing ETL work-
flows without the need to modify intermediate or target data re-
presentations. This implies that schematic properties of input data must
be preserved, which means that data types must not be altered and that
no additional attributes must be introduced into the tables and rows
processed. Thus we could not use data generalization [25] or buck-
etization [33].

Based on these considerations, we decided to implement a cell
suppression algorithm. With this model, risk thresholds are enforced by
removing individual attribute values from individual records. The
method requires zero configuration (apart from specifying risk thresh-
olds), output data is truthful and schematic properties are being pre-
served. Moreover, the results are well suited for performing common
statistical analyses, provided that the effect of cell suppression is con-
sidered (e.g. by imputation) [28,30,34].

Fig. 1 shows how cell suppression can be used to protect a dataset
from two different threat scenarios. In this simplified example, a clin-
ical dataset is protected from marketer attacks by external attackers
using the demographic attributes {Age, Sex, Region} and from

prosecutor attacks by internal attackers using the clinical attributes
{Weight, ICD-10}. Suppressed values (which are denoted by *) are
treated as an own category, which means that suppressed values are
only considered to be equal to other suppressed values. Under this as-
sumption all sets of rows containing the same quasi-identifying attri-
bute values are pairwise disjoint and form so-called equivalence classes.
Each equivalence class describes a set of records which are indis-
tinguishable to the attacker and hence its size determines the risk of
successful re-identification. In the example, equivalence classes are il-
lustrated by dotted lines. By suppressing 20 of the 50 attribute values in
the dataset (40%), the risk of a successful external attack dropped from
60% ( =Ra

6
10 ) to 30% ( =Ra

3
10 ) and the risk of a successful internal

attack dropped from 100% ( =Rh
1
1 ) to 33% ( =Rh

1
3 ). The example also

shows that cell suppression is challenging to implement efficiently, as
the space of potential solutions for a given dataset consists of � (2 )n m·

transformations where n is the number of records and m is the number
of attributes that could be used for linkage. This equates to 250 potential
solutions already in our simple example. Thus cell suppression is typi-
cally performed using heuristic algorithms.

Our implementation follows this approach by recursively enforcing
the user-defined thresholds τa and τh for subsets of the input dataset.
This is implemented with ARX, which is able to compute an optimal
solution to a data anonymization problem that is specified as follows
[35]: (1) all risk thresholds must be met, (2) each column that contains
quasi-identifying values may either be kept as-is or suppressed entirely
(attribute suppression), (3) a specified number of records may be en-
tirely suppressed (called the suppression limit), (4) the overall number of
suppressed cells must be minimal. Our method executes this process
recursively for the records that have been suppressed, as is illustrated in
Fig. 2. In each iteration, τh and τa are enforced on a set of the records;
the others are suppressed. We use the k-anonymity privacy model to
enforce τh [25] and enforce τa by specifying an upper bound on the
arithmetic mean of the records’ re-identification risks. An additional
parameter ls specifies the maximum number of recursive calls by de-
fining a suppression limit for each iteration. Pseudocode illustrating the
anonymization method in more detail and a discussion of implications
for data quality is provided in Section B of the supplementary file.
While this process is very efficient and effective, as we will show in the
next section, it remains necessary to show that it is actually correct. It is
easy to see that enforcing an overall threshold on the highest re-iden-
tification risk Rh can be performed by enforcing the same threshold on
disjoint subsets of records. However, it is not trivial to see that this
process can be used to implement a global threshold on the average re-
identification risk Ra. A proof is provided in Section C of the supple-
mentary file.

2.3. Implementation and integration

To make our solution accessible to a broad spectrum of users we

Fig. 1. Example dataset before (a) and after (b) it has been transformed using cell suppression. Dotted lines illustrate equivalence classes with respect to two different
sets of quasi-identifiers: {Age, Sex, Region} and {Weight, ICD-10}.
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decided on a two-step implementation strategy. In the first step, the
described anonymization and risk assessment methodology was im-
plemented into ARX. This allowed us to leverage its highly scalable
anonymization framework [19] to create a risk assessment and anon-
ymization operator which can then be integrated into ETL environ-
ments in the second step. In this context, we decided to develop a plugin
for the PDI platform for several reasons. First, we frequently use PDI for
loading data into tranSMART. Second, the interface provided by PDI is
quite intuitive while the learning curve for TOS can be considered to be
somewhat steeper. Third, PDI offers a broad set of features in its com-
munity edition (e.g. deployment to clusters) while most advanced fea-
tures of TOS are only available through a commercial license. More-
over, with the recent release (version 8.0), the programming interfaces
of the PDI platform have received significant modernization.

In the PDI workbench, ETL processes can be modeled as directed
graphs, where data sources, transformations, and data sinks are re-
presented as nodes called “steps”. Data flow between nodes is re-
presented by edges. Data that could not be processed can be annotated
with additional information and routed to a dedicated error output. By
combining multiple steps, complex ETL processes integrating hetero-
geneous sources can be designed, executed and monitored. Fig. 3 shows
a screenshot of an ETL process in which data from three different data
sources (a CSV file, a relational database, and a HL7 message stream)
are joined, validated, transformed, and finally loaded into a target da-
tabase.

Data processing in PDI is stream-oriented with single rows of data
constituting atomic and isolated units of a data stream. This means that
data is passed through the ETL pipeline row by row. This enables pi-
peline parallelism across a chain of steps. However, it also implies that
plugins that require a holistic view on the overall dataset, such as our
plugin for assessing risks or anonymizing data, need to buffer the

incoming rows. There are trade-offs involved in implementing this, as
the latter breaks pipeline parallelism and high volume datasets can be
too large to completely materialize them in main memory.

To solve this issue, we implemented a technique called row blocking.
This means that our plugin materializes sets of records (i.e. blocks) of a
user-defined size, which are then analyzed or anonymized. As soon as
each block has been processed, the contained rows are passed on to the
next plugin in the workflow. As a consequence, parallelism can be
maintained and very large datasets can be processed. In terms of
privacy protection, the approach is guaranteed to be correct (see
Section C of the supplementary file).

We implemented all methods into a plugin for the PDI platform. Our
implementation is available as open source software [36,37] which is
compatible with the latest version 8.0 of PDI. The plugin provides
methods for re-identification risk analyses and data anonymization. It is
compatible with all other functionalities and plugins of PDI.

The tab Risk thresholds, which is shown in Fig. 4(a), enables users to
specify quasi-identifiers and the thresholds described previously.
Compatible to the relational model underlying the ETL environment,
values that are suppressed are replaced with NULL. Thus the schema
and data types of input data are preserved. When risks are assessed and
any of them exceeds a user-defined threshold, the incoming data will
not be transferred to the subsequent step and, if desired, it can be
routed to an error exit. Risk measures are printed to the console for
logging purposes. The tab Runtime settings, which is shown in Fig. 4(b),
can be used to specify parameters affecting the runtime behavior of the
anonymization algorithm.

To address multiple threat scenarios, data can be passed through
different instances of the plugin configured to address different threat
scenarios (cf. example in Fig. 1). This is possible because the plugin
preserves the schematic properties of input data and because it makes

Fig. 2. Illustration of the recursive cell suppression algorithm. In each of the recursion steps the algorithm determines the optimal balance between attribute and
record suppression.

Fig. 3. A typical ETL process in PDI's design environment Spoon.
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use of different ways of interpreting suppressed values. During anon-
ymization, suppressed values are treated as an own category, meaning
that NULL only matches NULL when calculating the distinguishability
of records. However, in a chain of anonymization steps with overlapping
quasi-identifiers, this can lead to situations, in which one anonymiza-
tion operation invalidates the privacy guarantees that have been en-
forced in previous steps because new categories are introduced into
quasi-identifying variables addressed previously (an example can be
found in Section D of the supplementary file). For this reason, when
assessing risks, our plugin interprets suppressed values as wild cards.
This means that they can match any other (suppressed or unmodified)
value, which avoids this problem. While it has been shown that this
interpretation can provide adversaries with attack vectors under rare
circumstances [38], we point out that this is the standard interpretation
in the field of statistical disclosure control and also the default in
sdcMicro.

3. Results

3.1. Experimental setup

In this section, we present results of evaluating the scalability of our
solution as well as the quality of output data, including comparisons
with prior work. We point out that a theoretical bound on the data
quality provided by our approach cannot easily be obtained (for a
discussion of optimality aspects we refer to Section B of the supple-
mentary file). Hence, we focus on an experimental evaluation with real-
world datasets to analyze how the method performs in practice. We
performed four different sets of experiments:

• Comparison with prior work: We first compared the performance
of our plugin to sdcMicro (version 5.0.3) [18], which features a cell
suppression algorithm that has been implemented in C++ and
linked into the software. Next, we studied the utility of output data
produced by our cell suppression method in comparison to other
data transformation methods using the concept of privacy-preser-
ving data cubes proposed by Kim et al. [39].

• Comparison using different threat scenarios: sdcMicro and the
work by Kim et al. focus on simple threat scenarios, while our ap-
proach supports combinations of several different risk thresholds.
We performed additional experiments using various

parameterizations and measured output data quality to study their
effects.

• Analysis of risk-utility trade-offs: In the third set of experiments
we constructed risk-utility frontiers, which are plots visualizing the
trade-offs that an anonymization method provides between privacy
protection and data quality [40].

• Analysis of the effect of row blocking: The parameter that spe-
cifies the block size has various influences on the quality of output
data and the execution time of the anonymization process. In a final
set of experiments we studied these effects to determine whether
row blocking is an effective mechanism for processing large datasets
with our plugin.

We used two datasets, which differ in scope and size and which have
already been utilized for evaluating previous work on data anonymi-
zation: (1) US Census, an excerpt of 30,162 records from the 1994
census database, which serves as the de-facto standard for the evalua-
tion of anonymization algorithms, and (2) Health Interviews, a set of
1,193,504 responses to a large health survey. For a detailed description
we refer to [41]. For each dataset we selected up to nine quasi-identi-
fiers, consisting of demographic data and further attributes, which are
often considered to be associated with a high risk of re-identification
[21]. All experiments were performed on a desktop machine equipped
with a quad-core 3.2 GHz Intel Core i5 CPU running a 64-bit Windows 7
operating system. The PDI platform (version 8.0) was executed using a
64-bit Oracle JVM (1.8). The number of iterations performed by our
algorithm (parameter ls) was set to 100 in all experiments.

3.2. Experimental comparison with prior work

We first compared our plugin to sdcMicro [18]. The cell suppression
algorithm of sdcMicro has been implemented in C++ and linked into
the package to improve scalability. The software only supports cell
suppression for enforcing a threshold on the highest risk. Hence we set
τr (records at risk) to zero and used a threshold on the prosecutor re-
identification risk (τh) of 20%, which is a common parameterization
[21].

Fig. 5(a) shows the execution times measured while increasing the
number of quasi-identifying attributes. It can be observed that our
implementation is significantly more scalable than sdcMicro. While our
method was able to easily handle the US Census dataset regardless of

Fig. 4. Screenshots of the plugin's configuration dialogs.
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the number of quasi-identifiers selected (≤2 s in all configurations),
sdcMicro already needed more than 1000 s to process the dataset with
nine quasi-identifiers configured. Furthermore, sdcMicro was not able
to handle the Health Interviews dataset within 1800 s when more than
four quasi-identifiers were specified. For practical reasons, we cancelled
all experiments using sdcMicro that did not complete within this time
frame. Our plugin generally processed this dataset in not more than
94 s. It can be seen that both implementations were affected by the
exponential increase in the size of the solution space with an increasing
number of quasi-identifiers [35]. However, our plugin can be config-
ured to use an effective heuristic algorithm when the solution space
becomes too large [42].

Regarding data quality, we measured comparable numbers of cells
suppressed by our method and by sdcMicro (Fig. 5(b)). Finally, Fig. 5(c)
shows how anonymization has impacted the distributions of attribute
values. To measure this, we used the Non-Uniform Entropy model [43]
which is often used to assess the quality of de-identified data and is
based on the concept of mutual information [28]. We normalized the
results obtained by this model in such a way that 100% represents the
original input dataset while 0% represents a dataset from which all
values have been removed. It can be seen that data quality decreased
when the number of quasi-identifiers increased, especially for the
smaller dataset US Census. It can also be observed that our method had
less impact on the distribution of attribute values, implying a more
balanced application of value suppression.

Recently, Kim et al. performed an experimental evaluation of the
effects of different data anonymization methods when implementing
privacy-preserving warehouses for medical data [39]. In their study,
data was anonymized and then aggregated into data cubes, which is a
model used in warehousing applications. The authors then measured
the information loss induced by the anonymization methods and the
precision of the results of two types of queries issued against the data
cubes: point queries, which count the number of records matching a
specific combination of attribute values and range queries, which count
the number of records matching a combination of ranges over the do-
main of attribute values. They studied two generalization-based ap-
proaches and one bucketization algorithm.

We exactly reproduced their experimental setup, which also used
the US Census dataset, and compared results obtained using our method
with the results presented in [39]. For an exact specification of the
algorithms and an in-depth discussion of the results we refer to Section

E of the supplementary file. As can be seen in Table 1, our method
outperformed both generalization-based approaches in terms of in-
formation loss, performed very well on point queries and provided
reasonable performance on range queries. At the same time, our
method is the only approach considered in the experiments that pre-
serves the schematic properties of input data, and it is much easier to
configure than generalization-based algorithms.

3.3. Experimental analysis using different threat scenarios

Our plugin supports thresholds on prosecutor re-identification risk
(τh) and marketer re-identification risk (τa). Strict-average risk [21] is a
common privacy model combining both risk thresholds. To analyze the
improvements in data utility that can be obtained by using this model,
we have performed a comparison of both approaches. As a risk
threshold, we also used 20%. We used the same threshold once for
controlling prosecutor risk and once for controlling marketer re-iden-
tification risk but combined the latter with a threshold of 50% on
prosecutor risk, which ensures that no record is uniquely identifiable.
We note that this comparison focused on our plugin only, as strict-
average risk is to our knowledge not supported by any other tool.

We measured no significant differences in execution times when
using the two models. We did, however, observe notable improvements
in data quality when using strict-average risk. Fig. 6(a) shows the
number of suppressed cells when enforcing the thresholds on strict-
average risk relative to the number of suppressed cells when enforcing
the threshold on prosecutor risk. It can be seen that using strict-average
risk resulted in significantly less suppressed cells, especially when
configurations with fewer quasi-identifiers were being used. Effects on
the distribution of attribute values are presented in Fig. 6(b). In contrast
to the effect on the number of suppressed cells, the improvements ob-
tained in terms of Non-Uniform Entropy increased with the number of
quasi-identifiers. This implies that data quality can be more effectively
increased by using less strict privacy models when it must be assumed
that the adversary possess a lot of background knowledge.

3.4. Experimental analysis of the risk-utility trade-off provided

Our plugin provides a broad spectrum of anonymization options,
ranging from very strict to very relaxed parameterizations. To analyze
these different options in more detail, we constructed risk-utility

Fig. 5. Comparison of the results obtained with our plugin and the results obtained using sdcMicro. We report average execution times, the number of suppressed
cells and data quality quantified with the Non-Uniform Entropy model.

Table 1
Comparison of methods for creating privacy-preserving data cubes as proposed by Kim et al. [39].

Global generalization Local generalization Bucketization Cell suppression

Information loss 0.41 0.13 Not applicable 0.10
Median relative error for point queries (%) 18.3 9.79 0.02 0.00
Median relative error for range queries (%) 10.16 0.81 0.02 41.33
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frontiers, which are plots visualizing the trade-offs that an anonymi-
zation method provides between privacy protection and data quality
[40]. Each point in these plots represents a transformed dataset offering
an optimal privacy/utility trade-off, which means that risk cannot be
reduced further without reducing quality and vice versa. Fig. 7 shows
the results of our method for both datasets using two extreme config-
urations addressing all quasi-identifiers. In the best case scenario,
thresholds on the average risk Ra have been enforced while interpreting
missing values as wild cards. In the worst case scenario, thresholds on
the highest risk Rh have been enforced while treating missing values as
an own category. Data utility was estimated with the relative number of
cells that have not been suppressed.

As can be seen, we could not measure any significant differences
between the results for the two datasets. In both cases, we observed that
high data quality can be maintained at very low risk levels. The fron-
tiers for the best case scenarios were almost optimal. Here, we mea-
sured an area under the curve (AUC, 1 optimal, 0 worst) of 0.971 for the
US Census dataset and 0.966 for the Health Interviews dataset. In the
worst case scenarios we measured AUCs of 0.901 and 0.912, respec-
tively.

3.5. Experimental analysis of the effect of row blocking

Next, we investigated the effect of row blocking on execution times
and on output data quality. The experiments were performed with nine
quasi-identifying attributes and the same risk models and thresholds as
in the previous experiments while varying the block size. Previously, we
did not use row blocking and were thus able to only report the time
needed to anonymize the data. In the results presented here, execution
times include the time needed to read the data from disk, anonymize it
and persist the results on disk.

As can be seen in Fig. 8(a), execution times decreased with in-
creasing block sizes up to a block size of roughly 105, from where on
they slowly increased again. This increase can be explained by the fact
that much larger data volumes needed to be processed in each anon-
ymization operation. For strict-average risk and block sizes between 102

and 103, we also observed an increase of execution times. This can be
explained by the fact that this setup significantly increased the number
of invocations of the underlying anonymization algorithm. Although

each invocation had to handle a smaller number of records, the com-
plexity of the anonymization problem with respect to the number of
quasi-identifiers remained constant. Moreover, anonymizing fewer re-
cords tends to be more computationally expensive, as good solutions
are harder to find [35]. Regarding the number of suppressed cells and
effects on data quality, when increasing block sizes, we measured a
logarithmic decrease (Fig. 8(b)) and increase (Fig. 8(c)), with values
converging towards the baselines (dotted) obtained without row
blocking. With block sizes of about 104 (US Census) and 105 (Health
interviews) or bigger, the effects of row blocking on output data quality
were almost negligible compared to anonymization without row
blocking. This indicates that row blocking can be used to effectively
balance data quality and execution times when processing large data-
sets.

4. Discussion

4.1. Principal results and applications in practice

In this article, we have presented a plugin supporting integrated
data anonymization and re-identification risk analysis during ETL
processes. Our implementation is based on the PDI platform, which is in
widespread use within the biomedical field. The methods presented in
this paper have also been implemented directly into ARX [19]. The risk
assessment methodology described is robust, easy to configure and it
provides a good balance between simple but strict approaches such as k-
anonymity [25] and more flexible but complex models that provide
higher degrees of output data quality (e.g. super-population models
[44] or game theoretic approaches [45,46]). The proposed transfor-
mation method produces truthful datasets which are well suited for
performing common statistical analyses [21,28,47,34]. Finally, the
software overcomes several limitations of previous data anonymization
solutions: data can easily be protected from multiple threats by com-
bining different anonymization operations within a single ETL work-
flow and very large datasets can be processed by leveraging the
streaming-based processing model of the underlying platform. Due to
the fact that our approach can be used to process data which has been
partitioned into independent subsets (see Section 2.3 and Section C of
the supplementary file) it can also be used to incrementally add data to

Fig. 6. Comparison of the results ob-
tained when only enforcing a threshold
on prosecutor risk with the results ob-
tained enforcing a threshold on strict-
average risk. We report the number of
suppressed cells relative to the num-
bers obtained using the prosecutor
model for cases in which at least one
cell was suppressed. Data quality was
quantified using the Non-Uniform
Entropy model.

Fig. 7. Risk-utility frontiers for different risk models and different interpretations of missing values.
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existing databases without violating the privacy guarantees provided.
The software described in this article has already been used in

various projects. For example, it was used to anonymize demographic
data for a research data warehouse at the Department of Cardiovascular
Diseases of the German Heart Centre Munich. The warehouse in-
tegrated phenotypic and genotypic data of more than 70,000 patients
with coronary artery disease to support data visualization, cohort dis-
covery and hypothesis generation. We have also frequently used the
methodology described here when protecting data extracts before
sharing them with external partners, for example in the context of re-
search registries for mitochondrial disorders [48] and for neurodegen-
erative diseases [49]. Finally, the described methods have also been
used through ARX by other research groups, for example to create an
open dataset for studies of learning behaviour [50] and for anon-
ymizing data from a cancer screening program [51].

4.2. Conceptual comparison with prior work

On the conceptual level, prior work can be found in many areas,
including data anonymization, synthetic data generation and data
masking. We have already covered related environments for im-
plementing ETL processes and other open source data anonymization
solutions in the previous sections. Another software worth mentioning
is Privacy Analytics Eclipse [52], which is a commercial data anon-
ymization platform built on Apache Spark [53]. While the software
implements formal methods that are quite similar to the ones im-
plemented by our plugin, little has been published about the exact
methodology and its implementation.

In the remainder of this section, we focus on further solutions that
integrate data protection features into ETL processes. Data masking is a
technique which has also been integrated into ETL platforms. Methods
from this field are not based on formal risk assessment and data
anonymization, but they implement simple rule-based transformation
processes, e.g. for the removal of data. They are typically used to create
data for software development and testing purposes. Examples of re-
levant implementations include Informatica's Data Masking [54], IBM's
InfoSphere Optim Data Privacy [55], Oracle's Data Masking and Sub-
setting Pack [56], ProxySQL [57], and Hush Hush's Data Masking
Components [58]. Also, TOS and PDI both offer modules providing
basic data masking functionalities.

Synthetic data generation is also supported by the masking solutions
presented in the previous paragraph. Most implementations are rather
simple, but there are also sophisticated approaches, such as the algo-
rithms supported by sdcMicro [18] which are able to preserve uni- and
multivariate statistical properties of input data. Random data genera-
tion is also supported by plugins for TOS and PDI. Bijoux is another
well-known example [59]. However, data generation plugins for ETL
processes are typically too simple to be useful for more than test data
generation.

5. Conclusion and future work

In this article, we have described a plugin for a common ETL plat-
form which supports robust anonymization and risk assessment func-
tionalities. The software is available under a non-restrictive open source
license. Our method can be integrated into existing ETL workflows, and
it supports typical warehousing solutions for biomedical data, such as
i2b2 and tranSMART. Even in cases where it is not possible to sig-
nificantly reduce risks without considerable impacts on data utility, our
software can be used to perform quantitative re-identification risk as-
sessments for documenting privacy threats. This is an important aspect
of modern privacy laws, such as the European General Data Protection
Regulation [16].

The methods and implementations presented in this article are
particularly well suited for protecting data that is collected infrequently
(e.g. demographics) or which remains rather stable over time (e.g. di-
agnoses or lab values of particular interest for a specific study) [14,27].
If longitudinal or frequently changing data needs to be protected from
linkage attacks, specific measures must be implemented that can cope
with higher dimensionality and changes to data [60]. While we plan to
extend our software to cover such use cases in future work, we also
emphasize that such data often poses much less risk, as it is unstable,
difficult to replicate and it is therefore less likely that adequate back-
ground knowledge is available to adversaries [14,27]. An additional
area of future work is improved support for incrementally adding new
data. While this is supported already by the current version of our
plugin, we plan to add functionalities for considering data that already
exists within the database when measuring and reducing risks during
the process of loading new data. This could help to further reduce the
amount of suppression needed.

Cell suppression enables the anonymization of datasets with
minimal configuration efforts, but further transformation methods can
also be useful in certain scenarios. Data generalization and micro-
aggregation are two techniques of specific interest. We plan to add
support in future versions of the plugin. However, as these methods
may have impacts on the schematic properties of data (e.g. changes in
data types and scales of measure) integrating them with the processing
environments of ETL solutions is challenging. An alternative anon-
ymization approach to cell suppression is cell swapping (or data
swapping) [61] which essentially works by exchanging attribute values
between records. Analogously to our work, it preserves the schematic
properties of data. In contrast to our approach, data swapping does not
remove attribute values and hence it preserves statistical aggregates
such as counts of attribute values. However, unlike cell suppression,
data swapping is inherently perturbative. Hence, it does not satisfy
truthfulness, which is an important requirement in our context (cf.
Section 2.2). Moreover, data swapping is typically implemented based
on simple risk models, which offer much lower degrees of protection
than the methods used in our work. A potential direction for future
work would be to investigate how data swapping could be integrated
into the proposed anonymization framework, including the strong

Fig. 8. Semi-log plots visualizing the results of row blocking experiments. We report average execution times, the number of suppressed cells and data quality as
reported by the Non-Uniform Entropy model. Dotted lines represent baseline values obtained without row-blocking.
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protection models used, and to examine potential resulting increases of
data utility. One possible approach for this would be to firstly perform
anonymization using cell suppression, including risk assessment as
described in this article. This step could then be followed by a post-
processing step in which the original values of suppressed cells are
being swapped and then re-inserted into the output dataset.

While our plugin supports one of the most widely adopted en-
vironments for implementing ETL processes, TOS is also frequently used
in biomedical data warehousing projects. We have already started to
port our plugin to this platform but, due to the differences between
development environments and concepts for managing data and control
flows, a complete integration will require more work.

Summary points

What was already known on the topic?

• Anonymization is important in biomedical research, especially when
data is pooled or re-used for secondary purposes.

• Common ETL (Extract-Transform-Load) tools for integrating data
into clinical and translational warehouses do not support anon-
ymization. Moreover, common anonymization tools cannot easily be
integrated into ETL workflows.

• Anonymization tools can be difficult to configure and they have
scalability issues when processing very large datasets.

What has this study added to the body of knowledge?

• Expert-level anonymization methodologies can be integrated as in-
tuitive plugins into ETL platforms.

• With these plugins, data can be protected from multiple threats
within a single ETL workflow.

• Very large datasets can be anonymized efficiently by leveraging the
streaming-based processing model of ETL platforms.

• High data utility and compatibility with existing databases and
platforms can be achieved by using transformation methods that
preserve both the truthfulness of data and its schematic properties.

;1;
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A. Formulas for the risk measures used in this article

El Emam has proposed a methodology that combines estimates of risks according to three

risk models: prosecutor attacks, journalist attacks, and marketer attacks [1]. As journalist

risk and marketer risk can often not be measured exactly, because exact information about the

characteristics of the underlying population would be required, prosecutor risk is measured for

all records and compiled into three global measures, two of which provide upper bounds for the

risk of successful journalist and marketer attacks [1].

Let n be the number of records of a dataset. The probability for a correct re-identification

of each record ri (1 ≤ i ≤ n) under the prosecutor model is given by 1
fi

, where fi is the number

(or frequency) of records in the dataset sharing the same combination of quasi-identifiers as ri.

The first measure is Highest Risk (Rh). It quantifies risks in the worst case scenario, i.e. a

prosecutor attack against the record with the highest re-identification risk in the whole dataset.

As noted before, this is also an upper bound for risks in other scenarios, i.e. for journalist or

marketer attacks. It is defined as

Rh = max
1≤i≤n

(
1

fi

)
=

1

min
1≤i≤n

(fi)
. (1)

Even when this risk is bound by a threshold, an attacker can expect to re-identify a certain

number of individuals by random linkage to matching records. This is captured by the second

measure, Average Risk (Ra), which provides a more tight bound for marketer risk. It is given

by
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Ra =
1

n

n∑

i=1

1

fi
. (2)

To account for the fact that prosecutor risks are typically significant overestimates of real

risks, a third measure, called Records at risk (Rr), expresses the frequency of records that are

associated with a re-identification risk higher than a given threshold θ. It is defined as

Rr =
1

n

n∑

i=1

I

(
1

fi
> θ

)
. (3)

Here, the function I(·) returns 1 if its argument is true and otherwise 0.

B. Pseudocode illustrating the anonymization method

1 Dataset suppressAttributesAndRecords(Dataset d, MaxRisks r, Integer l)

2 {

3 Arx arx = new Arx();

4 arx.addPrivacyModel(new KAnonymity(ceil(1 / r.highestRisk)));

5 arx.addPrivacyModel(new AverageClassSize(1 / r.averageRisk));

6 arx.setSuppressionLimit(l);

7 return arx.process(d);

8 }

Figure 1: Pseudocode illustrating the method suppressAttributesAndRecords.

The core of the proposed anonymization method is a routine which performs attribute and

record suppression using ARX as is sketched in Figure 1. The suppression limit l is used to

enforce that no more than l records may be suppressed.

Figure 2 illustrates how the the method suppressAttributesAndRecords is being applied to

subsets of the input dataset. The pseudocode is formulated iteratively rather than recursively

for ease of understanding. In line 8, the method extractUntransformedSuppressedRecords re-

turns the original, i.e. untransformed version of all records which have been subject to record

suppression in t. In line 13, the method extractNonSuppressedRecords returns the transformed

version of all other records, i.e. the records which have been subject to attribute suppression.
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1 Dataset suppressCells(Dataset d, MaxRisks r, Integer maxIterations)

2 {

3 Dataset result = emptyDataset();

4 for (int remaining = maxIterations; remaining > 0; remaining--)

5 {

6 Integer l = |d| - |d| / remaining;

7 Dataset t = suppressAttributesAndRecords(d, r, l);

8 d = extractUntransformedSuppressedRecords(t);

9 if (|d| == |t|) { // If all records have been suppressed

10 result = union(result,t);

11 return result;

12 }

13 Dataset a = extractNonSuppressedRecords(t);

14 result = union(result,a);

15 }

16 }

Figure 2: Pseudocode illustrating the anonymization method.

The parameter maxIterations determines the maximal number of iterations which may be per-

formed. Within each execution of the for loop, the suppression limit used for each invocation of

suppressAttributesAndRecords is calculated appropriately in line 6 to guarantee that the condi-

tion in line 9 is satisfied within at most maxIterations iterations. The choice of maxIterations

balances execution times against data quality.

Internally, ARX selects a transformation from a solution space which is known as gener-

alization lattice [2]. It comprises attribute generalization schemes which replace all values of

each attribute with more general, but semantically consistent values. Additionally, a number of

records (which is limited by the suppression limit) may be completely suppressed. In the context

of the proposed anonymization method, we have configured ARX in such a way that only two

generalization strategies are applicable for each attribute: Either all values of the attribute are

kept as-is, or they are replaced with a semantic-free placeholder so that the attribute is effectively

suppressed. Consequently, in each iteration of the proposed method, a combination of attribute

and record suppression is applied to the respective subset of data. This is performed using the

algorithm proposed in [2] which selects a transformation which is optimal in the sense that the

total number of suppressed cells is minimal. However, we emphasize that this optimality holds

only within each of the respective subsets, and only with respect to combinations of attribute

and record suppression. After applying different such transformations to different subsets, the
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resulting overall dataset will effectively have been transformed via cell suppression in a heuristic

manner. Formally arguing about the quality which can be achieved using such heuristics is gen-

erally difficult and rarely performed in the literature. Many papers hence provide only empirical

but not analytical quality evaluations, and it has been argued that approximation algorithms

for which guaranteed approximation factors can be proven usually perform worse in practice

than heuristic algorithms for which no such guarantees can be provided [3].

In our experience, the proposed cell suppression algorithm is efficient for a number of quasi-

identifiers in the order of up to 15. When the number is higher, execution times can be traded off

against data quality by utilizing the heuristic algorithm proposed in [4] rather than the optimal

algorithm mentioned above within each subset.

C. Proof of correctness of the cell suppression algorithm

The cell-suppression algorithm presented in this work enforces risk thresholds by removing

individual attribute values from individual records. Our implementation solves this problem

efficiently by recursively enforcing the user-defined thresholds τa and τh on Ra and Rh for

subsets of the given dataset. The principle of our algorithm is illustrated in Figure 3.

}

} }
}} } }} } }} }

Figure 3: Subset division principle for efficiently implementing cell suppression. Each iteration divides the

dataset into two disjoint subsets: The subsets RX(∗..)
a fulfill the given threshold (R1(∗..)

a ≤ τa); the complementary

subsets RY (∗..)
a , which don’t, are processed recursively in the next step.

It is easy to see that enforcing an overall threshold τh on the highest re-identi- fication risk

can be performed by enforcing the same threshold on disjoint subsets of records. However, it

is not trivial to see that this process can be used to implement a threshold τa on the average

re-identification risk.

Proposition. For any dataset Z with an average re-identification risk RZ
a , any two disjoint

subsets X and Y with X ∪ Y = Z and risks RX
a and RY

a , respectively, and any given risk

threshold τa, the following holds:
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RX
a ≤ τa ∧RY

a ≤ τa =⇒ RZ
a ≤ τa. (4)

Proof. Let X, Y , and Z contain nX , nY , and nZ records, respectively (as X ∪ Y = Z and

X ∩ Y = ∅, it follows that nX + nY = nZ). Depending on whether a certain row is referenced

from Z or from the subset that it belongs to (either X or Y ), its index can have different values.

In order to indicate the set that a certain row index i refers to, we term the different row indices

rXi , rYi , rZi and the related frequency indices fXi , fYi , fZi . The indices are related to each other

as follows:

∀i = 1, . . . , nX : rZi = rXi ,

∀i = 1, . . . , nY : rZnX+i = rYi .

(5)

Using the definition for the average risk (cf. Formula (2))

Ra =
1

n

n∑

i=1

1

fi
, (6)

we can express RX
a , RY

a , and RZ
a as

RX
a =

1

nX

nX∑

i=1

1

fXi
, RY

a =
1

nY

nY∑

i=1

1

fYi
, and RZ

a =
1

nZ

nZ∑

i=1

1

fZi
.

Let us assume that

RX
a ≤ τa ∧RY

a ≤ τa. (7)

For better readability, we substitute
∑nX

i=1
1

fX
i

= ΣX and
∑nY

i=1
1
fY
i

= ΣY , which yields

ΣX

nX
≤ τa ∧

ΣY

nY
≤ τa. (8)
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Without loss of generality, we further assume that ΣY

nY
≤ ΣX

nX
is satisfied. We can conclude:

ΣY

nY
≤ ΣX

nX
=⇒ ΣY ≤

ΣX · nY
nX

=⇒ ΣX + ΣY ≤ ΣX +
ΣX · nY
nX

=⇒ ΣX + ΣY ≤
ΣX

nX
(nX + nY )

=⇒ ΣX + ΣY

nX + nY
≤ ΣX

nX
≤
(8)
τa.

(9)

We now resubstitute ΣX and ΣY , which yields

1

nX + nY

(
nX∑

i=1

1

fXi
+

nY∑

i=1

1

fYi

)
≤ 1

nX

nX∑

i=1

1

fXi
≤ τa. (10)

While we have to take into account the possibility that fZi 6= fXi and fZnX+i 6= fYi holds, we

know that the frequency of a record w.r.t. the whole dataset can never be smaller than its

frequency w.r.t. the subset it belongs to. This implies that

∀i = 1, . . . , nX :
1

fZi
≤ 1

fXi
,

∀i = 1, . . . , nY :
1

fZnX+i

≤ 1

fYi
,

(11)

and has the consequence that

1

nZ

nZ∑

i=1

1

fZi
≤ 1

nX + nY

(
nX∑

i=1

1

fXi
+

nY∑

i=1

1

fYi

)
. (12)

Finally, we can conclude

1

nZ

nZ∑

i=1

1

fZi
≤

(12)

1

nX + nY

(
nX∑

i=1

1

fXi
+

nY∑

i=1

1

fYi

)
≤

(10)
τa.

This proof also applies to our implementation of row blocking, where privacy guarantees are

enforced on subsets (i.e blocks) of the incoming data. As we have shown, privacy guarantees

that apply to each of these subsets also apply to the dataset as a whole. Therefore, using row
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blocking does not negatively affect the privacy guarantees provided by the implementation.

D. Example for invalidation of privacy guarantees

In a chain of anonymization steps with overlapping quasi-identifiers, treating NULL as an

own category can lead to situations, in which one anonymization operation invalidates the

privacy guarantees that have been enforced in previous steps, because new NULL-values are

introduced into quasi-identifying variables addressed previously.

Tables 1 (a) and (b) show an example dataset which has been transformed to control the

prosecutor risk with respect to the quasi-identifiers Sex and Age. The dotted lines delimit

the equivalence classes concerning different sets of quasi-identifiers. It can be seen that the

prosecutor risk with respect to {Sex, Age} is 1
3 (see (a)). The prosecutor risk with respect to

{Age, Region} is 1 (see (b)).

Table 1: Invalidation of privacy guarantees in a chain of anonymization steps

(a)

Sex Age Region
M * North
M * North
M * South
F 67 South
F 67 South
F 67 South

(b)

Sex Age Region
M * North
M * North
M * South
F 67 South
F 67 South
F 67 South

(c)

Sex Age Region
M * North
M * North
M * South
F * South
F 67 South
F 67 South

(d)

Sex Age Region
M * North
M * North
M * South
F * South
F 67 South
F 67 South

Suppose that in the next step, this dataset is transformed in order to control prosecutor risk

with respect to {Age, Region}. The result of an according transformation is depicted in Tables

1 (c) and (d). It can be seen that by suppressing one more cell, prosecutor risk with respect to

{Age, Region} is reduced to 1
2 (see (c)). Now, however, the privacy guarantee relating to {Sex,

Age} is violated as prosecutor risk for this set of quasi-identifiers is raised from 1
3 to 1 (see (d)).

E. Evaluation using privacy-preserving data cubes

Kim et al. recently performed an experimental evaluation of the effects of different data

anonymization methods on the querying accuracy provided by privacy-preserving warehouses

containing medical data [5]. In their study, data was anonymized using three different transfor-

mation methods: global generalization, local generalization (using a clustering algorithm), and

bucketization.
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Generalization-based algorithms utilize user-provided domain-generalization hierarchies to

reduce the fidelity of attribute values. With global generalization, all values of an attribute are

transformed to the same level of the associated hierarchy [6]. With local generalization, different

values can be generalized to different levels of the according hierarchy [7]. Bucketization works

by splitting a table into different disjoint tables and then introducing foreign-key relationships

in a way that satisfies the privacy model provided [8]. We emphasize that, in contrast to

cell suppression, none of these transformation models is schema-preserving: bucketization is

implemented by splitting up the input relation and generalization of values does not preserve

the attributes’ data types.

After anonymization, Kim et al. aggregated the data into OLAP cubes, which is a model

used in warehousing applications. The authors then measured the information loss induced

by the anonymization methods using the model by Iyengar [9], which quantifies the degree of

generalization of attribute values. A value of 0 represents the unmodified input dataset, while

a value of 1 indicates that the dataset has been completely generalized (i.e. all values have

been suppressed). Moreover, they measured the precision of the results of two types of queries

issued against the data: point queries, which count the number of records matching a specific

combination of attribute values and range queries, which count the number of records matching

a combination of ranges over the domains of a subset of the attributes. Results were reported

as the median relative error of the counts returned for 1000 (point or range) queries over each

possible combination of attributes.

One of the two datasets used by Kim et al., i.e. the US Census dataset, is publicly available.

We exactly replicated their setup and used this dataset to compare our method to the methods

studied by the authors. The information loss model by Iyengar is not applicable to data which

has been transformed using bucketization. Kim et al. measured a value of 0.41 for global

generalization and a value of 0.13 for the local generalization method [5]. We measured a

value of 0.10 for our cell-suppression algorithm. We employed the following simple probabilistic

querying mechanism to execute point and range queries over data with missing values (i.e. values

suppressed by our algorithm).

Let r ∈ D be a record of the dataset D, which has n attributes. ri describes the value of

the record r for the i-th attribute. Let further Q = {V1, ...Vn} be a query against m attributes,
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Table 2: Experimental results obtained by Kim et al. compared with the experimental results obtained for our
cell suppression algorithm.

Global
generalization

Local
generalization

Bucketization
Cell

suppression
Median relative error
for point queries (%) 18.3 9.79 0.02 0.00

Median relative error
for range queries (%) 10.16 0.81 0.02 41.33

where each Vi is a set of attribute values for the i-th attribute. When m < n, we can simply

assume that Vi contains all attribute values when the i-th attribute is not part of the query.

For a given record r the probability of matching a query Q is:

Pr[r1 matches Q]× ...× Pr[rn matches Q].

For the methods studied by Kim et al. Pr[ri matches Q] is 1 if ri ∈ Vi or any value in Vi is

a generalization of ri. The count returned is increased by 1 when the result of the product is

also 1. This is consistent with standard query processing in relational database systems.

When querying data returned by our cell-suppression algorithm we followed the same ap-

proach when ri was not a suppressed value. When ri was a wildcard, however, we estimated

Pr[ri matches Q] with the sum of the frequencies of all values in Vi in the output dataset. We

increased the count by 1 when the result of the product was ≥ 1
m . The results are shown in

Table 2.

As can be seen, our approach performed very well on point queries and provided reasonable

performance on range queries. At the same time, our method is the only approach considered

in the experiments that preserves the schematic properties of the data and it is much eas-

ier to configure than the generalization-based approaches, as no hierarchies must be specified.

Moreover, existing data warehousing platforms and ETL workflows can be used and no specific

privacy-preserving implementation of data cubes has to be developed.
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Abstract. Modern medical research requires access to patient-level data of 
significant detail and volume. In this context, privacy concerns and legal 
requirements demand careful consideration. Data anonymization, which means 
that data is transformed to reduce privacy risks, is an important building block of 
data protection concepts. However, common methods of data anonymization often 
fail to protect data against inference of sensitive attribute values (also called 
attribute disclosure). Measures against such attacks have been developed, but it has 
been argued that they are of little practical relevance, as they involve significant 
data transformations which reduce output data utility to an unacceptable degree. In 
this article, we present an experimental study of the degree of protection and 
impact on data utility provided by different approaches for protecting biomedical 
data from attribute disclosure. We quantified the utility and privacy risks of 
datasets that have been protected using different anonymization methods and 
parameterizations. We put the results into relation with trivial baseline approaches, 
visualized them in the form of risk-utility curves and analyzed basic statistical 
properties of the sensitive attributes (e.g. the skewness of their distribution). Our 
results confirm that it is difficult to protect data from attribute disclosure, but they 
also indicate that it can be possible to achieve reasonable degrees of protection 
when appropriate methods are chosen based on data characteristics. While it is 
hard to give general recommendations, the approach presented in this article and 
the tools that we have used can be helpful for deciding how a given dataset can 
best be protected in a specific usage scenario. 

Keywords. data protection, data anonymization, inference attacks 

1. Introduction 

To be able to develop methods for individualized prevention, diagnosis and therapy, 
modern medical research requires data of comprehensive breadth and depth [1]. In 
order to create the required big datasets, patient-level data must be re-used for 
secondary purposes and shared across institutional boundaries [2,3]. In this context, an 
important recent project is the German Medical Informatics Initiative (MII) in which 
four consortia work together on creating a nation-wide infrastructure for data 
integration and sharing [4–7]. In such projects, data protection aspects and legal 
requirements, e.g. specified by the European General Data Protection Regulation 
(GDPR) [8] or the US Health Insurance Portability and Accountability Act 
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(HIPAA) [9], need careful consideration. An important building block of data 
protection concepts is anonymization, which means that data is transformed to reduce 
privacy risks. This approach has, for example, been used to perform the first large-scale 
cross-site analysis within the context of the MII (the so called “demonstrator study”, 
which focused on multimorbidity and rare diseases). 

In the area of data anonymization, bridging the gap between legal requirements 
and technical solutions is challenging and subject of ongoing research [10]. One 
important issue is that, technically, the risk of re-identification is a continuum, while 
the legal perspective is dichotomous. In this article, we refer to the threats outlined in 
the Opinion 05/2014 on Anonymisation Techniques by the Article 29 Working Party 
[11], an independent advisory body on data protection and privacy in the European 
Union, which has now been replaced by the European Data Protection Board. These 
threats are: (1) singling out, (2) linkage and (3) inference attacks. 

Anonymization methods which reduce the risk of successful linkage or singling 
out are widely applied in the field, but these methods are often not sufficient to prevent 
attackers from inferring sensitive personal information (also called attribute disclosure). 
Various models can be used to quantify the risk of attribute disclosure and to transform 
data to make sure that risks fall below a specified threshold [11]. However, it has been 
argued that such models are of little practical relevance, because implementing them 
requires significant data transformations which may remove an unacceptable amount of 
information [12]. 

Although the influence of anonymization on data utility has been studied 
extensively (see e.g. [13–17]), the literature lacks guidance on the strengths and 
weaknesses of different approaches for protecting biomedical data from attribute 
disclosure and insights into factors influencing their performance. The objective of the 
work described in this article was to study indicators and tools that can help to decide 
when and how biomedical data can be protected from sensitive attribute disclosure 
without compromising its usefulness too much. We focused on truthful transformation 
methods, which maintain the plausibility of data, as this is an important requirement in 
the biomedical domain [18].  

2. Methods 

2.1.  Background 

Singling out means that an attacker is able to isolate some or all records which identify 
an individual in a dataset [11]. This threat is also mentioned as an example of 
re-identification in the GDPR [8]. Linkability denotes the ability to link two (or more) 
records relating to the same individual or a group of individuals, either within the same 
dataset or in different datasets. Technically, the attributes that can be used for such 
attacks are called quasi-identifiers. Attribute inference (or disclosure) [19] occurs when 
specific individuals can be associated with attribute values representing sensitive 
information (e.g. a diagnosis indicating an HIV infection). An attribute which may take 
sensitive values is called a sensitive attribute. Table 1 shows an example dataset in 
which the risk of singling out and successful linkage has been reduced by generalizing 
the attribute “Age” and removing the values of the attribute “Sex”. 
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Table 1. Example dataset which has been protected against re-identification only. 

Quasi-identifiers Sensitive attribute 

Age Sex State Diagnosis 

[60,80[ * NY Colon cancer 

[60,80[ * NY Colon cancer 

[60,80[ * NY Colon cancer 

[60,80[ * NY Breast cancer 

[20,50[ * NY Hodgkin disease 

[20,50[ * NY Breast cancer 

[20,50[ * NY Colon cancer 

 
 
This transformation increases the indistinguishability of the quasi-identifiers while at 
the same time reducing data utility. Despite the resulting reduction of risks of 
successful singling out or linkage, the first group of records is susceptible to attribute 
disclosure: if an adversary targets the record about a 65-year-old male living in the 
state of New York – which matches the first set of four records with indistinguishable 
quasi-identifiers – it can be inferred with high probability that the diagnosis is “Colon 
cancer”. 

Privacy models can be used to estimate the degree of protection of a dataset 
against such attacks and they can hence be used to control the risks involved with 
sharing or re-using data by transforming the data in such a way that a given risk 
threshold is met. The best-known privacy model is k-anonymity [20], which guarantees 
indistinguishability regarding the quasi-identifiers and hence prevents singling out and 
reduces the risk of correct linkage. Privacy models for protecting data from attribute 
disclosure measure risks either based on a quantification of the diversity of sensitive 
data or on a quantification of the distances between the distributions of sensitive data in 
certain groups of records and in the overall dataset. Distance-based models have been 
developed more recently, with the aim to overcome limitations of diversity-based 
models, for example with respect to skewed data [21]. Well-known examples are 
ℓ-diversity [22], which is diversity-based, and t-closeness [21] as well as 
β-likeness [23], which are distance-based. 

2.2. Experimental Design 

The aim of our work was to gain insights into how well different privacy models for 
protecting data against attribute disclosure are suited to balance risks against output 
data utility and what factors need to be considered to achieve an optimal trade-off. To 
this, we studied the results obtained with different privacy models in relation to trivial 
baseline solutions. First, we generally protected the data from singling out and linkage 
using the k-anonymity privacy model. Next, we constructed baselines for risk and 
utility using the following trivial protection measures: 

1. Protecting the datasets against attribute disclosure by completely removing all 
sensitive attribute values (Full Protection) 
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2. Not protecting the dataset from attribute disclosure by keeping the sensitive 
attribute values as-is (No Protection) 

Within this context, we compared the trade-off between risks and utility of datasets 
that have been protected against attribute disclosure using different privacy models and 
parameterizations. 

Technically, the risk of attribute disclosure corresponds to the ability of an attacker 
to infer values of the sensitive attribute from values of the quasi-identifiers. We 
modeled this by using logistic regression classifiers that have been trained on 
anonymized data to predict the values of the sensitive attribute using the 
quasi-identifiers as features [24]. We quantified the risk by determining the prediction 
accuracy using 3-fold cross-validation. For measuring the utility of output data, we 
used a general-purpose model that captures the granularity of output data [25]. 
All experiments were performed using the open source data anonymization tool ARX, 
which we configured to use local generalization [26], which is a truthful transformation 
method. Protection against singling out and linkage has been implemented using 
5-anonymity [20]. For additionally protecting the datasets against attribute disclosure, 
we used the following privacy models: distinct-ℓ-diversity [22], t-closeness using the 
earth-movers distance based on value generalization hierarchies [21] and enhanced 
β-likeness [23]. For each model, we selected a representative set of parameterizations 
covering the complete spectrum of reasonable values. The source code of our 
experiments is available online [27].  
 
 

Table 2. Statistical properties of the sensitive attributes in the evaluation datasets. 

Dataset Sensitive 
attribute 

Domain 
size 

Min. 
frequency 

Max. 
frequency 

Dispersion 
index 

Census Marital status 5 0.014 0.446 0.777 

Health interviews Marital status 10 1.3∙10-5 0.236 0.899 

Census Education 25 0.010 0.176 0.943 

Health interviews Education 26 0.001 0.192 0.952 

 
 
To be able to study influencing factors with respect to data characteristics, we selected 
datasets with a similar schema but different statistical properties. The Health 
interviews 2  dataset consisted of 1,193,645 records from the U.S. National Health 
Interview Survey (NHIS). The Census 3  dataset contained 68,725 responses to the 
American Community Survey (ACS) from randomly selected people living in the state 
of Massachusetts in the U.S. We selected Sex, Age and Race as quasi-identifiers, since 
demographic parameters are typically considered to be associated with a high risk of 
re-identification [28] and to provide comparability with prior studies [16,20,25]. As 
examples for sensitive attributes we selected Marital status as well as Education and 
protected them from inference attacks.  

Table 2 provides an overview of the statistical properties of the sensitive attributes 
in the evaluation datasets. We used the dispersion index [29], as an indicator for the 

                                                           
2 https://nhis.ipums.org/nhis/ 
3 http://www.census.gov/programs-surveys/acs/data/pums.html 
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skewness of the distribution of attribute values (skewness of the sensitive data, 
henceforth). A value of 1 represents minimum skewness with a uniform distribution of 
two or more distinct attribute values. A value of 0 represents maximum skewness 
where there is no distribution of values but only one uniform value. 

3. Results 

To visualize the results of our experiments, we computed risk-utility curves that 
summarize the results obtained for the different privacy models and parameterizations 
into one diagram per dataset and sensitive attribute. Each data point represents an 
anonymized output dataset for a specific model and parameter value. The x- and y-
coordinates of the data points represent the according risk and utility values, which 
have been normalized in relation to the baseline approaches “Full Protection” (lowest 
risk, lowest utility) and ”No Protection” (highest risk, highest utility). Table 3 contains 
an overview of the values obtained for the baseline approaches.  
 
 

Table 3. Baseline values for the evaluation datasets. 

Dataset Sensitive Full Protection No Protection 
attribute Risk Utility Risk Utility 

Census Marital status 0.0 0.7481 0.7495 0.9981 

Health interviews Marital status 0.0 0.7498 0.6108 0.9998 

Census Education 0.0 0.7481 0.3609 0.9981 

Health interviews Education 0.0 0.7498 0.3954 0.9998 

 
 

The risk-utility curves are shown in Figure 1. The results have been sorted such that the 
experiment with the highest skewness of sensitive data (Census / Marital status) is on 
the left and the experiment with the lowest skewness of sensitive data (Health 
interviews /Education) is on the right. 

A perfect risk utility curve would contain a data point with zero risk and 100% 
utility. The line between (0,0) and (1,1) represents all solutions where reductions in risk 
are directly proportional to reductions in utility. The further a solution is above this line, 
the higher the increase in protection relative to the reduction in utility. Solutions below 
the line can be considered suboptimal, as they represent trade-offs that are worse than 
those provided by the baseline approaches. However, it must be noted that these 
solutions are not necessarily worthless, particularly in scenarios where neither of the 
two baseline approaches can be used. 

As can be seen, the privacy models studied in this article enable a balancing of 
risks and utility within the spectrum of removing all sensitive data (0,0) and not 
protecting a dataset at all (1,1). However, when protecting datasets with skewed 
sensitive attributes (Census / Marital status and Health interviews / Marital status) no 
solutions could be found that provide a better risk-utility trade-off than the baseline 
approaches. 
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Figure 1. Risk-utility curves for the privacy models ℓ-diversity, t-closeness, and β-likeness. The solution 
with the best risk-utility trade-off above the linear relationship is marked with an arrow. 

 
 

For datasets with low skewness of the sensitive data (Census / Education and Health 
interviews / Education), particularly when using ℓ-diversity and β-likeness, there were 
quite a few solutions that provided significant reductions in risk without affecting data 
utility too much. Using more sophisticated distance-based models did not lead to better 
results compared to outputs produced using the very basic ℓ-diversity model, which 
simply restricts the number of distinct sensitive attribute values per group of 
indistinguishable records [22]. This was true even for data sets with highly skewed 
sensitive data. In both experiments with the Health interviews datasets, t-closeness 
provided the worst trade-offs of all models. 

4. Discussion 

Our work is not the first to study the risk-utility trade-off provided by methods for 
protecting data against attribute disclosure. Notably, Brickell and Shmatikov 
thoroughly studied the effects of implementing common privacy models on the 
performance of statistical classification models trained on output data [16]. However, 
as Li and Li have pointed out, the methodology used in [16] is unsound [30]. Moreover, 
when studying the effect of methods for protecting data from attribute disclosure, 
statistical classification is typically used for measuring data utility while we used it to 
estimate the risk of sensitive attribute inference. Furthermore, we also considered the 
properties of the distribution of sensitive attribute values. Finally, we have put a 
specific emphasis on truthful data transformation methods which have been 
recommended for biomedical data [31,32]. 

Our results indicate that it is indeed hard to achieve a reasonable trade-off for 
skewed data, even with distance-based models that have been developed specifically 
for this purpose [21,23]. When data is only moderately skewed, both β-likeness and 
ℓ-diversity can yield significantly better risk-utility trade-offs than the baseline 
approaches. Interestingly, using ℓ-diversity, which is the simplest model with the most 
intuitive semantics, often provided better results than more recent and more 
sophisticated models like β-likeness. 

In summary we conclude that – contrary to popular opinion – it can be possible to 
significantly reduce the risk of successful inference attacks using well-known and 
truthful anonymization methods. However, it is important to consider the specifics of 
the dataset that is to be protected and the context of data usage. For this purpose, an in-
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depth analysis must be performed, and the approach used in this paper can serve as a 
blueprint. To calculate the necessary statistics and analyze risk-utility trade-offs, 
common anonymization tools such as ARX [26] and sdcMicro [33] can be used. The 
source code of our analysis is available online [27]. However, in future work it should 
be considered to extend the tools mentioned with additional methods to more directly 
support the processes described (e.g. through the graphical user interface). Our results 
indicate that particular attention should be directed towards simple methods with 
intuitive semantics, such as ℓ-diversity, and weak parameterizations, such as ℓ ≤ 5. 

One of the main limitations of the present work is the use of specific methods for 
quantifying risks and data utility. In fact, different measurement methods may be 
relevant in different data use scenarios. This is particularly true for methods that 
quantify data utility. 
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