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Abstract 

Magnetic resonance imaging is the gold standard for cardiac diseases diagnosis  because 

of the variability of sequences and good interobserver agreement. In recent years, new 

imaging technologies, e.g. T1 mapping, MR Fingerprinting, compressed sensing, have 

emerged. Therefore, investigations in post-processing and clinical workflow are needed 

to (i) extract new quantitative parameters, which can better characterize pathology or 

better evaluate the severity of diseases; (ii) improve the accuracy and precision (noise-

robustness) of these parameters; (iii) deal with increasingly large data sets with 

computationally efficient algorithms. In this work, two subtopics were investigated, 

cardiac T1 mapping and strain analysis. These two subtopics are important in cardiac MRI 

evaluation: T1 mapping is the key imaging tool for tissue characterization, while strain 

analysis is the key technique for the functional assessment of the heart. 

Cardiac T1 mapping can provide quantitative measurement of the relaxation process of 

myocardial tissue. By measuring pre-contrast and post-contrast T1 maps, extracellular 

volume can be determined. This is an important parameter for early detection of diffuse 

fibrosis, which cannot be detected with conventional methods such as delayed 

enhancement imaging. However, due to cardiac motion and limited time for image 

acquisition, the raw images are usually noisy and not well aligned. In this work, T1 map 

computation was optimized in 3 aspects: 1) a vectorized Levenberg-Marquardt algorithm 

was proposed, 2) spatial regularization was added, 3) region-based initialization was 

applied. Simulation experiment was conducted to validate the vectorized Levenberg-

Marquardt algorithm. Then, the proposed algorithm was validated on 28 patient data, 

with both pre-contrast and post-contrast images. The result showed improved robustness 

of T1 estimation using vectorized Levenberg-Marquardt algorithm with spatial 

regularization and region-based initialization. In addition, performance improvement 

with GPU implementation was evaluated and showed higher computational efficiency. 

Finally, software for clinical use has been implemented. 

Myocardial strain analysis is used for early detection of myocardial dysfunction. Currently, 

echography and tagged MRI are more widely used in clinical routine. However, 
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echography is usually limited by beam direction and tagged MRI has lower temporal 

resolution. Thanks to the recently developed super-resolution technique, 3D cine images 

of the heart are now available. Therefore, new data processing tool is needed. In this 

work, we proposed a 3D strain analysis framework, in which myocardial mask-based 

registration was used to extract dense motion field. Incompressibility regularization and 

rotation regularization were added to obtain physically plausible motion fields. Peak 

systolic strain and strain curves were then calculated on each pixel. The calculation 

framework was validated with simulation and clinical data of 18 Duchenne muscular 

dystrophy (DMD) patients. The 3D peak strain was first compared with global 2D strain. 

Significant differences were found in circumferential and radial strain, whereas the 

difference in longitudinal strain was not significant. Then comparison study between 

patients with fibrosis and without fibrosis was performed. For patients with fibrosis, 

circumferential strain in the septal and anterior regions showed significantly smaller 

values (p<0.05). The correlation between the regional strain curve and the average 

circumferential strain curve for those patients also showed significantly smaller values. 

In summary, two clinical topics were investigated in this project, T1 mapping and 

myocardial strain analysis based on 3D cine image. Improved algorithms and workflows 

were proposed and validated for T1 mapping. First investigation on the validity of strain 

measurement using 3D cine images was performed and those 3D strain parameters could 

be potentially used as new imaging biomarkers for the assessment of DMD patients. 
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ZUSAMMENFASSUNG 

Die Magnetresonanztomografie ist der Goldstandard für die Diagnose vieler Herz-

erkrankungen aufgrund der Vielfalt der Sequenzen und der guten Übereinstimmung 

zwischen verschiedenen Beobachtern. In den letzten Jahren sind viele neue 

Bildgebungstechnologien entstanden, z.B. T1-Mapping, MR-Fingerprinting und 

Compressed Sensing. Daher sind neuartige Untersuchungen in der Nachbearbeitung und 

im klinischen Arbeitsablauf erforderlich, um: (I) neue quantitative Informationen zu 

extrahieren, die die Pathologie besser charakterisieren können oder den Schweregrad der 

Krankheit besser einschätzen können, (II) die Genauigkeit und Präzision der Parameter zu 

verbessern; (III) die immer größeren Datenmengen mit rechnerisch effizienten 

Algorithmen zu verarbeiten. In dieser Arbeit wurden zwei Technologien bearbeitet: das 

kardiale T1-Mapping und die Strainanalyse des Herzmuskels. Die beiden Methoden sind 

wichtige Elemente in der MRT-Bewertung für Herzpatienten: Das T1-Mapping ist das 

wichtigste MR-Imaging-Tool für die Gewebecharakterisierung, während die Strainanalyse 

die Schlüsseltechnik für die Beurteilung der kontraktilen Funktion ist. 

Das kardiale T1-Mapping kann quantitative Informationen über die Relaxationsprozesse 

von Myokardgewebe anbieten. Mittels T1-Map vor und nach Injektion von Kontrastmittel 

kann das extrazelluläre Volumen errechnet werden. Dies ist ein wichtiger Parameter für 

die Früherkennung der diffusen Fibrose, die mit einer herkömmlichen Bildgebung nicht 

erkennbar ist. Aufgrund der Herzbewegung und der begrenzten Zeit für die Bilderfassung 

sind die rohen Bilddaten normalerweise verrauscht und räumlich nicht registriert. In 

dieser Arbeit wird die T1-Mapping-Berechnung in drei Aspekten optimiert: 1) ein 

vektorisierter Levenberg-Marquardt-Algorithmus wird verwendet, 2) eine räumliche 

Regularisierung wird hinzugefügt, 3) eine Region-basierte Initialisierung wird 

durchgeführt. Der vektorisierte Levenberg-Marquardt-Algorithmus wurde durch ein 

Simulationsexperiment validiert. Anschließend wurde der Workflow anhand von 28 

Patientendaten mit den Bildern sowohl vor als auch nach dem Kontrastmittelgabe 

validiert. Das Ergebnis zeigt eine verbesserte Robustheit der T1-Schätzung unter 

Verwendung eines vektorisierten Levenberg-Marquardt-Algorithmus mit räumlicher 

Regularisierung und Region-basierter Initialisierung. Darüber hinaus wird eine GPU-
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Implementierung verwendet, die eine verbesserte Berechnungseffizienz aufweist. Die 

Software wurde anschließend für den klinischen Einsatz implementiert. 

Die myokardiale Strainanalyse wird zur früheren Erkennung von Myokardfunktions-

störungen verwendet. Derzeit werden dafür in der klinischen Anwendung häufig 

Echografie und getaggte MRT Bilder eingesetzt. Die Echografie ist jedoch normalerweise 

durch die Strahlrichtung begrenzt und die getaggten MRT Bilder haben eine relativ 

geringe zeitliche Auflösung. Dank der kürzlich entwickelten Super-Resolution-Technik sind 

nun 3D-Cine Bilder des Herzens verfügbar, für die neue Datenverarbeitungsmethoden 

notwendig sind. In dieser Arbeit wurde ein Strainanalyse-Rahmen auf Grundlage von 3D-

Cine vorgeschlagen, in welchem ein Registrierung auf Basis von Myokardmasken 

verwendet wurde, um das Bewegungsfeld zu extrahieren. Inkompressibilitätsregulierung 

und Rotationsregulierung wurden hinzugefügt, um physikalisch plausible 

Bewegungsfelder zu erhalten. Der maximale systolische 3D-PeakStrain und die 2D-

Strainkurven wurden danach berechnet. Der vorgeschlagene Workflow wurde durch 

Simulationen und an Daten von 18 Patienten mit Duchenne-Muskeldystrophie (DMD) 

validiert. Der systolische 3D-Peak-Strain wurde zunächst mit dem globalen 2D-Strain 

verglichen. Es gab signifikante Unterschiede im Strain in Umfangsrichtung und in radialer 

Richtung, während der Unterschied in longitudinaler Richtung nicht signifikant war. Dann 

wurde der 3D-Strain zwischen den DMD-Patienten mit und ohne Fibrose verglichen. Die 

Strain in Umfangsrichtung im Septum- und Anteriorbereich zeigte bei Patienten mit 

Fibrose signifikant geringere Werte (p<0.05). Die Korrelation zwischen der regionalen 

Strainkurve und der durchschnittlichen Strainkurve in Umfangsrichtung ergab ebenfalls 

einen deutlich kleineren Wert. 

Zusammenfassend wurden in diesem Projekt zwei klinische Themen untersucht: T1-

Mapping und myokardiale Strainanalyse auf der Basis von 3D-Cine Bildern. Für das T1-

Mapping wurden verbesserte Algorithmen und Workflows vorgeschlagen und validiert. 

Erste Untersuchungen zur Validität der Strain-Messungen an 3D-Cine Bildern wurden 

durchgeführt und zeigen vielversprechende Parameter, die als neue bildgebende 

Biomarker für die Bewertung von DMD-Patienten verwendet werden könnten. 
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Chapter 1 Introduction 

1.1 MOTIVATION 

Cardiovascular disease (CVD) is the leading cause of death worldwide. Every year, more 

than 17.3 million people die due to cardiovascular disease[1]. According to the statistic 

report by European heart network in 2017, the economic cost is approximately  €210 per 

year, which includes healthcare costs (€111 billion), productivity lost (€54) and other 

informal care costs[2].  

Cardiovascular diseases can be divided into atherosclerosis caused diseases and other 

cardiovascular diseases. Among all CVD deaths, atherosclerosis accounts for more than 

70% of deaths [3]. Atherosclerosis is caused by the artery narrowing. It can progressively 

lead to coronary artery disease, stroke and peripheral artery disease. However, 80% of 

premature heart disease and stroke can be prevented and early diagnosis is critical.  

Nuclear magnetic resonance was first detected by Erwin Hahn in the 1950s and 2D 

imaging using gradient was invented by Paul Lauterbur in 1973. Since the invention of 

MRI, it has been widely used in different areas. Numerous studies and researches have 

been conducted to obtain high quality images and to improve clinical diagnosis. It has 

gradually become the gold standard for cardiovascular disease analysis. Compared to 

other imaging techniques, MRI has the following advantages:  

• Good contrast between different soft tissues  

• Versatile sequence to provide various diagnostic information  

• High reproducibility and accuracy 

• Non-radioactive 

• Less dependent on user operation 
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Figure 1. Word clouds visualizing the frequency of words used in SCMR scientific session titles over past 
20 years. [4] 

“clinical” and “diseases” have always been the focus during the development of MRI[4]. 

To answer the clinical questions, different protocols have been developed. The routinely 

performed protocols are “Left ventricle function and scar/fibrosis protocol” and 

“Myocardial stress perfusion protocol” [5]. The analysis of MR images in these clinical 

protocols includes:   

i. Cardiac contractile function quantification. This is the basic analysis during cardiac 

MR examination. The mechanical property of the heart can be estimated by 

volumetric analysis in systolic/diastolic phases, flow calculations, visual 

assessment of segmental contraction or wall thickening from cine images etc. 

Parameters routinely measured include ejection fraction, wall thickness, wall 

thickening, segmental strain, etc. In addition to volumetric analysis, global 

longitudinal strain has been proved to be a more sensitive measure of systolic 

function than ejection fraction and can be used to identify subclinical LV 

dysfunction in cardiomyopathies. 

ii. Myocardial tissue characterization. This technique is used to distinguish between 

healthy and abnormal tissue, such as edema, infarction, scar or fibrosis. MRI data 

can be used as imaging biomarkers to make an early diagnosis of myocardial 

disease, to decide which treatment should be given, or to provide an early 

prediction of the patient's long-term outcome[6]. Late gadolinium enhancement 

is the first MR technique developed to differentiate between ischemic heart 

disease and non-ischemic heart disease. Parametric maps are later developed to 

provide quantitative measurement. One of the most important parametric 
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mappings for estimating myocardial composition is T1 mapping. The increase in T1 

value is accompanied by many cardiac diseases, including myocardial infarction, 

myocarditis, hypertrophic and dilated cardiomyopathy etc[7]. The changes in T1 

values may also indicate structural changes in tissues, e.g. a remodeling process, 

which may have long-term consequences on cardiac function. T2 mapping can be 

used to quantify edema and the extent of inflammation, which is an important 

indicator of myocardial infarction, myocarditis, graft rejection, etc [8]. Besides 

parametric mappings, local strain analysis is another widely used tool for tissue 

characterization. The changes in local myocardial strain may occur before the 

global cardiac function change. Therefore, strain analysis can be used for early 

diagnosis of heart failure. Another application of local strain analysis is to guide 

the placement of LV pacing leads for patients in the cardiac resynchronization 

therapy. 

iii. Perfusion analysis. This examination is performed as a further investigation for 

patients with suspected ischemia. The first pass of gadolinium-based contrast is 

imaged, under stressed- and rest- conditions. Perfusion analysis can predict the 

risk of developing cardiac events after treatment[9]. 

In cardiac MRI, one special problem is motion. On the one hand, myocardial contractile 

function is an important parameter to evaluate the heart function. On the other hand, 

myocardial motion is a big challenge to obtain high quality image and accurate 

measurements.  In this research, the motion problem in T1 mapping and strain analysis 

were investigated with the help of image processing. These two technologies are key 

components in cardiac MRI evaluation.  

• T1 mapping is the most important MR imaging tool for tissue characterization. 

Compared with other imaging methods, T1 mapping can provide quantitative 

measurement and allow early detection of myocardial fibrosis, which can limit the 

supply of oxygen and nourishment to the myocardium and eventually lead to 

ischemia or heart failure. Although different sequences and data processing 

methods have been proposed and evaluated, the workflow in clinical routine still 

needs to be optimized. A critical problem that prevents accurate measurement in 

clinical workflow is image noise. Figure 2 shows an example data series  acquired 
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for T1 mapping. In general, the images have lower signal-to-noise ratio than 

normal cine images. This is partly caused by the limited acquisition time and 

relative slow relaxation process. Another problem is the cardiac motion. Although 

many motion control methods, such as breath holding and ECG-gating, have been 

applied and advanced image reconstruction technologies, such as motion 

corrected reconstruction([10,11]), have been used, the myocardium regions are 

still deformed and misaligned. Both the noise and the misalignment lead to 

inaccurate assessment of the myocardial tissue. Therefore, improvement of post-

processing steps is needed. Currently, most work on T1 mapping focused on one 

particular step, such as improving acquisition sequence[12] or using additional 

information for motion correction[13]. In this study, we examined the entire T1 

mapping workflow and identified several steps that could be optimized. 

 

Figure 2. An example  T1 series sampled at different inversion time 

• Another important parameter for the evaluation of ischemic disease is myocardial 

strain. Evaluation techniques have evolved from echocardiography to 2D MRI 

image based analysis, then to tissue Doppler measurement with speckle tracking. 

Currently, most researches are performed on echography or tagged MRI[14]. Cine 

MRI has been proved to be an key technique for the assessment of cardiac 

anatomy and contractile function. However there are not many researches for 

strain analysis based on cine images. The clinically available cine data are usually 

2D images, and analysis based on 2D images is subject to through-plan motion, 

which makes the evaluation less accurate. Recent improvements in MRI make 3D 

cine images available for clinical use. We would like to investigate how well is 3D 

cine based strain compared to conventional 2D strain and whether 3D cine based 

strain can be used to assess myocardial properties. The challenge in strain analysis 

using 3D cine images is to calculate the dense motion field, which is then used to 

calculate myocardial strain. In this study, 3D cine images were analyzed and the 

application in Duchenne muscular dystrophy diagnosis was evaluated. 
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The main contributions in this research are: 

• T1 mapping workflow was optimized in several aspects. A vectorized Levenberg 

Marquardt algorithm was proposed to make the T1 mapping workflow more 

resistant to image noise by applying spatial regularization. Region-based 

initialization and efficient non-rigid image registration were incorporated to 

further improve the measurement. Those post-processing steps for T1 mapping 

were evaluated with simulation and patient data. In addition, a clinical software 

was implemented for large scale study use and the vectorized Levenberg 

Marquardt algorithm was further optimized on GPU. 

• Strain analysis based on 3D cine images was investigated and a framework for 

calculating strain was proposed. In this framework, a non-rigid image registration 

with incompressibility regularization in myocardium was proposed to obtain more 

physically meaningful motion field. Simulation experiments were performed to 

evaluate the proposed framework. The estimated 3D strain was compared to the 

2D strain using clinical data. A correlation index is derived from strain curve, and 

could potentially be used as a new parameter to estimate the severity of 

Duchenne muscular dystrophy.   

1.2 OUTLINE 

Chapter 2 and Chapter 3 describe the technical background. In Chapter 2, MRI physics and 

cardiac imaging techniques are briefly introduced. Different imaging modalities and  

sequences are described to give a better overview of clinical application in the cardiac 

area. Chapter 3 describes the basic framework and regularization schemes for medical 

image registration. Image registration is a key tool in this thesis, as it is necessary to 

correct the spatial misalignment so that reliable T1 mapping can be obtained. It is also 

necessary for strain analysis, not to correct but to measure accurately the cardiac motion 

pattern throughout the cardiac cycle.  

Chapter 4 describes the optimized T1 mapping workflow. Vectorized Levenberg-

Marquardt algorithm with spatial regularization and region-based initialization was 

proposed to improve the curve fitting in T1 mapping calculation. In addition, GPU 

implementation was proposed and compared to CPU implementation. In Chapter 6, 
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experiments to evaluate the optimized steps were performed, including image 

registration, region-based initialization and vectorized curve fitting. The accuracy of 

vectorized curve fitting was first validated with simulation experiments and then with 

clinical data for both native and post-contrast T1 mapping. 

In Chapter 5, a myocardial strain analysis framework for 3D cine images was proposed. 

Novel regularization schemes were proposed to obtain physically plausible solutions for 

the displacement field. Chapter 7 presents the evaluation of the proposed framework. 3D 

global strain was first compared with conventional 2D global strain. Then the 3D strain 

between different patient groups were compared. We also investigated novel indices 

derived from the 3D deformation patterns throughout the cardiac cycle (strain curves) to 

better characterize local abnormalities in cardiac contraction.  

Finally, in Chapter 8 gives a summary of the work and future direction. 
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Chapter 2 Cardiac MRI  

In this chapter, MRI physics and imaging principle are introduced to provide basic 

background. Important MR sequences for cardiac analysis and their clinical application 

are described in more detail. 

2.1 MRI PHYSICS AND IMAGING 

2.1.1 MRI PHYSICS 

Moving electric particles, like protons, can produce a magnetic field. This is characterized 

by a property called spin, which can be interpreted as the rotation of the particle around 

some axis. A spin can be seen macroscopically as a magnetic dipole. Normally, if we 

consider a population of spins, their orientations are randomly distributed, as a result 

their net magnetization is null. If they are subjected to an external magnetic field B0, the 

spins will undergo a precession motion (like a gyroscope) around the axis of the external 

field, characterized by the Larmor frequency 𝜔0 , which is also called resonance 

frequency:  

𝜔0 = 𝛾 ∙ 𝐵0 

Normally the 𝐵0 direction is defined as Z-direction and the plane perpendicular to 𝐵0 is 

defined as XY-plane. After applying 𝐵0 the net magnetization is aligned with the direction 

of 𝐵0. If an external radiofrequency pulse at the resonance frequency is further applied, 

the spin will absorb the energy and tilt down towards XY-plan. Meanwhile, as the spins 

deviate from the external field, the net magnetization begins to precess around the  𝐵0 

direction. After the removal of the radio frequency, the spins will return to lower energy 

state and return to Z-direction. This process is called relaxation. There are two types of 

relaxation, longitudinal relaxation (spin-lattice relaxation) and transverse relaxation (spin-

spin relaxation). The longitudinal relaxation is related to the loss of the signal intensity 

and the transverse relaxation is related to the dispersion of the signal. 

2.1.2 LONGITUDINAL RELAXATION  
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The longitudinal relaxation can be described by an exponential curve characterized by a 

time constant, T1. This time constant is affected by the type of tissue, external magnetic 

field and presence of a contrast agency. The exponential curve can be described as  

𝑀𝑧(𝑡) = 𝑀𝑧,𝑒𝑞 − [𝑀𝑧,𝑒𝑞 − 𝑀𝑧(0)]𝑒
−

𝑡
𝑇1 

𝑀𝑧(0) is the Z-component of the magnetization at time 0 (right after application of the 

radiofrequency pulse) and  𝑀𝑧,𝑒𝑞  is the magnetization at equilibrium state.  𝑀𝑧(0)  is 

determined by the flip angle. If the flip angle is 90°, then 𝑀𝑧(0) = 0, 

𝑀𝑧(𝑡) = 𝑀𝑧,𝑒𝑞 ∙ (1 − 𝑒
−

𝑡
𝑇1) 

2.1.3 TRANSVERSE RELAXATION  

As the external radio frequency pulse is removed, the tilted spins start to return to the 

initial state. Meanwhile, the spins get dephased, which is called T2 relaxation. The signal 

also follows an exponential curve, and the time constant is denoted as T2. In practice, 

because the external magnetic field is not perfectly homogeneous spatially, the observed 

relaxation has an actual time constant that is shorter than T2, denoted as T2*. 

Mxy = Mxy(0) ∙ 𝑒
−

1
𝑇2 

1

𝑇2
∗ =

1

𝑇2
+

1

𝑇𝑖𝑛ℎ𝑜𝑚
=

1

𝑇2
+ 𝛾∆𝐵0 

 

2.1.4 IMAGING FORMATION 

2.1.4.1 SLICE SELECTION  

The Larmor frequency is affected by the strength of the external field. This can be used to 

selectively activate the spins at certain locations. For example, one can apply a magnetic 

field gradient in the z direction. Then, the spins with different z locations will rotate at 

different speeds, 𝜔0 > 𝜔1 > 𝜔2 > 𝜔3 , as shown in the Figure 3. If we apply a 

radiofrequency pulse at  𝜔1, then only the spins at this z location will be flipped. 
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Figure 3. Illustration of slice selection by applying a magnetic field gradient 

 

2.1.4.2 FREQUENCY ENCODING 

After the remove the Z-direction gradient, the spins at  𝑧1 location start the relaxation 

process. If we apply a magnetic field gradient in the x-direction, then the spins with 

different x locations send out signals with different frequencies. The received signal is the 

sum of all the spins. With Fourier transform, the signal can be decoded. The locations of 

the spins are encoded by the frequency of the signal.   

 

 

Figure 4. Illustration of frequency encoding 

2.1.4.3 PHASE ENCODING 

In order to encode the y-direction, the phase of the signal can be used. This can be 

archived by adding an additional gradient for a short time period before the frequency 

encoding, so the start position of the spin is depend on the location in y-direction. 
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Figure 5. Illustration of phase encoding 

By changing the magnitude of the gradient, the initial phase difference can be set 

differently. This y-direction phase encoding needs to be performed many times so that 

each pixel has a specific phase and frequency. All the data acquired are placed in a matrix, 

which is named as k-space. By doing inverse Fourier transform of this matrix, the target 

image can be obtained. 

2.1.4.4 IMAGE CONTRAST 

The image intensity depends on the relative density of the water protons and the 

relaxation times. Therefore there are three main types of image contrasts: 

• proton density weighted image: Higher brightness means higher density of protons, 

this is achieved by using long repetition time (2000-5000ms) and short echo time (10-

20ms) 

• T1 weighted image : The image contrast is depending on the T1 relaxation time, 

therefore can be used to identify fat tissue or get morphological information. This is 

achieved by using short repetition time and short echo time. 

• T2 weighted image : The image contrast reflect the transverse relaxation. By using 

long repetition time and echo time. This type of image can be used to detect edema 

and inflammation. 

2.1.4.5 ACQUISITION SEQUENCES 

There are variety of sequences for different application, however, they can generally be 

divided as two families: gradient echo and spin echo.  
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Figure 6. Illustration of Gradient echo sequence and Spin echo sequence. (left) Gradient Echo sequence; (right) 
Spin Echo sequence. 

The gradient Echo sequence is composed of one RF pulse, a dephasing gradient, which 

followed by the rephrasing gradient of opposite polarity, and a readout gradient (Figure 

6). The dephasing gradient causes an accelerated decay of the signal and the rephrasing 

gradient resynchronizes the signal. There are two types of gradient echo sequences: 

• Spoiled Gradient echo: The residual transverse magnetization signal is destroyed by 

an additional dephasing gradient or by changing the phase of the RF pulse from one 

repetition to the next. Typical sequences include FLASH, TurboFLASH etc. 

• Steady-State Gradient echo: The residual transverse magnetization signal is not 

destroyed but refocused. After a few repetition, a steady state of longitudinal and 

transverse signal is reached, which is called steady state free precession (SSFP). 

Typical sequences include FISP, PSIF etc. One widely used gradient echo sequence in 

cardiac applications is Balanced Steady-State Free Precession (bSSFP). 

The other type of sequence is Spin-Echo sequence, which contains two RF pulses, as 

shown in Figure 6. The first 90˚ RF pulse flips the spins to the transverse plan, then the 

spins dephase with a T2* time constant due to the inhomogeneity of the magnetic field. 

The 180˚ RF pulse reverses the phase of the spins, so that the spins are refocused after 

certain amount of time called echo time (TE). More detailed descriptions can be found in 

[15,16]. 

2.2 CARDIAC IMAGING 
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MRI is widely used to diagnose cardiac diseases. Different sequences have been 

developed to evaluate the anatomic structure, heart function, myocardial infarction, etc. 

2.2.1 CARDIAC CINE IMAGING 

Cardiac cine images can show the dynamic motion of the heart. In cine images, a cardiac 

cycle is divided into multiple cardiac phases, usually 20-30 phases. For each cardiac phase, 

8-10 short axis images are taken to cover the whole left ventricle of the heart, Figure 7 

(Left). Typically, a balanced SSFP sequence is used to acquire cine images due to its short 

TR and TE, which allows fast data collection. In addition, it can provide excellent contrast 

between blood and myocardium. In clinical practice, k-space signal is acquired 

continuously during the heart cycle, a breath hold is used to prevent respiratory motion 

artifacts and retrospective ECG gating is used to bin data into different cardiac phases, 

Figure 7 (Right).  A multi-slice cine image stack usually takes 5-10 min (1 or 2 slices are 

acquired during successive breath hold periods of 10-15 s each). 

Alternately, a continuous, free-breathing acquisition can be used to avoid the idle time 

periods between breath holds. However respiratory motion needs to be compensated for 

during the reconstruction process. The cine-GRICS method proposed in [17] allows an 

image stack to be acquired in 3-5 min. 

  

Figure 7. Cardiac cine image. (Left) Location of 2Dcine stack (Right) Illustration of continuous image acquistion 
and cine image reconstruction by binning data. 

Cardiac cine imaging by MRI is the gold standard to assess the ejection function of heart. 

There are dark-blood image and bright-blood image. The black-blood sequence uses 

inversion recovery sequence, and the bright-blood image uses SSFP sequence. 
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Although multi-slice 2D cine imaging is widely used, 3D cine imaging gains more and more 

interest. A 3D version of the bSSFP sequence does exist but has less good contrast than 

the 2D sequence due to a reduced “in-flow” effect (fresh spins moving out of the imaging 

slice). Another difficulty is that respiratory motion needs to be corrected efficiently. A 

solution has been proposed combining multiple near-orthogonal 2D stacks into a 3D 

isotropic volume, using cine-GRICS motion correction and a super-resolution 

reconstruction [17]. Compared to multi-slice 2D images, this 3D cine imaging provides 

isotropic measurements, which allows more accurate estimation of the heart volume.  

2.2.2 LATE GADOLINIUM ENHANCEMENT IMAGING 

Late Gadolinium enhancement  image (LGE), which is also called myocardial delayed 

enhancement images (MDE), is used to assess the viability of the myocardium. In LGE, 

contrast agent is injected into the patient (0.1 - 0.2 mmol/kg). Gadolinium compounds are 

the most often used contrast agent. Due to the delayed washout process, an excess of 

contrast agent accumulates in the pathological tissues, therefore the myocardium 

affected by fibrosis (e.g. following a myocardial infarction) shows higher intensity than 

normal myocardium after 10-15min. The inversion time of the sequence can be adjusted 

to null the signal from the normal myocardial tissue.  

The LGE image shows different patterns with different diseases [18]. The myocardium can 

be divided as subendocardial, subepicardial and mesocardial (or midmyocardium) region. 

For ischemic myocardial disease, the delayed enhancement image shows higher intensity 

in subendocardial or transmural regions, limited to the area of the vascular obstruction. 

For non-ischemic myocardial diseases, the delayed enhancement distribute in more 

diffuse areas. When more than 50% of the myocardium thickness shows enhanced 

intensity, the infarct is regarded as transmural. Delayed enhancement in transmural 

myocardium is an indicator for atherosclerosis or myocarditis.  The subepicardial 

enhancement is related with myocarditis and mesocardial enhancement suggests 

hypertrophic cardiomyopathy or dilated cardiomyopathy. 
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Figure 8. Cardiac delayed enhancement imaging for cardiac disease diagnosis [18]. 

2.2.3 T1 & T2 (T2*) MAPPING 

T1 mapping and T2 mapping are parametric mappings of the relaxation process of 

myocardial tissue. In parametric mapping, the physical value (T1 or T2) of pixels are 

rendered as an image. Compared to conventional MR images, parametric mapping can 

provide quantitative measurements of myocardial tissue. 

  

Figure 9. Illustration of  MOLLI sequence  (Left)  and Saturation recovery sequence (Right)   [19]. 

T1 mapping shows the longitudinal relaxation time of each pixels. LGE is the most widely 

used technique to evaluate ischemic myocardial diseases, however, it is unable to detect 

diffuse fibrosis because its contrast is an unknown function of the tissue properties. The 

T1 value of the myocardial tissue is dependent on the composition of the tissue. For 

example, higher water content or larger interstitial space result in larger T1 value, and 
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overload of fat or iron lead to smaller T1 value [20]. Therefore, T1 mapping can provide 

diagnostic information for diffuse fibrosis. 

To get T1 mapping, a variety of sequences has been proposed. Those sequences can 

generally be divided into two categories: inversion recovery methods and saturation 

recovery methods. In inversion recovery sequences, the magnetization is inverted by 180 

degrees and in saturation recovery sequences, the magnetization is flipped by 90 degrees. 

The most popular inversion recovery method is MOLLI, which acquires 8 images within 

one breath-hold, as shown in Figure 9 (Left). Usually a 5(3)3 scheme is used, which means 

that images are acquired in each the first 5 heart beats, then there is a rest period of 3 

heart beats and finally images are acquired during the last 3 heart beats. In saturation 

recovery sequences, the longitudinal magnetization is saturated to zero, so there is no 

need for a rest period to ensure full recovery as in MOLLI, since the next recovery cycle 

always starts from the saturation state, Figure 9 (Right). In this sequence, usually one 

image is acquired in one recovery cycle.   

It needs to be mentioned that the estimated T1 value depends on the acquisition scheme 

and sequence used. T1 value from the different acquisition methods are not comparable. 

Table 1 summarized the T1 values reported from different researches. 

Table 1. Comparison of T1 value in myocardium and blood pool with different sequence and number of parameters 

 Setup  Native-myo (ms) post-myo 
(ms) 

Native-blood 
(ms) 

post-blood 
(ms) 

(Messroghli, 2004)[21] MOLLI,1.5T(volunteer1) 1076±72 492±39 1551±55 313±10 
MOLLI,1.5T(volunteer2) 969±84 450±40 1544±69 325±14 

(Dabir, 2014)[22] MOLLI,3T 1025±23 - - - 

(Sibley, 2011)[23] MOLLI,3T 1347±37 - 2076±125 - 

(Knobelsdorff-
Brenkenhoff,2013)[24] 

MOLLI 1157-1180 399-423 - - 

(Lee, 2011)[25] MOLLI,3T 1315±39 - 2020±129 - 

(Stainsby, 2013)[26] MOLLI,1.5T 792(T1*)/1018(T1) - - - 
SMART,1.5T 1193 - - - 

(Ellims, 2014)[27] IR,1.5T 937±158 380±82 1435±335 229±34 

(Bhuva, 2015)[28] MOLLI,T1star - - 1636±87 - 
MOLLI,T1 - - 1613±71 - 

T1 mapping can be measured with or without contrast agent. The T1 mapping without 

contrast agent is named as ‘Native’ or ‘Pre-contrast’ T1 mapping and the T1 mapping with 

contrast agent is called ‘Post-contrast’ T1 mapping. Contrast agent is used to enhance the 

difference between the normal and fibrosis tissue. The shortening of the T1 value is 

proportional to the concentration of contrast agent. This principle can be used to create 
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an extracellular volume map (ECV), which is a biomarker for myocardial tissue remodeling 

[20].  

 

Figure 10. T1 mapping and ECV for cardiac disease diagnosis[20]. 

The ECV map is generated by combining the information in native and post contrast T1 

maps. 

ECV = (1 − haematocrit)

1
T1,myo,post−contrast

−
1

T1,myo,native

1
T1,blood,post−contrast

−
1

T1,blood,native

 

T2 mapping provides the transverse relaxation maps. The T2 value of the myocardial tissue 

is mainly affected by the water content, which is related to myocardial edema as in acute 

myocardial infarction. Similar as T1 mapping, several images are acquired and curve fitting 

is performed to estimate the T2 value.   

 

Figure 11. Illustration of T2 mapping sequence [19] 
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Figure 11 shows the acquisition sequence for T2 mapping. The acquisition sequence 

usually contains a preparation module and a fast imaging acquisition module. More 

detailed description can be found in [19]. 

2.2.4 FLOW IMAGING 

Flow or motion information can be obtained from the phase information of the MR signal. 

The velocity of the moving particle can be encoded using a velocity encoding gradient. 

Suppose 𝐵0 is the static magnetic field, ∆𝐵0 is the local field inhomogeneity and 𝐺(𝑡) is 

the magnetic field gradient, then the lamor frequency of the moving particle located at r 

is: 

𝜔𝐿(𝑟, 𝑡) =  𝛾 ∙ (𝐵0 + ∆𝐵0 + 𝑟(𝑡)𝐺(𝑡)) 

If we change to the rotating coordinate [29], the relative frequency become: 

𝜔(𝑟, 𝑡) =  𝛾 ∙ (∆𝐵0 + 𝑟(𝑡)𝐺(𝑡)) 

Then the phase change of the particle at location r is  

𝜑(𝑟, 𝑇𝐸) −  𝜑(𝑟, 𝑡0) = ∫ 𝜔(𝑟, 𝑡)𝑑𝑡

𝑇𝐸

𝑡0

= 𝛾𝛥𝐵0(𝑇𝐸 − 𝑡0) + 𝛾 ∫ 𝐺(𝑡)𝑟(𝑡)𝑑𝑡
𝑇𝐸

𝑡0

 

the gradient related phase change can be expanded: 

𝜑(𝑟, 𝑇𝐸) = 𝜑0 + ∑ 𝛾
𝑟(𝑛)

𝑛!
∫ 𝐺(𝑡)(𝑡 − 𝑡0)

𝑛𝑑𝑡
𝑇𝐸

𝑡0

∝

𝑛=0

 

where 𝑟(𝑛) is the n-th derivative of r. if we keep only the 0-th and 1-th order, then 

𝜑(𝑟, 𝑇𝐸) = 𝜑0 + 𝛾𝑟0 ∫ 𝐺(𝑡)𝑑𝑡
𝑇𝐸

0

+ 𝛾𝑣 ∫ 𝐺(𝑡)𝑡𝑑𝑡 + ⋯
𝑇𝐸

0

 

Here  𝛾𝑟0 ∫ 𝐺(𝑡)𝑑𝑡
𝑇𝐸

0
 measures the phase change of the static spins (denoted as 𝑀0 ) 

and 𝛾𝑣 ∫ 𝐺(𝑡)𝑡𝑑𝑡
𝑇𝐸

0
 measures the phase change of moving spins (denoted as 𝑀1). 

Velocity encoding is realized by bipolar gradients. However, the phase difference induced 

by the inhomogeneity of the magnetic field cannot be compensated, therefore a pair of 

bipolar gradient of reversed order is used [30]. By subtracting the phase of the two bipolar 
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gradients, the velocity can be measured. It needs to be mentioned that the measured 

velocity is the projection of the true velocity in the direction of the applied velocity-

encoding gradient. 

𝜑1 − 𝜑2 = ∆𝜑 = 𝛾 ∙ 𝑣 ∙ ∆𝑀1 

So that  

𝑣 =
∆𝜑

𝛾∆𝑀1
 

Traditional 2D phase contrast image can be used to measure the flow in the arteries or 

veins. One important use is to estimate the instantaneous flow rate and ejection volume 

curve. Another application use is to calculate the ratio between pulmonary flow (Qp) and 

system flow (Qs). This ratio is called Qp:Qs measurement, and it is used to measure the 

cardiac shunt.  

Nowadays, 4D flow imaging is getting more and more attention. Fast imaging techniques 

allow the acquisition of 3D velocity information in the 3D volume at once, using multiple 

images to cover the whole heart cycle in less than 10min. Compared to 2D flow imaging, 

4D flow imaging allows more accurate measurement of the flow by adjusting the 

measurement plane according to the flow direction and heart movement[31]. Another 

topic under research is the intra-cardiac flow pattern, which can provide new parameters 

for cardiac disease diagnostic[32]. 

2.2.5 DIFFUSION WEIGHTED IMAGING AND DIFFUSION TENSOR IMAGING 

Diffusion imaging is based on the Brownian motion of the molecules. For molecules inside 

cells, the Brownian motion is constrained by the boundary of the cells.  

Diffusion imaging uses a pulsed gradient spin-echo sequence to encode the diffusion 

motion, which is composed by a 90 degree pulse followed by 180 degree pulse, with 

diffusion-encoding gradients on both sides of the 180° pulse [33].  



19 
 

 

Figure 12. Sequence for diffusion tensor image.  

If molecules are static, the phase accumulated during the first diffusion gradient would 

be fully compensated by the phase accumulated during the second one (same phase with 

reversed polarity). Due to the Brownian motion,   the spatial position of the water 

molecules will be different during the first and second diffusion gradient, resulting in a 

phase shift and an attenuation of the average signal of the voxel. The attenuation of the 

signal can be described as  

𝑆𝐼 =  𝑆𝐼0 × 𝑒𝑥𝑝(−𝑏 × 𝐷), 

Here 𝑆𝐼 is the attenuated signal, 𝑆𝐼0 is the original signal. b is a parameter determined by 

the amplitude, duration and the spacing of the diffusion encoding pulse. D is the diffusion 

coefficient. In clinical practice, the measured diffusion coefficient can be obtained by 

measuring signals under different b value, which is named as ADC (Appearance diffusion 

coefficient).  

In diffusion tensor imaging, the diffusion gradient is defined. By varying the direction of 

the diffusion gradient, a sampling space is formed, named as q-space. If 3-diffusion tensor 

images along 3 orthogonal axis are acquired, a model of the 3d diffusion movement can 

be established. However, the fiber orientation can be more complicated, and [34] 

proposed to use ellipsoid to model the local orientation of the fibers. Therefore, 6 

diffusion weighted images are sampled in the q-space. In this case, the diffusion 

coefficient is a matrix and can be decomposed along 3 principal axes. 

𝐷 = [
𝐷00 𝐷01 𝐷02

𝐷10 𝐷11 𝐷12

𝐷20 𝐷21 𝐷22

] =𝐸 [

𝜆0 0 0
0 𝜆1 0
0 0 𝜆2

] 𝐸𝑇 

Diffusion tensor imaging is quite useful to establish the fiber orientation model of the 

heart. However this is particularly challenging for the heart due to the moving nature of 

Samping Samping 

RF pulse 

Gradient 

(b-value) 

Excitation Excitation 
Refocusing Refocusing 
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the heart. A variety of fast acquisition and post-processing techniques have been 

developed to improve the quality of cardiac diffusion imaging [35].  

2.2.6 IMAGING PLANES 

 

Figure 13. Illustration of cardiac imaging planes 

 

For the heart, the most often used views include short axis images, 4-chamber view, 2-

chamber view and 3-chamber view, as shown in Figure 13. The local long axis is defined 

as the line from mitral valve to the apex of the heart. The plane perpendicular to the long 

axis is defined as short-axis plane.  More detailed description about how to find the 

imaging planes can be found in [36]. 

2.2.7 AHA 17 SEGMENT MODEL AND BULL’S EYES  

In clinical applications, heart function is evaluated globally and locally. Global parameters 

including end-diastolic volume, end-systolic volume, ejection volume, ejection fraction 

and so on. Local parameter are usually evaluated by segmenting the heart into several 

regions and the results are summarized and visualized using a Bull’s eyes plot. The AHA 

16-segment model is a standard way to segment the left ventricle. The definition of the 

AHA16-segment model is shown in Figure 14. In AHA-16 segment model, short axis slices 

2-chamber 

4-chamber Short axis 
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at apex, mid-cavity and basal  are taken.  On each slice, the myocardium region is divided  

into 6 (basal and mid-cavity) or 4 (apex) region. The regions are grouped into different 

area, as color coded in Figure 14 (Left). In clinical report, bull’s eye is usually used to 

visualize the regional result Figure 14 (Right).  

 

Figure 14. AHA-16 segment definition 
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Chapter 3 Image registration 

Image registration is a widely used technique in medical image analysis. It tries to match 

the coordinates of different images so that the images are aligned with each other. In this 

chapter, the basic components and workflow of image registration are introduced. 

Several image registration frameworks are explained in more detail. 

3.1 INTRODUCTION 

For medical application, image registration can be applied in several ways. The most 

important use is to align the images acquired at different times or by different imaging 

techniques so that the information from different images can be fused [37]. Another 

important use is to measure the deformation between the two images. The measured 

deformation can either be used as motion field to extract clinical information like 

myocardial contraction, or it can also be used as intermediate information to improve the 

image quality of a moving organ like the heart [10,38].  

In image registration cost function is defined to measure how well the two images aligned. 

The cost function can be defined based on geometric features or/and image intensity. For 

feature based image registration, anatomical landmarks are extracted and the 

correspondence is established. Then the motion field in the rest of the image is obtained 

by interpolation. For intensity based image registration, a transformation model is 

defined based on the application purpose and the intensity of the images is used to 

measure the similarity between the images. The following paragraph explains the 

intensity based image registration. 

3.2 INTENSITY BASED IMAGE REGISTRATION 

Intensity based image registration can be formulated as an optimization problem, which 

can be defined as  

𝐴𝑟𝑔𝑚𝑎𝑥𝑇𝐶(𝐼𝐹(𝑥, 𝑦), 𝐼𝑀(𝑇(𝑥, 𝑦))) 
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Where 𝐶(𝐼𝐹, 𝐼𝑀) is the similarity function to estimate the similarity between fixed image 

𝐼𝐹 and moving image 𝐼𝑀. And (𝑥′, 𝑦′) = 𝑇(𝑥, 𝑦) is the spatial transformation. To solve this 

optimization problem, iterative methods are usually used. The moving image is distorted 

step by step to match the fixed image, therefore in addition to the optimizer and similarity 

module, an interpolator is needed to create a new deformed image from a moving image 

𝐼𝑀. The diagram can be summarized as below.   

  

Figure 15. Image registration framework 

In practice, a multi-level approach is used to reduce the number of parameters and 

improve the accuracy of registration in case of large deformation. In multi-level 

framework, a pyramid of images is created, the images are registered from coarse to fine. 

The deformation grid got from the coarse level is used as an initial guess for the finer level. 

 

Figure 16. Illustration of multi-level image registration framework. 

3.3 TRANSFORMATION 

Fixed Image 

IF(x,y) 

Moving  Image 

IM(x,y) 

Transformation 

T(x,y) 

Interpolator 

I(x,y) 

Similarity Measure 

C(IF(x,y), IM’(x,y)) 

Interpolated 
Image IM’(x,y) Optimizer 

O(x) 

Registered 
Image IR(x) 
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3.3.1 RIGID TRANSFORMATION 

The rigid transformation is a global transformation for the whole image. Depending on 

the number of degrees of freedom, there are different transformations models: 

• TRANSLATION 

[
𝑥′

𝑦′] = [
𝑥
𝑦] + [

𝑡𝑥
𝑡𝑦

] 

 

• ROTATION 

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃)
−𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃)

] [
𝑥
𝑦] 

• RIGID TRANSFORMATION 

 

[
𝑥′

𝑦′] = 𝑠 [
𝑐𝑜𝑠 (𝜃) 𝑠𝑖𝑛 (𝜃)
−𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃)

] [
𝑥
𝑦] + [

𝑡𝑥
𝑡𝑦

] 

• AFFINE TRANSFORMATION  

[
𝑥′

𝑦′] = [
𝑎00 𝑎01

𝑎10 𝑎11
] [

𝑥
𝑦] + [

𝑏0

𝑏1
] = 𝐴 [

𝑥
𝑦] + 𝑏 

3.3.2 NON-RIGID REGISTRATION 

3.3.2.1 POLYNOMIAL TRANSFORMATION. 

 

Figure 17. (Left) polynomial transformation (Right) Thin-plate transformation 

For polynomial transformation, a set of feature points are detected, the transformation 

is modeled as a polynomial function of the position of the points (Figure 17). The 

transformation parameters are estimated from a feature set and applied to the whole 

image. 

' , 'i ix y
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{
𝑥′ = 𝑎0,0 + 𝑎1,0𝑥 + 𝑎0,1𝑦 + 𝑎1,1𝑥𝑦 + 𝑎2,0𝑥

2 + 𝑎0,2𝑦
2 + ⋯

𝑦′ = 𝑏0,0 + 𝑏1,0𝑥 + 𝑏0,1𝑦 + 𝑏1,1𝑥𝑦 + 𝑏2,0𝑥
2 + 𝑏0,2𝑦

2 + ⋯
 

3.3.2.2 THIN-PLATE 

The thin-plate transformation model assumes a smooth transformation surface. Similarly 

to the polynomial transformation, a set of feature points is needed and the 

transformation parameters are estimated using those points. For the other points, the 

transformation is like a global polynomial transformation plus the weighted local shift 

depending on the distance of this point to the feature point.  

𝑥′ = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + ∑𝐹𝑖𝑟𝑖
2log (𝑟𝑖)

𝑁

1

 

𝑦′ = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + ∑𝐺𝑖𝑟𝑖
2log (𝑟𝑖)

𝑁

1

 

Where 𝑟𝑖
2 = (𝑥 − 𝑥𝑖)

2 + (𝑦 − 𝑦𝑖)
2 

This is equivalent to minimizing the bending energy of the transformation[39] 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = ∬((
𝜕2𝑇

𝜕𝑥1
2)

2

+ 2(
𝜕2𝑇

𝜕𝑥1𝜕𝑥2
)

2

+ (
𝜕2𝑇

𝜕𝑥2
2)

2

)𝑑𝑥1𝑑𝑥2 

Where 𝑇(𝑥, 𝑦) = 𝑎1 + 𝑎𝑥𝑥 + 𝑎𝑦𝑦 + ∑ 𝐹𝑖𝑟𝑖
2𝑙𝑜𝑔𝑟𝑛

𝑖=1  

For example, given N=5 points, the parameters can be estimated by solving the following 

equation. This equation can be solved efficiently using LU decomposition method. 

 

The thin-plate transformation can guarantee to have a smooth surface, implemented by 

adding a regularization in the cost function. The regularization term is the second order 

gradient of the deformation field.  
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3.3.2.3 CUBIC B-SPLINE 

In cubic B-spline transformation, a regular grid is defined and the interception points are 

defined as control points. Perturbation of a control point can affect and only affect the 

neighboring point. For points other than control points, the local translation is obtained 

by cubic b-spline interpolation of the shifted control points. For 2D images, the transform 

can be formulated as  

[
𝑥′

𝑦′] = 𝑇(𝑥, 𝑦) = [
∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝜑𝑥,𝑖+𝑙,𝑗+𝑚

3
𝑚=0

3
𝑙=0

∑ ∑ 𝐵3
𝑙 (𝑢)𝐵3

𝑚(𝑣)𝜑𝑦,𝑖+𝑙,𝑗+𝑚
3
𝑚=0

3
𝑙=0

]  

Where ( 𝜑𝑥,𝑖,𝑗 ,  𝜑𝑦,𝑖,𝑗) is the deformation at control point (𝑖, 𝑗) and {Bi} are the spline 

functions 

              B3
0(u) = (1 − u3)/6 

              B3
1(u) = (3u3 − 6u2 + 4)/6 

              B3
2(u) = (−3u3 + 3u2 + 3u + 1)/6 

              B3
3(u) = u3/6  

Similar to the 2D case, the 3D cubic B-spline transformation can be defined as  

[
𝑥′

𝑦′

𝑧′

] = 𝑇(𝑥) =

[
 
 
 
 
 
 
 
 
∑ ∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝐵3

𝑛(𝑤)𝜑𝑥,𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0

∑ ∑ ∑ 𝐵3
𝑙 (𝑢)𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤)𝜑𝑦,𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0

∑ ∑ ∑ 𝐵3
𝑙 (𝑢)𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤)𝜑𝑧,𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

3

𝑙=0 ]
 
 
 
 
 
 
 
 

 

3.4 SIMILARITY MEASUREMENT 

The most often used cost function for intra modality registration are sum of square 

difference (SSD, also named as Least square difference) and normalized cross correlation 

(NCC) 

𝑆𝑆𝐷(𝑇) = ∑ (𝐼𝐹,𝑖 − 𝐼𝑀,𝑖(𝑇))2

𝑖
 

𝑁𝐶𝐶(𝑇) =
∑ (𝐼𝐹,𝑖 − 𝜇𝐹)(𝐼𝑀,𝑖(𝑇) − 𝜇𝑀)𝑖

√∑ (𝐼𝐹,𝑖 − 𝜇𝐹)2
𝑖 √∑ (𝐼𝑀,𝑖(𝑇) − 𝜇𝑀)2

𝑖
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Where 𝑖 is the index of pixels, 𝜇𝐹 , 𝜇𝑀  are the average intensity of the fixed image and 

moving image, 𝑇 is the transforamtion. 

Mutual information (MI) or normalized mutual information (NMI) are more widely used 

for images with different contrasts, e.g. different modalities. In information theory, the 

MI is defined as: 

𝑀𝐼 = 𝐻(𝐼𝐹) + 𝐻(𝐼𝑀) − 𝐻(𝐼𝐹 , 𝐼𝑀) 

where 𝐻(𝐼𝐹) = −∑ 𝑝(𝐼𝐹 = 𝑖𝐹,) ∙ 𝑙𝑜𝑔(𝑝(𝐼𝐹 = 𝑖𝐹,))𝑖𝐹,
 is the entropy of the fixed image 𝐼𝐹 

and 𝐻(𝐼𝐹 , 𝐼𝑀) is the joint entropy of fixed image and moving image. 

For image registration, 𝑀𝐼 can be rewritten as: 

𝑀𝐼(𝑢) = ∑ 𝑃𝐼𝐹,𝐼𝑀(𝐼𝐹 = 𝑖𝐹 , 𝐼𝑀(𝑢) = 𝑖𝑀) ∙ 𝑙𝑜𝑔
𝑃𝐼𝐹,𝐼𝑀(𝐼𝐹 = 𝑖𝐹 , 𝐼𝑀(𝑢) = 𝑖𝑀)

𝑃𝐹(𝐼𝐹 = 𝑖𝐹) ∙ 𝑃𝑀(𝐼𝑀(𝑢) = 𝑖𝑀)
𝑖𝐹,𝑖𝑀

 

Here 𝑖𝐹,𝑖𝑀represent the intensity in the fixed image and moving image respectively. 

During the image registration process, a challenge is to calculate the derivative of the 

similarity measurement with respect to the deformation parameters. For SSD 

𝜕𝑆𝑆𝐷(𝑇)

𝜕𝑇
= ∑ 2 ∙ (𝐼𝐹,𝑖 − 𝐼𝑀,𝑖(𝑇)) ∙

𝜕𝐼𝑀,𝑖

𝜕𝑇
𝑖𝐹,𝑖𝑀

 

For mutual information, the derivative is more difficult to calculate. In order to simplify 

the annotation, suppose 𝑃𝐼𝐹,𝐼𝑀
(𝐼𝐹 = 𝑖𝐹 , 𝐼𝑀(𝑢) = 𝑖𝑀) = 𝑃𝐹,𝑀, then 

𝜕𝑀𝐼(𝑇)

𝜕𝑇
= ∑ [(𝑃𝐹,𝑀)

′
𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
+ 𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀

𝑃𝐹,𝑀

𝜕

𝜕𝑢
(
𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
)]

𝑖𝐹,𝑖𝑀

= ∑ [(𝑃𝐹,𝑀)
′
𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
+ 𝑃𝐹𝑃𝑀 (−(𝑃𝐹𝑃𝑀)2

𝜕𝑃𝐹𝑃𝑀

𝜕𝑢
𝑃𝐹,𝑀 +

(𝑃𝐹,𝑀)′

𝑃𝐹𝑃𝑀
)]

𝑖𝐹,𝑖𝑀

= ∑ [(𝑃𝐹,𝑀)
′
𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
−

(𝑃𝑀)′𝑃𝐹,𝑀

𝑃𝑀
+ (𝑃𝐹,𝑀)′]

𝑖𝐹,𝑖𝑀

= ∑(𝑃𝐹,𝑀)
′
[𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
+ 1]

𝑖𝐹,𝑖𝑀

− ∑
(𝑃𝑀)′𝑃𝐹,𝑀

𝑃𝑀
𝑖𝐹,𝑖𝑀

 

The last term ∑
(𝑃𝑀)′𝑃𝐹,𝑀

𝑃𝑀
𝑖𝐹,𝑖𝑀 = ∑

(𝑃𝑀)′

𝑃𝑀
∑ 𝑃𝐹,𝑀𝑖𝐹,𝑖𝑀 = ∑ (𝑃𝑀)′

𝑖𝑀 = 0 because the entropy 

of the image does not depend on the transformation. 
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Similarly, the first term ∑ (𝑃𝐹,𝑀)
′
[𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝐹𝑃𝑀
+ 1]𝑖𝐹,𝑖𝑀 = ∑ (𝑃𝐹,𝑀)

′
𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝑀
𝑖𝐹,𝑖𝑀  

So 

𝜕𝑀𝐼(𝑇)

𝜕𝑇
= ∑(𝑃𝐹,𝑀)

′
𝑙𝑜𝑔

𝑃𝐹,𝑀

𝑃𝑀
𝑖𝐹,𝑖𝑀

 

More details about how to get the gradient of the probability distribution function can be 

found in [40]. 

3.5 OPTIMIZATION 

3.5.1 STEEPEST DESCENT 

Steepest descent optimization, also named as gradient descent optimization, is a first-

order iterative optimization algorithm. Starting from the initial position, the steepest 

descent algorithm takes steps in the negative gradient direction to find the minimum. 

Suppose 𝑢𝑛  is the displacement field at iteration n. The relationship between 

transformation 𝑇 and displacement 𝑢 is  

𝑇 = 𝐼 + 𝑢 

In steepest decent algorithm, 

𝑢𝑛+1 = 𝑢𝑛 − 𝛾𝛻𝐸(𝑢; 𝐼𝐹 , 𝐼𝑀) 

Here 𝐸  is the cost function (including the similarity function and the regularization in 

image registration), γ is the step size. Usually γ is also updated in each iteration. 

𝛾𝑛 =
(𝑢𝑛 − 𝑢𝑛−1)

𝑇[𝛻𝐸(𝑢𝑛) − 𝛻𝐸(𝑢𝑛−1)]

‖𝛻𝐸(𝑢𝑛) − 𝛻𝐸(𝑢𝑛−1)‖2
 

if 𝐸 is convex, the gradient descent algorithm is guaranteed to converge. 

3.5.2 STOCHASTIC GRADIENT DESCENT 

In stochastic gradient method, the true gradient is replaced by an approximated gradient 

obtained from a randomly selected subset of samples, which can reduce the calculation 

time.  
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𝑢𝑘+1 = 𝑢𝑘 −  𝛾𝛻𝐸̃ 

Where ∇Ẽ is an approximation of the ∇E and the step size γ is adjusted  

𝛾𝑘 = 𝑎 (𝑘 + 𝐴)𝛼⁄  

Parameters a > 0 , A ≥ 1  and 0 < 𝛼 ≤ 1 . Theoretically α = 1  gives optimum rate of 

convergence [41], however, in practices α < 1 is often used to prevent the step size decay 

from being too fast. The choice of the parameters should be scaled as the cost function 

changes. In [42], an adaptive stochastic gradient descent algorithm is proposed to adjust 

γk  based on ∇Ek̃
T
∇Ẽk−1 . The idea is that when two consecutive steps are in similar 

direction, then larger step sizes should be taken. It can be formulated as the following: 

𝛾𝑘 ≡ 𝛾(𝑡𝑘) = 𝑎 (𝑡𝑘 + 𝐴)𝛼⁄  

𝑡𝑘+1 = 𝑚𝑎𝑥 (0, 𝑡𝑘 + 𝑓(−𝛻𝐸𝑘̃
𝑇
𝛻𝐸̃𝑘−1)) 

Where f is the sigmoid function and α = 1 is used. More details about the selection of a 

and A are given in [42]. 

3.5.3 CONJUGATE DESCENT 

Conjugate gradient algorithm 

𝑟0 = 𝑏 − 𝐴𝑥0 
𝑝0 = 𝑟0 
K=0 
Repeat 

      𝛼𝑘 =
𝑟𝑘

𝑇𝑟𝑘

𝑝𝑘
𝑇𝐴𝑝𝑘

 

      𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘 
      𝑟𝑘+1 = 𝑟𝑘 − 𝛼𝑘𝐴𝑝𝑘 
      If rk+1 is sufficiently small, the exit loop 

      𝛽𝑘+1 =
𝑟𝑘+1 

𝑇 𝑟𝑘+1

𝑟𝑘
𝑇𝑟𝑘

 

      𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘 
      k=k+1 
End repeat 
 

The conjugate gradient algorithm is used for solving linear systems. It is regarded as a 

method between steepest decent and Newton’s method, therefore reaching a good 

compromise between speed and complexity. In the conjugate gradient algorithm, the 



30 
 

conjugate direction is used instead of the gradient direction. The pseudo code is shown 

as above. 

3.5.4 POWELL’S METHOD 

Powell’s method is a conjugate direction method. This algorithm starts from a set of initial 

mutually conjugate directions {𝑠𝑖}. It tries to minimize the cost function on each direction 

by searching along the searching direction.  

Powell’s method  

x0 ∈ RN ∶ initial position  
{si} : initial searching direction 
Repeat: 
         Search along each direction in {si} to get minimum {αi} and set xi = xi−1 + αisi 
         Adjust searching direction, for i=1,…,N-1, set si = si+1 
         sN = xN − x0 
         Move xN to the minimum along the direction sN and set this point to  x0 

End repeat 

For quadratic cost function 𝐸(𝑥) = 𝑐 − 𝑏 ∙ 𝑥 +
1

2
𝑥 ∙ 𝐴 ∙ 𝑥𝑇 , where 𝑥0 ∈ 𝑅𝑁 ,  Powell’s 

algorithm can reach a minimum with N iteration. Powell’s method does not need to 

calculate the gradient of the cost function, however, this method may fail when the new 

search direction is not independent from the previous one. An improved method has be 

proposed by [43].  

3.5.5 QUASI-NEWTON METHOD 

Quasi-Newton method 

x0 : initial guess 
H0 : nxn matrix 
Repeat 
      Compute ∇f(xk) and take the search direction as hk = −Hk∇f(xk) 
      Search along hk direction and take xk+1 = xk + αhk where f(xk + αhk) is mimium 
      Hk+1 = Hk + Uk where Uk is the updating matrix  
End repeat 

Newton method is a second order optimization. Compared to first order methods, newton 

method converges much faster, however, the secondary derivative is computationally 

expensive. The quasi-Newton method uses line search, similar as conjugate gradient 
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methods, but converge faster for quadratic cost function by calculating the inverse of the 

approximate Hessian matrix at each iteration, which is denoted as Hk. 

Hk+1 satisfy 𝑥𝑘+1 − 𝑥𝑘 = 𝐻𝑘+1(𝛻𝑓(𝑥𝑘+1) − 𝛻𝑓(𝑥𝑘)). In each iteration, 𝐻𝑘 is updated by 

adding an correction term 𝑈𝑘 . There are algorithms proposed to find the Uk .  The 

Davidon-Fletcher-Powell method(DFP) [44]proposed 

𝑈𝑘 =
∆𝑥𝑘∆𝑥𝑘

𝑇

∆𝑥𝑘
𝑇∆𝑔𝑘

−
(𝐻𝑘∆𝑔𝑘)(𝐻𝑘∆𝑔𝑘)

𝑇

∆𝑔𝑘
𝑇𝐻𝑘∆𝑔𝑘

 

Where ∆𝑔𝑘 = 𝛻𝑓(𝑥𝑘+1) − 𝛻𝑓(𝑥𝑘) and ∆𝑥𝑘 = 𝑥𝑘+1 − 𝑥𝑘 

BFGS [44] is another widely used quasi-Newton method, where  Hk is updated as the 

following 

𝑈𝑘 = (1 +
∆𝑔𝑘

𝑇𝐻𝑘∆𝑔𝑘

∆𝑥𝑘
𝑇∆𝑔𝑘

)
∆𝑥𝑘∆𝑥𝑘

𝑇

∆𝑥𝑘
𝑇∆𝑔𝑘

−
𝐻𝑘∆𝑔𝑘∆𝑥𝑘

𝑇 + (𝐻𝑘∆𝑔𝑘∆𝑥𝑘
𝑇)𝑇

∆𝑥𝑘
𝑇∆𝑔𝑘

 

𝐻𝑘 = 𝐻𝑘−1 +
𝑦𝑦𝑇

𝑦𝑇𝑠
−

𝐻𝑘−1𝑠𝑠
𝑇𝐻𝑘−1

𝑠𝑇𝐻𝑘−1𝑠
 

Where 𝑠 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦 = 𝛻𝑓(𝑥𝑘+1) − 𝛻𝑓(𝑥𝑘) 

𝐻𝑘
−1 = (𝐼 −

𝑠𝑦𝑇

𝑦𝑇𝑠
)𝐻𝑘−1

−1 (𝐼 −
𝑦𝑠𝑇

𝑦𝑇𝑠
) +

𝑠𝑠𝑇

𝑦𝑇𝑠
 

3.6 REGULARIZATION 

Image registration is an ill-posed problem that the solution is not unique. Therefore 

additional regularization is usually needed to get a physically realistic solution. 

3.6.1 DIFFUSION REGULARIZATION 

L2  norm is quite often used in regularization. Diffusion regularization, also named as 

Tikhonov regularization or 1st order regularization, is a widely used regularization in image 

registration. The regularization is defined as: 
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𝑅(𝑇) = ‖𝛻𝑇‖
2 = ∑(

𝑑𝑢

𝑑𝑥
)

2

+ (
𝑑𝑢

𝑑𝑦
)

2

+ (
𝑑𝑣

𝑑𝑥
)

2

+ (
𝑑𝑣

𝑑𝑦
)

2

𝑥𝜖𝛺

 

Where (𝑢, 𝑣) is the displacement vector at (𝑥, 𝑦). The diffusion regularization attempts 

to make the displacement smooth. More details can be find in [45]. 

3.6.2 CURVATURE REGULARIZATION  

The curvature regularization proposed in [46] reached good smoothness while 

automatically correcting the global rigid misalignment. The regularization is defined as   

𝑅(𝑇) = ‖∆𝑇‖2 = (
𝑑2𝑢

𝑑𝑥2
)2 + 2(

𝑑2𝑢

𝑑𝑥𝑑𝑦
)2 + (

𝑑2𝑢

𝑑𝑦2
)2 + (

𝑑2𝑣

𝑑𝑥2
)2 + 2(

𝑑2𝑣

𝑑𝑥𝑑𝑦
)2 + (

𝑑2𝑣

𝑑𝑦2
)2 

3.6.3 TOTAL VARIATION REGULARIZATION 

Total variation is an 𝑙1-norm regularization. Compared to 𝑙2-norm regularization, the total 

variation has better edge-preserving capability. This is a desired property in medical image 

registration because of the sliding between the interfaces of the organs. However, the 

total variation is computational more complex and might introduce staircase artifact. 

The total variation regularization is defined as :  

𝑅(𝑇) = ‖𝛻𝑇‖ = |𝛻𝑇| 

To solve the total variation regularization, it can be reformulated as the following. 

However this makes the solution unstable because the formula is not differentiable at 0. 

|𝛻𝑇| ≈ √‖𝛻𝑇‖2 = √Tt𝛻𝑡𝛻𝑇 = √(
𝑑𝑢
𝑑𝑥

)
2

+ (
𝑑𝑢
𝑑𝑦

)
2

+ (
𝑑𝑣
𝑑𝑥

)
2

+ (
𝑑𝑣
𝑑𝑦

)
2

 

V. Vishnevskiy et al proposed to use Alternating Directions Methods of Multipliers 

(ADMM) method to solve this problem and the result shows accurate estimation of the 

motion fields [47]. 

3.6.4 RIGIDITY PENALTY 

Rigidity is estimated by combining the linearity 𝜕𝑖,𝑗𝑇𝑘 = 0, orthogonality 𝛻𝑇𝑇𝛻𝑇 = 𝐼 and 

orientation preservation 𝑑𝑒𝑡𝛻𝑇 = 1 [48] [49]. 
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𝑅(𝑇) =
1

2
‖[𝜕1,1𝑇1, … , 𝜕𝑑,𝑑𝑇1, 𝜕1,1𝑇2, … ]‖

2
+

1

2
‖𝛻𝑇𝑇𝛻𝑇 − 𝐼‖2 +

1

2
‖𝑑𝑒𝑡𝛻𝑇 − 1‖2 

To keep the rigidity locally, a weight function can be applied before integrated into the 

cost function 

𝑅𝑙𝑜𝑐𝑎𝑙(𝑇) = ‖𝐵 ∙ 𝑇‖2 where 𝐵 is the weight function 

This problem can be solved as a constrained nonlinear optimization, and sequential 

quadratic programming can be used to solve it[48,50]. 

3.6.5 ELASTIC REGULARIZATION 

The elastic regularization models the image as an elastic membrane, and the 

regularization is the internal force. It is defined as  

𝑅(𝑇) =
𝜇

2
∑ ‖𝛻𝑢𝑖‖

2𝐾

𝑖=1
+

𝜆 + 𝜇

2
(𝛻 ∙ 𝑢)2 

Where u is the displacement field and 𝑢𝑖  is the i-th component of u. 𝜇 represent the 

rigidity or stiffness of the material and 𝜆 is the Lamé’s first coefficient. The elastic model 

can derive a smooth motion field, however, might not reach the desired deformation 

because of the internal force. More detailed description can be found in [51],[52]. 

3.6.6 FLUID REGULARIZATION 

The fluid regularization uses the viscous fluid model to control the deformation 

𝑅(𝑇) =
𝜇

2
∑ ‖𝛻𝑣𝑖‖

2𝐾

𝑖=1
+

𝜆 + 𝜇

2
(𝛻 ∙ 𝑣)2 

Where 𝑣 =
𝑑

𝑑𝑡
𝑢(𝑥, 𝑡) is the velocity field. Fluid regularization allows large deformations 

and forces them to be continuous. More detailed descriptions can be found in [53]. 

3.6.7 VOLUME PRESERVING CONSTRAINTS 

To achieve volume preserving, additional constraint can  be added. Eldad H et al formulate 

the image registration problem as the following [54] 
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𝐸(𝑢) =  𝐸(𝑢; 𝐼𝐹 , 𝐼𝑀) + 𝑅(𝑢)  

subject to 𝐶(𝑢) = 𝑑𝑒𝑡(𝐼 + 𝛻𝑢) − 1 = 0 

Where 𝐸 is the similarity between fixed image and moving image, 𝑅 could be any other 

regularization and  𝐶(𝑢) is the volume preserving term. 

To solve this problem, [54] used the Sequential Quadratic Programming algorithm. 

3.6.8 SHAPE CONSTRAINT 

The previous regularization in this section are based on the image information and 

physical model. Another possible constrain is by introducing user labeled points or 

contours or automatically detected feature points. For example, suppose {pi} are the 

points in the fixed image, and {pi
′} are the points in the moving image, then regularization 

can be written as 

𝑅 = ∑ ‖𝑝𝑖 − 𝑝𝑖
′‖2

𝑛

𝑖=0
 

 [55] shows how the contours can be used to make the registration more robust and 

accuracy. 

3.7  EXAMPLES OF IMAGE REGISTRATION FRAMEWORKS 

3.7.1 B-SPLINE BASED 

For B-spline based image registration, the motion field is controlled by control points as 

described in 3.3.2.3. Taken SSD similarity as an example:  

𝐶𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ‖𝐼𝑚(𝑇(𝑥)) − 𝐼𝑓‖
2 = ∑(𝐼𝑚(𝑇(𝑥)) − 𝐼𝑓)

2

𝑥𝜖𝛺

 

To solve the displacement 𝜑𝑖,𝑗,𝑘 at the control point (i, j, k), the derivative of the 

measurement matrix then needs to be calculated 

𝑑𝐶

𝑑𝜑𝑖,𝑗,𝑘
=

𝑑𝐶

𝑑𝐼𝑚

𝑑𝐼𝑚
𝑑𝑇

𝑑𝑇

𝑑𝜑𝑖,𝑗,𝑘
 

Because 
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𝑑𝑇(𝑥)

𝜑𝑖,𝑗.𝑘
= ∑ ∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝐵3

𝑛(𝑤)

3

𝑛=0

3

𝑚=0

3

𝑙=0

 

So that  

𝑑𝐶

𝑑𝜑𝑖,𝑗,𝑘
= 2 ∙ ∑(𝐼𝑚(𝑇(𝑥)) − 𝐼𝑓) ∙ [

∂𝐼𝑀
∂x

 
∂𝐼𝑀
∂y

 
∂𝐼𝑀
∂z

 ]

𝑥𝜖𝛺

∙ ∑ ∑ ∑ 𝐵3
𝑙 (𝑢)𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤)

3

𝑛=0

3

𝑚=0

3

𝑙=0

 

It needs to be mentioned that 
𝑑𝐶

𝑑𝜑𝑖,𝑗,𝑘
 is a vector. 

Different regularizations can be added to this framework.  For diffusion regularization, the 

derivative is then   

𝑑𝑅

𝑑𝜑𝑖,𝑗,𝑘
= ∑2 ∙ (

𝑑𝑢

𝑑𝑥
) ∙

𝑑

𝑑𝜑𝑖,𝑗,𝑘
(
𝑑𝑢

𝑑𝑥
) + ⋯ .

𝑥𝜖𝛺

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
)

𝑥𝜖𝛺

∙
𝑑

𝑑𝜑𝑖,𝑗,𝑘
(
𝑑

𝑑𝑥
(∑ ∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝐵3

𝑛(𝑤)𝜑𝑖+𝑙,𝑗+𝑚,𝑘+𝑛)) + ⋯

3

𝑛=0

.

3

𝑚=0

3

𝑙=0

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
)

𝑥𝜖𝛺

∙
𝑑

𝑑𝜑𝑖,𝑗,𝑘
(∑ ∑ ∑

𝑑𝐵3
𝑙 (𝑢)

𝑑𝑢
𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤)𝜑𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

)

3

𝑚=0

3

𝑙=0

+ ⋯ .

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
)

𝑥𝜖𝛺

∙ (∑ ∑ ∑
𝑑𝐵3

𝑙 (𝑢)

𝑑𝑢
𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤)) + ⋯

3

𝑛=0

3

𝑚=0

3

𝑙=0

. 

For curvature based regularization, the derivative is  

𝑑𝑅

𝑑𝜑𝑖,𝑗,𝑘
= ∑2 ∙ (

𝑑2𝑢

𝑑𝑥2
) ∙

𝑑

𝑑𝜑𝑖,𝑗,𝑘
(
𝑑2𝑢

𝑑𝑥2
) + ⋯

𝑥𝜖𝛺

.

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
)

𝑥𝜖𝛺

∙
𝑑

𝑑𝜑𝑖,𝑗,𝑘
(
𝑑

𝑑𝑥
(∑ ∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝐵3

𝑛(𝑤)𝜑𝑖+𝑙,𝑗+𝑚,𝑘+𝑛)) + ⋯

3

𝑛=0

3

𝑚=0

3

𝑙=0

.

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
) ∙

𝑑

𝑑𝜑𝑖,𝑗,𝑘
(∑ ∑ ∑ 𝐵3

𝑙 (𝑢)𝐵3
𝑚(𝑣)𝐵3

𝑛(𝑤)𝜑𝑖+𝑙,𝑗+𝑚,𝑘+𝑛

3

𝑛=0

3

𝑚=0

)

3

𝑙=0𝑥𝜖𝛺

.

= ∑ 2 ∙ (
𝑑𝑢

𝑑𝑥
) ∙ (∑ ∑ ∑

𝑑2𝐵3
𝑙 (𝑢)

𝑑𝑢2
𝐵3

𝑚(𝑣)𝐵3
𝑛(𝑤))

3

𝑛=0

3

𝑚=0

3

𝑙=0𝑥𝜖𝛺

+ ⋯. 

 

The B-spline transformation can reach a good computational efficiency, however, 

sometimes regularization is needed to prevent folding of the deformation field. 
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3.7.2 ELASTIC REGISTRATION 

In elastic registration, the deformation is modeled as an elastic surface deforming under 

external force and internal force. The external force is the image force, defined by 

comparing the difference between fixed image and moving image. The internal force 

represents the smoothness. The image is deformed until equilibrium is reached. In [56], 

the smoothness constrain is defined based on kinematics of continuum mechanics 

𝑅(𝑢) =
1

2
∑ ∑∫𝜆(

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑖
)(
𝜕𝑢𝑗(𝑥)

𝜕𝑥𝑗
) + 𝜇(

𝜕𝑢𝑖(𝑥)

𝜕𝑥𝑗
+

𝜕𝑢𝑗(𝑥)

𝜕𝑥𝑖
)2𝑑𝑥

3

𝑗=1

3

𝑖=1

 

The solution satisfies a partial differential equation 

𝜇𝛻2𝑢(𝑥) + (𝜆 + 𝜇)𝛻(𝛻 ∙ 𝑢(𝑥)) = 𝑏(𝑥 − 𝑢(𝑥)) 

where 𝛻 = [
𝜕

𝜕𝑥1
,

𝜕

𝜕𝑥2
]𝑇  is the divergence operator and 𝛻2 =

𝜕2

𝜕𝑥1
+

𝜕2

𝜕𝑥2
 is the laplacian 

operator. 𝑏(𝑥 − 𝑢(𝑥))  is the body force 𝑏(𝑥 − 𝑢(𝑥)) = −𝛾(𝑇(𝑥 − 𝑢(𝑥)) − 𝑆(𝑥)) ∙

𝛻𝑇|𝑥−𝑢(𝑥) 

The elastic registration can provide good result, however there are several limitations. 

First of all, it assumes linear elasticity, which make the large deformation difficult. 

Secondly the elastic registration does not guarantee diffeomorphic transformation.  

3.7.3 VISCOUS FLUID MODEL 

The viscous fluid model allows large and highly localized deformations, therefore is 

capable to cover large mismatch [57]. However, it can only be applied to single modality 

images, because it assumes similar intensity between images. In the viscous fluid model, 

the instantaneous velocity v(x,t) is linked to external forces by Navier-Stokes viscous fluid 

partial differential equation 

𝛼𝛻2𝑣(𝑥, 𝑡) + (𝛼 + 𝛽)𝛻(𝛻𝑇 ∙ 𝑣(𝑥, 𝑡)) + 𝑏(𝑥, 𝑢(𝑥, 𝑡)) = 0 

𝑢(𝑥, 𝑡)  is displacement field, 𝑣(𝑥, 𝑡)  is instaneous velocity, 𝑏(𝑥, 𝑢(𝑥, 𝑡))  is the applied 

force, 𝛼 and 𝛽 are the viscous fluid coefficient.  The viscous fluid method involves solving 

a set of partial differential equations and successive relaxation, therefore are 

computationally expensive. 
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3.7.4 DEMONS (APPROXIMATION OF FLUID MODEL) 

The demon algorithm proposed by [58] is triggered by Maxwell’s demon, which consider 

the image registration as a diffusion process. This algorithm is an approximation of a 

second order gradient descent on the sum of square of intensity difference criterion [59].  

Suppose transformation T(x) maps the pixel x on image I to x on image J, then 

𝐼(𝑇(𝑥)) = 𝐼(𝑥 + 𝑢(𝑥))~𝐽(𝑥) 

The image I deformed by T is 𝐼 ∘ 𝑇−1, the SSD  

𝑆𝑆𝐷𝐼(𝑇) = ∫((𝑇 ⋆ 𝐼)(𝑥) − 𝐽(𝑥))2𝑑𝑥 = ∫(𝐼 ∘ 𝑇(−1) − 𝐽)2 

𝑆𝑆𝐷𝐽(𝑇) = ∫(𝐼 − 𝐽 ∘ 𝑇)2𝑑𝑥 = ∫(𝐼 ∘ 𝑇(−1) − 𝐽)2 ∙ |𝛻𝑇(−1)| 

Suppose (∇J ∘ T)T is the transformed gradient of the image J, then  

(𝐽 ∘ (𝑇 + 𝑢))(𝑥) = (𝐽 ∘ 𝑇)(𝑥) + (𝛻𝐽 ∘ 𝑇)𝑇 ∙ 𝑢(𝑥) +
1

2
𝑢(𝑥)𝑇 ∙ (ℋ𝐽 ∘ 𝑇) ∙ 𝑢(𝑥) 

The Taylor expansion of the 𝑆𝑆𝐷𝐽(𝑇 + 𝑢) 

𝑆𝑆𝐷𝐽(𝑇 + 𝑢) = 𝑆𝑆𝐷𝐽(𝑇) + 2∫(𝐽 ∘ 𝑇 − 𝐼) ∙ (∇𝐽 ∘ 𝑇)𝑇 ∙ 𝑢 + ∫((∇J ∘ T)T ∙ u)2

+ ∫(J ∘ T − I) ∙ uT ∙ (HJ ∘ T) ∙ u + Ο(‖u‖2) 

Define 𝛻𝑆𝑆𝐷𝐽
(𝑇) = 2(𝐽 ∘ 𝑇 − 𝐼) ∙ (𝛻𝐽 ∘ 𝑇) 

             ℋ𝑆𝑆𝐷𝐽
(𝑇) = 2(𝛻𝐽 ∘ 𝑇 − 𝐼) ∙ (𝛻𝐽 ∘ 𝑇)𝑇 + 2(𝐽 ∘ 𝑇 − 𝐼) ∙ (ℋ𝐽 ∘ 𝑇) 

Which gives the solution 

𝑢 =
(𝐼 − 𝐽 ∘ 𝑇) ∙ 𝛻𝐼

‖𝛻𝐼‖2 + 𝛼 ∙ (𝐼 − 𝐽 ∘ 𝑇)2
 

3.7.5 DIFFEOMORPHIC REGISTRATION  

A deformation is called diffeomorphic when it is a bijection and its inverse deformation is 

differentiable. This is a nice property for medical image registration because it preserve 

the topology of the anatomical structures. For small deformation, the inverse 

deformation is usually approximated by subtracting the displacement field. However, this 

hypothesis is not valid for large deformation. In diffeomorphic registration, the 

transformation is modeled as a composition of a series of small deformations.  
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𝑑𝑇

𝑑𝑡
= 𝑢𝑡(𝑇

(𝑡)) with 𝑇(0) = 𝐼𝑑 

where 𝑢𝑡 is the velocity field at time t, and 𝑇(1) is the final deformation.  

The diffeomorphic registration could be based on the viscous fluid model presented in 

3.7.3. There are also different solutions proposed, including ANTS[60], DARTEL [61], 

Diffeomorphic DEMONS [62], LDDMM [63].  In DARTEL, a const flow field is assumed and 

transformation is then modeled as 𝑇(1)(𝑥) = 𝐸𝑥𝑝(𝑢(𝑥)) . Levenberg-Marquardt 

algorithm is used to solve the problem. In Diffeomorphic DEMONS, the problem is solved 

iteratively update displacement field u and the transformation T.  In addition, the filtering 

is applied to obtain smooth velocity field. 

{
u ← argmin ‖IF − IM(T(exp(u)))‖2 + α ∙ dist(T, T(exp (u)))2

T ← T(exp (u))
 

3.7.6 HYPERELASTIC REGISTRATION  

Hyperelastic is used to describe the non-linear relationship between strain and stress. 

Martin B and Modersityki J et al proposed a hyper elastic registration framework to solve 

the large and non-linear deformation problem [64]. This framework yields diffeomorphic 

transformation and proved to be particularly useful for higher order similarity measure 

e.g. mass-preserving registration. The proposed regularization is composed of 3 parts 

𝑅ℎ𝑦𝑝𝑒𝑟 = ∫𝛼1𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) + 𝛼2𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑇) + 𝛼3𝑣𝑜𝑙𝑢𝑚𝑒(𝑇)𝑑𝑥 

Where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) = ‖𝛻𝑇 − 𝐼‖2 , 𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑇) = (‖𝑐𝑜𝑓𝛻𝑇‖2 − 3)2  and 𝑣𝑜𝑙𝑢𝑚𝑒(𝑇) =

((𝑑𝑒𝑡𝛻𝑇 − 1)2/𝑑𝑒𝑡𝛻𝑇)2 , with 𝑐𝑜𝑓𝛻𝑇  as the cofactor matrix of 𝛻𝑇  and 𝑑𝑒𝑡𝛻𝑇  as the 

determinant of 𝛻𝑇. More detailed description about the numerical solution can be find in 

[64,65].  

3.7.7 OPTICAL FLOW 

The optical flow algorithm is widely used in computer vision problems. This framework is 

based on the assumption that the image intensity of the objects is not changed and the 

changes in the  images are caused by the motion. 
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𝐼(𝑢, 𝑡) = 𝐼(𝑢 + ∆𝑢, 𝑡)  

The right side of the equation can be approximated as 

𝐼(𝑢 + ∆𝑢, 𝑡) ≈ 𝐼(𝑢, 𝑡) + 𝐼𝑥∆𝑢𝑥 + 𝐼𝑦∆𝑢𝑦 + 𝐼𝑡∆𝑡 

Therefore  

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡~0 

The formula can be reformed as 

𝐼(𝑥, 𝑦) − 𝐼𝑡(𝑥, 𝑦) = [𝑢𝑥(𝑥, 𝑦), 𝑢𝑦(𝑥, 𝑦)]

[
 
 
 
𝜕𝐼

𝜕𝑥
𝜕𝐼

𝜕𝑦]
 
 
 

 

The solution is  

[
𝑢𝑥(𝑥, 𝑦)

𝑢𝑦(𝑥, 𝑦)
] =

(𝐼 − 𝐼𝑡)

(
𝜕𝐼
𝜕𝑥

)
2

+ (
𝜕𝐼
𝜕𝑦

)
2

[
 
 
 
𝜕𝐼

𝜕𝑥
𝜕𝐼

𝜕𝑦]
 
 
 

 

To avoid the singularity problem, additional term is added 

[
𝑢𝑥(𝑥, 𝑦)
𝑢𝑦(𝑥, 𝑦)

] =
(𝐼 − 𝐼𝑡)

(
𝜕𝐼
𝜕𝑥

)2 + (
𝜕𝐼
𝜕𝑦

)2 + (𝐼 − 𝐼𝑡)2

[
 
 
 
𝜕𝐼

𝜕𝑥
𝜕𝐼

𝜕𝑦]
 
 
 

 

The optical flow works well with small motion, therefore a multi-level approach as in 3.2 

is often used to overcome this problem. A variety of methods has been proposed to 

improve the results. Sun et al evaluated different optimization techniques and 

implementations and proposed using median filter to improve the registration at 

boundaries [66].  Brox et al integrated rich descriptors into the optical flow setting to get 

good results for large displacements [67]. 

In the following work, the optical flow based registration combined with a multi-level 

approach and different regularization terms is used for image alignment and motion field 

extraction. The advantage of this framework is that it could provide accurate deformation 

estimation with efficient computation. In this framework, SSD is chosen as cost function, 

which could cover our use case for motion extraction from cine images and is easy to 

implement. For T1 images with different contrast, histogram matching can be used as  a 
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preprocessing step before registration (Chapter 4). This framework is fully compatible 

with the regularizations presented in section 3.6. In practice we choose to use linear 

operators for regularization, e.g. smoothness constraint, local divergence etc. Those 

linear operators have explicit analytical gradient description and allow the efficient 

optimizers like Gauss-Newton method. In addition, we proposed to use regional based 

regularization instead of global regularization, which could better model the deformation 

in different tissues and compartments in the heart (Chapter 5). 
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Chapter 4 Optimization on cardiac 
T1 mapping 

In this chapter we aim at optimizing the workflow for T1 mapping, which is nowadays one 

the most popular MRI imaging techniques for quantitative tissue characterization. 

Challenges that have not been fully resolved in current clinical practice include: (i) the 

need to correct for patient motion (due to imperfect breath-holding and cardiac motion); 

(ii) the need to improve the accuracy and precision (especially noise-robustness) of the 

quantitative T1 values; (iii) the need to improve the computational efficiency of the model 

fitting, as it is foreseeable that the 2D sequences used today for T1 mapping will be 

generalized to high-resolution 3D sequences in the near future, as a result of novel 

acquisition/reconstruction techniques. This chapter focus specifically on the second and 

third points. To this end, we propose improvements of the conventional model fitting 

techniques to include spatial regularization (denoising) while providing a computationally 

efficient implementation that will be applicable for large scale 3D datasets.  

The work described in this chapter was published in S.Liu et al, “A vectorized Levenberg-

Marquardt model fitting algorithm for efficient post-processing of cardiac T1 mapping 

MRI” and  S.Liu et al, “GPU Implementation of Levenberg-Marquardt Optimization for T1 

Mapping” 

4.1 RELEVANT STUDIES 

Cardiac fibrosis is caused by excessive deposition of myocardial collagen and is 

accompanied by many myocardial diseases [68,69] . Thanks to the rapid development of 

cardiac magnetic resonance imaging, the myocardial structure change can be assessed 

noninvasively by measuring the pixel-wise longitudinal relaxation time (T1) of the heart 

tissue, before and/or after injection of a gadolinium-based contrast agent [70]. Cardiac T1 

maps are generally produced using a series of images acquired after a variable delay 

following the flipping of the magnetization, which allows a sampling of the T1 relaxation 

curve for each pixel. The most commonly used acquisition schemes are inversion recovery 

(IR) sequence and saturation recovery (SR) sequence. IR techniques such as MOLLI [21] 
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are most commonly used due to their larger dynamic range and better precision and 

reproducibility, whereas SR techniques such as SASHA or SMART1Map [26] provide more 

accurate T1 values [71]. For both sequences, a typical series contains 8 to 11 images with 

different inversion/saturation time. Then an exponential model fitting is performed for 

each pixel by using nonlinear least-squares optimization. Different models, e.g., the 2-

parameter model and the 3-parameter model, are proposed to optimize the T1 

measurement depending on the acquisition sequence[12].    

The accuracy and precision of T1 mapping depends on many factors : 

• The number of measurements (i.e., the number of input images)  

• The number of parameters chosen for the fitting model (2 or 3)  

• The algorithm used for the nonlinear optimization  

• The choice of initial parameters for curve fitting  

• The presence of artifacts and misregistration between the images  

A lot of work has focused on investigating the acquisition sequence and motion correction 

techniques [13,72–74]. Fitting the recovery curve from magnitude images is a well-known 

difficulty in IR sequences because the phase of the complex MR signal is lost during the 

magnitude reconstruction. In [75],  a multi-fit algorithm has been proposed to solve this 

problem, however it is relatively inefficient because multiple fits have to be performed. 

An alternative method is to use phase-sensitive reconstruction and restore the signal 

polarity in the images [76]. However, the phase data are not always clinically available. 

Moreover, accurate reconstruction of the phase signal is difficult in MRI because such 

method requires accurate calibration of the phase of the transmitting and receiving coils 

(typically 8 to 30+ receiver channels in cardiac MRI), and good coil combination algorithm 

is still a research topic [77,78]. In [79], Bloch Equation simulations combined with FLASH 

readout has been proposed to improve the robustness, however, this requires excessive 

simulation process. An inversion group fitting algorithm has also been proposed to better 

model the inversion recovery behavior [80].  

Application of the Levenberg-Marquardt method to myocardial T1 mapping was achieved 

using various model fitting functions. In the ideal case, a 2-paramater model was used, 

y(t) = A ∙ (1 − exp (−t/T1))  for SR experiments and y(t) = A ∙ |1/2 − exp(−t/T1)| for 
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IR. The third parameter C can be added to model the imperfect saturation/inversion – e.g. 

which can be caused by transmit B1 field inhomogeneities or by apparent loss of 

saturation/inversion efficiency due to the readout pulses [81]. More generally, this C 

parameter can model other sources of bias in the acquisition. In particular the bias 

introduced by the non-central noise distribution (i.e. Rician noise in the magnitude MR 

images) is intrinsically taken into account in this 3-parameter model. 

Model based image reconstruction has been investigated to accelerate the parametric 

mapping. In [82], compressed sensing has been used to reconstruct the parametric map 

using overcomplete dictionaries.  Model based methods can also be used to estimate the 

T2 maps and spin-density maps from the raw data [15]. Regularization has also been 

proposed to reduce the noise in the parametric map reconstruction [83]. However, all 

these methods need the raw image data and required time-consuming reconstruction 

methods. In the image domain, Poot et al. proposed an elegant framework based on 

maximum likelihood or maximum a posteriori estimation[84]. This approach can 

simultaneous estimate the parametric maps and noise maps with spatially smooth noise 

levels. This approach was shown to improve the precision of quantitative parameter 

estimation in diffusion tensor MRI.  

In this work, we propose an alternative approach to optimize the model fitting process by 

reformulating the problem as a joint optimization whereby the T1 models of all pixels in 

the image are solved simultaneously, using a matrix formulation. The hypothesize is that 

this matrix formulation has two benefits: (i) it provides a vectorized version of the 

Levenberg-Marquardt algorithm which is more computationally efficient than the 

standard pixel-wise approach and is particularly well suited for modern architectures such 

as vector CPUs or graphics processor units (GPUs); (ii) it makes additional constraints 

possible, spatial regularization can be incorporated into the optimization to stabilize the 

fitting process and speed up convergence. 

In this section the optimized workflow is presented with the following focus points: 

• The proposed vectorized Levenberg-Marquardt algorithm and its exemplary 

implementation for saturation recovery data and inversion recovery data with 2-

parameter and 3-parameter model.  



44 
 

• Special care is given to the initialization: an automatic image segmentation 

technique is used as a preprocessing step to compute region-wise estimates of 

the model parameters (including T1), which are used as initial guesses for the final 

vectorized T1 fitting procedure.  

• SSD based non-rigid registration techniques with histogram matching [73,74,85] 

have been applied to minimize the artifact caused by motion.  

The evaluation of the optimized workflow is presented in Chapter 6.  

4.2 THEORY 

4.2.1 BACKGROUND ON LEVENBERG-MARQUARDT OPTIMIZATION 

For simplicity purposes, we first consider the model fitting problem for one pixel. Suppose 

𝑓(𝑝) is the model that describe the relaxation process, where 𝑝  is the unknown 

parameter set that we would like to estimate.  𝑝  is a vector of a 𝑁𝑝 elements (𝑁𝑝 = 2 or 3 

here). The parameter estimation problem can be treated as a least-squares minimization 

of the error between the predicted value based on unknown parameter set 𝑝  and the 

acquired data 𝑦, which is a vector of 𝑁𝑚 measurements (𝑁𝑚 = 8 to 11 in this work): 

𝑚𝑖𝑛
𝑝

‖𝑓(𝑝) − 𝑦‖2. (1) 

Levenberg-Marquardt algorithm (LM) [86–88] is a popular choice for solving Eq (1) when 

the function 𝑓(𝑝) is nonlinear. This method starts an iterative searching process from 𝑝0, 

an initial guess of the parameters. In each iteration, an optimal refinement of the 

parameters 𝛿𝑝 is obtained by linearizing the cost function around the current estimate:  

𝑚𝑖𝑛
𝛿𝑝

‖𝑓(𝑝 + 𝛿𝑝) − 𝑦‖2 ≈ 𝑚𝑖𝑛
𝛿𝑝

‖𝐽(𝑝)𝛿𝑝 − (𝑦 − 𝑓(𝑝))‖
2
, 

(2) 

Where 𝐽(𝑝) is the Jacobian matrix of 𝑓 with respect to the parameters, evaluated at the 

current iteration. 𝐽(𝑝) is of size 𝑁𝑚 × 𝑁𝑝. Therefore, LM involves solving a sequence of 

linear least squares problems. Usually a damping factor 𝜆𝑘 is added in order to get a good 

balance between robustness and speed. The calculated update of the solution at a given 

iteration k is then: 
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𝛿𝑝 = 𝑝𝑘+1 − 𝑝𝑘 = (𝐽(𝑝𝑘)
𝑇𝐽(𝑝𝑘) + 𝜆𝑘𝐼𝑑)−1𝐽(𝑝𝑘)

𝑇(𝑦 − 𝑓(𝑝𝑘)) , 
(3) 

 

Where 𝐼𝑑  is the identity matrix and 𝜆𝑘  is the LM regularization coefficient which is 

adapted throughout iterations. The rationale of LM is to start with a large value of 𝜆𝑘, so 

the method behaves like a steepest gradient descent in the beginning, then decrease 𝜆𝑘 

as 𝑝 approaches the solution, so the method behaves like a quasi-Newton method in the 

last iterations. Such schemes – i.e. combining gradient descent and quasi-Newton - are 

thought to yield optimal convergence speed in the nonlinear optimization literature. 

Several variations of the LM technique have been proposed depending on the choice of 

𝜆0, update rule for 𝜆𝑘 and stopping condition. Here we choose the following update rule 

[88]:  

{
𝑖𝑓 𝜌(𝑝) > 𝜀, 𝑠𝑒𝑡 𝑝𝑘+1 = 𝑝𝑘 + 𝛿𝑝, 𝜆𝑘+1 = 𝑚𝑖𝑛(𝜆𝑘 × 2, 107)

𝑖𝑓 𝜌(𝑝) ≤ 𝜀, 𝑑𝑜 𝑛𝑜𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝𝑘 , 𝜆𝑘+1 = 𝑚𝑎𝑥( 𝜆𝑘 2⁄ , 10−7)
 , 

with 𝜌(𝑝) =
‖𝑓(𝑝)‖2−‖𝑓(𝑝+𝛿𝑝)‖2

‖𝑓(𝑝)‖2−‖𝑓(𝑝)+𝐽(𝑝)𝛿𝑝‖2 , 

(4) 

 

and iterations are stopped when ‖𝑝𝑘+1 − 𝑝𝑘‖ ‖𝑝𝑘+1‖⁄ < 𝜏, where τ a given tolerance, or 

when a maximal number of iterations was reached. Table 2 shows the pseudo  code the 

classic LM-algorithm. 

Table 2. Pseudo code for LM-algorithm 

INPUT: data y, inversion time, 
Initialize parameter p0 

For iteration k 

       Get linearized problem using pk and y 

       Solve linear equation Aδp = b 

        Update parameter pk+1 = pk + δp, update λ 

        Check convergence 

End 

OUTPUT: p 

4.2.2 VECTORIZED LEVENBERG-MARQUARDT FORMULATION 

In computer programming, one typical way to improve the performance of an algorithm 

is vectorization. This consists of redesigning algorithms so that the same operations 
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performed multiple times on different data are grouped into a single operation performed 

once on a large array of data. Vectorization generally results in improved performances 

as modern computer architecture (CPU or GPU) can efficiently perform these vector 

operations. In our case, the vectorization means processing all the pixels jointly. Besides 

improving performance, It also provide the possibility to incorporate constraints such as 

spatial smoothness to improve the processing itself. 

In order to formulate the vectorized version of LM for an image of 𝑁𝑝𝑖𝑥 pixels, we use the 

same framework as described in the previous section. 𝑓 is the fitting model function, but 

operate on whole image.  𝑝 is the concatenated parameter maps, a vector of 𝑁𝑝𝑖𝑥𝑁𝑝  

elements. And  y is the whole acquired image dataset, a vector of 𝑁𝑝𝑖𝑥𝑁𝑚  elements. In 

addition,  a spatial smoothness constraint is added. This leads to a vectorized version of 

Eq. (1): 

𝑚𝑖𝑛
𝑝

‖𝑓(𝑝) − 𝑦‖2 + 𝜇‖𝐺𝑝‖2, (5) 

 

where 𝜇  is a scalar, controlling the spatial regularization weight and 𝐺  is an operator 

returning a concatenation of the spatial gradients of each parameter map, computed by 

forward differences. 𝐺 is a sparse matrix of size 𝑁𝑑𝑖𝑚𝑠𝑁𝑝𝑖𝑥𝑁𝑝 × 𝑁𝑝𝑖𝑥𝑁𝑝, with 𝑁𝑑𝑖𝑚𝑠 the 

number of dimensions in the image (here 𝑁𝑑𝑖𝑚𝑠 = 2). The vectorized LM update formula 

becomes:  

𝛿𝑝 = (𝐽(𝑝𝑘)
𝑇𝐽(𝑝𝑘) + 𝛬𝑘 + 𝜇𝐺𝑇𝐺)−1𝐽(𝑝𝑘)

𝑇(𝑦 − 𝑓(𝑝𝑘) − 𝜇𝐺𝑇𝐺𝑝𝑘)  . (6) 

Note that the term 𝜆𝑘𝐼𝑑  in Eq. (3) has been substituted by a diagonal matrix 𝛬𝑘 , the 

diagonal elements of which contain the map of LM regularization coefficients at iteration 

k. 𝐽(𝑝𝑘) is now a large sparse matrix of size 𝑁𝑝𝑖𝑥𝑁𝑚 × 𝑁𝑝𝑖𝑥𝑁𝑝.  

In contrast to the previous section, here the large sparse matrix inversion involved in Eq. 

(6) can be solved efficiently using iterative methods (here the conjugate gradient was 

used). It should be noted that the computational burden of such methods is mainly 

constrained by the application of the matrix operator to be inverted. In the present case, 

the forward and transpose Jacobian matrices are more efficiently applied if the following 

bracket priority rule is respected: 𝑥 ↦ 𝐽(𝑝𝑘)
𝑇(𝐽(𝑝𝑘)𝑥) . Update rules for the LM 

regularization coefficients maps and stopping conditions are the same as in the pixel-wise 
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case (note that the stopping condition now applies to the whole parameter map vector). 

It needs to be mentioned that the LM regularization coefficient is now a map, each pixel 

has its own LM regularization coefficient. 

4.3 T1 MAPPING WORKFLOW 

4.3.1 NON-RIGID REGISTRATION 

Despite ECG gating and breath-holding during the image acquisition, there is still residual 

motion. Therefore non-rigid registration was applied to each series before model fitting. 

The image with longest saturation/inversion time was chosen as the reference image for 

the registration. The sum of squared difference (SSD) is used as cost function and the 

optimization is achieved by a multi-resolution Gauss-Newton technique. To compensate 

for the contrast changes, histogram matching is performed before the registration. A 

more detailed description of the algorithm can be found in [89]. 

4.3.2 DEFAULT AND REGION-BASED INITIALIZATION 

Two initialization scheme are tested: 

• Default initialization: an average relaxation rate 1000 ms is chosen as the initial 

value of T1. For parameter A, the image intensity at infinite saturation times is 

used for saturation recovery data, and the maximum intensity is used for inversion 

recovery data. For parameter 𝐶, 0 is used for saturation recovery and the negative 

maximum intensity is selected for inversion recovery. Detailed expressions for the 

default initial guesses are given in Table 3. Here INt  is the image at infinite 

inversion/saturation time and It is the image at inversion time t. 

Table 3. T1 fitting models and default initial values 

 N parameters Model A0 C0 

Saturation-
recovery 

3 yt = A ∗ (1 − e−
t
T) + C A0(i, j) = INt(i, j) C0(i, j) = 0 

2 yt = A ∗ (1 − e−
t
T) Ao(i, j) = INt(i, j) - 

Inversion-
recovery 

3 yt = |A ∗ (1 − e−
t
T) + C| A0(i, j) = max {It(i, j)} C0(i, j) = −max {It(i, j)} 

2 yt = |A ∗ (0.5 − e−
t
T)| A0(i, j) = max {It(i, j)} - 
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• Region based initialization: In this scheme pixels are grouped into a number of 

regions using a graph-based image segmentation technique [90]. This technique 

subdivides the image into a reduced number of connected regions, avoiding small 

“islands” to be created. Then the standard LM fitting is applied to each region 

using averaged signal intensities from all pixels inside this region. The parameters 

obtained from this fast computation in each region are then used as initial guesses 

for further optimization on the whole image, using either the standard pixel-wise 

or the vectorized LM algorithm. The validity of this region-wise model fit is checked 

based on the R2 error of fitting ( R2 > 0.97). This threshold has been proposed in 

previous studies on myocardial T2 mapping as a quality index to exclude outlier 

pixels/regions from the analysis [85,91].When this condition is not met, the 

default initial guess is used for the corresponding region. This second initialization 

scheme is termed as region-based initialization in the remainder. 

4.3.3 MODEL FITTING IMPLEMENTATION 

Application of the LM method to myocardial T1 mapping was achieved using various 

model fitting functions. As described in previous section, both 2-parameter model and 3-

parameter model are used in clinical application. In both case, the vectorized algorithm 

can be used, however, the Jacobian matrix is slightly different. Detailed expressions 

needed for the vectorized LM implementation (including the fitting functions and 

Jacobian matrices) are summarized in Table 4 and Table 5. 

Table 4. Mathmatic model for SMART1Map 

 SMART1Map,3 parameter SMART1Map,2 parameter 

F
o

rm
u
la 

𝑦 = 𝑓(𝑡; 𝑎, 𝑏, 𝑐) = 𝑎 (1 − 𝑒−
𝑡
𝑏) + 𝑐 

 

𝑦 = 𝑓(𝑡; 𝑎, 𝑏) = 𝑎 (1 − 𝑒−
𝑡
𝑏) 

 

V
ecto

rizatio
n
 

[

𝑌𝑡0

⋮
𝑌𝑡𝑛

] = [
𝑑𝑖𝑎𝑔(𝐴) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝐴)

] (1 − [
𝑒−

𝑡0
𝐵

⋮

𝑒−
𝑡𝑛
𝐵

]) + [
𝐶
⋮
𝐶
] 

 

[

𝑌𝑡0

⋮
𝑌𝑡𝑛

] = [
𝑑𝑖𝑎𝑔(𝐴) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝐴)

] (1 − [
𝑒−

𝑡0
𝐵

⋮

𝑒−
𝑡𝑛
𝐵

]) 

 

Jaco
b
ian

 

𝐽 =

[
 
 
 
 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡0
𝐵 ) … 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡𝑛
𝐵 )

−𝑡0𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡0
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
…

−𝑡𝑛𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡𝑛
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
𝐼 … 𝐼 ]

 
 
 
 

 

 

𝐽 =

[
 
 
 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡0
𝐵 ) … 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡𝑛
𝐵 )

−𝑡0𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡0
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
…

−𝑡𝑛𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡𝑛
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)]
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Table 5. Mathmatic model for MOLLI 

 MOLLI, 3 parameter MOLLI,  2 parameter 

F
o

rm
u
la 

𝑦 = 𝑓(𝑡; 𝑎, 𝑏) = |𝑎 (1 − 𝑒−
𝑡
𝑏) + 𝑐| 

 

𝑦 = 𝑓(𝑡; 𝑎, 𝑏) = |𝑎 (0.5 − 𝑒−
𝑡
𝑏)| 

 

V
ecto

rizatio
n
 

[

𝑌𝑡0

⋮
𝑌𝑡𝑛

] = |[
𝑑𝑖𝑎𝑔(𝐴) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝐴)

](1 − [
𝑒−

𝑡0
𝐵

⋮

𝑒−
𝑡𝑛
𝐵

]) + [
𝐶
⋮
𝐶
]| 

 

[

𝑌𝑡0

⋮
𝑌𝑡𝑛

] = |[
𝑑𝑖𝑎𝑔(𝐴) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑑𝑖𝑎𝑔(𝐴)

](0.5 − [
𝑒−

𝑡0
𝐵

⋮

𝑒−
𝑡𝑛
𝐵

])| 

 

Jaco
b
ian

 

𝐽 =

[
 
 
 
 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡0
𝐵 ) … 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡𝑛
𝐵 )

−𝑡0𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡0
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
…

−𝑡𝑛𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡𝑛
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
𝐼 … 𝐼 ]

 
 
 
 

∙

[
 
 
 
 𝑠𝑖𝑔𝑛(𝑑𝑖𝑎𝑔(𝐴) ∗ (1 − 𝑒

−𝑡0
𝐵 ) + 𝐶)

⋮

𝑠𝑖𝑔𝑛(𝑑𝑖𝑎𝑔(𝐴) ∗ (1 − 𝑒
−𝑡𝑛
𝐵 ) + 𝐶)]

 
 
 
 

 

 

𝐽

=

[
 
 
 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡0
𝐵 ) … 𝑑𝑖𝑎𝑔(1 − 𝑒−

𝑡𝑛
𝐵 )

−𝑡0𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡0
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)
…

−𝑡𝑛𝑑𝑖𝑎𝑔(𝐴) ∗ 𝑒−
𝑡𝑛
𝐵

𝑑𝑖𝑎𝑔(𝐵) ∗ 𝑑𝑖𝑎𝑔(𝐵)]
 
 
 

∙

[
 
 
 
 𝑠𝑖𝑔𝑛(𝑑𝑖𝑎𝑔(𝐴) ∗ (1 − 𝑒

−𝑡0
𝐵 ) + 𝐶)

⋮

𝑠𝑖𝑔𝑛(𝑑𝑖𝑎𝑔(𝐴) ∗ (1 − 𝑒
−𝑡𝑛
𝐵 ) + 𝐶)]

 
 
 
 

 

 

In Table 4 and Table 5, a,b,c are scalar, represent the T1 relaxation parameter for each 

pixel. A,B,C are vectors, represent the T1 relaxation parameter for all the pixels within the 

image. Diag(A) is a sparse matrix that take all elements in A and create a diagonal matrix. 

The initial LM regularization coefficient was set to λ0 = 0.01.  The maximum number of 

LM iterations was set to 20. The tolerance for stopping iterations was set τ = 10−6 in 

both the pixel-wise case and the vectorized case. The spatial constraint weight was set to 

μ = 10−6 as default. To evaluate the goodness of the model fitting, the coefficient of 

determination R2 was calculated.  

4.4 OPTIMIZATION ON GPU  

In this section, the T1 mapping curve fitting using pixel-wise and the vectorized Levenberg-

Marquardt algorithm described in 4.2 is further improved on GPU.  

4.4.1 TECHNICAL BACKGROUND 

GPU is designed with multiple processing unit (multiple multiprocessors), which allows 

the parallel processing of multiple data (SIMD strategy). This perfectly fit for most image 

processing task. Each multiple processor is called a block. A block can run multiple threads 

simultaneously. Threads within one block can be synchronized, which allows flexible 
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management of the threads. There are different types of memory on the GPU. Global 

memory, texture memory and constant memory can be accessed by all the thread. For 

each block, there is also shared memory that can be accessed only by the threads within 

the block. 

CUDA is the application programming interface that allows the code to run on NVIDA GPU 

devices. In CUDA programming, kernel functions are implemented. The parallelization is 

realized by calling those kernel functions. 

4.4.2 PIXEL-WISE LEVENBERG-MARQUARDT ALGORITHM ON GPU 

Here 16x16 block size and 16x16 grid size are used to cover the 256x256 image size. Each 

image pixel is processed independently by a thread. Figure 18 shows an example calling 

of the kernel function. The kernel function is a small scale Levenberg-Marquardt solver, 

which solves a 3-paramter or 2-parameter non-linear curve fitting problem. 

 

Figure 18. Illustration of the curve fitting kernel 

4.4.3  VECTORIZED LEVENBERG-MARQUARDT ALGORITHM ON GPU  

 

Figure 19. Workflow of vectorized curve fitting 

In the vectorized version, the same steps for Levenberg-Marquardt algorithm are 

adopted, as shown in Figure 19. However, most of the work is done on the GPU.  
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For the vectorized curve fitting, a large matrix JTJ needs to be calculated. Since JTJ is a 

block-wise diagonal matrix, as shown in Figure 20. The image intensity at pixel 𝑖  only 

affect the value of JTJ at (i + m ∙ Npix, i + n ∙ Npix) where m, n ∈ {0,1, . . Np − 1}. 

  

Figure 20. Description of Jacobian matrix and JTJ 

   

Figure 21. Illustration of JTJ matrix for 3 pixels using 3 parameter model 

Figure 21 shows an example image of 3 pixels using 3 parameter model fitting. Each 

thread works on one pixel, and fills the corresponding value in JTJ. 

The most time consuming part of the vectorized Levenberg-Marquardt algorithm is the 

solving of the linear equation. The QR factorization method from the standard CUDA 

library ‘cuSolver’ was first tested. The method works well. However, it costs relative 

longer time. Therefore a conjugate gradient solver [92] is implemented to accelerate the 

speed. The conjugate gradient algorithm searches iteratively in the conjugate direction, 

and is more suitable for large scale problems as we have. The implementation is based on 

the CUDA cuBLAS library. 
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Chapter 5 Strain analysis from 3D 
cine images 

Cardiac MRI is the gold standard to assess global cardiac function. This is because it 

provides high-quality images of the cardiac cycle with a full spatial coverage of the heart 

(unlike ultrasound echography) and good temporal resolution (unlike computed 

tomography), which allows very accurate calculation of blood cavity and myocardium 

volumes. However, cardiac MRI does not currently allow quantification of regional 

contractile abnormalities as accurately as ultrasound (speckle tracking and Doppler 

techniques remain the clinical routine for this purpose). Although some dedicated MRI 

sequences have been developed to fill this gap (e.g., tagging MRI), they require additional 

scan time and are generally not included in clinical protocols, because it usually takes 30 

to 45 minutes. An alternative would be to use the routinely acquired cine images to 

extract information about local cardiac function. Attempts have been made with methods 

such as feature tracking. One source of inaccuracy lies in the fact that, clinical cine images 

are usually acquired as thick 2D slices (8 mm thickness). However, with novel acquisition 

and reconstruction techniques, it is possible to obtain 3D cine images with an isotropic 

resolution of 1.5 mm, which are more suitable for analyzing 3D motion patterns of 

myocardial segments. Therefore, in this chapter, we focus on the analysis of such 3D cine 

datasets obtained using a recently developed motion-corrected super-resolution 

technique. 

The main challenge in doing so is that the extraction of deformation information (i.e., 

strain) requires accurate non-rigid image registration of the beating heart. This is a 

difficult problem because cine images do not provide local tissue labeling information as 

in tagging MRI or speckle tracking ultrasound. Therefore only the contours of the 

myocardium can be reliably identified, making the registration results highly dependent 

on the regularization constraints. As a consequence, the subsequent motion analysis is 

also affected. Therefore, novel regularization schemes are proposed, as well as novel 

indices for statistical analysis. 

5.1 WHAT IS STRAIN AND WHY IS STRAIN NEEDED?  
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5.1.1 BACKGROUND 

Cardiac strain 𝜀 is a measurement of the myocardial fiber deformation relative to its initial 

length. Suppose  𝐿0 is the initial length of the fiber, 𝐿 is the final length of the fiber and 

∆𝐿 is the change of the tissue length. The stretch ratio is defined as λ. 

λ =
L

L0
 

 

 

There are different definitions of strain: 

• Engineer strain, also called Cauchy strain, is the most widely used strain definition 

for mechanical and structural engineering 

ε = λ − 1 =
∆L

L0
 

• Natural strain is also called true strain, which is defined as the time integration of 

the rate of deformation tensor. This definition provides better measurement 

when the deformation takes place in a series of increment. 

Ε = lnλ = ln
L

L0
 

• Lagrange strain  

ε =
1

2
(λ2 − 1) 

• Euler strain 

ε =
1

2
(1 −

1

λ2
) 

The strain value calculated by different definitions are not directly comparable, however, 

there is no good or bad definition of the strain. Negative strain means shortening of the 

myocardial tissue and positive means elongation.  

Strain rate is defined as the time gradient of strain. Strain rate can be used to describe 

how fast myocardial deformation occurs. 
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𝑆𝑅 =
∆𝜀

∆𝑡
=

∆
∆𝐿
𝐿

∆𝑡
=

∆𝑣

𝐿
 

In the 2D and 3D cases, strain is described by a tensor. 

 

Figure 22. Illustration of 3D strain. 

5.1.2 CLINICAL APPLICATION 

Myocardial strain can be used as an important parameter to predict and diagnose 

myocardial dysfunction. It has been proved that myocardial strain correlates well with 

stroke volume and fibrosis, while strain rate reflects end-systolic elasticity [93]. The inter-

segmental variability in the timing of peak myocardial strain has been suggested as a 

predictor of the risk of ventricular arrhythmias[94]. In [95], the relationship between 

longitudinal strain and the risk for heart failure was analyzed. The result shows that 

subjects with dyspnea have lower subendocardial/subepicardial longitudinal strain ratios. 

Moreover, myocardial strain can be used to estimate regional function as well as global 

function of the heart, especially for heart failure with preserved ejection fraction. Global 

longitudinal strain (GLS) is more sensitive than left ventricular ejection fraction (LVEF) as 

a measure of systolic function and therefore can be used to identify subclinical LV 

dysfunction in cardiomyopathies [94]. Choi et al. (2009) showed that longitudinal 2D 

strain can be used to predict coronary artery disease [96]. The transmural strain is a 

function of wall shortening, wall thickness, and chamber diameter, whereas 
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circumferential shortening is mainly a function of wall thickening. It has been clinically 

shown that longitudinal strain rate and wall thickening are diagnostically equivalent.  

5.1.3 DUCHENNE MUSCULAR DYSTROPHY 

Duchenne Muscular Dystrophy (DMD) is a progressive myocardial muscular disease 

caused by genetic mutation.  The DMD is accompanied with increased intracellular 

calcium level and appearance of fibrosis. The fibrosis usually begins from the epi-cardial 

surface of the posterior wall. The cardiomyopathy can happen as early as 10 years old 

[97,98]. However, the left ventricle function might not be affected in the early stage. 

Therefore 2D strain analysis is usually performed to detect and evaluate the early 

involvement. [99] shows that strain and strain rate are important parameters for the early 

detection of myocardial abnormalities. 

Table 6. Myocardial strain for DMD group and control group [100]. 

 DMD Control P 

Longitudinal strain(epi) -9.3±3.8% -12.3±4.3% p=0.012 

Radial strain 24.1±11.1% 37.3±25.9% p=0.027 

Circumferential strain (endo) -17.5±4.7% -24.2±5.3% p<0.001 

Circumferential strain (myo) -12.7±3.8% -18.0±4.0% p<0.001 

Circumferential strain (epi) -8.4±4.0% -12.2±5.0% p=0.006 

Currently, the clinical standard for DMD examination is Doppler echography. Mori K et al 

(2007) measured the peak systolic radial strain using Doppler echography [101]. The result 

shows a decrease in the posterial wall radial strain while no significant difference was 

found in the interventricular septum. [100] gave a more thorough study on the myocardial 

strain between DMD patient and control group using 2D echography imaging. The result 

shows that the myocardial strain in longitudinal, radial and circumferential directions are 

lower in the DMD group compared to the control group, and the difference in 

circumferential direction is significant. The values are shown in Table 6.  

Another widely used imaging modality to estimate the myocardial strain is tagged MRI. 

Hor KN et al. (2009) investigated 70 DMD patients [102], the results showed a decrease 

of circumferential strain in DMD patients (<10 years old) compared to the control group 

and a continuous decrease in circumferential strain as age increases. 
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5.2 RELEVANT STUDIES ON MYOCARDIAL STRAIN  

Myocardial strain analysis has been performed using different image modalities and with 

different methods. In [14] an overview of the current state of strain analysis was given 

and different techniques were compared. 

To date, most researches have been performed using ultrasound images. Tissue-Doppler 

imaging is used to estimate strain by directly measuring tissue velocity. Speckle tracking 

echography(STE) further improved the reproducibility and accuracy by using the speckles 

created from the interaction between the ultrasound beam and tissue, providing a 

labeling of the moving tissues that can be tracked in a post-processing step [93].   

However, MRI, as gold standard for the diagnosis of heart diseases, gains more and more 

interests. There are different MRI techniques to evaluate the myocardial deformation. 

Available imaging techniques include CMR tagged imaging, phase velocity mapping, 

DENSE encoding and strain encoded imaging (SENC)[103]. Tagged imaging is based on the 

selective saturation of myocardial tissue on different planes. Before imaging, the 

myocardial tissue is labeled by a selective radiofrequency pulse, generally with a grid-

shape pattern. During myocardial contraction, the labeled tissue pattern remains visible 

as it undergoes deformation, and can be tracked by post-processing software to estimate 

the myocardial motion. There is a good correlation between tagging results and tissue 

Doppler imaging. 

In recent years, some strain researches have been performed on cine images. Compared 

with tagged MRI, cine images are more widely available. In [104], strain from 2D cine 

images was compared with strain from tagging images. The result shows that radial strain 

from cine images is overestimated, while there is no significant difference for 

circumferential strain. Moreover, the strain pattern was different for the myocardial 

infarction region and for the normal region. In [105], the strain results from cine images 

have been validated against DENSE imaging and the circumferential strain extracted from 

cine images shows comparable diagnostic performance. 

For post processing, there are two categories of methods for measuring strain from MRI 

images: Feature tracking and deformation tracking (image registration). In [105], 
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deformation tracking was used to extract the motion field, the result shows better 

reproducibility than feature tracking. Different methods were used to analyze the data, 

including general flow analysis, block matching, image registration, and model-based 

algorithms.  

In [106], a hierarchical model was used to obtain the motion field, in addition, the endo- 

and epi-contours were integrated as prior information to further improve the registration 

result. The radial strain showed a different pattern for patients and healthy volunteers. In 

[107], an improved Demons algorithm was used to extract the motion field from 2D 

images. An additional incompressibility regularization was applied by forcing the Jacobian 

determinant of the deformation field to be equal to 1. 

However, the strain result is strongly influenced by the algorithm used to analyze the data 

and by the image quality [108]. Robin J. et al. gave a normal value for the myocardium 

using feature tracking methods [109]. More strain results are summarized in Table 7. 

Table 7. Normal value for myocardium from previous study. 

 Longitudinal Radial Circumferential 

Feature tracking,  

mri cine,2d [109] 

-19.1±4.1% 

(-11.1 to-27.1)% 

39.8±8.3% 

(23.5 to 56.1)% 

-18.4±2.9% 

 (-12.7 to -24.1)% 

STE,2d [95] 23.4±2.7% - - 

Global strain, mri cine, 2d 

[110] 

-22.3 % 

(-20.5 to - 24.0)% 

60.5 % 

(55.3 to 65.6)% 

−25.0 % 

(−24.0 to −26.1)%  

Currently, 2D strain is more commonly used in clinical applications compared to 3D strain. 

2D radial strain and circumferential strain are usually measured on short-axis images. The 

radial strain is measured by calculating wall-thickening, and the circumferential strain is 

approximated by the change in mid-layer myocardium perimeter [111]. Usually, the 

image with the same slice number is selected to calculate the wall thickening. The 

longitudinal strain is estimated from long-axis images. However, there are a few 

drawbacks with 2D images. The most obvious problem is that 2D strain analysis does not 

consider the inter-slice.  

Nowadays, 3D cine images are more and more available and have gained more interest 

from researchers. In [108], an overview about current 3D strain analysis was given. In 
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[112], 3D speckle tracking was compared with 2D speckle tracking. For global strain, the 

3D strain correlates well with the 2D result (R=0.83 for longitudinal strain and R=0.86 for 

circumferential strain), but the absolute value is much smaller. For regional strain, the 

correlation between the 3D and 2D results is poor (R=0.63 for longitudinal strain and 

R=0.43 for circumferential strain). Tomoyuki et al. also compared 3D strain with 2D strain 

and investigated the correlation between strain and ejection fraction. The result shows 

that the 3D and 2D longitudinal strain are not significantly different, while the 

circumferential strain is significantly different. The result also shows that the principal 

strain has the strongest correction with ejection fraction (R= -0.93, R=-0.86 for 

circumferential strain) [113]. Nguyen et al. investigated the correlation between 2D/3D 

strain and ejection fraction, and the result shows that 3D strain can provide a better 

estimate of left ventricular function than 2D strain [114].  

Table 8. Correlation coefficient between strain and ejection fraction [114]. 

 Radial strain Circumferential strain Longitudinal strain 

2D strain[114] 0.709 -0.775 -0.638 

3D strain[114] 0.742 -0.862 -0.720 

Alessandro et al. (2017) investigated 3D principal strain from 2D cine image stack [115]. 

In this study, a 3D mesh model of the heart was generated and deformation was 

estimated using a feature-based optical flow algorithm. The principal strain was 

calculated at each epi- and endocardial surface point. The 3D principal strain was 

compared with the 3D STE strain and 2D strain. The result shows good agreement 

between the different techniques. 

5.3 PEAK STRAIN ANALYSIS BASE ON 3D DATA 

To obtain the 3D strain, a new workflow was proposed (Figure 23). The 3D volumes at 

end-diastolic (ED) phase and at end-systolic (ES) phase were taken. Left ventricle 

segmentation was first performed on each volume, which resulted in a 3D binary mask 

and a 3D surface model. Then image registration was used to calculate the dense motion 

fields. Together with the 3D surface model, the motion field was converted to strain at 

each voxel. Finally the bull’s eyes plot was generated for clinical use. 
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Figure 23. Illustration for 3D strain calcuation workflow 

5.3.1 HEART SEGMENTATION AND HEART MODEL CONSTRUCTION 

There are two purposes to segment the heart surface: (1) the myocardial mask is 

subsequently used to extract the motion field. (2) The myocardial surface model is used 

to determine the local directions, which is then used to generate the longitudinal, radial 

and circumferential strain.  

In the heart surface segmentation, 3-Long axis images are selected, and manual contours 

were drawn on ED and ES phases.  Then the 3D heart model was constructed using the B-

spline interpolation algorithm described in [116] [17]. 

5.3.2 PROPOSED REGISTRATION FOR MOTION FIELD EXTRACTION 

The 3D motion field from ED to ES phase was estimated by registering the myocardial 

masks between ED and ES using a non-rigid registration algorithm. Due to the lack of 

features for registration, a composite regularization was applied to impose region-wise 

behavior: outside the myocardium (termed compressible region hereafter), conventional 

isotropic first-order smoothing is imposed (allowing compressibility, in particular in the 

blood cavity); inside the myocardium (termed incompressible region hereafter), second-

order smoothing is applied, and an incompressibility constraint is added (enforcing 

𝑑𝑖𝑣(𝑢) ≈  0 ), as well as a constraint minimizing rotational deformation (enforcing 

𝑐𝑢𝑟𝑙(𝑢) ≈  0, as local rotational motion causes shearing). As shown hereafter, all these 

regularization terms involve linear operators, so the calculation of the cost function 

 nd Diastolic

 nd Systolic
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gradient is straightforward. Here the binary mask of the myocardial tissue was used 

instead of the intensity image to improve the accuracy, especially in the case of large 

motion fields. 

Here, the end-diastolic phase was used as the reference phase. The motion field was 

calculated by minimizing the SSD difference between the reference image and the 

wrapped image.  

𝐸 = ∑ ‖𝑀𝑒𝑑(𝑥 + 𝑢) − 𝑀𝑒𝑠(𝑥)‖2

𝑥

+ 𝜆 ∙ 𝑅 

Where 𝑀𝑒𝑑  and 𝑀𝑒𝑠  are the binary masks obtained in ED and ES phase, ∑ ‖𝑀𝑒𝑑(𝑥 +𝑥

𝑢) − 𝑀𝑒𝑠(𝑥)‖2  measure the similarity between the end-diastolic image and the 

deformed end-systolic image.   

𝑅 is the regularization, consist of Rcompress, Rincompress, Rdiv and Rrot. 

𝑅 = 𝑅𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 +
𝜆𝑖𝑛𝑐

𝜆
𝑅𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 +

𝛼𝑑𝑖𝑣

𝜆
∙ 𝑅𝑑𝑖𝑣 +

𝛼𝑟𝑜𝑡

𝜆
𝑅𝑟𝑜𝑡 

The definitions and relevant computations necessary for the optimization ( ∇R 

computation) are given below. 

• 𝑅𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑢) = ‖𝑤𝑐𝑜𝑚𝑝 ∙ 𝛻𝑢‖
2

, with 𝛻𝑅𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 = 𝛻𝑥
′ ∙ 𝑤𝑐𝑜𝑚𝑝 ∙ 𝛻𝑥 + 𝛻𝑦

′ ∙ 𝑤𝑐𝑜𝑚𝑝 ∙

𝛻𝑦 + 𝛻𝑧
′ ∙ 𝑤𝑐𝑜𝑚𝑝 ∙ 𝛻𝑧  is the smoothness constraint in compressible area. Here ∇=

[
∂

∂x

∂

∂y

∂

∂z
]  and wcomp  is the binary mask representing the non-myocardial 

region. 

• 𝑅𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑢) = ‖𝑤𝑖𝑛𝑐 ∙ 𝛻2𝑢‖2 , with 𝛻𝑅𝑖𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 = 𝛻𝑥
2′

∙ 𝑤𝑖𝑛𝑐 ∙ 𝛻𝑥
2 + 𝛻𝑦

2′
∙

𝑤𝑖𝑛𝑐 ∙ 𝛻𝑦
2 + 𝛻𝑧

2′
∙ 𝑤𝑖𝑛𝑐 ∙ 𝛻𝑧

2 + 2𝛻𝑥𝑦
′ ∙ 𝑤𝑖𝑛𝑐 ∙ 2𝛻𝑥𝑦 + 2𝛻𝑦𝑧

′ ∙ 𝑤𝑖𝑛𝑐 ∙ 2𝛻𝑦𝑧 + 2𝛻𝑥𝑧
′ ∙

𝑤𝑖𝑛𝑐 ∙ 2𝛻𝑥𝑧  is the second order smoothing regularization inside the myocardial 

region and 𝑤𝑖𝑛𝑐 is the binary mask for myocardial region. 

• 𝑅𝑑𝑖𝑣(𝑢) = ‖𝑤𝑖𝑛𝑐 ∙ 𝛻 ∙ 𝑢‖2 = ‖𝑤𝑖𝑛𝑐𝐷𝑖𝑣(𝑢)‖2 , with 𝛻𝑅𝑑𝑖𝑣 = 𝐷𝑖𝑣′ ∙ 𝑤𝑖𝑛𝑐 ∙ 𝐷𝑖𝑣 =

[

𝛻𝑥
′

𝛻𝑦
′

𝛻𝑧
′

] ∙ 𝑤𝑖𝑛𝑐 ∙ [𝛻𝑥 𝛻𝑦 𝛻𝑧] where Div=[∇x ∇y ∇z] is the divergence operator. 
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• 𝑅𝑟𝑜𝑡(𝑢) = ‖𝑤𝑖𝑛𝑐 ∙ 𝛻 × 𝑢‖2 = ‖𝑤𝑖𝑛𝑐 ∙ 𝑅𝑜𝑡(𝑢)‖2, with ∇Rrot = Rot′ ∙ winc ∙ Rot 

where Rot = [

0 ∇z −∇x

−∇z 0 ∇y

∇x −∇y 0
] is the rotational or curl operator. 

To solve this function, an iterative method is used and the cost function is linearized in 

the neighborhood of the current estimate, similar to the optical flow problem in 3.7.7.  

∑‖Med(x + u) − Mes(x)‖
2 = ‖Med,xux + Med,yuy + Med,zuz + Med − Mes‖

2

x

  

Then the cost function to be optimized at each iteration is a linear least squares function 

of the form E(u) = ‖Au − b‖2 +  λ ∙ R(u)  . This optimization problem can be solved 

using the conjugate gradient algorithm, with Gauss-Siedel preconditioner.  Here 

AhA = [

diag(Ix
2) diag(IxIy) diag(IxIz)

diag(IxIy) diag(Iy
2) diag(IyIz)

diag(IxIz) diag(IyIz) diag(Iz
2)

] and Ahb = [

Ied,x ∙ (Ies(x + u) − Ied)

Ied,y ∙ (Ies(x + u) − Ied)

Ied,z ∙ (Ies(x + u) − Ied)

] 

Deformation u can be obtained by solving  

(AhA + λ ∙ ∇R) ∙ u = Ahb − λ ∙ ∇R ∙ uprev 

5.3.3 STRAIN CALCULATION 

5.3.3.1 3D STRAIN CALCULATION 

Here the Green-Lagrange strain is used. In the 3D case, if 𝑢 is the 3D motion field, then 

strain is defined as a tensor 

S = [

𝜀𝑥  𝜀𝑥𝑦  𝜀𝑥𝑧 

𝜀𝑥𝑦  𝜀𝑦  𝜀𝑦𝑧

 𝜀𝑥𝑧  𝜀𝑦𝑧  𝜀𝑧

 ] 

Where 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are three principal strains and 𝜀𝑥𝑦, 𝜀𝑦𝑧 and 𝜀𝑥𝑧 are the shear strains.  

The relationship between the strain and deformation force F is : 

S =
1

2
(F′ ∙ F − I), where F is the deformation force 
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F =

[
 
 
 
 
 
 
∂ux

∂x
+ I

∂uy

∂x

∂uz

∂x
∂ux

∂y

∂uy

∂y
+ I

∂uz

∂y

∂ux

∂z

∂uy

∂z

∂uz

∂z
+ I]

 
 
 
 
 
 

 

So that, 

εx = 0.5(2uxx + uxx
2 + uyx

2 + uzx
2 ) 

εy = 0.5(2uyy + uxy
2 + uyy

2 + uzy
2 ) 

εz = 0.5(2uzz + uxz
2 + uyz

2 + uzz
2 ) 

εxy = 0.5(uyx + uxy + uxxuxy + uyxuyy + uzxuzy) 

εxz = 0.5(uzx + uxz + uxxuxz + uyxuyz + uzxuzz) 

εyz = 0.5(uyz + uzy + uxyuxz + uyyuyz + uzyuzz) 

In cardiac analysis, the strain tensor is rotated to express deformation values in the 

longitudinal, circumferential and transmural(radial) directions, which are defined as 

follows, in Figure 24:  

 

Figure 24. Direction definition for 3D strain calculation 

● The radial direction is defined as the normal direction to the endocardial surface;  

● the circumferential direction is defined as the cross product between radial 

direction and z-direction (z being the longitudinal axis of the ventricle).   
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● The longitudinal direction is defined as the cross product between the 

circumferential direction and radial direction. 

The rotated strain tensor 

Srot = [

eradial′

ecircum′

elongitudial′
] ∙ S ∙ [eradial, ecircum, elongitudial] 

where eradial, ecircum, elongitudial are the normal direction of radial, circumferential and 

longitudinal direction at each point. 

The 16-segment AHA result was calculated according to the definitions in 2.2.7. 

5.3.3.2 GLOBAL 2D STRAIN CALCULATION 

To validate the proposed calculation scheme, the result was compared with the global 2D 

strain. The global 2D strain was calculated from the global change in  the heart geometry. 

A left ventricle heart model was constructed from the epi- and endo-cardial contour. The 

global longitudinal strain GLS was estimated by the shortening in long-axis of the 

endocardial surface. The global radial strain was estimated as the average wall thickening 

(WT) on difference slices, and the wall thickness was calculated by find the nearest point 

on epicardial contour for each endocardial contour. The global circumferential strain was 

calculated as the average relative perimeter difference on different slices.  

 
Figure 25. Global strain calculation 
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5.4 STRAIN CURVE ANALYSIS 

In this section, we tried to generate the strain curves from the patient data. It is 

hypothesized that analyzing the 3D deformation curves, extracted from the full dynamic 

3D dataset (in this study, 32 cardiac phases for the complete cardiac cycle), can provided 

more information about regional anomalies than only analyzing the peak strain, which 

takes only  two cardiac phases into account.  

The strain curve can be obtained in the same way as described in 5.3 for each cardiac 

phase. Because only the end-diastolic and end-systolic phases are segmented by the 

clinical expert, the myocardial mask needs to be obtained in all other phases. 

To obtain the myocardium model through the whole cardiac cycle, the manual contours 

on the ED and ES phases were propagated to the full heart cycle. The initial contour on 

each phase was estimated as the weighted average of ED and ES contour. 𝑤𝑒𝑑 and 𝑤𝑒𝑠 

are the weighting factor, which is estimated as the correlation coefficient between the 

image 𝑖 and ED/ES image 

𝐶(𝑖, 𝑝ℎ) = 𝑤𝑒𝑑𝐶(𝑖, 𝐸𝐷) + 𝑤𝑒𝑠𝐶(𝑖, 𝐸𝑆) 

The interpolated contour is used as the initial contour for the phase. Then for each point 

on the contour, a block of 5x5 patch at ED and ES is used as the feature of the point. And 

the best matching point along the perpendicular direction of the contour is taken as the 

final position of the point. Finally, a smoothness of 3 point is applied to remove unreliable 

points. 

 

Figure 26. Illustration of block matching. Yellow contour is initial contour; green line is he search direction; red 
contour is final contour; red rectangles are search window 
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After segmentation, a 3D surface model is generated using implicit B-spline surface 

reconstruction described in [116]. The accuracy of the surface reconstruction is validated 

in [17]. Then the 3D motion field is extracted for each phase by registering the myocardial 

masks using the region-wise registration with incompressibility and rotational constraints, 

as described in 5.3.2. Finally, the 3D strain is calculated for each phase as described in 

5.3.3. 
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Chapter 6 Evaluation of optimized 
T1 mapping workflow 

In this Chapter, the proposed optimization of T1 mapping workflow in Chapter 4 is 

evaluated. The result described in this chapter was published in S.Liu et al, “A vectorized 

Levenberg-Marquardt model fitting algorithm for efficient post-processing of cardiac T1 

mapping MRI” and  S.Liu et al, “GPU Implementation of Levenberg-Marquardt 

Optimization for T1 Mapping” 

6.1 EXPERIMENTS 

6.1.1 DATA ACQUISITION 

Table 9. Main T1 mapping sequence parameters 

Sequence SMART1Map 

(Saturation-recovery) 

MOLLI 

(Inversion-recovery) 

Number of volunteers 16 12 

Flip Angle 45° 45° 

Matrix 224x192 160x128 

TR 3.95 ms 3.58 ms 

TE 1.74 ms 1.56 ms 

Readout bSSFP bSSFP 

Image size 256x256 256x256 

Number of images 8 11 

16 healthy volunteers were included in the study. For all of them, Saturation Recovery 

images are acquired using SMART1Map sequence in [26], and for 12 of them, Inversion 

Recovery images were acquired with MOLLI sequence [21]. In each acquisition, both the 

pre-contrast and post-contrast (15 min after injection of 0.2 mmol/kg of DOTAREM 

contrast agent, Guerbet, Villepinte, France) are acquired. The study protocol was 

approved by the ethics committee and written informed consent was obtained from all 

volunteers. Image acquisition parameters are listed in Table 9. Saturation times for the 

SMART1Map sequences were on average: 90, 190, 280, 380, 1370, 2360, 3300 ms + 

“infinite” time (first image acquired, with no saturation pulse). Inversion times for the 

MOLLI sequences following a so-called 5(3)3 pattern (1st inversion followed by 5 acquired 

images, then 3 heart beats of pause, then 2nd inversion followed by 3 images etc…) and 

were on average: 200, 280, 360, 1220, 1360, 1470, 2340, 2480, 2900, 3340, 4370 ms.  
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All data were acquired with a General Electric 3T system (Signa HDxt, GE Healthcare, 

Milwaukee, USA). One short-axis slice was positioned in the mid-cavity and all acquisitions 

were synchronized to the ECG. Subjects were instructed to hold their breath during the 

sequence, resulting typically in 8 (SR) to 11 (IR) T1-weighted images being acquired within 

a breath-hold period. Partial Fourier and parallel imaging (acceleration factor of 2) were 

used.  

6.1.2 VALIDATION OF THE REGISTRATION 

To validate the registration result, DICE score for an image series before and after 

registration was calculated[117]. For a pair of image, the DICE score was calculated using 

myocardium mask. Here the myocardium mask was generated by manual segmentation 

of the left ventricular myocardium (i.e. endocardial and epicardial contours) using the 

software package MASS (Medis, Leiden, the Netherlands). In the manual segmentation, 

the contours on the image with best contrast were drawn manually and copied to the 

other images. Correction was made only when necessary. For an image series, the DICE 

score is defined as the worst DICE score between each image and the reference image: 

DICE = min (
2∙|Ai∩An|

|Ai|+|An|
)… i ∈ {1: Nt − 1}, with Ai the myocardium mask in image i 

 

Note that a DICE score equal to one means the user did not need to edit the copy-pasted 

contours in an entire series. Differences in DICE scores before/after registration were 

tested. For statistical significance, a Wilcoxon test is used, with a significance level set to 

5%.  

Then the effect of registration on T1 calculation was evaluated using the R2 error of model 

fitting, which can be considered as a measurement of the Goodness of the fitting. The R2 

error of the T1 model fit before and after registration was compared. Here only the 

standard pixel-wise fitting with 3 parameters fitting model was used. Data from both SR 

and IR sequences were evaluated and tested for statistical significance. It needs to be 

mentioned that a mask was defined to select pixels with good fit, as defined by a 

coefficient of determination R2 > 0.97. This threshold has been proposed in previous 
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studies on myocardial T2 mapping as a quality index to exclude outlier pixels/regions from 

the analysis [85,91].  

6.1.3 VALIDATION OF THE T1 MAPPING WORKFLOW   

To evaluate the accuracy and precision of the proposed curve fitting algorithm, simulation 

experiments were performed first. A numerical phantom made of 6 disk-shaped 

structures was generated. The T1 values of those disks ranged from 300ms to 2300ms with 

a sample interval of 400ms, as shown in Figure 30.  Rician noise was added to the image 

to model the noise observed in actual image acquisition, using the following formula: 

I(x, y, t) = |𝐼0(𝑥, 𝑦, 𝑡) +  𝛿 ∗ (𝑟𝑎𝑛𝑑𝑛() + 𝑖 ∗ 𝑟𝑎𝑛𝑑𝑛())|.  

where randn() is a normal distribution generator function and δ is the noise level. 

The accuracy of T1 value was measured as the absolute difference between the estimated 

T1 value and the ground truth. The precision of the T1 value was measured by the standard 

deviation in the disk-shaped region.  The effect of the regularization is evaluated by 

changing the regularization strength μ. It needs to been mentioned that, to evaluate the 

effect of the regularization, a mask smaller than the original disk-shaped structure was 

used to exclude boundary artifacts when measuring the mean T1 value and standard 

deviation of each region. 

Then the proposed model fitting algorithm was validated on volunteer data (describe in 

6.1.1). Image registration was performed before curve fitting for all the volunteer data.  

The proposed vectorized model fitting was firstly compared against the standard pixel-

wise fitting. Both 3-parameter and 2-parameter models were evaluated with data from 

SR and IR sequences. Resulting model fits were compared in terms of: (i) agreement in T1 

values, as assessed by median differences and 95% confidence intervals; (ii) 

computational efficiency, as assessed by computation time and number of iterations.  

Then the denoising/spatial smoothing ability of the proposed method was tested on the 

volunteer database by applying the vectorized LM fit with different values of the spatial 

regularization weight μ. 
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Finally the impact of the initialization was assessed by comparing the default and the 

proposed region-based initialization schemes. Detailed description can be found in 

section 4.3.2. Here, only MOLLI data with 3-parameters model was evaluated as 

premature stop in local minimum is more often observed in IR sequence. Differences were 

assessed qualitatively and quantitatively by comparing the differences in T1 values, and 

more particularly those in the blood pool, where convergence to local minima appears 

more often. 

All the validation experiments were performed with Matlab 2015a (Mathworks, Natick, 

USA) running on a computer with Intel® Core™ i5 CPU , 8GB memory (Intel, Santa Clara, 

USA). Statistical significance was tested using a Wilcoxon signed rank test, with 

significance level set to 5%. 

6.1.4 VALIDATION OF GPU IMPLEMENTATION 

To validate the GPU implementation, the images acquired in section 6.1.1 were used. All 

experiments were performed on computer with Intel® Xeon CPU at 3.30GHz, 64G physical 

memory. The graphic card is NVIDIA Quadro K4200, with 1344 cores, operating at 

784MHz, a 256-bit memory interface, and a 4GB GDDR5 GPU memory with memory 

bandwidth of 173 GB/s  

For pixel-wise curve fitting, the standard sequential c code and the CUDA code were both 

compiled as a “mex” file to be interfaced with Matlab (Mathworks, Natick, USA) and the 

C code is used as a reference for the GPU implementation.  

For the vectorized curve fitting, the following 3 implementations were compared: 

• Initial experiments in Matlab: the Matlab implementation was used as reference 

because the linear solver in Matlab is highly optimized.  

• GPU implementation in Matlab: this was enabled by replacing the array variables 

by gpuArray ones in Matlab.  

• Full CUDA implementation.   

6.2 RESULTS 
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6.2.1 REGISTRATION 

The DICE score before and after registration for all the acquisition was measured and the 

statistic results are reported in Table 10. The results show that the DICE scores are 

improved for both SMART1Map and MOLLI series. The improvement is statistically 

significant (p<0.05) for all SMART1map (pre- and post- contrast) and for pre-contrast 

MOLLI. However, the improvement was more pronounced in SMART1Map images than in 

MOLLI images.  

Table 10. Dice scores computed from the myocardial contours before and after registration 

 Before registration After registration p-value 

SMART1map Pre-contrast 0.8225±0.1438 0.9784± 0.0320 1.2207e-04 

Post-contrast 0.7609± 0.1568 0.9192± 0.0874 1.2207e-04 

MOLLI Pre-contrast 0.8323± 0.0989 0.8977± 0.0623  0.0093 

Post-contrast 0.8364± 0.0985 0.8762± 0.1381 0.3013 

The DICE scores for SMART1Map and MOLLI series are plotted in Figure 27. There is one 

case with post-contrast MOLLI that images registration failed and result in a large 

decrease of the DICE score, as can be seen in Figure 27 (right). Further investigation 

showed this failure is caused by the significant contrast change, which was incorrectly 

corrected during  the histogram matching 

 

Figure 27. Dice scores before and after registration for (Left) SMART1Map and (Right) MOLLI 

The goodness (R2) values for the T1 model fits obtained in the myocardium before and 

after registration are described in Table 11. R2 was improved for both SMART1Map and 

MOLLI series and this improvement was statistically significant (p<0.05) except in the pre-

contrast MOLLI data.  

Table 11. R2 values showing the goodness of the T1 fitting in the myocardium before and after registration  

  Before registration After registration p-value 

SMART1Map Pre-contrast 0.9858±0.0076 0.9889± 0.0072 0.0052 

Post-contrast 0.9751± 0.0210 0.9824± 0.0182 4.3778e-04 

MOLLI Pre-contrast 0.9192±0.0402 0.9258± 0.0345 0.3804 

Post-contrast 0.9723± 0.0124 0.9793± 0.0088 0.0068 
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6.2.2 REGION –BASED INITIALIZATION  

Figure 28 demonstrates intermediate results of the fitting using region-based initialization 

in an example dataset, including the raw image, the segmentation, the initial T1 for each 

region and the final T1 mapping.  

 

Figure 28. Illustration of the region-based initialization: (a) mean image from the T1 series (MOLLI); (b) label 
image from the segmentation; (c) initial T1 value from each region; (d) final T1 value obtained with the region-
based initialization (𝛍 = 𝟏𝐞 − 𝟔). 

 

Figure 29. (left) Example T1 maps obtained using default initialization and region-based initialization: pre-
contrast image (top), post-contrast image (bottom). Black arrow indicates the wrong curve fitting pixels. (right) 
Standard deviation of T1 values and average R2 in the blood pool for each subject of our population. 

Figure 29 (left) shows an example comparison between default and region-based 

initialization in pre- and post-contrast MOLLI images. The region-based initialization 

shows smoother T1 values in the blood pool. With the default initialization, there is a 

larger variability of T1 values in the blood pool region. In the pre-contrast image, a number 

of pixels from the blood region have values close to the default initial guess of T1 =

1000 ms, suggesting incorrect convergence. Then the difference of the region-based 

a b c d 

Raw Image Segmented 

Image 

Initial T1 (ms) Final T1 (ms) 
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initialization and default initialization was quantified by the standard deviation and the 

average R2 in the left ventricle blood pool (Figure 29 Right). The standard deviation 

decreased from 77.3±26.8 ms to 63.4±26.2 ms (p=9.8e-4) and the average R2 increased 

from 0.981±0.013 to 0.987±0.012 (p = 4.9e-4).  

6.2.3 MODEL FITTING VALIDATION WITH SIMULATION 

Figure 30 shows the simulation result for saturation recovery using 3 parameter curve 

fitting. Compared to the pixel-wise curve fitting, the vectorized curve fitting shows less 

noise. A smoothing effect was observe. As the spatial regularization increases, the 

smoothing effect gets stronger. This indicate that the vectorized algorithm is more 

resistant to noise, however, the edges are also blurred. Similar trend was found for 

inversion recovery. It can also be noted that in the background noise area, where T1 is 

undefined, the regularization tends to set the pixels to the initial guess (1000 ms) instead 

large arbitrary values, which is observed in pixel-wise curve fitting.  

 

Figure 30. Simulation results for saturation recovery model fitting with different weights of spatial 

regularization.  

To thoroughly quantify the effect of regularization, we measured the average T1 value 

with different strengths of spatial regularization, and the result was compared to pixel-

wised curve fitting. The statistics of T1 values for both saturation recovery and inversion 

recovery, 3 parameter curve fitting and 2 parameter curve fitting are shown in Figure 

31(col 1). As the spatial regularization increased, the standard deviation of the estimated 

T1 value decreased, which indicate an improved precision of T1 estimation. However, as 

the regularization increased, the measured T1 value deviated from the true T1 values.  

 



73 
 

 

Figure 31. Statistic result for different spatial regularization. (Col 1) Average T1 value as spatial regularization 
increased; (Col 2) relationship between accuracy and precision as spatial regularization varies 
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It needs to be mentioned that, for inversion recovery data, when the T1 value is small 

(300ms), the pixel-wise curve fitting result is significantly larger than vectorized curve 

fitting result. This is caused by the premature stop at local minimum, which results in a 

final value more closed to initial guess (1000ms). With regularization, the measured T1 

value can reach global minimum and more close to true value. Figure 31 (col 2) shows the 

relationship between precision and accuracy as the spatial regularization varies. The 

shape of these curves is as expected: for each T1 value, as the spatial regularization 

increases, the precision improves, however, the accuracy gets worse. The point closest to 

[0 0] corresponds to the optimum regularization. This value is different for different T1 

values, however, generally fall in the range [0.001, 0.01]. 

We further looked at the convergence properties of the optimization. Figure 32 shows the 

residual as a function of iteration number. The curves generally show quick decline before 

the 10 iteration. The final residue varies under different regularization, however, in most 

case μ > 0.1 shows much larger residue, and μ in the range of [0.001, 0.1] gives loser 

residue, this is consistent with the observation before . 

 

Figure 32. Residual of the T1 model fitting as a function of Levenberg-Marquardt iterations. 

6.2.4 VECTORIZED CURVE FITTING ON PATIENT DATA 

In this section, the vectorized curve fitting is validated on clinical data. Pixel-wise curve 

fitting was used as reference. Figure 33 shows T1 values obtained from pixel-wise and 

vectorized model fitting. The pixels in the myocardium and blood pool were compared. 

Both SMART1Map and MOLLI series were included. For each series, the 3-parameter and 
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2-parameter models were validated. Most the pixels are along the diagonal line, which 

indicate good agreement between pixel-wise and vectorized model fitting.  

 

Figure 33. T1 values estimated using the proposed vectorized model fitting versus conventional pixel-wise 
fitting ; The color shows the density of the point cloud, with black meaning higher density and white meaning 
lower density: SMART1Map 3-parameter (1st row); SMART1Map, 2-parameter (2nd row); MOLLI, 3-parameter 
(3rd row); MOLLI, 2-parameter (4th row).  

To quantify the difference, the median of the differences in T1 values and the 95% 

confidence intervals between vectorized and pixel-wise fitting are reported in Table 12. 

The vectorized curve fitting was calculated with very small spatial regularization (µ=1e-6). 

The median values of ΔT1 are around 0 and the 95% confidence interval of ΔT1 is smaller 

than 30ms for both myocardium and blood pool. 

Table 13 gives the statistics of the T1 values in the myocardium and in the blood pool for 

different sequences and number of parameters using our vectorized model fitting 

method(µ=1e-6).  It needs to be mentioned that the standard deviation is generally 

higher, because the standard deviations were calculated from all the pixels of the whole 
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patient database. Table 13 and Table 14 summarize the T1 values with different spatial 

regularization.  Table 14 gives the T1 values (mean and standard deviation) computed from 

the whole database in myocardium and blood pool using increasing μ (=0.005). Minor 

changes are observed for IR sequences, however the standard deviation is significantly 

reduced for SR sequences compared to result in Table 13 , which are more susceptible to 

noise. 

Table 12. Agreement between T1 values obtained by conventional pixel-wise LM fit and by the proposed vectorized 
LM fit (expressed as median difference in ms units, with 95% confidence intervals) 

 All pixels 
(pre-contrast) 

All pixels 
(post-contrast) 

Myocardium 
(pre-contrast) 

Myocardium 
(post-contrast) 

Blood 
(pre-contrast) 

Blood 
(post-

contrast) 

SMART1Map, 
(3-param) 

-0.1 [-28.2, 15.4] -0.0 [-22.0, 8.1] 0.7 [-11.9, 13.1] -0.1 [-4.6, 2.1] -0.6 [-10.9, 7.8] 0.1 [-1.6, 1.2] 

SMART1Map, 
(2-param) 

-0.1 [-34.1, 19.5] -0.0 [-5.4, 5.9] 0.2 [-12.4, 27.2] -0.1 [-0.36, 0.2] -0.2 [-20.3,15.2] -0.0 [-0.3, 0.1] 

MOLLI,  
(3-param) 

-0.0 [-21.8, 10.6] 0.0 [-7.2, 6.4] 0.2 [-3.6,  3.3] -0.1 [-2.7, 2.2] -0.3 [-6.8, 2.7] 0.1 [-1.0, 1.9] 

MOLLI, 
( 2-param) 

-0.0 [-0.5, 0.8] -0.0 [-0.2, 0.3] 0.1 [-0.5, 0.7] -0.0 [-0.2, 0.2] -0.1 [-0.5, 0.5] -0.0 [-0.1, 0.1] 

 

Table 13. T1 value in myocardium and blood pool with different sequence and number of parameters (µ=1e-6). 

 Pre-contrast 
myocardial T1 (ms) 

Post-contrast 
myocardial T1 (ms) 

Pre-contrast 
Blood T1 (ms) 

Post-contrast 
Blood T1 (ms) 

SMART,3T,3param 1525±246 597±180 1845±330 390±225 

SMART,3T,2param 1179±173 423±53 1589±261 265±108 

MOLLI,3T,3param 1029±165 563±110 1310±253 407±94 

MOLLI,3T,2param 1189±122 536±70 1489±146 416±71 

 

Table 14. T1 value in myocardium and blood pool with different sequence and number of parameters (µ=0.005) 

 Pre-contrast 

myocardial 

Post-contrast 

myocardial 

Pre-contrast  

blood 

Post-contrast  

blood 

SMART,3T,3param 1546±133 579±122 1816±232 378±127 

SMARt,3T,2param 1186±157  421±52 1573±237 263±107 

MOLLI,3T,3param 1017±148 561±105 1297±249 408±90 

MOLLI,2T,2param 1179±101 536±70 1488±146 416±71 

 

Figure 34. Example T1 map generated with the vectorized LM fitting algorithm using different weights for the 
spatial regularization 
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To give a better impression about the effect of vectorized LM fitting and spatial 

regularization on real data, an example is shown in Figure 34 . When increasing the spatial 

regularization weight μ, the T1 map shows a reduced noise level and spatially smoother 

T1 values. 

6.2.5 GPU IMPLEMENTATION PERFORMANCE 

 

Figure 35. Computation time for T1 mapping (256x256). (a) pixelwised curve fitting; (b) vectroized curve fitting 

For the pixel-wise curve fitting, we compared the Matlab code, C code (mex file) and the 

GPU implementation. For a 256x256 T1 series, Matlab implementation took 

approximately 10min to calculate one T1 map. However, Matlab is well known for its 

inefficient at for-loop, and It is unfair to compare the Matlab implementation. Therefore, 

the Matlab mex file was used as a reference. Figure 35(a) shows the computation time of 

each implementation. The average calculation time using standard C implementation is 

0.73±0.16 sec for 2 parameter fitting and 1.21±0.36 sec for 3 parameter curve fitting. The 

CUDA implementation costs 0.022±0.005 sec and 0.038±0.009 sec for 2- and 3-parameter 

respectively. The acceleration factor for calculation time is 32 and 31.  

For the vectorized curve fitting, the original Matlab implementation costed around 

54.39±2.74 sec (3-parameter) and 31.74±4.4 sec (2-parameter) to generate one T1 map. 

After replacing the array variables with gpuArray ones, which enables Matlab to calculate 
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with GPU, the calculation time was reduced to 7.3±0.1 sec (3-parameter) and 4.2±0.7 sec 

(2-parameter). CUDA implementation further reduces the calculation time to 1.14±0.01 

sec (3-parameter) and 0.84±0.02 sec (2-parameter). The acceleration ratio compared to 

the original Matlab implementation is 47 for 3 parameter case and 38 for 2 parameter 

case. 

Figure 36 further decomposed the computation time of the kernel functions in the 

vectorized Levenberg-Marquardt algorithm. The figure shows that the filling of 𝐽𝑇𝐽 only 

takes a small amount of time. Most time was spent on the solving of the linear equation. 

 

Figure 36. Computation time of kernel functions 

6.3 DISCUSSION 

In this section, we tried to optimize the T1 mapping workflow by: 

• Vectorized curve fitting algorithm 

• Region-based initialization 

• Non-rigid registration before curve fitting 

• GPU computation 

 

The main innovation here is the vectorized curve fitting algorithm, which allows to solve 

multiple T1 curve fitting problems simultaneously and allow spatial regularization. In order 

to evaluate this algorithm we firstly performed simulation experiments for both 

saturation recovery and inversion recovery sequences. With increased spatial 
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regularization, better precision was achieved, however, at the cost of reduced spatial 

resolution. The simulation results show that there is a bias as the spatial regularization 

increases. This bias effect is more obvious for the saturation-recovery model, while for 

the inversion-recovery model, the bias is negligible (Figure 31). For saturation-recovery 

with 3-parameter curve fitting, although the optimal value of the spatial regularization 

parameter μ varies, the bias remains below 5% when μ is smaller than 0.1. For saturation 

recovery sequence with 2-parameter curve fitting, the bias is larger, this is also because 

there is bias introduced by non-central noise and 2-parameter curve fitting cannot 

compensate for it. It needs to be mentioned that the choice of μ also depends on the 

intensity of the image signal. In practice, we found that the curve fitting result is not very 

sensitive, μ between 0.001 and 0.01 providing a good compromise between bias (i.e. 

accuracy) and variability/uncertainty of the estimate (i.e. precision). In addition, the 

vectorized curve fitting could be extended to more advanced regularizations, e.g. total 

variation [118] or other edge-preserving constraints [119]. Future work will focus on the 

use of such regularizations directly.  

Then we validated the algorithm with volunteer data by comparing the proposed 

vectorized method with the pixel-wise method. The results show that the two methods 

are in good agreement when mild spatial regularization is applied (Figure 33). The 

precision of evaluation is measured by the standard deviation. In general, the 2-

parameter model fitting results in smaller standard deviations than the 3-parameter 

model fitting, which is consistent with the previous study that 2-parameter model fitting 

is more stable. The MOLLI data result in smaller standard deviations than the SMART1Map 

data, which indicates higher precision. This is caused by the fact that the dynamic range 

of the IR recovery curve is twice larger compared to the SR recovery curve. T1 values 

obtained by SR are higher than those obtained with IR because the saturation recovery 

acquisition overestimate the T1 mapping. This trend is in agreement with previous studies 

[71] for 1.5T.  

We have demonstrated the benefit of using our vectorized model fitting method in terms 

of computation time. Implementing the vectorized algorithm is challenging due to the 

increased computational complexity (added spatial regularization) and could result a 

larger computation time. However this is counter-balanced by the use of the conjugate 
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gradient solvers that can solve the larger sparse matrix inversion at each LM iteration with 

minimal extra-computation cost. A commonly used strategy to reduce the curve fitting 

time is to calculate only on the pixels within a pre-computed mask which would further 

speed-up the computation time. In the context of cardiac T1 mapping, the mask could be 

defined as region with enough intensity or only heart region. Both the pixel-wise and the 

vectorized LM algorithms would benefit from such a strategy. In that case our vectorized 

LM would be applied to the vector of pixels in the mask of interest instead of the whole 

image. The computation time in the vectorized LM is dominated by the calculation and 

the application of the Jacobian matrices (sparse matrix-vector multiplications) and 

element-wise vector operations within the conjugate gradient solver. Therefore the 

computation time scales linearly with the number of unknown pixels, both for the pixel-

wise and for the vectorized LM.   

Another improvement is to use region-based initialization. In the default initialization, 

1000ms is used as an initial value for T1. However, nonlinear optimization is sensitive to 

initialization and the optimization sometimes stopped at a local minimum. In our 

experience with myocardial T1 mapping, pixels in the blood pool are more often affected 

when a 3-parameter model is used, because the LM algorithm more likely to be trapped 

in a local minimum. The T1 value in blood pool is also important because in extra-cellular 

volume (ECV) calculation, the T1 value in the blood pool is used as a reference. This 

happens more often in post-contrast images than pre-contrast images, where T1 is farther 

away from this initial value. To optimize the initialization of the nonlinear model fit, a 

region-based initialization has been proposed. This initialization was found to be more 

important for MOLLI data, which tends to stop at an inappropriate local minimum when 

the initialization is not properly set. For SMART1Map, the curve fitting was found to be 

less sensitive to the initialization, thus the default initialization can also be used.  

Besides regularization, other classic extensions of the LM technique can easily be 

integrated to the proposed framework, e.g. to include robustness to outliers using 

additional weighting matrices. Furthermore the proposed vectorization strategy is not 

restricted to LM and could be applied to other nonlinear solvers. The iterative restoration 

of the signal polarity [75] and phase-sensitive reconstruction [76] could be implemented 

as a preprocessing step and might improve the result of the vectorized LM fitting further. 
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Other parameter mapping applications might also benefit from the proposed strategy, 

including T2, T2* mapping and pharmacokinetic model fitting in delayed contrast-

enhanced MRI. 

6.4  SOFTWARE  

Finally, a workflow based software was developed for clinical use. The software allows 

the user to create a T1 mapping workflow, with optional steps of image registration, 

denoising and curve fitting. The design and user interface is shown in Appendix I.  
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Chapter 7 Evaluation of strain analysis 
based on 3D cine images 

In this chapter, the stain analysis framework proposed in Chapter 5 is evaluated and the 

results are presented. The binary myocardial mask was used as input for the motion field 

estimation. The dense motion field was then used to calculate the 3D strain for each point 

in the myocardial region. Simulation was performed to validate the strain calculation 

framework. For clinical data, 2D strain was also calculated and used as reference for 3D 

strain. The strain between patients with and without fibrosis are subsequently compared. 

Finally, the strain curve for different groups was calculated and compared. 

7.1 EXPERIMENTS 

7.1.1 DATA ACQUISITION 

18 patients with Duchenne muscular dystrophy were included in this study. The patient 

population included children and young adults (age = 12.9 ± 4.3 year old, ranging from 6 

to 20 years old). The heart rate was 102 ± 18 bpm. The protocol was approved by an ethics 

committee (clinical study ID C13-04) and written consent was obtained from all patients 

(and/or their parents when applicable). 

Cardiac MRI was performed on a 1.5 T Signa HDxt MR scanner (General Electric, 

Milwaukee, USA). A conventional imaging protocol, comprising of cine image sequence 

and tissue characterization sequences, was adapted to these patients to allow the entire 

examination to be performed under free breathing conditions. This was necessary 

because these patients were poor breath-holders: the older ones had severe muscular 

impairment affecting their breathing function in particular, while the younger ones were 

poorly compliant. Post-contrast cine images were also acquired 2-5 minutes after 

gadolinium injection. LGE images and T1 maps were acquired 15 min after injection. These 

sequences were used to determine myocardial segments whether fibrosis presented (or 

not) for each patient. Images used for this study included 2D cine stacks covering the left 

ventricle in three different orientations: short-axis (SAX) stack, horizontal long-axis (HLAX) 

stack and vertical long-axis (VLAX) stack.  The acquisition time for acquiring the 3 cine 
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stacks was approximately 10 min (SAX stack: 4 min; HLAX stack: 3 min; VLAX stack: 3 min). 

The image reconstruction comprised a motion correction technique (cine-GRICS) for each 

2D cine image stack and a super-resolution technique combining the three stacks into an 

isotropic 3D cine dataset (1.4 x 1.4 x 1.4 mm3), as described in [17].  

An experience pediatric cardiologist manually drew the contours of endo- and epi-cardial 

surface on ED and ES images. He also reviewed all LGE, post-contrast T1 maps and post-

contrast cine images to report whether fibrosis was visible and which segment was 

affected (when applicable), see Table 15 below. 

Table 15. Description of patient data. 

Patient ID Age FE % Anomaly contraction 
segments 

LGE segments Pathology 

2008-003 01-
0001 

12 58 N / A N / A Duchenne 

2008-003 01-
0002 

10 54 N / A 11 but poor 
quality 

Duchenne 

2008-003 01-
0004 

6 45 diffuse hypokinesia 5,6,11,12,16 Duchenne 

2008-003 01-
0005 

18 52 N / A 11 Duchenne 

2008-003 01-
0006 

16 52 N / A 5.11 Duchenne 

2008-003 01-
0007 

13 54 N / A 5.11 Duchenne 

2008-003 01-
0008 

9 65 N / A N / A but poor 
quality 

Severe 
Becker 

2008-003 01-
0009 

20 54 N / A 8 Duchenne 

2008-003 01-
0010 

8 72 N / A N / A but poor 
quality 

Duchenne 

2008-003 01-
0011 

11 57 N / A N / A but poor 
quality 

Duchenne 

2008-003 01-
0014 

8 69 N / A N / A Duchenne 

2008-003 01-
0015 

11 69 N / A N / A Duchenne 

2008-003 01-
0016 

6 66 N / A N / A Duchenne 

2008-003 01-
0017 

15 41 N / A 5.11 Duchenne 

2008-003 01-
0018 

20 36 diffuse hypokinesia, 
apical predominance 

5,6,11,12 Duchenne 

2008-003 01-
0019 

18 56 N / A 5,6,11 Duchenne 

2008-003 01-
0021 

9 64 N / A N / A Duchenne 

2008-003 01-
0022 

12 57 N / A 5,6,11,12 Duchenne 

7.1.2 VALIDATION ON SIMULATION DATA  
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To validate the registration algorithm and the strain estimation, the left ventricle was 

modeled as a concentric sphere model (Figure 37). The inner sphere represent the blood 

pool, and its diameter is 45mm. The space between the two concentric sphere represent 

the myocardium, where the wall thickness is 10mm.  This model was used as ED phase, 

which is used as reference for registration and strain calculation. The ES phase heart 

model was generated by resizing the left ventricle model in ED phase. In order to simulate 

the dynamic motion of the left ventricle, the resizing was done in such a way that the 

ejection fraction of the left ventricle was 0.7 (which includes the volume of the blood 

cavity) and the volume of the myocardial region was preserved. The left ventricle model 

was generated as binary image in a stack of 100x100x80. 

 

Figure 37. Simulation LV model (a) ED phase (b) ES phase 

The dense motion field was firstly calculated using the registration scheme described in 

5.3.2. Then the 3D strain was calculated from the motion field, for each voxel in the 

myocardial mask. For statistic purpose, the average 3D strain was calculated on radial, 

circumferential and longitudinal directions. Then the myocardial area was further divided 

into epi- and endo- areas, in which the average strain value was also calculated separately. 

For comparison purpose, the theoretical strain from the geometry change was calculated, 

in the same way as the global 2D strain was computed, as described in 5.3.3.   

To further validate the consistency of the extracted strain measures, the quantity (1 +

∆𝑅

𝑅
)(1 + ∆𝐶

𝐶
)(1 + ∆𝐿

𝐿
) was checked. This value should be approximately equal to 1 [120]. 

Because the heart muscle is incompressible, the three-principal strains must satisfy 𝜀𝑥 +
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𝜀𝑦 + 𝜀𝑧 = 1. For a 3-D patch, if the initial radial, longitudinal and circumferential lengths 

of the patch are R, L and C, respectively, and the initial volume of the patch is  

𝑉0 = 𝑅𝐿𝐶. 

 After contraction, the radial, longitudinal and circumferential length become 𝑅 + ∆𝑅, 

𝐿 + ∆𝐿 and 𝐶 + ∆𝐶, then the volume is  

𝑉 = (𝑅 + ∆𝑅)(𝐿 + ∆𝐿)(𝐶 + ∆𝐶). 

Because of the incompressibility of the myocardial tissue,  

𝑉 = 𝑉0 

So that  

(𝑅 + ∆𝑅)(𝐿 + ∆𝐿)(𝐶 + ∆𝐶) = 𝑅𝐿𝐶 

Thus 

(1 +
∆𝑅
𝑅

)(1 +
∆𝐶
𝐶

)(1 +
∆𝐿
𝐿

) = 1 

Note that, if we further expand both sides of the equation: 

ε𝑟 + ε𝑙 + ε𝑐 + ε𝑟ε𝑙 + ε𝑟ε𝑐 + ε𝑐ε𝑙 = 0  

Ignoring the second order product, then ε𝑟 + ε𝑙 + ε𝑐 ≈ 0 

Here we define the quality check as  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 =  (1 +
∆𝑅
𝑅

)(1 +
∆𝐶
𝐶

)(1 +
∆𝐿
𝐿

) 

7.1.3 VALIDATION ON CLINICAL DATA  

For the clinical data, the same processing was performed as for simulation data. The 

motion field was extracted using the algorithm described in 5.3.2 and 3D strain is 

estimated using the dense motion field. The 3D peak strain is first compared to the 2D 
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strain as defined in Figure 25. Then patients are divided as two groups, with fibrosis in 

segment 11 and without fibrosis in segment 11, the 16-segment result of 3D strains are 

analyzed. Finally, strain curves for whole cardiac cycle were calculated, and comparison 

between the two groups was performed. 

7.2 RESULTS 

7.2.1 SIMULATION RESULT 

 

Figure 38. Motion field of simulated heart model (slice 40) 

Figure 38 shows a slice of the 3D motion field extracted from the myocardial mask using 

the incompressibility regulated the registration described in 5.3.2. Compared to the 

motion field without regularization, the motion field is smoother and more consistent. 

Figure 39 shows the estimated strain from the motion field in 3 different slices. In general, 

the endocardial surface shows larger stain than the epicardial surface, which is consistent 

with the LV contraction model, that the endocardial surface has larger motion than the 

epicardial surface.   
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Figure 39. Estimated strain from motion field 

 

Figure 40. Statistic distribution of 3D strain. The red line is the reference value for myocardium, the green line is 
the reference value for epi- and endo-cardium. 

Figure 40 (col 1-3) shows the statistical distribution of the strain value on different 

myocardial layer as well as on the whole myocardium. The red line is the theoretical value 

and the green line in Ecc and Ell are the theoretical value on the epi- and endo- surface. 

The radial strain shows significant differences on different layers. For circumferential and 

longitudinal strain, the 3D strain falls in the interval defined by the theoretical value. 

Figure 40 (col 4) shows the distribution of the Jacobian index. The Jacobian determinant 

is an indicator of spatial convergence. Jacobian determinant larger than 1 means spatial 
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divergent and smaller than 1 means spatial convergent. Here the Jacobian determinant is 

around 0.9, which might be caused by the imperfection of the motion field extraction. 

Figure 40 (col 5) show the quality check defined in 7.1.2. The quality check is  1.00 ±0.03, 

indicating good agreement with physical model. 

Table 16. Strain from simulated data. 

Theoretical Radial strain(%) Circumferential 
strain(%) 

Longitudinal strain(%) 

 Epi Endo Epi Endo Epi Endo 

 66.9 66.9 -13.6±4.2 -29.6±10.2 -14.9 -33 

Estimated Radial strain(%) Circumferential 
strain(%) 

Longitudinal strain(%) 

 55.5±11.4 -19.6±3.3 -19.3±3.2 

 Epi Endo Epi Endo Epi Endo 

 41.8±2.7 74.8±4.4 -15.7±1.7 -25±1.1 -15.3±1.5 -24.6±1 

Table 16 compares the theoretical strain calculated from the geometry change and the 

estimated strain from the motion field (Figure 25). Compared to the theoretical strain, the 

average 3D radial strain is underestimated (55.5% versus 66.9%). However, further 

decomposition on the radial direction gives a detailed distribution of the 3D radial strain, 

ranging from 41.8% to 74.8%. The circumferential strain and the longitudinal strain are 

approximately in the same range.  

7.2.2 CLINICAL DATA RESULT 

7.2.2.1 MOTION FIELD EXTRACTION 

The average ejection fraction for the patient data is 52.24% ± 8.47%. The myocardial 

volume ratio between ED and ES phase is 0.97±0.10, indicating that the assumption  of 

incompressibility of myocardium volume is reasonable. 

 

Figure 41. Motion field from myocardial mask registration with incompressibility regularization and rotational 
regularization 
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The motion field was extracted using the non-rigid registration algorithm with 

incompressibility regularization described in 5.3.2.  Figure 41 shows an example of the 

motion field extracted from the myocardial mask. Figure 42 shows the 3D surface 

reconstructed from the short axis contours and 3 LAX contours. 

 

Figure 42. Example of 3D heart model recontructed from LAX contours 

7.2.2.2 GLOBAL STRAIN :  3D VS 2D GLOBAL STRAIN 

 

Figure 43. 3D strain versus 2D gloal strain. 

Figure 43 compares the 3D peak strain with the 2D strain obtained from the global 

geometry change. The circumferential strain shows a good linear relationship (correlation 

coefficient R=0.8664),  while the linear relationship between longitudinal and radial strain 

is less strong, with correlation coefficient 0.5356 and 0.5503, respectively. 

 

Figure 44. Comparison between 3D strain and 2D strain from all patient data 
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Figure 44 compares the 2D strain and 3D strain. The 3D radial strain is significantly larger 

than the 2D and the 3D circumferential strain is significantly smaller than the 2D strain. 

The difference between the longitudinal strain is not significant.  

7.2.2.3 CORRELATION BETWEEN STRAIN AND EJECTION FRACTION 

Figure 45 shows the relationship between 2D strain calculated from the contours and 

ejection fraction. The green points represent the patients without fibrosis in segment 5 

or 11, and the red points represent the patients with fibrosis in segment 5 or 11. Patients 

with fibrosis show lower ejection fraction (<55%) compared with patients without fibrosis 

(>55%). However, some patients without fibrosis also show smaller ejection fraction. 

Patients with fibrosis also show smaller longitudinal, radial and circumferential strains. 

The result is consistent with the ejection fraction. The correlation coefficient between the 

longitudinal, radial circumferential and ejection fraction are -0.67 (p=0.011), 0.35 

(p=0.12),  -0.92  (p=0). 

 

Figure 45. 2D strain versus ejection fraction 

 

Figure 46. 3D strain versus ejection fraction 

Figure 46 shows the correlation between the 3D strain and the ejection fraction. 

Compared to the 2D strain, the 3D radial strain shows better correlation with ejection 
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longitudinal direction and circumferential direction are worse, with correlation coefficient 

of -0.41 (p=0.068) and -0.89 (p=0) respectively. The correction coefficient is summarized 

in Table 17. 

Table 17. Correlation coefficient between strain and ejection fraction. 

 Radial strain Circumferential strain Longitudinal strain 

2D strain[114] 0.709 -0.775 -0.638 

3D strain[114] 0.742 -0.862 -0.720 

2D strain 0.35 -0.92 -0.67 

3D strain 0.74 -0.89 -0.41 

7.2.2.4 STRAIN DIFFERENCE BETWEEN PATIENT GROUPS 

 

Figure 47. Comparison of strain between patients with and without fibrosis. (Row 1) 3D strain (Row 2) 2D 
strain 

In this section, the global strain for patient with and without fibrosis is compared. Figure 

47 shows the average 3D strain and 2D strain for these two patient group. The difference 

between those two groups are not significant for both 2D and 3D global strain. The result 

is also summarized in Table 18. 

Table 18. Comparison between 3D strain calcuated from mask registration and 2D global strain 
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7.2.2.5 REGIONAL STRAIN 

We further looked at the regional strain for different patient group in this section. Figure 

48 gives example strain maps for a patient without Fibrosis (Patient 001) and with Fibrosis 

(Patient019). Three orthogonal planes were taken and the 3D strain for each pixel is 

shown in color coded image. The radial strain, circumferential strain and longitudinal 

strain for each segment is visualized at the bottom using bull’s eye plot. Compared to 

patient 001 (no fibrosis), patient 019 (with fibrosis) shows lower strain value in all 

direction, especially in the segments where fibrosis exists. 

 

Figure 48. (left)Patient 001 , no fibrosis  (right) Patient 019, fibrosis in segment 5,6,11 

The patients were divided into two groups, with fibrosis in segment 11 and without 

fibrosis in segment 11. Figure 49 shows the average 3D strain in AHA-17 segment model. 

Compared to the patients with no fibrosis, the patients with fibrosis have smaller radial 

strain (Figure 49 Left)and lower circumferential strain (Figure 49 Middle). The difference 

in longitudinal strain (Figure 49 Right) is more complex. Segment 4,5,10,11 has smaller 

strain (marked as “-”) while the other segment has larger (marked as “+”) or similar strain.     
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Figure 49. Average strain value on different group. The plus/minus sign represent relative value compared to 
non-fibrosis patients 

 

Figure 50. Segment-wise radial strain comparison between patient with fibrosis and without fibrosis. [*] indicate 
a significant difference between the two groups. 

 

Figure 51. Segment-wise circumferential strain comparison between patient with fibrosis and without fibrosis. 
[*] indicate a significant difference between the two groups. 
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Figure 52. Segment-wise longitudinal strain comparison between patient with fibrosis and without fibrosis. [*] 
indicate a significant difference between the two groups 

To further investigate the significant of the difference, the strain value for each segment 

was compared and the result is shown in Figure 50 - Figure 52. The difference in radial 

strain (Figure 52)  and longitudinal strain (Figure 52) is not significant for all the segment. 

In circumferential strain (Figure 51), some segments show significant difference:  

• In segment 11 , the circumferential strain for patient with fibrosis is significantly 

larger with p=0.0244.  

• In segment 2,3,8,9, which is the septum area.  

• In segment 1,7, which is the anterior region.  

7.2.3 STRAIN CURVE ANALYSIS RESULTS  
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Figure 53. Example of epi and Endo cardial contours from the tracking algorithm 

In order to calculate the strain curve, the heart model for each cardiac phase is obtained 

using the contour propagation in 5.4. Figure 53 shows an example of tracked contours. 

Figure 54 and Figure 55 gives an example of the strain curve for a patient with fibrosis in 

segment 11 (Figure 54) and a patient without fibrosis in segment 11(Figure 55). 

 

Figure 54. Strain curve patient nr.2 (fibrosis in segment 11) 
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Figure 55. Strain curve patient nr.8 (no fibrosis in segment 11) 

Table 19 shows the strain curves from all the patients. First column shows the patient Id 

and status of fibrosis. Second column shows the strain curve in radial, circumferential and 

longitudinal direction. Patients with fibrosis are marked with orange background. In 

general, patients with fibrosis have more inconsistent strain curve. The abnormal curves 

either have very large absolute value or reversed strain than normal strain, as indicated 

by the black arrow.  However, some patients without fibrosis also shows similar curve, 

but less often. 

Table 19. Strain curve for all the patients. Each plot contains curves for 16 segments. 
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For each patient, the average strain curve was calculated by averaging the strain curves 

of the different segments. The correlation between the strain curve of each segment and 

the average strain curve was calculated and the result for all the patients is summarized 

in Figure 56. This measure is called correlation index in the remainder. For patients with 

fibrosis, the correlation index for circumferential strain is significantly smaller than the 

index for the patients without fibrosis in most segment, except segment 5, 11. 

0 20 40
-0.5

0

0.5

1
Err

0 20 40

-0.2

-0.1

0

0.1

0.2

Ecc

0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
Ell

0 20 40
-0.5

0

0.5

1
Err

0 20 40

-0.2

-0.1

0

0.1

0.2

Ecc

0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
Ell

0 20 40
-0.5

0

0.5

1
Err

0 20 40

-0.2

-0.1

0

0.1

0.2

Ecc

0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
Ell

0 20 40
-0.5

0

0.5

1
Err

0 20 40

-0.2

-0.1

0

0.1

0.2

Ecc

0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
Ell

0 20 40
-0.5

0

0.5

1
Err

0 20 40

-0.2

-0.1

0

0.1

0.2

Ecc

0 20 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1
Ell



100 
 

 
Figure 56. Correlation index, i.e. correlation between the strain curve of a segment and the average strain curve 

of all segments. 

7.3 DISCUSSION 

7.3.1 MOTION FIELD EXTRACTION 

Most deformation field based methods have been based on gray scale image registration. 

Some researchers also used surface registration to extract the motion field. Others 

combined the image information with the heart model [121]. In this experiment, the 

motion field was extracted by registering the myocardial mask. This method is a hybrid 

method that incorporates the surface/model information into the registration. It keeps 

the important information of the myocardial boundary, but omits the detailed 

information inside the myocardium. For the heart model, this is acceptable because the 

left ventricle is approximately a cylindrical structure with uniform gray level, so the gray 

level information within the myocardium is considered unreliable for motion tracking.  

The region-wise regularization with incompressibility and rotational constraints was 

introduced according to the incompressibility property of the myocardium and showed 

improved registration result. In addition, the rotational regularization was added to mimic 

the coherent contraction of the myocardial fiber. It prevents the registration from 

artificially introduced, large, unphysical local shearing in cases where the contours cannot 

be perfectly matched under the incompressibility assumption (due to inaccuracies in the 

segmentation). 
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7.3.2 STRAIN VALUES COMPARED TO PREVIOUS STUDY 

In this chapter, the 3D Lagrange strain was calculated and validated on DMD patients, 

with and without fibrosis in segment 5 or 11. The absolute value of 3D strain is different 

from that reported in [100]. The longitudinal strain and radial strain are generally larger, 

while the circumferential strain is in the same range (Table 6, Figure 44). It also needs to 

be mentioned that, the strain value calculated by different tools may be different 

[14],[95]. This difference could be caused by several reasons, for example, imaging 

modality or tracking methods.  

Although the strain values from different studies are different, the patients with fibrosis 

show smaller absolute strain in longitudinal, radial and circumferential directions. This 

trend is the same as reported in [100], but the difference is not as significant as reported 

in [100], which compared the DMD patients with the control group, while in our study we 

compared the DMD patients with and without fibrosis.   

7.3.3 STRAIN MEASUREMENT : 3D  VERSUS 2D STRAIN   

Currently, 2D strain is more widely used in clinical applications. However, 2D strain is 

subject to the out-of-plan movement. Therefore, 3D strain is gaining more and more 

interest. In our study, the difference between 3D strain and 2D strain is significant for 

radial and circumferential strain and not significant for longitudinal strain (Figure 44).   

The correlation between strain and ejection fraction was further investigated. Compared 

with the result in [114], the circumferential strain obtained in this study shows slightly 

stronger linear correlation with ejection fraction for both 2D and 3D strain. The 3D radial 

strain is similar to that in [114], while the 2D strain is much worse. For longitudinal strain, 

the 2D result is slightly improved, but the 3D result is worse. It needs to be mentioned 

that the 3D and 2D directions are actually defined differently, which explains why the 

strain decomposition is also different. 

7.3.4 REGIONAL STRAIN 
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Currently, research on DMD patients has been focus on global strain. In this chapter, the 

regional strain, including peak systolic strain and strain curves, were analyzed.  For DMD 

patients, it was shown in [102] that circumferential strain decreased compared with the 

control group. In this study, we further showed that, for DMD patients with fibrosis, the 

circumferential strain in the septum and anterior region is significantly lower than 

patients without fibrosis in segment 5 or 11.  

The correlation index, defined as the correlation between the strain curve of a segment 

and the average strain curve of all segments, also shows lower values in circumferential 

strain in general (Figure 56), whereas in segment 5 or 11 the correlation is relatively high. 

This seems to indicate that the global circumferential strain can be better explained by 

the regional strain in segment 5 and 11. Since the global circumferential strain is 

significantly smaller, this could be caused by the lower contractility in segments 5 and 11. 

The lower correlation index of the other segments could also mean that there is more 

variability across different segments, which is an indicator of contractile dysfunction.  
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Chapter 8 Conclusions and future 

WORK 

8.1 CONCLUSIONS  

This work is motivated by the emerging of new MRI imaging technologies and new image 

reconstruction methods. The aim is to investigate how image processing methods can be 

used to extract valid clinical information from MRI images. In this work, two topics were 

selected, myocardial T1 mapping and myocardial strain analysis based on 3D isotropic cine 

images.  

• Thanks to the development of cardiac gating and motion correction, T1 mapping 

is becoming more common in medical centers. However, there are several 

problems. First, the raw image is subject to image noise and cardiac motion. 

Therefore, post processing is required. To solve this problem, a vectorized 

Levenberg-Marquardt algorithm that processing the image as a whole was 

proposed. This method uses the information of the neighboring pixels, therefore 

provides more robust results and is less subject to the local minimum problem. 

Secondly,  researches from different groups are based on different MR sequences 

and different curve fitting methods. Therefore, different methods and workflows 

need to be compared. To solve this problem, images acquired with different 

sequences, MOLLI and SMART1Map, were collected. 3-parameter and 2-

parameter fitting models were compared. In addition, to support validation work 

for clinical researchers, a software was implemented, allowing the proposed 

fitting methods to be applied on different sequence and with different models. 

Finally, due to the expectation of 3D T1 mapping in the near future, an initial 

implementation on GPU was conducted. 

• Currently, most cardiac function analysis is based on 2D cine stacks. However, with 

new image reconstruction technology, 3D isotropic cine imaging has become 

possible. Compared to 2D imaging, 3D cine-based analysis is less subject to 

through-plane motion and could potentially provide a better estimate of cardiac 

function. The work on strain analysis is triggered by this new imaging data. 
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Problems in strain analysis include motion field estimation and strain analysis. In 

this work, the motion field was extracted using image registration of myocardial 

masks. This method is fast and takes into account the information of the heart 

model. In addition, physical constraints, such as incompressibility regularization 

and rotation regularization, were added to improve the motion field extraction. 

Compared to 2D global strain, the 3D radial strain shows larger values and the 3D 

circumferential strain has smaller values. The difference between 3D and 2D strain 

values is significant for radial and circumferential direction, while the difference in 

longitudinal strain is not significant. In this work, the DMD patient data were 

divided into two groups, patients with fibrosis and without fibrosis. The regional 

3D strains were compared between different groups. A significant difference was 

found in circumferential strain in the septum and anterior region. Furthermore, 

the strain curves for different patient groups were calculated and a correlation 

index was proposed to distinguish abnormal segments in terms of strain curve 

patterns. The correlation index of circumferential strain showed smaller value for 

DMD patients with fibrosis and could potentially be used as a parameter to assess 

the progressive status of DMD patients. 

8.2 FUTURE WORK 

Motion information is very important in cardiac analysis. In cardiac T1 mapping,  motion 

introduces misalignment between images, and needs to be corrected. In cardiac strain 

analysis, motion provides information about the contractile function of myocardial tissue. 

In this study, the motion information is extracted using an image registration technique. 

However, in recent years, machine learning has been proved to be an useful tool not only 

for tasks such as object recognition, but also for motion estimation. One example is 

FlowNet, which is proposed by Phlipp Fischer et al in [122] and validated with synthetic 

data sets. Eddy Ilg et al further improved the accuracy for small motion by introducing an 

end-to-end learning concept [123]. Hopefully this technique could improve the motion 

estimation.   

In Chapter 4, spatial regularization was applied to improve T1 mapping. The workflow was 

validated on 16 patients. Pre-contrast and post-contrast images were acquired for each 
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patient using MOLLI and SMART1Map sequence. However, validation on a larger scale 

clinical data could still be interesting. In addition, new analysis methods such as machine 

learning might also be worth investigating. 

In Chapter 5, the myocardial strain is analyzed on DMD patients with and without fibrosis. 

The research compared the global peak strain, regional peak strain and regional strain 

curves among the two groups. Further investigation could be on the following areas: 

• Strain pattern analysis. In this work, the strain curve is calculated and the 

correlation to the average strain curve is calculated and compared. However, it 

would be interesting to do further data mining to extract more information from 

the strain curves, and machine learning could be helpful in this area. 

• Comparative study of different imaging modalities. Currently, most strain studies 

are based on ultrasound images and tagged MR images. In these two methods, 

motion is encoded by labeling the tissue during the imaging process. In cine 

images, on the other hand, motion is estimated by matching the images. 

Therefore, the motion estimation may not match the actual motion. However, 

this does not prevent us from extracting clinically valid information using this 

method.    

• Compare the patient group with healthy control group or perform long-term 

monitoring of patient status. In this work, the comparison is done between 

patients with and without fibrosis. However, due to individual differences, the 

statistics might not be significant. To validate this method more thoroughly, it 

would be interesting to compare the patient group with control group. It would 

also be interesting to follow up the patients and see if this method can be used to 

evaluate the patient's status. 
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Appendix I 
A software for clinical study purpose is implemented. The software integrated non-

registration module, de-noise module and curve fitting module. It allows flexible choose 

processing steps, eg. including/removing processing steps or add additional steps. 

Regional result and point result can be reported. 

 

 

 


