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Preface II 
 

 

The rise of BIM in the construction industry has led to the availability of structured and 

automated data as more operations are getting cloud based. With the availability of 

data, Artificial Intelligence (AI) is finding more utility in the construction sector. Artificial 

Intelligence is making tremendous changes in various fields of construction like task 

management, construction execution planning, updating construction sequences, risk 

management, safety, site monitoring and finally it can increase the productivity of the 

construction itself. This branch of study has the potential for astounding applications in 

BIM and can be a driving factor for the wishes we have for the future. 

This thesis study showcases a break-through application of Deep Learning in the field 

of image processing where it is employed to identify the geometrical complexity level 

of a building element from visual features of the 3D model of the elements.   

The study has been my initial attempt to explore the realm of AI and it provided an 

insight into the incredible prospects that AI have in construction domain. I would like to 

thank my supervisor Mr. Jimmy Abualdenien for the amazing guidance and mentoring 

that he showcased during the entire process of the project. I would also like to thank 

my husband and daughter for being my pillar of strength and supporting me for my 

entire study at TUM. I thank my parents for their well wishes and constant encourage-

ment. 

Jayasurya Kannankattil Ajayakumar 

Munich, 29-04-21 
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Abstract III 
 

 

BIM based building designs includes the use of geometric and semantic information 

for their elemental tasks in the construction industry. The Level of Development (LOD) 

is widely used in BIM to specify which information must be available at what time during 

the entire phase of a construction process. LOD helps define the level of maturity and 

detailing at an instance of the construction process and is considered a legally binding 

information for various evaluations. Many open tools in BIM and commercial software 

are available that can provide automatic validation of the semantic information of a 

building model. But automatic validation of the required geometric information needed 

for a model to fulfil its purpose is still unexplored. Currently, geometric validation is 

done based on human experience and it still remains a manual task. This thesis study 

presents a deep learning framework that can automatically evaluate and detect the 

Level of Geometry (LOG) of building elements. The study initially analyses the effec-

tiveness of popular methods available in deep learning for classification of 3D models 

for its LOG (e.g., Mesh CNN, Graph CNN, Triple Input CNN, Multiview CNN etc.). The 

feature patterns that represent the LOG levels of the building models were automati-

cally extracted from the visual representations without manual intervention. MVCNN 

model architecture is further explored for its effective use in a practical application of 

LOG classification through adaptation of its model architecture as well as different 

types of training datasets. Multiplane representations of the MVCNN showed that they 

were able to classify building elements to different LOG levels with an accuracy of 83%. 

For commercial application, a future framework is proposed that has improved pro-

spects in recognising all the feature patterns of different kinds of building elements. 

Key words: Building Information Modelling (BIM), Level of Development (LOD), Level 

of Geometry (LOG), Deep Learning, Convolutional Neural Network (CNN), Multi-View 

Convolutional Neural Network (MVCNN)  
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Zusammenfassung IV 
 

 

BIM-basierte Gebäudeentwürfe umfassen die Verwendung geometrischer und 

semantischer Informationen für ihre elementaren Aufgaben in der Bauindustrie. Der 

Entwicklungsstand (Level of Development, LOD) wird in BIM häufig verwendet, um 

anzugeben, welche Informationen zu welchem Zeitpunkt während der gesamten 

Phase eines Bauprozesses verfügbar sein müssen. LOD hilft bei der Definition des 

Reifegrades und der Detaillierung in einem Fall des Bauprozesses und wird als 

rechtsverbindliche Information für verschiedene Bewertungen angesehen. Es stehen 

viele offene Tools in BIM und kommerzieller Software zur Verfügung, mit denen die 

semantischen Informationen eines Gebäudemodells automatisch validiert werden 

können. Die automatische Validierung der erforderlichen geometrischen 

Informationen, die ein Modell benötigt, um seinen Zweck zu erfüllen, ist jedoch noch 

nicht erforscht. Derzeit erfolgt die geometrische Validierung auf der Grundlage 

menschlicher Erfahrungen und bleibt weiterhin eine manuelle Aufgabe. Diese 

Abschlussarbeit präsentiert ein Deep-Learning-Framework, mit dem der 

Geometriepegel (LOG) von Bauelementen automatisch bewertet und erfasst werden 

kann. Die Studie analysiert zunächst die Wirksamkeit populärer Methoden, die beim 

Deep Learning zur Klassifizierung von 3D-Modellen für ihr LOG verfügbar sind (z. B. 

Mesh CNN, Graph CNN, Triple Input CNN, Multiview CNN usw.). Die Merkmalsmuster, 

die die LOG-Ebenen der Gebäudemodelle darstellen, wurden ohne manuellen Eingriff 

automatisch aus den visuellen Darstellungen extrahiert. Die MVCNN-Modellarchitektur 

wird weiter auf ihre effektive Verwendung in einer praktischen Anwendung der LOG-

Klassifizierung durch Anpassung ihrer Modellarchitektur sowie verschiedener Arten 

von Trainingsdatensätzen untersucht. Mehrschichtige Darstellungen des MVCNN 

zeigten, dass sie Bauelemente mit einer Genauigkeit von 83% in verschiedene LOG-

Ebenen einteilen konnten. Für die kommerzielle Anwendung wird ein zukünftiger 

Rahmen vorgeschlagen, der die Aussichten für die Erkennung aller Merkmalsmuster 

verschiedener Arten von Bauelementen verbessert. 
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Introduction and  Motivation 1 

 

 

 

The built environment made by the construction industry has played a huge role in how 

humans has evolved over centuries. It influences the natural environment, habitat and 

ecosystems around it. The last few centuries witnessed enormous growth in the con-

struction sector that it brings along with it the question of smart built to answer the 

problems created by unsustainable development of this sector. The Global Construc-

tion Industry is one of the fastest growing industry and also one of the biggest consum-

ers of raw materials in the world. The industry is expected to grow at a tremendous 

rate of 4.2 percent annually from 2018 to 2023 with respect to market value, creating 

widening opportunities in residential, non-residential as well as in various infrastructure 

projects (World Bank Group 2018). Construction companies are now becoming more 

accountable for the contribution that they make to the global emissions.  Due to this 

reason they are facing enormous pressure from banks, investors, contractors, as well 

as from consumers to reduce the risk that they pose to the climate and at the same 

time reduce their carbon footprint (World Bank Group 2018). 

In the last few decades there has been tremendous digitalization in the Architecture, 

Engineering and Construction (AEC) Industry for designing, constructing as well as the 

operating buildings and infrastructure assets. But these digital information fall short 

with respect to other industry sectors. Valuable information is lost as it is transferred 

from one department to the other because most of the information is carried out as 

drawings on paper or in limited digital format. This loss of information can cost more 

money and time, and can affect the entire life cycle of a built facility. (Borrmann et al. 

2018b) 

 Introduction 

Building Information Modelling (BIM) is the solution to the above-mentioned problems.  

BIM uses computer technology in the design, construction, engineering and operation 

of built facilities. BIM creates a digital representation of the buildings that can be used 

from the initial phase of a project, to design, built, operate and maintain phase. BIM 

dramatically improves the coordination of design activities, integration, control and 

1 Introduction and  Motivation 
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hand over of the information between the operators of the project. BIM also consider-

ably reduces the manual work required for data management along with the reuse of 

the digital information. This in turn reduce error and contribute to more productivity and 

quality in construction projects. The main feature of BIM is the three-dimensional rep-

resentation of the geometry of a building unit under design or construction. This pro-

vides the basis for performing clash detection and giving vertical and horizontal sec-

tions of the model. At the same time a 3D geometry on its own does not provide a fully 

capable digital representation of a building facility. BIM provides the semantics of the 

model in the form of instances of a building object types like Wall, Column, Window 

and so on. These objects combine the 3D representation along with its descriptions 

and its relation to other elements of the building model there by making it one of the 

principal features of BIM (Borrmann et al. 2018b). 

Currently there is no universally agreed standard for exchange of BIM data and its 

execution. Success of BIM projects depends on describing the building elements ma-

turity at a particular levels design phase, since the construction projects are multidisci-

plinary. Therefore, it is desirable to have a uniform as well as a standardized form that 

specifies the content of a building model instance. These standardized specifications 

should regulate flow of information. It helps regulate what information (what) should be 

passed by whom (who) and at which time( when) (Borrmann et al. 2018a). The com-

plete exchange of data between the AEC industry partners is considered crucial as it 

is mentioned in legal documents and it specifies the information about each specific 

model. It shows that a common legal framework is required for organizing the data 

(Abualdenien and Borrmann 2020a). 

The quality of the building information data is communicated through the correctness 

as well as completeness of its topological relationships, geometric detailing along with 

the semantics. Many standard guidelines were published by practitioners that can be 

used as a common language to communicate the data in their projects (Abualdenien 

and Borrmann 2020a). Among the various concepts that define the content of a model 

at a certain point during the design process, the most popular among them is the Level 

of Development (LOD), which touch on the reliability and completeness of the building 

elements information (BIMForum 2019). The LOD Specifications can be interpreted as 
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a classified collection of interpretations which describes input and information require-

ments along with graphical examples of a wide variety of building elements at different 

levels of development (BIMForum 2019). 

In most of the recent BIM projects, there is a question asked to all the partners about 

the kind of information that they need to fulfill their job and a usual reply to that question 

is generally the name of an LOD level. In more particular cases at some companies, 

some teams start their work only when the model is at a particular LOD level (van Berlo 

and Bomhof 2014). The main issue with the current specifications of LOD is that there 

is no general agreement and understanding about each particular level in LOD. Since 

each of the LOD is loosely defined,  project participants create or decide their own 

interpretation  of a particular level in LOD along with  the type and intensity of infor-

mation that should be on each level (van Berlo and Bomhof 2014).   But such irregu-

larities and inconsistencies can cause enormous miscommunications along with addi-

tional expenditure to the project thereby increasing the project risk (Leite et al. 2011). 

 Motivation 

To reduce the miscommunication that exist when exchanging building models among 

project participants, there is a high need to check the model’s conformity with respect 

to the defined LOD requirements. The predefined LOD obligations should include two 

major aspects of the model, semantic information,  a.k.a. Level of Information (LOI) 

and, geometric information, a.k.a. Level of Geometry (LOG) (Abualdenien and 

Borrmann 2020a). The LOI is best described or represented by a set of properties of 

the model. On the other hand, LOG is expressed by the geometric parts that need to 

be modeled and it is more described by the overall shape of the model or in terms of 

the required reinforcement parts (Abualdenien and Borrmann 2021). Abualdenien & 

Borrmann(2019) states that checking the completeness of the semantic information of 

a model is a more uncomplicated and straightforward approach. But checking if the 

model fulfills the expected LOG is a much more complex and remains an indicipherable 

task. Abualdenien & Borrmann (2020) had developed a formal metric system that 

predicts the LOG of a building elements by extracting its features. 

This thesis addresses the existing gap in predicting the LOG of building elements by 

using deep learning to classify the level of geometry of building elements based on the 

increase in complexity and detailing as the elements goes from one level to the other. 
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The input data for the study consists of a set of three-dimensional BIM elements from 

different family types that has been modelled to different LOG levels. Deep learning is 

used to predict the LOG of the building elements.  

 Structure of the Thesis 

Chapter 2 discuss the theoretical background of study and its related works. It provides 

a basic introduction to LOD and deep learning. The various methods for 3D geometry 

classification are explained in this chapter with introduction to Mesh Convolutional 

Neural Networks (Mesh CNN), Graph Convolutional Neural Networks (GCNN), Triple 

Input Convolutional Neural Networks and Multi-view Convolutional Neural Networks 

(MVCNN). 

Chapter 3 explores the methodology that is employed to execute the study. It gives 

details about how the input data for the study is made and how the network is trained 

in the various Convolutional Neural Networks (CNN) mentioned in chapter 2. 

Chapter 4 examine the feasibility study on the Mesh CNN and Graph CNN along with 

its limitations. 

Chapter 5 inspect the use of 2D data for LOG classification along with the use of 

wireframe input data. 

Chapter 6 investigate the study performed on the same dataset using MVCNN. 

Chapter 7 sums up the results obtained in all the study and discuss it. 

Chapter 8 concludes the study of the thesis and explores the scope of it for the future. 
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Section 2.1 explains the basic concepts of LOD and how it classifies building elements 

according to popular standards. Section 2.2 gives an introduction to deep learning and 

neural networks. Section 2.3 discuss the 3D geometry representations in deep learning 

and various methods for its implementation. 

 Level of Development 

Various guidelines and standards were published as a response to the demand of a 

general agreement about what information should be existing during the development 

of building elements. This standards could be used by the practitioners as the basis 

for a common preferred language in their projects (Abualdenien and Borrmann 2020a). 

Before the concept of LOD, a relative concept was already used in computer graphics 

by the term Level of Detail (LoD). This concept of LoD was used to bridge complexity 

as well as to exhibit better performance by managing the amount of detail that is used 

to represent the virtual world (Luebke et al. 2003). LoD was mainly used to represent 

geometric detailing in the field of computer graphics. In 3D city modeling Level of Detail 

(LoD) define the degree of abstraction of real-world objects. They are mainly labeled 

to use an optimum amount of details of real world objects with respect to the needs of 

the user and, along with  the  economical and computational aspects (Biljecki 2013). 

When it comes to the AEC sector, LOD represents building elements that exhibits the 

completeness and authenticity of the geometrical and semantic information. 

(BIMForum 2019). VicoSoftware® (Vicosoftware, 2005; Trimble Buildings 2013) took 

the first initiative in the introduction of the term Level of Detail. According to Trimble 

Company in the AEC sector, Level of Detail (LoD) also means the way a model looks 

with respect to the amount of input and the amount of detailing included in the model 

element. American Institute of Architects (AIA) embraced and  reformulated the con-

cept of LoD and recoined the term Level of Development(LOD) (AIA 2008). AIA defined 

each model element at five breakthrough and detailed levels of completeness ranging 

from LOD 100 to LOD 500. BIMForum further went on to develop LOD 350. They de-

veloped  and published the Level of Development Specifications based on AIA defini-

tions (BIMForum 2019). Trimble published its Project progression Planning (2013), and 

2 Theoretical Background study and Related works 
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is widely accepted and used. These standards has become the point of reference for 

several BIM guidelines and is widely accepted in a lot of countries like Australia, 

France, Germany, Canada, Singapore, United kingdom and so on (Bolpagni 2016). 

Some groups and countries have established new levels of LOD which are incorpo-

rated into their relevant BIM documents. Other than Level of Detail and Development, 

there are new terms with similar content and interpretations like the Level of model 

detail, Information Level, Level of Information Detail, Level of model Definition, Element 

geometry etc. were added to the BIM documents (Bolpagni 2016). 

Studies have shown that LOD significantly contribute to support the design process. 

LOD is used by researchers and project practitioners to define the required amount of 

information at various stages of the design process since LOD defines and clearly 

communicates which information should be available at a specific time (Wong and Ellul 

2016). Abualdenien and Borrmann (2019) created a meta- model process that speci-

fies the design requirements of individual families  with the use of LOD, taking into 

consideration the fuzziness or the uncertainty of the information. Abou-Ibrahim and 

Hamzeh (2016) created a model on which lean design principles can be applied based 

on the LODs. Abualdenien et al. (2020) integrated the design process with energy sim-

ulation and structural analysis by using LODs thereby showcasing support of the LODs 

in the early decision process. Gigante-Barrera et al. (2018b) added LOD as an indica-

tor for the fundamental information in the Information Delivery Manuals (IDMs). 

Abualdenien and Borrmann (2020b)  created a multiple visualization technique that 

was able to portray the uncertainty related with LODs during the entire design phases. 

2.1.1 Definition of LOD 

The LOD Specification is designed as a kind of reference tool  that is  mainly intended 

to  further advance the quality aspects of the communication among  users of BIM 

models with respect to the characteristics and attributes of the elements in the model 

(BIMForum 2019). The LOD Specification discusses from LOD 100 to LOD 400 of the 

AIA's LOD schema along with a new level LOD 350 that was added to effectively ad-

dress the information levels that is necessary for better trade coordination between the 

project participants. LOD Specification does not address LOD 500 since it related only 

to field verification and does not indicates a development to a higher level of geometry 

and information (BIMForum 2019). Table 2.1 provides the definition provided by BIM-

Forum (2019) for the various levels of LOD. 
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Table 2.1: Level of Development from 100 to 500 (BIMForum 2019) 

Level of 

Development 
Description 

LOD 100 The Model element can be visually represented in a model as a sym-

bol or in the form of a similar generic representation but it does not 

appease the requirements for LOD 200. The LOD 100 elements 

does not provide geometric representations and do not have infor-

mation about its relevant shape, size or exact location. It provides 

only information about its existence and further information related 

to model elements can be derived from other model elements.  

LOD 200 Model element is visually represented within the model as an object, 

or in the form of a generic system or as an assembly with approxi-

mate relevance to its size, shape, location, and orientation. The 

model element also has non-graphic information and are generic 

placeholders. They may be recognized as the components they rep-

resent or the volumes they occupy.  

LOD 300 The model element is visually represented within the model as an 

object, or in the form of a specific system or as an assemble with 

respect to its quantity, shape, size, location along with its orientation. 

Model elements has non-graphic information. All the designed data 

of the element with respect to its relevant shape, size, quantity, lo-

cation and orientation can be measured directly from the element. 

The origin of the project is defined and element is found accurately 

located with respect to project origin.  

LOD 350 Model element is visually represented within the model as an object, 

or in the form of a generic system or as an assembly with approxi-

mate size, shape, location, orientation and its interfaces with other 

building systems. Model elements has non-graphic information. 

Parts that are necessary for the coordination of the elements with 

attached or nearby elements are modeled along with its supports 

and connections. All the designed data of the element with respect 
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to its shape, size, quantity, location and orientation can be measured 

directly from the element. 

LOD 400 Model element is visually represented within the model as an object, 

or in the form of a generic system or as an assembly with information 

with respect to size, shape, quantity, location, and orientation with 

detailing, assembly, fabrication and installation. All the designed 

data of the element with respect to its shape, size, quantity, location 

and orientation can be measured directly from the element. The el-

ement is modeled with sufficient accuracy and detail necessary for 

fabrication. 

LOD 500 Model element is given in the form of a field verified representation 

with respect to size, location, shape, quantity and orientation. It does 

not indicate progression to higher element geometry or non- graphic 

information.  

Generally, LOD 500 represents the as-built condition of the model element. If the 

checked representation of the LOD 400 components deviates, then LOD 500 act as a 

follow up model designed according to the specifications. Otherwise LOD 500 corre-

sponds to LOD 400. Figure 2.1 shows the LOD for different levels for a column ele-

ment. 

 

Figure 2.1: Levels of Development of a Column (BIMForum 2019) 

According to BIMForum (2019), Figure 2.1 shows that LOD 100 of the column element 

is designed as an architectural element with as assumed structural depth and other 

features of the element is still flexible. LOD 200 add to it a floor with approximate di-

mensions, supporting framing members, and accurately defined structural grids. LOD 
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300 include specific sizes of the main vertical grid with exact location and orientation. 

LOD 350 element add to it the location and details of the connections of the steel 

members and its reinforcements. LOD 400 element modelling of the column include 

welds, coping of the members, cap plates, washers and all assembly units. 

AIA (2013a) specifies the degree of elaboration with which the model elements may 

be used for certain calculations and evaluations, such as analysis and cost estimates 

(Authorized Uses). This specification stands in addition to the minimum content re-

quirements for the model elements. This specification is used to prevent the uncondi-

tional further use of a model and all the relevant information contained therein. It should 

be further noted that within a model, there is the possibility that the individual model 

elements may have different levels of development.  For example at a schematic de-

sign, many elements will be assigned to LOD 200, but will also include many at LOD 

100, some at LOD 300 or some even at LOD 400 (AIA 2013). Another important fact 

is that a particular LOD cannot be assigned to a model and it can be only assigned to 

a model element or a group of model elements (BIMForum 2019). 

2.1.2 Level of Information 

Model elements not only have geometric representation, but they also have semantic 

information. Semantic information plays an imperative part for the exchange and fur-

ther use of the models like in energy analysis and cost estimation. This information can 

be in the form of attributes or will be provided in the supplementary documents.  For 

example, a reinforced concrete element can be ascribed a building material of type 

C30/ 37. This showcases the level of information of the building element and is de-

scribed as the Level of Information (LOI) of an element. LOI strongly depends on the 

agreed BIM goals of a model and hence on the BIM use cases (Mini 2016). There is 

no particular limitations to the amount of non-graphical information that should be 

made available in these definitions, but it is common to increase the amount of non-

graphical information as the LOD gets higher. Liebich and Hausknecht (2016) states 

that because of this uncertainty it is difficult to define the depth of information at a 

defined level compared to its geometric detailing. To make more sense of it, there is 

usually a general agreement about the depth of information before the project starts. 
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2.1.3 Level of Geometry 

Typically, the term LOD is interpreted as Level of Detail instead of Level of Develop-

ment. There is significant difference between the two. Level of Detail basically shows 

the amount of detail included in the element model. Level of Development on the other 

hand shows how well the link between the geometric and semantic information of the 

model element is established. In summary it can be stated that  Level of Detail can be 

assumed of as input to the element, whilst Level of Development can be considered 

as the decisive output (BIM Forum 2015). According to AIA (2013a) and BIM Forum 

(2015) definitions of Level of Development, it primarily include geometric level of detail 

of the model element. But the depth of information needed for a level depends on the 

BIM application use case. BIM Forum (2015) also states that non-graphic information 

should also be attached to model element at each of the LOD levels which shows how 

difficult it is to actually define a level of information as mentioned in Section 2.1.2. Mini 

(2016) and Liebich and Hausknecht (2016) showed a new definition that completely 

differentiated between geometric and semantic information of a model element. The 

term Level of Geometry (LOG) is introduced for the geometric expression and de-

scribes the detailing of geometry. Level of geometry is comparable to the scales of 2D 

drawing in various work phases and it gives the possibility to define the Level of Ge-

ometry at different stages. Compared to LOG it is difficult to define a fixed stage in 

level of information since it depends on the agreed BIM application cases. Therefore, 

a project specific definition of the BIM schedule is necessary before the start of the 

project. The sum of the Level of Geometry (LOG) and Level of Information(LOI) thus 

provides the definition of the Level of Development (Liebich and Hausknecht 2016). In 

summary it can be states as: 

 𝐿𝑂𝐷 = 𝐿𝑂𝐺 + 𝐿𝑂𝐼 ( 2.1) 

(Level of Development= Level of Geometry + Level of Information) 

2.1.4 Analysis and Validation of LOG 

There is requirement for extensive analysis and considerate understanding about 

which geometric and semantic information should be present at a particular LOD when 

approving the LOD specifications in a country or sometimes internally within a firm. But 

the current LOD definitions being more textual and graphical, make it more informal 

and imprecise which further go on to make multiple interpretations and notions about  
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expected information at each LOD level (Abualdenien and Borrmann 2019). Practition-

ers also have conflicting understanding about the necessary information at each LOD 

(van Berlo and Bomhof 2014). This customarily happens because semantic infor-

mation can be simplified to a list of attributes, but ascertaining the geometrical com-

plexity is more vague and consistently checking it remains an unsolved task 

(Abualdenien and Borrmann 2020a). 

 With respect to this observation, Leite et al. (2011) assessed the modelling effect re-

quired to generate BIM models at different LODs. Their study showed that for modeling 

effort analysis, there was an escalation in modelling time when going from one LOD to 

another and the modeling time range went from doubling the effort to sometimes 

eleven folding it. The study also showed that more detail in a model does not automat-

ically mean more modeling work. van Berlo and Bomhof (2014) performed a similar 

study on 35 building models (with multiple building elements) comprising of different 

LOD levels ranging from LOD 100 to 350 for 10 different aspects in order to find any 

standard or relationship between different LODs. These aspects ranged from volume, 

number of objects, spaces and geometric triangles, number of properties and so on. 

Nevertheless, they were not able to find any standards or guidance for increasing the 

complexity across LODS. According to Gigante-Barrera et al. (2018a), the main reason 

for not identifying a standard for increasing the complexity across LODs is due to the 

disagreements and different perceptions of the LOD specifications. More categorically 

speaking this can also be attributed to the fact of using LOD concept to describe the 

maturity of the entire building model versus the individual model element (Abualdenien 

and Borrmann 2020a). van Berlo and Bomhof (2014) performed their study analysis 

on the entire building model and not on the individual building elements. The most 

famous LOD specifications  that describe the geometric and semantic details by AIA 

(2008), Trimble Buildings (2013) and BIMForum (2019) provide information only about 

the individual building element but not for a whole building model. 

Abualdenien and Borrmann (2020a)  proposed that the geometric intricacy of individual 

building model elements can be expressed by multiple features which in turn can be 

used as a basis for a metric that allows to properly judge the geometric complexity of 

a given model. Their study showed that by investigating the extracted features across 

LOGs, a detailing pattern can be identified. These identified patterns can provide the 

mechanism for the LOG classification of building models. The prediction of the LOGs 
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is established on an explicit metric of a LOG dataset that incorporate 216 elements 

which were modeled according to the most practiced LOD specifications. The main 

aspects of the metric included geometric details, shard edges, edge length and diam-

eter- based segmentation. A random forest model (machine learning algorithm)  which 

is a classic classification algorithm was implemented to evaluate the metric which 

showcased the ability to predict LOG of 44 new building elements (Abualdenien and 

Borrmann 2020a). 

This thesis work is a further extension of the study done by Abualdenien and Borrmann 

(2020a) using deep learning. The study will explore Convolutional Neural Networks 

(CNN) of deep learning and examine mesh, graph and multi-view CNNs to classify 

model element based on their LODs.  

 Introduction to Deep learning and Neural Networks 

Artificial Intelligence (AI) is generally described as machines that can find logic and 

make decisions like humans. It can mimic human intelligence and is used to optimise, 

predict and automate tasks that humans have been performing for ages with respect 

to decision making, speech and facial recognition, translation and so on. Statical mod-

els called Artificial Neural Networks (ANN) are directly inspired and partly modelled like 

biological neural networks. The artificial neural network architecture aims to find a func-

tion f that maps a given input to an output. They are accomplished to process and 

model non-linear relationships between input and output data simultaneously. The al-

gorithms that are used for this process is broadly termed as machine learning and has 

many applications. (Castrounis 2019) 

Machine learning is broadly classified to supervised learning and unsupervised learn-

ing. In the supervised learning model, the algorithm learns from a fully labelled dataset 

which provides an answer key so that the algorithm can use the key to evaluate the 

performance(accuracy) of the training data (Chollet 2018; Sathya and Abraham 2013). 

A fully labelled dataset means that each sample from the training dataset is designated 

with an answer that the algorithm should predict on its own. The labelled dataset thus 

shows the model what a particular image is about and when shown a new image the 

model compares it with the training example to predict the new image (Chollet 2018). 

But labelled data is not always available and, in that case, unsupervised learning is 

used. The model will be provided with a dataset without explicit instructions on how to 
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process it.  In this scenario, the model tries to automatically find structure in the data 

by extracting prominent features and analysing it (Sathya and Abraham 2013).  Unsu-

pervised learning commonly organize data by the method of clustering, anomaly de-

tection, association and by using auto encoders. 

 A machine learning model can assemble and classify inputs based on patterns iden-

tified in the input. Machine learning requires less data provided the underlying data 

structure get accurate results and is primarily used for less complex cases. Linear re-

gression, logistic regression, decision tree and random forest are some of the com-

monly used machine learning algorithms. (Chollet 2018) 

Neural Networks or more accurately artificial neural networks (ANN) imitate the human 

brain through a set of algorithms and at the basic level contains four main components: 

inputs, weights, bias or threshold and output (Wang 2003). Figure 2.3 describes the 

basic architecture of a neural network. First layer is the input layer, which is followed 

by a hidden layer and finally the output layer. Each layer can have one or more neurons 

(Castrounis 2019). In between the layers of the model, ANNs are characterised by 

having adaptive weights along the path between the neurons. These weights are tuned 

by a learning algorithm which observe the data and learn from them. The following 

Section 2.2.1 provide a deeper insight into the working of neural networks. 

 

Figure 2.2: Architecture of a Neural Network (Wang 2003) 

Deep learning is the term provided to neural networks when they have more than three 

layers which is inclusive of the inputs and outputs (Chollet 2018). Compared to ma-

chine learning, deep learning needs more input data points and more layers to provide 

a more accurate result (Goodfellow et al. 2016). Deep learning is leveraged for more 

complex use cases like self-driving cars, fraud detection, virtual assistants, visual 
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recognition, etc. Figure 2.3 provides a broader picture of how deep learning fit into the 

bubble of AI. 

 

Figure 2.3: Deep Learning in Artificial Intelligence 

2.2.1 Neural Networks 

As mentioned in the previous section neural networks has an input layer, in between 

hidden layer and output layer. Each of these layers are connected using numeric num-

ber called weights. The output, h of hidden layer i is provided by: 

 ℎ𝑖  =  𝜎 (∑ 𝑉𝑖𝑗𝑥𝑗 + 𝑇𝑖
ℎ𝑖𝑑

𝑁

𝑗=1

) ( 2.2) 

where σ () is known as the activation function, N is the number of input neurons, Vij 

are the weights, xj is the input to the input neurons and Ti
hid is the threshold term used 

for the hidden neurons. The activation function brings nonlinearity to the neural network 

and bound the value of the neuron. The commonly used activation function is sigmoid 

function. (Wang 2003) 

In addition to the learning algorithms in neural networks, they should also have an 

appropriate cost function, which is used to learn the optimal solution to the problem 

that is being solved (Zhang et al. 2020). It helps determine the best values for all the 

tuneable parameters of the model like adaptive weights of the neurons and learning 

rate of the algorithm. It is generally performed by optimisation techniques like the gra-

dient descent or the stochastic gradient descent (Zhang et al. 2020). These techniques 

try to make ANN solution close to the optimal solution, in other words, improve the 
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performance of the ANN. Models can increase their problem-solving skills by increas-

ing the depth of models (increasing the number of hidden layers), or the number of 

neurons in any given layer or the number of paths between the neurons. However, 

increased complexity brings other issues like overfitting which will be elucidated in the 

later sections.  

Generalization 

The main aim of an ANN is to generalize by creating a mapping function f from a given 

dataset and hoping that it will perform similarly on unseen data (Collins 2020). The 

basic condition of generalization is that the dataset used to fit the function f and the 

unseen data should arise from the same underlying anonymous distribution. And this 

distribution is approximated through weight training of function f. This showcases that 

ANNs only generalize to data whose distribution is identical to the initial training set. 

Loss function and Backpropagation 

Loss function is a method to predict the loss (prediction error) in a neural network. Loss 

is used to calculate the gradients and these gradients are used to update the weights 

in a neural network. This is the simplest form of explaining how a neural network is 

trained. Loss functions maps a set of parameter values of the network on to a scalar 

value which in turn indicated how the parameters are able to achieve the task it is 

expected to perform. (Aggarwal 2018; Chollet 2018) 

Back propagation is an algorithm of fine tuning the weights of a neural network-based 

on the error rate or loss that is generated in the previous epoch (iteration). This process 

of back propagation is considered the bottom line of neural network training. Appropri-

ate tuning of the weights ensures reduction in the error rate, making the model more 

decisive by increasing its generalization. (Aggarwal 2018; Chollet 2018; Zhang et al. 

2020) 

2.2.2   Deep Learning 

An ANN with more than three layers, i.e.an input layer, an output layer and multiple 

hidden layers, make up a deep neural network and underpin the term deep learning. 

Deep learning is a subset of machine learning in artificial intelligence and it is capable 

of performing learning of data which is unstructured (Chollet 2018; Goodfellow et al. 

2016). In case of other machine learning algorithms, the features that is required for 

the problem statement is extracted and from that the features are selected which can 
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improve the performance of the machine learning algorithm. This is a time-consuming 

process. But with deep learning the entire process of feature extraction can be auto-

mated (Goodfellow et al. 2016; Zhang et al. 2020). Figure 2.4 shows a comparison 

between machine learning and deep learning. 

 

Figure 2.4: Comparison between machine learning and deep learning 

Deep learning uses a hierarchical level of ANNs to carry out the process of machine 

learning which helps them to process data with a  nonlinear approach (Chollet 2018). 

Also, each layer of neural network in deep learning builds on the previous layer. The 

most famous neural networks used in deep learning are Recurrent Neural Network 

(RNN) and Convolutional Neutral Network (CNN). A recurrent net is neural network 

with feedback connections (Medsker and Jain 2001). These connections make sure 

that successive information is apprehended in the input data. RNN also share the pa-

rameters over different time steps (Chollet 2018). RNNs are used for tasks like speech 

recognition, machine translation, robot control and so on. Figure 2.5 shows a typical 

RNN with fully connected networks. Section 2.2.3 provided in depth analysis of CNN. 

 

Figure 2.5: Fully connected recurrent neural network (Medsker and Jain 2001) 
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2.2.3 Convolutional Neural Networks 

One of the most popular deep learning network is the Convolutional Neural Network 

which is used for object detection, pattern recognition and image classification 

(Aggarwal 2018). It is based on the mathematical linear operations between matrices 

called convolution and takes the name from this operation (Albawi et al. 2017). CNN 

are commonly used when there are many fully connected neural networks which in-

creases the dimensionality of the input. CNN solve this problem by using a convolution 

operator and downsizing the samples with approaches like pooling (Zhang et al. 2020). 

CNN has multiple layers: convolution layer, nonlinearity layer, pooling layer and the 

fully connected layer as shown in Figure 2.6. Convolution layer and fully connected 

layer have parameters but the other layer do not have parameters (Albawi et al. 2017). 

One of the major breakthroughs for CNN is the ability to work with features which have 

spatial independence, i.e., it can detect features irrespective of its location in a picture. 

Unlike machine learning algorithms like decision tree or random forest where features 

are separately extracted from the images and fed into the algorithms, CNN has the 

ability to detect features in images and extract it using convolution operation 

(Goodfellow et al. 2016). Figure 2.6 shows a typical CNN architecture that is used to 

identify if the input provided to the network is the image of a cat or not. 

 

Figure 2.6: Typical CNN architecture used to identify the input image is a cat or not (Dumane 2020). 

 

Convolution operation 

One of the main features of CNNs is that the neurons in the layers are comprised of 

three spatial dimensions of the input (height, width and depth). The depth refers to the 

third dimension of the activation volume (RGB channel). The convolution operation 
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creates a filter of a particular default size(kernel) which performs element wise multi-

plication using the same index starting from the top left corner of the image (Goodfellow 

et al. 2016). These computed values are summed up to generate a pixel value which 

is then stored to a new matrix. The new matrix is used for further processing and the 

size of the matrix keep decreasing as the filters are applied on them (Albawi et al. 

2017). The concept of convolution is to reduce the number of parameters or attributes 

to be trained (Collins 2020).Figure 2.7 shows a typical convolution operation. The fig-

ure shows an empty border around the input image which is normally filled with zeros. 

This process is called padding and here ‘zero padding’ is employed. Padding adds an 

extra pixels of filler around the boundary of the input image so that it increases the 

effective size of the image (Zhang et al. 2020).  

 

Figure 2.7: Padding on a two-dimensional cross correlation (Zhang et al. 2020) 

The ‘non-linearity layer’ that was earlier stated as a part of the CNN architecture is not 

a separate layer but rather a part of the convolution layer. It mainly aims to provide an 

‘element wise’ activation function to the output of the activation that has been produced 

by the previous layer (O'Shea and Nash 2015). One of the most popular such activation 

function is Rectified Linear Unit (ReLU) which is computationally inexpensive and ex-

hibit increased speed in the convergence of stochastic gradient descent algorithms 

(Robinson 2017). 

Pooling Layer 

Pooling layer targets to progressively reduce dimensionality of the representation by 

reducing the number of parameters and thus the computational complexity of the 

model (Zhang et al. 2020). Pooling is the key to guarantee that the following layers of 

the CNN are able to gather large scale details. The pooling layer typically operates 

over each activation map of the input and uses the ‘MAX’ function to scale its dimen-

sionality. This is the case with Max pooling layer, in average pooling layer this function 

can be AVERAGE function.  Generally, in most CNNs the max pooling layers consist 
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of kernels of dimensionality 2×2 applied with a value of stride (usually 1 or 2) over the 

spatial dimensions of the input. This scales down the activation map by about 25% 

with respect to its original size although it maintains the depth volume to its basic size 

(O'Shea and Nash 2015). Figure 2.8 shows a classic max pooling with kernel size 2×2 

that is passed over the entire image similar to convolution thereby reducing the size of 

the convoluted image to half. 

 

Figure 2.8: Max Pooling with size 2×2 (Dumane 2020) 

Fully connected (Dense) Layer  

In Fully Connected Layer (FCL) or dense layer, every node from the previous layer is 

connected to almost every node in the next layer. The objective of FCL is to employ 

the output features from the convolution, pooling and ReLU layers for classifying the 

input image into various classes depending on the training dataset. FCL is often re-

garded as the final pooling layer which provides the features in to a classifier that uses 

SoftMax activation function which makes sure that the sum of the outcome probabilities 

from FCL is 1 (Coskun et al. 2017). SoftMax activation functions are used when there 

are 2 or more than two classes to classify (Zhang et al. 2020). Some CNNs use more 

than one FCL to increase the power of the computations towards the end (Aggarwal 

2018). 

Strategies for avoiding Overfitting 

The task of a neural network is to create a final model that performs relatively well on 

both the data that is used to train it (train dataset) and on the relatively new data that 

will be used to make predictions. We require the model to learn from known examples 

and make generalizations from the known examples to make predictions about new 

examples. The model is said to be an underfit model if it fails to sufficiently learn from 

the training dataset and do not execute well on a holdout sample. The model is said to 
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be overfit if it learns sufficiently well from the training dataset and operates favourably 

with training dataset but fails when it sees new data from the same problem domain. 

A good fit model learns sufficiently well from the training data and performs excellently 

on the holdout sample as well. (Chollet 2018; Zhang et al. 2020) 

The over fit model (contain high variance) is generally a highly complex neural network 

with more weights and layers than what is necessary. Regularization is a set of differ-

ent techniques that reduces the complexity of the neural network during the training 

process and in turn prevent overfitting. Main regularization strategies to avoid overfit-

ting is discussed below: 

L1 and L2 Regularization: They update the loss function with a new term called 

regularization, which reduces the values of the weight matrices. This is performed 

because a neural network with smaller weight matrices is assumed to reduce over-

fitting. L2 regularization is generally termed as weight decay as it forces the weight 

to decay towards zero but not exactly zero. Contrarily with L1 regularization, the 

weights are reduced to zero and is used normally to compress the model. (Chollet 

2018) 

Dropout: This method is one of the most frequently used regularization techniques. 

In this approach, at every iteration, some nodes are randomly selected and it is 

removed along with all the incoming and outgoing connections in that network 

(Chollet 2018). Dropout ‘thins’ the model and at each iteration different set of nodes 

are selected, generating different set of outputs each time (Srivastava et al. 2014). 

Figure 2.9 shows the dropout technique on a neural network.  

 

Figure 2.9: Dropout technique on a neural network with two hidden layers (Srivastava et al. 2014) 
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Data Augmentation: It is one of the simplest ways to reduce overfitting and it 

achieve the task by increasing the size of the training dataset. Some of the methods 

to increase the size of the image training dataset include- flipping, rotating, scaling, 

shifting and sometimes a combination of these methods.  Data augmentation assist 

in improving the accuracy of the model. (Goodfellow et al. 2016) 

 Early stopping: This method is a type of cross-validation strategy where a part of 

the training data is kept as the validation set. When the performance of the valida-

tion set is getting worse or degrading, then the training of the model is immediately 

stopped and the process is known as early stopping. Figure 2.10 shows the early 

stopping at the dotted line for an error versus training steps plot. The training pro-

cess is halted at the dotted line because further training will lead to overfitting. 

(Goodfellow et al. 2016) 

 

Figure 2.10 Early stopping represented as the dotted line for Error vs Training Steps plot (Jain 2018) 

 

 Deep Learning on different 3D Data Representations 

Deep learning architecture has achieved amazing results in the field of 2D data for 

tasks like segmentation, classification, localization and detection, scene understanding 

and recognition. Deep learning architectures on 2D data shows the requirement of 

huge amount of training data and applying deep learning on 3D data may not be as 

efficient as 2D. With the recent advances in technology with respect to affordable 3D 

data acquisition devices, the amount of available 3D data has excessively increased. 

3D data has information about the full geometry of the of the 3D object and it can also 

have different representations where the geometric and the structural properties can 
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vary from one representation to other. Ahmed et al. (2019) in their study of deep learn-

ing on 3D data representations, classified it mainly into two categories: Euclidean (ge-

ometry of flat 2D spaces) and Non-Euclidean (geometry of curved, rather than flat sur-

faces). 

 

Figure 2.11: 3D data representations as Euclidean and Non-Euclidean data (Ahmed et al. 2019) 

 

3D Euclidean data possess an underlying grid structure that allows for a global para-

metrization as well as a common system of coordinates. This attribute allows the ex-

tension of already existing 2D deep learning model to the 3D data where in the convo-

lution operation is also kept as in 2D. Contrarily 3D non-Euclidean data does not have 

the gridded array system which allows for global parametrization and is more suitable 

for analysing definite or rigid where deformations are kept to the minimal. Applying 

classical deep learning techniques to such representations pose a difficult task and the 

structure has to be extensively studied for non-rigid objects for applications like seg-

mentation. Many use the term geometric deep learning exclusively for deep learning 

techniques applied to non-Euclidean data. (Ahmed et al. 2019) 
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Euclidean Structured Data 

The main type of 3D Euclidean data representations that have grid structured data with 

global parametrization and common system of coordinates include: descriptors, pro-

jections, RGB-D data, volumetric data and multi view data (Ahmed et al. 2019). All 

these categories are briefly discussed below and visually represented in Figure 2.11. 

This thesis work mainly focuses on the Multiview 3D data representations with respect 

to Euclidean data. 

• Descriptors: Shape descriptors are simplified representations of 3D objects 

which describe geometric characteristics of the 3D shape and these descriptors 

can be obtained from the object’s geometry, topology, texture, surface or a 

combination of all. Descriptors extract hierarchical discriminative features to ef-

fectively represent the shape with the help of a learning-based model. They are 

computationally easy to work with. 

• 3D Data Projections: It projects 3D data on to 2D spaces with grids along with 

specific features and the projected data encapsulated the key attributes of the 

original 3D shape. The type of features that gets preserved depends on the 

nature of the projects. There is multiple projections and projection of 3D space 

in to spherical and cylindrical domains. 3D projections are not suitable for com-

plicated computer vision tasks with dense analogy due to the loss of information 

while projecting. 

• RGB-D data: 3D data is captured into RGB image data which provide a 2,5D 

information about the captured image by providing the depth map together with 

the 2D colour information (RGB). They are inexpensive, and rather efficient 

method of 3D data representation and is used for tasks like scene reconstruc-

tion, identity recognition, pose regression and correspondence. They have a 

huge dataset compared to meshes and point clouds. 

• Volumetric data: Two representations for volumetric data: Voxel and Octree. 

Voxel model 3D data by describing how the 3D object is scattered through the 

three dimensions of the scene. Information about the 3D shape is encoded as 

well as classified to visible occupied voxels. Even though it is simple in repre-

senting 3D data, it faces limitations on its usage in high resolution data. Octree 

is a more efficient version of the volumetric data representation by using vary-

ing sized voxels and executes a hierarchical data structure representation. 
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They are more efficient and less computationally demanding compared to 

voxels. 

• Multi-View data: In this approach 3D data is presented as a combination of 

multiple 2D images that has been captured from different viewpoints of the 3D 

object. This method helps learn multiple feature sets that reduce incomplete-

ness and illumination problems on the captured data. Multiview images of the 

same objects aims to learn a function with respect to each view separately and 

each of these separate functions are jointly optimised to represent the whole 

3D shape and to generalise from them. The number of views required to com-

pletely capture the shape features depend on the 3D object. Limited number of 

views might not capture the whole properties of the object thereby creating an 

overfitting problem. This approach is more suitable for rigid dataset where de-

formations are minimal. 

Non-Euclidean Structured Data 

This type of data does not have a global parametrization nor a common system of 

coordinates and lacks a vector space structure, thus extending a 2D deep learning 

model on them a tedious task. Main types of non-Euclidean data include point clouds, 

meshes and graphs. Point clouds and meshes are considered as both Euclidean and 

non-Euclidean depending on the scales of processing i.e., globally or locally. Due to 

their infinite curvatures and self-intersections, they are generally included under non-

Euclidean data. (Ahmed et al. 2019) 

• Point-Clouds: This non-Euclidean geometric data representation is seen as a 

set of unstructured 3D points that provides the rough geometry of the 3D object. 

They are also generally represented as set of many small Euclidean subsets 

with global parametrization and a common set of coordinates which are invari-

ant to transformation in the form or rotations and translation. Due to this reason, 

it normally depends where the point-clouds structure is defined: locally or glob-

ally. Processing point clouds is also a demanding task due to the absence of 

connectivity information on the point clouds leading to uncertainty in the surface 

information. 

• 3D Meshes and Graphs: A typical 3D mesh consist of a set of polygons that 

are called faces which is defined in terms of a set of vertices (mesh coordinates 

in 3D space). Vertices have a connectivity list which shows how these vertices 
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are connected to each other. Meshes have a local and global geometry. At local 

level they have grid structured data and is described as a subset of Euclidean 

space. At global level they are non-Euclidean data and their properties at Eu-

clidean space is not well defined. Due to these irregular representations learning 

3D meshes is a challenging task. 3D meshes can also be represented as graph 

structured data, where nodes of the graph coincide with the vertices of a mesh 

and the edges between these nodes represent the connectivity between them. 

Graphs can be represented as directed or undirected. Studies have used a La-

place eigen decomposition to create an operation similar to a convolution where 

meshes can be converted to graphs. 

This thesis study explores mesh, graph and multi-view 3D data on CNN architecture 

to classify 3D building elements into different LOG based on their level of complexity.  

 Multi-view Convolutional Neural Network (MVCNN) 

Convolutional Neural Networks (CNN) has a great potential for fine-grain classification 

problems. Objects for fine grain classification generally possess high inter-class simi-

larity as well as inter-class variability where different views of the object can assist in 

providing complementary information. Multi-view CNNs has a highly effective classifier 

which combine the useful information from different views which assist in learning a 

more comprehensive representation (Seeland and Mäder 2021). MVCNN usually en-

gage a view pooling operation that help generate a shape level description from the 

view description (Feng et al. 2018a). One of the biggest advantages of using 2D rep-

resentations is the availability of enormous image datasets (ImageNet) to pretrain the 

model. 

Su et al., (2015) proposed an MVCNN for object retrieval and classification task which 

processed multiple views of the 3D object in no particular order using a view pooling 

layer. They tested two approaches to capture the multi-views of the 3D object where 

the first approach captured 12 views of the object by placing 12 equidistant virtual 

cameras surrounding the object at 30° intervals. For the second approach 20 virtual 

cameras were placed on the 20 vertices of an icosahedron that encloses the shape 

and four images were captured for 0°, 90°, 180° and 360° rotation of the axis passing 

through camera and the centroid of the object.  MVCNN was pretrained using the 
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ImageNet1K (Deng et al. 2009) dataset and fine tuning was accomplished using Mod-

elNet40 (Wu et al. 2014). The network architecture has two parts, the first part includes 

processing the objects views and the second part include the max pooling operation 

over all the processed views from the view-pooling layer, thus resulting in a single 

packed representation of the entire 3D shape. Each of the 12 rendered images taken 

through the simplest pipeline later on goes to their independent CNNs.  Each of the 

network feature map is then connected in the view-pooling layer and later given as 

input to the second CNN layer. A VGG-M network architecture is used to learn the 

features which contains five convolution layers and two fully connected layer. The au-

thors reported highest score by the ModelNet40 dataset for the second camera ap-

proach with 90.1% accuracy. Figure 2.11 shows the MVCNN architecture used for the 

above study. 

 

Figure 2.12: MVCNN architecture applied on multi-view of 3D objects (Su et al. 2015) 

 

He et al. (2015) demonstrated in their work that MVCNNs can be further improved with 

data augmentation. They employed a multi resolution filter to capture information at 

multiple scales which was accomplished by using sphere renderings at multiple volume 

resolutions. They achieved a classification accuracy of 93.8% on the ModelNet40 da-

taset. This shows a better accuracy than the study on the same dataset by Su et al., 

(2015). Feng et al. (2018b) extended MVCNN by introducing a view grouping module 

which group views based on a discrimination score determined by an auxiliary con-

nected layer rather than using a maximum operation to equally fuse together infor-

mation from different views. The weighted average of the group views was then used 
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to calculate the fused feature map which showcased improved accuracy in classifica-

tion compared to the basic MVCNN. 

Wang et al. (2015) used a new variant of MVCNN wherein they fuse colour and depth 

information for the purpose of RGB-D object recognition. They extracted both colour 

and depth which shared common patterns and features along with model-specific pat-

terns into a joint framework instead of fusing colour and depth data from the outset 

separately before the classification. Their results showed that  their method integrated 

well with the CNN layers showcasing increased boost in the performance. Seeland and 

Mäder (2021)  conducted a study on the fusion strategies used for MVCNN networks 

and showed that classification accuracy increases with fusion of latent representations 

is performed in the model. 

In this thesis study, the LOG classification of building elements using MVCNN require 

not just the views of the building element from different angles and planes but also the 

wire frame of the element together with the cut section of the element to assess the 

complexity level of the element. They are fed as input by using different approaches 

and explained in detail in the coming chapters.  

 Mesh Convolutional Neural Network (Mesh CNN) 

Polygonal mesh representations or mesh, uses a set of 2D polygons in 3D spaces to 

approximate surfaces and they provide an efficient and uniform representation of the 

shape. Using a few meshes large surfaces are captured and executes higher flexibility 

in representation of salient features that is geometrically intricate. Meshes also provide 

connectivity information which provide an extensive representation of the elemental 

surface. Hanocka et al., (2019) introduced MeshCNN similar to general CNN but de-

signed specifically for meshes which could operate on irregular triangular meshes and 

perform convolution and pooling operation explicitly designed for the unique mesh 

properties. The basic building block of this architecture is the edges of the meshes 

which act analogous to pixel in an image. Each of these edges is incident to two faces 

(two triangles) and it defines a fixed-sized convolutional neighbourhood of four edges 

as shown in Figure 2.13. The edge features are learned through symmetric convolution 

operation by using the face normal. 
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Figure 2.13: Mesh Pooling and Edge collapse; a) Edge of two triangles is selected for the mesh 

pooling operation and the four blue edges are incident to the red edge. b) Edge collapse with the red 

edge collapsing. c) Five edges are collapsed to two edges. (Hanocka et al. 2019) 

One of the dominant features of architecture from the above study is mesh pooling 

which operates on irregular structures and it down samples the number of features in 

the network along with eliminating the less informative features. Mesh simplification 

technique for down sampling used in this study is called edge collapse which select 

the edges to be removed causing the least amount of distortion to the geometry of the 

object. This process is performed to achieve a prescribed number of edges to the ele-

ment after the pooling layer which helps increase flexibility and support a whole range 

of available data. Figure 2.13 further demonstrate the edge collapse process from 

edges to finally two edges after the pooling layer. 

Hanocka et al., (2019) undertook the MeshCNN for shape classification and segmen-

tation tasks. The shape classification study was performed on SHREC (Bronstein et 

al. 2010) dataset for 30 classes which showed an accuracy of 98.6%. They used 

COSEG (Wang et al. 2012) and Human Body Segmentation (Maron et al. 2017) da-

tasets for the task of shape segmentation and received an average accuracy of 97% 

and 92%. Figure 2.14 shows the result of shape classification and segmentation for 

their study. 

In this thesis study,  the pretrained model by Hanocka et al. (2019) is customised via 

transfer learning  and is studied for its effectiveness for the classification task of LOG. 

The feasibility of this approach is further discussed in the later chapters. 
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Figure 2.14: (a) Intermediate pooled meshes from the SHREC shape classification dataset where the 

number of edges is pooled to 600, 450, 300, 150 edges. b) Semantic segmentation results on COSEG 

dataset. (Hanocka et al. 2019) 

 Graph Convolutional Neural Network (Graph CNN) 

Graph is considered as a generalized representation of a tree whose nodes can be 

connected in any possible ways. Nodes can be connected with each other in arbitrary 

number of ways and their connection may or may not provide a sense of direction with 

its connecting edges. Based on the whether the edges have a flow of direction they 

are categorized to directed graph and undirected graph. Directed graph, information 

flow from an origin node A to a designated node B and they are mainly represented in 

social or citation networks like Facebook or Twitter. In graph theory graph is defined 

as an interconnected assemblage of ordered pair of objects. Graph networks have 

node features (data of the nodes) along with the structure of the data (how nodes are 

connected).  A graph is represented mathematically by Equation 2.3. (Collins 2020; 

Zhou et al. 2019) 

 

𝐺 = (𝑉, 𝐸) 

𝐺 = (𝑉, 𝐸, 𝐴) 

𝐺 =  (𝑉, 𝐸, 𝑊) 

( 2.3) 

The ordered pair (V, E) represents a set of vertices and a set of edges respectively. 

Both sets are unordered and the edge sets contain nested sets (encode one edge at 

a time). In computer vision a graph are represented by their adjacency matrix whose 

entries generally represent the connectivity of the nodes. Equation 2.4 gives the adja-

cency matrix. 
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 𝐴𝑖𝑗 = {
1 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑗

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 2.4) 

In the case of a directed graph, the matrix is not symmetric and with weekly connected 

graph the adjacency matrix becomes sparse (difficult to work with). There is also the 

change in the graph composition due to weighted and unweighted graph.  Each edge 

ei ∈ E is designated with a weight with a characteristic relevance. When there is a link 

between node i and j, the binary adjacency matrix becomes a weighted graph and the 

𝐴𝑖𝑗 becomes 𝑊𝑖𝑗  as shown in Equation 2.5.  

 𝑊𝑖𝑗 = {
1 𝑖𝑓 𝑙𝑖𝑛𝑘 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑗

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 2.5) 

Some datasets do not necessarily define the connectivity of their nodes and may totally 

lack an adjacency or weight matrix 𝑊𝑖𝑗. Connected and unconnected graphs is the next 

categorization of the graphs based on whether they have a single connection or more 

unconnected components. (Collins 2020; Zhou et al. 2019) 

 

Figure 2.15: Classic architecture of a CNN on graph and the four major elements of a graph CNN 

(Defferrard et al. 2016) 

Figure 2.15 provides a visual representation of a CNN on graph along with the four 

major parts in the process: Convolution, activation functions, sampling process and 

pooling layers (Defferrard et al. 2016). 
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2.6.1 Feature-Steered Graph Convolutions (FeaStNet) 

FeaSTNet is neural network based on the graph convolution operator which uses the 

learned features from the previous network layer to progressively determine the asso-

ciation between filter weights and nodes in a local graph neighbourhood. Raw 3D 

shape coordinates were used as input and their results showed that FeaSTNet learns 

better with local shape properties than engineered 3D descriptors. FeaSTNet worked 

well for the segmentation task. Verma et al. (2017) executed FeaSTNet based on Ten-

sorFlow on FAUST (Bogo et al. 2014) and ShapeNet (Chang et al. 2015)dataset  where 

they achieved better results than the state-of-art for 3D mesh correspondence. Figure 

2.16 illustrates the segmentation task achieved by FeaStNet where each vertex of the 

3D input is classified. 

 

Figure 2.16: Segmentation of shape  3D object achieved by  FeaSTNet (Verma et al. 2017) 

This thesis tries to implements FeaSTNet architecture for the task of LOG classification 

of building elements and study its feasibility on classification task based on complexity 

of the model elements. Instead of classifying each task like in segmentation, this study 

is classifying it into four classes. 

 Research gap 

The aim of this thesis is to explore how deep learning algorithms like CNN can assist 

the construction industry in assessing the level of geometry of the building elements at 

an instance of the building model. This will assist in reducing the miscommunication 

and error that happens when the object model is shared between the project partici-

pants. The application of CNN in 3D building element data has not been previously 

explored. The success of the classification and the segmentation on 2D data motivates 
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researchers to probe the same with respect to 3D data. The task and the research 

question of this thesis is as follows: 

• Can CNN be used to predict the Level of Geometry of Building elements auto-

matically (since the current practise is to classify them visually and that also 

depends on the interpretation of the project participant)? 

• Will this automatic classification of LOG using CNN assist the industry with re-

spect to project communication, loss of information and reduction of error? 

• How well the CNN approaches like MeshCNN, Graph CNN and Multi-view CNN 

are feasible with the current data at hand and if so, is the data enough to get 

the required accuracy on the models mentioned? 

• Which CNN models perform better with respect to one another and how these 

models can be improved for further research?  
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In this thesis study, three approaches have been used for the classification of the LOG 

of building elements. This chapter briefly discuss the basic methodology used in these 

three approaches and each one of them are elaborated in detail in the following chap-

ters. This chapter describe the source of input data that is used for the study and how 

they were created with respect to the specifications.  

 Project Workflow 

The hypothesis put forward by the study is that individual building elements at different 

LODs have visually different geometrical complexity. The study aims to classify the 

different levels of LOGs based on the geometric information of the building elements. 

This geometric information needed for the study is taken visually as a set of images 

and also as cross-section image from the 3D building model.  

Figure 3.1 depicts the project workflow of the study. The data for the study is taken 

from the study done by Abualdenien and Borrmann (2020a) and were made according 

to the LOD specifications. The dataset includes a collection of different building ele-

ments along with additional cases that considers reinforcement and openings. The 3D 

data is in the form of polygonal meshes which are split into test and train data. The 

next stage includes the data pre-processing where a set of images are taken from the 

object at different orbital views around the object together with their cut sections in 

three orthogonal planes. The prominent features of each mesh are extracted in the 

form as vertices, faces and edges. They are also provided to the neural network to-

gether with the image sets. Thereafter, training is done on the train dataset. Afterwards 

the test data is run on the pretrained model to assess the accuracy of the neural net-

work. The classification report is created based on the test data.    

3 Methodology 
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Figure 3.1: Project workflow of the study 

 Modelling the Input Data According to LOD Specifications 

The source of the input data for this thesis study is taken from the work done by 

Abualdenien and Borrmann (2021). The authors reviewed and executed the  LOD 

specifications set by BIMForum (2019)  and Trimble Buildings (2013) for modelling 

different families on multiple LODs.  Even though BIM Forum is descriptive in defining 

many building elements, there are cases where the information is vague with respect 

to geometric detailing. This is mainly emphasised in the case of newly added elements 

to an LOD level where the graphical illustrations are inconsistent or sometimes miss-

ing. For instance, while modelling a stair, information about the riser count and height 

should be available from LOD 300 as per text description. But they are already pro-

vided in the graphical representation of LOD 200. On the other hand, with respect to 

Trimble’s specification, the graphical illustration mirrors the available information for 

this particular case. As such, a combination of both the specifications and the authors 

experience was set as a guideline while modelling the building elements.  

Section 2.1.1 and Table 1-1 give definitions about the different LODs with LOD 100 as 

the conceptual model, LOD 200 as the approximate geometry, LOD 300 as the precise 
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geometry, LOD 400 as the fully detailed model and LOD 500 as the as-built model. For 

the current thesis study the model data is taken from LOD 200 to LOD 400.  

 

 

Figure 3.2: Building elements at different LOD levels (Abualdenien and Borrmann 2021) 

 

Abualdenien and Borrmann (2020a) initially modelled the families with both textual de-

scription as well as visual clarification and eventually they expanded the datasets by 

using the available BIM object libraries. In this scenario, the families were downloaded 
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first and they were later modified to fulfil the requirements of the various LODs. The 

modelled dataset in total includes 464 objects taken from 116 at four different LOD 

levels. Figure 3.2 gives a visual representation of building elements at different LODs. 

Abualdenien and Borrmann (2021) also studied the respective time required to model 

the elements for each LODs from different families. They investigated the modelling 

effort that is required to detail the families from one LOG to the next one. Their study 

showed that modelling elements at LOG 200 required in between two and 40 minutes. 

LOG 300 required two to threefold the time with respect to LOG 200 whereas for LOD 

350 it increased between four to seven-fold the time at LOD 200. At LOD 400 due to 

fabrication level detailing the fundamental time required increases to 15-fold in com-

parison to LOD 200. 

3.2.1 Mesh Representation 

The input 3D building elements data is in the form of non-uniform polygonal meshes. 

In their mesh representations, large flat regions of the building elements are repre-

sented by a small number of polygonal meshes whereas detailed regions of the build-

ing element use a large number of polygons. Mesh generally represents the topology 

of the surface by truly describing the complex structure while summarizing its proximity 

from the nearby surfaces. 
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This chapter explores four approaches to the study on classification of the LOG of 

building elements using neural networks. Each of these approaches were studied care-

fully and evaluated based on their feasibility to the study. All these approaches were 

assessed and their limitations to the study is discussed. From these different ap-

proaches the method that is best feasible to the study is determined and further ex-

plored in the following chapters. The following subsections discusses these four ap-

proaches. 

 Mesh CNN 

Section 2.5 briefly introduced the Mesh CNN by Hanocka et al. (2019) and this is the 

first approach to the study of classification of  LOG of building elements using CNN. 

Hanocka et al. (2019) directly applied  the convolution and pooling operation of CNN 

to irregular and non-uniform triangular meshes instead on converting them to regular 

and homogenous representations. The input edge features to the CNN are ordered in 

such a way that all these features are invariant to translation, rotation along with uni-

form scale. To achieve invariance to classification tasks a global ordering is followed 

by placing an average pooling layer between the convolution and fully connected layer 

in the network. Figure 4.1 demonstrates the mesh pooling and un-pooling process 

where it prioritizes on which parts to simplify and which part to remain intact with re-

spect to the task at hand. It depicts how feature aggregation is performed.  

 

Figure 4.1: Mesh pooling and un-pooling for feature aggregation. With edge collapse operation during 

mesh pooling five edges are collapsed to two edges (Hanocka et al. 2019) 

 

4 Feasibility Study 
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4.1.1 Mesh Connectivity 

A mesh is defined by a set of (V, F) where V= {v1, v2, …} is defined as a set of vertex 

positions in R3 and F generally defines the connectivity of the meshes. The mesh con-

nectivity is also given using the edges E, which is a set of pair of vertices and defined 

when (V, F) is available. All the mesh elements like V, F, E are generally associated with 

multiple features and in the study by Hanocka et al. (2019) E holds a set of  similarity 

invariant geometric features which develops a deeper abstraction as it progress 

through the layers. Mesh contributes two major attributes to the network, first by provid-

ing the connectivity for the convolutional neighbours and the second by the initial geo-

metric input features. Once the input features are extracted the mesh vertices carry no 

meaning. The new position of the vertex after the edge collapse has no effect on the 

segmentation and classification tasks and is literally used only for visualization. 

4.1.2 Mesh Convolution 

Hanocka et al. (2019) defined a convolution operation on the edges where the spatial 

support of the edge is defined with the help of four incident neighbours. Convolution is 

determined as a dot product between a kernel k and its neighbourhood. The convolu-

tion of an edge feature e with its adjacent edges is given by: 

 e. ko + ∑ 𝑘

4

𝑗=1

j. ej ( 4.1) 

Where ej is considered as the jth convolution neighbour of e. Figure 4.1 shows the four 

neighbours of edge e that is (e1, e2, e3, e4) are either the set (a, b, c, d) or (c, d, a, b). In 

order to guarantee convolution invariance to the input set of data, a set of symmetric 

functions are applied to the ambiguous pairs which generates a new set of convolution 

neighbours that are invariant. The receptive filed of the edge e is then represented as 

below: 

 (e1, e2, e3, e4)= (|a − c|,  a + c, |b −d|, b +d) ( 4.2) 

This performs a convolution operation that is unconcerned about the initial ordering of 

the meshes but still produces the similar kind of output regardless of this attribute.         



 
Feasibility Study 39 

 

 

In general, the convolution operation of a multichannel tensor with a kernel is imple-

mented through general matrix multiplication. In the above study by the authors, they 

used highly enhanced batch size operators like the conv2D which aggregated all the 

edge features into a nc × ne × 5 feature tensor, where nc gives the number of feature 

channels, ne is the number of edges and 5 is for the edge sand convolution neighbours 

from Equation 4.2. This developed matrix is then multiplied with the matrix of the 

weights of the convolutions using general matrix multiplication operations. After the 

convolution operation a new batched feature tensor is generated where the new num-

ber of features is equivalent to the number of convolution kernels. After each pooling 

layer, a new connectivity is defined which provides new convolutional neighbours to 

the next convolution layer.    

4.1.3 Mesh Pooling and Un-pooling 

In the study by Hanocka et al. (2019), the approach of pooling to irregular data consid-

ered three main aspects: (1) define the pooling domain with the defined adjacency, (2) 

merge the features in the respective pooling domain, and (3) redefine the adjacency 

with respect to the merged features. Adjacency in the case of mesh pooling is deter-

mined by topology and the authors in the study performed mesh pooling by a series of 

edge collapse operations where five edges are collapsed to two as shown in Figure 

4.1. The pooling operation adds hyperparameter which defines the number of targeted 

edges in the pooled mesh so as to control the resolution of the mesh after each pooling 

operation.  

Using a priority queue, the magnitude of the edge features are prioritized, which allows 

the networks to identify the parts of the mesh which is necessary to solve the task at 

hand. This allows the network to non-uniformly collapse the edges which does not fall 

in to the priority queue. Figure 4.1 shows that the five edges are collapsed to two edges 

after the pooling. For a single mesh with three edges, it has a minimum edge as well 

as two adjacent neighbours to the minimum edge. Each of the features from all these 

three edges is merged into a single new feature edge by taking the average over each 

of the feature channel. The new edge feature vectors of Figure 4.1 are given by Equa-

tion 4.3. The main criteria for edge collapse is that it should not result into a nonmani-

fold face as it breaches the assumption of four convolutional neighbours. 
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                                           𝑝i= 𝑎𝑣𝑔 (𝑎i, 𝑏i, 𝑒i) 𝑎𝑛𝑑 𝑞i=  𝑎𝑣𝑔 (𝑐i, 𝑑i, 𝑒i)                                        ( 4.3) 

Mesh un-pooling is considered as the inverse of pooling operation and it is typically 

combined with convolution operation to recover the resolution that has been lost to the 

pooling operation. Un-pooling does not have any learnable parameters but its combi-

nation with convolution makes it a learnable operation. The un-pooled layer re-estab-

lishes the unsampled topology that was prior to mesh pooling by storing the connec-

tivity of the region prior to pooling. 

4.1.4 Feasibility study on Mesh CNN 

The LOG  input dataset created by Abualdenien and Borrmann (2020a)  containing 

building element models from four different LOD levels were used  on the Hanocka et 

al. (2019) Mesh CNN model as the training and test dataset for the purpose of LOG 

classification. The Mesh CNN model by Hanocka et al. (2019) was modified to perform 

the classification task on the different LOG building models.  The limitations of the 

study are discussed in Section 4.3 

 Feature Steered Graph CNN 

Section 2.6.1 briefly discussed about FeaStNet and it is a deep neural network based 

on the graph convolution operator. Verma et al. (2017) created a graph convolutional 

network that works on irregular graph structured data. For a general convolutional CNN 

layer, the parameters are given as asset of D × E  filters Fd,e , each of which has a size 

h×w pixels, where d ∈ {1, … , D } and e ∈ {1, … , E}. In the case of FeaStNet model, the 

convolutional filter weights are rearranged as a set 𝑀 =  ℎ × 𝑤  weight matrices with 

𝑊𝑚  ∈  ℝ𝐸×𝐷 . Each of these weight matrices is then used to project the input fea-

tures 𝑥 ∈  ℝ𝐷 to the output features 𝑦 ∈  ℝ𝐸. The result of the convolution at a pixel 

point is achieved by summing up for M matrices the projection of its feature vector with 

the Wm complementary to its relative position, considering the fact that pixel i is con-

sidered as a neighbour of itself. In the output feature map, the activation function 𝑦 ∈

 ℝ𝐸of pixel i is given by: 

                                                𝑦i =  𝑏 +   ∑ 𝑊𝑀
𝑚=1 m 𝑥𝑛(𝑚,𝑖)        ( 4.4) 
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where 𝑏 ∈  ℝ𝐸 represents a vector of bias terms and n (m, i) provides the index of the 

neighbour in the m-th relative position w.r.t pixel i. Figure 4.2 prove illustrations about 

the convolution operation described above.  

Figure 4.2 shows the graph convolution model for the above study where each node 

of the input patch of the graph is associated in a gentle manner to each of the M weight 

based on its features adopting the weight qm (xi,xj). (Verma et al. 2017) 

 

 

Figure 4.2: Graph Convolutional Network (Verma et al. 2017) 

4.2.1 Generalization of non-regular input domains 

For regular data inputs there is a one-to-one clear mapping between the weight matri-

ces and their neighbours at relative position with respect to the central pixel of convo-

lution. For the case of irregular input data, Verma et al. (2017) created a correspond-

ence between the weights and their neighbours in a data driven manner with the help 

of a function that works over the functions computed in the previous layer of the net-

work and learning the parameters of that function as a part of the network. They used 

a soft-assignment qm(xi, xj) of the jth neighbour across all the M weight matrices of the 

network. The function that maps the features from one layer to the other is defined in 

Equation 4.5. 

                              𝑦𝑖 =  𝑏 +  ∑
1

|𝑁𝑖|
𝑀
𝑚=1  ∑ 𝑞𝑚𝑗∈ 𝑁𝑖

(𝑥𝑖, 𝑥𝑗  )𝑊𝑚 𝑥𝑗                                       ( 4.5) 

In the above equation qm(xi, xj) is considered as the assignment of the xj to the mth 

weight matrix, 𝑁𝑖 is assigned as the set if neighbours of i, and |𝑁𝑖|  is represented as 

its cardinal. The weights of the network are defined as a SoftMax over a linear trans-

formation of the local feature vectors as given in Equation 4.6.     
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 𝑞𝑚 (𝑥𝑖, 𝑥𝑗  )  ∝  𝑒𝑥𝑝 (𝑢𝑚
⊤  𝑥𝑖  +  𝑣𝑚

⊤  𝑥𝑗 +  𝑐𝑚) ( 4.6) 

When ∑ 𝑞𝑚
𝑀
𝑚=1 (𝑥𝑖, 𝑥𝑗)  = 1, then um, vm, cm   are the parameters for the linear transfor-

mations. These formulations are sturdy to the variations in the degree of the nodes 

since the nodes involved in the update of node i can be summed up to 1 irrespective 

of the number of neighbours of the node.   

Translation invariance 

Verma et al. (2017) achieved translation invariance to their weights in the feature space 

when they set  𝑢 𝑚 =  −𝑣𝑚 to Equation 4.6. This is of special interest in applications 

where the input features include spatial coordinates and in that case translation invar-

iance is applied to the assignment function given in Equation 4.5. This has shown a 

positive effect when using the raw spatial 3D coordinated from the shape mesh da-

tasets. 

4.2.2 FeaStNet Model Architecture 

FeaStNet model architecture contain linear layers with 1×1 convolutions and graph 

convolution layers. The multi scale architecture performed the pooling and the un-pool-

ing operations based on the U-Net model by Ronneberger et al. (2015). They help 

increase the field of view without losing the spatial resolution of the data. The max 

pooling over the graph Graclus algorithm by Defferrard et al. (2016) was employed. 

For a graph with edge weights wij and degrees 𝑑𝑖 =  ∑ 𝑤𝑖𝑗j  this clustering algorithm 

merges in each of the step the unmarked nodes that tend to maximise the local nor-

malized cut in the form of wij(di−1+ dj−1) and later makes the nodes as visited. For the 

purpose of simplicity all the initial weight of the edges are set to zero. Coarsened graph 

has generally two times fever nodes and before coarsening the weights from the coars-

ened graph is addressed to the corresponding weights. This process is repeatedly 

done to create a binary tree over the nodes and creates a complete ordering which is 

further used to apply 1D max pooling layers together with moderately strided convolu-

tion up-sampling layers. Figure 4.3 demonstrates the multiscale architecture of FeaSt-

Net. 
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Figure 4.3:  Multiscale graph convolution architecture of FeaStNet. (Verma et al. 2017) 

4.2.3 Feasibility study on FeaStNet 

The input data from Abualdenien and Borrmann (2020a) containing the 3D building 

elements from four levels of LOD were given as the test and training input on the 

FeaStNet model to predict the LOG of different building elements. The FeaStNet model 

was modified to take the input data and start the training process on them. The limita-

tions of the FeaStNet model for the current study is discussed further in Section 4.3. 

 Limitations of Mesh CNN and FeaStNet on the Study 

Mesh CNN and FeaStNet models was unsuccessful in classifying the LOG of building 

elements and the study came across many limitations on its application on this partic-

ular classification task. They are summed up as follows. 

4.3.1 Shape Vs Complexity Classification 

 Hanocka et al. (2019) created this model for the task of shape classification and seg-

mentation. FeaStNet model was designed for shape segmentation tasks.  But the focus 

of the current study was about the complexity classification of the different LOG mod-

els.  The convolution and pooling operations of both the models were designed to re-

tain the shape information of the object and predict the shape as the output. However, 

they failed to predict the LOG of the elements with respect to its complexity. 
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4.3.2 Non-uniform Input Data 

Mesh CNN 

In the study done by Hanocka et al. (2019) the number of edges for each of the input 

data was fixed to 750 edges for the shape classification task. Even though it is not 

necessary to have same number of edges across all samples for the case of Mesh 

CNN, but the authors performed geometric mesh decimation. This was done to help 

reduce the computational effort required for training. However, for classifying LOG lev-

els of building elements, this simplification process is not feasible as it destroys the 

complexity information available in the meshes which is needed for classification. The 

main difference between shape classification and LOG classification is that in the for-

mer only shape information is used for classification where as in the latter geometrical 

complexity information is also used for classification.    

The input data for the study has a non-uniform number of edges for all the building 

elements.  Each building element in the dataset has a diverse number of edges. It is 

not recommended to make it uniform as it affects the complexity classification task. For 

LOG 200, the number of edges varies from 18 to 382478. For LOG 300 the number of 

edges range from 30 to 954553. Whereas for LOG 350 it ranged from 30 to 6150155 

edges and for LOG 400 it ranged from 30 to 14115693 edges.  

Figure 4.4 gives the maximum and the minimum number of edges in each LOG level. 

The standard deviation of all this data was very high which proved that they were highly 

scattered and non-uniformly distributed. This creates the computing task of the study 

highly colossal. 
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Figure 4.4: Number of Edges for the input data from LOG 200 to LOG 400 showcasing the maximum 

and minimum number of edges per mesh  

 

FeaStNet 

In the study by Verma et al. (2017), the number of vertices for each of the input was 

fixed to 6,890 vertices for each of the input element data. Similar to the work done by 

Hanocka et al. (2019), they also performed decimation to the input mesh data to attain 

uniform vertices in all the input data. This helped reduce the computational effort for 

their studies. Analogous to the case of MeshCNN, mesh decimation cannot be applied 

to the task of complexity classification of LOD levels as it can lead to the generalization 

of the input data thereby affecting the classification task at hand.  

The number of vertices for each LOG level is also highly distributed like in the case of 

Mesh CNN. For LOG 200 the number of vertices range from 8 to 132342, for LOG 300 

it ranges from 16 to 355545 vertices, for LOG 350 it ranges from 16 to 2160281 vertices 

and for LOG it ranged from 24 to 4973533 vertices. Figure 4.4 illustrates the histogram 

of the distribution of the vertices of the input data for the four LOG levels.  It shows the 

maximum and minimum number of vertices per mesh for each LOG level. It reflects 

that the data is highly scattered.     
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Figure 4.5: Number of Vertices for the input data from LOG 200 to LOG 400 showcasing the maximum 

and minimum number of vertices per mesh 

4.3.3 Limitation on Feature Extraction 

In the case of Mesh CNN, if the maximum number of edges present in the dataset for 

any mesh is M, then the dimension of the input to Mesh CNN classifier will be propor-

tional to M×5, where 5 is the five-dimensional input edge feature vector. If a particular 

mesh has number of edges less then M, then that needs to be proportionally padded 

to match the dimension M×5. For the LOG dataset the minimum number of edges is 

18 and the value of M is 14115693.  Padding an 18×5 matrix to reach a 14115693×5 

matrix is achieved by using zero padding where most of the matrix will be filled with 

zero values. This creates ambiguity in the outcome of the neural network due to the 

generalization of the input data. This high amount of zero padding will result to feature 

extraction issues. 

Similarly, in the case of FeaStNet, the maximum number of vertices present in the 

dataset for any mesh is V and the dimension of the input to the FeaStNet classifier will 

be proportional to V×V. When a particular mesh has number of vertices less than V, 

then that mesh has to be proportionally padded to match the dimension of the adja-

cency matrix V×V. The minimum number of vertices for the LOG dataset is 8 and the 

value of V is 4973533. Here the 8×8 matrix is padded to reach 4973533×4973533 

adjacency matrix and zero padding is employed to achieve this. The majority of the 
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padded area will be filled with zeros. This can lead to feature extraction issues and 

generalization of the input data resulting in uncertainty in the output of the network.   

4.3.4 High Computing Task 

Powerful computing platform is required to process matrices like 14115693×5 for Mesh 

CNN and 4973533×4973533 for FeaStNet models. It requires more computational time 

and cost. This was one of the major reasons to dismiss these models and seek other 

approaches that demands less computational time and effort. 

4.3.5 Unsuitable for Commercial Use 

In the case of Mesh CNN and FeaStNet, it is not possible to use the mesh in its raw 

form without pre-processing for the classification task. Commercially if this is used on 

a different set of data that has bigger size to its matrices that the one mentioned in 

Section 4.3.3 it may require pre-processing but may compromise the classification task 

of the LOG.  
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From the limitations of Mesh CNN and FeaStNet it was seen that a new approach is 

needed to classify building elements based on their LOG. Both Mesh CNN and FeaSt-

Net models used to perform shape classification and segmentation directly on the 

mesh data. But direct usage of the mesh data has many limitations as listed in Section 

4.3. This motivated the study to pursue other means to approach the classification task 

at hand. One solution was to use 2D image of the 3D mesh data to perform the classi-

fication task of LOG. This approach could reduce the computing task exponentially. 

This method was feasible for some building elements but does not work well for some 

others. The outer shape of a building element cannot always predict the complexity 

level within it. For example, Figure 5.1 (a) shows the outer view of Escalator element 

for the four LOG levels. For this particular element a single view of the image is not 

enough to predict the complexity level of it. Externally all the levels look the same but 

the complexity is in the internal structure of the building element. Figure 5.2 shows 

another type of building element that is a column where a single view is sufficient to 

classify the LOG levels. This shows that there is a need to capture the cut section(slice) 

information of the building element. This information in the form of a slice image of the 

element in a plane can provide more details about the complexity of the model. 

 

Figure 5.1: Escalator Building element at four LOG levels which looks visually same. 

 

5 Using 2D images for LOG Classification 
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Figure 5.2: Column building element which looks visually different at each LOG levels. 

 Slice Sections 

Figure 5.1 illustration Elevator element proved that it is not possible to classify the LOG 

of building element using a single view of the element as some elements visually look 

similar in different LOG levels. Slice section of the element in different planes with 

respect to the centroid of the mesh provide more information about the internal com-

plexity and can assist in complexity classification. Figure 5.3 provides the slice section 

of the elevator element from Figure 5.1. It shows the slice section in the YZ plane of 

the element and gives more details about the complexity of the elements at different 

LOG levels.    

 

Figure 5.3: Slice section of the Elevator element in the YZ plane. 
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Vertical elongated building elements like Escalator, Balcony Railings, Reinforced wall 

are mainly concentrated in a single plane. Their slice section in a single plane does not 

provide enough information about the cut section of the element. For example, Figure 

5.4 shows the 3D image of Balcony railing and their slice section in YZ plane. But the 

information provided by this slice section is not adequate since the element is mainly 

concentrated in other planes. 

 

(a)                                                                                     (b) 

Figure 5.4: Balcony Railing building element at LOG 400 (a) 3D view (b) Slice section in the YZ plane 

Figure 5.4 proves that complexity information of an element lies in different planes and 

information from three planes XY, YZ, XZ is fundamental to provide necessary infor-

mation about integral complexity of the element. Figure 5.5 provides the slice sections 

of the Balcony Railing element in XY, YZ, XZ planes. These three slice sections pro-

vide the necessary complexity details about the integral structure of the building ele-

ment at a particular LOG. 

 

Figure 5.5: Slice sections of Balcony Railing in Planes (a) XY plane (b) XZ plane (c) YZ plane 
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 Three Input Convolutional Neural Network 

Slice sections with three slices of the building element from three different planes 

showcased as a better approach than a single cut section image of the element. For 

three slice section there is a need for CNN that can take three input  image data. Sun 

et al. (2017) performed a study on multi input CNN for the task of flower grading. Their 

study showed that the use of three inputs improved the performance of the model with 

respect to single output. Figure 5.6 shows the architecture used by their study with 

three-input to the CNN that contained the traditional convolution, pooling and fully con-

nected layers. 

 

Figure 5.6: Three input CNN architecture (Sun et al. 2017) 

In this study a three input CNN model following the architecture in Appendix A is used 

and it studied for the task of LOG classification with three slice sections of the building 

element in XY, XZ, YZ planes which acted as the three inputs to the CNN.  The model 

achieved 63% accuracy on the validation dataset. The architecture used for this study 

is given in Appendix A (Three Input CNN Model Architecture). The limitations of using 

just three slice sections of the building element for the complexity classification task is 

discussed in the next section. 
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(a) 

 

(b) 

Figure 5.7:(a) The Accuracy curve and (b) the Loss curve of Three input CNN for training and 

validation dataset 

5.2.1 Limitations of using Slice Sections alone for Classification Problem 

The three input CNN with slice sections of the input element in three different planes 

did not prove to be successful for the classification task at hand. The reasons for its 

failure are summarized as follows.  
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Limited Accuracy 

The accuracy obtained from the three input CNN model was limited. They gave an 

accuracy of just 63% which was not enough to successfully complete a classification 

task. Figure 5.7 gives the accuracy and curve of the above study for training and test 

dataset. 

Unable to capture all relevant information about the input element 

Slice sections of the input element provided a better representation of the internal com-

plexity of the element with respect to single external view. However, they were not able 

to capture all necessary information relevant to perform the classification task based 

on complexity. Some elements have more complex features on their surface which 

cannot be completely captured by a slice section of the element. They can have an 

additional edge on their surface which can be viewed only as an external image taken 

at a particular angle. Sometimes the image captures more information as a wireframe 

representation of the 3D element. The following section discuss the concept of 

wireframe 3D models further. 

  Need of Wireframe format as Input  

A 3D model can be represented as a wireframe model by the use of only vertices and 

edges. It does not have any surface or texture and is only represented with “wires” to 

embody the shape of the element. Figure 5.8 shows a 3D cube and its representation 

as a wireframe.  

 

Figure 5.8: A cube 3D model and its wireframe representation with an edge ‘e’ on the side 

Suppose the cube has an additional feature which is represented on its side as edge 

‘e’. On its external 3D single view this feature may not be identified. On the wireframe 

model the edge will be represented on the side of the cube. If we take the slice section 
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of the wireframe model this side edge ‘e’ may not be captured. Slice section of the 3D 

model in XY plane is represented in Figure 5.9 (a). From the figure it is proved that the 

edge ‘e’ is not captured. Whereas if multi views of the external image of wireframe is 

captured, then this edge information will be seized. This is showcased in Figure 5.9(b) 

which is the wireframe model captured externally from an angle. This example demon-

strates the need of wireframe model captured externally at different angles to exhibit 

the internal as well as the external complexity of a 3D model. This finding led to the 

exploration of Multi View CNN in the complexity classification of the LOG models.   

 

(a) (b) 

Figure 5.9: 3D cube (a) Slice section XY plane (b) Wireframe image from one side 

The classical MVCNN takes the images of a 3D model at different angles in an orbit 

around the model as explained in Section 2.4. But the external images alone were not 

enough to account for the complexity of the model. MVCNN with wireframe images of 

the 3D model can capture most of the complexity of the model. These statements are 

further explored in Section 6. 
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Computer vision uses large amount of shape descriptors to draw inferences about 3D 

objects. Most of the shape descriptors are represented as native 3D representation of 

the object as polygonal meshes, point clouds, voxel-based discretization and so on. 

One type of shape descriptors that is of particular interest to this study is View based 

descriptors that describe the shape of a 3D object with a collection of 2D projects that 

showcases how it looks. View based descriptors have many desirable properties such 

as low dimensionality, efficiency in evaluation, easy representations of 3D shape de-

pictions artifacts like holes, noisy surfaces and imperfect mesh tessellations (Su et al. 

2015). CNN can be adopted to produce view descriptors of the of the 3D object in the 

form of 3D illustrations, sketches, or even line drawing that showcases better perfor-

mance with respect on normal 3D shape descriptors. 

Su et al. (2015) created a CNN network that learns shape representations from the 

aggregated information that comes from multiple input views without any particular or-

dering and gives a compact shape descriptor of the same size as the output. Section 

2.4 also gives a brief introduction to MVCNN and talks about the view pooling layer 

which is used by the model to accumulate the information form multiple views into a 

single compact form of shape descriptor. 

 MVCNN Architecture 

The images for multi view classification study by Su et al. (2015) is captured by a ren-

dering engine which take multiple views of the objects. Each of the views generated is 

aggregated to combine features from different views into a single compact descriptor 

that represents the 3D shape via a view pooling layer. 

6.1.1 Input Data 

To capture the multi view representations of the input data rendering cameras are set 

up around the mesh. As previously explained in Section 2.4, Su et al. (2015) created 

two experimental set up for the rendering cameras to capture the images. For the first 

camera setup, the input shapes are supposed to be upright oriented along a particular 

axis and 12 rendered views were captured by placing 12 virtual cameras around the 

6 Multi-View Convolutional Neural Network 
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object at 30 degree. The cameras are elevated at an angle of 30° from the ground and 

pointed to the 3D object towards its centroid as shown in Figure 2.12. The centroid of 

the 3D mesh object was calculated as the weighted average of the mesh face centres 

where the weights are considered as the face areas. Su et al. (2015) also did a second 

setup of the camera where they did not consider the upright orientation of the object.  

The second camera a setup is of limited interest to this thesis study as the first camera 

setup is experimented further in the study. 

Su et al. (2015) stated that their study was not affected by using different shading 

coefficients and illuminance models. The authors also stated that adding more view-

points can contribute to the more to capture all the features of the 3D more but for their 

study the above stated camera setup was enough to produce the necessary results. 

6.1.2 Multi View Representations 

Image Descriptors 

The multi view representation create multiple 2D descriptors for a 3D object with the 

amount  one per each view and each of these views has to be integrated to perform 

the classification task. Su et al. (2015) used two types of image descriptors for their 

study: (a) Fischer Vector based on the Fisher Kernel principle which is used with multi 

scale SIFT, and (b) CNN activation features. 

Fischer vector gives a gradient normalized which  represent  the contribution of the 

individual parameters to the generative process (Sánchez et al. 2013). For each image 

descriptors are extracted and projected. It is followed by a Fischer vector pooling pro-

cess with a Gaussian mixture model, square root and then l 2 regularization process.  

CNN features use the VGG-M network (Visual Geometry Group Network) which is a 

type of CNN network used for image classification. It contains five convolution layers, 

three fully connected layers and finally a SoftMax classification layer. The penultimate 

fully connected layer is taken as the image descriptor. Su et al. (2015) in their study 

first pretrained the model in ImageNet and then further performed the fine tuning of all 

the 2D images of the 3D object in the training set. Their study proved that fine tuning 

can improve the performance of the model.    
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Classification and Retrieval 

The classification of the above study was performed using a Support Vector Machine 

(SVM) algorithm which is generally used for classification and regression analysis 

tasks. During training each view is taken as a separate training sample and they are 

classified to different classes based on their features using a one vs rest SVM linear 

approach. Where as in the test time, the sum of all the decision values from all the 12 

views by SVM is taken and the class with the highest value is returned. 

For the retrieval task a similarity or distance measure is needed between the image 

descriptors. Su et al. (2015) stated that for shape x with nx image descriptors and shape 

y with ny image descriptors, the distance between them is given by Equation 6.1:      

 d(x,y) = 
∑ 𝑚𝑖𝑛𝑖‖𝑥𝑖 −𝑦𝑗‖

2𝑗

2𝑛𝑦
 + 

∑ 𝑚𝑖𝑛𝑗‖𝑥𝑖 −𝑦𝑗‖
2𝑖

2𝑛𝑥
 ( 6.1) 

The l2 distance between their feature vectors ||xi − yj||2 is actually the distance between 

the two 2D images.  If the distance between a 2D image xi and a 3D shape y is given 

by d(x, y)  =  𝑚𝑖𝑛𝑗‖𝑥𝑖  − 𝑦𝑗‖
2

 and all the nx distances between 2D projects of x and y 

are given, then the distance between the two shapes is computed by simple averaging. 

This provides a better interpretation of Equation 6.1 and there this idea is applied in 

both directions to attain symmetry.  

6.1.3 Learning to Aggregate views in MVCNN 

In MVCNN there is a need to incorporate the information from all views into a single, 

condensed and compact 3D shape descriptor for which there is a need to learn on how 

to aggregate multiple views. Directly averaging or concatenating the image descriptors 

will result in menial performance. Figure 2.12 shows how Su et al. (2015) designed the 

MVCNN on top of the image based CNN. Each image of the multi view representations 

of the 3D shape is initially passed through the first layer of the network (CNN1) sepa-

rately which is later aggregated in the view pooling layer and passed through the later 

part of the network (CNN2). In CNN1 all the parameters of the network share the same 

parameters. Element wise pooling operations are performed in the view pooling layer. 

The authors stated that in their study placing the view pooling layer close to the last 

convolution layer showed better with respect to optimal classification and also for re-

trieval performance. View pooling layer is similar to max pooling and max-layout layers 
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with the only difference being in the dimensionality of the pooling operations. The au-

thors created MVCNN as a directed acyclic graph which may be trained or fine-tuned 

using the tactic of stochastic gradient descent with back propagation. 

The above study also stated that aggregated shape descriptor after the fully connected 

layer gives better performance compared to separate image-based descriptor from 

CNN. These aggregated shape descriptors can be readily and immediately used for 

an array of tasks like shape classification, retrieval and other speed up mechanisms 

which function against multiple image descriptors. MVCNN can also be used as a com-

mon framework to integrate perturbed image samples or for data jittering. 

Since the retrieval mechanism of the above study was not optimised initially, they used 

a low-rank Mahalanobis metric that can boost the performance of the retrieval system. 

This showcases the further advantage of their system that it could directly use a metric 

learning system above the output shape descriptor of the system.  

 Approach 

In the current thesis study, the model of MVCNN by Su et al. (2015) is modified and 

trained from beginning for classification of LOG. Eight variations of the input are tested 

for the study. The study is briefly elaborated as methodology in Section 3.1 and the 

project workflow is illustrated in Figure 3.1. Section 5.3 stated that wireframe input 

elements can represents the features of the input element more accurately compared 

to raw 3D representations. For this study the wire frame of all the 3D mesh input da-

taset is extracted and this step is considered as the first step to this study approach. 

The mesh dataset is initially split to test dataset and train dataset. After splitting the 

dataset, the next task is generating the multiple views of the wireframe 3D represen-

tation. Ä Multiple views of the 3D model are generated using the PyVista Sullivan and 

Kaszynski (2019) graphics library which generate orbiting GIF image of the mesh. 

PyVista is a visualization toolkit for 3D plotting and mesh analysis. The GIF for the 

wireframe mesh representations is captured in a single plane. Then 12 images of the 

GIF are captured at equal angles as it is rotating around its centroid in a particular 

plane. The planes considered in this study are XY, YZ, XZ. In this study, the planes 

are separately studied as well as their combinations (multiplane) along with addition of 

certain input features of the mesh (slice sections(images), number of vertices, edges, 

faces and the ratio of faces to vertices) is further analysed. Each of them is studied as 
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separate approaches to the classification problem and is discussed in detail in the fol-

lowing section.  

 Description of Mathematical notations used 

If Ttrain represents the 3D meshes available for training and Ttest represents the 3D 

meshes available for testing, then the number of meshes available for both is mathe-

matically expressed as: 

 M= n(Ttrain) ( 6.2) 

 N= n(Ttest ) ( 6.3) 

A single image taken from a 3D mesh in orbital plane XY is expressed as: 

 𝑖𝑥𝑦[𝑗]

𝑑  =  {𝑥: 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑖𝑚𝑎𝑔𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑋𝑌 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑚𝑒𝑠ℎ 𝑑} ( 6.4) 

Similarly, from orbital plane YZ and XZ: 

 𝑖𝑦𝑧[𝑗]

𝑑  =  {𝑥: 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑖𝑚𝑎𝑔𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑌𝑍 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑚𝑒𝑠ℎ 𝑑} ( 6.5) 

 𝑖𝑥𝑧[𝑗]

𝑑  =  {𝑥: 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑖𝑚𝑎𝑔𝑒 𝑡𝑎𝑘𝑒𝑛 𝑖𝑛 𝑋𝑍 𝑝𝑙𝑎𝑛𝑒 𝑓𝑜𝑟 𝑚𝑒𝑠ℎ 𝑑} ( 6.6) 

The union of all Images taken around the XY, YZ, XZ planes are represented by: 

 𝐼𝑥𝑦
𝑑  = {

∪𝑗=1
12 𝑖𝑥𝑦[𝑗]

𝑑  ∀ single plane variants

∪𝑗=1
5 𝑖𝑥𝑦[𝑗]

𝑑  ∀ multi plane variants
 ( 6.7) 

 𝐼𝑦𝑧
𝑑  = {

∪𝑗=1
12 𝑖𝑦𝑧[𝑗]

𝑑  ∀ single plane variants

∪𝑗=1
5 𝑖𝑦𝑧[𝑗]

𝑑  ∀ multi plane variants
 ( 6.8) 

 𝐼𝑥𝑧
𝑑  = {

∪𝑗=1
12 𝑖𝑥𝑧[𝑗]

𝑑  ∀ single plane variants

∪𝑗=1
5 𝑖𝑥𝑧[𝑗]

𝑑  ∀ multi plane variants
 ( 6.9) 

Where the number of images taken for single plane variants and multiplane variants 

are given as: 
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 𝑛(𝐼 𝑥𝑦
𝑑 ) = 𝑛(𝐼𝑦𝑧

𝑑 ) = 𝑛(𝐼𝑥𝑧
𝑑 )  = {

12 for single plane variants 
5 for multiplane variants

 ( 6.10) 

   Let    𝑆𝑥𝑦
𝑑  = {x: x is a slice image taken in XY plane for mesh d}                   ( 6.11) 

         𝑆𝑦𝑧
𝑑  = {x: x is a slice image taken in  YZ plane for mesh d} ( 6.12) 

          𝑆𝑥𝑧
𝑑  = {x: x is a slice image taken in XZ plane for mesh d} ( 6.13) 

 𝑛(𝑆𝑥𝑦
𝑑 ) = 𝑛(𝑆𝑦𝑧

𝑑 ) = 𝑛(𝑆𝑥𝑧
𝑑 ) = 1 ( 6.14) 

A set of a single vector that contain the number of vertices (𝑣𝑑), number of edges (𝑒𝑑) 

and number of faces (𝑓𝑑) for mesh d is given by: 

 𝑔𝑑  = {𝑥: 𝑥 𝑖𝑠 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 [ 𝑣𝑑 , 𝑒𝑑, 𝑓𝑑  ] for mesh d}   ( 6.15) 

The set containing ratio of the number of faces to the number of vertices for mesh d 

is given by: 

 𝑟𝑑 = {𝑥: 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 
𝑣𝑑

𝑓𝑑
 𝑓𝑜𝑟 𝑚𝑒𝑠ℎ 𝑑}   ( 6.16) 

 𝑛(𝑔𝑑)  =  𝑛(𝑟𝑑)  = 1 ( 6.17) 

Union of images taken in orbital planes and the corresponding set of slice image is 

given by: 

                                                      𝐸𝑥𝑦
𝑑  = 𝐼𝑥𝑦

𝑑  ∪  𝑆𝑥𝑦
𝑑                                                   ( 6.18) 

                                                      𝐸𝑦𝑧
𝑑  = 𝐼𝑦𝑧

𝑑  ∪  𝑆𝑦𝑧
𝑑                                                   ( 6.19) 

          𝐸𝑥𝑧
𝑑  = 𝐼𝑥𝑧

𝑑  ∪  𝑆𝑥𝑧
𝑑    ( 6.20) 

 n(𝐸 𝑥𝑦
𝑑 ) = 𝑛(𝐸 𝑦𝑧

𝑑 ) = 𝑛(𝐸 𝑥𝑧
𝑑 ) ={

13 for single plane variants 
6 for multiplane variants

   ( 6.21) 

Union of images taken in orbital planes the corresponding slice image and the geo-

metrical information vector 𝑔𝑑 is given by: 
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 𝐺𝑥𝑦
𝑑  = 𝐸𝑥𝑦

𝑑  ∪ 𝑔𝑑   ( 6.22) 

 𝐺𝑦𝑧
𝑑  = 𝐸𝑦𝑧

𝑑  ∪ 𝑔𝑑   ( 6.23) 

 𝐺𝑥𝑧
𝑑  = 𝐸𝑥𝑧

𝑑  ∪ 𝑔𝑑   ( 6.24) 

Union of the orbital images in XY plane, slice image in XY plane and ratio of number 

of vertices to number of faces for mesh d is expressed by: 

 𝑅𝑥𝑦
𝑑  = 𝐸𝑥𝑦

𝑑  ∪ 𝑟𝑑   ( 6.25) 

 𝑅𝑦𝑧
𝑑  = 𝐸𝑦𝑧

𝑑  ∪ 𝑟𝑑   ( 6.26) 

 𝑅𝑥𝑧
𝑑  = 𝐸𝑥𝑧

𝑑  ∪ 𝑟𝑑   ( 6.27) 

The above four sets 𝐼𝑥𝑦
𝑑  , 𝐸𝑥𝑦

𝑑 , 𝐺𝑥𝑦
𝑑 , 𝑅𝑥𝑦

𝑑   represent the different ways a mesh can be 

described. Corresponding to these feature descriptors the training and testing datasets 

corresponding to XY, YZ, XZ planes can be represented as below: 

Dataset composed of images from XY, XZ, YZ orbital planes: 

 𝐹1𝑥𝑦
  =  ∪𝑑=1

𝑀+𝑁  𝐼𝑥𝑦
𝑑  ( 6.28) 

 𝐹1𝑦𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐼𝑦𝑧
𝑑  ( 6.29) 

 𝐹1𝑥𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐼𝑥𝑧
𝑑  ( 6.30) 

Dataset composed of orbital plane images along with slice images:   

 𝐹2𝑥𝑦
  =  ∪𝑑=1

𝑀+𝑁  𝐸𝑥𝑦
𝑑  ( 6.31) 

 𝐹2𝑦𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐸𝑦𝑧
𝑑  ( 6.32) 

 𝐹2𝑥𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐸𝑥𝑧
𝑑  ( 6.33) 

Dataset composed of orbital plane images, slice images and geometrical information 

described as in equation 6.15: 
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 𝐹3𝑥𝑦
  =  ∪𝑑=1

𝑀+𝑁  𝐺𝑥𝑦
𝑑  ( 6.34) 

 𝐹3𝑦𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐺𝑦𝑧
𝑑  ( 6.35) 

 𝐹3𝑥𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝐺𝑥𝑧
𝑑  ( 6.36) 

Dataset composed of orbital plane images, slice images, geometrical feature described 

as in equation 6.16: 

   𝐹4𝑥𝑦
  =  ∪𝑑=1

𝑀+𝑁  𝑅𝑥𝑦
𝑑  ( 6.37) 

 𝐹4𝑦𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝑅𝑦𝑧
𝑑  ( 6.38) 

 𝐹4𝑥𝑧
  =  ∪𝑑=1

𝑀+𝑁  𝑅𝑥𝑧
𝑑  ( 6.39) 

Figure 6.1 shows three images in the wireframe format for a mesh in three planes XY, 

YZ, XZ.  The size of each image captured is 227 × 227× 3, where 227 is the height 

and width if the image and 3 is for the RGB channels. CNN model taking a single plane 

features as input at a time is single plane approach and if it takes multi plane input at 

a time, then is called multiplane approach. The following section gives the setup of 

eight variants or approaches (both single plane and multi plane) that is studied and 

their results will be discussed in the next chapter. 

 

 

Figure 6.1: The 3D mesh representation of a building element Brick wall of LOG 400 and their wire 

frame images in XY, XZ and YZ plane 
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 Approach 1: MVCNN Single Plane 1 

The first variant that was experimented was the single plane approach. Four single 

plane approaches were studied and the first approach is discussed here. In the 

‘MVCNN Single Plane 1’ approach, input to classifier include 12 images captured 

around the mesh in XY plane. The training and testing dataset along with the input to 

the classifier during training and testing is mathematically expressed as follows: 

                                           Training dataset ⊂ 𝐹1𝑥𝑦
                                            ( 6.40) 

 Testing dataset ⊂ (𝐹1𝑥𝑦
 ∪ 𝐹1𝑥𝑧

 ∪ 𝐹1𝑦𝑧
)                        ( 6.41) 

 Input to the classifier during training=   𝐼𝑥𝑦
𝑑                                    ( 6.42) 

                      Input to the classifier during testing=  𝐼𝑥𝑦
𝑑   or  𝐼𝑥𝑧

𝑑  or  𝐼𝑦𝑧
𝑑          ( 6.43) 

This model has one input layer. Shape of this input to model= 12× 227 × 227× 3 {i.e., 

12 Images captured around the mesh in XY plane}. Single Plane architecture of this 

approach is given in Appendix A.                                                                                                        

 Approach 2:  MVCNN Single Plane 2 

The second approach that was studied in the case of single plane variants is ‘MVCNN 

Single Plane 2’. The input data given to the MVCNN model includes the 12 images of 

the 3D mesh that has been generated from XY plane or YX plane or XZ plane. The 

training and testing dataset along with the input to the classifier during training and 

testing is mathematically expressed as follows: 

 Training dataset ⊂ (𝐹1𝑥𝑦
 ∪ 𝐹1𝑥𝑧

 ∪ 𝐹1𝑦𝑧
) ( 6.44) 

 Testing dataset ⊂ (𝐹1𝑥𝑦
 ∪ 𝐹1𝑥𝑧

 ∪ 𝐹1𝑦𝑧
) ( 6.45) 

 Input to the classifier =   𝐼𝑥𝑦
𝑑   or  𝐼𝑥𝑧

𝑑  or  𝐼𝑦𝑧
𝑑  ( 6.46) 

This model has one input layer. Shape of this input to model= 12× 227 × 227× 3 {i.e., 

12 images per mesh and each 12-image set taken around the mesh in XY, XZ, or YZ 

planes}. Single Plane architecture of this approach is given in Appendix A.     
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 Approach 3: MVCNN Single Plane 3 

The third approach that was studied in the category of single planes variants is the 

‘MVCNN Single Plane 3’. In addition to the 12 input images of the 3D mesh which has 

been generated from a single plane like XY or YZ or XZ, it also has the slice section of 

the corresponding plane as input. The training and testing dataset along with the input 

to the classifier during training and testing is mathematically expressed as follows: 

 Training dataset ⊂ (𝐹2𝑥𝑦
 ∪ 𝐹2𝑥𝑧

 ∪ 𝐹2𝑦𝑧
) ( 6.47) 

 Testing dataset ⊂ (𝐹2𝑥𝑦
 ∪ 𝐹2𝑥𝑧

 ∪ 𝐹2𝑦𝑧
) ( 6.48) 

 Input to the classifier =  𝐸𝑥𝑦
𝑑  or  𝐸𝑥𝑧

𝑑  or 𝐸𝑦𝑧
𝑑  ( 6.49) 

This model has one input layer. Shape of this input to model = (12+1) × 227 × 227× 

3 {i.e., (12+1 images per mesh) with each 12-image set taken in around the mesh in 

XY, YZ, or XZ planes, with one image being slice in the corresponding plane}. Single 

Plane architecture of this approach is given in Appendix A.         

 Approach 4: MVCNN Single Plane 4 

The fourth approach that was studied in the category of the single plane variant is the 

‘MVCNN Single Plane 4’. In addition to the 12 input images of the 3D mesh which has 

been generated from a single plane like XY or YZ or XZ, it also has the slice section of 

the corresponding plane and the geometric information of the 3D mesh model as a 

vector (number of vertices, number of edges and number of faces) as described in 

Equation 6.15. The training and testing dataset along with the input to the classifier 

during training and testing is mathematically expressed as follows: 

 Training dataset ⊂ (𝐹3𝑥𝑦
 ∪ 𝐹3𝑥𝑧

 ∪ 𝐹3𝑦𝑧
) ( 6.50) 

 Testing dataset ⊂ (𝐹3𝑥𝑦
 ∪ 𝐹3𝑥𝑧

 ∪ 𝐹3𝑦𝑧
) ( 6.51) 

 Input to the classifier =  𝐺𝑥𝑦
𝑑  or  𝐺𝑥𝑧

𝑑  or 𝐺𝑦𝑧
𝑑  ( 6.52) 

This model has two input layers. Shape of the first input is= ((12+1) × 227 × 227× 3) 

{i.e., (12+1 images per mesh) with each 12-image set taken in around the mesh in XY, 

YZ, or XZ planes, with one image being slice in the corresponding plane}.  
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The second input to the model is a vector of shape (3,). Single Plane architecture of 

this approach is given in Appendix A. 

 Approach 5: MVCNN Multi Plane 1 

The first approach that was studied from the multiplane variants is the ‘MVCNN Multi 

Plane 1’. In this approach only 5 images are captured per mesh in the orbiting plane 

of XY or XZ or YZ. The training and testing dataset along with the input to the classifier 

during training and testing is mathematically expressed as follows: 

 Training dataset ⊂ (𝐹1𝑥𝑦
 ∪ 𝐹1𝑥𝑧

 ∪ 𝐹1𝑦𝑧
) ( 6.53) 

 Testing dataset ⊂ (𝐹1𝑥𝑦
 ∪ 𝐹1𝑥𝑧

 ∪ 𝐹1𝑦𝑧
) ( 6.54) 

 Input to the classifier = (𝐼𝑥𝑦
𝑑  ∪ 𝐼𝑥𝑧

𝑑   ∪ 𝐼𝑦𝑧
𝑑 ) ( 6.55) 

This model has one input layer. Shape of the input given= (3×5) × 227 × 227× 3 

{i.e., 3 x 5 images per mesh and each 5-image set taken around the mesh in XY, XZ, 

or YZ planes}. Multi Plane architecture of this approach is given in Appendix A.                                                                                     

 Approach 6: MVCNN Multi Plane 2 

The second approach that was studied from the multiplane variants is the ‘MVCNN 

Multi Plane 2’. In this approach in addition to the 5 images that are captured per mesh 

in the orbiting plane of XY or XZ or YZ, it also has 3 slice sections of the corresponding 

planes. The training and testing dataset along with the input to the classifier during 

training and testing is mathematically expressed as follows: 

 Training dataset ⊂ (𝐹2𝑥𝑦
 ∪ 𝐹2𝑥𝑧

 ∪ 𝐹2𝑦𝑧
) ( 6.56) 

 Testing dataset ⊂ (𝐹2𝑥𝑦
 ∪ 𝐹2𝑥𝑧

 ∪ 𝐹2𝑦𝑧
) ( 6.57) 

 Input to the classifier = (𝐸𝑥𝑦
𝑑  ∪ 𝐸𝑥𝑧

𝑑   ∪ 𝐸𝑦𝑧
𝑑 ) ( 6.58) 

This model has one input layer. Shape of the input given= ((3×5) +3)× 227 × 227× 3 

{i.e., 3 x 5 images per mesh where each 5-image set taken around the mesh in XY, 

XZ, or YZ planes, and an extra 3 slice images taken in XY, XZ, or YZ planes}.  

Multi Plane architecture of this approach is given in Appendix A.                                                                                                                                                                          



 
Multi-View Convolutional Neural Network 66 

 

 

 Approach 7: MVCNN Multi Plane 3 

The third approach that was studied from the multiplane variants is the ‘MVCNN Multi 

Plane 3’. In this approach in addition to the 5 images that are captured per mesh in the 

orbiting plane of XY or XZ or YZ, it also has three slice images of the corresponding 

planes and a vector [𝑣𝑑 , 𝑒𝑑, 𝑓𝑑] with number of vertices, number of edges and number 

of faces of the mesh as described in equation 6.15. The training and testing dataset 

along with the input to the classifier during training and testing is mathematically ex-

pressed as follows: 

 Training dataset ⊂ (𝐹3𝑥𝑦
 ∪ 𝐹3𝑥𝑧

 ∪ 𝐹3𝑦𝑧
) ( 6.59) 

 Testing dataset ⊂ (𝐹3𝑥𝑦
 ∪ 𝐹3𝑥𝑧

 ∪ 𝐹3𝑦𝑧
) ( 6.60) 

 Input to the classifier = (𝐺𝑥𝑦
𝑑  ∪ 𝐺𝑥𝑧

𝑑   ∪ 𝐺𝑦𝑧
𝑑 ) ( 6.61) 

This model has two input layers. Shape of the first input given= ((3x5) +3)× 227 × 

227× 3) {i.e., 3 x 5 images per mesh and each 5-image set taken around the mesh in 

XY, XZ, or YZ planes along with three corresponding slice images from each plane} 

The second input to the model is a vector [𝑣𝑑 , 𝑒𝑑, 𝑓𝑑] of shape (3,). 

Multi Plane architecture of this approach is given in Appendix A.                                                                                                                                                               

 Approach 8: MVCNN Multi Plane 4                           

The final approach that was studied from the multiplane variants is the ‘MVCNN Multi 

Plane 4’. In this approach in addition to the 5 images that are captured per mesh in the 

orbiting plane of XY or XZ or YZ, it also has three slice images of the corresponding 

planes, and ratio of the number of vertices to the number of faces. The training and 

testing dataset along with the input to the classifier during training and testing is math-

ematically expressed as follows: 

 Training dataset ⊂ (𝐹4𝑥𝑦
 ∪ 𝐹4𝑥𝑧

 ∪ 𝐹4𝑦𝑧
) ( 6.62) 

 Testing dataset ⊂ (𝐹4𝑥𝑦
 ∪ 𝐹4𝑥𝑧

 ∪ 𝐹4𝑦𝑧
) ( 6.63) 

 Input to the classifier = (𝑅𝑥𝑦
𝑑  ∪ 𝑅𝑥𝑧

𝑑   ∪ 𝑅𝑦𝑧
𝑑 ) ( 6.64) 
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This model has two input layers. Shape of the first input is given= ((3x5) +3)× 227 × 

227× 3) {i.e., 3 x 5 images per mesh and each 5-image set taken around the mesh in 

XY, XZ, or YZ planes along with three corresponding slice images from each plane} 

The second input to the model is the ratio of number of vertices to number of faces 

(
𝑣𝑑

𝑓𝑑
) of shape (1,).  Multi Plane architecture of this approach is given in Appendix A.  

 

 The CNN1 functional model architecture is given in Appendix A. The class diagram of 

the study is given in Appendix B. The experimental results of the above eight ap-

proaches are given in Chapter 7.                                                                                                      
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 Result Comparison Metrics 

To evaluate the deep learning models, standard metrics are available. For classifica-

tion problems, the standard metrics used to evaluate the model include accuracy, loss, 

precision, recall and F1 score. They are represented with the help of a confusion matrix 

which is generated by the model. Confusion matrix help describe the performance of 

the classification model. 

Table 7.1: Confusion Matrix 

 Predicted 

Actual 
True Positive (TP) False Negative (FN) 

False Positive (FP) True Negative (TN) 

• TP: it shows that the True Positive examples that are predicted to be positive 

are actually positive. 

• TN: It shows that True Positive examples that are predicted to be negative are 

actually negative. 

• FP: It shows that False Positive examples are predicted to be positive but are 

actually negative. 

• FN: It shows that False Negatives examples are predicted to be negative but 

are actually positive. 

These four terms are used to describe accuracy, precision, recall and F1 score metrics 

to evaluate the performance of the model. (Maslej-Krešňáková et al. 2020)  

7.1.1 Precision 

Precision gives the measure of the correctly defined positive case from a pool of all the 

predicted positive cases. This gives an indication of the number of cases that were 

labelled is actually positive.  It is useful when False positives are high. It is represented 

as: 

7 Results and Discussion 
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 Precision =  
True positive

True positive + False Positive
   (7.1) 

7.1.2 Recall  

Recall is a measure of the correctly identified positive cases from the list of all the 

positive cases. It is critical when the number of False Negatives is high in some condi-

tions. It gives an indication of how many were labelled as positive were actually posi-

tive. It also represents the sensitivity of the results. It is represented by: 

 Recall =
True positive

True positive + False Negative
 

(7.2) 

 

7.1.3 Accuracy 

 It is generally expressed as a measure of all the correct cases. It is more commonly 

used when all the classes in a model are equal in importance. It is an intuitive perfor-

mance measure and is considered as a ratio of the correctly predicted observation with 

respect to the total observation. An accuracy that is high does not guarantee a high 

performance. It has to be evaluated with respect to other parameters to genuinely as-

sess it. Accuracy is used when the True Positive and the True Negatives are important 

in a classification task. It is represented as: 

 Accuracy =
True positive +  True Negative

True positive + False Negative + True Negative + False Positive
 (7.3) 

7.1.4 F1-Score 

F1-Score is considered as a harmonic mean or weighted average representation of 

the Precision and Recall metrics mentioned earlier. It considers false positives and 

false negatives into consideration. It provides an improved representation of the incor-

rectly classified cases compared to the Accuracy metric. It is given by: 

 F1 − Score = (
Recall−1 + Precision−1

2
)

−1

= 2 × (
Precision ×  Recall

Precision + Recall
) 

(7.4) 
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7.1.5 Categorical Cross entropy 

Categorical cross entropy is a loss function that is generally used for multi class clas-

sification task where an example can belong to any one of many probable categories 

and it is up to the model to decide which one the example should belong to. It calculates 

the loss function of an example by calculating the following: 

 𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒

𝑖=1

 . 𝑙𝑜𝑔 ŷ𝑖   (7.5) 

Where ŷ𝑖 is considered as the ith scalar value of the respective output model, 𝑦𝑖 is the 

target value and the number of scalar values in the model is given by 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒. The 

loss function provides an indication of how two discrete probability functions different 

from one another.  The activation function that uses categorical cross entropy is Soft-

Max layer. SoftMax activation rescales all the output of the model so that it gets the 

right properties for classification. 

The following section evaluate the eight approaches mentioned in Chapter 6 using the 

above mentioned metrices. 

 Approach 1:  MVCNN Single Plane 1 

The intention of the first approach ‘MVCNN Single plane 1’ is to analyse if 12 images 

in a single plane (XY Plane) adequate to classify LOG of the building elements based 

on the complexity. This can be achieved by running the model on the data categorised 

for approach 1 and checking the results to investigate if the required accuracy is 

achieved for the model or not. All the predefined eight approaches are executed to 

analyse the performance of each approach and evaluate them on the defined datasets. 

The first approach named ‘MVCNN Single plane 1’ was run on the MVCNN model for 

testing and training dataset along with the input to the classifier as mentioned in Sec-

tion 6.4 for Equation 6.40 to Equation 6.43. The model was run until the resulting ac-

curacy curve for the training and the validation dataset were overfitting. The accuracy 

curve is said to overfit if the training accuracy curve and the validation accuracy curve 

is diverging from one another. The same holds true for the curve of the loss function. 

One of the methods employed in this study to prevent overfitting is Early Stopping as 

mentioned earlier in Section 2.2.3.  
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 Figure 7.1 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

66% and after that the curves for training and validation was diverging. The loss for the 

validation dataset was observed to be the minimum at 2.62%. 

 

(a) 

 

(b) 

Figure 7.1:(a) The Accuracy curve and (b) the Loss curve of Single Plane 1 for training and validation 

dataset 

 Approach 2: MVCNN Single Plane 2 

The intention of the second approach ‘MVCNN Single plane 2’ is to analyse if 12 im-

ages from three planes (XY, YZ, XZ) is enough to classify LOG of the building elements 

based on their complexity. This was accomplished by running the model on the data 
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categorised for approach 2 and checking the results to investigate if the required ac-

curacy is achieved for the model or not.  In the second approach the input to the clas-

sifier is taken as mentioned in Section 6.5 for Equation 6.46. The model was run until 

the resulting accuracy curve for the training and the validation dataset were overfitting. 

Early stopping method was also employed here to stop the training of the model when 

the validation and training curve for accuracy started deviating from one another. 

 Figure 7.2 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

75% and after that the curves for training and validation was diverging. The loss for the 

validation dataset was observed to be the minimum at 1.46%. 

 

(a) 

 

(b) 

Figure 7.2: (a) The Accuracy curve and (b) the Loss curve of Single Plane 2 for training and validation 

dataset 
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 Approach 3: MVCNN Single Plane 3 

The intention of the third approach is to investigate how the slice section of the 3D 

model in a particular plane can contribute to the performance of the model together 

with the orbital images of the 3D object in the same plane. The slice section can provide 

more visibility to the interior complexity of the 3D object in comparison to external or-

bital views of the same 3D object. This analysis was further explored in this approach. 

The input data to this approach is the 12 images of the object in three planes along 

with their slice images in the corresponding plane as mentioned in Section 6.6 with 

Equation 6.49. The model is run until the results were showcasing overfitting. Early 

stopping was employed to stop the training when the resulting accuracy curves were 

deviating from one another.   

Figure 7.3 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

76% and after that the curves for training and validation was diverging. The loss for the 

validation dataset was observed to be the minimum at 1.259%. 

 

 

 

(a) 
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(b) 

Figure 7.3: (a) The Accuracy curve and (b) the Loss curve of Single Plane 3 for training and validation 

dataset 

  Approach 4: MVCNN Single Plane 4 

The objective of the fourth approach is to assess whether the geometric details of a 

3D element along with images of its overall shape and slice section can contribute to 

better judgement about the complexity of element for different LOG levels. The geo-

metric details of the 3D element in the form of number of vertices, number of edges 

and number of faces cannot alone predict the LOG levels of an element because ele-

ments at a particular LOG have varied number of vertices, edges and faces. But when 

they are added together with the other geometrical features like the overall shape im-

ages and slice sections, they can immensely contribute to better assessment of the 

LOG level of a building element. 

The input data to this approach is the 12 images of the object in three planes (one 

plane at a time) along with their slice images in the corresponding plane and geomet-

rical details in the form of a vector as mentioned in Section 6.7 with Equation 6.52. The 

model is run until the results were showcasing overfitting. Early stopping was employed 

to stop the training when the resulting accuracy curves were deviating from one an-

other.  

Figure 7.4 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 
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77% and after that the curves for training and validation was diverging out. The loss 

for the validation dataset was observed to be the minimum at 1.402%. 

 

(a) 

 

(b) 

Figure 7.4: (a) The Accuracy curve and (b) the Loss curve of Single Plane 4 for training and validation 

dataset 

 Approach 5: MVCNN Multi Plane 1 

The purpose of the fifth approach is to examine if 5 images of the 3D element form XY 

plane, YZ plane and XZ plane can effectively figure out the LOG level of the element   

based on its complexity.  This is a further extension of the approach in ‘Single Plane 2’ 

but here the images from three planes are given together as input to the model. The 
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input data to this approach is explained in Section 6.8 with Equation 6.55. The model 

is run until the results were showcasing overfitting. Early stopping was employed to 

stop the training when the resulting accuracy curves were deviating from one another.  

Figure 7.5 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

78% and after that the curves for training and validation was diverging out. The loss 

for the validation dataset was observed to be the minimum at 1.98%. 

 

(a) 

 

(b) 

Figure 7.5: (a) The Accuracy curve and (b) the Loss curve of Multi Plane 1 for training and validation 

dataset 
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 Approach 6: MVCNN Multiplane 2 

The intention of the sixth approach was to investigate how the slice section of the 3D 

model in three planes can contribute to the performance of the model together with the 

orbital images of the 3D object in the same plane. This is a further extension of ‘Single 

Plane 3’, but in the current approach the images and slice sections from three planes 

are given together as input. The input data to this approach is explained in Section 6.9 

with Equation 6.58. The model is run until the results were showcasing overfitting. Early 

stopping was employed to stop the training when the resulting accuracy curves were 

deviating from one another.  

Figure 7.6 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

80% and after that the curves for training and validation was diverging out. The loss 

for the validation dataset was observed to be the minimum at 1.97%. 

 

(a) 
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(b) 

Figure 7.6: (a) The Accuracy curve and (b) the Loss curve of Multi Plane 2 for training and validation 

dataset 

 Approach 7: MVCNN Multiplane 3 

The objective of the seventh approach is to assess whether the geometric details of a 

3D element orbital images and slice images in multiplanes can contribute to better 

judgement about the complexity of element for different LOG levels. This approach is 

an extension of the study done by ‘Single Plane 4’ but here the data from all three 

planes are together provided as input. 

The input data to this approach is the 5 images of the object in three planes (one plane 

at a time) along with their slice images in the corresponding plane and geometrical 

details in the form of a vector as mentioned in Section 6.10 with Equation 6.61. The 

model is run until the results were showcasing overfitting. Early stopping was employed 

to stop the training when the resulting accuracy curves were deviating from one an-

other.  

Figure 7.7 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

83% and after that the curves for training and validation was diverging out. The loss 

for the validation dataset was observed to be the minimum at 1.73%. 
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(a) 

 

(b) 

Figure 7.7: (a) The Accuracy curve and (b) the Loss curve of Multi Plane 3 for training and validation 

dataset 

  Approach 8: MVCNN Multiplane 4 

In this approach the addition of basic geometric features to describe the complexity 

level of a building element is explored. This geometric feature does not include the 

vector containing the number of vertices, edges and faces. But instead of them, the 

ratio of the number of vertices to number of faces of a 3D mesh are added together 

with the orbital and slice images in three corresponding planes to the MVCNN model.  
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The ratio of the number of vertices to number of faces in an indicator of the shape 

complexity of a 3D model. The presence of complex parts in the 3D object in the form 

of reinforcement and screws substantially reduces the ratio of vertices to faces.  

The input data to this approach is the 5 images of the object in three along with their 

slice images in the corresponding plane and geometrical details in the form a ratio of 

number of vertices to number of faces as mentioned in Section 6.11 with Equation 

6.64. The model is run until the results were showcasing overfitting. Early stopping was 

employed to stop the training when the resulting accuracy curves were deviating from 

one another.  

Figure 7.8 provides the accuracy curve and loss curve for the testing and validation 

output of the MVCNN model.  The validation dataset gained a maximum accuracy of 

78% and after that the curves for training and validation was diverging out. The loss 

for the validation dataset was observed to be the minimum at 2.11%. 

 

 

(a) 
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(b) 

Figure 7.8: (a) The Accuracy curve and (b) the Loss curve of Multi Plane 4 for training and validation 

dataset 

 Comparison of different Approaches 

The comparison of all the approaches discussed in the previous sections is summed 

up in Table 7.2. It showcases the results of the validation dataset for all the eight ap-

proaches. It includes the value of the performance metrices like precision, recall, F1-

score, accuracy and the loss for all the LOG levels for the various approaches studied. 

Figure 7.9 illustrated the comparison study of the different approaches using the per-

formance matrices precision, recall and F1- score. From the figure it is evident that in 

all the eight approaches, LOG 300 dataset showed the lowest performance. With re-

spect to the precision value, LOG 300 showcased the best performance for Multi plane 

3 and the most unfavourable performance for Single plane 2. Low value of precision 

indicates an increase in the rate of the false positives (FP) which in turn reduces the 

accuracy of the model. The recall score for LOG 300 was lowest for Single plane 4 and 

Multi plane 4.  Low value for precision and recall is reflected in the F1-score as it is a 

function of the both of them. This evaluation of LOG 300 concludes that there is a need 

for more generalized dataset of LOG 300 elements so that the MVCNN model can 

better assess the complexity of their building elements.  
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Table 7.2: Performance metrics precision, recall, F1-score, accuracy and loss for each LOG level for 

the different approaches 

Approach LOG Level Precision Recall F1-Score Accuracy Loss 

Single Plane 1 

LOG 200 0.92 0.56 0.69 

0.66 2.62 
LOG 300 0.52 0.6 0.56 

LOG 350 0.69 0.65 0.67 

LOG 400 0.6 0.92 0.73 

Single Plane 2 

LOG 200 0.88 0.79 0,83 

0.75 1.46 
LOG 300 0.64 0.67 0.65 

LOG 350 0.74 0.71 0.72 

LOG 400 0.73 0.85 0.79 

Single Plane 3 

LOG 200 0.87 0.84 0.85 

0.76 1.259 
LOG 300 0.61 0.69 0.65 

LOG 350 0.77 0.69 0.73 

LOG 400 0.8 0.82 0.81 

Single Plane 4 

LOG 200 0.85 0.84 0.85 

0.77 1.402 
LOG 300 0.66 0.6 0.63 

LOG 350 0.79 0.77 0.78 

LOG 400 0.76 0.87 0.81 

Multi Plane 1 

LOG 200 0.9 0.86 0.88 

0.78 1.98 
LOG 300 0.71 0.67 0.69 

LOG 350 0.68 0.81 0.74 

LOG 400 0.83 0.77 0.8 

Multi Plane 2 

LOG 200 0.86 0.86 0.86 

0.8 1.97 
LOG 300 0.59 0.67 0.62 

LOG 350 1 0.75 0.86 

LOG 400 0.8 0.92 0.86 

Multi Plane 3 

LOG 200 0.9 0.9 0.9 

0.83 1.73 
LOG 300 0.77 0.67 0.71 

LOG 350 0.87 0.81 0.84 

LOG 400 0.75 0.92 0.83 

Multi Plane 4 

LOG 200 0.86 0.9 0.88 

0.78 2.11 
LOG 300 0.69 0.6 0.64 

LOG 350 0.92 0.69 0.79 

LOG 400 0.67 0.92 0.77 

 

LOG 200 exhibited better performance for all the approaches with respect to precision, 

recall and F1-score. This showcase that all the models were able to predict the com-

plexity level of the 3D object from the current dataset. LOG 350 showed higher value 

for precision than LOG 400 whereas LOG 400 presented higher values for recall in 

comparison with LOG 350. This shows that the dataset for LOG 350 and LOG 400 are 

visually similar to each other to a small extent. With respect to accuracy, Multiplanes 

models showcased better performance than single plane models. Multi plane 2 and 

Multi plane 3 exhibited better performance with respect to precision, recall and F1-
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score. Multi plane 3 displayed the highest accuracy with 83%. The loss of Multi plane 

3 was also comparatively low at 1.73%.  

 

Figure 7.9: Comparison of different approaches using the performance metrics precision, recall and 

F1-score 

 Limitations 

In this study the building elements were classified visually using a 2D CNN. The ex-

pectation of this approach is to recognise a common feature pattern across all building 

elements with respect to an LOG class from the training dataset. From the dataset 

used in the study, the MVCNN model was able to recognise common feature patterns 

corresponding to each LOG level from the training dataset and achieve an accuracy of 

83% for test dataset. Since the total size of dataset used in the study was limited, there 

was an apprehension about the performance of the model with all commercially avail-

able building elements. This uncertainty led to the procurement of a new mesh 3D 

dataset.  

This new dataset was run on the pretrained model of the MVCNN. Some elements 

from the new dataset failed to predict correctly after running them on the pretrained 

MVCNN model. The same elements were added to the training dataset and later 

trained from scratch. This approach results also showed failure and it degraded the 

overall performance of the model with respect to the pertained model (i.e., it failed to 
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correctly classify the elements which were correctly classified on the previously per-

tained model). An example for the failed mesh elements is depicted in Figure 7.10. It 

shows a Column at LOG 400 and Cable at LOG 200. Visually they look the same even 

though they are from different LOG levels. The MVCNN from the current study classify 

meshes based on their visual representation. But these images cannot efficiently pro-

vide a visual feature pattern that can differentiate one from the other. This can lead to 

wrong classification of such meshes. 

From these two experiments it was inferred that the current training and test dataset 

that was used in the study follows a different feature pattern comparted to the failed 

elements from the new dataset. This brought to the conclusion that there is a need for 

multiple classifiers trained on different training datasets corresponding to the distinct 

feature patterns for each LOG. This statement is further explored in the next chapter 

under future proposals.  

 

Figure 7.10: Building element Cable at LOG 200 and Column at LOG 400 given as wireframe 

representations. Visually they look similar even though they are from different LOG levels. 
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 Future Proposal 

The limitations of the study discussed in Section 7.11 pointed out that there is a need 

for multiple classifiers that can recognise multiple feature patterns for a particular LOG. 

The current study recognised a particular feature pattern which is different from the 

feature pattern present in the newly procured dataset. But identifying the groups of 

meshes which follow the same feature pattern is a tedious process. The easy method 

to identify 3D meshes which follow the same feature pattern is to assume the same 

building element type (window, door, column etc.) has a comparable feature pattern 

with respect to LOG. For example, if we take only windows elements in the training 

dataset, we can create a window LOG classifier which performs better for all commer-

cially available window 3D elements.  

One constraint for the above-mentioned approach (i.e., LOG classifier specific for a 

building element type) is that corresponding to each element type there is a need to 

have a large number of meshes following different LOG classes. Manually creating 

such a dataset for each building element type is a time-consuming process. So, this 

thesis study proposes the need for 3D mesh generator which can automatically gen-

erate 3D meshes corresponding to different building element types and following dif-

ferent LOG classes. Since for each element type there is a separate LOG classifier 

proposed, it is also necessary to have a building element type classifier using which 

the correct LOG classifier for the 3D model can be selected. In summary there is a 

need for three conditions:  

1. More 3D Models corresponding to different building element types and having 

different LOG classes. 

2. A building element type classifier that classifies a mesh (for example, as win-

dow, door, column etc.)  

3. A building element type specific LOG classifier. 

For automatic generation of datasets, networks like 3D GAN by Wu et al. (2016)  is 

highly efficient as it can create 3D meshes when given a  latent vector as input. Figure 

8 Future Proposal and Conclusion 
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8.1 illustrates the generator employed in 3D GAN which creates a 3D image inside a 

3D voxel space taking a latent vector Z. 

Figure 8.1: The generator employed in 3D GAN Wu et al. (2016) 

Figure 8.2 illustrates the training process proposed by this thesis for a commercially 

usable LOG classifier. The first step is to generate a dataset A using a 3D model gen-

erator such as 3D GAN. This generated meshes need to be labelled for the corre-

sponding building element type and the LOG class. With this dataset A the building 

element type classifier can be trained. Parallelly, different LOG classifiers correspond-

ing to each building element type can be trained using the training dataset B (B ⊂ A) 

containing solely that building element type. 

 

Figure 8.2:  Proposed Training process  
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During the inference phase the building element type classifier is employed to identify 

the building element type and the corresponding LOG classifier that needs to be 

used for LOG classification.  

 

Figure 8.3:  Proposed Inference Process 

 Conclusion 

In the thesis study the classification of the LOG of building elements based on their 

complexity was successfully performed using MVCNN. The feasibility of some other 

approaches was investigated during the study like Mesh CNN, Graph CNN and Three 

input CNN. MVCNN showcased better efficiency in recognising the complexity levels 

of each LOG in building elements and they were less computationally intensive com-

pared to 3D model-based classification methods. MVCNN directly employed the raw 

data of the 3D mesh without decimation. Even with in MVCNN, eight different ap-

proaches were studied with variations like single planes, multi planes, with slice sec-

tions and geometric information. Multi Plane MVCNN with slice sections and geometric 

information produces an accuracy of 83%. These results were achieved without any 

manual intervention for the process of feature extraction from the 3D meshes. The 

MVCNN models were able to extract features efficiently from the 3D meshes. Since 

there was no available training dataset that can generalize all the feature patterns of 

commercially available building elements, a new architecture is proposed for the future 

works.
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Three Input CNN Model architecture 
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MVCNN Single input Model Architecture 
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MVCNN Multi input Model Architecture 
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CNN1 Functional Model Architecture 
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MVCNN Class Diagram 
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