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Abstract

Many important problems in machine learning, signal processing and beyond can be cast
as the minimization of an additive composite objective. However, due to their coupled
structure, composite problems are notoriously difficult to optimize. As a remedy, this
thesis considers two complementary approaches for decoupling in composite problems by
lower relaxations, which allows one to solve the problem in a distributed fashion:

The first approach is based on component-wise infimal convolution or inf-projection wrt
a suitable proximity measure. This yields a generally nonconvex but often smooth lower
envelope to the original objective. For a squared distance, this yields the well-known
Moreau envelope with its associated proximal mapping. A desirable property in this
context is the single-valuedness and continuity of the proximal mapping, which is crucial
to guarantee the smoothness of the Moreau envelope. A sufficient condition for this
to hold locally is prox-regularity of functions due to Poliquin and Rockafellar, which is
closely related to Federers concept of a set of positive reach. However, there exist simple
even smooth functions which are not prox-regular. As a remedy, we propose to alter the
Euclidean geometry in the proximal mapping and the definition of prox-regularity in a
nonlinear way: More precisely we consider two different “nonlinear geometries” based
on Legendre functions: The first one is based on an anisotropic generalization of the
proximal mapping where the quadratic penalty is replaced by a Legendre function. The
second geometry is obtained by replacing the squared distance with a Bregman distance.
Both extensions are strict generalizations of the Euclidean case, while the gradient of
the involved Legendre function can be seen as a certain nonlinear preconditioner. A
major goal of this thesis is to study the single-valuedness and continuity of the non-
Euclidean proximal mapping and the smoothness of the associated envelope function
under non-Euclidean extensions of prox-regularity. The continuity and single-valuedness
of the proximal mapping is leveraged in the analysis of inexact and stochastic alternating
proximal point methods. In particular, a stochastic averaged proximal point method is
derived and numerically applied to the problem of federated learning. We also discuss the
application of alternating Bregman Proximal Point in semisupervised and transductive
learning where the Euclidean geometry is altered by an entropic geometry which leads to
the KL-divergence.

The second approach for decoupling is based on Lagrangian relaxations which is a
convex relaxation method. Here, the focus is on MAP-inference in a continuous Markov
Random Field (MRF) and spatially continuous, total variation regularized variational
problems. Since direct Lagrangian relaxations of a nonconvex problem in general suffer
from potentially large duality gaps, infinite-dimensional reformulations over the space
of probability measures are considered. This can be seen as a certain lifting of the
optimization variable to the space of Radon measures. As these programs are intractable,
a family of semi-infinite dual programs is considered which is obtained by piecewise
polynomial subspace approximations. In the primal this corresponds to a discretization of
the optimization variable with moments. A geometric intuition of this lifting in the primal
is provided and connections to relaxations by inf-projection are identified under the light
of generalized conjugate functions. A special case is the component-wise convex envelope,
which corresponds to the classical Lagrangian relaxation. A tractable cone programming
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formulation is derived using tools from convex algebraic geometry which is solved on
a GPU using a concretization of a first-order primal-dual algorithm. Experimentally,
the approach is applied to stereo matching, optical flow estimation and robust image
denoising showing merits over standard discretizations which suffer from a sampling bias.
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Zusammenfassung

Viele wichtige Probleme im maschinellen Lernen, in der Signalverarbeitung und darüber
hinaus lassen sich als Minimierung einer additiv zusammengesetzten Kostenfunktion be-
schreiben. Aufgrund ihrer gekoppelten Struktur sind additiv zusammengesetzte Probleme
jedoch bekanntermaßen schwer zu optimieren. Als Lösungsansatz werden in dieser Arbeit
zwei komplementäre Ansätze zur Entkopplung in zusammengesetzten Problemen mittels
unterer Relaxationen betrachtet, die es ermöglichen das Problem auf verteilte Weise zu
lösen:

Der erste Ansatz basiert auf einer komponentenweisen Infimalfaltung oder Inf-Projektion
mit einem geeigneten Abstandsmaß. Dies führt zu einer einer, im Allgemeinen, nicht-
konvexen aber häufig glatten unteren Hüllkurve der ursprünglichen Kostenfunktion. Für
ein quadratisches Abstandsmaß ergibt dies die bekannte Moreausche Hüllkurve mit dem
dazugehörigen proximalen Operator oder kurz Prox-Operator. Eine wünschenswerte
Eigenschaft in diesem Zusammenhang ist die Einelementigkeit und Stetigkeit des Prox-
Operators, welche entscheidend ist, um die Glattheit der Moreauschen Hüllkurve zu
gewährleisten. Eine hinreichende Bedingung, um dies lokal sicherzustellen, ist Prox-
Regularität von Funktionen durch Poliquin und Rockafellar, die eng zu Federers Konzept
einer Menge mit positivem Reach verwandt ist. Es gibt jedoch einfache sogar glatte
Funktionen, die nicht prox-regulär sind. Als Lösungsansatz schlagen wir daher vor, die
Euklidische Geometrie des Prox-Operators und der Definition von Prox-Regularität
nichtlinear abzuändern: Genauer gesagt betrachten wir zwei verschiedene “nichtlineare
Geometrien”, die auf Legendre-Funktionen basieren: Die erste basiert auf einer ani-
sotropen Verallgemeinerung des Prox-Operators, bei der der Quadratabstand durch
eine Legendre-Funktion ersetzt wird. Die zweite Geometrie erhalten wir, indem wir
den Quadratabstand durch einen Bregman-Abstand ersetzen. Beide Erweiterungen sind
strikte Verallgemeinerungen des Euklidischen Falls, wobei der Gradient der beteiligten
Legendre-Funktion als ein nichtlinearer Vorkonditionierer verstanden werden kann. Ein
Hauptziel dieser Arbeit ist es, die Einelementigkeit und Stetigkeit des nicht-Euklidischen
Prox-Operators und die Glattheit der zugehörigen Moreauschen Hüllkurvenfunktion
unter nicht-Euklidischen Erweiterungen von Prox-Regularität zu untersuchen. Die Ste-
tigkeit und Einelementigkeit des Prox-Operators wird in der Analyse von inexakten
und stochastischen alternierenden Proximal Point Methoden ausgenutzt. Insbesondere
wird eine stochastische alternierende Proximal Point Methode entwickelt und numerisch
auf das Problem des federated learning angewendet. Ferner diskutieren wir auch die
Anwendung des alternierenden Bregman Proximal Point Verfahrens im halbüberwachten
und transduktiven Lernen, bei der die Euklidische Geometrie durch eine entropische
Geometrie abgeändert wird, was zur KL-Divergenz führt.

Der zweite Ansatz zur Entkopplung basiert auf Lagrange-Relaxationen, einer konvexen
Relaxationsmethode. Hier liegt der Fokus auf der MAP-Inferenz in einem kontinu-
ierlichen Markov Random Field (MRF) und räumlich kontinuierlichen Variationspro-
blemen mit totaler Variationsregularisierung. Da direkte Lagrange-Relaxationen eines
nicht-konvexen Problems im Allgemeinen zu großen Dualitätslücken führen, werden
unendlich-dimensionale Umformulierungen über dem Raum der Wahrscheinlichkeitsma-
ßen betrachtet. Dies kann als ein Lifting der Optimierungsvariablen in den Raum der
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Radonmaße angesehen werden. Da diese Programme nicht handhabbar sind, wird eine
Familie von semi-infiniten dualen Programmen betrachtet, die sich durch stückweise
polynomielle Dualraumapproximationen herleiten lassen. Im Primalen entspricht dies
der Diskretisierung der Optimierungsvariablen mit Momenten. Dieses Lifting besitzt eine
interessante geometrische Intuition im Primalen. Verbindungen zu Relaxationen durch
Inf-Projektion werden im Lichte verallgemeinerter Konjugierter identifiziert. Ein Sonder-
fall ist die komponentenweise konvexe Hüllkurve, die der klassischen Lagrange-Relaxation
entspricht. Mittels Werkzeugen aus der konvexen algebraischen Geometrie wird ein Cone
Programm hergeleitet, welches wir auf einer GPU mittels einer Konkretisierung eines
primal-dualen first-order Algorithmus lösen. Experimentell wird der Ansatz auf Stereo-
matching, optische Flussschätzung und robustes Bildentrauschen angewendet, wobei
Vorteile gegenüber Standarddiskretisierungen gezeigt werden, die einen Sampling-Bias
aufweisen.
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I also would like to thank Thomas Möllenhoff for the uncountable, insightful and
long discussions which have informed some directions in this thesis. Also thank you
Thomas for the journey through the deep waters of functional lifting which started off
during my master’s thesis. Recently this journey was continued with a new crew member
on board: Hartmut Bauermeister. I thank Hartmut, who was an indispensable part
of the polynomial episode of the lifting journey, for the great collaboration. During
this collaboration, which took place during the pandemic, Thomas, Hartmut and I had
numerous scientifically insightful but also funny and sometimes philosophically deep
zoom sessions, which I really enjoyed. Thank you guys. Very special thanks also goes to
Jan Lellmann for his indispensable input in the collaboration on sublabel accurate lifting.
Without Jan, who is a true lifting expert this project wouldn’t have been possible. Also
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Chapter 1.
Introduction

1.1. Lower envelopes and lifting in optimization

1.1.1. Composite optimization problems

Continuous optimization lies at the heart of machine learning and signal processing and
many other fields. In fact, many important problems in these areas and beyond can be
cast as the minimization of a cost function:

min
x∈X

f(x). (1.1)

The idea is to set up a cost function f : X → R∪{∞} that assigns high values (including
infinity “∞”) to points x that are undesirable solutions and low cost to points that
correspond to preferable solutions. Via the choice f(x) = ∞ one can exclude points
from the feasible set, i.e., the set of solution candidates, which is called a constraint in
optimization.

For example, in image processing one may ask for a denoised version of a noisy input
image, which is not too far from the input image but contains less noise. This can be
cast as an optimization problem where the optimization variable x corresponds to the
unknown output image and the cost function assigns small values to images x which are
close to the input image and are less noisy. In many applications these cost functions do
not come out of nowhere but can often be derived through a Bayesian or physics based
approach, which, however, is not the focus of this thesis.

In logistics, given a list of cities and the pairwise distances between them, one may ask
for the shortest possible route that visits all cities exactly once and returns to the origin.
This is called the travelling salesman problem (TSP). There, the variable x encodes a
possible route. The cost function returns the length of a feasible route x while it returns
the cost ∞ if x is not a roundtrip or if x is not a trip that visits each city exactly once.

In aircraft design one seeks to find an airfoil x that minimizes drag under a minimal
lift constraint.

These, at first sight, very different optimization problems shall illustrate what many
optimization problems have in common and what makes them difficult: The challenge is
to balance competing goals which are often easy to achieve when considered separately.
In image denoising the goal to find an image which is close to the input image is trivial:
It is the input image. The image which among all possible images contains least noise is
the constant image. Both results represent the extreme cases in a coupled problem which
is to find a tradeoff between the two. In the travelling salesman problem the situation is
considerably easier if one drops the “visit exactly once”-constraint in the formulation.
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Chapter 1. Introduction

Therefore, the true challenge in many optimization problems is to find a consensus or
tradeoff between these competing goals.

This is also reflected in the structure of the cost functions which in many cases amounts
to an additive composition of two or more simple terms fi, which represent the individual
goals, and positive weights πi:

min
x∈X

N∑
i=1

πifi(x). (1.2)

Such an additive composite objective can therefore also be regarded as a linearly scalarized
multiobjective program, whose minima are Pareto optimal in the sense that one objective
fi cannot be improved without degrading at least one of the other objectives fj , i 6= j.
While in true multiobjective optimization one often seeks to characterize the set of Pareto
optimal solutions the focus in this thesis is purely on strategies for minimizing a single
composite objective with known weights πi.

1.1.2. Relaxation by inf-projection

The coupled structure in composite optimization problems introduces a major challenge
for efficient optimization. In some situations, however, the coupling can be relaxed: This
is very common in so-called feasibility problems: In a feasibility problem one seeks to
find a point x in the intersection A ∩ B of two sets A ⊂ X and B ⊂ X, which can be
thought of as competing constraints. Feasibility problems and optimization problems
are actually closely related to each other: The travelling salesman problem, for instance,
is routinely formulated in terms of a decision problem in theoretical computer science:
There, in addition to the list of cities and the list of pairwise distances, one is given a cost
parameter C, and one asks whether there exists a roundtrip that visits all cities exactly
once with length at most C. Once we can solve the decision variant the corresponding
optimization problem is solved too, e.g., via a binary search over the cost parameter
C. To formulate TSP in terms of a feasibility problem one can define A as the set of
all roundtrips with cost at most C and the set B is the set of paths (not necessarily
round trips) that visit each city exactly once. To formulate an optimization problem in
the form of Problem (1.2) one introduces corresponding indicator functions f1 = ιA and
f2 = ιB. The indicator function ιA attains the value ∞ at points x which lie outside the
set and 0 whenever x ∈ A. A common strategy to untangle the coupling in feasibility
problems is to relax one of the indicator functions by means of a (squared) distance
function dist2(x,A) = infx′∈A ‖x′−x‖2 = infx′∈X ‖x′−x‖2 + ιA(x′). A distance function
to a set A ⊂ X can actually be regarded as a certain lower envelope of the indicator
function of the set: In contrast to the indicator function, which is ∞ outside the set, the
distance function attains finite values everywhere while it coincides with the indicator
function inside the set. The relaxed optimization problem reads

min
x∈X

dist2(x,A) + ιB(x).

It is easy to see, that whenever there exists a point in the intersection x ∈ A ∩ B the
set of global solutions to the relaxation equals the set of global solutions to the original
problem (1.2). Substituting the definition of the distance function one obtains

min
x∈X

min
x′∈X

ιA(x′) + ‖x′ − x‖2 + ιB(x),

2



1.1. Lower envelopes and lifting in optimization

where x′, x are copies associated to the individual constraints ιA and ιB and ‖x′ − x‖2
is a relaxation of the equality constraint x′ = x. This problem is certainly less coupled
and therefore a viable approach to find a solution is to minimize the cost function
in an alternating fashion wrt x and x′ while one or the other variable is fixed. The
minimizations wrt x and x′ are the projections onto the sets A and B which are typically
simple problems. Indeed, this is the alternating projections algorithm which dates back
to John von Neumann [VN50].

Relaxations of constraints by means of the squared distances of the feasible set is
actually based upon a more general approach to obtain (lower) envelopes in optimization,
called infimal convolution:

By definition, the infimal convolution f ⊕ g of a function f with a kernel function g at
a point y is the infimum over all additive decompositions of the input y = x+ z:

(f ⊕ g)(y) = inf
z,x∈X,
y=x+z

f(x) + g(z) = inf
x∈X

f(x) + g(y − x). (1.3)

This translates to the following intuitive geometric interpretation of the epigraph of f ⊕ g
in terms of the Minkowski sum of the individual epigraphs: epi(f ⊕ g) = epi f + epi g,
where epi f = {(x, α) ∈ X × R : f(x) ≤ α}. Therefore, in an epigraphical sense, the
infimal convolution of f with g is the “dilation” of the epigraph of f with the epigraph of
g. One recovers the squared distance function dist2(·, A) = f ⊕ g for the choice f = δA
and g = ‖ · ‖2.

The infimal convolution can be further generalized under the concept of inf-projection,

(f 4 g)(y) = inf
x∈X

f(x) + g(x, y), (1.4)

where g is a coupling function. The epigraph of the inf-projection enjoys a rich geometric
intuition too: If the infimum above is attained when finite, then epi(f 4 g) is the image
of the epigraph of (x, y) 7→ f(x) + g(x, y) under the projection (x, y, α) 7→ (y, α), see
[RW98, Proposition 1.18].

To obtain a meaningful relaxation and in particular a lower approximation to the
original function, the coupling term g must be a proximity measure or discrepancy
measure: This means we request that g(x, y) ≥ 0 and g(x, y) = 0 if and only if x = y.
Then it is easy to see that inf f = inf f 4 g while f 4 g is a lower approximation to f ,
i.e., f 4 g ≤ f . An obvious choice for g(x, y) in that regards is

g(x, y) =
1

2λ
‖x− y‖2,

for some λ > 0, which gives rise to the well known Moreau envelope eλf = f 4 g.

Among other things, this thesis is about decoupling additive composite problems by
inf-projection, where fi are not necessarily indicator functions but more general extended
real-valued functions, i.e., functions that attain values in the extended real line R ∪ {∞}.
In this thesis we will consider the problem of federated learning [McM+17], for which this
approach is particularly well-suited: In federated learning the goal is to train a machine
learning model in a collaborative fashion by a set of clients to which a private set of
training data is associated. The problem can be cast as the minimization of a weighted
finite sum

∑N
i=1 πifi of private empirical risks fi, which are associated to the clients. The

weights πi are positive and sum to 1. To solve the problem in a distributed fashion with
low communication between the clients one needs to decouple the problem. To this end
copies xi of the parameters of the model are introduced for each client and the discrepancy
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Chapter 1. Introduction

between them is penalized with a quadratic distance. Then, the clients attempt to solve the
associated proximal mappings, i.e., the minimization of the sum of the associated partial
empirical risk and a quadratic damping term which softly enforces consensus between
the clients. Due to separability this can be carried out in parallel. Similar algorithms
have been considered before in the context of federated and distributed learning [ZCL15;
Li+20; Bor+21], however, without exploring relations to Moreau envelopes and feasibility
problems, which opens up new perspectives and techniques for their analysis: Indeed,
these algorithms attempt to solve a lower relaxation which is equivalent to replacing
the individual risks with the corresponding Moreau envelopes and corresponds to the
lower relaxation

∑N
i=1 πieλfi ≤

∑N
i=1 πifi. Since modern deep learning models are often

over-parameterized, the intersection
⋂N
i=1 arg min fi 6= ∅ is nonempty. This resembles the

situation of a nonempty intersection of sets in the feasibility problem. Indeed, if this
condition holds, it is easy to see that the relaxation is exact in the sense that the sets of
global minimizers of

∑N
i=1 πieλfi and

∑N
i=1 πifi both coincide with

⋂N
i=1 arg min fi. In

this context the study of the associated parametric minimization problem or solution
mapping

y 7→ arg min
x∈Rm

f(x) + g(x, y),

is particularly useful, which, for the quadratic choice of g, specializes to the well-known
proximal mapping. If g is a proximity measure, global minima of f are fixed points of
the solution mapping. However, in general the converse is false: Not every fixed point of
the solution mapping is a minimizer to f . The single-valuedness of this mapping, i.e.,
the existence and uniqueness of the minimizer of the parametric minimization problem
is crucial to achieve another important goal in infimal convolutions: In relaxations by
inf-projection a desirable property is the smoothness of the resulting function even if the
original function is nonsmooth: This can be achieved if, among other properties such as
single-valuedness of the associated solution mapping, the coupling functional g is smooth
itself. Then the envelope function f 4 g eventually inherits the smoothness from g. In
the context of optimization this allows one to apply fast algorithms for smooth problems
such as Newton’s method or inertial type first-order algorithms. Indeed, smoothing
approaches for nonsmooth problems are classical in optimization: Typically, there is an
additional parameter λ to control the degree of smoothing, which is decreased within an
outer loop. Therefore, a desirable property in this context is that the lower envelope, in
an appropriate topology, converges to the original cost function. Then, the ultimate goal
is to ensure that any limit point of the sequence of iterates produced by such a nested
loop smoothing method is a stationary point of the original function. However, in this
thesis the focus rather is on the relaxation aspects induced by a fixed smoothing. Beyond
optimization this is related to a more fundamental question: Given a very irregular
original function one seeks to find a surrogate which enjoys favorable regularity properties,
while preserving certain important characteristics of the original function. In the example
from above one can formulate the goal as follows: We seek to find a surrogate to some
original function which is smooth but whose global minima are near the minima of the
original function. This leads us to draw a connection to integral convolution which is
perhaps more familiar to many readers than infimal convolution and sometimes used to
achieve similar goals: The integral convolution f ∗ g of some input function f : Rm → R
with a convolution kernel g : Rm → R is defined by

(f ∗ g)(y) =

∫
Rm

f(x)g(x− y) dx. (1.5)
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While integral and infimal convolution are different, there still exist a couple of remarkable
algebraic similarities between both: Aside from associativity or commutativity, the integral
convolution (extended to measures) of f with a Dirac measure δ0 centered at 0 yields
the original function, while the indicator function g := ι{0} of the singleton {0} can be
regarded as the neutral element in the inf-convolution operation. In the same way the
Fourier transform of the integral convolution f ∗ g is identical to the product of the
Fourier transforms of the individual functions, the Legendre–Fenchel transform (f ⊕ g)∗

of the inf-convolution f ⊕ g of the convex proper lower semicontinuous functions f and
g is the sum f∗ + g∗ of the Legendre–Fenchel transforms f∗ and g∗ of the individual
functions f and g.

1.1.3. Convex relaxation by lifting and dual discretization

As we have seen, a possible strategy to relax the coupling in additive composite problems is
to introduce auxiliary variables associated to the individual functions and to penalize the
discrepancy between them with a squared distance. This corresponds to a component-wise
Moreau envelope.

An alternative strategy for decoupling is to derive a Lagrangian relaxation to the
problem which results in a convex lower relaxation. Lagrangian relaxations can be applied
to the partially separable problem

min
x∈XV

f(x) + g(Ax), f(x) =
∑
u∈V

fu(xu), (1.6)

which is an additive composition of a separable part f(x) and a coupling part g(Ax) for
a linear mapping A : XV → Y and an extended real-valued function g : X → R ∪ {∞}
and X, Y are Euclidean spaces and V is a finite index set.

It is instructive to discuss important specializations of g(Ax) for different applications:

• For the choice

g(x) = ι{x:xu=xv=··· }(x), (1.7)

being the indicator function of a subspace of XV that enforces the individual
components of x to be identical and A = I the identity mapping one recovers the
finite sum problem.

• For Ax =
∑

u∈V Auxu and linear mappings Au : X → Y one recovers the sharing
problem, see, e.g., [Boy+11, Section 7.3].

• Another important specialization is MAP-inference in a pairwise continuous Markov
Random Field (MRF), which will be the main focus of this thesis. Let G = (V, E)
be an undirected graph. Then MAP-inference in a continuous MRF amounts to
the following optimization problem:

min
x∈XV

∑
u∈V

fu(xu) +
∑
uv∈E

fuv(xu, xv),

for unary terms fu(xu) and pairwise symmetric terms fuv(xu, xv), i.e., fuv(xu, xv) =
fuv(xv, xu). As the name suggests, the pairwise terms fuv model pairwise relations
between the variables xu and xv with uv ∈ E . For instance, a typical choice is
fuv(xu, xv) = |xu−xv|, where the graph G represents a pixel grid. Then, the pairwise
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terms correspond to a total variation-like regularization which favors solutions
x ∈ XV that are spatially smooth. In that case, we choose (Ax)uv = (xu, xv) and
g(y) =

∑
uv∈E fuv(yuv).

• The pairwise MRF can also be generalized to a higher-order MRF where g(Ax) =∑
W∈W fW (xW ) models relations over subsets W ⊂ 2V of variables.

The Lagrangian relaxation to the problem (1.6) is obtained by introducing auxiliary
variables y ∈ Y and linear equality constraints Ax = y. Dualizing the linear constraints
with Lagrange multipliers λ ∈ Y ∗ one obtains the following Lagrangian dual problem:

sup
λ∈Y ∗

min
x∈XV ,y∈Y

〈λ,Ax− y〉+ f(x) + g(y),

which can be written in terms of the convex conjugates f∗ and g∗ of f and g:

max
λ∈Y ∗

−f∗(−A∗λ)− g∗(λ). (1.8)

This is a convex optimization problem which can potentially be solved by highly paral-
lelizable convex optimization tools such as the alternating direction method of multipliers
(ADMM). However, the approach often suffers form large duality gaps. Indeed, going
back to the primal the Lagrangian relaxation is equivalent to:

max
λ∈Y ∗

−f∗(−A∗λ)− g∗(λ) = min
x∈XV

∑
u∈V

f∗∗u (xu) + g∗∗(Ax), (1.9)

where f∗∗u are the convex biconjugates, i.e., the largest lower semicontinuous convex
functions below fu. For nonconvex fu such component-wise convex envelopes are often
inaccurate approximations to the original objective and are trivial in some cases.

As a remedy we borrow a strategy which is common in combinatorial optimization: A
convex relaxation is to reformulate the problem in terms of an integer linear program
(ILP) and to relax the integrality constraint which yields a linear program. For instance
in the TSP, one introduces a matrix x of binary values where the entry xij ∈ {0, 1}
encodes whether the connection between ith and the jth city is contained in the tour
(xij = 1) or not (xij = 0). Then, the cost function becomes linear and the restriction to
the set of feasible roundtrips can be formulated in terms of linear constraints. This is
the Miller–Tucker–Zemlin formulation [MTZ60]. In the well-known Sudoku puzzle one is
asked to fill a 9× 9 grid with natural numbers between 1 and 9 such that each row, each
column and each of the 9 subgrids with dimensions 3× 3 contains all numbers between
1 and 9. The puzzle is set up with a partially completed grid, such that in many cases
there exists a unique solution. In an ILP formulation of the puzzle the optimization
variable xij for the cell in the ith row and the jth column is not a number between 1 and
9, which would correspond to direct optimization, but rather represented in terms of a
binary one-hot or unit vector xij ∈ {0, 1}9 that satisfies a sum-to-one constraint. After
relaxation of the integrality constraint the variable for each cell can be interpreted as a
probability vector of the discrete space {1, 2, . . . , 9}.

To adopt the ILP approach for continuous optimization we restrict ourselves to the
MAP-inference problem in a pairwise continuous MRF. The problem has a counterpart
in the discrete setting where X is a finite set of labels. Then the problem is called
MAP-inference in a (discrete) MRF, which is routinely formulated in terms of the linear
local marginal polytope relaxation. In the continuous case the local marginal polytope
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relaxation is the following infinite-dimensional linear program:

min
µ∈P(X)V

∑
u∈V

∫
X
fu(x) dµ(x) +

∑
uv∈E

OTfuv(µu, µv), (1.10)

where P(X) is the space of probability measures over X and OTfuv is the optimal
transportation between µu and µv with cost fuv. Note that in that case X need not even
be Euclidean but can rather be a manifold.

A strategy to derive a Lagrangian relaxation is to dualize the infinite-dimensional
marginalization constraints Muµuv = µv and Mvµuv = µu in the optimal transportation,
see Equation (5.6), with Lagrange multipliers λuv ∈ C(X)× C(X), which are continuous
functions. This dual program compares favorably to the classical Lagrangian relaxation:
In particular it doesn’t suffer from a duality gap since the local marginal polytope relax-
ation is convex. However, the program is infinite-dimensional and therefore intractable.
As a remedy, we consider families of semi-infinite programs obtained by subspace ap-
proximations. Using tools from convex algebraic geometry [BPT12] the semi-infinite
program can be reduced to a finite one. If the Lagrange multipliers are restricted to the
space of affine functions, one recovers the classical Lagrangian relaxation (1.9), while
in the more general case, if, e.g. the Lagrange multipliers are quadratic functions, one
obtains a tighter convex relaxation. Indeed, if one considers a polynomial hierarchy of
dual subspaces with increasing degree, the duality gap between the infinite-dimensional
LP-relaxation and the discretized dual problem will eventually vanish in the limit.

1.1.4. Relaxation by inf-projection vs. relaxation by lifting: A generalized
conjugacy perspective

As we have seen, decoupling by inf-projection and dual decompostion (plus lifting) are
two disctinct approaches to derive lower envelopes for composite optimization problems.
Both decoupling stategies have in common that the resulting lower envelopes involve
additive compositions of elementary lower envelopes, the Moreau envelope or the convex
envelope. Both of which are intractable if applied to the composite objective.

Another connection can be observed under the light of generalized conjugate functions
[RW98, Chapter 11L*]. As we have seen, one possible strategy to obtain an elementary
lower envelope of a function f is to consider the inf-projection (f 4 g)(y) = infx∈X f(x) +
g(x, y) wrt to a proximity measure g. An important special case is the well-known Moreau
envelope.

A complementary approach to obtain elementary lower envelopes is by pointwise
lower approximation with a parametric family of functions, which specializes to the
convex envelope in dual decomposition approaches: Given a familiy of functions the
lower envelope of f wrt that family is defined as the largest function below f which,
up to constant translation, can be written in terms of a pointwise supremum over
elements in the family. Specializing to the family of linear functions, one obtains the
convex biconjugate, which is the largest lower semicontinuous lower convex envelope of
f . More generally, this can be expressed within the framework of generalized conjugacy:
Given a coupling function Φ : X × Y → R ∪ {+∞,−∞} one defines the Φ-conjugate as
fΦ(y) = supx∈X Φ(x, y)−f(x) and the Φ-biconjugate as fΦΦ(x) = supy∈Y Φ(x, y)−fΦ(y).
Specializing X = Y = Rm and Φ(x, y) = 〈x, y〉 one recovers the classical convex conjugate
and convex biconjugate. In the general case, the Φ-biconjugate is the pointwise supremum
over all elementary functions (y, β) 7→ Φ(x, y) − β such that Φ(x, y) − β is majorized
by f and (y, β) is the parameter element. Any function that can be expressed as such
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a pointwise supremum is called a Φ-envelope. This also sets up a connection to the
envelopes obtained via inf-projection, where the Moreau envelope rather takes the role of
a generalized conjugate function: Indeed, if Φ(x, y) = −g(x, y) the Φ-conjugate is the
negative inf-projection fΦ(y) = −(f 4 g)(y) wrt g. In particular, if

Φ(x, y) = −g(x, y) = − 1

2λ
‖x− y‖2,

the Φ-conjugate fΦ(y) = −eλf(y) is the negative Moreau envelope. Then, the corre-
sponding Φ-biconjugate is the largest function below f that can be written as a pointwise
supremum over concave quadratics with uniform curvature 1/λ. This is also called
the proximal transform [RW98, Example 11.64]. Equivalently, fΦΦ is the largest lower
semicontinuous 1/λ-hypoconvex function below f in the same way the convex biconjugate
is the largest convex lower semicontinuous function below f . We say h is r-hypoconvex
if h + (r/2)‖ · ‖2 is convex. Such functions are also called r-semiconvex. This shows
that all lower semicontinuous 1/λ-hypoconvex functions are Φ-envelopes whose dual
representation amounts to the negative Moreau envelope. Indeed, such functions can be
recovered from their Moreau envelopes by inf-deconvolution.

Φ-conjugacy also appears in dual discretization plus lifting for Lagrangian relaxations
which was discussed above. As we have seen, if the Lagrange multipliers are restricted to
an affine subspace, one recovers the classical Lagrangian relaxation and the dual problem
involves the convex conjugates f∗u for each vertex u ∈ V. More generally, the dual
problem involves the Φ-conjugates fΦ

u instead of the convex conjugates f∗u . In the infinite-
dimensional LP formulation, the function Φ(x, λ) = λ(x) couples the Lagrange multiplier
with a point x ∈ X via point evaluation. If X = Rm and the Lagrange multipliers are
quadratic functions, rather than affine functions, one has Φ(x, p) = 〈p1, x〉 + p2‖x‖2,
where p denotes the vector of coefficients of λ. Therefore, the Φ-biconjugate of fu is
the largest function below fu which can be written (up to constant translation) as a
pointwise supremum over quadratic functions parametrized by coefficients p. This is the
basic quadratic transform [RW98, Example 11.66]. In contrast to the proximal transform
in which the curvature of the lower supporting quadratics is fixed, in the basic quadratic
transform the pointwise supremum is taken over all concave lower quadratics. Therefore
one can show that the basic quadratic transform of any function f (which is bounded from
below by a concave quadratic) yields the lower semicontinuous closure of f , see [RW98,
Example 11.66], while the proximal transform only yields the largest lower semicontinuous
1/λ-hypoconvex under-approximation.

Overall, Φ-conjugacy and lifting are helpful tools to understand what happens in the
primal if one discretizes the dual program of the infinite-dimensional LP-relaxation for
MRF-inference.

1.2. Preliminaries

1.2.1. Notation

The following sections shall clarify the notation and introduce some required basic
concepts such as subdifferential calculus and basics of measure theory as well as Fenchel–
Rockafellar duality in infinite dimensions. The section can be skipped and rather used as
a reference when concepts are unknown to the reader.

If not stated otherwise we adopt the notation from [RW98]. In particular we abbreviate
lower semicontinuous by lsc. For a set C ⊂ Rm we denote by σC(x) = supy∈C〈x, y〉 the
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support function of C at x ∈ Rm. For a subset C ⊂ Rm we denote by C∗ = {y ∈ Rm :
〈y, x〉 ≥ 0, ∀x ∈ C} the dual cone of C. The convex hull conC of a set C ⊂ Rm is the
smallest convex set that contains C. Equivalently, conC is the set of all finite convex
combinations of points in C. With some abuse of notation we write con f for a function
f to denote the largest convex function below f . If not stated otherwise, ‖ · ‖ refers to
the Euclidean norm and 〈·, ·〉 to the Euclidean inner product.

1.2.2. Extended real-valued functions and extended arithmetic

In the course of this thesis we work with improper (not proper) extended real-valued
functions f : Rm → R ∪ {−∞,+∞} =: R. In accordance with [Mor66] we therefore have
to extend the classical arithmetic on R to the extended real line R. We define upper and
lower addition:

−∞ +̇∞ =∞, −∞+. ∞ = −∞, (1.11)

and accordingly upper and lower subtraction:

∞ −̇∞ =∞, ∞−. ∞ = −∞. (1.12)

A particularly important class of extended real-valued functions are indicator functions:
For a set C ⊂ Rm we denote by ιC : Rm → R the indicator function with

ιC(x) =

{
0, if x ∈ C,
+∞ otherwise.

1.2.3. Subgradients, subdifferential calculus and Fermat’s rule

We define regular, limiting and horizon subgradients according to [RW98, Definition 8.3]:

Definition 1.1 (subgradients). Consider a function f : Rm → R and a point x̄ with f(x̄)
finite. For a vector v ∈ Rm, one says that

(i) v is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖).

(ii) v is a limiting subgradient of f at x̄, written v ∈ ∂f(x̄), if there are sequences
xν → x̄ with f(xν)→ f(x̄) and vν ∈ ∂̂f(xν) with vν → v.

(iii) v is a horizon subgradient of f at x̄, written v ∈ ∂∞f(x̄), if the same holds as in
(ii), except that instead of vν → v one has λνvν → v for some sequence λ→ 0+ (or
v = 0).

Note that the definition of regular subgradients is parallel to the definition of a
subgradient of a convex function, except for the error term o(|x− x̄|). If that error term
specializes to a negative quadratic −r/2|x− x̄| we say that v is a proximal subgradient.
For proper convex functions, indeed, ∂f(x̄) = ∂̂f(x̄), while ∂∞f(x̄) ⊂ Ndom f (x̄). The
inclusion holds with equality if, in addition, f is locally lsc at x̄. Intuitively, 0 6= v ∈
∂∞f(x̄) is a horizon subgradient of f at x̄ if f is infinitely steep at x̄.

Subgradients enjoy a rich calculus. An important example is the sum-rule specialized
from [RW98, Corollary 10.9]:
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Lemma 1.2 (sum-rule of subdifferentials). Suppose f = f1 + · · ·+ fN for proper, lsc
functions fi : Rm → R, and let x̄ ∈ dom f . Then

∂̂f(x̄) ⊃ ∂̂f1(x̄) + · · ·+ ∂̂fN (x̄).

Under the condition that the only combination of vectors vi ∈ ∂∞fi(x̄) with v1+· · ·+vN = 0
is v1 = v2 = · · · = vN = 0 (this being true in the case of convex functions f1, f2 when
dom f1 and dom f2 cannot be separated), one also has that

∂f(x̄) ⊂ ∂f1(x̄) + · · ·+ ∂fN (x̄),

∂∞f(x̄) ⊂ ∂∞f1(x̄) + · · ·+ ∂∞fN (x̄).

If also each fi is regular at x̄, then f is regular at x̄ and

∂f(x̄) = ∂f1(x̄) + · · ·+ ∂fN (x̄),

∂∞f(x̄) = ∂∞f1(x̄) + · · ·+ ∂∞fN (x̄).

We specialize [RW98, Theorem 10.1], a generalization of Fermat’s rule, which constitutes
a first order necessary local optimality condition in the nonsmooth setting.

Lemma 1.3 (Fermat’s rule generalized). If a proper function f : Rm → R has a local
minimum at x̄, then

∂̂f(x̄) 3 0, ∂f(x̄) 3 0,

where the first condition implies the second.

If f is subdifferentially regular or in particular convex, these conditions are equivalent.
In the convex case they are not just necessary for a local minimum but sufficient for a
global minimum, i.e., for having x̄ ∈ arg min f .

If f = f0 + g with f0 smooth, ∂f(x̄) 3 0 comes out as −∇f0(x̄) ∈ ∂g(x̄).

1.2.4. Set-valued mappings and graphical localizations

In the course of this thesis we need the concept of a set valued mapping F : Rm ⇒ Rn. A
set valued mapping maps individual points x ∈ Rm to subsets F (x) ⊂ Rn and therefore
generalizes the notion of a classical function.

For a set-valued mapping F : Rm ⇒ Rn let

domF := {x ∈ Rm : F (x) 6= ∅} (1.13)

denote the domain of F .

An important example that is considered here is the set-valued subdifferential mapping
x 7→ ∂f(x) which maps a point x to the set of (limiting) subgradients ∂f(x) of f at x.
By definition, subgradients only exist at points x where f is finite. Therefore we have
the relation dom ∂f ⊂ dom f .

We define the graph of F as

gphF := {(x, v) ∈ Rm × Rn : v ∈ F (x)}. (1.14)

We define the range of F as

rgeF := {v ∈ Rn : v ∈ F (x) for some x ∈ Rm}. (1.15)
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There always exists an inverse of F , written F−1 : Rn ⇒ Rm which is defined via

F−1(v) := {x ∈ Rm : v ∈ F (x)}. (1.16)

We have the relation domF = rgeF−1.
Let I denote the identity mapping with I(x) = x.
In the course of this thesis we work with graphical localizations of set-valued mappings,

see [DR09], which are constructed graphically by intersecting the graph of F with some
neighborhood of some reference point (x̄, v̄) ∈ gphF :

Definition 1.4 (graphical localization). For F : Rm ⇒ Rn and a pair (x, v) ∈ gphF ,
a graphical localization of F at x̄ for v̄ is a set-valued mapping T such that gphT =
(U × V ) ∩ gphF for some neighborhoods U of x̄ and V of v̄, so that

T (x) :=

{
F (x) ∩ V if x ∈ U,
∅ otherwise.

(1.17)

The inverse of T then has

T−1(v) :=

{
F−1(v) ∩ U if v ∈ V ,
∅ otherwise,

(1.18)

and is thus a graphical localization of the set-valued mapping F−1 at v̄ for x̄. By a
single-valued localization of F at x̄ for v̄ will be meant a graphical localization that is
a function, its domain not necessarily being a neighborhood of x̄. The case where the
domain is indeed a neighborhood of x̄ will be indicated by referring to a single-valued
localization of F around x̄ for v̄ instead of just at x̄ for v̄.

We state [RW98, Definition 1.33]:

Definition 1.5 (local semicontinuity). A function f : Rm → R is locally lower semicon-
tinuous (lsc) at x̄, a point where f(x̄) is finite, if there is an ε > 0 such that all sets of
the form {x ∈ Rm : ‖x− x̄‖ ≤ ε, f(x) ≤ α} with α ≤ f(x̄) + ε are closed.

In this thesis, a particularly important example of localizations of set-valued mappings
are localizations of the subdifferential mapping of some locally lsc function f , where the
neighborhoods around the reference point are taken in the f -attentive topology:

Definition 1.6 (f -attentive localization of limiting subdifferential). Let f : Rm → R be
locally lsc at x̄, a point where f(x̄) is finite. Let v̄ ∈ ∂f(x̄). Then for some ε > 0 the
f -attentive ε-localization T : Rm ⇒ Rm of ∂f at x̄ for v̄ is defined by

T (x) :=

{
{v ∈ ∂f(x) : ‖v − v̄‖ < ε} if ‖x− x̄‖ < ε and f(x) < f(x̄) + ε,

∅, otherwise.
(1.19)

The f -attentive localization of the limiting subdifferential coincides with the classical
localization of the limiting subdifferential if nearness of points ‖x−x̄‖ < ε and subgradients
‖v − v̄‖ < ε implies nearness of function values f(x) < f(x̄) + ε. This is guaranteed if
the function f is in addition subdifferentially continuous [RW98, Definition 13.28]:

Definition 1.7 (subdifferential continuity). A function f : Rm → R is called subd-
ifferentially continuous at x̄ for v̄ if v̄ ∈ ∂f(x̄) and, whenever (xν , vν) → (x̄, v̄) with
vν ∈ ∂f(xν), one has f(xν) → f(x̄). If this holds for all v̄ ∈ ∂f(x̄), f is said to be
subdifferentially continuous at x̄.
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We state [RW98, Definition 12.1]:

Definition 1.8 (monotonicity). A set-valued mapping F : Rm ⇒ Rm is called monotone
if it has the property

〈y1 − y2, x1 − x2〉 ≥ 0,

whenever y1 ∈ F (x1), y2 ∈ F (x2), and strictly monotone if the inequality is strict when
x1 6= x2.

We state [RW98, Definition 12.53]:

Definition 1.9 (strong monotonicity). A set-valued mapping F : Rm ⇒ Rm is called
strongly monotone if there is σ > 0 such that F − σI is monotone, or equivalently

〈y1 − y2, x1 − x2〉 ≥ σ‖x1 − x2‖2,

whenever y1 ∈ F (x1), y2 ∈ F (x2).

Lemma 1.10. Let F : Rm ⇒ Rm be strictly monotone. Then F−1 : Rm ⇒ Rm is at
most single-valued. If, in addition, F is σ-strongly monotone, F−1 is also 1/σ-Lipschitz
continuous on rgeF = domF−1.

Proof. Suppose F−1 is not at most single-valued. Then there exists y ∈ Rm with
x1 ∈ F−1(y) and x2 ∈ F−1(y) with x1 6= x2. This means y = y1 ∈ F (x1) and
y = y2 ∈ F (x2), and therefore 〈y1−y2, x1−x2〉 = 0, which contradicts strict monotonicity.

Now let y1, y2 ∈ domF−1 = rgeF . We know that y1 ∈ F (x1) and y2 ∈ F (x2) for some
x1, x2 ∈ Rm as well as x1 ∈ F−1(y1), x2 ∈ F−1(y2). Since F is σ-strongly monotone, by
Cauchy–Schwarz we have:

‖y1 − y2‖ · ‖x1 − x2‖ ≥ 〈y1 − y2, x1 − x2〉 ≥ σ‖x1 − x2‖2,

which implies

‖x1 − x2‖ ≤
1

σ
‖y1 − y2‖.

We define the following notion of semicontinuity of set-valued mappings specialized
from [RW98, Definition 5.4]:

Definition 1.11 (outer semicontinuity). A set-valued mapping F : Rm ⇒ Rn is outer
semicontinuous (osc) at x̄ if

{u ∈ Rn : ∃xν → x̄, uν → u with uν ∈ F (xν)} ⊂ F (x̄).

1.2.5. Parametric minimization

In certain parametric minimization problems, such as encountered in the definition of
the proximal mapping, a sufficient condition for the outer semicontinuity Definition 1.11
of the solution mapping is uniform level boundedness [RW98, Definition 1.16].

We state the following pointwise version of [RW98, Definition 1.16] adopted from
[Bau+09, Definition 4.1]:

Definition 1.12 (uniform level boundedness). We say a function h : Rm×Rn → R with
values h(x, y) is level-bounded in x locally uniformly at ȳ ∈ Rn if for each α ∈ R there is
a neighborhood V of ȳ along with a bounded set X ⊂ Rm such that

{x ∈ Rm : h(x, y) ≤ α} ⊂ X

12
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for all y ∈ V . Equivalently, there is a neighborhood V of ȳ such that the set{
(x, y) ∈ Rm × V : h(x, y) ≤ α

}
is bounded in Rm × Rn. We say a function h : Rm × Rn → R with values h(x, y) is
level-bounded in x locally uniformly in y if this holds for all ȳ ∈ Rn.

We state [RW98, Theorem 1.17]:

Theorem 1.13 (parametric minimization). Consider

p(y) := inf
x∈Rm

h(x, y), P (y) := arg min
x∈Rm

h(x, y),

in the case of a proper, lsc function h : Rm × Rn → R such that h(x, y) is level-bounded
in x locally uniformly in y.

(i) The function p is proper and lsc on Rn, and for each y ∈ dom p the set P (y) is
nonempty and compact, whereas P (y) = ∅ when y 6∈ dom p.

(ii) If xν ∈ P (yν), and if yν → y in such a way that p(yν) → p(ȳ) (as when p is
continuous at ȳ relative to a set V containing ȳ and yν), then the sequence {xν}ν∈N
is bounded, and all its cluster points lie in P (ȳ).

(iii) For p to be continuous at a point ȳ relative to a set V containing ȳ, a sufficient
condition is the existence of some x̄ ∈ P (ȳ) such that h(x̄, y) is continuous in y at
ȳ relative to V .

We state the implicit function theorem for generalized equations, adopted from [DR09,
Theorem 2B.7] which generalizes [Rob80], for analyzing the solution mappings in para-
metric minimization problems.

Theorem 1.14 (implicit function theorem for generalized equations). Consider a function
G : Rm × Rn → Rm and a set-valued map T : Rm ⇒ Rm with (x̄, ȳ) ∈ int(domG) and
0 ∈ G(x̄, ȳ) + T (x̄), and suppose that

l̂ipy(G; (x̄, ȳ)) := lim sup
y,y′→ȳ
x→x̄
y 6=y′

‖G(x, y)−G(x, y′)‖
‖y − y′‖ ≤ γ <∞.

Let H : Rm → Rm be a strict estimator of G wrt x uniformly in y at (x̄, ȳ) with constant
µ, i.e.,

l̂ipx(e; (x̄, ȳ)) ≤ µ <∞ for e(x, y) = G(x, y)−H(x).

Suppose that (H + T )−1 has a Lipschitz continuous single-valued localization around 0
for x̄ with constant κ and κµ < 1. Then the solution mapping

S : y ∈ Rm 7→ {x ∈ Rm : 0 ∈ G(x, y) + T (x)}

has a Lipschitz continuous single-valued localization around ȳ for x̄ with constant κγ
1−κµ .

1.2.6. Legendre functions and Bregman distances

In this thesis we consider Legendre functions to generate discrepancy measures for
generalized proximal operators. To some extent the following survey of results is adapted
from [LOC20].

13
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A Legendre function φ ∈ Γ0(X) is defined according to [Roc70, Section 26]:

Definition 1.15 (Legendre function). The function φ ∈ Γ0(Rm) is

(i) essentially smooth, if int(domφ) 6= ∅ and φ is differentiable on int(domφ) such
that ‖∇φ(xν)‖ → ∞, whenever int(domφ) 3 xν → x ∈ bdry domφ, and

(ii) essentially strictly convex, if φ is strictly convex on every convex subset of dom ∂φ,
and

(iii) Legendre, if φ is both essentially smooth and essentially strictly convex.

We list some basic properties of Legendre functions:

Lemma 1.16. Let φ ∈ Γ0(Rm) be Legendre. Then φ has the following properties:

(i) dom ∂φ = int(domφ), [Roc70, Theorem 26.1].

(ii) φ∗ is Legendre, [Roc70, Theorem 26.3].

(iii) ∇φ : int(domφ) → int(domφ∗) is a homeomorphism between int(domφ) and
int(domφ∗), i.e., ∇φ is bijective with inverse ∇φ∗ : int(domφ∗) → int(domφ)
and ∇φ and ∇φ∗ are both continuous on int(domφ) resp. int(domφ∗), [Roc70,
Theorem 26.5].

(iv) φ is super-coercive, i.e., ‖φ(w)‖/‖w‖ → ∞ whenever ‖w‖ → ∞, if and only if
domφ∗ = Rm, [BB97, Proposition 2.16].

Even though our main focus is on general Legendre functions, many classical Legendre
functions satisfy the following additional property, which we adopt from [BL00, Definition
2.8]:

Definition 1.17 (very strictly convex functions). Suppose φ ∈ Γ0(Rm) is C2 on
int(domφ) 6= ∅ and ∇2φ(x) is positive definite for all x ∈ int(domφ). Then we say φ is
very strictly convex.

Lemma 1.18. Let φ ∈ Γ0(Rm) be Legendre and very strictly convex. Then φ∗ is
Legendre and very strictly convex. Moreover, for any conjugate pair x ∈ int(domφ) and
∇φ(x) ∈ int(domφ∗) the Hessian matrices ∇2φ(x) and ∇2φ∗(∇φ(x)) are inverse to each
other.

Proof. By Lemma 1.16 we know that φ∗ ∈ Γ0(Rm) is Legendre. By assumption ∇φ
is continuously differentiable on int(domφ) with derivative ∇2φ(x) invertible for any
x ∈ int(domφ). Thus, by the inverse function theorem for any x ∈ int(domφ) there
exist open neighborhoods V of x and U of ∇φ(x) such that locally (∇φ)−1 : U → V
is continuously differentiable with derivative ∇((∇φ)−1)(∇φ(x)) = (∇2φ(x))−1. Since
(∇φ)−1 = ∇φ∗ and (∇2φ(x))−1 is positive definite, the assertion follows.

For examples of typical Legendre functions (e.g. Boltzmann–Shannon, Burg’s or
Fermi–Dirac entropy, Hellinger, Fractional Power) as well as their convex conjugates and
derivatives we refer to [Bau+19, Example 2.2]. More examples can be found in [Bre67;
Teb92; Eck93; BB97; BBC01]. In particular, we highlight that the Legendre function
φ(x) = (1/p)|x|p, p > 1, is not very strictly convex for p 6= 2 and not even C2 if p ∈ (1, 2).
The class of Legendre functions induces favorable properties for the following generalized
distance-like measure.
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Definition 1.19 (Bregman distance). Let φ ∈ Γ0(Rm) be Legendre. Then, the Bregman
distance Dφ : Rm × Rm → R generated by φ is defined by

Dφ(x, y) =

{
φ(x)− φ(y)− 〈∇φ(y), x− y〉 , if y ∈ int(domφ),

+∞, otherwise.
(1.20)

Lemma 1.20. Let φ ∈ Γ0(Rm) be Legendre. Then the following properties hold for the
Bregman distance Dφ(·, ·) induced by φ:

(i) For all x ∈ Rm and y ∈ int(domφ) we have Dφ(x, y) = 0 ⇐⇒ x = y, [BB97,
Theorem 3.7(iv)].

(ii) For all x, y ∈ int(domφ) we have Dφ(x, y) = Dφ∗(∇φ(y),∇φ(x)), [BB97, Theorem
3.7(v)].

(iii) If φ is very strictly convex for any compact and convex K ⊂ int(domφ) there exist
positive scalars +∞ > Θ and θ > 0 such that

θ

2
‖x− y‖2 ≤ Dφ(x, y), ‖∇φ(x)−∇φ(y)‖ ≤ Θ‖x− y‖,

for any x, y ∈ K, [BL00, Proposition 2.10].

1.2.7. Measures, convex functions and Fenchel–Rockafellar duality in infinite
dimensions

In Chapter 5 we need the following basic measure theoretic notations as well as convexity
and duality in infinite dimensions. For self-containedness we present a short survey of
the required concepts which is based on the lecture notes of Bernhard Schmitzer1. For
further details also see the references therein. In particular consult [AFP00] and [KZ06].

Definition 1.21 (σ-algebra). A collection Σ of subsets of a set X is called a σ-algebra
if:

(i) ∅ ∈ Σ and A ∈ Σ =⇒ X \A ∈ Σ

(ii) An ∈ Σ =⇒ ⋃∞
n=0An ∈ Σ.

The σ-algebra is closed under countable unions and intersections. We call the elements
of Σ measureable sets while we call the pair (X,Σ) measure space.

The Borel σ-algebra is the smallest σ-algebra containing all open sets of a topological
space.

Definition 1.22 (nonnegative measures). For a measure space (X,Σ) a function µ :
Σ→ [0,+∞] is called a nonnegative measure if

(i) µ(∅) = 0

(ii) An ∈ Σ are pairwise disjoint =⇒ µ(
⋃∞
n=0An) =

∑∞
n=0 µ(An).

1https://www.uni-muenster.de/AMM/num/Vorlesungen/OptTransp_SS17/ss2017_OTDataAnalysis_

2017-05-02.pdf
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Definition 1.23 (total variation). For a measure µ on (X,Σ) the total variation |µ| of
A ∈ Σ is

|µ|(A) = sup

{ ∞∑
n=0

|µ(An)| : An ∈ Σ, pairwise disjoint,
∞⋃
n=0

An = A

}
.

Then |µ| is a finite, nonnegative measure on (X,Σ).

With some abuse of terminology, in Chapter 5, we will introduce the total variation
TV (u) of a function u : (Ω ⊂ Rd) → R, Ω nonempty, open and bounded, which for
smooth u takes the form

∫
Ω ‖∇u(x)‖dx. More generally, for functions with bounded

variation, TV (u) is related to the measure theoretic total variation from above: TV (u)
is the measure theoretic total variation of the distributional derivative Du which is a
Radon measure. For details see [AFP00].

Definition 1.24 (dual space). For a normed vector space (X, ‖ · ‖X) its topological dual
space is given by

X∗ = {y : X → R : y linear, continuous, i.e., ∃C <∞ : |y(x)| ≤ C‖x‖X ,∀x ∈ X}.

This induces a norm on X∗:

‖y‖X∗ = sup{|y(x)| : x ∈ X, ‖x‖X ≤ 1}.

Then (X∗, ‖ · ‖X∗) is a Banach space. In place of y(x) we will write 〈y, x〉.
We have the following notions of convergence:

Definition 1.25 (weak convergence). A sequence xn in X converges weakly to x ∈ X if
y(xn)→ y(x) for all y ∈ X∗. We write xn ⇀ x.

Definition 1.26 (weak∗ convergence). A sequence yn in X∗ converges weakly to y ∈ X∗
if yn(x)→ y(x) for all x ∈ X. We write yn

∗
⇀ y.

Definition 1.27 (Radon measure). Let (Ω, d) be a compact metric space and let Σ be
the Borel σ-algebra. A finite measure (nonnegative or vector-valued) is called a Radon
measure. We will write:

• M+(Ω) for the set of nonnegative Radon measures,

• P(Ω) ⊂M+(Ω) for the set of Radon probability measures with total mass 1,

• M(Ω)m for the set of (vector-valued) Radon measures.

Theorem 1.28 (duality). Let (Ω, d) be a compact metric space. Let C(Ω) be the space of
continuous functions from Ω to R, equipped with the sup-norm. Then, the topological dual
space of C(Ω) can be identified with the spaceM(Ω) equipped with the total variation norm
‖µ‖M = |µ|(Ω). In addition, we have a duality pairing for µ ∈M(Ω) and f ∈ C(Ω):

〈µ, f〉 =

∫
Ω
f(x) dµ(x).

Two measures µ, ν ∈M(Ω) with µ(f) = ν(f) for all f ∈ C(Ω) coincide.

Theorem 1.29 (Banach–Alaoglu). Let X be a separable normed space. Any bounded
sequence in X∗ has a weak∗ convergent subsequence.
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We have the following: Let (Ω, d) be a compact metric space, then any bounded
sequence in M(Ω) has a weak∗ convergent subsequence.

Definition 1.30 (topologically paired spaces). Two vector spaces X,X∗ with the locally
convex Hausdorff topology are called topologically paired spaces if all continuous linear
functionals on one space can be identified with all elements of the other.

Example 1.31. Let (Ω, d) be a compact metric space. C(Ω) andM(Ω) with the sup-norm
topology and the weak∗ topology are topologically paired spaces.

Definition 1.32 (Legendre–Fenchel conjugates). Let X,X∗ be topologically paired spaces.
Let f : X → R ∪ {+∞}. Its Legendre–Fenchel conjugate f∗ : X∗ → R ∪ {+∞} is
given by f∗(y) = supx∈X〈x, y〉 − f(x). Likewise, for g : X∗ → R ∪ {+∞}, we have
g∗(x) = supy∈X∗〈x, y〉 − g(y).

If f, g are convex, lsc we have f = f∗∗ and g = g∗∗. We state the Fenchel–Rockafellar
duality theorem adapted from [Roc67]:

Theorem 1.33 (Fenchel–Rockafellar duality). Let (X,X∗), (Y, Y ∗) be two pairs of
topologically paired spaces. Let f : X → R ∪ {+∞}, g : Y → R ∪ {+∞}, f, g convex,
A : X → Y linear, continuous. Assume there is x ∈ X such that f is finite at x, and g
finite and continuous at Ax. Then

inf{f(x) + g(Ax) : x ∈ X} = max{−f∗(−Az)− g∗(z) : z ∈ Y ∗}.

In particular a maximizer of the problem on the right exists. A∗ : Y ∗ → X∗ is the adjoint
of A.

1.3. Outlook and Summary of Results

The results in this thesis are to a substantial extent based on own publications. All
of which are collaborative works. As mentioned in the introduction, in this thesis we
consider two complementary approaches to obtain relaxations to problems with composite
structure based on lower envelopes. Part I considers relaxation by inf-projection and is
based on [LWC18], [LWC19], [LOC20] and [LOC21]. Part II considers lifting to measures
in Lagrangian relaxations and is based on [Lau+16] and [Bau+21]. Another major goal
of this thesis is to identify connections between these two approaches under the light of
the framework of generalized conjugacy.

Chapter 2 is based on [LWC18], [LWC19] and [LOC20]. In that chapter we study two
complementary generalizations of the Euclidean proximal mapping and Moreau envelope
in a nonconvex setting, which are based on Legendre functions: In Section 2.2 which
expands upon [LWC19] we consider the anisotropic proximal mapping which is obtained
by replacing the quadratic penalty ‖x− y‖2 in the proximal mapping with φ(x− y) for a
certain Legendre function φ, see Definition 2.1. In Section 2.3, which is based on [LOC20]
we consider the Bregman proximal mapping which is obtained when ‖x− y‖2 is replaced
by a Bregman distance generated by a Legendre function. Since Bregman distances are
asymmetric in general we consider a left and a right Bregman proximal mapping and
Moreau envelope depending on the order of arguments. A major goal of these sections is
to study the (local) single-valuedness and (Lipschitz) continuity of the proximal mapping
and the smoothness of the Moreau envelope function along with a gradient formula. To
this end we alter the geometry in Euclidean prox-regularity which leads to two distinct
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extensions thereof, which we call anisotropic and relative prox-regularity respectively.
In Section 2.2.4 we also consider a small toy feasibility problem which uses anisotropic
prox-potentials in place of standard quadratics. In Section 2.4, which expands upon
[LWC18] we study (proximal mappings of) pointwise minima over a finite collection of
functions. These functions are in particular upper-C1 but not prox-regular everywhere. A
goal of this section is to identify a sufficient condition, based on the linear independence
constraint qualification, that guarantees the gradient formula of the Moreau envelope to
hold in terms of the limiting subdifferential.

The goal of the short Chapter 3 is to discuss and survey some existing results on
generalized conjugate functions and the proximal transform [RW98, Example 11.64] as well
as a recent generalization of the proximal average to nonconvex functions [CWP20]. The
purpose of that chapter is to lay down the theoretical framework to identify connections
between relaxation by inf-projection and relaxation by lifting to measures and dual
discretization. Beyond these existing results we discuss an unknown (to our knowledge)
duality relation between Proximal Point and gradient descent on a Lipschitz differentiable
function invoking the proximal transform based on [LOC21].

The proximal average is revisited in Chapter 4. This chapter is based on [LOC20]
and [LOC21] and partially on [LWC19]: Here we consider different variants of inexact
alternating and averaged (Bregman) Proximal Point including stochastic variants with
applications to federated learning and semisupervised learning. There we will leverage
the gradient formulas for the proximal mapping in the Euclidean and the Bregmanian
case under prox-regularity to characterize stationary points of a certain relaxation based
on Moreau envelopes. In particular, relative prox-regularity turns out to be a sufficient
condition to show that inexact alternating Bregman Proximal Point converges (locally)
to a stationary point of the Moreau regularized problem. This cannot be taken for
granted. We derive an inexact stochastic averaged proximal point method for nonconvex
federated learning and invoke the theory from Chapter 2 to characterize the stationary
points computed by the algorithm. In the federated learning case we use the gradient
formula of the Moreau envelope to argue that such a stationary point is near stationarity
wrt the original problem implying almost consensus between the individual clients, see
Corollary 4.20. Leveraging the duality relation between Proximal Point and gradient
descent, explored in the previous chapter, the proposed stochastic averaged Proximal
Point can be specialized to the Finito/MISO algorithm [DDC14; Mai15]. In that sense
one obtains a novel convergence proof for the Finito/MISO algorithm in the nonconvex
setting under very general sampling strategies.

Chapter 5 is based on [Lau+16] and [Bau+21]. In this chapter we consider convex
relaxations for partially separable problems and in particular the MAP-inference problem
in a MRF. In contrast to relaxations by inf-projection, which is a nonconvex relaxation in
general, the approach considered in this section is based on dual discretizations of infinite-
dimensional linear programming relaxations and yields a convex problem. Expanding
upon [Bau+21] a goal of this section is to extend the approach for MRFs to spatially
continuous domains and variational problems. In particular this sets up a connection to
the convex relaxation for vectorial variational problems considered in [Lau+16], which
can be interpreted as a piecewise linear dual discretization of an infinite-dimensional
variational problem formulated over measures which was studied in [VL18].
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Chapter 2.
Generalized Moreau envelopes and proximal
mappings: A local perspective

2.1. Why it matters

A major goal of this chapter is to study two generalizations of the classical proximal
mapping and Moreau envelope based on Legendre functions. This chapter is based on
[LWC18], [LWC19] and [LOC20].

The Euclidean proximal mapping and Moreau envelope date back to the seminal work
of [Mor62; Mor65]. Their systematic study was initiated by Attouch [Att77; Att84]. A
classical result is that the Moreau envelope of a convex function is smooth with a Lipschitz
continuous gradient mapping and the associated proximal mapping is single-valued and
Lipschitz continuous. In the nonconvex setting, however, this is in general not the case.
An exception is the class of nonconvex prox-regular functions introduced by Poliquin and
Rockafellar, for which this is true at least locally [PR96] (see [Bac̆+10; JTZ14] for the
infinite dimensional setting). Prox-regular functions comprise several widely used classes
of functions, such as primal-lower-nice functions [Pol91], subsmooth functions, strongly
amenable functions [PR96; RW98], and proper lower semicontinuous convex functions.
Prox-regularity of indicator functions is closely related to Federers concept of a set with
positive reach [Fed59] as studied in [PRT00]. In the nonconvex setting, however, there
exist situations where the Euclidean proximal mapping of f is not single-valued and not
even single-valued in a local neighborhood of a point even though f is actually a smooth
function, see Example 2.32. As explored in Chapter 4 single-valuedness of the proximal
mapping is actually an important property that has practical implications. A remedy
is to replace the Euclidean proximity measure with alternative “nonlinear geometries”
which eventually helps to recover the single-valuedness property for some functions which
do not admit a (locally) single-valued Euclidean proximal mapping at some points. We
therefore consider two alternative “nonlinear geometries”: In Section 2.2 we consider
the anisotropic proximal mapping which is obtained by replacing the quadratic penalty
‖x − y‖2 in the proximal mapping with φ(y − x) for an anisotropic prox-potential φ,
see Definition 2.1, while Section 2.3 considers the Bregman proximal mapping which is
obtained when ‖x − y‖2 is replaced by a Bregman distance [Bre67]. Expanding upon
[LWC19], in Section 2.2, we identify a generalization of prox-regularity, called anisotropic
prox-regularity, see Definition 2.13, which admits a (locally) single-valued anisotropic
proximal mapping, see Theorem 2.14. An analogous result is proved for the Bregman
proximal mapping. Both results can be seen as generalizations of [RW98, Proposition
13.37] for the Euclidean proximal mapping under prox-regularity.
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Expanding upon [LOC20], in Section 2.3, we reveal an interesting connection between
our notion of a relatively proximal subgradient, see Definition 2.30, and a variational
description of regular subgradients due to Mordukhovich [Mor18, Theorem 1.27], showing
that every regular subgradient of a relatively prox-bounded function can be expressed in
terms of the Bregman proximal mapping, see Proposition 2.36.

In Section 2.4, we consider pointwise minima over a finite collection of C1 functions.
Such functions are in particular upper-C1 but not prox-regular everywhere. Expanding
upon [LWC18], we show a refinement of [RW98, Theorem 10.31] for finitely many pieces,
showing that the limiting subdifferential can be expressed in terms of the gradient of the
active pieces, if a linear independence constraint qualification wrt the hypograph of this
function holds true.

2.2. Anisotropic Moreau envelope and proximal mapping

2.2.1. Definition and continuity properties

We begin with an anisotropic generalization of the classical Moreau envelope and asso-
ciated proximal mapping under nonconvexity which has been considered before in the
convex setting [Les67; Wex73; CR13]. The term anisotropic proximal mapping was coined
by [CR13] who revealed an interesting connection to the Bregman proximal mapping via
a generalization of Moreau’s decomposition which holds under convexity.

The anisotropic proximal mapping is constructed by replacing the quadratic function
‖ · ‖2 in the classical proximal mapping with a certain strictly convex potential function
φ. This results in an infimal convolution type Moreau envelope as discussed in the
introduction. For this formulation to yield a proper proximity measure we require
φ(y − x) = 0 if and only if y = x and φ(y − x) ≥ 0. This can be guaranteed if φ is
essentially strictly convex and φ(0) = 0 and ∇φ(0) = 0.

More precisely we will assume that φ satisfies the following properties:

Definition 2.1 (anisotropic prox-potential). Let φ ∈ Γ0(Rm). We call φ an anisotropic
prox-potential if it satisfies the following assumptions:

(i) φ is essentially strictly convex,

(ii) φ is differentiable on domφ open,

(iii) φ is super-coercive,

(iv) and φ(0) = 0 and ∇φ(0) = 0.

The following univariate functions φ : R→ R are anisotropic prox-potentials: φ(x) =
|x|3, φ(x) = |x|3/2 both of which have full domain or φ(x) = − log(1− x2) with domain
(−1, 1). The assumption domφ is open guarantees that φ has a certain barrier behavior
at boundary points x ∈ bdry domφ: For a sequence domφ 3 xν → x ∈ bdry domφ, since
φ(x) =∞ and φ is lsc we know that φ(xν)→∞. This turns out helpful in algorithms
when we linearize the prox-term and overall simplifies our study. The property domφ
open also implies that φ is essentially smooth and therefore Legendre:

Lemma 2.2. Let φ ∈ Γ0(Rm). Let domφ open and φ differentiable on domφ. Then φ
is essentially smooth.
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Proof. Since φ is proper and domφ open we have that ∅ 6= domφ = int(domφ). Now
consider a sequence domφ 3 xν → x ∈ bdry domφ. Take y ∈ domφ. Since φ(x) = ∞
and φ is lsc we know that φ(xν)→∞. Since φ is convex we have

φ(y) ≥ φ(xν) + 〈∇φ(xν), y − xν〉.

Cauchy–Schwartz implies for y 6= xν :

‖∇φ(xν)‖ ≥ φ(xν)− φ(y)

‖y − xν‖ .

Passing ν →∞ we have ‖∇φ(xν)‖ → ∞. We conclude that φ is essentially smooth.

The Legendre property of φ turns out helpful in the study of the proximal mapping
and allows us to derive an interesting resolvent expression for the proximal mapping,
where ∇φ∗ appears in the form of a nonlinear preconditioner, see Theorem 2.11.

We are now ready to formally define the anisotropic proximal mapping and associated
Moreau envelope:

Definition 2.3 (anisotropic proximal mapping and Moreau envelope). Let f : Rm → R
be proper and let φ ∈ Γ0(Rm) be an anisotropic prox-potential. Then for a parameter
λ > 0 and y ∈ Rm

eφλf(y) := inf
x∈Rm

f(x) +
1

λ
φ(y − x), (2.1)

is the anisotropic Moreau envelope of f at y wrt φ, and

P φλ f(y) := arg min
x∈Rm

f(x) +
1

λ
φ(y − x), (2.2)

the anisotropic proximal mapping of f at y wrt φ.

We define anisotropic prox-boundedness generalizing [RW98, Definition 1.23]. It is used
as a sufficient condition for the uniform level-boundedness, see Definition 1.12, which
yields a sufficient condition for the outer semicontinuity of the proximal mapping.

Definition 2.4 (anisotropic prox-boundedness). Let φ ∈ Γ0(Rm) be an anisotropic
prox-potential. We say f : Rm → R is anisotropically prox-bounded relative to φ if there
exists λ > 0 such that for any ȳ ∈ Rm there exists ε > 0 and a constant β > −∞ such
that

eφλf(y) ≥ β, (2.3)

for any y with ‖y − ȳ‖ ≤ ε. The supremum of the set of all such λ is the threshold λf of
the anisotropic prox-boundedness.

When f is bounded from below it is anisotropically prox-bounded with threshold
λf =∞. Notably, in the classical case (when φ is quadratic) the definition can be made
minimalistic, cf. [RW98, Definition 1.23]: It suffices to assume the existence of some

ȳ ∈ Rm so that eφλf(ȳ) > −∞:

Anisotropic prox-boundedness is implied by classical prox-boundedness whenever φ is
strongly convex:
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Lemma 2.5. Let f : Rm → R be proper lsc and prox-bounded with threshold λf and let
φ ∈ Γ0(Rm) be an anisotropic prox-potential and strongly convex with constant θ > 0.
Then f is anisotropically prox-bounded with threshold λfθ.

Proof. Let f : Rm → R be proper lsc and prox-bounded with threshold λf . In view
of [RW98, Theorem 1.25] for any λ′ ∈ (0, λf ) and any ȳ ∈ Rm, the classical Moreau
envelope eλ′f of f is finite and continuous and therefore uniformly bounded from below
on a compact neighborhood of ȳ, i.e., there is ε > 0 and β > −∞ so that

eλ′f(y) ≥ β,

for all ‖y − ȳ‖ ≤ ε. By strong convexity of φ with constant θ > 0 and since φ is an
anisotropic prox-potential we have the following estimate:

1

λ′
φ(y − x) ≥ 1

λ′
φ(0) +

1

λ′
〈∇φ(0), y − x〉+

θ

2λ′
‖y − x‖2 =

θ

2λ′
‖y − x‖2. (2.4)

Then we have for λ := θλ′:

eφλf(y) = inf
x∈Rm

f(x) +
1

θλ′
φ(y − x) ≥ inf

x∈Rm
f(x) +

1

2λ′
‖y − x‖2 = eλ′f(y) ≥ β.

In the next lemma we establish the uniform level boundedness wrt x of the map
h : (x, y, u) 7→ f(x) + 1

λφ(y − x) − 〈u, x〉 from anisotropic prox-boundedness so that
Theorem 1.13 can be invoked to assert the outer semicontinuity Definition 1.11 of the
anisotropic proximal mapping and the continuity of the anisotropic Moreau envelope.
The lemma is stated in a more general form which involves an additional tilt perturbation
〈u, x〉, which turns out helpful in the proof of Theorem 2.11.

Lemma 2.6. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative
to the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 0. Then for any
λ ∈ (0, λf ), the function h : Rm × Rm × Rm → R, defined via

h(x, y, u) := f(x) +
1

λ
φ(y − x)− 〈u, x〉,

is level-bounded in x locally uniformly in (y, u).

Proof. We assume the contrary: More precisely let λ ∈ (0, λf ) and assume that h is not
level-bounded in x locally uniformly in (y, u). On the one hand, this means that there
exists (ȳ, ū) ∈ Rm × Rm, α ∈ R and sequences yν → ȳ, uν → ū and xν , ‖xν‖ → ∞ such
that

f(xν) +
1

λ
φ(yν − xν)− 〈uν , xν〉 ≤ α.

On the other hand, we know that

f(xν) +
1

λ′
φ(yν − xν) ≥ β,

for some λ′ > λ, with λ′ ∈ (0, λf ) and ν sufficiently large. Summing the inequalities
yields: (

1

λ
− 1

λ′

)
φ(yν − xν)− 〈uν , xν〉 ≤ α− β.
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We divide the inequality by ‖yν − xν‖ and obtain(
1

λ
− 1

λ′

)
φ(yν − xν)

‖yν − xν‖ +
〈uν , yν − xν〉
‖yν − xν‖ −

〈uν , yν〉
‖yν − xν‖ ≤

α− β
‖yν − xν‖ .

Applying Cauchy–Schwarz we obtain(
1

λ
− 1

λ′

)
φ(yν − xν)

‖yν − xν‖ −
‖uν‖‖yν − xν‖
‖yν − xν‖ − ‖u

ν‖‖yν‖
‖yν − xν‖ ≤

α− β
‖yν − xν‖ .

Passing ν →∞ we obtain due to the super-coercivity of φ:

∞ ≤ 0,

a contradiction.

Now we are ready to prove the following lemma invoking Theorem 1.13 which sets up
the aforementioned continuity properties:

Lemma 2.7. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative
to the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 0. Then for any

λ ∈ (0, λf ), P φλ f and eφλf have the following properties:

(i) P φλ f(y) 6= ∅ is compact for all y ∈ dom eφλf = dom f + domφ, whereas P φλ f(y) = ∅
for y /∈ dom eφλf .

(ii) The envelope eφλf is continuous relative to dom eφλf .

(iii) For any sequence yν → y∗ ∈ dom eφλf contained in dom eφλf and xν ∈ P φλ f(yν) we

have {xν}ν∈N is bounded and all its cluster points x∗ lie in P φλ f(y∗).

Proof. Obviously it holds for the domain that dom eφλf = dom f + domφ. In view of
Lemma 2.6 (with u = 0) we assert that h : (x, y) 7→ f(x) + 1

λφ(y − x) is level-bounded in

x locally uniformly in y. Then we may invoke Theorem 1.13 to assert that P φλ f(y) 6= ∅ is

compact for any y ∈ dom eφλf whereas P φλ f(y) = ∅ for y /∈ dom eφλf and in addition for

any y∗ ∈ dom eφλf and any sequence xν ∈ P φλ f(yν) with yν → y∗ contained in dom eφλf ,
that {xν}ν∈N is bounded. Furthermore, as φ is continuous relative to its domain, we

know for some x ∈ P φλ f(y) that h(x, ·) is continuous relative to x+ domφ containing y.

Through Theorem 1.13 all cluster points of the sequence xν ∈ P φλ f(yν) lie in P φλ f(y∗)
and eφλf(yν)→ eφλf(y∗) and therefore eφλf is continuous at y relative to dom eφλf . Since

this holds for all y ∈ dom eφλf , eφλf is continuous relative to dom eφλf .

2.2.2. Single-valuedness and Lipschitz continuity of the anisotropic proximal
mapping under prox-regularity

Our next goal is to establish the local single-valuedness and Lipschitz continuity of
the anisotropic proximal mapping under prox-regularity. We define prox-regularity of
functions, according to [RW98, Definition 13.27]:

Definition 2.8 (prox-regularity of functions). A function f : Rm → R is prox-regular at
x̄ for v̄ if f is finite and locally lsc at x̄ with v̄ ∈ ∂f(x̄), and there exist ε > 0 and r ≥ 0

25



Chapter 2. Generalized Moreau envelopes and proximal mappings: A local perspective

such that for all ‖x′ − x̄‖ < ε

f(x′) ≥ f(x) +
〈
v, x′ − x

〉
− r

2
‖x′ − x‖2, (2.5)

whenever ‖x− x̄‖ < ε, f(x)− f(x̄) < ε, v ∈ ∂f(x), ‖v − v̄‖ < ε. When this holds for all
v̄ ∈ ∂f(x̄), f is said to be prox-regular at v̄.

In addition to the single-valuedness of the prox, exploiting the Legendre property of φ,
we obtain an interesting expression for the proximal mapping in terms of the resolvent
(I + ∇φ∗ ◦ λT )−1 of the map ∇φ∗ ◦ λT where ∇φ∗ can be interpreted as a nonlinear
preconditioner for the classical proximal mapping of f with resolvent (I + λT )−1 and T
is an f -attentive localization of ∂f at x̄ for v̄.

To this end we propose to invoke the implicit function theorem for generalized equations,
Theorem 1.14, to prove the following proposition which is applicable in a more general
setup:

Proposition 2.9. Let f : Rm → R be proper lsc and prox-regular with constant r at x̄, a
point where f is finite, for v̄ ∈ ∂f(x̄). Let g : Rm × Rn → R be C2 on int(dom g). Let
(x̄, ȳ) ∈ int(dom g) and assume that {x̄} = arg minx∈Rm f(x)+g(x, ȳ) and v̄ = −∇xg(x̄, ȳ).
Furthermore assume that ∇2

xxg(x̄, ȳ) � σI with r < σ and that h : Rm × Rn × Rm → R
defined via h(x, y, u) := f(x) + g(x, y) − 〈u, x〉 is level-bounded in x locally uniformly
in (y, u). Then, the solution mapping y 7→ arg minx∈Rm f(x) + g(x, y) is a single-valued
Lipschitz map in a neighborhood of ȳ and satisfies

y 7→ arg min
x∈Rm

f(x) + g(x, y) = {x ∈ Rm : 0 ∈ T (x) +∇xg(x, y)},

where T is an f -attentive localization of ∂f at x̄ for v̄.

Proof. We show that y 7→ {x ∈ Rm : 0 ∈ ∂f(x) + ∇xg(x, y)} has a single-valued
Lipschitz localization around ȳ for x̄ which we denote by M . Then we prove that
arg minx∈Rm f(x) + g(x, y) = M(y) for y near ȳ. To this end we first show that u 7→
(T +∇xg(·, ȳ))−1(u) is a single-valued, Lipschitz localization of (∂f +∇xg(·, ȳ))−1 around
0 for x̄ where T is an f -attentive localization of ∂f at x̄ for v̄. The desired result is then
obtained invoking the generalized implicit function theorem.

Since h(x, y, u) is level-bounded in x locally uniformly in (y, u), in view of The-
orem 1.13 we know that for any sequence uν → 0 with infx∈Rm h(x, ȳ, uν) < ∞
there is xν ∈ arg minx∈Rm h(x, ȳ, uν) 6= ∅ with xν → x̄ = arg minx∈Rm h(x, ȳ, 0) and
infx∈Rm h(x, ȳ, uν)→ infx∈Rm h(x, ȳ, 0).

From applying Fermat’s rule Lemma 1.3 to the minimization problem above we know
that uν−∇xg(xν , ȳ) ∈ ∂f(xν) and for ν sufficiently large we have that ‖uν−∇xg(xν , ȳ)−
v̄‖ ≤ ε due to the continuity of ∇xg(xν , ȳ) on a neighborhood of x̄. In addition, we have
f(xν)→ f(x̄) as infx∈Rm h(x, ȳ, uν) = f(xν) + g(xν , ȳ)− 〈uν , xν〉 → infx∈Rm h(x, ȳ, 0) =
f(x̄) + g(x̄, ȳ). Overall this means that for any u sufficiently near 0 we have:

u ∈ S(x) +∇xg(x, ȳ),

for some x near x̄, where S is an f -attentive localization of ∂f at x̄ for v̄.

26



2.2. Anisotropic Moreau envelope and proximal mapping

Now pick any (x1, v1), (x2, v2) ∈ gphS. Then it follows from prox-regularity that

f(x2) ≥ f(x1) + 〈v1, x2 − x1〉 −
r

2
‖x2 − x1‖2, (2.6)

f(x1) ≥ f(x2) + 〈v2, x1 − x2〉 −
r

2
‖x1 − x2‖2. (2.7)

By assumption ∇2
xxg(x̄, ȳ) � σI, σ > r. Since ∇2

xxg(·, ȳ) is continuous and the smallest
eigenvalue map is continuous as well there is ε > 0 sufficiently small so that ∇2

xxg(x, ȳ) �
γI with r < γ < σ for ‖x − x̄‖ ≤ ε and therefore g(·, ȳ) is γ-strongly convex on that
neighborhood. Then we have for the chosen x1, x2

g(x2, ȳ) ≥ g(x1, ȳ) + 〈∇xg(x1, ȳ), x2 − x1〉+
γ

2
‖x2 − x1‖2, (2.8)

g(x1, ȳ) ≥ g(x2, ȳ) + 〈∇xg(x2, ȳ), x1 − x2〉+
γ

2
‖x1 − x2‖2. (2.9)

Summing the four inequalities yields for u1 := v1 +∇xg(x1, ȳ) and u2 := v2 +∇xg(x2, ȳ):

〈x1 − x2, u1 − u2〉 ≥ (γ − r)‖x1 − x2‖2. (2.10)

Consequently, the set-valued mapping x 7→ S(x)+∇xg(x, ȳ) is a (γ−r)-strongly monotone
localization of ∂f +∇xg(·, ȳ) at x̄ for 0.

Define F (x) = ∂f(x), H(x) := ∇xg(x, ȳ), G(x, y) := ∇xg(x, y) and e(x, y) := G(x, y)−
H(x). Then the above argument implies via Lemma 1.10 that for κ := (γ − r)−1 the
map (S +H)−1 is a single-valued, κ-Lipschitz localization of (F +H)−1 at 0 for x̄. Since
dom (S +H)−1 is a neighborhood of 0 the map (S +H)−1 is in particular a single-valued
localization of (F +H)−1 around 0 for x̄. By assumption g is C2 on int(dom g) 3 (x̄, ȳ).
Invoking [DR09, Exercise 1D.10] we obtain that

l̂ipy(G; (x̄, ȳ)) = lim sup
(x,y)→(x̄,ȳ)

|∇yG(x, y)| = lim
(x,y)→(x̄,ȳ)

|∇2
yxg(x, y)| = |∇2

yxg(x̄, ȳ)| <∞,

as well as

l̂ipx(e; (x̄, ȳ)) = lim sup
(x,y)→(x̄,ȳ)

|∇xe(x, y)| = lim
(x,y)→(x̄,ȳ)

|∇2
xxg(x, y)−∇2

xxg(x, ȳ)| = 0.

This implies that H is a strict estimator of G wrt x uniformly in y at (x̄, ȳ) ∈ int(domG)
with constant µ := 0. Invoking Theorem 1.14, we assert that y 7→ {x ∈ Rm : 0 ∈
G(x, y) + F (x)} has a single-valued, Lipschitz localization around ȳ for x̄ which is
denoted by M . It remains to show that ∅ 6= arg minx∈Rm f(x) + g(x, y) ⊂ M(y) and
M = {x ∈ Rm : 0 ∈ T (x) +∇xg(x, y)}, where T is an f -attentive localization of ∂f at x̄
for v̄.

Since h(x, y, u) is level-bounded in x locally uniformly in (y, u), in view of Theorem 1.13
we know that for any sequence yν → ȳ with infx∈Rm h(x, yν , 0) < ∞ there is xν ∈
arg minx∈Rm h(x, yν , 0) 6= ∅ with

xν → x̄ = arg min
x∈Rm

h(x, v̄, 0), inf
x∈Rm

h(x, yν , 0)→ inf
x∈Rm

h(x, ȳ, 0).

From applying Fermat’s rule Lemma 1.3 to the minimization problem above we know
that −∇xg(xν , yν) ∈ ∂f(xν) and for ν sufficiently large we have that ‖∇xg(xν , yν) −
∇xg(x̄, ȳ)‖ ≤ ε due to the continuity of ∇xg on a neighborhood of (x̄, ȳ). In addition,
we have f(xν)→ f(x̄) as infx∈Rm h(x, yν , 0) = f(xν) + g(xν , yν)→ infx∈Rm h(x, ȳ, 0) =
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f(x̄) + g(x̄, ȳ). Overall this means that for any y sufficiently near ȳ we have:

0 ∈ T (x) +∇xg(x, y),

for some x near x̄, where T is an f -attentive localization of ∂f at x̄ for v̄. This shows
that

∅ 6= arg min
x∈Rm

f(x) + g(x, y) ⊂ {x ∈ Rm : 0 ∈ T (x) +∇xg(x, y)}, (2.11)

where ∂f is replaced by T . Now let y sufficiently near ȳ and take some x ∈ {x ∈ Rm :
0 ∈ T (x) +∇xg(x, y)}. For ε in the definition of T sufficiently small and y sufficiently
near ȳ, since M is a localization of y 7→ {x ∈ Rm : 0 ∈ G(x, y) + F (x)} around ȳ for x̄,
we have x ∈M(y) and

∅ 6= arg min
x∈Rm

f(x) + g(x, y) ⊂ {x ∈ Rm : 0 ∈ T (x) +∇xg(x, y)} ⊂M(y), (2.12)

holds with equality since M is single-valued.

The next step in our proof of local Lipschitz continuity of the proximal mapping of f
under prox-regularity of f at (x̄, v̄) is to validate that x̄ = P φλ f(ȳλ) for ȳλ := x̄+∇φ∗(λv̄)
for some λ > 0. In other words this means that the anisotropic proximal mapping of f
at the perturbed point x̄+∇φ∗(λv̄) is x̄.

For that purpose we prove the following lemma:

Lemma 2.10. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative to
the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 0. In addition assume that
φ is very strictly convex. Assume that f is finite at x̄ and let v̄ ∈ ∂f(x̄) be a proximal
subgradient of f at x̄. Then the following inequality holds for all x ∈ Rm with x 6= x̄,
λ < min{1/r, λ−1

f } sufficiently small and ȳλ := x̄+∇φ∗(λv̄)

f(x) > f(x̄) + 〈v̄, x− x̄〉 − 1

λ
Dφ(ȳλ − x, ȳλ − x̄). (2.13)

Proof. Since v̄ is a proximal subgradient of f at x̄ we know there exist r > 0 and ε > 0
such that the subgradient inequality holds:

f(x) > f(x̄) + 〈v̄, x− x̄〉 − r

2
‖x− x̄‖2, (2.14)

for ‖x− x̄‖ < ε with x 6= x̄. Furthermore for λν > 0 with λν → 0 since ∇φ∗ is continuous
and since ∇φ(0) = 0, we have that ∇φ∗(λν v̄)→ 0 and therefore ȳλν := x̄+∇φ∗(λν v̄)→ x̄.
Since φ is very strictly convex we have in view of Lemma 1.20(iii)

µ

2
‖x− x̄‖2 ≤ Dφ(ȳλ − x, ȳλ − x̄) (2.15)

= Dφ(ȳλ−·)(x, x̄)

= Dφ(ȳλ − x,∇φ∗(λv̄))

= φ(ȳλ − x) + φ∗(λv̄)− λ〈v̄, ȳλ − x〉
= φ(ȳλ − x)− φ(ȳλ − x̄) + 〈∇φ(ȳλ − x̄), x− x̄〉 ,

for some µ > 0 and ‖x− x̄‖ < ε and ȳλ near 0. Inequalities (2.14) and (2.15) together
yield (2.13), which holds for any x 6= x̄ with ‖x − x̄‖ < ε and any λ ≤ µ/r sufficiently

28



2.2. Anisotropic Moreau envelope and proximal mapping

small. To show the assertion we prove that (2.13) also holds for any x with ‖x− x̄‖ ≥ ε for
λ < min{µ/r, λf} sufficiently small. By anisotropic prox-boundedness it holds for some

λ′ ∈ (0, λf ) with λ < λ′ and ȳλ ∈ dom f +domφ = dom eφλ′f that +∞ > eφλ′f(ȳλ) > −∞.
We have

f(x) ≥ eφλ′f(ȳλ)− 1

λ′
φ(ȳλ − x), (2.16)

for all x ∈ Rm showing, that the desired Inequality (2.13) is implied by

eφλ′f(ȳλ)− 1

λ′
φ(ȳλ − x) > f(x̄) + 〈v̄, x− x̄〉 − 1

λ
Dφ(ȳλ−·)(x, x̄),

which is equivalent to

(λ−1 − 1/λ′)Dφ(ȳλ−·)(x, x̄) > f(x̄)− eφλ′f(ȳλ) + (1− λ/λ′) 〈v̄, x− x̄〉+
1

λ′
φ(∇φ∗(λv̄)),

and (using Cauchy–Schwarz) implied by

(λ−1 − 1/λ′)
Dφ(ȳλ−·)(x, x̄)

‖x− x̄‖ >
f(x̄)− eφλ′f(ȳλ) + 1

λ′φ(∇φ∗(λv̄))

‖x− x̄‖ + (1− λ/λ′)‖v̄‖. (2.17)

Due to the super-coercivity of φ there is γ > 0 so that Inequality (2.17) holds for any x
with ‖x− x̄‖ > γ sufficiently large or for any ȳλ − x 6∈ domφ and any λ > 0 sufficiently
small. To make (2.17) also hold for ȳλ − x ∈ domφ with ε ≤ ‖x− x̄‖ ≤ γ we show that
Dφ(ȳλ − x, ȳλ − x̄) is uniformly bounded from below by a positive constant δ > 0. To
this end first observe that for such x we have Dφ(ȳλ − x, ȳλ − x̄) > 0. Now suppose
we can find sequences ε ≤ ‖xν − x̄‖ ≤ γ and λν ∈ [0, λf ] with ȳλν − xν ∈ domφ such
that Dφ(ȳλν − xν , ȳλν − x̄)→ 0, for ν →∞. Due to compactness we can potentially go
to a subsequence and assume xν → x∗ with ε ≤ ‖x∗ − x̄‖ ≤ γ and λν → λ∗ ∈ [0, λf ]
and ȳλν − x̄ = ∇φ∗(λν v̄) ∈ int(domφ). Since φ is Legendre, in view of [BB97, Theorem
3.9(iii)] this means x∗ = x̄, a contradiction. Therefore, Dφ(ȳλ − x, ȳλ − x̄) ≥ δ > 0, for
ȳλ − x ∈ domφ with ε ≤ ‖x − x̄‖ ≤ γ and λ ∈ [0, λf ]. As a consequence, the desired
result is implied by the following inequality

(λ−1 − 1/λ′)
δ

γ
>
f(x̄)− eφλ′f(ȳλ) + 1

λ′φ(∇φ∗(λv̄))

ε
+ (1− λ/λ′)‖v̄‖,

which holds for any λ > 0 sufficiently small, since in view of the continuity of the envelope
function, see Lemma 2.7, we have eφλ′f(ȳλν )→ eφλ′f(x̄) for λν → 0.

We are now able to prove the Lipschitz continuity of P φλ f = (I +∇φ∗ ◦ λT )−1 and
associated Moreau envelope along with expressions for the anisotropic resolvent and
Yosida regularization of T :

Theorem 2.11. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative
to the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 0. In addition assume
that φ is very strictly convex. Let f be finite and prox-regular at x̄ for v̄ ∈ ∂f(x̄). Then,
for all λ ∈ (0, λf ) sufficiently small there is a neighborhood of ȳλ := x̄ + ∇φ∗(λv̄) on
which:
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(i) P φλ f is a singled-valued, Lipschitz map such that x̄ = P φλ f(ȳλ) and

P φλ f = (I +∇φ∗ ◦ λT )−1, (2.18)

(ii) eφλf is Lipschitz differentiable with

∇eφλf = λ−1∇φ ◦ (I − P φλ f) =
(
∇φ∗ ◦ λI + T−1

)−1
, (2.19)

where T is an f-attentive localization of ∂f at x̄ for v̄. Indeed, this localization can be
chosen so that the set

Uλ := rge(I +∇φ∗ ◦ λT ),

serves for all λ > 0 sufficiently small as a neighborhood of ȳλ on which these properties
hold.

Proof. Let f be prox-regular at x̄ for v̄ with constants r ≥ 0 and ε > 0. In particular
this means that v̄ ∈ ∂f(x̄) is a proximal subgradient of f at x̄. In view of Lemma 2.10,
since f is proper lsc and anisotropically prox-bounded with threshold λf we have for
ȳλ = x̄+∇φ∗(λv̄):

f(x) > f(x̄) + 〈v̄, x− x̄〉 − 1

λ
Dφ(ȳλ − x, ȳλ − x̄),

for all x ∈ Rm with x 6= x̄ and λ < min{1/r, λf} sufficiently small. Expanding the
Bregman distance

1

λ
Dφ(ȳλ − x, ȳλ − x̄) =

1

λ
φ(ȳλ − x)− 1

λ
φ(ȳλ − x̄) +

1

λ
〈∇φ(ȳλ − x̄), x− x̄〉 (2.20)

we obtain since ∇φ(ȳλ − x̄) = λv̄

f(x) +
1

λ
φ(ȳλ − x) > f(x̄) +

1

λ
φ(ȳλ − x̄).

We define g(x, y) := λ−1φ(y − x). Then the inequality means that

P φλ f(ȳλ) = arg min
x∈Rm

f(x) + g(x, ȳλ) = {x̄}

is single-valued for any λ < min{r−1, λf} sufficiently small. In addition, for any λ > 0
sufficiently small we know that ‖ȳλ − x̄‖ = ‖∇φ∗(λv̄)‖ ≤ ε.

Since φ is very strictly convex, there is θ > 0 so that for any λ sufficiently small
∇2φ(v̄λ − x̄) � θ. This means ∇2

xxg(x̄, ȳλ) � σI with σ = θ/λ > r.
In view of Lemma 2.6 we have that for any λ ∈ (0, λf ), the function h : Rm×Rm×Rm →

R, defined via
h(x, y, u) := f(x) + g(x, y)− 〈u, x〉,

is level-bounded in x locally uniformly in (y, u).
Also note the relation v̄ = λ−1∇φ(ȳλ − x̄) = −∇xg(x̄, ȳλ). This verifies all the

assumptions in Proposition 2.9 from which we deduce that on a neighborhood of ȳλ we
have P φλ f is a single-valued, Lipschitz map such that x̄ = P φλ f(ȳλ) and for y near ȳλ

P φλ f(y) =

(
T − 1

λ
∇φ(y − ·)

)−1

(0) = (I +∇φ∗ ◦ λT )−1(y), (2.21)
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2.2. Anisotropic Moreau envelope and proximal mapping

where T is an f -attentive localization of ∂f at x̄ for v̄. Now take y with ‖y − ȳλ‖ ≤ ε
with ε > 0 sufficiently small. Then, there is x near x̄ so that y ∈ (I + ∇φ∗ ◦ λT )(x),
i.e., y ∈ rge(I + ∇φ∗ ◦ λT ). This means rge(I + ∇φ∗ ◦ λT ) is a neighborhood of ȳλ.
For any y = x + ∇φ∗(λv), with (x, v) in gphT , we have (I + ∇φ∗ ◦ λT )(x) 3 y, and
since (I +∇φ∗ ◦ λT )−1 is single-valued and Lipschitz we have x = (I +∇φ∗ ◦ λT )−1(y).
Therefore rge(I +∇φ∗ ◦ λT ) is a neighborhood of ȳλ on which the claimed properties
hold.

(ii) Choose y, y′ ∈ Uλ and x = P φλ f(y), x′ = P φλ f(y′). Then, by Fermat’s rule
Lemma 1.3 it holds v ∈ ∂f(x) such that v = λ−1∇φ(y− x). Furthermore, by assumption
the subgradient inequality (2.5) holds true at (x, v) ∈ gphT . This means in particular
that v is a proximal subgradient of f at x and in particular v ∈ ∂̂f(x). Thus (and using
the differentiability of φ on domφ) one can derive

eφλf(y′)− eφλf(y) = f(x′)− f(x) +
1

λ
φ(y′ − x′)− 1

λ
φ(y − x)

≥
〈
v, x′ − x

〉
+ o(‖x′ − x‖) +

1

λ

〈
∇φ(y − x), (y′ − y)− (x′ − x)

〉
+ o(‖(y′ − y)− (x′ − x)‖). (2.22)

Using the conclusion from (i) that y 7→ x is a Lipschitz map on Uλ there is some α such
that

‖x′ − x‖ ≤ α‖y′ − y‖.
This shows that o(‖(y′ − y) − (x′ − x)‖) + o(‖x′ − x‖) = o(‖y′ − y‖) and we get from
(2.22) that

eφλf(y′)− eφλf(y)− 1

λ

〈
∇φ(y − x), y′ − y

〉
≥ o(‖y′ − y‖). (2.23)

On the other hand, we have

eφλf(y′) = inf
x′′∈Rm

f(x′′) +
1

λ
φ(y′ − x′′) ≤ f(x) +

1

λ
φ(y′ − x). (2.24)

Due to the differentiability of φ, we have

φ(y′ − x) = φ(y − x) +
〈
∇φ(y − x), y′ − y

〉
+ o(‖y′ − y‖). (2.25)

This yields

eφλf(y′)− eφλf(y) ≤ f(x) +
1

λ
φ(y′ − x)− f(x)− 1

λ
φ(y − x)

=
1

λ

〈
∇φ(y − x), y′ − y

〉
+ o(‖y′ − y‖). (2.26)

Combining (2.23) and (2.26), we conclude that eφλf is differentiable at y ∈ Uλ and

λ−1∇φ(y − x) = ∇eφλf(y).

We have that
∇eφλf = λ−1∇φ ◦

(
I − (I +∇φ∗ ◦ λT )−1

)
.

In view of the inverse-resolvent identity [RW98, Lemma 12.14] we have that

I − (I +∇φ∗ ◦ λT )−1 =
(
I + (∇φ∗ ◦ λT )−1

)−1
. (2.27)
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Note the equivalences:

z ∈
(
I + (∇φ∗ ◦ λT )−1

)−1
(y)

⇐⇒ y − z ∈ (∇φ∗ ◦ λT )−1(z)

⇐⇒ λ−1∇φ(z) ∈ T (y − z)
⇐⇒ y − z ∈ T−1(λ−1∇φ(z)).

We introduce the substitution v = λ−1∇φ(z) ⇐⇒ z = ∇φ∗(λv):

y − z ∈ T−1(λ−1∇φ(z))

⇐⇒ y ∈
(
∇φ∗ ◦ λI + T−1

)
(v)

⇐⇒ x ∈
(
∇φ∗ ◦ λI + T−1

)−1
(y)

⇐⇒ λ−1∇φ(z) ∈
(
∇φ∗ ◦ λI + T−1

)−1
(y).

Overall we obtain(
I + (∇φ∗ ◦ λT )−1

)−1
= ∇φ∗ ◦ λ

(
∇φ∗ ◦ λI + T−1

)−1
,

and therefore
∇eφλf =

(
∇φ∗ ◦ λI + T−1

)−1
,

as claimed. Furthermore, since φ is very strictly convex, ∇φ is locally Lipschitz and in
particular Lipschitz on every convex compact subset of domφ. Since (I +∇φ∗ ◦ λT )−1

is Lipschitz on its domain as well we obtain that ∇eφλf is Lipschitz relative to Uλ as
claimed.

If f is hypoconvex and φ strongly convex the previous result can be globalized:

Corollary 2.12. Let f : Rm → R be proper lsc and hypoconvex with constant r ≥ 0
and let φ ∈ Γ0(Rm) be an anisotropic prox-potential and let φ ∈ C2 be strongly convex
such that ∇2φ(x) � θI > 0, for any x ∈ domφ. Then, for any 0 < λ < θ/r it holds that

P φλ f is single-valued and locally Lipschitz on dom f + domφ and eφλf is differentiable on

dom f + domφ with ∇eφλf locally Lipschitz. Furthermore the following identities hold:

P φλ f = (I +∇φ∗ ◦ λ∂f)−1

as well as
∇eφλf =

(
∇φ∗ ◦ λI + (∂f)−1

)−1
.

Proof. Since f is hypoconvex with constant r ≥ 0 we know that f is in particular
prox-bounded with some threshold λf ≥ 1/r. Since φ is strongly convex, in view of
Lemma 2.5, f is also anisotropically prox-bounded with threshold θλf . Since f is proper
lsc and hypoconvex it is in particular prox-regular on dom f with uniform constants r
and ε = +∞. In view of the proof of Theorem 2.11 we obtain the claimed formulas,
where T is replaced by ∂f , wich are valid on Uλ = rge(I +∇φ∗ ◦ λ∂f). Let y ∈ Uλ. I.e.,
there exists x ∈ Rm so that y = x + ∇φ∗(λv), for some v ∈ ∂f(x) which means that
0 ∈ ∂f(x)−λ−1∇φ(z) for x+ z = y implying that y ∈ dom f + domφ for x ∈ dom f and

z ∈ domφ. In view of Lemma 2.7 for any y ∈ dom f + domφ there is x ∈ P φλ f(y) such
that 0 ∈ ∂f(x)− λ−1∇φ(y − x). This implies that y ∈ rge(I +∇φ∗ ◦ λ∂f) and therefore
Uλ = dom f + domφ.
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2.2. Anisotropic Moreau envelope and proximal mapping

2.2.3. Anisotropic prox-regularity: Beyond local strong convexity

Classical prox-regularity, intuitively, involves quadratic lower bounds with uniform curva-
ture which exist relative to the domain of a graphical localization of the subdifferential
at a certain reference point. In the previous sections, we therefore chose φ to be locally
strongly convex and assumed the constant of local strong convexity of φ to match the
curvature in the definition of prox-regularity. It is tempting to replace these quadratic
lower bounds with lower bounds generated by the Legendre function φ that is used in
the anisotropic proximal mapping. We conjecture, that without local strong convexity of
φ the scaling rφ used in the previous section is not ideal, in particular in the context
of Lemma 2.10. Instead the epi-scaling (r ? φ)(x) = rφ(x/r), for r > 0, should be used.
For simplicity, for the remainder of this section we will instead choose the scaling λ−1 to
be fixed. For notational convenience we hide the scaling within φ. This leads us to the
following generalization of prox-regularity which yields a sharp sufficient condition for
the single-valuedness and existence of a resolvent expression of the anisotropic proximal
mapping beyond local strong convexity:

Definition 2.13 (anisotropic prox-regularity). Let φ ∈ Γ0(Rm) be an anisotropic prox-
potential. A function f : Rm → R is anisotropically prox-regular relative to φ at x̄ for v̄
if f is finite and locally lsc at x̄ with v̄ ∈ ∂f(x̄), and there exists ε > 0 such that for all
‖x′ − x̄‖ < ε

f(x′) ≥ f(x)− φ(x− x′ +∇φ∗(v)) + φ(∇φ∗(v)), (2.28)

whenever ‖x− x̄‖ < ε, f(x)− f(x̄) < ε, v ∈ ∂f(x), ‖v − v̄‖ < ε. When this holds for all
v̄ ∈ ∂f(x̄), f is said to be anisotropically prox-regular at x̄.

The anisotropic subgradient inequality (2.28) generalizes the subgradient inequal-
ity (2.5) from classical prox-regularity when φ = (1/2)‖ · ‖2 and one expands the square
in φ(x−x′+∇φ∗(v)). Indeed, when the inequality holds strictly at x ∈ Rm for all x′ 6= x

for some v ∈ ∂f(x) it implies that the anisotropic proximal mapping P φ1 f of f at the

perturbed point y := x+∇φ∗(v) equals x = P φ1 f(y).
In the next proposition we show that for f : Rm → R proper lsc and anisotropically

prox-bounded, anisotropic prox-regularity is equivalent to the single-valuedness of the
anisotropic proximal mapping and the existence of a resolvent expression which involves
a graphical localization of ∂f .

Theorem 2.14. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative
to the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 1. Let f be finite at x̄

and v̄ ∈ ∂f(x̄) such that {x̄} = P φ1 f(ȳ). Then the following statements are equivalent.

(i) f is anisotropically prox-regular relative to φ at x̄ for v̄ such that the subgradient
inequality (2.28) holds strictly for x′ 6= x with x′, x near x̄.

(ii) For all (x, y), (x′, y′) ∈ gph(I+∇φ∗ ◦T ) with x′ 6= x the following anisotropic strict
monotonicity inequality holds true:

0 < φ(y − x′)− φ(y − x) + φ(y′ − x)− φ(y′ − x′). (2.29)

(iii) P φ1 f(y) is single-valued on a neighborhood of ȳ = x̄+∇φ∗(v̄) such that for any y
in that neighborhood

P φ1 f(y) = (I +∇φ∗ ◦ T )−1(y),
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where T is an f -attentive localization of ∂f at x̄ for v̄.

Proof. (i) =⇒ (ii): Choose (x, y), (x′, y′) ∈ gph(I +∇φ∗ ◦ T ) with x′ 6= x. This means
there exist v ∈ T (x) and v′ ∈ T (x′) such that y = x+∇φ∗(v) and y′ = x′ +∇φ∗(v′).

By assumption, we have

f(x′) > f(x)− φ(y − x′) + φ(y − x),

and
f(x) > f(x′)− φ(y′ − x) + φ(y′ − x′).

Summing the two we obtain:

0 < φ(y − x′)− φ(y − x) + φ(y′ − x)− φ(y′ − x′),

as desired.

(ii) =⇒ (iii): Let f be anisotropically prox-regular at x̄ for v̄ with ε > 0 such that
the subgradient inequality (2.28) holds strictly for x′ 6= x with x′, x near x̄.

By assumption P φ1 f(ȳ) = x̄ is single-valued.

In view of Lemma 2.7 we know that for any sequence yν → ȳ for ν sufficiently large
yν ∈ dom eφ1f there is xν ∈ P φ1 f(yν) 6= ∅ with xν → x̄ and eφ1f(yν) → eφ1f(ȳ). From
applying Fermat’s rule Lemma 1.3 to the minimization problem above we know that
∇φ(yν − xν) ∈ ∂f(xν) and for ν sufficiently large we have that ‖∇φ(yν − xν)− v̄‖ ≤ ε
due to the continuity of φ on a neighborhood of ȳ− x̄. In addition, we have f(xν)→ f(x̄)

as eφ1f(yν) = f(xν) + φ(yν − xν)→ eφ1f(ȳ) = f(x̄) + φ(ȳ − x̄). Overall this means that

for any y sufficiently near ȳ we have for any x ∈ P φ1 f(y):

0 ∈ T (x)−∇φ(y − x),

where T is an f -attentive localization of ∂f at x̄ for v̄. Therefore we have

∅ 6= P φ1 f(y) ⊂
(
T −∇φ(y − ·)

)−1
(0) = (I +∇φ∗ ◦ T )−1(y). (2.30)

Suppose that (I +∇φ∗ ◦ T )−1(y) is not at most a singleton. This means there exists
x ∈ (I + ∇φ∗ ◦ T )−1(y) and x′ ∈ (I + ∇φ∗ ◦ T )−1(y) with x′ 6= x. Thus there exist
v ∈ T (x) and v′ ∈ T (x′) such that y = x+∇φ∗(v) and y = x′ +∇φ∗(v′). Applying the
anisotropic monotonicity inequality (2.29) we obtain since x′ 6= x

0 < φ(y − x′)− φ(y − x) + φ(y − x)− φ(y − x′) = 0,

a contradiction. This means (I +∇φ∗ ◦ T )−1(y) is at most a singleton and therefore the
inclusion above holds with equality

∅ 6= P φ1 f(y) =
(
T +∇φ(y − ·)

)−1
(0) = (I +∇φ∗ ◦ T )−1(y),

and (I +∇φ∗ ◦ T )−1 is single-valued.

(iii) =⇒ (i): Let the conditions in (iii) hold. Let (x, v) ∈ gphT and define y = x+
∇φ∗(v) where we choose ‖x−x̄‖ ≤ ε and ‖v−v̄‖ ≤ ε with ε > 0 sufficiently small such that

y sufficiently near ȳ. By assumption we have for y that P φ1 f(y) = (I+∇φ∗ ◦T )−1(y) = x.
This means that

f(x′) + φ(y − x′) > f(x) + φ(y − x),
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for all x′ 6= x. Substituting the relation y = x+∇φ∗(v) this means

f(x′) > f(x)− φ(x+∇φ∗(v)− x′) + φ(∇φ∗(v)),

which holds in particular for any ‖x′ − x̄‖ ≤ ε and the conclusion follows.

We shall also prove the local C1 property of the anisotropic Moreau envelope along
with an expression of its gradient in terms of the anisotropic Yosida regularization of T
under anisotropic prox-regularity:

Theorem 2.15. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative
to the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 1. In the situation of

Theorem 2.14 assume that one of the three equivalent conditions holds true. Then eφ1 is
continuously differentiable on a neighborhood of ȳ = x̄+∇φ∗(v̄) with

∇eφ1f = ∇φ ◦ (I − P φ1 f) =
(
∇φ∗ + T−1

)−1
. (2.31)

Since the negative anisotropic Moreau envelope can be understood as a pointwise
maximum f(x) = maxt∈T ft(x) over a collection of C1-functions ft, we will invoke [RW98,
Theorem 10.31] which shows that the limiting subdifferential of such a function can
be written in terms the convex hull of the gradients of the active C1-pieces: ∂f(x) =
con{∇ft(x) : t ∈ T (x)} for T (x) = {t ∈ T : ft(x) = f(x)}. This is completely analogous
to the subdifferential of a convex function which contains the slopes of all lower supporting
affine functions. Subsmoothness is defined according to [RW98, Definition 10.29]:

Definition 2.16 (subsmooth functions). A function f : O → R, where O is an open set
in Rm, is said to be lower-C1 on O, if on some neighborhood V of each x̄ ∈ O there is a
representation

f(x) = max
t∈T

ft(x), (2.32)

in which the functions ft are of class C1 on V and the index set T is a compact space such
that ft(x) and ∇ft(x) depend continuously not just on x ∈ V but jointly on (t, x) ∈ T ×V .
More generally, f is lower-Ck on O if such a local representation can be arranged in
which the functions ft are of class Ck, with ft(x) and all its partial derivatives through
order k depending continuously not just on x but on (t, x). Similarly, upper-Ck functions
are defined in terms of a minimum in place of a maximum. Thus, f is upper-Ck when
−f is lower-Ck.

We prove the subsmoothness property of the anisotropic Moreau envelope along with
a representation in terms of the anisotropic proximal mapping. In contrast to the other
statements in this section we treat the scaling λ explicitly:

Lemma 2.17. Let f : Rm → R be proper lsc and anisotropically prox-bounded relative to
the anisotropic prox-potential φ ∈ Γ0(Rm) with threshold λf > 0. Then for any λ ∈ (0, λf )

the envelope function −eφλf is lower-C1 with representations

−eφλf = max
x∈Z

h(x, ·), P φλ f = arg max
x∈Z

h(x, ·),

on V ⊂ dom f + domφ being a neighborhood of ȳ ∈ dom f + domφ, h(x, y) := −f(x)−
λ−1φ(y−x) and P φλ f(y) ⊂ Z, with both h(x, y), ∇yh(x, y) = −(1/λ)∇φ(y−x), depending
continuously on (x, y) ∈ Z × V .
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Proof. Let λ ∈ (0, λf ) and ȳ ∈ dom f + domφ. Let V ⊂ dom f + domφ be a compact

neighborhood of ȳ. Choose Z := {x ∈ P φλ f(y) : y ∈ V }. We have arg maxx∈Z h(x, y) =

P φλ f(y) and due to Lemma 2.7(i) we have

−eφλf(y) = max
x∈Z

h(x, y).

Furthermore Z is closed. Otherwise there is a sequence xν → x with xν ∈ P φλ f(yν)
for some yν ∈ V with x /∈ Z. Taking a convergent subsequence yνj → y ∈ V (which

exists as V is bounded) we know from Lemma 2.7(iii) that xνj → x ∈ P φλ f(y) ⊂ Z,
a contradiction. Z is also bounded, hence compact. Otherwise there is a sequence
‖xν‖ → ∞ with xν ∈ P φλ f(yν) for some yν ∈ V . However, going to a convergent

subsequence yνj → y ∈ V we have for xνj ∈ P φλ f(yνj ) using Lemma 2.7(iii) that {xνj}ν∈N
is bounded, a contradiction.

Next we show that f becomes continuous over the compact space Z. Equivalently
this means h is continuous over Z × V . We assume the contrary: Suppose that f is not
continuous over Z. This means there is a sequence {xν}ν∈N ⊂ Z with xν → x∗ ∈ Z such

that f(xν) 6→ f(x∗). For any xν ∈ Z there exists yν ∈ V such that xν ∈ P φλ f(yν) and

f(xν) ≤ f(xν) + λ−1φ(yν − xν) = eφλf(yν) ≤ γ, for some ∞ > γ, since eφλf is continuous
and V is compact. Since f is proper, lsc it is also uniformly bounded from below over
Z: −∞ < δ ≤ f(xν). This means we can find a subsequence indexed by νj such that
f(xνj ) → f∗ ≥ f(x∗) + ε, with ε > 0. Taking another subsequence if necessary we

can ensure that yνj → y∗ and x∗ ∈ P φλ f(y∗). By continuity of the envelope function,

cf. Lemma 2.7(ii), we then have eφλf(yνj ) = f(xνj ) + λ−1φ(yνj − xνj ) → eφλf(y∗) =
f(x∗) + λ−1φ(y∗ − x∗). Hence, along that subsequence f(xνj )→ f(x∗), a contradiction.

Since h(x, ·) is C1 both h(x, y) and ∇yh(x, y) = −(1/λ)∇φ(y−x), depend continuously

jointly on (x, y) ∈ Z × V . Hence −eφλf is lower-C1.

We are now ready to prove Theorem 2.15 invoking [RW98, Theorem 10.31] and the
single-valuedness of the anisotropic proximal mapping from Theorem 2.14:

Proof of Theorem 2.15. In view of Lemma 2.17 and invoking [RW98, Theorem 10.31] we
obtain that

∂(−eφ1f)(y) = con
{
∇yh(x, y) : x ∈ P φ1 f(y)

}
= −∇φ(y − conP φ1 f(y)). (2.33)

Due to the assumptions we can invoke Theorem 2.14 and assert that P φ1 f is singled-valued

and continuous at y near ȳ = x̄+∇φ∗(v̄). This means that ∂(−eφ1f) is single-valued and

continuous around ȳ. Through [RW98, Corollary 9.19] we obtain that −eφ1 is C1 around
ȳ with

∇φ(y − P φ1 f(y)) = ∇eφ1f(y).

The identity for the anisotropic Yosida regularization follows along the same lines as in
the proof of Theorem 2.11.

It is tempting to study the case when anisotropic prox-regularity holds globally and
strictly for all x ∈ Rm and all y ∈ ∂f(x) with a uniform constant ε =∞. According to
the theorem above this is equivalent to the global single-valuedness and existence of a
resolvent expression of the anisotropic proximal mapping.
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Actually, in the quadratic case this condition is equivalent to the hypoconvexity of the
classical proximal mapping. In [RW98] such functions are also called λ-proximal [RW98,
Example 1.44]. In Section 2.3 we will consider the Bregman proximal mapping and
obtain that the corresponding globalized Bregmanian subgradient inequality is equivalent
to relative hypoconvexity, see Proposition 2.45. The characterization of the class of
functions for which the anisotropic subgradient inequality holds in the aforementioned
global sense is interesting but future work: We conjecture, that there is a close connection
to generalized conjugacy in close analogy to the proximal transform, see Definition 3.3 in
Chapter 3, originally due to [RW98, Example 11.64]. Related questions are also addressed
in [CJT17].

2.2.4. A nonconvex feasibility problem with anisotropic proximal mapping

In this section we showcase a simple toy example for using the anisotropic proximal
mapping in an algorithm. We consider the problem of computing a matrix Y ∈ Rn×m
that has rank r and satisfies a set of linear equality constraints. Mathematically, such
a problem can be cast as a feasibility problem where one seeks to find a matrix Y ∈
C ∩ D ⊂ Rn×m for C := {Y ∈ Rn×m : A(Y ) = B} for a linear map A : Rn×m → Rd and
D := {Y ∈ Rn×m : rankY = r}. Such an experiment has been considered previously for
instance in [LP16; Och18]. The problem is traditionally formulated as an optimization
problem where the objective eλf + g is the sum of the quadratic Euclidean distance
function eλf(Y ) = infX∈C ‖X − Y ‖2 to the set C for f := ιC and the indicator function
g = ιD of the set D. Projected gradient descent then results in the standard alternating
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Figure 2.1.: Feasibility problem. Comparison of the alternating projection method and
PALM for anisotropic φ as defined in (2.34). Achieved precision vs. required
iterations is plotted in log-scale for the y-axis.

Table 2.1.: Feasibility problem. Precision vs. required iterations. The values are averaged
over 200 randomly generated matrices. It can be seen that PALM with
anisotropic φ performs consistently better than alternating projection. The
dash “–” indicates that the algorithms did not reach the desired precision
after a maximum number of 800 iterations.

Iterations

Precision 10−2 10−4 10−6 10−8 10−10

PALM, φ = tan((·)2) 119 193 268 344 421
Alternating Projection 244 403 569 – –
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projection method:
Y t+1 = projC(projD(Y t)).

Instead, we reformulate the problem as an optimization problem of the form

mimize
{
eφλf(Y ) + g(Y ) : Y ∈ Rn×m

}
.

We replace the indicator function of the set D with its anisotropic Moreau envelope for
the separable anisotropic prox-potential

φ(X) :=

n∑
i=1

m∑
j=1

η tan
X2
ij

η2
, (2.34)

where we define tan(x2) = +∞, if x 6∈ (−
√
π/2,

√
π/2). Here, η is a scaling parameter

chosen sufficiently large, so that Y 0 ∈ domφ. Then we can equivalently rewrite the
problem as

min
X,Y ∈Rn×m

ιD(X) + φ(Y −X) + ιC(Y ). (2.35)

We solve the problem via proximal alternating linearized minimization (PALM) [BST14]
where in each iteration we replace the coupling term φ(Y −X) with a proximal lineariza-
tion:

Xt+1 := arg min
X∈Rn×m

ιD(X)− 〈∇φ(Y t −Xt), Xt − Y t〉+
1

2σ
‖X −Xt‖2 (2.36)

Y t+1 := arg min
Y ∈Rn×m

ιC(Y ) + 〈∇φ(Y t −Xt+1), Xt − Y t〉+
1

2τ
‖Y − Y t‖2. (2.37)

In each iteration τ, σ are chosen sufficiently small (via a line search), to guarantee a
sufficient descent and, at the same time that Y t−Xt+1, Y t+1−Xt+1 ∈ domφ. This can be
guaranteed (locally) via the continuity of the Euclidean projections under prox-regularity
and the openness of domφ. For a numerical evaluation we consider the setting in [Och18],
i.e., we randomly generate matrices A ∈ Rd×nm, R1 ∈ Rn×r R2 ∈ Rr×m and define
Y 0 := R1R2, so that it has rank r and B := AY 0. This ensures that Y 0 ∈ C ∩ D 6= ∅.
We manually choose m = 110, n = 100, r = 4, d = 150. The entries of the matrices are
normal distributed and normalized to [−1, 1]. We compare the alternating projection
method with PALM using the anisotropic prox-potential (2.34). The results are shown
in Table 2.1 and for a representative example in Figure 2.1. We believe that in some
situations the nonlinear preconditioner ∇φ∗ helps to improve the condition of the problem.
Regretfully, we currently do not have a systematic and theoretically justified strategy to
obtain good choices for φ which provably lead to better performance than plain quadratics.
Indeed, the surprisingly good performance of PALM for the tan potential is rather due
to a combination with a fine-tuned line search which accepts very large steps in our
situation. A theoretical justification which for instance involves or expands upon linear
regularity of sets is an interesting direction for future research.
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2.3. Bregman–Moreau envelope and proximal mapping

2.3.1. Definition and continuity properties

In this section we consider the Bregman proximal mapping and associated Bregman
envelope function. Like the anisotropic proximal mapping the Bregman proximal mapping
is a generalization of the Euclidean proximal mapping. In the convex setting [CR13]
has revealed an interesting connection between the two via a generalization of Moreau’s
identity [Mor62; Mor65]. The Bregman proximal mapping is obtained by replacing the
quadratic penalty ‖x− y‖2 in the Euclidean proximal mapping with a Bregman distance
D(x, y), see Definition 1.19. In contrast to the anisotropic proximal mapping, considered
in Section 2.2, which yields a formulation based on inf-convolution, the Bregmanian
formulation is based on inf-projection:

inf
x∈Rm

f(x) +D(x, y).

Since Bregman distances are asymmetric in general, in accordance with [BCN06], we
will, depending on the order of arguments in D, distinguish a left (x first) and a right (y
first) Bregman proximal mapping. In contrast to the left Bregman proximal mapping
which, for convex f , is a convex minimization problem, the right Bregman proximal
mapping results in a generally nonconvex minimization problem even for convex f , see
Example 2.62.

The Bregman proximal mapping was studied extensively in the convex setting, see, e.g.,
[BCN06; BDL18] and more recently in the nonconvex setting under relative hypoconvexity
[KS12]. Relative hypoconvexity of a function f , i.e., λf + φ is convex for some λ > 0
sufficiently small, is a generalization of Euclidean hypoconvexity, i.e., λf +‖ · ‖2 is convex.
Like its Euclidean counterpart it is a sufficient condition for the single-valuedness of the
proximal mapping and the existence of a resolvent identity. However, not every function
is (relatively) hypoconvex. For instance a function that is hypoconvex must have a convex
domain. Expanding upon existing related work we introduce the concept of relative
prox-regularity which also holds for functions which are not relatively hypoconvex. Like
Euclidean prox-regularity it is a local condition and yields a sufficient condition for the
local single-valuedness of the Bregman proximal mapping and the existence of a Bregman
resolvent expression which holds locally in terms of a graphical localization of the limiting
subdifferential.

More formally, we define the left Bregman–Moreau envelope and proximal mapping
with step-size parameter λ > 0 in accordance with [KS12]. In addition we allow f to be
possibly improper.

Definition 2.18 (left Bregman–Moreau envelope and proximal mapping). Let φ ∈ Γ0(Rm)
be Legendre and f : Rm → R be extended real-valued (and possibly improper). For some
λ > 0 and y ∈ Rm we define the left Bregman–Moreau envelope (in short: left envelope)
of f at y as

←−envφλf(y) = inf
x∈Rm

f(x) +̇
1

λ
Dφ(x, y), (2.38)

and the associated left Bregman proximal mapping (in short: left prox) of f at y as

←−−proxφλf(y) = arg min
x∈Rm

f(x) +̇
1

λ
Dφ(x, y). (2.39)
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From the definition, it is clear that dom(←−−proxφλf) ⊂ int(domφ) and dom(←−envφλf) ⊂
int(domφ). The arithmetic of extended real values, see Section 1.2.2, ensures well-
definedness for improper functions: In particular we have

←−envφλf(y) = +∞, ←−−proxφλf(y) = ∅,

whenever y 6∈ int(domφ) even in case there is x ∈ domφ with f(x) = −∞.

The set ←−−proxφλf(y) is possibly empty in the nonconvex setting. The following prox-
boundedness condition, which we adapt from [KS12, Definition 2.3], comes in handy to
guarantee that the Bregman proximal mapping is nonempty. In addition, this condition
guarantees that the envelope function is continuous relative to int(domφ) and the
proximal mapping is outer semicontinuous, see Definition 1.11, relative to int(domφ).

Definition 2.19 (relative prox-boundedness). Let φ ∈ Γ0(Rm) be Legendre and super-
coercive and f : Rm → R be extended real-valued. We say f is prox-bounded relative to φ
if there exists λ > 0 such that ←−envφλf(y) > −∞ for some y ∈ int(domφ). The supremum
of the set of all such λ is the threshold λf of the prox-boundedness, i.e.

λf = sup
{
λ > 0 : ∃ y ∈ int(domφ) : ←−envφλf(y) > −∞

}
.

We complement the results of [KS12] by stating equivalent characterizations of relative
prox-boundedness. To this end, we first prove the following lemma, whose proof is
analogous to [RW98, Exercise 1.14].

Lemma 2.20. Let φ : Rm → R be proper, lsc and coercive with domφ = Rm and let
f : Rm → R be proper and lsc. Then we have the identity

lim inf
‖x‖→∞

f(x)

φ(x)
= sup {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} .

Proof. Note that since φ is coercive, we have φ(x) → ∞, whenever ‖x‖ → ∞. Let
γ̄ := lim inf‖x‖→∞ f(x)/φ(x) and

γ ∈ Γ := {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} .

This means that there exists β such that f(x) ≥ γφ(x) + β, for all x ∈ Rm. Dividing by
φ(x) > 0 which holds for ‖x‖ > t, for some t > 0, and taking the lim inf on both sides
yields lim inf‖x‖→∞ f(x)/φ(x) ≥ γ + 0, meaning that γ̄ ≥ γ. Now let γ ∈ R with γ < γ̄.
Suppose that for any compact level set ∅ 6= lev≤r φ := {x ∈ Rm : φ(x) ≤ r} with r > 0
there exists x ∈ (lev≤r φ)c 6= ∅ in the complement of lev≤r φ, which is nonempty due to
the coercivity of φ, with f(x) < γφ(x). In particular this means that there is a sequence
xν ∈ Rm with φ(xν)→∞ and f(xν)/φ(xν) < γ. Taking the lim inf on both sides implies
due to the coercivity of φ that

γ̄ = lim
r→∞

(
inf
r<‖x‖

f(x)

φ(x)

)
≤ lim sup

ν→∞

f(xν)

φ(xν)
≤ γ < γ̄,

which is a contradiction. This means that there is r > 0 such that for any x ∈ (lev≤r φ)c 6=
∅ we have f(x) ≥ γφ(x). By assumption h := f − γφ is proper lsc. In view of [RW98,
Corollary 1.10], h is uniformly bounded from below on lev≤r φ, showing that for some
β ∈ R sufficiently small, it holds f(x) ≥ γφ(x) + β for any x ∈ lev≤r φ. Overall we have
f(x) ≥ γφ(x) + β, for all x ∈ Rm and we have γ ∈ Γ. This shows that we can find a
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sequence {γν}ν∈N ⊂ Γ with γν < γ̄ and γν → γ̄ showing that sup Γ ≥ γ̄. Overall we have
γ̄ = sup Γ.

The following proposition adapts [RW98, Exercise 1.24] to a Bregmanian setting where
we also account for possibly imporper functions.

Proposition 2.21 (characterization of relative prox-boundedness). Let φ ∈ Γ0(Rm)
be Legendre and super-coercive and let f : Rm → R be extended real-valued. Then, the
following properties are equivalent:

(i) f is prox-bounded relative to φ.

(ii) for some r > 0 the function f +̇ rφ is uniformly bounded from below on Rm.

If, furthermore, domφ = Rm and f is proper and lsc, the above properties are equivalent
to

lim inf
‖x‖→∞

f(x)

φ(x)
> −∞. (2.40)

Proof. (i) =⇒ (ii): Let f be prox-bounded relative to φ with threshold λf > 0. This
means there is λ ∈ (0, λf ) and y ∈ int(domφ) such that

←−envφλf(y) = inf
x∈Rm

f(x) +̇
1

λ
φ(x)− 1

λ
φ(y)− 1

λ
〈∇φ(y), x− y〉 > −∞.

This implies that there is β > −∞ and we have for r > 1/λ

f(x) +̇ rφ(x) ≥ β + (r − λ−1)φ(x)− 1

λ
〈∇φ(y), x〉+

1

λ
φ(y) +

1

λ
〈∇φ(y), y〉.

Since φ ∈ Γ0(Rm) is super-coercive we know that (r − λ−1)φ(x) − 〈λ−1∇φ(y), x〉 is
uniformly bounded from below and the assertion follows.

(ii) =⇒ (i): Let r > 0. Then there exists β ∈ R such that f(x) +̇ rφ(x) ≥ β for any
x ∈ Rm. Adding −rφ(∇φ∗(0)) to both sides of the inequality yields

f(x) +̇ rDφ(x,∇φ∗(0)) ≥ β − rφ(∇φ∗(0)),

for all x ∈ Rm and the assertion follows for y := ∇φ∗(0) and λ := 1/r.

To show the remaining statement, assume that domφ = Rm and f is proper and lsc
and let (2.40) hold. In view of Lemma 2.20, we have that

sup {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm} > −∞.

Then there exists a finite +∞ > γ > −∞ such that f(x) ≥ γφ(x) + β holds for some
β ∈ R and any x ∈ Rm. For r > max{0,−γ}, we have that r + γ ≥ 0 and

f + rφ ≥ (r + γ)φ+ β > −∞,

since φ ∈ Γ0(Rm) is coercive and therefore bounded from below on Rm, meaning we
have (ii).

Assume (ii) holds. By assumption there is some β ∈ Rm such that for any x ∈ Rm we
have:

f(x) > −rφ(x) + β.
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Let Γ := {γ ∈ R : ∃β ∈ R with f(x) ≥ γφ(x) + β for all x ∈ Rm}. Then −r ∈ Γ and in
view of Lemma 2.20, we have lim inf‖x‖→∞ f(x)/φ(x) = sup Γ > −∞.

Prox-boundedness also allows us to extract a continuity property for both the Bregman
proximal mapping and the Bregman–Moreau envelope. The following result summarizes
important properties of the left envelope adapted from [KS12].

Lemma 2.22 (continuity properties of the left prox and envelope). Let φ ∈ Γ0(Rm) be
Legendre and super-coercive and f : Rm → R be proper, lsc and relatively prox-bounded
with threshold λf and let λ ∈ (0, λf ). Assume that domφ ∩ dom f 6= ∅. Then ←−−proxφλf

and ←−envφλf have the following properties:

(i) ←−−proxφλf(y) 6= ∅ is compact for all y ∈ int(domφ) and the envelope ←−envφλf is proper.

(ii) The envelope ←−envφλf is continuous on int(domφ).

(iii) For any sequence yν → y∗ ∈ int(domφ) and xν ∈ ←−−proxφλf(yν) we have {xν}ν∈N is

bounded and all its cluster points x∗ lie in ←−−proxφλf(y∗).

For completeness we shall provide a proof generalizing the proof of [Bau+09, Theorem
4.3] for the Bregman projection to Bregman proximal mapping case:

Proof of Lemma 2.22. Fix ȳ ∈ int(domφ) and ε > 0 such that Bε(ȳ) := {y ∈ Rm :
‖y− ȳ‖ ≤ ε} ⊂ int(domφ). Choose λ ∈ (0, λf ). Consider the function h : Rm ×Rm → R
defined by

h(x, y) = f(x) +
1

λ
Dφ(x, y) + ιBε(ȳ)(y).

Observe that domh = (dom f ∩ domφ)×Bε(ȳ) and h is proper lsc. For every y ∈ Rm
and α ∈ R we have:

{x ∈ Rm : h(x, y) ≤ α} =

{
{x ∈ Rm : λ−1Dφ(x, y) + f(x) ≤ α}, if y ∈ Bε(ȳ),

∅, otherwise.
(2.41)

Next we prove that h is level-bounded in x locally uniformly in y in order to apply
Theorem 1.13: To this end suppose that h is not level-bounded in x locally uniformly
in y. This means there is y∗ ∈ Bε(ȳ) and α ∈ R and there exist sequences yν → y∗ and
xν with ‖xν‖ → ∞ such that h(xν , yν) ≤ α. On the other hand since f is prox-bounded
relative to φ, there exists y ∈ int(domφ) such that for λ′ ∈ (0, λf ) with λ′ > λ we have

f(xν) +
1

λ′
Dφ(xν , y) ≥ inf

x∈Rm
f(x) +

1

λ′
Dφ(x, y) ≥ β > −∞. (2.42)

Summing yields:

1

λ
Dφ(xν , yν) + ιBε(ȳ)(y

ν)− 1

λ′
Dφ(xν , y) ≤ α− β.

We know that ιBε(ȳ)(y
ν) = 0 since h(xν , yν) ≤ α and domh = (dom f ∩ domφ)×Bε(ȳ)

and expanding the Bregman distance yields:(
1

λ
− 1

λ′

)
φ(xν)− 〈xν , λ−1∇φ(yν)− (1/λ′)∇φ(y)〉

≤ α− β +
1

λ
φ(yν)− 1

λ′
φ(y)− 1

λ
〈∇φ(yν), yν〉+

1

λ′
〈∇φ(y), y〉.
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Since ∇φ is continuous relative to int(domφ) and yν → y∗ ∈ int(domφ) and φ is
super-coercive we have (1/λ− 1/λ′)φ(xν) − 〈λ−1∇φ(yν) − (1/λ′)∇φ(y), xν〉 → ∞, a
contradiction. This means that h(x, y) is level-bounded in x locally uniformly in y.

Define a function p at y ∈ Rm by

p(y) := inf
x∈Rm

h(x, y) =

{←−envφλf(y), if y ∈ Bε(ȳ),

+∞, otherwise.

Then p = ←−envφλf + ιBε(ȳ) and

P (y) := arg min
x∈Rm

h(x, y) =

{←−−proxφλf(y), if y ∈ Bε(ȳ),

∅, otherwise.

Now Theorem 1.13(i) implies that ←−−proxφλf(y) is nonempty and compact whenever y ∈
Bε(ȳ). Let x̄ ∈ ←−−proxφλf(ȳ). As

h(x̄, ·) = f(x̄) +
1

λ
Dφ(x̄, ·),

is continuous at ȳ, in view of Theorem 1.13(iii), the function p is continuous at ȳ and

therefore ←−envφλf is continuous at ȳ. Since ȳ ∈ int(domφ) is arbitrary, we have Items (i)
and (ii). Item (iii) follows directly from Theorem 1.13(ii).

Note that in general the left Bregman–Moreau envelope is not lsc relative to Rm, cf.
[BCN06, Remark 3.6].

In Bregman proximal algorithms well-definedness is crucial, i.e., the output of one
Bregman proximal step must be compatible with the input of the next iteration. Usually,
this can be achieved by the property

rge
(←−−proxφλf

)
⊂ int(domφ),

which, however, requires a constraint qualification (CQ):

Lemma 2.23. Let λ > 0, φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc.
Assume that domφ ∩ dom f 6= ∅ and that the following constraint qualification holds:

∂∞f(x) ∩ −Ndomφ(x) = {0}, (2.43)

for any x ∈ dom f ∩ domφ. Then we have that

rge
(←−−proxφλf

)
⊂ rge

(
(∂(φ+ λf))−1 ◦ ∇φ

)
(2.44)

⊂ rge
(
(∂(φ+ λf))−1

)
⊂ int(domφ). (2.45)

Proof. In case y /∈ int(domφ) we have ←−−proxφλf = ∅ and therefore for the first inclusion
only vectors y contained in int(domφ) matter: Fix y ∈ int(domφ). By the definition of

the left prox it is clear that rge(←−−proxφλf) ⊂ dom f ∩domφ. For x ∈ dom f ∩domφ, using
Lemma 1.2 and the smoothness of the affine function φ(y) + 〈· − y,∇φ(y)〉, we observe
that

∂(f +Dφ(·, y))(x) = ∂

(
f +

1

λ
φ

)
(x)− 1

λ
∇φ(y).
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Therefore, invoking Fermat’s rule Lemma 1.3, the first inclusion follows:

x ∈ ←−−proxφλf(y) =⇒ 0 ∈ ∂(φ+ λf)(x)−∇φ(y)

=⇒ x ∈
(
∂(φ+ λf)−1 ◦ ∇φ

)
(y).

The second inclusion is clear. For the third inclusion note that

rge
(
(∂(φ+ λf))−1

)
= dom ∂(φ+ λf).

Let x ∈ dom ∂(φ + λf). This means in particular x ∈ dom f ∩ domφ and there exists
v ∈ Rm such that v ∈ ∂(φ+ λf)(x). In view of condition (2.43), we invoke Lemma 1.2
and [RW98, Proposition 8.12] to obtain

v ∈ ∂(φ+ λf)(x) ⊂ ∂φ(x) + λ∂f(x).

This shows that the subset relation is preserved under the dom-operation: dom ∂(φ+λf) ⊂
dom ∂φ ∩ dom ∂f . In addition, since φ is essentially smooth we know from Lemma 1.16
that dom ∂φ = int(domφ). This yields

dom ∂φ ∩ dom ∂f ⊂ dom ∂φ = int(domφ)

and overall rge((∂(φ+ λf))−1) ⊂ int(domφ).

The CQ (2.43) ensures that the sum-rule Lemma 1.2 holds with inclusion: ∂(φ+ f) ⊂
∂φ+ ∂f . The condition is valid if, for instance, f is smooth, cf. [RW98, Exercise 8.8] or
domφ is open or simply dom f ⊂ int(domφ). In the convex setting, the conclusion also
follows when int(dom f) ∩ int(domφ) 6= ∅.

As remarked previously, due to asymmetry, we distinguish a left and a right Bregman
proximal mapping. We adopt the definition from [BDL18] for the convex setting:

Definition 2.24 (right Bregman–Moreau envelope and proximal mapping). Let φ ∈
Γ0(Rm) be Legendre and f : Rm → R be extended real-valued (and possibly improper).
For some λ > 0 and y ∈ Rm we define the right Bregman–Moreau envelope (in short:
right envelope) of f at y as

−→envφλf(y) = inf
x∈Rm

f(x) +̇
1

λ
Dφ(y, x), (2.46)

and the associated right Bregman proximal mapping (in short: right prox) of f at y as

−−→proxφλf(y) = arg min
x∈Rm

f(x) +̇
1

λ
Dφ(y, x). (2.47)

Like for the left Bregman proximal mapping, we seek to find a sufficient condition
which guarantees nonemptyness and outer semicontinuity Definition 1.11 of the right
Bregman proximal mapping. We therefore formulate a relative right prox-boundness
condition:

Definition 2.25 (relative right prox-boundedness). Let φ ∈ Γ0(Rm) with domφ = Rm
be Legendre and f : Rm → R be extended real-valued. We say f is right prox-bounded
relative to φ if there exists λ > 0 such that −→envφλf(y) > −∞ for some y ∈ Rm. The
supremum of the set of all such λ is the threshold λf of the right prox-boundedness, i.e.

λf = sup
{
λ > 0 : ∃ y ∈ Rm : −→envφλf(y) > −∞

}
.
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The above condition arises naturally through a transformation of the right proximal
mapping into a left proximal mapping via the identity Dφ(y, x) = Dφ∗(∇φ(x),∇φ(y)),
for x, y ∈ int(domφ), see Proposition 1.20(ii), and applying left prox-boundedness. This
substitution is motivated from [Bau+09; BMW11] who studied the nonconvex right
Bregman projection, through the left Bregman projection. This leads us to formulate
the following lemma:

Lemma 2.26. Let φ ∈ Γ0(Rm) be Legendre and let f : Rm → R be extended real-valued
(and possibly improper). Define g : Rm → R:

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise.

Let y ∈ int(domφ). Then we have for the right Bregman envelope

−→envφλf(y) = ←−envφ
∗
λ g(∇φ(y)), (2.48)

and the associated right Bregman-prox

−−→proxφλf(y) = ∇φ∗
(←−−proxφ

∗
λ g(∇φ(y))

)
. (2.49)

Proof. Let y ∈ int(domφ). In view of Lemma 1.20(ii), we may introduce a substitution
z = ∇φ(x), for x ∈ int(domφ) and rewrite:

−→envφλf(y) = inf
x∈Rm

f(x) +̇
1

λ
Dφ(y, x)

= inf
x∈int(domφ)

f(x) +̇
1

λ
Dφ(y, x)

= inf
x∈int(domφ)

f(x) +̇
1

λ
Dφ∗(∇φ(x),∇φ(y))

= inf
z∈int(domφ∗)

f(∇φ∗(z)) +̇
1

λ
Dφ∗(z,∇φ(y))

= ←−envφ
∗
λ g(∇φ(y)).

By the same argument, we also have:

x ∈ −−→proxφλf(y)

⇐⇒ x ∈ arg min
x∈int(domφ)

f(x) +̇
1

λ
Dφ∗(∇φ(x),∇φ(y))

⇐⇒ ∇φ(x) ∈ arg min
z∈int(domφ∗)

f(∇φ∗(z)) +̇
1

λ
Dφ∗(z,∇φ(y))

⇐⇒ x ∈ ∇φ∗
(←−−proxφ

∗
λ g(∇φ(y))

)
.

The above relations reveal that prox-boundedness of g relative to φ∗ is equivalent to
−→envφλf(y) > −∞ for some y ∈ Rm and λ > 0. If g is also lsc, we can use the continuity
properties already proved for the left Bregman proximal mapping to deduce the continuity
properties of the right prox assuming right prox-boundedness and super-coercivity of φ∗,
or equivalently, in view of Lemma 1.16(iv), domφ = Rm. However, g is not necessarily
lsc unless domφ∗ = Rm. Therefore we will assume that, in addition, φ is super-coercive
which implies that domφ∗ = Rm.
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Alternatively to right prox-boundedness and super-coercivity of φ, we can assume that
f is coercive:

Lemma 2.27. Let φ ∈ Γ0(Rm) be Legendre with domφ = Rm and let f : Rm → R be
proper, lsc and coercive. Then g : Rm → R defined by

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise,

is proper and lsc and left prox-bounded with threshold λf = +∞.

Proof. Since rge∇φ∗ = Rm and f is proper g is proper. Clearly, f ◦ ∇φ∗ is lsc relative
to int domφ∗. Now take x̄ ∈ bdry domφ∗ and consider int(domφ∗) 3 xν → x̄. Then
‖∇φ∗(xν)‖ → ∞ since φ∗ is essentially smooth. Therefore g(xν) = f(∇φ∗(xν))→∞ =
g(x̄) since f is coercive. Therefore g is lsc. In addition for any λ > 0 and some y ∈ Rm,
since Dφ(y, x) ≥ 0, the function x 7→ f(x) + (1/λ)Dφ(y, x) is proper lsc and coercive in
x and therefore bounded from below. This means that f is right prox-bounded relative
to φ with threshold +∞.

Lemma 2.28 (continuity properties of the right prox and envelope). Let φ ∈ Γ0(Rm) be
Legendre with domφ = Rm and let f : Rm → R be proper, lsc. In addition, let one of the
following two conditions hold true:

(a) either f is relatively right prox-bounded with threshold λf and φ is super-coercive,

(b) or f is coercive (and thus relatively right prox-bounded with threshold λf = +∞).

Let λ ∈ (0, λf ). Then g : Rm → R defined by

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise,

is proper lsc and left prox-bounded relative to φ∗ with threshold λf and thus −−→proxφλf and
−→envφλf have the following properties:

(i) −−→proxφλf(y) 6= ∅ is compact for all y ∈ Rm and the envelope −→envφλf is proper.

(ii) The envelope −→envφλf is continuous.

(iii) For any sequence yν → y∗ and xν ∈ −−→proxφλf(yν) we have {xν}ν∈N is bounded and

all its cluster points x∗ lie in −−→proxφλf(y∗).

Proof. Since rge∇φ∗ = Rm and f is proper g is proper. Due to Lemma 2.26 we have the
identities −→envφλf(y) = ←−envφ

∗
λ g(∇φ(y)) and −−→proxφλf(y) = ∇φ∗(←−−proxφ

∗
λ g(∇φ(y))) for any

y ∈ Rm.
First assume condition (a) holds true. Due to the identity −→envφλf(y) = ←−envφ

∗
λ g(∇φ(y))

for any y ∈ Rm, we know that g is left prox-bounded relative to φ∗ with the same
threshold. In addition, g = f ◦ ∇φ∗ is lsc since dom∇φ∗ = Rm and f is lsc as desired.

Now assume that instead condition (b) holds true. Invoking Lemma 2.27 we know that
g is proper, lsc and left prox-bounded with threshold λf = +∞.

The second result then follows by Lemma 2.22 applied to g, the super-coercivity of φ∗

and the continuity of both ∇φ and ∇φ∗, cf. Lemma 1.16, as well as the identities form
Lemma 2.26.
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Remark 2.29. Note that coercivity of f eventually guarantees that the function h(x, y) =
f(x) + 1/λDφ(y, x) in the right Bregman proximal mapping is level-bounded in x locally
uniformly in y. Thus the continuity properties of the right Bregman proximal mapping
under coercivity of f follow alternatively from Theorem 1.13 applied to h.

2.3.2. Relatively proximal subgradients

We generalize the definition of proximal subgradients [RW98, Definition 8.45] to a
Bregmanian setting: A classical proximal subgradient is a regular subgradient for which
the error term o(‖x − x̄‖) can be specialized to a negative quadratic: o(‖x − x̄‖) =
−(r/2)‖x− x̄‖2. Analogously, a relatively proximal subgradient is a regular subgradient
where the error term o(‖x− x̄‖) specializes to a Bregman distance −rDφ(x, x̄).

Definition 2.30 (relatively proximal subgradients and normals). Let φ ∈ Γ0(Rm) be
Legendre. A vector v ∈ Rm is called a proximal subgradient of a function f : Rm → R
relative to φ at x̄ ∈ int(domφ), a point where f(x̄) is finite, if there exist r > 0 and ε > 0
such that for all x ∈ Rm with ‖x− x̄‖ ≤ ε we have

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − rDφ(x, x̄). (2.50)

If f = ιC specializes to an indicator function of a set C we shall refer to v as a relatively
proximal normal to C.

We shall point out the following relation to classical proximal subgradients and normals
[RW98, Definition 8.45], i.e. when φ = (1/2)‖ · ‖2.

Proposition 2.31. Let φ ∈ Γ0(Rm) be Legendre and C2 on int(domφ). Let f : Rm → R
be finite at x̄ ∈ int(domφ). Then the following implication holds: If v ∈ Rm is a relatively
proximal subgradient of f at x̄, then v is a proximal subgradient of f at x̄. The converse
is true if, furthermore, ∇2φ(x) is positive definite for any x ∈ int(domφ), i.e. φ is very
strictly convex.

Proof. This is a direct consequence of Lemma 1.20(iii).

As the following example shows, there exist functions that do not have a proximal
subgradient everywhere, but do have a relatively proximal subgradient.

Example 2.32. Choose f : R→ R with f(x) = −|x|3/2. Then f does not have a classical
proximal subgradient at x̄ = 0. However, obviously ∇f(x̄) = 0 is a proximal subgradient
of f at 0 relative to φ ∈ Γ0(R) with φ(x) = |x|3/2 Legendre.

Proof. Suppose that ∇f(x̄) = 0 is a proximal subgradient of f at x̄ = 0. This means
there is ε > 0 and ∞ > r sufficiently large such that for any x ∈ R with |x| < ε the
proximal subgradient inequality holds:

−|x|3/2 ≥ −r|x|2.

Equivalently this means
|x|3 ≤ r2|x|4.

This implies for any x ∈ R with 0 < |x| < ε:

1

r2
≤ |x|,

which is a contradiction, since r is finite.
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Lemma 2.33 (globalization of proximal subgradient inequality). Let φ ∈ Γ0(Rm) be
Legendre and super-coercive and f : Rm → R be proper lsc, relatively prox-bounded with
threshold λf and finite at x̄ ∈ int(domφ). Let v̄ be a relatively proximal subgradient of f
at x̄. Then, if r > 0 is sufficiently large the subgradient inequality (2.50) holds globally
for all x ∈ Rm.

Proof. Since v̄ is a relatively proximal subgradient of f at x̄ we know that there exists
r′ > 0 and ε > 0 such that for any r ≥ r′ we have

f(x) ≥ f(x̄) + 〈v̄, x− x̄〉 − rDφ(x, x̄), (2.51)

whenever ‖x− x̄‖ < ε and ε is sufficiently small such that x ∈ int(domφ). We prove the
assertion by showing that the inequality also holds for any x ∈ Rm with ‖x− x̄‖ ≥ ε, when
r is chosen to be sufficiently large: Let λ ∈ (0, λf ). Since f : Rm → R is prox-bounded and

proper, lsc and x̄ ∈ int(domφ) we know from Lemma 2.22 that +∞ > ←−envφλf(x̄) > −∞
since f is prox-bounded and f(x̄) is finite. Then we have

f(x) ≥ ←−envφλf(x̄)− 1

λ
Dφ(x, x̄), (2.52)

for all x ∈ Rm. Combining (2.51) and (2.52) shows that (2.50) holds with constant
r ≥ max {r′, 1/λ}, when

←−envφλf(x̄)− 1

λ
Dφ(x, x̄) ≥ f(x̄) + 〈v̄, x− x̄〉 − rDφ(x, x̄)

is satisfied, which is implied (using the Cauchy–Schwarz inequality) by

f(x̄)− ←−envφλf(x̄)

‖x− x̄‖ + ‖v̄‖ ≤
(
r − 1

λ

)
Dφ(x, x̄)

‖x− x̄‖ . (2.53)

Using super-coercivity of φ, the inequality happens to be true for r ≥ max {r′, 1/λ} and
all x with ‖x− x̄‖ ≥ µ for some µ > ε. It remains to verify (2.53) for µ > ‖x− x̄‖ ≥ ε > 0
for some r. However, since for such x, using strict convexity of φ, obviously, Dφ(x, x̄) is
bounded away from 0, we can find some r sufficiently large such that (2.53) also holds
for x with µ > ‖x− x̄‖ ≥ ε.

The following lemma shows that analogous to the classical prox, the left Bregman
prox and envelope of a tilted function f − 〈·, v〉 can be written as the Bregman prox and
envelope of f at a transformed point, respectively.

Lemma 2.34 (effects of tilt transformation). Let φ ∈ Γ0(Rm) be Legendre and f : Rm →
R be proper lsc. Let y ∈ int(domφ) and v ∈ Rm. Denote by z := ∇φ∗(∇φ(y) + λv) and
by f0 := f − 〈·, v〉. Then we have the following identities for the prox

←−−proxφλf0(y) = ←−−proxφλf(z),

and the envelope function

←−envφλf0(y) = ←−envφλf(z) +
1

λ
Dφ(z, y)− 〈v, z〉.
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Proof. For z = ∇φ∗(∇φ(y) + λv) the identities follow from the following calculation:

Dφ(x, z) = φ(x)− φ(z)− 〈∇φ(y) + λv, x− z〉
= −λ〈v, x〉+Dφ(x, y) + φ(y)− 〈∇φ(y), y〉+ 〈∇φ(y) + λv, z〉 − φ(z).

Scaling the equality with 1/λ and adding f(x) and reordering yields

f0(x) +
1

λ
Dφ(x, y) = f(x) +

1

λ

(
Dφ(x, z)− φ(y)

+ 〈∇φ(y), y〉 − 〈∇φ(y) + λv, z〉+ φ(z)
)

= f(x) +
1

λ
Dφ(x, z) +

1

λ
Dφ(z, y)− 〈v, z〉.

Based on the globalized subgradient inequality from Lemma 2.33 we shall characterize
relatively proximal subgradients via the Bregman proximal map. This property is used
frequently in the course of this section to assert the single-valuedness of the Bregman
proximal mapping.

Proposition 2.35. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc and finite
at x̄ ∈ int(domφ). Then the following conditions are equivalent for some λ > 0:

(i) The following inclusion holds:

x̄ ∈ ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)). (2.54)

(ii) The subgradient inequality (2.50) holds globally for all x ∈ Rm and r := 1/λ,

where strict inequality holds for all x 6= x̄ by decreasing λ. Equivalently this means the
inclusion (2.54) holds with equality. If, furthermore, φ is super-coercive and f relatively
prox-bounded with threshold λf then the above conditions hold for some λ < λf sufficiently
small, if and only if v ∈ Rm is a relatively proximal subgradient of f at x̄.

Proof. Let λ > 0 and let the subgradient inequality (2.50) hold globally for all x ∈ Rm
and r := 1/λ. This means:

f(x)− 〈v, x〉 ≥ f(x̄)− 〈v, x̄〉 − 1

λ
Dφ(x, x̄). (2.55)

Define f0 := f − 〈v, ·〉. Then, by reordering the terms the above is equivalent to:

f0(x) +
1

λ
Dφ(x, x̄) ≥ f0(x̄) +

1

λ
Dφ(x̄, x̄), (2.56)

which holds if and only if x̄ ∈ ←−−proxφλf0(x̄), which, in view of Lemma 2.34, is equivalent

to x̄ ∈ ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)). Then, clearly, strict inequality holds for all x 6= x̄ by
decreasing λ, which equivalently means the inclusion (2.54) holds with equality.

Let v be a relatively proximal subgradient of f at x̄ with constants ε > 0 and r > 0.
Then we may invoke Lemma 2.33 to make the subgradient inequality in (2.50) hold
globally, for all x ∈ Rm, r := 1/λ and λ > 0 sufficiently small. Conversely, when the
subgradient inequality (2.50) holds globally for r := 1/λ, this means in particular that v
is a relatively proximal subgradient.

Invoking the above globalization lemma we shall highlight a close relation between
relatively proximal subgradients and a smooth variational description of regular subgradi-
ents due to Mordukhovich [Mor18, Theorem 1.27]: The following proposition shows, that
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any regular subgradient of a relatively prox-bounded function can be expressed in terms
of the Bregman proximal mapping in the same way this is true for proximal subgradients
and the classical proximal mapping:

Proposition 2.36 (regular subgradients are relatively proximal subgradients). Let the
function f : Rm → R be proper lsc and prox-bounded relative to χ ∈ Γ0(Rm) Legendre
and super-coercive. Let v ∈ ∂̂f(x̄) be a regular subgradient of f at x̄ ∈ int(domχ), a
point where f(x̄) is finite. Then there exists φ ∈ Γ0(Rm) Legendre and super-coercive
with domφ = domχ such that v is also a proximal subgradient relative to φ of f at x̄
and in particular it holds for any λ ≤ 1:

x̄ = ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)).

Proof. Let v ∈ Rm be a regular subgradient of f at x̄. Since f is prox-bounded relative
to χ ∈ Γ0(Rm) Legendre and super-coercive, in view of Proposition 2.21(ii), there is r > 0
so that f + rχ is uniformly bounded from below. In view of [Mor18, Theorem 1.27] there
exists a convex and smooth function ψ : Rm → R with −∇ψ(x̄) = v + r∇χ(x̄) so that
f + rχ+ ψ attains its global minimum at x̄. This means that for all x 6= x̄ we have

(f + rχ+ ψ)(x) > (f + rχ+ ψ)(x̄) + 〈v, x− x̄〉+ 〈∇ψ(x̄) + r∇χ(x̄), x− x̄〉.

Let φ := rχ + ψ ∈ Γ0(Rm). Then we have domφ = domχ. Now consider a sequence
int(domφ) 3 xν → x ∈ bdry domφ. We have ‖∇φ(xν)‖ = ‖r∇χ(xν) +∇ψ(xν)‖ → ∞,
since ψ ∈ C1 and therefore ∇ψ(xν)→ ∇ψ(x) ∈ Rm. Therefore φ is essentially smooth as
well. Since φ is also essentially strictly convex we have that φ is Legendre. In addition φ
is super-coercive. Rewriting the inequality in terms of the Bregman distance yields for
any 0 < λ ≤ 1:

f(x) > f(x̄) + 〈v, x− x̄〉 −Dφ(x, x̄) ≥ f(x̄) + 〈v, x− x̄〉 − 1

λ
Dφ(x, x̄),

which is equivalent to

x̄ = ←−−proxφλf(∇φ∗(∇φ(x̄) + λv)).

An important class of prox-bounded functions f are indicator functions f = ιC of a
possibly nonconvex set C. Indeed, the threshold of prox-boundedness for such f is λf =∞.
Invoking the above lemma we obtain that v is a relatively proximal normal to C at x̄ if
and only if we can perturb x̄ along v in the Bregmanian sense as y := ∇φ∗(∇φ(x̄) + λv)
so that by Bregman-projecting the perturbed point y back on C (i.e. computing the left
prox of f at y), we recover x̄. Indeed, for φ = ‖ · ‖2 we obtain the classical definition of
proximal normals:

NP
C (x̄) := {r(y − x̄) : x̄ ∈ projC(y), r ≥ 0, y ∈ Rm} ,

where projC denotes the classical Euclidean projection onto the set C. More generally,
invoking the above proposition we obtain the following alternative expression for the
regular normal cone N̂C(x̄) of the set C:

N̂C(x̄) =
{
r(∇φ(y)−∇φ(x̄)) : x̄ ∈ ←−−projφC(y), r ≥ 0, y ∈ Rm

}
,

for some appropriate choice φ ∈ Γ(Rm) Legendre. This is illustrated in Figure 2.2.
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(a) (b) (c)

Figure 2.2.: Illustration of Bregman proximal normals and Bregman projections by means
of Example 2.56. The set C = epih, given as the epigraph of h(x) =
2x2− 3|x|1.1, is indicated as the areas above the solid lines, which correspond
to the graph of h around 0. The arrows indicate the (relatively) proximal
normals v of C at x̄. The dashed lines correspond to the Euclidean (a) resp.
Bregman (b),(c) distance balls around the points ∇φ∗(∇φ(x̄)+λv) generated
by φ(x) = ‖x‖2, see (a) resp. φ(x1, x2) = x2

1 + |x1|1.1 + x2
2, see (b),(c). Their

“radii” are chosen such that their upper surfaces touch the epigraph of h only
at x̄, which is possible everywhere in the Bregman case (b),(c) if λ > 0 is
sufficiently small. While v at the point x 6= 0 is both, a relatively proximal
normal of C at x̄, see (c) and a classical proximal normal of C at x̄, see (a),
the situation is different at the point x̄ = 0: While v is a relatively proximal
normal of C at x̄, see (b), it is not a classical proximal normal, see (a),
since for any λ > 0 there is no Euclidean ball around x̄+ λv, below C that
touches C only at 0. Also compare to Example 2.32. However, in view of the
subgradient inequality (2.50), ṽ := v + (1/λ)∇φ(x̄) is a classical proximal
subgradient of f̃ := (1/λ)φ+ δC at x̄, cf. also Remark 2.42.

2.3.3. Single-valuedness of the Bregman proximal mapping under relative
prox-regularity

We now define relative prox-regularity, generalizing [RW98, Definition 13.27] to a Breg-
manian setting: We fix a reference point (x̄, v̄), where f(x̄) is finite and v̄ ∈ ∂f(x̄) is a
relatively proximal subgradient, and require the subgradient inequality (2.50) to hold
uniformly on an f -attentive neighborhood of (x̄, v̄):

Definition 2.37 (relative prox-regularity). Let φ ∈ Γ0(Rm) be Legendre. We say a
function f : Rm → R is relatively prox-regular at x̄ ∈ int(domφ) for v̄ ∈ Rm if f is finite
and locally lsc at x̄ with v̄ ∈ ∂f(x̄) and there exist ε > 0 and r ≥ 0 such that for all
‖x′ − x̄‖ < ε, ‖x− x̄‖ < ε, with ε sufficiently small such that x, x′ ∈ int(domφ), it holds
that:

f(x′) ≥ f(x) +
〈
v, x′ − x

〉
− rDφ(x′, x), (2.57)

whenever f(x) − f(x̄) < ε, v ∈ ∂f(x), ‖v − v̄‖ < ε. When this property holds for all
v̄ ∈ ∂f(x̄), f is said to be relatively prox-regular at x̄.

For examples of relatively prox-regular functions we refer to Section 2.3.5 below. We
first clarify a relation between the new relative prox-regularity property and classical
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prox-regularity.

Proposition 2.38. Let φ ∈ Γ0(Rm) be Legendre and C2 on int(domφ). Let f : Rm → R
be extended real-valued and x̄ ∈ int(domφ). Then the following implication holds: If f is
relatively prox-regular at x̄ for v̄, then f is also prox-regular at x̄ for v̄. The converse is
true if, furthermore, ∇2φ(x) is positive definite for any x ∈ int(domφ), i.e. φ is very
strictly convex.

Proof. This is a direct consequence of Lemma 1.20(iii).

The relative prox-regularity property of a tilted function is preserved as the following
lemma shows:

Lemma 2.39 (invariance under tilt transformation). Let φ ∈ Γ0(Rm) be Legendre,
f : Rm → R be extended real-valued and x̄ ∈ int(domφ). Then f is relatively prox-regular
at x̄ for v̄ ∈ ∂f(x̄) if and only if f0 := f − 〈v, ·〉 is relatively prox-regular at x̄ for
0 ∈ ∂f0(x̄).

Proof. This is clear from the definition of relative prox-regularity.

The following theorem is analogous to [PR96, Theorem 3.2] or [RW98, Theorem 13.36]
for classical prox-regularity. More precisely, for a function f and a reference point
(x̄, v̄) ∈ gph ∂f we provide an equivalent characterization of relative prox-regularity in
terms of the relative hypomonotonicity of an f -attentive graphical localization T of the
subdifferential ∂f at (x̄, v̄), cf. Definition 1.6. Under a constraint qualification for the
sum-rule for the subdifferential of f + r∇φ, such a statement can be seen as a localized
analogue to the equivalence between the relative hypoconvexity of f , i.e. f + rφ is proper
lsc and convex on int(domφ) for some r ≥ 0, and the relative hypomonotonicity of ∂f .
An important difference to note is that, in the following statement, we also require v̄ to
be a relatively proximal subgradient of f at x̄.

Theorem 2.40. Let φ ∈ Γ0(Rm) be Legendre and super-coercive and the function
f : Rm → R be proper lsc, prox-bounded with threshold λf and finite at x̄ ∈ int(domφ).
Then the following conditions are equivalent:

(i) f is relatively prox-regular at x̄ for v̄.

(ii) v̄ ∈ ∂f(x̄) is a relatively proximal subgradient and ∂f has an f-attentive ε-
localization T : Rm ⇒ Rm around (x̄, v̄) such that T + r∇φ is monotone for
some r > 0.

(iii) For v̄ ∈ ∂f(x̄) and λ < λf sufficiently small it holds that ←−−proxφλf is a singled-valued

map near the point ȳ := ∇φ∗(∇φ(x̄) + λv̄) such that {x̄} = ←−−proxφλf(ȳ) and

←−−proxφλf(y) =
(
(∇φ+ λT )−1 ◦ ∇φ

)
(y), (2.58)

for some f -attentive ε-localization T : Rm ⇒ Rm of ∂f around (x̄, v̄) and y near ȳ.

Proof. (i) =⇒ (ii): Let f be relatively prox-regular at x̄ for v̄ ∈ ∂f(x̄). This means that
there exist constants ε > 0 and r > 0 such that the subgradient inequality (2.57) holds
for x′, x ∈ Rm with ‖x′ − x̄‖ < ε, ‖x− x̄‖ < ε and v ∈ ∂f(x), v′ ∈ ∂f(x′), ‖v′ − v̄‖ < ε,
‖v − v̄‖ < ε. In particular this implies that v̄ is a relatively proximal subgradient at x̄
and we have:

f(x′) ≥ f(x) +
〈
v, x′ − x

〉
− rDφ(x′, x), f(x) ≥ f(x′) +

〈
v′, x− x′

〉
− rDφ(x, x′).
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Adding these inequalities yields:

0 ≥
〈
v, x′ − x

〉
+
〈
v′, x− x′

〉
− r
(
Dφ(x′, x) +Dφ(x, x′)

)
= −

〈
v − v′, x− x′

〉
− r

〈
∇φ(x)−∇φ(x′), x− x′

〉
.

This shows that the corresponding map T + r∇φ is monotone, where T is the f -attentive
ε-localization of ∂f at (x̄, v̄).

(ii) =⇒ (iii): By assumption, v̄ is a relatively proximal subgradient. Then we

may invoke Proposition 2.35 to obtain that {x̄} = ←−−proxφλf(ȳ) is a singleton for λ <
min{λf , 1/r} being sufficiently small. Due to the prox-boundedness, we can invoke

Lemma 2.22 to assert that ←−−proxφλf(y) 6= ∅ for any y ∈ int(domφ). Furthermore, for any

sequence xν ∈ ←−−proxφλf(yν), yν → ȳ we have {xν}ν∈N is bounded and all its cluster points

lie in ←−−proxφλf(ȳ) = {x̄}, meaning xν → x̄ and ←−envφλf(yν) → ←−envφλf(ȳ). In addition we
have f(xν)→ f(x̄) as

←−envφλf(yν) = f(xν) +
1

λ
Dφ(xν , yν)→ ←−envφλf(ȳ) = f(x̄) +

1

λ
Dφ(x̄, ȳ).

Overall this shows that for any y, which is sufficiently near to ȳ, we have x ∈ ←−−proxφλf(y),
‖x− x̄‖ < ε, |f(x)− f(x̄)| < ε and ‖v − v̄‖ < ε, for v := (1/λ)∇φ(y)− (1/λ)∇φ(x) due
to the continuity of ∇φ (cf. Lemma 1.16). By applying Fermat’s rule Lemma 1.3 to
←−−proxφλf(y) we obtain

0 ∈ ∂f(x) +
1

λ
(∇φ(x)−∇φ(y)),

or equivalently
0 ∈ T (x) + r(∇φ(x)−∇φ(y)),

where ∂f(x) is replaced by T (x) due to the arguments above. This means

∅ 6= ←−−proxφλf(y) ⊂
{
x ∈ Rm : 0 ∈ T (x) +

1

λ
(∇φ(x)−∇φ(y))

}
=
(
(∇φ+ λT )−1 ◦ ∇φ

)
(y),

is at most a singleton due to the strict monotonicity of T + (1/λ)∇φ for λ < 1/r, cf.

Lemma 1.10. This implies {x} = ←−−proxφλf(y) is a singleton for y near ȳ.

(iii) =⇒ (i): Let T be some f -attentive ε-localization of ∂f at x̄ for v̄, which has
the properties in (iii). Let x ∈ Rm with ‖x − x̄‖ < ε, f(x) < f(x̄) + ε and v ∈ ∂f(x),
‖v − v̄‖ < ε. We have v ∈ T (x) and for ε > 0 sufficiently small x ∈ int(domφ) and
y := ∇φ∗(∇φ(x) + λv) near ∇φ∗(∇φ(x̄) + λv̄)), due to the continuity of ∇φ∗ guaranteed
by Lemma 1.16. Then for such y we have that x ∈ ((∇φ + λT )−1 ◦ ∇φ)(y) and by
assumption

←−−proxφλf(y) =
(
(∇φ+ λT )−1 ◦ ∇φ

)
(y) 3 x.

Invoking Proposition 2.35 we obtain the subgradient inequality (2.57) for r := 1/λ, which
holds even globally, cf. Lemma 2.33. We may conclude f is relatively prox-regular at x̄
for v̄.

Remark 2.41. We would highlight that items (i) and (ii) in the above theorem only
depend on the local structure of the epigraph of f near (x̄, f(x̄)), while in contrast, (iii)
depends on its global structure. This means that (i) resp. (ii) hold for f if and only if
they hold for f̃ := f + ιC for C := {x ∈ Rm : ‖x− x̄‖ ≤ ε, f(x) ≤ f(x̄) + ε}, where f̃ is
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always proper lsc and prox-bounded whenever f is locally lsc at x̄, a point where f is
finite. This shows that the equivalence between (i) and (ii) holds even if we relax the
globally lsc assumption towards locally lsc at x̄ and entirely drop the prox-boundedness
assumption. In that sense (iii) can be seen as an auxiliary statement applied to f̃ to
show the direction (ii) implies (i), which is also used as a strategy in the proof of [RW98,
Theorem 13.36].

Remark 2.42. When φ is strongly convex on compact convex subsets K ⊂ int(domφ)
(which is implied by very strict convexity, see Lemma 1.20(iii), but holds more generally,
for, e.g. φ(x) = (1/p)|x|p, p ∈ (1, 2)), the direction (ii) implies (i) follows alternatively
from [PR96, Theorem 3.2] or [RW98, Theorem 13.36]. To this end, let v̄ be a relatively
proximal subgradient of f at x̄ ∈ int(domφ) and let T be a relatively hypomonotone,
f -attentive ε-localization of ∂f at x̄ for v̄. This means that there is r > 0 such that
ṽ := v̄+ r∇φ(x̄) is a classical proximal subgradient of f̃ := f + rφ at x̄ and T̃ := T + r∇φ
is monotone. Furthermore T̃ is an f̃ -attentive graphical localization of ∂f̃ at (x̄, ṽ).
Invoking [RW98, Theorem 13.36] this means that f̃ is classically prox-regular at x̄ for
ṽ. Due to the strong convexity of φ on compact convex subsets K ⊂ int(domφ) we can
bound the negative quadratic term −(1/2)‖x′−x‖2 in the classical subgradient inequality
(locally) by a Bregman distance −θDφ(x′, x). Rewriting the estimate gives us the result.
In the general case we provide a generalization by means of the above theorem.

Corollary 2.43. Let φ ∈ Γ0(Rm) be Legendre and super-coercive. Let the function
f : Rm → R be proper lsc, prox-bounded with threshold λf , and relatively prox-regular at
x̄ ∈ int(domφ) for v̄. Assume that φ is very strictly convex. Then for λ < λf sufficiently

small, ←−−proxφλf is a Lipschitz map on a neighborhood of ȳ := ∇φ∗(∇φ(x̄) + λv̄).

Proof. Since f is relatively prox-regular at x̄ for v̄ ∈ ∂f(x̄) due to Theorem 2.40 there
exists r > 0 such that T + r∇φ is monotone. This means for (x′, v′), (x, v) ∈ gphT we
have: 〈

v′ − v, x′ − x
〉

+ r
〈
∇φ(x′)−∇φ(x), x′ − x

〉
≥ 0.

Let x ∈ ←−−proxφλf(y) and x′ ∈ ←−−proxφλf(y′). Due to Theorem 2.40 we know that (1/λ)(∇φ(y)−
∇φ(x)) ∈ T (x) and (1/λ)(∇φ(y′)−∇φ(x′)) ∈ T (x′). This means we have

1

λ

〈
∇φ(y′)−∇φ(y), x′ − x

〉
≥
(

1

λ
− r
)〈
∇φ(x′)−∇φ(x), x′ − x

〉
.

Since φ is very strictly convex we may invoke Lemma 1.20(iii) to assert that there are
constants Θ and θ such that for any x, x′ ∈ int(domφ) near x̄:

‖∇φ(x′)−∇φ(x)‖ ≤ Θ‖x− x′‖,
〈∇φ(x′)−∇φ(x), x′ − x〉 ≥ θ‖x− x′‖2.

This yields 〈
∇φ(y′)−∇φ(y), x′ − x

〉
≥ (1− λr) θ‖x− x′‖2,

and via Cauchy–Schwarz〈
∇φ(y′)−∇φ(y), x′ − x

〉
≤ ‖∇φ(y′)−∇φ(y)‖ · ‖x′ − x‖
≤ Θ‖y′ − y‖ · ‖x′ − x‖,
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and overall

‖x− x′‖ ≤ Θ

θ(1− λr)‖y − y
′‖.

2.3.4. From local to global: Relative hypoconvexity of functions

Next we define relative hypoconvexity of functions. This setting was studied extensively
in [KS12] (see [CKS12] for infinite dimensions):

Definition 2.44 (relatively hypoconvex functions). Let φ ∈ Γ0(Rm) be Legendre. Then
we say a function f : Rm → R is relatively hypoconvex if there is some r ≥ 0 such that
f + rφ is convex.

The following proposition is an extension of [KS12, Theorem 4.2] and [KS12, Theorem
4.3] and provides equivalent characterizations of relative hypoconvexity. In particular,
if a constraint qualification holds, relative hypoconvexity can be regarded as uniform
relative prox-regularity, i.e., ε =∞ and the constant r can be chosen to be uniform in
the definition of relative prox-regularity:

Proposition 2.45 (characterizations of relative hypoconvexity). Let φ ∈ Γ0(Rm) be
Legendre and super-coercive. Let f : Rm → R be proper lsc and prox-bounded relative to
φ with threshold λf such that dom f ∩ domφ 6= ∅. Let λ ∈ (0, λf ). Then the following
conditions are equivalent:

(i) f is relatively hypoconvex with constant r = 1/λ, i.e., f +rφ is convex and therefore
f + rφ ∈ Γ0(Rm).

(ii) ←−−proxφλf ◦ ∇φ∗ is maximal monotone,

(iii) ←−−proxφλf ◦ ∇φ∗ = ∂(φ+ λf)∗,

(iv) ∂(λf + φ) is monotone,

while λf + φ is essentially strictly convex if and only if ∂(λf + φ) is strictly monotone if

and only if ←−−proxφλf is single-valued on int(domφ). If, in addition, the following constraint
qualification holds:

∂∞f(x) ∩ −Ndomφ(x) = {0}, (2.59)

for any x ∈ dom f∩domφ, conditions (i), (ii), (iii) and (iv) are equivalent to the following
statement: The globalized subgradient inequality holds true at any x ∈ int(domφ)∩dom f :

f(x′) ≥ f(x) + 〈v, x′ − x〉 − 1

λ
Dφ(x′, x),

for any v ∈ ∂f(x) and any x′ ∈ Rm. Furthermore we have ←−−proxφλf = (∇φ+λ∂f)−1 ◦∇φ.

Proof. The equivalence between (i), (ii) and (iii) holds due to [KS12, Theorem 4.2].
The equivalence between (i) and (iv) follows due to [RW98, Theorem 12.17] and since
dom f ∩ domφ 6= ∅ we have f + rφ ∈ Γ0(Rm). Furthermore we have λf + φ is essentially
strictly convex if and only if ∂(λf + φ) is strictly monotone by [RW98, Theorem 12.17].

We have ←−−proxφλf is single-valued on int(domφ) if and only if λf + φ is essentially strictly
convex by [KS12, Theorem 4.3].

55



Chapter 2. Generalized Moreau envelopes and proximal mappings: A local perspective

Let the constraint qualification above hold and assume (i) holds. Since f is proper
lsc and φ ∈ Γ0(Rm) and dom f ∩ domφ 6= ∅, we have f + rφ is proper lsc and convex.
Let x ∈ int(domφ) ∩ dom f and v ∈ ∂f(x). Due to [RW98, Exercise 8.8(c)] we have
v + r∇φ(x) ∈ ∂(f + rφ)(x) and since f + rφ is proper lsc and convex this means that for
all x′ ∈ Rm:

f(x′) + rφ(x′) ≥ f(x) + rφ(x) + 〈v + r∇φ(x), x′ − x〉.
Reordering yields the subgradient inequality as claimed:

f(x′) ≥ f(x) + 〈v, x′ − x〉 − rDφ(x′, x), ∀x′ ∈ Rm.

Now let x, x′ ∈ dom ∂(f + r∇φ) ⊂ dom ∂f + dom ∂φ ⊂ int domφ ∩ dom f , where the
inclusions hold due to the constraint qualification and dom ∂φ = int(domφ). Then the
subgradient inequality above yields for any v ∈ ∂f(x) and v′ ∈ ∂f(x′):

f(x′) ≥ f(x) + 〈v, x′ − x〉 − rDφ(x′, x), f(x) ≥ f(x′) + 〈v′, x− x′〉 − rDφ(x, x′).

Summing the two estimates yields

〈v′ + r∇φ(x′)− v − r∇φ(x), x′ − x〉 ≥ 0,

Hence, ∂f + r∇φ is monotone. This means we have (iv).

Via the observation ∂(λf + φ)∗ = (∂(λf + φ))−1 = (λ∂f +∇φ)−1 the last statement
follows.

Specialized to a quadratic setting φ = (1/2)‖ · ‖2, if f is r-hypoconvex, Pλf and ∇eλf
are in addition Lipschitz continuous with uniform constants, if λ < 1/r:

Proposition 2.46. Let f : Rm → R be proper lsc and hypoconvex with constant r > 0.
Then for any λ ∈ (0, 1/r) we have for the proximal mapping and the associated Moreau
envelope of f :

(i) The proximal mapping Pλf is Lipschitz continuous with constant 1/(1− rλ) and in
particular single-valued.

(ii) The Moreau envelope eλf of f is differentiable with Lipschitz continuous gradient
and the following gradient formula holds for any y ∈ Rm:

∇eλf(y) =
1

λ

(
y − Pλf(y)

)
.

Proof. (i) First note that f is prox-bounded with some threshold λf > 1/r. In view
of [CWP20, Lemma 3.1(a)] we have conPλf = ∂(λf + (1/2)‖ · ‖2)∗. By assumption
λf + (1/2)‖ · ‖2 is (1− rλ)-strongly convex, proper lsc. In view of [RW98, Proposition
12.60] (λf + (1/2)‖ · ‖2)∗ is differentiable with (1/(1− rλ))-Lipschitz continuous gradient
and thus

Pλf = ∇
(
λf + (1/2)‖ · ‖2

)∗
,

is single-valued and in particular Lipschitz with constant 1/(1− rλ) as claimed.

(ii) Expanding the square we obtain a well known expression of the negative Moreau
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envelope in terms of the convex conjugate, see, e.g., [RW98, Example 11.26]:

−eλf(y) = sup
x∈Rm

− 1

2λ
‖x− y‖2 − f(x)

=
1

λ

(
sup
x∈Rm

〈x, y〉 − (1/2)‖x‖2 − λf(x)

)
− 1

2λ
‖y‖2

=
1

λ

(
λf + (1/2)‖ · ‖2

)∗
(y)− 1

2λ
‖y‖2. (2.60)

Using the previous result, eλf is differentiable with Lipschitz continuous gradient with
modulus

1

λ(1− rλ)
+

1

λ

and for any y ∈ Rm we have:

∇eλf(y) =
1

λ

(
y −∇

(
λf + (1/2)‖ · ‖2

)∗
(y)
)
.

2.3.5. Relatively amenable functions

An important source for examples of prox-regular functions is strong amenability [RW98,
Definition 10.23], i.e. functions f that can locally be represented as a composition of
a convex function with a smooth function and a certain constraint qualification. In
the following we generalize this concept to the Bregmanian setting. To this end, the
recently introduced generalization of Lipschitz differentiable functions to relatively smooth
functions [BBT17; Bol+18; LFN18] (called smooth adaptable in [BBT17; Bol+18]) is
used. We state a slightly modified version, where we introduce an additional open subset
V ⊆ int(domφ) of int(domφ) and require the property to hold only on V instead of
int(domφ).

Definition 2.47 (relatively smooth function). Let φ ∈ Γ0(Rm) be Legendre. A function
f : Rm → R that is C1 on an open subset V ⊆ int(domφ) is called smooth relative to φ
on V , if there exists L ≥ 0 such that both Lφ− f and Lφ+ f are convex on V .

The following lemma, which we adopted from Lemma [Bol+18, Lemma 2.1], is a
generalization of the classical full descent lemma to the relatively L-smooth case:

Lemma 2.48 (full extended descent lemma). Let φ ∈ Γ0(Rm) be Legendre. Then, a
function f : Rm → R that is C1 on an open subset V ⊆ int(domφ) is smooth relative to
φ on V with constant L ≥ 0 if and only if the following holds for all x, y ∈ V

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ LDφ(x, y).

Definition 2.49. A function F : Rm → Rn that is C1 on an open subset V ⊆ int(domφ)
is called L-smooth relative to φ on V with L ≥ 0 if each coordinate function Fi is L-smooth
relative to φ on V .

We extend [RW98, Definition 10.23] to a setting where the inner smooth map is relatively
smooth. Note that this property is required to hold only on a local neighborhood of a
reference point. The first part recapitulates the definition of an amenable function from
[RW98, Definition 10.23(a)], while a relatively amenable function generalizes the notion
of strong amenability [RW98, Definition 10.23(b)].
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Definition 2.50 (relatively amenable functions). A function f : Rm → R is amenable at
x̄, a point where f(x̄) is finite, if there is an open neighborhood V ⊂ Rm of x̄ on which f
can be represented in the form f = g ◦ F for a C1 mapping F : V → Rn and a proper, lsc,
convex function g : Rn → R such that, in terms of D = cl(dom g),

the only y ∈ ND(F (x̄)) with ∇F (x̄)∗y = 0 is y = 0. (2.61)

If the mapping F is L-smooth relative to φ ∈ Γ0(Rm) on V ⊆ int(domφ) it is called
relatively amenable at x̄ ∈ V relative to φ.

Clearly, the constraint qualification (2.61) is satisfied whenever F (x̄) ∈ int(dom g).

In the following proposition, we show that relatively amenable functions are indeed
relatively prox-regular, which is completely analogous to the classical setting of strong
amenability and prox-regularity [RW98, Proposition 13.32]. Actually, this also generalizes
the classical Euclidean setting with φ = (1/2)‖ · ‖2 to requiring the inner functions to be
only C1 with a locally Lipschitz continuous gradient instead of C2.

Proposition 2.51. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be relatively amenable
at x̄ ∈ int(domφ) relative to φ. Then f is subdifferentially continuous and prox-regular
relative to φ at x̄.

Proof. Since f is relatively amenable at x̄ ∈ int(domφ) relative to φ, there exists an open
neighborhood V ⊆ int(domφ) of x̄ on which f = g ◦ F for a proper lsc convex function
g : Rn → R and a C1 map F : V → Rn that is L-smooth relative to φ on V . Clearly, f
is lsc relative to V and therefore in particular locally lsc at x̄. Note that the constraint
qualification (2.61) holds not only at x̄ but also on V , by possibly narrowing V . Otherwise
there exists a sequence xν → x̄ and 0 6= yν ∈ ND(F (xν)) with ∇F (xν)∗yν = 0 where we
may assume ‖yν‖ = 1 by normalizing. Taking a convergent subsequence of {yν}ν∈N we
have at the limit point y that ∇F (x̄)∗y = 0 and ‖y‖ = 1, which is a contradiction.

In view of the chain rule from [RW98, Theorem 10.6], we have for all x ∈ V that
∂f(x) = ∇F (x)∗∂g(F (x)). This means for x ∈ V , it holds that for any v ∈ ∂f(x) there
is some u ∈ ∂g(F (x)) such that v = ∇F (x)∗u. Fix v̄ ∈ ∂f(x̄). We want to show that
there exist ε > 0 and η > 0 such that for any x with ‖x− x̄‖ < ε and u ∈ ∂g(F (x)) with
the property ‖v − v̄‖ = ‖∇F (x)∗u − v̄‖ < ε we have that ‖u‖ < η. Since g is convex
it is locally Lipschitz on int(dom g). This means whenever F (x̄) ∈ int(dom g) there is
ε > 0 sufficiently small such that due to continuity of F we have F (x) ∈ int(dom g)
near F (x̄) and there is some finite η > 0 such that ‖u‖ < η for any u ∈ ∂g(F (x)).
Now assume F (x̄) ∈ bdry(dom g) and suppose that there exist sequences xν → x̄ and
uν ∈ ∂g(F (xν)) with ∇F (xν)∗uν → v̄ and ‖uν‖ → ∞. For a decomposition uν = uν0 +uνi
with uν0 ∈ ker∇F (xν)∗ and uνi ∈ rge∇F (xν), this yields ‖uν0‖ → ∞. Through [RW98,
Proposition 8.12] uν is in particular a regular subgradient of g at F (xν). Obviously,
by possibly going to a subsequence, uν/‖uν‖ converges to a point on the unit circle,
which, by definition, belongs to the horizon subgradient and, by [RW98, Proposition
8.12], to Ncl(dom g)(F (x̄)). Moreover, this point lies in ker∇F (x̄)∗, since uνi /‖uν‖ → 0.
This is a contradiction to the constraint qualification. Let ‖x− x̄‖ < ε, ‖x′ − x̄‖ < ε and
∇F (x)∗u = v ∈ ∂f(x) with ‖v − v̄‖ < ε for some u ∈ ∂g(F (x)). Due to the argument
above we have ‖u‖ ≤ η and therefore also ‖u‖1 ≤ γ for some γ > 0. Then, since F is
component-wise relatively L-smooth, thanks to Lemma 2.48, we can make the following
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computation. We have for some r ≥ γL:

f(x′)− f(x) = g(F (x′))− g(F (x))

≥ 〈u, F (x′)− F (x)〉

≥ 〈u,∇F (x)(x′ − x)〉 −
n∑
i=1

|ui|LDφ(x′, x)

≥ 〈u,∇F (x)(x′ − x)〉 − γLDφ(x′, x)

≥ 〈∇F (x)∗u, x′ − x〉 − rDφ(x′, x)

= 〈v, x′ − x〉 − rDφ(x′, x), (2.62)

which shows that f is prox-regular at x̄ for v̄ relative to φ.

Subdifferential continuity of f at x̄ for v̄ follows from the same arguments as in the
proof of [RW98, Proposition 13.32].

Remark 2.52. Note that the estimate in the proof also holds when each component
function Fi is L-smooth relative to a potentially different φi.

Corollary 2.53. Let f : Rm → R such that f = g ◦ F for g : Rn → R proper lsc and
globally Lipschitz and F : Rm → Rn is L-smooth relative to φ on V = int(domφ), then f
is r-relatively hypoconvex, i.e., f + rφ is proper lsc and convex on int(domφ) for some
r > 0 sufficiently large.

Proof. The assertion follows from the fact that due to global Lipschitz continuity of
g subgradients u ∈ ∂g(x) are uniformly bounded, i.e., there is ∞ > η > 0 such that
‖u‖ ≤ η for all (x, u) ∈ gph ∂g and Inequality (2.62) in the proof of Proposition 2.51.

Amenable functions whose representation g ◦ F involves a change of coordinates F
have rich properties. Thanks to calculus of prox-regularity [PR10, Theorem 3.1] even for
a prox-regular (outer) function g, and F ∈ C2 the composition is also prox-regular if a
constraint qualification holds at the reference point.

For completeness we provide a proof for the special case ∇F is nonsingular at the
reference point. Unlike [PR10, Theorem 3.1] we assume that F ∈ C1 is locally Lipschitz,
which is implied by F ∈ C2.

Proposition 2.54. Let f : Rm → R be finite at x̄. Let V ⊂ Rm be an open neighborhood
of x̄ on which f can be represented in the form f = g ◦ F for a C1 mapping F : V → Rm
and a function g : Rm → R. If g is prox-regular at F (x̄) for ū ∈ ∂g(F (x̄)), ∇F (x̄) is
nonsingular and ∇F is Lipschitz on V , then f is prox-regular at x̄ for v̄ = ∇F (x̄)∗ū.

Proof. Since g is prox-regular at F (x̄) for ū ∈ ∂g(F (x̄)) and due to the continuity of F ,
there exists a constant r′ > 0 such that for any ε′ > 0 sufficiently small we have:

g(F (x′)) ≥ g(F (x)) + 〈u, F (x′)− F (x)〉 − r′

2
‖F (x′)− F (x)‖2

for ‖F (x̄) − F (x′)‖ < ε′, ‖F (x̄) − F (x)‖ < ε′, ‖ū − u‖ < ε′ with u ∈ ∂g(F (x)) and
|g(F (x))− g(F (x̄))| < ε′. Since F is locally Lipschitz, there exists r′′ such that

r′

2
‖F (x′)− F (x)‖2 ≤ r′′

2
‖x′ − x‖2.
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For the inner product, we use the fact that the component functions Fi satisfy

Fi(x
′)− Fi(x) =

∫ 1

0
〈∇Fi(x+ t(x′ − x)), x′ − x〉 dt

and since ∇F is Lipschitz we have for some L > 0

〈u, F (x′)− F (x)〉 = 〈u,∇F (x)(x′ − x)〉

+

∫ 1

0

〈
u,
(
∇F (x+ t(x′ − x))−∇F (x)

)
(x′ − x)

〉
dt

≤ 〈∇F (x)∗u, x′ − x〉

+ ‖u‖
∫ 1

0
‖∇F (x+ t(x′ − x))−∇F (x)‖ · ‖x′ − x‖ dt

≤ 〈∇F (x)∗u, x′ − x〉+ ‖u‖ · ‖x′ − x‖2L
2
.

Combining the inequalities we obtain, since u is bounded around ū, that for some r > 0
we have

g(F (x′)) ≥ g(F (x)) + 〈∇F (x)∗u, x′ − x〉 − r

2
‖x′ − x‖2, (2.63)

whenever ‖F (x̄)− F (x′)‖ < ε′, ‖F (x̄)− F (x)‖ < ε′, ‖ū− u‖ < ε′ with u ∈ ∂g(F (x)) and
|g(F (x))− g(F (x̄))| < ε′.

As F is C1 with ∇F (x̄) nonsingular, in view of the inverse function theorem, we know
that F is invertible on a small neighborhood of x̄.

In view of [RW98, Exercise 10.7], the chain rule holds on a neighborhood of x̄, i.e. we
have ∇F (x)∗∂g(F (x)) = ∂f(x) when x near x̄. This means for such x and any v ∈ ∂f(x)
there exists u ∈ ∂g(F (x)) such that v = ∇F (x)∗u.

Let v ∈ ∂f(x) near v̄ and x near x̄. Let u ∈ ∂g(F (x)) such that v = ∇F (x)∗u. In view
of the Lipschitz continuity of ∇F , we can make the following computation:

σmin(∇F (x))‖u− ū‖ ≤ ‖∇F (x)∗u−∇F (x)∗ū‖
≤ ‖∇F (x)∗u−∇F (x̄)∗ū‖+ ‖∇F (x̄)∗ū−∇F (x)∗ū‖
≤ ‖v − v̄‖+ ‖ū‖L‖x̄− x‖.

Since ∇F (x) is invertible we know that the smallest singular value σmin(∇F (x)) of ∇F (x)
is positive. Since the ordered singular value map as well as ∇F are continuous we have a
uniform bound σmin(∇F (x)) ≥ δ > 0 for ‖x− x̄‖ ≤ ε. Then dividing the inequality by
σmin(∇F (x)) shows that for v ∈ ∂f(x) near v̄ and x near x̄ we guarantee u near ū.

Overall, this means we can find ε > 0 sufficiently small, such that whenever ‖x̄−x‖ < ε,
‖x̄ − x′‖ < ε and ‖v̄ − v‖ < ε, v ∈ ∂f(x) and |f(x) − f(x̄)| < ε, we guarantee via the
continuity of F that ‖F (x̄)− F (x′)‖ < ε′, ‖F (x̄)− F (x)‖ < ε′, |g(F (x))− g(F (x̄))| < ε′

and ‖ū− u‖ < ε′. Then, in view of (2.63), we have:

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2.

Since g is in particular finite and locally lsc at F (x̄), f is finite and locally lsc at x̄. We
may conclude that f is prox-regular at x̄ for v̄.

A particularly interesting choice for F in context of the right Bregman proximal
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mapping is F = ∇φ∗, for a Legendre function φ:

Corollary 2.55. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be finite at x̄. Let
φ ∈ Γ0(Rm) be Legendre, very strictly convex and ∇2φ locally Lipschitz at x̄. Then f
is prox-regular at x̄ for v̄ ∈ ∂f(x̄) if and only if f ◦ ∇φ∗ is prox-regular at ∇φ(x̄) for
ū = ∇2φ∗(∇φ(x̄))v̄ ∈ ∂(f ◦ ∇φ∗)(∇φ(x̄)).

Proof. Since φ is very strictly convex, we know that ∇2φ(x) is positive definite for x ∈
int(domφ) and therefore nonsingular. In view of Lemma 1.18 we know that ∇2φ∗(x) =
(∇2φ(∇φ∗(x)))−1, which is locally Lipschitz as the composition of the inverse matrix
map, ∇2φ and ∇φ∗, all of which are locally Lipschitz. The conclusion then follows from
applying Proposition 2.54 to f ◦ ∇φ∗ resp. f = (f ◦ ∇φ∗) ◦ ∇φ.

In particular, combining Lemma 2.26, Theorem 2.40 and the Corollary 2.55 above
we may guarantee the local single-valuedness of the right Bregman proximal mapping
−−→proxφλf of f under prox-regularity of f and very strict convexity of φ.

The class of relatively amenable functions is a wide source of examples for relatively
prox-regular functions:

Example 2.56. Choose f : R2 → R with f(x1, x2) = g(F (x1, x2)) for g : R → R with
g := ιR≤0

and F : R2 → R with F (x1, x2) = 2x2
1 − 3|x1|1.1 − x2. Choose φ : R2 → R with

φ(x1, x2) = x2
1 + |x1|1.1 + x2

2. Then, clearly, F is L-smooth relative to φ for L = 3. Since
∇F (0) = (0,−1) is full rank, f is relatively amenable at 0 and in view of Proposition 2.51,
relatively prox-regular at 0. Note that f is the indicator function of the epigraph of the
nonconvex function h(x) = 2x2 − 3|x|1.1 and therefore neither hypoconvex relative to φ
nor classically prox-regular at 0.

The above example is illustrated in Figure 2.2.

2.3.6. Smoothness of the Bregman–Moreau envelope

So far we know that relative prox-regularity provides us with a sufficient condition for
the local single-valuedness of the left and right Bregman proximal mapping. This in turn
allows us to guarantee that the Bregman envelope functions are locally C1 providing an
explicit formula for their gradients, which involves the corresponding Bregman proximal
mappings. The formulas for both the left and the right envelope have been proven
previously in the convex setting [BCN06, Proposition 3.12] and for the left envelope in a
more general relatively hypoconvex setting [KS12, Corollary 3.1].

We provide an interesting additional (global) regularity property of the Bregman
envelope function, which comes in handy for proving that the envelope function is C1:
Both the left envelope ←−envφλf ◦ ∇φ∗ and the right envelope −→envφλf have the one-sided
smoothness property relative to φ∗ resp. φ, and therefore yield promising candidates for
optimization with Bregman proximal gradient methods [BBT17; Bol+18].

Proposition 2.57. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper. Then it
holds that:

(i) If dom f ∩ domφ is nonempty, f is prox-bounded relative to φ with threshold λf
and φ is super-coercive, then for any λ ∈ (0, λf ),

1

λ
φ∗ − ←−envφλf ◦ ∇φ∗ =

(
f +

1

λ
φ

)∗( ·
λ

)
is proper, lsc and convex.
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(ii) If f is right prox-bounded relative to φ with threshold λf and domφ = Rm, then
for any λ ∈ (0, λf ),

1

λ
φ− −→envφλf =

(
g +

1

λ
φ∗
)∗( ·

λ

)
,

with g : Rm → R defined by

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise,

is proper, lsc and convex.

Proof. Let f be prox-bounded relative to φ super-coercive with threshold λf > 0 and let
λ ∈ (0, λf ). From [KS12, Theorem 2.4] we obtain that we have for all y ∈ Rm:

1

λ
φ∗(y)−

(
f +

1

λ
φ

)∗(y
λ

)
=
(←−envφλf ◦ ∇φ∗

)
(y).

Then, thanks to Lemma 1.16(iv), dom(←−envφλf ◦ ∇φ∗) = Rm. Furthermore, in view of
Proposition 2.21(ii), f + (1/λ)φ is bounded below and proper. Then, clearly, con(f +
(1/λ)φ) is proper, and in view of [RW98, Theorem 11.1], (f + (1/λ)φ)∗ (·/λ) is proper,
lsc and convex. Since in view of Lemma 1.16(iv) also domφ∗ = Rm we can reorder the
terms and obtain that

1

λ
φ∗(y)−

(←−envφλf ◦ ∇φ∗
)
(y) =

(
f +

1

λ
φ

)∗(y
λ

)
,

and the assertion follows.
Part (ii) follows from a similar argument invoking [BDL18, Proposition 2.4(ii)] and the

observation that right prox-boundedness of f relative to φ implies prox-boundedness of g
relative to φ∗.

Interestingly, the above result shows, that even if f is not lsc, the negative left and
right envelopes are always proper and lsc if f is left resp. right prox-bounded and φ is
super-coercive resp. domφ = Rm.

The one-sided relative L-smoothness property from Proposition 2.57(i) yields an

additive decomposition of the negative left envelope function −←−envφλf ◦ ∇φ∗ into a finite
convex part and a smooth part −λ−1φ∗ ∈ C1. As a consequence, in view of [RW98,
Theorem 10.33] and [RW98, Exercise 10.35](a), the negative envelope is in particular
subsmooth, see Definition 2.16.

To prove the desired smoothness property of the envelope function, along with a gradient
formula, we need a stronger constructive result where the pointwise max representation
in the definition of subsmoothness is explicitly given in terms of the proximal mapping:

Lemma 2.58. Let φ ∈ Γ0(Rm) be Legendre and f : Rm → R be proper lsc. If dom f ∩
domφ is nonempty, f is prox-bounded relative to φ with threshold λf and φ is super-

coercive, then for any λ ∈ (0, λf ) the envelope function −←−envφλf ◦ ∇φ∗ is lower-C1 with
representations

−←−envφλf ◦ ∇φ∗ = max
x∈Z

h(x, ·), ←−−proxφλf ◦ ∇φ∗ = arg max
x∈Z

h(x, ·),

on V being a neighborhood of ȳ ∈ Rm, h(x, y) := −f(x) − 1
λ(φ(x) + φ∗(y) − 〈y, x〉),
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←−−proxφλf(∇φ∗(y)) ⊂ Z, with both h(x, y) and ∇yh(x, y) = −(1/λ)(∇φ∗(y)− x), depending
continuously on (x, y) ∈ Z × V .

Proof. Let λ ∈ (0, λf ) and ȳ ∈ Rm. Let V ⊂ Rm be a compact neighborhood of ȳ. Choose

Z := {x ∈ ←−−proxφλf(∇φ∗(y)) : y ∈ V }. We have arg maxx∈Z h(x, y) = ←−−proxφλf(∇φ∗(y))
and due to Lemma 2.22(i) we have

−←−envφλf(∇φ∗(y)) = max
x∈Z

h(x, y).

Furthermore Z is closed. Otherwise there is a sequence xν → x with xν ∈ ←−−proxφλf(∇φ∗(yν))
for some yν ∈ V with x /∈ Z. Taking a convergent subsequence yνj → y ∈ V (ex-
ists as V is bounded) we know from Lemma 2.22(iii) and the continuity of ∇φ∗ that

xνj → x ∈ ←−−proxφλf(∇φ∗(y)) ⊂ Z, a contradiction. Z is also bounded, hence compact. Oth-

erwise there is a sequence ‖xν‖ → ∞ with xν ∈ ←−−proxφλf(∇φ∗(yν)) for some yν ∈ V . How-

ever, going to a convergent subsequence yνj → y ∈ V we have for xνj ∈ ←−−proxφλf(∇φ∗(yνj ))
using Lemma 2.22(iii) that {xνj}ν∈N is bounded, a contradiction.

Next we show that f becomes continuous over the compact space Z. Equivalently
this means h is continuous over Z × V . We assume the contrary: Suppose that f is not
continuous over Z. This means there is a sequence {xν}ν∈N ⊂ Z with xν → x∗ ∈ Z such

that f(xν) 6→ f(x∗). For any xν ∈ Z there exists yν ∈ V such that xν ∈ ←−−proxφλf(∇φ∗(yν))

and f(xν) ≤ f(xν)+λ−1Dφ(xν ,∇φ∗(yν)) = ←−envφλf(∇φ∗(yν)) ≤ γ, for some∞ > γ, since
←−envφλf ◦ ∇φ∗ is continuous and V is compact. Since f is proper, lsc it is also uniformly
bounded from below over Z: −∞ < δ ≤ f(xν). This means we can find a subsequence
indexed by νj such that f(xνj )→ f∗ ≥ f(x∗)+ε, with ε > 0. Taking another subsequence

if necessary we can ensure that yνj → y∗ and x∗ ∈ ←−−proxφλf(∇φ∗(y∗)). By continuity of

the envelope function, cf. Lemma 2.22(ii), we then have ←−envφλf(∇φ∗(yνj )) = f(xνj ) +

λ−1Dφ(xνj ,∇φ∗(yνj ))→ ←−envφλf(∇φ∗(y∗)) = f(x∗) + λ−1Dφ(x∗,∇φ∗(y∗)). Hence, along
that subsequence f(xνj )→ f(x∗), a contradiction.

Since h(x, ·) is C1 as φ∗ is C1 on domφ∗ = Rm both h(x, y) and ∇yh(x, y) =

−(1/λ)(∇φ∗(y)−x), depend continuously jointly on (x, y) ∈ Z×V . Hence −←−envφλf ◦∇φ∗
is lower-C1.

The following proposition provides us with an explicit formula for the gradient of the
composition ←−envφλf ◦ ∇φ∗. The gradient formulas of both the left and right envelope are
direct consequences of this underlying formula.

Proposition 2.59. Let φ ∈ Γ0(Rm) be Legendre and super-coercive and the function
f : Rm → R be proper lsc and prox-bounded with threshold λf . Let f be relatively
prox-regular at x̄ ∈ int(domφ) ∩ dom f for v̄ ∈ ∂f(x̄).

If λ ∈ (0, λf ) is sufficiently small, we have that ←−envφλf ◦ ∇φ∗ is C1 around

ȳ := ∇φ(x̄) + λv̄,

with

∇
(←−envφλf ◦ ∇φ∗

)
(y) =

1

λ

(
∇φ∗(y)− ←−−proxφλf(∇φ∗(y))

)
, (2.64)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex, then ∇(←−envφλf◦∇φ∗)
is Lipschitz continuous on a neighborhood of ȳ.
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Proof. In view of Lemma 2.58 and invoking [RW98, Theorem 10.31] we obtain that

∂
(
−←−envφλf ◦ ∇φ∗

)
(y) = con

{
∇yh(x, y) : x ∈ ←−−proxφλf(∇φ∗(y))

}
= − 1

λ

(
∇φ∗(y)− con

(←−−proxφλf(∇φ∗(y))
))
. (2.65)

Due to the assumptions we can invoke Theorem 2.40(iii) and assert that for λ ∈ (0, λf )

sufficiently small ←−−proxφλf ◦∇φ∗ is singled-valued and continuous at y near ȳ = ∇φ(x̄)+λv̄.

In view of Equation (2.65), this means that ∂(−←−envφλf ◦ ∇φ∗) is single-valued and

continuous around ȳ. Through [RW98, Corollary 9.19] we obtain that −←−envφλf ◦ ∇φ∗ is
C1 around ȳ with

1

λ

(
∇φ∗(y)− ←−−proxφλf(∇φ∗(y))

)
= ∇

(←−envφλf ◦ ∇φ∗
)
(y).

If, furthermore, φ is very strictly convex, we know due to Corollary 2.43 that ←−−proxφλf

is locally Lipschitz at ∇φ∗(ȳ). Then ∇(←−envφλf ◦ ∇φ∗) is locally Lipschitz at ȳ as a
composition resp. sum of locally Lipschitz maps.

Corollary 2.60. Let φ ∈ Γ0(Rm) be Legendre, super-coercive and C2 on int(domφ)
and f : Rm → R be proper lsc and prox-bounded with threshold λf . Let f be relatively
prox-regular at x̄ ∈ int(domφ) ∩ dom f for v̄ ∈ ∂f(x̄). If λ ∈ (0, λf ) is sufficiently small

we have that ←−envφλf is C1 around

ȳ := ∇φ∗(∇φ(x̄) + λv̄),

with

∇←−envφλf(y) =
1

λ
∇2φ(y)

(
y − ←−−proxφλf(y)

)
, (2.66)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex and ∇2φ is locally
Lipschitz on int(domφ), then ∇←−envφλf is Lipschitz continuous on a neighborhood of ȳ.

Proof. The result follows from the identity ←−envφλf = (←−envφλf ◦ ∇φ∗) ◦ ∇φ via the chain
rule and Proposition 2.59: Then we have for y near ȳ that

∇←−envφλf(y) = ∇
(
(←−envφλf ◦ ∇φ∗) ◦ ∇φ

)
(y)

= ∇2φ(y) · ∇
(←−envφλf ◦ ∇φ∗

)
(∇φ(y))

=
1

λ
∇2φ(y)

(
∇φ∗(∇φ(y))− ←−−proxφλf(∇φ∗(∇φ(y)))

)
=

1

λ
∇2φ(y)

(
y − ←−−proxφλf(y)

)
.

If, furthermore, φ is very strictly convex and ∇2φ is locally Lipschitz, clearly, ∇←−envφλf is
locally Lipschitz at ȳ as it is given as the product of two locally Lipschitz maps.

In view of Lemma 2.26, the right Bregman envelope involves the expression ←−envφ
∗
λ (f ◦

∇φ∗) ◦ ∇φ. This allows us to invoke the proposition above to derive a gradient formula
for the right envelope.

Corollary 2.61. Let φ ∈ Γ0(Rm) be Legendre with domφ = Rm and the function
f : Rm → R be proper lsc. In addition, let one of the following two conditions hold true:
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2.3. Bregman–Moreau envelope and proximal mapping

(a) either, f is relatively right prox-bounded with threshold λf and φ is super-coercive,

(b) or f is coercive (and thus relatively right prox-bounded with threshold λf = +∞).

Define g : Rm → R by

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise.

For x̄ ∈ dom f let g be prox-regular relative to φ∗ at ∇φ(x̄) for v̄ ∈ ∂g(∇φ(x̄)). If

λ ∈ (0, λf ) is sufficiently small we have that −→envφλf is C1 around

ȳ = x̄+ λv̄

with

∇−→envφλf(y) =
1

λ

(
∇φ(y)−∇φ(−−→proxφλf(y))

)
=

1

λ

(
∇φ(y)− ←−−proxφ

∗
λ g(∇φ(y))

)
, (2.67)

and y sufficiently close to ȳ. If, furthermore, φ is very strictly convex, ∇−→envφλf is
Lipschitz continuous on a neighborhood of ȳ.

Proof. In view of Lemma 1.16, φ∗ is super-coercive. Then the result follows from the
identities

−→envφλf = ←−envφ
∗
λ g ◦ ∇φ

and
−−→proxφλf = ∇φ∗ ◦ ←−−proxφ

∗
λ g ◦ ∇φ,

cf. Lemma 2.26 as well as Lemma 2.28 and Proposition 2.59 applied to ←−envφ
∗
λ g ◦∇φ.

Note that when φ is very strictly convex and in addition ∇2φ is Lipschitz at x̄, in
view of Corollary 2.55 and Proposition 2.38, the relative prox-regularity assumption on
f ◦ ∇φ∗ is equivalent to classical prox-regularity of f at x̄ for ∇2φ(x̄)v̄ ∈ ∂f(x̄).

The gradient formula of the right Bregman envelope provides us with an explicit
sufficient condition for the local C1 property of the right Bregman distance function of a
convex set, which, in view of [Bau+09, Theorem 6.6] and [Bau+09, Example 7.5], does
not hold globally in general. To illustrate this we revisit and extend [Bau+09, Example
7.5].

Example 2.62. Define the Legendre function φ : R2 → R as

φ(x1, x2) := exp(x1) + exp(x2).

Then the convex conjugate is given as

φ∗(y1, y2) =

{
y1 log(y1)− y1 + y2 log(y2)− y2 if y1 ≥ 0, y2 ≥ 0,

+∞, otherwise.

Define f := ιC for
C := {(x, 2x) : x ∈ [0, 1]},
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and g : Rm → R by

g(z) :=

{
f(∇φ∗(z)), if z ∈ int domφ∗

+∞ otherwise.

Then g = ι∇φ(C) for ∇φ(C) = {(exp(x), exp(2x)) : x ∈ [0, 1]} which is obviously a
compact and nonconvex set. Let x̄ ∈ C. Since φ∗ is C3 on int(domφ∗) and very strictly
convex and therefore ∇2φ∗ is full rank at ∇φ(x̄) and g(∇φ(x̄)) = f(x̄) is finite we have
that g is strongly amenable at ∇φ(x̄). In view of [RW98, Proposition 13.32] g is also
prox-regular at ∇φ(x̄). Let v̄ ∈ ∂g(∇φ(x̄)), i.e. v̄ is a limiting normal of ∇φ(C) at ∇φ(x̄)
and, in view of the prox-regularity of g at ∇φ(x̄), even a proximal normal of ∇φ(C) at
∇φ(x̄). In view of Proposition 2.38, g is also prox-regular relative to φ∗ at ∇φ(x̄). In
addition we know that f is proper, lsc and coercive. Then we can invoke Corollary 2.61
to assert, that for λ > 0 being sufficiently small, the right Bregman distance function
−→envφλf = (1/λ)−→envφ1 ιC is C1 around the point ȳ = x̄+ λv̄ and the proximal mapping is
single-valued, even locally Lipschitz on that neighborhood.

In view of Corollary 2.55, the local C1 property of the right Bregman distance function
−→envφ1 ιC even holds for nonconvex C with ιC prox-regular.

2.3.7. Example of a simple Bregman proximal mapping

We present an analytically solvable Bregman proximal mapping for the relatively prox-
regular function (1/p)|x|p for p ∈ (0, 1). While the function is also prox-regular, the
classical proximal mapping cannot be solved analytically, except for p = 1/2. For each
p ∈ (0, 1), we define a Legendre function φ relative to which (1/p)|x|p is prox-regular and
the left Bregman proximal mapping can be solved easily. This example is potentially
interesting for applications that involve optimization with sparsity regularization, as for
example in compressed sensing.

Example 2.63. Let f : R → R with f(x) = (1/p)|x|p with p ∈ (0, 1) and choose
φ(x) = (1/q)|x|q with q > 1. For some y ∈ Rm we seek a closed form solution of the left
Bregman proximal mapping

←−−proxφλf(y) = arg min
x∈R

1

p
|x|p +

1

λ
Dφ(x, y) = arg min

x∈R

1

p
|x|p +

1

qλ
|x|q − cx,

for c := (1/λ) sign(y)|y|q−1. Let x̄ ∈ ←−−proxφλf(y). Note that

∂f(x) =

{
sign(x)|x|p−1 if x 6= 0,

R, otherwise.

and φ′(x) = sign(x)|x|q−1. Then, the first order necessary optimality condition is given
as follows:

0 ∈ ∂f(x̄) +
1

λ
φ′(x̄)− c =


x̄p−1 + 1

λ x̄
q−1 − c if x̄ > 0,

R if x̄ = 0,

−x̄p−1 − 1
λ x̄

q−1 − c, otherwise.

This shows that the left Bregman proximal mapping can be evaluated by checking the
three conditions individually and combining the minimum objective solutions. Note
that the first and the last condition are exclusive while the first two and the last two
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conditions can potentially be satisfied simultaneously. Indeed, the Bregman proximal
mapping of the given f can be multivalued. Assume that x̄ > 0 as the other case follows
analogously. I.e. we seek a point x̄ > 0 that satisfies

x̄p−1

(
1 +

1

λ
x̄q−p − cx̄1−p

)
= 0.

Let α ∈ {2, 3, 4, . . .} and choose q according to the following condition:

q − p
1− p = α,

which is equivalent to q = α+ (1− α)p. Now, the substitution

x̄1−p = u ⇐⇒ x̄ = u1/(1−p)

leads to the following root-finding problem

u−1

(
1 +

1

λ
u
q−p
1−p − cu

)
= 0 ⇐⇒ 1 +

1

λ
uα − cu = 0,

which can be solved analytically (at least) for α ∈ {2, 3, 4}. Verification that f is
relatively prox-regular is yet to be performed. Let x̄ > 0. We can choose ε > 0 such
that the ε-ball around x̄ lies in R>0. Then we find r > 0 sufficiently large such that
for all x ∈ R with |x − x̄| < ε the second order derivative of f + rφ at x, given as
(f + rφ)′′(x) = (1/(p− 1))xp−2 + r(1/(q − 1))xq−2 ≥ 0, is nonnegative, which is asserted
for

r ≥ q − 1

1− p · inf
{
x(p−2)/(q−2) : |x− x̄| < ε

}
> 0,

since (q − 1)/(1− p) > 0. This implies that f + rφ is convex on the open ε-ball around
x̄ and therefore f is relatively prox-regular at x̄. The case x̄ < 0 follows by symmetry.
Now, we choose x̄ = 0 and fix v̄ ∈ ∂f(0) = R. Since limx→0, x 6=0 |f ′(x)| → ∞ we can
find ε sufficiently small such that the graph of the ε-localization T of ∂f around (x̄, v̄)
degenerates to

gphT = {(x̄, v) : |v − v̄| < ε} .
Relative prox-regularity of f at x̄ = 0 for v̄ is then asserted by verifying the subgradient
inequality (2.57) for all (x, v) ∈ gphT . Indeed, we can find ε > 0, such that for all such
|v − v̄| < ε we have f(x′) ≥ vx′ for all |x′ − x̄| < ε, which shows that f is relatively
prox-regular also at 0.

2.4. Beyond prox-regularity: Upper-C1 functions

In this section, we consider a class of functions that can be written (locally) in terms of a
pointwise maximum/minimum of a finite collection of smooth functions. Such functions
are differentiable almost everywhere. In addition this is a particular special case of
subsmoothness, where the index set T is finite and therefore compact under the discrete
topology. In the definition of subsmoothness, Definition 2.16, one distinguishes upper-C1

and lower-C1 functions depending on pointwise maximization/minimization. However,
while pointwise maxima are in particular prox-regular [RW98, Proposition 13.33], the
situation is different for pointwise minima: At points at which multiple functions are
active in the sense that multiple graphs intersect, the resulting function is possibly not
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Clarke regular and in particular not prox-regular and the proximal mapping is typically
multivalued. A goal of this section therefore is to identify sufficient conditions under
which the subgradient formula of the Moreau envelope holds in terms of the limiting
subdifferential. In particular each element of the proximal mapping (if it is multivalued)
shall give rise to a limiting subgradient of the Moreau envelope. We show that such a
condition can be formulated in terms of the linear independence constraint qualification
of the hypograph of the function.

As a convention and in accordance with Definition 2.16 we treat pointwise minima in
terms of a negative pointwise maximum:

min
t∈T

ft(x) = −max
t∈T
−ft(x). (2.68)

Here, the index set T is finite and ft : (O ⊂ Rm)→ R with O open is C1. According to
[RW98, Exercise 10.27(c)] pointwise maxima are semidifferentiable, see [RW98, Definition
7.20]. According to [RW98, Theorem 10.31], the limiting subdifferential ∂(−f) of a
pointwise minimum or equivalently, a negative pointwise maximum, enjoys a one-sided
inclusion:

−∂(−f)(x) ⊂ {∇ft(x) : t ∈ T (x)}, T (x) = arg max
t∈T

ft(x), (2.69)

where T (x) is the active set. Indeed, the inclusion is strict as the following simple example
reveals:

Example 2.64. Let f(x) = maxt∈T ft(x) with f1(x) = −(x+ 1)2, f2(x) = −(x− 1)2, and
f3(x) = −x2 − 1 and T = {1, 2, 3}. Then T (0) = {1, 2, 3}, and therefore {∇ft(0) : t ∈
T (0)} = {1,−1, 0} whereas −∂(−f)(0) = {∇f1(0),∇f2(0)} = {−1, 1}. However, since
f is locally Lipschitz, we have {∇ft(0) : t ∈ T (0)} ⊂ −∂C(−f)(0) = − con ∂(−f)(0) =
[−1, 1], where ∂Cf is the Clarke subdifferential.

If, in addition, the gradient normals of the pieces ft are linearly independent, the
inclusion in (2.69) holds with equality as shown in the next proposition. This provides
a refinement of [RW98, Theorem 10.31] under a certain linear independence regularity
condition:

Definition 2.65 (linear independence constraint qualification (LICQ)). Let gt : Rn → R
be continuously differentiable for each t ∈ T and T is finite. Let Ω := {x ∈ Rn : gt(x) ≤ 0}.
Then we say Ω satisfies the linear independence constraint qualification (LICQ) at x̄ ∈ Ω
if the active gradients {∇gt(x̄) : t ∈ T (x̄)} with T (x̄) = {t ∈ T : gt(x̄) = 0} are linearly
independent.

Proposition 2.66. Let f(x) = maxt∈T ft(x) and ft : Rm → R be continuously differ-
entiable. Let x̄ ∈ Rm. Assume that epi f = {(x, y) : ft(x)− y ≤ 0,∀t ∈ T} satisfies the
LICQ at (x̄, f(x̄)). Then the Inclusion (2.69) holds with equality:

−∂(−f)(x) = {∇ft(x) : t ∈ T (x)} .

Proof. To show the desired result we construct for any t ∈ T (x̄) a direction vt ∈ Rm such
that for any λ > 0 sufficiently small we have

T (x̄+ λvt) = {t}. (2.70)

Then, due to the continuity of the individual pieces ft, there is a sufficiently small
neighborhood of x̄ + λvt so that T (x̄) is a singleton on this neighborhood and we can
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conclude that f is continuously differentiable at x̄+λvt with ∇f(x̄+λvt) = ∇ft(x̄+λvt),
which proves that ∇ft(x̄) ∈ ∂f(x̄). Suppose such a neighborhood of x̄ + λvt does not
exist. Then there exist sequences xν → x̄+ λvt and tν ∈ T (xν) with tν 6= t and by going
to a subsequence if necessary we can assume tν = t∗ constant, such that f(xν) = ft∗(x

ν)
and, due to Equality (2.70), f(x̄ + λvt) = ft(x̄ + λvt) < ft∗(x̄ + λvt), which yields a
contradiction since f is given as a pointwise minimum over finitely many continuous
functions and therefore continuous.

To prove the condition (2.70), we define the matrix U ∈ R(m+1)×|T (x̄)| such that

U :=

∇f1(x̄) . . . ∇f|T (x̄)|(x̄)

−1 . . . −1

 . (2.71)

For each t, let vt ∈ Rm, yt ∈ R, αt ∈ R|T (x̄)| such that (vt, yt)
> = Uαt. Now choose αt as

follows. Let et ∈ R|T (x̄)| be the tth unit vector. Since epi f satisfies the LICQ at (x̄, f(x̄)),
the matrix U has full column-rank. Therefore the following linear system U>Uαt = −et
has a unique solution αt = (U>U)−1et. This implies that

−1 = 〈∇ft(x̄), vt〉 − yt < 〈∇ft′(x̄), vt〉 − yt = 0,

for all t′ ∈ T (x̄) \ {t}. For λ > 0 sufficiently small this means that

〈∇ft(x̄), vt〉+
o(λ)

λ
< 〈∇ft′(x̄), vt〉+

o(λ)

λ
(2.72)

and hence
ft(x̄+ λvt) < ft′(x̄+ λvt), (2.73)

for all t′ ∈ T (x̄)\{t}. Furthermore, for λ > 0 sufficiently small it holds that T (x̄+λvt) ⊂
T (x̄), due to the continuity of f . Thus, we verify that the active set T (x̄ + vt) is a
singleton with T (x̄+ λvt) = {t} for λ→ 0+ as desired, and the conclusion follows.

Indeed, the functions in Example 2.64 violate the LICQ of epi f at (0,−1).
With this result at hand, we can prove that the gradient formula for the Moreau

envelope of a piecewise convex function f : Rm → R, defined by

f(x) = min
t∈T

ft(x),

with T finite and ft proper, lsc and convex holds in terms of the limiting subdiffer-
ential. To this end note that eλf(x) = mint∈T eλft(x) and Pλf(x) = {Pλft(x) : t ∈
arg mint∈T eλft(x)}.

Corollary 2.67. Let f : Rm → R, defined by

f(x) = min
t∈T

ft(x),

with T finite and ft proper, lsc and convex. Let x̄ ∈ Rm. Assume that epi−eλf satisfies
the LICQ at (x̄, eλf(x̄)). Then the following subgradient formula holds for the Moreau
envelope eλf of f :

∂eλf(x̄) =

{
1

λ
(x̄− Pλft(x̄)) : t ∈ arg min

t∈T
eλft(x̄)

}
=

1

λ
(x̄− Pλf(x̄)). (2.74)
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Note that the functions in Example 2.64 are the negative Moreau envelopes e1fi of the
functions f1 = ι{−1}, f2 = ι{1} and f3 = ι{0} + 1. For f := mint∈{1,2,3} ft = f1 + f2 + f3

it holds P1f(0) = {−1, 0, 1}, but not every element in P1f(0) gives rise to a limiting
subgradient of e1f = mint∈{1,2,3} e1ft at 0. This also shows that the inclusion in the
limiting subgradient formula for the Moreau envelope [RW98, Theorem 10.31] is strict in
general. An exception are indicator functions of closed sets where the inclusion always
holds with equality [RW98, Example 8.53] even for the Bregman–Moreau envelope,
[Bau+09, Theorem 5.4].
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Chapter 3.
Generalized conjugate functions, proximal
transform and a nonconvex proximal average

3.1. Generalized conjugate functions

This chapter surveys existing results from [RW98] on generalized conjugacy and the
proximal transform and on the nonconvex proximal average due to [CWP20]. Leveraging
the proximal transform we point out a duality relation between Proximal Point and
gradient descent. This is based on [LOC21]. In the previous chapter we have considered
lower envelopes which are obtained by inf-convolution, or, more generally, inf-projection
wrt a discrepancy measure. Under suitable assumptions, these lower envelopes inherit
the smoothness of the discrepancy measure, at least locally. In this chapter we consider
a complementary approach to construct lower envelopes based on proximal hulls, or,
more generally, generalized conjugacy. An important special case is the convex envelope
of a function, i.e., the largest lsc convex function below the input function, which, in
contrast to the Moreau envelope of a convex function, is nonsmooth in general. In convex
conjugacy, an extended real-valued function is convex and lsc if and only if it can be
written in terms of a pointwise supremum over a collection of affine functions. Given a
convex lsc function, this collection of lower supporting affine functions constitutes the
dual representation of the convex function. In addition, the slope of a lower supporting
hyperplane at a point is called a subgradient of the convex function.

Likewise, in nonconvex conjugacy, we seek for a representation of a nonconvex function
in terms of a pointwise supremum over a family of lower nonconvex, possibly concave,
functions. Indeed, this is the key idea behind generalized conjugate functions [RW98,
Chapter 11L*]:

Definition 3.1 (generalized conjugate functions). Let X and Y be nonempty sets. Let
Φ : X × Y → R be any function. Let f : X → R. Then the Φ-conjugate of f on Y at
y ∈ Y is defined by

fΦ(y) := sup
x∈X

Φ(x, y)−. f(x), (3.1)

and the Φ-biconjugate of f back on X at x ∈ X is given by

fΦΦ(x) := sup
y∈Y

Φ(x, y)−. fΦ(y). (3.2)

We say that f is a Φ-envelope on X if f can be written in terms of a pointwise supremum
of a collection of elementary functions x 7→ Φ(x, y) −. α, where (α, y) ∈ R × Y is the
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parameter element.

Let g : Y → R. Then, the Φ-conjugate of g on X at x ∈ X is defined by

gΦ(x) := sup
y∈Y

Φ(x, y)−. g(y), (3.3)

and the Φ-biconjugate of g back on Y at y ∈ Y is given by

gΦΦ(y) := sup
x∈X

Φ(x, y)−. gΦ(x). (3.4)

We say that g is a Φ-envelope on Y if g can be written in terms of a pointwise supremum
of a collection of elementary functions y 7→ Φ(x, y) −. β, where (β, x) ∈ R × X is the
parameter element.

If X = Y and Φ is not symmetric we distinguish a left and a right Φ-conjugate of f .

Clearly, if X = Y = Rm and Φ(x, y) = 〈x, y〉, one recovers the classical convex
conjugate.

The following lemma is adapted from [RW98, Exercise 11.63] and connects lower
envelopes to certain generalized biconjugates:

Lemma 3.2. Let Φ : Rm×Rn → R be an extended real-valued function. Let f : Rm → R.
Then, the left Φ-biconjugate fΦΦ of f is the pointwise supremum of all elementary
functions x 7→ Φ(x, y)−. β that are majorized by f where (β, y) ∈ R×Rn is the parameter
element. In addition, if f is a left Φ-envelope, we have the identity fΦΦ = f .

Likewise, for g : Rn → R, the right Φ-biconjugate gΦΦ is the pointwise supremum of
all elementary functions y 7→ Φ(x, y)−. α that are majorized by g where (α, x) ∈ R× Rm
is the parameter element. If, in addition, g is a right Φ-envelope, the identity gΦΦ = g
holds. In particular, we have for any function f : Rm → R that (fΦΦ)Φ = fΦ and any
function g : Rn → R that (gΦΦ)Φ = gΦ.

Proof. Consider the pointwise supremum over functions qy,β = Φ(·, y) −. β that are
majorized by f . The property Φ(x, y) −. β = qy,β(x) ≤ f(x) for all x ∈ Rm means in
the notation of Φ-conjugates β ≥ fΦ(y). Therefore, we can actually take the pointwise
supremum supy∈Rm qy(x) over functions qy(x) := Φ(x, y)−. fΦ(y) and we get

sup
y∈Rm

qy(x) = fΦΦ(x),

as claimed. Let f be a left Φ-envelope. I.e., f = sup(β,y)∈W qy,β, for some W ⊂ R× Rn.

Since fΦΦ is the pointwise supremum of all elementary functions x 7→ Φ(x, y)−. β that
are majorized by f we have fΦΦ = f . The claims for gΦΦ and the right Φ-envelope are
obtained analogously.

By definition, fΦ is a right Φ-envelope and we obtain the claimed formula for fΦ.
Likewise, gΦ is a left Φ-envelope and we obtain the claimed formula for gΦ.

In Chapter 5 we will consider lifting to measures in Lagrangian relaxations and dual
discretizations. The approach will involve Φ-conjugates where the dimensions of X and Y
do not agree: We will have X ⊂ Rm compact, nonempty and Y is the infinite-dimensional
space of continuous functions on X. The coupling functional Φ(x, λ) =

∫
X λ(x′) dδx(x′) =

f(x) first lifts the input x to the Dirac measure δx centered at x ∈ X and then couples
the continuous function λ ∈ C(X) with δx via the appropriate dual pairing. We will
later on discretize C(X) in terms of a finite-dimensional subspace Λ ⊂ C(X). Then
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the “discretized” Φ-biconjugate is the largest function below f which (up to constant
translation) can be written in terms of a pointwise supremum of functions λ ∈ Λ.

Indeed, when Λ = {x 7→ 〈x, y〉 − r/2‖x‖2 : y ∈ Rm, r ∈ R}, the coupling functional
specializes to Φ(x, (y, r)) = 〈x, y〉−r/2‖x‖2 and one recovers the basic quadratic transform
[RW98, Example 11.66] which identifies all proper lsc prox-bounded functions as Φ-
envelopes.

3.2. Proximal transform

In what follows we restrict x 7→ Φ(x, y)−. α to a family of lower concave quadratics whose
curvature parameter r is fixed and not adaptive as in the basic quadratic transform. In
contrast to the basic quadratic transform such a family of functions is not a subspace
since scaling is not permitted. This yields the proximal transform [RW98, Example
11.64] which sets up a connection between Moreau envelopes and generalized conjugate
functions:

Definition 3.3 (proximal transform). For fixed λ > 0 pair X = Rm = Y with itself:

Φ(x, y) = − 1

2λ
‖x− y‖2.

Then for any function f : Rm → R one has

fΦ = −eλf, fΦΦ = −eλ(−eλf).

We adopt the definition from [RW98, Example 1.44]:

Definition 3.4 (proximal hull). For a function f : Rm → R and λ > 0 the λ-proximal
hull of f is the function hλ : Rm → R defined as the pointwise supremum of the collection
of all the quadratic functions of the elementary form

x 7→ α− 1

2λ
‖x− y‖2,

where (α, y) is the parameter element, that are majorized by f . We say f is λ-proximal
if hλf agrees with f everywhere.

In view of Lemma 3.2 the Φ-biconjugate −eλ(−eλf) is the largest function below f that
can be written as a pointwise supremum over concave quadratics with fixed curvature
1/λ, i.e., −eλ(−eλf) the proximal hull hλf of f :

−eλ(−eλf) = hλf.

In the language of proximal conjugacy the Φ-envelopes are precisely the λ-proximal
functions. The next lemma identifies all lsc 1/λ-hypoconvex functions as Φ-envelopes, in
the same way all lsc convex functions are convex envelopes:

Lemma 3.5. Let λ > 0. For any function f : Rm → R we have

−eλf =

(
f +

1

2λ
‖ · ‖2

)∗
◦ λI − 1

2λ
‖ · ‖2, hλf =

(
f +

1

2λ
‖ · ‖2

)∗∗
− 1

2λ
‖ · ‖2,

and therefore −eλf is λ-proximal. If, in addition, f is proper, hλf = f if and only if f
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is lsc and

f +
1

2λ
‖ · ‖2,

is convex.

Proof. See [RW98, Example 11.26].

In the same way the lower supporting affine functions in convex conjugacy correspond
to the subgradients of a convex function, in proximal conjugacy, the lower supporting
quadratics represent proximal subgradients: In particular we have for x̄ ∈ Pλf(y) with
y ∈ Rm that:

f(x) ≥ f(x̄) +
1

2λ
‖x̄− y‖2 − 1

2λ
‖x− y‖2,

for all x ∈ Rm. This shows that the parametrized map x 7→ f(x̄)+ 1
2λ‖x̄−y‖2− 1

2λ‖x−y‖2
is below f and therefore contained in the family of functions in definition of the proximal
hull. Since for y = x̄ equality holds at x = x̄ we have that hλf(x̄) = f(x̄) and therefore
hλf agrees with f on the range of Pλf .

3.3. A nonconvex proximal average

In this section we discuss an interesting application of proximal conjugacy, the so-called
proximal average [BMR04; BLT08; Bau+08]. Given a collection of convex input functions
f1, f2, . . . , fN and weights π ∈ Π with

Π :=

{
π ∈ RN :

N∑
i=1

πi = 1, πi ≥ 0

}
, (3.5)

the proximal average is a recipe for averaging functions and compares favorably to the
pointwise arithmetic average

∑N
i=1 πifi or the epigraphical average π1 ?f1⊕π2 ?f2⊕· · ·⊕

πN ? fN in some ways [Bau+08]: Desirable properties are its ability to continuously (in
an epigraphical sense) transform one function into another [BLT08, Theorem 5.4] and a
simple expression of its proximal mapping in terms of the pointwise arithmetic average of
its proximal mappings [Bau+08, Theorem 6.7]. [Har09; HP14] are the first to extend the
proximal average to the nonconvex setting considering a slightly different construction
based on Lasry–Lions envelopes. The construction enjoys powerful stability properties.
However, it doesn’t recover the proximal average for convex functions as a special case.
More recently, as a remedy, [Yu+15; CWP20] consider a proximal average construction
based on proximal hulls, which can be seen as a limiting case of the Lasry–Lions envelope
construction. The formulation, indeed, strictly generalizes the convex proximal average.
Like the convex proximal average it enjoys a certain homotopy property and continuously
transforms one proximal hull into another [CWP20, Corollary 6.9]. In addition, for
λ-proximal functions, one recovers the pointwise average expression for the proximal
mapping [CWP20, Theorem 5.4].

In this section we collect results from related works [Yu+15; CWP20]. In particular,
we extend some results for the proximal average for N = 2 functions due to [CWP20], to
an arbitrary number of functions. This is straightforward using the arguments developed
by [CWP20]. For completeness, we will adapt their proofs to the case N ≥ 2.
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We consider the proximal average for N ≥ 2 functions [Yu+15, Definition 1]:

Aλ(f, π) = −eλ
(

N∑
i=1

−πieλfi
)
. (3.6)

We collect some key properties of the proximal average from [CWP20], extended from
N = 2 to N ≥ 2.

Lemma 3.6. Let fi : Rm → R be proper lsc and prox-bounded with threshold λfi. Let
λ < min1≤i≤N λfi. Then we have

eλAλ(f, π) =
N∑
i=1

πieλfi

and for the associated proximal mapping for y ∈ Rm:

PλAλ(f, π)(y) =
N∑
i=1

πi conPλfi(y).

If, in addition, fi are λ-proximal we have PλAλ(f, π)(y) =
∑N

i=1 πiPλfi(y).

Proof. For N = 2 this is [CWP20, Theorem 5.1(a)] and [CWP20, Theorem 5.4]. Adapting
the proof for N > 2 observe that due to Lemma 3.5

∑N
i=1−πieλfi is λ-proximal. Invoking

the second part of Lemma 3.5 we have

eλAλ(f, π) = −hλ
(

N∑
i=1

−πieλfi
)

=
N∑
i=1

πieλfi.

Since −eλfi is regular and locally Lipschitz, the sum rule Lemma 1.2 yields

∂(−eλAλ(f, π))(y) =

N∑
i=1

πi∂(−eλfi)

and therefore using [RW98, Example 10.32]

1

λ
(conPλAλ(f, π)(y)− y) =

1

λ

N∑
i=1

πi(conPλfi(y)− y).

Since Aλ(f, π) is λ-proximal using [CWP20, Proposition 2.6] we know that PλAλ(f, π)(y)
is convex and therefore PλAλ(f, π)(y) = conPλAλ(f, π)(y). Reordering then yields

PλAλ(f, π)(y) =

N∑
i=1

πi conPλfi(y).

If, in addition, fi are λ-proximal, again using [CWP20, Proposition 2.6], we have
conPλfi(y) = Pλfi(y) and therefore PλAλ(f, π)(y) =

∑N
i=1 πiPλfi(y).

Proposition 3.7. Let fi : Rm → R be proper lsc and prox-bounded with threshold λfi.
Let λ < min1≤i≤N λfi.
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(i) Aλ(f, π) is proper, lsc. If, in addition, each fi is ri-hypoconvex then Aλ(f, π) is
hypoconvex with parameter r = max1≤i≤N ri.

(ii) The following inequalities hold true:

eλAλ(f, π) ≤ Aλ(f, π) ≤
N∑
i=1

πihλfi ≤
N∑
i=1

πifi.

(iii) If
⋂N
i=1 arg min fi 6= ∅ and π ∈ relint Π we have arg min

∑N
i=1 πifi = arg minAλ(f, π)

and min
∑N

i=1 πifi = minAλ(f, π).

(iv) If any function fi is continuously differentiable with Lipschitz continuous gradient
and λ-proximal, then for every π ∈ relint Π the proximal average Aλ(f, π) is
continuously differentiable with Lipschitz continuous gradient as well.

Proof. (i) Expanding the square we obtain a well-known expression of the negative
Moreau envelope in terms of the convex conjugate. See, e.g., [RW98, Example 11.26]:

−eλf(y) = sup
x∈Rm

− 1

2λ
‖x− y‖2 − f(x)

=
1

λ

(
sup
x∈Rm

〈x, y〉 − (1/2)‖x‖2 − λf(x)

)
− 1

2λ
‖y‖2

=
1

λ

(
λf + (1/2)‖ · ‖2

)∗
(y)− 1

2λ
‖y‖2. (3.7)

Then we have:

N∑
i=1

−πieλfi =
1

λ

N∑
i=1

πi
(
λfi + (1/2)‖ · ‖2

)∗ − 1

2λ
‖ · ‖2,

where (λfi + (1/2)‖ · ‖2)∗ are 1/(1− riλ)-Lipschitz differentiable and therefore, in view
of [RW98, Proposition 12.60]

1

λ

(
N∑
i=1

πi
(
λfi + (1/2)‖ · ‖2

)∗)∗

is (1/λ − r)-strongly convex. In view of the definition of the proximal average and
expression (3.7) we have

Aλ(f, π) +
r

2
‖ · ‖2 = −eλ

(
N∑
i=1

−πieλfi
)

+
r

2
‖ · ‖2

=
1

λ

(
N∑
i=1

πi
(
λfi + (1/2)‖ · ‖2

)∗)∗ − 1/λ− r
2

‖ · ‖2,

is convex.

(ii) For N = 2 this is [CWP20, Theorem 6.4(a)]. For N > 2 we adapt the arguments
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as follows: We have

eλ

N∑
i=1

πigi(y) = inf
x∈Rm

N∑
i=1

πigi(x) +
1

2λ
‖x− y‖2

≥ inf
xi∈Rm

N∑
i=1

πigi(xi) +
1

2λ
‖xi − y‖2 =

N∑
i=1

πieλgi(y).

Thus we have for gi := −eλfi:

Aλ(f, π) = −eλ
(

N∑
i=1

−πieλfi
)
≤

N∑
i=1

−πieλ(−eλfi) =

N∑
i=1

πihλfi.

The first inequality follows by definition of the Moreau envelope and the last inequality
due to the definition of the proximal hull, see Definition 3.4.

(iii) For N = 2 this is [CWP20, Theorem 7.2]. For N > 2 observe that for any
x ∈ ⋂N

i=1 arg min fi 6= ∅ we have Aλ(f, π)(x) ≤ ∑N
i=1 πifi(x) =

∑N
i=1 πieλfi(x) =

eλAλ(f, π)(x) ≤ Aλ(f, π)(x) and thereforeAλ(f, π)(x) =
∑N

i=1 πifi(x) = min
∑N

i=1 πifi =

min
∑N

i=1 πieλfi ≤ minAλ(f, π). This implies min
∑N

i=1 πifi = minAλ(f, π).

It is easy to verify that arg min
∑N

i=1 πifi =
⋂N
i=1 arg min fi and arg min

∑N
i=1 πieλfi =⋂N

i=1 arg min eλfi. Since arg min g = arg min eλg we have

arg min
N∑
i=1

πifi = arg min
N∑
i=1

πieλfi,

and

arg minAλ(f, π) = arg min eλAλ(f, π) = arg min
N∑
i=1

πieλfi.

Overall we have arg min
∑N

i=1 πifi = arg minAλ(f, π) as claimed.

(iv) For N = 2 this is [CWP20, Proposition 8.8]. For N > 2 we adapt the arguments
as follows: Define

jλ =
1

2λ
‖ · ‖2.

Let f1 be continuously differentiable with Lipschitz continuous gradient and λ-proximal.
Then f1 + jλ is proper convex lsc and Lipschitz differentiable. In view of [RW98,
Proposition 12.60] (f1 + jλ)∗ is strongly convex. We have

Aλ(f, π) = −eλ
(

N∑
i=1

−πieλfi
)

(3.8)

=

(
N∑
i=1

πi(fi + jλ)∗
)∗
− jλ. (3.9)

Thus we know that
∑N

i=1 πi(fi+jλ)∗ is strongly convex and therefore (
∑N

i=1 πi(fi+jλ)∗)∗

is Lipschitz differentiable which concludes the proof.

In Section 4.3.2 we will consider variance bounds for the proximal average: In particular,
Lemma 4.14 shows that in the smooth case the gradient of the arithmetic average can be
bounded by the gradient of the proximal average under bounded variance of the gradients
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of the individual functions.

3.4. On the duality between gradient descent and Proximal
Point

We conclude this chapter with another application of the proximal transform: It is
well known that Proximal Point with sufficiently small λ on a hypoconvex function is
equivalent to gradient descent on its Moreau envelope. Proximal conjugacy reveals that
also the converse is true: Gradient descent on a function with Lipschitz gradient is
equivalent to Proximal Point applied to a certain possibly nonsmooth function obtained
via the proximal transform:

Theorem 3.8. Let f : Rm → R be L-smooth. Let λ ≤ 1/L. Define dλ := −eλ(−f) to be
the inf-deconvolution of f . Then, dλ is hypoconvex with some r < 1/λ and the following
relation holds:

f = eλdλ. (3.10)

In addition we have for all x ∈ Rm:

x− λ∇f(x) = Pλdλ(x). (3.11)

Proof. Let f be L-smooth. It is well known that L-Lipschitz continuity of ∇f implies
that

L

2
‖ · ‖2 − f,

is convex, and thus, −f is L-hypoconvex. Let λ ≤ 1/L and consider

dλ = −eλ(−f) =

(
1

2
‖ · ‖2 − λf

)∗
− 1

2λ
‖ · ‖2.

Using Lemma 3.5 we have eλdλ = eλ(−eλ(−f)) = f . Rewriting the above expression for
dλ we have

dλ +
1

2λ
‖ · ‖2 =

(
1

2
‖ · ‖2 − λf

)∗
,

where (1/2)‖ · ‖2 − λf is convex, proper lsc and differentiable with Lipschitz continuous
gradient. Invoking [RW98, Proposition 12.60] we have that dλ + (1/(2λ))‖ · ‖2 is strongly
convex and therefore dλ is hypoconvex with some r < 1/λ. In particular this means that
dλ is prox-bounded with some threshold λf > λ.

Invoking [RW98, Example 10.32] we obtain

−∇f(x) = ∂(−eλdλ)(x) =
1

λ
(conPλdλ(x)− x),

and therefore a gradient step x − λ∇f(x) = Pλdλ(x) is a Proximal Point step on the
deconvolution.

In the context of the minimization of a finite sum
∑N

i=1 πifi, with π ∈ Π, for fi being C1

with L-Lipschitz gradient the above result reveals a connection between deconvolutions
and the proximal average: The proximal average of the deconvolutions g := (dλfi)

N
i=1 of
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fi with weights π is

Aλ(g, π) = −eλ
(

N∑
i=1

−πieλdλfi
)

= −eλ
(

N∑
i=1

−πifi
)

= dλ

N∑
i=1

πifi,

i.e., the deconvolution of the finite sum and therefore the Moreau envelope of the proximal
average of g is

eλAλ(g, π) =

N∑
i=1

πifi.

As a consequence, a proximal point step with parameter λ wrt Aλ(g, π) is a gradient
step with step-size λ on

∑N
i=1 πifi. Using this reformulation, gradient descent on a finite

sum can be interpreted in terms of an averaged Proximal Point iteration applied to
the deconvolutions g. Introducing identical copies of the variable for each summand,
averaged Proximal Point takes the form of a block coordinate descent minimization
applied to a penalty objective. Averaged Proximal Point aka block coordinate descent
can be implemented in a stochastic fashion such that the objective decreases surely, as
considered in the next chapter: The key idea is to update a random sample of blocks in
each iteration, while the other blocks are left unchanged. Therefore, the aforementioned
equivalence between gradient descent and block coordinate descent can inform the design
of stochastic formulations of gradient descent in which a sure descent of the penalty
objective function is guaranteed: In Section 4.3 we consider a stochastic averaged proximal
point method. The method specializes to the Finito/MISO algorithm [DDC14; Mai15]
when applied to the deconvolutions dλfi = −eλ(−fi).
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Chapter 4.
Alternating inexact Proximal Point with
applications to weakly supervised and
federated learning

4.1. Overview

In this chapter we consider alternating Proximal Point and discuss the applications of
weakly supervised and federated learning. As we will explain in the course of this chapter
these algorithms are well-suited to solve such a class of problems. This chapter is based on
[LWC19], [LOC20] and [LOC21]: In particular, Algorithm 1 and Theorem 4.1 are adopted
from [LOC20]. The stochastic averaged proximal point method and its application to
federated learning in Section 4.3 and in particular Algorithm 6 were considered in a very
simplified setup under the anisotropic prox geometry and without an analysis in [LWC19].
Otherwise the results in this chapter are based on [LOC21].

The alternating Proximal Point typically solves a certain relaxation to the original
problem. However, leveraging prox-regularity and the gradient formula of the Moreau
envelope we will be able to show that the relaxation is useful: In federated learning, for
instance, we invoke prox-regularity to show that under bounded variance of the gradients
of the Moreau envelopes of the individual risks a stationary point wrt the relaxation is
near stationary wrt the original problem and approximate consensus between the clients
is attained in the limit, see Corollary 4.20.

4.2. Alternating inexact Bregman Proximal Point with
application to weakly supervised learning

4.2.1. On the duality between induction and transduction in optimization for
machine learning

First we consider alternating Bregman Proximal Point in a general nonconvex setting
under relative prox-regularity. Alternating Bregman minimization was considered before
in a convex setting [BCN06]. We are interested in the following coupled optimization
problem:

minimize {f(x) +Dφ(x, y) + g(y) : (x, y) ∈ domφ× int(domφ)} , (4.1)

where φ ∈ Γ0(Rm) is a Legendre function and f : Rm → R and g : Rm → R are extended
real-valued functions. The Bregman distance Dφ(x, y) ≥ 0 penalizes the discrepancy
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between x and y and attains the value 0 if and only if x = y. Therefore the problem can
be seen as a relaxation to the problem

minimize
{
f(x) + ι{0}(x− y) + g(y) : (x, y) ∈ domφ× int(domφ)

}
. (4.2)

In what follows we elaborate on duality relations for this class of problems: For instance,
it was shown in [BCN06] that if, among other properties, Dφ is jointly convex, and f, g
are convex, a classical convex duality relation holds between the primal problem (4.1)
and a Fenchel–Rockafellar dual problem

max
x∗,y∗∈Rm

−f∗(x∗)− g∗(y∗)−D∗φ(−x∗,−y∗).

In the nonconvex setting there still holds a certain double-min duality relation depending
on the order of minimization: In some situations a certain hierarchy is imposed on the
variables x and y resp. the minimization wrt x or y: Suppose that either we are interested
in the solution y, and x is merely an auxiliary or hidden variable in the optimization or,
alternatively, x and y have their roles flipped. Then we are interested in the cost function
dependent on y (or x) that is obtained when x (or y) is eliminated by inf-projection. This
hierarchy of minimization tasks can be expressed in terms of a certain bilevel optimization
problem which distinguishes an upper and a lower level minimization problem: We have

minimize
y∈Rm

g(y) +Dφ(x(y), y) + f(x(y))

subject to x(y) = arg min
x∈Rm

f(x) +Dφ(x, y),
(4.3)

if x is the hidden variable or

minimize
x∈Rm

g(y(x)) +Dφ(x, y(x)) + f(x)

subject to y(x) = arg min
y∈Rm

g(y) +Dφ(x, y),
(4.4)

if the hierarchy is flipped. The parametric lower level minimization problems x(y) and
y(x) are merely the left and right Bregman proximal operators, see Definition 2.18 and
Definition 2.24, studied in Section 2.3. Therefore we can equivalently write the bilevel
problems in terms of left and right Bregman–Moreau regularized optimization problems:
The left Bregman relaxation reads for λ = 1:

minimize
{←−envφλf(y) + g(y) : y ∈ Rm

}
, (4.5)

and, accordingly, the right Bregman relaxation to the coupled problem is:

minimize
{−→envφλg(x) + f(x) : x ∈ Rm

}
. (4.6)

We point out an interesting connection to double-min duality [RW98, Chapter 11L*],
where the duality relations take the form of min = min instead of min = max: In the
terminology of duality we can associate the left relaxation with a certain primal and
the right relaxation with a certain dual problem. Indeed, in view of [RW98, Proposition
1.35] these problems are actually equivalent to the joint problem (4.1). However, in
a nonconvex setting, if one applies inexact Gauss–Seidel minimization to the joint
problem (4.1), one can only expect to find a stationary point of Problem (4.1). In
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general, such a stationary point does not translate to a stationary point of the bilevel
or Bregman–Moreau regularized problem, where the minimization of the lower-level
problem is understood to be solved to global optimality. A sufficient condition for such
a translation is relative prox-regularity, studied in Section 2.3, which we will show in
Section 4.2.2.

In the entropic/Kullback–Leibler (KL) divergence setting, the hierarchy of minimization
in model 4.1 is connected to a double-min duality between induction and transduction in
machine learning. Such a connection was observed previously by [Lau+18], who consider
a nonsmooth setting with a hinge loss in place of a KL divergence. The formulations
find applications in modern weakly and self-supervised learning, parameter learning and
transductive learning: Here, the question of whether one solves a weakly supervised (aka
inductive) or a transductive learning problem is induced by the hierarchy of upper and
lower level problem in Equation 4.1.

To this end let

φ(x) :=

m∑
i=1

xi log(xi)− xi, (4.7)

with 0 log(0) := 0 be the Boltzmann–Shannon entropy. Then domφ = {x ∈ Rm : xi ≥ 0}
is the nonnegative orthant and Dφ is the Kullback–Leibler divergence:

Dφ(x, y) = KL(x, y) =

{∑m
i=1 xi log(xi/yi)− xi + yi if 0 ≤ xi ≤ 1 and 0 < yi < 1,

+∞ otherwise.

Suppose that y = Hw(s) are the predicted labels in probability vector representation
yj ∈ relint(Π) for Π = {π ∈ Rd : πk ≥ 0,

∑d
k=1 πk = 1} of a finite sequence s ∈ (RJ)M of

M training inputs sj ∈ RJ . Here, Hw is a prediction aka hypothesis function parametrized
by weights w ∈ Rn. Note that the assumption (Hw(s))j ∈ relint(Π) is mild, since this
can always be enforced by concatenating the output (Hw(s))j with a softmax function
whose kth compenent is defined by

softmax(y)k =
exp(yk)∑d
k=1 exp(yk)

.

The softmax function is the gradient of the logexp-function logexp(x) = log(
∑d

k=1 exp(xk))
which yields a smooth approximation to the vecmax-function given by vecmax(x) =
max{x1, x2, . . . xd} [RW98, Example 1.30]. The vector x ∈ (Rd)M is a variable repre-
senting the labels corresponding to s. In classical supervised learning the labels tj are
known and therefore the variable x is constrained to coincide with the known sequence
of labels t. Then, supervised learning can be written in terms of Problem (4.1) adopting
the following choices for f and g: f(x) = ι{t}(x) constrains x to be fixed and coincide
with the known labels t in one-hot (unit vector) representation and

g(y) := inf{R(w) : w ∈ Rn,H(w; s) = y}, (4.8)

is the image function of R wrt the nonlinear mapping w 7→ H(w; s). It constrains the
variable y = Hw(s) to lie in the range of H(·; s) and R is a regularizer on the weights w.
Substituting these specializations in Problem (4.1) we obtain:

arg min
w∈Rn

KL(t,H(w; s)) +R(w) = arg min
w∈Rn

L(t,H(w; s)) +R(w),
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where the KL-divergence reduces to the cross-entropy loss L.

More generally, in weakly and self-supervised learning, the labels t are (partially)
unknown. In that case f represents a certain prior on the labels. For instance, in
image segmentation f can be a Potts and/or normalized cut [SM00] energy, that favors
segmentations that are spatially smooth and/or balanced [Tan+18]. Alternatively, f can
model a convex relaxation of a hard balancing constraint that ensures that the assignment
of inputs to labels is balanced [PKD15] in the sense that the cardinality of the preimage of
each label is bounded from below by some positive constant. In the unsupervised case we
choose f(x) =

∑M
j=1 ιΠ(xj). Then Gauss–Seidel minimization of Problem (4.1) specializes

to the expectation maximization (EM) algorithm, while for nontrivial choices of f one
obtains a certain EM algorithm with posterior regularization [Gan+10]. Since the labels
xj ∈ Π are soft probability vectors rather than one-hot vectors, the prior f , typically, is a
convex function or even a linear function [PKD15] over the probability simplex. However,
there also exist nonconvex priors f [Tan+18] that take the form of a Rayleigh quotient.
Typically, in weakly supervised learning and expectation maximization x is merely a
hidden variable and one seeks to find the hypothesis Hw parametrized by w ∈ Rn. One
therefore minimizes the left Bregman relaxation (4.3) which in that case amounts to

min
w∈Rn

←−envφλf(H(w; s)) +R(w).

This also reveals that the left Bregman relaxation in our case corresponds to the training
of the hypothesis Hw with loss function ←−envφλf and regularizer R.

Now we consider the right Bregman relaxation (4.6) where the minimization in x is
the upper level problem. This viewpoint is certainly less common but can be connected
to transductive learning [GVV98]: In (weakly) supervised and unsupervised learning
(aka inductive learning), one distinguishes a training and a inference phase: At training
one is interested in the estimation of a hypothesis Hw, where both, the labeled and/or
the unlabeled inputs, are considered training data. The estimated labels of the unlabeled
inputs are merely auxiliary variables which are discarded after training. At inference
time, the weights w are kept fixed and one applies the hypothesis Hw to infer the
unknown labels of certain test or production time inputs. In contrast, in transductive
learning, training and inference is combined: Given a combined set of labeled training
and unlabeled production time test inputs one directly infers the labels x of the test
inputs. Therefore transductive learning can potentially adapt to the distribution of
the production time test data, while inductive learning ignores the information hidden
in the test data. In the framework of alternating Bregman minimization transductive
learning corresponds to the minimization of the right bilevel problem (4.4). Here, the
hypothesis parametrized by w is rather an auxiliary variable. One therefore obtains the
right Bergman relaxation (4.6) which corresponds to the dual problem in the terminology
of double-min duality. Since transductive learning involves the solution of a potentially
expensive optimization problem at inference time, it is more costly at production time
than the inductive approach which typically amounts to a simple problem.

However, considering the fact that in supervised learning we aim to minimize the
risk, rather than the empirical risk, actually the opposite is true: The training phase
in (weakly) supervised learning attempts to solve a more difficult (typically intractable)
problem (the minimization of the risk) which is merely used as an intermediate step in
a possibly simpler problem, the inference of the labels of some given test data: This is
precisely the philosophy in transduction: According to Vapnik, “when solving a problem
of interest, do not solve a more general problem as an intermediate step. Try to get the
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answer that you really need but not a more general one” [Vap06] or, more philosophically,
“we shall reach the conclusion that Socrates is mortal with a greater approach to certainty
if we make our argument purely inductive than if we go by way of ’all men are mortal’
and then use deduction” [Rus12, Chapter VII]1.

We highlight that there exists another interesting duality relation between left and right
Bregman relaxation in the entropic/EM setting considering the notion of exponential
families to parametrize probability distributions, see, e.g. [KKS21]: As we have seen
in Lemma 2.26 the right Bregman prox can be transformed into a left Bregman prox
(and vice versa) using Lemma 1.20(ii). In the context of exponential families and
information geometry the log and exp corresponding to ∇φ and ∇φ∗ precisely constitute
a bijection between the mean and the natural parameters of a probability distribution.
In our optimization problem, from an exponential family point of view, we resort to the
categorial distribution, where the softmax in the hypothesis function retracts the mean
parameters back to the natural parameters.

In the next two subsections we consider two specializations of g: Firstly, in Section 4.2.2,
we choose g to be an image function as in Equation (4.8) and secondly, in Section 4.2.3,
we choose g := ιC to model a subspace constraint C = {y ∈ (Rm)N : y1 = y2 = · · · = yN}.
In both cases our focus is on the effects of relative prox-regularity which is a sufficient
condition to guarantee that inexact Gauss–Seidel minimization converges subsequentially
to a stationary point of the Bregman–Moreau regularized problems. In a nonconvex
setting, in particular under inexact updates, this cannot be taken for granted.

4.2.2. Alternating inexact Bregman Proximal Point

In this section we consider Model (4.1) and choose g to be an image function as in
Equation (4.8):

g(y) := inf{R(w) : y = A(w), w ∈ Rn},
where A : Rn → Rm is a nonlinear C1-map with range rgeA ⊂ int(domφ) and let
φ ∈ Γ0(Rm) be a general Legendre function. Then, Problem (4.1) specializes to:

minimize

{
Hλ(x,w) ≡ f(x) +

1

λ
Dφ(x,A(w)) +R(w) : (x,w) ∈ domφ× Rn

}
, (4.9)

where f : Rm → R and R : Rn → R are proper lsc functions and λ > 0.

Via inf-projection with respect to x, the model is equivalent to the left Bregman
relaxation:

minimize
{(←−envφλf ◦A

)
(w) +R(w) : w ∈ Rn

}
. (4.10)

The first algorithm we consider, Algorithm 1, is Gauss–Seidel minimization of Prob-
lem (4.9), with a proximal regularization of both variables. This is a Bregmanian
generalization of proximal alternating minimization [Att+10].

Note that the w-update is in general a difficult problem. We may therefore replace the
coupling function Dφ(x,A(w)) with a proximal linearization as in proximal alternating
linearized minimization (PALM) [BST14]. This is, to some extent, captured in the
Bregman proximal term Dψ(w,wt) in our formulation:

1These quotes are borrowed from the Wikipedia article on transduction in machine learning https:

//en.wikipedia.org/wiki/Transduction_(machine_learning)
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Algorithm 1 Bregman Gauss–Seidel minimization with proximal regularization

Require: Choose appropriate Legendre functions χ ∈ Γ0(Rm) and ψ ∈ Γ0(Rn) with
domψ = Rn and domχ ⊃ domφ and initialize x0 ∈ int(domφ) and w0 ∈ Rn.
for all t = 1, 2, . . . do

xt+1 := arg min
x∈Rm

Hλ(x,wt) +Dχ(x, xt) (4.11)

wt+1 := arg min
w∈Rn

Hλ(xt+1, w) +Dψ(w,wt). (4.12)

end for
return (xt, wt).

Suppose that A = ∇φ∗ ◦B for φ∗ being classically L-smooth and B linear. Thus

Dφ(xt+1,∇φ∗(B(w))) = φ(xt+1) + φ∗(B(w))− 〈w,B∗xt+1〉

is guaranteed to be L‖B‖2-smooth in w and we may choose

ψ(w) :=
M

2λ
‖w‖2 − 1

λ
φ∗(B(w)),

for M > L‖B‖2. Then the w-update (4.12) becomes a classical proximal gradient step
on Hλ as in PALM:

wt+1 = arg min
w∈Rn

R(w) +
1

λ
〈w,B∗(∇φ∗(Bwt)− xt+1)〉+

M

2λ
‖w − wt‖2.

Theorem 4.1. Let φ, χ ∈ Γ0(Rm), ψ ∈ Γ0(Rn) be Legendre with domψ = Rn and
domχ ⊃ domφ and let φ ∈ C2 be super-coercive. Let f : Rm → R and R : Rn → R
be proper lsc and dom f ∩ domφ be nonempty. Let A : Rn → Rm be C1 with rgeA ⊂
int(domφ). Assume further that f is prox-bounded relative to φ with some threshold
λf > λ and R + ψ is coercive. Assume that the sequence of iterates {wt}t∈N produced by
Algorithm 1 is bounded and {xt}t∈N ⊂ C ⊂ int domχ where C is closed. Then {xt}t∈N
is bounded as well. Let (x∗, w∗) be a limit point of {(xt, wt)}t∈N. Then (x∗, w∗) is a
stationary point of Hλ, i.e., 0 ∈ ∂Hλ(x∗, w∗) which means

0 ∈ ∂(f + λ−1∇φ)(x∗)− 1

λ
∇φ(A(w∗)), (4.13)

0 ∈ ∂R(w∗) +
1

λ
∇A(w∗)∗∇2φ(A(w∗))(A(w∗)− x∗). (4.14)

If, in addition, the qualification condition ∂∞f(x∗) ∩ −Ndomφ(x∗) = {0} holds, we have
x∗ ∈ int(domφ) and

0 ∈ ∂f(x∗) +
1

λ
(∇φ(x∗)−∇φ(A(w∗))). (4.15)

To prove the above theorem we need the following auxiliary result:

Lemma 4.2. Let χ ∈ Γ0(Rm) Legendre. Assume that {xt}t∈N ⊂ C ⊂ int(domχ)
with C compact. Then Dχ(xt+1, xt) → 0 implies that ‖xt+1 − xt‖ → 0 as well as
‖∇χ(xt+1)−∇χ(xt)‖ → 0.
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Proof. Suppose that ‖xt+1 − xt‖ 6→ 0. Then, since {xt}t∈N ⊂ C is bounded {‖xt+1 −
xt‖}t∈N is bounded and there are infinitely many t such that ‖xt+1 − xt‖ is bounded
away from 0. Thus there exists a convergent subsequence indexed by j such that
‖xtj+1 − xtj‖ → ε > 0. Since {(xtj+1, xtj)}j∈N ⊂ C × C is bounded as well by taking

another subsequence if necessary we have (xtj+1, xtj )→ (p∗, x∗) with p∗ 6= x∗. Since C is
closed we also have p∗, x∗ ∈ C ⊂ int(domχ). Passing j →∞ we also have due to the joint
continuity of Dχ : C × C → R that Dχ(xtj+1, xtj )→ Dχ(p∗, x∗) = 0. By Lemma 1.20(i),
this implies that p∗ = x∗, a contradiction. We conclude ‖xt+1 − xt‖ → 0. Now suppose
that ‖∇χ(xt+1) − ∇χ(xt)‖ 6→ 0. Since {xt}t∈N ⊂ C and ∇χ : C → Rm is continuous,
also {∇χ(xt)}t∈N ⊂ χ(C) is a compact set. Then there exists a convergent subsequence
(∇χ(xtj+1),∇χ(xtj ))→ (w∗, q∗) ∈ χ(C)× χ(C) with w∗ 6= q∗. By considering another
subsequence if necessary in combination with the previous result we have xtj+1 → x∗

and xtj → x∗. By continuity we have w∗ = ∇χ(x∗) and q∗ = ∇χ(x∗) which contradicts
w∗ 6= q∗. We conclude that ‖∇χ(xt+1)−∇χ(xt)‖ → 0.

Proof of Theorem 4.1. Since rgeA ⊂ int(domφ) the function Hλ is proper and lsc. Since
f is proper, lsc and prox-bounded relative to φ with threshold λf > λ and dom f∩domφ 6=
∅ and R+ ψ is proper lsc and coercive and Dφ(x,A(·)) is continuous and nonnegative,
the iterates {(xt, wt)}t∈N are well-defined.

By the definition of the x-update we have that

Hλ(xt+1, wt) +Dχ(xt+1, xt) ≤ Hλ(xt, wt)

and by the definition of the w-update

Hλ(xt+1, wt+1) +Dψ(wt+1, wt) ≤ Hλ(xt+1, wt).

Summing the two yields

Hλ(xt+1, wt+1) +Dχ(xt+1, xt) +Dψ(wt+1, wt) ≤ Hλ(xt, wt). (4.16)

This shows that Hλ(xt, wt) is monotonically decreasing. Suppose that ‖xt‖ → ∞.
Since f is prox-bounded with threshold λf > λ, there is λf > λ′ > λ such that
f + (1/λ′)φ > α > −∞. Then using Cauchy–Schwarz

Hλ(xt, wt) ≥
(

1

λ
− 1

λ′

)
φ(xt) + α

− 1

λ
φ(A(wt))− 1

λ
‖∇φ(A(wt))‖ · ‖xt −A(wt)‖+R(wt).

Since wt is bounded and both ∇φ ◦A and φ ◦A, are continuous and φ is super-coercive,
Hλ(xt, wt) → ∞, a contradiction. Thus {xt}t∈N is bounded. In particular this means
Hλ(xt, wt) > β > −∞. We sum the estimate form t = 0 to T and obtain that

−∞ < β −Hλ(x0, w0) ≤ Hλ(xT , wT )−Hλ(x0, w0)

=
T∑
t=0

Hλ(xt+1, wt+1)−Hλ(xt, wt)

≤ −
T∑
t=0

(
Dχ(xt+1, xt) +Dψ(wt+1, wt)

)
.
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We take T →∞ and deduce that

Dχ(xt+1, xt) +Dψ(wt+1, wt)→ 0,

and therefore Dχ(xt+1, xt) → 0 and Dψ(wt+1, wt) → 0. Since {xt}t∈N ⊂ C is bounded
and C is closed we can invoke Lemma 4.2 and obtain that ‖xt+1 − xt‖ → 0 and
‖wt+1 − wt‖ → 0 as well as ‖∇χ(xt+1)−∇χ(xt)‖ → 0 and ‖∇ψ(wt+1)−∇ψ(wt)‖ → 0.
In view of the x- and w-updates Fermat’s rule Lemma 1.3 yields:

0 ∈ ∂(f(xt+1) + λ−1∇φ(xt+1))− 1

λ
∇φ(A(wt+1))

+∇χ(xt+1)−∇χ(xt) +
1

λ
(∇φ(A(wt+1))−∇φ(A(wt))),

and

0 ∈ ∂R(wt+1) +
1

λ
∇A(wt+1)∗∇2φ(A(wt+1))(A(wt+1)− xt+1) +∇ψ(wt+1)−∇ψ(wt).

Since Hλ is the sum of a proper lsc, separable part (f + λ−1φ)(x) +R(w) and a smooth
part λ−1〈∇φ(A(w)), A(w)− x〉 − λ−1φ(A(w)) we can invoke [RW98, Exercise 8.8(c)] and
[RW98, Proposition 10.5] which yields:

∂Hλ(xt+1, wt+1) = ∂(f + λ−1φ)(xt+1)× ∂R(wt+1)

+
1

λ

(
−∇φ(A(wt+1)),∇A(wt+1)∗∇2φ(A(wt+1))(A(wt+1)− xt+1)

)
.

and therefore(
∇χ(xt)−∇χ(xt+1) + λ−1(∇φ(A(wt))−∇φ(A(wt+1)))

∇ψ(wt)−∇ψ(wt+1)

)
∈ ∂Hλ(xt+1, wt+1).

Since the iterates are bounded we may consider a convergent subsequence {(xtj , wtj )}j∈N ⊂
{(xt, wt)}t∈N. Let (x∗, w∗) denote the limit point. Next we prove that Hλ(xtj , wtj ) →
Hλ(x∗, w∗). Due to the update of xtj+1 we have:

f(xtj+1) +
1

λ
Dφ(xtj+1, A(wtj )) +Dχ(xtj+1, xtj )

≤ f(x∗) +
1

λ
Dφ(x∗, A(wtj )) +Dχ(x∗, xtj ).

Due to the update of wtj+1 we have

R(wtj+1) +
1

λ
Dφ(xtj+1, A(wtj+1)) +Dψ(wtj+1, wtj )

≤ R(w∗) +
1

λ
Dφ(xtj+1, A(w∗)) +Dψ(w∗, wtj ).

Summing yields:

Hλ(xtj+1, wtj+1) ≤ Hλ(x∗, w∗)− 1

λ
Dφ(x∗, A(w∗))− 1

λ
Dφ(xtj+1, A(wtj ))

+
1

λ
Dφ(x∗, A(wtj )) +

1

λ
Dφ(xtj+1, A(w∗))

+Dχ(x∗, xtj ) +Dψ(w∗, wtj )−Dχ(xtj+1, xtj )−Dψ(wtj+1, wtj ).
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Passing j →∞ yields since ‖xt+1−xt‖ → 0 and due to the joint continuity of Dφ(·, A(·))
and Dψ, Dχ and since Hλ(xtj+1, wtj+1) → H∗λ, that H∗λ ≤ Hλ(x∗, w∗). Since Hλ is lsc
we also have that H∗λ ≥ Hλ(x∗, w∗). Hence H∗λ = Hλ(x∗, w∗).

In view of the closedness of gph ∂Hλ under the Hλ-attentive topology, we have for j →
∞, sinceHλ(xtj , wtj )→ Hλ(x∗, w∗), the continuity of∇χ,∇ψ,∇φ◦A and ‖xt+1−xt‖ → 0
and ‖wt+1 − wt‖ → 0 that:

0 ∈ ∂Hλ(x∗, w∗).

Assume that in addition we have ∂∞f(x∗) ∩ −Ndomφ(x∗) = {0}. Since 0 ∈ ∂Hλ(x∗, w∗)
we have that

λ−1∇φ(A(w∗)) ∈ ∂(f + λ−1φ)(x∗).

Invoking Lemma 1.2 and [RW98, Proposition 8.12] we have

∇φ(A(w∗)) ∈ ∂φ(x) + λ∂f(x).

In particular this means that x ∈ dom(∂φ) implying via Lemma 1.16 that x ∈ int(domφ).
We also conclude that the optimality conditions (4.13) and (4.14) hold.

However, in general a stationary point of Hλ does not translate to a stationary point
of the left Bregman relaxation (4.10): Indeed, in general the implication

0 ∈ ∂f(x∗) +
1

λ

(
∇φ(x∗)−∇φ(A(w∗))

)
=⇒ 1

λ
∇A(w∗)∗∇2φ(A(w∗))(A(w∗)− x∗) ∈ ∂

(←−envφλf ◦A
)
(w∗), (4.17)

is false. A sufficient condition for this translation of stationarity is relative prox-regularity
as explored next: In addition, we illustrate our findings considering a generalization of
Algorithm 1 (if ψ = χ = ‖ · ‖2), where the proximal subproblems are solved inexactly.

Algorithm 2 inexact Bregman Gauss–Seidel minimization

Require: Initialize x0 ∈ int(domφ) and w0 ∈ Rn.
for all t = 1, 2, . . . do

solve inexactly such that Assumption 4.3 holds true:

xt+1 ≈ arg min
x∈Rm

Hλ(x,wt), (4.18)

wt+1 ≈ arg min
w∈Rn

Hλ(xt+1, w). (4.19)

end for
return (xt, wt).

The following assumptions constitute [ABS13, H1–H2] and are standard for convergence
of Gauss–Seidel minimization in a nonconvex setting. The continuity condition Assump-
tion [ABS13, H3] in our case is substituted by a subdifferential continuity condition at
the limit point, see Definition 1.7.

Assumption 4.3 (inexact updates Bregman Gauss–Seidel minimization). We assume there
exist constants γ, τ > 0 such that for each t ∈ N:
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(i) a sufficient descent in x and w is generated, i.e. we have

Hλ(xt+1, wt) ≤ Hλ(xt, wt)− γ

2
‖xt+1 − xt‖2, (4.20)

and for the w-update

Hλ(xt+1, wt+1) ≤ Hλ(xt+1, wt)− γ

2
‖wt+1 − wt‖2, (4.21)

(ii) the x- and w-update satisfies a relative error condition: This means xt+1 ∈ int domφ
and there is

ut+1 ∈ ∂xHλ(xt+1, wt), ‖ut+1‖ ≤ τ‖xt+1 − xt‖, (4.22)

and accordingly the w-update meets

vt+1 ∈ ∂wHλ(xt+1, wt+1), ‖vt+1‖ ≤ τ‖wt+1 − wt‖. (4.23)

The relative error and sufficient descent conditions are mild. For instance this can
be achieved for w via a single line-search proximal gradient step where the coupling
part Dφ(xt+1, A(w)) is linearized in w. The conditions are also valid when the updates
are perturbed with a quadratic proximal regularization as in the first algorithm 1 with
ψ = χ = ‖ · ‖2.

Next we discuss that relative prox-regularity yields a certain stability condition of
the Bregman proximal mapping which allows us to prove that the algorithm solves
the left Bregman relaxation. In particular prox-regularity allows us to show that the
above implication (4.17) holds true, and the stationarity gap vanishes along the iterates.
However, since prox-regularity is a local condition our results have the taste of a local
convergence theorem: I.e., we assume that the iterates are sufficiently close to a certain
fixed-point of the proximal mapping at which f is prox-regular and subdifferentially
continuous and the chosen λ was sufficiently small.

Theorem 4.4. Let φ ∈ Γ0(Rm) such that φ ∈ C2 on int(domφ) and λ > 0. Let f : Rm →
R be proper lsc and prox-bounded with some threshold λf > λ and domφ ∩ dom f 6= ∅.
Let R : Rn → R proper lsc. In addition let Assumption 4.3 hold true. Assume the iterates
{wt}t∈N generated by Algorithm 2 are bounded. Let wtj → w∗ be a convergent subsequence
of the sequence of iterates. Let f be prox-regular relative to φ and subdifferentially
continuous at x∗ ∈ int(domφ) for v∗ := λ−1(∇φ(A(w∗))−∇φ(x∗)) ∈ ∂f(x∗) such that

{x∗} = ←−−proxφλf(A(w∗)). Let R be subdifferentially continuous at w∗ for

q∗ := λ−1∇A(w∗)∗∇2φ(A(w∗))(A(w∗)− x∗).

Let λ sufficiently small. Then ←−envφλf is continuously differentiable around A(w∗). Assume
that for j sufficiently large the iterates {xtj}j∈N are contained in a sufficiently small
neighborhood around x∗. Then we have

dist
(
0, ∂(←−envφλf ◦A+R)(wtj )

)
→ 0,

for j →∞. In particular this implies that w∗ is a stationary point of (4.10).

Proof. Summing the sufficient descent conditions (4.20) and (4.21) from Assumption 4.3(i)
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we obtain:

Hλ(xt+1, wt+1) ≤ Hλ(xt, wt)− γ

2
‖xt+1 − xt‖2 − γ

2
‖wt+1 − wt‖2.

Since f is proper lsc and relatively prox-bounded with some threshold λf > λ and A is

continuous with rgeA ⊂ int(domφ) we have in view of Lemma 2.22(ii) that ←−envφλf ◦A :
Rn → R is continuous. Since the iterates wt are bounded and since R is proper lsc we
know that −∞ < β ≤ ←−envφλf(A(wt)) +R(wt) ≤ Hλ(wt, xt) is uniformly bounded from
below. Summing the estimate form t = 0 to t = T we obtain:

−∞ < β −Hλ(x0, w0) ≤ Hλ(xT+1, wT+1)−Hλ(x0, w0)

≤ −γ
2

T∑
t=0

(
‖xt+1 − xt‖2 + ‖wt+1 − wt‖2

)
.

Passing T → ∞ shows that
∑T

t=0(‖xt+1 − xt‖2 + ‖wt+1 − wt‖2) → 0 and in particular
‖xt+1 − xt‖ → 0 and ‖wt+1 − wt‖ → 0.

Let wtj → w∗ be a convergent subsequence of the sequence of iterates such that
x∗ = ←−−proxφλf(A(w∗)) ∈ int(domφ) and f is prox-regular relative to φ at x∗ for v∗ =
λ−1(∇φ(A(w∗))−∇φ(x∗)). The relative error condition from Assumption 4.3(ii) guaran-
tees that there is

utj ∈ ∂xHλ(xtj , wtj−1) = ∂f(xtj ) + λ−1(∇φ(xtj )−∇φ(A(wtj−1))),

such that ‖utj‖ ≤ τ‖xtj − xtj−1‖ and therefore utj → 0. Rewriting the above inclusion
we have for ztj := ∇φ∗(∇φ(A(wtj−1)) + λutj )

0 ∈ ∂f(xtj ) + λ−1(∇φ(xtj )−∇φ(ztj )),

where ztj = ∇φ∗(∇φ(A(wtj−1)) + λutj )→ A(w∗). Since xtj is near x∗ for j sufficiently
large we have λ−1(∇φ(ztj )−∇φ(xtj )) near v∗ ∈ ∂f(x∗) and due to the subdifferential
continuity of f at x∗ for λ−1(∇φ(A(w∗)) − ∇φ(x∗)) we have f(xtj ) near f(x∗). This
shows that for j sufficiently large we have:

0 ∈ T (xtj ) + λ−1(∇φ(xtj )−∇φ(ztj )),

where T is an f -attentive ε-localization of ∂f at x∗ for v∗i with ε chosen sufficiently small

such that in view of Theorem 2.40(iii) we have xtj = ←−−proxφλf(ztj ) and by Lemma 2.22(iii),

we also have xtj → x∗. In view of Corollary 2.60 we have ∇←−envφλf is continuously
differentiable around A(w∗) with

∇←−envφλf(ztj ) =
1

λ
∇2φ(ztj )(ztj − xtj )→ ∇←−envφλf(A(w∗)).

The relative error condition from Assumption 4.3(ii) guarantees that there is:

vtj ∈ ∂wHλ(xtj , wtj ) = ∂R(wtj ) + λ−1∇A(wtj )∗∇2φ(A(wtj ))(A(wtj )− xtj ).

Define

ptj := vtj − λ−1∇A(wtj )∗∇2φ(A(wtj ))(A(wtj )− xtj ) +∇A(wtj )∗∇←−envφλf(A(wtj )).
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Then ptj → 0 for j →∞ and we have

ptj ∈ ∂R(wtj ) +∇A(wtj )∗∇←−envφλf(A(wtj ))

passing j →∞ shows that

dist(0, ∂R(wtj ) +∇A(wtj )∗∇←−envφλf(A(wtj )))→ 0.

Since in addition R is proper lsc and subdifferentially continuous at w∗ for

q∗ = λ−1∇A(w∗)∗∇2φ(A(w∗))(A(w∗)− x∗)

we have R(wtj )→ R(w∗) and therefore

0 ∈ ∂(R+ ←−envφλf ◦A)(w∗) = ∂R(w∗) +∇A(w∗)∗∇←−envφλf(A(w∗)).

Note that under Assumption 4.3 one can actually derive the convergence of the whole
sequence (xt, wt), if, in addition, Hλ satisfies the Kurdyka– Lojasiewicz property [Att+10],
see [ABS13, Theorem 2.9]. This, however, is beyond the scope of this thesis.

If prox-regularity holds globally with uniform constants, i.e., f is relatively hypoconvex,
the previous result can be globalized:

Corollary 4.5. Let φ ∈ Γ0(Rm) such that φ ∈ C2 on int(domφ). Let f : Rm → R be
proper lsc and relatively hypoconvex with constant r and domφ ∩ dom f 6= ∅ such that
∂∞f(x) ∩ −Ndomφ(x) = {0} at all x ∈ dom f ∩ domφ 6= ∅. Let R : Rn → R proper lsc.
Let R be continuous over domR. In addition let Assumption 4.3 hold true and assume
the iterates {wt}t∈N, generated by Algorithm 2 are bounded. Let wtj → w∗ be a convergent

subsequence of the sequence of iterates. Let λ < 1/r. Then ←−envφλf ◦ A is continuously
differentiable and

dist
(
0, ∂(←−envφλf ◦A+R)(wtj )

)
→ 0,

for j →∞. In particular this implies that w∗ is a stationary point of (4.10).

Finally we discuss a variant of Algorithm 1 where the x-update is solved exactly. As
a short computation reveals, when the gradient formula for the envelope ←−envφλf ◦ ∇φ∗
holds (which happens to be true locally whenever f is relatively prox-regular around the
limit point and relatively prox-bounded and λ > 0 is sufficiently small) and A = ∇φ∗,
we can rewrite the algorithm as the following Bregman proximal gradient update:

wt+1 = arg min
w∈Rm

R(w) +
〈
∇
(←−envφλf ◦ ∇φ∗

)
(wt), w − wt

〉
+D 1

λ
φ∗+ψ(w,wt).

This illustrates a close relationship between alternating (Bregman) minimization and the
(Bregman) proximal gradient method, which is known from the quadratic case. Indeed,
in view of Proposition 2.57, for φ super-coercive and f relatively prox-bounded with
threshold λf the function

1

λ
φ∗ − ←−envφλf ◦ ∇φ∗

is proper lsc and convex if λ ∈ (0, λf ) and therefore f locally satisfies the one-sided
extended descent lemma with constant 1/λ when f is relatively prox-regular and λ
sufficiently small. Overall, this means that existing convergence results from [BBT17;
Bol+18] for the Bregman proximal gradient method carry over, at least locally.
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4.2.3. Inexact averaged Bregman Proximal Point

Next we consider an inexact averaged Bregman proximal point algorithm

xt+1 ≈
N∑
i=1

πi
←−−proxφλfi(x

t),

for weights π ∈ relint Π, with

Π :=

{
π ∈ RM : πi ≥ 0,

N∑
i=1

πi = 1

}
.

This algorithm is of particular interest in the context of federated learning which is
covered in great detail in Section 4.3 specializing to a Euclidean and globally hypoconvex
setting. In this section, however, our focus is on the more technical aspects of the
algorithm in a Bregmanian setting under relative prox-regularity.

In contrast to the previous setting, it will be even more important to guarantee that
the iterates xt stay in the interior int(domφ) to ensure the iterates are well-defined.
Under exact proximal updates a possible strategy is to assume a constraint qualification
∂∞f(x) ∩ −Ndomφ(x) = {0} at all x ∈ dom f ∩ domφ 6= ∅.

Then we are able to apply the product space trick known from the Euclidean setting
to reformulate the above iteration in terms of a Gauss–Seidel method as before. To this
end we define:

C :=
{
x ∈ (Rm)N : x1 = · · · = xN

}
,

and Φ : (Rm)N → R

Φ(x) =

M∑
i=1

πiφ(xi)

and write

minimize

{
Hλ(x, y) ≡

M∑
i=1

πifi(xi) +
1

λ
DΦ(x, y) + ιC(y) : x, y ∈ (domφ)N

}
. (4.24)

The complete algorithm is listed in Algorithm 3.

We need the following generalization of [BCN06, Proposition 5.2(ii)] (for non-C2 φ)
as part of our analysis which shows that the right Bregman projection of the consensus
space C is the arithmetic average:

Lemma 4.6. Let φ ∈ Γ0(Rm) and π ∈ Π. Let x ∈ int(domφ)N . Then y ∈ (Rm)N with
y1 = y2 = · · · = yN =

∑N
i=1 πixi is the unique solution to

y = arg min
y∈C

DΦ(x, y) = −−→proxΦ
1 ιC(x),

and in particular we have y ∈ int(domφ)N .

Proof. We adopt the arguments in [Ban+05, Proposition 1]. By construction y ∈
int(domφ)N since x ∈ int(domφ)N and π ∈ Π. By definition we have DΦ(x, y′) = +∞
for y′ 6∈ int(domφ)N . We make the following computation. For any y′ ∈ int(domφ)N ∩C
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with y′ 6= y we have:

DΦ(x, y′)−DΦ(x, y) =
N∑
i=1

πi(Dφ(xi, y
′
i)−Dφ(xi, yi))

=
N∑
i=1

πi(φ(y1)− φ(y′1)− 〈∇φ(y′1), xi − y′1〉+ 〈∇φ(y1), xi − y1〉)

= φ(y1)− φ(y′1)− 〈∇φ(y′1), y1 − y′1〉+ 〈∇φ(y1), y1 − y1〉
= Dφ(y1, y

′
1).

Since y, y′ ∈ C and y 6= y′ we have y1 6= y′1 and therefore DΦ(x, y′) > DΦ(x, y).

Algorithm 3 inexact averaged Bregman minimization

Require: Initialize x0, y0 ∈ (int(domφ))N .
for all t = 1, 2, . . . do

for all i ∈ {1, 2, . . . , N} do
solve inexactly such that Assumption 4.7 holds true:

xt+1
i ≈ arg min

x∈Rm
fi(x) +

1

λ
Dφ(x, yti). (4.25)

end for

yt+1 := arg min
y∈(Rm)N

Hλ(xt+1, y) =
N∑
i=1

πix
t+1
i . (4.26)

end for
return (xt, yt).

In place of an exact proximal step assume that x is updated inexactly.

Assumption 4.7 (inexact update averaged Bregman Proximal Point). Let hi(x, y) :=
fi(x) + λ−1Dφ(x, y).

(i) There is γ > 0 such that for each i and each t

hi(x
t+1
i , yti) ≤ hi(xti, yti)−

γ

2
‖xt+1

i − xti‖2,

(ii) There is τ > 0 such that for each i and each t there is ut+1
i ∈ Rm such that

xt+1
i ∈ int domφ and

ut+1
i ∈ ∂xhi(xt+1

i , yti), ‖ut+1
i ‖ ≤ τ‖xt+1

i − xti‖.

We will see that under relative prox-regularity this solves the left Bregman relaxation:

minimize

{
M∑
i=1

πi
←−envφλfi(y) : y ∈ domφ

}
. (4.27)
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Theorem 4.8. Let φ ∈ Γ0(Rm) such that φ ∈ C2 on int(domφ) and π ∈ relint Π and
λ > 0. Let fi be proper lsc and prox-bounded with some threshold λf > λ. Assume that
domφ ∩ dom fi 6= ∅ and Assumption 4.7 holds true. Then, the iterates {(xt, yt)}t∈N,
generated by Algorithm 3, are well-defined, i.e., xt+1, yt+1 ∈ int(domφ)N , with yt+1

1 =

yt+1
2 = · · · = yt+1

N =
∑N

i=1 πix
t+1
i . In addition assume that the iterates are bounded.

Let ytj → y∗ be a convergent subsequence of the sequence of iterates such that y∗ ∈
(int(domφ))N and fi is prox-regular relative to φ and subdifferentially continuous at x∗i
for v∗i := λ−1(∇φ(y∗i )−∇φ(x∗i )) such that {x∗i } = ←−−proxφλf(y∗i ). Then, y∗1 = y∗2 = · · · =
y∗N =

∑N
i=1 πix

∗
i ∈ int(domφ). Let λ sufficiently small. Then ←−envφλfi is continuously

differentiable around y∗1. In addition assume that x
tj
i is contained in a sufficiently small

neighborhood around x∗i for j suffciently large. Then we have

N∑
i=1

πi∇←−envφλfi(y
tj
1 )→ 0,

as j →∞. In particular this implies that y∗1 is a stationary point of (4.27).

Proof. By assumption we know that

Hλ(xt+1, yt+1) ≤ Hλ(xt, yt)− γ

2

N∑
i=1

πi‖xt+1
i − xti‖2.

Since the iterates xti are bounded and since fi is proper lsc we know that
∑N

i=1 πifi(x
t
i)

is uniformly bounded from below. Since Dφ(xt, yt) ≥ 0 there is −∞ < β such that

β ≤ Hλ(xt, yt).

Summing the estimate form t = 0 to t = T we obtain:

−∞ < β −Hλ(x0, y0) ≤ Hλ(xT+1, yT+1)−Hλ(x0, y0) ≤ −γ
2

T∑
t=0

N∑
i=1

πi‖xt+1
i − xti‖2.

Passing T → ∞ shows that
∑T

t=0

∑N
i=1 πi‖xt+1

i − xti‖2 → 0 and since π ∈ relint Π and
therefore πi > 0 in particular ‖xt+1

i −xti‖ → 0. Since by assumption xt+1 ∈ (int(domφ))N ,
in view of Lemma 4.6, we have yt+1 ∈ (int(domφ))N and yt+1

1 = yt+1
2 = · · · = yt+1

N =∑N
i=1 πix

t+1
i .

Let ytj → y∗ be a convergent subsequence of the sequence of iterates such that
y∗ ∈ (int(domφ))N and for each i let fi be prox-regular relative to φ at

x∗i = ←−−proxφλfi(y
∗
i ) ∈ int(domφ),

for v∗i := λ−1(∇φ(x∗i )−∇φ(y∗i )). By assumption we have

u
tj+1
i ∈ ∂fi(xtj+1

i ) + λ−1(∇φ(x
tj+1
i )−∇φ(y

tj
i ))

for ‖utj+1
i ‖ ≤ τ‖xtj+1

i − xtji ‖ and therefore u
tj+1
i → 0. Rewriting the above inclusion we

have for z
tj+1
i := ∇φ∗(∇φ(y

tj
i ) + λu

tj+1
i )

0 ∈ ∂fi(xtj+1
i ) + λ−1(∇φ(x

tj+1
i )−∇φ(z

tj+1
i )).
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where z
tj+1
i → y∗i .

Since x
tj
i and therefore x

tj+1
i is near x∗i for j sufficiently large we have λ−1(∇φ(z

tj+1
i )−

∇φ(x
tj+1
i )) near v∗i ∈ ∂f(x∗i ) and due to the subdifferential continuity of fi at x∗i for

v∗i = λ−1(∇φ(y∗i )−∇φ(x∗i ) we have fi(x
tj+1
i ) near fi(x

∗
i ). This shows that for j sufficiently

large we have:
0 ∈ Ti(xtj+1

i ) + λ−1(∇φ(x
tj+1
i )−∇φ(z

tj+1
i )),

where Ti is a fi-attentive ε-localization of ∂fi at x∗i for v∗i with ε chosen sufficiently small
such that in view of Theorem 2.40(iii) we have

x
tj+1
i = ←−−proxφλfi(z

tj+1
i ),

and by Lemma 2.22(iii) we also have x
tj+1
i → x∗i . In view of Corollary 2.60 we have

∇←−envφλfi is continuously differentiable around y∗i with

∇←−envφλfi(z
tj+1
i ) =

1

λ
∇2φ(z

tj+1
i )(x

tj+1
i − ztj+1

i )→ ∇←−envφλfi(y
∗
i ).

Summing over i yields since y∗1 = y∗2 = · · · = y∗N =
∑N

i=1 πix
∗
i :

N∑
i=1

πi∇←−envφλfi(z
tj+1
i ) =

1

λ

N∑
i=1

πi∇2φ(z
tj+1
i )(x

tj+1
i − ztj+1

i )→ 1

λ

N∑
i=1

πi∇2φ(y∗i )(x
∗
i − y∗i )

= 0 =

N∑
i=1

πi∇←−envφλfi(y
∗
1).

Due to continuity we also have that

N∑
i=1

πi∇←−envφλfi(y
tj
1 )→ 0.

Again, the result can be globalized when fi satisfies a relative hypoconvexity property
in place of prox-regularity and subdifferential continuity.

Corollary 4.9. Let φ ∈ Γ0(Rm) such that φ ∈ C2 on int(domφ) and π ∈ relint Π and
λ > 0. Let fi be proper lsc. Assume that for all 1 ≤ i ≤ N we have domφ ∩ dom fi 6= ∅
such that ∂∞fi(x)∩−Ndomφ(x) = {0} at all x ∈ dom fi∩domφ 6= ∅. Let Assumption 4.7
hold true. Then, the iterates {(xt, yt)}t∈N, generated by Algorithm 3, are well-defined,
i.e., xt+1, yt+1 ∈ int(domφ)N , with yt+1

1 = yt+1
2 = · · · = yt+1

N =
∑N

i=1 πix
t+1
i . Assume

that fi is relatively hypoconvex with constant ri > 0. In addition assume that the iterates
are bounded. Let ytj → y∗ be a convergent subsequence of the sequence of iterates such
that y∗ ∈ (int(domφ))N . Then, y∗1 = y∗2 = · · · = y∗N =

∑N
i=1 πix

∗
i . Let r := max1≤i≤N ri

and 0 < λ < 1/. Then ←−envφλfi is continuously differentiable on int(domφ) and we have

N∑
i=1

πi∇←−envφλfi(y
tj
1 )→ 0,

as j →∞. In particular this implies that y∗1 is a stationary point of (4.27).

We conclude this section with the remark that one can derive analogous results for the
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(a)

f1

f2

f

A1

e1A1

(b)

Figure 4.1.: (a) A linearly separable data set with two classes (cross and dot) is partitioned
into a cyan and an orange subset. Hyperplanes (with fixed bias) within the
orange cone (resp. cyan cone) separate the orange data (resp. cyan data).
The full data set is separated by hyperplanes that lie in the intersection of both
cones, which reformulates the binary classification problem as a feasibility
problem. The same situation arises in modern, highly over-parametrized
deep learning applications. (b) Effects of relaxing the finite sum f (black) as
a finite sum of Moreau envelopes (purple), which approximately minimizes
the original function f , since the minimizers of the individual functions
f1 (orange, dashed) and f2 (cyan, dashed) are close together. (red) is the
proximal average A1 of (f1, f2) with weights π whose Moreau envelope e1A1

is the weighted sum of the Moreau envelopes of f1 and f2, see Section 3.3

right Bregman envelope starting from the problem

minimize

{
Hλ(x, y) ≡ f(x) +

1

λ
Dφ(y, x) + g(y) : (x, y) ∈ Rm × Rm

}
, (4.28)

with domφ = Rm. In this case, we aim to find stationary points of

minimize
{−→envφλf(y) + g(y) : y ∈ Rm

}
, (4.29)

via alternating minimization of the upper problem.

4.3. Stochastic averaged Proximal Point with application to
federated learning

4.3.1. Feasibility problems and federated learning

In this section we consider a stochastic extension of the Euclidean averaged proximal
point method. The resulting algorithm can be interpreted as the Finito/MISO algo-
rithm [DDC14; Mai15] applied to a finite sum of Moreau envelopes. The method is
well-suited but not limited to the problem of distributed and federated learning.

In federated learning [KMR15; McM+17; Kai+19] the goal is to train a machine
learning model parametrized by a vector x ∈ Rm in a collaborative and distributed
fashion by a set of N clients. Each client, indexed by i, is associated with a batch

97



Chapter 4. Alternating inexact Proximal Point

Bi ⊂ Rn × Rd of training pairs (source and target) denoted by (s, t) ∈ Bi and owns a
copy of the parameters xi ∈ Rm. Then the clients attempt to minimize an associated
(regularized) empirical risk

fi(xi) =
1

|Bi|
∑

(s,t)∈Bi
`(H(s;xi), t) +R(xi). (4.30)

Here ` : Rd × Rd → R is a loss function which measures the discrepancy between the
target t and the predicted label H(s;x) of source s. H : Rn × Rm → Rd is a prediction
function parametrized by x and R : Rm → R is a regularizer. In addition one enforces
(approximate) consensus between the clients and/or an additional server that aggregates
the parameters. Under exact consensus this leads to the following optimization problem
for weights π ∈ relint Π:

min
x∈(Rm)N

N∑
i=1

πifi(xi) + ιC(x) = min
x∈Rm

N∑
i=1

πifi(x), (4.31)

where C :=
{
x ∈ (Rm)N : x1 = x2 = · · · = xN

}
.

Federated learning involves distributed optimization and therefore inherits its challenges:
Typically, the clients are computationally powerful (mobile) devices. The connections
between the clients and/or the server, however, may suffer from low bandwidth and/or
unstable connections. Therefore a major goal is to reduce communication overhead and
allow for broken connections without blocking the joint training progress: Distributed
implementations of (stochastic) gradient descent where each client only computes a single
gradient which is communicated in each round is therefore not an option. Instead we
apply the averaged (Bregman) proximal point iteration from the previous section, where
the individual clients perform proximal point steps wrt the associated risks and the server
averages the outputs of the proximal mappings after aggregating the results from the
clients. In contrast to distributed formulations of (stochastic) gradient descent distributed
averaged Proximal Point potentially enables “more progress” within one round if the
damping-parameter λ > 0 in the proximal map is “not too small” and the risks are
“similar” in a certain sense. Inexact averaged Proximal Point for federated learning has
been considered previously in [Li+20]: There, the proximal term has been interpreted
in terms of a re-parametrization of fedAvg [McM+17] which is considered the classical
federated learning algorithm. However, [Li+20] do not consider the relations between
their method and the proximal point algorithm or Moreau envelopes. As a consequence
their formulation is not applicable to nonsmooth problems. In addition, the Proximal
Point interpretation offers a unifying view for the formulation and reveals fundamental
connections to feasibility problems and the proximal average, see Section 3.3.

We extend the averaged proximal point iteration by means of stochastic sampling of
the clients. In federated learning and distributed optimization this is a fundamental
feature and allows for randomly interrupted connections between clients and the server.
For simplicity we specialize to a Euclidean setting and assume the empirical risks to be
prox-regular in a uniform and global sense, i.e., hypoconvex.

As discussed in the previous section the (inexact) averaged proximal point iteration
attempts to solve a relaxation of model (4.31), the penalty formulation (4.24). Specialized
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to a Euclidean setting, i.e., φ = 1/2‖ · ‖2, the formulation reads:

min
x,y∈(Rm)N

{
Hλ(x, y) ≡

N∑
i=1

πifi(xi) +
πi
2λ
‖xi − yi‖2 + ιC(y)

}
. (4.32)

The relaxation of the hard consensus constraint to a soft penalization translates to a
certain Moreau smoothing of the original problem; compare to problem (4.27). In the
Euclidean setting this smoothed problem reads:

min
y∈Rm

N∑
i=1

πieλfi(y). (4.33)

This relaxation is particularly useful in a federated learning context: In federated learning
we can expect the risks fi to be similar in a certain sense: In an over-parametrized regime,
which is a valid assumption in modern deep learning [Du+18; AZLL19], one can expect
the sets of global minimizers arg min fi of the individual risks fi to have a nonempty
intersection:

N⋂
i=1

arg min fi 6= ∅. (4.34)

In these cases the above relaxation is tight. Indeed, the relaxation is equivalent to the
minimization of the Moreau envelope eλAλ(f, π) of the proximal average Aλ(f, π), see
Lemma 3.6 and Proposition 3.7(iii) in Section 3.3. In addition this closely resembles
the structure of a feasibility problem, see Figure 4.1: Given a collection of closed sets
C1, . . . , CN , a feasibility problem seeks to

find a point x in
N⋂
i=1

Ci . (4.35)

Via the choice fi := ιCi being indicator functions of the sets Ci, πi = 1/N the feasibility
problem can be cast as an instance of Problem (4.33), where the Moreau envelope eλιCi
for λ = 1 specializes to the squared distance function to the set Ci

e1ιCi(y) = dist2(y, Ci) := inf
x∈Ci

1

2
‖x− y‖2.

The averaged proximal point method, in this case, specializes to the averaged projection
method which is a classical and successful approach for solving the feasibility problem.

However, as discussed in the previous section, inexact alternating Proximal Point, in
general, only converges to a stationary point of the penalty formulation (4.32) but not to a
stationary point of the regularized problem (4.33). A sufficient condition for a translation
of stationarity is prox-regularity (locally) or hypoconvexity (globally). Prox-regularity
and the gradient formula for the Moreau envelope, derived and studied beyond the
Euclidean setting in Chapter 2, turn out helpful in the context of federated learning as
explored in the next sections.

4.3.2. Variance bounds for the proximal average

In this section, we study and quantify the relation between stationary points of the
regularized problem (4.33) and the original problem (4.31) via gradient dissimilarity or
gradient variance bounds which goes beyond the qualitative viewpoint from the previous
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section. These bounds are closely related to the notion of linear regularity of sets for the
convex feasibility problem:

Definition 4.10 (linear regularity). Let (Ci)
N
i=1 ⊂ (Rm)N be a collection of closed convex

sets with nonempty intersection C :=
⋂N
i=1Ci 6= ∅ and let π ∈ relint Π. Let κ > 0. Then

we say the collection (Ci)
N
i=1 is κ-linearly regular if for any y ∈ Rm

dist2(y, C) ≤ κEi[dist2(y, Ci)],

where Ei[Y ] =
∑N

i=1 πiYi is the expectation of the random variable Y with probabilites
π ∈ Π.

Linear regularity of sets is the standard assumption to guarantee the (linear) con-
vergence of the averaged projections method. In view of [BBL99, Corollary 4.8], if⋂N
i=1Ci is bounded, the condition is implied by the standard constraint qualification, the

nonemptyness of the intersection of the relative interiors C =
⋂N
i=1 relintCi 6= ∅.

For intuition, the averaged proximal point algorithm converges to a stationary point of
(4.33), i.e.,

∑N
i=1 πi∇eλfi(yt)→ 0. However, we would rather like to ensure

∇eλ
(

N∑
i=1

πifi

)
(yt)→ 0,

which has the same minimizer as f . Intuitively, this is achieved whenever the gradients
∇eλfi of the Moreau envelopes of the individual functions point in similar directions.
Therefore our goal is to quantify this similarity and connect stationary points of the
relaxed problem (4.33) with the original problem (4.31).

Indeed, for the feasibility problem linear regularity implies the following condition [NRP19,
Theorem 3] which formalizes the above requirement:

Lemma 4.11. Let (Ci)
N
i=1 be a collection of closed convex sets and π ∈ relint Π. Let

(Ci)
N
i=1 be κ-linearly regular. Then it holds for any y ∈ Rm that

Ei[‖∇dist2(y, Ci)‖2] ≤ κ
∥∥Ei[∇ dist2(y, Ci)]

∥∥2
.

Proof. For the proof see first part of the proof of [NRP19, Theorem 3]

More generally, we assume the following condition that we refer to as bounded gradient
dissimilarity of the Moreau envelope:

Definition 4.12 (bounded gradient dissimilarity of Moreau envelope). Let ε ≥ 0 and
κ > 0. Then for a collection of functions (fi)

N
i=1 the Moreau envelopes (eλfi)

N
i=1 are

(ε, κ)-bounded gradient dissimilar if there is λ0 > 0 such that for all λ < λ0 we have

Ei
[
‖∇eλfi(y)‖2

]
≤ ε+ κ

∥∥Ei[∇eλfi(y)
]∥∥2

,

for all y ∈ Rm.

While the squared norm of the expected value of the gradients of the Moreau envelopes
‖Ei[∇eλfi(y)]‖2 is a stationarity measure of the relaxed problem, a small expected value
of the squared norms of the gradients of the Moreau envelopes Ei[‖∇eλfi(y)‖2] implies
joint near stationarity for all fi and thus near stationarity with regards to the original
problem. Bounded gradient dissimilarity can be reformulated in terms of a variance
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bound: Let Vi[Y ] := Ei[‖Y − Ei[Y ]‖2] = Ei[‖Y ‖2] − ‖Ei[Y ]‖2 denote the variance of a
discrete random variable Y with probabilities πi = Pi[Y = yi]. Then, for κ ≥ 1, the
inequality in the definition reads:

Vi[∇eλfi(y)] ≤ ε+ (κ− 1)‖Ei[∇eλfi(y)]‖2.

To demonstrate that Definition 4.12 is a versatile concept and commonly valid in
practice we collect sufficient conditions that imply Definition 4.12:

Firstly we consider functions (fi)
N
i=1 that are globally Lipschitz on their domains

(dom fi)
N
i=1 which are linearly regular.

Proposition 4.13. Let π ∈ relint Π. Assume that for i = 1, . . . , N the function fi :
Rm → R can be written as fi = hi + ιCi , where hi is ri-hypoconvex and globally Lipschitz
with constant L on an open set U which contains Ci. Assume that Ci is closed and convex
and (Ci)

N
i=1 is κ-linearly regular. Let r := max1≤i≤N ri. Then for any 0 < λ < 1/r the

functions (eλfi)
N
i=1 are ((2κ+ 1)2L2, 4κ)-bounded gradient dissimilar.

Proof. Choose 0 < λ < 1/r. Let x̂i = Pλfi(y) = Pλ(hi + ιCi)(y). Since hi is Lipschitz
on the open set U which contains Ci and x̂i ∈ Ci we have ∂∞hi(x̂i) = {0}. In view of
Fermat’s rule Lemma 1.3 and Lemma 1.2 we have:

0 ∈ ∂(hi + ιCi)(x̂i) +
1

λ
(x̂i − y) ⊂ ∂hi(x̂i) +NCi(x̂i) +

1

λ
(x̂i − y).

This means in particular that there is vi ∈ ∂hi(x̂i) such that 0 ∈ NCi(x̂i)+ 1
λ(x̂i−(y+λvi)),

implying that
x̂i = projCi(y + λvi).

We have the following estimate:

Ei[‖y − x̂i‖2] = Ei[‖y + λvi − x̂i − λvi‖2]

≤ 2Ei[‖y + λvi − x̂i‖2] + 2λ2Ei[‖vi‖2].

We further bound Ei[‖y + λvi − x̂i‖2]: Exploiting κ-linear regularity via Lemma 4.11,
applying triangle and Jensen’s inequality we obtain:

Ei[‖y + λvi − x̂i‖2] ≤ κ ‖Ei[y + λvi − x̂i]‖2

≤ 2κ ‖Ei[y − x̂i]‖2 + 2κλ2Ei[‖vi‖2]

≤ 2κ ‖Ei[y − x̂i]‖2 + 2κλ2L2,

where the last inequality holds since vi ∈ ∂hi(x̂i), hi is Lipschitz on U which contains Ci
and x̂i ∈ Ci. We combine both inequalities:

Ei[‖y − x̂i‖2] ≤ 4κ ‖Ei[y − x̂i]‖2 + (4κ+ 2)λ2L2.

We divide the inequality by λ2 and obtain since hi is r-hypoconvex and λ < 1/r via
∇eλfi(y) = λ−1(y − x̂i) that:

Ei[‖∇eλfi(y)‖2] ≤ 4κ‖Ei[∇eλfi(y)]‖2 + (2κ+ 1)2L2.

Now, we consider smooth fi, i = 1, . . . , N and assume that the functions satisfy a
gradient variance bound Vi[∇fi] ≤ ε. For that purpose we prove the following lemma,
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which relates the gradient of the proximal average Aλ(f, π) to the gradient of the
(pointwise) arithmetic average Ei[fi].

Lemma 4.14. Let the functions fi, i = 1, . . . , N be continuously differentiable with
L-Lipschitz continuous gradients and assume that Vi[∇fi] ≤ ε. Then, for any y ∈ Rm
and any λ > 0 with 1/λ > (

√
2 + 1)L and µ := 1

λ − L, we have(
1

2
− L2

µ2

)
‖Ei[∇fi(y)]‖2 ≤ L2ε

µ2
+
∥∥Ei[∇eλfi(y)

]∥∥2
. (4.36)

In addition, since Aλ(f, π) is continuously differentiable with Lipschitz gradient, we can
further bound (

µ2

2
− L2

)
‖Ei[∇fi(y)]‖2 ≤ L2ε+

1

λ2
‖∇Aλ(f, π)(y)‖2 .

Proof. Define x̂i := Pλfi(y). Further let

hi(x, y) = fi(x) +
1

2λ
‖x− y‖2,

which is strongly convex (in x) with constant µ. Then we also have that x̂i =
arg minxi∈Rn hi(xi, y), and therefore 0 = ∇xihi(x̂i, y) = ∇fi(x̂i) + 1

λ(x̂i − y). Due
to µ-strong convexity of hi(·, y) we have:

µ

2
‖y − x̂i‖2 ≤

1

2µ
‖∇xihi(y, y)‖2 =

1

2µ
‖∇fi(y)‖2. (4.37)

Furthermore we have ∇eλfi(y) = λ−1(y − x̂i) = ∇fi(x̂i). Then we have using triangle
and Jensen’s inequality:

1

2

∥∥Ei[∇fi(y)
]∥∥2

=
1

2

∥∥Ei[∇fi(y)−∇fi(x̂i)
]

+ Ei
[
∇eλfi(y)

]∥∥2

≤ Ei
[
‖∇fi(y)−∇fi(x̂i)‖2

]
+
∥∥Ei[∇eλfi(y)

]∥∥2
.

We have in view of Inequality (4.37):

‖∇fi(y)−∇fi(x̂i)‖2 ≤ L2‖y − x̂i‖2 ≤
L2

µ2
‖∇fi(y)‖2.

Combining the estimates we obtain:

1

2

∥∥Ei[∇fi(y)
]∥∥2 ≤ L2

µ2
Ei
[
‖∇fi(y)‖2

]
+ ‖∇eλAλ(f, π)(y)‖2 .

Since Vi[∇fi(y)] = Ei[‖∇fi(y)‖2]− ‖Ei[∇fi(y)]‖2 ≤ ε we can further bound:

1

2
‖Ei[∇fi(y)]‖2 ≤ L2ε

µ2
+
L2

µ2

∥∥Ei[∇fi(y)
]∥∥2

+
∥∥Ei[∇eλfi(y)

]∥∥2
,

which yields (
1

2
− L2

µ2

)
‖Ei[∇fi(y)]‖2 ≤ L2ε

µ2
+
∥∥Ei[∇eλfi(y)

]∥∥2
,
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where the constant 1/2− L2/µ2 > 0 for 1/λ > (
√

2 + 1)L.

In view of Proposition 3.6 we have:

Ei
[
∇eλfi(y)

]
= ∇eλAλ(f, π)(y).

Define x̂ := PλAλ(f, π)(y) and

h(x, y) = Aλ(f, π)(x) +
1

2λ
‖x− y‖2.

which, in view of Proposition 3.7(i), is strongly convex (in the first argument) with
constant µ. Then we also have that

x̂ = arg min
x∈Rn

h(x, y).

By strong convexity of h(·, y) and in view of Proposition 3.7(iv):

µ

2
λ2‖∇eλAλ(f, π)(y)‖2 =

µ

2
‖y − x̂‖2

≤ 1

2µ
‖∇xh(y, y)‖2

=
1

2µ
‖∇Aλ(f, π)(y)‖2.

Next we invoke the lemma above to obtain the desired result:

Proposition 4.15. Let the functions fi, i = 1, . . . , N be continuously differentiable with
L-Lipschitz continuous gradients and assume that Vi[∇fi(x)] ≤ ε is bounded. Then, for
some λ0 sufficiently small and for any λ < λ0 the functions (eλfi)

N
i=1 are (3ε/2, 3)-bounded

gradient dissimilar.

Proof. Let λ > 0 such that 1/λ > (
√

2 + 1)L. Adding ε/2− εL2µ2 to both sides of the
inequality (4.36) form Lemma 4.14 we obtain:(

1

2
− L2

µ2

)(
‖Ei[∇fi(y)]‖2 + ε

)
≤ L2ε

µ2
+
ε

2
− εL2

µ2
+
∥∥Ei[∇eλfi(y)

]∥∥2

=
ε

2
+
∥∥Ei[∇eλfi(y)

]∥∥2
.

Since Vi[∇fi(y)] = Ei[‖∇fi(y)‖2] − ‖Ei[∇fi(y)]‖2 ≤ ε we can further lower bound the
left hand side (

1

2
− L2

µ2

)
Ei
[
‖∇fi(y)‖2

]
≤
(

1

2
− L2

µ2

)(
‖Ei[∇fi(y)]‖2 + ε

)
and thus (

1

2
− L2

µ2

)
Ei
[
‖∇fi(y)‖2

]
≤ ε

2
+
∥∥Ei[∇eλfi(y)

]∥∥2
.

Invoking Inequality (4.37) from the proof of the above lemma we can further lower bound
the left hand side:

µ2λ2Ei
[
‖∇eλfi(y)‖2

]
= µ2Ei

[
‖y − x̂i‖2

]
≤ Ei

[
‖∇fi(y)‖2

]
.
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Overall this shows(
1

2
− L2

µ2

)
µ2λ2Ei

[
‖∇eλfi(y)‖2

]
≤ ε

2
+
∥∥Ei[∇eλfi(y)

]∥∥2
.

Multiplying with 2 and since µ = 1/λ− L we obtain:(
1− 2L2

µ2

)
(1− λL)2Ei

[
‖∇eλfi(y)‖2

]
≤ ε+ 2

∥∥Ei[∇eλfi(y)
]∥∥2

.

Obviously for λ → 0+ monotonically decreasing the constant on the left hand side is
monotonically increasing and converges to 1. Therefore we can find λ0 > 0 so that for
any 0 < λ < λ0 we can bound(

1− 2L2

µ2

)
(1− λL)2 ≥ 2

3
.

This shows that

Ei
[
‖∇eλfi(y)‖2

]
≤ 3ε

2
+ 3

∥∥Ei[∇eλfi(y)
]∥∥2

.

4.3.3. Stochastic inexact averaged Proximal Point

In this section we consider a stochastic extension of the averaged proximal point iteration,
where in each iteration only a randomly chosen subset of proximal mappings is computed.
In federated learning, this allows for broken client-server connections which also occur in
other distributed optimization settings.

The algorithmic scheme is derived by specializing Algorithm 3 from Section 4.2.3 to
the Euclidean setting. For simplicity we eliminate additional blocks y2 = · · · = yN from
the product space formulation so that the algorithm can be written as Gauss–Seidel
minimization of the following simplified penalty function:

min
x∈(Rm)N ,y∈Rm

{
Hλ(x, y) ≡

N∑
i=1

πifi(xi) +
πi
2λ
‖xi − y‖2

}
. (4.38)

The block coordinate descent formulation of the algorithm suggests the following simple
extension to a stochastic setting: In each round we update only a random sample
Ct ⊂ {1, 2, . . . , N} of block coordinates xt+1

i ≈ Pλfi(yt+1), i ∈ Ct while leaving the other
blocks unchanged: xt+1

i = xti, i 6∈ Ct. The complete algorithm is listed in Algorithm 4.

For simplicity, for the remainder of this chapter, we will assume that the functions
fi are prox-regular in a global sense, i.e., r-hypoconvex. Under this assumption the
proximal mapping admits a globally single-valued 1/(1− rλ)-Lipschitz proximal mapping,
see Proposition 2.46.

Like before we allow the proximal mapping to be evaluated inexactly. The inexact
update must satisfy the following conditions:

Assumption 4.16. We define

hi(x, y) := fi(x) +
1

2λ
‖x− y‖2.
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Algorithm 4 stochastic inexact averaged Proximal Point

Require: Initialize λ > 0, x0 ∈ dom f ⊆ (Rm)N , y0 ∈ Rm. Fix probabilities 1 ≥
η1, . . . , ηN > 0.
for all t = 1, 2, . . . do

yt+1 =

N∑
i=1

πix
t
i (4.39)

Create a non-empty sample Ct ⊂ {1, 2, . . . , N} such that P[i ∈ Ct] := ηi > 0.
for all i ∈ {1, 2, . . . , N} do

solve the following inexactly such that Assumption 4.16 holds true:

x̂t+1
i ≈ Pλfi(yt+1)

xt+1
i =

{
x̂t+1
i , if i ∈ Ct,
xti, otherwise.

(4.40)

end for
end for
return (xt, yt).

(i) There is γ > 0 such that for each t and i ∈ {1, 2 . . . , N}

hi(x̂
t+1
i , yt+1) ≤ hi(xti, yt+1)− γ

2
‖x̂t+1

i − xti‖2,

(ii) There is τ > 0 such that for each t and i ∈ {1, 2 . . . , N}

‖Pλfi(yt+1)− xti‖ ≤ τ‖x̂t+1
i − xti‖.

(i) ensures, that a sufficient descent on hi is generated, when xi is updated. The
condition is mild. For instance it is satisfied if fi is smooth and xi is updated by a single
gradient descent step on hi(·, yt+1).

(ii) is an abstraction of a relative error condition of the form: vt+1 ∈ ∂fi(x̂
t+1
i ) +

λ−1(x̂t+1
i − yt+1), with ‖vt+1‖ ≤ τ‖x̂t+1

i − xti‖, which can be important in a nonsmooth
setting: While relative error implies that x̂t+1

i = Pλfi(y
t+1 + λvt+1) and therefore via

Lipschitz continuity of the proximal mapping also

‖Pλfi(yt+1)− xti‖ ≤ ‖x̂t+1
i − xti‖+ ‖Pλfi(yt+1)− x̂t+1

i ‖

≤ ‖x̂t+1
i − xti‖+

λ

1− riλ
‖vt+1‖ ≤

(
1 +

τλ

1− riλ

)
‖x̂t+1

i − xti‖,

in some settings, e.g., prox-linear updates, Assumption 4.16(ii) still holds while relative
error is violated, see [DP19, Section 4] for an explanation and in particular [DP19,
Theorem 4.5].

Theorem 4.17. Let fi : Rm → R be proper lsc and hypoconvex with constant ri ≥ 0.
Let r := max1≤i≤N ri and choose λ < 1/r. Let π ∈ relint Π. Assume that

∑N
i=1 πieλfi is
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bounded from below and P[i ∈ Ct] := ηi > 0. Let Assumption 4.16 hold true. Then we have
for the actual iterates (xt, yt), generated by Algorithm 4, that ‖Pλfi(yt+1)− xti‖

a.s.−−→ 0,

for 1 ≤ i ≤ N and ‖yt+1 − yt‖ a.s.−−→ 0 and

N∑
i=1

πi∇eλfi(yt) a.s.−−→ 0,

as t → ∞. Thus every limit point of the sequence of random variables {yt}t∈N is a
stationary point of Problem (4.33) almost surely.

Our convergence proof relies on the Super-Martingale Convergence Theorem [RS71,
Theorem 1]:

Theorem 4.18 (Super-martingale convergence theorem). Let {wt}t∈N, {yt}t∈N, {ρt}t∈N,
and {µt}t∈N be sequences of nonnegative random variables such that

E
[
wt+1 | F t

]
≤ (1 + ρt)wt − yt + µt, ∀t > 1 w.p. 1, (4.41)

where F t denotes the collection w1, . . . wt, y1 . . . yt, ρ1, . . . ρt, µ1, . . . µt and

∞∑
t=1

ρt <∞,
∞∑
t=1

µt <∞, w.p. 1.

Then the sequence of random variables {wt} converges almost surely to a nonnegative
random variable, and we have

∞∑
t=1

yt <∞ w.p. 1.

Proof of Theorem 4.17. We have after the y-update

Hλ(xt, yt+1)−Hλ(xt, yt) ≤
N∑
i=1

πi
2λ
‖xti − yt+1‖2 −

N∑
i=1

πi
2λ
‖xti − yt‖2

=
1

2λ

N∑
i=1

πi(−2〈xti, yt+1 − yt〉+ ‖yt+1‖2 − ‖yt‖2)

=
1

2λ
(−2〈yt+1, yt+1 − yt〉+ ‖yt+1‖2 − ‖yt‖2)

= − 1

2λ
‖yt+1 − yt‖2.

We fix Ct for some iteration index t.
(i) Let i ∈ Ct. Then we have xt+1

i = x̂t+1
i and by Assumption 4.16(i)

hi(x
t+1
i , yt+1)− hi(xti, yt+1) ≤ −γ

2
‖x̂t+1

i − xti‖2. (4.42)

(ii) Let i /∈ Ct: Then we have

xt+1
i = xti,

and in particular:
hi(x

t+1
i , yt+1)− hi(xti, yt+1) = 0.
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Taking the weighted sum with weights πi and rearranging yields:

Hλ(xt+1, yt+1)−Hλ(xt, yt) = Hλ(xt+1, yt+1)−Hλ(xt, yt+1) +Hλ(xt, yt+1)−Hλ(xt, yt)

≤
N∑
i=1

πi
(
hi(x

t+1
i , yt+1)− hi(xti, yt+1)

)
− 1

2λ
‖yt+1 − yt‖2.

We bound
∑N

i=1 πi(hi(x
t+1
i , yt+1)− hi(xti, yt+1))

N∑
i=1

πi
(
hi(x

t+1
i , yt+1)− hi(xti, yt+1)

)
≤ −γ

2

∑
i∈Ct

πi‖x̂t+1
i − xti‖2.

We introduce the notation: Γt+1 := Hλ(xt+1, yt+1).

Γt+1 − Γt ≤ −
γ

2

∑
i∈Ct

πi‖x̂t+1
i − xti‖2 −

1

2λ
‖yt+1 − yt‖2

≤ −γ
2

∑
i∈Ct

πi‖x̂t+1
i − xti‖2.

We introduce the notation: ∆t
i := γ/2πi‖x̂t+1

i − xti‖2. We denote by F t the collection
y1, . . . yt, x1, . . . , xt. We take the expectation ECt [ · | F t] on both sides of the inequality.
We reorder the summation so that certain terms can be marginalized out. Since yt+1

and x̂t+1
i do not depend on Ct and therefore also Γt and ∆t

i do not dependent on Ct we
obtain:

ECt
[
Γt+1

∣∣F t]− Γt ≤
∑

C∈2{1,...,N}

P[Ct = C] ·
∑
i∈Ct

(−∆t
i)

=
N∑
i=1

(−∆t
i)

∑
C∈2{1,...,N}:i∈C

P[Ct = C]

= −
N∑
i=1

∆t
i · P[Ct 3 i] = −

N∑
i=1

ηi∆
t
i.

By assumption there is Ξ > −∞ such that

−∞ < Ξ ≤
N∑
i=1

πieλfi(y
t+1) = inf

x∈(Rm)N
Hλ(x, yt+1) ≤ Hλ(xt+1, yt+1) = Γt+1.

Subtracting Ξ from both sides of the inequality and reordering the terms we obtain:

ECt
[
Γt+1 − Ξ

∣∣F t] ≤ Γt − Ξ−
N∑
i=1

ηi∆
t
i.

We now define wt := Γt − Ξ, ρt, µt := 0 and yt :=
∑N

i=1 ηi∆
t
i.

Invoking the Super-martingale Convergence Theorem 4.18 we obtain:

Γt − Ξ
a.s.−−→ w∗,
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where w∗ is a nonnegative random variable and

yt =
N∑
i=1

ηi∆
t
i <∞,

is summable with probability 1. Since ηi > 0 this implies that ∆t
i

a.s.−−→ 0 and since πi > 0
we have

‖x̂t+1
i − xti‖

a.s.−−→ 0.

Also note that

‖yt+1 − yt‖ ≤
N∑
i=1

πi‖xt+2
i − xt+1

i ‖ =
∑

j∈Ct+1

πi‖x̂t+2
i − xt+1

i ‖
a.s.−−→ 0

By Assumption 4.16(ii) we have:

‖Pλfi(yt+1)− xti‖ ≤ τ‖x̂t+1
i − xti‖

a.s.−−→ 0.

Then have in view of Jensen’s inequality:∥∥∥∥∥
N∑
i=1

πi∇eλfi(yt+1)

∥∥∥∥∥ =
1

λ

∥∥∥∥∥yt+1 −
N∑
i=1

πiPλfi(y
t+1)

∥∥∥∥∥
=

1

λ

∥∥∥∥∥
N∑
i=1

πi(x
t
i − Pλfi(yt+1))

∥∥∥∥∥
≤ 1

λ

N∑
i=1

πi
∥∥Pλfi(yt+1)− xti

∥∥ a.s.−−→ 0.

Since ‖yt+1 − yt‖ a.s.−−→ 0, by continuity of the gradients of the envelope functions,
this implies that every limit point of the sequence {yt}t∈N is a stationary point of
Problem (4.33) almost surely.

Considering the duality relation between gradient descent and Proximal Point in finite
sum minimization from Section 3.4 we obtain an interpretation of the Finito/MISO
algorithm [DDC14; Mai15], listed in Algorithm 5, along with a convergence proof in the
nonconvex setting under very general sampling strategies:

Corollary 4.19. Let fi : Rm → R be Lipschitz differentiable. Assume that
∑N

i=1 πifi is
bounded from below and P[i ∈ Ct] := ηi > 0. Then we have for the actual iterates {yt}t∈N,
generated by Algorithm 5, that

N∑
i=1

πi∇fi(yt) a.s.−−→ 0,

as t→∞. In addition, every limit point of the sequence of random variables {yt}t∈N is
a stationary point of Problem (4.31) almost surely.

Proof. This follows by Theorem 3.8 and Theorem 4.17.

Block coordinate descent interpretations of Finito/MISO, SAGA [DBLJ14] and related
algorithms have been observed previously in a nonconvex setting in [Haj+16] for SAGA
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Algorithm 5 Finito/MISO algorithm [DDC14; Mai15]

Require: Initialize 0 < λ < 1/L, x0 ∈ (Rm)N , y0 ∈ Rm. Fix probabilities 1 ≥
η1, . . . , ηN > 0.
for all t = 1, 2, . . . do

yt+1 =

N∑
i=1

πix
t
i = yt +

∑
i∈Ct−1

πix
t
i −

∑
i∈Ct−1

πix
t−1
i (4.43)

Create a non-empty sample Ct ⊂ {1, 2, . . . , N} such that P[i ∈ Ct] := ηi > 0.

xt+1
i =

{
Pλdλfi(y

t+1) = yt+1 − λ∇fi(yt+1) if i ∈ Ct
xti, otherwise.

(4.44)

end for
return yt.

and in [LTP21] for Finito/MISO. However, in contrast to [LTP21; Haj+16], whose
Lyapunov functions are based on the forward-backward envelope [PB13; TSP18] or the
closely related augmented Lagrangian, our Lyapunov function is based on the proximal
transform.

Invoking our variance bounds for the proximal average from Section 4.3.2, Theorem 4.17
can be refined.

Corollary 4.20. In the situation of Theorem 4.17 assume that (eλfi)
N
i=1 are (ε, κ)-

bounded gradient dissimilar. Then, for any limit point (x∗, y∗) of the sequence of random
variables generated by Algorithm 4, we have the following:

(i) the feasibility gap ‖x∗i − y∗‖ ≤ λε/πi is bounded by λε/πi almost surely,

(ii) we have 0 ∈∑N
i=1 πi∂fi(Pλfi(y

∗)) almost surely, and

(iii) ‖Pλfi(y∗)− x∗i ‖ = 0 almost surely.

(iv) If, in addition, fi is C1 with L-Lipschitz continuous gradient, then Items (i), (ii)
and (iii) imply that ‖∑N

i=1 πi∇fi(y∗)‖ ≤ NLλε almost surely.

Proof. By definition of (ε, κ)-bounded gradient dissimilarity we have:

N∑
i=1

πi‖∇eλfi(yt)‖2 ≤ ε+ κ

∥∥∥∥∥
N∑
i=1

πi∇eλfi(yt)
∥∥∥∥∥

2

,

where
∑N

i=1 πi∇eλfi(yt)→ 0 w.p. 1. Now consider a convergent subsequence of random
variables (xtj , ytj )→ (x∗, y∗). Due to the continuity of ∇eλfi we have for each individual
i = 1, . . . , N almost surely:

‖∇eλfi(y∗)‖ ≤
ε

πi
.

By the gradient formula for ∇eλfi this also means

‖Pλfi(y∗)− y∗‖ ≤ λ
ε

πi
,
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for all i almost surely. In view of Theorem 4.17 we have:

‖ytj+1 − ytj‖ a.s.−−→ 0.

Then since the proximal mapping of fi is continuous we have

Pλfi(y
tj+1)→ Pλfi(y

∗).

Since also ‖Pλfi(ytj+1)− xtji ‖
a.s.−−→ 0 we have Pλfi(y

∗) = x∗i almost surely. This implies

0 ∈ ∂fi(x∗i ) +
1

λ
(x∗i − y∗),

almost surely. We compute the average and reorder the terms:

1

λ

(
y∗ −

N∑
i=1

πix
∗
i

)
∈

N∑
i=1

πi∂fi(x
∗
i ).

We have

ytj − ytj+1 = ytj −
N∑
i=1

πix
tj
i

a.s.−−→ 0 = y∗ −
N∑
i=1

πix
∗
i ,

almost surely.
If, in addition, fi is smooth we have almost surely:∥∥∥∥∥

N∑
i=1

πi∇fi(y∗)
∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

πi∇fi(y∗) +
N∑
i=1

πi∇fi(x∗i )−
N∑
i=1

πi∇fi(x∗i )
∥∥∥∥∥

≤
∥∥∥∥∥
N∑
i=1

πi∇fi(x∗i )
∥∥∥∥∥+

N∑
i=1

πi ‖∇fi(y∗)−∇fi(x∗i )‖

≤
∥∥∥∥∥
N∑
i=1

πi∇fi(x∗i )
∥∥∥∥∥+

N∑
i=1

πiL ‖y∗ − x∗i ‖ .

And therefore ‖∑N
i=1 πi∇fi(y∗)‖ ≤

∑N
i=1 πiL ‖y∗ − x∗i ‖ ≤ NLλε almost surely.

Corollary 4.20 shows that under bounded gradient dissimilarity of the functions
(eλfi)

N
i=1 the deviations between the clients and the server ‖x∗i − y∗‖ stay small in the

limit and the limit point y∗ will get close to a point that is stationary almost surely wrt
the original problem (4.31).

We propose the following alternative stochastic variant of the abstract minimization
framework. Here, at iteration t, the individual clients perform at least one SGD-step on
Hλ(·, yt+1) to update their copies xt+1

i :

xt+1
i = xti − αt(∇fi(xti; ξti) + λ−1(xti − yt+1)),

where the step-size αt and stochastic gradient∇fi(zti ; ξti) satisfy the following assumptions:

Assumption 4.21 (stochastic gradient assumptions).

(i) Let fi ∈ C1 with ∇fi being L-Lipschitz.

(ii) For all i = 1, . . . , N we have Eξti [∇fi(x
t
i; ξ

t
i)] = ∇fi(xti).
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(iii) There is a nonnegative constant σ so that Vξti [∇fi(x
t
i; ξ

t
i)] ≤ σ2 for all i = 1, . . . , N .

(iv) We assume that the step-size αt is square-summable meaning that:
∑∞

t=1 αt = +∞
and

∑∞
t=1 α

2
t <∞

The complete algorithm is listed in Algorithm 6:

Algorithm 6 particle stochastic gradient descent

Require: Let tmax ∈ N. Initialize a square-summable sequence (αt)
tmax
t=1 , λ > 0, x0 ∈

(Rm)N , y0 ∈ Rm, possibly xi 6= xj
for all t = 1, 2, . . . , tmax do

yt+1 =
N∑
i=1

πix
t
i (4.45)

for all i ∈ {1, 2, . . . , N} do

xt+1
i = xti − αt(∇fi(xti; ξti) + λ−1(xti − yt+1)) (4.46)

end for
end for
Sample t∗ ∈ {1, . . . , tmax} with probability P[t = t∗] = αt∗∑tmax

t=1 αt

return (xt
∗
, yt
∗+1).

The following theorem proves that the proximal gradient of the relaxed model vanishes
in mean-square:

Theorem 4.22. Let fi be C1 with L-Lipschitz continuous gradient and hypoconvex with
constant 0 ≤ ri ≤ L. Choose r := max1≤i≤N and λ < 1/r. Assume that

∑N
i=1 πieλfi is

bounded from below. Let Assumption 4.21 hold true. Then we have for the randomly
returned iterate yt

∗+1 =
∑N

i=1 πix
t∗
i produced by Algorithm 6:

E

∥∥∥∥∥
N∑
i=1

πi∇eλfi(yt
∗+1)

∥∥∥∥∥
2
→ 0,

i.e., ‖∑N
i=1 πi∇eλfi(yt

∗+1)‖ m.s.−−→ 0, as tmax →∞.

Proof. We have after the y-update

Hλ(xt, yt+1)−Hλ(xt, yt) ≤
N∑
i=1

πi
2λ
‖xti − yt+1‖2 −

N∑
i=1

πi
2λ
‖xti − yt‖2

= − 1

2λ
‖yt+1 − yt‖2. (4.47)

We have the estimate

1

2
‖yt+1 − xt+1

i ‖2 −
1

2
‖yt+1 − xti‖2 =

1

2
‖xt+1

i − xti‖2 − 〈yt+1 − xti, xt+1
i − xti〉 (4.48)
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Assuming that fi is L-smooth we have the estimate:

fi(x
t+1
i )− fi(xti) ≤ 〈∇fi(xti), xt+1

i − xti〉+
L

2
‖xt+1

i − xti‖2, (4.49)

Recall that

hi(x, y) = fi(x) +
1

2λ
‖x− y‖2.

Summing the two inequalities above we obtain:

hi(x
t+1
i , yt+1)− hi(xti, yt+1) ≤ 〈∇xihi(xti, yt+1), xt+1

i − xti〉+
L+ λ−1

2
‖xt+1

i − xti‖2.

Taking the weighted sum over i = 1, . . . , N with weights πi yields using Inequality (4.47):

Hλ(xt+1, yt+1)−Hλ(xt, yt)

≤ 〈∇xHλ(xt, yt+1), xt+1 − xt〉+
L+ λ−1

2

N∑
i=1

πi‖xt+1
i − xti‖2 −

1

2λ
‖yt − yt+1‖2,

(4.50)

where
∇xHλ(xt, yt+1) = (πi(∇fi(xti) + λ−1(xti − yt+1)))Ni=1.

In view of the xt+1
i -update we have

xt+1 − xt = −αt(∇fi(xti; ξti) + λ−1(xti − yt+1))Ni=1 =: −αtGt. (4.51)

Substituting this expression in Inequality (4.50):

Hλ(xt+1, yt+1)−Hλ(xt, yt)

≤ −αt〈∇xHλ(xt, yt+1), Gt〉+
(L+ λ−1)α2

t

2

N∑
i=1

πi‖Gti‖2 −
1

2λ
‖yt − yt+1‖2, (4.52)

Taking expectations in this inequality with respect to the distributions of ξt := (ξti)
N
i=1,

and noting that Gt and xt+1, but not xt or yt+1, depend on ξt, we obtain via the
unbiasedness of the gradient estimate:

Eξt [Hλ(xt+1, yt+1)]−Hλ(xt, yt)

≤ −αt
N∑
i=1

πi‖∇xihi(xti, yt+1)‖2 +
(L+ λ−1)α2

t

2

N∑
i=1

πiEξti [‖G
t
i‖2]− 1

2λ
‖yt − yt+1‖2.

It remains to bound Eξti [‖G
t
i‖2]. Since the variance Vξti [∇fi(x

t
i; ξ

t
i)] ≤ σ2 is bounded we

obtain the estimate

Eξti [‖G
t
i‖2] = Vξti [G

t
i] + ‖Eξti [G

t
i]‖2

= Vξti [∇fi(x
t
i; ξ

t
i)] + ‖Eξti [G

t
i]‖2

≤ σ2 + ‖∇xihi(xti, yt+1)‖2. (4.53)
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This yields:

Eξt [Hλ(xt+1, yt+1)]−Hλ(xt, yt) ≤ −αt
(

1− (L+ λ−1)αt
2

) N∑
i=1

πi‖∇xihi(xti, yt+1)‖2

+
(L+ λ−1)α2

tσ
2

2
− 1

2λ
‖yt − yt+1‖2. (4.54)

We assume that αt < 1/(L+ λ−1). Then the above can be further bounded

Eξt [Hλ(xt+1, yt+1)]−Hλ(xt, yt)

≤ −αt
2

N∑
i=1

πi‖∇xihi(xti, yt+1)‖2 +
(L+ λ−1)σ2

2
α2
t −

1

2λ
‖yt − yt+1‖2. (4.55)

Taking the total expectation we obtain:

E[Hλ(xt+1, yt+1)]− E[Hλ(xt, yt)]

≤ −E
[
αt
2

N∑
i=1

πi‖∇xihi(xti, yt+1)‖2
]

+
(L+ λ−1)σ2

2
α2
t . (4.56)

By assumption there is Ξ > −∞ such that

−∞ < Ξ ≤
N∑
i=1

πieλfi(y
t+1) = inf

x∈(Rm)N
Hλ(x, yt+1) ≤ Hλ(xt+1, yt+1) = Γt+1.

Summing we obtain:

Ξ−Hλ(x0, y0) ≤ E[Hλ(xtmax , ytmax)]−Hλ(x0, y0)

≤ −αt
2

tmax∑
t=1

E

[
N∑
i=1

πi‖∇xihi(xti, yt+1)‖2
]

+

tmax∑
t=1

(L+ λ−1)σ2

2
α2
t .

We let the algorithm run for tmax iterations and then stop and return with probability
P[t = t∗] = αt∗/

∑tmax
t=1 αt one of the previous iterates (xt

∗
, yt
∗+1) with t∗ ∈ {1, . . . , tmax}.

Then we have for the complete expected value of
∑N

i=1 πi‖∇xihi(xt
∗
i , y

t∗+1)‖2

1

2
E

[
N∑
i=1

πi‖∇xihi(xt
∗
i , y

t∗+1)‖2
]

=
1

2

tmax∑
t=1

P[t = t∗] · E
[
N∑
i=1

πi‖∇xihi(xti, yt+1)‖2
]

=
1∑tmax

t=1 αt
·
tmax∑
t=1

αt
2
· E
[
N∑
i=1

πi‖∇xihi(xti, yt+1)‖2
]

≤ Hλ(x0, y0)− Ξ +
∑tmax

t=1
(L+λ−1)σ2

2 α2
t∑tmax

t=1 αt
tmax→∞−−−−−→ 0, (4.57)

which, due to the square-summability of αt, goes to zero for tmax →∞.

By definition of ∇xihi(xt
∗
i , y

t∗+1) we have

∇fi(xt
∗
i ) + λ−1(xt

∗
i − (yt

∗+1 + λ∇xihi(xt
∗
i , y

t∗+1)) = 0.
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Due to the hypoconvexity of fi with constant L and since λ < 1/L this means that

xt
∗
i = Pλfi(y

t∗+1 + λ∇xihi(xt
∗
i , y

t∗+1)).

In addition we have

yt
∗+1 =

N∑
i=1

πix
t∗
i .

Then we have, since Pλfi is 1/(1 − Lλ)-Lipschitz and due to Jensen’s inequality and
πi > 0:∥∥∥∥∥

N∑
i=1

πi∇eλfi(yt
∗+1)

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑
i=1

πi
1

λ
(yt
∗+1 − Pλfi(yt

∗+1))

∥∥∥∥∥
2

=
1

λ2

∥∥∥∥∥
N∑
i=1

πi(Pλfi(y
t∗+1)− xt∗i )

∥∥∥∥∥
2

≤ 1

λ2

N∑
i=1

πi

∥∥∥Pλfi(yt∗+1)− Pλfi(yt
∗+1 + λ∇xihi(xt

∗
i , y

t∗+1))
∥∥∥2

≤ 1

(1− Lλ)2

N∑
i=1

πi‖∇xihi(xt
∗
i , y

t∗+1)‖2.

Taking expectations on both sides of the inequality shows via (4.57) that

N∑
i=1

πi∇eλfi(yt
∗+1)

m.s.−−→ 0,

converges to 0 in mean-square.

A particularly interesting special case is obtained, when all clients are initialized
differently xi 6= xj , but sample from the same training data in each iteration. In that
case the algorithm specializes to a Gauss–Seidel variant of the vanilla Elastic Averaging
SGD (EASGD) [ZCL15] which can be interpreted as a consensus method with interacting
particles [RB12; Bor+21]. The following corollary shows, that when λ > 0 is chosen
sufficiently small consensus between the clients is attained in mean-square in the limit:

Corollary 4.23. In the situation of Theorem 4.22 assume that (eλfi)
N
i=1 is (0, κ) gradient

dissimilar. Then we have ∥∥∥∥∥
N∑
i=1

πi∇fi(yt
∗+1)

∥∥∥∥∥ m.s.−−→ 0,

and in particular ‖xt∗i − yt
∗+1‖ m.s.−−→ 0, i.e., consensus in mean-square is attained in the

limit for tmax →∞.

Proof. Define x̂t
∗+1
i := Pλfi(y

t∗+1). The corresponding optimality condition reads:

0 = ∇fi(x̂t
∗+1
i ) +

1

λ
(x̂t
∗+1
i − yt∗+1).
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Summing over i = 1, . . . , N yields:

−
N∑
i=1

πi

(
1

λ

(
x̂t
∗+1
i − yt∗+1

)
+∇fi(x̂t

∗+1
i )−∇fi(yt

∗+1)

)
=

N∑
i=1

πi∇fi(yt
∗+1).

We take square norms on both sides and upper bound the right-hand side. Via triangle
and Jensen’s inequality and L-Lipschitz continuity of ∇fi we obtain:∥∥∥∥∥

N∑
i=1

πi∇fi(yt
∗+1)

∥∥∥∥∥
2

≤ 2(1 + L2λ2)
N∑
i=1

πi
1

λ2
‖x̂t∗+1

i − yt∗+1‖2

By (0, κ)-bounded gradient dissimilarity of (eλfi)
N
i=1 we have that:

N∑
i=1

πi‖∇eλfi(yt
∗+1)‖2 ≤ κ

∥∥∥∥∥
N∑
i=1

πi∇eλfi(yt
∗+1)

∥∥∥∥∥
2

,

and therefore we can further bound:∥∥∥∥∥
N∑
i=1

πi∇fi(yt
∗+1)

∥∥∥∥∥
2

≤ 2(1 + L2λ2)κ

∥∥∥∥∥
N∑
i=1

πi∇eλfi(yt
∗+1)

∥∥∥∥∥
2

.

Taking expectations on both sides of the inequality yields via Theorem 4.22 that

N∑
i=1

πi∇fi(yt
∗+1)

m.s.−−→ 0,

converges to 0 in mean-square. In addition, via (0, κ)-bounded gradient dissimilarity of
(eλfi)

N
i=1, we also have that

N∑
i=1

πiE
[
‖∇eλfi(yt

∗+1)‖2
]
→ 0,

which means that for all i = 1, . . . , N we have ∇eλfi(yt
∗+1)

m.s.−−→ 0 and therefore
‖x̂t∗+1

i − yt∗+1‖ m.s.−−→ 0. Then we have

‖xt∗i − yt
∗+1‖2 ≤ 2‖x̂t∗+1

i − yt∗+1‖2 + 2‖x̂t∗+1
i − xt∗i ‖2

= 2‖x̂t∗+1
i − yt∗+1‖2 + 2‖Pλfi(yt

∗+1)− Pλfi(yt
∗+1 + λ∇xihi(xt

∗
i , y

t∗+1))‖2

≤ 2‖x̂t∗+1
i − yt∗+1‖2 +

2λ2

(1− Lλ)2
‖∇xihi(xt

∗
i , y

t∗+1)‖2.

Taking the expectation on both sides yields:

‖xt∗i − yt
∗+1‖ m.s.−−→ 0,

converges to 0 in mean-square.
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Figure 4.2.: Comparison of fedAvg, [McM+17, Algorithm 1] and our methods Algorithm 4
and Algorithm 6. While in the IID-setting (a) our method is outperformed
by fedAvg, in the non-IID cases (b)–(d) our method achieves a superior
performance. (e) and (f) show a comparison of the different averaging
schemes. (g) and (h) show the effect of warm-starting the clients at yt

rather than xt under different averaging schemes. In (i) we plot f(yt) and
Hλ(xt, yt) over the total number of epochs taken by the individual clients
for the non-IID dataset Synthetic, (1, 1): While our method with E = 20
and fedAvg with E = 5 achieve similar performances after the same amount
of epochs, our approach requires 4 times less communication. fedAvg with
the same amount of communication E = 20 performs worse.

4.4. Averaged Proximal Point for federated learning: Numerical
results

4.4.1. Logistic regression under heterogeneity

In this experiment we complement the experimental results from [Li+20, Figure 2]: Like
[Li+20] we consider a quadratically regularized multinomial logistic regression problem,
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Figure 4.3.: Comparison of fedAvg, [McM+17, Algorithm 1] and our methods Algorithm 4
and Algorithm 6 on the task of distributed training of a convolutional neural
network. In (a) we distribute the data in an IID fashion so that each
client is assigned |Bi| = 3750 examples. We initialize the clients at random
x0
j 6= x0

i 6= y0 and warm-start the local clients at xt rather than yt after
each round. As our theory predicts, if λ is chosen sufficiently small the
clients attain approximate consensus at y200 after 200 rounds by themselves.
However, the convergence is overall slower compared to fedAvg. In (b) we
distribute the training data in a non-IID fashion where each client is assigned
examples of two classes only. We choose λ = 50 and warm-start the local
solvers at yt after each round. It can be seen that in this setting our method
and fedAvg achieve comparable performance.

where `(x; s, t) is the multinomial logistic loss and R is a quadratic regularizer weighted
by ν (excluding the bias weights): Each client optimizes:

fi(xi) =
1

|Bi|
∑

(s,t)∈Bi
`(xi; s, t) +R(xi),

with ν = 10−4. We define

f(x) :=
N∑
i=1

πifi(x).

We consider the synthetic federated learning benchmark2 provided by [Li+20] which
comprises 4 datasets with increasingly heterogeneous and unbalanced splits. Each dataset
has M = 9600 examples (s, t) with 10 classes and s ∈ RD−1, D = 61 and t ∈ {1, 2, . . . , 10}
and comes alongs with a split into N = 30 subsets Bi. We choose the weights πi := |Bi|/M .
For the precise details of the generation of the dataset we refer to [Li+20, Section 5.1].
We apply Algorithm 4 and select 10 (out of N = 30) clients per round that approximately
solve the proximal subproblem Pλfi(y

t+1) in the fashion of Algorithm 6 performing
E = 20 epochs of mini-batch SGD with constant step-size αt = 0.01 and batch-size
20. We stop the algorithm after 200 rounds. In Figures 4.2a–4.2d we compare the
objective values

∑N
i=1 πifi(y

t) and Hλ(xt, yt) of our method (initialized randomly with
x0
i 6= x0

j 6= y0) and fedAvg [McM+17, Algorithm 1]. fedAvg happens to be a special case

2https://github.com/litian96/FedProx
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Chapter 4. Alternating inexact Proximal Point

of our method, where λ =∞ and the individual clients are warm-started at yt after each
round. Both methods use the same averaging scheme to obtain the consensus variable yt.
Our method in the smooth setting is closely related to fedProx [Li+20]. However, there
exist some key differences: While the same proximal damping terms are used, fedProx
invokes a different averaging scheme

yt =
1

|Ct|
∑
i∈Ct

xt+1
i , (4.58)

which involves the active clients i ∈ Ct only. In addition, [Li+20] select the set of
active clients according to the probability distribution given by the weights π, while our
method selects the clients according to an arbitrary probability distribution η. Indeed,
while fedProx can be interpreted in terms of classical SGD applied to the finite sum
of Moreau envelopes

∑N
i=1 πieλfi our method can be interpreted as the Finito/MISO

algorithm [DDC14; Mai15] applied to
∑N

i=1 πieλfi. Still, our experimental results are in
accordance with the experimental findings reported by [Li+20]: While in the IID-setting
(Figure 4.2a) our method is outperformed by fedAvg, in the non-IID cases (Figures 4.2b–
4.2d) our method achieves a superior performance. Note, that the gap between Hλ and f
is a strong indicator for the heterogeneity of the training data and therefore can be used
to drive adaptive schemes for the damping parameter λ: In particular in the IID-case
(Figure 4.2a) the gap between Hλ and f is small and therefore a proximal damping
term is superfluous, and just slows down convergence. Figures 4.2e and 4.2f show a
comparison of the different averaging schemes. While our averaging scheme leads to a
more robust convergence behavior, averaging the active clients only, results in a better
overall performance. Figures 4.2g and 4.2h show the effect of warm-starting the clients
at yt rather than xti. In Figure 4.2i we plot f(yt) and Hλ(xt, yt) over the total number of
epochs taken by the individual clients for the non-IID dataset Synthetic, (1, 1). It can be
seen that our method with E = 20 achieves a comparable performance as fedAvg with
E = 5, however, with reduced communication overhead.

4.4.2. Federated learning for neural networks

We also conduct an experiment using a convolutional neural network. We report results
of the distributed training of a nonlinear convolutional neural network classifier on the
MNIST dataset using our algorithms resorting to the standard LeNet-5 CNN architecture
[LeC+98] given as

Conv20,5,1 → ELU → AvgPool2,2 → Conv50,5,1 → ELU → AvgPool2,2 → FC
→ Softmax,

with smooth ELU activation functions and a smooth cross-entropy loss `(x; s, t), s ∈
R28×28 and t ∈ {1, . . . , 10}. Each client then optimizes:

fi(xi) =
1

|Bi|
∑

(s,t)∈Bi
`(xi; s, t) +R(xi),

where R is a quadratic regularizer weighted by ν. We choose ν = 10−6 and fix the number
of clients N = 16 where the individual clients are assigned disjoint subsets Bi of the
M = 60.000 training examples and the weights are chosen as πi = |Bi|/M . Within each
round we invoke 8 clients chosen at random that perform 150 steps of mini-batch SGD
with batch-size 20 and constant step-size αt = 0.05 to solve the proximal subproblem.
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The maximum number of rounds is 200. In Figure 4.3a we distribute the data in an IID
fashion so that each client is assigned |Bi| = 3750 examples. We initialize the clients at
random x0

j 6= x0
i 6= y0 and warm-start the local clients at xti rather than yt after each

round. In accordance with [Bor+21] we refer to this as the particle mode, as each client
aka particle follows its own path to a potentially different limit point. As suggested by
our theory, if λ is chosen sufficiently small the clients attain approximate consensus at
u200 after 200 rounds. However, the convergence is overall slower compared to fedAvg.
In Figure 4.3b we distribute the training data in a non-IID fashion where each client is
assigned examples of two classes only. We choose λ = 50 and warm-start the local solvers
at yt after each round. It can be seen that in this setting our method and fedAvg achieve
similar performance.
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Chapter 5.
Lifting and generalized conjugacy in
Lagrangian relaxations

5.1. Lagrangian relaxation for Markov Random Fields

The relaxation of the finite sum problem to a finite sum of Moreau envelopes, studied
in the previous Section 4.3, yields a lower envelope to the original problem whose
minimization is inherently parallelizable via the decomposability of the proximal mapping
of the proximal average, see Section 3.3. In addition one obtains a smooth problem whose
stationary points are provably near stationary wrt the original problem whenever the
variance of the gradients of the Moreau envelopes of the individual functions is small
around those points, see Corollary 4.20.

In this chapter a somewhat complementary approach to obtain a lower relaxation is
proposed. The approach is based on the Lagrangian relaxation paradigm, and, to remedy
duality gaps in nonconvex problems, a certain reformulation over the space of measures or
moments is considered. In contrast to the previous approach based on Moreau smoothing,
this results in a nonsmooth but convex lower envelope which falls within the regime of
highly parallelizable convex optimization tools such as the primal-dual hybrid-gradient
(PDHG) method [CP11]. In addition we discuss a connection between lower relaxations
based on Moreau envelopes and lifting in Lagrangian relaxations via generalized conjugate
functions, see Definition 3.1, which are used in Section 3.3 to construct the proximal
average.

For the remainder of this chapter we focus on MAP-inference in a pairwise continuous
MRF and spatially continuous variational problems with total variation (TV) regulariza-
tion. This chapter is based on [Lau+16] and [Bau+21]. Expanding upon these works a
goal of this chapter is to discuss a unifying formulation for both, spatially continuous
variational problems and MAP-inference in a continuous MRF.

For an undirected graph G := (V, E) with vertices V and edges E MAP-inference in a
pairwise continuous MRF amounts to solving the following optimization problem:

min
x∈(Rm)V

{
F (x) ≡

∑
u∈V

fu(xu) +
∑
uv∈E

fuv(xu, xv)

}
, (5.1)

for proper lsc unary functions fu : Rm → R and proper lsc pairwise symmetric functions
fuv : Rm ×Rm → R, i.e., fuv(xu, xv) = fuv(xv, xu). Note that this formulation subsumes
the finite sum problem, which is recovered if the graph G is connected and the pairwise
functions are chosen fuv(xu, xv) = ι{0}(xu − xv).

123



Chapter 5. Lifting and generalized conjugacy in Lagrangian relaxations

The classical Lagrangian relaxation is derived as follows: For each uv ∈ E one introduces
an auxiliary variable xuv and linear constraints xuv = (xu, xv). Dualizing these constraints
with Lagrange multipliers λuv ∈ Rm × Rm one obtains a convex optimization problem.
This dual problem is amenable to convex optimization tools such as the aforementioned
PDHG method or the alternating direction method of multipliers (ADMM) [Boy+11]
which can exploit the partially separable structure of the objective. However, the approach
often suffers form large duality gaps. Indeed, Fenchel–Rockafellar duality (which holds
under suitable qualification conditions) applied to the Lagrangian dual problem yields
the following primal problem:

min
x∈(Rm)V

∑
u∈V

f∗∗u (xu) +
∑
uv∈E

f∗∗uv(xu, xv), (5.2)

where f∗∗u are the convex biconjugates, i.e., the largest lsc convex functions below fu.
For nonconvex fu such component-wise convex envelopes, however, are often inaccurate
approximations to the original problem and are trivial in some cases.

5.2. Lagrangian relaxation in measure spaces

5.2.1. Every minimization problem is convex

To remedy duality gaps in Lagrangian relaxations we propose to reformulate the original
problem in terms of an infinite-dimensional linear program over the space of Radon
measures and apply the Lagrangian relaxation after this reformulation. In accordance
with Section 1.2.7, we therefore adopt a different notation and write fu : X → R and
fuv : X × X → R as finite-valued functions to be defined on dom fu =: X ⊂ Rm. In
addition we assume X is nonempty and compact.

The following lemma reveals, that essentially every minimization problem can be
equivalently formulated in terms of an infinite-dimensional linear program.

Lemma 5.1. Let f : X → R be lsc with ∅ 6= X ⊂ Rm compact. Then we have

min
x∈X

f(x) = min
µ∈P(X )

〈µ, f〉, (5.3)

and x∗ ∈ arg minx∈X f(x) is a solution to minx∈X f(x) if and only if δx∗ is a minimizer
of minµ∈P(X )〈µ, f〉.

Proof. The result follows immediately via compactness of X and the properties of
probability measures: By compactness of X and since f is lsc relative to X we know x∗

exists. Let fmin = f(x∗). By the properties of the Lebesgue integral we have:∫
X
f(x) dµ(x) ≥

∫
X
fmin dµ(x) = fmin

∫
X

1 dµ(x) = min
x∈X

f(x),

for all µ ∈ P(X ) and minx∈Rm f(x) = 〈δx∗ , f〉 = f(x∗).

The result shows that convex optimization is not easier than nonconvex optimization.
Yet, the formulation turns out helpful to derive more tractable convex reformulations
in certain cases: For instance suppose that the objective function belongs to a certain
subspace such as the space of polynomials. Thanks to convex algebraic geometry the
problem can be reformulated over the space of moments for which there exist tractable
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characterizations in terms of SDP in some cases. Indeed, this is the starting point in
Lasserre’s approach [Las01; Las02] for constrained polynomial optimization.

5.2.2. MAP-inference in a pairwise MRF: The local marginal polytope
relaxation

Let πu : XV → X, πuv : XE → X2 denote the canonical projections onto the uth

resp. uth and vth components and πu]µ is the pushforward of µ w.r.t. πu defined by:
(πu]µ)(A) = µ((πu)−1(A)) for all A ⊂ X in the corresponding σ-algebra. Then, in our
case, applying the reformulation from Lemma 5.1 directly to the cost function F with
X = XV we obtain by linearity:

min
µ∈P(XV )

〈µ, F 〉 = min
µ∈P(XV )

〈
µ,
∑
u∈V

fu ◦ πu +
∑
uv∈E

fuv ◦ πuv
〉

= min
µ∈P(XV )

∑
u∈V
〈πu]µ, fu〉+

∑
uv∈E
〈πuv]µ, fuv〉.

This relaxation is known as the full marginal polytope relaxation which is, however,
intractable if V is large as one minimizes over probability measures on the product
space P(XV). Instead, we consider the following linear programming relaxation of (5.1)
which is also referred to as the local marginal polytope relaxation [Pen+11; FA14; WG14;
Ruo15], which is more tractable as the optimization variable lies in the product space of
probability measures P(X)V :

inf

{∑
u∈V
〈µu, fu〉+

∑
uv∈E
〈µuv, fuv〉 : µu ∈ P(X), µuv ∈ Π(µu, µv),∀u ∈ V, uv ∈ E

}
.

(5.4)

The constraint set Π(µu, µv) consists of all Borel probability measures on X2 with
marginals µu and µv:

Π(µu, µv) =
{
µuv ∈ P(X2) : πu]µuv = µu, πv]µuv = µv

}
, (5.5)

where for u ∈ V we denote by πu : X ×X → X the canonical projection onto the uth

component.
Note that for finite state-spaces, i.e., |X| < ∞, the set P(X) can be identified with

the standard (|X| − 1)-dimensional probability simplex and Π(µu, µv) with the set of
nonnegative |X| × |X| matrices whose rows and columns sum up to µv and µu. In that
case, the linear program given in (5.4) is equivalent to the usual finite-dimensional local
marginal polytope relaxation for MRFs, which is for example studied in [Wer07]. We
further remark that the case of finite X has been extensively studied in the literature,
see, e.g., [Kap+13; WJ+08] for recent overviews.

For the more challenging setting of continuous state-spaces, a major difficulty stems
from the fact that the linear programming relaxation (5.4) is an infinite-dimensional
optimization problem posed in the space of Borel probability measures. Perhaps due to
this difficulty, discrete MRF approaches are still routinely applied despite the continuous
nature of X. This is typically done by considering a finite sample approximation of X,
so that the infinite-dimensional linear program reduces to a finite-dimensional one. This,
however, may lead to discretization errors and comes with an exponential overhead in
the dimension of X.
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Note that for fixed µu and µv we may absorb the minimization over the variable
µuv ∈ Π(µu, µv) into an optimal transportation problem [Kan60],

OTfuv(µu, µv) = inf
µuv∈Π(µu,µv)

〈fuv, µuv〉, (5.6)

with marginals (µu, µv) and cost fuv. This allows us to rewrite the optimization problem
(5.4) more compactly as follows:

inf
µ∈P(X)V

{
F(µ) :=

∑
u∈V
〈fu, µu〉+

∑
uv∈E

OTfuv(µu, µv)

}
. (5.7)

Due to the fact that Π(δx, δx′) = {δ(x,x′)} one sees that restricting µu (and therefore µuv)
to be Dirac probability measures, the formulation (5.7) reduces to the original problem
(5.1). As one instead considers the larger convex set of all probability measures, it is a
relaxation which lower bounds (5.1), i.e., we have the following important relation:

(5.7) ≤ (5.1). (5.8)

When considering a relaxation, the immediate question arises whether this lower bound
is attained, i.e., the relaxation is tight and therefore the above inequality holds with
equality. For finite and ordered X the situation is well-understood, see [Wer07]. For
infinite X ⊂ Rm, to our knowledge, the situation is less clear, unless fu, fuv are convex.
An exception is, when fu, fuv are continuous piecewise linear: Then the continuous
formulation is equivalent to a discrete MRF, see [FA14, Theorem 6], and existing results
from the discrete case carry over. Despite the lack of theoretical tightness guarantees,
in experiments, the infinite-dimensional local marginal polytope relaxation produces
accurate lower relaxations, in particular when X is univariate.

Besides a more compact notation, the reformulation in terms of the optimal trans-
portation allows us to invoke results from the well-established optimal transport theory,
see, e.g. [Vil08; San15]. For example, it directly follows from the theory that the infimum
in (5.7) is attained.

Proposition 5.2. Let ∅ 6= X ⊂ Rm be compact and fu : X → R, fuv : X2 → R be lsc.
Then the optimization problem (5.7) has an optimal solution.

Proof. Without loss of generality we can assume the fu and fuv to be nonnegative. Under
the assumptions, it is known that the optimal transportation cost OTfuv is lsc on P(X)2

for the weak∗ convergence of measures, see e.g., [Vil08, Chapter 6] or [CD08, Lemma 5.2].
By [San15, Lemma 1.6], the linear functional µ 7→ ∑

u∈V
∫
X fu(x) dµu(x) is also lsc.

Existence of a solution directly follows from compactness of P(X)V .

The formulation using optimal transport further allows us to study dual formulations
of (5.7) in detail, which will eventually be the starting point for our implementation.
To further simplify, we assume that the pairwise potentials fuv are chosen to be a lsc
metric on X, i.e., fuv(x, x

′) = d(x, x′). Note that this assumption is satisfied in many
practical applications, e.g., for discrete total variation type smoothness costs of the form
fuv(x, x

′) = |x− x′|. Then, the optimal transportation OTfuv(µu, µv) in Problem (5.7) is
the Wasserstein-1 distance W d

1 (µu, µv) induced by the metric d between µu and µv. In
contrast to the general optimal transportation, which involves two Lagrange multipliers
per edge, invoking Kantorovich’s duality (see e.g., [San15]), we obtain a more compact
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dual formulation which involves only a single Lagrange multiplier per edge:

W d
1 (µu, µv) = sup

λ∈Lipd(X)
〈λ, µu〉 − 〈λ, µv〉 = σLipd(X)((∇µ)(u,v)), (5.9)

where ∇ :M(X)V →M(X)E is a graph gradient operator:

(∇µ)(u,v) = µu − µv.

The constraint set on the dual variable is the set of 1-Lipschitz continuous functions with
respect to the metric d:

Lipd(X) = {λ ∈ C(X) : |λ(x)− λ(x′)| ≤ d(x, x′)}. (5.10)

Substituting this dual formulation into the relaxation (5.7) and assigning an arbitrary
but fixed orientation to the edges in E an interchange of min and sup yields the following
problem:

sup
λ∈C(X)E

{
D(λ) ≡ −

∑
u∈V

σP(X)(−fu + (Div λ)u)−
∑
e∈E

ιK(λe)

}
, (5.11)

where K = Lipd(X), σP(X)(−fu+(Div λ)u) = supµ∈P(X)〈µ,−fu+(Div λ)u〉 is the support

function of P(X) at −fu + (Div λ)u and Div : C(X)E → C(X)V is a graph divergence
operator given by:

− (Div λ)u =
∑

v:(u,v)∈E
λ(u,v) −

∑
v:(v,u)∈E

λ(v,u). (5.12)

Proposition 5.3. Let ∅ 6= X ⊂ Rm be compact, let fu : X → R be lsc, and fuv = d :
X2 → R be lsc and a metric. Then, the following strong duality holds:

(5.7) = (5.11), (5.13)

and a maximizer of (5.11) exists.

Proof. Define f :M(X)V → R

f(µ) :=
∑
u∈V
〈fu, µu〉+ ιP(X)(µu),

which is convex, proper and lsc due to [San15, Lemma 1.1.3]. Likewise, define the
functional g :M(X)E → R

g(ν) :=
∑
e∈E

sup
λe∈K
〈λe, νe〉 =

∑
e∈E

σK(νe),

which is proper convex lsc, as it is a pointwise supremum over linear functionals. Define
∇ :M(X)V →M(X)E

(∇µ)(u,v) = µu − µv,

which is bounded and linear. Then we compute the convex conjugates f∗ : C(X)V → R
to

f∗(θ) =
∑
u∈V

σP(X)(θu − fu),
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and the functional g∗ : C(X)E → R

g∗(λ) =
∑
e∈E

ιK(λe),

and ∇∗ : C(X)E → C(X)V = −Div.
Choose x ∈ X and define µ := (δx)V . Then f(µ) =

∑
u∈V fu(x) <∞. In addition we

have 〈λe, δx−δx〉 = 0 for all λe ∈ C(X) and therefore g(∇µ) = 0. Now consider a weakly∗-
convergent sequence M(X)E 3 νt ∗⇀ ∇µ. This means for all e ∈ E and λe ∈ C(X) we
have 〈λe, νte〉 → 〈λe, (∇µ)e〉 = 0. In particular this implies that g(νt)→ 0, and therefore
g is continuous at ∇µ. Then we can invoke the Fenchel–Rockafellar duality Theorem 1.33
and obtain that (5.7) = (5.11) and a maximizer of (5.11) exists.

In what follows, we will now study finite approximations to the dual problem (5.11).

5.3. Dual discretization: A generalized conjugacy perspective

5.3.1. Dual discretization for MRFs

The dual problem (5.11) is formulated over the space of continuous functions C(X).
Therefore, our strategy to obtain a more tractable formulation is to restrict the dual
variables λ ∈ C(X) to a certain subspace Λ ⊂ C(X) of the space of continuous functions
adopting the approach of [FA14]. This eventually leads to a semi-infinite program for
which there exist tractable finite formulations in certain cases. In contrast to [FA14] we
have drawn a connection to optimal transport levereging Kantorovich’s duality to obtain
a reduced dual program for the metric pairwise MRF. This eventually leads to a different
dual formulation and allows us to derive a tractable implementation beyond subgradient
ascent which is left as an open problem in [FA14].

In this section a major goal is to study the primal problem corresponding to the
discretized dual problem and draw a connection to the space of moments. In addition we
consider hierarchies of dual subspaces

Λ1 ⊂ Λ2 ⊂ · · · ⊂ C(X),

which induce the inequalities

sup
λ∈(Λ1)E

D(λ) ≤ sup
λ∈(Λ2)E

D(λ) ≤ · · · ≤ (5.7) = (5.11).

In particular we study the convergence properties for a piecewise polynomial hierarchy in
C(X) for the case X = [a, b], a < b is an interval.

Let Λ be spanned by basis functions Λ = 〈ϕ0, ϕ1, . . . , ϕn〉 ⊂ C(X), where ϕ0 ≡ 1 and
note that constant components in the dual problem (5.11) do not matter. We identify
the basis functions ϕk as component functions of the following mapping ϕ : X → Rn

ϕ(x) = (ϕ1(x), . . . , ϕn(x)). (5.14)

The mapping lifts the input x to a higher-dimensional space. Therefore we refer to ϕ as
the lifting map aka feature map. ϕ also describes a continuous curve which we will refer
to as the moment curve for a reason that will be discussed below.

Choose λ(x) = 〈p, ϕ(x)〉 for coefficients p ∈ Rn. Substituting this representation
into the support functions of the Lagrangian dual problem (5.11) we obtain in view of
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Lemma 5.1:

σP(X)(λ− f) = sup
µ∈P(X)

〈λ− f, µ〉 = max
x∈X

〈ϕ(x), p〉 − f(x). (5.15)

We can thus rewrite the discretized dual problem:

sup
p∈(Rn)E

∑
u∈V

min
x∈X
〈−(DivΛ p)u, ϕ(x)〉+ fu(x)−

∑
e∈E

ιKΛ
(pe), (5.16)

where DivΛ : (Rn)E → (Rn)V with

−(DivΛ p)u =
∑

v:(u,v)∈E
p(u,v) −

∑
v:(v,u)∈E

p(v,u),

and the constraint set KΛ is the set of coefficients of Lipschitz functions in Λ:

KΛ := {p ∈ Rn : 〈p, ϕ(·)〉 ∈ Lipd(X)} . (5.17)

Observe that the inner minimization problem minx∈X〈−p, ϕ(x)〉+ f(x) closely resembles
the structure of a convex conjugate: Indeed, we can write the minimization

−max
x∈X

〈p, ϕ(x)〉 − f(x) = −f∗Λ(p),

in terms of the negative convex conjugate of the following extended real-valued function
fΛ : Rn → R defined by:

fΛ(y) =

{
f(x) if y = ϕ(x) for some x ∈ X,
+∞ otherwise,

(5.18)

which we will refer to as the lifted version of f . Thus, we can formulate the discretized
dual problem in terms of the lifted convex conjugates f∗Λ of fΛ:

sup
p∈(Rn)E

−
∑
u∈V

(fu)∗Λ((DivΛ p)u)−
∑
e∈E

ιKΛ
(pe). (5.19)

Invoking Fenchel–Rockafellar duality for the dual problem (5.19) one obtains the following
discretized primal problem:

min
y∈(Rn)V

{
FΛ ≡

∑
u∈V

(fu)∗∗Λ (yu) +
∑
e∈E

σKΛ

(
(∇Λ y)e

)}
, (5.20)

where ∇Λ is the adjoint operator of the negative divergence −DivΛ and (fu)∗∗Λ are the
lifted biconjugates.

A comparison of (5.20) with the convex relaxation (5.2) shows the effect of the dual
discretization, where the classical convex biconjugates are replaced with biconjugates
of the “lifted” functions (fu)Λ. Indeed, without lifting, i.e., ϕ(x) = x, we recover the
classical biconjugates and therefore the convex relaxation (5.2).

Note that the choice of a basis ϕ in the definition of fΛ is somewhat arbitrary. Indeed,
one can get rid of the dependence of a certain basis via a proper treatment of the dual
space of Λ. For simplicity, however, we choose a fixed basis and instead remark, that the
dual space of Λ is isomorphic to Rn.
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Practically, we will approximate the dual variables in terms of piecewise polynomial
splines. For intervals, the following proposition shows that either by increasing the
number of pieces or the degree of the polynomial the primal-dual gap can be reduced. In
our case we approximate the Lipschitz dual variable in terms of a Lipschitz spline. As a
consequence existing results such as [FA14, Theorem 2] do not apply. Instead, we use
a construction based on Bernstein-polynomials. Then the result follows from [BEP87,
Theorem 1].

Proposition 5.4. Assume that X = [a, b] ⊂ R, a < b, and let the metric d be given
by d(x, y) = |x − y|. Furthermore, let Λ ⊂ C(X) be the space spanned by continuous
piecewise polynomials on intervals [ti, ti+1] defined by a regularly spaced grid with nodes
given by ti = a+ (b− a) · (i− 1)/K, i = 1, . . . ,K + 1. Then the optimality gap satisfies:

(5.7)− (5.19) = O(1/(K ·
√

deg)),

where deg is the degree of the polynomial on each piece.

Proof. We consider the discretized dual problem (5.19) where KΛ is the set of coefficients
corresponding to 1-Lipschitz piecewise polynomials on [a, b] of degree deg with K pieces.
Also recall that we have the following relations between the dual and primal problems:
(5.20) = (5.19) ≤ (5.11) = (5.7).

Now, let us denote a maximizer of (5.11) as λ∗ ∈ Lipd(X)E . Existence of such a dual
maximizer follows by Proposition 5.3. Then, one has for any λ ∈ ΛE :

min
x∈X

fu(x)− (Div λ∗)u(x) = min
x∈X

fu(x)− (Div λ)u(x)− (Div λ∗)u(x) + (Div λ)u(x)

≤ min
x∈X

fu(x)− (Div λ)u(x) + ‖ − (Div(λ∗ − λ))u‖∞. (5.21)

This allows us to bound the optimality gap by:

(5.11)− (5.19) ≤
∑
u∈V
‖ − (Div(λ− λ∗))u‖∞

≤
∑
u∈V
|d(u)| · sup

e∈E
‖λe − λ∗e‖∞

≤ 2|E| · sup
e∈E
‖λe − λ∗e‖∞, (5.22)

where d(u) denotes the degree of the vertex u.

For a L-Lipschitz function f : [0, 1] → R there exists a Bernstein polynomial p :
[0, 1] → R with p(0) = f(0) and p(1) = f(1) such that ‖p − f‖∞ ≤ 3L

2 deg−1/2 [Car98,
Theorem 2.6]. By [BEP87, Theorem 1], this polynomial is L-Lipschitz as well. For each
e ∈ E we pick the coefficients of the function λe such that it approximates the optimal
dual variable λ∗e with such a polynomial individually on each interval [ti, ti+1]. Then one
obtains an overall 1-Lipschitz polynomial with the following bound:

‖λe − λ∗e‖∞ ≤
3(b− a)

2K
√

deg
. (5.23)

Inserting this into (5.22) yields:

(5.7)− (5.19) ≤ 3|E| (b− a)

K
√

deg
, (5.24)
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which gives the stated O(1/(K · √deg)) rate.

5.3.2. On the duality between dual discretization and lifting

Next we are going to study the lifted biconjugates f∗∗Λ . A first question to address is
the characterization of the domain dom fΛ = conϕ(X) which is the convex hull of the of
the image of ϕ. For a probability measure µ ∈ P(X) we define the kth moment of µ as∫
X ϕk(x) dµ(x). Then the set of valid truncated moment sequences aka the probability

moment space, PΛ, is the set of all vectors y ∈ Rn for which there exists a probability
measure µ ∈ P(X) such that the kth component of y is the kth moment of µ:

PΛ = {y ∈ Rn : ∃µ ∈ P(X), yk = 〈µ, ϕk〉} . (5.25)

In other words PΛ is the set of all “infinite convex combinations” of points ϕ(x) ∈ Rn
with x ∈ X, i.e., of points that belong to the image of ϕ. For x ∈ X the moment vector
ϕ(x) =

∫
X ϕ(x′) dδx(x′) of a Dirac measure δx sets up a certain correspondence between

lifted points ϕ(x) and the Dirac measure δx iteself. In this context we call the curve
x 7→ ϕ(x) the moment curve described by Diracs. Then the probability moment space
can be written equivalently as the set of all finite convex combinations of moment vectors
of Dirac measures, in the same way the unit simplex is the convex hull of the unit vectors
as proved in the next proposition.

Proposition 5.5. Let ∅ 6= X be compact and Λ = 〈ϕ0, . . . , ϕn〉 ⊂ C(X) with ϕ0 ≡ 1.
Then every moment vector of a probability measure is a finite convex combination of
moment vectors of Dirac measures, i.e.

con(ϕ(X)) = PΛ,

and PΛ is nonempty and compact.

Proof. Note that PΛ is convex and bounded. It is also closed: To this end consider
a sequence yt → y with yt ∈ PΛ. This means for any t there exists µt ∈ P(X) with
ytk =

∫
X ϕk(x) dµt(x) for k = 1, . . . , n.

Since X is compact, due to Prokhorov’s theorem, see [San15, Section 1.1], there

exists a weakly∗ convergent subsequence µtj
∗
⇀ µ and, hence,

∫
X ϕk(x) dµtj (x) = y

tj
k →∫

X ϕk(x) dµ(x) = yk. Therefore y ∈ PΛ.
Next we show identity of the support functions of the convex sets con(ϕ(X)) and PΛ

as this implies the equality of the sets.
To this end let f ∈ Λ = 〈ϕ0, . . . , ϕn〉 with ϕ0 = 1. We write f(x) = 〈ϕ(x), f〉. Assume

that f0 = 0. We have the identities:

σϕ(X)(−f) = −min
x∈X
〈ϕ(x), f〉 = − min

µ∈P(X)

∫
X
f(x) dµ(x) = − min

y∈PΛ

〈y, f〉 = σPΛ
(−f),

where the first equality follows by the definition of the support function, the second
equality by Lemma 5.1 and the third equality by the definition of PΛ, the identity

min
µ∈P(X)

∫
X
f(x) dµ(x) = min

µ∈P(X)

n∑
k=1

fk

∫
X
ϕk(x) dµ(x),

and the substitution yk =
∫
X ϕk(x) dµ(x). Since for each such f the support functions are

equal we have equality of the support functions of ϕ(X) and PΛ. Since X is compact and
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ϕ continuous and the convex hull of a compact set stays compact, cf. [RW98, Corollary
2.30], we can replace ϕ(X) with its convex hull conϕ(X) and the conclusion follows.

The proof of the proposition above also reveals that for f ∈ Λ, the lifted biconjugate is
a linear function over the probability moment space

f∗∗Λ (y) = 〈y, f〉+ ιPΛ
(y), (5.26)

whose minimization is actually equivalent to minimizing the original function.

Specializing ϕk to the monomial basis and X to a set defined via polynomial inequalities,
this is exactly the starting point of the formulation proposed by [Las01; Las02] for
constrained polynomial optimization.

More abstractly, a meaningful notion of moments is induced by a lifting map ϕ which
is a homeomorphism between X and ϕ(X).

Definition 5.6 (lifting map). Let X be compact and nonempty. Then we say the mapping
ϕ : X → Rn is a lifting map if ϕ is continuous on X and injective with continuous
inverse ϕ−1 : ϕ(X)→ Rm.

It is instructive to discuss possible choices for ϕ including the ones that correspond
to existing discretizations for the continuous MRF such as the discrete approach and
the piecewise linear approach. In the latter two cases, the probability moment space is
merely the unit simplex. In that sense, the monomial probability moment space can be
interpreted as a “nonlinear probability simplex”, which, in contrast to the unit simplex,
has infinitely many “vertices”, see Figure 5.1. For the same reason, as we will see in the
course of this section, it better suits the continuous nature of our optimization problem.

The discrete sampling-based approach is recovered by the following choice of ϕ:

Example 5.7. We discretize the interval X = [a, b], a < b and re-define X := {t1, . . . , tn}
with tk ∈ [a, b], tk < tk+1. For any tk ∈ X let ϕ(tk) = ek with ek ∈ Rn being the kth unit
vector. As a result ϕ is the canonical basis and continuous wrt the discrete topology. It
spans the space of discrete functions f : {t1, . . . , tn} → R and the probability moment
space con(ϕ(X)) = PΛ is given by the unit simplex.

The above example can be extended by assigning any points x ∈ (tk, tk+1) to points on
the connecting line between two corresponding Diracs which results in a more continuous
formulation:

Example 5.8. Let X = [a, b], a < b: Let tk < tk+1 and t1 = a, tn = b be a sequence of
knots that subdivide the interval X into n− 1 subintervals [tk, tk+1] =: Xk. We define
ϕ(x) = αek + (1− α)ek+1, with ek ∈ Rn being the kth unit vector, α ∈ [0, 1] such that
αtk + (1 − α)tk+1 = x. The component functions ϕk are the hat functions that span
the space of continuous piecewise linear functions Λ. ϕ yields a sparse lifting map. See
Section 5.5.5 for the multivariate case. The probability moment space con(ϕ(X)) = PΛ

is the unit simplex.

For ϕk being chosen as the monomials we obtain the classical notion of moments:

Example 5.9. For ϕ0 = 1, the space of univariate polynomials Λ = R[x] with maximum
degree n is spanned by the monomials:

ϕ(x) = (x, x2, . . . , xn), (5.27)

and con(ϕ(X)) = PΛ is the monomial probability moment space.
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(a) (b) (c)

Figure 5.1.: Different finite-dimensional approximations PΛ of the infinite-dimensional
space of probability measures P([−1, 1]). Left and middle: 2-dimensional
probability simplex and right: Monomial probability moment space
con{(x, x2, x3) : x ∈ [−1, 1]} of degree 3. The approximations are obtained
as the convex hulls of the black curves x 7→ ϕ(x) for 3 different choices of
ϕ. From left to right, see Example 5.7, Example 5.8 and Example 5.9. In
all cases, the black curves themselves correspond to Dirac measures and the
convex hulls of the curves correspond to the space of probability measures.
In contrast to the simplex that only has a finite number of extreme points,
the monomial moment curve comprises a continuum of extreme points so
that no Dirac measure on the monomial moment curve can be expressed as
a convex combination of other Diracs.

Example 5.10. Identifying X = {x ∈ R2 : ‖x‖2 = 1} with the complex unit circle
X ∼= {z ∈ C : |z| = 1} and again assuming ϕ0 = 1, the mapping

ϕ(z) = (Re(z), Im(z), . . . ,Re(zn), Im(zn)) ∈ R2n (5.28)

spans the space Λ of real trigonometric polynomials of maximum degree n. Parametrizing
elements z ∈ X via the bijection between z = eiω and its angle ω ∈ [0, 2π) the components
of ϕ are the Fourier basis functions, which define the Carathéodory curve [Car11]. The
convex hull con(ϕ(X)) = P is the trigonometric probability moment space.

In contrast to the piecewise linear lifting, the (trigonometric) polynomial lifting is
extremal in the sense that no Dirac measure on the moment curve can be expressed as a
convex combination of other Diracs, which sets up a certain one-to-one correspondece
between Diracs δx and lifted points ϕ(x). This is illustrated in Figure 5.1 for the monomial
case.

More formally, we call a lifting map ϕ an extremal curve if each y ∈ ϕ(X) is an extreme
point of con(ϕ(X)) defined according to [Roc70, Section 18].

Definition 5.11 (extreme points). Let C be a convex set and y ∈ C. Then y is called an
extreme point of C if there is no way to express y as a convex combination y = (1−α)x+αz
of x, z ∈ C and 0 < α < 1, except by taking y = x = z.

Definition 5.12 (extremal moment curve). Let X be compact and nonempty. Then we
say the mapping ϕ : X → Rn is an extremal moment curve if ϕ is a lifting map and any
point y ∈ ϕ(X) ⊂ Rn is an extreme point of conϕ(X).
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Via a change of basis it becomes clear that the definition of extremality is independent
of a specific choice of a basis for Λ. Therefore extremality is rather a property of the
subspace Λ. This also motivates the following lemma which shows that extremality is
inherited along a hierarchy Θ ⊂ Λ ⊂ C(X).

Lemma 5.13 (extremal subspaces). Let ∅ 6= X ⊂ Rm be compact. Let Θ ⊂ Λ ⊂ C(X)
be a hierarchy of finite-dimensional subspaces of the space of continuous functions C(X).
Let Θ = 〈θ1, . . . , θn〉 such that θ : X → Rn is an extremal curve. Then Λ is spanned by
an extremal curve as well.

Proof. {θ1, . . . , θn} is a basis of Θ ⊂ Λ and therefore linearly independent. Since Λ is
finite-dimensional in view of the basis extension theorem {θ1, . . . , θn} can be extended
to a basis ϕ = (θ1, . . . , θn, ψ1, . . . , ψk) of Λ with vectors ψi ∈ G, where spanG = Λ and
|G| <∞ such that spanϕ = Λ.

Now choose y ∈ X and consider ϕ(y). Let α ∈ (0, 1) and ϕ(y) = αx + (1 − α)z
for x, z ∈ conϕ(X) ⊂ Rn+k. Due to Carathéodory [RW98, Theorem 2.29] there exist
coefficients αi, βl > 0 such that x =

∑n+k+1
i=1 αiϕ(xi) and z =

∑n+k+1
l=1 βlϕ(zl), zl, xi ∈ X

with
∑n+k+1

i=1 αi = 1,
∑n+k+1

l=1 βl = 1. This implies that θ(y) = α
∑n+k+1

i=1 αiθ(xi) + (1−
α)
∑n+k+1

l=1 βlθ(zl). Extremality of θ implies that θ(y) =
∑n+k+1

i=1 αiθ(xi) =
∑n+k+1

l=1 βlθ(zl)
and therefore θ(y) = θ(xi) = θ(zl). Since θ is an extremal curve it is injective and therefore
y = zl = xi. This implies that ϕ(y) = x = z.

Lemma 5.14 (extremality of quadratic subspace). Let ∅ 6= X ⊂ Rm be compact. Let
ϕ(x) = (x1, x2, . . . , xm, ‖x‖2). Assume that 〈ϕ1, . . . , ϕm+1〉 ⊂ Λ ⊂ C(X). Then Λ is
spanned by an extremal curve.

Proof. Choose y ∈ X. Let α ∈ (0, 1) and ϕ(y) = αx+(1−α)z for x, z ∈ conϕ(X) ⊂ Rm+1.
Due to Carathéodory [RW98, Theorem 2.29] there exist coefficients αi, βk > 0 such that
x =

∑m+2
i=1 αiϕ(xi) and z =

∑m+2
k=1 βkϕ(zk), zk, xi ∈ X with

∑m+2
i=1 αi = 1,

∑m+2
k=1 βk = 1.

Now choose f(x) = ‖x − y‖2 = ‖x‖2 − 2〈y, x〉 + ‖y‖2. Then we have for a =
(−2y1, . . . ,−2ym, 1) and a0 = ‖y‖2:

0 = f(y) = 〈ϕ(y), a〉+ a0 =

〈
α
m+2∑
i=1

αiϕ(xi) + (1− α)
m+2∑
k=1

βkϕ(zk), a

〉
+ a0

=
m+2∑
i=1

α · αi · 〈ϕ(xi), a〉+
m+2∑
k=1

(1− α) · βk · 〈ϕ(zk), a〉+ a0

=

m+2∑
i=1

α · αi · f(xi) +

m+2∑
k=1

(1− α) · βk · f(zk)

As f(xi) > 0 for xi 6= y and α > 0 it holds that xi 6= y implies αi = 0. The same is true
for zk and βk. Hence x = ϕ(y) = z, and therefore ϕ : X → Rm+1 is an extremal curve.
In view of Lemma 5.13 Λ is spanned by an extremal curve.

This shows that in a piecewise polynomial discretization with degree at least 2 the
corresponding basis inherits the extreme point property from the extremality of the
subspace of quadratic functions.

Extremal curves are key to preserve the cost function when restricted to the set of
discretized Diracs ϕ(x):
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Theorem 5.15. Let X ⊂ Rm be nonempty and compact and let f : X → R be lsc.
Furthermore, let ϕ : X → Rn be an extremal curve. Then we have

f∗∗Λ ◦ ϕ = f (5.29)

on X. In addition we have that con fΛ = f∗∗Λ .

Proof. Since f is lsc and X compact f is bounded from below, i.e., there is γ > −∞
so that f(x) ≥ γ for all x ∈ X. We have dom fΛ = ϕ(X) ⊂ Rn and in view of [RW98,
Proposition 2.31] it holds for any y ∈ Rn,

(con fΛ)(y) = inf

{
n+1∑
i=1

λifΛ(yi) : λi ≥ 0,
n+1∑
i=1

λi = 1, y =
n+1∑
i=1

λiyi, yi ∈ Rn
}

= inf

{
n+1∑
i=1

λif(xi) : λi ≥ 0,
n+1∑
i=1

λi = 1, y =
n+1∑
i=1

λiϕ(xi), xi ∈ X
}
≥ γ.

Let x ∈ X. Since the only possible convex combination of the extreme point ϕ(x) from
points yi ∈ ϕ(X) is ϕ(x) itself, we have

(con fΛ)(ϕ(x)) = inf

{
n+1∑
i=1

λifΛ(yi) : λi ≥ 0,
n+1∑
i=1

λi = 1, ϕ(x) =
n+1∑
i=1

λiyi, yi ∈ ϕ(X)

}
= fΛ(ϕ(x)) = f(x).

This shows that con fΛ ◦ ϕ = f . Since con fΛ is bounded from below con fΛ is proper.

Let f be lsc. Then fΛ inherits its lower semicontinuity from f : Assume that y ∈ ϕ(X).
Then there exists x ∈ X with y = ϕ(x) and we have due to the continuity of ϕ and ϕ−1:

lim inf
y′→ϕ(x)

fΛ(y′) := lim
δ→0+

inf {fΛ(y′) : y′ ∈ Bδ(ϕ(x))}

= lim
δ→0+

inf {fΛ(ϕ(x′)) : ϕ(x′) ∈ Bδ(ϕ(x))}

= lim
ε→0+

inf {f(x′) : x′ ∈ Bε(x)}

= lim inf
x′→x

f(x′) ≥ f(x) = fΛ(y).

Since X is compact and ϕ continuous the image ϕ(X) = dom fΛ is compact as well. Thus
fΛ is super-coercive and bounded from below. Then we can invoke [RW98, Corollary
3.47] and deduce that con fΛ is proper, lsc and convex. In view of [RW98, Theorem 11.1]
we have con fΛ = cl con fΛ = f∗∗Λ .

There is a rich geometric intuition behind this theorem as shown in Figure 5.2.

More practically, for a piecewise polynomial discretization with degree at least 2, due
to extremality, the primal discretized energy FΛ restricted to ϕ(X)V agrees with the
original energy F . In particular, this implies that an obtained Dirac solution (ϕ(x∗u))u∈V
of the discretization corresponds to a solution of the original problem in the same way
integer solutions of LP relaxations are certificates of optimality for the corresponding
ILP.

Proposition 5.16. Let ∅ 6= X ⊂ Rm. Let the metric d be induced by a norm and assume
the space of linear functions on X is contained in Λ. Furthermore, assume Λ is spanned
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by an extremal curve ϕ : X → Rn and fu lsc. Then for any y ∈ (Rn)V , with yu = ϕ(xu),
xu ∈ X the following identity holds true:

FΛ(y) = F (x).

In particular, whenever y∗ is a solution of problem (5.20) such that y∗ ∈ (Rn)V , with
y∗u = ϕ(x∗u), for some x∗u ∈ X, x∗ is a solution of (5.1).

Proof. Let d be induced by some norm ‖·‖ and denote its dual norm by ‖·‖∗. As shown
in Theorem 5.15, the unaries preserve the original cost functions at ϕ(X). Hence it
remains to show that the for the pairwise costs it holds σKΛ

((∇Λy)(u,v)) = ‖xu− xv‖. By
assumption (∇Λy)(u,v) = ϕ(xu)− ϕ(xv). We rewrite

σKΛ
(ϕ(xu)− ϕ(xv)) = sup

λ∈Λ∩Lipd(X)
λ(xu)− λ(xv) ≤ ‖xu − xv‖.

For any xu, xv ∈ X we have

‖xu − xv‖ = sup
p∈Rm:‖p‖∗≤1

|〈xu − xv, p〉| = 〈xu − xv, p∗〉,

where p∗ denotes the maximizer in the supremum, which exists due to the compactness of
the unit ball in a finite-dimensional space. Define the linear function λ∗ := 〈·, p∗〉 and note
that by assumption λ∗ ∈ Λ. In addition we have shown that λ∗ ∈ Lipd(X) is 1-Lipschitz.
This implies ‖xu − xv‖ = λ∗(xu)− λ∗(xv) ≤ supλ∈Λ∩Lipd(X) λ(xu)− λ(xv) ≤ ‖xu − xv‖
and hence equality holds.

5.3.3. A generalized conjugacy perspective

The above results can be obtained from a generalized conjugacy point of view. In
particular, the convex conjugate of the lifted function f∗Λ is comprised by the notion of
Φ-conjugacy, see Definition 3.1 in Chapter 3.

For Y = Rn, and Φ(x, y) = 〈y, ϕ(x)〉, the convex conjugate f∗Λ is identical to the
Φ-conjugate fΦ of f , while its biconjugate f∗∗Λ is the tightest convex extension of fΛ

to conϕ(X). The Φ-biconjugate fΦΦ of f at a point x ∈ X is equal to the classical
biconjugate of fΛ, evaluated at ϕ(x), i.e., fΦΦ = f∗∗Λ ◦ ϕ on X, showing that the
Φ-biconjugate is a convexely composite function and, therefore, it is nonconvex in
general. Actually, Φ-conjugacy also comprises lifting to measures via ϕ(x) = δx, Φ the
corresponding dual pairing and Y = C(X).

As a consequence of Lemma 3.2, the considered Φ-conjugacy can be interpreted in
terms of under-approximation by functions in Λ. In analogy to the biconjugate f∗∗, which
is the pointwise supremum of affine-linear functions majorized by f , the Φ-biconjugate
fΦΦ is the pointwise supremum of functions in Λ up to constant translation majorized
by f . This point of view also relates (fΦ)∗ and fΦΦ by each other.

Remark 5.17. The function (fΦ)∗ = f∗∗Λ is the pointwise supremum of all affine-linear
functions lλ,β := 〈·, λ〉 − β for which qλ,β := Φ(·, λ)− β is majorized by f . This can be
seen as follows: The Legendre–Fenchel conjugate can be characterized via the identity
(fΦ)∗(y) = sup(λ,β)∈epi(fΦ)〈y, λ〉 − β. The observation now follows from the fact that

(λ, β) ∈ epi(fΦ) if and only if qλ,β is majorized by f .

The correspondence between f∗∗Λ and (fΦ)∗ and between the minorizers lλ,β and qλ,β
is illustrated in Figure 5.2. Note that this is closely related to the idea of feature maps ϕ
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(a) (b) (c)

(d) (e) (f)

Figure 5.2.: Lifted version fΛ of the function f for 3 different choices of ϕ. In the top
row the same nonconvex function f (blue curves) is depicted. The colored
surfaces in the bottom row correspond to the lifted biconjugates f∗∗Λ , where
the gray shadow areas correspond to their domains dom f∗∗Λ = PΛ and the
blue curves correspond to the lifted cost fΛ, see Equation (5.18). The black
curves in the bottom row correspond to the moment curve described by
Diracs ϕ(X), i.e., the domain of fΛ. From left to right, see, Example 5.7,
Example 5.8 and Example 5.9. The nonlinear supporting dual functions
qλ,β(x) = 〈ϕ(x), λ〉 − β (red curves) to f in the top row (middle and right),
are transformed into linear supporting hyperplanes lλ,β(y) = 〈y, λ〉 − β
(red surfaces) to f∗∗Λ in the bottom row through the feature map ϕ. In
the language of kernel methods, these functions can be interpreted as the
nonlinear decision boundaries that separate individual points on the graph
of f from the epigraph of f . Only in the most right case such a separation
is possible. As a result the polynomial lifting preserves the nonconvex cost
function f∗∗Λ ◦ϕ = f on ϕ(X) whereas the 2-sparse lifting (middle) only leads
to a piecewise convex under-approximation f∗∗Λ ◦ ϕ ≤ f .

in linear classifiers.

We call f a Φ-envelope if it can be written in terms of a pointwise supremum over a
collection of functions in Λ with constant translation. In view of Lemma 3.2 for such
f we have in particular f = fΦΦ. Theorem 5.15 therefore identifies all lsc functions
f : X → R as Φ-envelopes whenever ϕ is extremal:

Corollary 5.18. Let X ⊂ Rm be nonempty and compact and let f : X → R be bounded
from below. Furthermore, let ϕ : X → Rn be an extremal curve. Then we have

fΦΦ = f∗∗Λ ◦ ϕ = cl f, (5.30)

on X.

Proof. Since f is finite-valued and bounded from below on X we have (cl f)(x) > −∞
for x ∈ X and therefore cl f is finite-valued. By [RW98, Exercise 11.63] fΦΦ is the largest
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Φ-envelope below f . Since ϕ is continuous relative to X, fΦΦ = f∗∗Λ ◦ ϕ is lsc relative to
X. Since cl f is the largest lsc function below f we have fΦΦ ≤ cl f . Since cl f ≤ f we
also have (cl f)ΦΦ ≤ fΦΦ. Invoking Theorem 5.15 we have

cl f = (cl f)ΦΦ ≤ fΦΦ ≤ cl f,

on X. Therefore fΦΦ = cl f on X.

Up to the presence of the compact set X, this result generalizes the basic quadratic
transform [RW98, Example 11.66] originally due to [Pol90, Proposition 3.4] (for lsc
functions only), which is obtained by choosing ϕ(x) = (x1, x2, . . . , xm, ‖x‖2).

For this quadratic choice of ϕ we observe another important relation to the proximal
transform from Section 3.2: The above Φ-biconjugate can be seen as a pointwise limiting
proximal hull, where one supremizes over the curvature parameter λ > 0 of the proximal
hull hλ at each point x. We denote by

j(x) =
1

2
‖x‖2.

Then we have

fΦ(y, r) = sup
x∈Rm

〈x, y〉 − rj(x)− f(x) = (f + rj)∗(y).

and therefore we can resolve the inner supremum in the Φ-biconjugate to:

fΦΦ(x) = sup
r∈R

sup
y∈Rm

〈x, y〉 − rj(x)− (f + (rj)∗(y)

= sup
r∈R

(f + rj)∗∗(x)− rj(x)

= sup
λ∈R

−eλ(−eλf)(x) = sup
λ∈R

hλf(x).

Also see [RW98, Example 1.44]. In [Bal77, Theorem 1] a similar duality formula is shown
for Φ-couplings of a certain “needle-type”. Our result is instead based on the extremality
condition, which, from a primal point of view, captures an intuitive and sharp (sufficient)
condition for the above result for the one-sided linear couplings we consider. For the
component functions of ϕ being the hat basis, see Example 5.8, the class of Φ-envelopes
are the piecewise convex functions, see, Figure 5.2 middle.

5.4. Extension to a spatially continuous setting

5.4.1. Lifting to measures for variational problems

Markov random fields are often used to approximate continuous variational problems. For
instance, in image processing, the underlying grid graph G is a discrete approximation to
a continuous domain Ω of a corresponding image I : Ω→ R which is therefore represented
as a function.

This leads us to extend the lifting framework for problems on graphs from the previous
section to continuous spatial domains, in the same way the continuous MRF extends the
discrete label space in the classical MRF to continuous label spaces.
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The continuous variational models that we are interested in take the following form:

inf
u:Ω→X

{
F (u) :=

∫
Ω
f(x, u(x)) dx+ TV (u)

}
. (5.31)

Here, the domain Ω ⊂ Rd is nonempty, open and bounded. The range X ⊂ (Rm, ‖ · ‖2)
is nonempty and compact. The function f : Ω×X → R is a possibly nonconvex data
fidelity term. For a function u ∈ L1(Ω;Rm) the functional TV (u) is the total variation
(TV) of vector-valued functions defined by

TV (u) = sup

{∫
Ω
−〈Div p(x), u(x)〉dx : p ∈ C1

c (Ω;Rd × Rm), ‖p(x)‖S∞ ≤ 1, ∀x ∈ Ω

}
,

(5.32)

where C1
c (Ω;Rd × Rm) is the set of continuously differentiable matrix-valued functions

with compact support contained in Ω and ‖ · ‖S∞ is the Schatten-∞ norm.

For differentiable functions u the total variation admits a simple primal form

TV (u) =

∫
Ω
‖∇u(x)‖S1 dx, (5.33)

where ‖ · ‖S1 is the Schatten-1 norm. The TV is a convex functional and favors solutions
u that are spatially smooth. At each point ‖∇u(x)‖S1 penalizes the sum of the singular
values of the Jacobian, which encourages the individual components of u to point in the
same direction, see, e.g., [SR96].

The vector-valued TV is actually a special case of the Banach space-valued TV [VL18,
Equation 5], which generalizes other existing TV formulations: The framework can be
specialized to the total variation of measure-valued functions µ : Ω→ P(X), considered
in [Lel+13; Lau+16; VL17] to reformulate the nonconvex functional (5.31) in terms of a
convex one:

inf
µ:Ω→P(X)

{
F(µ) :=

∫
Ω
〈fx, µx〉dx+ TVW1(µ)

}
. (5.34)

Here, TVW1(µ) is the Wasserstein-1 total variation [VL18, Equation 3] of measure-valued
functions µ : Ω→ P(X) defined by:

TVW1(µ) = sup

{∫
Ω
〈−Div λ(x, ·), µx〉 dx : λ ∈ C1

c (Ω×X;Rd), λ(x, ·) ∈ Lip(X;Rd)
}
,

(5.35)

where the divergence Div λ(x, ·) is taken wrt x, and pointwise in the second argument.
Here, λ(x, ·) ∈ Lip(X;Rd) restricts the Lipschitz constant of λ(x, ·) to be bounded by 1:

‖λ(x, y)− λ(x, y′)‖ ≤ ‖y − y′‖, ∀ y, y′ ∈ X. (5.36)

For smooth p : X → Rd, and if the norms are the 2-norms it is well known that the
Lipschitz constraint can be expressed in terms of a bound of the Schatten-∞ norm of the
Jacobian:

‖∇p(x)‖S∞ ≤ 1, ∀x ∈ X. (5.37)
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For a rigorous treatment of the involved dual and pre-dual spaces, existence of minimizers
and well-definedness of the functional we refer to [VL18]: In particular, the existence of a
minimizer under the condition that µ is weakly measurable is proved in [VL18, Theorem
1]. The condition ensures in particular that the integrals are well-defined, see [VL18,
Lemma 2] in [VL18, Appendix F].

The lifted regularizer TVW1 , can be seen as the natural extension of the Wasserstein-1
distance in the local marginal polytope relaxation (5.7) to a spatially continuous setting.

5.4.2. Discretization with moments and relations to MRFs

To solve the problem on a computer we discretize the domain Ω in terms of a Cartesian
grid with points xi ∈ Ω. The set of all grid points is denoted by V, |V| <∞. We define
the gradient operator ∇ on a staggered grid using forward differences with von Neumann
boundary conditions such that the dual operator ∇∗ = −Div is the negative divergence
with vanishing boundary values.

More generally than existing discretizations for the variational problem (5.34), and
in analogy to the previous section, we consider a discretization of the range in terms
of moments. To this end we restrict the kth component function of λ(xi, ·) : X → Rd
to a subspace λk(xi, ·) ∈ Λ ⊂ C(X), spanned by basis functions Λ = 〈ϕ1, . . . ϕn〉, e.g.
the space of polynomials. Then, at each grid point xi there exist coefficient matrices
p(xi) ∈ Rd×n such that λ(xi, ·) = p(xi) · ϕ(·).

This induces a discretization of the primal variables µ(xi) in terms of moments y ∈ PΛ:
The discretized problem (after an interchange of min and sup) amounts to

sup
λ∈(Λd)V

min
µ∈P(X)V

∑
xi∈V
〈f(xi, ·)− (Div λ)(xi), µ(xi)〉 −

∑
xi∈V

ιK(λ(xi, ·)), (5.38)

where K := Lip(X;Rd) and Div is a discrete divergence operator that maps a function
λ : V ×X → Rd to C(X)V . In view of Lemma 5.1 and in analogy to the MRF setting
from Section 5.3.1, the formulation can be rewritten:

sup
p∈(Rd×n)V

∑
xi∈V

min
z∈X
〈−(DivΛ p)(xi), ϕ(z)〉+ f(xi, z)−

∑
xi∈V

ιKΛ
(p(xi)), (5.39)

which, in terms of the convex conjugates of the lifted versions of f(xi, ·) (5.18), reads:

sup
p∈(Rd×n)V

∑
xi∈V
−f(xi, ·)∗Λ((DivΛ p)(xi))−

∑
xi∈V

ιKΛ
(p(xi)). (5.40)

Here, DivΛ : (Rd×n)V → (Rn)V is a discrete the divergence operator on the coefficients p
of λ such that 〈(DivΛ p)(xi), ϕ(·)〉 = (Div λ)(xi) ∈ Λ when λ(xi, ·) = p(xi) · ϕ(·) for all
grid points xi and the constraint set KΛ is defined as

KΛ :=
{
p ∈ Rd×n : p · ϕ(·) ∈ Lip(X;Rd)

}
. (5.41)

The corresponding primal problem then amounts to:

min
y∈(Rn)V

∑
xi∈V

f(xi, ·)∗∗Λ (y(xi)) +
∑
xi∈V

σKΛ

(
(∇Λ y)(xi)

)
, (5.42)

where −DivΛ = ∇∗Λ. For further intuition we shall provide an alternative derivation of

140



5.4. Extension to a spatially continuous setting

the Wasserstein-1 TV for moment-valued signals y : Ω→ PΛ. In contrast to the previous
formulation this can be seen as a semidiscrete approach, where Ω ⊂ Rd is a continuous
domain but P(X) is discretized in terms of moments. To this end we adopt the approach
in [CCP12] for minimal partitions in a variational framework. For simplicity we restrict
X = [a, b], a < b and y : Ω → Rn is a differentiable function. In the unlifted setting,
given a differentiable function u : Ω→ X, its total variation is

TV (u) =

∫
Ω
‖∇u(x)‖ dx.

Consider the lifting map ϕ : X → Rn which maps t ∈ X to the moment curve ϕ(t) =
(t, t2, . . . , tn) corresponding to the Dirac δt ∈ P(X), for t ∈ X. Then we seek to find
a new convex functional TVW1 which attains the value TVW1(y) = TV (u), whenever
y = ϕ ◦ u, i.e., y(x) is a moment vector of a Dirac measure at each point x ∈ Ω. A
tractable approach to obtain such a functional is to consider

TVW1(y) =

∫
Ω
ψ∗∗(∇y(x)) dx,

for an integrand ψ∗∗, which we define as follows: Whenever y = ϕ ◦ u for a differentiable
function u : Ω→ X, by differentiability of ϕ, the function y is differentiable as well. We
obtain the Jacobian ∇y of y : Ω→ Rn by applying the chain rule:

∇y(x) = ∇ϕ(u(x))⊗∇u(x) ∈ Rn×d,

which shows, that for such y, its Jacobian ∇y(x) is a rank-1 matrix at each x ∈ Ω.
Intuitively, this means that the individual components of y point in the same direction:
Then, there exists a direction ν ∈ Rd and t ∈ X such that ∇y(x) = ∇ϕ(t) ⊗ ν. This
suggests the following choice for ψ:

ψ(w) =

{
‖ν‖ if ∃ t ∈ X, ν ∈ Rd such that w = ∇ϕ(t)⊗ ν
+∞ otherwise,

(5.43)

which assigns the cost ‖ν‖ for Jacobians ∇y(x) = ∇ϕ(t) ⊗ ν that are generated by
functions of the form y = ϕ◦u, and∞ otherwise, and therefore

∫
Ω ψ(∇y(x)) dx = TV (u),

whenever y = ϕ ◦ u. We are now going to replace ψ : Rn×d → R with its biconjugate:
The convex conjugate amounts to:

ψ∗(p) = sup
q∈Rn×d

〈q, p〉 − ψ(q)

= sup
t∈X,ν∈Rd

〈∇ϕ(t)⊗ ν, p〉 − ‖ν‖

= sup
t∈X

sup
ν∈Rd
〈ν, p>∇ϕ(t)〉 − ‖ν‖

=

{
0 if ‖p>∇ϕ(t)‖∗ ≤ 1 for all t ∈ X
+∞ otherwise.

This is the indicator function of the Lipschitz constraint p · ϕ(·) ∈ Lip(X;Rd) and
therefore the biconjugate ψ∗∗ is the support function of KΛ which shows that a polynomial
discretization of dual Wasserstein-1 TV is recovered.

Finally we shall discuss the equivalence between the spatially continuous approach
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and the local marginal polytope relaxation (5.7) for pairwise fuv(x, x
′) = |x − x′| in

the anisotropic case: To this end one specializes the norm on the left hand side of
Inequality (5.36) to the∞-norm such that the constraint separates over the d dimensions.
In addition one identifies the Cartesian grid with a grid graph, where the kth component
of the gradient operator corresponds to the edges (xi, xj) between two adjacent grid
points in the kth dimension. The von Neumann boundary conditions ensure that the
gradient at the boundary of the grid vanishes. Ignoring these values one ensures that the
number of discretized derivatives taken in the d dimensions coincides with the number of
edges in the grid graph. Then it easy to see that the formulation (5.20) is recovered. In
the isotropic case, however, the discretized continuous approach and the MRF approach
are different.

5.5. Derivation of a conic program and implementation

5.5.1. Nonnegativity and moments

After discretization a next step to obtain a practical implementation is to derive finite
characterizations of the lifted biconjugates f∗∗Λ and the constraint set KΛ in the MRF
formulation (5.20) or the discretization of the continuous model (5.42). We will show
that the formulations can be rewritten in terms of a semi-infinite conic program which
can be implemented using semidefinite programming in the piecewise polynomial case.

Since the MRF formulation is a special case of the variational approach under an
anisotropic discretization we limit our discussion to the discretization of the continuous
model.

For simplicity, let f(xi, ·) ∈ Λ. Expression (5.26) then shows, that the challenging part
is to characterize the probability moment space PΛ: The following result shows that up
to normalization, PΛ can be written in terms of the dual cone of the cone of functions in
Λ that are nonnegative on X.

Lemma 5.19. Let (MΛ)+ be the cone of moments of nonnegative measures defined by

(MΛ)+ := {y ∈ Rn+1 : ∃µ ∈M+(X), yk = 〈µ, ϕk〉}, (5.44)

and let NΛ be the cone of the coefficients of the functions in Λ = 〈ϕ0, . . . , ϕn〉 that are
nonnegative on X defined as:

NΛ := {p ∈ Rn+1 : 〈p, ϕ(x)〉 ≥ 0, ∀x ∈ X}. (5.45)

Then (MΛ)+ is equal to N ∗Λ, where N ∗Λ denotes the dual cone of NΛ.

If, in addition, ϕ0 ≡ 1 we also have PΛ = {y ∈ (MΛ)+ : y0 = 1}.

Proof. Let y ∈ (MΛ)+. This means there exists µ ∈M+(X) such that yk :=
∫
X ϕk(x) dµ(x).

Let p ∈ NΛ. Because of 〈p, ϕ(·)〉 ∈ Λ ⊂ C(X) and 〈p, ϕ(x)〉 ≥ 0 for all x ∈ X and
µ ∈M+(X) is a nonnegative measure it holds

〈p, y〉 =

n∑
k=0

pk

∫
X
ϕk(x) dµ(x) =

∫
X
〈p, ϕ(x)〉dµ(x) ≥ 0,

for all x ∈ X. Since p ∈ NΛ was an arbitrary choice from NΛ we have y ∈ N ∗Λ.

Next we show (MΛ)∗+ ⊆ NΛ as this implies N ∗Λ ⊆ (MΛ)∗∗+ = (MΛ)+, where the last
equality holds since (MΛ)+ is closed and convex. Take p ∈ (MΛ)∗+. Let x ∈ X. Now
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we choose y ∈ (MΛ)+ such that yk = 〈δx, ϕk〉 = ϕk(x). Then p ∈ (MΛ)∗+ implies that
〈p, y〉 ≥ 0. Since the choice x ∈ X was arbitrary we have 〈p, ϕ(x)〉 ≥ 0 for all x ∈ X and
therefore p ∈ NΛ.

Finally, PΛ = {y ∈ (MΛ)+ : y0 = 1} follows from the fact that µ ∈M(X) is an element
of P(X) if and only if µ ∈M+(X) and 〈µ, ϕ0〉 = 1.

Thanks to algebraic geometry, there exist finite semidefinite programming characteri-
zations of NΛ in the univariate piecewise polynomial case.

The constraint set KΛ corresponds to the Lipschitz constraint of the dual variable
λ(xi, ·) ∈ Lip(X;Rd). Assume that Λ is closed under differentiation, i.e., ϕ is differentiable
with ϕ′k ∈ Λ. We show, that the Lipschitz constraint can be characterized in terms of
nonnegativity of functions in Λ as well. We restrict X = [a, b], a < b to be an interval.
Then, the Lipschitz constraint reads:

‖∇λ(xi, y)‖ ≤ 1, ∀ y ∈ [a, b].

In the anisotropic case, i.e., ‖ · ‖ = ‖ · ‖∞ the bound separates over the d dimensions
and one obtains the constraints −1 ≤ λk(xi, ·)′(y) ≤ 1 for all y ∈ [a, b], where λk(xi, ·)′ is
the derivative of λk(xi, ·). Equivalently, this means that the coefficients of the functions
1 + λk(xi, ·)′ and 1− λk(xi, ·)′ are in NΛ.

In the isotropic case, i.e., ‖·‖ = ‖·‖2 we restrict Λ to the space of univariate polynomials.
Squaring both sides of the inequality one obtains a single nonnegativity constraint of the
from 1−∑d

k=1 λk(xi, ·)′(y)2 ≥ 0 for all y ∈ [a, b].

5.5.2. Semidefinite programming and polynomial duals

As we have seen in the previous section, an important ingredient for a tractable formulation
is the efficient characterization of nonnegativity of functions in a finite-dimensional
subspace Λ ⊂ C(X). A promising choice of Λ in that regards is the space of polynomials.
Indeed, the characterization of nonnegativity of polynomials is a fundamental problem
in convex algebraic geometry surveyed in [BPT12]: Let R[x1, . . . , xm] denote the ring
of possibly multivariate polynomials with p ∈ R[x1, . . . , xm] then p =

∑
α∈I pαx

α for
monomials xα. Let deg p denote its degree. A key result from real algebraic geometry
is the Positivstellensatz due to [Kri64] and [Ste74] refined in [Sch91] and [Put93]. It
characterizes polynomials p ∈ R[x1, . . . , xm] that are positive on semi-algebraic sets X,
i.e. p(x) > 0 for all x ∈ X, where X is defined in terms of polynomial inequalities.

Key to such results is a certificate of nonnegativity of the polynomial p that involves
sum-of-squares (SOS) multipliers q, where q is SOS if q(x) =

∑N
i=1 q

2
i (x) for polynomials

qi ∈ R[x1, . . . , xm].

Due to Hilbert it is known that in the unconstrained case X = Rm the set of nonnegative
polynomials is equal to the set of SOS-polynomials if and only if p is univariate, p is
quadratic, or p is a bivariate quartic polynomial. This yields a SOS characterization for
nonnegative polynomials in the unconstrained case X = Rm.

In the constrained case a sharp characterization in terms of SOS can be obtained for
univariate polynomials and constraint sets which are intervals X = [a, b]: Thanks to
[BPT12, Theorem 3.72] originally due to [PR00, Corollary 2.3] we have following result:

Lemma 5.20. Let a < b. Then the univariate polynomial p ∈ R[x] is nonnegative on
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[a, b] if and only if it can be written as

p(x) =

{
s(x) + (x− a) · (b− x) · t(x) if deg p is even,

(x− a) · s(x) + (b− x) · t(x) if deg p is odd,
(5.46)

where s, t ∈ R[x] are sum of squares. If deg p = 2n, then we have deg s ≤ 2n, deg t ≤
2n− 2, while if deg p = 2n+ 1, then deg s ≤ 2n,deg t ≤ 2n.

The above result can be seen as a refinement of the Positivstellensatz in the univariate
case, where X is a closed interval. Remarkably, in contrast to the general case, the above
result provides us with explicit upper bounds of the degrees of the SOS multipliers s
and t that are important to derive a practical implementation: If such upper bounds are
available the SOS constraints can be formulated in terms of semidefinite programming:
We adopt [BPT12, Lemma 3.33] and [BPT12, Lemma 3.34]:

Lemma 5.21. A univariate polynomial p ∈ R[x] with deg p = 2n, n ≥ 0 is SOS if and
only if there exists a positive semidefinite matrix Q ∈ Rn+1×n+1 such that

pk =
∑

0≤i,j≤n,
i+j=k

Qij , ∀ 0 ≤ k ≤ 2n. (5.47)

Invoking the results above SDP-duality yields the following compact representation of
(MΛ)+:

Lemma 5.22. Let n ≥ 0. For odd degree 2n+ 1, y ∈ (MΛ)+ if and only if

bM0,n(y) �M1,n(y) � aM0,n(y), (5.48)

for Hankel matrices

Mi,n(y) :=


yi yi+1 . . . yi+n
yi+1 yi+2 . . . yi+n+1

... . . .
...

yi+n . . . yi+2n

 . (5.49)

For even degree 2n, y ∈ (MΛ)+ if and only if

M0,n(y) � 0, (5.50)

(a+ b)M1,n−1(y)− abM0,n−1(y) �M2,n−1(y). (5.51)

Proof. Follows by Lemma 5.20 and Lemma 5.21 invoking elementary SDP-duality.

It is worth noting that this is essentially the same framework adopted by [Las01;
Las02] for multivariate constrained polynomial optimization. However, in contrast to
[Las01; Las02], our goal is to characterize the lifted biconjugates of f : X → R at each
grid point whose characterization is equivalent to a univariate polynomial optimization
problem. In the MRF setting the relation to the approach in [Las01; Las02] can be
made more precise: For polynomial unary terms fu and pairwise terms fuv the MRF
problem (5.1) is a multivariate polynomial formulated over the high-dimensional cube
[a, b]V . Indeed, applying the approach of [Las01; Las02] directly to this multivariate
polynomial optimization problem corresponds to solving the marginal polytope relaxation
which is tight but intractable for large V as the number of coupling moments explodes for
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large |V|. In contrast, our framework applies to the local marginal polytope relaxation
which is not tight in general but leads to a tractable formulation as it exploits the sparse
structure of the optimization problem. For polynomial unaries and pairwise terms the
local marginal polytope relaxation is closely related to sparse sum-of-squares approaches
[Wak+06; WLT18] and in particular sparse versions of the Positivstellensatz [WLT18].

5.5.3. A First-Order Primal-Dual Algorithm

We are now ready to describe the algorithm for solving the resulting semidefinite program.
Again, since the MRF formulation is a special case of the variational approach under an
anisotropic discretization we limit our discussion to the implementation of the continuous
model. In addition we first consider the case f(xi, ·) ∈ Λ and Λ is the space of univariate
polynomials. We propose to use the primal-dual hybrid gradient algorithm [Poc+09;
CP11], as it can exploit the partially separable structure of our SDP. The primal-dual
algorithm optimizes the problem (5.42) via alternating projected gradient descent/ascent
steps applied to the saddle-point formulation of (5.42). The saddle-point problem is
obtained by expanding the support function in Problem (5.42) and substituting the
expression

f(xi, ·)∗∗Λ (y(xi)) = 〈a(xi), y(xi)〉+ ιPΛ
(y(xi)),

for the linear lifted biconjugates, also see Equation (5.26).

min
y∈(PΛ)V

max
p∈(KΛ)V

∑
xi∈V
〈(∇Λ y)(xi), p(xi)〉+

∑
xi∈V
〈a(xi), y(xi)〉. (5.52)

In each iteration the algorithm performs a projected gradient ascent step in the dual p
followed by a projected gradient descent step in the primal variable y. Subsequently it
performs an extrapolation step in the primal. For step-sizes τ, σ > 0 with τσ‖∇Λ‖ ≤ 1
the update steps read as follows:

pt+1 = proj(KΛ)V (pt + σ(∇Λȳ
t + a))

yt+1 = proj(PΛ)V (yt + τ DivΛ p
t+1)

ȳt+1 = 2yt+1 − yt.
(5.53)

The projection operators proj(PΛ)V resp. proj(KΛ)V onto the sets (PΛ)V and (KΛ)V are
separable and can therefore be carried out in parallel on a GPU using the SDP charac-
terizations derived above. For practicality, we introduce additional auxiliary variables
and linear constraints to decouple the affine constaints (5.47) resp. Equation (5.49) and
the SDP constraints (5.48). The projection operator of the semidefinite cone can then be
solved using an eigenvalue decomposition.

5.5.4. Piecewise polynomial duals and nonlinear lifted biconjugates

The polynomial discretization can be extended by means of a continuous piecewise
polynomial representation of the dual variables resulting in a possibly more accurate
approximation of the dual subspace Λ. Then, both, nonnegativity and Lipschitz continuity
can be enforced on each piece Xk individually. Continuity of the piecewise polynomial
dual variables can be enforced via linear constraints. The corresponding primal variable y
belongs to y ∈ (MΛ)+× (MΛ)+× · · ·× (MΛ)+. Then the restriction that y is a moment
vector of a probability measure supported on the whole space X yields an additional
sum-to-one constraint on the 0th moments 1 =

∑K
k=1 yk,0.
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Another issue to address is when fu 6∈ Λ which results in a nonlinear lifted biconjugate
over the probability moment space as in Figure 5.2.

The formulation which is derived next addresses both: In particular it allows one to
choose Λ independently from fu which can even be discontinuous, as long as fu has a
certain piecewise polynomial structure. Key to the formulation is to rewrite the inner
minimum in the dual formulation 5.39 exploiting a duality between nonnegativity and
minimization of functions:

Let X = [a, b], a < b be a compact interval. Let a = t1 < t2 < t3 < · · · < tK+1 = b be
a sequence of knots, where Xk := [tk, tk+1]. Let Θ be the space of univariate polynomials
with some maximum degree n. Let f : X → R be a possibly discontinuous lsc piecewise
polynomial function defined by f(x) = min1≤k≤K fk(x) + ιXk(x) with fk ∈ Θ, i.e.,
fk(x) = 〈ϕ(x), ak〉 for coefficients ak ∈ Rn+1, where ϕ0 ≡ 1. First observe the following
duality between nonnegativity and minimization of a lsc function:

min
x∈X

f(x) = max
q∈R

q − ιN (f − q),

where we denote by N (X) = {λ : X → R : λ(x) ≥ 0,∀ x ∈ X} the cone of nonnegative lsc
functions on X. Then we obtain for Aq = (e0q, . . . , e0q), where e0 = (1, 0, . . . , 0) ∈ Rn+1

is the 0th unit vector:

min
x∈X

f(x) = max
q∈R

q − ιN (X)(f − q) (5.54)

= max
q∈R

q −
K∑
k=1

ιNΘ
(ak −Akq). (5.55)

Fenchel–Rockafellar duality then yields:

min
x∈X

f(x) = min
y∈(Rn+1)K

ι{1}(A
∗y) +

K∑
k=1

ι(MΘ)+
(yk) + 〈yk, ak〉

= min
y∈((MΘ)+)K∑K

k=1 yk,0=1

K∑
k=1

〈yk, ak〉.

This formulation can be substituted in the dual problem (5.39) and we obtain

sup
p∈(Rd×n)V

∑
xi∈V

min
y∈((MΘ)+)K∑K

k=1 yk,0=1

K∑
k=1

〈yk, a(xi)k − (DivΛ p)(xi)k〉 −
∑
xi∈V

ιKΛ
(p(xi)), (5.56)

Here the dual variables λ are chosen such that (DivΛ p)(xi) represents a piecewise
polynomial with knots a = t1 < t2 < t3 < · · · < tK+1 = b such that for each piece we
have 〈(DivΛ p)(xi)k, ϕ(·)〉 ∈ Θ. Note that this does require Λ to be equal the whole space
of continuous piecewise polynomials of degree n. Indeed, Λ can be a subspace thereof
which covers the case where fu 6∈ Λ.

5.5.5. Numerical optimization for multivariate piecewise linear duals

In this section we consider the multivariate case in the spatially continuous variational
setting restricting Λ to the space of piecewise linear functions. We present an alternative
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derivation of the optimization problem also considering f(xi, ·) 6∈ Λ. We assume that
X = [a, b]m is a compact cube in Rm. Then X can be partitioned into a disjoint (up
to measure zero) union X =

⋃
∆j∈D of m-simplices ∆j = con{tj0 , tj1 , . . . tjm} ∈ D with

{tj0 , tj1 , . . . tjm} affinely independent in Rm and |D| = l. Also see [RW98, Exercise 2.28]
for the technology of simplices. The set of all samples tjk is denoted by T where |T | = n.
Then we restrict the dual variable λ to a piecewise linear continuous family of functions
that are linear on each simplex ∆j . A natural choice for a basis which spans the space of
piecewise linear continuous functions is the hat basis 〈ϕ1, . . . , ϕn〉. Then, the associated
lifting map ϕ : Rm → Rn can be written compactly as follows. For any x ∈ X we have:

ϕ(x) =
m∑
k=0

πkejk = Ejπ, if x ∈ ∆j such that
m∑
k=0

πktjk = x = Tjπ. (5.57)

Here, π ∈ Π := {π ∈ Rm :
∑m

k=0 πk = 1, πk ≥ 0} are the barycentric coordinates of x wrt
∆j and the matrices Ej ∈ Rn×m+1 and Tj ∈ Rm×m+1 are defined by:

Ej = (ej0 , ej1 , . . . , ejm), Tj = (tj0 , tj1 , . . . , tjm),

where ejk is the jk
th unit vector. Also see Example 5.8, for the univariate case. In the

terminology of approximation of measures in the primal from Section 5.3.2 this yields an
interesting sparse embedding ϕ(x) of the Diracs δx, where the probability moment space
PΛ = conϕ(X) ⊂ Rn is the unit simplex.

We proceed to compute the lifted biconjugates fΛ for the particular choice of ϕ:

We have:

fΛ(y) =

{
f(Tjπ) if y = Ejπ for some π ∈ Π, 1 ≤ j ≤ l,
+∞ otherwise.

The convex conjugate is then given by:

f∗Λ(z) = max
1≤j≤l

sup
π∈Π
〈z, Ejπ〉 − f(Tjπ).

Fix j. We introduce a substitution x = Tjπ. Since the columns in Tj are affinely
independent we have:(

Tj
1>

)−1(
x
1

)
= Ajx+ bj = π,

(
Aj bj

)
=

(
Tj
1>

)−1

,

where bj ∈ Rn and Aj ∈ Rn×m. Then we can rewrite the inner supremum in terms of
the convex conjugate of f + ι∆j :

sup
x∈∆j

〈E>j z,Ajx+ bj〉 − f(x) = (f + ι∆j )
∗(A>j E

>
j z) + 〈Ejbj , z〉.

Overall we obtain:

f∗Λ(z) = max
1≤j≤l

(f + ι∆j )
∗(A>j E

>
j z) + 〈Ejbj , z〉.

We consider the biconjugate which amounts to:

f∗∗Λ (y) = sup
z∈Rn
〈z, y〉 − max

1≤j≤l
(f + ι∆j )

∗(A>j E
>
j z) + 〈Ejbj , z〉.
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We introduce an additional variable q along with constraints q ≥ (f + ι∆j )
∗(A>j E

>
j z) +

〈Ejbj , z〉 for all 1 ≤ j ≤ l to absorb the inner discrete maximum.

We will rewrite the nonnegativity constraints in terms of epigraphical constraints:
(A>j E

>
j z, q − 〈Ejbj , z〉) ∈ epi(f + ι∆j )

∗ and obtain:

f∗∗Λ (y) = sup
z∈Rn,
q∈R

〈z, y〉 − q −
l∑

j=1

ιepi(f+ι∆j )∗(A
>
j E
>
j z, q − 〈Ejbj , z〉).

Like before we propose to use the PDHG algorithm which solves the saddle-point
formulation:

min
y∈(Rn)V

max
p∈(KΛ)V

∑
xi∈V

f(xi, ·)∗∗Λ (y(xi))−
∑
xi∈V
〈y(xi), (DivΛ p)(xi)〉,

so that the characterization of f∗∗Λ given above suffices for a practical implementation, as
long as the projections onto epi(f + ι∆j )

∗ can be implemented efficiently. In case f is a
quadratic we decompose the epigraph in terms of the Minkowski sum of the epigraphs of
the individual functions: epi(f + ι∆j )

∗ = epi f∗ + epi ι∗∆j
. For the projection onto the

epigraph of a multivariate quadratic function we use the method described in [SCC14,
Appendix B.2].

Alternatively, we consider f to be polyhedral on each simplex ∆j . I.e., f attains finite
values f(w) at a finite subset of points w ∈ Wj ⊂ ∆j and interpolates linearly between
them. Then we can write the conjugate:

(f + ι∆j )
∗(z) = max

w∈Wj

〈w, z〉 − f(w).

For the projection onto the epigraph of such a function, one solves a quadratic program
of the form

min
x∈Rm,y∈R

1

2
‖x− c‖2 +

1

2
|y − d|2 s.t. 〈w, x〉 − f(w) ≤ y,∀w ∈ Wj . (5.58)

We implement the primal active-set method described in [NW06, Algorithm 16.3].

It remains to implement the Lipschitz constraint on the dual variables λ : Rm → Rd
with λ(x) = p · ϕ(x) and p ∈ Rd×n.

By the choice of the basis 〈ϕ1, . . . , ϕn〉 the dual variable λ is a piecewise linear function
on X and therefore it suffices to bound the Schatten-∞ norm of the Jacobian ∇λ on
each simplex ∆j = con{tj0 , tj1 , . . . tjm}. For x ∈ ∆j we can therefore find Bj ∈ Rd×m
and cj ∈ Rd such that λ(x) = p · ϕ(x) = Bjx + cj . Then the Jacobian ∇λ(x) = Bj is
obtained as follows: For x = tjk we have by definition of the hat basis ϕ(tjk) = ejk and
therefore for any 1 ≤ k ≤ m:

λ(tjk) = Bjtjk + cj = pjk ,

where pjk is the kth column of p. We subtract the mth equation from the other equations
and obtain the following system of linear equations:

Bj(tj1 − tjm , tj2 − tjm , . . . tjm−1 − tjm) = (pj1 − pjm , pj2 − pjm , . . . , pjm−1 − pjm).

148



5.6. Numerical results and applications in computer vision

1 2 3 4

Number of pieces K

−240

−220

−200

−180

−160

−140

E
n

er
gy

TV regularization

deg= 1

deg= 2

deg= 3

deg= 4

(a)

1 2 3 4

Number of pieces K

−250

−200

−150

−100

−50

0

E
n

er
gy

TV regularization

deg= 1

deg= 2

deg= 3

deg= 4

(b)

1 2 3 4

Number of pieces K

101

102

P
ri

m
al

-D
u

a
l

ga
p

TV regularization

deg= 1

deg= 2

deg= 3

deg= 4

(c)

1 2 3 4

Number of pieces K

−250

−225

−200

−175

−150

−125

−100

−75

E
n

er
gy

Potts regularization

deg= 1

deg= 2

deg= 3

deg= 4

(d)

Figure 5.3.: Primal and dual energies for MAP-inference in a continuous MRF with TV
regularization using a piecewise polynomial hierarchy of dual variables. (a)
shows the dual energy for TV. In (b) the dashed lines correspond to the
primal energy at the rounded solution and the solid lines correspond to the
dual energy. (c) shows the gap between the nonconvex primal energy at the
rounded solution and the dual energy for TV regularization. (d) shows the
dual energies for Potts regularization.

Since {tj0 , tj1 , . . . tjm} is affinely independent we obtain:

Bj = (pj1 − pjm , pj2 − pjm , . . . , pjm−1 − pjm)(tj1 − tjm , tj2 − tjm , . . . tjm−1 − tjm)−1.

Then the Lipschitz constraint can be formulated in terms of constraints ‖Bj‖S∞ ≤ 1 for
each simplex ∆j ∈ D. The corresponding projection operators can be solved using a
singular value decomposition of Bj .

5.6. Numerical results and applications in computer vision

5.6.1. Empirical convergence for a piecewise polynomial hierarchy

In this first experiment we evaluate the local marginal polytope relaxation of the MRF
formulation (5.7) using a piecewise polynomial hierarchy of dual variables. We choose a
vertex grid of size 16× 16. We fix a random polynomial data term of degree 4 at each
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Left image stereo pair Standard k = 30 k = 5, deg = 1 k = 5,deg = 7

rounded 24611.51 rounded 22283.25 rounded 19428.49
dual 16227.80 dual 17472.13

rounded 17510.55 rounded 15027.55 rounded 13380.71
dual 10962.53 dual 12008.45

Figure 5.4.: Stereo disparity estimation from a stereo image pair: Left: Standard
MRF/OT discretization implemented using a continuous piecewise linear
under-approximation for the unaries and piecewise linear duals. middle:
piecewise linear duals. right: piecewise polynomial duals. The visual ap-
pearence of the solution to the standard MRF/OT discretization shows a
strong grid bias. The dual energy gap increases for increasing the degree
and/or the number of pieces. Likewise the energy at the rounded solution
decreases.

vertex by fitting a random sample of data points. To obtain a high-accuracy solution we
solve the primal SDP formulation corresponding to the saddle-point formulation (5.56)
specialized to the anisotropic case with MOSEK1. For recovering a primal solution at
each vertex u we compute the mode wrt the 0th moments to select the best interval
denoted by k∗ = arg max1≤k≤K(yu)k,0. Then we compute the mean of the discretized
measure corresponding to (k∗)th interval as xu = (yu)k∗,1.

Figure 5.3 visualizes the primal and dual energies for varying degrees and/or number of
pieces of the dual variable. While the dual energy strictly increases with higher degrees
and/or number of pieces the primal energy is evaluated at the rounded solution and
therefore does not strictly decrease in general. While for TV increasing the degree vs.
increasing the number of pieces (for K · deg constant) leads to similar performance,
for Potts, in many situations, increasing the degree leads to larger dual energies, e.g.,
consider deg = 4,K = 1 vs. deg = 1,K = 4, red curve vs. blue curve in Figure 5.3(d).
In further experiments, we observed, that this holds in particular when the structure of
the dual variables and the unaries match, i.e., fu, λe ∈ Λ. Note that for Potts, since the
dual variables are uniformly bounded on X and the derivative can be unbounded we
drop the continuity constraint which leads to a more compact formulation and larger
dual energies.

1https://www.mosek.com/products/academic-licenses
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Dual energies

deg K = 1 K = 3 K = 5

1 14180.08 15733.71 16227.80
2 15052.18 16430.97 16773.75
3 15601.89 16778.87 17055.25
4 15938.92 16998.63 17235.21
5 16191.40 17147.92 17346.49
6 16369.95 17243.47 17422.26
7 16480.22 17308.91 17472.13

Energies rounded

deg K = 1 K = 3 K = 5

1 28982.45 25005.05 22283.26
2 31038.14 22525.12 21049.32
3 28505.41 21500.65 20428.34
4 27255.48 20841.62 20049.04
5 25795.56 20344.17 19764.23
6 24081.51 20032.77 19559.00
7 23142.67 19869.71 19428.50

Table 5.1.: Energies for stereo matching Motorcycle. Left: Dual energies. Right: Primal
energies at the rounded solution.

-1 0 1
-1

0

1

(a) Naive, 81 labels.

-1 0 1
-1

0

1

(b) [Lel+13], 81 labels.

−1 1
−1

1

(c) Ours, 4 labels.

Figure 5.5.: ROF denoising of a vector-valued signal I : [0, 1]→ [−1, 1]2, discretized on
50 points (shown in red). We compare the proposed approach (c) with the
standard discretization for vectorial TV [Lel+13] (a) and (b). The samples
tjk are visualized by the gray grid. In contrast to the standard discretization,
the proposed approach does not exhibit any visible grid bias providing fully
sublabel-accurate solutions.

5.6.2. Stereo Matching

In this experiment we consider stereo matching using the anisotropic relaxation (5.7).
We consider the Motorcycle image from the Middlebury benchmark [Sch+14]. We
downsample the image by factor 4. The disparity cost term was first calculated using
135 discrete disparities obtained by shifting the images by the corresponding amount of
pixels and comparing the image gradients. Then, the cost dataterm is approximated from
below in terms of a continuous piecewise cubic polynomial fu using 30 pieces at each
u ∈ V. In Figure 5.4 we compare the standard MRF/OT discretization as described in
Example 5.7 with our framework using a piecewise polynomial hierarchy of dual variables.
The standard MRF/OT discretization is equivalent to a piecewise linear approximation
of the data term with piecewise linear duals in our framework. For a fair comparison we
use a piecewise linear under-approximation of the continuous piecewise cubic polynomial
under-approximation fu. As the resulting optimization problem is large-scale we solve the
formulation (5.20) with PDHG [CP11] as described in Section 5.5.3 using the GPU-based
PDHG framework prost2. In contrast to the previous experiment which uses a combined

2https://github.com/tum-vision/prost
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(a) Input image (b) Unlifted Problem,

E = 992.50

(c) Ours, |D| = 1,
|T | = 4,

E = 992.51

(d) Ours, |D| = 6
|T | = 2× 2× 2
E = 993.52

(e) Baseline,
|D| = 4× 4× 4,
E = 2255.81

Figure 5.6.: Convex ROF with vectorial TV. Direct optimization and proposed method
yield the same result. In contrast to the baseline method [Lel+13] the
proposed approach has no discretization artefacts and yields a lower energy.
The regularization parameter is chosen as 0.3.

Noisy input Ours, |D| = 1, |T | = 4,
E = 2849.52

Ours, |D| = 6,
|T | = 2× 2× 2,
E = 2806.18

Ours, |D| = 48,
|T | = 3× 3× 3,
E = 2633.83

Baseline,
|T | = 4× 4× 4,
E = 3151.80

Figure 5.7.: ROF with a truncated quadratic dataterm (ν = 0.025). Compared to the
standard discretization [Lel+13] the proposed approach yields much better
results, already with a very small number of 4 labels. The weight of the total
variation was chosen 0.03.

mode and mean rounding procedure we found the plain mean of the discretized measure
to produce better results on real data: More explicitly we recover a solution according
to xu =

∑K
k=1 tk(yu)k,0 at each vertex u ∈ V. In Table 5.1 we compare both, dual and

nonconvex primal energies, for a larger hierarchy of dual subspaces.

5.6.3. Vectorial ROF Denoising

In the remaining experiments we will evaluate the lifted variational model (5.34) for the
isotropic vector-valued setting using a piecewise linear approximation of the dual variable
as described in Section 5.5.5. First we will experimentally validate, that our model is
exact for convex dataterms: To this end we consider the Rudin-Osher-Fatemi [ROF92]
(ROF) model with vectorial TV (5.32). In our model this corresponds to defining
f(x, u(x)) = 1

2‖u(x) − I(x)‖2, where I : Ω → R3 is a color image. The energy of the
solution of the unlifted problem is equal to the energy of the projected solution of our
method for n = 4 up to machine precision, as can be seen in Figure 5.5 and Figure 5.6.
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Image 1 [GSC13], |T | = 5× 5,
0.67 GB, 4 min

aep = 2.78

[GSC13], |T | = 11× 11,
2.1 GB, 12 min

aep = 1.97

[GSC13], |T | = 17× 17,
4.1 GB, 25 min

aep = 1.63

[GSC13], |T | = 28× 28,
9.3 GB, 60 min

aep = 1.39

Image 2 [Lel+13], |T | = 3× 3,
0.67 GB, 0.35 min

aep = 5.44

[Lel+13], |T | = 5× 5,
2.4 GB, 16 min

aep = 4.22

[Lel+13], |T | = 7× 7,
5.2 GB, 33 min

aep = 2.65

[Lel+13], |T | = 9× 9,
Out of memory.

Ground truth Ours, |T | = 2× 2,
0.63 GB, 17 min

aep = 1.28

Ours, |T | = 3× 3,
1.9 GB, 34 min

aep = 1.07

Ours, |T | = 4× 4,
4.1 GB, 41 min

aep = 0.97

Ours, |T | = 6× 6,
10.1 GB, 56 min

aep = 0.9

Figure 5.8.: We compute the optical flow using our method, the product space approach
[GSC13] and the baseline method [Lel+13] for a varying amount of labels
and compare the average endpoint error (aep). The product space method
clearly outperforms the baseline, but our approach finds the overall best
result already with 2 × 2 labels. To achieve a similarly precise result as
the product space method, we require 150 times fewer labels, 10 times less
memory and 3 times less time. For the same number of labels, the proposed
approach requires more memory as it has to store a convex approximation of
the energy instead of a linear one. The run times and memory requirements
are to be taken as rough estimates, as they depend on the used stopping
criteria and implementation.

We point out, that the sole purpose of this experiment is a proof of concept as our method
introduces an overhead and convex problems can be solved via direct optimization. It
can be seen in Figure 5.5 and Figure 5.6, that the baseline method [Lel+13] has a
strong label bias. In Figure 5.6 the input image is taken from the Berkeley segmentation
database [Mar+01].

5.6.4. Robust color image denoising

In this experiment we consider a robust denoising approach for color images with a
truncated quadratic dataterm

f(x, u(x)) = min

{
1

2
‖u(x)− I(x)‖2, ν

}
, (5.59)
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Chapter 5. Lifting and generalized conjugacy in Lagrangian relaxations

(a) Image 1 and 2 (b) Proposed, |T | = 2× 2 (c) Baseline, |T | = 7× 7

Figure 5.9.: Large displacement flow between two 640× 480 images (a) using a 81× 81
search window. The result of our method with 4 labels is shown in (b), the
baseline [Lel+13] in (c). Our method can correctly identify the large motion.

using the lifted variational model (5.34) for vectorial TV: To this end we degrade the
input image with both, Gaussian and salt-and-pepper noise. The results are shown in
Figure 5.7. It can be seen that increasing the number of samples |T | leads to lower energies
and at the same time to a reduced effect of the TV. This occurs as we always compute
a piecewise convex underapproximation of the original nonconvex dataterm that gets
tighter with a larger the number of labels. The baseline method [Lel+13] again produces
strong discretization artefacts even for a large number of labels |T | = 4 × 4 × 4 = 64.
The input image is taken from the Berkeley segmentation database [Mar+01].

5.6.5. Optical flow

In this experiment we compute the optical flow u : Ω→ R2 between two input images
I1, I2 using the lifted isotropic variational model (5.34). The label space X = [−d, d]2 is
chosen according to the estimated maximum displacement d ∈ R between the images.
The dataterm is

f(x, u(x)) = ‖I2(x)− I1(x+ u(x))‖. (5.60)

We introduce adaptive weights r(x) for the regularizer which are based on the norm of
the image gradient ∇I1(x):

r(x) = s ·
{

0.1 if ‖∇I1(x)‖ > 0.1,

1 otherwise.
(5.61)

In Figure 5.8 we compare the proposed method to the product space approach [GSC13]
and the standard discretization [Lel+13]. For our method, we sample the label space
X = [−15, 15]2 on 150× 150 points tjk and subsequently convexify the energy on each
triangle using the quickhull algorithm [BDH96]. For the product space approach we sample
the label space at equidistant labels, from 5× 5 to 27× 27. As the regularizer from the
product space approach is different from the proposed one, we chose s differently for each
method. For the proposed method, we set s = 0.5 and for the product space and baseline
approach s = 3. We can see in Figure 5.8 that our discretization achieves a better average
end-point error when compared to existing discretizations. In Figure 5.9 we compare our
method on large displacement optical flow to the standard discretization [Lel+13]. The
image pairs are taken from the Middlebury optical flow benchmark [Bak+11].
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Chapter 6.
Conclusion

In this thesis we have considered lower envelopes for decoupling in additive composite
optimization problems. The first approach is based on inf-projection: Here the idea is
to relax one or more components in the additive composition by means of their Moreau
envelopes. This is a common strategy in feasibility problems and allows one solve the
problem in a distributed fashion. An important ingredient is the smoothness of the
Moreau envelope and the continuity and single-valuedness of the associated proximal
mapping, which holds under prox-regularity. This is for instance leveraged in the analysis
of a stochastic inexact averaged proximal point method for federated learning. However,
there exist simple even smooth functions that are not prox-regular. As a remedy we
have replaced the Euclidean geometry in the proximal mapping and the definition of
prox-regularity by an anisotropic or a Bregmanian geometry, both of which are induced
by a Legendre function. There, the gradient of the Legendre function appears in the form
of a nonlinear preconditioner. Single-valuedness and continuity of these non-Euclidean
generalizations of the classical proximal mapping are studied under generalizations of
prox-regularity.

As an alternative approach for decoupling in partially separable problems the La-
grangian relaxation paradigm is considered. However, since Lagrangian relaxations for
nonconvex problems typically suffer from large duality gaps, reformulations over the
space of measures are considered. This can be seen as a certain integer linear program-
ming approach which is common for combinatorial problems such as the Sudoku puzzle.
In our case, the focus is on TV-regularized variational problems and MAP-inference
in a continuous MRF, where such linear programming formulations over the space of
measures are natural. Adopting the framework for Lagrangian relaxations for these
infinite programs we derive dual programs via subspace approximations. These are
shown to be equivalent to a certain nonlinear lifting to moments in the primal. The
approach is studied through a generalized conjugacy perspective which reveals interesting
connections to the basic quadratic transform, which shows that dual discretizations,
under a certain extremality condition, preserve the original nonconvex problem when
one restricts the optimization variable to a certain nonlinear manifold of Diracs. We
derive a cone programming formulation using tools from convex algebraic geometry and
solve the problem on a GPU using a concretization of a first-order primal-dual algorithm.
Experimentally, the approach is applied to stereo matching and optical flow estimation,
showing merits over standard discretizations.
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F. Koushanfar, S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock,
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