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Abstract 

On-demand ride pooling (ODRP) services have the potential to improve the traffic conditions 

in our cities while offering a convenient mobility option for the customers. The aim of this 

thesis is to analyze the system-wide impacts of an ODRP service from the perspective of cities, 

operators, and customers. The analytical modelling approach is used to capture these impacts. 

Firstly, an analytical model investigating the influence of service quality parameters (SQP) and 

network modelling details on the percentage of shareable trips in an area is developed. 

Secondly, an analytical model examining the traffic impacts of an ODRP service is built. Lastly, 

a general analytical model combining the requirements of customers, operators and cities is 

presented, allowing an exploration of the framework conditions and system parameters in 

which a win-win-win situation for customers, operators and cities can be achieved. The 

developed analytical models are tested by means of an agent-based simulation and a 

microscopic traffic simulation for a case study in the city of Munich. These analytical models 

allow for a system-wide analysis of the ODRP impacts requiring less input data and 

computational time compared to the currently used agent-based simulations and hence, they 

are easily transferable to other cities. Consequently, the results of this thesis would assist 

policy makers and operators in effective planning and implementation of ODRP services. 
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1. Introduction 

1.1 Motivation   

The increased urban population has caused higher levels of traffic demand in our cities. Private 

vehicles, albeit offering a convenient and flexible mode of transportation, are used less than 

10% of the day and have an average vehicle occupancy of only 1.3 passenger per vehicle 

[MITCHELL ET AL., 2010], causing large quantity of occupied parking and street space. On the 

other hand, traditional public transportation – even though a sustainable transportation mode 

– might lack convenience and flexibility, due to rigid schedules and restricted coverage area, 

and is often unattractive for the customers. The common use of smart phones nowadays, and 

the resulting data availability and connectivity, enable the emergence of new customer-

centric services. Among these services, the so called on-demand mobility services, are filling 

the gap between private vehicles and traditional public transportation. These services offer 

door-to-door transportation and have seen a rapid growth in recent years, increasing at the 

same time the concerns about their impacts in our cities. 

Studies have shown that on-demand ride hailing services (e.g., Uber, Lyft, Didi, Free Now etc.) 

can reduce the parking space [HENAO & MARSHALL, 2019] and increase the vehicle utilization 

due to optimized assignments between customers and vehicles [ERDMANN ET AL., 2020]. 

However, the on-demand ride hailing services (ODRH), serving only one passenger per vehicle, 

might also negatively impact urban traffic and increase the vehicle kilometers travelled (VKT) 

in the system due to the increase of empty vehicle trips generated while picking up customers 

[DANDL ET AL., 2017; MACIEJEWSKI & BISCHOFF, 2018; SCHALLER, 2018]. To overcome the drawbacks 

of ODRH services in terms of increased VKT, on-demand ride pooling services (e.g., Uber Pool, 

Lyft Shared, Didi Express), where trips with similar trajectories are matched together and 

customers can share both their ride and the travel price with somebody else, might be a 

potential solution. Research studies have revealed that the on-demand ride pooling (ODRP) 

services can reduce the VKT [ALONSO-MORA ET AL., 2017; FIEDLER ET AL., 2018; ENGELHARDT ET AL., 

2019a] and can potentially improve also traffic congestion and environmental impacts in our 

cities [International Transport Forum, 2016, 2017].  

The introduction of an ODRP service in urban areas depends on the customers’ willingness to 

use the service, the operator’s readiness to offer the service and the disposition of the city to 

accept such a service. Albeit the expected positive impacts of the ODRP services from 

simulation studies, the results highly depend on the modelling of the system and the selection 
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of the system parameters. Therefore, it is important to explore in which ODRP system 

parameters an ODRP service can be attractive for the customers, beneficial for the operators 

and additionally contribute to improved traffic conditions. 

The customers’ willingness to use the ODRP service and hence share a trip with somebody 

else, depends on the service quality parameters and service price [ALONSO-GONZÁLEZ ET AL., 

2020a; GURUMURTHY & KOCKELMAN, 2020; KRUEGER ET AL., 2016]. The main service quality 

parameters which influence the customer decision to use the ODRP service are waiting time, 

the time during which the customer waits to get picked up by a vehicle, and the deviation from 

the direct travel distance due to detour to pick up other passengers. The customer would 

therefore opt for a ODRP service which guarantees low waiting time and detour time [KRUEGER 

ET AL., 2016]. In order to compensate for the additional detour time, the customer would also 

expect a lower service price compared to an ODRH service.  

The customer demand for an ODRP service and the service quality parameters, together with 

city parameters, are the main factors influencing the possibility to find shareable trips in an 

area, known as shareability [TACHET ET AL., 2017]. Intuitively, the higher the ODRP demand is, 

the higher are the chances to match similar trips. High values of a delay time parameter (sum 

of waiting time and detour time) contribute to high shareability values, because allowing more 

time for operators to search for shareable trips increases the number of options to really find 

a match. However, the attractiveness of an ODRP service from customers’ perspective 

decreases with increased delay time. Consequently, this trade-off makes it necessary to 

analyze in detail the factors which influence the shareability.    

Shareability is an important parameter as it might also affect the profitability of the service, 

depending on the pricing model used by the operator. In the case when the customers are 

offered a cheaper price, regardless if a match with somebody else is found or not, a low 

number of shared trips might result in negative monetary impacts for the operator. This 

happens when an ODRP customer requests a ride, but it is not possible to find a feasible 

match. It is reported that only 30% of the trips with uberPOOL are actually shared with 

somebody else [SHAHEEN & COHEN, 2018]. In this case, the customer would travel alone, but 

nevertheless pay a lower price compared to ODRH, resulting in lost revenues for the operator, 

which in extreme cases could even force the ODRP operator to terminate the whole service 

[HAWKINS, 2019].  

Low sharing potential negatively impacts also the traffic conditions in urban areas. This effect 

occurs as for small chances to find shareable trips, the possibility to save VKT by trip sharing 

is limited and the desired positive impact of ride pooling on the reduction of traffic congestion 
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might be low, if at all existent. As depicted by ENGELHARDT ET AL. [2019a], a reduction in VKT is 

expected to be seen only after a certain market penetration of the ODRP passenger demand 

for which higher shareability can be achieved.  

Hence, it is necessary to firstly recognize and analyze the factors influencing the possibility to 

find shareable trips in an area. This is quite important as shareability might directly influence 

the traffic efficiency and the profitability of an ODRP service. In order to enjoy the potential 

benefits of a successful ODRP service, it is important to understand in which framework 

conditions, i.e., ODRP demand, service quality parameters and system characteristics, a win-

win-win situation for customers, operators and cities can be achieved. This is the key 

motivation of this thesis. 

1.2 Research Gaps  

The first identified research gap (RG 1) is the unavailability of studies which investigate 

analytically the impact of specific service quality parameters (RG 1.a) and network 

modelling details (RG 1.b) on the possibility to find shareable trips in an area.  

RG 1.a: As previously mentioned, a key determinant of a successful ODRP service is the 

possibility to find shareable trips in an area. Previous studies have shown that the 

matching rate is influenced by service quality parameters, such as waiting time, detour 

time, reservation time [STIGLIC ET AL., 2016; TACHET ET AL., 2017; FAGNANT & KOCKELMAN, 

2018; SANTI ET AL., 2014a]. Most of these studies are performed by using agent-based 

simulations, which suffer from high computational time and high input data. 

Additionally, they might also hide important impacts that are not possible to be easily 

verified due to the high complexity of the agent-based simulations. The exception is 

the study from TACHET ET AL. [2017] in which the impact of a delay time parameter, 

which is the sum of waiting time and detour time, is captured by an analytical model. 

This provides an estimation of shareability for different ODRP passenger demand levels 

by using only little input data and not requiring high computational time. However, 

this study is restricted to modelling of only the delay time parameter impact, without 

considering the separate influence of maximum waiting time and detour time. Even 

though these parameters might both effect the customer negatively (with small 

divergences depending on the customers’ preference about their perceived waiting 

time or added in-vehicle time), their impact in traffic efficiency and the operator’s 

profitability might vary. Therefore, it is important to analyze analytically their distinct 

effect on shareability values. The analytical modelling of the separate impact of these 



4  Analytical Modelling of On-Demand Ride Pooling Impacts 

 

parameters and additional parameters, such as reservation time and boarding time, 

– an approach that would overcome the disadvantages of using agent-based 

simulations – is currently not available in literature.   

RG 1.b: Albeit its advantages, analytically deriving the impact of service quality 

parameters on shareability requires some simplifications which would allow a closed 

analytical expression of shareability [TACHET ET AL., 2017]. Firstly, a Euclidian topology is 

assumed to accommodate vehicle movements. The origins of passenger trips are 

supposed to be uniformly distributed in time and space, and the passenger trip 

destinations are assumed to be located in a disk with a certain radius, corresponding 

to the average trip distance. Additionally, the vehicles are assumed to be immediately 

available at the position where the customers request a ride, hence the fleet size is 

considered to be infinite. As noted, the way the system is modelled directly influences 

shareability. Therefore, it is important to explore the influence that these 

simplifications have on the results, to determine in which conditions the analytical 

model is valuable. Consequently, a step-by-step analysis is necessary to examine the 

separate impact of these assumptions, and thereby defining the impact that ODRP 

modelling complexity, such as network topology, the patterns of passenger trip 

distribution, optimization objectives, changing velocity and fleet size, have on the 

theoretical shareability and the experienced shared rides. 

The second distinguished research gap (RG 2) is the lack of studies about the exploration of 

the system-wide traffic impacts of an ODRP service.    

RG 2.a: The introduction of ODRP services is expected to reduce the number of vehicles 

in the streets due to shared trips and therefore the average velocity of the city can be 

improved. However, as the current studies consider only the reduction of VKT for the 

pooling vehicle fleet, neglecting the interaction with other vehicles which will still be 

present in the system [ALONSO-MORA ET AL., 2017; FAGNANT & KOCKELMAN, 2018; 

ENGELHARDT ET AL., 2019a], it is still unclear to what extend the reduction in VKT 

influences the overall traffic efficiency in urban areas. 

RG 2.b: Moreover, these studies are based on agent-based simulations, which as 

aforementioned albeit providing detailed modelling of the system, require a high 

amount of input data and computational time, in addition to the concern that not 

every behavior of the agents is fully understood. Therefore, usually the analysis is 

limited to scenario-based analysis. Traffic impact of an ODRP system are recently 

examined theoretical by KE ET AL. [2020]. However, they assumed a ride pooling system 
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that uses a very simple matching algorithm based only on the maximum waiting time 

(referred in their study as ‘matching time window’), which is not realistic in real-life 

ODRP service operations. Hence, for a system-wide analysis of ODRP traffic impacts 

and easier transfer of the analysis to other cities, an analytical model is necessary to 

investigate the traffic impacts of ride pooling depending on the ODRP set of service 

quality parameters and modelling details.    

RG 2.c: Furthermore, the average velocity in the city is assumed to be constant in most 

of the ride pooling simulation studies and likewise in the analytical shareability study. 

As a result, they are not able to capture the changes in average velocity of the road 

network due to the effect of shared trips generated by the ODRP service. Increasing 

the average velocity means that the vehicles can travel further and hence the chances 

to find shareable trips will be higher. Even though this issue is recently recognized in 

literature [LEHE & PANDEY, 2020], the additional impact that the change of velocity has 

on the shareability value is still not captured by the current shareability model 

[TACHET ET AL., 2017].  

The third recognized research gap (RG 3) is the absence of an overall model that can capture 

the benefits of ODRP services from customers’, operators’, and cities’ perspective.  

RG 3.a: Even though ODRP profitability is investigated for scenario-based studies 

[AGATZ ET AL., 2011; FAGNANT & KOCKELMAN, 2018; KUCHARSKI & CATS, 2020], a model that 

can determine analytically the profitability of the ODRP service and investigate the 

circumstances when the system can be profitable is not available.  

RG 3.b: Consequently, also the existence of a general analytical model, which can 

explore in which framework conditions the ODRP services can be beneficial from the 

perspective of customers, operators and cities, is currently lacking.  

1.3 Research Aim and Research Questions 

The aim of this thesis is to develop a general analytical model that can capture the 

requirements of different ODRP stakeholders and analyze the impact of ODRP influencing 

parameters. By using the advantages of analytical modelling, the developed model would 

require fewer input data and computational time and would be easily transferable to other 

cities. This would allow for a system wide analysis of the ODRP impacts and would help to 

explore in which conditions a win-win-win situation in terms of customers, operators and 
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cities can be achieved. Consequently, this model would assist in effective planning and 

implementation of ODRP services. 

In order to achieve the main aim of the thesis and fill the research gaps (RG) previously 

identified in Section 1.2, the following main research questions are formulated:   

1. How do service quality parameters (SQP), such as detour time, maximum waiting time, 

short-term reservation time and boarding/disembarking time, network modelling 

details and vehicle routing optimization objectives, impact the percentage of possible 

shared trips in an area? (Addressing RG 1.a and RG 1.b → Model: Section 3.1; Results: 

Section 5.1)  

 

2. What are the traffic impacts of ODRP services and how does the change in average 

velocity due to ride pooling effect the possibility to find shareable trips? (Addressing 

RG 2.a, RG 2.b and RG 2.c → Model: Section 3.2; Results: Section 5.2)  

 

3. Under which framework conditions a win-win-win situation can be achieved, 

corresponding to an ODRP service that is beneficial in terms of improvement of traffic 

efficiency, operators’ profitability, and customers’ attractiveness? (Addressing RG 3.a 

and RG 3.b → Model: Section 3.3; Results: Section 5.3) 

1.4 Research Contributions 

The main contribution of this thesis is the ability to represent the complex impacts of the 

ODRP service by analytical modelling, which allows for a quick investigation of the impact of 

different ODRP influencing parameters, without needing much input data, computationally 

expensive simulations or real-life pilots.  

The contributions for each of the research questions are highlighted below:  

• Analytical modelling of shareability impact factors, including service quality 

attributes and network modelling details (RG 1.a and RG 1.b; Section 3.1 and Section 

5.1) 

Analytical shareability models are developed to examine the impacts of service quality 

parameter, such as detour time, maximum waiting time, boarding or disembarking 

time and reservation time, on the percentage of shared trips in an area. These models 

are tested by means of agent-based simulations. These shareability models provide 
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novel insights about the influence that the service quality parameters, modelling 

details and vehicle-passenger matching objective have on shareability.  

 

• Analytical modelling of the ODRP traffic impacts and the additional effect that 

changes in average velocity due to shared trips have on shareability (RG 2.a, RG 2.b 

and RG 2.c; Section 3.2 and Section 5.2) 

The shareability model from the first main contribution and the macroscopic 

fundamental diagram (MFD) of a city are used to analytically derive the ODRP traffic 

impact model, which is then validated by means of microscopic traffic simulations. This 

model contributes to the literature by exploring the traffic impacts of ODRP service for 

a wide range of system parameters, considering not only the ODRP vehicle fleet but 

also the other vehicles in the network, and additionally investigating the effect that 

changes in average velocity due to shared trips have on shareability.  

 

• Analytical modelling of the ODRP traffic efficiency, operator’s profitability and 

customer attractiveness (RG 3.a and RG 3.b; Section 3.3 and Section 5.3)    

The previously developed models are extended to investigate the ODRP services in 

terms of traffic efficiency, operator’s profitability and attractiveness for customers. 

This general model provides novel insights in identifying the framework conditions 

when the ODRP win-win-win situation between all stakeholders can be achieved.  

The analytical models developed in this thesis could be used by operators or cities for a better 

system-wide planning and implementation of an ODRP service. These models have a great 

potential because they can be used to quickly estimate:  

(1) the shareability rate that can be reached in an area when offering different quality of 

service to the customers → giving the operators the ability to explore which areas are 

more suitable to offer the ODRP service, 

(2) the traffic impacts of varying market penetration rates of the ODRP service → 

providing the cities with the opportunity to investigate the impact of such a service, 

(3) the profitability of ODRP service → giving the operators the possibility to examine if 

and when the ODRP service can be profitable,  

(4) the ODRP win-win-win situation for cities, operators and customers → defining the 

framework conditions when the ODRP service can be beneficial for the three 

stakeholders.  
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1.5 Thesis Outline 

The thesis outline is shown in Figure 1.1. The following Chapter 2 will provide the literature 

review on the ODRP topic, starting with current operational examples and continuing with 

available research studies in the field. The analytical models used to examine the ODRP 

impacts will be presented in Chapter 3. Firstly, the shareability model capturing the impact of 

various SQP and network modelling detail on the percentage of shared trips in an area will be 

described. Secondly, the traffic impact model will be explained. Lastly, a general model 

capturing the benefits for cities (in terms of traffic efficiency), operators (in terms of monetary 

profitability) and customers (in terms of attractiveness to use the ODRP service) will be 

presented. In Chapter 4 the simulation configuration used to validate the models for the case 

study of Munich will be described. The evaluation and results for each of the developed 

models will be depicted in Chapter 5. Finally, Chapter 6 will conclude the thesis by presenting 

the conclusion and outlook.   

         

Figure 1.1 Thesis outline. 



Literature Review  9 

 

2. Literature Review 

In this chapter, an introduction, definition, and classification of different ride pooling services 

from the literature will be provided. It will be followed by a discussion on different factors 

contributing to a successful implementation of pooling services from the perspective of 

customers, operators and cities. Then different modelling approaches used to analyze the 

ODRP impact factors will be explained.   

2.1 Ride Pooling Services: Definition, Classification and Operational Examples 

Ride pooling is a service where customers traveling in the same direction and during the same 

time interval, share their trips fully or partly and hence split the cost of the trip. The concept 

of ride pooling is quite old, having its origin since World War I, when the US economy was in 

decline and some entrepreneurial vehicle owners decided to pick up passengers on the street 

for a ‘jitney’ (five cent fare) [2009]. However, with the advancement in technology, the 

increased use of smartphones, data availability and access to real-time information, pooling 

services have evolved from self-organized services to more sophisticated app-based services. 

There are different types of pooling services available, categorized by SHAHEEN & COHEN [2018] 

into three main categories: core pooled services (including jitneys, traditional public transit 

and shuttles, which operate without the use of an app), ride sharing and on-demand ride 

pooling services. A summary of the classification is provided in Figure 2.1.  

 

Figure 2.1 Ride pooling services classification based on [SHAHEEN & COHEN, 2018]. 

Ride pooling services

Core pooled services

Jitneys

Public Transit

Shuttles

Ride sharing

Carpooling

Vanpooling

On-demand ride 
pooling services

Microtransit

Taxi sharing

Ride splitting
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In the following, ride sharing services will be briefly explained and the focus will be more on 

on-demand ride pooling services as in this thesis the impacts of an on-demand ride pooling 

service, which can have similar characteristics to taxi sharing, ride splitting or microtransit with 

flexible routes are investigated. 

2.1.1 Ride sharing  

In ride sharing services, drivers and riders share the operating expenses and could share in 

some cases also the driving responsibility. They consist of carpooling and vanpooling, which 

differ from each other by the number of passengers who share the same vehicle. Carpooling 

is limited to six passengers per vehicle, whereas in vanpooling seven up to 15 passengers can 

be allocated in the same vehicle [SHAHEEN & COHEN, 2018]. Carpooling can be divided in two 

subcategories: sharing of the car trips between people who already know each other (for 

instance, family members or coworkers) or casual carpooling (for people who do not know 

each other). Casual carpooling can be organized without technological aid and is known also 

as ‘slugging’ [CHAN & SHAHEEN, 2012; SHAHEEN ET AL., 2016] or it can be facilitated by an app or 

website. One of the most well-known carpooling online platforms is BlaBlaCar, which operates 

in 22 countries [BlaBlaCar], most of them located in Europe [VLEUGELS, 2019]. BlaBlaCar is an 

online marketplace for intercity travel which connects drivers and travelers who have similar 

origin-destination pairs and want to share the costs of their trips.  

2.1.2 On-demand ride pooling services 

With the new advancement in technology and the increased use of smartphones, on-demand 

ride services have gained popularity due to increased user convenience and accessibility. 

Passengers can request a ride immediately or specify the required pick-up time by using 

smartphone apps and a service provider makes sure they are picked up within the required 

pick-up time. According to SHAHEEN & COHEN [2018] three groups of on-demand ride pooling 

services can be distinguished: microtransit, ride splitting and taxi sharing.  

Microtransit  

The term ‘microtransit’ is used for fixed or flexible routes and scheduled or on-demand shuttle 

services, which use buses or vans. It is a mode of transportation that can be positioned 

between private vehicles and public transportation. Microtransit is widely used in Asia and 

Latin America, however with the advancement in technology, cities in Europe and North 

America are also exploring this mode and offering pilot services.  
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Some examples of microtransit in US and European cities are Chariot, Via, IsarTiger, Moia and 

CleverShuttle. Chariot was acquired by Ford Motor Company in September 2016 and ceased 

operation in February 2019, reportedly due to low numbers of requested trips [HAWKINS, 

2019]. The Via platform offers various mobility services, starting from services with fixed 

schedules and routes to completely dynamic services [Via, 2019]. In Europe, Via was 

previously known under the name ViaVan. ViaVan was founded in 2017 as a joint venture 

between Mercedes-Benz and Via, operating in Berlin, London, Amsterdam and Milton Keynes. 

Now ViaVan is completely owned by Via [Via, 2021]. Via works closely with cities and has also 

experimented with a different deployment of microtransit by offering first- and last-mile 

service to/from public transportation stations like the one in Seattle, Washington [Via NYC, 

2019]. Usually, it does not offer door-to-door service, but directs customers to the closest 

street corner, where they are picked up. The passengers pay a fixed price for the trip, based 

on the kilometers travelled and not the number of passengers. Only if a passenger books a 

ride for multiple people at the same time, the price per passenger is half of the normal ticket 

price [Via, 2019]. IsarTiger is a pilot project operated by MVG, which is a company owned by 

the municipality of Munich and responsible for operating the public transport in the city. The 

service offered by IsarTiger is complimentary to public transportation. The vehicles have 

flexible routes and schedules, which are generated automatically on demand [MVG]. Moia is 

part of Volkswagen Group and operates a ride pooling service in Hamburg and Hannover. 

When using Moia the customers have the option to choose between three trip offers with 

varying waiting times, arrival times or prices and then they would have to walk until the closest 

virtual stop where a vehicle would pick them up [Moia, 2021]. CleverShuttle is another 

microtransit service currently available in two German cities. Its customers share their trips 

and the costs, even when no match can be found [CleverShuttle, 2021].   

Ride splitting  

Ride sourcing companies, also known as ride hailing or transportation network companies, 

offer user-centric services, such as on-demand mobility services, by connecting drivers (who 

use their own vehicle) with passengers. These services, which use smartphone apps to make 

the match between drivers and passengers, have rapidly gained popularity. Some examples 

of them are Uber, Lyft and Didi Chuxing (DiDi).  In contrast to taxis, which mainly have fixed 

prices, ride sourcing companies use surge pricing during peak times to balance the supply and 

demand by attracting more drivers to serve trip requests. In addition to the ride hailing 

services, where only one passenger at a time is served by a vehicle, these companies offer also 

ride splitting services. Ride splitting is a term used for a service in which the customers share 

the trip with somebody else and split their costs.  
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Some examples of ride splitting services are Lyft Shared (previously Lyft Line), Uber Pool and 

DiDi Express. Uber Pool and Lyft Shared were launched in 2014 and only after three years, 

Uber Pool was operating in 36 cities internationally [HAWKINS, 2018] and Lyft Shared was 

available in 16 US cities [SHAHEEN & COHEN, 2018]. However, only 20% of the Uber Pool trips 

were shared trips and Lyft Shared trips accounted for 40% of Lyft rides [SHAHEEN & COHEN, 

2018]. Uber Pool offered in 2018 Uber Express Pool which was presented in 12 US cities and 

costs up to 50% less than Uber Pool [NICHELSBURGS, 2018; HAWKINS, 2018]. Uber Express Pool 

requests customers to walk until a common pick-up/drop-off spot in order to increase the 

pooling rate and to decrease the detour time needed to pick up additional passengers [Express 

Pool, 2021]. Using the same concept as Uber Express Pool, Lyft also rolled out Shared Saver in 

2019 [LEKACH, 2019]. 

Taxi sharing  

The surge in popularity of ride sourcing has made it challenging for taxis to remain in the 

market, albeit most of the taxi service are largely regulated by laws. In order to keep up with 

the technological development, taxis have upgraded their services to ‘e-hailing’ services, 

where similar to ride sourcing services, passengers can use an app to request a taxi ride. This 

app is operated and maintained by a taxi company or by an external company. In contrast to 

ride sourcing companies, the prices of taxis are regulated locally, and they do not use surge 

pricing during peak times when the demand is higher. Some of the e-hailing services in North 

America include Flywheel, Curb and iTaxi [SHAHEEN & COHEN, 2018]. Since February 2019, e-

hailing services of mytaxi, BEAT, Clever Taxi and Kapten are merged and operated by FreeNow 

(a mobility joint venture of two automotive companies: Daimler and BMW) [DILLET, 2019]. 

Currently, FreeNow e-hailing services operate in more than 100 European cities [FREE NOW, 

2021a]. The services offered by the above-mentioned services are also referred to as ride 

hailing services, where only one passenger per vehicle is served at the same time.  

Taxi sharing refers to taxi trips which are shared among two or more passengers, in which the 

riders share also the cost of the trip. In the US, the possibility to use the taxi as a shared one 

depends on the type of license possessed by the taxi [SHAHEEN & COHEN, 2018]. Examples of 

taxi sharing services in US are Bandwagon, which offered shared rides mainly starting from 

airports or bus terminals, Via and Curb, which partnered together to offer shared rides in New 

York City [HU, 2017]. In Europe, FreeNow also currently offers the Match option to share taxi 

trips for customers who have similar origins and destinations. The customers also share the 

costs of the rides by saving up to 50% in comparison to the costs of one passenger per vehicle 

trip. The Match option guarantees that the customer always pays less, even when a match is 

not found [FREE NOW, 2021b]. 
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2.2 On-Demand Ride Pooling Services: Requirements, Modelling, and Impacts 

This thesis focuses on analyzing the impact of on-demand ride pooling services in general. 

Hence, the on-demand ride pooling service that is considered is similar to a microtransit with 

flexible routes, taxi sharing or ride splitting, where a customer requests a ride via a 

smartphone app. A fleet operator then uses matching algorithms to check if it is possible to 

share this trip with another one and assigns a vehicle (with or without a customer already on-

board) to this customer. The routes that the vehicle takes are therefore flexible and depend 

on the trip requests, the possibility to share trips, vehicle assignment objectives and traffic 

conditions in the network. From now on, this type of service is referred to as ‘on-demand ride 

pooling (ODRP) service’. Whereas an on-demand service serving only individual passengers 

similar to ride sourcing or e-hailing, will from now on referred to as ‘on-demand ride hailing 

(ODRH) service’.  

A successful implementation of an ODRP service depends on the satisfaction of the 

requirements of three main stakeholders: customer, operator, and city. In general terms, the 

customer should be willing to use the service, thus share the trip with somebody else; the 

operator should offer an ODRP service and thus it is important to be able to find trips which 

could be shared and be profitable at the same time; and the city should accept the deployment 

of such a service if it has the potential to improve the traffic efficiency and the environmental 

conditions. Figure 2.2 illustrates some of on-demand ride pooling requirements, modelling 

and impacts from the perspective of customers, operators, and cities. These aspects will be 

described in detail in this section. In addition, a summary of some of the ODRP studies 

currently available in the literature is available in Tab. 2.1.  
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Figure 2.2 On-demand ride pooling system: Requirements, Modelling and Impacts.  

2.2.1 Customer willingness to use the ODRP service 

Albeit on-demand mobility services are popular, with Uber alone serving around 14 million 

trips per day [Uber, 2021], only around 20% of the on-demand trips requested are pooled 

rides [CHEN ET AL., 2018]. Hence, a successful operation of ride pooling services depends initially 

on the customer willingness to use the ODRP service and share the trip with somebody else. 

The main determinants of the customer willingness to use the ODRP service are service 

attributes and travel costs [KRUEGER ET AL., 2016; CHEN ET AL., 2017; GURUMURTHY & KOCKELMAN, 

2020; ALONSO-GONZÁLEZ ET AL., 2020a]. Other factors such as socioeconomic attributes, travel 

behavior and trip purpose also influence the use of ODRP [KRUEGER ET AL., 2016; GURUMURTHY & 

KOCKELMAN, 2020; CHEN ET AL., 2017; LAVIERI & BHAT, 2019; AL-AYYASH ET AL., 2016]. Moreover, 

environmental and social benefits play a role as well in the general acceptance of shared 

services [MATTIA ET AL., 2019; GOMPF ET AL., 2020]. 

As with every service offered, also in the ODRP case the quality of the service and the travel 

costs are essential to attract customers to use such a service. The total travel time of an ODRP 

trip is comprised of the waiting time to be picked up and the in-car travel time. Part of the in-

vehicle travel time is the detour time or the deviation from the direct travel route to pick up 

additional passengers. KRUEGER ET AL. [2016] found that in-vehicle travel time, waiting time and 
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travel costs are key factors in determining the acceptance of ride sharing services. CHEN ET AL. 

[2017] identified a more profound impact of in-vehicle travel time and travel costs on the 

willingness of people to share the trip with somebody else, whereas other factors such as 

waiting time or weather were considered to have a lower impact on the decision. Recently, 

GURUMURTHY & KOCKELMAN [2020] also found that the attractiveness of ODRP services increases 

for small added travel time (or detour time) resulting from shared rides. In line with the 

previous studies, ALONSO-GONZÁLEZ ET AL. [2020a] underpinned that travel time and cost greatly 

affect the percentage of ODRP requests. 

Additionally, the number of co-riders influences the individual’s choice to adopt to ODRP 

services. AL-AYYASH ET AL. [2016] found that if the ride was shared between a maximum of two 

passengers, the percentage of people willing to accept ODRP was 7-8% higher compared to 

the case when the ride is shared by a maximum of five or more passengers. Similarly, ALONSO-

GONZÁLEZ ET AL. [2020a] found that the preference of a pooled ride with a maximum of two 

additional passengers is 5-13% higher than the preference for a ride with four additional 

passengers, concluding that an advanced information that the ride is shared to a maximum of 

two additional passenger can increase the number of ODRP requests.  

Regarding socioeconomic attributes, a strong relation between the age and the acceptance of 

the ride pooling services is found [KRUEGER ET AL., 2016; LAVIERI & BHAT, 2019; GURUMURTHY & 

KOCKELMAN, 2020]. KRUEGER ET AL. [2016] found that customers of a young age are more likely 

to use ODRP services. The same results were confirmed recently by GURUMURTHY & KOCKELMAN 

[2020], which claim that an aging population has lower interest in sharing/pooling services, 

making these services dependent mainly on the young generation. Regarding other 

socioeconomic attributes, LAVIERI & BHAT [2019] revealed that individuals with high income and 

the ones who work full-time or are self-employed show a lower tendency to adopt to ODRP.  

Travel behavior of individuals also influences the willingness to adopt to ODRP services. 

KRUEGER ET AL. [2016] found that persons who are multimodal have a higher possibility of 

adoption to either individual or pooled services, while LAVIERI & BHAT [2019] discovered that 

individuals who do not use a car to commute have higher chances to easily use these services. 

In order to increase the attractiveness of ODRP services to private car users, a high level of 

service should be offered to them. This is supported by the findings of AL-AYYASH ET AL. [2016], 

in which the level of service was found to be the most important determinant for the ODRP 

acceptance from private car users. Whereas for public transportation users the travel costs 

were considered the most significant attribute.  
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The purpose of the trip also influences the likelihood of using an ODRP service. KRUEGER ET AL. 

[2016] show that ride pooling is favored compared to individual trips for shopping trips, while 

according to LAVIERI & BHAT [2019] female and young passengers, together with the ones who 

own an individual car are less probable to use the ODRP service for commuting trips. 

2.2.2 Service operator’s consideration  

From the operator’s perspective, an ODRP service in general terms is seen as solving the 

problem of serving a set of customer requests by using a set of vehicles, while making sure 

that two or more requested rides are shared, if possible. Decomposing the general ODRP 

problem into sub-problems, it contains issues regarding:  

• ride pooling system specification, 

• demand and supply characteristics, 

• how to efficiently match the supply and demand (assigning vehicles to passengers) by 

using effective vehicle routing objectives,   

• potential to share rides (possibility to find two or more trips which can be shared). 

Ride pooling system specification 

Some of the initial choices that the operator should make for a successful ODRP offer are: 1) 

the selection of the area of service, 2) service quality parameters, and 3) the price offered to 

the customers. Cities with a high density of population are found to be favorable for an 

effective ODRP offer due to higher chances of finding shareable trips [SANTI ET AL., 2014a].  The 

set of SQP which comprise an ODRP offer, can include: 1) the time a customer waits to get 

picked up, 2) the detour time or the deviation from the direct travel route, 3) the reservation 

time, which specifies if it is possible to book a ride in advance (reservation time higher than 0) 

or not (reservation time equal to 0). While the SQP define the kind of quality of service offered 

to the customers, when it comes to solving the ODRP problem, they are considered as time 

constraints by the operator (more on this topic below in Vehicle routing objectives). Pricing is 

another important parameter to be considered. This stems from the fact that customers 

would potentially only accept to share the ride with somebody and hence experience travel 

discomfort due to increased travel time as a result of trip sharing, only if in exchange they pay 

a lower price for the ride compared to the other available alternatives. A research study from 

KUCHARSKI & CATS [2020] predicts that the potential ODRP services in terms of vehicle-hour 

reduction is possible for discount levels ranging between 10% and 30% lower than the ODRH 

price, while the savings of the currently offered ODRP services range from 25% to 60% 

compared to ODRH services [SHAHEEN & COHEN, 2018].  
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Ride pooling demand and supply 

The type of the ODRP booking system defines what type of information will be available for 

the demand generation. The ODRP booking systems can be reservation-based (also known as 

prebooked systems) or instant (also known as online systems). Based on the type of booking 

system of an ODRP service, two types of generated trip requests are distinguished: static and 

dynamic. Trip requests are considered static, for the reservation-based ride pooling when the 

trip demand is known in advance [SANTI ET AL., 2014a; TACHET ET AL., 2017], i.e., the customers 

can reserve a ride for a later point in time. Whereas for instant ODRP booking systems, in 

which trip demand is not known beforehand, but instead is generated instantaneously, the 

trip requests are considered dynamic [ALONSO-MORA ET AL., 2017; ENGELHARDT ET AL., 2019a], i.e., 

the customers can request a trip instantly on demand without the need for a reservation in 

advanced.  

The demand used as an input for ride pooling case studies was generated from: taxi data 

[TACHET ET AL., 2017; BISCHOFF ET AL., 2017; SANTI ET AL., 2014a; ALONSO-MORA ET AL., 2017], 

observed ride pooling trips, private vehicle trips [ENGELHARDT ET AL., 2019a; FIEDLER ET AL., 2018; 

ZWICK ET AL., 2021] or synthetic travel demand data [HOSNI ET AL., 2014; DAGANZO & OUYANG, 2019; 

KE ET AL., 2020]. In almost all the cases considered, with the exception of KUCHARSKI & CATS 

[2020], demand is assumed to be exogenous, i.e., fixed or scenario-based, and not sensitive 

to service quality of the ODRP service or price.  

From the supply side, the fleet size and the vehicle capacity considerations are crucial to 

determine the quality of service. These parameters directly influence the degree of demand 

fulfillment, i.e., the percentage of served trip requests, and the customer waiting times to get 

picked up. From one side, the operator could opt for a minimum fleet size to reduce the cost, 

but from the other side, a large enough fleet size would be necessary to offer a better quality 

of service to the customers by increasing the percentage of served customers while offering 

them short waiting times to be picked up. Hence, the service provider has to consider the 

trade-off between the service cost and the quality of service offered to the customers. In the 

current research studies, the vehicles are either assumed to be promptly available at the trip 

request origin [SANTI ET AL., 2014a; TACHET ET AL., 2017] or the fleet size is considered to be a 

predefined parameter [ALONSO-MORA ET AL., 2017; ENGELHARDT ET AL., 2019a]. In order to 

determine the necessary fleet size to serve a given on-demand service demand without any 

significant delay incurred by the passengers, VAZIFEH ET AL. [2018] have identified a scalable 

solution to tackle this problem.  
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Considering the customer perspective, vehicle capacity defines the maximum number of 

passenger with whom they can share the trip, which as mentioned before is an important 

aspect to determine the customer willingness to use the service [ALONSO-GONZÁLEZ ET AL., 

2020a].  Considering the perspective of the operator, the vehicle capacity influences the 

decision to select the type of vehicles necessary to be used in the fleet. Furthermore, this 

parameter is important to determine the computational complexity of the ride pooling 

problem. SANTI ET AL. [2014a] limited the capacity of vehicles to 2 and argued that a capacity of 

3 would be heuristically feasible and more than 3 would be computationally not feasible. 

While ALONSO-MORA ET AL. [2017] extended the concept of SANTI ET AL. [2014a] and were able to 

test capacity larger than 2, including capacity 4, 8 and 10.   

In order to cope with imbalances of demand and supply, strategies of vehicle repositioning in 

areas of high demand could be a useful approach to balance the demand and supply while 

increasing the quality of service offered to the customers [WEIKL & BOGENBERGER, 2013]. 

Therefore, such repositioning strategies could increase the percentage of served request and 

decrease waiting times or travel times [POULS ET AL., 2020], however they could have the 

disadvantage of producing more VKT in the system [BISCHOFF & MACIEJEWSKI, 2020].  

Vehicle routing objectives 

In the ODRP realm, the problem of matching the demand and supply is known as the problem 

of assigning vehicles to passengers and selecting the routes which the vehicles will take. The 

selection of the routes is performed by defining an objective for the vehicle routing algorithm. 

Different vehicle routing objectives can be distinguished depending on the domain where the 

operator wants to have a positive impact on. Thus, the vehicle objectives can be classified in 

three main categories which represent the perspective of customers, operators and cities and 

are given below:   

• Customers favor minimizing of the waiting times [FAGNANT & KOCKELMAN, 2018], travel 

times [SANTI ET AL., 2014a], delays [ALONSO-MORA ET AL., 2017] and travel prices. 

• Operators could opt for minimization of the operational costs or vehicle-hours, 

maximization of profit, maximization of served trips or maximization of shared trips 

[HOSNI ET AL., 2014; TACHET ET AL., 2017]. 

• Cities are concerned about system performance and could prefer minimizing vehicle 

kilometers travelled (VKT) and improving traffic efficiency.  

Hence, vehicle routing optimization could include a single objective, when only one of the 

above criteria is considered or multiple objectives, when a combination of different objectives 
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is used. Some objectives such as the minimization of VKT [AGATZ ET AL., 2011; FIEDLER ET AL., 2018; 

ENGELHARDT ET AL., 2019a]  might be considered to satisfy both operator’s and city’s 

requirements.  However, using objectives from different perspective could also lead to 

clashing optimal solutions, as for instance minimizing the waiting times from customer side in 

most of the cases would not lead to an optimal solution regarding minimum vehicle fleet size 

from operator side. However, it is necessary to include different perspectives for the 

optimization objective to account for these conflicting solutions and have a better overall 

mobility system behavior.  

As mentioned earlier, the considered SQP from customer perspective, such as waiting times 

or detour times, are identified as time constraints for solving the vehicle routing optimization 

problem for operators. As such, these constraints should not be exceeded in order to satisfy 

the customers’ requirement toward the ODRP service. The time constraints can either be 

fixed, by specifying a maximum value of the parameters [SANTI ET AL., 2014a; TACHET ET AL., 2017] 

or a maximum value compared to the percentage of the total trip time [ENGELHARDT ET AL., 

2019a; FAGNANT & KOCKELMAN, 2018], or flexible, based on a compensatory function which 

relates the detour time, the ODRP travelling discomfort and the compensation in terms of fare 

reduction that the customers get by sharing their ride [KUCHARSKI & CATS, 2020]. 

The solution approaches of the ODRP services could be classified in online and offline ones. 

The online solution approaches are used for online ODRP systems and hence the focus is on 

the speed and the efficiency of the solution [SIMONETTO ET AL., 2019], while offline solution 

approaches focus on the system-wide impacts [TACHET ET AL., 2017; DAGANZO & OUYANG, 2019; 

KUCHARSKI & CATS, 2020; KE ET AL., 2020].   

Potential of sharing rides 

One crucial factor determining the successful operation of ODRP services is the possibility to 

find trips which can be shared between passengers in an operating area. Even though more 

ODRP services are becoming available to the customers, the possibility to actually share a trip 

with another passenger is reportedly quite low, for instance in a current ODRP service in 

Chengdu the percentage of shared trips is only 6-7% [LI ET AL., 2019]. Hence, some companies, 

like Uber, Lyft and Via, are experimenting with different models (Uber Express POOL, Lyft 

Shared Saver), where they do not offer door-to-door service, but passengers have to walk to 

the closest intersection in order to increase the percentage of shared trips and decrease the 

detour time. However, this option would diminish one of the crucial advantages of the ODRP 

service of offering door-to-door transportation.  
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Therefore, the question that arises is: What are the factors which influence the potential to 

share rides in a door-to-door ODRP service? Intuitively, the higher the number of trips 

generated in an area is, the higher are the chances to find shareable trips. However, strict time 

constraints imposed to the system by SQP (e.g., low detour times or low waiting times), 

decrease the flexibility of the ODRP system and hence, the available number of options for 

trip sharing between passengers is lower. However, low detour times and low waiting times 

might increase the attractiveness of the customers to use the ODRP service. Hence, the 

operators should have a more profound understanding of this trade-off and additionally, an 

investigation of the influence that other system parameters have on the potential to find 

shareable trips is necessary.  

SANTI ET AL. [2014a] assumed that two trips are shareable with each another if their paths 

overlap at least partially and if their arrival times do not exceed the direct travel times of both 

trips by more than a predefined delay time parameter. In order to handle large problem 

instances for a set of known trips, in a more efficient way compared to the insertion heuristics 

approach, they introduced the concept of shareability networks to define the percentage to 

shareable trips in the system. In this type of network, each trip is represented by a node and 

the nodes are connected by a link if a possible match between the trips is theoretically found. 

Depending on the objective of the optimization, trips are matched together, e.g., for the 

objective of maximizing the percentage of shared trips, trips are matched together so that 

they can achieve the maximum possible number of matches. The shareability value is then 

defined as the relative value of the trips that can be shared to the total number of trips.  SANTI 

ET AL. [2014a] show that with increasing the delay time parameter, shareability quickly 

approaches 100% for the New York taxi trip data. However, the results differ depending on 

the type of information available, i.e., static (trip information is known well in advance) or 

dynamic (trip information is available in periods of one minute). For a delay time of only one 

minute, shareability is found to be around 95% and 30% for static and dynamic systems, 

respectively. The results show that even for a small delay time shareability can be quite high 

for dense areas like New York City. However, the authors argue that less dense cities can also 

show a good potential by performing a subsampling of the data set to represent low passenger 

trip generation areas.  

In order to test the shareability concept in other cities and to generalize the influencing 

factors, TACHET ET AL. [2017] introduced an analytical model which is based on the concept of 

shareability shadows. A shareability shadow is a geometrical area where the origins and 

destinations of a trip should be in order for it to be shareable with an existing trip, whose 

trajectory is represented by a straight line. They showed that shareability, for the case when 
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the optimization objective is to maximize the percentage of shared trips in the area, can be 

described quite well by an analytical function. According to this analytical formulation, 

shareability is negatively related with the surface of the area and positively related with the 

number of passenger trips per hour generated in an area, average velocity and a delay time 

parameter. They tested their model with taxi data from New York City, San Francisco, 

Singapore and Vienna and found that albeit the passenger trip generation rate in the 

considered cities and their topologies are quite different, the function matches quite well the 

simulated data.  

2.2.3 Traffic impacts  

The traffic impact of ODRP services can be divided in ODRP impact on VKT and ODRP impact 

on system-wide traffic efficiency. While there are multiple studies regarding the ODRP vehicle 

kilometers travelled impact, the studies regarding ODRP system-wide traffic impacts are 

limited.  

Ride pooling impact on vehicle kilometers travelled (VKT) 

On-demand mobility service serving passengers individually or ODRH services, are considered 

to increase the VKT in the system due to empty trips generated while going to pick up 

passengers or even due to induced trips [MACIEJEWSKI & BISCHOFF, 2018; DANDL ET AL., 2017; 

FIEDLER ET AL., 2017]. Hence, they often contribute to increased level of congestion in a city. 

ODRP services on the other side have the potential to reduce the total VKT in the system by 

compensating the generated empty trips to pick up passengers by the saved VKT from sharing 

with each other trips which have similar trajectory are occur during the same time span. This 

can contribute to improved traffic conditions and reduced pollution in cities [International 

Transport Forum, 2016, 2017].  

Traffic impacts of an ODRP service for individual cities have been analyzed in different studies, 

where the authors used agent-based simulations to derive the reduction in VKT in the system. 

AGATZ ET AL. [2011] suggested that ride pooling in the city of Atlanta can reduce the VKT even 

for low demand levels and analyze the benefit of using a sophisticated optimization method 

compared to a greedy matching. For New York City, Alonso Mora et al. [2017] showed that 

the travel distance in New York City can be reduced by substituting 98% of taxi trips served by 

13000 taxies by ODRP trips served with a fleet of 3000 vehicles. For their case study, the travel 

distance decreases with higher ODRP passenger demand, vehicle capacity and delay time. 

FAGNANT & KOCKELMAN [2018] studied the impact of ride pooling in Austin, Texas and identified 

that a replacement rate lower than 11% of the total internal trips would result in increased 
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VKT in the system and a break-even point, where no additional VKT are generate, would only 

occur for a replacement of around 11%. The authors predict that meaningful reduction might 

happen provided that the market share of ODRP reaches 20-50%. In a case study in Berlin 

substituting taxi trips with ODRP trips, BISCHOFF ET AL. [2017] found that VKT saving of the ODRP 

service vary between 15-20% compared to the base scenario. MARTINEZ & VIEGAS [2017] 

analyzed the impact of an ODRP service in Lisbon in the extreme case where all private 

vehicles, taxi and bus trips are replaced by ODRP trips either similar to a taxi-like system or 

bus-like system with a 30 minutes booking in advance and found significant reduction in VKT 

(30% reduction for the best scenario) and emission (40% reduction). Replacing private vehicle 

trips with ODRP trips in the city of Prague, FIEDLER ET AL. [2018] showed that the ODRP service 

can reduce the VKT in the system by producing 60% of the vehicle kilometers generated by 

private vehicles and to 35% of the vehicle kilometers generated by a ride hailing system. The 

results also showed that the average vehicle occupancy of the ODRP fleet increases for lower 

ODRP service quality offered to the customers (e.g., for high delay time). A similar study is 

performed for the Munich city where up to 15% of private vehicle trips are substituted with 

ODRP service [ENGELHARDT ET AL., 2019a]. The results show that ODRP service impact in 

reduction of VKT can be noticeable after a certain penetration rate of the ODRP service, which 

in the Munich case study corresponds to 5% substitution of private vehicle trips with ODRP 

trips. Recently, ZWICK ET AL. [2021] studied the ODRP impact in Munich as well and similarly 

they show a reduction of VKT, but with the burden of increasing the average noise exposure 

as a result of more traffic generated in residential areas. 

Ride pooling system-wide traffic impacts  

The studies mentioned above and almost all ODRP studies in the literature are performed by 

using agent-based simulations, which are not suitable to derive the impacts of an ODRP service 

on the system-wide traffic conditions, which could be the case if the agent-based model is 

coupled with a microscopic traffic simulation model. Therefore, they consider only the impact 

of the ODRP vehicle fleet in VKT reduction, without consideration of the interaction with other 

vehicles present in the network. Including this aspect would provide an analysis of the impact 

of the ODRP service on the network state, which is currently scarce in the literature. 

The traffic state of a system-wide network is typically represented by the macroscopic 

fundamental diagram (MFD). The MFD (sometimes also referred as network fundamental 

diagram) expresses the relation of the average velocity 𝑣 in the network, the traffic flow 𝑞 

(number of vehicles that pass a reference point per unit of time), and the traffic density 𝑘 

(number of vehicles per unit distance of the network) and was initially derived for highway 

sections [GREENSHIELDS, 1935]. Later, it was discovered that an alike relation is valid also for 
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urban areas. Daganzo [2007] introduced a functional form of the MFD for urban networks that 

relates travel production (expressed in vehicle-meters) and accumulation (expressed in 

vehicles), which was then validated by Geroliminis and Daganzo [2008]. There are different 

methods to derive the MFD for urban areas which include: the use of detectors or floating car 

data [GEROLIMINIS & DAGANZO, 2008, 2007], microscopic traffic simulations [DANDL ET AL., 2021; 

BRACHER & BOGENBERGER, 2017] or analytical derivations [DAGANZO & GEROLIMINIS, 2008; LAVAL & 

CASTRILLÓN, 2015; TILG ET AL., 2021].  

The benefits of the functional form of the MFD have been exploited in ODRH service studies 

as a background for dynamic urban traffic modeling in order to establish a revenue 

maximization platform [LUO & SAIGAL, 2017] and for dynamic modeling and control of a 

network taxi dispatch system [RAMEZANI & NOURINEJAD, 2018]. The MFD has been used recently 

also in ODRP studies. For instance, DANDL ET AL. [2021] used the MFD to quickly estimate the 

travel time in the network due to changes in service demand for a multi-modal system 

including ODRP. Additionally, KE ET AL. [2020] used the potential of the MFD to establish a 

model to describe traffic congestion for ride sourcing markets and compare the travel times 

for ODRH passengers, ODRP passengers and private vehicle users.  

2.3 Modelling Approaches for On-Demand Ride Pooling 

Different modelling approaches are used in order to represent different phenomena in the 

realm of ODRP in a simple and understandable way and then analyze the ODRP impacts. The 

most commonly used ODRP models are agent-based models and only a few studies use 

analytical models to access ODRP impacts [TACHET ET AL., 2017; DAGANZO & OUYANG, 2019; KE ET 

AL., 2020]. 

2.3.1 Agent-based models for on-demand ride pooling 

Agent-based models are used to model the actions of individual agents, which are 

autonomous entities making decisions based on a set of rules, and the simultaneous 

interaction of multiple agents with each other. The goal of using agent-based models is to 

model complex phenomena or systems and to assess the impact that the individual behavior 

of agents and the interaction between multiple agents have on the whole system. Agent-

based modeling approaches use the power of computers in order to explore the competitive 

interactions between agents which are not possible to be captured by a pure mathematical 

model [BONABEAU, 2002; WILENSKY & RAND, 2015].  
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Most of the studies about assessing the impact of ODRP have been performed by using agent-

based simulation models. These can be simulations developed independently by researchers 

in software programs, such as C++ [AGATZ ET AL., 2011; FAGNANT & KOCKELMAN, 2018] and Python 

[ENGELHARDT ET AL., 2019a] being the most used programming language for this purpose, or 

well-known open-source large-scale agent-based transport simulations such as MATSim 

[BISCHOFF ET AL., 2017; ZWICK ET AL., 2021].  

The main agents in this context are customers, vehicles, and the fleet operator [ALONSO-MORA 

ET AL., 2017; ENGELHARDT ET AL., 2019b]. The interactions between these agents are based on 

their individual properties and behavior, and the decisions specified by the fleet operator. For 

instance, the customer who wants to travel from a certain position to another one, is treated 

as an agent which sends a request to the ODRP system, where she specifies the position where 

she wants her trip to start and end and the time when she wants to get picked up, either 

instantly or at a specific time, depending on the ability of the ODRP system to allow 

reservation of requests in advance. Depending on the kind of the ODRP system, the amount 

of time the customer is willing to wait to get picked up and the acceptable temporal deviation 

from the direct travel route could be specified by the customer, however in most of the cases, 

these parameters are predefined by the fleet operator. Vehicle agents, having a certain 

capacity to accommodate customers on board, drive in the network and transport customers 

from a specific origin to a specific destination. The decision to serve which customer and at 

which time in an efficient way is made by the fleet operator. Mathematically, this decision is 

derived by solving an optimization problem, where the operator specifies the vehicle routing 

objectives and a set of rules to achieve these objectives, while guaranteeing that the 

customers will be served within their preferred time constraints [ENGELHARDT ET AL., 2019b].  

One key advantage of using agent-based simulation models is that they can provide detailed 

modelling of operational aspects of a vehicle fleet. Moreover, with agent-based models 

heterogenous fleets can be modelled and depending on the type of agent-based models also 

the online operations of an ODRP service can be analyzed [SIMONETTO ET AL., 2019]. 

Nevertheless, agent-based models need a lot of input data, the main ones being specific 

demand data and city network details, which are not always easy to acquire. Hence, they are 

specific for a city and in order to study the impacts of the ODRP services in other cities, the 

same amount of input data and effort is needed. Agent-based models are also 

computationally very expensive. In the case of ODRP studies, where there are quite a lot of 

parameters to be considered, the investigation of the impact that these parameters have on 

the result would require a large number of simulations and hence a large amount of 

computational time. As each agent in the network is modelled individually, with increasing 
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ODRP passenger demand, the number of customer agents also rises, increasing thereby also 

the computational time. Moreover, the ODRP optimization problem solved in the agent-based 

simulations is usually NP-hard problem and hence the computational time rises with 

increasing problem size, which in the ODRP service problem is represented by the increased 

ODRP passenger demand. Furthermore, due to their complexity, the agent-based models 

sometimes hide important interactions and thereby the effect of certain parameters is not 

easily understood.  

2.3.2 Analytical models for on-demand ride pooling 

In general, analytical models describe a system using mathematical concepts and therefore, a 

phenomenon can be more comprehensively described. Additionally, the impact of a single 

parameter of the model on the overall system can be easily interpreted and understood, as 

this impact can be analytically represented. Furthermore, the input data needed for an 

analytical model is low and its computational time negligible. Hence, when deciding of which 

modelling technique to use for the analyses of a problem, the general approach taken is the 

use of analytical modelling, if the system can be realistically represented by a set of solvable 

equations, which can be a challenging task to achieve in a lot of cases.   

ODRP systems are complex systems and the behavior of their agents and the interactions 

between them can be difficult to be described by a set of solvable analytical equations. 

Therefore, contrary to the large number of existing ODRP agent-based simulation studies, the 

number of ODRP studies which use the analytical modelling approach to analyze the impacts 

of ODRP services is scarce.  

SPIESER ET AL. [2014] used an analytical model to solve the problem of finding the vehicle fleet 

size necessary to accommodate the transport demand of a given city for an autonomous 

ODRH service. They considered two problems: the problem of finding the minimum fleet size 

and the problem of finding a performance-driven fleet size, which ensures a certain quality of 

service offered to the customers. Using a similar goal, but another analytical approach, 

DAGANZO & OUYANG [2019] developed a simple analytical model that relates the user travel time 

with the fleet size for a certain demand level considering also ODRP service in addition to 

ODRH service. However, the model from DAGANZO & OUYANG [2019] is not valid for heavy 

demand systems and uses a very simplistic assignment algorithm which is not likely to be used 

by operators. In the case of the ODRP service, this algorithm prioritizes customers’ pick-ups 

over drop-offs, allowing for an infinite detour time parameter, which will most certainly not 

be accepted by the customers. These assumptions need further investigation which would 
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allow for a more realistic representation of an ODRP system and would therefore contribute 

to a better planning of an ODRP service. 

TACHET ET AL. [2017] analyzed the impact of the ODRP service by using analytical modelling and 

presented an equation that describes the impact of ODRP passenger demand, city area, 

velocity, and a delay time parameter (which is the sum of the maximum waiting time and the 

detour time) on the percentage of shared trips in an area. They also show that their model 

holds for different cities, allowing for its generalization. However, their model is firstly 

restricted to only investigate the achievable percentage of shareable trips in an area where an 

ODRP service is offered. Secondly, the delay time parameter in their study is the sum of the 

detour time and the maximum waiting time, therefore in the analytical shareability model by 

TACHET ET AL. [2017] the individual effects of the detour time and the waiting time alone are 

not examined. Moreover, the impact of other SQP, such as reservation time, the 

boarding/disembarking time, or network modelling details are also not investigated. 

Furthermore, the analytical model of shareability by TACHET ET AL. [2017] is valid only for the 

optimization objective of maximizing the percentage of shared trips and is validated by taxi 

data. The validity of the model for other cities or other types of passenger demand data is not 

considered up to now.  

KE ET AL. [2020] recently used theoretical modeling to analyze the congestion effects of a 

system, explicitly represented by a MFD while considering ODRH service, ODRP service and 

private vehicles. They examined and compared the overall travel time of ODRP and ODRH 

customers and private car users and identified some scenarios where the implementation of 

the ODRP service could contribute to achieve the win-win situation between ODRP, ODRH 

customers and private car users regarding lower experienced travel times. The authors found 

that what they refer to as ‘matching time window’, which corresponds to the pick-up waiting 

time is a key decision variable affecting the stationary equilibrium state. Similarly as in 

previous studies [SANTI ET AL., 2014a; TACHET ET AL., 2017], also in this study it is shown that 

higher values of the matching time window increase the pool-matching probability, the 

customers would have to wait longer to get picked up though. However, to simplify the 

theoretical analyses of an otherwise very complex interaction of the parameters of an ODRP 

system, their method assumes a simple matching strategy considering only the proximity of 

origins and destinations. Therefore, they only investigate the impact of waiting time on the 

travel time of different users of the system, without considering in-route deviations (or detour 

distance).  

  



Literature Review  27 

 

Paper Study area Demand data Booking 

system 

Service 

parameters 

Vehicle routing 

objective 

Modelling 

approach 

Profitability 

[AGATZ ET AL., 2011] Atlanta travel demand data prebooked delay minimize VKT 

 

agent-based yes 

[ALONSO-MORA ET AL., 2017] New York taxi data instant Δ, 𝑡𝑚𝑎𝑥, 𝑡𝑏 minimize delay 

 

agent-based no 

[BISCHOFF ET AL., 2017] Berlin taxi data instant 𝑡𝑚𝑎𝑥, Δ, 𝑡𝑏 minimize travel time 

 

agent-based no 

[DAGANZO & OUYANG, 2019] Synthetic synthetic prebooked delay not considered  

 

analytical no 

[DANDL ET AL., 2021] Munich OD demand model instant 𝑡𝑚𝑎𝑥, Δ, 𝑡𝑏 minimize VKT and 

delay 

agent-based yes 

[ENGELHARDT ET AL., 2019a] Munich OD (PV) demand 

model 

(short-term) 

prebooked 

Δ, 𝑡𝑚𝑎𝑥, 𝑡𝑏 minimize VKT agent-based no 

[FAGNANT & KOCKELMAN, 2018] Austin OD demand model instant Δ, 𝑡𝑚𝑎𝑥, 𝑡𝑏 minimize waiting 

time 

agent-based yes 

[FIEDLER ET AL., 2018] Prague OD (PV) demand 

model 

instant delay, 𝑡𝑏 minimize VKT 

 

agent-based no 

[KE ET AL., 2020] Synthetic synthetic prebooked 𝑡𝑚𝑎𝑥  not considered analytical no 
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[KUCHARSKI & CATS, 2020] Amsterdam multimodal data 

from activity-based 

model 

prebooked 𝑡𝑚𝑎𝑥, Δ, 𝑡𝑏 minimize travel time, 

maximize utility 

agent-based yes 

[MARTINEZ & VIEGAS, 2017] Lisbon multimodal survey 

data 

instant and 

prebooked 

𝑡𝑚𝑎𝑥, delay minimize travel time agent-based no 

[SANTI ET AL., 2014a] New York taxi data instant and 

prebooked 

delay maximize shared 

rides, minimize 

travel time 

agent-based no 

[TACHET ET AL., 2017] New York, 

San 

Francisco, 

Singapore, 

Vienna 

taxi data prebooked delay maximize shared 

rides 

analytical no 

[ZWICK ET AL., 2021] Munich travel demand 

model based on 

survey data 

instant 𝑡𝑚𝑎𝑥, Δ, 𝑡𝑏 unclear agent-based no 

THIS THESIS Munich OD (PV) demand 

data 

instant and 

(short-term) 

prebooked 

𝒕𝒎𝒂𝒙, Δ, 𝒕𝒃 maximize shared 

rides and minimize 

VKT 

analytical yes 

 PV: private vehicles, OD: origin-destination 

𝒕𝒎𝒂𝒙: waiting time, Δ: detour, delay: sum of detour and waiting time, 𝒕𝒃: boarding/disembarking time 
VKT: vehicle kilometers travelled 

Tab. 2.1 Summary and classification of on-demand ride pooling (ODRP) studies. 
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Key Takeaways – Research Gaps 

• Most of the ODRP studies are performed by using agent-based simulations, which 

even though providing detailed modelling of the system, require large input data 

and computation time, while studies using analytical modelling approach are 

scarce. 

• RG 1 – The potential of shared trips investigated analytically by the shareability 

model of TACHET ET AL. [2017] does not take into account the separate impact of 

detour time and maximum waiting time and the additional influence of boarding 

time and reservation time on the percentage of shared trips in an area. 

Additionally, the impact of network modelling details, such as network topology, 

demand patterns, optimization objective and inhomogeneous velocity on 

shareability are not examined currently.  

• RG 2 – The system-wide traffic impacts of ODRP service are currently examined by 

considering only the reduction of VKT by the ODRP fleet. KE ET AL. [2020] consider 

also the background traffic, however they use a simple matching approach, 

without considering the impact of the vehicle routing optimization objectives in 

the results.    

• RG 3 – A general analytical model which can capture the ODRP benefits in terms of 

cities’ traffic efficiency, operators’ monetary profitability and customer 

attractiveness to use the service, which could provide the system parameters and 

the framework conditions in which the ODRP service win-win-win situation could 

be achieved, is currently not available in the literature. 
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3. Analytical Modelling of On-Demand Ride Pooling Impacts 

This chapter will provide a description of the analytical models developed to capture the 

impacts of ODRP services, which will help to achieve the aim of this thesis. In Section 3.1, the 

analytical shareability models which examine the influence of SQP on the percentage of 

shared trips in an area will be presented. The analytical model of the traffic impacts of ODRP 

service will be elaborated in Section 3.2. Lastly, Section 3.3 will provide a general model which 

can capture the benefits of an ODRP service from the perspective of the customers, the 

operator and the city.    

3.1 Analytical Modelling of On-Demand Ride Pooling Shareability  

This section describes the analytical models that are developed to explore the impact of SQP 

on shareability. Two different models are established depending on the type of booking 

system: 1) instant, when the ODRP passenger ride is requested instantly; and 2) reserved, 

when the ODRP passenger ride is prebooked.  

3.1.1 General model set-up 

As mentioned before the benefits of ride pooling are tightly tied with the possibility to find 

shareable trips in an area. TACHET ET AL. [2017] already investigate in this realm and found that 

shareability depends on ride pooling passenger demand generation λp, average city velocity 

𝜈, the surface of an operating area Ω and a maximum delay time parameter, which is the sum 

of maximum waiting time to get picked up 𝑡𝑚𝑎𝑥 and the deviation from the direct travel 

distance or detour time Δ. However, in their study, TACHET ET AL. [2017] assume that all the 

requests are known well in advance and the only service quality parameter they consider is 

the delay time.  

In order to profoundly investigate the influence of different parameters on the percentage of 

shared trips in an urban area (or shareability), the models established in this chapter are 

inspired by [TACHET ET AL., 2017] and are extended in two directions:  

• Incorporation of the impacts of the type of booking system on the shareability model 

considering an instant booking system and a short-term prebooking system. 

• Modelling of individual influences of SQP, such as maximum waiting time, detour time 

and boarding/disembarking time in the shareability model. 
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Inclusion of these two directions in the shareability model contributes to addressing the 

research gap RG 1.a, regarding the analytical exploration of the impact of maximum 

waiting time, detour time, boarding/disembarking time, and the type of booking system 

(or reservation time) on shareability, which are currently not analytically investigated in 

the literature. The evaluation of the shareability model in Section 5.1 will address the 

research gap RG 1.b, regarding the impact of network modelling details on shareability. 

Shareability is defined as the probability to find trips with similar spatial and temporal 

trajectories in a defined operating area. For two trips to be shareable with each other, they 

should satisfy the following general conditions:  

• A partial overlapping of trip trajectories in space and time should exist.  

• The detour from the direct travel distance should not be longer than a detour time 

parameter  ∆, usually specified by the service operator.  

• The passenger should get picked up within a specified maximum waiting time 

parameter 𝑡𝑚𝑎𝑥. 

The trajectory of a given trip 𝑇𝑎(𝑡𝑎, 𝑂𝑎, 𝐷𝑎), which starts at time 𝑡𝑎, originates at 𝑂𝑎 and has 

the final destination at 𝐷𝑎, is specified by the red line in Figure 3.1 and Figure 3.2. Assuming 

that the trips follow the shortest path between two points in a Euclidean space, their 

trajectory is considered to be a straight line. Following this assumption, a vehicle that 

accommodates trip 𝑇𝑎, at the point of time 𝑡 will be located at position 𝑟𝑎(𝑡). In order to find 

another trip 𝑇𝑥 which could be shareable with this existing trip 𝑇𝑎, the question that requires 

an answer is: Where exactly should the origin and destination of the new trip 𝑇𝑥 be in order 

for this trip to be shareable with the existing trip 𝑇𝑎?  

The shareability shadow explained in the following subsection answers this question. The 

concept of the shareability shadow introduced by TACHET ET AL. [2017] is a key concept in the 

development of the shareability models. Shareability shadow is a geometrical area defining 

the position in space where the origin and destination of a trip could be for this trip to be 

shareable with a previously existing trip, while making sure that the time constraints defined 

by the SQP are not violated. For different booking systems, different shareability shadows are 

constructed depending on the relation of time constraints imposed by SQP. The SQP 

considered in this part depend on the type of the ODRP booking system.  
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3.1.2 On-demand ride pooling instant booking system 

In this part, the shareability for an instant (or online) booking system, where the passengers 

want to get picked up immediately, is investigated. For the instant ODRP booking system, the 

impacts of the following SQP on shareability are modelled: maximum waiting time that a 

customer waits to get picked up by a vehicle 𝑡𝑚𝑎𝑥 (referred from now on as maximum waiting 

time), the temporal deviation from the direct travel distance Δ (referred from now on as 

detour time) and the time a customer needs to board or disembark the vehicle 𝑡𝑏. Differently 

from the shareability model from TACHET ET AL. [2017] which considers only the impact of a 

delay time parameter on shareability, in order to model the individual impacts of SQP on 

shareability, in this thesis this delay time parameter is divided in its two main components: 

the maximum waiting time 𝑡𝑚𝑎𝑥 and the detour time Δ. 

Shareability shadow for an instant booking system  

In order to define the shareability for the instant booking system, firstly the shareability 

shadows should be built. As described, the shareability shadow is a region in the vicinity of a 

trip trajectory, which specifies the spatial position of where the origin and destination of a trip 

should be in order to be shareable with an existing trip. The SQP are considered as time 

constraints for the operator and as such they restrict the options to find shareable trips. 

Hence, in the creation of the shareability shadow, each of the service quality parameters is 

represented by a geometric shape, which defines the spatial constraints where a trip could 

start or end in order to be shareable with an existing trip without violating the time constraint 

specified by each of these service quality parameters. The shareability shadow is then formed 

by the intersection of all geometric shapes, representing the simultaneous fulfillment of 

various constraints defined by all the considered service quality parameters. 

The customers using the ODRP service would not accept a large in-vehicle deviation from the 

direct travel route, therefore from the basic requirements needed to be fulfilled in order for 

a trip to be shareable, the detour time constraint should not exceed Δ. Hence, the diversion 

from the original vehicle trajectory of trip 𝑇𝑎 (given by the red line in Figure 3.1) should not be 

longer than 𝑣Δ, which determines the distance in space the vehicle can reach to find shareable 

trips for the allowed detour time Δ, in an area where the average velocity is 𝑣. The geometric 

shape representing the detour time constraint is shown in Figure 3.1 by the gray rectangle 

area with height 2𝑣Δ.  

Assuming that the vehicle which accommodates trip 𝑇𝑎 at the point in time 𝑡 is at position 

𝑟𝑎(𝑡), for instant ODRP booking system where the passengers want to be picked up as soon 
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as possible, the vehicle has the possibility also to pick up a request 𝑇𝑥 whose origin is located 

backward of the vehicle’s direction of travel (on the left side of point 𝑟𝑎(𝑡)). However, this 

could happen only if the time needed to travel back to pick up the other passenger and 

continue forward in the direction of travel is no longer than the specified detour time 

constraint Δ. This condition is satisfied by a parabolic function shown in the left side of 𝑟𝑎(𝑡).  

If the origin of the request 𝑇𝑥 is in the forward direction of travel, on the right side of 𝑟𝑎(𝑡), 

the spatial location of the origin of the request is defined by a circle with origin 𝑟𝑎(𝑡) and a 

radius 𝑣𝑡𝑚𝑎𝑥 , as the passenger to which request 𝑇𝑥 belongs can wait a maximum amount of 

time equal to 𝑡𝑚𝑎𝑥  until a vehicle picks her up. Nevertheless, considering that the customer 

on board of the vehicle would not allow a deviation longer than the detour time, this area is 

restricted by the allowed detour time represented by the gray rectangle.  

The resulting area where the origin of a new request 𝑇𝑥 must be in order to be shareable with 

request 𝑇𝑎 is constructed by the merger of both areas on the left and right side of 𝑟𝑎(𝑡) defined 

by the maximum waiting time and detour time constraints.  

a) 𝑡𝑚𝑎𝑥 ≥  𝛥 − 𝑡𝑏 

    

b) 𝑡𝑚𝑎𝑥 <  𝛥 − 𝑡𝑏 

    

Figure 3.1 Shareability shadow for the instant booking system for two main cases: a) Shareability shadow for 

𝑡𝑚𝑎𝑥 ≥  𝛥 − 𝑡𝑏 and b) Shareability shadow for 𝑡𝑚𝑎𝑥 <  𝛥 − 𝑡𝑏. In the forward sharing probability 
(i.) trip 𝑇𝑎  starts before trip 𝑇𝑥  and in the backward sharing probability (ii.) trip 𝑇𝑥  starts before trip 
𝑇𝑎.  

Lastly, the parameter of the boarding/disembarking time 𝑡𝑏  constraint is considered as time 

lost for the customer inside the vehicle, who would not tolerate a larger deviation from her 

direct travel time than the specified detour time. Hence, the impact of boarding time 𝑡𝑏 

constraint is modelled by subtracting the boarding time from the detour time Δ, as each 

passenger experiences on average one boarding/disembarking process during which another 

passenger boards or disembarks the vehicle.  
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There are two possibilities for the starting time of trip 𝑇𝑥 in order for it to be shareable with 

trip 𝑇𝑎.  The start time of the trip 𝑇𝑥 could be either before or after the starting time of trip 𝑇𝑎. 

If the trip 𝑇𝑥 starts after the starting time of trip 𝑇𝑎, 𝑟𝑎(𝑡) denotes the position in which the 

vehicle that serves trip 𝑇𝑎 is at the point in time 𝑡 (Figure 3.1.a.i, Figure 3.1.b.i). For the other 

case, when trip 𝑇𝑥 starts earlier than the originating time of trip 𝑇𝑎, 𝑟𝑎(𝑡) is assumed to be a 

hypothetical location at which the vehicle which will serve trip 𝑇𝑎 could be at the point in time 

𝑡 (Figure 3.1.a.ii, Figure 3.1.b.ii) [TACHET ET AL., 2017]. 

The final resulting shape of the origin area of trip 𝑇𝑥 depends on the interrelation between 

different SQP. Hence, two different shareability shadows are distinguished:  

a) If the maximum waiting time is larger than the detour time minus the boarding time 

(𝑡𝑚𝑎𝑥 ≥  Δ −  𝑡𝑏 ), the shareability shadow is shown in Figure 3.1.a.  

b)  If the maximum waiting time is smaller than the detour time minus the boarding time 

(𝑡𝑚𝑎𝑥 <  Δ −  𝑡𝑏), the shareability shadow is shown in Figure 3.1.b.  

For each of these shareability shadows, there are two additional cases, which depend on when 

the starting time of trip 𝑇𝑥 is:  

i. If the trip 𝑇𝑥 starts after the starting time of the existing trip 𝑇𝑎, the shareability shadow 

is given in Figure 3.1.a.i and Figure 3.1.b.i. This is also known as the forward (𝑓) sharing 

probability. 

ii. If the trip 𝑇𝑥 starting time is before the starting time of the existing trip 𝑇𝑎, the 

shareability shadow is shown in Figure 3.1.a.ii and Figure 3.1.b.ii. This is also known as 

the backward (𝑏) sharing probability. 

As a result, for a trip 𝑇𝑥 to be shareable with an existing trip 𝑇𝑎, the origin of trip 𝑇𝑥 should be 

within the specified blue area around 𝑟𝑎(𝑡) (denoted as ε) in order for the detour time, 

maximum waiting time and boarding/disembarking time constraints to be satisfied. While the 

trip 𝑇𝑥 destination should be located either before the destination of the existing trip 𝑇𝑎, given 

by the light grey rectangle (denoted as ∈1), or after the destination of trip 𝑇𝑎, given by the 

dark grey rectangle (denoted as ∈2), in order for the trajectories of the trips to be at least 

partially shareable.  

Shareability model for instant booking system 

Considering the above-mentioned cases, the probability that trip 𝑇𝑥 is shareable with trip 𝑇𝑎 

(𝑃𝑓,𝑏) is the sum of the probabilities 𝛤(𝜀 ↷ ∈1∪ ∈2)
𝑓,𝑏

 that the trip 𝑇𝑥 originates in the area ε and 
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has its destination either in area ∈1 (𝛤(𝜀 ↷ ∈1)
𝑓,𝑏

) or in area ∈2 (𝛤(𝜀 ↷ ∈2)
𝑓,𝑏

), as shown in Equation (1). 

As mentioned before, there are two cases depending on the starting time of trip 𝑇𝑥 in relation 

with trip 𝑇𝑎. Therefore, two cases for forward (𝑇𝑥 starts later than 𝑇𝑎) and backward (𝑇𝑥 starts 

earlier than 𝑇𝑎) sharing probability are distinguished, denoted in the following formula as 𝑓 

and 𝑏, respectively.  

𝑃𝑓,𝑏(𝑡|𝑡𝑎,  𝑂𝑎,  𝐷𝑎) =  𝛤(𝜀 ↷ ∈1)
𝑓,𝑏

+ 𝛤(𝜀 ↷ ∈2)
𝑓,𝑏

  = 𝛤(𝜀 ↷ ∈1∪ ∈2)
𝑓,𝑏

 (1) 

To determine the probability that a passenger trip generated at time 𝑡 is possible to be shared 

with an upcoming or former trips through its time extent, the forward (𝑃𝑓) and the backward 

(𝑃𝑏) probabilities are taken into account by using the subsequent formula [TACHET ET AL., 2017]: 

𝑃(𝑡) =  𝑃𝑓(𝑡)+ (1 − 𝑃𝑓(𝑡)) 𝑃𝑏(𝑡) (2) 

In order to come up with solvable equations, some assumptions are necessary for this model. 

It is assumed that the origins of the trips are uniformly distributed in the area and trip 

generation is performed based on a Poisson distribution, whereas their destinations are 

selected to be uniformly distributed within a disk with radius R, which denotes the maximum 

trip distance.    

The shareability is derived as a result of the combination of the probability to find shareable 

trips together with the probability that trips are generated in time and in the corresponding 

area of interest and therefore, integrating over the respective time and space. 

The final shareability formula is given in Equation (3), where a new dimensionless quantity 𝐿𝑠𝑞
𝑜𝑛 

is introduced representing the changes in the shareability shadows as a result of online 

generation of request for the instant ODRP booking system and the further consideration of 

the influence of additional SQP. Therefore ‘on’ refers to the consideration of online generation 

of requests and ‘sq’ refers to the influence of the additional SQP on shareability. As previously 

mentioned, two forms of shareability shadows are distinguished based on the relation of SQP 

with each other, hence there are two different formulas of 𝐿𝑠𝑞
𝑜𝑛. 
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𝑆 = 1 −
1

2𝐿𝑠𝑞
𝑜𝑛3 (1 − 𝑒−𝐿𝑠𝑞

𝑜𝑛
)(1 − (1 + 2𝐿𝑠𝑞

𝑜𝑛)𝑒−2𝐿𝑠𝑞
𝑜𝑛

) (3) 

𝐿𝑠𝑞
𝑜𝑛 depends on:  

 
 

For 𝑡𝑚𝑎𝑥 ≥  Δ −  𝑡𝑏:  

𝐿𝑆𝑄
𝑜𝑛 =

𝜈2𝜆𝑝

𝛺
(𝛥 − 𝑡𝑏)3 (

2

3 ∗ 𝜋
+

1

𝜋
 √(

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

2

− 1 +
1

𝜋
 (

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

2

𝑠𝑖𝑛−1
𝛥 − 𝑡𝑏

𝑡𝑚𝑎𝑥
), (4) 

And for 𝑡𝑚𝑎𝑥 <  Δ −  𝑡𝑏:  
 

𝐿𝑠𝑞
𝑜𝑛 =  

𝜈2𝜆𝑝

𝛺
(𝛥 − 𝑡𝑏)3 (

2

3 ∗ 𝜋
+

1

2
 (

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

3

) . (5) 
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3.1.3 On-demand ride pooling short-term prebooking system 

In this part, the shareability for a short-term ODRP prebooking system, where the passengers 

have the option to reserve a trip short-term in advance is examined. As a prebooking system 

is considered in this part, the influence that reserving the trip short-term in advance has on 

shareability are investigated, hence the impact of a short-term reservation time or prebooking 

time 𝑡𝑟𝑒𝑠 is modelled. In addition, similarly to the previously described instant ODRP booking 

model, the separate impacts of other SQP are also modelled, and hence the separate effect 

of the maximum waiting time 𝑡𝑚𝑎𝑥  and the detour time Δ on the possibility to find sharable 

trips in an area is considered.  

Shareability shadow for short-term prebooking system  

In order to define the shareability for a short-term prebooking system, the example and the 

problem are the same as stated in Subsection 3.1.2. Therefore, solving the problem of finding 

the shareability for the total operation area, starts with solving the problem of defining where 

the origin and destination of trip 𝑇𝑥 could be in order for this trip to be shareable with trip 𝑇𝑎. 

As mentioned, the shareability shadow is a key aspect to find these areas, which consequently 

contribute to derive the shareability in an operating area.  

The main difference between the short-term ODRP prebooking system and the instant ODRP 

booking system is that in the prebooking system the influence of the reservation time 𝑡𝑟𝑒𝑠 is 

also considered. As the shareability shadow is constructed by taking into account the impact 

of SQP, due to the additional SQP of the reservation time 𝑡𝑟𝑒𝑠 included in the prebooking 

system, the shareability shadow of this ODRP system therefore should consider also the 

impact of the reservation time. Hence this difference is the main contributor to the alteration 

between the instant and prebooking shareability models in this thesis.  

The shareability shadow for the short-term prebooking system is given in Figure 3.2. Trip 𝑇𝑎 is 

specified by its origin 𝑂𝑎, destination 𝐷𝑎 and the starting time 𝑡𝑎, where the red line is the trip 

trajectory. The shareability shadow is specified by the time constraints imposed by the SQP, 

which specify the area where the origin and destination of a trip 𝑇𝑥 should be in order to be 

shareable with trip 𝑇𝑎. Firstly, the restriction coming from the detour time Δ and maximum 

waiting time 𝑡𝑚𝑎𝑥  will be described and then the restriction imposed by the reservation time 

𝑡𝑟𝑒𝑠  will be explained.    

The first restriction comes from the detour time parameter and similar as in the ODRP instant 

booking system, the grey rectangle with height 2𝑣Δ specifies the restriction imposed by the 

detour time constraint given by the gray rectangle in Figure 3.2. At the point in time t, the 
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vehicle which serves 𝑇𝑎 is located at position 𝑟𝑎(𝑡). As passengers cannot wait longer than a 

specified maximum waiting time 𝑡𝑚𝑎𝑥  for a vehicle to pick them up, the origin of trip  𝑇𝑥 is 

also in this case located in a disk with source 𝑟𝑎(𝑡) and radius 𝑣𝑡𝑚𝑎𝑥. The area of this disk is 

further constrained by the allowed detour time Δ, as the passenger on-board of the vehicle 

would not allow a deviation larger than its specified initial detour time. 

a) 𝑡𝑚𝑎𝑥 ≥  𝛥 − 𝑡𝑏 

 

b) 𝑡𝑚𝑎𝑥 <  𝛥 −  𝑡𝑏 

 

Figure 3.2 Shareability shadow for the short-term reserved booking system for two main cases: a) Shareability 

shadow for 𝑡𝑚𝑎𝑥 ≥  𝛥 − 𝑡𝑏 and b) Shareability shadow for 𝑡𝑚𝑎𝑥 <  𝛥 − 𝑡𝑏. In the forward sharing 
probability (i.) trip 𝑇𝑎  starts before trip 𝑇𝑥  and in the backward sharing probability (ii.) trip 𝑇𝑥  starts 
before trip 𝑇𝑎.  

The main difference of the shareability shadow between the short-term prebooking system 

and the instant booking system lies in the modelling of the impact of the short-term 

reservation time parameter 𝑡𝑟𝑒𝑠. As reserving a trip short-term in advance is possible in the 

ODRP prebooking system, the assumption made is that the service operator has knowledge 

about the generation of new passenger requests a certain time in advance corresponding to 

𝑡𝑟𝑒𝑠. Based on this assumption, it could be possible for the vehicle positioned at location 

𝑟𝑎(𝑡 − 𝑡𝑟𝑒𝑠) to travel backward of its direction of travel to pick up customers, whose trip origin 

is located inside a disc with radius 𝑣Δ and center at the point 𝑟𝑎(𝑡 − 𝑡𝑟𝑒𝑠), while still not 

deviating from the direct travel time more than the allowed detour time constraint. As the 

operator has prior knowledge regarding request generation, the vehicle positioned at 

𝑟𝑎(𝑡 − 𝑡𝑟𝑒𝑠) at the point in time 𝑡 − 𝑡𝑟𝑒𝑠 is supposed to serve all the trips with origin inside 

the bold black rectangle between 𝑟𝑎(𝑡 − 𝑡𝑟𝑒𝑠) and 𝑟𝑎(𝑡) (Figure 3.2). The short-term 

reservation time 𝑡𝑟𝑒𝑠 defines the length of the rectangle (𝑣𝑡𝑟𝑒𝑠), whereas the height of the 

rectangle is specified by the smallest of the detour time and maximum waiting time to make 

sure the fulfillment of both these constraints. Hence, the height of the rectangle is either 2𝑣Δ 

for 𝑡𝑚𝑎𝑥 ≥  Δ or 2𝑣𝑡𝑚𝑎𝑥  for 𝑡𝑚𝑎𝑥 <  Δ. The intersection of the geometric shapes of the 

above-mentioned areas specified by the detour time, maximum waiting time and reservation 
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time, defines the region where the origin of a trip 𝑇𝑥 should be in order to realize a possible 

match with trip 𝑇𝑎. 

The relation of different SQP with each other, specifies two different shareability shadows: 

a) If maximum waiting time is larger than the detour time (𝑡𝑚𝑎𝑥 ≥  Δ), the shareability 

shadow is given in Figure 3.2.a.  

b)  If the maximum waiting time is smaller than the detour time (𝑡𝑚𝑎𝑥 <  Δ), the 

shareability shadow is given in Figure 3.2.b.  

Like the ODRP instant booking system, for each of the above-mentioned shareability shadows, 

there are two extra cases, depending on when the starting time of trip 𝑇𝑥 is:  

i. If the trip 𝑇𝑥 starts after the starting time of the existing trip 𝑇𝑎, the shareability shadow 

is given in Figure 3.2.a.i and Figure 3.2.b.i. This is also known as the forward sharing 

probability. 

ii. If the trip 𝑇𝑥 starting time is before the starting time of the existing trip 𝑇𝑎, the 

shareability shadow is shown in Figure 3.2.a.ii and Figure 3.2.b.ii. This is also known as 

the backward sharing probability.  

Hence, in order to find a trip 𝑇𝑥 which is shareable with an existing trip 𝑇𝑎, the origin of 𝑇𝑥 

should be within the specified blue area so that the detour time, maximum waiting time and 

reservation time constraints to be fulfilled. In order for the trajectories of the trips to be at 

least partly shareable, the destination of the trip 𝑇𝑥 should be positioned either before the 

destination of the existing trip 𝑇𝑎 (given by the light grey rectangle) or after the destination of 

the trip 𝑇𝑎 (given by the dark grey rectangle). 

Additionally, a limit for which a further increase of the reservation time does not result in 

increased the chances to find shareable trips in an area is designed. Therefore, it is estimated 

that when the reservation time is higher or equal to two times the maximum waiting time, 

there is no significant difference in shareability due to the inability of the vehicle to reach all 

the locations within the bold black rectangle between 𝑟𝑎(𝑡 − 𝑡𝑟𝑒𝑠) and 𝑟𝑎(𝑡) within the 

predefined maximum waiting time. 

Shareability model for a short-term prebooking system 

Following the same assumptions and logic described in the Shareability model for instant 

booking system, the final shareability formula for the short-term prebooking system is 
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analogous to the one given there and is given by Equation (6). Nevertheless, the new 

dimensionless quantity 𝐿𝑠𝑞
𝑟𝑒𝑠 reflects the changes in shareability shadow for the short-term 

ODRP prebooked system, where ‘res’ refers to the short-term reservation time for the trip 

booking option and ‘sq’ refers to the additional service quality parameter impact on 

shareability. Similar to the instant booking system, two forms of shareability shadows are also 

noted in this system based on the dependencies between SQP, thus two different formulas of 

𝐿𝑠𝑞
𝑟𝑒𝑠 are depicted (Equation (7) and (8)). 

 

𝑆 = 1 −
1

2𝐿𝑠𝑞
𝑟𝑒𝑠 (1 − 𝑒−𝐿𝑠𝑞

𝑟𝑒𝑠
)(1 − (1 + 2𝐿𝑠𝑞

𝑟𝑒𝑠)𝑒−2𝐿𝑠𝑞
𝑟𝑒𝑠

) (6) 

𝐿𝑠𝑞
𝑟𝑒𝑠 depends on:  

 
 

For 𝑡𝑚𝑎𝑥 ≥  Δ:  
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And for 𝑡𝑚𝑎𝑥 <  Δ:  
 

𝐿𝑠𝑞
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Key Takeaways – Shareability Model 

• In this section two different analytical shareability models are developed for an 

instant and a prebooked ODRP booking system.  

• The models capture the impact of the following parameters on shareability: 

➢ ODRP passenger demand generated per hour 𝜆𝑝, 

➢ city parameters (surface area 𝛺 and average velocity in the city 𝑣), 

➢ SQP (detour time, maximum waiting time, boarding/disembarking time and 

reservation time).  

• These analytical models contribute to fill the first introduced research gap 

regarding further exploration of SQP impact on shareability by means of analytical 

modelling. 
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3.2 Analytical Modelling of On-Demand Ride Pooling Traffic Impact  

In this section, the traffic impact of ODRP services will be explored by using analytical 

modelling. The section will start with an introduction to the general model that will be 

presented in this part. Then, the vehicle trip reduction model as a result of potential pooled 

trips will be described. Subsequently, modelling of the impact that the vehicle trip reduction 

has on average velocity in a city will be explained and finally, the modified shareability model, 

which includes the second order effect that increased average velocity as a result of shared 

trips has in shareability will be presented.  

3.2.1 General model set-up 

As described in Subsection 2.2.3, until now the traffic impacts of ODRP services are indirectly 

investigated by using the reduction of VKT in the system and considering only the impact of 

the ODRP fleet, without taking into account the influence of other road users (RG 2.a). 

Moreover, all the considered studies, with the exception of KE ET AL. [2020] whose approach is 

theoretical, are performed by using agent-based simulations. The agent-based simulations 

albeit providing detailed modelling approach, suffer from large amounts of input data and 

computational time, apart from the concern that the behavior of some agents might not be 

completely understood. And even in the theoretical study by KE ET AL. [2020], they assumed an 

ODRP system that used a very simple matching based only on the maximum waiting time and 

assuming an infinite detour time, which does not realistically represent the operation of an 

ODRP service (RG 2.b). Moreover, the average velocity in the city is assumed to be constant in 

most of the ODRP simulation and analytical studies currently available (with the exception of 

[LEHE & PANDEY, 2020; BILALI ET AL., 2020b]). Consequently, these studies are incapable of 

capturing the alteration in average velocity in the network due to the impact of pooled trips 

when an ODRP service is introduced. If the average velocity in the network is higher, the reach 

of the vehicles within the allowed detour time is higher and hence the chances to find 

shareable trips will increase. However, the impact that the change of velocity has on the 

shareability is currently not captured analytically in the literature by the available shareability 

model from TACHET ET AL. [2017] (RG 2.c). 

Thus, to fill the before-mentioned research gaps, this section includes: 

• an investigation of the impact of ODRP services in traffic efficiency considering the 

interaction of the ODRP fleet and other vehicles presented in the network by means 

of analytical modelling, providing a method in which the effects of influencing 
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parameters are better understood, while saving computational time and requiring few 

input data (addressing research gap RG 2.a), 

• consideration of not only the influence of the maximum waiting time in analytical 

modeling of traffic impacts of the ODRP service, but also the impact of other SQP, such 

as detour time, boarding time, reservation time, by using the analytical shareability 

model (described in the previous Section 3.1) as a basis for the ODRP traffic impact 

model (addressing research gap RG 2.b), 

• analytical exploration of the second order effect of velocity on shareability, analyzing 

the impacts that the reduced vehicle trips due to the ODRP service have on average 

velocity in the city, and how these impacts influence the shareability results 

(addressing research gap RG 2.c). 

The shareability models described in the previous Section 3.1 give as an output the percentage 

of shared passenger trips in a city depending on SQP and city parameters (average velocity 𝑣 

and surface area 𝛺). The SQP on which these shareability models depend on are detour time 

𝛥, maximum waiting time 𝑡𝑚𝑎𝑥, boarding time 𝑡𝑏  and reservation time  𝑡𝑟𝑒𝑠, which are 

predefined by the service operator and the ODRP passenger demand reflected by the 

requested ODRP passenger trips per hour 𝜆𝑝. Regarding the city parameters, the shareability 

models in Section 3.1 assume that the average velocity 𝑣 does not change as a result of the 

introduction of an ODRP service in the given city. Hence the average velocity in a city 𝑣 is 

always equal to the average velocity of a base scenario 𝑣0, i.e., 𝑣 = 𝑣0.  

However, as a result of shared passenger trips due to the introduction of the ODRP service, 

the total number of vehicles in the system is expected to be reduced. The reduction of the 

vehicle trips in the system depends on the percentage of shared trips in the area for a certain 

base average velocity 𝑆(𝑣0) and the ODRP passenger demand 𝑔 (𝑆,  𝜆𝑝). The reduction of 

vehicles in the system has the potential to increase the average velocity to a higher value 𝑣1. 

As the average velocity is an input for the shareability model, an increase in average velocity 

consequently means an increase in shareability 𝑆(𝑣1).  

The interrelated dependencies between shareability 𝑆, vehicle trip generation in the system 

𝑔 and average velocity 𝑣 are illustrated in the loop diagram in Figure 3.3. The analytical model 

of ODRP traffic efficiency established in this study shows how the ODRP services have the 

potential to improve the average velocity and to additionally increase the chances to find 

shareable trips. In the rest of the section, firstly the model of vehicle trip reduction in the 

system as a result of trip sharing by the ODRP service will be described (the blue box in Figure 

3.3). Then the model relating average velocity and vehicle trips generation by using the 
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fundamental diagram of traffic flow will be presented (the orange box in Figure 3.3). The 

section will conclude with the description of the modified shareability model, which captures 

the impact that changes on the average velocity (or a dynamic average velocity) have on 

shareability.  

3.2.2 Modeling of vehicle trip reduction 

In order to model the vehicle trip reduction in the system while considering the interaction of 

different vehicle types, a system where passengers either use their private vehicles and travel 

alone or they use an ODRP service and share the vehicle trip with somebody else is assumed. 

A gradual penetration of the ODRP services is considered, and hence private vehicles and 

ODRP vehicle fleet will share the same street network.  

Firstly, the difference between the passenger trip generation rate 𝜆 and vehicle trip 

generation rate 𝑔 is explained. The former is the total trips generated per hour by passengers 

and the later represents the total number of vehicle trips generated per hour in the road 

network. The total generated passenger trips per hour 𝜆 are composed of passenger trips 

made alone 𝜆𝑎 and requested ODRP (or pooled) passenger trips 𝜆𝑝. It should be mentioned 

here that a requested pooled passenger trip refers only to the generated ODRP passenger trip 

demand and does not mean that this trip is actually shared with another passenger. Similarly, 

the total number of vehicle trips generated per hour 𝑔 is composed of vehicle trips made alone 

𝑆(𝜆𝑝, 𝑣0, Ω, Δ, 𝑡𝑚𝑎𝑥 , 𝑡𝑏 , 𝑡𝑟𝑒𝑠)

Less vehicle trips in the 
system due to pooling 

(𝑔(𝑆, 𝜆𝑝))

Higher average velocity 
in the system (𝑣1(𝑔))

Figure 3.3 Interrelations of shareability 𝑆, vehicle trips generated in the system 𝑔 and average velocity 𝑣. The 
number of vehicles in the system is expected to be reduced due to trip sharing 𝑆(𝑣𝑜). This reduction 
in vehicle trips 𝑔(𝑆,  𝜆𝑝) would potentially increase the average velocity in the city to 𝑣1. 

Consequently, the shareability values will further increase 𝑆(𝑣1). 



46  Analytical Modelling of On-Demand Ride Pooling Impacts 

 

𝑔𝑎  and pooled vehicle trips 𝑔𝑝. Alone vehicle trips per hour 𝑔𝑎 represent traveling alone in a 

private vehicle and is equal to the passenger trip generation rate 𝜆𝑎 (𝑔𝑎 =  𝜆𝑎).  Meanwhile, 

as passengers can share vehicle trips with each other by using the ODRP service, the number 

of ODRP vehicle trips 𝑔𝑝 depends on the ODRP passenger trip demand 𝜆𝑝, the possibility to 

find shareable trips in an area 𝑆 and the vehicle capacity 𝜙 as illustrated by Equation (9).  

𝑔𝑝 =  𝜆𝑝(1 − 𝑆) +
𝑆𝜆𝑝

𝜙
 (9) 

The first part of the equation shows that for the trips that are not possible to be shared, the 

vehicle trips are equal to the passenger trips and in the second part of the equation, it is shown 

that for passenger trips which can be shareable, the vehicle trips will be reduced according to 

the shareability 𝑆 and the vehicle capacity 𝜙. As shown in the equation, when the shareability 

is higher than zero, the number of ODRP vehicle trips 𝑔𝑝 is going to be lower than the number 

of requested ODRP passenger trips, due to the simultaneous vehicle trip sharing by the 

passengers. However, this equation only provides the lowest achievable number of ODRP 

vehicle trips, as the shareable passenger trips are assumed to have identical origins and 

destinations and in addition, the empty pick-up trips and reallocation trips are not considered.    

Considering both the alone vehicle trips and pooled vehicle trips, allows the calculation of the 

total number of the vehicle trips generation per hour in the street network which is defined 

by the following equation for a shareability value derived in Equations (3)-(8) of Section 3.1 

depending if the ODRP booking system is instant or prebooked. 

𝑔 = 𝑔𝑎 +  𝑔𝑝 =  𝜆𝑎 +  (𝜆𝑝(1 − 𝑆) +
𝑆𝜆𝑝

𝜙
) (10) 

Having less vehicle trips in the street network has a great potential to improve the average 

velocity, hence improving the traffic conditions in the city. 

3.2.3 Modeling of average velocity and vehicle trip generation relation  

As vehicle trip reduction in the system offers the opportunity to improve the average velocity, 

the interrelation of these two parameters will be explored in this subsection by using the 

benefits of the MFD of traffic flow. Hence, the system-wide impact that the vehicle trip 

reduction due to the ODRP service has on the average velocity in the city will be modelled 

analytically.  



Analytical Modelling of On-Demand Ride Pooling Impacts 47 

 

Macroscopic fundamental diagram 

As mentioned in the Subsection 2.2.3, the MFD, providing a functional form of the relation of 

average velocity in a city and the traffic density or traffic flow, has been used by researchers 

also for ODRH [LUO & SAIGAL, 2017; RAMEZANI & NOURINEJAD, 2018]  and ODRP [DANDL ET AL., 2021; 

KE ET AL., 2020] studies. Recently, KE ET AL. [2020] used the benefits of the MFD to build a 

theoretical model that compares the travel times of ODRH passengers, ODRP passengers and 

private vehicle users in an attempt to analyze the system-wide traffic impact of an ODRP 

service. However, they only considered the maximum waiting time for passenger trip 

matching and assumed an infinite detour time. 

The functional form of the MFD connecting the average velocity and flow is found to be similar 

with that of a parabola. Therefore, in order to derive an analytical relation of the two traffic 

flow parameters, it is assumed that it resembles the parabolic function given by Equation (11) 

and illustrated in Figure 3.4, in which the vertex of the parabola is given by V(𝑞𝑐, 𝑣𝑐), where 

𝑣𝑐  and 𝑞𝑐 are the average velocity and the traffic flow at network’s capacity and the parameter 

𝑎 is derived by simulation data fitting. 

(𝑣 − 𝑣𝑐)2 = 4𝑎(𝑞 −  𝑞𝑐) (11) 

 

Figure 3.4 Functional form of an MFD showing the relation of average velocity and average flow. 

In this thesis, the benefits of the defined functional form of the MFD are exploited in order to 

derive an analytical relation of average velocity and vehicle trips generated per hour in the 

system. There are different ways how an MFD for a city can be derived. An MFD for an urban 



48  Analytical Modelling of On-Demand Ride Pooling Impacts 

 

area is designed here by using microscopic traffic simulations. In order to design the MFD for 

this thesis by means of simulations, the approach proposed by GEROLIMINIS & DAGANZO [2008] 

is used. Hence, the average velocity 𝑣𝑒
𝑖  and flow 𝑞𝑒

𝑖  for each network edge 𝑒 of length 𝑙𝑒 is 

extracted every time interval 𝑖, and the weighted average velocity and flow for the whole 

network are derived by the equations below:  

𝑣𝑖 =  
∑  𝑣𝑒

𝑖𝑙𝑒𝑒∈𝐸

∑  𝑙𝑒𝑒∈𝐸
  (12) 

𝑞𝑖 =  
∑  𝑞𝑒

𝑖 𝑙𝑒𝑒∈𝐸

∑  𝑙𝑒𝑒∈𝐸
 (13) 

Modelling average velocity and vehicle trip generation relation based on MFD 

In this part, a simple method to analytically derive the traffic density of an area is presented. 

For a general case, an ODRP service offered in the operation area specified by the boundary 

rectangle in Figure 3.5 is considered.  

Four different vehicle trip types exist in this area depending on where their origins and 

destinations are located:  

• vehicle trips type (1), which have both the origin and destination inside the operation 

area, 

• vehicle trips type (2), whose origin is located inside the operation area, but the 

destination is outside,  

• vehicle trips type (3), whose destination is positioned inside the operation area, but 

their origin is located outside, and 

• vehicle trips type (4), whose origins and destination are both located outside the 

operation area, but their route choice passes through the area. 

As an ODRP service offered in a defined operating area is assumed in this thesis, vehicle trips 

type (1) are the ones of interest as the potential future ODRP vehicle trips. Additionally, as 

there will be different market penetration rates of ODRP services and the alone vehicle trips 

are also part of the vehicle trips type (1), the ODRP vehicle trips will coexist with alone vehicle 

trips. As the ODRP service considered does not serve trips with origins or destinations outside 

the defined operation area, the background traffic in the network is defined by vehicle trips 

type (2), (3) and (4). These vehicle trips will remain unchanged during the study, as the effects 

coming from a scenario where vehicles can park at the border of the operation area and 
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continue the trip inside the city by using the ODRP service are ignored in this study. To derive 

the traffic density of a pre-defined operating area, the impact of vehicle trips type (1), (2) and 

(3) are taken into account and the impact of vehicle trips type (4) are neglected assuming that 

in a large number of urban areas a highway ring belt exists to reduce the pass-through traffic 

in the city.  

   

Figure 3.5 Illustration of different types of vehicle trips in an operating area, depending on where their origin 
(O) or destination (D) is situated, inside or outside the boundary of the area. 

The traffic density of an area of consideration is specified as the average number of vehicles 

per unit of distance in the area. The average number of vehicles in the area, according to 

Little’s Law is derived by multiplying the vehicle trip generation rate with the average time 

that the vehicles are present in the system [LITTLE & GRAVES, 2008].  

Considering this definition, the traffic density for vehicle trips type (1) 𝑘𝑜𝑑, which have both 

origin and destination inside the defined operation area, is derived by Equation (14), where 

the hourly generated number of vehicle trips type (1) is 𝑔𝑜𝑑 (referred to also as 𝑔 in Subsection 

3.2.2), the average time the vehicles spend in the system is equal to their average travel 

duration, where 𝑙𝑜𝑑  is the average trip length for this trip type and 𝑣 is the average velocity 

in the area, and the total length of the network is 𝐿. 

𝑘𝑜𝑑 =
𝑔𝑜𝑑

𝑙𝑜𝑑

𝑣
𝐿

 (14) 

As the defined operation area also contains vehicle trips type (2) and (3), having only the origin 

or the destination inside the operation area and acting as the background traffic, their 

contribution in the overall traffic density in this area is considered as well. Therefore, the 

background traffic density 𝑘𝑏 is derived by Equation (15) considering both vehicle trips type 

(2) and (3). In this equation, the average generated number of vehicle trips per hour which 

have only the origin (destination) located within the operation area is noted by 𝑔𝑜 (𝑔𝑑) and 

their average vehicle trip length is given by 𝑙𝑜 (𝑙𝑑). In contrast to vehicle trips type (1), which 

are located entirely within the operation area, the vehicle trips type (2) and (3) are partly 

located within the defined area, hence to capture this effect the parameters 𝑝𝑜 and 𝑝𝑑 provide 
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the fraction of the vehicle trip length that is located within the operation area for vehicle trips 

type (2) and (3), respectively. 

𝑘𝑏 =
𝑔𝑜

𝑝𝑜𝑙𝑜

𝑣 + 𝑔𝑑
𝑝𝑑𝑙𝑑

𝑣
𝐿

 (15) 

The total traffic density of the defined area is then calculated by summing up the contributions 

of vehicle trips type (1), (2) and (3) to the traffic density and the result is given by Equation 

(16).   

𝑘 = 𝑘𝑜𝑑 + 𝑘𝑏 =
𝑔𝑜𝑑

𝑙𝑜𝑑

𝑣
+ 𝑔𝑜

𝑝𝑜𝑙𝑜

𝑣
+ 𝑔𝑑

𝑝𝑑𝑙𝑑

𝑣
𝐿

 (16) 

After substituting 𝑞 =  𝑣𝑘 in Equation (16) according to the fundamentals of the MFD, the 

relation of traffic flow 𝑞 and vehicle trips generated within the area 𝑔𝑜𝑑 is analytically defined 

by using the following formula: 

𝑞 =
𝑔𝑜𝑑𝑙𝑜𝑑 + 𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑

𝐿
 (17) 

The vehicle trips of interest in this study are vehicle trips type (1) 𝑔𝑜𝑑, having origin and 

destination within the operation area. Therefore, for a given network traffic flow, solving 

Equation (17) for 𝑔𝑜𝑑, the number of vehicle trips type (1) generated per hour in the system is 

calculated by using Equation (18).  

𝑔𝑜𝑑 =
𝑞𝐿 − (𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑)

𝑙𝑜𝑑
 (18) 

In order to get the analytical expression of the average velocity and the vehicle trips 

generation rate relation the analytical formulation of the MFD given by a parabola function in 

Equation (11) is used. Then the traffic flow 𝑞 is replaced in Equation (11), by the traffic flow 

and vehicle trip generation relation defined by Equation (17). Hence, the analytical relation of 

the average velocity 𝑣 and vehicle trips generated within the operation area of interest 𝑔𝑜𝑑, 

which is captured by Equation (19), is derived. Mind that shareability on its own, among others 

depends of average velocity and pooled passenger trips generation rate 𝑆(𝑣, 𝜆𝑝). As noticed, 

the average velocity takes two different values, based on the state of the network of 



Analytical Modelling of On-Demand Ride Pooling Impacts 51 

 

consideration. When the network is in its free flow state, the analytical average velocity is 

captured by Equation (20) and when the network is in the congested state the average velocity 

is derived by Equation (21) .  

(𝑣 − 𝑣𝑐)2 = 4 ∗ (𝑎) ∗ (
𝑔𝑜𝑑𝑙𝑜𝑑 + 𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑

𝐿
 −  𝑞𝑐)  

=  4 ∗ (𝑎)

∗ (
((𝜆𝑎 +  𝜆𝑝(1 − 𝑆) +

𝑆𝜆𝑝

𝜙
) 𝑙𝑜𝑑 + 𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑

𝐿
 −  𝑞𝑐) 

(19) 

For 𝑣 > 𝑣𝑐: 

𝑣 = 𝑣𝑐 + √4 ∗ (𝑎) ∗ (
𝑔𝑜𝑑𝑙𝑜𝑑 + 𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑

𝐿
 −  𝑞𝑐) (20) 

And for 𝑣 < 𝑣𝑐: 

𝑣 = 𝑣𝑐 − √4 ∗ (𝑎) ∗ (
𝑔𝑜𝑑𝑙𝑜𝑑 + 𝑔𝑜𝑝𝑜𝑙𝑜 + 𝑔𝑑𝑝𝑑𝑙𝑑

𝐿
 −  𝑞𝑐) (21) 

3.2.4 Modified shareability model  

As mentioned in Subsection 3.2.1, the aim of this study is not only to capture the traffic 

impacts of ODRP service but also to explore the additional impacts that an improved average 

velocity has on the probability to find shareable trips. Thus, these impacts are elaborated in 

this part by introducing the modified shareability model, in which contrary to the shareability 

model by TACHET ET AL. [2017], the velocity parameter is a dynamic one.   

Subsection 3.2.3 describes the methodology used to analytically derive the relation of the 

average velocity and the vehicle trip generation in the system by using the MFD of a city of 

consideration and the shareability model, which provides the reduction of the generated 

vehicle trips per hour in the system given in Equation (10). Hence, the impact that changes in 

vehicle trip generation rate as a result of the implementation of an ODRP service have on the 

average velocity of a city or area of interest can be estimated by using this method.  

By deriving the relation of the average velocity and the vehicle trip generation rate and by 

considering that the vehicle trip generation rate depends on the shareability value, Equation 
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(19) consequently gives also the relation of the average velocity and the shareability. Hence in 

this model, the velocity parameter is not a constant parameter that does not change when 

the ODRP passenger trip demand changes, rather the average velocity is considered to 

fluctuate according to the ODRP passenger trip demand and the design details of the ODRP 

service, which are reflected in the shareability value calculation.  

As a result, the modified shareability model is derived by replacing the dynamic velocity 

formula given by Equation (19) into the shareability Equations (3)-(8). The modified 

dimensionless quantity 𝐿𝑠𝑞
𝑜𝑛

𝑚𝑜𝑑
 considering a dynamic average velocity for the instant ODRP 

booking system is taken as an example here and its formulas are given in the next equations: 

For 𝑡𝑚𝑎𝑥 >  Δ −  𝑡𝑏 

𝐿𝑠𝑞
𝑜𝑛

𝑚𝑜𝑑
=  (

(𝜈(𝑆))
2

𝜆𝑝

𝛺
) (𝛥 − 𝑡𝑏)3 (

2

3𝜋
+

1

𝜋
 √(

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

2

− 1

+
1

𝜋
 (

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

2

sin−1
𝛥 − 𝑡𝑏

𝑡𝑚𝑎𝑥
) 

(22) 

and for 𝑡𝑚𝑎𝑥 <  Δ −  𝑡𝑏  

𝐿𝑠𝑞
𝑜𝑛

𝑚𝑜𝑑
=  (

(𝜈(𝑆))
2

𝜆𝑝

𝛺
) (𝛥 − 𝑡𝑏)3 (

2

3𝜋
+

1

2
 (

𝑡𝑚𝑎𝑥

𝛥 − 𝑡𝑏
)

3

). (23) 

If the dimensionless quantity 𝐿𝑠𝑞
𝑜𝑛

𝑚𝑜𝑑
 or 𝐿𝑠𝑞

𝑟𝑒𝑠
𝑚𝑜𝑑

 are replaced in the general shareability 

equations (Equation (3) and Equation (6), respectively), a non-linear equation for the 

shareability value calculation is encountered, which is solved by using the Newton-Raphsod 

iterative method [VENKATESHAN & SWAMINATHAN, 2014]. 

𝐹(𝑆) = 𝑆 − 1 +  
1

2 (𝐿𝑠𝑞

𝑜𝑛
𝑟𝑒𝑠

𝑚𝑜𝑑
)

3 (1 −  𝑒
−𝐿𝑠𝑞

𝑜𝑛
𝑟𝑒𝑠

𝑚𝑜𝑑) (1 −  (1 + 2𝐿𝑠𝑞

𝑜𝑛
𝑟𝑒𝑠

𝑚𝑜𝑑
) 𝑒

−2𝐿𝑠𝑞

𝑜𝑛
𝑟𝑒𝑠

𝑚𝑜𝑑)

= 0 

(24) 
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Key Takeaways – Traffic Impact Model 

• The models introduced in this section can explore analytically the traffic impact of 

an ODRP service by deriving the impact that sharing a vehicle trip with somebody 

else has on average network velocity.  

• Additionally, they can also capture the benefits that the average velocity 

improvement has on further increasing the percentage of shared trips in the urban 

environment, as the vehicles can reach further distances during the same amount 

of detour time as a result of higher network velocity.  

• These analytical models contribute to fill the second distinguished research gap 

(RG2). 
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3.3 Analytical Modeling of On-Demand Ride Pooling Benefits  

In this section a general analytical model capturing the system-wide benefits of an ODRP 

service from the perspective of the customers, operators and cities will be introduced. The 

section will start with stating the general model set-up. Then, the individual modeling of the 

impacts of the three ODRP stakeholders: cities, operators and customers (in terms of traffic 

efficiency, service’s profitability for the operator and the customers attractiveness to use the 

ODRP service) will be described.  

3.3.1 General model set-up 

Albeit ODRP services have been extensively studied, to the best of the author’s knowledge a 

general analytical model which captures the overall impact of ODRP services is currently not 

available in the literature. One reason for this lack is that the ODRP services are characterized 

by complex relations between influencing parameters, which are very difficult to be modelled 

analytically. The approach used in this study is based on the previously developed analytical 

models of shareability (Section 3.1) and traffic efficiency (Section 3.2) and allows for a quick 

estimation of the ODRP service benefits using the advantages of the analytical modelling 

approach (Subsection 2.3.2). 

The overall analytical model introduced in this section addresses the final research gap (RG 3) 

introduced in this thesis and is quite important for a system-wide evaluation of ODRP benefits 

as this model considers the ODRP service impacts in terms of:  

• city benefits regarding improvement in traffic efficiency (represented here by the 

average velocity in the network) and in which parameter space this would be 

possible, 

• ODRP service monetary profitability for the operator and in which framework 

conditions that can be achieved (addressing research gap RG 3.a), 

• customer attractiveness to use an ODRP service, by answering the question of when 

would the benefits that a customer receives by paying a lower price for the ride 

surpass the disadvantage caused by increased customer travel time as a result of 

the detour time from the trip pooling of the ODRP service. 

Moreover, this procedure can derive in which parameter space ODRP services can be 

beneficial and more specifically it sheds light on the influence of the following aspects:  

• For which demand level of the ODRP passenger trips an ODRP system can be 

beneficial? 
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• What is the influence that SQP (detour time, maximum waiting time, boarding time, 

reservation time) can have on the results? 

• How do city parameters, such as the level of congestion in a city given by the average 

velocity and the concentration of ODRP passenger trip demand depending on the 

surface of the operating area, effect the chances for an ODRP service to be beneficial? 

The previously described models of shareability (Section 3.1) and ODRP traffic efficiency 

(Section 3.2) are used as a basis for creating the general analytical model capturing the ODRP 

service impacts in terms of traffic efficiency, operator’s profitability and customer 

attractiveness to the use the ODRP service. The procedure used to model this general system 

is shown in Figure 3.6. 

The shareability model described in Section 3.1 is the foundation of the general ODRP impact 

model. This model derives the percentage of shareable trips in an area based on ODRP 

passenger trip demand 𝜆𝑝, city parameters, service quality parameters and network modelling 

details. The percentage of shareable trips is a key factor to determine the reduction of the 

number of vehicle trips in the system due to the ODRP service and consequently, the traffic 

impacts of the ODRP service, which are modelled in Section 3.2. In order to derive the 

profitability of an ODRP service offer, information about the required fleet size, VKT and the 

trip duration, together with the selected pricing strategy defined by the service operator, 

would be needed. The output of the vehicle reduction model can be used for the estimation 

of the required ODRP fleet size and the VKT in the system. While the output of the ODRP traffic 

impact model, which is the change in average velocity, can be used to derive the new average 

vehicle trip duration as a result of the ODRP service. Lastly, the customer attractiveness to use 

an ODRP service is derived by a maximum detour time that the customers would tolerate 

while getting a cheaper price for the use of the ODRP service as a compensation. 

     

Figure 3.6 Analytical procedure for estimating the benefits of an ODRP system. 
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3.3.2 Traffic efficiency benefits 

In order to derive in which parameter space, the ODRP service can be beneficial from the city 

perspective in terms of improved average velocity, the model of the average velocity 

estimation depending of vehicle trips generated in an area explained in Subsection 3.2.3 is 

considered. The basis for this model is the shareability model (Section 3.1), which provides the 

percentage of passenger trips which can be shared in an area depending on a set of SQP, ODRP 

passenger demand 𝜆𝑝 and network modelling details. Having this knowledge of shareability 

for an operation area and the vehicle capacity, the reduction of vehicle trips as a consequence 

of vehicle trip sharing between customers is derived. Consequently, the traffic impacts of the 

ODRP service, and hence the change in average velocity, are modelled by using the vehicle 

trip reduction model and the well-known MFD for a given city (Section 3.2). The resulting 

average velocity formula depending on the number of vehicle trips generated in the system is 

given by Equations (19)-(20)(21).  

The vehicle reduction model described in Subsection 3.2.2, assumes that the ODRP passenger 

trips have similar origins and destinations and therefore the effect of the detour distance is 

not taken into account. In this part, the general vehicle trip reduction model of Subsection 

3.2.2 is extended to include also the additional vehicle trips caused by the detour distance. 

Therefore, for the passenger trips which are possible to be shared, the increase in their trip 

length as a result of sharing and the experienced detour distance is considered. This is 

modelled by adding to the number of vehicle trips also the added trip length portion as a 

consequence of the extra detour distance, considering the average trips length to be 𝑙𝑜𝑑. This 

addition is given by 
𝑣𝜀∆

𝑙𝑜𝑑
.  As the detour time that is reported from simulation studies is lower 

than the maximum detour time, for this study the parameter 𝜀 is introduced to account for 

the experienced detour time in the simulation and hence the added detour distance is 𝑣𝜀∆. 

The total modified vehicle trip number 𝑔𝑜𝑑𝑚𝑜𝑑
 considering also the detour distance is given 

by Equation (25).  

𝑔𝑜𝑑𝑚𝑜𝑑
=  𝜆𝑎 + (𝜆𝑝(1 − 𝑆) +

𝑆𝜆𝑝

𝜙
(1 +

𝑣𝜀∆

𝑙𝑜𝑑
)) (25) 

The impact that the change in vehicle trip reduction will have on the average velocity in a city 

is then captured by using the model of average velocity and vehicle trip generation in 

Equations (19) – (21). 
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3.3.3 Operator’s profitability 

In this part the monetary profitability of an ODRP service for the operator is modelled. The 

profitability of the ODRP service is calculated by the general revenue minus costs formulation. 

The costs are calculated based on the estimated VKT and the fleet size of the ODRP fleet, while 

the revenues are calculated based on the pricing strategy used. As mentioned before, the 

information about VKT, fleet size, trip duration and pricing strategy used are needed as an 

input in order to derive the costs and revenues of an ODRP offer. 

ODRP Profit =  Revenue −  Cost   (26) 

ODRP Costs 

Firstly, the VKT of an ODRP service (denoted here at VKTODRP) will be derived by using the 

vehicle reduction model (Subsection 3.2.2) as a base and extending it to account also for the 

detour distance caused while picking up additional passengers. Hence, the VKTODRP are 

derived via the following formula:  

VKTODRP =  𝜆𝑝(1 − 𝑆)𝑙𝑜𝑑 +
𝜆𝑝𝑆

𝜙
(𝑙𝑜𝑑 + 𝑣𝜀∆) (27) 

For the vehicle trips which are not shareable, the VKT are derived by multiplying the number 

of non-shareable ODRP vehicle trips 𝜆𝑝(1 − 𝑆) with the average trip length 𝑙𝑜𝑑 (first part of 

the formula), whereas for the shareable vehicle trips, the VKT are derived by multiplying the 

number of these vehicle trips 
𝜆𝑝𝑆

𝜙
 with the sum of average trip length 𝑙𝑜𝑑 and the additional 

detour length driven by the vehicles in a city where the average velocity is 𝑣. As mentioned 

before, for most of the ODRP research simulation studies, the actual detour time realized in 

reality is lower than the maximum detour time. Therefore, the parameter 𝜀 is introduced to 

capture this aspect and the detour time is therefore 𝜀∆ and not the maximum one ∆. The 

additional travel length to be realized during the actual detour time 𝜀∆ is thus 𝑣𝜀∆. 

The minimum vehicle fleet size required for a certain on-demand service offer, in the context 

of ODRH, is a topic that has attracted a lot of attention as it is directly related to the initial 

costs of the ODRP service [BÖSCH ET AL., 2018; NEGRO ET AL., 2021] and the service quality that 

can be achieved by this certain fleet size [VAZIFEH ET AL., 2018]. As the detailed investigation of 

the optimum fleet size is not within the scope of this thesis, in this study is assumed that the 

cost per kilometer 𝜅𝑘𝑚
𝑝  includes the costs of the fleet size and thus, the total costs are a 
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multiplication of the cost per kilometer 𝜅𝑘𝑚
𝑝

 and the total VKTODRP, which on its own among 

others depends on ODRP passenger trip demand 𝜆𝑝, the shareability value 𝑆, vehicle capacity 

𝜙 and average trips length 𝑙𝑜𝑑. The shareability value moreover depends on SQP, city 

parameters and network modelling details. The total cost formula is shown in the equation 

below:  

Cost = VKTODRP ∗ 𝜅𝑘𝑚
𝑝 = (𝜆𝑝(1 − 𝑆)𝑙𝑜𝑑 +

𝜆𝑝𝑆

𝜙
(𝑙𝑜𝑑 +  𝑣𝜀∆)) 𝜅𝑘𝑚

𝑝  (28) 

On-demand ride pooling revenues 

The revenue of the ODRP service depends on the ODRP passenger trip demand 𝜆𝑝 and the 

pricing strategy used by the service operator. The pricing strategy used can be based on 

travelled distance, travel time, considering both travel distance and travel time or other. 

Conditional to the used pricing strategy, the revenue also depends on average trip length, 

average velocity, and the defined price per kilometer 𝛾𝑘𝑚
𝑝  and price per minute 𝛾𝑚𝑖𝑛

𝑝  value that 

the customers have to pay in order to use the ODRP service.  

For the case when the pricing strategy used is based on distance, the direct travel distance is 

considered assuming that the customers would not be willing to pay for the deviation needed 

to pick up additional passengers, thus the revenue calculation where price is based only on 

distance for a price per kilometer 𝛾𝑘𝑚
𝑝  is shown in the formula below: 

RevenueDISTANCE = Direct travel distance ∗  𝛾𝑘𝑚
𝑝 = 𝜆𝑝𝑙𝑜𝑑𝛾𝑘𝑚

𝑝   (29) 

A similar approach is used for the case when price is based on the travel time, where only the 

direct travel time for a trip with average length 𝑙𝑜𝑑 in a city with average velocity 𝑣 is used. 

The resulting formula for a price per minute value of 𝛾𝑚𝑖𝑛
𝑝  is given by Equation (30). If the 

impact of ODRP service on average velocity is taken into account, the new average velocity 

could be derived by using Equations (19)-(20)(21).    

RevenueTIME = Direct travel time ∗ 𝛾𝑚𝑖𝑛
𝑝 =  𝜆𝑝

𝑙𝑜𝑑

𝑣
𝛾𝑚𝑖𝑛

𝑝    (30) 

Consequently, if the pricing strategy is based both on distance and time, the revenue 

calculation formula is defined by the equation below:  
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RevenueDISTANCE&TIME =  𝜆𝑝𝑙𝑜𝑑𝛾𝑘𝑚
𝑝 + 𝜆𝑝

𝑙𝑜𝑑

𝑣
𝛾𝑚𝑖𝑛

𝑝    (31) 

3.3.4 Customer attractiveness for shared rides 

As described in Subsection 2.2.1, customer willingness to use the ODRP service depends 

mainly on the willingness to share a trip with somebody else, SQP and the price. Consequently, 

the customers would accept the discomfort of sharing a trip with somebody else and deviate 

from the direct travel distance only if they are offered a cheaper price compared to the 

available options. Studies have shown that users who are more willing to use the ODRP service 

are the ones who are already using other on-demand mobility options [LAVIERI & BHAT, 2019]. 

Therefore, the customer attractiveness to use the ODRP service is compared in this case with 

the ODRH service. In order to derive an upper bound for the detour time that the customer 

would be willing to accept for a reduced price compared to ODRH service, a utility-based 

approach is used, similar to the one introduced by KUCHARSKI & CATS [2020]. 

The utility of using an on-demand service (hailing or pooling) is defined based on price and 

time and is given in Equation (32) and (33) accordingly. The logic here will continue by 

assuming that the price that the customers must pay for a trip depends only on the trip 

distance. Therefore, in order to monetarize the trip performed with on-demand mobility 

services, the trip length 𝑙𝑜𝑑 is multiplied by the price per kilometer for the hailing 𝛾𝑘𝑚
ℎ  and 

pooling 𝛾𝑘𝑚
𝑝  service, respectively. The parameter 𝛽𝑐 in the equations represents the cost 

sensitivity.  

The travel time of a customer includes the time a customer spends waiting for the vehicle to 

pick her up 𝑡𝑚𝑎𝑥 and the in-vehicle travel time. In the case of the ODRH service the travel time 

is equal to the direct travel time given by 𝑡𝑜𝑑, whereas for the ODRP service case the travel 

time equals to the direct travel time plus the given maximum detour time ∆. The maximum 

detour time is used in this case, as the perceived detour time for the customers is considered 

to be the one that is specified initially by the operator and not the realized one. To monetarize 

the travel time, its value is multiplied by the value of time given by the parameter 𝛽𝑡. As 

passengers usually perceive waiting time as longer than the travel time, the parameter 𝛽𝑤 is 

added to encounter for this aspect. The customers using an ODRP service also experience a 

discomfort during their ride as a result of sharing the trip with somebody else, that is why the 

parameter 𝛽𝑝 is added to capture the discomfort of a pooled trip [ALONSO-GONZÁLEZ ET AL., 

2020a]. 
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Hence, the utility of an ODRH service is given by the equation below:  

𝑈𝑖
ℎ = 𝛾𝑘𝑚

ℎ 𝛽𝑐𝑙𝑜𝑑 +  𝛽𝑡(𝑡𝑜𝑑 + 𝛽𝑤𝑡𝑚𝑎𝑥) (32) 

Whereas the utility of an ODRP service is given by the equation below, assuming that the 

waiting time that the passenger waits to get picked up is the same for ODRH and ODRP 

services:  

 𝑈𝑖,𝑟
𝑝 = 𝛾𝑘𝑚

𝑝 𝛽𝑐𝑙𝑜𝑑 +  𝛽𝑡(𝛽𝑝(𝑡𝑜𝑑 + ∆) + 𝛽𝑤𝑡𝑚𝑎𝑥)  (33) 

When the difference in utilities given by Equation (34) is higher than zero, it provides the 

service quality boundary showing when the customers are willing to use the ODRP service 

instead of the ODRH service.  

𝑈𝑖,𝑟 = 𝑈𝑖,𝑟
𝑝 − 𝑈𝑖

ℎ = (𝛾𝑘𝑚
𝑝 − 𝛾𝑘𝑚

ℎ )𝛽𝑐𝑙𝑜𝑑 +  𝛽𝑡𝛽𝑝(𝑡𝑜𝑑 + ∆) −  𝛽𝑡𝑡𝑜𝑑  (34) 

Thus, the customers would be willing to accept a detour time of ∆accepted, given by the 

formula below, for a certain reduction of ODRP price compared to ODRH price:  

∆accepted <  
𝛽𝑐

𝛽𝑡𝛽𝑝
(𝛾𝑘𝑚

ℎ − 𝛾𝑘𝑚
𝑝 )𝑙𝑜𝑑 − 𝑡𝑜𝑑 (1 −

1

𝛽𝑝
) (35) 

In this way, a boundary of the detour time service quality parameter is defined showing that 

the customers would accept the discomfort of ODRP service by sharing the trip with somebody 

else and a maximum increase in travel time given by the detour time ∆accepted, only if a certain 

reduction in price compared to the ODRH service is guaranteed.  
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Key Takeaways – General ODRP Model 

• The models presented in this section explore analytically the benefits of an ODRP 

service from the perspective of cities, operators and customers.  

• The system-wide evaluation of ODRP benefits presented here, considers:  

➢ city benefits – impact of ODRP service in average velocity improvement in 

the network and in which parameter space (e.g., ODRP passenger demand 

and SQP set) this would be possible, 

➢ operator’s monetary profitability – in which framework conditions (e.g., 

ODRP passenger demand and SQP set) that can be achieved, 

➢ customer attractiveness toward the use of the ODRP service – how it is 

influenced by the ODRP price, the value of time and the discomfort of 

sharing. 

• The analytical models presented in this section address the final research gap (RG 

3). 
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4. Simulation Configuration 

In this chapter the simulation configuration will be provided. The chapter will start with a 

description of the operating of the ODRP service used to validate the ODRP analytical models 

developed in Chapter 3. Then the simulation frameworks used for the validation will be 

explained, starting with the explanation of an ODRP agent-based simulation and continuing 

with the description of a microscopic traffic simulation model of the city of Munich.     

4.1 On-Demand Ride Pooling Operation Area 

In order to test the established analytical models an ODRP service is assumed to operate in 

the Munich area shown in Figure 4.1, which is positioned around the city center of Munich. 

The ODRP operation area has a surface of 221 km2 and a total network length of 2450 km. The 

selected operation area in this study is determined by a demand driven analysis which showed 

a higher concentration of private vehicle trip origin-destination (OD) relations in the vicinity 

of the city center of Munich and hence, the  resulting compact operating area is shown in 

Figure 4.1 [ENGELHARDT ET AL., 2019a]. 

 

Figure 4.1 Munich operation area of the ODRP service.  
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The given operation area contains 154 districts, and each district is represented by a centroid. 

The demand of private vehicle trips within this area is defined based on OD matrices, which 

specify vehicle movement between the centroids. In order to access the network, vehicles 

start and end their trip in what are called as access points, which are positioned near to the 

main streets of the network. Each centroid is linked to a group of access points. The Munich 

network of consideration contains 1423 access points.  The vehicle trips start randomly from 

these access points based on the entries of the OD matrices. The OD data of private vehicle 

trips represent the private vehicle demand for an average working day in Munich measured 

every 15 minutes. The accumulation of OD matrices reflects 1.2 million daily private vehicle 

trips performed within Munich operating area. 

Assuming gradual market penetration rate of ODRP service, private vehicle trips are replaced 

with pooled vehicle trips based on different penetration rate of the service. Detailed scenario 

design will be described in the following chapter in Chapter 5.  

4.2 Simulation Frameworks 

In order to test the developed ODRP analytical models for an ODRP service operating in the 

city of Munich, an agent-based simulation and a microscopic traffic simulation are used. For 

testing the first analytical shareability model presented in Section 3.1 and capturing the impact 

of SQP on the percentage of shareable trips in an area, an agent-based simulation is used. 

Whereas to validate the ODRP traffic impact model illustrated in Section 3.2 and exploring the 

system-wide traffic impact of an ODRP service, a microscopic traffic simulation is used.   

4.2.1 Agent-based simulation 

An agent-based simulation is chosen to compare the analytical model of ODRP service quality 

parameters impact (Section 3.1), as it provides detailed modelling of the ODRP system and 

thus, it can be observed if the complex interaction of the system can be represented by the 

developed analytical model and what is the impact of the assumptions made for generating 

close expressions. The agent-based simulation used in this study is based on [ENGELHARDT ET AL., 

2019b; BILALI ET AL., 2020a] and is extended to model the ODRP system in different level of 

network modelling details. An explanation on the general ODRP agent-based framework will 

be provided in this part. ENGELHARDT ET AL. [2019b] provide more details about the algorithm 

and the comparison of this framework with an insertion heuristic one. 
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General agent-based simulation setup 

The main agents of the simulation framework are the customers of the ODRP service, the 

vehicles, which serve these customers, and the fleet operator, who offers the ODRP service 

and decides the order in which passenger requests are served by vehicles.  

The state of the ODRP vehicle fleet is updated every time steps of 1s, during which vehicles 

may move toward their destination, new request may enter the system and current customers 

might encounter a vehicle boarding or alighting process, which similar to the analytical model 

is supposed to be 𝑡𝑏. In the case the vehicle does not have a request assigned to it, the vehicle 

remains in the current location. The optimization algorithm used by the fleet operator to 

calculate new vehicle assignments is performed every decision time step of 30 seconds and 

not every simulation step of 1 second, due to its high computational time. The framework of 

the agent-based simulation assignment procedure is illustrated in Figure 4.2. 

 

 

Figure 4.2 Agent-based simulation framework assignment procedure based on [BILALI ET AL., 2020a]. 
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Network topology modelling 

In order to investigate the influence that different depth of network modeling of the ODRP 

system have on the shareability results, the operating area is modelled by using two different 

network topologies. The network topologies considered in this study are Euclidian topology 

and street network graph. The street network graph is divided in two different topologies 

depending on if the average velocity in the network is constant or variable. A detailed 

description of these types of topologies is provided below: 

o The first topology used to model the ODRP operating area corresponds to what is 

referred here as Euclidian topology (T: E). In this network topology vehicle move from 

one position to the other within this operation area by following bee lines, the location 

of the vehicles and the positions of customer trips origin and destination are given as 

2D-coordinates and travel distances between two locations are calculated based on 

Euclidian distance. Assuming a certain average network velocity 𝑣0 during the whole 

simulation, the travel times are thus derived. 

o The second topology is a street network graph. For this type of network topology, a 

given street network is represented by the graph 𝐺 = (𝑁, 𝐸), where 𝑁 are nodes of 

the graph corresponding to network intersections and 𝐸 are edges, representing 

different streets in the network. Customers are supposed to start or end their trip in 

what are named as access points, which correspond to a set of nodes in the network 

𝑁𝑎 ∈ 𝑁. Vehicles travel through the network after the fleet operator calculates the 

vehicle routes. Consequently, the routes of the vehicles are represented by a 

sequence of nodes and edges in 𝐺 which show how two points with given origins 𝑂 ∈

𝐺 and destinations 𝐷 ∈ 𝐺 are connected. The route calculation is based on the 

information of the edge travel time. The routes with the shortest time, and hence 

travel times and travel distances for these routes, are calculated by using a Dijkstra 

algorithm with preprocessing methods [DELLING ET AL., 2009] or by using preprocessed 

travel times among access points. In order to define the time a vehicle needs to 

traverse an edge 𝑒 ∈ 𝐸, a time-dependent travel time 𝑡𝑒(𝑡) is given to each edge. To 

capture the impact of inhomogeneous travel times, for the same street network 

graph, two different cases are distinguished: 

o Street network topology, where the average travel velocity in each edge is the 

same. (T: G Avg) 

o Street network topology, where for each hour there are different average 

velocities for each edge extracted from a microscopic traffic simulation. (T: G)  
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Customers 

A customer who wants to use the ODRP system and travel from a certain position to another 

one, at the point in time 𝑡𝑟 can send a request to the system (by using a smartphone app for 

instance), specifying the position where she wants her trip to start 𝑂𝑟 and end 𝐷𝑟. When the 

customer request enters the system for the first time, it belongs to the unassigned “Active 

Customers” group (Figure 4.2: green rectangle, point 1). In accordance with the analytical 

model, the customer is willing to wait a maximum amount of time given by 𝑡𝑚𝑎𝑥  to get picked 

up and she accepts a maximum temporal deviation from the direct travel route or detour time 

of ∆. For a prebooking ODRP system, which allows reservation of requests, the customer can 

prebook her ride 𝑡𝑟𝑒𝑠 time in advance. In the succeeding decision time step, the service 

operator decides whether to accept or reject the customer request. In the case when the 

request is accepted, the operator must serve the customer within the defined SQP or time 

constraints (Figure 4.2: point 2), which are checked during the fleet operator assignment 

policy phase (Figure 4.2: orange rectangle). If this is not possible and the request is unassigned 

(Figure 4.2: point 3, “no”), the customer leaves the system unserved (Figure 4.2: red 

rectangle). If the time constraints are fulfilled and the request is assigned (Figure 4.2: point 3, 

“yes”), then the customer request enters the group of assigned “Active Customers” (Figure 

4.2: green rectangle, point 4). 

Fleet operator 

The operator’s vehicle fleet is comprised of a size of  𝑁𝑣 alike vehicles, having a certain capacity 

𝜙 to accommodate customers on board. The vehicles of the ODRP vehicle fleet drives in the 

operation area and carry customers from a specific origin to a specific destination. The 

decision to serve which customer and at which time in an efficient way is made by the fleet 

operator. Mathematically, this decision is derived by the vehicle routing objectives defined by 

the fleet operator and a policy, given by a set of rules to achieve these objectives which need 

to be optimized, while guaranteeing that the customers will be served within the given time 

constraints [ENGELHARDT ET AL., 2019b].  

The fleet operator algorithm used in this study contains three main phases performed during 

the following decision time steps: the tour-building phase, the vehicle routing optimization 

phase, and the relocation phase (Figure 4.2: orange rectangle). An explanation of these phases 

will be described below.  
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Tour-building phase 

The purpose of the tour-building phase is to derive for each vehicle of the ODRP fleet all 

possible feasible tours necessary to accommodate the active passenger requests in the 

system. In the next phase, these tours will serve as a solution space to achieve the objective 

of the vehicle routing optimization. In general, a tour is an ordered set of boarding and 

disembarking stops for a set of requests and a specific vehicle. Whereas a feasible tour for a 

vehicle is defined as a tour satisfying all the time constraints imposed by the SQP and customer 

boarding or disembarking at the access points in the network, while making sure the number 

of customers inside the vehicle does not exceed 𝜙. The idea of the construction of the tour 

algorithm is based on [ALONSO-MORA ET AL., 2017] and is adopted by [ENGELHARDT ET AL., 2019b]. 

Every feasible tour that a vehicle 𝑣𝑥 can follow to serve a certain set of requests 

{𝑟𝑖1, 𝑟𝑖1, 𝑟𝑖1, … , 𝑟𝑖𝑛} is bundled to what is called a Vehicle-To-Request-Bundle (V2RB).   

Vehicle routing optimization phase 

In order to solve the vehicle route assignment problem for the ODRP service, the selected 

objectives need to be firstly defined. The primary objective is to serve as many customers as 

possible. While there are two different secondary objectives considered in this study. These 

objectives are responsible for rating every feasible tour based on what is expected to be 

achieved from them. 

The first vehicle routing optimization objective used in this study is to maximize the 

percentage of trips that is possible to be shared in the operation area. Hence, for this 

optimization function the number of shareable requests, is the used rating parameter. The 

second vehicle routing optimization objective considers the perspective of cities, which 

require decrease in VKT in the whole city and operators, which require low operational costs 

(also a consequence of lower VKT). Thus, the selected optimization objective is to minimize 

the VKT achieved by computing the “saved distance” of each tour. In the absence of the ODRP 

system, the total driven distance of all the requests 𝑟 that a tour contains would be equal to 

the sum of their direct travel distance 𝑑𝑟
𝑑𝑖𝑟𝑒𝑐𝑡. In the presence of the ODRP system the driven 

distance of a tour, which contains also shared passenger trips within a vehicle, is given by 𝑑𝜉. 

Hence, for a given tour 𝜉, its saved distance is calculated by subtracting the total driven 

distance of all the requests of the tour in the absence of the ODRP system and the driven 

distance of the tour 𝑑𝜉  in the presence of an ODRP system, given by the equation below: 
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𝑈[𝜉]  =  (∑ 𝑑𝑟
𝑑𝑖𝑟𝑒𝑐𝑡

𝑟∈𝜉

) −  𝑑𝜉  (36) 

The global vehicle routing objective is to maximize either the percentage of shareable trips or 

the saved driven distance (depending on the selected objective), while maximizing the 

number of served requests. The vehicle routing optimization problem can be expressed as an 

Integer Linear Problem, where each V2RB is rated by the highest objective value of its 

corresponding tours, given by the set of equations below: 

 max
𝑧,𝑥

: ∑ 𝑢𝑘𝑗𝑧𝑘𝑗 −  ∑ 𝑉𝑝 𝑥𝑖

𝑖𝑘,𝑗

 (37) 

    

 s. t.: 𝑥𝑖  +  ∑ ∑ 𝑧𝑘𝑗  =  1  ∀ 𝑖

𝑗𝑘 ∈ 𝐾(𝑖)

 | 𝑟𝑖  ∈  𝑅𝑢, (38) 

    

  ∑ ∑ 𝑧𝑘𝑗  =  1  ∀ 𝑙

𝑗𝑘 ∈ 𝐾(𝑙)

 | 𝑟𝑙  ∈  𝑅𝑎, (39) 

    

   ∑ 𝑧𝑘𝑗  ≤  1 ∀ 𝑗 .

𝑘

 (40) 

The global objective is given by Equation (37), where 𝑢𝑘𝑗 represents the objective value of the 

V2RB of vehicle 𝑗 which accommodates the request-bundle 𝑘 and 𝑉𝑝 is a penalty value. When 

the penalty value is high, it shows that the objective of maximizing the assigned requests is 

the prioritized one. In the case the equivalent V2RB is assigned, the decision variable 𝑧𝑘𝑗 ∈

{0,1} take the value of 1 and if not, it takes the value 0. Equation (38) makes sure that each 

customer request 𝑖, which is part of the unassigned set of requests 𝑅𝑢, is maximally allocated 

in only one V2RB 𝑘 that holds the request 𝑖 part of the request-bundle 𝐾(𝑖). For an unassigned 

request, the decision variable 𝑥𝑖 ∈ {0,1} gets the value 1, and 0 otherwise. In this model re-

assignments are possible and therefore, Equation (39) is used to guarantee each customer 

request that belongs to the group of already assigned requests 𝑅𝑎 is re-assigned again. 

Equation (40) assures that each vehicle 𝑗 is assigned to only one V2RB. 
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Relocation phase 

In order to cope with the problem of vehicles being positioned in unfavorable areas with low 

demand and unable to serve customers in other high demand areas within the allowed time 

constraints, a basic reallocation strategy is used. The operation area is separated into regions 

and the alteration of the anticipated demand and supply within each region is computed for 

a duration of 30 minutes in order to derive the excess in demand within the region. Every 5 

minutes an optimization problem is solved and reallocated vehicles which are idle in the 

anticipated high demand regions to accommodate the unfulfilled demand. As a detailed 

description of relocation procedures is not within the scope of this thesis, more information 

on the reallocation procedure used here are provided in [ZHANG & PAVONE, 2016]. 

4.2.2 Microscopic traffic simulation  

A microscopic traffic simulation is selected for the evaluation of the ODRP traffic impact model 

presented in Section 3.2, as this type of simulation gives the possibility to capture in detail the 

dynamics of traffic for the whole city. Thus, not only the ODRP fleet is modelled, but also other 

vehicles present in the network. This gives as the opportunity to investigate the system-wide 

change in average velocity due to the introduction of an ODRP service in the whole city, which 

is not possible to be investigated by the currently used ODRP agent-based simulations. 

The microscopic simulation environment used in this part is AIMSUN [BARCELÓ & CASAS, 2005]. 

The microscopic traffic simulation model for Munich built in AIMSUN is similar to the one used 

by DANDL ET AL. [2017]. This model includes Munich region restricted by the federal highway 

A99, where the arterial network within this region contains detail information about the road 

infrastructure, the number of lanes, the capacities, and the corresponding speed limit. Every 

street within the city center of Munich enclosed by the inner ring is constructed in the 

microscopic simulation as shown also in Figure 4.1. A detailed modelling of the intersection 

geometry and the traffic signal configuration is provided, where the actual traffic signal plan 

of 70 intersections was acquired from the city of Munich and the rest were adopted to fit the 

demand [DANDL ET AL., 2017]. The calibration of the network was performed by using loop 

detector data. More details regarding the AIMSUN microscopic traffic simulation model of 

Munich used in this study can be found in [DANDL ET AL., 2017]. 

In this model the traffic demand for ODRP service and the private/alone vehicles is generated 

in the form of OD matrices depending on the penetration rate of the ODRP service and the 

possibility to find shareable trips in the area defined by the shareability model. More details 

about the scenarios tested will be provided in the following section. 
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5. Evaluation and Results 

This chapter will provide a detailed analysis of the validity of the developed analytical models. 

Firstly, in Section 5.1 the validation of the analytical model describing the impact of the SQP 

on the percentage of shared trips in an area by means of an agent-based simulation model is 

explained. Secondly, the validation of the analytical model capturing the impact that an ODRP 

system have on traffic efficiency is validated by using a microscopic traffic simulation is 

described in Section 5.2. Thirdly, the impact of the ODRP model in traffic efficiency, operator’s 

profitability and customer attractiveness toward the service will be described in Section 5.3. 

Then, Section 5.4 will provide an illustration of the parameter space in which the ODRP win-

win-win-win situation can be achieved. And lastly, the main results of the chapter will be 

discussed in Section 5.5. 

5.1 On-Demand Ride Pooling Shareability Evaluation  

In this part the analytical model capturing the impact of SQP on the percentage to find 

shareable trips in an area given in Section 3.1 will be validated by means of the agent-based 

simulation framework described in Subsection 4.2.1. The results of the validation of the instant 

booking ODRP model are explained here, where firstly the developed scenarios will be 

explained and then the results of the validity of the analytical model for different demand 

level, network modelling details and SQP will be presented. The validation of the short-term 

prebooked ODRP model can be found in [BILALI ET AL., 2019]. 

5.1.1 Scenario design  

This part offers information about ODRP passenger demand, vehicle fleet size choice and 

different types of network topologies modelled to assess the validity of the analytical model 

depending on the used modelling details. Lastly, the scenario design and the evaluation 

procedure used to assess the results is described.  

ODRP passenger demand  

As previously mentioned, the validity of the analytical model in Section 3.1 which derives the 

percentage of trips which can be shared in an area or shareability, is tested for an ODRP system 

in the city of Munich where private vehicle trips are substituted with ODRP vehicle trips in 

different levels of market penetration. Therefore, the available private vehicle data of Munich 

is subsampled to account for small market penetration rate, varying from 0.1% to 5% of 
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private vehicle trips in Munich. In order to get the new subsampled data of OD matrices for 

the ODRP passenger trip generation, the total OD matrices of private vehicle trips in Munich 

are multiplied with the selected demand penetration rate. The demand of ODRP passenger 

requests is formed by using Poisson processes and three different seeds are created for the 

whole day. Given the specific OD-relation, an access point within the region of origin or destination is 

selected randomly as a starting or ending point for a passenger request, respectively. 

ODRP Vehicle supply 

In the analytical model fleet size is not explicitly considered, but it is assumed that a vehicle 

from the ODRP vehicle fleet will be available instantly at the origin of the generated request. 

However, in reality the selection of the fleet size has a high influence on the performance of 

the ODRP system and hence on the shareability results. If the selected fleet size is too small 

and not capable to accommodate a given ODRP passenger trip demand, then a lot of 

passenger trips will be rejected. In this undersaturated state, the fleet control objective of serving as 

much customers as possible is dominating the assignment of vehicle tours and the flexibility on choosing 

specific (i.e., shared) routes is limited. Therefore, the shareability results will be thereby influenced. 

As a result, in this study a large enough fleet size is used to be able to satisfy the ODRP 

passenger trip demand without encountering this problem. Therefore, a fleet size ranging 

from 100 to 1500 vehicles, depending on the given ODRP passenger trip demand, fulfilled this 

requirement. Simulations have shown that for fleet sizes larger than the selected one in the 

study the results remain stable. The vehicles are initially randomly spread between access 

points in the network according to probabilities proportional with the anticipated ODRP 

passenger trip demand of the entire day at these access points.  

Network topologies  

In order to evaluate the validity of the analytical model in Section 3.1 and to investigate the 

impact of modelling details, the network is modelled in different modeling depths. Thus, three 

types of network topologies are designed, where vehicles move in the network according to 

vehicles routes specified by the algorithms used to find shareable trips:  

o Euclidian topology (T: E), where vehicle move from one position to the other within 

the operation area by following straight lines. 

o Street network graph, where the average travel velocity in each edge is the same. (T: 

G Avg) 

o Street network graph, where for each hour there are different travel times 

corresponding to each edge. (T: G)  
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The network average velocity is extracted from the microscopic traffic simulation described in 

Subsection 4.2.2 and is equal to 𝑣𝑜 = 28.8
𝑘𝑚

ℎ
. This value is derived by dividing the total sum 

of all the length of the edges with the total travel time of all edges using Equation (12). This 

average velocity is used for the Euclidian topology (T: E) and for the street network graph with 

homogeneous average travel velocity (T: G Avg). Whereas for the street network graph with 

inhomogeneous edge travel time (T: G), the edge travel time is extracted from the microscopic 

traffic simulation every hour. 

Scenarios and evaluation procedure 

The analytical model presented in Section 3.1 derives the shareability value in a given 

operation area and for a set of SQP, such as maximum waiting time, detour time and 

boarding/alighting time, depending on the ODRP passenger trip request demand level 𝜆𝑝. 

Thus, the analytical model shows how the percentage of possible shared trips in an area 

changes depending on different demand levels. The validity of this analytical model is tested 

by using the simulation framework explained in Subsection 4.2.1 and the previously described 

simulation setup for various scenarios.  

Each scenario contains the same network topology, SQP and vehicle routing objective 

function. A set of simulations define one scenario. These simulations have the same network 

topology, SQP and objective function, but different selected ODRP fleet size and demand 

share, given as a portion of the private vehicle trips in Munich. Each of the simulations 

represents a 24-hour ODRP service operation time. The results of each simulation are split in 

30-minutes bins, which compared to the average trip length is 2.5 times higher and thus the 

spill over of trips among time bins is reduced. For each time bin 𝑡 the following values are 

calculated: 

1. The modified pooled/ODRP passenger request generation rate 𝜌(𝑡) given by the 

equation below: 

𝜌(𝑡) =  
𝜆𝑝(𝑡)

Ω

𝑣(𝑡)2

𝑣𝑜
2

   (41) 

In Equation (41), 𝜆𝑝(𝑡) is the ODRP passenger demand generated in a given time, 

which is considered to be an exogenous parameter for this study. The surface of 

the operation area is given by Ω and the average velocity in this area for a given 

point in time is given by 𝑣(𝑡). To capture the impact of inhomogeneous travel 
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velocity within the 30-minutes time bins, the average velocity parameter 𝑣(𝑡) is 

scaled out by dividing it with a base average velocity value 𝑣𝑜.  

 

2. The theoretical shareability or the experienced shared rides: 

a. The theoretical shareability value is found by dividing the number of 

passenger requests for which a shared ride could theoretically be found 

𝜆𝑆,𝑡ℎ(𝑡) with the total number of passengers requesting an ODRP ride 𝜆𝑝(𝑡) 

within the given time bin 𝑡 and is shown in the following equation: 

𝑆𝑡ℎ(𝑡) =  
𝜆𝑆,𝑡ℎ(𝑡)

𝜆𝑝(𝑡)
  (42) 

In a given time bin, the number of passenger requests which belong in at 

least one of the tours defined in the tour building algorithm phase in which 

a shared ride could be possible is given by 𝜆𝑆,𝑡ℎ(𝑡). However, this value is 

considered theoretical, as it is not guaranteed that this tour would be 

assigned to a vehicle in the optimization phase. 

b. The experienced shared rides value is found by dividing the number of 

passenger requests, which truly experience a shared ride 𝜆𝑆,𝑒(𝑡) with the 

total number of passengers requesting an ODRP ride 𝜆𝑝(𝑡) for a given time 

bin 𝑡  (Equation (43)). To ‘truly experience a shared ride’ means that these 

passengers partially share the trip with somebody else in the simulation 

environment. 

𝑆𝑒(𝑡) =  
𝜆𝑆,𝑒(𝑡)

𝜆𝑝(𝑡)
 (43) 

Combining the set of simulations results which built one scenario, gives the final shareability 

results for one scenario. To avoid discrepancy in results due to unserved ODRP passenger 

requests, the data points for which the relative number of served requests within a time bin 

is lower than 95% are omitted from the evaluation. The 𝜌-axis is further binned in 50 bins 

which have the same size in order to have a good visualization of the results. For each of these 

bins, the resulting data point is derived by calculating the average values of the modified 

pooled passenger request generation rate and the shareability/shared rides. 

All the parameters of the analytical model and the simulation, together with their notations 

and values are summarized in Tab. 5.1. 
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Constant Parameter 
Math 

Notation 
Description Value Unit 

Surface area Ω Surface of the operation area 221 km2 

Average velocity 𝑣𝑜  Network’s average velocity 28.8 km/h 

Vehicle capacity 
 𝜙 

The maximum number of passengers 
who can share a trip at the same 
time 

2 passenger 

Penalty value for 
unassigned request 

𝑉𝑝 Penalty value for unassigned request 40000 - 

Fitting parameter 
𝑛 

Fitting parameter for the shareability 
prediction model given by Eq. (44)   

0.80 - 

Fitting parameter 
𝑘 

Fitting parameter for the shareability 
prediction model given by Eq. (44)   

0.065 - 

Variable Parameter 
Math 

Notation 
Description 

Value / 
Relation 

Unit 

Average velocity 𝑣(𝑡) 
Network’s average velocity at a given 
time 

 km/h 

Boarding/disembarking 
time 

𝑡𝑏 
The time that the customer needs to 
board/disembark the vehicle 

0, (30), 
(60) 

second 

Maximum waiting time 
𝑡𝑚𝑎𝑥  

Maximum time the passenger waits 
to be picked up 

(4), 5, (6) minute 

Detour time ∆ 
Temporal deviation from the direct 
travel time 

(4), 5, (6) minute 

Shareability / Shared rides 𝑆 
Percentage of trips which can be 
shared within an operation area 
derived analytically  

Eq. (3), 
(4), (5), 

(44) 
% 

Pooled/ODRP passenger 
trip generation rate 

𝜆𝑝 
Pooled/ODRP passenger trips 
requests generated per hour and 
completed by the ODRP service 

 
passenger 

trip/h 

Penetration rate / ODRP 
passenger demand 

penetration rate 
𝑝 

Portion of pooled/ODRP passenger 
trips divided by the total passenger 
trips 

0.1 – 5.0 % 

Fleet size 
𝑚 

Number of ODRP vehicle fleet used 
to accommodate the ODRP demand 

100 – 
1500 

vehicle 

Modified pooled/ODRP 
passenger trip generation 

rate 
𝜌(𝑡) 

Modified pooled/ODRP passenger 
trip generation rate 

Eq. (41) 
1

km2h
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Simulation 
Characteristics 

Characteristic 
Acronym 

Network Topology 

Euclidian Topology T: E 

Street Graph Network with homogeneous velocities T: G Avg 

Street Graph Network with time dependent velocities T: G 

Vehicle Routing 
Optimization Objective 

Saved Distance O: SaD 

Shared Rides O: ShR 

Evaluation Characteristic Acronym 

Percentage of Shareable 
Passenger Trip Requests of 

the ODRP Service 

Experienced Shared Rides in the simulation 𝑆𝑒 

Theoretically possible Shared Trips during the simulation 𝑆𝑡ℎ 

Tab. 5.1 Parameters of the analytical and agent-based simulation model, their notations and values. The 
variable parameters which do not contain a bracket specify the SQP for the base scenario.     

5.1.2 Results 

In this part the results of the validation of the analytical model for an instant booking ODRP 

system (Subsection 3.1.2) will be shown. Firstly, the impact of the network modelling details 

will be explored and then the validity of the model for different SQP will be investigated. 

Network modelling impact 

The analytical model of the SQP impact derives the possible percentage of shared trips in an 

area. In this part it will be examined if the analytical model represents the shareability or 

shared rides results for any of the considered cases. Moreover, the difference between the 

possible shared trips and the experienced shared trips derived by the agent-based simulation 

results will be investigated. Furthermore, the impact of increased network modelling details 

on the theoretical and/or actual experienced shared rides will be explored.  

Thus, five cases, which differ from each other by the network topology used, velocity, 

optimization objective and the evaluation of shareability or shared rides, are distinguished. 

The separate impact of these modelling details is captured by changing the parameters one at 

a time. Tab. 5.2 gives a summary of all the considered cases. 
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Acronym Topology Velocity Vehicle Routing 

Objective 

Evaluation 

T: E, O: ShR, 𝑺𝒕𝒉 Euclidian Homogeneous  Shared Rides Theoretical shareability 

T: E, O: ShR, 𝑺𝒆 Euclidian  Homogeneous Shared Rides Experienced shared rides 

T: E, O: SaD, 𝑺𝒆 Euclidian Homogeneous Saved Distance Experienced shared rides 

T: G Avg, O: SaD, 𝑺𝒆 Street Network 

Graph  

Homogeneous Saved Distance Experienced shared rides 

T: G, O: SaD, 𝑺𝒆 Street Network 

Graph 

Inhomogeneous Saved Distance Experienced shared rides 

Tab. 5.2 Different network modelling details and evaluation cases. The color corresponds to the color of 
the shareability/shared rides results in Figure 5.1. 

Figure 5.1 illustrates the analytical model and the agent-based simulation results of the 

shareability and the shared rides depending of the modified pooled passenger request 

generation rate for all of the above-mentioned cases and for an ODRP service when the detour 

time 𝛥 and the maximum waiting time 𝑡𝑚𝑎𝑥 are considered to be equal to 5 minutes, and the 

boarding time 𝑡𝑏 is assumed to be zero (∆ = 5 minutes, 𝑡𝑚𝑎𝑥 = 5 minutes, 𝑡𝑏 = 0 s). 

It is shown that for the case when the ODRP system is modelled in the agent-based simulation 

using an Euclidian topology (T: E), the average velocity in the network is assumed constant 

and the vehicle routing objective of the optimization is to maximize the percentage of shared 

rides (O: ShR), the results of the theoretical shareability value (𝑆𝑡ℎ) derived from the agent-

based simulation model fit quite well to the shareability curve given by the analytical model. 

This happens as this case represents the best the assumptions made in the analytical 

shareability model for an instant booking system regarding vehicle moving in a Euclidian 

network topology and constant average velocity in the network. Moreover, Equations (3(3)-

(4)(5) for this ODRP system also derive the theoretically possible shareability in an area, 

corresponding with the evaluation method of this case. 

The analytical and simulated results for the first case (T: E, O: ShR, 𝑆𝑡ℎ) follow the same trend 

for the whole range of the considered modified pooled passenger request generation. 

Shareability increases very quickly for low penetration rate, reaches around 95% when the 

modified request generation is around 5
1

𝑘𝑚2ℎ
 and saturates at around 15 

1

𝑘𝑚2ℎ
. However, a 

trend of deviation of the results compared to the analytical model for low and high modified 

request generation is observed. One main reason for this trend of deviation is that the 
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analytical model and the simulation model use different assumption regarding passenger 

request distribution. From one side, in the analytical model it is assumed that the origins of 

the passenger requests are uniformly distributed in time and space and from the other side, 

in the simulation model the demand of the passenger request is inhomogeneous in time and 

space. These different assumptions result in different behavior between analytical and 

simulated shareability for low modified request generation. Albeit homogeneous distribution 

of passenger trip requests might seem an ideal system condition, it might not always have 

positive effects in term of higher chances to find shareable trips. This is especially true for low 

penetration rate, for which in terms of shareability it is more beneficial for the ODRP system 

to have spatial and temporal correlation of passenger trips. Similar patterns are observed for 

instance when considering commuter trips. This effect is reflected in the difference between 

the analytical and simulated shareability results in the low penetration rate area. There it is 

shown that the simulated shareability values are higher than the values predicted by the 

analytical model as a result of superior advantages of spatial and temporal passenger trip 

correlation compared to uniformly distributed trips. For high modified pooled passenger 

demand the reverse effect is observed. When having uniformly distributed demand, the 

chances to find sharable trips are the same everywhere in the area. However, when the ODRP 

passenger trip request demand is inhomogeneous, there will be areas in the network with 

scare request generation and thereby low chances to find shareable trips. Hence, the total 

simulated shareability for high demand levels is lower than the one estimated by the analytical 

model. 

For the second case (T: E, O: ShR, 𝑆𝑒), a different evaluation scheme is chosen and ‘shared 

rides’ are considered to be only the passenger trips which actually experience a shared ride in 

the simulation. Using this evaluation scheme, the value of shareability anticipated by the 

analytical model differs from the actual value of experienced ‘shared rides’ 𝑆𝑒 as the way the 

vehicles are assigned to passenger trips is not considered by the analytical model. As an 

example, if there are three requests, from which one of the requests is shareable with both 

the other requests, but these two requests cannot be shared with each other, in theory there 

are two options in which the trips can be shared, however in reality only one of them happens 

as one passenger cannot be served by two vehicles. Therefore, the shareability in this case is 

100% and the shared rides value is only 66%. It is observed that for low modified request 

generation the results of shared rides are similar to the shareability results. As the modified 

pooled passenger request generation increases, the shared ride values drop by around 10% 

compared to shareability for medium modified pooled passenger requests and almost 

approach 100% for high modified request generation. As explained before, this alteration is 

noticed as the passenger trips that actually experience a shared ride differ from the ones 
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which could theoretically be shareable, as in reality the chances to share a trip are restricted 

by combinatorial constraints. These combinatorial constraints limit the number of trips which 

can be served by vehicles. Hence, for low modified pooled passenger request, the shared rides 

and the theoretical shareability do not differ that much as the chances to find shareable trips 

are anyways low and the combinatorial constraints hardly influence the tour choice. Whereas, 

for high passenger trip demand, the difference in the results becomes smaller due to the high 

number of passenger trips which ensures that a shared ride can be offered for each passenger 

request.  

 

Figure 5.1 Analytical and simulated shareability and shared rides for various network modelling details and 
evaluation cases specified in Tab. 5.2.  

The next case (T: E, O: SaD, 𝑆𝑒) shows the impact that the optimization objective used for 

vehicle routing has on the shared ride results. Therefore, keeping all the other parameters the 

same, the optimization objective is changed from maximizing the percentage of shared trips 

in the area into maximizing the saved distance travelled (O: SaD). This optimization objective 
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is closer to improving the traffic efficiency in a city as it is equivalent with minimizing the VKT 

in the system. The effect of the change of the optimization objective is noticed to be quite 

high, causing a reduction in shared rides by up to 50%. For low ODRP passenger demand the 

chances to find shared rides are quite low for this case. They increase for higher demands, but 

do not pass 60% for the considered case when the maximum ODRP passenger demand 

corresponds to 5% of the private vehicle trip demand in Munich. Albeit the optimization 

objective of maximizing the percentage of shared trips could be considered in line with 

maximizing the saved distance, as the VKT are reduced because of shared trips, this outcome 

shows that this is not necessarily true. Thus, sometimes it might be more efficient in terms of 

VKT reduction to serve the customers one after the other than to make large detour just for 

the sake of increasing the number of shared trips, even though the time constraints which 

allow trips to be shareable are not violated. This result stresses the huge impact of the selected 

vehicle routing optimization objectives for the ODRP system and clarifies that a large number 

of shareable trips is not necessarily an indicator of an efficient ODRP system, at least not in 

terms of traffic efficiency. 

In this step (T: G Avg, O: SaD, 𝑆𝑎), the influence of the network topology in the percentage of 

shared rides is explored. In the cases considered until now, it was assumed that the vehicles 

move in the network following straight lines which correspond to a Euclidian topology. Now, 

the ODRP system is modelled as a street network graph with the same constant average 

velocity throughout the network as in the Euclidian topology (T: G Avg, O: SaD, 𝑆𝑒) and assume 

that the vehicles move in the network corresponding to the real street network of Munich. As 

in the previous cases, all the other parameters are kept the same to better capture the 

network topology impact on the shared ride results. The results show that the shared rides 

decrease additionally for this case. This occurs as the vehicles albeit travelling with the same 

average velocity as in the Euclidian network have to traverse longer distances in the street 

network graph, as the distance can never be shorter than the straight line between two points. 

Consequently, the vehicles need more time to pick up passengers and also more time to drop 

them off at their destinations. This leaves less available time to be able to serve additional 

trips and therefore, due to the restrictions imposed from the time constraints, the number of 

shared rides decreases additionally.  

The last considered (T: G, O: SaD, 𝑆𝑒) case captures the impact of inhomogeneous network 

velocity in the shared rides results. The time dependent travel times are extracted from the 

microscopic traffic simulation explained in Subsection 4.2.2. This step increases the model 

realism as normally the fleet's vehicles experience time dependent travel times. In order to 

exclude the impact of average velocity alteration, the modified request generation given by 
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Equation (41) is used. A further decrease in the shared rides is noticed in this case, caused only 

by the inhomogeneous average velocity in the edges of the street graph network. It should be 

mentioned here that the average velocity is extracted from the microscopic traffic simulation 

for which the traffic generation in the network is based on private vehicle data. As in this study 

a substitution of private vehicle trips with ODRP trips is assumed, the areas which have a high 

demand of ODRP service are therefore the areas with the lowest velocity of the network 

edges, usually happening in the city center of Munich. Consequently, the travel time in the 

network increases, lowering in this way the chances to find shared rides.  

Service quality parameters impact   

In the previous part, the impacts of the network modelling details on shareability or shared 

rides results are investigated, and light is shed on the importance of the modelling details of 

the agent-based simulation. In this part, the impact that the SQP of detour time ∆, maximum 

waiting time 𝑡𝑚𝑎𝑥  and boarding/disembarking time  𝑡𝑏   have on the results will be explored. 

These parameters are the time constraints which need to be fulfilled in order to find feasible 

tours.   

To explore these impacts, firstly two cases are selected from the network modelling details 

cases for further investigation:  

1. The first case in Tab. 5.2 (T: E, O: ShR, 𝑆𝑡ℎ), representing the best the predictions of 

shareability derived from the analytical model. For this case the ODRP system is 

modelled by assuming Euclidian topology with homogenous average velocity, 

optimization objective is to maximize the percentage of share trips and the evaluation 

considers the theoretical possible shareability achieved in the operation area. 

2. The last case in Tab. 5.2 (T: G, O: SaD, 𝑆𝑒), where the modelling details resemble the 

most the real-world conditions of a potential ODRP service. In this case, network 

topology is considered to be a street network graph with time dependent average 

velocity on its edges, the optimization objective is to maximize the saved VKT and the 

evaluation considers only the actually experienced shared rides.  

Consequently, two main questions, corresponding to the two before-mentioned cases, arise:  

1. Can the analytical model predict the shareability values for varying SQP when the 

ODRP system modelling follows similar assumptions as the analytical model (T: E, O: 

ShR, 𝑆𝑡ℎ)? 

2. Having observed huge differences between the results of the analytical model and the 

most detailed simulation model of the ODRP system (case T: G, O: SaD, 𝑆𝑒), shown in 
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Figure 5.1 by the brown simulated data, can the analytical model still be used to 

estimate shared rides for different SQP?  

In order to investigate these impacts, different scenarios with varying detour times, maximum 

waiting times and the boarding/disembarking times are designed and tested. Initially, the 

validity of the analytical model for the first case (T: E, O: ShR, 𝑆𝑡ℎ) is elaborated and later the 

relevance of the analytical model for the second considered case (T: G, O: SaD, 𝑆𝑒) is discussed. 

Figure 5.2.a illustrates the shareability and shared ride values for scenarios where the detour 

time changes taking the following values ∆ ∈ {4 minutes, 5 minutes, 6 minutes}. It is 

observed that for all the considered detour time values, simulated shareability fit quite well 

the shareability curve derived from the analytical model. It is important to mention that a 

curve fitting is not used in this case (T: E, O: ShR, 𝑆𝑡ℎ) and it is remarkable that the analytical 

model can capture so well the complex interactions of the ODRP system and predict quite well 

the results. Increasing the detour time means that the constraints to find shareable trips are 

more relaxed and therefore the chances to find shareable trips will increase. The opposite is 

true when the detour time decreases. The shareability in this case reduces as by decreasing 

the allowed detour time, the chances to find shareable trips also decrease. It is also noticed 

that the impact of inhomogeneous spatial distribution of requests varies for different detour 

time. For low passenger demand and lower detour times, this effect causes larger 

underestimation of the shareability by the analytical model (which considers uniform demand 

distribution) compared to the scenario when the detour time is higher. Whereas for high 

passenger demand the analytical model overestimates the shareability values for both low 

and high detour time. 

Figure 5.2.b depicts the impact of maximum waiting time on shareability/shared rides by 

considering various values of the maximum waiting times 𝑡𝑚𝑎𝑥  ∈ {4𝑚𝑖𝑛, 5𝑚𝑖𝑛, 6𝑚𝑖𝑛}. 

Similar effect as for the differences in shareability observed for different detour time is noticed 

here as well. Decreasing the maximum waiting time means that the chances to find shareable 

trips decrease due to tighter time constraints imposed in the system. This effect is reflected 

by the analytical model and the simulated shareability data for the first case (T: E, O: ShR, 𝑆𝑡ℎ). 

Contrary to the impact of the inhomogeneity of the request distribution results for different 

detour time showing a different magnitude of deviation of shareability in the area of low 

passenger demand, when varying the maximum waiting time these differences in the 

magnitude of the deviation from the analytical model are more noticeable for the high 

passenger demand region and low values of maximum waiting time. 
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Figure 5.2.c shows the impact of boarding time 𝑡𝑏 ∈ {0𝑠, 30𝑠, 60𝑠} in the shareability and 

shared rides results. It is shown that the impact of the boarding time has on the simulated 

shareability results is similar to the impact that the detour time has on shareability, i.e., 

increasing the boarding time with 1 minute has a similar effect on the reduction of shareability 

as decreasing the detour time by 1 minute. Considering a certain increase in the boarding 

time, the actual possible detour time is consequently decreased as the boarding/disembarking 

time is perceived as lost time for the in-vehicle customers. Hence this time constraint also 

influences the possibility to find feasible tours. Moreover, higher boarding/disembarking 

times means that the assigned customers spend more time in the vehicle and therefore in the 

system, restricting the flexibility of the system for future ODRP passenger demand. This result 

is in line with the assumption used in the analytical model where boarding or disembarking 

time is considered as time loss for the customers on board on the vehicles and therefore, it is 

subtracted from the detour time.   

Before elaborating on the results for the lower curves in Figure 5.2, the evaluation procedure 

of the this considered case is firstly explained.    

The results explained until now show that the analytical model is able to represent quite well 

the shareability value for the case (T: E, O: ShR, 𝑆𝑡ℎ) where the ODRP system is modelled by 

using Euclidian topology with homogeneous velocity and the optimization objective is to 

maximize the percentage of shareable trips, without any additional fitting procedure needed. 

However, as noticed in Figure 5.1, with increasing the model complexity and realism the 

deviation of the results from the predicted analytical curve increases. Hence, in this part the 

answer to the second question posed earlier is provided and it is explored if the analytical 

model can be used for predictions of the impact of SQP on the shared rides for the last 

considered case (T: G, O: SaD, 𝑆𝑒) in Tab. 5.2, which corresponds to the one with the most 

realistic modelling details, showing huge deviations compared to the analytical model (Figure 

5.1). 

As previously explained in Subsection 2.3.1, agent-based simulations used to capture the 

impact of ODRP services require a lot of input data and are computationally expensive, thus 

having an analytical model capturing these complex effects and being able to evaluate the 

ODRP system performance, without the need to run multiple simulations, can be quite a good 

advantage. Therefore, for the cases where the ODRP system is modelled with high levels of 

detail, a method is presented here to estimate the shared rides for different SQP by using as 

a basis the analytical models described in Section 3.1 and the data from the agent-based 

simulation for only the base scenario having the following SQP ∆ = 5 minutes, 𝑡𝑚𝑎𝑥 =

5 minutes, 𝑡𝑏 = 0 𝑠. 
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a) 𝑡𝑚𝑎𝑥 = 5 minutes, 𝑡𝑏 = 0 𝑠  b) ∆ = 5 minutes, 𝑡𝑏 = 0 s c) ∆ = 5 minutes, 𝑡𝑚𝑎𝑥 = 5 minutes 

Figure 5.2 Shareability and shared rides for various: a) detour time ∆, b) maximum waiting time 𝒕𝒎𝒂𝒙 and c) boarding time 𝒕𝒃. The same colors refer to the same set 
of SQP used. Upper Curves show the validation of the analytical model with simulated data showing the theoretical shareability (𝑺𝒕𝒉) for the case (T: E, O: 
ShR, 𝑆𝑡ℎ). Lower Curves illustrate the comparison of the simulated data showing the experienced shareability (𝑺𝒆) with the shareability prediction model 
for the most realistic case (T: G, O: SaD, 𝑆𝑒). 
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This prediction method is built on two main aspects: 

• Firstly, a function that fits the data of the detailed ODRP model case for the base 

scenario and is able to represent the afore-mentioned combinatorial constraints of the 

ODRP system is needed. SANTI ET AL. [2014a] found that a function of this type 𝑓𝑛,𝑘(𝑥) =

100 
𝑘 𝑥𝑛

(1+𝑘 𝑥𝑛)
 fits the ODRP system shareability data quite good. This function naturally 

contains combinatorial constraints and is also used in biochemistry to represent 

statistically the methods of particle bonding. More information are provided in [SANTI 

ET AL., 2014b]. Compared to the original shareability function curve, this new function 

will provide another shape of the shared rides curve which could be able to represent 

analytically the shared ride for different modelling detail cases of the ODRP system.   

• Secondly, it is assumed that the impacts of the network topology, the selected vehicle 

routing objective function, the inhomogeneity of demand and the velocity of edges are 

captured by the fitting parameters 𝑘 and 𝑛 and that all the assumptions made in the 

analytical model to derive the shareability shadows are valid in this case as well.  

Hence, the prediction model for a detailed modelling of an ODRP system is described by the 

following function: 

𝑓𝑛,𝑘(𝐿𝑠𝑞
𝑜𝑛(𝛥, 𝑡𝑏 , 𝑡𝑚𝑎𝑥)) =  100 

𝑘 𝐿𝑠𝑞
𝑜𝑛𝑛

(1 + 𝑘 𝐿𝑠𝑞
𝑜𝑛𝑛

)
, (44) 

Where 𝐿𝑠𝑞
𝑜𝑛 is given by Equation (4) and (5). The same would hold for the short-term prebooked 

ODRP system with 𝐿𝑠𝑞
𝑟𝑒𝑠, but as mentioned, the consideration is limited only for the instant 

ODRP booking system in this part.  

The explained fitting prediction method is applied to the most detailed ODRP system 

modelling case (T: G, O: SaD, 𝑆𝑒) for the base scenario where ∆ = 5𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 = 5𝑚𝑖𝑛, 𝑡𝑏 =

0𝑠, shown in Figure 5.1 by the brown color. Fitting the simulated data for this scenario with 

the fitting curve given by Equation (44), the fitting parameters 𝑛 and 𝑘 are found to be: 𝑛 =

0.80, 𝑘 = 0.065. Keeping these fitting parameters fixed, in the next step Equation (44) is used 

again to estimate the shared rides for the scenarios with different SQP. The effect of different 

SQP is captured analytically by the dimensionless parameter 𝐿𝑠𝑞
𝑜𝑛. 

The predicted curves derived by using the explained prediction method are noted in the 

legend of Figure 5.2 with an asterisk symbol, whereas the scenario without the star symbol 

corresponds to the fitted curve of the base scenario. From the results shown in the lower part 

of Figure 5.2, it is noticed that the prediction model used in this study anticipates quite well 

the simulated data for the case (T: G, O: SaD, 𝑆𝑒) for different maximum waiting time 𝑡𝑚𝑎𝑥 
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and boarding time 𝑡𝑏. However, forecasts for different detour time ∆ show some alteration 

from the predicted analytical model. The reason for this alteration is because for instance 

when increasing the detour time constraint, the number of possible shareable trips captured 

analytically by the impact that the detour time has on the shareability shadow increases in a 

higher manner compared to the increase of the actually experienced shared trips in the agent-

based simulation. This happens as the number of feasible tours which also fulfill the 

optimization objective of minimizing VKT is lower than the total feasible tours for which rides 

are possible to be shared.  

This effect is not seen for the other parameters of the maximum waiting time 𝑡𝑚𝑎𝑥 and 

boarding time 𝑡𝑏, as the time constraint imposed by these parameters does not affect the 

driven VKT in the system, thus they do not affect the tour distance. The first parameter 𝑡𝑚𝑎𝑥 

is the time the customer waits to be picked up; thus the vehicle is not generating extra 

kilometers with increasing this time constraint and similarly for the boarding time 𝑡𝑏, the 

vehicles do not produce any additional VKT while the customers are boarding or alighting the 

vehicle. Therefore, the shareability shadow for different values of maximum waiting time 𝑡𝑚𝑎𝑥 

and boarding time 𝑡𝑏  is able to capture quite well the impact that these time constraints have 

on shared rides by using the analytical prediction model given by Equation (44). 
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5.2 On-Demand Ride Pooling Traffic Impact Evaluation 

This section will explore the validity of the analytical model of traffic impacts of an ODRP 

system, presented in Section 3.2 by means of the microscopic traffic simulations AIMSUN 

described in Subsection 4.2.2. Firstly, the scenarios built to test the model are described.  Then 

the results of the model validity are illustrated and finally, the traffic impacts of different 

penetration rate of ODRP while considering also the impact of other vehicles in the system in 

addition to the ODRP vehicle fleet, are explored. 

5.2.1 Scenario design 

In this part firstly a description of the scenarios used to construct the MFD will be given, and 

it will be followed by defining the scenarios necessary to test the traffic impact of ODRP 

service, considering ODRP passenger demand and vehicle supply in the network. 

Macroscopic fundamental diagram scenario design 

As the MFD is used in order to derive the impact of an ODRP system on traffic efficiency, firstly 

the scenarios used for the MFD construction are defined. In this study, the MFD is built based 

on simulation data extracted by the microscopic simulation of AIMSUN described in 

Subsection 4.2.2. In order to build the MFD for the city of Munich, different macroscopic 

simulations for the time range 06:00 to 24:00 are run. As described, the demand given by OD 

matrices connecting different centroid of the network, corresponds to private vehicle trips in 

Munich. While constructing the MFD it is necessary that the network is at capacity, therefore 

the demand of private vehicle trips in Munich is artificially increased in order to bring the 

network to the capacity state. Hence, two additional simulations are run where the OD 

demand is increased by 10% and 20% of the total private vehicle trips demand in Munich by 

multiplying the existing OD with the corresponding factors, 1.1 and 1.2. From these simulation 

runs, every 10 minutes one data point representing the value of the networks average velocity 

and traffic flow is derived by using Equations (12) and (13), respectively. Thus, by plotting the 

collection of these data points in one similar graph, the MFD for the city of Munich is 

constructed by using simulation data from the microscopic traffic simulation AIMSUN.  

ODRP Passenger trip demand 

The demand for the ODRP system in this study is considered to be exogeneous and thus, 

private vehicle passenger trip demand is substituted with ODRP passenger trips for different 

market penetration rate of the ODRP service. As the ODRP service is offered only within the 

borders of the operation area defined in Figure 4.1, only passenger trips which have both their 
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origins and destinations within the area of operation, corresponding to vehicle trips type (1) 

(Subsection 3.2.3) will be replaced by ODRP passenger trips. In order to explore the traffic 

impacts of ODRP service for different demand shares, alone/private passenger trips are 

substituted with pooled passenger trips for different levels of demand penetration rate given 

by 𝑝 =
𝜆𝑝

𝜆
, where 𝜆𝑝 is the pooled/ODRP passenger trip demand generated per hour and 𝜆 is 

the total hourly passenger trip demand in the area (including both pooled passenger trips and 

alone passenger trips). To design different penetration rate, different scenarios where 𝑝 takes 

values of 0%, 5%, 25%, 50%, 75% and 100% are developed. For the base scenario 𝑝 = 0%, as 

for this scenario all the traffic demand in Munich is considered to be fulfilled by private vehicle 

trips and the number of requested ODRP/pooled passenger trips is equal to 0. The scenario 

when 𝑝 = 100%, corresponds to the hypothetical extreme case when all the alone/private 

passenger trips in Munich are substituted by the ODRP passenger trips. 

Vehicle supply  

The aim of the study is not only to investigate the traffic impact of ODRP vehicle fleet, but also 

the impact of other vehicles presented in the system. Therefore, in the microscopic simulation 

AIMSUN, selected to examine these impacts, it is differentiated between vehicle trip demand 

generated from the ODRP service and from other vehicle types present in the network. Hence, 

the total vehicle trip demand generated in the network is comprised of:  

1. The alone vehicle trips (part of vehicle trips type (1)) 

2. The pooled vehicle trips (part of vehicle trips type (1)) 

3. The background vehicle traffic from vehicle trips type (2), (3) and (4) 

These vehicle trips are designed in AIMSUN by three different OD matrices:  

1. Matrix (A), representing the private or alone vehicle trips type (1) (𝑔𝑎) 

2. Matrix (P), representing ODRP vehicle trips type (1) (𝑔𝑝) 

3. Matrix (B), representing the background vehicle traffic derived from vehicle trips type 

(2), (3) and (4)) 

The first two matrices represent the vehicle trips with both their origins and destinations 

inside the operation area. Both these matrixes, matrix (A) of private/alone vehicle trips and 

matrix (P) of ODRP vehicle trips, will vary based on the passenger trip demand for the ODRP 

service (or penetration rate 𝑝). Matrix (B) represents the background traffic in the network 

and gives the OD of vehicle trips which only start (vehicle type (2)) or only end (vehicle type 
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(3)) inside the operation area or cross the area (vehicle type (4)). Thus, behaving as a 

background traffic, these vehicle trips remain the same throughout the study.  

For the base scenario, where the demand for the ODRP service is zero, the vehicle trips 

demand is represented by the base demand matrix 𝐴0. For the ODRP service considered here, 

it is assumed that the ODRP vehicle trips and private/alone vehicle trips have similar origins 

and destinations. Thus, the demand of ODRP vehicle trips is generated by scaling the base 

demand matrix 𝐴0 depending on the penetration rate of ODRP service and the reduced 

number of vehicle trips modelled in Subsection 3.2.2. Hence, for a certain ODRP penetration 

rate 𝑝, the number of alone vehicle trip generated per hour 𝑔𝑎 given by the OD-s of the matrix 

(A) is modified based on Equation (45) by scaling the base demand matrix 𝐴0.  

𝑔𝑎 = 𝜆𝑎 = (1 − 𝑝) ∗ 𝐴0  (45) 

When introducing the ODRP service for a given penetration rate of the service, changes in the 

ODRP passenger trip demand are illustrated by Equation (46).  

𝜆𝑝 = 𝑝 ∗ 𝐴0   (46) 

To convert the change in ODRP passenger demand 𝜆𝑝 into changes of generated ODRP vehicle 

trip 𝑔𝑝, and modify accordingly matrix (P) of ODRP vehicle trips, Equation (9) developed in 

Subsection 3.2.2 is used to derive the vehicle trip reduction in the system when the ODRP 

service is introduced. As noted in this equation, the reduction of the ODRP vehicle trips 

depends on the shareability or shared rides value 𝑆 for the selected ODRP system, the ODRP 

passenger trip demand 𝜆𝑝 and the vehicle capacity 𝜙. Shareability on its own depends 

additionally on the optimization objective and the set of SQP. The optimization objective used 

in this part for vehicle assignment is chosen to be in accordance to the societal benefits of 

improving traffic conditions by reducing the VKT in the network and its goal is to minimize the 

VKT in the system. Thus, to derive the shareability depending on the generated ODRP 

passenger trip demand per hour for our considered ODRP system, the prediction model 

introduced in Section 5.1.2 is used and applied for the case when the network topology of 

Munich is represented by a street graph network with surface Ω and the average velocity in 

the area is homogeneous and equal to 𝑣𝑜. For this case, the network of topology considers 

constant average velocity, contrary to the network topology with inhomogeneous travel times 

(forth case in Tab. 5.2) used for the prediction model in the previous Subsection 5.1.2. Hence, 

the new fitted parameters 𝑘 and 𝑛 are found by fitting the simulation data of this network 

topology defined by the third case (T: G Avg, O: SaD, 𝑆𝑒) in Tab. 5.2 – for the base scenario 

when the SQP for the ODRP service of consideration are: 𝛥 = 𝑡𝑚𝑎𝑥 = 5 minutes and 𝑡𝑏 = 0 
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seconds – to the prediction model given by Equation (44). The new parameters are found to 

be: 𝑘 =  0.126 and 𝑛 = 0.829. Assuming that the vehicle capacity 𝜙 is 2, i.e., maximum two 

ODRP passenger can simultaneously share a vehicle trip, the ODRP vehicle trip reduction and 

thereby the modified values of matrix (P) is derived by using Equations (9).  

Scenarios and evaluation procedure 

As the benefits of ODRP system are believed to be more prominent for a network with high 

level of congestion, the scenario where the traffic demand in the network of Munich is 10% 

higher than the current private vehicle trip demand, is selected as the base scenario in this 

part. The ODRP service is considered to be provided in the Munich operation area given in 

Figure 4.1. As the congestion level is higher during the peak time, this ODRP service is assumed 

to be offered during the morning peak time from 07:00 to 10:00.  

For the base scenario, the average velocity for every edge in the network is extracted every 

time slice of 10 minutes and derive the average velocity of the whole network by using 

Equation (12). The calculated average network velocity 𝑣𝑜 during the morning peak time for 

the base scenario is 39.2 km/h. This average velocity is different form the one used in Section 

5.1, as the AIMSUN network has undergone more extensive calibration procedures, which 

thereby affected the average network velocity. Nevertheless, the benefit of the analytical 

model of shareability are emphasized also in this case, as the shareability curve can be easily 

modified to take into account the current average velocity 𝑣𝑜 by modifying the dimensionless 

unit 𝐿𝑠𝑞
𝑜𝑛 using Equation (4) from the ODRP instant booking system shareability modelling, 

without needing extra computationally expensive agent-based simulations. 

To examine the impact that different penetration rate of ODRP service have on the average 

velocity of the network, the network’s average velocity for each of these scenarios is derived 

by the same procedure used for the base scenario, where for each time interval during the 

morning peak time the average velocity of each edge is used to calculate the total network’s 

average velocity using Equation (12).  

A detailed description of the parameters of the model, their math notations and their 

corresponding values is provided in Tab. 5.3. 
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Constant Parameter 
Math 

Notation 
Description Value Unit 

Surface area Ω Surface of the operation area 221 km2  

Network length 𝐿 Total length of the network 2450 km  

Velocity at capacity 𝑣𝑐  
Average velocity when the system is at 
capacity 

39.2 km/h 

Flow at capacity 𝑞𝑐  
Average flow when the system is at 
capacity 

457 vehicle/h 

Average velocity during 
the morning peak 

𝑣𝑜  
Original average velocity during the 
morning peak for the base scenario 

39.2 km/h 

The parameter of the 
parabola 

𝑎 
Parabolic function parameter derived 
by data fitting 

0.062 - 

Average vehicle trip 
length of vehicle trips 

type (1)  
𝑙𝑜𝑑  

Average trip length for vehicle trips 
which have the origin and the 
destination in the operation area 

5.16 km 

Average vehicle trip 
length of vehicle trips 

type (2) 
𝑙𝑜 

Average trip length for vehicle trips 
which have only the origin in the 
operation area 

17.5 km 

Average vehicle trip 
length of vehicle trips 

type (3) 
𝑙𝑑  

Average trip length for vehicle trips 
which have only the destination in the 
operation area 

17.5 km 

% of 𝑙𝑜 inside the 
operation area 

𝑝𝑜 % of 𝑙𝑜 inside the operation area 51 % 

% of 𝑙𝑝 inside the 

operation area 
𝑝𝑑  % of 𝑙𝑝 inside the operation area 46 % 

Detour time ∆ 
Temporal deviation from the direct 
travel time 

5 minute 

Maximum waiting time 𝑡𝑚𝑎𝑥  
Maximum time the passenger waits to 
be picked up 

5 minute 

Boarding/disembarking 
time 

𝑡𝑏 
The assumed time that the customer 
needs to board/disembark the vehicle 

0 minute 

Vehicle capacity 𝜙 
The maximum number of passengers 
who can share a trip at the same time 

2 passenger 

Fitting parameter 𝑘  
Fitting parameter for the shareability 
prediction model given by Eq. (44)   

0.126 - 

Fitting parameter 𝑛 
Fitting parameter for the shareability 
prediction model given by Eq. (44) 

0.829 - 
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Variable Parameter 
Math 

Notation 
Description 

Value / 
Relation 

Unit 

Average velocity 𝑣 
Network’s average velocity at a given 
time 

 km/h 

Average traffic flow 𝑞 
Network’s average traffic flow at a 
given time  

 vehicle/h 

Average traffic density k 
Network’s average traffic density at a 
given time 

 vehicle/km 

Shareability 𝑆 
Percentage of trips which can be 
shared within an operation area  

Eq. (4), (5), 
(44)   

% 

Penetration rate / 
replacement rate / 

ODRP passenger 
demand penetration 

rate 

𝑝 

Portion of pooled/ODRP passenger 
trips divided by the total passenger 

trips (𝑝 =
𝜆𝑝

𝜆
) 

0, 5, 25, 50, 
75, 100 

% 

The initial private 
vehicle matrix 

𝐴0 The initial private vehicle OD matrix  
passenger 

trip/h 

Alone/private 
passenger trip 

generation rate 
𝜆𝑎 

Alone/private passenger trips 
generated per hour in an area and 
completed by private vehicles 

(1 − 𝑝) ∗ 𝐴0 
passenger 

trip/h 

Pooled/ODRP 
passenger trip 

generation rate 

𝜆𝑝 
Pooled/ODRP passenger trips requests 
generated per hour and completed by 
the ODRP service 

𝑝 ∗ 𝐴0 
passenger 

trip/h 

Alone/private vehicle 
trip generation rate 

𝑔𝑎 
Alone/private vehicle trips generated 
per hour by private vehicles 

𝑔𝑎 =  𝜆𝑎 
vehicle 
trip/h 

Pooled/ODRP vehicle 
trip generation rate 

𝑔𝑝 
Pooled/ODRP vehicle trips generated 
per hour by the ODRP service 

𝑔𝑝 → Eq (9) 
vehicle 
trip/h 

Total vehicle trip 
generation rate in the 

operation area 
𝑔𝑜𝑑  𝑜𝑟 𝑔 

Total vehicle trips generated per hour 
in the operation area of the ODRP 
service of vehicle trips type (1) 

𝑔 = 𝑔𝑎 + 𝑔𝑝  

→Eq (10) 

vehicle 
trip/h 

Vehicle trips 
generation rate of 

vehicle trips type (2) 
𝑔𝑜 

Hourly generation rate of the vehicle 
trips which have only the origin in the 
operation area 

 
vehicle 
trip/h 

Vehicle trips 
generation rate of 

vehicle trips type (3) 
𝑔𝑑  

Hourly generation rate of the vehicle 
trips which have only the destination 
in the operation area 

 
vehicle 
trip/h 

Tab. 5.3 Description of the parameters of the ODRP traffic impact analytical model, their math notations, 
and their corresponding values or relations.   
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5.2.2 Results 

In this subsection, firstly the MFD for Munich will be built by using data from the microscopic 

simulation AIMSUN. Then the analytical model relating the average velocity with vehicle trip 

generation in the network will be validated with the simulation data.  By using this model, the 

traffic impacts of ride pooling for different penetration rate of the ODRP service will be 

examined. And the subsection will be finalized by validation of the modified shareability 

model, which explores the impact that ODRP will have in further increasing the percentage of 

shared trips in an area. 

Macroscopic Fundamental Diagram for Munich operation area 

The analytical model capturing the traffic impacts of an ODRP system is based on the 

macroscopic fundamental diagram for a city. Therefore, the MFD for the operation area in the 

city of Munich is firstly built and the result is shown in Figure 5.3.    

The data points representing the relation of average velocity and traffic flow of the network 

for a time period of every 10 minutes are generated by using Equations (12) and (13), 

respectively. The complete data points set is derived from running three different scenarios 

with different vehicle trip demand as described in MFD scenario design in Subsection 5.2.1, 

where for two of these scenarios the vehicle trip demand in the network is artificially 

increased. 

As mentioned, Figure 5.3 illustrates the MFD for Munich, where the x-axis gives the network’s 

average traffic flow values, and the y-axis gives the network’s average velocity. It can be 

observed that most of the traffic flow-velocity data points are located in the area of the free 

flow regime, therefore the Munich operation area of consideration experiences most of the 

time free flow velocity in its street network in average. In general, the simulated average 

velocity for the Munich network of consideration is high considering that it is an urban area. 

However, the reason of having these high values of average velocity is that the selected area 

also includes city highways and motorways with high-speed limits which increase the total 

network’s average velocity.  

During the morning and afternoon peak times, when the vehicle trip demand increases, the 

network reaches its capacity and thereby approaches the unstable state of the network. When 

the demand decreases after passing the peak time, the system does not recover immediately 

after having reached high congestion levels. This effect is shown by a clockwise hysteresis loop 

which is noticed for each of the selected scenarios [DAGANZO, 2007], represented by the data 

points which during the uploading phase (i.e., decreasing demand after peak time) have lower 
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average velocity compared to the loading phase (i.e., increasing demand) for the same traffic 

flow value.  

 

Figure 5.3 Macroscopic fundamental diagram showing the relation of average velocity and average traffic flow 
for Munich.  

It is determined that the network is at its capacity or optimum state when the traffic flow is at 

its maximum level. Hence, from the MFD in Figure 5.3 the maximum traffic flow of the network 

is defined to be 𝑞𝑐. The average network velocity corresponding to this point is the average 

velocity when the network is at capacity 𝑣𝑐. From the simulated scenarios the values of the 

average traffic flow and average velocity when the Munich network is at capacity are 457 

vehicles/h and 39.2 km/h, respectively. 

Until now the MFD is derived by the simulated data points, however in order to use the MFD 

to examine the traffic impact of an ODRP system, an analytical form of the MFD function is 

needed. Thus, assuming the functional form of the MFD resembles the equation of a parabola 

[KE ET AL., 2020], Equation (11) is used to define the MFD graph. As the network for our selected 

base scenario is mainly in the free flow regime, the simulated data points defining the shape 

of the MFD are also situated in this regime. Hence, the simulated data are fitted to the 

Equation (20) showing the relating of average velocity and traffic flow when the velocity is 

higher than the velocity at capacity (𝑣 > 𝑣𝑐). By considering that the point where the network 

is at capacity 𝑉(𝑞𝑐, 𝑣𝑐) corresponds to the vertex of the parabola, the parabolic function 

parameter 𝑎 is found to be equal to 0.62. The fitted curve is given by the black solid line in 

Figure 5.3 and it denotes the analytical form of the MFD for Munich.  
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By substituting the values of velocity and traffic flow at capacity and the parabolic parameter, 

the MFD of Munich is analytically expressed by using the following equation for the free flow 

regime state:  

𝑣 = 𝑣𝑐 + √4𝑎(𝑞 −  𝑞𝑐) =  39.2 + √4 ∗ 0.62 ∗ (𝑞 −  457) (47) 

Relation of average velocity and vehicle trip generation  

This part initially shows how the necessary network information to derive the analytical model 

of average velocity and vehicle trip generation is extracted. Then the validation of the model 

with data from the microscopic traffic simulation is explained.  

Network information 

In order to validate the analytical model capturing the relation of the average velocity and 

vehicle trip generation in the network, firstly some information about the network parameters 

which affect the results should be extracted. The required network parameters are given in 

Equation (16), which gives the total traffic density of the network by considering vehicle trips 

which start and end within the operating area (vehicle trips type (1)) and the background 

traffic, which contains vehicle trips having only the origin (destination) inside the operation 

area and the destination (origin) outside or vehicle trip type (2) (vehicle trip type (3)). This 

necessary network information includes the trip lengths for the three vehicle types 

considered. In addition, for vehicle type (2) and (3) it is required to know also the percentage 

of the trip located inside the operating area, as that is the trip part which contributes to the 

background traffic density in the network. 

To extract the trip length of the vehicle trips type (1), (2) and (3), the centroid statistic 

approach in AIMSUN is used. Firstly, all the centroids within the operation area of the ODRP 

service are extracted. Then, for each of these centroids, the total number of vehicle trips and 

the total driven kilometers for each vehicle type are calculated. For each vehicle type, dividing 

the respective total VKT by the total number of vehicles generated gives the corresponding 

average trip length, which is 5.16 km, 17.5 km and 17.5 km, for vehicle trips type (1), (2) and 

(3), respectively. 

For vehicle trips which have only their origin or destination within the operation area (vehicle 

trips type (2) and (3)), the information of the portion of the trip distance which is located inside 

the area is also needed. Hence, for the vehicle trips which originate or end within the 
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operation area, all the routes which join their origins and destinations are derived. For the 

route which is frequented the most by the vehicles, the identification numbers and the lengths 

of the sequence of links which define this route is extracted. Then the links which are located 

inside or outside of the operation area are identified. Consequently, the vehicle trip length 

located within the operation area, is calculated by the summing the length of the links which 

are positions within this area. The fraction of the vehicle trip length performed inside the 

operation area is thereby derived by dividing the afore-mentioned vehicle trip length 

completed inside the area with the overall vehicle trip length. Performing the same procedure 

for each simulation hour, the average values of fraction of vehicle trip length within the area 

is found to be 51% and 46% for vehicle trips type (2) and (3), correspondingly. 

Average velocity and vehicle trip generation relation 

The network information of Munich (explained in the previous part) is substituted in Equation 

(17) and hence, the traffic flow in the network of the city of Munich is analytically derived 

depending on the number of vehicle trips type (1) originating and ending inside the operation 

area 𝑔𝑜𝑑. If the traffic flow and vehicle trip generation relation (Equation (17)) modified for 

the city of Munich case is substituted in the general MFD Equation (20) for the free flow 

regime, the general relation of average velocity and vehicle trip generation per hour for the 

Munich area is defined.  

This analytical relation is validated by using the microscopic traffic simulation AIMSUN and the 

results of both the analytical model and the simulated data points are illustrated in Figure 5.4. 

The dark blue data points are generated by the combining the vehicle trip generation per hour 

in the system and the simulated average velocity. The light blue data points provide the 

analytical relation between the parameters, where the vehicle trips per hour is calculated 

analytically by Equation (18), when the average traffic flow in the network is known, and the 

average velocity is extracted from the simulation. Thus, the validity of Equation (18), showing 

the analytical relation of vehicle trip generation and the traffic flow, and Equation (20), 

showing the analytical relation of velocity and vehicle trip generation, will be described in the 

following.  

Firstly, to test the validity of Equation (18), the simulated and analytical data points are 

compared and a pretty good correlation among them is observed. This shows that the 

analytical model used to analytically derive the number of vehicle trips generated in the 

network 𝑔𝑜𝑑 (given by Equation (18)), when knowing the traffic flow 𝑞 in the system and the 

network and vehicle trip information, represents quite well the real generated vehicle trips in 

the simulation network when the system is in the free flow regime. Albeit a good correlation 
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is found in general between the simulated and the analytical data, there are a few data points 

from the set of the dark blue simulated data points which are scattered. These scattered data 

points correspond to the unstable network regime and the area depicted by the clockwise 

hysteresis loop seen in Macroscopic fundamental diagram showing the relation of average 

velocity and average traffic flow for Munich. Figure 5.3 of the Munich MFD. Nevertheless, the 

model in this study is tested only for the free flow regime of the network and in order to 

examine the feasibility of the model also for the congested regime further analysis is 

necessary.  

Secondly, the validity of Equation (20) and thereby the validity of the analytical model 

developed to capture the relation of the average network velocity and vehicle trip generation 

(𝑔𝑜𝑑) are also examined. The light blue line in Figure 5.4 is the functional form of this relation 

given analytically by Equation (20). For the Munich case study, it is observed that the analytical 

curve represents quite well the simulated and the analytical data as seen in Figure 5.4, with 

the exception of the scattered simulated data points below the curve which as previously 

mentioned correspond to the hysteresis loop of the MFD.  

 

Figure 5.4 The analytical and simulated relation of the average velocity and vehicle trips generated per hour 
𝑔𝑜𝑑  in the network.  

Being able to derive the relation of the average velocity and vehicle trip generation in the 

network analytically, by only using the MFD of a certain area together with network and trip 

information for the corresponding area, is quite an important step to derive analytically the 

traffic impact of an ODRP service and to avoid using high amount of input data and 

computationally expensive agent-based simulations. This relation provides information on the 
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impact that the change of the total vehicle trips in the network 𝑔𝑜𝑑 due to the use of an ODRP 

service have on the network’s average velocity. For a given penetration rate of the ODRP 

system represented by the ODRP passenger trip demand 𝜆𝑝, the shareability or the shared 

rides that can be achieved in the ODRP operation area for a certain set of SQP and a given 

optimization objective can be derived. After calculating the shareability value, the reduction 

of the total vehicle tris in the network 𝑔𝑜𝑑 as a result of shared vehicle trips 𝑔𝑝 due to the use 

of the ODRP service will be derived using Equation (10). The reduction of the total vehicle trips 

in the system is used an input value for Equation (20), which analytically derives the impact 

that this reduction has on the average velocity in the network.  

This analytical model will be used to capture the traffic impacts of ODRP for different 

penetration rate of the service and additionally, it will also be used to analytically capture the 

impact that the offered ODRP service has on further improving the percentage of shared trips 

in an area as a result of improved average velocity in the network. 

Traffic impacts of the ODRP service 

Contrary to the previous studies which consider indirectly the traffic impacts of ODRP service 

by the reduction of VKT of only the ODRP vehicle fleet, in this study the traffic impacts of the 

ODRP service are explored by including the impact of other road users in addition to the 

impact of the ODRP vehicle fleet. Hence, the traffic impacts of an ODRP service, when the 

ODRP passenger demand represents different portions of the total private vehicle passenger 

demand in Munich, are examined. Thereby different scenarios where the penetration rate of 

the ODRP system varies from 5% to 100% are designed, while also considering the 

private/alone vehicle trips that are present in the network. The results are compared to a base 

scenario for which the ODRP demand is zero and the private/alone vehicle trip demand is 10% 

higher than the current private vehicle trip demand in Munich. 

For each of these scenarios with different penetration rate of the ODRP demand, the 

private/alone vehicle trips given by matrix (A) and pooled vehicle trips given by matrix (P) are 

modified using the approach explained in Subsection 5.2.1. The ODRP system that is 

considered in this case refers to an instant booking ODRP system, offered in Munich city for 

the morning peak time from 07:00 – 10:00 and where the maximum waiting time and detour 

time are each equal to 5 minutes, and the boarding time is assumed to be zero. Aiming for 

increasing the societal benefits by introducing the ODRP system in the urban areas, the 

selected optimization objective for vehicle routing assignments is to minimize the VKT in the 

system. To measure the traffic efficiency, the commonly used key performance indicator of 

the average velocity of the operation area is chosen.  
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The results of the changes in average velocity during the morning peak time for the base 

scenario and for the scenarios with different penetration rate of the ODRP demand are 

illustrated in Figure 5.5. The data points depicted in this figure denote network’s average 

velocity calculated every 10 minutes using Equations (12) which uses the average velocity of 

all the edges in the network extracted from the AIMSUN microscopic simulation. Figure 5.5 

shows that at the beginning of the morning peak time even for the base scenario, the network 

is not congested shown by a rather high the average velocity. However, the average velocity 

for this scenario starts decreasing, having its lowest values from 08:00 – 09:00 and starts 

slowly increasing again after 09:00. It is observed that for all the ODRP scenarios tested, there 

is not a notable improvement in average velocity at the beginning of the morning peak time 

due to the fact that the network is in the free flow condition during this time span even for 

the base scenario. Therefore, in this case a further improvement in network’s average velocity 

is not possible. However, when the level of congestion in the network increases and its 

average velocity decreases, the benefit of the ODRP system in improving the average velocity 

in the network start to be visible. This highlights that the benefits of ODRP service in improving 

the traffic efficiency in urban areas are more prominent for congested cities and consequently, 

as higher level of congestion occur during the peak times, the ODRP service impacts are more 

noticeable during this time span.  

 

Figure 5.5 Average velocity for the Munich network during the morning peak time for different penetration 
rate of the ODRP passenger demand. 

As anticipated, the improvement in average velocity is higher with increasing the penetration 

rate of the ODRP service. This happens as there are more passengers who are willing to share 



100  Analytical Modelling of On-Demand Ride Pooling Impacts 

 

the trip with somebody else and as shareability directly depends on the ODRP passenger 

demand 𝜆𝑝, consequently a high passenger demand means that the chances that the fleet 

operator has to find shareable trips are higher. Therefore, the number of vehicles in the 

system will be lower, leading to reduced VKT and higher network velocity.   

Figure 5.6 illustrates the improvement of the average velocity for the network of the city of 

Munich relative to the base scenario, where the demand for ODRP passenger trips is zero. It 

is observed that in the extreme case where all the private vehicle trips in Munich are 

substituted with the ODRP vehicle trips for the penetration rate of 100% (Scenario P100), the 

velocity in Munich area could rise by up to 20% compared to the base scenario. For the lowest 

considered ODRP penetration rate of 5% (Scenario P5), it is noted that the effect of the ODRP 

service in the network velocity is negligible. This implies that the positive impacts of ODRP on 

traffic efficiency are not projected to be noticed for low penetration rate of the ODRP service. 

Nevertheless, when the ODRP service demand and hence its penetration rate will grow higher, 

the improvement in average velocity is expected to be more significant, as seen also in Figure 

5.6. Taking as an example scenario P25, for an ODRP passenger demand penetration rate of 

25%, the increase in average velocity compared to the base scenario is up to 10%. This infers 

that with increasing the ODRP penetration rate, the improvement of average velocity will be 

higher, and thereby stressing that ODRP services have to account for a significant share of the 

total vehicle trip demand in order for its impacts on traffic to be noticeable.  

 

Figure 5.6 Improvement of the average velocity of the Munich network during the morning peak time for 
different penetration rate of the ODRP passenger demand compared to the Base scenario, where 
the penetration rate of the ODRP passenger demand is equal to 0. 
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Modified shareability model  

Analyzing the traffic impacts of an ODRP service in the previous part has shown that the 

average velocity in the network is expected to increase when the ODRP service is introduced, 

and the marginal effect of this improvement will depend on the market penetration of the 

ODRP passenger demand. As the average velocity of a city is an input for the shareability 

model, when this value gets higher, shareability is also expected to increase. This occurs as 

vehicles can reach further distances during the allowed detour time, thereby increasing the 

chances to find shareable trips. In the shareability model by TACHET ET AL. [2017], average 

velocity is assumed to be a constant parameter, which would not change regardless of the 

improvement in average velocity that ODRP would yield. In this thesis, a dynamic velocity is 

incorporated in the analytically modified shareability model as shown in Equations (22)-(24) 

and this model is tested with results from AIMSUN simulation.  

Figure 5.7 depicts the simulated shareability values from simulation and the analytical curves 

for both the original and the modified shareability. The dotted gray line represents the original 

shareability curve for a constant velocity 𝑣𝑜 which is the average velocity of the base scenario. 

The solid gray line represents the modified shareability curve which considers the second 

order effect of improved average velocity and shows that the shareability value can further 

increase by incorporating a dynamic velocity. Due to a quite high average velocity (𝑣𝑜 =

39.2 𝑘𝑚/ℎ) for the base scenario, which offers limited opportunities for improvement, the 

difference between the two shareability curves is not very significant. Nevertheless, even 

though the impact is small, the enhancement of the shareability values due to the improved 

average velocity imply that by improving traffic condition as a result of the ODRP service, the 

chances to find shareable trips in an area can additionally increase. The black dots in Figure 

5.7 represent the simulated shareability values calculated by using the improved network’s 

average velocity derived from AIMSUN simulation for the simulated scenarios with different 

penetration rate of the ODRP passenger demand: 5%, 25%, 50%, 75% and 100%. It is observed 

that the simulated shareability values fit quite well with the modified shareability curve. Albeit 

a small, noticed improvement of the modified shareability values in the case study of Munich 

due to small increase of average velocity, in general the findings are quite important as they 

suggest that for cities with higher level of congestion, the ODRP service might contribute to 

higher improvements of the average velocity and consequently, further increasing the 

chances to find shareable trips. 
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Figure 5.7 Analytical and simulated shareability for different pooled/ODRP passenger trip generation rate per 
hour 𝜆𝑝.  
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5.3 On-Demand Ride Pooling Benefits Evaluation 

This section will explore the result of the general ODRP model presented in Section 3.3, 

investigating in which conditions an ODRP service can be beneficial from the perspective of 

cities, operators and customers, considering improvement in traffic efficiency, monetary 

profitability of the ODRP service operator and the conditions when a pooled ride is attractive 

for the customers. Firstly, the scenario design will be provided and then the results of the 

model will be shown.  

5.3.1 Scenario design 

This part will start with a description of the ODRP service parameters used for further 

investigation of the ODRP benefits. Then the scenarios considered for analyzing the societal 

benefits, operator’s profitability and customer’s attractiveness of the ODRP service will be 

provided. A description of all the parameters used in the general ODRP model is provided in 

Tab. 5.4. 

ODRP service parameters 

Similarly to the previous part (Section 5.2), an instant booking ODRP service operation in the 

Munich operation area of Figure 4.1 is considered, where the surface area is 221 km2 and the 

average velocity in the network is 𝑣𝑜 = 39.2 𝑘𝑚/ℎ. The ODRP demand representing the 

number of ODRP passenger requests per hour equal to 𝜆𝑝 is assumed to be exogeneous. This 

demand is also one of the input parameters of the general analytical model of ODRP impacts.  

As the most prominent benefits of an ODRP service are associated with the improvement of 

traffic conditions in our cities, similarly to Section 5.2, the vehicle routing optimization 

objective used by the fleet operator is to minimize the VKT in the system and the network 

topology of Munich is represented by a street graph network. Using this optimization 

objective, the shareability for the considered operation area, different set of SQP (∆, 𝑡𝑚𝑎𝑥 , 𝑡𝑏) 

and ODRP passenger demand 𝜆𝑝 is calculated by using the prediction model approach (given 

by Equation (44)) described in Subsection 5.1.2 and previously applied in Section 5.2.  

Different from the validation of the other models, where a scenario-based set of SQP of the 

ODRP service is assumed, here a rather continuous change of the SQP and their impact on the 

results is considered. Therefore, the detour time value ∆ varies from 1 to 15 minutes, the 

maximum waiting time 𝑡𝑚𝑎𝑥  takes values of 2, 5, 10 and 15 minutes and 

boarding/disembarking time 𝑡𝑏  is assumed to be 0 minutes for simplicity. The ODRP system is 
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considered restrictive, normal or flexible for a maximum waiting time of 2, 5 and 10 (15) 

minutes, respectively.  

Societal benefits scenarios 

In order to investigate the impact of the ODRP in the society, the changes in the average 

velocity in the city by using Equation (20) are tested, showing the relation of average velocity 

and vehicle trips generated in the network. Instead of the general 𝑔𝑜𝑑 taking into account 

private/alone vehicle trips and ODRP/pooled vehicle trips with similar origins and 

destinations, in this part the modified total vehicle trip generation in the system is used 

considering also the additionally VKT from the ODRP detour distance given by Equation (25). 

In accordance with simulation studies [ENGELHARDT ET AL., 2019a], the experienced detour time 

is assumed to be half of the maximum detour time, therefore the parameter 𝜀 is considered 

to be 0.5. The ODRP vehicles are assumed to serve maximum 2 passengers simultaneously and 

therefore, the vehicle capacity 𝜙 is equal to 2. Hence, the changes in average velocity will be 

captured for different ODRP passenger demand and various detour time values ∆, while 

considering four different cases when the maximum waiting time 𝑡𝑚𝑎𝑥  is 2, 5, 10 and 15 

minutes. 

ODRP operators’ profitability scenarios 

To calculate the monetary benefits of the ODRP system from the operators’ perspective, the 

costs and revenues of the service should be calculated and therefore, cost per kilometer and 

the pricing strategy used should be firstly defined. 

The cost per kilometer for the ODRP service are assumed to be similar to the cost per kilometer 

of an ODRH service, which considers the costs of the on-demand mobility service fleet 

operator and the platform provider. Assuming the use of vehicles with a normal internal 

combustion engine, the ODRP total operation cost per kilometer 𝜅𝑘𝑚
𝑝 , including also the 

vehicle fleet costs are supposed to be equal to 𝜅𝑘𝑚
𝑝 =  1.55 €/𝑘𝑚 [NEGRO ET AL., 2021]. 

As for the revenue calculation in this numerical example, the ODRP fare that the customers 

should pay in order to use the service is only based on distance. The ODRP price per kilometer 

𝛾𝑘𝑚
𝑝

 is calculated based on the ODRH service price per kilometer 𝛾𝑘𝑚
ℎ  assuming a certain 

percentage reduction in price 𝛾 when using the ODRP service compared to using the ODRH 

service. Therefore, a reduction of 𝛾 = 30%, 25%, 20%, 10%, would mean that the ODRP price 

per kilometer 𝛾𝑘𝑚
𝑝

 is calculated by using the following formula, where the ODRH price is 

considered to be 𝛾𝑘𝑚
ℎ = 1.5 €/𝑘𝑚, similar with the ODRH price in [KUCHARSKI & CATS, 2020]:  
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𝛾𝑘𝑚
𝑝 = (1 − 𝛾) ∗ 𝛾𝑘𝑚

ℎ  (48) 

As a result, four different scenarios with different price reduction are defined, for three 

different maximum waiting time values  𝑡𝑚𝑎𝑥 equal to 2, 5 and 10 minutes and various detour 

time ∆.  

Customers’ attractiveness to use the ODRP service scenarios 

The main factors determining the customers willing to use the ODRP service are the SQP and 

price. A customer would use an ODRP service only if the benefit she might get from the 

reduced price would surpass the disadvantage cause by the detour time. Hence, the customer 

could allow a deviation from her direct travel distance when using the ODRP service and at 

the same time she would expect to pay less for an ODRP ride compared to an ODRH ride.  

In order to derive when can an ODRP service be attractive for the customers, the accepted 

detour time ∆accepted is calculated by using Equation (35), which is the maximum detour time 

that the customer would accept for a certain price reduction compared to ODRH price. The 

accepted detour time as shown in Equation (35) depends on several parameters which include 

the value of time 𝛽𝑡, the waiting time discomfort 𝛽𝑤, the pooling discomfort 𝛽𝑝 and a cost 

sensitivity factor 𝛽𝑐. 

In the base scenario of this study, the cost sensitivity factor 𝛽𝑐 (representing the disutility of 

the price and time components) takes the value of -1. The value of time 𝛽𝑡 is assumed to be -

13.56 €/h in accordance to the value of time in the German context [SHOMAN, 2019]. The 

discomfort of pooling parameter 𝛽𝑝 is however not a well-known parameter, albeit recent 

research in stated preference choice experiments provide first estimations for the value of 

this parameter [ALONSO-GONZÁLEZ ET AL., 2020b]. In this study the discomfort of pooling 𝛽𝑝 is 

selected to be 1.3, similar with [KUCHARSKI & CATS, 2020]. Then a sensitivity analysis is 

performed to examine how different values of the value of time 𝛽𝑡 and the discomfort of 

pooling 𝛽𝑝 parameters effect the value of accepted customer detour time.   
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Constant Parameter 
Math 

Notation 
Description Value Unit 

Surface area Ω Surface of the operation area 221 km2  

Network length 𝐿 Total length of the network 2450 km  

Velocity at capacity 𝑣𝑐  
Average velocity when the 
system is at capacity 

39.2 km/h 

Flow at capacity 𝑞𝑐  
Average flow when the system is 
at capacity 

457 vehicle/h 

Average velocity during 
the morning peak 

𝑣𝑜  
Original average velocity during 
the morning peak for the base 
scenario 

39.2 km/h 

The parameter of the 
parabola 

𝑎 
Parabolic function parameter 
derived by data fitting 

0.062 - 

Average vehicle trip length 
of vehicle trips type (1)  

𝑙𝑜𝑑  

Average trip length for vehicle 
trips which have the origin and 
the destination in the operation 
area 

5.16 km 

Average vehicle trip length 
of vehicle trips type (2) 

𝑙𝑜 
Average trip length for vehicle 
trips which have only the origin in 
the operation area 

17.5 km 

Average vehicle trip length 
of vehicle trips type (3) 

𝑙𝑑  
Average trip length for vehicle 
trips which have only the 
destination in the operation area 

17.5 km 

% of 𝑙𝑜 inside the 
operation area 

𝑝𝑜 % of 𝑙𝑜 inside the operation area 51 % 

% of 𝑙𝑝 inside the 

operation area 
𝑝𝑑  % of 𝑙𝑝 inside the operation area 46 % 

Boarding/disembarking 
time 

𝑡𝑏 

The assumed time that the 
customer needs to 
board/disembark the vehicle 

0 minute 

Vehicle capacity 𝜙 
The maximum number of 
passengers who can share a trip 
at the same time 

2 passenger 

Shareability fitting 
parameter 

𝑘  
Fitting parameter for the 
shareability prediction model in 
Eq. (44)   

0.126 - 

Shareability fitting 
parameter 

𝑛 
Fitting parameter for the 
shareability prediction model in 
Eq. (44) 

0.829 - 
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Parameter for detour time 
reduction 

𝜀 
Parameter capturing the 
experienced detour time 

0.5 - 

ODRP service operator’s 
cost per kilometer 

𝜅𝑘𝑚
𝑝

 
ODRP service operator’s cost per 
kilometer including ODRP vehicle 
fleet costs  

1.55 €/km 

ODRH service customer’s 
price per kilometer 

𝛾𝑘𝑚
ℎ  

ODRH service price per kilometer 
that the customer pays 

1.5 €/km 

Value of time 𝛽𝑡 
The value of time for the 
passengers 

-13.56 €/h 

Waiting discomfort  𝛽𝑤 
A parameter showing the 
perceived customer waiting time 

- - 

Pooling discomfort  𝛽𝑝 
A parameter capturing the 
discomfort of a shared ride 

1.3 - 

Cost sensitivity factor 𝛽𝑐  
A parameter representing the 
disutility of the option 

-1 - 

Variable Parameter 
Math 

Notation 
Description 

Value / 
Relation 

Unit 

Detour time ∆ 
Temporal deviation from the 
direct travel time 

0 – 15 minute 

Maximum waiting time 𝑡𝑚𝑎𝑥 
Maximum time the passenger 
waits to be picked up 

5, 10, 15, 20 minute 

Shareability 𝑆 
Percentage of trips which can be 
shared within an operation area  

Eq. (4), (5), 
(44)   

% 

Average velocity 𝑣 
Network’s average velocity at a 
given time when the ODRP 
service is introduced 

𝑣 (𝑔𝑜𝑑𝑚𝑜𝑑
) → 

Eq. (20) and 
(21) 

km/h 

Average traffic flow 𝑞 
Network’s average traffic flow at 
a given time   vehicle/h 

Average traffic density k 
Network’s average traffic density 
at a given time  vehicle/km 

Alone/private passenger 
trip generation rate 

𝜆𝑎 

Alone/private passenger trips 
generated per hour in an area 
and completed by private 
vehicles 

 
passenger 

trip/h 

Pooled/ODRP passenger 
trip generation rate 

𝜆𝑝 
Pooled/ODRP passenger trips 
requests generated per hour and 
completed by the ODRP service 

 
passenger 

trip/h 
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Alone/private vehicle trip 
generation rate 

𝑔𝑎 
Alone/private vehicle trips 
generated per hour by private 
vehicles 

𝑔𝑎 =  𝜆𝑎  
vehicle 
trip/h 

Pooled/ODRP vehicle trip 
generation rate 

𝑔𝑝𝑚𝑜𝑑
 

Pooled/ODRP vehicle trips 
generated per hour by the ODRP 
service 

Eq. (25) 
vehicle 
trip/h 

Total vehicle trip 
generation rate in the 

operation area 

𝑔𝑜𝑑𝑚𝑜𝑑
  

Total vehicle trips generated per 
hour in the operation area of the 
ODRP service of vehicle trips type 
(1) 

𝑔𝑎 + 𝑔𝑝𝑚𝑜𝑑
 

vehicle 
trip/h 

Vehicle trips generation 
rate of vehicle trips type 

(2) 
𝑔𝑜 

Hourly generation rate of the 
vehicle trips which have only the 
origin in the operation area 

 
vehicle 
trip/h 

Vehicle trips generation 
rate of vehicle trips type 

(1) 
𝑔𝑑  

Hourly generation rate of the 
vehicle trips which have only the 
destination in the operation area 

 
vehicle 
trip/h 

ODRP vehicle kilometers 
travelled 

𝑉𝐾𝑇𝑂𝐷𝑅𝑃  
The VKT travelled by the ODRP 
service 

𝑔𝑝𝑚𝑜𝑑
∗ 𝑙𝑜𝑑  → 

Eq. (27) 
km/h 

Discount  𝛾 
ODRP service customer price 
reduction compared to ODRH 
service price 

30, 25, 20,10 % 

ODRP service customer’s 
price per kilometer 

𝛾𝑘𝑚
𝑝

 
ODRP service price per kilometer 
that the customer pays 

(1 − 𝛾) ∗ 𝛾𝑘𝑚
ℎ  €/km 

ODRP service customer’s 
price per minute  

𝛾𝑚𝑖𝑛
𝑝

 
ODRP service price per minute 
that the customer pays 

 €/minute 

ODRP service operator’s 
total cost 

Cost 
The total cost of the ODRP 
service for the operator 

𝑉𝐾𝑇 ∗ 𝜅𝑘𝑚
𝑝

 → 

Eq. (28) 
€/h 

ODRP service operator’s 
total revenue 

Revenue 

The total revenue of the ODRP 
service for the operator when the 
pricing strategy is only based on 
distance 

𝜆𝑝𝑙𝑜𝑑𝛾𝑘𝑚
𝑝
→ 

Eq. (29) 
€/h 

ODRP service operator’s 
total profit 

Profit 
The total revenue of the ODRP 
service for the operator 

Revenue – 
Cost  

€/h 

Accepted customer detour  ∆accepted 

Customers would allow a 
deviation of ∆accepted to 

compensate for the reduced 
ODRP price 

Eq. (35) minute 

Tab. 5.4 Description of the parameters of the general ODRP analytical model capturing the benefits of the 
ODRP service from the perspective of cities, operators and customers. Their math notations and 
their corresponding values or relations are also depicted.  
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5.3.2 Results 

In this part the results of the general analytical model of the ODRP impacts will be explored. 

Firstly, the parameter space where the ODRP service can be beneficial for the society, in terms 

of improved traffic conditions will be described. Then, the monetary profitability of the 

operator will be investigated. And lastly, the customer attractiveness toward sharing a ride 

will be captured. 

Benefits for the society 

The introduction of ODRP services is anticipated to improve the traffic conditions in urban 

areas. The general analytical model presented in Subsection 3.3.2 is used in this part to explore 

in which parameter space the ODRP service can be beneficial for the society, i.e., for which 

ODRP passenger demand, detour time, maximum waiting time etc., the ODRP service has the 

potential to improve the traffic efficiency. 

Figure 5.8 illustrates the average velocity in Munich operation area for different ODRP 

passenger demand level 𝜆𝑝, various maximum detour time ∆ and different maximum waiting 

time 𝑡𝑚𝑎𝑥. The color of the graph shows the changes in average velocity. An improvement in 

average velocity, and therefore better traffic conditions in the city, are shown by the blue 

color. The darker the blue color is, the higher is the average velocity in the city. Whereas the 

red color would mean that the average velocity in the city is lower than the base scenario 

(when the ODRP service is not introduced and ODRP passenger demand level 𝜆𝑝 is zero). The 

white color shows that the average velocity remains the same as in the base scenario and 

there is no significant improvement in average velocity in the area due to the shared trips. The 

value of the average velocity for these graphs is derived by using Equation (20), where 𝑔𝑜𝑑 =

𝑔𝑜𝑑𝑚𝑜𝑑
 given by Equation (25). This represents the relation of average velocity and vehicle trips 

generated in the system for the free flow regime, where the modified total vehicle trip 

generation in the system includes also the additionally VKT from the ODRP detour distance.  

It is noted in Figure 5.8 that for small penetration rate of the ODRP passenger trip demand 𝜆𝑝 

the introduction of the ODRP service in the city of Munich does not improve the average 

velocity for the considered parameter space (shown by the white color in the graphs). The 

smallest ODRP passenger demand penetration rate for which an improvement in average 

velocity is possible is noted to be at around 7000 trips/h for detour values ranging from 4-6 

minutes and maximum waiting time of 15 minutes (Figure 5.8.d). With decreasing the 

maximum waiting time, this critical value of the ODRP passenger trip demand for which 

average velocity in the city starts increasing gets larger (Figure 5.8.a, Figure 5.8.b and Figure 
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5.8.c), meaning that the positive impacts of ride pooling in traffic efficiency will be noticed for 

higher penetration rate of ODRP demand. The reason for these results is that by decreasing 

the maximum waiting time, the chance to find shareable trips – and consequently shareability 

– also decreases, as the constraint of the maximum waiting time reduces the options to find 

shareable trips. Therefore, the lower number of shareable trips decreases the possibility to 

reduce the number of vehicle trips generated in the system, decreasing therefore the chances 

to have higher average velocity in the system. 

It is observed that the detour time has a different impact on the result compared to the impact 

of the maximum waiting time, since detour time contributes also to the addition of vehicle 

trips in the system as a result of the detour distance imposed by the ODRP service. Whereas 

the maximum waiting time does not influence the vehicle trips in the system, as it is the time 

the customer waits to be picked up. It is shown that for low detour time, even when the ODRP 

passenger demand is high the improvement in average velocity is restricted, as the chances 

to find shareable trips are very low for small values of detour time. With increasing detour 

time, the system starts to see positive traffic impacts for lower ODRP passenger demand 

penetration, as the shareability increases when the value of the detour time constraint gets 

higher. However, after a certain detour time, which is referred here as the optimum detour 

time, the ODRP passenger demand when the system’s average velocity starts to improve shifts 

to the right (representing higher ODRP demand penetration rate). This happens as higher 

values of the detour time, do not only contribute to higher shareability values, but also to 

higher generated detour distance. For detour time higher than the optimum one, the 

generated detour distance in the system is higher than the benefits that the detour time has 

on increasing the shareability, therefore the positive impact of the ODRP service in average 

velocity is observed for higher ODRP passenger penetration rate.  

Figure 5.8 illustrates the optimum detour time for each of the considered maximum waiting 

time of 2 (Figure 5.8.a), 5 (Figure 5.8.b), 10 (Figure 5.8.c) and 15 (Figure 5.8.d) minutes. It is 

noted that the optimum detour time is lower for higher maximum waiting time.  The reason 

for this is that when the maximum waiting time takes high values its impact on the shareability 

is more prominent compared to the influence of low detour times, therefore the optimum 

detour time, where the disadvantages of the detour distance surpass the benefits of increased 

shareability is lower. With rising values of the maximum waiting time, it is shown that the 

changes in average velocity between the graphs start to diminish. As an example, for a detour 

of one minute, when changing the maximum waiting time from 2 minutes to 5 minutes the 

difference in the ODRP demand where the system start to show positive impacts is around 

10000 trips/h, whereas when changing from maximum waiting time of 5 minutes to 10 
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minutes the difference is around 5000 trips/h. Mind also that the difference in ODRP demand 

change is bigger, albeit larger changes in the maximum waiting time, as in the first case there 

is only a three minutes difference in maximum waiting time and in the second case the 

difference is 5 minutes. This difference decreases even further when 𝑡𝑚𝑎𝑥  changes from 10 

minutes to 15 minutes. 

The average velocity in the city is higher than the base scenario in all the graphs of Figure 5.8 

showing that in the considered parameter space the total number of vehicle trips generated, 

even when adding the extra trip length from the detour time, is lower or similar to the vehicle 

trips of the base scenario, since in Equation (25) 𝑣(0.5∆) is always smaller than 𝑙𝑜𝑑 for ∆ <

15 minutes as the average trip time in Munich is around 8 minutes. Therefore, in the 

considered scenario analysis, the average velocity in the city can either remain the same or 

increase, but it does not decrease. 
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a) 𝑡𝑚𝑎𝑥 = 2 minutes         c)   𝑡𝑚𝑎𝑥 = 10 minutes  

 

         

 

 

 

 

b) 𝑡𝑚𝑎𝑥 = 5 minutes         d)   𝑡𝑚𝑎𝑥 = 15 minutes 

 

 

 

 

 

 

 Figure 5.8 Average velocity in Munich area for different ODRP passenger demand level 𝜆𝑝, various detour time ∆ and different maximum waiting time 𝑡𝑚𝑎𝑥. Different 

graphs show the average velocity when a) 𝑡𝑚𝑎𝑥  = 2 minutes, b) 𝑡𝑚𝑎𝑥  = 5 minutes, c) 𝑡𝑚𝑎𝑥  = 10 minutes and d) 𝑡𝑚𝑎𝑥  = 15 minutes. 
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Benefits for the operators  

In this part the results of the monetary profitability model presented in Subsection 3.3.3 and 

capturing the profitability of the ODRP service from the operator perspective will be illustrated 

and the parameter space when the service can be profitable will be defined by investigating 

the scenarios defined in Subsection 5.3.1.  

The monetary profitability of the ODRP service in this part is calculated by using Equations 

(26) – (29). For different ODRP passenger demand 𝜆𝑝 and various detour time ∆, Figure 5.9, 

Figure 5.10 and Figure 5.11, illustrate the profitability for maximum waiting time 𝑡𝑚𝑎𝑥  equal 

to 2, 5 and 10 minutes, respectively. According to the selected maximum waiting time the 

ODRP system is considered as restrictive (Figure 5.9), normal (Figure 5.10) or flexible (Figure 

5.11). For each of these figures, subplots a), b), c) and d) refer to different discount levels 𝛾, 

meaning that the ODRP price per kilometer 𝛾𝑘𝑚
𝑝  is 30%, 25%, 20% and 10% of the ODRH price 

per kilometer 𝛾𝑘𝑚
ℎ  as given in Equation (48). The base ODRH price considered here is equal to 

1.5 €/km, similar to the price values used in KUCHARSKI & CATS [2020]. The red color of the plots 

show that the system is not profitable and the darker the red color is, the larger are the 

monetary loss of the ODRP service. Whereas the blue color shows that the system is profitable 

and the darker the blue color is, the more profitable is the ODRP service. The white color 

shows the brake-even point, where the cost and the revenue of the ODRP service are equal. 

The green line defines the accepted customer detour time ∆accepted for the given ODRP 

discount 𝛾, however more explanation will be provided for this in the next part. 

In Figure 5.9 the ODRP profitability for a restrictive ODRP system, when the maximum waiting 

time equals to 2 minutes, is calculated for different discount levels. It is shown that for 

discount 𝛾 of 30% (Figure 5.9.a) and 25% (Figure 5.9.b) the ODRP service is not profitable in 

the considered parameter space for ODRP passenger demand level of up to 50000 trips/h and 

detour time of up to 15 minutes. For a discount 𝛾 of 20% (Figure 5.9.c) and within the 

considered ODRP passenger demand, the profitability of the system is limited only for a certain 

range of ODRP demand and for the service quality parameter of the detour time within the 

range of 3 to 8 minutes. The lowest ODRP passenger demand level for which the system starts 

to be profitable for this discount level is around 25000 trips/h when the detour time is 6 

minutes. In the case when the discount 𝛾 is only 10% of the ODRH price (Figure 5.9.d), the 

ODRP system is profitable in the majority of the parameter space and even for low ODRP 

passenger demand. This happens as the operator’s total cost reduction due to trip sharing 

outperforms the decrease in revenue due to the lower price offered to the customers and 

therefore the ODRP system is profitable. 
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Figure 5.10 illustrates the profitability results for a normal ODRP system where the maximum 

waiting time is 5 minutes. It is observed that even though also in this case the ODRP system is 

not profitable for discount 𝛾 of 30% (Figure 5.10.a), it starts to be profitable for a discount of 

25% (Figure 5.10.b). As expected, the profitable parameter space area increases for discount 

20% (Figure 5.10.c) and 10% (Figure 5.10.d). The area is also larger than the same discount 

scenarios for the case when the maximum waiting time is equal to 2 minutes, as with 

increasing values of maximum waiting time the chance to find shareable trips and hence 

shareability also increases, reducing in this way the VKTODRP and hence the total cost of the 

ODRP system, as shown in Equation (28).  

Figure 5.11 shows the profitability results for a flexible ODRP system when the maximum 

waiting time is 10 minutes. The ODRP system for this case starts to be profitable for a lower 

discount level that equals to 30%, however profitability is reached only for high ODRP 

passenger demand level of more than 30000 trips/h. The parameter space where the system 

is profitable increases with the reduction of the discount and similarly with the previous case, 

the profitable area is larger than the one shown in Figure 5.10 for the same discount level, as 

for a flexible ODRP system with higher values of the maximum waiting time constraint, the 

shareability is consequently higher. In this case, for a low discount of 10% (Figure 5.11.d), the 

profitability of the ODRP service is observed even for low ODRP passenger demand of about 

2500 trips/h and low detour time of only 1 minute.      

An interesting observation is distinguished for the cases when the ODRP system is profitable 

(in Figure 5.9 (c and d), Figure 5.10 (b, c and d) and Figure 5.11), where the existence of an 

optimum detour time is determined. This is defined as the point with the lowest ODRP 

passenger demand for which the ODRP system starts to be profitable. Considering the 

example of Figure 5.10.c for a normal ODRP system with maximum waiting time of 5 minutes 

and discount of 20%, it is noted that for low detour time of 1 minute the ODRP system is not 

profitable for the considered range of ODRP demand. However, when the detour time 

increases, the ODRP demand where the system starts to be profitable decreases (i.e., the 

ODRP system can be profitable for lower penetration rate) due to increased shareability values 

as a result of higher detour time which contribute to cost reduction. However, after a certain 

detour time (5 minutes in this example), which is referred as the optimum detour time, the 

ODRP passenger demand where the system starts to be profitable shows an increasing trend. 

This happens as after this point of optimum detour time, the disadvantages coming from 

increased detour distance, which consequently influence the increase of the operator costs, 

surpass the advantages that the detour time has on increasing the shareability, thereby 

decreasing the operation costs. Hence, increasing the detour time more than this optimum is 
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not beneficial in terms of operator’s profitability. A similar behavior is noticed also in the 

previous part, which analyzes the ODRP impact on average velocity in the city, where similarly 

an optimum detour time from city’s perspective is defined.  

Another quite important aspect in the analysis the system’s profitability is that intuitively it 

could be expected that with increasing the ODRP passenger demand it would come a point 

where the system would be profitable, however, this is not always the case. In the described 

cases, it is observed that for low detour time, with increasing ODRP demand the monetary 

loss of the system become higher (shown by the darker red color). The reason for this behavior 

is that the operator has very low chances to find shareable trips, but still keeps offering the 

customers a cheaper price. This adds up in reduced revenues and increased total monetary 

loss when the ODRP passenger demand gets higher. Similar observation is noticed for high 

values of detour time in all the scenarios of Figure 5.9, Figure 5.10 and Figure 5.11, where if 

increasing the ODRP passenger demand, the system not even does not become profitable, but 

in the contrary, its monetary losses becomes higher (shown by the darker red color). In this 

case the reason for the increased monetary losses is associated with increased total cost of 

the ODRP system, as with higher allowed detour time, the total VKT in the network increase, 

due to increased detour distance to pick up additional passengers.  

These results can be important for the operators to derive in which conditions the ODRP 

system that they want to offer will be profitable. By using these finding they could decide what 

kind of SQP they want to offer to the customers by defining the detour time and the maximum 

waiting time of the ODRP system. This model also gives an estimation for them to anticipate 

the ODRP penetration rate necessary for them to be profitable for the offered type of the 

ODRP service defined by the selected SQP.       
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a)  Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 2 minutes      c)   Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 2 minutes  

 

 

 

 

 

 

b)   Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 2 minutes     d)   Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 2 minutes   

 

  

Figure 5.9 Operator’s monetary profitability in Munich for maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟐 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, different ODRP passenger demand 𝜆𝑝, various detour time ∆. 

Different subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 = 25%, c) 𝛾 = 20%, d)  𝛾 = 10%. The 
green dotted line represents the accepted customer detour time until which the customer considers the ODRP service as attractive. 
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a) Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 5 minutes       c)   Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 5 minutes 

 

 

 

 

  

 

b) Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 5 minutes      d)   Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 5 minutes  

 

 

 

 

 

 

 
Figure 5.10 Operator’s monetary profitability in Munich for maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟓 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, different ODRP passenger demand 𝜆𝑝, various detour time ∆. 

Different subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 = 25%, c) 𝛾 = 20%, d)  𝛾 = 10%. The green 
dotted line represents the accepted customer detour time until which the customer considers the ODRP service as attractive.  
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a) Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 10 minutes      c)   Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 10 minutes  

  

 

 

 

 

 

b) Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 10 minutes     d)   Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 10 minutes  

 

Figure 5.11 Operator’s monetary profitability in Munich for maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟏𝟎 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, different ODRP passenger demand 𝜆𝑝, various detour time 

∆. Different subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 = 25%, c) 𝛾 = 20%, d)  𝛾 = 10%. The 
green dotted line represents the accepted customer detour time until which the customer considers the ODRP service as attractive. 
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Benefits for the customers  

When analyzing the ODRP service benefits, the customers certainly play a key role in 

determining the overall success of the service. In this part the conditions when an ODRP 

service would be attractive for the customers are analyzed.  

The ODRP attractiveness for customers is investigated by using the approach described in 

Subsection 3.3.4, where the willingness of customers to use the ODRP service is compared 

with the willingness of the customers to use an ODRH service. Hence, the accepted customer 

detour time is derived from Equation (35), which is the maximum detour time that the 

customer would be willing to accepted for a certain price reduction. More specifically, it 

answers the question of what is the detour that the customer is willing to tolerate for a certain 

compensation coming from paying a lower price compared to the ODRH price. As shown in 

Equation (35), the accepted customer detour time value in addition to the changes in price 

per kilometer between ODRH service 𝛾𝑘𝑚
ℎ  and ODRP service 𝛾𝑘𝑚

𝑝 , depends also on the 

parameters defining the value of time 𝛽𝑡 and the pooling discomfort 𝛽𝑝. In this study the value 

of time 𝛽𝑡 is considered to be equal to 13.56 €/h, in accordance to the value of time in 

Germany specified in [SHOMAN, 2019] for a vehicle passenger with an average income, and the 

pooling discomfort 𝛽𝑝 is assumed to be equal to 1.3, similar to [KUCHARSKI & CATS, 2020].  

By keeping the value of time and the discomfort of pooling parameters fixed and equal to the 

above-mentioned values, the accepted customer detour time in Figure 5.9, Figure 5.10 and 

Figure 5.11 (shown by the dotted green line) is calculated by using Equation (35). As expected 

for lower discount values, the maximum accepted customer detour time decreases. For 

instance, when the discount is 10% of the ODRH price, the accepted detour time is only 1 

minute, i.e., that the customers would not accept a higher detour time for this low-price 

reduction. However, when the discount is higher, for instance in the case when 𝛾 = 30%, the 

customer would tolerate a higher detour of 6 minutes for the cheaper price that she is going 

to pay for the ODRP service compared to the ODRH service. 

As mentioned, the accepted customer detour time will change with changing values of the 

value of time 𝛽𝑡 and the pooling discomfort 𝛽𝑝 parameters. Therefore, in order to explore the 

impact of these parameters on the results, Figure 5.12 illustrates the accepted customer 

detour time values for various values of the value of time parameter 𝛽𝑡 and the pooling 

discomfort parameter 𝛽𝑝 for the scenarios where the discount 𝛾 is equal to 30% (Figure 

5.12.a), 25% (Figure 5.12.b), 20% (Figure 5.12.c) and 10% (Figure 5.12.d). It is shown that for 

higher values of time and pooling discomfort parameters, the detour time accepted by the 
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customers decreases (noted by the darker colors). This occurs because the extra travel time 

spend is more ‘costly’ for the customers for higher values of time 𝛽𝑡. Similar for the pooling 

discomfort, for higher values of the pooling discomfort 𝛽𝑝 parameter, the customers perceive 

the time they share the trip with somebody else as more discomfortable, therefore the 

acceptable detour time decreases in this case as well. Intuitively, when the values of the 

pooling discomfort 𝛽𝑝 and value of time 𝛽𝑡 parameters are low, the accepted customer detour 

time increases (noted by the light colors), allowing for higher system flexibility for the 

operators. Different subplots in Figure 5.12 show how the accepted customer detour time 

alters for different discount levels 𝛾. For low discount values 𝛾 = 10% and the accepted 

customer detour time is lower than 4 minutes for the majority of the considered values of the 

parameters, taking its highest value in the range 4 – 6 minutes for only a small range of 𝛽𝑝 and 

𝛽𝑡 values (Figure 5.12.d). With increasing discount value, i.e., lower ODRP price, the range of 

the accepted detour time increases. For instance, for the lowest discount of 30% (Figure 

5.12.a), the highest accepted detour time values are within 16 – 18 minutes range and the 

lowest are between 2 – 4 minutes.    
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a) Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 10 minutes      c)   Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 10 minutes  

 

 

 

 

 

 

 

b) Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 10 minutes      d)   Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 10 minutes  

 

 

 

 

 

 

Figure 5.12 Accepted customer detour time ∆accepted for different value of time 𝛽𝑡 and pooling discomfort 𝛽𝑝. Different subplots provide the accepted customer 

detour time for various discount levels: a) 𝛾 = 30%, b) 𝛾 = 25%, c) 𝛾 = 20% and d) 𝛾 = 10%.  
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5.4 On-Demand Ride Pooling WIN-WIN-WIN Situation 

As already mentioned, the overall aim of this thesis is to explore under which conditions the 

win-win-win situation for cities, operators and customers can be achieved. After presenting 

the models developed in this thesis and testing them by means of an agent-based simulation 

and a microscopic traffic simulation, the separate benefits of an ODRP service offered in an 

operation area in Munich, considering the perspective of the city, the operator and the 

customers as specified in Subsection 5.3.1, are determined.    

In this part, the benefits for city, operator and customers are combined and the win-win-win 

situation between them is determined. The win for the city would occur in the case when the 

average velocity in the city is higher than in the base scenario. The win for the operator would 

imply that the profitability is higher than zero. And lastly, the win for the customer would be 

when the detour time is lower that the accepted customer detour time, which is specified 

based on the customer’s willingness to accept the deterioration of the service quality given by 

the addition of the detour time in compensation to the reduced price compared to the ODRH 

service. The results illustrated in Figure 5.13, Figure 5.14 and Figure 5.15 show in which 

parameter space the ODRP service can be beneficial for all the three stakeholders. More 

specifically, for different maximum waiting times of 𝑡𝑚𝑎𝑥  of 2 (Figure 5.13) , 5 (Figure 5.14) 

and 10 (Figure 5.15) minutes, they provide the range of ODRP passenger demand 𝜆𝑝 and 

detour time ∆ for which the win-win-win situation can be achieved. Different subplots (a, b, c 

and d) illustrate the results for different discount rates offered to the customers, where 𝛾 is 

equal to 30%, 25%, 20% and 10%, respectively.  

The break-even line for the city (given in black) shows that in those points the average velocity 

in the city remains the same as in the base scenario where the ODRP service was not 

introduced. At the same time, this line provides the threshold for the traffic benefits of the 

ODRP to be positive. On the right side of this line, the ODRP system is beneficial for the city. 

The break-even line for the operator in blue indicates the points where the ODRP system 

profitability is zero. Similar to the city break-even line, the ODRP system is profitable on the 

right side of this blue line. The threshold of the customer win is provided by the green line 

which is the maximum allowed customer detour time. A win for the customer is obtained 

below this green line. Consequently, the intersection of these lines (shown by the yellow area) 

determines the parameter space of the detour time and the ODRP passenger demand for 

which the ODRP win-win-win is possible. If the yellow area or the break-even lines of the 

customer or the operator are not visible in the plot, it means that the break-even and the win-
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win-win situation cannot be achieved within the considered detour time and ODRP passenger 

demand parameter space. 

Figure 5.13 provides the results for a restrictive ODRP system where the maximum waiting 

time is only 2 minutes. It can be observed that the win-win-win is noticed only in Figure 5.13.c 

where the discount 𝛾 is 20%. And even in this case, the ODRP passenger demand for which 

the win-win-win is achieved is quite high and equal to around 45000 trips/h. For the first two 

subplots in Figure 5.13.a and Figure 5.13.b, the win from the operator perspective cannot be 

achieved for the considered ODRP passenger demand range. Therefore, the total win-win-win 

is not possible in this case. Whereas in Figure 5.13.d, even though the win-win for operator 

and city can be achieved, for the considered discount level of only 10% the win for the 

customers is restricted to a detour time of lower than around 1 minute. As within this detour 

time range the win for the operator is not possible, consequently the total win-win-win is not 

achieved. 

Figure 5.14 illustrated the results for a normal ODRP system where the maximum waiting time 

is 5 minutes. For this normal ODRP system, the win-win-win is realized in Figure 5.14.b and in 

Figure 5.14.c for discounts of 25% and 20%, respectively. The ODRP passenger demand 

necessary to achieve this state is still high, nevertheless it is lower than for the previous case 

when the maximum waiting time was 2 minutes. The win-win-win state can be achieved for 

ODRP demand higher than 22000 trips/h and 14000 trips per hour for discounts of 25% and 

20%, accordingly. However, the detour time parameter range for the win-win-win to happen 

is much higher than in the previous case (Figure 5.13.c), ranging from 2 – 5 minutes and 2 – 

3.5 minutes for Figure 5.14.b and in Figure 5.14.c respectively. As in Figure 5.13.a for a 

discount of 30% and a maximum waiting time of 2 minutes, the win-win-win is also not 

possible in Figure 5.14.a for the same discount but a higher maximum waiting time of 5 

minutes, because the operator’s win is not attainable within the ODRP passenger demand 

range. The win-win-win is not possible also in Figure 5.14.d as the customers’ win is limited to 

detour time values of shorter than 1 minute, for which a win for the operator and the city 

cannot be achieved.  

Figure 5.15 shows the results for a flexible ODRP system where the maximum waiting time is 

10 minutes. It is observed that a win-win-win situation is achieved for 3 out of 4 cases 

considered. For this maximum waiting time, the win-win-win is achieved also for a discount of 

30% (Figure 5.15.a), which was not noted in Figure 5.13.a and Figure 5.14.a for lower 

maximum waiting times of 2 and 5 minutes, respectively. The parameter space for this state 

corresponds to the yellow area in Figure 5.15.a for an ODRP passenger demand of more than 

30000 trips/h and detour time values in the range of 2 – 5 minutes. A better compromise for 
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the achievement of the win-win-win is observed in Figure 5.15.b and Figure 5.15.c for discount 

values of 25% and 20%, respectively. For both cases, the parameter space where the system 

can be profitable from city, operator and customers perspective is larger. Nevertheless, for a 

discount of 20% as shown in Figure 5.15.c, the win-win-win starts to be visible for lower ODRP 

passenger demands (less than 10000 trips/h) compared to Figure 5.15.b for the case when the 

discount is 25% (more than 10000 trips/h). Compared to the previous cases (Figure 5.13 and 

Figure 5.14), the operators profitability here (Figure 5.15) is achievable for a larger parameter 

space (starting with a lower ODRP demand) as longer maximum waiting time contributes to 

increases revenues due to higher chances to find shareable trips, without increasing the VKT 

driven and hence keeping the costs the same and increasing the profitability. The total win-

win-win parameter space area of Figure 5.15.c is almost similar to the win-win-win area of 

Figure 5.15.b. This occurs as even though the ODRP passenger demand for a win-win-win state 

in the case presented in Figure 5.15.b is higher than in Figure 5.15.c, the maximum allowed 

detour time for the customers’ win in Figure 5.15.b is longer than in Figure 5.15.c (3.5 and 5 

minutes, correspondingly). Similar to the previous cases with maximum waiting times of 2 

(Figure 5.13.d) and 5 (Figure 5.14.d) minutes, the win-win-win is also not attained for a 

discount of 10% in Figure 5.15.d due to very low values of maximum customer detour times, 

which do not allow benefits for the city and the operator. 

The results of this part show that even though a restrictive ODRP system (Figure 5.13) can be 

desirable for the customers, the total win-win-win can hardly be achieved. A normal ODRP 

system (Figure 5.14) has higher chances to attain a win-win-win for a large parameter space 

compared to a restrictive ODRP system. However, the more flexible the ODRP system is, like 

the one in Figure 5.15, the larger is the parameter space for which the win-win-win is possible. 

Therefore, this kind of system might be more desirable to achieve the goals of the three ODRP 

stakeholders. Additionally, the discount plays an important role in the results, showing that a 

discount of 25% or 20% could be beneficial. A discount of 30% albeit desirable for customers, 

might not provide monetary benefits for the operator. Whereas a discount of 10% even 

though providing high profitability for the operator, might not attract customers to opt for the 

ODRP service due to low monetary compensation for the deterioration of the service quality 

due to additional experienced detour time. To conclude, a win-win-win situation is anticipated 

to be achieved for a larger parameter space for a flexible ODRP system and a discount range 

of 25% and 20%.  
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a) WIN-WIN-WIN: Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 2 minutes  c) WIN-WIN-WIN: Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 2 minutes  

 

 

 

 

 

 

b) WIN-WIN-WIN: Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 2 minutes   d) WIN-WIN-WIN: Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 2 minutes

  

 

 

 

 

 

 

 

Figure 5.13 WIN-WIN-WIN for the customers, the operator and the city for an ODRP service in Munich for a maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟐 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, varying ODRP 
passenger demand 𝜆𝑝 and detour time ∆. Subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 = 25%, c) 

𝛾 = 20%, d)  𝛾 = 10%. The parameter space where the ODRP system is beneficial for the city, operator and customers is situated on the right of the 
black line, on the right of the blue line, and below the green line, respectively. The win-win-win situation is shown by the yellow area.  
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a) WIN-WIN-WIN: Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 5 minutes    c) WIN-WIN-WIN: Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 5 minutes  

 

 

 

 

 

 

b) WIN-WIN-WIN: Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 5 minutes  d) WIN-WIN-WIN: Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 5 minutes  

 

 

 

 

 

 

  Figure 5.14 WIN-WIN-WIN for the customers, the operator and the city for an ODRP service in Munich for a maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟓 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, varying ODRP 
passenger demand 𝜆𝑝 and detour time ∆. Subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 = 25%, c) 

𝛾 = 20%, d)  𝛾 = 10%. The parameter space where the ODRP system is beneficial for the city, operator and customers is situated on the right of the 
black line, on the right of the blue line, and below the green line, respectively. The win-win-win situation is shown by the yellow area. 
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a) WIN-WIN-WIN: Discount 𝛾 = 30% and 𝑡𝑚𝑎𝑥 = 10 minutes   c) WIN-WIN-WIN: Discount 𝛾 = 20% and 𝑡𝑚𝑎𝑥 = 10 minutes  

  

 

 

 

 

 

b) WIN-WIN-WIN: Discount 𝛾 = 25% and 𝑡𝑚𝑎𝑥 = 10 minutes    d) WIN-WIN-WIN: Discount 𝛾 = 10% and 𝑡𝑚𝑎𝑥 = 10 minutes  

 

 

Figure 5.15 WIN-WIN-WIN for the customers, the operator and the city for an ODRP service in Munich for a maximum waiting time 𝒕𝒎𝒂𝒙 = 𝟏𝟎 𝐦𝐢𝐧𝐮𝐭𝐞𝐬, varying 
ODRP passenger demand 𝜆𝑝 and detour time ∆. Subplots correspont to different discount 𝛾 (ODRP price = (1 − 𝛾) * ODRH price): a) 𝛾 = 30%,  b) 𝛾 =

25%, c) 𝛾 = 20%, d)  𝛾 = 10%. The parameter space where the ODRP system is beneficial for the city, operator and customers is situated on the right 
of the black line, on the right of the blue line, and below the green line, respectively. The win-win-win situation is shown by the yellow area. 
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5.5 Discussion of the Main Results  

In order to achieve the main aim of the thesis and to determine where in the parameter space 

the win-win-win situation from city, operator and customers can be achieved, different 

analytical models were developed to capture the ODRP shareability, traffic efficiency, service 

profitability and attractiveness of the customers. The use of the analytical modelling approach 

contributes to the analysis of the ODRP impact as this approach does not require a large 

amount of input data and computational time or expensive real-world pilots.  

5.5.1 On-demand ride pooling shareability main results 

The validation of the analytical ODRP shareability model capturing the impact of SQP on 

shareability is performed by means of an agent-based simulation. It is shown that the 

analytical model is able to predict the theoretical shareability for the case when the operation 

area was represented by a Euclidian topology with a homogeneous average velocity and the 

optimization objective was to maximize the percentage of shared trips. This occurs as the 

selected network modelling parameters correspond to the assumptions used in the analytical 

model to derive closed form formulas. This finding is important as it shows that the complex 

effects of the ODRP service can be captured by a simple analytical model that does not require 

any fitting and needs only a small amount of input data and short computational times. 

As expected, the simulation results show that when increasing the detour time and maximum 

waiting time, the shareability/shared rides also increase. This happens as longer maximum 

waiting times and detour times lead to higher chances to find shareable trips, reflected also 

in a larger area of the shareability shadow (Figure 3.1). Lower values of these SQP have 

consequently the opposite effect on shareability/shared rides. The boarding time parameter 

is depicted to have the same influence on the results as the detour time, as it is considered to 

be lost time for the in-vehicle customers and also for the operator, as during this time the 

vehicle is standing still and not approaching the customers’ destination.  

Nevertheless, by increasing the model complexity and thereby, the realism of the ODRP 

system, it was shown that the percentage of experienced shared trips is lower than the one 

predicted by the analytical model. However, the impacts that the network topology and 

inhomogeneous velocity distribution have on the results is relatively small – a result which is 

also depicted by TACHET ET AL. [2017]) – compared to the impact of the optimization objective. 

The selection of the optimization objective is noticed to have the highest influence on the 
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percentage of shared trips in this study. For an optimization objective of maximizing the saved 

VKT, the percentage of shared rides drops significantly, in some cases up to 50%. These results 

indicate that the operator must carefully select the optimization objective in order to 

maximize the potential of ODRP service to pool trips with each other.  

A prediction model was developed to analytically estimate the shared rides for the most 

realistic ODRP network modelling (the fourth case in Tab. 5.2), for an optimization objective 

of minimizing the VKT, a real street network with inhomogeneous velocity distribution. This 

model is based on data fitting for one simulation scenario and then the shared rides for the 

other scenarios with a different SQP are analytically estimated. This prediction model shows 

a good anticipation of the results for the Munich operation area for varying maximum waiting 

times, detour times and boarding times. Even though the full potential of the benefits of 

analytical modelling cannot be exploited due to the dependency of the data of one simulated 

scenario, this prediction model still contributes to significant saving in computational time for 

a system-wide exploration of ODRP service quality parameters’ impact on shareability/shared 

rides. 

5.5.2 On-demand ride pooling traffic impact main results 

The ODRP traffic impact model provides the analytical relation of the average velocity and the 

vehicle trip generation in the network by using the shareability model and the MFD. The 

validation of the analytical model by means of microscopic traffic simulations in the Munich 

operation area shows that the traffic impacts of an ODRP service could be estimated well for 

the free flow regime. Being able to analyze the traffic impacts of an ODRP service analytically 

is a very important contribution for two reasons: 1) it provides a quick estimation of the ODRP 

traffic impacts for a wide range of ODRP service quality parameters, and 2) the investigation 

considers also the impact of background traffic on the results, which is currently not 

considered in the literature. In addition, the method used to validate the analytical ODRP 

traffic impact model could be used as a simplified approach to analyze the system-wide traffic 

impact of an ODRP service. 

The impact that the ODRP service, for which the optimization objective is to minimize the VKT, 

has on the average velocity in Munich is derived by substituting different percentages of 

private vehicle trips with ODRP vehicle trips. Firstly, it is important to note that the benefits of 

the ODRP are depicted for the peak times only. During the off-peak hours the average velocity 

is already high, and an additional improvement is limited. Additionally, it is observed that the 

higher the penetration rate of the ODRP passenger demand is, the higher is the improvement 

of the average velocity. For a 100% substitution, the improvement in average velocity is shown 
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to be up to 20%. Nevertheless, for an ODRP penetration rate of 5%, the average velocity in 

Munich does not change much. This occurs as the number of ODRP vehicle trips is quite small 

compared to private/alone vehicle trips to have a significant impact on the average velocity in 

the city. This implies that the benefits of the ODRP in traffic efficiency will be noticeable for a 

higher penetration rate than 5%. Therefore, cities would have to be patient and promote the 

use of ODRP services in order to profit in long-term from the positive impact of the ODRP 

service in traffic efficiency. 

Another important contribution is the modelling of the second order impact of velocity on 

shareability. It is shown that by introducing the ODRP service the average velocity in the 

network will be higher. These results suggest that the potential positive impact of ODRP 

services in improving the average velocity in a city, are going to be of significant importance 

also for operators as by the average velocity increase, the chances to find shareable trips also 

get higher. This is caused by the fact that the vehicles can reach further distances for the same 

amount of detour time as a result of higher network velocity and increasing the spatial area 

of reach means that the potential to find shareable trips will consequently increase. The 

results for the city of Munich show that by the introduction of the ODRP service the 

shareability will further increase, however the change is not very high as the average velocity 

was already high in the base scenario. Nevertheless, for cities with higher levels of congestion 

it is expected that the second order effect of velocity on shareability will be more significant. 

5.5.3 On-demand ride pooling benefits main results  

The ODRP traffic impacts, the ODRP service profitability and the customer attractiveness to 

use the ODRP service are modelled analytically. The results determine the ODRP win-win-win 

situation between the city, the operator, and the customers.   

The traffic impact model is extended to take into account also the extra VKT due to detour 

time. The results show that for low penetration rates the improvement in average velocity 

cannot be achieved in all the scenarios considered. However, with increasing ODRP demand, 

higher average velocities in the network are observed as a results of trip sharing. The ODRP 

passenger demand range for which an improvement in the average velocity in the system is 

observed depends on the detour time value. A rather important result is the determination of 

the optimum detour time, which determines the lowest ODRP passenger demand for which 

the system’s average velocity starts increasing. For low detour time values the percentage of 

shared trips is low and it requires a large ODRP passenger demand in order for trip pooling to 

contribute to improved average velocity in the city. With increasing the detour times, the 

shareability increases and therefore the system becomes profitable for lower ODRP passenger 
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demand. Nevertheless, this happens until a certain detour time (optimum detour time). For 

detour times larger than the optimum, the increase in VKT in the system due to the increase 

of detour time is higher than the saving of VKT by trip sharing. That is the reason why the 

ODRP passenger demand for which the system starts to show improved average velocity 

becomes higher. For a restrictive, normal or flexible ODRP system, specified by the maximum 

waiting time, the optimum detour time ranges from 4 – 7 minutes. These findings could be 

used for better planning of the SQP of an ODRP system which aims to be efficient.   

While the ODRP traffic efficiency depends on SQP, of which the detour time was shown to 

have a considerable effect due to the direct influence on the VKT, the ODRP profitability 

results show that in addition to the SQP, the system’s profitability largely depends on the 

ODRP price. As in this study the ODRP price compared to the ODRH is considered, the discount 

parameter becomes one of the most important parameters. It is shown that for a restrictive 

ODRP service, the system is hardly profitable and even for low discount values the profitability 

is limited. For normal and flexible ODRP systems, the parameter space in which the system is 

profitable starts to increase as the system flexibility contributes to a higher percentage of 

shared trips in the area. An optimum detour time for the system’s profitability can also be 

achieved in this case. For low detour times, the shareability is low and consequently the 

revenues are low as well. This occurs as the passengers would pay less than what they would 

pay when using a ODRH service, but nonetheless they would travel alone as a match would 

not be possible. For detour times higher than the optimum detour time, the additional costs 

caused by the additional VKT as a result of the detour time, are higher than the benefits of 

increased revenue due to high shareability. Therefore, for high detour times the system 

profitability shrinks. Another notable observation is that the set of SQP needs to be carefully 

selected. The reason is that contrary to intuitively expected, higher ODRP passenger demand 

rates do not necessary contribute to a profitable ODRP service after a certain penetration rate. 

Rather for a given ODRP service quality parameter set, it might happen that when increasing 

the ODRP passenger demand, the monetary losses of the system become larger, due to higher 

costs or smaller revenues.  

Finally, considering the customer willingness to use the ODRP service, the win-win-win 

situation between city, operator and customers is explored. The results show that the type of 

ODRP system (restrictive, normal, flexible) and the discount, for using the ODRP service 

compared to using the ODRH service, play an important role in determining the win-win-win 

situation. A total win-win-win can hardly be achieved for a restrictive ODRP system, albeit this 

system can be attractive for the customers. With higher ODRP system flexibility, the 

parameter space for which the win-win-win is possible increases. A discount of 30% can be 
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desirable for customers, however it might not result in monetary benefits for the operator. 

Whereas a discount of 10% even though providing high profitability for the operator, might 

not be desirable for the customers, as the saving might not be high enough. As a result, it is 

anticipated that a win-win-win situation of all the three ODRP stakeholders can be achieved 

for higher parameter space when the ODRP system is flexible, and the discount parameter is 

between 25% and 20%.  

Key Takeaways – Evaluation and Results 

The models presented in this thesis capture quite well: 

• the shareability that can be reached in an area for different SQP and vehicle 

routing optimization objectives, 

• the traffic impacts of ODRP services for different penetration rates of the ODRP 

passenger demand, 

• the profitability of ODRP services,  

• under which framework conditions the win-win-win situation, considering the 

perspective of cities, operators, and customers, can be achieved. 
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6. Conclusion and Outlook 

In this chapter, a summary of the motivation, the methodology, the results, and the most 

important contributions of the thesis are presented. The chapter will be concluded with an 

outlook and recommendations for future work.  

6.1 Summary  

This thesis analyzes the on-demand ride pooling (ODRP) service impact factors considering 

operator, city and customer perspectives. The main aim of the thesis is to determine the 

parameter space in which the win-win-win situation for all these three stakeholders is 

possible. In order to achieve the aim of this thesis, analytical models capturing the ODRP 

shareability impact factors, traffic efficiency, service profitability and attractiveness for 

customers are developed. The approach used to analyze the ODRP impacts is analytical 

modelling, as it does not require large amounts of input data, long computational times or 

expensive real-world pilots and the results are easily transferable to other cities. This would 

allow for a system-wide analysis of the ODRP impacts and would help to explore under which 

conditions a win-win-win situation in terms of customers, operators and cities can be 

achieved. Consequently, this model would assist in effective planning and implementation of 

ODRP services. 

Initially, the factors influencing the percentage of shared trips in an area or shareability are 

explored. Two analytical models which capture the impact of city parameters, SQP and 

network modelling details on shareability are developed for two types of ODRP service 

distinguished by the ODRP booking procedure used. The first one is an instant booking system, 

where the passengers are served instantly, and the second one is called a short-term 

prebooked system, where the passengers have to reserve their trip a short time in advance. 

The SQP considered are maximum waiting time, detour time, boarding/disembarking time and 

reservation time. The analytical model of the instant booking system is validated by means of 

an agent-based simulation, where an ODRP service is modelled in different levels of detail and 

the model complexity is increased step by step. Consequently, the influence of network 

modelling details, such as the optimization objective, the network topology, the trip 

distribution patterns and the homogeneity of the average velocity, are also investigated. 

Secondly, an analytical model is developed to estimate the traffic impacts of an ODRP service 

based on the previously mentioned shareability model and the macroscopic fundamental 

diagram (MFD) for a city. Thus, depending on the chances to find shareable trips in an area, 
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an analytical model to determine the reduction of vehicle trips in the network due to trip 

pooling is developed and then a relation of the average velocity in a city and the generated 

number of vehicle trips is derived by using the benefits of the MFD. Additionally, as an ODRP 

service is expected to reduce the number of vehicles on the streets and thus improve the 

average velocity, this increase in average velocity leads to higher chances to find shareable 

trips in an area. This occurs as for the same detour time the vehicles can reach a larger area 

and consequently have higher chances to find shareable trips. Therefore, the second order 

effect that the velocity has on shareability (called the modified shareability model) is also 

analytically derived.  The traffic impact model and the modified shareability model are tested 

via microscopic traffic simulations. 

Finally, a general analytical model capturing the benefits of the ODRP service from city, 

operator and customer perspective is built. Firstly, the traffic impact model is extended to 

take into account the additional VKT due to the detour distance. Secondly, an analytical model 

to estimate the monetary profitability of an ODRP service is developed based on the 

shareability model and the traffic impact model. These models provide information about the 

VKT by the ODRP service and thereby present an estimation of the ODRP operation costs. The 

revenue is calculated based on the pricing strategy, which could be distance-based, time-

based, or a combination of both. Thirdly, the attractiveness for customers to use an ODRP 

service is determined by the willingness of the customers to accept a certain detour time if 

they are offered a cheaper price compared to ODRH.  

A combination of these models in a general analytical model provides information about the 

existence of a win-win-win situation for the three main ODRP stakeholders and determines 

under which type of the ODRP system and ODRP parameter space (maximum waiting time, 

detour time, ODRP passenger demand) this is possible.  

6.2 Key Findings and Contributions 

The key findings and the contributions of the analytical models developed in this thesis (and 

summarized in the previous section) will be provided in this part. Therefore, the research 

questions presented at the beginning of the thesis in Section 1.3 will be given answers, which 

contribute to filling the research gaps identified in Section 1.2.  

The three main research questions and their answers are provided below:  

1. How do SQP, such as detour time, maximum waiting time, short-term reservation time 

and boarding/disembarking time, network modelling details and vehicle routing 
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optimization objectives, impact the percentage of possible shared trips in an area? 

(Addressing RG 1.a and RG 1.b → Model: Section 3.1; Results: Section 5.1)  

 

Analytical modelling of shareability impact factors, such as service quality attributes 

and network modelling details (RG 1.a and RG 1.b) is used to answer the first research 

question. The analytical shareability models are developed to investigate the influence 

of service quality parameter, such as detour time, maximum waiting time, 

boarding/disembarking time and reservation time, on the percentage of shared trips 

in an area and are tested by means of agent-based simulations. These shareability 

models offer new insights about the influence that SQP, modelling details and vehicle 

routing optimization objectives have on shareability. The main findings are 

summarized below:  

 

o The analytical model with a Euclidian topology, homogeneous average velocity 

and an optimization objective that aims to maximize the percentage of shared 

trips is able to estimate the theoretical shareability values from the agent-

based simulation without needing any fitting. This is an important result as it 

proves that the complex properties of an ODRP service can be represented by 

an analytical model without requiring any fitting and thereby the results can be 

easily transferable to other operation areas. 

o An increase (decrease) of the detour time and maximum waiting time directly 

translates to higher (lower) shareability/shared rides values. This happens as 

longer (shorter) maximum waiting times and detour times increase (decrease) 

the chances to find shareable trips in an area. The boarding time parameter is 

showed to have the same influence on the results as the detour time. 

o It is shown that the percentage of shared trips depends on the way the ODRP 

system is modelled. Higher realism of the model, represented by increased 

modelling details, contributes to lower shareability/shared rides values than 

the ones estimated by the analytical model.  

o The optimization objective is depicted to have the largest impact on the 

percentage of shared trips, compared to network topology and an 

inhomogeneous velocity distribution (which impacts are quite small). The 

optimization objective of minimizing the VKT decreases the percentage of 

shared rides up to 50% compared to the optimization objective of maximizing 

the percentage of shared trips – an indicator that the operator has to cautiously 
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choose the optimization objective in order to maximize the benefits of the 

ODRP service. 

 

2. What are the traffic impacts of ODRP services and how does the change in average 

velocity due to ride pooling effect the possibility to find shareable trips? (Addressing 

RG 2.a, RG 2.b and RG 2.c → Model: Section 3.2; Results: Section 5.2)  

 

Analytical modelling of the ODRP traffic impacts and the additional effect that 

changes in average velocity due to shared trips have on shareability (RG 2.a, RG 2.b 

and RG 2.c) is used to answer the second research question. The shareability model of 

Section 3.1 and the MFD of a city are used to analytically develop the model of the 

ODRP traffic impacts, which is then tested via microscopic traffic simulations. The main 

findings are summarized below:  

 

o The traffic impact model validation shows that the analytical model can predict 

the traffic impacts of an ODRP service for the free flow regime. This model 

contributes to the literature as it provides a quick way to explore the traffic 

impacts of an ODRP service for a wide range of system parameters, while 

considering not only the ODRP vehicle fleet but also the other vehicles in the 

network, which are currently not considered in the literature.   

o When substituting private vehicle trips with ODRP trips, it is shown that the 

benefits of the ODRP service are significant only during the peak hours. The 

improvement of the average velocity increases with higher penetration rates. 

Therefore, the average velocity in the city increases by up to 20% for a 100% 

replacement rate of the ODRP service. However, the change in average velocity 

in Munich is not significant for an ODRP penetration rate of 5%, implying that 

the benefits of the ODRP in traffic efficiency will require a higher penetration 

rate than 5%. 

o The second order effect of an increased average velocity on the shareability 

due to trip pooling is modelled analytically and tested by simulations. The 

results show that by the introduction of an ODRP service, not only the traffic 

impact will improve, but also the shareability will further increase. However, 

for this case study in Munich the alteration is limited as the average velocity 

was already high in the base scenario, yet more prominent influences of 

average velocity on shareability are expected in cities with higher level of 

congestion. 
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3. Under which framework conditions a win-win-win situation can be achieved, 

corresponding to an ODRP service that is beneficial in terms of improvement of traffic 

efficiency, operators’ profitability, and customers’ attractiveness? (Addressing RG 3.a 

and RG 3.b → Model: Section 3.3; Results: Section 5.3) 

 

Analytical modelling of the ODRP traffic efficiency, operator’s profitability and 

customer attractiveness (RG 3.a and RG 3.b) is used to answer the third research 

question. The shareability model (Section 3.1) and the traffic impact model (Section 

3.2) are combined and extended to examine the ODRP services in terms of traffic 

efficiency, service profitability and attractiveness for the customer to use the service. 

The general ODRP model offers novel insights in finding the parameter space where 

the win-win-win situation between all ODRP stakeholders can be reached. The main 

findings are summarized below:  

 

o The results of the ODRP system’s traffic efficiency show that the ODRP 

passenger demand and the detour time value are key influencing factors in 

determining the improvement on the average velocity in the network, whereas 

the maximum waiting time is shown to have lower impact on the results. For 

low penetration rate of the ODRP service there is no significant improvement 

in average velocity in the city. Defining an optimum detour time, which 

corresponds to the lowest ODRP passenger demand where the average velocity 

in the network shows improvement, is important for a better planning of the 

SQP for an efficient ODRP system.   

o The ODRP system’s profitability results depend on the selected SQP and the 

ODRP price. A restrictive ODRP system is in most of the cases unprofitable, even 

when the discount values are small. Higher system flexibility, for normal and 

flexible ODRP systems, influences higher ODRP system profitability due to 

higher achieved shareability. As expected, profitability increases with 

decreasing the discount (i.e., the ODRP price increases). The determination of 

an optimum detour time in this case (corresponding to the lowest ODRP 

passenger demand for which the ODRP system starts to be profitable), could 

help the operators better plan the SQP they want to offer to the customers, 

while having high chances to be profitable.  

o The results show that careful consideration should be given to the selection of 

the set of SQP, as in some cases rising ODRP passenger demand levels do not 

contribute to the ODRP system profitability. In these cases, the contrary 
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happens, because the monetary losses of the ODRP system increase with 

increasing ODRP passenger demand, as a result of higher loss in revenue or 

higher cost.  

o The existence of a win-win-win situation between city, operator and customers 

depends on the kind of ODRP system (restrictive, normal or flexible) and the 

ODRP price. For a restrictive ODRP system could be attractive for the 

customers, however the win-win-win is difficult to be achieved, as the win for 

the operator is hardly reached. On the other side, a flexible ODRP system might 

not be attractive for the customer, but it offers higher chances to reach the 

win-win-win, as the operator has more chances to be profitable. The ODRP 

price plays an important role here as well, as a high discount compared to 

ODRH price can be attractive for the customers, but it might restrict the 

profitability of the operator. In the opposite, for a low discount the service is 

profitable, however the ODRP system might not be desirable for the customers. 

The results show that a flexible ODRP system, for which the price discount is 

between 20% and 25%, has higher possibility to attain a win-win-win situation 

for all the three ODRP stakeholders. 

6.3 Planning and Policy Implications  

One of the main contributions of this thesis is the ability to represent the complex impacts of 

the ODRP service by analytical modelling. This allows the swift examination of the influence 

of various ODRP influencing parameters and the impacts of a wide range of SQP, without being 

restricted to a scenario-based analysis. Therefore, these models are easily transferable to 

other ODRP operation areas and can be used for a better system-wide planning and 

implementation of an ODRP service, without the need of computationally expensive 

simulations, which require a huge amount of input data, or real-world pilots.  

Hence, the main stakeholders which can benefit from the results of this thesis are service 

operators and cities or policy makers. The potential of these models is shortly summarized 

below. They could be used to quickly estimate:  

1. the shareability that can be achieved in an area when offering different qualities 

of service to the customers and thus providing the operators the ability to explore 

in which areas offering an ODRP service is feasible, 
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2. the traffic impacts of varying ODRP passenger demand penetration rates and 

thereby giving the cities or policy makers the chance to explore the system-wide 

impact of such a service, 

3. the profitability of an ODRP service and thus providing the service operators the 

opportunity to investigate in which conditions an ODRP service can be profitable, 

4. the ODRP win-win-win situation for cities, operators, and customers, and thereby 

specifying the framework settings when an ODRP service can be beneficial for all 

three ODRP stakeholders.  

6.4 Limitations and Future Work 

The contributions of this thesis fill the identified research gaps; however, they also have some 

limitations and thus in this part additional topics for future investigation are identified and 

recommended. 

Firstly, the analytical shareability model is valid only for the optimization objective of 

maximizing the percentage of shared trips. In order to derive the percentage of shared trips 

for the optimization objective of maximizing the saved VKT, a prediction model is developed. 

Even though this model provides good estimation of the results, it is based on data fitting for 

one simulation scenario. Therefore, the following topics could be further investigated in future 

work:  

o The fitting parameters could be examined if they are valid also for other operation 

areas, except of Munich. If these fitting parameters are valid for other operation areas, 

they could be used to analytically derive the shareability for the optimization objective 

of minimizing the VKT, without the need of data fitting for a base simulation scenario.  

o However, if these fitting parameters are only specific to Munich, the full potential of 

analytical modeling cannot be exploited, albeit the saving in computational time for an 

investigation of a wide range of SQP. Thus, an interesting future topic would be to 

derive a pure analytical model which could estimate the percentage of shared trips for 

the optimization objective of minimizing the VKT.  

Secondly, the traffic impact model is validated by using a microscopic traffic simulation based 

on OD matrix reduction. This approach uses an analytical model to derive the number of 

reduced vehicle trips. However, this model assumes similar origins and destinations of the 

trips, which rarely happens. Additionally, by using only a microscopic traffic simulation the 

exact ODRP vehicle fleet operation is not possible to be considered. Furthermore, the model 
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is tested only for the free flow regime, due to the limited amount of data for the congestion 

regime, and the analysis is performed only for the city of Munich. Thus, the following topics 

are interesting as future work:  

o The vehicle trip reduction model could be further extended to also include the impact 

of partially shared trips, their dependence on the vehicle routing optimization 

objective. Additionally, the impact of empty vehicle trips due to customer pick-ups or 

reallocation methods. These extensions could increase the realism of the model. 

o The extended traffic impact model could be tested with a microscopic traffic 

simulation model coupled with an ODRP agent-based simulation, where the traffic 

dynamism and the exact ODRP vehicle fleet operations are both represented.   

o The traffic model validation could be extended for the congestion regime as well, 

allowing additional examination whether the used parabolic MFD functional form is 

valid for the congestion regime or if it should be adapted to a skewed or an asymmetric 

parabola. 

o It would also be interesting to check the validity of the traffic impact model for other 

cities, especially for cities with high levels of congestion, where the second order effect 

of the velocity on the shareability could be more prominent.  

Thirdly, the profitability model assumes a very simple cost calculation, based on the cost per 

kilometer, and revenue, based only on one pricing strategy which depends on direct travel 

distance. Future topics for further investigation in this regard could be:  

o Cost calculation could be based on more realistic cost functions [BÖSCH ET AL., 2018; 

NEGRO ET AL., 2021], where for instance the fleet size could be explicitly considered. This 

could provide more realistic results for the total cost calculation. 

o In addition, the experienced detour time is assumed to be half of the maximum detour 

time and as this directly influences the vehicle kilometers travelled and thus the total 

costs of the system, it should be further investigated the dependency of the 

experienced detour time and the maximum detour time parameter for different 

optimization objectives. 

o Calculation of the revenue for other pricing strategies such as, time based, or a 

combination of distance and time based, could be a future topic. The effect of surge 

pricing could be another interesting future topic.   

Lastly, the model could be extended to include a flexible passenger demand model (e.g., 

similar to the one used by KUCHARSKI & CATS [2020]) depending on the service quality 

parameters, pricing, value of time or discomfort of pooling. In addition, it could be interesting 
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to investigate the influence of induced demand coming from other transportation modes as a 

result of improved average velocity due to ride pooling.
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Publications 

This thesis is based on the publications provided below: 

 

Publication Description Section 

A. Bilali, F. Dandl, U. Fastenrath, and K. Bogenberger, “Impact of 

service quality factors on ride sharing in urban areas,” in 2019 

6th International Conference on Models and Technologies for 

Intelligent Transportation Systems (MT-ITS), Cracow, Poland, 

Jun. 2019 - Jun. 2019, pp. 1–8. 

Shareability 

model  

for instant 

booking system 

Section 3.1 

A. Bilali, F. Dandl, U. Fastenrath, and K. Bogenberger, “An 

Analytical Model for On-Demand Ride Sharing to Evaluate the 

Impact of Reservation, Detour and Maximum Waiting Time,” 

in 2019 IEEE Intelligent Transportation Systems Conference 

(ITSC), Auckland, New Zealand, Oct. 2019 - Oct. 2019, pp. 

1715–1720. 

Shareability 

model  

for short-term 

prebooking 

system 

Section 3.1 

A. Bilali, R. Engelhardt, F. Dandl, U. Fastenrath, and K. 

Bogenberger, “Analytical and Agent-Based Model to Evaluate 

Ride-Pooling Impact Factors,” Transportation Research 

Record, vol. 2674, no. 6, pp. 1–12, 2020, doi: 

10.1177/0361198120917666. 

Shareability 

model 

evaluation 

Section 5.1 

A. Bilali, M. A. A. Rathore, U. Fastenrath, and K. Bogenberger, 

“Analytical Model to Evaluate Traffic Impacts of On-Demand 

Ride Pooling,” in 2020 IEEE Intelligent Transportation Systems 

Conference (ITSC), Rhodes, Greece (Online), Sep. 2020 - Sep. 

2020. 

Traffic impact 

model  

Section 3.2 

A. Bilali, U. Fastenrath, and K. Bogenberger, “An Analytical Model 

to Estimate Ride Pooling Traffic Impacts by Using the 

Macroscopic Fundamental Diagram,” In 100th Annual 

Meeting of Transportation Research Board (TRB), 21-29 

January 2021, Washington DC, US (Online). 

Traffic impact 

model  

&  

evaluation 

 

Section 3.2  

& 

Section 5.2 
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