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Abstract

Advanced driver assistance systems (ADAS) and automated cars fundamentally re-
quire a reliable perception of the vehicle’s environment. The robustness can only be
achieved by sensor fusion, as the weaknesses of each sensor modality can be com-
pensated by the other modalities. For ADAS of L2/2+, a full 360-degree perception
combined with an estimate of the drivable space is required.

The current system setup, however, is extensively distributed, with the major
pre-processing steps being performed within the sensor. Thus, only pre-processed,
feature-level data is available for a central fusion control unit. Object- and target-
based sensor data are merely sufficient to create such an environmental model with
standard fusion algorithms.

The problem of fusing feature-level sensor data into a sensor-agnostic environmen-
tal model, where free-space estimation is available, raises the questions, whether the
fusion can be performed by applying neural networks, and how this novel approach
compares to classical fusion algorithms in terms of quality and costs.

In this work, the family of Grid Fusion Networks (GridFuN) is proposed. These
models are based on the architecture of convolutional auto-encoders and are trained
with a novel training scheme that facilitates data from distributed smart sensors.

To make the network models applicable on real-world automotive-grade microcon-
trollers, they are optimized for multiple objectives with a neural architecture search
(NAS), in particular fusion quality and computational costs.

Results show that the discovered neural network models outperform the classical
Bayesian grid fusion approach in fusion quality. Thus, GridFuN pose an alternative
sensor fusion approach to standard Bayesian grid or Dempster-Shafer fusion, as
they are capable of recognizing and interpreting the car’s surroundings. Further,
an instantaneous situational awareness is possible—no map integration over time is
needed to assess the situation in contrast to standard free-space mapping. In the
course of the NAS, encoding and decoding blocks were created that excel similar
blocks from literature (AmoebaNet, Auto-DeepLab, Auto-DispNet) in the grid fusion
task.

The approach proposed in this work offers additional advantages for the mass-
market by putting forward a cost-effective alternative to expensive and hard-to-
integrate lidar sensors. Results of equivalent quality to lidar can be received from
cheap camera and radar sensors.
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1 Introduction

1.1 Problem Statement and Motivation

Automated driving and advanced driver assistance systems are an ever growing topic
in the automotive industry. From OEMs like BMW, Toyota and Tesla, down to
suppliers, the market is trying to shape ideas of how a driverless car could look like.
Yet, both technical and legal challenges remain unsolved in an economic environment
of high pressure on the companies. After the first enthusiastic, young startup-like
companies pushed towards fully automated driving with a large response/echo from
media, the legal frameworks were developed for categorizing automated driving.
Since then, even fast companies like Tesla have not achieved a level of automation
where the driver is not needed anymore. The systems still have to be monitored by
a human driver who is held responsible in case of an accident.

In the following, the levels of automated driving are explained with the current
position of market participants.

1.1.1 Levels of Automated Driving

In the grading system of the J3016 standard of the international engineering and
automotive industry association SAE, driving functions are classified into five levels
of ever increasing functionality [114]. The different levels of autonomous driving
are structured into combinations of what parts of dynamic driving are controlled
by the driver or the vehicle. The parts of dynamic driving are the execution of
longitudinal or lateral control, the monitoring of the driving environment and the
fallback responsibility in case of an unforeseen, critical situation. Figure 1.1 shows
the roles of driver and vehicle distributed over the SAE levels.

In the following listing, the number of sensors per automation level is derived
from multiple market assumptions. The numbers are shown in a range from lowest
to highest estimated amount, and they are taken from industrial players and market
research institutes (IHS Markit, Infineon, Yole Developpement [130]).

Level 0: No Automation

The first grade of automation is no form of automation, as all driving tasks and the
responsibility are on the human driver. Up to this date, roughly half of the car sales
are vehicles with zero autonomy [130].

1



1 Introduction

Figure 1.1: Autonomous driving grades according to SAE J3016 stan-
dard (SAE Federal Highway Research Institute). Source
https://www.automotive-iq.com/autonomous-drive/articles/
first-level-3-automated-vehicle-road-iso-functional-safety-and-analysis,
accessed 08. Feb. 2021.

Only because a car is rated without any autonomy, it does not mean that there are
no advanced functionalities built-in. For example the vehicle may assist the driver
with a traffic sign recognition system, which scans the scenery for traffic signs and
shows the current signals and speed regulations to the driver, e.g. in the instrument
display or in a head-up display.

Almost every car manufacturer has vehicles without any automation level in their
fleet, but with decreasing tendency, as regulations require ever more assistance sys-
tems in a rising number of regions worldwide. The regional new car assesment pro-
grams (e.g. Euro NCAP, U.S. NCAP) are proposing a regulatory roadmap of ever
more AD functions required in new vehicles in order to reduce fatal road accidents
towards a minimum [94].

Level 1: Driver Assistance

In assisted driving, assistance systems take over control in either lateral or longitu-
dinal acceleration in constrained situations. An example for a lateral control system
is the lane keep assist (LKA) and for a longitudinal control system the adaptive
cruise control (ACC). In both cases, the system assists in controlling one domain,
but the human driver remains in the control loop to steer the other one, and to
control the driving environment.

Each manufacturer has its own nomenclature of the driving functions. For exam-

2

https://www.automotive-iq.com/autonomous-drive/articles/first-level-3-automated-vehicle-road-iso-functional-safety-and-analysis
https://www.automotive-iq.com/autonomous-drive/articles/first-level-3-automated-vehicle-road-iso-functional-safety-and-analysis


1.1 Problem Statement and Motivation

Table 1.1: Estimated number of sensors per modality per SAE automation level.
The columns show the various sensor modalities and types. LRR: long
range radar, SRR/MRR: short or mid range radars, Int. Cam: Interior
camera. • denotes the low-end of the estimations, •◦ together denote the
upper-end.

SAE LRR SRR/MRR Camera Int. Cam Lidar Ultrasonic
L1 • •◦ •••• ••

1 1-2 6
L2 • ◦◦ •◦◦◦ ◦◦◦ •••• ••••

1 0-2 1-7 8
L3 •◦ •••• •••• ◦◦◦ ◦ •◦◦ •••• ••••

1-2 4 4-7 0-1 1-3 8
L4 •◦ •••• ◦◦◦◦ •••• •••• • •◦◦◦ ◦ •••• ••••

1-2 4-8 8 1 1-5 8
L5 •◦ •••• ◦◦◦◦ •••• •••• • •◦◦◦ ◦◦ •••• ••••

1-2 4-8 8 1 1-6 8

ple, the L1-system adaptive cruise control (ACC) is named Adaptive Cruise Control
by Fiat, Ford, GM, VW, Volvo and Peugeot, but Intelligent Cruise Control by
Nissan, Active Cruise Control by Citroen and BMW, and DISTRONIC by Mer-
cedes [52].

Level 2: Partial Automation

Currently, most effort of car manufacturers is put into the development of partial
automation. At this level of automation, both longitudinal and lateral control is
performed by the system simultaneously. Nevertheless, the human driver still has
to monitor the driving environment, as existing advanced driver assistance systems
(ADAS) are heavily constrained in their operational design domain (ODD). The
driver is required to perform tactical maneuvers, such as changing lanes or reacting
to traffic signs correctly. Once the situation is outside the ODD, the driver has to
take over control immediately and be able to react at all times.

Most car manufacturers remain within the limits of Level 2 automation, as the
next step is a continuous, reliable monitoring of the driving environment, implying
severe technical and legal challenges. For the enabling a higher automation level,
the environmental perception has to be flawlessly redundant and robust. Most
market researchers assume that all possible sensor modalities have to be employed,
including the controversial Lidar technology. In contrast to other automakers like
Audi or technology companies like Mobileye or Waymo, Tesla’s approach is to omit
laser scanners completely. Tesla promises to enable vision sensors with sophisticated
post-processing in form of deep learning algorithms, finally reaching the accuracy of

3



1 Introduction

Lidar sensors, thus, making those dispensable [24]. Whether this bet is turning out
good for Tesla will be seen in the upcoming years. Yet, most OEM’s automation
systems are on SAE level 2, such as Super Cruise of General Motor, Distronic Plus
of Mercedes- Benz, Nissan´s ProPilot Assist or Tesla’s Autopilot. As Waymo’s CEO
says, improving on that is only possible with Lidar technology [125].

Level 3: Conditional Automation

Here, the system can cope with most aspects of driving, also with situations that
require immediate response, such as automatic emergency braking. The system
recognizes situations, where it will run out of its ODD and warns the driver in due
time, so they can prepare for the handover and intervene.

First big, publicly announced advances into the field of conditional automation
systems were done by Audi in 2017 with the introduction of their Audi AI traffic jam
pilot. It allows the Audi A8 to drive autonomously in the ODD of slow-moving high-
way traffic jams up to a velocity of 60 km/h without any input from the driver [48].
The Level 3 conditional automation system relies on a central computation plat-
form (zFAS ) employing four processing ICs: 1) NVIDIA Tegra K1 for 360 surround
view processing of the four cameras, 2) Mobileye EyeQ3 for the stereo front camera
processing, 3) Intel1 Cyclone V chip performs the sensor fusion, calculations, 4) Infi-
neon AURIX ensures safe, ASIL-D calculations for trajectory planning and decision
making.

As the monitoring of the environment is performed by the system, it needs a
fail-safe architecture. Being fail-salient by simply deactivating a function in case of
a failure is not enough, as it may not result in a safe state of the vehicle. Thus,
commonly redundant components are employed, be it overlapping sensors or multiple
computational cores performing the same computations, as seen in the lockstep of
the Infineon AURIX microcontroller.

The typical sensors used for this level of automation are at least six radars for a full
360 degree coverage, at least four cameras and at least one Lidar sensor. Additionally
to the ultra-sonic sensors, also an interior camera is assumed for monitoring the
driver’s state.

Level 4: High Automation

Level 4 corresponds to a level of full automation, where the car can automatically
drive in a wide ODD and react to some dangerous situations. Whereas it can cope
with various safe traffic conditions and even react to hazardous situations, it still has
the basic architecture of a vehicle designed for a human driver. Thus, the activation
of Level 4 features is the choice of the driver, or else the system is only passively
monitoring the situation and intervenes just in case of danger. The system is capable

1Former Altera.
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of driving independently in most environments, with some exceptions for weather
or irregular environments, where the human has to take over control.

Level 5: Full Automation

Fully automated cars allow a completely different design of the complete vehicle. As
the system is working reliably in all possible situations within its ODD, a human
driver is not needed anymore as a fallback. Thus, any interface or method for
interaction with the car’s steering is dispensable; so is the complete cockpit including
the steering wheel. From the user’s point of view, the vehicle is becoming a simple
vessel for transporting goods automatically from A to B. Whereas fully automated
vehicles have been developed for decades, only very restricted ODDs were possible in
the first automated highway systems in 1997 [72]. Expanding the field of operation
of automated vehicles to more different and challenging traffic scenarios is the key
problem of SAE Level 5 cars. Estimates predict that full automation in urban areas
will not be possible before the 2050s, and full automation in all areas of life will
most likely never occur [72].

1.1.2 Centralized vs. Distributed Processing

Over the years, the automotive market has evolved to a state, where suppliers of
different tiers specialize on components, modules and systems. Each system’s play-
ers pushed towards solutions incorporating more and more functionalities; thus,
the systems were growing complex within their boundaries, regardless of potential
synergies with other systems.

As an example, the radar sensor systems are designed to produce increasingly
accurate and reliable track data containing a growing number of individual tracks in
parallel. In this perspective, radar system suppliers, such as Bosch, Continental or
Hella, have implemented sensors that incorporate extensive radar signal processing
on special automotive microcontrollers. The signals except the tracking outputs are
kept confidential as a business secret, not allowing the customer to access raw or
intermediate states of the signal.

This is applicable to other domains, such as camera sensor systems, too. Intel’s
Mobileye has become the dominant player of the automotive vision market with its
smart camera systems. The output of the Mobileye EyeQ3 is not the raw camera
image, but a stream of pre-processed feature-level data, such as information about
objects and lane markings.

The advancing levels of autonomous drive require an ever more intelligent way of
combining the multi-modal information of the vehicle’s sensors in order to create a
reliable, robust and safe environmental model. As long as the fusion of track- and
object-level data is sufficient, e.g. for ACC, the system architecture of distributed
smart sensors is fine. Once the ADAS require an environmental model that sur-
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Figure 1.2: Centralized and distributed processing in automotive. [37]

passes the level of detail possible to achieve with track- and object-level data, the
distributed architecture comes to its limits. In situations with dense urban traffic,
the system needs knowledge about drivable, obstacle-free space rather than infor-
mation about the track of other traffic participants. As the evolved landscape of
suppliers and manufacturers is moving slowly, and market research shows that cars
with and above Level 3 autonomous drive will not become dominant in the sales
until the late 2030s, it can be expected that Level 2/2+ cars will have to rely on a
distributed system architecture with smart sensor systems [130]. This explains the
tendency of vehicles with high autonomy levels to have a central fusion ECU that
has access to raw sensor data. A central fusion of raw data requires high-bandwidth
interfaces to the sensors to stream the data of the multitude of sensors (Fig. 1.2),
and it needs a high-performance compute unit that is able to process all the sensor
streams in real-time.

1.1.3 Applications of Machine Learning in Automotive

In general, automated drive (SAE Level 3/4) can be seen in three layers that describe
the logical steps of the automation process. Each of these layers inhibits areas where
machine learning algorithms may enhance the functionality in future vehicles.

Three Layers of Automated Drive

The three layers Sense-Plan-Act are derived from nature, where each living being
perceives its environment first, then it considers how to move through the environ-
ment, and finally actuates its muscles in order to make it happen. The same pattern
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is followed in the automotive domain:

1. The Perception Layer (Understand the present): The onboard sensors scan
the environment and aggregate the real-time data to estimate the surroundings.
By fusing the multi-modal sensors to one representation, advanced techniques such
as self-localization and mapping (SLAM) or free-space estimation enable a robust
perception of the vehicle.

2. The Prediction Layer (Predict potential future states): The environmental
representation with all the fused data of the sensors from the first layer is used
to aggregate information about how the scene has changed over time. From this
knowledge, it is possible to anticipate how traffic participants will behave in the
near future. Certain behavior models are assigned to detected objects of interest,
depending on their classification from the perception layer.

3. Trajectory Control Layer (Planning for the future): This final layer ensures
the proposal and execution of the trajectories. Based on the knowledge from the
second layer, a safe trajectory is calculated to maneuver through the environment
in local proximity of the car. At the same time, the global planner finds a route on
the macro-scale to the desired destination. The local planner continuously performs
safety verifications, so that the vehicle is definitely following the planned trajectory.

Application Areas of Machine Learning and Typical Computational
Requirements

Machine learning algorithms can effectively enhance classical software solutions in
various parts of the three-layer model for automated drive. In the Perception Layer,
sensor-processing algorithms can be extended by the use of machine learning models
such as convolutional neural networks (CNN) to extract features and detect objects
in camera images or in radar data. The processing of raw sensor data with neural
networks is estimated to have a data throughput of 100 to 200 GBit/s of information.
Assuming a simple sensor setup of a front camera and a front radar, the processing
of given data streams takes about 1 to 4 TOPs for a Level 2 car with lane keep
steer (LKS). A highly automated vehicle with a full sensor suite requires around
100 TOPs for processing the first layer.

In the Prediction Layer, the prediction of future states of the environmental model
boils down to the task of a time-series forecast—which is typically done with recur-
rent neural networks (RNN). The estimated data throughput in this layer is lower
than the raw data processing, at around 10 GBit/s.

The Trajectory Control Layer outputs smooth trajectories, steering safely through
the environment. Whereas plain control software produces rather abrupt steering
angle corrections, ML-based trajectory generation work is superior, as seen in Tesla’s
LKS compared to control-software-based lane keep assist (LKA) of various OEMs.
The higher the abstraction level, the less data needs to be processed. Thus, the
data throughput in the third layer is estimated to lie in the order of magnitude of

7



1 Introduction

several 100 MBit/s. In case of a Level 2 car with LKS, 0.1 to 0.5 GOPs are required
to be calculated by the hardware. In case of a Level 4 automated drive, no more
than 2 TOPs are estimated.

Automotive Target Hardware

It is clear that for the raw signal processing of the multiple camera streams with
hundreds of TOPs, only a number-cruncher in form of a GPU is a viable option. As
GPUs themselves achieve only low ASIL1 levels, a parallel fail-safe computational
companion with ASIL-D is needed [64]. For the processing of pre-processed, thus,
compressed data streams with less throughput, it is likely that automotive-grade
microcontrollers will be employed for the mass market. Especially cars with Level
2/2+ automation and a distributed sensor setup will be produced in large volumes
until the late 2030s. These baselines lead to the following research question.

Research Question

How well do advanced machine learning methods perform in the fusion of pre-
processed sensor data in comparison to the standard Bayesian fusion technique?
And how well are automated network optimization techniques, such as neural archi-
tecture search (NAS), suited for optimizing deep learning models, with the objective
of the algorithms being able to perform in real-time on embedded accelerators of
automotive MCUs?

1.2 Structure of the Work

Equipped with the introduction and motivation towards the topic, the following
structure of the work has been outlined. In Chapter 2, the preliminary signal pro-
cessing of the individual sensor modalities for autonomous drive is explained. The
chapter follows the streamline from raw data up to the data format that is typically
used by the successive application level (Section 2.1) and typical environmental
models for autonomous robots (Section 2.2). In Section 2.3, traditional sensor fu-
sion approaches in two major categories are described. These are the track fusion
using track-level data and the grid-based fusion using raw and feature-level data.

Chapter 3 introduces the sensor fusion neural networks, which are the proposed
method of fusing the feature-level data that is accessible in level 2/2+ cars. The
model architecture, the required data format and the utilized dataset, the training
procedure and the evaluation results are discussed in Section 3.3. As the networks
are meant to be run on automotive microcontrollers, they have to be optimized
accordingly. The proposed optimization process is discussed in Chapter 4, where

1ASIL: Automotive Safety Integrity Level
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a custom neural architecture search method is applied on the sensor fusion neural
networks of the chapter before. Finally, the results of the optimized grid fusion
networks are compared to results from literature in Section 4.3.

Additionally, in Chapter 5, the paradigm of fusing sensor data with neural net-
works is applied to another automotive use-case, namely the gesture recognition for
multimedia controls. Again, special care is taken for the embedded optimization
of the network models, as the target hardware is a low-power embedded hardware
platform.

The thesis ends with the conclusive Chapter 6, where the results of the work are
summarized and used for an outlook to upcoming trends in the automotive industry.
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Raw sensor data comes in various forms, depending of the sensor type at hand.
Cameras produce images in form of two-dimensional matrices with multiple color
channels, radars measure the amplitude of radio-waves and convert the analog signal
into a discrete array with the internal ADC1, and lidar sensors output a point-clouds
(PC), which are arrays of distance–angle relations of a laser beam. Other sensors
in the automotive context, such as ultra-sonic range finders, or accelerometers and
rotary encoders, each modality has its specific raw sensor format; and typically all
sensors have in common that the data is processed, before it is used for an application
or function.

In the context of automotive environmental perception, the processing chain for
sensory data starts with the raw data being processed to feature-level data (Fig. 2.1).
Typically, this step happens within the sensor, where a micro-controller prepares the
signal in a way that is fundamentally needed for all applications. Once parts of the
processing are done on the sensor itself, the module is labeled as a smart sensor. The
common pre-processing steps of automotive radar and camera sensors are discussed
in Section 2.1, as they are the prerequisite for all environmental models of this work.

Figure 2.1: Typical data processing levels in automotive, from raw sensor signals
over feature-/object-level data to ADAS functionality. Raw signals:
ADC data, images, point-clouds (PC); feature-/object-level data: PC,
image feature descriptors (e.g. SURF2), tracks, B-Boxes (bounding
boxes).

1ADC: analog-to-digital converters. Often raw radar data is referred to the data coming directly
from the ADC.

2Speeded-up robust features (SURF) discussed in Subsection 2.1.3.
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Today’s advanced driver assistance systems (ADAS) range from ease-of-use func-
tions, such as traffic sign recognition (TSR) or adaptive cruise control (ACC), to
important safety-enhancing functions, such as automatic emergency braking (AEB),
lange keep assist and steer (LKA, LKS) or automatic emergency steer (AES). ADAS
rely on a perception of the surroundings, which is granted by the typically smart
sensors on the vehicle. Based on the pre-processed data, an integrated model of
the environment is calculated, which is then used in the application layer. Different
types of environmental representations are discussed in Section 2.2, together with
the steps needed to calculate them.

Research about automotive environmental perception mostly focuses on process-
ing raw sensor signals. These works assume the access to raw sensor data, which is
valid for only a subset of vehicles available on the automotive market. Access to raw
data is needed for functionalities and routines in cars with automation levels 3, 4 and
finally 5. The amount of vehicles capable of these levels of AD is vanishing, when
compared to today’s cars on the road and the cars anticipated to be built in the next
15 to 20 years [130]. But ADAS such as lane keep assist, lane departure warning, or
automated emergency braking, in cars with automation levels up to 2 have to rely
on a sensor suite of mass-produced, serial cars in a highly cost-competitive market.

2.1 Raw Sensor Data Processing

This section covers the signal processing of raw sensor data up to the level at which
a central fusion ECU receives the data. First, the processing chain of automotive
frequency-modulated continuous-wave (FMCW) radars is described; from ADC data
to target lists containing range, angle, and velocity. Object-level tracking, which is
today’s standard usage of radar data, is covered briefly in order to complement the
novel, lower-level processing of radar. Then, the working principle of automotive vi-
sion systems is described in form of feature extraction and detection with traditional
and novel DL-based methods. Finally, basic working principles of other sensors are
sketched.

2.1.1 Radar Signal Processing

Pulsed Radar Principles

The basic operation mode of radar sensors is the pulsed radar. The radar is capable
of identifying the range and velocity of reflecting targets by sending (Tx) electro-
magnetic waves at regular time intervals and receiving (Rx) the echos of these pulses.
The waves can be described as harmonics with an amplitude A, frequency f and
phase φ according to

s(t) = rect

(
t

Tp

)
· A · cos(2πft+ φ). (2.1)
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Figure 2.2: The working principle of pulsed radar.

The period between transmitting and receiving the signal is the round trip delay
time (RTDT) τ . The range r to the reflecting target can be calculated easily with

r =
c · τ

2
, (2.2)

by knowing that the radio-waves have to travel the distance twice with the speed of
light c. In the pulsed radar, the pulse duration Tp and the pulse repetition interval
(PRI) plays an important role in the precision of the radar system. The range
resolution ρr is defined by

ρr =
c · Tp

2
, (2.3)

which describes the ability of the system to separate two individual targets, instead
of detecting one. Two targets can be resolved only, if the received signal is longer
than twice the pulse duration Tp. All received shorter than 2Tp will be recognized
as one [1]. The range of operation of a pulsed radar system (rmin, rmax) is defined
by the PRI and Tp. The RTDT may not be smaller than Tp; else, the transmitted
and received signal are interfering. On the other side, it may not be larger than the
PRI; else, the received signal loses reference to the transmitted signal, resulting in
range ambiguities.

rmin =
c · Tp

2
(2.4)

rmax =
c · PRI

2
(2.5)

To encounter range ambiguities, it is common to change the PRI over multiple
measurements. This way, the correct range remains the same, but the ambiguous
ranges vary over time and, thus, can be discarded.
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Figure 2.3: Frequency ramps of transmitted and received FMCW signals.

Automotive Frequency-modulated Continuous-wave Radar

For short range automotive scenarios, continuous-wave (CW) radars are more suit-
able, as short distances require short pulses with limited energy [102]. A CW radar
operates on a known frequency, transmitting and receiving simultaneously. Without
signal modulation, the CW radars are not able to resolve the range, but the veloc-
ity of a reflecting target by its Doppler frequency shift. The change in frequency
tells whether the object is moving towards the radar or away from it—providing the
radial velocity.

The frequency-modulated continuous-wave radar is capable of measuring both, the
distance and the velocity to objects. The signal frequency of a linear FMCW radar
follows a predefined ramp (Fig. 2.3), where the modulating frequencies are added on
a carrier frequency fc. Each object that is illuminated by the radar reflects a signal
that contains information about the object’s distance and velocity. The distance
is calculated according to Eq. 2.2, but with the delay time τ as the time difference
between Tx and Rx ramps (Fig. 2.3). A positive Doppler-shift fD indicates a relative
velocity towards the radar; a negative fD is the result of a movement away from the
radar.

The crucial part of FMCW radars is the standing wave between sensor and object,
which results from the interference of the continuously transmitted waves. This
signal is described by the intermediate frequency (IF), which can be calculated for
a specific time t1 by mixing the Tx and Rx signals. The result can be decomposed
into the frequency ∆f for static objects and ∆f − fD for moving objects; and it
can be separated in a true range-related beat frequency fbeat, depending only on the
RTDT and to the Doppler frequency fD. Thus, the IF is a combination of Doppler
frequency shift and the frequency shift based on the RTDT. By mixing of the high-
frequency transmit and receive signals, the IF is converted to baseband, resulting in
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a much lower frequency. Thus, the signal processing is easier to handle afterwards.
The mixing process is called dechirp-on-receive.

The waveform sTx of one frequency ramp is represented by its analytical equation

sTx(t) = rect

(
t

Tc

)
exp

[
2πj

(
fct+

1

2
αt2
)]

, (2.6)

where the FM sweep rate α describes the change of the signal frequency over time in
Hz/s, t is the time1 and Tc is the duration of the chirp [27]. As the signal travels to
the target and back, the waveform stays the same, but a shift by the RTDT occurs:

sRx(t) = rect

(
t− τ
Tc

)
exp

[
2πj

(
fc(t− τ) +

1

2
α(t− τ)2

)]
(2.7)

(a) (b)

Figure 2.4: FMCW radar waveforms. (a) Frequency sweep of one chirp described
by Eq. 2.6. (b) Resulting beat frequency.

After the dechirp-on-receive of sTx and sRx, the intermediate frequency is calcu-
lated by applying the simple multiplicative model of a mixer2 and discarding the
components of higher frequency3 [86]:

sIF (t) = sRx(t) · sTx(t) (2.8)

sIF (t) = exp

[
2πj

(
fct+

1

2
αt2
)
− 2πj

(
fc(t− τ) +

1

2
α(t− τ)2

)]
(2.9)

sIF (t) = exp

[
2πj

(
fcτ + ατt− 1

2
ατ 2

)]
(2.10)

Typically, the raw radar signal is a discrete version of the IF-signal, which is sampled
by an ADC. As one can see, sIF is a function of the fast-time and inhibits only a

1Time for one chirp is usually denoted as the fast-time, whereas the time over multiple chirps
is denoted as the slow-time.

2Mixing of two harmonics: cos(x) · cos(y) = 1
2 [cos(x− y) + cos(x + y)] with

eix = cos(x) + i · sin(x)
3The hardware in the receiver is designed for the frequencies of the IF signal. Thus, the high

frequency components are dampened and can be discarded. Also, the rect()-function is discarded
for a better readability of the equations.
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single linear term. Thus, for a static environment, the IF-signal is a sinusoid function
with a fixed frequency. However, if the target is moving relative to the radar, the
RTDT changes during the sIF sampling and causes in phase and frequency shifts.
The range-dependent beat frequency fbeat for a fixed time instance t is

fbeat = α · τ =
2α

c
r, (2.11)

with r as the slant range. As τ can be translated directly into the slant range of
the target, also the range resolution ρr is directly proportional to the frequency
resolution of the beat frequency δfbeat [86]:

ρr =
δfbeatc

2α
=

c

2α · PRI
=

c

2B
, (2.12)

with B as the frequency bandwidth of one chirp. Eq. 2.12 indicates that the
range resolution is just dependent of the bandwidth of the transmitted frequency
ramp [103]. Fig. 2.4b shows the intermediate frequency of a target located at a
distance of 3 km (τ = 10 s), interrogated by a radar with Tc = 50µs and B =
1 MHz.

The Range-Doppler Domain

Eq. 2.11 shows that the beat frequency of static objects is only depending on their
slant range to the sensor. For multiple objects, the beat signal is the interference of
the individual tones of each reflector, with each tone’s frequency encodes the slant
ranges. The range information sr is extracted from Eq. 2.10 by applying the Fourier
transform. Typically, the transformation is done with the fast Fourier transform
(FFT) algorithm. This first FFT is also denoted as range FFT or 1st-stage FFT.

In order to determine the velocity information of an object, its phase change
has to be observed over the slow-time. This is done by sending a rapid sequence
of Nc successive frequency chirps (Fig. 2.3) and accumulating the received range
information sr over the time of one frame of Nc chirps. The frequency and phase of
the beat signal of the n-th chirp can be calculated as [106]:

φ0 − 2π
2v

c
fcnTc − 2π

[
2v

c
(fc + nα) +

α

Tc

]
t, (2.13)

where v is the radial velocity and 2π 2v
c
fcnTc corresponds to the velocity-dependent

phase change from chirp-to-chirp.
The velocity information is also extracted with a Fourier transform, but across

the dimension of the chirps in slow-time. This FFT is also denoted as the Doppler
FFT or 2nd-stage FFT. The resulting spectrum after the two FFTs corresponds to
the range-Doppler image (RDI), which incorporates the velocity information over
the ranges.
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Angle Estimation

The extraction of range and velocity from the ADC data is covered until now. The
third aspect of automotive radar processing is to gain knowledge about the direction
of arrival Θ of the reflected waves. In order to estimate Θ, an array of receive
antennas is necessary, where the incoming wavefront arrives at different times at
the individual antennas, i.e. has to travel an additional distance ∆ (Fig. 2.5). The
delta is depending on the antenna spacing d and the angle of arrival according to
∆ = d sin(Θ). It leads to a phase change ωn for the n-th antenna according to [106]:

ωn =
2π

λ
nd sin(Θ). (2.14)

Eq. 2.14 shows that—for a given amount of Rx antennas with a fixed spacing
d—the angle of arrival Θ̂ can be derived from the phase changes over the antenna
elements by estimating ω̂:

Θ̂ = sin−1

(
ω̂λ

2πd

)
. (2.15)

The phase change ω̂ is typically estimated using another Fourier transform into
the third dimensions over the antenna elements. This is the angle FFT or 3rd-stage
FFT.

Figure 2.5: Radar angle of arrival estimation using multiple Rx antennas in a uni-
form linear array.

Thresholding Targets

In order to extract the desired targets from the noisy range-Doppler images, tresh-
olding is applied to the data. In real-world signals the noise level is not constant
spatially and temporally due to random clutter, an adaptive thresholding approach
is needed. The constant false alarm rate (CFAR) thresholding is the state-of-the-art
method for radar signal processing. Its principle is to compare the data cell under
test (CUT) with the neighboring cells (Fig. 2.6). The CUT (central cell in Fig. 2.6)
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is surrounded by the training cells x, which are used for the thresholding value z
for the CUT. The training cells are shifted symmetrically apart from the CUT for
signals with a high resolution and large array size. The cells between CUT and
training cells are the guard cells. The fundamental design parameters of a CFAR
thresholding filter are the number of training cells N , the number of guard cells and
the detection scheme.

Figure 2.6: CFAR thresholding. Source: https://commons.wikimedia.org/wiki/
File:Constant false alarm rate.png accessed on 09. Feb. 2021.

There are various detection schemes for CFAR, which describe, how the thresh-
olding value is determined. The most simple scheme is the cell averaging CA-CFAR,
where the values of the training cells are averaged according to z = 1

N

∑N
i=1 xi. How-

ever, high-valued outliers may disturb the mean value of the training cells. Thus, the
ordered statistic OS-CFAR first ranks the training cells by value and then discards a
fixed amount of the highest values before calculating the mean with the remaining.

The CFAR principle is displayed as a filter for a one-dimensional array in Fig. 2.6,
but it can also extended to arbitrary dimensions. In case of a 2D CFAR, a band
of training cells around the CUT are taken into consideration for z. Naturally, the
higher-dimensional thresholding filters are more accurate, but come to the cost of
increased computational load. A common trade-off is to separate the 2D filtering
into two orthogonal 1D tasks.

Putting It All Together

The processing steps of an automotive FMCW radar system are depicted in Fig. 2.7.
Multiple receive antennas record a three-dimensional radar cube consisting of ADC
data with the three dimensions: fast-time of single chirps, the slow-time over the
chirp sequence and the dimension of the antenna elements. The 1st-stage FFT trans-
forms the fast-time to range information, the 2nd-stage FFT extracts the velocity
information from the phase change over the slow-time and the 3rd-stage FFT esti-
mates the angle of arrival from the phase change over the antenna elements. Thus,
the known features are range r, radial velocity vr and angle Θ. When converting
polar to Cartesian coordinates, one can compile these information to a target de-
scription in form of t = [x y vx vy]. Typically, the radar sensor is outputting
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2.1 Raw Sensor Data Processing

a target list with N entries in form of T = [t1, t1, . . . , tN ]T . Current automotive
radar systems generate hundreds of targets per cycle, which, plotted in Cartesian
coordinates, are interpreted as a point cloud. Especially, when the array of anten-
nas allows to receive elevation information, thus, generating three-dimensional point
clouds with t = [x y z vx vy vz]. The raw point cloud is used for tracking,
which is explained in the following section (Sec. 2.1.2).

Figure 2.7: Typical radar processing steps utilizing three FFTs until tracking.

2.1.2 Track-level Data Processing

Kalman Filter

With the estimated parameters of an object (Sec. 2.1.1) in form of range, velocity,
and angle, the Kalman filter describes the underlying object’s motion by estimating
its state. The state can range from one, up to three dimensions, describing the
objects location is space. Additionally to the location, a motion model is assumed,
typically a constant velocity or a constant acceleration. The linear Kalman filter is
described by the linear stochastic equation

xk+1 = Fkxk +Gkuk + vk, (2.16)

where xk is the object’s state at timestep k, Fk is the state transition model matrix,
Gk is the control model matrix, uk are the known controls acting on the object
and vk is an additive random noise disturbing the motion [69, 78]. The state can
be restricted to two or three dimensions to describe the spatial location, but also
extended to a full description of the object with

x = [x y vx vy ax ay]
T , (2.17)

where the location, velocity v and acceleration a of the object is incorporated. The
Kalman filter assumes measurements zk as a noisy function of the true state xk,
thus, also the sensor measurements are described by linear functions of the state

zk = Hkxk + wk, (2.18)
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where Hk is the measurement model matrixand wk the additive noise [69, 78]. The
measurements can consist of any part of the measurement model matrix, so that
multi-modal sensor fusion can be done by designing Hk in a way that the different
sensor modalities’ properties are incorporated in it. For example, the location can
come from the camera and the radar, and additionally the velocity and acceleration
can be provided only by the radar.

Kalman Filter Loop

The Kalman filter is initialized with the best estimate of the state, x0|0, and the
state covariance, P0|0. Starting with a bad or random guess is also feasible, but
the filter requires some time to adapt to the situation. After the initialization, the
following continual loop is performed.

1. The next state is determined by propagating the current state using the motion
equations:

xk+1|k = Fkxk|k +Gkuk. (2.19)

Analogically, the covariance matrix is propagated as well:

Pk+1|k = FkPk|kF
T
k +Qk. (2.20)

The subscript notation k + 1|k indicates that the quantity is the optimum
estimate at the k + 1 step propagated from step k. This estimate is often
called the a priori estimate [17].

The measurement prediction at the updated time is calculated from the prop-
agated state:

zk+1|k = Hk+1xk+1|k. (2.21)

2. The difference between the predicted measurement and the actual measure-
ment is used to correct the propagated state at the updated time. The cor-
rection requires computing the Kalman gain, which, in turn, first needs the
measurement prediction covariance (innovation). The Kalman gain is calcu-
lated with the innovation

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Rk+1, (2.22)

according to:
Kk+1 = Pk+1|kH

T
k+1S

−1
k+1. (2.23)

3. Next, the predicted estimate is corrected with the measurement1. The cor-
rected state estimate uses the subscript notation k+1|k+1, and it is computed
from

xk+1|k+1 = xk+1|k +Kk+1(zk+1 − zk+1|k). (2.24)

1On the assumption that the estimate is a linear combination of the predicted state and the
measurement [69].
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The corrected state is often called the a posteriori estimate of the state because
it is derived after the measurement is included.

The covariance matrix is corrected with the innovation and the Kalman gain:

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
′
k+1. (2.25)

Finally, the measurement is computed based upon the corrected state. This is
not a correction to the measurement, but it is the best estimate of what the
measurement would be based upon the best estimate of the state.

Extensions of the Kalman Filter

The Kalman filter is based upon the assumption that the errors in the system are
Gaussian. Also, the above mentioned linear Kalman filter works well only on linear
systems. Several extensions of the linear Kalman filter were introduced to cope with
this limitations. The extended Kalman filter (EKF) and the unscented Kalman
filter (UKF) are the most prominent successors, as they are applicable on nonlinear
systems, too.

The EKF linearizes about an estimate of the current mean and covariance with the
Jacobian, approximating the nonlinearity to a linear estimate. The linearization re-
quires the functions to be differentiable [67]. The UKF uses a deterministic sampling
technique (unscented transformation) to pick a minimal set of sample points around
the mean. This set of sample points propagated through the nonlinear functions
and form a new mean and covariance estimate. With the UKF, the computation of
the Jacobian is omitted, thus, complex functions or not differentiable functions can
be estimated, too [67].

Multiple and Extended Target Tracking

With the rapid advance in radar and lidar sensor technology, angular accuracies
improve and, in equal measure, the number of reflection points per object increase.
Thus, the assumption that each object is represented by one track and each track
is maintained by one target does not hold anymore. Tracking an object that is
perceived by the sensors with multiple, individual target detections, is called ex-
tended object tracking or extended target tracking. Popular extended object track-
ing approaches are the random matrix approaches and the star-convex shape ap-
proaches [45], focusing only on a single extended target.

Similar to point-target models, the tracking of multiple extended objects is per-
formed with Random Finite Sets (RFS) [110] or Probability Hypothesis Density
(PHD) filters [36]. However, the data association of targets to objects and ob-
jects to tracks has factorial scaling, thus, becomes intractable rapidly [45]. Several
approaches exist to ease the complexity with approximations, such as gating, clus-
tering, or distance partitioning.
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Still, novel solutions are needed to tackle this complex assignment problem. Be-
sides non-probabilistic methods (Greedy Randomized Search, Lagrangian Relaxation),
machine learning based methods (Conditional Random Fields, Belief Propagation,
Markov Chain Monte Carlo, RNN-based Deep Neural Networks) are investigated [35].

Track Fusion Techniques

Assuming N sensors of any kinds of sensor modalities, the sensor data can be fused
in various stages of processing for tracking. The fusion stage can be placed after each
block of typical pre-processing steps from raw data, feature-extraction to tracking
(Sec. 2.1.1). Depending on which data is used, the fusion is denoted as low-level
(raw data), feature-level (pre-processed data) or track-level (track data) fusion [5].

Figure 2.8: Basic structure of common sensor data fusion architectures for ADAS.
(a) low-level fusion, (b) feature-level fusion and (c) high-level track fu-
sion. Source: [5].

Recall Chapter 1.1.2, where it is pointed out that current mass-produced cars are
equipped with distributed smart sensor systems, which incorporate large portions
of the processing chain. Radar sensors, for example, produce a list of tracks as an
output. Also, assuming low-level sensor fusion, the temporal synchronization of this
data forms a critical task, which is eased in the track domain, as by using the Kalman
filter, states can be predicted to a uniform timestep. Consequently, nowadays fu-
sion ECU employ track-level fusion. Well-known track-level fusion techniques are
either a Kalman filter or the following covariance-based approaches [85]: Covariance
Intersection (CI), Cross-Covariance (CC), Covariance Union (CU).

A comparative research of the listed track-level fusion algorithms compares the
computational times for one cycle of update and prediction [85]. The results of
CI, CC and CU are compared to the usage of an asynchronous Kalman filter. The
measured computational costs show that CC and CI need less resources than the
Kalman filter, but the CU exceeds it by a factor of 2.62 (Tab. 2.1). The track fusion
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Table 2.1: Comparison of track fusion algorithm. Performances shown in RMSE for
input tracks with low and high correlation. Source: [85]

Method Rel. cost Performance (low corr.) Performance (high corr.)

Kalman filter 1.00 0.181 0.369
CC 0.69 0.131 0.167
CI 0.87 0.178 0.199
CU 2.62 0.137 0.172

algorithms are also compared in terms of their mean RMSE1. In terms of fusion
quality, the Kalman filter performs well for uncorrelated input tracks, but with
correlated tracks to fuse, it loses its ability to fuse robustly. The covariance-based
approaches perform equally well with only slight differences (Tab. 2.1). Conclusively,
the cross-covariance approach has best performance for the lowest costs, in contrast
to the Kalman filter, which loses quality at highly correlated tracks.

(a) (b) (c)

Figure 2.9: The track-level fusion techniques applied for the fusion of three tracks
within one timestep. (a) Cross-covariance, (b) covariance intersection,
(c) covariance union. Source: Mathworks MATLAB Documentation2.

2.1.3 Camera Sensor Processing

The market trend for automotive camera systems is clearly growing in the upcom-
ing years, as their demand for ADAS is rising, based on the increasing legal safety
requirements for new cars [63]. The trend invokes the production of low-cost, mass-

1RMSE: root mean squared error.
2fusexcov: https://www.mathworks.com/help/fusion/ref/fusexcov.html,

fusecovint: https://www.mathworks.com/help/fusion/ref/fusecovint.html,
fusecovunion: https://www.mathworks.com/help/fusion/ref/fusecovunion.html.
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produced systems that consist typically of two parts: the remote sensor itself, col-
lecting light from the environment and the processing computer. The processing
computer pre-processes the signals in order to send the data to other vehicle subsys-
tems, such as the fusion ECU. It enhances image quality and even performs feature
extraction of various extent.

In this subsection, a brief overview about the camera signal processing is given.
A focus is particularly on the feature extraction of images, but not on the optics nor
low-level processing, such as image/pixel generation or epipolar geometry.

The first step of extracting features is applying filters to the raw images in order
to extract some handcrafted features, such as edges or significant landmarks. A very
basic, but yet common edge detector is the Sobel filter. Every pixel pi in the image
(Fig. 2.10a) with its directly surrounding pixels is multiplied with a specific matrix
S and produces the output pixel gi. For the complete image A, the Sobel filter is
used to extract horizontal (in x-direction) edges

Gx = Sx ∗ A =

−1 0 1
−2 0 2
−1 0 1

 ∗ A, (2.26)

and vertical (in y-direction) edges

Gy = Sy ∗ A =

−1 −2 −1
0 0 0
1 2 1

 ∗ A, (2.27)

which both are combined to the output image (Fig. 2.10b) with highlighted edges
G =

√
G2
x +G2

y. According to this principle, many other filters are designed in
order to extract certain features from the raw signal, such as the Prewitt filter, the
Canny edge detector or the Laplace operator. Fig. 2.10c shows the result of the
Harris corner detector.

(a) (b) (c) (d)

Figure 2.10: Feature extraction in camera imagery.

A step further, in tasks like tracking an object in an image or the optical flow of
the image, basic keypoints have to be tracked over multiple frames, thus, have to be
re-identified. Once distinct low-level features are discovered in an image, they are
described by a feature descriptor that uniquely identifies that feature. Typically,
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each keypoint incorporates various information about the surrounding. In case of
the highly influential SIFT descriptor (scale-invariant feature transform), each key-
point is described by scale- and rotational-invariant features (Fig. 2.10d) [82]. This
is achieved with the use of the Difference of Gaussians of various down-scaled ver-
sions of the input and calculating the Laplacian of Gaussian approximations. These
are scale-invariant, but require a high amount of computations. This problem is
addressed by successors of SIFT, such as SURF (speeded-up robust features) [14].

A real breakthrough in the camera sensor processing with the rise of deep learning,
particularly in the field of convolutional neural networks (CNN). A main property of
CNNs is the ability to learn filters from the training data automatically, in contrast
to the handcrafted filters (Sobel, Prewitt, etc.). Those filters are convolved with the
input and produce an output that has highly distinctive features, if the training of
the filter was done correctly. A CNN uses multiple, successive layers of filters, ideally
each with a different level of abstraction of features, starting from basic, low-level
features as corners and edges, to ever more detailed representations (e.g. in case of
face recognition: eyes, nose, mouth).

2.1.4 Other Sensor Preparations

Whereas camera and radar sensors offer the widest area of applications, other ex-
teroceptive sensors are also present in automotive perception systems. Ultrasonic
sensors are used to sense in the vicinity of the vehicle and are typically the base of
today’s parking assistance systems. Yet, lidar sensors are uncommon on the streets,
but they are expected to significantly grow as the technology evolves and regulatory
rules require more and more sensor systems.

Lidar Sensors

Analogically to radar, the lidar (light detection and ranging) is measuring the time-
of-flight of an electromagnetic signal, but in contrast to the FMCW radar, it uses
short pulses of directed laser with a much shorter wavelength. Common wavelengths
in the automotive domain range from 850 nm to 1µm [139]. There are two types of
lidar sensors, the rotating and the solid-state ones. In case of the rotating lidars,
multiple (few dozens) lasers are stacked vertically and this array is rotated around
the vertical axis, covering a sweep-angle and elevation. The solid-state lidars have
less active lasers, but these are directed through micro-electro-mechanical system
(MEMS) mirrors within the semiconductor. With the help of two rotating MEMS
mirrors, the rays are steered along two axis, covering azimuth and elevation. The
solid-state lidars contain no mechanical moving parts, thus, the lifetime is longer,
the production costs lower and the package is smaller.

Lidars are viable option for environmental perception, mainly because of the pre-
cise angular resolution. The MEMS-bsaed Continental HRL131 lidar achieves an-
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gular resolutions of 0.05° in azimuth and 0.075° in elevation. Typically, the lidar
output has thousands of reflections in the point cloud per measurement cycle.

A general trend is observable in the comparison of radar and lidar sensors: the
superior angular accuracy of the laser scanners are approximated and targeted by
next generation radar sensors. Those high-resolution radars (HRR) employ large
MIMO antenna arrays with every higher amounts of virtual antenna elements. The
outputted radar point cloud contains ever more entries, now in the range of hundreds
of targets per cycle, but this number will rise significantly. The goal of the HRR
is to achieve an imaging radar system, able to produce lidar-like fine-grained out-
puts. In contrary, the lidar technology is investigating the application of modulated
laser signals, such as FMCW. It is expected to enhance the capability of detecting
moving objects, as direct velocity measurements are possible with FMCW. It can
be concluded that the radar and lidar sensor technologies are getting closer to each
other.

Ultrasonic Sensors

Ultrasonic sensors are the most inexpensive sensor for automotive environmental
perception, and yet, the most wide spread ones. As their range is limited to just a
few meters, the dominant use-cases are parking assistance applications. The output
of an ultrasonic sensor is an analog voltage that is correlated to the distance of
the closest object. The range is determined by sending modulated ultrasonic signals
and receiving the echo. As one sensor provides only one distance value per timestep,
typically multiple ultrasonic sensors are placed around the bumpers of the vehicle
in order to calculate the angle to the echoing target by triangulation.

2.2 Environmental Modeling Schemes

Deriving an environmental model directly from the surrounding world is not possible
without sensors. Those sensors interrogate the world and generate measurements z
(Fig. 2.11a) The world model M is created from those measurements z0, z1, . . . , zt
over time t (Fig. 2.11b). Because there are multiple sources of inaccuracies and er-
rors in the environmental model generation, the reality is approximated with prob-
abilistic approaches. In the following sections, the object-based and the grid-based
environmental model are described.

2.2.1 Object-Based Environmental Models

In object-based environmental models, the world only consists of dynamic objects
with an associated motion model. This approach allows precise predictions about
the dynamic behaviors of traffic participants based on the track history. It can
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(a)
(b)

Figure 2.11: (a) Range sensor measurements. (b) Generation of an environmental
model of the world with measurements from a sensor.

incorporate multi-modal sensor information in form of sensor-agnostic targets1 and
generate a model that spans over vast dimensions, e.g. ranging hundreds of meters
in front of the car. On the downside, this environmental model does not incorporate
information about the static environment, such as the drivable object-free space,
which is needed for advanced maneuver planning.

Figure 2.12: Object-based world model. Source: [133].

Track Management

The typical cycle for generating and maintaining the object-based environmental
model in each measurement readout are the following steps [17]:

1. Data association: Starting from the target list (Sec. 2.1.2), each target at this
timestep is associated to an existing track. The association task can be done
with a simple thresholding by selecting the track that is closest to the given
target or within a given distance threshold. Other approaches are of statis-
tical nature, such as the Probabilistic Data Association Filter (PDAF) [12]
or in case of multiple targets, the Joint Probabilistic Data Association Filter
(JPDAF) [28].

1Targets in this context are seen as a collection of properties bound to a spatial location and
usually come as part of a target list.
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The set of targets that are successfully assigned to an existing track are used
for updating the tracks in the second step. But, not all targets are associated
to an existing track in this stage. The remaining ones are likely to belong to a
new object that is not tracked yet, thus, a new track will be initialized (third
step). Similarly, tracks without any assigned targets will be removed from the
track list, as the underlying object is likely to have moved out of the field of
view (fourth step).

2. Track update: Confirmed existing tracks are updated either with their associ-
ated targets in each measurement cycle, or if none is available, the prediction
of the track into the current timestep based on its known motion model. Incor-
porating a new measurement into a track can be done with various algorithms,
such as the multiple hypothesis tracker (MHT) or the alpha-beta tracker, but
most tracking systems apply the Kalman filter [69] (Sec. 2.1.2), or one of its
generalized successors that are capable of handling nonlinear motion models,
too (extended Kalman filter (EKF), unscented Kalman filter (UKF), particle
filter).

3. Track initialization: All unassociated targets are generating a new track.
When the object-based environment itself is initialized, all targets are cre-
ating new tracks. Once the environment is set up, only those are used for
spawning tracks that are not used in the track update (second step). In order
to avoid false alarms, tracks have two states, the tentative and confirmed state.
A track is tentative, if over m successive measurement cycles n times a track
has been assigned to it with m > n, and typically m = 5 and n = 3.

4. Track deletion: If a track is not associated with targets, it is subject to deletion.
Typically a condition has to be fulfilled to remove this track from the track
list, e.g. in the past m measurement cycles, too few (n out of m) or no targets
at all have been associated, or the uncertainty in form of the covariance matrix
is too large.

2.2.2 Grid-Based Environmental Models

Grid-based models represent the world by subdividing it into small areas, where each
of the areas are described with properties of interest. Depending on the application,
those areas can be of different size, but typically, they are of uniform size and
spacing, describing a checkerboard-like grid in the two-dimensional case. In 3D, the
world is subdivided into small, uniformly sized cubes. Whereas the cells can contain
many features, the most important one is the probability of occupancy, hence the
name occupancy grid (OG).
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Classical and Continuous Occupancy Mapping

The classical way of obtaining the occupancy probabilities is by estimating the un-
known underlying probability density function (PDF) with a Bayes filter recursively
over time. The occupancy probability is calculated for each grid cell mi, i ∈ [0, I] of
that map m = [m0,m1, . . . ,mI ]

T individually by approximating the posterior prob-
ability p(m|z1:t, l1:t), where z1:t is the measurement history, and l1:t the past known
locations of the vehicle in the map, from the beginning of the mapping until the
current time t [32]. The OG of a single measurement cycle without the map history
is p(m|zt). Under the assumption that the map is static and all ego locations are
known, the map can be updated over time with the Bayes filter applied for each
individual grid cell mi.

The probability values of individual cells are computed in a Bayesian framework,
thus, are assumed to be stochastically independent and the calculation of the pos-
terior is done for all cells separately. This assumption of course is not valid, as
underlying geometries are correlated over multiple cells. Still, the Bayesian frame-
work for OGs is used with great success, as it approximates well. To mitigate this
discretization, continuous mapping methods evolved, such as Gaussian process occu-
pancy maps (GPOM) or Hilbert maps. Both approaches treat sensor measurements
as a form of sampling a continuous distribution forming the real environment. The
idea of GPOM is to place a Gaussian prior over the space of functions mapping loca-
tions to the occupancy class [98,99]. The final, continuous Gaussian process classifier
model is sampled in the discrete locations of the grid map. As the complexity of the
representation is growing with the number of data points, a computationally less
expensive, continuous approach was introduced with Hilbert maps. Hilbert maps
represent the occupancy property of the world with a linear discriminative model
operating on a high dimensional feature vector that projects observations into a
reproducing kernel Hilbert space (RKHS) [107].

Occupancy Grid Placement

Depending on the sensor setup and the type of application, these occupancy grids can
be designed to model the environment in front of, or surrounding the car. Recall the
typical sensor suites on vehicles with low SAE levels in Chapter 1.1.1 and Table 1.1,
where SAE L1 and L2 are estimated mostly incorporate front facing radar and
camera sensors. In this case, the placement of the occupancy grid is naturally in
front of the car (Fig. 2.13a). Few vehicles with partial automation are assembled
with an enhanced sensor suite, e.g. Tesla Model S, but most likely all vehicles with
SAE Level 3 and above will have surround perception enabled by a full sensor cocoon
around the car (multiple radar, camera and ultrasonic sensors). The resulting sensor
readings can be mapped into an occupancy grid that spans an area around the car
(Fig. 2.13b).
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(a) (b)

Figure 2.13: Different placements of occupancy grids relative to the ego vehicle, de-
pendent on hardware setup and application. (a) OG in front of, (b)
surrounding the car.

Occupancy Grid Generation

The generation of OG starts similarly as the world generation for the object-based
environmental model: by receiving measurements z from the range sensors. Depend-
ing on the sensor modality, z can come in various forms, as usually lower-level data
is employed for the occupancy grid generation than for the object tracking. The ear-
liest works in OG generation with range sensors were done with ultrasonic sensors,
where the detected range of each sensor was integrated into a two-dimensional grid
with the help of an inverse sensor model (ISM) [32,33]. Most of the works in litera-
ture employ laser range finders for OG generation, as these sensors offer high angular
resolution and a large number of detections per measurement cycle [96, 132]. Oc-
cupancy grid mapping was also investigated based on radar and camera technology
and proven to work well, also for freespace estimation [2, 25,76,115].

Typically, the state si of a grid cell mi is a random variable with the value of si
describing the probability of the cell being occupied P (mi|z) = 1 or free P (mi|z) = 0.

Numerically, an occupancy grid can be interpreted as a special case of a tensor,
where the grid is spanned over typically two or three dimensions, depending on
if it is a 2D or a 3D occupancy grid. Each cell has certain properties that are
described in the additional dimensions of the OG tensor. For example, a simple
two-dimensional OG with the occupancy probability as the only property of the
cells is a three-dimensional tensor. In this work, all occupancy grids are assumed to
be two-dimensional and following Def. 2.2.1.

Definition 2.2.1 (Occupancy Grid) An occupancy grid is a special case of a ten-
sor (3.3.1), where the first two dimensions describe the rectangular area (x, y) and
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the rest of the dimensions describe the underlying features f1 . . . fn of the occupancy
grid. O ∈ Rx×y×f1×...×fn

Convention: The feature occupancy probability p(oi) is defined as a random
variable describing the probability of the cell i being occupied.

� p(oi) = 0.0 → the cell i is most likely not occupied.

� p(oi) = 0.5 → the occupancy state of the cell i is unknown.

� p(oi) = 1.0 → the cell i is most likely occupied.

2.2.3 Sensor Modeling

New sensor measurements z typically come in form of target or object lists. These
arrays of data need to be translated into a format that can be integrated into the
occupancy grid framework with the Bayes filter. Each sensor modality perceives the
environment differently, thus, generates a list of information from the surroundings.
Therefore, the process of perceiving is described by the PDF of the sensor model
p(z|l). Oppositely, reasoning from sensor measurements z to a map m(z) requires a
sensor-specific modeling, the inverse sensor model (ISM), and the exact location l.
The ISM is applied for transforming data from range sensors to spatial occupancy
probabilities, e.g. sonar, lidar or radar data. Each sensor modality inhibits its
advantages and drawbacks, such as the radar is precise in estimating the target’s
range, but is weak in determining the angle. The ISM takes this into account by
modeling the transform accordingly (Fig. 2.14).

(a) (b)

Figure 2.14: (a) One-dimensional ISM of a lidar ray with a target at distance d.
The occupancy probability is low in front of the target, high at the
location of the target and unknown behind (p(r) = 50 %, r > d). Image
taken from [41]. (b) Two-dimensional ISM of a range sensor with the
sensor positioned on the left end of the dip and the target located at the
peak. The surface models the probability of occupancy. Image taken
from [93].
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Recent approaches use deep learning algorithms to generate an inherently proba-
bilistic ISM from raw radar observations [138] and sonar scans [84], which is further
discussed in Chapter 3.2.
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2.3 Sensor Fusion for Automotive Environmental
Modeling

In this section, methods for combining the data from multiple (K > 1) sensors of
different pre-processing levels into a uniform representation is discussed. Here, only
the fusion of the measurements z1, . . . , zK of one timestep is considered. On a high-
level, two groups of approaches can be distinguished for fusing sensor information:
The ones that integrate the measurements z1, . . . , zK by assuming a conditional de-
pendence and those that assume the measurements to be conditionally independent.
The first approach integrates the sensor data z1, . . . , zK simultaneously into the fi-
nal representation, which can be the object tracking or a combined occupancy grid,
based on the forward sensor model described in [128]. In case of the forward sensor
model, for a given set measurements, a map is constructed in a way that considers all
inter-cell dependencies. Thus, the mapping task becomes an optimization problem
that tries to find a map that maximizes the data likelihood [128].

In turn, the approach that relies on the assumption of independence between indi-
vidual grid cells and measurements, has been adopted in the numerous works regard-
ing mapping tasks [41, 93, 96, 132, 142]. This hypothesis allows to generate a fused
representation in separate sub-steps, as depicted in Fig. 2.15. The independence
is leveraged by building an individual OG for each of the k sensors independently
(O(z1), . . . , O(zK)). The next step is to integrate the sensor-specific occupancy grids
into a fused representation Ofused.
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Figure 2.15: Grid-based sensor fusion block diagram.

2.3.1 Levels of Sensor Fusion

Out of the many categories and concepts of sensor fusion algorithms, the most com-
monly used ones are compiled into six levels with the JDL Data Fusion Model [121].

33



2 Preliminary Signal Processing

They range from very high level information fusion on the user level, down to fine-
grained data alignments. Three of those are best applicable to the sensor fusion
task in automotive:

� Decision-level or late fusion represents the highest level of abstraction and uses
sensor information that has already been extensively processed and possibly
used for classification. The decision-level fusion combines high-level informa-
tion from various, possibly conflicting nodes and tries to find the hypothesis
of the sensors that fits best to the situation. An example for decision-level
fusion is the estimation of the traffic state (low traffic, medium flow, traffic
jam) based on data from acoustic and image sensors [66].

� Feature-level fusion takes data from the sensor nodes that have already been
processed. As a consequence of the pre-processing, the information contained
in the signals is smaller, lightens the bandwidth and computational require-
ments of the system. The selection of significant and descriptive features for
each sensor modality is fundamental for the design of the feature-level fusion
system. For simple automotive assistance systems, such as ACC, this level of
fusion is performed in an object-based environment, typically with Kalman
filters. Details to the feature-level sensor fusion are described in Section 2.1.2
by the use of radar track data.

� Data-level or early fusion is a fusion technique at the lowest level of abstrac-
tion. Usually, it aims to combine raw data from multiple sources of the same
modality, as the data format is the same. It has to most capabilities and
information in the result, but comes to the cost of the largest bandwidth
and computational requirements. Typically, this kind of fusion is needed for
information-rich environmental models for high automation levels, as outlined
in Section 1.1.1.

In the main part of this work, feature-level data is the basis for the fusion process.
An information-rich representation similar to the raw, data-level fusion is investi-
gated to be achieved by enhancing the feature-level fusion with machine learning
techniques.

2.3.2 Grid-Based Bayesian Fusion

Whereas in reality, objects often span over the area of multiple grid cells, thus, are
stochastically dependent of each other, they are treated like if they were independent
in order to apply the Bayesian fusion. This was first done by Moravec in 1988 [92].
It is deducted from the Bayes’ theorem:
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Theorem 2.3.1 (Bayes)

P (A|B) =
P (B|A)P (A)

P (B)
, (2.28)

where A and B are events and P (B) 6= 0.

Bayesian Fusion Principle

Given a system of two sensors with their measurements z1, z2, the occupancy grid
O(z1, z2) is generated by calculating the cell-wise occupancy probability P (oi|z1 ∧ z2).
Moravec replaced the occupancy probability with the odds ratio of the two events
(oi: cell i occupied, ei: cell i empty):

P (oi|z1 ∧ z2)

1− P (oi|z1 ∧ z2)
=
P (oi|z1 ∧ z2)

P (ei|z1 ∧ z2)
, (2.29)

together with Bayes’ theorem and for each occupancy state separately,

P (oi|z1 ∧ z2) =
p(z2|oi ∧ z1)P (oi|z1)

P (z2|z1)
, (2.30)

P (ei|z1 ∧ z2) =
p(z2|ei ∧ z1)P (ei|z1)

P (z2|z1)
, (2.31)

becomes
P (oi|z1 ∧ z2)

1− P (oi|z1 ∧ z2)
=
P (oi|z1)p(z2|oi ∧ z1)

P (ei|z1)p(z2|ei ∧ z1)
. (2.32)

Following the deduction from Rakotovao [105], the terms p(z2|oi) and p(z2|ei) can
be derived from the Bayes’ theorem:

p(z2|oi) =
P (oi|z2)p(z2)

P (oi)
, (2.33)

p(z2|ei) =
P (ei|z2)p(z2)

P (ei)
, (2.34)

and inserted into Eq. 2.32 (Note: P (ei|z1) = 1 − P (oi|z1) and P (ei) = 1 − P (oi))
results in

P (oi|z1 ∧ z2)

1− P (oi|z1 ∧ z2)
=

P (oi|z1)

1− P (oi|z1)
· P (oi|z2)

1− P (oi|z2)
· 1− P (oi)

P (oi)
. (2.35)

Solving to the odds of this cell being occupied considering the two measurements
z1 and z2, the final equation is

P (oi|z1 ∧ z2) =
P (oi|z1) · P (oi|z2) · [P (oi)− 1]

P (oi) · [P (oi|z1) + P (oi|z2)− 1]− P (oi|z1) · P (oi|z2)
. (2.36)
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Eq. 2.36 describes the Bayesian fusion of two sensor readings in one cell of an
occupancy grid. The hypothesis of independent measurements allows to compute
P (oi|z1 ∧ z2) from the ISMs P (oi|z1) and P (oi|z2). The complete occupancy grid
can be generated by computing Eq. 2.36 for each cell in the grid.

Figure 2.16: Exemplary scenario for grid-based sensor fusion of two sensor-specific
occupancy grids OG(Z1), OG(Z2) and the resulting fused representa-
tion OG(Z1, Z2). Image taken from [105].

With an Independent Opinion Pool to the Log-Odds

Assume that non-informative priors (P (oi) = 0.5, P (ei) = 0.5) are known in
Eq. 2.36. Under this hypothesis, the Bayesian fusion can be formulated as a form
of the Independent Opinion Pool [16, 105] by bringing it to the form of

F (x, y) =
xy

xy + (1− x)(1− y)
. (2.37)

In other words:

P (oi|z1 ∧ z2) = F (P (oi|z1), P (oi|z2)), ifP (oi) = P (ei) = 0.5 (2.38)

The benefit of formulating the problem as a Independent Opinion Pool task is
twofold. Contradicting sensor readings are treat in a way that the uncertainty
about the occupancy state of the cell is increasing and the occupancy probability is
moving towards 0.5. On the other hand, matching sensor measurements reinforce
their values and output the fused occupancy state with a higher certainty [32].

However, the property of reinforcing the occupancy probabilities leads to numer-
ical problems, as once the values reach either 0 or 1, the equation becomes agnostic
to any new sensor readings. Elfes proposed a solution in form of the log-odds

l(oi|z1 ∧ z2) = l(oi|z1) + l(oi|z2), (2.39)
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where l(x) = log( P (x)
1−P (x)

) [32]. The logarithmic form solves the numerical instability
by relying on simple additions instead of multiplications and divisions in Eq. 2.38.

P (oi|z1 ∧ z2) = 1− 1

1 + exp(l(oi|z1 ∧ z2))
(2.40)

translates the log-odds values back to occupancy probabilities.

Dempster-Shafer Fusion

Recall Definition 2.2.1, where the main feature of each cell of the occupancy grid
is the occupancy probability. Boiling down the sensor measurements of a series
of sensors into one single feature may lead to results that seem to be certain, but
underlie conflicting sensor measurements. As an example, two sensors generate
contradicting data (P (oi|z1) = 0, P (oi|z2) = 1), each with high certainty. However,
the result of the Bayesian fusion (Eq. 2.40) is 0.5, which is equal to a situation
with no sensor measurements at all. To cope with this loss of information, the
Dempster-Shafer theory of evidence explicitly models the uncertainty coming from
contradicting sensor signals [29].

According to the Dempster-Shafer fusion (DSF), a probability mass is assigned
for all combinations of possible states. Given the possible states in occupancy grids
Θ = {o, e}, the combinations are 2Θ = {∅, o, e, {o, e}}. In the DSF, the following
probability masses arise as features of the occupancy grids:

� p(∅) = 0→ the empty set is always impossible.

� p(oi)→ the probability of cell i being occupied.

� p(ei)→ the probability of cell i being empty.

� p({oiei})→ cell i has conflicting sensor measurements.

The application of the DSF proves to be useful in many works [89,142]. Others ar-
gue that it is not needed, because automotive sensors have to be intrinsically reliable
and contradicting sensor measurements only come from wrong sensor configurations
or bad calibrations [105].

2.3.3 Data Synchronization

In real-world scenarios with a realistic sensor setup, additional important aspects
have to be considered before performing the sensor fusion.
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Spatial Alignment

Due to the highly diverse sensor placements and orientations, a spatial alignment is
required for a uniform representation (see Section 2.2.2). A thorough calibration is
needed for determining the exact areas of the fields of views (FOV) of the sensors.
The overlapping parts of the FOV can be used for instantaneous1 sensor fusion.
When inserting a sensor measurement into a partially built map, the FOV of the
sensor has to be placed into the correct location of the given map. For that step, the
vehicle’s position and orientation within the map has to be known exactly, typically
by self-localization in parallel to the mapping task (simultaneous localization and
mapping SLAM). SLAM uses a combination of IMU/GNSS data smoothened by a
Kalman filter and position estimations based on the range sensor data matched to
the known map. This way, the map integrity is ensured and the spatial alignment
done.

Temporal Alignment

Further, the temporal synchronization of the sensor readings is crucial for a robust
high-quality system. The measurement latency tL between the actual acquisition
time and the sensor output time is not negligible, especially, when the pre-processing
is time consuming, as in the case of visual detection systems. Further, in multi-modal
systems with sensors si with i > 1, the measurement frequencies vary from sensor to
sensor. Thus, the sensors start the acquiring in different measurement cycle times
tC . As a natural consequence, the signals arrive asynchronously to the fusion ECU.

Figure 2.17: Temporal alignment problem for multi-modal sensor systems. Image
taken from [68].

If the latency tsiL is constant for each sensor, a deterministic schedule can be derived
for integrating the sensor readings at different timesteps. On the other hand, if the

1Within one timestep.
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latency tsiL is varying for at least one sensor, such a schedule can be disturbed; it
is non-deterministic [68]. The temporal alignment is done based on timestamps tsiTS
created at the beginning of each data acquisition, and the order of which sensor
measurement to integrate next has to be decided in each timestep. This is to the
fact that the Kalman filter can only predict future states of a system, not the past
states. If a signal from tTS = 0 arrives later than a signal from tTS = 2, it can not
be integrated. To cope with the non-deterministic way of the input data, the fusion
latency tL,max for integrating the signals is set to the maximal worst-case latency:

tL,max = max (tsiL ) + max (tsiC ) (2.41)

In the remainder of this work, it is assumed that the data from the sensors arrives
synchronously to the fusion system.
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In this chapter the problem of grid fusion is tackled with the application of neural
networks. First, the choice of neural network type is explained for the given hardware
setup of Level 2/2+ cars. Recall Chapter 1, where the constraints and challenges
for the fusion ECU are introduced. Namely, the typical hardware setup for partially
automated cars and the limited, or even no access to raw sensor data. As the com-
putations of complex neural networks pose a large problem to resource-constrained
automotive embedded hardware, the computational costs of the investigated models
are analyzed. Finally, a suite of state-of-the-art hardware accelerators for neural
computations are introduced, on which the proposed models will be evaluated.

3.1 Introduction and Motivation for the Usage of
Convolutional Neural Networks and
Auto-Encoders

With the perception system built upon the requirements and capabilities of Level
2/2+ cars, only feature-level sensor data are available for the fusion ECU. In order
to perform a centralized fusion with the help of machine learning, the available data
has to be prepared for being fed into the machine learning models. One promising
method of preparing the available data for neural network processing is to transform
the data lists to occupancy grids. As occupancy grids are two-dimensional matrices
with a third dimension describing the features of each pixel, they can naturally
be interpreted similarly as image data. Once the inputs to the model are image-
like, convolutional neural networks are an ideal option for processing, as they are
well-known and studied widely throughout computer vision literature.

Still, there are several differences between image processing and occupancy grid
processing. In the classical computer vision task of image classification, the neural
network receives one input image, performs several manipulations throughout the
network in order to calculate the output, a one-dimensional classification vector.
The first two dimensions of the input are the spatial sizes of the image in pixels.
The third dimension are the features of the image. In case of a black/white image,
the only feature is denoting the grayscale of this pixel. RGB images have three
values for each pixel stored, describing the red, green and blue color values of this
pixel. Recall, that occupancy grids describe occupancy states of spatial locations in
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a grid. Each grid cell is similar to the image pixels, an area with underlying features.
In contrast to images, grid cells can have more than one feature about the specific
area. The features can be, but are not limited to, the probability of existence of an
obstacle, its underlying object’s class, or information about its motion model, such
as its velocity vector.

Nevertheless, the basic nature of images and occupancy grids is the same, allowing
to process both with CNNs robustly and efficiently with a large variety of processing
schemes that even allow manipulation of the OGs. For example, convolutional auto-
encoders are used for the semantic segmentation of images. In this case, the input to
the network is an image and the output is usually an image of the same dimensions,
but the content of the image is manipulated, or new features are added to the
initial image. This property of convolutional auto-encoders can be employed for the
processing of occupancy grids, too.

In the following, current approaches to perform various usecases of sensor fusion
with machine learning techniques are explored. The related work paves the way
towards the application of CNNs for grid-based sensor fusion.

3.2 State of the Art Neural Networks for Occupancy
Grid Processing and Sensor Fusion

The applications of neural networks for the different stages of occupancy grid pro-
cessing were investigated in literature. Three main stages can be distinguished: The
generation, the manipulation and the fusion of occupancy grids.

Generation of OGs

Not only is the processing of occupancy grids enhanced by neural networks—the
map generation can be leveraged, too. Recall, that the sensor data in form of object
and target lists may first be translated to spatial occupancy probabilities. This
translation is done with the sensor-specific inverse sensor models, which vary not
only from sensor type to sensor type, but also from individual sensors of a same type
(eg. two ultrasonic sensors of the same type). Because the inverse sensor model is
different for each sensor, an adaptive inverse sensor model comes at hand. The
learning of inverse sensor models of range sensors was investigated for sonar sensors
in [47,84].

Radar signals can be processed by neural networks in various stages of the typical
signal processing chain (Chapter 2.1.1). Semantic segmentation is applied to radar
range-angle maps in order to to receive the distribution (µ, Σ) of occupancy [138]. A
convolutional auto-encoder is employed with a transformer from polar to Cartesian
coordinates, which is placed after the encoder. Both, mean µ and standard deviation
Σ are the outputs of the network. This distribution is used to reconstruct the spatial
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occupancy probabilities describing an occupancy grid.

Manipulation of OGs

As stated in the introduction before, the idea of processing occupancy grids with
convolutional neural networks known from computer vision tasks stands to reason,
and thus, it has been worked on in the recent years.

Deep convolutional neural networks are employed to detect objects in occupancy
grids based on 3D point clouds coming from lidar sensors [140]. Further, a fully
convolutional architecture is used to enhance the quality of occupancy grids that
were computed with the standard Dempster-Shafer fusion [89]. Typically, networks
that output occupancy grids themselves, rely on the basic architecture of the U-
Net [113].

Fusion of OGs

In the field of occupancy grid fusion with neural networks, no literature is known to
the author. To complete this lack of research, the following section is dedicated to
deduct neural networks for the fusion of occupancy grids in general—and specifically
for the sensor setup of Level 2/2+ cars defined in Subsection 1.1.1.

3.3 Neural Networks for Fusion of Camera and Radar
Data

The generation and manipulation of occupancy grids with neural networks are two
stages of occupancy grid processing, which have been worked on. Yet, the grid-based
fusion with neural networks has not been investigated and, thus, forms an open topic
for research. The contents of this research and analysis are described in this section
and published in [9, 10] as conference papers1 2.

The grid fusion networks have to fulfill the following aspects:

� Fusion of multiple two-dimensional occupancy grids into one combined envi-
ronmental model.

� Fusion of one timestep at a time, thus, no temporal fusion or mapping over
time.

� The fusion has to rely only on data originating from sensors used in Level
2/2+ cars.

1Paper [10]: IEEE ICCVE 2019 (Best Student Paper Award).
2Paper [9]: ewC 2020.
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� The output occupancy grid map incorporates the structural components of the
surroundings and the moving objects, based on the fused sensor information.

� Create an instantaneous free space estimation within the fused occupancy grid
for further trajectory planning tasks.

System Overview

The context of grid fusion networks in the general ”sense-plan-act” framework of
ADAS and AD is the ”sense”-block. After the sensors sense the environment and
compute their individual features and object detections, the data is transmitted to
a central fusion ECU. Within this ECU, the target and object lists are mapped to
sensor-specific occupancy grids, which form the inputs to the grid fusion networks.
The output of the fusion module is the fused representation of all inputs and shows
a comprehensive environmental model of the car’s surroundings.

This model is an input to the ”plan”-block and is used as the basis for further
algorithms. The main use of the fused, uniform representation is the path planning
of the cars future trajectories. A correct placement of the obstacles and objects is
crucial for collision avoidance, and the robust free space estimate is important for
the trajectory planning.

Structure of this Chapter

In the following sections, viable architectures of grid fusion networks are deducted.
Special requirements towards the training data are highlighted and put into per-
spective of current publicly available datasets. With the models and the correct
data at hand, the training process is defined. Finally, the trained models are an-
alyzed in terms of fusion quality, hardware requirements and the applicability on
state-of-the-art hardware accelerators.

3.3.1 Structure, Building Blocks and Working Principle of
Sensor Fusion Networks

In the system overview, the position of the sensor fusion networks is defined in
between the various sensors and the path planning, thus, the type of inputs and
outputs are determined. An array of sensors is assumed and each with its sensor
data Di, which can be a point cloud, a target list, an object list or of similar type.
In the pre-processor stage, the various types of sensor readings are transformed to
the uniform representation of occupancy grids, but incorporating possibly different
areas of observation and different kinds of features.

In the following, it is assumed that the occupancy grids are transformed in a way,
so that all describe the same area of coverage. If there is no sensor measurement
about an area, it is treated with the same uncertainty as if it is outside the field of
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view of the specific sensor. Areas outside the field of view of a sensor are padded
with the same values as areas with no measurements.

Definition 3.3.1 (Tensor) An n-dimensional tensor is defined as T ∈ Rd1×d2×...×dn

and is denoted with an upper-case, bold letter.

An occupancy grid (Def. 2.2.1) is a special case of a two-dimensional matrix,
incorporating one or more feature layers, which is—in general—a tensor. In the
course of this work, the notation of a tensor will be used for occupancy grids, when
neural processing is involved, as the dimensions are changing often throughout the
networks.

Macro-Architectural Building Blocks

As most of the state-of-the-art neural networks, the grid fusion networks are con-
structed out of configurable blocks that can appear repeatedly in the network [50].
The repeatability allows the generation of complex, deep neural networks without
losing track of both, decisions on the low-level, and design choices on the high-level
architecture. How these blocks are arranged with regards to each other is defined
by the macro-architecture of the model. In the macro-architecture, the number
and type of blocks and their interconnections are configured, which in consequence
determines the type of neural network in total. Colloquially speaking, the macro-
architecture forms the skeleton or spine of the network, and the operations within
the blocks are the flesh of the model. The blocks can either change the passed
tensors by enlarging or reducing the spatial dimensions or leave them unchanged.

Definition 3.3.2 (Operation) An operation oc takes a tensor T0 ∈ Rd0 as an
input, performs a calculation c and transforms the input to the output tensor T ∈ Rd

according to T = oc (T0).

� of s
conv: Standard two-dimensional convolution. The filter size s and the amount

of filters f are denoted in the superscript, e.g. o
8 (3×3)
conv .

� of s
deconv: Transposed convolution. Strides of 2, or equivalently doubling of im-

age dimensions by default. The filter size is denoted in the superscript, e.g.
o

16 (5×5)
deconv .

� oups: Spatial upsampling. Bilinear interpolation to the double image dimen-
sions by default.

� orelu: ReLU activation function

� obn: Batch normalization

� omax: 2D spatial max pooling
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Figure 3.1: Typical CNN architecture for image classification tasks. Source: https://
commons.wikimedia.org/wiki/File:Typical cnn.png accessed on 10. Feb.
2021.

Blocks that reduce the size of a tensor are denoted as reduction blocks, and they
usually inhibit downsampling operations, such as convolutions with strides or max
pooling layers. Similarly, blocks that expand the tensor’s spatial dimensions are
denoted as expansion blocks, and they come with upsampling operations, such as
transposed convolutions1, or bilinear interpolations. Normal blocks apply operations
to tensors that remain unchanged in dimensions.

A typical, straight-forward classification network (Fig. 3.1) is built of several nor-
mal and reduction blocks. Once a desired, low-dimensional feature space is retrieved,
a fully connected layer forms the tensor to a classification output.

Definition 3.3.3 (Blocks) A generic block B = (O, G) is a confined set of n
operations O = {o1, . . . , on} that are arranged in a directed acyclic graph G and
transform the input T0 ∈ Rd0 to the output T ∈ Rd by applying it to the input
T = B(T0).

The directed acyclic graph G = (E , V) is based on edges E (denoting Operations,
Def. 3.3.2) and vertices V (denoting Nodes, Def. 3.3.4). It is represented by its
adjacency matrix A of size V × V. Each entry of A describes an generating oa→b

using tensor a and producing tensor b by a combination operation, such as addition.

A =

o1→1 o1→2 o1→3

o2→1 o2→2 o2→3

o3→1 o3→2 o3→3

 (3.1)

As it is an acyclic graph, only the elements of the upper right triangular matrix are
relevant (oa→b ∀ a, b ∈ [1,V ] ∧ a < b). Thus, for V = 3, only 3 operations are
possible within the block, as seen in its adjacency matrix

A =

 o1→2 o1→3

o2→3

 . (3.2)

1Notes on nomenclature of this operation: Deconvolution, inverse convolution.
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Micro-Architecture of Blocks

On the low-level inside of a block, the micro-architecture defines the contents of
each building block, such as the type of operations, the number of layers and how
they are connected to each other. The arrangement of layers within a block can be
as simple, as the first two entities of AlexNet, which can be interpreted as reduction
blocks containing four directly connected operations (convolution, ReLU activation,
local response normalization, max pooling) [75]. Recent advances in automated op-
timization approaches, such as neural architecture search, show a tendency towards
more complex micro-architectures [79,80,88,109,137,147]. Those blocks are usually
defined by a directed acyclic graph, where the edges are the operations and the
nodes are combinations of two or more tensors to one. The application of the neural
architecture search on the grid fusion problem is discussed in Chapter 4.

The Fusion Step

In the definitions and discussions above, the building blocks for single-stream neural
networks have been introduced. A single-stream architecture processes a single data
source, such as images for classification, object detection or segmentation. A multi-
stream model can combine multiple sources of information, such as single frames of
a video and in parallel the optical flow for action recognition in videos [117]. If there
are multiple streams of data involved, their fusion can be performed at different
stages of the network, similarly to the position of the traditional fusion methods
(early, late and hybrid fusion, Chapter 2.3).

A late fusion in classification networks is usually done in the fully connected
layers. Either each stream has its own classification and the final decision of the
network is done in a majority vote of all streams’ weighted results, or each stream’s
last embeddings are concatenated before feeding them into the final classification
layer. The late fusion concept does not only apply to neural networks. A prominent
example for late fusion in the larger machine learning methodology is random forests
that combine an arbitrary number of decision trees. In general, late fusion can be
considered as an ensemble of multiple models that tends to generalize better than
each single model. Ensembles perform best, when the components have a low bias
and high variance, which can be ensured by choosing models with diverse structures
and formats.

An early fusion of multiple input streams with convolutional neural networks can
be done by combining the input tensors at the beginning of the architecture. Along
various possibilities of early combinations for example of same-sized images, such as
element-wise addition or extension along a spatial dimension, the concatenation of
the features is most viable.

Hybrid fusion is, when the multiple streams are not fused at one specific point
of the model, but when the fusion is performed over multiple stages. FuseNet com-
bines RGB and depth images with a two-stream auto-encoder, where both modali-
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ties are fused by successively adding the encoded features in the different encoding
depths [49]. An other approach is to fuse during the decoding stage, as shown in
ChiNet [65].

Either way of fusing input occupancy grids, embeddings or, in general, tensors,
the combination is defined by its multiple inputs and the combination operation.
Similarly, and in addition to the Operations (Def. 3.3.2), the nodes of this work are
defined as follows.

Definition 3.3.4 (Node) A node N is an n-tupel that combines n tensors of same
spatial dimensions T1 ∈ Rx×y×d1, T2 ∈ Rx×y×d2,. . .Tn ∈ Rx×y×dn to one tensor
with new feature dimensions T ∈ Rx×y×d according to the notation

T = N(T1,T2, . . .Tn). (3.3)

The tensor fusion is done with a combination operation, such as

� Nadd: Element-wise addition.

� Ncat: Concatenation of features.

Fully Convolutional Fusion Networks (FC-FN)

A straight-forward way to fuse the input occupancy grids is to concatenate the
inputs as a first step and to stack simple convolutional blocks for processing the
information. The number of convolutional blocks is defined by the depth δ. In the
last block Bδ, the output is formed by reducing the number of feature channels of
the last embedding tensor Tδ−1 to an occupancy grid-like format Tδ ∈ Rx×y×fn

with fn features.

The image dimensions of the tensors stay unchanged, as no upsampling, nor strides
are used, and all convolutional layers use padded inputs in order to keep a fixed
occupancy grid size. The receptive field of each concolutional filter is limited due to
the constant tensor dimensions throughout this simple network design. Thus, the
expected result of the FC-FN is the fusion of the inputs, but with a limited or even
no viable free space estimation, as the filters are unable to recognize larger portions
of the surroundings within the occupancy grids.

The architectural design parameters of FC-FN are the number of input occupancy
grids, their grid dimensions, the number of convolutional blocks δ and their micro-
architecture. In turn, the micro-architecture is defined by the type, amount and
connection of single operations and the configuration of e.g. the convolutions. In
order to keep the design of FC-FN simple, the normal block BFCnorm consists of a two-
dimensional convolution oconv, a ReLU activation orelu and batch normalization obn
forming the set of operationsOFCnorm = {oconv, orelu, obn}. The block is interconnected
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Figure 3.2: The architecture of fully convolutional fusion networks with δ = 4 and
f = 8. Only two input occupancy grids are depicted for better visual-
ization.

without nodes, thus the adjacency matrix of the FC-FN normal block is

AFC
norm =

oconv
orelu

obn

 . (3.4)

The output tensor of the network is formed by applying the normal block to the
input tensor δ times. The input tensor TFC

in is the concatenation of the raw input
occupancy grids

TFC
in = Ncat(T1,T2, . . .Tn). (3.5)

Using this input, the output tensor is calculated by

TFC
out = BFC 〈δ〉norm (TFC

in ) (3.6)

and retains the same spatial dimensions. The configuration of the network boils
down to two main architectural parameters, the number of convolutional filters f
and the depth δ. Both parameters have a great influence on the fusion quality and
computational complexity, as the analysis shows (Chapter 3.4.2).

Auto-Encoder Fusion Networks (AE-FN)

The above introduced FC-FN have a low complexity and a low model size, but they
are also limited in terms of fusion quality and the ability of estimating free space.
The limitation mainly comes from the constrained receptive field of the convolutional
filters. To cope with this problem, the auto-encoder offers itself as a viable solution.

The auto-encoder fusion networks are structured into an encoding and a decoding
part. In the encoder, each input occupancy grid is encoded separately by multiple
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encoding blocks BAEenc . Each consecutive encoding block is adding to the depth δ of
the network.

Once the desired depth is reached, the tensors of the input streams are combined
in a fusion node. A concatenation of the n encoded input tensors is forming the
tensor in the deepest part of the network,

Tδ = Ncat(Tδ
in,1,T

δ
in,2, . . .T

δ
in,n). (3.7)

Now, only a single stream is present in the decoder. The same number of decoding
blocks BAEdec is used to reconstruct the output tensor to the same dimensions as the
input occupancy grids.

TAE
out = BAE 〈δ〉dec (Tδ) (3.8)

With the input occupancy grids being the input tensors xiOG = Tin,i, the complete
formulation for a forward pass through the AE-FN can be described as

TAE
out = BAE 〈δ〉dec (Ncat(BAE 〈δ〉enc (Tδ

in,1),BAE 〈δ〉enc (Tδ
in,2), . . .BAE 〈δ〉enc (Tδ

in,n)))) (3.9)

or in a short notation for multiple input tensors to the concatenation node

TAE
out = BAE 〈δ〉dec (N i

cat(BAE 〈δ〉enc (Tδ
in,i))). (3.10)

The equations 3.7, 3.8, 3.9 and 3.10 describe the macro-architecture of the AE-FN
that is depicted in Fig. 3.3. In the following, the micro-architecture of the encoding
and decoding blocks is discussed.

Figure 3.3: The architecture of an auto-encoder fusion network with δ = 2 and f = 8.
Only two input streams are shown for visualization purpose.

In contrast to the normal block of the FC-FN BFCnorm, the encoding block of the
AE-FN BAE−FNenc reduces the spatial dimensions of the input tensors with reduction
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operations, such as max pooling omax or convolutions oconv with strides. In research,
the choice of reduction operation has changed over the last years. Early networks,
such as ALL-CNN in 2015 [119] employ strided convolutions in order to have a
simplified set of operations—ALL-CNN uses convolutions only. On the other hand,
recent networks make use of pooling operations again in order to ease gradient prop-
agation through very deep neural networks and to reduce the overall computations
and parameters. In 2018, FishNet [123] replaces 1x1 convolutions in skip connec-
tions with pooling in order to fix the gradient propagation issue of ResNet [50].
Because no differences in quality are observed between omax and oconv with strides 2
according to [119] and a more stable gradient flow through max pooling layers, max
pooling is chosen to reduce the spatial dimensions in reduction cells. The encoding
block is now based on the adjacency matrix

AAE
enc =


oconv

orelu
o2×2
max

obn

 . (3.11)

Whereas there are now four operations within the block, the interconnections still
remain a simple sequence. The architectural parameters of the AE-FN are again the
network depth δ and the configuration of the filters in the convolution operation.

The decoding block is based on the adjacency matrix

AAE
dec =


odeconv

oconv
orelu

obn

 . (3.12)

The data samples provided by the sensors can be interpreted as different features
of a common distribution, namely, reality. The auto-encoder networks learn this
underlying distribution of occupancy topology from the data and map an according
free space estimate to the grid.

Results show that AE-FN are already capable of calculating a fused environmental
representation based on the input streams. Additionally, the free space estimation
that is built on the training on lidar-based ground truth data (Chapter 3.3.2) shows
large portions of correctly predicted drivable road surface. On the downside, small
details of either input branch are lost in the deep parts of the auto-encoder, and
the resulting occupancy grid appears blurred. This effect becomes severe for large
values of δ.

Auto-Encoder with Bypass Fusion Networks (AEB-FN)

In order to mitigate the blurring effect on the output image, small details need to
be passed through the network without compression by the pooling layers. The
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method applied to do so is skipping connections, or bypassing parts of the auto-
encoder network, and was first introduced in ResNet [50] (Figure 3.4). Others refer
to shortcuts to jump over larger portions of the network, demonstrated in High-
wayNetworks [120]. By adding more bypassing connections, the densely connected
network performance is robustly enhanced [58].

Figure 3.4: A skipped connection proposed in ResNet [50], where a neural compu-
tation F(x), e.g. two weight layers, are bypassed. The output of the
skipped connection is formed by an addition F(x) + x. Image taken
from [50].

The skipped connections are applied to the architecture of the previously discussed
auto-encoder fusion networks AE-FN. In each input branch, each encoding block’s
tensor is used twice: once for further encoding in the subsequent cell, and once for
bypassing the network’s further encoding. The bypassed tensor is combined to the
output of the decoding cell of the previous depth δ + 1 with a combination node
according to

Tδ
dec = Ncat(Tδ+1

dec ,T
δ
enc,1,T

δ
enc,2, . . . ,T

δ
enc,n), (3.13)

or in short form

Tδ
dec = N i

cat(T
δ+1
dec ,T

δ
enc,i). (3.14)

The first input tensor Tin,i is excluded from the bypassing, thus the output occu-
pancy grid has no direct influence of the inputs. The encoding and decoding blocks
remain the same as in AE-FN, so do their adjacency matrices

AAEB
enc = AAE

enc, (3.15)

AAEB
dec = AAE

dec . (3.16)

Additional to AE-FN, combination nodes in between the decoding cells are intro-
duced as bypasses in the AE-B architecture.

Now, the formal description of the entire AEB-FN model is deducted. The tensor
at the deepest part of the network remains Tδ (Equation 3.7) and only the remaining
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Figure 3.5: The architecture of an auto-encoder with bypass fusion network with
δ = 2 and f = 8. Only two input streams are shown for visualization
purpose.

parts of the model change. The tensor after the first decoding block Bδdec is

Tδ
dec = Ncat(Bδdec(Tδ),Tδ

enc) (3.17)

and the tensor after the second decoding block Bδ−1
dec is

Tδ−1
dec = Ncat(Tδ

dec,T
δ−1
enc ) = Ncat(Bδ−1

dec (Tδ−1),Tδ−1
enc ). (3.18)

The AEB-FN is helped in creating sharp class outlines by skipping encoding
connections (Fig. 3.5). This allows small features of the input occupancy grids
to propagate through the deep network more easily and produces a more detailed
output.

3.3.2 Necessary Data and Available Datasets

In the previous subsections, neural networks for the fusion of camera and radar
occupancy grids are introduced and the macro- and micro-architecture of the models
are discussed. The content of this subsection is the data with which the networks
are trained. More specifically, first, an overview of public datasets shows the main
boundaries and tendency of research in the area of automotive perception. Then, the
requirements for the sensor fusion problem of this work are outlined. The conclusion
of this subsection is the choice of which dataset is applicable for training the sensor
fusion networks.

Overview of Public Datasets

A manifold of datasets exists in the area of visual recognition and, more specifically,
the automotive perception. Throughout the years, certain datasets were the quasi-
gold standard for comparing state-of-the-art perception model performances. KITTI
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[42], first introduced in 2013 and later further extended, was the first big benchmark
of deep learning models specifically developed for the automotive context. The
data was collected by front-facing, stereo grayscale and color cameras and a central
lidar for ground truth, thus, allowing also depth estimations. With its focus on
visual object detection, the annotations provided are 3D bounding boxes around
the objects of interest.

Cityscapes [26] has been the next large benchmark in 2016, focusing on semantic
segmentation of dense, urban scenarios relying on camera data only. The annotations
for the 25 K images of the dataset are pixel-level classification into 30 different
classes.

Based on these vision-based datasets, numerous deep learning approaches for im-
age object detection and scene semantic segmentation arose. Still, the rising safety
requirements for ADAS applications need redundancy and robustness to various
kinds of environmental conditions, thus relying on camera sensors only is not suf-
ficient. The usage of lidar sensors in automated cars is controversial. Most of the
leading car manufacturers use laser technology, e.g. Uber, Waymo, and Toyota, but
prominently, Tesla does not. Even though Tesla plans to replace lidar with exten-
sive vision data processing [136], they still employ radar sensors. This is reflects the
general trend for automated cars of combining camera and radar sensors, hence, the
recent datasets start including radar data, too.

The first large, public dataset with radar data is the nuScenes dataset [19] from
2019. Its focus is dedicated goal is leveraging sensor fusion algorithms for automotive
use cases, thus a full sensor suite of six cameras, five radars and a central lidar sensors
is employed. The radar data comes in form of detection lists.

There are four main tendencies in automotive perception datasets throughout
recent years, which can be summarized as follows:

� From camera-centered, towards multi-modal sensor systems : In the beginning,
the research came from computer vision, thus there was a need for standard
computer vision algorithms and their respective datasets. More recently, the
safety requirements of the automotive industry created a need of multi-modal,
multi-sensor datasets.

� Increasing dataset volumes : On the one hand, new network models have higher
computational requirements that are met with modern compute hardware,
such as GPUs. On the other hand, large amounts of data is needed to train
the complex models and cover a divers manifold of automotive scenarios. This
need is met by ever growing datasets.

� Shift from research institutes towards industrial, company-driven datasets :
The first effort of pushing perception model development with public, sci-
entific datasets was done by universities and research institutes. Since the
time when automated driving and ADAS appeared in public consciousness,
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also car manufacturers and suppliers realized the need for datasets that are
based on their requirements. As a result industrial, company-driven datasets
are published, such as nuScenes [19], Waymo [122], Lyft Level 5 [54].

� From semantic segmentation back to object detection and tracking : The initial
datasets have a focus on pixel-wise classification of imagery (px annotations
in Tab. 3.1). Whereas semantic segmentation seemingly is trickier to master
and potentially offers more information to the system, there is a trend towards
datasets focusing on object detection (obj annotation in Tab. 3.1) and tracking
again.

Table 3.1: Overview of automotive perception datasets [146].

Dataset, Year Camera Radar Lidar Annotations Volume
KITTI, 2013 [42] X - X 2D px, 3D obj 6 h
Cityscapes, 2016 [26] X - - 2D px 25 K images
RobotCar, 2016 [83] X - X - 1000 km
TorontoCity, 2016 [135] X - X 2D px 56 K images
Mapillary, 2017 [95] X - - 2D px 20 K images
ApolloScape, 2018 [59] X - X 2D px, 3D obj 100 K images
BDD100K, 2018 [145] X - - 2D px 100 K
H3D, 2019 [101] X - X 3D obj 28 K frames
nuScenes, 2019 [19] X X X 2D px, 3D obj 40 K frames
Waymo, 2019 [122] X - X 2D obj, 3D obj 10 h
Astyx, 2019 [87] X X X 3D obj 500 frames
RadarRobotCar, 2020 [13] X X X - 280 km
Level 5, 2020 [54] X - X 3D obj 400+ h

Data Prerequisites

The data fusion problem at hand has its roots in the sensor configuration of modern,
mass-produced cars with a fragmented, distributed processing on the sensor side.
Whereas the fusion is computed centrally in the fusion ECU, each sensor has certain
processing steps onboard. This leads to the situation that the data for fusion is not
available in raw format but in a digested form.

The same prerequisites apply for the training data: If the sensor-specific occu-
pancy grids were computed from raw data, the amount of data would be great and
the resulting environmental models rich in details and information. A radar sensor
transmitting raw ADC data to the central compute unit would not only deliver tar-
get information about certain distinct points within the field of view of the sensor,
but also tiny fragments or details about the continuous in between the detected
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targets. Similarly, current camera sensor systems describe the environment with
an object list, inhibiting particular pieces of details, such as object class, width,
height or color. But if the raw image data was available, one could reconstruct the
continuous 3D scene, e.g. on the basis of optical flow [53].

In the following paragraphs the required data from radar, camera and Lidar sen-
sors and their necessary formats for feature-level fusion are discussed. The radar
and camera sensors are mandatory, as they build the backbone for Level 2/2+ cars.
Further, the Lidar data plays an important role in the training of the networks
(Chapter 3.3.4), thus is part of this discussion, too.

Required Data - Radar

Recall the radar processing blocks (Chapter 2.1.1), where the raw ADC data is
transformed to range-Doppler images by the first and second order FFT. The RDI is
then used to detect targets together with their range, velocity and angle parameters.
The typical automotive radar further computes the track information of objects from
the target list.

Consequently, only the track list can be used for the environmental modeling,
and—in recent developments of radar sensors—also the target lists are made avail-
able over the CAN bus. Thus, the required radar data is in form of a target list
that describes dominant reflections within the field of view of the sensor. The basic,
descriptive parameters of a radar target list are listed in Tab. 3.2.

Table 3.2: Parameter list of a typical radar target list.

Parameter Description Unit
Range Distance from sensor to reflector [m]

Angle (azimuth) Horizontal angle [deg]
Angle (elevation) Vertical angle [deg]

Velocity Relative, radial velocity of the target [m/s]
Intensity Strength of the reflection [dB]

Required Data - Camera

The format of a camera object list is more dependent on the camera system’s man-
ufacturer than a radar target list on its supplier. This is based on the fundamental
processing steps involved in radar processing, compared to the quasi freedom of
design for a camera system.

Thus, the required camera sensor data is chosen based on the parameter list of
the Mobileye 630 camera system. Mobileye is the dominant supplier of automotive
vision modules with sales of over 10 million units per year since 2018, proving
their system and data format to be well-established [7]. The set of parameters
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contains information about the object’s semantics, such as its classification (e.g. car,
vulnerable road user (VRU), etc.), the object’s physical appearance and location, and
other sparse information (traffic signs, lane markings, etc.).

Table 3.3: Parameter list of a typical camera object list.

Parameter Description Unit
Object class Object classification result

Position Down- and cross-range [m]
Size Width and length of the object [m]

Lane information Current lane, lane equations

Required Data - Lidar

As Lidar data is used for training purposes only (Chapter 3.3.4), the format require-
ments are not the same as for camera and radar data. Also, the typical Level 2/2+
car is not equipped with Lidar sensors, as the high price and poor packaging options
hinder its large-scaled usage. The typical raw Lidar data is used for the ground
truth occupancy grid generation. It comes in the format described in Tab. 3.4.

Table 3.4: Parameter list of a typical Lidar point cloud.

Parameter Description Unit
Range Distance from sensor to reflector [m]

Angle (azimuth) Horizontal angle [deg]
Angle (elevation) Vertical angle [deg]

Intensity Normalized magnitude of return pulse

Dataset of Choice

The data of the nuScenes dataset consists of raw camera imagery, processed radar
detection lists and raw lidar point clouds. In each frame of the collection, all sensors
have synchronized measurements at a rate of 2 Hz and provide six camera images,
readings from five radars and one central lidar (Table 3.5). Camera images are
available as raw 1600 × 900 px RGB images, lidar point clouds as 3D coordinates
with respective reflectivity values. Radar detections come as 3D coordinates, too,
but with more features than the lidar readings, such as velocities and uncertainties.

Because one of the main focuses of nuScenes is object detection, the annotations
are in form of 3D bounding boxes around the objects of interest in the scene. The
properties of these bounding boxes are the position, size, orientation and velocity
in 3D Cartesian coordinates. As the the aim of sensor fusion neural networks is to
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Table 3.5: Data format of the nuScenes dataset.

Sensor Modality Provided Data Data Format
Camera Raw images 1600x900 px
Radar Detection-level point cloud npts × 16
Lidar Raw point cloud npts × 4

combine camera and radar detections for free space estimation, the raw data from
the dataset has to be prepared first.

3.3.3 Data Preparation

In this subsection, the processes of getting to the final inputs and the ground truth
for the training is described. First, the inputs, then the lidar-based ground truth is
discussed.

Input Occupancy Grid Generation

Multiple sensor readings of the same modality can be treated in different ways.
Either each of the i sensors is generating an own occupancy grid x1

OG. . .xiOG, where
all xiOG form an individual input to the grid fusion network. Another way of forming
the input occupancy grids is to group the sensor modalities to one occupancy grid
each, thus having one grid per modality. The benefits of the second approach are
a better adaptability to changes in the hardware setup, e.g. additional sensor or
adjustment of the sensor placement, and, in consequence to the compressed input
volumes, a smaller computational complexity of the neural network itself. Thus,
each sensor modality is translated into an occupancy grid, namely xradOG , xcamOG and
xlidOG (Table 3.7, Fig. 3.6).

The radar grid is generated by first translating and rotating each of the five radar
sensor’s detection lists into the uniform car-centered coordinate system that has
the same origin as the lidar sensor. Typically, the radar sensors detect few tens of
targets per cycle, resulting in around 100 entries in the combined target list. Once
the global radar detection list is set, the individual detections are mapped into a car-
centered occupancy grid that also has the lidar origin as the center. The mapping is
done with the inverse sensor model from Chapter 2.2.3 that converts the detections
into spatial occupancy probabilities. Depending on the type of ISM, the xradOG can
denote the obstacles only, or express a rudimentary free space estimation, too. In
the case of the left figure in Fig. 3.6, the free space modeling is part of the ISM.

Since the data format of the 6 cameras is raw images in the nuScenes dataset, the
data has to be further processed. One way to obtain an object list is to run object
detection algorithms on the raw data. An other, more pragmatic way is to assume
the object annotations, which are in the form of three-dimensional bounding boxes,
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Figure 3.6: Combined occupancy grids of radar xradOG and camera sensors xcamOG .

as ideal object detections of modern automotive vision systems, such as MobilEye
ME630.

Once the camera object list is obtained, it is converted to an occupancy grid by
projecting the three-dimensional bounding boxes to their bases in order to obtain
the obstacle footprints. All cells of xcamOG within the boundaries of an obstacle are
assumed to be occupied and the rest of the area is populated with the unknown
state (Fig. 3.6, right).

Figure 3.7: Lidar point cloud used for RANSAC-based ground plane estimation.
Image taken and adapted from nuScenes dataset explorer 1.

Ground Plane Estimation for Ground Truth

In the previous paragraph, the generation of the network inputs are discussed. The
feature-level sensor data are transformed into sensor-specific occupancy grids, which
are to be fused by the fusion networks. In order to train the correct fusion of
occupancy grids and to find a dense free space estimation within the result, the
respective ground truth has to be constructed.

In the nuScenes dataset, a temporally synchronized lidar scan is provided to each
radar and camera measurement. This data is used to generate a dense free space
estimation within the two-dimensional occupancy grid resulting in the lidar grid
xlidOG. Along with the information about drivable space, the radar and the camera
data are fused with Bayesian fusion (Chapter 2.3.2) and combined with the lidar-

1https://www.nuscenes.org/nuscenes#explore (scene-0011), accessed 16. Oct. 2020.
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based occupancy grid xlidOG. The result is the ground truth grid xgtOG used for training
the networks (Table 3.7).

The three-dimensional lidar point cloud needs to be processed with a ground
plane estimation algorithm in order to obtain a valid free space estimation. The
ground plane is assumed to be the street surface, where typically most of the lidar
reflections are located. Usually, ground plane estimation methods are used to remove
the reflection points of the ground in order to reveal the remaining obstacles. Here,
the plane is used for generating the free space estimation. Different techniques are
researched for ground plane estimation in point clouds:

� Fixed height ground plane: The easiest approach for receiving a ground plane
is to take the mounting height z of the lidar as fixed and neglect the pitch and
roll angles of typical car motion. All points of the lidar point cloud within a
certain range below z are assumed to lie on the ground plane, thus, on the
road surface.

This approach may be the fastest to compute, but delivers invalid ground
plane estimates due to the pitch and roll angles of accelerating and turning
the vehicle.

� Neural network based estimation: A neural network for estimating the ground
plane of a three-dimensional point cloud is presented in [77], where the point
cloud is seen from the bird’s eye view (BEV) and the height of the points is
encoded in the feature channels of the resulting two-dimensional BEV image.
This image is then processed with a model similar to U-Net [113] to estimate
the road surface.

Additionally, special training needs to be done for the plane estimation network
to work properly, before generating the xlidOG. Without a ground truth for
training the plane estimation network, this is not viable for the given case.

� RANSAC-based fitting: This iterative approach finds the optimal ground plane,
if run for enough iterations k [40]. First, randomly three points are selected,
defining a plane P1. Now all points are counted that lie within a certain mar-
gin ∆z to P1, resulting in a score s1. If a second plane P2 has a larger score
s2, it is assumed to be the best fit P̂ . After i iterations, the plane P̂ is the
optimal plane fit for the given point cloud.

Limitations of this approach are the choice of the parameters ∆z and k, and
the possibly wrong estimations, caused by planes in the point cloud with more
reflection points than the ground plane. This error can be ruled out by taking
the normal of the plane into consideration, as seen in Figure 3.8b, where plane
1 and 3 have horizontal surface normals, but only plane 2 has the correct
orientation.
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(a) (b)

Figure 3.8: RANSAC-based ground plane estimation. (a) shows a typical lidar mea-
surement combined with object annotations. (b) depicts possible plane
estimates of the RANSAC algorithm. Only plane 2 has a valid orienta-
tion. Image taken and adapted from nuScenes dataset explorer 1.

The RANSAC-based plane fitting is used to extract the drivable road surface of
the lidar point clouds. Whereas it might be computationally expensive compared
to the other approaches, it is computed offline and only once before the actual
training to obtain the dataset. In turn, it robustly finds the ground plane of the
road independently of the roll and yaw angle of the car with respect to the surface
plane.

In the nuScenes dataset, the Lidar generates an empirical estimate of around
150,000 detections per cycle, of which 20,000 - 80,000 are found on the ground plane,
depending on the road type and traffic situation. What might cause a different
amount of reflections on the ground plane, may be a large structure beside the car.
For example a truck beside the ego vehicle casts a large shadow on the road surface
and inhibits large portions of the lidar rays. If the surface normal of a proposed
plane is not pointing upwards, the points lying on that plane are removed from the
point cloud (Algorithm 1). In the end, roughly 50 % of the reflection points are
outliers of the ground plane (ε = 0.5) and the plane is described by three sample
points (s = 3). The amount of RANSAC iterations k is depending on the assurance
p of finding the correct plane [40]:

k =
log(1− p)

log(1− (1− ε)s)
(3.19)

According to Equation 3.19, the confidence level of 99% of finding the correct plane
with 50% outliers is reached after k = 35 iterations (Table. 3.6). This configuration
of RANSAC was used to process each frame of the dataset and extract the free space
estimate. All reflection points in the estimated plane are converted to occupancy
probabilities and only cells with occupancy probability P lid

x,y < 0.5 are taken into ac-
count. Additionally, the occupancy information of the radar and camera detections
are added for an enhanced xgtOG.

1https://www.nuscenes.org/nuscenes#explore, accessed 16. Oct. 2020.
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Algorithm 1 RANSAC-based plane fitting algorithm.

Input: point cloud x
Output: point cloud ŝ
n = count(xx)
∆z = 0.07m
k = 35
ŝ = 0
for i = 1 to k do
pi = randomSelection(x, 3)
Pi = createPlane(pi)
for q in x do

if calcDistance(Pi, q) < ∆z then
s = appendPoint(s, q)

end if
end for
if count(ŝ) < count(s) then

if normalVector(ŝ) ≥ 0.95 then
ŝ = s

else
x = remove(x, s)

end if
end if

end for

Table 3.6: Confidence levels of finding the correct plane with RANSAC.

Outliers ε 10% 20% 30% 40% 50% 60% 70%
Iterations k 4 7 11 19 35 70 169

Training Data Overview

All the generated OGs are chosen to span over the same area around the car, with
the car-centered coordinate system in the center of the grid (Fig. 3.9). The grid
dimensions are dx × dy × df , with dx, dy as the spatial dimensions and df as the
number of feature channels per grid cell. The features of the OGs are probabilities
of three states (s0: free, s1: unknown, s2: occupied), thus df = 3 (Table 3.7).

The benefit of a reduced grid size is the fast processing. The required computa-
tions for one forward pass scale with the grid size as seen in Table 3.9. A doubling
of the grid dx and dy to 512 × 512 causes four times the computational costs, and
increasing the grid to 1024× 1024 enlarges the costs by a factor of 16. On the other
hand, the cell resolution has to be large enough to capture small details. However,
low-dimensional grids are processed faster, resulting in potentially faster update
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(a) (b) (c)

Figure 3.9: One exemplary frame of the training data: (a) xradOG, (b) xcamOG , (c) xgtOG.

intervals. Empirically, a resolution of δx = 0.25 m offers a well-balanced trade-off
between quality and cost.

With a cell resolution δx of 0.25 m, the grid covers an area of 64 m×64 m around
the car. The grid placement and extent is under the influence of the use-case of the
ADAS system. In highway or rural scenarios, it is beneficial, if the center of the
grid is in front of the car and the grid may not be quadratic, as high velocities and
straight roads shift the area of interest there. In urban areas, dense traffic situations
require a 360 degree awareness around the car (Fig. 2.13).

Table 3.7: Occupancy grid maps obtained from the nuScenes dataset.

Name Type Source Dimensions
xcamOG Input Camera detections dx × dy × 3
xradOG Input Radar detections dx × dy × 3
xlidOG GT Lidar detections dx × dy × 3
xgtOG GT xradOG+ xlidOG+ Annotations dx × dy × 3

The dataset has a total of 1,000 scenes, each with 20s of measurements at 2 Hz
(in average 40 frames per scene). Using the nuScenes trainval package containing
850 scenes, a total of 34,149 individual frames are available. Out of this set, frames
with few or no detections from either the cameras or the radars were discarded.
The resulting 5,595 selected frames are then augmented with mirroring and random
rotations to a total of 44,760 training frames. Each training frame has all three
occupancy grids (xradOG, xcamOG , xgtOG) (Table 3.7).

3.3.4 Training Configuration and Training Process

The training is done with processed data coming from the nuScenes dataset. First,
sensor-specific occupancy grids are calculated for camera and radar. Additionally,
the information from all sensor modalities including a lidar are used for the ground
truth occupancy grid. Then, the training is performed similar to other auto-encoders
for semantic segmentation tasks, such as U-Net, but with two input branches.
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Training Configuration

The loss function is a pixel-wise softmax classification of the output of the network’s
last layer. The classification is pixel-wise as each pixel’s individual occupancy prob-
ability is estimated. Each occupancy state’s error ε is computed according to

εsi(x,y) = ysi(x,y) − y
si
0(x,y), i ∈ {0, 1, 2}, (3.20)

with y(x,y) and y0(x,y) being logits and ground truth of one pixel. All pixel-wise errors
combined yield the pixel-wise L2 loss, which is summed up over all coordinates (x, y)
in the grid to compute the total unweighted L2 loss [81]

L2 =
∑
x,y

∑
i

(εsix,y)
2. (3.21)

During training, the ADAM optimizer is used for minimizing Equation 3.21 with
an initial learning rate of 0.002, β1 = 0.5 and β2 = 0.999. The learning rate is
decaying by 2 every 1,000 iterations.

Besides the loss function, also the accuracy and the following evaluation metrics
are logged during training for both, training and validation set.

Network Architecture Exploration

The combinations of architectural design and hyper parameters are plenty and find-
ing an optimal neural architecture for a given task is not trivial. The set of parame-
ters to search for in this work are the training parameters (learning rate, decay) and
the architectural parameters (depth, number of initial feature channels). Different
techniques are applied throughout literature to find an optimal set.

� The most basic way of finding a neural architecture is handcrafting the model.
This requires a solid experience, careful analysis and plenty of time to find a
right configuration by changing the parameters one by one.

� The grid search covers all combinations in a predefined set of parameters. This
is the most time consuming method and potentially infeasible, if there are too
many parameters to check. But typically, the grid search covers a large search
space and gives insights in the trade-offs in between certain parameters.

� In order to speed up the grid search, the random search samples random pa-
rameter combinations and evaluates them. This method is viable, if computing
all the potential combinations with a grid search is infeasible.

� The optimal set of training and architectural parameters can also be found
with Bayesian optimization, which employs Gaussian processes. Those de-
scribe the posterior distribution of functions that describe the deep learning
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model. With an increasing number of samples (e.g. trained networks), the
posterior distribution improves and the Gaussian process shows with increas-
ing certainty, which combinations in the search space are of high importance
(e.g. variance). The iterative search then focuses on the region of those com-
binations.

Due to the uniform coverage of the search space of parameter choices, the grid
search is chosen to find an optimal set of the number of initial filter channels χ and
network depth δ. All permutations of χ ∈ [4, 8, 16, 32] and δ ∈ [3, 4, 5, 6] are trained
with equal training setups and data. Consequently, 16 network variants per network
family (FC-FN, AE-FN, AEB-FN) are trained until convergence, resulting in a total
of 48 networks. The short notation for a network variant is FN − δ − χ, e.g. the
fully convolutional fusion network with a depth of 3 and 8 initial feature channels
is denoted as FC-3-8.

3.4 Fusion Quality and Hardware Requirements
Analysis

In this Section, the proposed networks are evaluated on the datasets introduced in
Section 3.3.2 and compared according to well-known evaluation metrics for semantic
segmentation. Additionally to the fusion quality assessment, the computational
costs of these networks are calculated and checked for real time capabilities on state-
of-the-art CNN accelerator hardware. Finally, an optimized variant of the networks
is deducted in order to speed up the inferences and reduce the memory footprints
of the networks.

In this analysis, the computational costs are defined as the number of operations
that the hardware has to calculate and the number of parameters that have to be
stored. Inference times and energy consumption vary for different hardware setups,
thus, are not part of this analysis. The inference times play a role in the hardware-
specific automated neural architecture searches conducted in Chapter 4.

3.4.1 Experimental Evaluation

Evaluation Metrics

The comparison of the results is based on the common evaluation metrics for se-
mantic segmentation tasks. Variations on pixel accuracy and intersection over union
(IoU) are evaluated for each trained network, based on the metrics of the PASCAL
VOC challenge [38]. Following the nomenclature and calculations of [81], nij de-
notes the number of all pixels with a misclassification, where the network predicts
class j, whereas class i is true. Similarly, nii stands for the number of all correctly
classified pixels. ncl denotes the number of classes, and here, ncl = 3 for the three
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occupancy states (free, unknown, occupied). The total number of pixels of class i is
ti =

∑
j nij [81].

The evaluation metrics (pixel accuracy mpAcc, mean pixel accuracy mmAcc, mean
IoU mmIoU, frequency weighted IoU mfIoU) are computed as follows. The pixel ac-
curacy mpAcc relates the correctly predicted pixels to the total number of pixels of
each class

mpAcc =

∑
i nii∑
i ti

. (3.22)

The mean value over all classes

mmAcc =

∑
i nii∑
i ti

(3.23)

gives better insight over an overall performance of the network.

mmIoU =

∑
i nii∑
i ti

. (3.24)

mfIoU =

∑
i nii∑
i ti

. (3.25)

Evaluation Results

Table 3.8 shows the comparative results1 based on the metrics defined above. Addi-
tionally to the PASCAL VOC metrics, also the validation accuracy and validation
loss are compared. The training is based on equal settings: The same training, test
and validation data, and with the same seed for random number generations. Each
network family is evaluated on the variants based on the grid search described in
Section 3.3.4. Each network is trained once on the raw dataset D, and once on its
augmentation D∗.

The fusion networks performances are compared side-by-side with the traditional
Bayesian grid fusion, described in Chapter 2.3.2. As the Bayesian fusion has no
training phase, nor a model, the columns Shape, val. Acc and val. Loss are not
applicable. To highlight the different architectural variants, the smallest and largest
χ, and a selection of the most expressive encoding depths δ are shown.

The investigated fully convolutional fusion networks are only able to mimic the
fusion quality of probabilistic grid fusion techniques. The performance gain in each
of the metrics is minor, independent of the variant of the FC-FN. Also, the different
architectural variants are performing similarly, regardless of increasing network size,
especially for the more robust, augmented dataset D∗. This behavior is based on
the constant-sized network design that suppresses the learning of abstract features,
and the limited receptive field of each filter that does not allow to catch contextual

1Experimental results published in [10].
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3 Neural Networks for Sensor Fusion

information. Thus, FC-FN learn to reproduce the cell-wise probabilistic fusion with
similar performance as Bayesian fusion, according to image quality (Figure 3.10)
and evaluation metrics (Table 3.8).

The auto-encoder architecture of the AE-FN allows to learn more complex cor-
relations between the inputs, if the encoding procedure compresses the grid size to
a certain level. A good compression rate for learning contextual information of the
car’s surrounding is achieved, when the receptive field of the last convolutional layer
spans over the complete input occupancy grids. In order to classify large unoccu-
pied regions in the grid, deep encoding is needed, which causes extensive blurring
of the classification results. The performance metrics highlight the degradation due
to deep encoding: The pixel and mean accuracies decrease for high δ values. The
Jaccard indices show a high dissimilarity between the ground truth and the AE-FN
predictions, not even close to the quality of Bayesian or FC-FN results. The peak of
AE-FN fusion quality is for δ = 4, and deeper encoding leads to high blurring degra-
dation. Still, the AE-FN output occupancy grids show the benefit of auto-encoders,
compared to constant-sized network architectures: Large context recognition is ob-
servable, thus the free space estimation becomes viable.

On the other hand, small obstacles and objects of the input tensors are suppressed
by the blurring effect. To cope with this, the skipped connections help to bypass
deep encoding parts of the AEB-FN models. As a result, the AEB-FN generate a
similar free space estimation, but a sharpened classification result for small obstacles
and occupied regions. The respective performance metrics show the superiority of
this approach to the traditional Bayesian fusion. Especially networks with a large
value for χ show a high capability of context recognition, as more trainable weights
are available. Also, compared to AE-FN, deeper encoding is possible due to the
increased training stability. The fusion performance and robustness are further
boosted with the augmented dataset D∗.

Training shows that these networks tend to overfit on dataset D, as most road
scenarios have similar layouts with the car driving on a fairly straight road. Without
data augmentation, overfitting occurs for the free space estimation ahead and be-
hind the vehicle. Obstacles ahead of the vehicle are overwritten with the dominant
estimate learned, which is zero occupancy ahead. Data augmentation in D∗ with
random rotations mitigates this behavior.

3.4.2 MAC Counts and Memory Requirements

Three network families and the two architectural parameters δ and χ are subject
for comparison. Due to the inferior fusion performance of the FC-FN, this section
focuses on the promising auto-encoder network families. Each network family’s
dependency to the two dimensions δ and χ, the impact on computational costs and
fusion quality is analyzed. This chapter shows the comparison of computational
costs with regards of the number of parameters that need to be stored and define
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3 Neural Networks for Sensor Fusion

the weights of the networks, and the number of computations for one inference
pass in form of multiply-accumulate (MAC) operations. Other aspects like energy
consumption per forward pass or training costs are not part of this analysis, as these
numbers are heavily dependent of the target platform and the training is expected
to be done offline. The number of parameters are extracted with the Tensorflow
API in the Python code using float32 variables, and the MAC count is estimated
by converting the Tensorflow model architectures into Caffe’s prototxt format [46].
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Figure 3.11: Comparison of the grid fusion network families, each with δ = 5 and
χ = 16. (a) The computational costs and (b) the fusion quality shown
by the evaluation metrics from Section 3.4.1.

As a result, one can observe that the AE-FN and AEB-FN have only minor
differences in computational costs. On the one hand, the AE-FN needs 2,270 k
parameters and 1,610 M MAC operations (Fig. 3.11a). On the other hand, bypassed
feature maps in the AEB-FN architecture enlarge the tensor size in the decoder, thus
leading to an increased computational cost. The AEB-FN needs 2,440 k parameters
and 1,750 M MAC operations, which is an increase of 7.5 % and 8.7 %, respectively
(Fig. 3.11a). Even though the costs are similar, the fusion performance of the AEB-
FN shows significant improvement over the AE-FN. As the skipped connections
help small details to pass through the deep parts of the network, AEB-FN improve
all metrics considerably (Fig. 3.11b). For the same network configuration (δ = 5,
χ = 16), the relative improvements of the evaluation metrics are as follows:

� mpAcc +9.8 %: (AE-5-16 = 84.2 %, AEB-5-16 = 92.5 %)

� mmAcc +33.8 %: (AE-5-16 = 63.7 %, AEB-5-16 = 85.2 %)

� mmIoU +17.7 %: (AE-5-16 = 73.4 %, AEB-5-16 = 86.4 %)

� mfIoU +22.0 %: (AE-5-16 = 74.9 %, AEB-5-16 = 91.4 %)
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3.4 Fusion Quality and Hardware Requirements Analysis

Conclusively, the bypassed connections come at a minimal cost, when traded off
to the benefit in the fusion performance of the network models.
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Figure 3.12: The fusion performances of the fusion model families over the architec-
tural parameters. Correlation to the (a) depth and (b) the number of
initial feature channels.

Having a closer look at the impacts of the network architecture parameters δ and
χ, respectively, different effects can be observed. For a fixed number of initial feature
channels (χ = 16), the networks show increasing performances for larger encoding
depths δ (Fig. 3.12a). AEB networks perform in a range of mpAcc = 91 % ± 1 % and
mmIoU = 77 % − 85 %, with the performance peak at δ = 5. The encoding depth of
5 shows the best scores for AE-FN and AEB-FN for input grids OG ∈ R256×256×3.
In contrast, manipulating χ with a fixed depth δ = 5 shows a negative impact
(Fig. 3.12b). The AE-FN show the best performance at the lowest measured χ = 4,
which continually degrades with higher channel numbers. Finally, AEB-FN achieve
the best results at χ = 8.

The impact of the architectural parameters on the MAC count and the number
of parameters can be analyzed separately. For a fixed χ, the computational costs
are logged with a changing δ—and vice versa. The encoding depth is scaling the
MAC count linearly (Fig. 3.13a), whereas the required number of parameters scales
exponentially (Fig. 3.13b) for all networks. Altering χ with a fixed depth δ shows
the impact of the number of initial feature channels. It is scaling exponentially
for all networks, both in MAC count (Fig. 3.13c) and the number of parameters
(Fig. 3.13d). Thus, the computations scale linearly with the depth δ, but exponen-
tially with χ. The amount of parameters scale exponentially in both cases.
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Figure 3.13: Computational costs for different architecture parameters. (a) MAC
count vs. varying depths δ, (b) amount of parameters vs. varying
depths δ, (c) MAC count vs. varying number of initial feature channels
χ, (d) amount of parameters vs. varying number of initial feature
channels χ.

Quality-Cost Trade-Off

On the one hand, as seen in Fig. 3.12a, increasing the depth increases the fusion
performance, especially of networks with skipped connections. On the other hand,
increasing χ impacts the fusion quality rather negatively (Fig. 3.12b), as the amount
of parameters is sufficient at lower χ and additional weights lead to overfitting, thus
degradation of fusion quality.

The sweet spot for AE-FN is δ = 5, as the metric mmIoU is maximal there, and
χ = 4, as fusion performance degrades for more parameters at given depth of five
(AE-5-4). AEB-FN are mostly unaffected of the channel number. Consequently, a
depth of five and eight initial feature channels are the best choice for fusion quality
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3.4 Fusion Quality and Hardware Requirements Analysis

(AEB-5-8).

Estimated Sufficiency for Deployment

The computational requirements of the fusion networks appear to be low when
compared to large image processing networks like AlexNet [75], ResNet [50] or U-
Net [113]. But in order to perform real-time computations on a low-power embedded
accelerator, the networks need to be further optimized for deployment. The EV6x
Embedded Vision Processors of Synopsys’ DesignWare IP offer ASIL B, C or D
ready SoC blocks with up to four dedicated CNN accelerator cores, each performing
with up to 880 MACs per cycle [124].

Table 3.9: Estimated inference times on Synopsys EV61 processor with different
CNN-engine configurations at 500 MHz operating frequency for the auto-
encoder fusion network families

Network Grid
EV61 [ms]

CNN 1 CNN 2 CNN 4
AE-5-16 256 3.66 1.83 0.91

AEB-5-16 256 3.98 1.99 0.99
AE-5-16 512 14.6 7.33 3.66

AEB-5-16 512 15.9 7.93 3.97
AE-5-16 1024 58.6 29.3 14.7

AEB-5-16 1024 63.5 31.7 15.9

In Table 3.9, the different architecture families with the best performing variant
from the grid search in Section 3.3.4 along with their estimated runtimes on the
Synopsys EV61 processor with different CNN-engine configurations are shown. One
forward pass of any of the fusion networks take up to few milliseconds at an input
grid size of Tin ∈ R256×256×3 and two input streams. The difference in execution time
between AE-5-16 and AEB-5-16 is 8 %, but still, both of the networks can perform
real time operation on the given accelerator. However, once the input occupancy grid
size is scaled to a higher resolution or larger coverage area of the sensors, the baseline
networks perform too slowly. Especially the configuration with one or two CNN cores
(CNN1 and CNN2) and a high resolution input grid Tin ∈ R1024×1024×3, the real-time
operation is not possible at a sampling rate of 50 Hz, which is equivalent to an upper
limit of 20 ms per forward pass. Further, this effect is strengthened by the fact that
the execution time estimates are based on 100 % utilization of the 880 MAC/cycle
of the CNN engines, which is not viable under real circumstances. Under real
conditions, where feature maps not always fill all of the processing elements of
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the accelerator’s systolic array, additional loading times slow down the absolute
throughput.

3.4.3 Optimization and Compression Techniques

In order to reduce the computational costs and meet the real-time requirements
based on the Synopsys EV61 processors, the network models have to be optimized.
The majority of computational costs comes from the convolutional weight layers, es-
pecially in convolutional auto-encoder networks without large fully connected classi-
fication layers [118]. Based on this fact, the compression of the standard convolutions
oconv is the focus of this section.

Model compression can be approached with various approaches [23]. Parameter
pruning and knowledge distillation, where the redundant parameters are discarded
from the network and the model is iteratively retrained in a compact graph, both
are model compression techniques that retrospectively ease the computational costs.
Besides the subsequent approaches, redesigning the convolution operation oconv into
a compact and efficient format is a viable, widely used, a priori approach. Also,
pruning and distillation focus heavily on fully connected layers of mostly classifica-
tion networks, which does not apply for the grid fusion networks of this work [23].

Finally, weight quantization is an effective method of compressing the memory
footprint of the model by reducing the precision of weights from float32, down
to float16, or even integer precision int16 or int8 [60]. Research goes into the
direction of further compressing the weights down to the absolute minimum of one
bit, i.e. binary weights [104].

In this section, the approach of compressing the model size is by introducing
parameter-efficient operations and replacing the computationally heavy, standard
convolutions oconv in the blocks of the network. Recall that each encoding and
decoding block of the auto-encoder networks incorporates a convolution oconv or
deconvolution odeconv, respectively, described in the adjacency matrix of its directed
acyclic graph. In order to reduce the amount of feature channels dC of tensor
T ∈ Rdx×dy×dC entering the operation, first a parameter-efficient, point-wise con-
volution o1x1

conv squeezes the channels with dC/4 filters to one quarter of the input.
Thus, the subsequent operations have greatly reduced filter maps and computations.
Borrowing from SqueezeNet [61], the squeezed tensor is processed in two streams,
once with a o1x1

conv and once with a o3x3
conv, and each is expanding the channels to dC/2.

The concatenation of both streams forms the output of the FireModule (Fig. 3.14b)
that replaces the standard convolution operation in the encoding block (Fig. 3.14a)
and reduces the computational costs significantly. The squeezed fusion network’s
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Figure 3.14: Block diagramm of the encoding blocks in the AE-FN and AEB-FN
architectures. (a) Initial and (b) optimized version of the encoding
block.

(AESQ-FN) encoding block is based on the adjacency matrix

ASQ
enc =


o1×1
conv

o1×1
conv

o3×3
conv

orelu
o2×2
max

obn

 . (3.26)

Analogically, the compressed encoding block is formed by replacing the plain
deconvolution odeconv (Fig. 3.15a) by a FireDeconv module from SqueezeSeg [141]
(Fig. 3.15b). Following the paradigm of the FireModule, first a 1x1 convolution
reduces the feature channels, before the actual neural operation is performed. The
spatial downsampling in form of the deconvolution is placed before the two expand-
ing operations o1x1

conv, o3x3
conv—now with a squeezed input tensor. The squeezed fusion

network’s decoding block is based on the adjacency matrix

ASQ
dec =


o1×1
conv

o3×3
deconv

o1×1
conv

o3×3
conv

orelu
obn

 . (3.27)
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With the compressed encoding and decoding blocks (BSQenc, B
SQ
dec), the hardware-

aware grid fusion networks1 are formed around the same macro-architecture as AEB-
FN. Consequently, also the AESQ-FN incorporate bypassed connections, which lead
to a similar fusion performance as the AEB-FN.

Feature Map 
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Bypass 
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Concat

ReLU

Batch Norm

Deconv

(a)

Feature Map 
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Bypass 
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Concat

ReLU

Batch Norm

(b)

Figure 3.15: (a) Initial and (b) optimized version of the decoding block.

Table 3.10: Estimated inference times on Synopsys EV61 processor with different
CNN-engine configurations at 500 MHz operating frequency for the op-
timized fusion architectures AESQ-FN

Network Grid
EV61 [ms]

CNN 1 CNN 2 CNN 4
AESQ-5-16 256 0.82 0.41 0.20
AESQ-5-16 512 3.27 1.64 0.82
AESQ-5-16 1024 13.1 6.55 3.27

Results of Compressed Network Architectures

A reason to optimize the initial grid fusion networks (Section 3.3) is the missing scal-
ability of input grid sizes and resolutions for real time application. The optimized
fusion architectures AESQ-FN show significant improvements of the computational

1Results published in [9].
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3.5 Conclusion

costs at a cost of minimal degradation of the fusion quality. Thus, with the intro-
duction of new, compact encoding and decoding blocks, the AESQ-FN architectures
allow the fusion of either higher resolution (δx < 0.25 m), or a larger coverage area
of the occupancy grids (> 64 m × 64 m). For input sizes up to 1024 × 1024, one
forward pass takes less than the required 20 ms on the Synopsys EV61 processors
with any CNN-engine configuration (Table 3.10).

Comparing the estimated inference times of AEB-5-16 (Table 3.9) and AESQ-5-16,
there is a relative speedup of 80.6 %, or 50.4 ms in absolute difference, respectively.
Even though the computations are eased significantly to a level of applicability, the
quality metrics are only slightly decreasing, when compared to AEB-5-16 (Fig. 3.16).
For the same network configuration (δ = 5, χ = 16), the relative change of the
evaluation metrics from AEB to AESQ are as follows:

� mpAcc -2.9 %: (AEB-5-16 = 92.5 %, AESQ-5-16 = 89.9 %)

� mmAcc -7.7 %: (AEB-5-16 = 85.2 %, AESQ-5-16 = 79.1 %)

� mmIoU -5.1 %: (AEB-5-16 = 86.4 %, AESQ-5-16 = 82.2 %)

� mfIoU -2.9 %: (AEB-5-16 = 91.4 %, AESQ-5-16 = 88.8 %)
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Figure 3.16: Comparison of the grid fusion network families, each with δ = 5 and
χ = 16, including the optimized AESQ-FN. (a) The computational
costs and (b) the fusion quality shown by the evaluation metrics from
Section 3.4.1.

3.5 Conclusion

In this chapter, a novel method for fusing occupancy grids based on a convolutional
auto-encoder architecture is introduced.
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Current grid fusion algorithms rely on cell-wise independent Bayesian compu-
tations that require either information-rich inputs, such as raw sensor signals, or
temporal integration to a map, in order to produce an environmental model suitable
for ADAS functions of Level 2/2+.

As occupancy grids are two-dimensional matrices with features in the third di-
mension, they can be processed well with CNNs from computer vision tasks. Con-
sequently, the convolutional auto-encoder offers the basic architecture for the grid
fusion networks, which extend the standard one-to-one auto-encoders to a multiple-
to-one paradigm.

Condensed from various architectural explorations, three families of grid fusion
networks are proposed: The plain auto-encoder fusion network AE-FN, which is
able to fuse occupancy grids and produce a free-space estimate, but has the issue
of blurring small details. With the introduction of skipped connections, deep parts
of the AE are bypassed, thus, small details propagate easier through the AEB-FN.
However, these two architecture families rely on heavy computations and may not be
deployed on resource-constrained embedded accelerators for real-time applications.
The proposed squeezed version AESQ-FN employs FireModules and DeconvFire
modules from the SqueezeNets and achieves a reduction in required computations
by roughly 80 % to the price of slightly lower fusion quality.

The training of the grid fusion network is fundamental for their working principle:
During training, the networks learn to map from feature-level inputs to the ground
truth, which is calculated from Lidar data. Thus, the training teaches the networks
to leverage low-quality inputs to a high-quality environmental model.

Conclusively, the following main aspects of the grid fusion networks are achieved
in this chapter:

� Fusion of multiple two-dimensional occupancy grids into one combined en-
vironmental model instantaneously, without the need to map over time to
retrieve a free-space estimate.

� Based on the training with Lidar-based ground truth, the networks learn to
map from cheap sensors to a Lidar-like output, which can be used for ADAS
functions of Level 2/2+ cars.

� Compression of the model size and computations to a level, where real-time
application is possible, even on resource-constrained, automotive microcon-
trollers.
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Architecture Search

Taking a look at the architecture of the majority of classification and segmentation
networks, including the grid fusion networks of this work, the macro-architecture is
similar among networks with comparable tasks. Classification networks are formed
usually by concatenating normal and reduction blocks linearly in order to reduce
the input image to an embedding, which is then passed to a fully connected classifi-
cation layer. Segmentation networks, on the other hand, usually have a symmetrical
decoding of the embeddings, and may include skipped connections. Hence, the net-
work models are differentiable mainly based on the chosen micro-architecture inside
of the blocks—excluding the impact of training configurations by assuming similar
setups.

After AlexNet ’s initial success over traditional computer vision algorithms in 2012,
ResNet made the next groundbreaking step in 2015 by introducing residual functions
inside of a block1 that allowed the successful training of substantially deeper net-
works [50,75]. The initial ResNet-block’s micro-architecture is basically two weight
layers combined with a skipped connection from the block’s input (Fig. 3.4, 4.1a). A
refined variant of the initial blocks is used in ResNet-1001, where the gradient flow
is ensured through enhanced shortcut connections (Fig. 4.1b) [51]. Further improve-
ments of these blocks in ResNeXt are introducing multiple, parallel computational
flows inside of the block with complicated interconnections (Fig. 4.1c) [143].

(a) (b) (c)

Figure 4.1: Different variants of ResNet-blocks with increasing complexity. (a) Ini-
tial ResNet [50], (b) ResNet-1001 [51] and (c) ResNeXt blocks [143].
Images taken from the respective publications.

1In ResNet, the blocks are denoted as cells.
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In general, the trend among network architectures was to create ever more sophis-
ticated micro-architectures in order to push the results on the well-known classifica-
tion benchmarks. Roughly until 2018, most state-of-the-art neural network models
for image classification were designed manually. Figure 4.2 shows the history of the
highest scoring networks on the CIFAR-100 and ImageNet challenges. The first
network to surpass handcrafted models on ImageNet was NASNet in 2017 [149],
and the first to outperform on CIFAR-100 was EfficientNet in 2019 [127].

Figure 4.2: The evolution of state-of-the-art network models for image classification.
NAS-based classification models surpass handcrafted architectures on
ImageNet [30] since 2017 and on CIFAR-100 [74] since 2019. Data and
visualization from https://paperswithcode.com/.

As the neural architecture search strategies are proven to work well, the grid
fusion task from Chapter 3 is investigated with an automated approach in this
chapter. First, an overview about current NAS algorithms is laid out, starting with a
literature review of general NAS projects for image classification and segmentation,
followed by an analysis of how well the different NAS approaches perform. The
best-fitting NAS algorithm is then applied to the grid fusion task by introducing
the task-specific macro-architectural requirements, the micro-architectural search
space and further details about the search process. Finally, an evaluation shows
the progress and the results of the architecture search for an optimal network. The
optimization is conducted with regards to specific accelerator hardware, on which
the models are to be inferred.
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4.1 State-of-the-Art Neural Architecture Search
Algorithms and Embedded CNN Accelerators

This section gives an overview of existing methods and trends in the area of neu-
ral architecture search. Soon after initial successes in classical image classification
tasks, NAS algorithms covered segmentation tasks. The most recent trend is multi-
objective optimization of neural networks for embedded deployment on constrained
edge devices. Hence, a suite of state-of-the-art accelerator hardware is outlined and
the chosen devices are compared to each other regarding their performance and limi-
tations towards the network models. While the majority of published works is about
network topologies, NAS is also used for enhancing other tasks, such as searching
for superior optimizers [15].

4.1.1 NAS Algorithms in Literature

NAS for Image Classification

The first leap towards automated model generation was done with Neural Architec-
ture Search v1-v3 by designing a controller that is based on reinforcement learning
(RL) [148]. Generating model descriptions of classification CNNs for the CIFAR-
10 dataset, it finally achieved a state-of-the-art error rate of 3.65 %. Block-QNN
laid the foundation for the block-wise search with the first definition of the macro-
architecture for image classification in 2017 [147]. Two skeletons that are populated
with the searched block and intermediate pooling layers, were presented—one for
the CIFAR-10 and another for the ImageNet dataset. This approach is followed and
adopted widely by the subsequent works about neural architecture search. While
Block-QNN already outperformed many handcrafted state-of-the-art classification
networks at that time and also Neural Architecture Search v1-v3 with a CIFAR-10
error rate of 3.60 %, NASNet further pushed the limits down to 2.4 % [149]. The key
contribution of NASNet was the introduction of two different types of blocks (nor-
mal and reduction cells), which allowed transferability to other problems. NASNet
exploited this by searching for best-performing cell architectures on CIFAR-10 and
then plugging the found micro-architectures into the ImageNet skeleton.

NAS for Semantic Segmentation

Whereas image classification has significantly improved through automated machine
learning algorithms, such as neural architecture search, image segmentation, or in
general semantic segmentation tasks got less attention. Using NAS to find optimal
architectures for image segmentation is mostly applied for medical image analysis.
SCNAS segments 3D medical images with an architecture similar to U-Net, but with
searchable encoding, encoding-normal, decoding and decoding-normal blocks [71].
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NAS-Unet concentrates the search on only two lightweight cell types (DownSC,
UpSC ) [137]. It replaces standard skip connections with cweight operations known
from Squeeze-and-Excitation networks [57]. In Auto-DeepLab, cell-level and network-
level architectures for general image segmentation are jointly searched [79]. Disparity
estimation is improved by AutoDispNet with an auto-encoder structure of encoding,
decoding and normal cells [116].

Recent works on NAS focus on awareness to platform-specific memory footprint
and accelerator topology. Aiming for mobile deployment, MnasNet conducts a multi-
objective optimization in order to find multiple Pareto-optimal network architectures
regarding accuracy and inference time [126]. Similar to MnasNet, MobileNetV3 fo-
cuses on constrained devices and is being discovered by a hardware-aware neural
architecture search, but it also proposes a segmentation head for pixel level predic-
tions [56].

Comparison of State-of-the-Art Neural Architecture Search Algorithms

Each neural architecture search method is prominently defined by its search space
and search strategy. While the search space is framed as a discrete space of possible
architectures and confined set of operations in the majority of published works,
there are multiple promising approaches for the search strategy [34]. Among the
manifold search algorithms, such as Bayesian optimization, gradient-based methods
or even random search, the two most prominent strategies are approaches based on
the evolutionary algorithm (EA) [88,108,109] and reinforcement learning (RL) [15,
147,149].

In a comparative study of Real et al., these two search strategies are analyzed
and compared to random search [108]. Both approaches consistently outperform the
random search equally in terms of their final test accuracy on the CIFAR-10 dataset.
Still, in this case study, EA converges faster to its final architecture, compared to RL.
Also, EA generates smaller candidate models than RL. Thus, building on the results
of [108], the search strategy of this work is chosen to be based on the evolutionary
algorithm.

4.1.2 State-of-the-Art Hardware Accelerators

In Section 3.4.2, it has been derived, which of the grid fusion models are lightweight
and small enough in order to be inferred on a dedicated CNN accelerator hardware.
In that analysis, the three different grid fusion networks with varying input grid sizes
have been investigated, and the inference speed on the target hardware—the Embed-
ded Vision Processor family of Synopsys’ DesignWare IP—has been estimated. For
the further analysis and deployments, a set of commercially available accelerators
has been chosen from the embedded accelerator market (Fig. 4.3).

With the rising demand for mobile applications, this market is emerging quickly [111].

82



4.1 State-of-the-Art Neural Architecture Search Algorithms and Embedded CNN Accelerators

Figure 4.3: The AI accelerator market overview with the announced accelerators
and processors shown in a performance vs. power consumption trade-
off. Image taken from [111].

Mainly research teams and universities offer chips in the regime of low-power devices,
such as the MIT Eyeriss chip [21], the Intel MovidiusX processor [62], Google’s Ed-
geTPU [44], the DianNao accelerator family [22] or the Rockchip RK3399Pro [112].
Out of this portfolio, only the Google EdgeTPU, the NVIDIA Jetson Nano and the
Intel MovidiusX, used in the Neural Compute Stick 2 (NCS2), are commercially
available for a competitive price in 2020. These three embedded CNN inference
accelerators are used for further evaluations.

Whereas they are the most developed off-the-shelf evaluation kits, their firmware
is still in an experimental phase and under constant development. In order to use
the accelerators, the network model constraints of each hardware are to be met.
In Table 4.1 the supported operations of each AI accelerator are shown, and it
becomes obvious that for deployment on the EdgeTPU, strict constraints in the
network architecture have to be met. Many state-of-the-art network topologies that
claim to aim for edge deployment, lack the applicability to these low-power edge
devices.
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Table 4.1: Model requirements for low-power neural accelerators. 3D: Conv3D,
RNN: Recurrent operations (RNN, LSTM, GRU), BN: Batch normaliza-
tion, DO: Dropout, Basic OPs: Conv2D, ReLU and softmax activation,
pooling and concat.

Edge-HW 3D RNN BN DO Basic

Google EdgeTPU [44] - - - - X
Intel NCS2 [62] - - X X X
NVIDIA Jetson nano [97] X X X X X

4.2 Application of NAS Method to Sensor Fusion
Networks

As introduced in Chapter 3.3.1, grid fusion networks are constructed out of repeti-
tive, interconnected building blocks. Each building block B inhibits inputs, multiple
operations and one output, all together described by a directed acyclic graph G and
a set of operations O (Definition 3.3.3).

A NAS system is usually built upon three dimensions (search space, search strat-
egy, performance estimation strategy) [34]. In this Chapter, O and G are interpreted
as the search space, which is outlined first. Then, the search strategy is chosen ac-
cording the comparative analysis shown in Section 4.1.1, and its details, such as
the genetic diversity in the EA, are discussed. Finally, the performance estimation
strategy in form of a multi-objective reward function, is presented.

Figure 4.4: NAS principle of iteratively optimizing networks to a given task.

The system is designed to perform an architecture search for a grid fusion problem
with multiple occupancy grids as inputs and one OG as the output. The number of
input branches is set to two throughout this analysis, but the NAS can be configured
for processing more inputs.
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The key contributions of this NAS approach are published in [11] as a conference
paper1 and can be summarized as follows:

� A NAS framework that is configurable for arbitrary input branches and image
dimensions: This flexible design allows to search for network architectures
different from standard classification or segmentation networks, such as the
proposed grid fusion networks.

� An extended search space for operations within a block with an adaptive strategy
for reshaping tensors in-between the blocks of the macro-architecture: The
NASNet search space is extended to 13 operations and a correct inter-block
data-flow is ensured.

� A family of grid fusion networks optimized for embedded implementation: The
model sizes of the GridFuN networks range from 90 KiB to 4 MiB. The fusion
performance increases proportional to the memory footprint.

4.2.1 Macro-architectural Presets

Given the analysis of Chapter 3.4, the auto-encoder with bypass is the base for the
macro-architecture of this neural architecture search. In order to frame the problem,
two types of search cells (encoding block Benc, decoding block Bdec) are needed for
an auto-encoder architecture. Each encoding block takes two inputs, the decoding
blocks take up to three inputs, and each block outputs one tensor (Figure 4.5),
following the configuration of [71]. The predefined connections and bypasses de-
scribe the actual macro-architecture of the grid fusion architectures that are to be
found by this search. The cell-wise approach with a fixed macro-architecture known
from [149] was adapted and extended to a framework that can be configured to ar-
bitrary network macro-architectures. The connections of the blocks are hard-wired
and do not change throughout the search. Only the micro-architecture is variable,
thus, each macro-architecture incorporates a vast amount of variants, depending on
the block-architectures. In the following, the family of these networks is denoted as
GridFuN (Grid Fusion Networks).

As in the handcrafted fusion networks in Chapter 3, GridFuN has various archi-
tectual parameters that influence the network performance significantly. Beside the
already known χ and δ, a NAS-specific parameter is introduced in the following:
the number of nodes per block K. The three parameters are set fix before the search
algorithm starts.

1Paper [11]: IEEE ICMLA 2020 (Best Paper Award).
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Figure 4.5: Macro-architectural concept of the neural architecture search for grid
fusion networks. Only depth δ = 3 is shown for visualization.

4.2.2 Micro-architectural Search Space

The actual search is performed on the micro-architecture level within the cells. In
order to formalize the search, the directed acyclic graph G is constrained in some
aspects. K denotes the number of intermediate nodes within a block, thus, together
with the two input nodes, it determines the size of the adjacency matrix A. Each
row of A denotes an intermediate tensor, and each column describes which input
tensors those intermediate tensors are calculated from. More precisely, each entry
in a column of A is combined with a combination operation, forming a node N
(Definition 3.3.4).

In order to formalize the search process, the nodes are set to have two inputs
(I1: TA, I2: TB), each with an own operation o1, o2, and a combination operation
o+: N+(o1(TA), o2(TB)). Each node is indicated in G, but during the search it
is described by a 5-tupel (I1, I2, o1, o2, o+). In encoding blocks, the block input
tensors I1, I2 are downsampled in image dimensions by 2 with strides S = 2. In
decoding blocks, the image dimensions are kept constant (S = 1), and only after the
last combination operation of the block, the image is upsampled with an upsampling
operation oup.

There are three sets of operations: normal operations O, combination operations
O+ and upsampling operations Oup. Reduction operations are part of normal opera-
tions, but with strides S = 2, where applicable. The set of possible normal operations
O out of which the 5-tupel can be populated is inspired by the work of [149], but
extended to |O| = 13 operations. Together with the combinations O+ with|O+| = 2
and upsampling OPs Oup with |Oup| = 4 operations, the total amount of searchable
OPs is 19 (Table 4.2).

Hence, in a search for blocks with K = 3 nodes per block, |O|2K+|O+|K = 4, 826, 817
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Table 4.2: The three sets of operations in the search space of the GridFuN frame-
work. The last column indicates, whether the given operation changes the
spatial dimensions: Equal (=), downsampling by two (↓), upsampling by
two (↑).

OP Set Name Notation Dim.

Normal O
Standard convolution o1×1

conv, o3×3
conv, o5×5

conv = or ↓
Depth-wise separable conv. o1×1

sep , o3×3
sep , o5×5

sep

Dilated convolution o1×1
dil , o3×3

dil , o5×5
dil = or ↓

Skip / bypass / residual oskip =
Max pooling o3×3

max = or ↓
Average pooling o3×3

avg = or ↓
FireModule ofire =

Combination O+

Element-wise addition oadd =
Feature concatenation ocat =

Upsampling Oup
Transposed convolution o1×1

t conv, o3×3
t conv, o5×5

t conv ↑
Bilinear interpolation ointerp ↑

different encoding blocks can exist. Additionally, (|O|+|Oup|)2K+|O+|K = 24, 137, 577
individual variants for the decoding block are possible. Further, the manifold in-
creases drastically, when the number of filters in the convolutional layers are also
included. The initial value for the number of filters is set to χ = 4, and it will evolve
over time. A special reward for the multi-objective optimization (Section 4.2.3)
counteracts the unlimited growth of filters (Figure 4.11).

Figure 4.6 shows the random initialization of one node within a block. On the left
side, a unpopulated raw node structure is depicted with unknown node inputs and
unknown node operations. In the center of the figure, the controller samples random
inputs to the node from the possible nodes connections, which are the two input
nodes and the nodes before. Exemplary, the possible inputs to N5 are: N In

0 , N In
1 ,

N2, N3 and N4. Next, the controller randomly assigns operations from the search
space to the two node inputs, thus fully determining the node. During the search
process, beside the random initialization of the complete node, also mutations to
singular parts of the node are applied. There, for example, the controller changes
only the assignment of one node input to another, or one operation to an other.
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Figure 4.6: The initialization of nodes by the controller part of the NAS. A new,
default node is populated randomly by sampling connections and oper-
ations of the search space.

4.2.3 NAS Method Details

In this section, important aspects of the NAS system at hand are explained. First,
the search algorithm and the generation of diverse micro-architectures out of the
model’s genotype is shown. Then, the training environment for a single model
evaluation is outlined, laying the foundation to one iteration within the evolutionary
algorithm. Next, considerations about the reshaping of tensors in-between blocks of
different depth are mentioned, along with the mutations of the network genotypes,
which are crucial for genetic diversity throughout the search. Finally, the working
principle of the multi-objective optimization is described.

Search Algorithm

The proposed NAS framework is structured into a controller that coordinates net-
work creation and a trainer that evaluates network performances (Figure 4.4). The
network database, from wich the controller coordinates the evolution process, stores
only the network genotypes and their evaluation metrics. Thus, during the search
process, no trained network is stored to the hard disk and a large volume of networks
can be covered.

In the genetic algorithm, each network architecture is described by its genotype
that defines the computational graph with a directed acyclic graph and additionally
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Figure 4.7: Translation of adjacency matrix to the computational graph of Amoe-
baNet (Picture of computational graph taken from [108]).

stores all the neccessary hyperparameters. Basically, the DAG is handled as a matrix
similar to the one shown in Figure 4.7, where each row of the adjacency matrix is
describing one node. In the example of the figure, the normal cell of AmoebaNet [108]
has 7 nodes, two of which are cell input nodes. Thus, adjacency matrix has 5 rows
and 7 columns. As the final step of the translation from DAG to computational
graph, the yet unused1 nodes are combined with a last combination to form the cell
output.

Before a NAS experiment can be started, first, the NAS parameters need to be
defined. Namely, they are:

� The number of generations g, which indicates, how many rounds of subsequent
evaluations/mutations are performed.

� The population size p, which indicates, how many models from the database
are investigated in parallel.

� The number of epochs e of training for each model evaluation.

� The number of nodes per block K.

� The number of initial filters χ.

Additionally, for each search the dataset D has to be specified, and if the result is
planned to be platform-specific, the target hardware, too. Once the system is set
up, the iterative search process works as follows. In Algorithm 2, the procedure of
one NAS experiment is described.

1Unused nodes are those that are not consumed by other nodes as an input within one block.
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Algorithm 2 The framework of GridFuN.

Input: g generations, e epochs, p population size, K nodes per cell, χ initial
filters, dataset D, embedded hardware H.
Output: GridFuN architecture family
P = initialize (p, K , f)
for i = 1 to g do
P ′ = sample (s, P )
P ′ = mutate (P ′)
P ′ = train (P ′, D)
P ′ = evaluate (P ′, H)
P = P ∪ P ′

end for

The total population P starts off with p randomly initiated network models. The
genotype of each model consists of two DAG, one for the encoding block and one for
the decoding block. For each column of the upper right triangular matrices (Aenc,
Adec) up to two entries are chosen randomly from the set of possible operations.
This defines the operations in the nodes within the blocks. The initiation phase is
completed, once all networks of the initial population are evaluated and scored with
the fitness value.

Next, out of the total population P, a set of p competitor networks are selected
according to their fitness value. This selection incorporates the best performing
networks, and they are now modified with mutations. These mutations introduce
slight changes to the genotype of the network model, thus explore the search space
in vicinity of the parent network. In order to more aggressively traverse through the
search space, up to three simultaneous mutations are made to a genotype within
one generation (Algorithm 3). Multiple instances of checks verify the validity of the
novel, mutated genotype, and also, whether this new configuration has already been
evaluated in the process before. If the proposed configuration already exists, the
mutation process is repeated, starting with the network model of the beginning of
this generation.

Once the selection of p networks is mutated successfully, it is trained by the
trainer. The trainer incorporates the complete training procedure and reports only
the evaluation metrics to the controller. These include the fusion quality, but also
the hardware-specific metrics of inference time and memory footprint. The process
of receiving the hardware-specific metrics is first converting the trained network
model to a format that is compatible with the accelerator and then inferring a series
of forward passes. The average inference time of 100 runs together with the memory
footprint of the accelerator-specific model format conclude the deployment, and are
the result of the evaluation process.

Finally, the results of this generation P’ united with the total population P form
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the total population of the next generation. After g generations, a range of networks
has been evaluated and the results stored in the network database. The Pareto-
optimal solutions out of this manifold form the family of GridFuN networks.

Network Training Environment

The macro-architecture during the experiments is set to an encoding depth of δ = 4,
so that the lowest dimensions of the tensors are Tδ ∈ Rdx/16×dy/16×16χ. Two experi-
ments are conducted with blocks having K = 2 and K = 3 intermediate nodes with
initially χ = 8 feature channels in convolutional layers.

Similar to the training of the FC-FN, AE-FN and AEB-FN in Chapter 3.3.4,
the training is done on the data derived from the nuScenes dataset. Here, the
augmented dataset is denoted as D, incorporating the full 44,760 frames, with each
frame consisting of the three OGs (xradOG, xcamOG , xgtOG). In order to reduce the evaluation
latency, a subset of the full dataset is used during the search process. A subset
Dlight ⊂ D consists of 5,632 frames based on the first 100 scenes of nuScenes.
Further latency reduction is gained by only partially training the networks on the
Dlight dataset for 2 epochs. The best performing architectures of the search are
then retrained on the complete D dataset to display their full performance. The
full training cycle consists of 10 epochs in contrast to the reduced training setup
during the search process. Empirically, the final performances of the networks are
proportional to the performances of the partially trained networks. From these
observations we can derive that f(a′) > f(b′)→ f(a) > f(b) holds for fully trained
networks a, b, partially trained networks a’, b’, and their network performance f(·)1.
This way, the return time of an average network evaluation is reduced down to about
10 minutes, instead of several hours on the given hardware setup.

All experiments are conducted relying on Tensorflow 1.13.1 [3] with compiler ver-
sion 5.4.0, and the training is performed on an NVIDIA Titan V GPU under CUDA
10.0.130. The training was done on the Dlight dataset at a split of 80% training
samples and 20% test samples. The evaluation metrics are averaged over 10 batches
with a batch size of 16. The learning rate α is decreasing from α0 = 0.0005 to zero
according to a cosine decay (Eq. 4.1) with a warm-up of 2.5% and a hold until 10%
of the total iterations iT , according to

α(i) =


α0

i
0.025 iT

, i < 0.025 iT ,

α0, 0.025 iT ≤ i ≤ 0.1 iT ,

α0 cos(2π
iT
i) i > 0.1 iT ,

(4.1)

where i is the current iteration. This learning rate scheduling ensures a smooth
convergence of the network performance in contrast to methods that have α > 0 at
the end of the optimization. Particularly for the partially trained networks this is

1The fitness value f is further explained in the paragraph Multi-Objective Optimization below.
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important, because the local minimum of the loss function is not reached perfectly,
thus, any learning rate larger than zero would cause an unstable optimization result.

The training during the search process of the NAS is done for 2 epochs. The full
training for the comparisons is done for 10 epochs, and it is sufficient for reaching
the convergence. The ADAM optimizer is used with default parameters β1 = 0.5
and β2 = 0.999 to minimize the pixel-wise softmax classification loss.

Reshaping Strategies

At some configurations of cells, the dimensions of the inputs to a combination oper-
ation o+ do not fit, but subsequent combination operations require equal dimensions
to work correctly. Thus, adaptive reshaping is neccessary to construct a valid net-
work model. Reshaping involves image dimension adjustment and feature channel
adjustment.

Image dimensions have to be reshaped, whenever an encoding block Bδenc is by-
passed and the bypassing tensor Tδ−1 has different dimensions compared to the
output of this cell. The correction follows through additional adjustment operations
oadj ∈ Oadj. The set of Oadj consists of convolution and pooling layers with strides
S = 2 for downsampling.

A change in the number of feature channels F is needed, whenever operations
are used that do not change the number of feature channels themselves, such as
normal pooling operations. The F -correction can be done with simple point-wise
convolutions o1×1

conv or by changing the combination operation from oadd to ocat, where
the tensors are concatenated along the channels, thus, forming a valid model.

Following the work of FishNet [123], the two strategies for image size adjustment
are explored during the search. Using convolutions with strides for image dimension
reduction early in the network significantly reduces the amount of computations
needed in subsequent layers and has limited loss of information when compared
to loss-prone pooling. In contrast, using pooling layers is beneficial in reshaping
skipped connections, where no additional weights have to be learned, thus, gradient
propagation is eased, when compared to additional weight layers.

Multi-Objective Optimization

In order to fit networks onto strictly constrained embedded hardware, optimizing the
networks only for accuracy metrics is not enough. The model size has to be shrunk
and the network architecture chosen according to the capabilities of the hardware
accelerators. The NAS boils down to a multi-objective optimization with constraints
dependent of the specific embedded hardware at hand.

The grid fusion quality is evaluated with performance metrics known from Chap-
ter 3.4.1. The four quality metrics (pixel accuracy mpAcc, mean accuracy mmAcc, mean
intersection over union mmIoU, frequency weighted intersection over union mfIoU) are
measured after the training of each network.
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4.2 Application of NAS Method to Sensor Fusion Networks

During the search process, the networks are ranked according to their fitness
value. The networks with the highest fitness value form the current population and
generate offspring networks. As a consequence of the aforementioned objectives, the
fitness value is dependent on multiple factors that have to be balanced. The fitness
function determines the fitness of a model, and it is a sum of three separate reward
functions, each described in the following.

� Quality Rewards: For a given network x, the rewards Rµ for the four quality
metrics µ are calculated separately and then summed up to a combined quality
reward Rq. To avoid bias towards any of the quality metrics, the reward for
each has an upper bound Rmax that is defined by the upper bound for all
metrics λ. The rewards for each metric µ are calculated as

Rµ =

{
1

1−µx , µx < λ,
1

1−λ , µx ≥ λ.
(4.2)

The four metrics from PASCAL VOC are translated into the combined quality
reward

Rq(x) =
∑
µx

Rµ(x), (4.3)

with µx ∈ {macc(x),mpAcc(x),mmAcc(x),mmIoU(x),mfIoU(x)}. During the ex-
periments, the upper bound of the metrics was set to λ = 93.33%, which is
capping each of the quality metric rewards to Rµ, max = 15 and the total fusion
quality reward to Rq, max = 75.

� Inference Time: The averaged execution time on the embedded hardware tx
is used to calculate the inference time reward

Rt(x) =

{
tmin
tx
Rt, max, tx > tmin,

Rt, max, tx ≤ tmin,
(4.4)

with a lower boundary of inference time tmin and the maximum reward Rmax for
meeting the latency requirements of the task. This timing requirement may
be set to any value depending on the task—in this work it is chosen to be
tmin = 20 ms in order to meet the 50 Hz real-time requirements for the fusion
task. During the experiments, the lower boundary of the inference time is set
to tmin = 10 ms. With this choice, the accelerator is occupied 50% of the time
with computations of the grid fusion networks and has still compute capacities
for other tasks. According to Equation 4.4, the inference time reward is capped
to Rt, max = 10.
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4 Multi-objective Model Optimization with Neural Architecture Search

� Model Size: The total memory footprint mx—on-chip- and off-chip-memory
combined—is taken into account in the model size reward

Rm(x) =

{
1
mx
Rm, max, mx > mmin,

Rm, max, mx ≤ mmin,
(4.5)

with mmin as the minimal required memory footprint and Rmax as the maxi-
mum reward for meeting the memory requirements of the hardware. During
the experiments, the optimal memory size is set to mmin = 150 KiB. This mem-
ory size is chosen in order to fit on to on-chip-memory of the EdgeTPU [44].
Other values of mmin do not influence the Rm, max.

� Fitness Function: Given a proposed network model x and the respective re-
wards Rt(x ), Rm(x ) and Rq(x ), let f(x) denote the network’s fitness value

f(x) = Rt(x) +Rm(x) +Rq(x). (4.6)

In total, the fitness function can reach a maximum value of fmax = Rq, max +
Rt, max +Rm, max = 75 + 10 + 10 = 95.

With a given, hardware-dependent set of (tmin,mmin), the goal of the neural archi-
tecture search is to find multiple Pareto-optimal solutions. Thus, the multi-objective
optimization is maximizing the fitness function

max
x

f(x). (4.7)

The set of Pareto-optimal solutions to this problem is the hardware-specific family
of GridFuN-networks. With the outlined maximum rewards, 20 out of 95, so roughly
20 % of the incentive is for the hardware-specific metrics and 80 % for the fusion
quality.

Genetic Diversity by Mutations

The population of network models is initialized by creating random directed acyclic
graphs within the constraints of the hyperparameters as cell descriptions. After
training the first generation of the population P, the best architectures are deter-
mined according to the fitness function (Eq. 4.6). Offsprings with slightly mutated
properties are created from these chosen architectures, and the next generation is
prepared (Algorithm 2). To maintain the genetic diversity of the current population
and to avoid getting stuck in local minima during the search, the following four
different mutations are implemented:

94



4.2 Application of NAS Method to Sensor Fusion Networks

� Operation Mutation Mop: Within a random node in a random cell type, one of
the operations oi is selected. After the mutation Mop, the operation becomes
oj ∈ O \ {oi}.

� Connection Mutation Mcon: If this mutation is called, one of the inputs (I1, I2)
to a random node i will be changed, so that (I1, I2) is becoming either (I ′1, I2)
or (I1, I

′
2) with I1 6= I ′2 and I ′1 6= I2, respectively.

� Number of Filter Maps Mutation Mfmap: Also, the number of initial feature
channels χ is searchable as a hyperparameter of the grid fusion networks.
This mutation allows the NAS to find an optimal number of filters χ per
convolutional layer. With every call of this mutation, χ increases or decreases
by 4. The minimal number of feature channels is set to χmin = 4.

� Cell Re-initialization Minit: With a call of Minit, a cell type is re-initialized
completely. This serves the purpose of avoiding local minima in the design
space of network architectures. A block type (encoding, decoding) is cho-
sen randomly and reset to a random configuration—ignoring its configuration
before.

Algorithm 3 Choice of Mutation.

Input: GridFuN architecture x
Output: Mutated GridFuN architecture x
r = randomInteger (1, 3)
for i = 1 to r do

m = randomInteger (1, 100)
if m ≤ 30 then
x = Mop(x)

else if 30 < m ≤ 60 then
x = Mcon(x)

else if 60 < m ≤ 90 then
x = Mfmap(x)

else
x = Minit(x)

end if
end for

Each offspring of a parent architecture is mutated according to Algorithm 3.
Before the model is trained, it is checked whether this architecture configuration
has already been evaluated and stored in the network database. This check saves
time as duplicate networks are not trained multiple times and thus, the search space
is traversed more efficiently.
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4 Multi-objective Model Optimization with Neural Architecture Search

4.3 Analysis of Automatically Designed Grid Fusion
Networks

Two main experiments are conducted, one with two nodes per encoding and decoding
blocks (K = 2) and one with a more complex configuration consisting of K = 3 nodes
per cell. The goal of these two main experiments is to find encoding and decoding
cell architectures that are optimal for embedded inference.

The auto-encoder depth is chosen to be δ = 4, as the receptive fields of convolu-
tional filters do not cover the full input occupancy grid at lower depths. The final
performance results are received from networks that have been trained on the full
dataset D for 10 epochs. Each search was going on until 1,000 networks have been
evaluated. In the following, the evolution of accuracies throughout the search is
discussed and the resulting micro-architectures are described.

4.3.1 Search Progress and Evolution Overview

A good metric for a successful evolution is to display the performance of the networks
over the duration of the evolution. In Figure 4.8 the test accuracy of each partially
trained network throughout the search of the two experiments are displayed as a
black dot. The gray lines show the mean accuracy at that time, and it indicates
the tendency towards better performing network models. In the experiment with
K = 2 (Fig 4.8a), the accuracies range from 80 % up to 88 %, and in the experiment
with K = 3 (Fig 4.8b) from 80 % up to 89 %. Both evolutions show an increase
in fusion accuracy over time, thus, they evolve successfully. The more complex
architectures (K = 3) have an increased capability of learning patterns and features,
which becomes apparent in the accuracy gap between the two experiments. Recall
that during the search, the networks are partially trained only, and they will perform
proportionally and significantly better after full training.

Note, that both experiments topped out after around 500 evaluated architectures.
This does not apply for the fitness value over time, which is not only dependent of
the accuracy and loss, but also on hardware constraints (Eq. 4.6). The architectures
from the current generation with the highest fitness values form the next generation,
thus the hardware related rewards are further optimized even after the accuracy has
topped out after 500 evaluated networks. The result can be observed in the fitness
values throughout the search (Figure 4.9), which steadily increase and top out at
around three quarters of the search.

The hardware-related metrics (Fig. 4.10) are received from the deployment on an
EdgeTPU accelerator. The mean inference times for both experiments are nearly
constant for all models; around 8 ms for K = 2, and 10 ms for K = 3. The
discrete patterns that can be observed in the model sizes throughout the search
(Figures 4.10c, 4.10d) describe certain configurations of χ feature channels, which
are present in steps of 4. Besides the horizontal patterns, there is a minor tendency
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Figure 4.8: Evolution of accuracies over the evaluation of 1,000 network models.
(a) K = 2, (b) K = 3. The red line indicates the best accuracy at this
time of the search process. The gray line indicates the mean accuracy
rising over time.

of the networks towards larger model sizes at the experiment K = 2. For the
more complex block configuration K = 3, the mean model size remains constant.
This shows that the smaller blocks have room for performance improvements in
increasing the model size by introducing more weight layers, or in increasing the
number of feature channels. The larger blocks (K = 3) incorporate an additional
node, which intrinsically increases the capabilities of the network by two additional
neural operations. Thus, the experiments are designed in a way that a further
increase in model complexity is not needed, as the evolution indicates a saturation
at K = 3.

Further, architectures that have extreme inference times, are discarded by the
genetic algorithm, as the time reward Rt is punished. Around network 500 in Fig-
ure 4.10b, a model is evaluated on the embedded accelerator with an inference time
of 100 ms. The genotype of this model is obviously discarded as no architecture has
followed with such a high inference time. High inference times are caused mostly by
a bad combination of memory loads, where some weights are stored in the off-chip
memory and first need to be time-costly transferred to the processing units of the
accelerator.

Ablation Study: Search Without Hardware Constraints

The main experiment was designed with multiple objectives that partially contra-
dicting each other. The hardware constraints are limiting the model size, and thus,
the quality. The other way round, a high level of fusion quality requires a high num-
ber of computations, and thus, leads to an increased inference time. If the hardware
limits are discarded during the search, the main objective is to maximize the fusion
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(a) (b)

Figure 4.9: Evolution of model fitness over the evaluation of 1,000 network models.
(a) K =2, (b) K =3. The red line indicates the mean fitness value rising
over time.

quality only. One can expect the evolution of models to go into the direction of ever
larger networks.

This was investigated in a separate NAS experiment, where the fitness function
(Eq. 4.6) is limited to the combined quality reward Rq (Eq. 4.3). The experiment
with K = 3 shows that:

� The model size steadily grows throughout the search until the model sizes grow
too big for the GPU memory.

� The Mfmap mutation is the dominant function of the search, as it lays founda-
tion to increased quality rewards without the need to find an efficient micro-
architecture.

� The maximum accuracy is reached faster than during the main experiment,
where hardware constraints have to be accounted for simultaneously.

� The search tends to optimize for local minima, as block re-initializations Minit

are more likely to decrease the fusion quality itself, but may have found a more
efficient cell architecture for the embedded hardware.

The multiple evaluations of this experiment are depicted in Figure 4.11. The mean
and variance of the best model performances at every state of the search are depicted
in Fig. 4.8. It can be observed that the given search method results in a consistent
performance of just above 90 % accuracy of the discovered block micro-architectures.
Also, the initially high variance of performances decreases with the ongoing evolution
until convergence. The convergence is achieved after around 300 evaluated networks
and simultaneously by reaching the maximum model size with the ever larger filter
map amounts. For the deployment on real-world embedded hardware, searching
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(a) (b)

(c) (d)

Figure 4.10: Evolution of inference times and model sizes over the evaluation of
1,000 network models. Inference times for (a) K = 2, (b) K = 3.
Model sizes for (c) K = 2, (d) K = 3. The red line indicates the mean
values over time. Note that plots (b), (c) and (d) are displayed on a
semi-logarithmic scale.

for network architectures with multiple, contradicting objectives results in a better
overall solution. This can be anticipated, because too large number of filters leads
to potential overfitting to the dataset. Thus, a smart architecture, not based on a
large number of filter channels, generalize better.

4.3.2 Results of the Search

The results of the neural architecture search are the encoding and decoding block
micro-architectures that are used to populate the macro-architectural skeleton of
the grid fusion networks1. One way to assess the quality of a model is to look only
for one dimension, eg. one metric or the fitness value. A better way of displaying

1Experimental results published in [11]
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Figure 4.11: Top: Mean and standard deviation of four NAS experiments for opti-
mizing towards accuracy and fusion quality metrics only. Bottom: The
number of initial filters χ of the best performing models at this time.

the performance of an architecture is to incorporate also the second dimension of
the analysis—the costs for the hardware.

Pareto-Optimal Solutions

Plotting the accuracy over the model size shows the trade-off and the resulting range
of network models along a Pareto-optimum (Fig. 4.12).

Note that the networks are optimized to reduce the pixel-wise classification loss
during the training—but during the search process, the networks are selected ac-
cording to the fitness function f(x) described in Chapter 4.2.3. This leads to the
stepped appearance of the Pareto-optimum between macc and the model size.

Both experiments (K = 2, K = 3) generated architectures with model sizes ranging
from around 100 KiB up to a few MiB (7 MiB and 4 MiB for K = 2 and K = 3,
respectively). Throughout this range, the accuracies of the fully retrained networks
ranged, proportionally to the model size, from 86.5 % to 89.8 % for K = 2 and from
88.9 % to 90.5 % for K = 3.

Discovered Micro-Architectures

The discovered encoding and decoding blocks of the two experiments are described in
this paragraph. The resulting adjacency matrices A in form of the according directed
acyclic graphs are plotted in Figure 4.14. Whereas the search yielded a variety of
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Figure 4.12: The trade-off between model size and accuracy for the two experiments
(a) K = 2 and (b) K = 3. The black crosses on the red Pareto-optimum
are the results of the NAS. Fully re-trained networks are shown as blue
stars.

different models, only two exemplary networks are chosen for visualizations. The
smallest network (GridFuN-887, K = 2, 90 KiB, f = 53.14) is denoted as GridFuN-
S, and the network with the best fitness value (GridFuN-686, K = 3, 1.36 MiB,
f = 62.48) is denoted as GridFuN-L.

In the micro-architecture of GridFuN-S, the edges are populated mostly with com-
putationally cheap operations, such as pooling layers (o3×3

avg , o3×3
max) and depthwise

separable convolutions osep (Fig. 4.13a). Note that the decoding block BK=2
dec incor-

porates pointwise convolutions only (Fig. 4.13b). Thus, the upsampling of the code
solely relies on bilinear interpolations obilinearups at the end of the decoding block. The
choice of simple operations leaves room for a fairly high number of initial feature
channels χ = 16.

The more complex micro-architecture of GridFuN-L allows more variety in the
choice of operations. All kinds of convolutional layers are present in the encoding
block BK=3

enc (Fig. 4.13c)—even standard convolutional layers, whereas oconv consume
more memory than osep. In the decoding block BK=3

dec , sole separable convolutions
are employed (Fig. 4.13d). Note that the input node I1 is the code from a deeper
block of the network, and only point-wise convolutions consume this tensor, but the
bypassed information in input node I2 is analyzed with spatial convolutions, too.

On the node-level of this experiment, it is notable that no intermediate nodes are
used, where a node Ni uses another node Ni−1 as one of its inputs. This means that
a flat architecture is preferred, and additional complexity is not beneficial anymore.
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Figure 4.13: Connection graphs of the best cell architectures with different number
of intermediate nodes K. GridFuN-S (K = 2, χ = 16): (a) Encoding
block BK=2

enc , (b) decoding block BK=2
dec . GridFuN-L (K = 3, χ = 12): (c)

Encoding block BK=3
enc , (d) decoding block BK=3

dec .

Comparison to Cell Architectures From Literature

To assess the performance of the discovered micro-architectures, a comparison with
literature comes at hand. Various neural architecture search projects have searched
for similarly defined problems, where only the micro-architecture is searched at a
given macro-architecture. Most NAS projects focus on image classification or image
segmentation tasks (Chapter 4.1), but none on the same macro-architecture that is
introduced in this work. A comparison is still viable, as other NAS projects search
for encoding and decoding blocks, too. Thus, for the comparison in this chapter,
cells from the literature are plugged into the macro-architecture of the grid fusion
task (Fig. 4.5).

The candidates for comparison are chosen according to the similarity and com-
patibility to our task and listed as follows:

� AmoebaNet [108]: The micro-architecture of the AmoebaNet encoding cell1 has
K (BAmoeenc ) = 5 intermediate nodes. As the original AmoebaNet is a classifica-
tion model, no decoding cell is provided. Thus, the decoding cell of the best
performing GridFuN network is used, which has K (BGridFuN−Ldec ) = 3 intermedi-
ate nodes. The number of initial feature channels of the AmoebaNet encoding
cell is χ = 12.

1In the original paper it is called the reduction cell.
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� Auto-DeepLab [79]: In this work only one block type with K (BDeepL) = 5 was
searched. Its architecture is used as encoding and decoding block in the grid
fusion macro-architecture. The number of initial filters is χ = 8.

� Auto-DispNet [116]: As an auto-encoder, Auto-DispNet incorporates both,
encoding (K (BDispenc ) = 3) and decoding blocks (K (BDispdec ) = 3). The number
of initial filters is χ = 18.

Each of the state-of-the-art blocks is evaluated for the same network depth (δ = 4)
that is employed for the NAS experiments of this work, too, and for a reduced
depth δ = 3. The reduced depth is investigated due to the large cell sizes (up
to 10 operations per block), compared to the GridFuN blocks, which have up to 6
operations from cell input to cell output. With an equal depth of δ = 4, the total
number of operations from network input to network output sums up to 2 ·K · δ =
2 · 5 · 4 = 40 operations for the state-of-the-art models and only 3 · 2 · 4 = 24 for the
GridFuN networks. Reducing the depth for the models from literature to δ = 3, the
operations are reduced to 2 · 5 · 3 = 30 to the cost of a reduced receptive field of the
convolutional filters. On the other hand, training with an increased depth of δ = 5
leads to unstable training results, based on the large number of operations and the
hindered gradient flow. Thus, the training configuration with increased depth is not
part of the comparison.

These networks are evaluated with the same training environment as the fully
trained, proposed networks (Chapter 4.2.3). The results are listed in Table 4.3
along with the performances of the initial, handcrafted models (Chapter 3.3) and
the discovered architectures of this chapter. Out of the evaluation of 1,000 networks
during the search, about 20 models describe the Pareto-front (Fig. 4.12) for each
experiment. Three exemplary architectures are selected from the Pareto-optimal
models; besides GridFuN-S and GridFuN-L, also GridFuN-M (GridFuN-831, K = 3,
680 KiB, f = 58.99). GridFuN-M offers a well-balanced trade-off between model
complexity, model size and the overall fitness.

Figure 4.14 displays the contents of Table 4.3 and, additionally, the performances
of different depths for the state-of-the-art networks. The reduced depth δ = 3
implies a reduced receptive field for the filters, which can be observed in the degraded
performance of those networks.

4.3.3 Discussion of Results

Whereas the network constructed out of the AutoDispNet blocks has the largest
model size with 6.36 MiB, the performance metrics are rather poor, compared to the
other models with lighter models. The χ = 18 feature channels obviously enlarge
the computational load, seen in the latency of 19.3 ms for a forward pass, but in
return the performance metrics are not enhanced in the same extent. Thus, the
fitness of AutoDispNet is the lowest of this comparison (f = 31.20).
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Auto-DeepLab on the other hand has the blocks with most intermediate nodes
(K = 5) and the least number of filters (χ = 8) of this analysis. With these pa-
rameters, it achieves better results than AutoDispNet with a quarter of memory
requirements (1.49 MiB). Still, the quality lacks behind the proposed GridFuN mod-
els, so that the fitness value is only at f = 42.47.

The encoding cells of AmoebaNet together with the decoding cells of GridFuN-L
form a grid fusion model, which is the best of the three external models. Its size
is equal to Auto-DeepLab, but composed of operations that are executed faster on
the target hardware (12.2 ms vs. 11.2 ms per forward pass). The accuracy macc

and the mmIoU perform very well in the range of the final GridFuN networks. This
is based on the specially searched, thus superior decoding cell of GridFuN-L, which
leverages especially the quality metrics. When compared to the proposed models,
AmoebaNet ’s encoding cell is computationally expensive, thus, resulting in a lower
fitness score (f = 55.04) while showing good fusion quality.

The cell-based, NAS-found GridFuN architectures are also compared to the hand-
crafted networks from Chapter 3, namely the DGF and its squeezed variant DGF-
SQ. The fusion performance of the DGF is superior to the automatically designed
ones, but it comes to the cost of significantly larger model sizes. To cope with the
large model size, DGF-SQ employs FireModules and DeconvFire modules from the
SqueezeNet family, but the fusion quality suffers as a consequence. The plain DGF
model consumes 8.87 MiB of memory achieving the top accuracy of 92.6 % and the
top mIoU of 85.2 %, whereas the squeezed variant DGF-SQ uses only 1.71 MiB, but
with an accuracy of 89.8 % and an mIoU of 79.1 %.
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Figure 4.14: Comparison of blocks discovered by this NAS [11] to cell architec-
tures from literature (AmoebaNet [108], Auto-DeepLab [79], Auto-
DispNet [116]) and handcrafted networks (DGF [10], DGF-SQ [9]).

The results from Table 4.3 are depicted in Figure 4.14, where the accuracy is plot-
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4 Multi-objective Model Optimization with Neural Architecture Search

ted over the logarithmic model sizes. The resulting networks of the two experiments
(K = 2, K = 3) are shown in a Pareto-front representation as stars on the blue and
red lines. Each experiment has models ranging from a tiny sizes of about 100 KiB,
up to a quality-oriented variant with multiple MiB. The networks constructed of
blocks from the literature are evaluated in two variants each, one with depth δ = 3
and another with δ = 4, in order to span over a range of possible performances.
Also, the handcrafted DGF and DGF-SQ are placed in the comparative figure, but
only in the state that is described in Chapter 3.

The higher the fitness value of a network is, the more it is placed towards the top-
left corner. Now it can be easily seen that out of the models from literature, Amoe-
baNet performs best, as it reaches comparable performance as the GridFuN (K = 2)
experiment. The other candidates from literature are outperformed by the proposed
approaches in this given task.

Limitations of the Experiments

The experiments have been conducted in order to enhance and outperform the hand-
crafted models with the embedded deployment in mind. Due to the limited search
time and computational power, the macro-architecture has been fixed for this given
task to have only two input branches and a static interconnection in between the
blocks. If this constrained is loosened, even better results can be expected.

Also, the the GridFuN-cells are specifically searched for the grid fusion task,
whereas the blocks from literature were discovered for different datasets. Amoe-
baNet ’s reduction cells are found for the CIFAR dataset, Auto-DeepLab’s blocks for
the Cityscapes and PASCAL VOC datasets, and the cells of Auto-DispNet for the
FlyingThings3D and Sintel datasets. Still, on a higher abstraction level, the blocks
are performing the same task, meaning encoding and decoding tensors. The differ-
entiation in macro- and micro-architecture is based on the scalability and exchange-
ability of those computational blocks, so that this comparison stands to reason.

4.4 Conclusion

In this chapter, an automated multi-objective optimization is performed on the grid
fusion problem from Chapter 3. In order to be applicable for the neural architecture
search (NAS) optimization, the grid fusion networks are described in a macro- and a
micro-architecture, where the macro-architecture is a preset, fixed skeleton of blocks
and the micro-architecture is the description of the blocks.

For a given auto-encoder macro-architecture, the NAS finds optimal blocks that
maximize a custom reward function. The goal of the reward function is twofold and
contradicting: Maximize the fusion quality and minimize the hardware requirements.
As a result of the search, a series of networks is found that describes the Pareto-front
between model size and fusion quality.
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4.4 Conclusion

The networks found in two experiments with 1,000 evaluated networks each, are
denoted as the GridFuN family. They are built from encoding blocks (Benc) and de-
coding blocks (Bdec), which are comparable to other semantic segmentation tasks in
literature. Thus, in a comparison between the proposed blocks and blocks from lit-
erature, the GridFuN micro-architecture outperforms blocks from AmoebaNet, Auto-
DeepLab and Auto-DispNet in the grid fusion task.
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Fusion Neural Networks

The generic architecture of the neural networks discussed in Chapter 3 and Chap-
ter 4 is also applicable to other sensor fusion use-cases. Once the input data is
transformed into the correct form to feed into the CNN structure and enough train-
ing data is available, the fusion can be learned. In this chapter, an additional
use-case is evaluated applying a sensor fusion architecture to combine a radar and
an infrared time-of-flight (ToF) camera. First, the use-case is outlined, followed
by the description of the special dataset for this application. Then, a variety of
model architectures is discussed and, finally, the performance of the architectures is
compared to literature by experimental evaluation.

5.1 Use-case: Gesture Recognition for Multimedia
Controls

In the cockpit of upcoming cars, the interface to the machine will be different than
how human-machine-interfaces (HMI) work today. A trend towards a system with-
out touch sensors is seen, for example devices with voice-control such as smartphones
or home assistants. Non-haptic controls are also beneficial for safe driving, as the
driver does not need to split his concentration between the road and multimedia
controls [144]. The driver will be able to swiftly adjust any multimedia settings
with his voice or the help of hand gestures without driving blindly.

In accordance with the steadily increasing awareness and need of privacy and
personal data protection, there is an interest in a system for driver monitoring
without camera sensors. Radar and depth sensors produce data that denies easy
identification of individuals, thus, are a good choice for this task.

The different nature of data coming from time-of-flight and radar sensors leads
to different pre-processing schemata and difficulties in combining the information
with traditional methods. The superiour classification accuracy and generalization
capabilities of neural networks come to the cost of immense computational effort for
the processor [6].

To meet the requirements of mass-produced vehicles, all computations have to be
performed on automotive microcontrollers and embedded CNN accelerators. This
applies not only to safety-critical tasks as ADAS, discussed in Chapter 4, but also
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for multimedia applications. Thus, also the hand gesture recognition system has to
be optimized for embedded inference with lightweight models, instead of relying on
heavy, deep neural networks.

5.1.1 Spatio-temporal Classification in Literature

Similar to the related works in Chapters 3 and 4, the traditional methods of process-
ing are outperformed with deep learning models. After the initial success of neural
networks for static image processing [43, 75], architectures were introduced to also
deal with spatio-temporal data, such as video sequences. A way of interpreting it
is to use the different video frames as feature channels of one input tensor to 2D
CNNs [39,117].

The authors of [31] use a combination of convolutional layers and long-short term
memory (LSTM) cells in order to classify spatio-temporal data. A CNN is applied
frame-wise to extract features, which then are passed to the LSTM for classifica-
tion over time. Similar approaches use 3D CNNs to acquire local spatio-temporal
features, which are fed into an LSTM to calculate global, long-term features of the
video [91,129].

These advances opened the door to activity classification and gesture classification
frameworks. Most hand gesture sensing systems rely on optical sensors, especially
on vision data from camera sensors. A very powerful approach is using the combi-
nation of RGB images with the optical flow to enhance accuracy of spatio-temporal
classification [4,73]. Authors of [131] make use of optical flow, too, but feed it along
with frame-wise features into a three-stream 2D CNN for action recognition.

While vision based approaches show good results, research also focuses on robust
multi-modal systems and

5.2 Dataset Description

In this section, the dataset, its gathering and mandatory pre-processing steps are
described. Also, the data is analyzed statistically in order to gain insights on the
subsequent neural network design phase.

5.2.1 Data Gathering

The data was gathered indoors and inside the car with the desired mounting position
in vicinity of the gear selection lever. With regards to train an online-classification
system, a constant stream of data is recorded as a raw base for further processing.
Two sensors are fixed to a custom, 3D-printed mount. They monitor the hand
gestures in the proximity of the gear selector lever, pointing up towards the rear
mirror.
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5.2 Dataset Description

Table 5.1: Amount of gesture sequences per gesture class in the dataset recorded
with radar and ToF sensors.

Gesture down up left right forward rotate open piano rub Total

Amount 186 275 256 235 260 192 286 224 311 2,225

Signal Recordings

The gestures are expected to be performed above the sensors in a close range of
r = [0 m, 0.3 m]. The ToF sensor1 is configured to scan this distance and it delivers a
three-dimensional point cloud. This point-cloud is projected into a two-dimensional
image plane, where the depth is denoted by the grayscale intensity. This image
spans a field of view of 62° in azimuth and 45° in elevation with a resolution of
224× 171 pixels.

The radar sensor2 uses a FMCW radar—the same modulation scheme as in Chap-
ter 3.3, but with the center frequency at 60 GHz, instead of 77 GHz. The regulation
allows to sweep a larger frequency bandwidth (58 GHz – 63 Ghz) at this frequency
band, resulting in a finer range resolution. One radar frame is composed of 32
chirps (Nc = 32, Tc = 0, 8 ms) and each chirp consists of 64 samples. The radar is
configured to measure 10 frames per second (Tf = 0.1 s). The resulting maximum
velocity

vmax =
λ

4Tc
=

5 mm

3.2 ms
= 1.56 m/s (5.1)

allows the system to detect gestures, even when carried out quickly. The range
resolution based on the 5 GHz frequency sweep is ∆r = c

2B
= 0.03 m. The velocity

resolution is

∆v =
Vmax
Nc

2

=
λ

2NcTc
= 9.75 cm/s. (5.2)

Both sensors of the system are synchronized to a rate of 10 Hz and during the
dataset recording, they are sampling constantly. The individual gesture sequences
are extracted offline after the recordings. In order to have a dataset with high
variance, multiple subjects were recorded performing the hand movements above
the sensors. Gestures performed by left and right hands were recorded in order to
learn control inputs of both, the driver and the passenger. The classes form a set of
intuitive gestures for multimedia control.

From the stream of information, gestures are extracted for building the training
dataset. A thresholding method is employed to the ToF and radar streams to detect
active gestures and mark the start and end frames of a gesture. The gesture is saved
to a hard disk in raw format along with the corresponding label. In total, the dataset

1pmd CamBoardpico flexx
2Infineon BGT60TR13C
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Figure 5.1: Exemplary visualization of the gesture classes with the two sensor modal-
ities each.

consists of 2,225 gestures with gesture lengths up to 29 frames, describing 9 gesture
classes (Tab. 5.1, Fig. 5.1).

Data Pre-Processing

The ToF images are processed with a Wiener filter to smooth the noisy depth values.
Furthermore, the depth values beyond the desired ranges are filtered out. This is
done to mitigate extensive noise in the background and focus the signal on the
important gesture itself. The noise is based on irrelevant objects of the scene and,
if there is no object within the range of operation, thermal noise.

The radar data is processed in multiple steps similar to the radar pre-processing
introduced in Chapter 2.1.1: First, the chirps are brought to zero mean by subtract-
ing the mean value of a chirp from each of the samples. Then, the range is computed
with a first-stage fast Fourier transform (FFT) over the range samples with an FFT
size of 128, from which the positive half is used. The range-Doppler images (RDI)
are computed with the second stage FFT with an FFT size of 64, resulting in an
RDI dimension of 64 × 64. Before each of the FFTs, the signal is multiplied with
a Hann window function in order to identify clean peaks and optimize the peak
to sidelobe ratio (PSLR). Other window functions, such as the Chebyshev window,
result in higher PSLR, but to the cost of broader mainlobes. Subsequently, the abso-
lute values of the RDI are thresholded with an ordered statistic CFAR (OS-CFAR)
in order to maximize the signal-to-noise ratio. OS-CFAR was chosen because of
better multi-target capabilities in comparison to cell averaging CFAR (CA-CFAR).
This is expected to have a positive impact on the classification of the gestures with
individual fingers moving (compare RDIs of piano gesture in Fig. 5.1).

Data Format

After data pre-processing, the contents of one training sample are the two in-
put sequences and the corresponding label. A raw radar sequence is a volume
Trad ∈ Rt×x×y×f , where t ≥ 1 denotes the timesteps in this sequence. Each timestep
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5.2 Dataset Description

stores a RDI with x× y as the range and Doppler dimensions, and f as the number
of feature channels. Here, f = 1, as only the intensity of the RDI is used. A raw
ToF sequence Ttof ∈ Rt×x×y×f is a similar volume to Trad, but x × y denote the
pixel dimensions of the ToF sensor output and there might be a different value of t.
There is only one feature f = 1 for Ttof, too, as it describes the distance of a target
to the sensor.

A transformation τ needs to be performed in order to feed these tensors into the
network model. τ depends on the network type and the embedded hardware to be
deployed on. Further information about τ is described along the neural network
models in Section 5.3. In the following a gesture G denotes spatio-temporal data in
form of a tuple G = (Trad,Ttof). The entries of G are a radar and a ToF sequence
of the same class.

Temporal Adjustments

The gestures vary in length so that it is not possible to directly feed them into a
network of constant input size (Fig. 5.2a, 5.2b). In order to adjust Tradand Ttofto
the same length t0, the sequences are zero-padded, before and after the original
sequence. The fix length t0 is chosen to be the maximum gesture length of the
dataset. Within these t0 frames, the gesture is put into a random position.
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Figure 5.2: (a) The dataset consists of gestures of various lengths. During training,
the gesture lengths are padded to a uniform length in order to have con-
stant length input tensors. (b) Per-class distribution of gesture lengths.
The number in brackets denotes the amount of gestures in this class.

Dataset Statistics

5.2.2 Data Augmentation

In order to increase robustness of the system, following data augmentation tech-
niques are applied. They are utilized randomly to individual input streams.
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(a) (b)

Figure 5.3: The plots show the t-SNE representation of the down-scaled (a) ToF and
(b) radar sequences of the dataset. The image dimensions are 32×32 and
the sequences are padded to a uniform length. Clearly, the gestures for
navigation (left, right, up, down) form distinct clusters, whereas the other
gesture classes are more difficult to distinguish. Both sensor modalities
provide cluster information about the classes so that the networks can
benefit from both sensor types.

� Random shifting of complete sequences

The ToF sequences Ttof are shifted in both pixel dimensions (x, y) by a
random value which can be up to 10 % of the respective pixel dimensions
(±0.1x, ±0.1 y). The radar sequences Trad are shifted randomly by up to 5 %
in Doppler, and 10 % in range dimension (±0.05x, ±0.1 y). The empty space
is filled with zeros.

� Zeroing out regions

A random areas in the image are selected, which are then filled with zeros.
The selection can either be the borders of the image for ToF, or patches within
the image for both sensor modalities. The border padding simulates different
scenarios of gestures that are not completely included within the field of view
of the sensor. Random patch zeroing reduces overfitting of the network to
certain regions. The patch sizes are from one pixel up to a square of 5 × 5
pixels.

� Adding constants to the sequence

To reduce the impact of numerical values, a random integer with a value up
to 5% of the maximum pixel value is added to the sequences.

5.3 Neural Network Architectures

The sensor fusion neural networks for classifying the gesture sequences—short ges-
ture classification networks (GCN)—have two parts. First a data pre-processor
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converts the gestures G into a compatible format with the transformation τ . Then,
the actual network architecture A predicts a class upon the input. Each network
consists of repeated individual encoding blocks, similar to the encoding structures
of Chapter 3 and 4. As these networks are classifying data, no decoding is needed
to upsample, only a fully connected classification layer after the encoder. Each cell
consists of operations that are compatible with the Google EdgeTPU (normal 2D
convolutions oconv, max pooling omax, batch normalization oBN , dropout oDO and
ReLU activations orelu) Multiple encoding blocks are stacked after each other until
the processed tensors reach a desired final embedding shape. Each sensor modality
incorporates its own encoding branch, where finally the embeddings are used for late
fusion and classification. The fusion is done with a fully connected layer onc

fc with nc
neurons that uses the concatenated information of both encoding branches. nc de-
notes the number of classes in the dataset. As a summary, each network F = (τ,A)
maps the input gesture G to an nc-dimensional vector (F : G → Rnc).

In the following, four network architectures A with their individual transforma-
tions τ are described. Each approach has a common that first, the spatial informa-
tion is retrieved from individual frames, followed by a temporal integration over the
time steps of the gesture.

5.3.1 Transformations for Dimensionality Reduction and
Network Architectures

Time Distributed, FTD = (τTD, ATD)

This network variant processes each time step with a shared CNN backbone with
TimeDistributed layers1 to retrieve spatial information, followed by temporal inte-
gration using LSTM cells. Each input stream has its own nLSTM LSTM cells. For this
approach, no transformation is needed, because the LSTM handles four-dimensional
data intrinsically. Thus, the transformation is the identity τTD : Rt×x×y×f −→
Rt×x×y×f .

The encoding cells use convolutions with 3 × 3 filter size, and are wrapped into
TimeDistributed layers. Once a spatial dimension (x, y) is below 8, the embedding
of the last cell is passed to an LSTM cell. Each input modality is assigned to its
individual LSTM unit. Hence, the temporal integration takes part after spatial
feature extraction and before the fusion.

3D Conv, F3D = (τ 3D, A3D)

In this approach, 3D convolutions are used directly on the spatio-temporal data
of each sensor type. No transformation is needed for this approach, consequently
τ 3D : Rt×x×y×f −→ Rt×x×y×f .

1TimeDistributed layers from Tensorflow Keras.
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The encoding cells of the A3D architecture use 3D convolutions and 3D max-
pooling. Their filter dimensions are chosen in order to filter separately for spatial
and temporal features. For a given spatio-temporal tensor T ∈ Rt×x×y×f , three-
dimensional convolutional filter fs ∈ R1×3×3 is applied for spatial, and ft ∈ R3×1×1

for temporal filtering. Accordingly, the max pooling sizes are chosen to reduce the
respective dimension. Once the spatial dimension (x, y) is below 8, both tensors are
flattened to vectors and concatenated for fusion and classification.

Video as Image, FVI = (τVI, AVI)

Each RDI and ToF image can be reshaped to vectors in order to solve the problem of
an additional dimension for the time. Those vectors are stacked to one single image
per gesture, which can be processed with a standard network with two-dimensional
convolutions. The transformation needed is

τVI : Rt×x×y×f −→ Rt×xy×f . (5.3)

After the transformation τVI, the input tensors do not have the 4th dimension.
Hence, they are processed with a 2D CNN. As the individual frames in this tensor
are vectors, spatial feature extraction is done with 2D convolutions with filter size
1 × 3 along the vectors dimension. Generally, 2 × 2 max pooling layers reduce the
image area by 1/4. Similarly, the max pooling in this approach reduces by the same
amount, but in the single direction of the image vectors by using 1×4 max pooling.
These encoding cells are stacked after each other until the image vector dimension
z is below 32, resulting in an embedding of shape Rt×z×1, z ∈ (0, 32).

Time as Feature, FTF = (τTF, ATF)

Both inputs have only one feature (f = 1), namely the reflectivity in RDI, and
distance in ToF images. This allows rearranging the input tensor in a way, so that
the time dimension t is placed as the feature channel f of the input Tin. The
transformation

τTF : Rt×x×y×1 −→ Rx×y×t (5.4)

produces a three-dimensional input tensor TTF
in ∈ Rx×y×t to the network.

In contrast to τVI, where the spatial context of the frames is lost, the transfor-
mation τTF preserves the images, but still reduces the dimensionality to three. The
input tensors are processed with encoding cells using 3 × 3 convolutions until the
spatial dimension (x, y) is below 8 for both inputs branches. The embeddings of the
tensors are flattened, concatenated and then fed into the fully connected layer for
classification.
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Figure 5.4: The general architecture of the proposed gesture classification networks
GCN. The gestures G from the dataset are fed through the transfor-
mation τ to the architectures A. Together they form the network
F = (τ ,A). At the end of each encoding cell, batch normalization (BN)
and drop out (DO) are applied before ReLU-activation. Green colored
nodes denote operations for spatial feature extraction. Blue nodes show
the operations that reduce in the time dimension. Both sensor modalities
are processed with the same architectural structure. Here, the processing
of only one modality is shown in the foreground for a better visualization.
The concatenation fuses the information of both input streams.
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5.3.2 Network Scaling Factor

Each above mentioned approaches F can process arbitrary input tensor sizes, such
as the raw input format (RDI: 64 × 64, ToF: 224 × 171) or a reduced input size S
(RDI: 32× 32, ToF: 32× 32), and each approach can be tuned with the number of
convolutional filters b. The scaling factor directly influences the size and capabilities
of the model, and it is determined by

b = (b0 + 2)δ, (5.5)

where parameter b0 is the offset and δ the depth of the encoding cells.
Several configurations of b are evaluated in the experiments in order to find a suite

of networks with varying capabilities. As b is dependent of b0 and δ, and the network
depth is known from the spatial dimensions of the input and the architecture type,
the number of filters per convolutional layer is set by b0 ∈ {0, 1, 2, 3}.

5.3.3 Embedded Deployment

The GCN models aim for embedded deployment, thus, have to meet the hardware
requirements of the targeted accelerator devices. Similarly to Chapter 4.1.2, the
selection of hardware accelerators is the suite of Google EdgeTPU, Intel Neural
Compute Stick 2 and NVIDIA Jetson nano. Recall the supported operations for each
HW accelerator (Table 4.1). A3D uses 3D convolutions, ATD relies on LSTM and
TimeDistributed Keras layers. Consequently, only the ATF and AVI architectures
are used for the embedded deployment, as they comply with the model requirements
of the embedded accelerators.

5.4 Experimental Evaluation

The GCN networks are evaluated in this section, where first, the training on a GPU
is described, followed by the embedded implementation, and finally, the results are
compared to literature. The analysis and results are published in [8] as a conference
paper1.

5.4.1 Training Results and Embedded Implementation

Training Configuration

The networks are trained on an NVIDIA TITAN V GPU. Convergence is achieved
after 100 epochs of training with a train-test split of 80 %. Each network architecture
is evaluated three times and the mean performance values are reported. Weight

1Paper [8]: ICAART 2021.
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training is done with an ADAM optimizer with β1 = 0.5 and β2 = 0.999. The
learning rate is regulated with a cosine decay with an initial value of 1e-4, a warm-
up of 10 % of the total iterations and holding the maximum learning rate for 10 %
of training iterations. ADAM optimizer minimizes the softmax cross-entropy loss
of the predicted nc classes. The weights of the convolutional filters decay with an
L2-regularizer with a regularization factor of 1e-4 and a dropout of 40 % is applied
to fully connected layers.

After each epoch, the class-wise accuracy αs is evaluated on the test set and used
for scaling the weights of each class ws for the next training epoch. The optimizer
weights the classes according to

ws = 0.5 +
1− αs

2
. (5.6)

Weights range from 0.75 to 1.25, where higher accuracy leads to lower weights and
vice versa.

Classification Performance

All of the approaches are trained on the GPU1 and then saved to frozen network
model files. The frozen representations are then used to be deployed on the three
accelerator devices (Section 5.3.3) by converting the models to the corresponding
intermediate representations of the hardware.

Besides the pure classification accuracy, the networks’ performances are measured
also in the following metrics (TP: true positive, FP: false positive, TN: true negative
FN: false negative) [100]:

� Accuracy macc = TP+TN
TP+TN+FP+FN

� Precision mprec = TP
TP+FP

� Recall mrec = TP
TP+FN

� F1-score mf1 = 2
mprec·mrec

mprec+mrec
= TP

TP+ 1
2

(FP+FN)

The four approaches (FTD
b , F3D

b , FVI
b , FTF

b ) show a good classification perfor-
mance that is strongly dependent on the architectural parameter b. With the largest
number of convolutional filters in the experiments (b = 32), the best accuracies are
achieved with all approaches (Fig. 5.2). The best performing model is the time-as-
feature approach with an accuracy macc = 97.9 % at full precision, resulting in a
model size of MTF

32 = 967 KB.
Decreasing the number of filters b in the models leads to lower classification

performance. As seen in Fig. 5.5, the accuracy is directly correlated to b. The

1NVIDIA TITAN V GPU
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Table 5.2: The best performances of the different gesture classification approaches
given the best scaling factor b and the reduced input S (32×32, 32×32).
M denotes the model sizes.

Input S
Model macc M
ATF

32 95.1 % 598 KB
A3D

32 96.6 % 529 KB
AVI

32 96.9 % 667 KB
ATF

32 97.9 % 967 KB

Table 5.3: Comparative results of proposed GCN architectures. M denotes the
model sizes. The measurements are based on the reduced input reso-
lution S (32× 32, 32× 32).

Model M Acc Prec Rec F1
AVI

32 0.67 MB 96.9 % 97.1 % 96.9 % 97.1 %
ATF

32 0.97 MB 97.9 % 98.0 % 97.9 % 97.9 %
3DCNN [90] 10.86 MB 98.6 % 98.4 % 98.3 % 98.3 %

largest scaling of accuracy (77.9 %–95.1 %) is seen in Fig. 5.2 with the model FTD
b ,

b ∈ {4, 8, 16, 32}. On the low-end of model scaling, the network FTF
4 achieves 92.3 %

accuracy with only MTF
4 = 149 KB of full precision parameters.

Ablation Study - Importance of Multiple Sensor Modalities

The importance of a multi-modal system is underlined by the results of this ablation
study. For that, the best performing network FTF

32 is modified predict the class of
a gesture based on only one sensor modality. This is done for both, radar and ToF
inputs, and then compared to the classification performance of the proposed multi-
modal approach (Tab. 5.4). The results show that the performance is significantly
improved, when using the fused information of both sensors. Relying only on the
ToF signals is better than on only the radar data, where neither of the performance
metrics surpasses 70 %.

The benefit of the sensor fusion of ToF and radar can be seen especially for the
gesture classes piano and rub. For small input sizes, the ToF does not deliver much
information, as the reduction to 32 × 32 pixels blurs the depth image quality. In
contrast to that, the networks can rely on the micro-Doppler signature of the FMCW
radar, where still in the reduced input dimension, individual fingers can be identified
moving up and down.
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Table 5.4: Comparison of results based on the classification of multi-modal input
(Radar+ToF) and the single modalities (Radar, ToF), all evaluated for
network model FTF

32 .

Metric Radar ToF Radar+ToF
macc 68.8 % 87.7 % 97.9 %
mprec 66.9 % 96.3 % 98.0 %
mrec 64.9 % 90.4 % 97.9 %
mf1 54.4 % 53.4 % 97.9 %

Embedded Deployment Results

After the evaluation on the GPU of all approaches, only the FVI and FTF network
graphs are frozen and used for embedded inference. Only these architectures comply
with the model requirements of all hardware accelerators.

The main advantage of these approaches is the application-oriented design that
allows the networks to be deployed on multiple embedded accelerators—they are not
bound to a single hardware. This is due to the simple model architecture that only
relies on supported operations and omitting operations such as 3D convolutions
or LSTM cells (Tab. 4.1.2). As a consequence of the slim models, fewer weights
have to be learned during training, and stored and convolved during inference. The
full precision model size of the largest proposed approach is only MTF

32 = 967 KB.
The quantization further improves applicability, because the model size is now com-
pressed to only 250 KB.

Counter-intuitively, the inference of the larger model FTF on the Intel NCS and
the NVIDIA Jetson nano is faster than the execution of the small model FVI

(Tab. 5.5). The reason is the faster execution of standard 3 × 3 convolutions, in-
stead of the atypical 1 × 3 filters in FVI. The hardware accelerators are optimized
for inferring with standard convolutions [55].

Table 5.5: Performances of the GCN architectures on various embedded CNN ac-
celerators. Inference times t are averaged over 50 forward passes and
M denotes the model sizes. Values are measured for the reduced input
resolution S (32× 32, 32× 32). ∗due to unsupported operations. ‡uint8 -
quantized values. †float16 -quantized values.

EdgeTPU NCS Nano
Model t M t M t M
AVI

32 21.1 ms 169 KB‡ 11.4 ms 316 KB† 20.3 ms 0.67 MB
ATF

32 38.7 ms 250 KB‡ 5.4 ms 459 KB† 16.5 ms 0.97 MB
3DCNN [90] n/a∗ n/a∗ n/a∗ n/a∗ 27.4 ms 8.0 KB
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5.4.2 Comparison to Literature

Authors of [90] propose a network architecture for fusing multi-modal input data for
gesture classification. The re-implemented version of their architecture is denoted
as 3DCNN in the comparisons. It is trained on the GCN dataset and evaluated on
the NVIDIA Jetson nano accelerator, which is the only device supporting all neural
operations used in 3DCNN. Whereas the 3DCNN model is implemented without
quantization of weights in the original paper, here, a quantized version of the graph
is used for the comparison on the CNN accelerator. The model requires 10.86 MB
of memory in full precision and 8.0 MB in the optimized version for the NVIDIA
Jetson nano.
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Figure 5.5: Classification accuracies over the model sizes of the network architectures
from Section 5.3, compared to 3DCNN [90]. Each of the investigated
architectures is evaluated with the scaling parameter b ∈ {4, 8, 16, 32},
describing an ever increasing amount of convolutional filters (Eq. 5.5).
The colored Pareto-fronts are described by the best values out of three
evaluation runs for each network variant.

Compared to 3DCNN [90], the proposed network FTF
32 shows similar classification

performance: The accuracy is −0.7 %, the precision −0.4 %, the recall −0.4 % and
the F1-score −0.4 % (Tab. 5.3).

Compared to 3DCNN, FTF
4 achieves an improvement of 69 times in the relation

between accuracy and model size macc/M .
The plot in Fig. 5.5 highlights the trade-off between accuracy and model size,

where the model size is on a logarithmic scale. Each colored line represents one
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model family’s performance on the GPU evaluations in full precision. The black
diamond shows the performance of 3DCNN [90].

5.5 Conclusion

In this chapter, a intrinsically privacy-aware gesture recognition system based on a
radar and a ToF sensor is proposed.

Current gesture sensing solutions typically rely on camera sensors that may violate
privacy standards [20,134]. Moreover, many solutions tend to large model sizes that
are infeasible to deploy on resource-constrained embedded accelerators. A further
restriction of the embedded hardware is the high number of unsupported operations
that limit the applicability of many state-of-the-art networks (Tab. 4.1).

The proposed solution employs a lightweight, two-stage algorithm that first trans-
forms the spatio-temporal 4D data of each sensor modality to a 3D tensor with
a fixed shape. The gesture, now in the form of 3D data, is then classified by a
GCN with one input branch for each sensor modality. The gesture recognition net-
works are designed for the deployment on the Google EdgeTPU, the Intel NCS2 and
NVIDIA Jetson nano, avoiding unsupported operations, such as recurrent layers or
3D convolutions.

The largest proposed network FTF
32 achieves equal classification performance as

3DCNN [90] with only 8.9 % of the model size. On the low-end of the model sizes,
FTF

4 only uses 149 KB of memory while still performing robustly (92.3 % accuracy).
Thus, the proposed network models can even be deployed on resource-constrained
embedded accelerators in the performance range of the Google EdgeTPU.

The main aspects of this chapter can be summarized as follows:

� Introduction of a lightweight, yet robust, multi-modal system for hand gesture
recognition. The system relies on combined radar and ToF sensory data only.
It offers variants that meet the different model requirements of state-of-the-art
embedded accelerators.

� Assurance of privacy by not relying on camera sensors, thus, addressing the
growing concerns about internet-of-things devices spying on the private life of
customers.

� A system design for edge devices with limited compute capabilities. Accord-
ingly, the proposed CNN models use standard neural network operations with
few parameters only.
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6.1 Summary

The thesis introduces a new approach for the automotive sensor fusion of Level 2/2+
cars. The topic of sensor fusion is positioned after the raw data processing, which is
described in the preliminary signal processing chapter (Chapter 2), and before the
mapping task, which integrates sensory information over time in order to create an
environmental map. With the focus on current market trends towards a massive
growth in partially automated vehicles, especially the sensor fusion of camera and
radar systems is treated. Those sensor systems are, contrary to most of the research
regarding sensor fusion, increasingly distributed and inhibit large portions of the
pre-processing chain. Thus, a central fusion ECU has to cope with pre-processed
feature-level data.

Traditional sensor fusion in cars with low automation levels is the combination of
object- or track-level data. This environmental model allows the system to build up
knowledge about distinctive objects, but not the area in between those objects. A
typical environmental model, where the system can deduct, where it is drivable and
where it is not, is the occupancy grid. There, the surrounding area is subdivided into
small, uniform, checkerboard-like cells, with each cell described by the probability
of it being occupied by an obstacle or being free. Usually, the data source for
generating occupancy grids is the raw data of a precise ranging sensor, such as a
lidar.

However, in mass-produced, low-cost vehicles of automation Level 2/2+, only
camera and radar sensors are available and there is no access to the raw sensor data
because of the distributed architecture. Thus, this work aims to fill this gap by
leveraging the feature-level sensor data to create a meaningful, dense environmental
model in form of an occupancy grid.

In Chapter 3, a framework for fusing multiple occupancy grids with neural net-
works is introduced, namely the fully convolutional fusion network (FC-FN), the
auto-encoder fusion network (AE-FN) and the auto-encoder with bypass fusion net-
work (AEB-FN). These architectures process sparsely populated occupancy grids
of the individual sensors of different modalities to a fused representation. In the
fused occupancy grid, all the information of the incoming OGs are combined and,
additionally, an estimation about the drivable free-space is performed.

The basic working principle is a special form of neural network training, where
the ground truth occupancy grid is based on data from a lidar sensor. Thus, during
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the training phase, the networks learn to translate the inputted occupancy grids to
a lidar-like representation. Simultaneously, the networks are trained to recognize
the underlying structures of the scene, based on the radar and camera inputs.

The benefits of this approach are:

� Lidar-like environmental model from low-cost sensors available in mass-produced
cars.

� Free-space estimation based on the underlying structural components and sur-
roundings.

� Instantaneous occupancy grid with an estimate for the drivable space, without
the need for temporal integration of traditional mapping.

The grid fusion networks require heavy computations for real-time performance,
especially when considering large, high resolution occupancy grids. In order to
make the neural networks applicable on automotive grade microcontrollers, the net-
work architecture is designed with respect to the hardware. The neural architecture
search (NAS) approach in Chapter 4 optimizes the network models according to
a fitness function. Maximizing this fitness function incorporates a multi-objective
optimization that favors slim models that simultaneously produce a good fusion
quality. With the application of the NAS to the grid fusion task, a family of grid
fusion networks is proposed in this work, namely the GridFuN. They are designed
to run on a low-power CNN accelerator, which can be expected to be included in a
similar form in future automotive microcontrollers. The GridFuN models scale with
the model size, from well-performing slim models to big high-performance models.
They describe a Pareto-front of model size vs. fusion quality and the discovered
models show superior performance to comparable architectures.

The paradigm of sensor fusion networks with multiple input streams for multiple
sensor modalities is adopted to another automotive sensor fusion use-case: a robust
gesture recognition system that relies on ToF and radar data only. The crux of
this use-case is the compression of typically large vision-based networks for gesture
classification, to lightweight models that are applicable on constrained embedded
devices. This is achieved with the gesture recognition networks (GCN) by two
major adaptations: on the one hand, the choice of sensor modalities reduces the
required processing power, as image processing is computationally more costly, than
radar or ToF signal processing. On the other hand, with an optimized input data
pipeline, the 4D spatio-temporal data is reduced to three dimensions, allowing the
application of standard neural operations. The GCN compares to similar approaches
from literature, but utilizing only 8.9 % of the model size.

126



6.2 Publications

6.2 Publications

In total, four conference papers have been published throughout this thesis, out of
which two were presented with awards:

1. Paper [10], discussed in Chapter 3.3: Deep Grid Fusion of Feature-Level Sensor
Data with Convolutional Neural Networks. Awarded with the Best Student
Paper Award in Graz during the IEEE ICCVE 2019.

2. Paper [9], discussed in Chapter 3.4.3: Hardware-Aware Grid Fusion Networks
for Automotive. Presented in Nuremberg during the ewC 2020.

3. Paper [11], discussed in Chapter 4: Neural Architecture Search for Automotive
Grid Fusion Neural Networks. Awarded with the Best Paper Award online1

during the IEEE ICMLA 2020.

4. Paper [8], discussed in Chapter 5: Sensor Fusion Neural Networks for Ges-
ture Recognition on Low-Power Edge Devices. Presented online during the
ICAART 2021.

6.3 Outlook

The automotive market is ahead of two major changes that might disrupt not just
traditional car manufacturers, but whole economic ecosystems, as the developed
hierarchy of OEMs and suppliers will be scrambled up.

On the one hand, the shift from cars with combustion engines towards electric
vehicles is already taking place and visible in the beginning of the 2020s. Growing
regulatory requirements for low emissions thrive the development and production
of electric vehicles, which rely on significantly less components than combustion
engines. Thus, suppliers of those parts will be rendered redundant. Overall, the
change introduced by the shift towards emission-free vehicles is large, but compared
to the advances in automated driving, minor.

On the other hand, automated driving technology has the potential to disrupt
complete economies and societies. The latter, because once autonomous driving is
established, numerous jobs will be rendered obsolete, starting with the large number
of truck and cab drivers. The introduction of increasingly automated vehicles is slow
and incremental, but can be anticipated in the following three stages. The scope of
this work is targeting the short- and mid-term perspective, where a still distributed
system architecture makes it hard for a fusion ECU to access raw sensor data.

1The conference in Miami was canceled due to the pandemic situation.
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Short-Term Perspective (until 2025)

Coming from the strictly distributed system architecture, the development is limited
to the paradigm of one function for one ECU. In some cases, this will evolve to
merging some ECUs, but this is still limited to a few functions. In total, there will
be more than 100 ECUs distributed in the vehicles [18].

This hardware forms the base for driver assistance systems of Level 1 and 2 for
mass-market penetration. The assistance systems evolve incrementally, for example
the Lane Departure Warning to Lane Keep Assist to Lane Keep Steer systems.
Typically, these algorithms rely on feature-level camera and radar data.

Mid-Term Perspective (2025 - 2030/2035)

In these years, the vehicle architecture will evolve to a domain centralization. Here,
five main domains will be created (powertrain, safety, sensing, comfort and infotain-
ment), each of which will be driven by a domain-specific controller. Even though
this reduces the number of ECUs in the vehicle, still, around 30–60 ECUs are needed
in this case [18]. However, within the sensing domain, the distributed system archi-
tecture further remains.

With this hardware setup, more advanced driver assistance systems are enabled,
starting with more sophisticated systems of Level 2 (Level 2+), or Level 3. In gen-
eral, the carmakers favor incrementally enhance Level 2 systems, than introducing
a Level 3 system, in order to avoid the trap of promoting the driver’s ability to
become disengaged from driving [18]. Rather they will advise that the drivers may
take their hands and eyes off, but remain engaged.

Long-Term Perspective (2030/2035 onward)

In a final step towards a system architecture for fully automated vehicles, all the do-
main controllers are centralized into one high-performance computer. It is expected
to reduce the number of required ECUs down to 20–45 units [18]. The consequence
of central computing is that the sensors are connected directly to the central con-
troller, instead of the intermediate ECUs within smart sensors. Thus, to transmit
raw data streams of multiple sensors, the vehicle network requires a new level of
bandwidth for this architecture.

The central processor requires dramatically increasing processing power, as the
number of computationally expensive neural networks will increase for the assistance
systems of L3, L4 and L5. Initially, neural networks are used for computer vision
tasks in a single camera module, but with more sensors integrated in the systems and
requirements to a robust environmental perception, leverage manifold networks. On
the one hand, the perception of each modality and the fusion of multi-modal data can
be enhanced with ML. On the other hand, it is needed to have multiple perception
pipelines in parallel, in order to robustify the system. To achieve this, Mobileye and
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Tesla separately proposed systems (L3, L4, L5) that use various perception engines
simultaneously, each with own, separate ML algorithms [7, 70].

Future Works

In the context of the outlook described above, the following investigations are next
to be done with respect to sensor fusion neural networks:

� Expansion of the sensor modalities to ultrasonic sensors. Especially for short-
range applications, such as parking lot detection, parking assistance and auto-
mated parking, low-cost ultrasonic sensors could be leveraged to higher value
for the vehicular perception. It could be investigated, how beneficial the in-
clusion of a third modality would be to the perception system.

� Integration into mapping task. Whereas mapping is not needed for low automa-
tion levels, it can be anticipated that integrating the output of the proposed
sensor fusion networks into the mapping, especially for dense urban traffic
situations, could be beneficial for a faster assessment of the situation.

� Extension of the NAS to search for macro-architecture. Generally, the perfor-
mance of the NAS was constrained by the limited search space on the micro-
architecture. Extending the search on a macro-architectural level, too, would
result in even better performing network models.

Further interesting research topics, such as 3D imaging, can be anticipated with
the use of the special training paradigm applied in this thesis. That is to train a
network with expensive data from various sources in order to generate high-quality
data from cheap sensors in the deployment phase, where not all data sources are
available.
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