JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Complex Robotic Manipulation via Graph-Based
Hindsight Goal Generation

Zhenshan Bing, Matthias Brucker, Fabrice O. Morin, Rui Li, Xiaojie Su, Senior Member, IEEE,
Kai Huang*, and Alois Knoll, Senior Member, IEEE

Abstract—Reinforcement learning algorithms such as hindsight
experience replay (HER) and hindsight goal generation (HGG)
have been able to solve challenging robotic manipulation tasks
in multi-goal settings with sparse rewards. HER achieves its
training success through hindsight replays of past experience
with heuristic goals, but under-performs in challenging tasks
in which goals are difficult to explore. HGG enhances HER by
selecting intermediate goals that are easy to achieve in the short
term and promising to lead to target goals in the long term. This
guided exploration makes HGG applicable to tasks in which target
goals are far away from the object’s initial position. However,
the vanilla HGG is not applicable to manipulation tasks with
obstacles because the euclidean metric used for HGG is not an
accurate distance metric in such environment. Although with the
guidance of a hand-crafted distance grid, grid-based HGG can
solve manipulation tasks with obstacles, a more feasible method
that can solve such tasks automatically is still on demand. In
this paper, we propose graph-based hindsight goal generation
(G-HGG), an extension of HGG selecting hindsight goals based
on shortest distances in an obstacle-avoiding graph, which is a
discrete representation of the environment. We evaluated G-HGG
on four challenging manipulation tasks with obstacles, where
significant enhancements in both sample efficiency and overall
success rate are shown over HGG and HER. Videos can be viewed
at https://videoviewsite.wixsite.com/ghgg,

Index Terms—Reinforcement learning, hindsight experience
replay, robotic arm manipulation, path planning.

I. INTRODUCTION

N recent years, deep reinforcement learning (RL) [18]

has made significant progress, with RL concepts being
successfully applied to decision-making problems in robotics,
which include, but not limited to, navigation tasks [40],
helicopter control [24], hitting a baseball [27], door opening
[S]], screwing a cap onto a bottle [19], object manipulation [1]],
and many other control tasks [39], [17], [41], [36], (211, [42].
To train a meaningful policy for such tasks, neural networks are
used as function approximators for learning a value function
to optimize a long-term expected return. Estimation of the

Z. Bing, M. Brucker, F. Morin, and A. Knoll are with the Department of
Informatics, Technical University of Munich, Germany. E-mail: {bing, morinf,
knoll} @in.tum.de, matthias.brucker@tum.de.

R. Li and X. Su are with the School of Automation, Chongqing University,
China. Email: rui.li@cqu.edu.cn, suxiaojie@cqu.edu.cn

K. Huang is with the School of Data and Computer Science, Sun Yat-sen
University, China.

*Corresponding author: Kai Huang. Email: huangk36@mail.sysu.edu.cn

“© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.”

expected return is based on a reward function, which is highly
associated with the tasks and therefore must be thoroughly
shaped for policy optimization.

In most real-world applications, where a concrete represen-
tation of efficient or even admissible behavior is unknown, the
design of a reward function is challenging and time-consuming,
thereby hindering the wide applications of RL. Consequently,
algorithms that can support learning from sparse rewards are
highly desirable, e.g., a binary signal indicating successful task
completion; since sparse rewards are easy to derive from the
task definition without further engineering. Andrychowicz et
al. [1] introduced an algorithm called “hindsight experience
replay (HER)”, which improves the success of off-policy RL
algorithms in multi-goal RL problems with sparse rewards.
The concept behind HER is to first learn with hand-crafted
heuristic intermediate goals that are easy to achieve, and then
continue with more difficult goals. Precisely, HER constructs
hindsight goals from previously achieved states, replays known
trajectories with these hindsight goals, and trains the goal-
dependent value function based on the results. While HER has
proven to work efficiently in environments where goals can
be easily reached through random explorations [28], it fails
to reach goals that are far away from initial states and hard
to reach. Due to random explorations and the heuristic choice
of hindsight goals from achieved states, hindsight goals keep
being distributed around the initial state, far away from the
target goals, which will never be reached since no positive
reward signal is obtained.

Hindsight goal generation (HGG) [30] tackles the afore-
mentioned problem by using intermediate hindsight goals as
an implicit curriculum to guide exploration towards target
goals. HGG aims at choosing hindsight goals that are both
easy to achieve and challenging enough to help the function
approximator learn how to achieve the target goals eventually.
In HGG, the choice of hindsight goals is based on two
criteria: the current value function (as much knowledge as
possible about how to reach the hindsight goals) and the
Wasserstein distance between the target goal distribution and
the distribution of potential hindsight goals (goals as close
as possible to the target goal distribution). The resulting
Wasserstein-Barycenter problem is discretely solved using
the euclidean distance metric between two goals sampled
from the potential hindsight goal distribution and the target
goal distribution. While HGG demonstrates higher sample
efficiency than HER in environments where the euclidean
metric is applicable, it fails in environments with obstacles
without the guidance of a hand-crafted distance grid, where the

https://videoviewsite.wixsite.com/ghgg

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

shortest obstacle-avoiding distance between two goals cannot
be computed with the euclidean metric.

In this paper, we propose graph-based hindsight goal
generation (G-HGG), an extension of HGG, to solve complex
robotic manipulation tasks with obstacles within the framework
of sparse-reward RL. We state the complex robotic object
manipulation tasks that can not be solved by state-of-the-art
sparse-reward RL algorithms. We formulate our algorithm G-
HGG as graph construction, shorted distance computation
as pretraining steps. We then integrate stopping condition to
the overall G-HGG algorithm extended on the basis of HGG.
To make G-HGG applicable to environments with obstacles,
the euclidean metric is replaced by a graph-based distance
metric: the environment’s goal space is represented by a
graph consisting of discrete goals as vertices and obstacle-
avoiding connections between the vertices as edges. The
distance between two goals are then approximated by the
shortest path on the graph between the two vertices that are
closest to the two goals. We design four new challenging
robotic object manipulation tasks, which contain obstacles with
different difficulties. And we compare the performances of G-
HGG, HGG, and HER by running them in that four challenging
manipulation tasks.

Our main contribution to the literature is an algorithm that
bridges graph-based planning and sparse-reward RL for solving
complex robotic manipulation tasks. Specifically, first, we
provides a graph-based distance metric for generating accessible
hindsight goals that avoid obstacles and guide the explorations
at the same time. This graph-based concept offers a way to
quickly build up reachable 3D spaces that can be further used
for training goal-conditioned RL agents. Second, with this
graph-based distance metric, we proposed a novel algorithm
G-HGG as an extension of HGG. The G-HGG can successfully
solve complex object manipulation tasks in environments with
obstacles. Third, we also introduce a stopping mechanism to
terminate the hindsight goal exploration when those goals are
close enough to target goals. This stopping mechanism often
leads to faster learning and higher successful rates. Finally, by
comparing the performances of G-HGG on four challenging
object manipulation environments, we demonstrate that G-HGG
provides a significant enhancement in both sample efficiency
and overall success rate over HGG and HER. With ablation
studies, we also show the robustness of G-HGG in terms of
discretization density.

We first consider our work as a direct evidence that sparse
reward RL can be used to solve complex manipulation tasks
with obstacles, which is significant since it is difficult to design
a proper dense reward for most of the real-world manipulation
tasks and most of the tasks have obstacles in their scenarios.
Secondly, we consider G-HGG as an alternative approach to
design distance representations in manipulation tasks. This
may inspire more methods to design even more sophisticated
distance metric representation to solve more challenging tasks,
such as those with dynamically moving obstacles. Third, from
the perspective of implementing RL tasks in the real world, G-
HGG also provides a practical solution to solve complex robotic
manipulation tasks in the real world with the consideration
that 3D distances can be acquired in such a fixed robotic arm

scenario.

II. RELATED WORK

Informative and effective explorations are essential for
solving goal-conditioned RL tasks with sparse rewards. An
amount of research has emerged and we briefly discuss them
from four main ideas.

A. Prioritized Experience Replay

One major drawback of HER has been its inefficient random
replay of experience. Research has shown that prioritized sam-
pling of transitions from the replay buffer significantly increases
sample efficiency. Prioritized sampling can be based on the
TD-error [33], reward-weighted entropy [43]], transition energy
[44], and density of achieved goals [45]]. Curriculum-Based
Experience Replay (CHER) introduced by [11] adaptively
prioritizes replay buffer entries according to their diversity
with respect to other replay goals and their proximity to target
goals. The diversity demonstrates the curiosity of an agent to
explore the environment. The proximity based on euclidean
distance represents how close are these goals close to the
desired goal. However, CHER is not applicable to tasks with
obstacles that can mislead the euclidean distance.

B. Demonstrations for Improved Exploration

Exploration is another challenging problem in sparse-reward
RL algorithms such as HER. In scenarios with a high-
dimensional action space and a large task horizon (e.g. far-away
goals), finding a non-negative reward can be very difficult.
Nair et al. use demonstrations to tackle this issue and learn
challenging multi-step tasks such as object stacking [23]].
More concretely, their approach combines multi-goal RL with
imitation learning by introducing a demonstration replay buffer
and a behavioral cloning loss.

C. Curriculum Learning

Another way to tackle the exploration problem in sparse-
reward multi-goal RL is curriculum learning (CL) [31], which
presents problems in a favorable order, the so-called curriculum.
One CL approach to improve exploration is augmenting the
sparse learning problem with basic, easy-to-learn auxiliary
tasks [31]], [9]. In the absence of extrinsic motivation due to
the sparsity of external rewards, intrinsic motivation can be
used to create a curriculum for improved exploration [34],
[25], [14], [26], [37], [6l, [3]. Another way of constructing
a meaningful curriculum is to predict high-reward states and
generate goals close to these meaningful states [16], [12], [13],
[[L1]]. Florensa et al. [12] have recently proposed a curriculum
learning algorithm, in which a generative adversarial network
is trained to produce goals of intermediate difficulty (GOID),
which leverages from Least-Squares GAN [22]]. The GOID
approach first labels a set of goals based on the appropriate
level of difficulty for current policy of the agent. Secondly, by
using these labelled goals, GOID trains a generator to output
new goals in the appropriate level of difficulty. Finally, GOID
trains the agent using these generated intermediate goals. Ren

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

et al. [30] have combined GOID with HER and compared
its training performance to their own HGG algorithm on a
FetchPush task. HGG demonstrated better sample efficiency
than GOID+HER, which showed only minimal improvement
over HER. Inverse curriculum generation ([13]]) shows that
curriculum learning also works reversely, when the agent
gradually learns to reach the goal from a curriculum of start
states chosen to be increasingly far from the goal. PCHID
creates the curriculum by following the idea of dynamic
programming with k-step inverse dynamics learning [38]].
Different from HER, this method can be incorporated with both
on-policy and off-policy RL algorithms. However, it suffers
from being problematic when the dynamics is too complex to
be approximated, such as a task with extensive interactions
with an object.

All above mentioned curriculum learning algorithms have
demonstrated to improve exploration in sparse multi-goal RL.
However, they share one significant drawback: exploration is
unguided. Consider a scenario with a very large goal space,
where target goals are far from the goal representation of the
initial states. Even when following a curriculum based on
auxiliary tasks, novelty, information gain, previous rewards,
or training success, the agent has to gradually explore the
entire goal space until a target goal is reached for the first
time. When target goals are "hidden", e.g. by obstacles, this
unguided exploration process takes an unreasonably long time.

D. Representation Learning

Representation learning [4] is a promising framework to
solve goal-conditioned RL tasks, in which representative
abstractions are interpreted from high-dimensional observations
to low-dimensional latent states. With the representations as a
planner, model-free RL algorithms are able to perform control
tasks. Some work showed that learned representations can be
used to solve navigation and goal-reaching tasks for mobile
agents. Robotic manipulations tasks were implemented but
limited to 2D space because most representations were learned
from images [35], [[15], [10].

III. PRELIMINARIES
A. Goal-Conditioned RL

In goal-conditioned RL, an agent interacts with its environ-
ment to reach some goals, which can be modeled as a goal-
conditioned Markov decision process (MDP) with a state space
S, an action space A, a goal space G, a probabilistic transition
function P : S x A — S, a reward function 7 : S x A — R,
and a discount factor v. At every time step t, the agent’s
behavior a; is defined by a probabilistic policy 7(s¢||g), given
by the current state s; and the goal g (we use || as a symbol for
concatenation into S x G). The task is to find an optimal policy
that can maximize the expected curriculum reward starting
from the initial state sampled from the initial state distribution
s € Sp, which is defined as

oo

V7 (sllg) = ESO:SNSO»at""ﬂ'(stHg)ySt+1NP(5tuat) [Z ’ytrg(st, at)]

t=0

(D

B. Hindsight goal generation

HGG [30] is an extension of HER [[1] to scenarios in which
the target goal distribution differs a lot from the initial state
distribution. The idea behind HGG is to guide exploration by
choosing suitable intermediate goals. On the one hand, such
intermediate goals should not be too far from goals that the
agent knows how to reach, allowing the neural networks to
generalize from this experience. On the other hand, they should
not too close similar to already known goals that the agent
does not learn anything new. Such intermediate goals should
be properly explored to allow the network to generalize from
this experience and learn new behaviors as well. HGG can be
briefly explained as follows. A value function of a policy 7
for a specific goal g is assumed to have some generalizability
to another goal ¢’ close to g [2], [20]. This assumption is
mathematically characterized via Lipschitz continuity as

V7 (sllg) =V (s'llg")] < L-d(sllg, s"llg"), (@
where d(sl||g, s'||g’) is a metric defined by
d((sllg), (s'llg")) = cllm(s) = m(s)l2 + [lg = ¢l (3)

m(-) is a state abstraction to map from the state space to
the goal space. The hyper-parameter ¢ > 0 provides a trade-
off between 1) the distance between target goals and 2) the
distance between the goal representation of the initial states.
Assuming the generalizability condition (2) holds for two
distributions s§"||g® ~ TM and s{”||g® ~ T@, Ren
et al. [30] demonstrated that

V(T 2 v (TD) - L-D(TH, T®), @

where D(-,-) is the Wasserstein distance [32] based on d(-,-),
defined as
1 2 : 1 1 2 2
0T = (B a0)
&)
(7MW, 7)) denotes the collection of all joint distributions
(V19 582 (]g()), the marginal probabilities of which are
T and 7). With 7* denoting the joint distribution over
initial state sy and goal g, the agent tries to find a policy
7 maximizing the expectation of the discounted cumulative

reward based on the state value function defined in (T)):
V(T i= oy gnr [V (s0ll9)]. ©)

From (@), it can be derived that optimizing this expected
cumulative reward defined in (6) can be relaxed into the
surrogate problem of finding

max V™ (T)—L-D(T,T"). @)
T,m

Joint optimization of 7 and 7 (7) is solved in a two-stage iter-
ative algorithm. First, standard policy optimization maximizes
the value function V™ based on experience generated from the
intermediate task set 7. Second, the intermediate task set 7 is
optimized while the policy 7 is kept constant. The second step
is a variant of the Wasserstein Barycenter problem with the
value function as a bias term for each initial state-goal pair,
which can be solved as a bipartite matching problem [8]. For

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

0.40.50.6 0.7y0.8 091011

0.40.50.6 0.7yo.8 091011 1°

(a) Case A with euclidean norm
distance: Shortest path goes
through the obstacle, dy, =
0.210

(b) Case B with euclidean norm
distance: Shortest path goes
though the obstacle, d2, =
0.283

040506 0708091011 13 0.4050.6 0.708091.01.1 e

(c) Case A with alternative dis-
tance: Shortest Xath goes around
the obstacle, d;;; = 0.566

(d) Case B with alternative dis-
tance: Shortest Eath goes around
the obstacle, d;; = 0.301

Fig. 1: Shortest distances between two points (green dots) in 3D space with obstacles.

this to work, 7* is approximated by by K initial state-goal
pairs sampled from it, resulting in 7* = {(3}, §°)}/<,. Now,
for every (3%, §') € T*, a trajectory 7% = {s!} from the replay
buffer is found that minimizes

~1

w((8,9"),7) 1= cllm(55) — m(sp)ll2 + min ([|g" —m(s})||2
1 T 7
LV (shlm(s1))).
®)
The Lipschitz constant L is treated as a hyper-parameter. These
K trajectories 7 minimize the sum

2.

(85,5)€T™

w((8h, 4,7 9)

Finally, from each of the K selected trajectories 7t the
hindsight goal g¢' is selected from the state si € 7¢, that
minimized (§). More formally,

g = m(argmin (119" = m(shllz - iVﬂ<sa|m<sz>>)).
SiET;

(10)
Combined with the idea of HER [1]] and replacing (s, g) with
(8%, g"), the generated hindsight transition (s¢||g, as, 74, St+1/|9)
can be then stored in the replay buffer for training the policy. To
this end, HGG is able to generate a curriculum of meaningful
hindsight goals rather than hand-crafted heuristic goals from
HER, guiding exploration towards target goals.

IV. METHODOLOGY

By guiding the agent to collect more valuable hinsight
goals, HGG greatly extends the application scenarios in object
manipulation tasks, in which the hindsight goal distribution
differs significantly from the initial goal position. However, the
hindsight goals generated from HGG is based on measuring the
Wasserstein disitance between potential hindsight goals and the
target goal distribution, which will fail in obstacle environments
where euclidean distance is not applicable without the guidance
of a hand-crafted distance grid.

In this section, we first provide the definition of the concrete
problem of object manipulation in environments with obstacles,
where HGG reaches its limits. We then introduce G-HGG as a

solution, which is an extension of HGG using a graph-based
distance measure.

A. Problem Statement

In this paper, we focus on solving robotic object manipulation
tasks with sparse rewards, where the goal is to move an object
to a certain point in 3D space with a robotic gripper arm. Such
scenarios show the following characteristics:

o A multidimensional action space A C R™, m € N.

« A multidimensional state space S C R™,n € N with

n > 3.

o An initial state distribution Sy : & — [0, 1]. Initial states
should be starting conditions that are accessible for the
robot to start the task.

« A 3-dimensional goal space G C R3. A goal is defined
as a point in 3D space.

o A target goal distribution Gr : G — [0, 1]. Depending
on this target goal distribution, goals g ~ G can be
close to or far from the initial state’s goal representation
m(So), Spo ~ So.

o A goal predicate f, : S — {0,1},g9 € G where

L, if flg —m(s)]| < &g

fo(s) = {07

with mapping m : § — G s.t. f,5)(s) = 1Vs € S and
dg4 as a distance threshold.

o A sparse reward function r, : S x A — R defined as

rg(s,a) = —[fq4(s) = 0], where g € G.

Even though the general principle of HGG is applicable, there
is one major limitation. Solving the Wasserstein Barycenter
problem in HGG consists of the computation of the distance
between a goal g € G and the goal representation m(s) of state
s € 8. However, in 3D space with obstacles, the euclidean
metric used in HGG is generally not applicable.

To illustrate this point, we consider an example, where the
goal is to pick up an object with a robotic arm, lift it over
an obstacle (blue box), and place it at the target goal. Let us
consider two cases: A (Figures [Ta] and and B (Figures
[TB] and [Td), where goals g; and g, are marked in green. In
Figures |1al and the euclidean metric calculates the distance,
dewe = |lg2 — 91|, which is marked with red lines. If the task

Y

otherwise

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(a) Creating vertices.

(b) Creating outgoing edges.

(c) Creating graph.

Fig. 2: Graph construction in the demo obstacle environment.

is completed in an environment without obstacles, this is an

accurate distance metric, and the task can be solved using HGG.

In environments with obstacles, however, the object cannot go
through these obstacles, which means the euclidean metric is
not a suitable distance metric. Then, a suitable shortest-path
based distance measure similar to the ones in Figures [Ic| and
[Id) is required in such a scenario.

The problem of finding the shortest path between two points
without intersecting an obstacle is known as the euclidean
shortest path problem. In this paper, we propose an algorithm
called graph-based hindsight goal generation (G-HGG), in
which approximate shortest distances from discrete points in
3D space are pre-computed and used to compare distances
between potential hindsight goals.

B. G-HGG

G-HGG is an extension of HGG to environments with
obstacles, where the euclidean metric is not applicable as a
distance metric. Hence, we reformulate and (I0), replacing

the euclidean metric with the graph-based distance metric dg .

With the new formulation, for every (§6, gi) S ’f*, we can
find a trajectory from the replay buffer 7/ = {si} € R that
minimizes

w((80,5"),7") = cllm(35) — m(sp)l]2+

min (dc(ﬁi —m(s})) - iV”(Sﬂm(si))), (12)

where all these variables have the same meanings as in (8).

Altogether, these K trajectories 7° minimize the sum

D

(88,91)€T™

w((8h, 4, 7). (13)

Finally, from each of the K selected trajectories 7°, the
hindsight goal ¢° is selected from the state s € 7, that
minimizes (12):

¢=m@me%W—m@»<pw%m@m)
SLET;

(14)
The distance metric d¢g is based on shortest paths in a graph
with a discrete representation of the goal space as vertices. The
computation of shortest path distances is done pre-training and
consists of creating a graph representing the environment and
pre-computing shortest distances among vertices.

1) Graph Construction: Let us consider an unbounded goal
space G with an infinite number of goals; let us further define a
continuous but bounded subset of the goal space, the accessible
goal space G4 C G. G4 contains all potential goals that the
object can reach. We then establish a representation of the
accessible goal space G4 with an undirected graph. A graph
G = (P, E) consists of a set of vertices P with a set of
weighted edges F, and an assigned weight w.

EC {(p17p27w) | (p17p2) S Pzapl 7ép27w S R}a

where p; and po are two possible vertices. In environments
with obstacles, goals g,ps € G lying within an obstacle that are
blocked from being reached are not elements of the accessible
goal space gops ¢ Ga. Since G4 is bounded, it can be enclosed
in a parallelepipedic bounding box defined by values .,
Tmazs Ymins Ymazs Zmins 2maz € R, describing the span of
this box in each coordinate direction. We then use this box
to generate a finite set of vertices P spatially arranged as
an orthorhombic lattice. P is defined by the total number of
VErtices n = nNg Ny N, With ng, ny, n, € Nin each coordinate
direction of G4, or alternatively by the distance between two
adjacent grid-points in each coordinate direction given by

15)

Az _ Tmax — xmin7 Ay — Ymax — yﬂ%in7 Az _ Zmaz — Amin)
ng — 1 ny —1 n, —1

) (16)

Finally, we define the set of vertices as P = P N G4, where

i€[0,n, —1],j €[0,ny — 1],k € [0,n, — 1]}
(17)

A set of vertices in a demo environment with an obstacle
is illustrated in Figure [2a] G4 is defined as the cuboid space
marked by the blue balls, in which the obstacle is depicted by
the blue box. n, = n, = n, = 4. All the vertices are evenly
distributed in G4 and no one lies inside the obstacle.

As a next step, we connect two adjacent vertices p; =
(1,91, 21) € P, p2 = (#2,92,%2) € P with an edge of
weight w considering the following:

(p1,p2,w) € E <= |&2 — &1| <A, and

|Q2 —'7;1‘ S Ay and ‘22 — 2?1‘ S AZ7
(18)

with w := \/(5%2 — 1%1)2 + (il]g — y1)2 + (22 — 21)2.
In environments with obstacles, it is important to make sure

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

0.40.50.6 0.7VO.8 091.01.1 15

(a) Case A: both goals g1,92 € Ga. Therefore, dg(g1,92) =
de(v(g1),v(g2)) = 1.085

0.40.50.6 0.7VO.8 091.01.1 15

(b) Case B: both goals g1,92 € Ga. Therefore, dc(g1,92) =
dc(v(g1),v(g2)) = 0.718

Fig. 3: Graph-based distances and shortest paths (red lines)
between two goals (green dots).

that no edge in the graph cuts through an obstacle. It should be
noted that, for convex obstacles, we simply replace them with a
minimal axis-aligned cuboid that can enclose the obstacle. We
then remove this cuboid from G 4; for a non-convex obstacle, we
decompose it into several convex obstacles and then replace
each of them with a minimal axis-aligned cuboid that can
enclose the convex obstacle. Consequently, we require every
convex sub-obstacle to be detected by at least one potential
vertex v € P but v ¢ Ga. Let us define the space of one of
the cuboid with its edges «, 3,~. Thus, the graph must satisfy
the graph density criterion (T9) for every convex sub-obstacle,
i.e., continuous set goals not included in G 4:

A, < a®

min’

Az < ,yobs

Ay < B o (19)

where a2, obs ~obs € R, describing the infimum length

of edges of all the convex sub-obstacle. When vertices are
connected according to (I8), every vertex is connected to at
most 26 adjacent vertices (as illustrated in Figure @]) However,
an edge only exists as long as the adjacent vertex is contained
in G4, thus, in case of an environment with obstacles, there
is never an edge cutting through an obstacle as long as the
graph density criterion (I9) is satisfied. Figure 2¢] illustrates
the final graph consisting of edges and vertices in our demo
environment.

2) Shorted Distance Computation: Considering the created
graph that represents the environment, we can employ a shortest
path algorithm such as Dijkstra’s algorithm [7] to calculate
shortest paths and shortest distances JG between every possible

pair of vertices (p1,p2) = ((£1,91,21), (£2,92, 22)) € P? in
a graph G = (P, E). All possible combinations of the resulting
shortest distance function d¢ can be efficiently pre-computed
with Dijkstra and stored in an n X n table, where n denotes
the number of vertices in P. An ablation study of n can be
found in the Section

Given two goals g1 = (21,y1,21) € G, g2 = (T2,¥a2, 22) €
G and a graph G = (P, E) with representing the approximate
goal space gA C g with Tmins Tmaxs Ymins Ymaxs Zmins
Zmazs Oz, Oy, and A, the graph-based distance d : G2 >R
is defined such that

dG(V(gl)7V(92)>7 lfgl egA/\QQ EgA

otherwise

da(g91,92) = {

OO’

(20)
where v : G4 — P maps goals in G4 to the closest vertex in
P:

W(g) = W(w,,2) = (0,9,2) = (tmin + Ay - | T],

Ymin + Dy - {%—‘, Zmin + Dg - L%—‘)
(21)

|a] rounds any a € R to the closest integer value. Figure
[3 illustrates a visualization of graph-based goal distance
computation between goals g1 € G4, g2 € Ga. In both Cases A
(Figure [3a) and B (Figure [3b), both goals are contained in the
accessible goal space G4. Therefore, the graph-based distance
is approximated by the shortest distance between the two
vertices v(g1) and v(gz) that are closest to the goals ¢g; and go,
respectively. Mathematically, d(g1, g2) = da(v(g1), v(g2)).

In Figure El], however, goal g; € G is not contained in the
accessible goal space g; ¢ Ga. In case C (Figure [4d), this is
due to the location of g; inside the obstacle (blue box), whereas
in case D, g7 is located outside the defined boundaries of G 4
(blue balls). In both cases, no shortest path can be computed
and the graph-based distance is set to d(g1, g2) = oo. It should
be noted that both G-HGG and HGG use the Euclidean distance
as a measure of the closeness and no extra information is used
by G-HGG.

3) Algorithm: The overall G-HGG algorithm is provided as
Algorithm [I] The main differences between HGG and G-HGG
are in steps 2, 3 and 6. Step 2 (graph construction) and step
3 (shortest distance computation) are performed pre-training.
The pre-computed table of shortest distances dg is used in step
6. Similar to HGG, G-HGG is complementary and therefore
compatible to other improvements of HER such as energy-
based prioritization (EBP [44]), which focus on optimizing the
replay process.

C. Stop Condition

The basic idea of HGG / G-HGG is to guide exploration
by means of hindsight goals. This is especially useful at the
beginning of training, where hindsight replay goals (derived
from previously achieved states) are far away from target goals.
When training progresses and a certain fraction 040, € [0, 1]
of the hindsight goal candidates for exploration are very close
to sampled target goals g ~ G, stopping HGG and continuing

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

0.40.50.6 0.7VO.8 091.01.1 15

(a) Case C: goal g1 ¢ Ga since it lies inside the obstacle. Therefore,
d(g1, 92) = oo.

0.40.50.60.\/70.80.9 1.01.1 15

(b) Case D: goal g1 ¢ Ga since it lies outside of G4 (cuboid space
marked by the blue balls). Therefore, d(g1, g2) = oo.

Fig. 4: Graph-based distances between two goals (green) g1 ¢
Ga, g2 € G4 in demo obstacle environment. Shortest paths do
not exist.

training with HER often leads to faster learning and higher
success rates. This is because HGG and G-HGG select goals
based on an inexact distance measure and will never consider
some better goals that yield a slightly longer distance. When
a certain exactness is reached, it is more efficient to train

on the real generated goals for the final stage of fine tuning.

Moreover, G-HGG is computationally expensive and therefore
less effective when the hindsight goal candidates are close
enough to the target goals.

To decide when to stop HGG / G-HGG, we can perform
the HGG / G-HGG Stop Condition Check (Algorithm 2)) after
step 7 of G-HGG (Algorithm [I), respectively. Even though
HGG and G-HGG perform reasonably well without stopping
(0stop = 1) and switching to HER based on the stop condition
check, our findings show that a suitable choice of s, can
increase training performance whilst reducing computation time
significantly. Results can be found in Section

Notably, for Algorithm [2} the mapping m is not required to
be invertible as long as m~! is not computed explicitly. This is
the case for goal predicates f,, which can be easily computed
without even using m:

L if [[g—m(m~(g)) | =
lg—9g I < dg
0, otherwise

fq(s) = fo(m™'(g)) =

(22)

Algorithm 1 Graph-Based Hindsight Goal Generation (G-
HGG)

1: Given: off-policy algorithm A, sampling strategy S, reward
function ry : S x A - R

2: Construct a graph G = (V, E) as a discrete representation
of G > section

3: Pre-compute shortest distances d¢; between every pair of
vertices (p1,p2) € P? with Dijkstra

4: Initialize A and replay buffer R

5: for iteration do

6: Construct a set of M intermediate tasks {(8), g°)

> HGG

o Sample target tasks {(8},9))}E, ~ T*

« Find K distinct trajectories {7°}X , that together mini-
mize ([3) > weighted bipartite matching, based on

M .
i=1"

dG ~ dG
« Find M intermediate tasks (3}, %) by selecting inter-
mediate goal g° from each 7 according to (T4) >

based on dg ~ cig
7: for episode =1, M do

(s0,9) + (85, 9% > hindsight goal-oriented

exploration

9: for t =0,7—1 do

10: Sample an action a; using the policy from A
with noise: a; < m(s¢||g) + Ny

11: Execute the action a; and observe a new state
St+1

12: for t =0,7 -1 do

13: T = rq(s¢,a); Store transition
(stllgs aes e, Se41]lg) in R; > experience replay

14: Sample a set of additional goals for replay G :=
S(current episode)

15: for ¢’ € G do

16: r’ = rg (st ar); Store the transition
(sullg’s a, 7", se41llg’) in R > HER

17: for t =1,N do

18: Sample a minibatch B from the replay buffer R >
HER or EBP

19: Perform one step of optimization using A and

minibatch B using DDPG

V. EXPERIMENTS

In this experiments section, we show the performance of
G-HGG compared to HGG, HER and GOID-HER on four
different MuJoCo environments, which are modified versions
of the Fetch gripper environments provided by [28]. Three of
the environments contain obstacles, which makes the underlying
object manipulation task especially challenging to solve.

A. Environments

To demonstrate the advantages of G-HGG over HGG, HER,
and GOID-HER, we create new experimental environments
based on the standard robotic manipulation environments
from OpenAl Gym [28]. All our environments are MuJoCo
environments featuring a modeled Fetch robot with a gripper.

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(a) FetchPushLabyrinth

(b) FetchPickObstacle

(c) FetchPickNoObstacle (d) FetchPickAndThrow

Fig. 5: Robotic manipulation environments.

Algorithm 2 HGG / G-HGG Stop Condition Check

1: Given:

« A set of sampled target tasks {(8},§") <, ~ T~
o A set of intermediate tasks {(5),97)}}, selected by
HGG / G-HGG
o A stop condition parameter ds;p € [0, 1]
o A goal predicate f, similar to (TI) with a traceable
mapping m: S - G
c+0
: for j =1, M do
b0
for i =1,K do
if f3i(m~'(g’)) ==1 then
b1
c+=1>
if 57 > 0s10p then
Stop condition is satisfied — Continue with HER.

R U R

—
e

: else

—_— -
N -

Stop condition is not satisfied — Continue with HGG
/ G-HGG.

They are inspired by the environments provided by [28]] and
thus adopt the their control strategy:

« The state space S contains joint positions and joint
velocities for all joints of Fetch, the position of the end
effector, as well as the object’s position and orientation.

o Depending on whether gripper control is enabled or
disabled, the action space is three- or four-dimensional.
An action consists of the end effector’s position for the
next time step (three coordinates), in case of enabled
gripper control, the gripper’s opening control parameter
is added as a forth component.

« The end effector’s position of the Fetch robot is controlled
via inverse kinematics and motion capturing. While the
orientation of the end effector is fixed, the coordinates
of its position at a certain time step can be explicitly
enforced via input coordinates.

1) FetchPushLabyrinth: (Figure [5a): the goal is to push
the object (black cube) from its initial position around the blue
obstacles (labyrinth) to a goal. The gripper remains permanently
closed and gripper control for picking up the object is disabled,

leading to a three-dimensional action space. The accessible
goal space G4 is visualized by the semi-transparent blue box
of length 0.5 m, width 0.7 m, and height 0.2 m, excluding
the blue obstacle labyrinth. Note that it is crucial to define G4
properly: if the accessible goal space contained space above the
labyrinth, the shortest path would require lifting the object over
the labyrinth and not pushing it around the obstacles. Since
the gripper is permanently closed, such paths are impossible
to achieve in this environment and G-HGG would fail.

2) FetchPickObstacle: (Figure [5b): the goal is to pick up
the cube from its initial position, lift it over the obstacle, and
place it at a goal position. Gripper control is enabled, the
gripper can be symmetrically opened and closed by a single
actuator, leading to a 4-D action space. The accessible goal
space G4 is visualized by the semi-transparent blue box of
length 0.5 m, width 0.7 m, and height 0.4 m, excluding the
blue obstacle.

3) FetchPickNoObstacle: (Figure [5c)): the goal is to pick
up the cube from its initial position, lift it up, and place it at
a goal position. No obstacle is present in this scenario, but the
target goals are located in the air. Gripper control is enabled,
the gripper can be symmetrically opened and closed by a single
actuator, leading to a 4-D action space. The accessible goal
space G4 is visualized by the semi-transparent blue box of
length 0.5, width 0.7, and height 0.4. This environment is
specially designed to compare the performances of different
algorithms in an environment without obstacles.

4) FetchPickAndThrow: (Figure [5d): the goal is to pick up
the cube from its initial position, lift it up, and throw it into one
of the eight boxes (obstacles). The gripper can be symmetrically
opened and closed by a single actuator, leading to a 4-D action
space. The accessible goal space G4 is visualized by the semi-
transparent blue box of length 0.85, width 0.7, and height 0.4
excluding the blue walls of the eight obstacle boxes.

B. Results

We tested G-HGG on the four environments to compare its
performance to HGG, HER, and GOID-HER. The performance
of HER is also examined, since both G-HGG and HGG use
HER as a benchmark. Since we know from [44] and [30]
that EBP [44] significantly enhances the performance of both
HER and HGG, we used EBP in all our trainings of HER,
HGG, and G-HGG. The results clearly show that G-HGG

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

outperforms HGG by far in environments with obstacles, both
in terms of sample efficiency and maximum success rate. In
the environment without obstacles, the performance of G-HGG
was still comparable to HGG in terms of sample efficiency
and maximum success rate. It should be noted that the sample
efficiency means that G-HGG can learn more quickly than
HGG or HER using the same amount of iterations, which is
different from computation time.

Figure @ shows success rates of G-HGG, HGG, HER,
and GOID-HER (median and interquartile range of five
training runs each), plotted over training iterations in four
environments. The most remarkable results can be observed in
the FetchPushLabyrinth environment. While HER, HGG, and
GOID-HER display no success over 400 iterations, G-HGG
reaches a success rate of 80% after 170 iterations, increasing
to over 90% after 300 iterations. By comparing a sample of
hindsight goals from iterations 20, 40, 60, and 80 (Figure , it
becomes obvious that G-HGG outperforms HGG by far. While
the graph-based distance metric used in G-HGG leads to a
choice of hindsight goals guiding the agent around the obstacle
towards the target goals, HGG repeatedly uses goals that are
closest to the target goals with respect to the euclidean metric.
Since this euclidean metric based shortest path is blocked by
an obstacle, the agent gets stuck trying to reach the hindsight
goals (pushing the object against the obstacle), never achieving
more promising goals, and thus, never reaching the target goals.
HER or COID-HER can not solve the task.

In the FetchPickObstacle environment, G-HGG outperforms
HGG in terms of sample efficiency, due to graph-based
distances supporting goals that avoid the obstacle. Since the
euclidean distance metric is at least partly (in x and y direction)
valid, HGG eventually achieves a notable success rate as
well. However, the plots show that there is a large variance
within the HGG trainings, emphasizing the disadvantage of
random exploration in HGG with non-meaningful hindsight
goals over guided exploration in G-HGG. GOID-HER only
shows a success rate around 40% and HER cannot solve the
task.

FetchPickNoObstacle is an environment where G-HGG
has no advantage over HGG. As no obstacle is present, the
euclidean metric is applicable to compare distances, allowing
HGG to perform well. Since the euclidean metric used in
HGG is more exact than the graph-based distances in G-
HGG, it is not surprising that HGG yields slightly better
training results. However, the similarity of the curves shows
that G-HGG’s performance is comparable to HGG in terms
of sample efficiency and success rate even in environments
without obstacles. Overall, we assume that G-HGG is generally
applicable to all environments where HGG yields good training
results. GOID-HER can solve the task as well but with a
poor sample efficiency compared to G-HGG or HGG. HER
still fails to reach the target goals. It should be noted that
FetchPickNoObstacle is more difficult than the similar task
FetchPickAndPlace-v0O from HER. In FetchPickNoObstacle, the
mean distance from the initial position to the target goals is 0.5
m, and this distance is only 0.15 m in FetchPickAndPlace-vO0.

FetchPickAndThrow is a difficult task, since target goals
are not uniformly sampled from a continuous target goal

distribution, but from a discrete set of eight goals. G-HGG
yields better results than HGG in terms of success rate after
600 iterations and is clearly more sample efficient. Both HGG
and G-HGG cannot achieve success rates above 60% due to
the difficulty of the task, involving picking the object, lifting
it up, and dropping it while giving it a well-dosed push in
the desired direction. Since the final policy trained to achieve
the task results from guided, but still random exploration, it is
no surprise that the agent cannot develop a perfect throwing
motion from sparse rewards.

VI. DISCUSSION

We provide an ablation study on the stop condition parameter
dstop and the number of vertices n,, ny, n..

A. Stop Condition Parameter

Figure [§] illustrates training success rates for different values
of the stop condition parameter d,, for both HGG and G-HGG
in environments FetchPushLabyrinth and FetchPickAndThrow.
In alignment with our main results, both plots show that G-
HGG outperforms HGG significantly, regardless of the value
of dstop. Furthermore, G-HGG proves to be robust to changes
in ds¢0p. In FetchPushLabyrinth (Figure [8a), G-HGG performs
best with d40, = 0.3, but other choices of d4t0, Only show
a slight degradation in overall training success and sample
efficiency. In FetchPickObstacle (Figure [8b), G-HGG performs
best with ¢, = 0.6. In FetchPickNoObstacle, 0s0p = 0.3
gives the best performance since it is closest to HGG. In
FetchPickAndThrow (Figure [8d), d,¢0, > 0.5 is the best choice.
From the results, we can find that d,:,, = 0.3 performs best in
three scenarios except the FetchPickObstacle, since this task
requires more accurate guidance to the target goal positions. For
the other three tasks, the learning process can be accelerated
by stopping the graph-based guidance once the agent figures
out how to get around the obstacle.

Despite G-HGG being generally robust to changes in ds¢op,
we recommend rough parameter tuning on the stop condition
parameter. As a rule of thumb, values around dstop = 0.3
usually yield good success rates and come with the benefit
of considerably reduced computation time. Notably, all values
dstop > 0.5 yield the same G-HGG training behavior in
FetchPickandThrow, since the stop criterion is never satisfied
for these values. This is also the case for 65, > 0.5 in HGG
runs of FetchPickAndThrow and for d4¢0, > 0.1 in HGG runs
of FetchPushLabyrinth.

B. Number of Vertices

Figure [9] shows the training success rates for different
numbers of vertices n in all four environments. All plots
show that G-HGG is robust to changes in the number of
vertices and demonstrates reasonable performance in all chosen
configurations.

Notably, the number of vertices n cannot be directly specified
but depends on the choice of n,, n,, and n,. The same holds
for A, Ay, and A, all of which are directly derived from
Ng, Ny, and n., respectively. An overview of the parameters

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

FetchPickObstacle
e

FetchPushLabyrinth

0
— HER P — Her
HGG HGG

— G-HGG 08 — GHeG

—— HER+GOID ~— HER+GOID

Median Success Rate
o o o o =
v R o
o o o ~
5 * o >

o
o
o
o

0 50 100 150 200 250 300 350 400 0
Iteration

50 100 150 200 250 300 350 400
Iteration

FetchPickNoObstacle FetchPickAndThrow

— HER e v — HER
HGG 05 HGG
08 — G.HeG — G-HGG
—— HER+GOID 04 —— HER+GOID

0 50 100 150 200 250 300 350 400
Iteration

0 50 100150200250300350400450500550600
Iteration

Fig. 6: Median test success rate (line) and interquartile range (shaded) of G-HGG, HGG, HER, and GOID-HER.

Fig. 7: Hindsight goals in FetchPushLabyrinth after 20 (red),
40 (orange), 60 (yellow) and 80 (green) episodes of G-HGG
(Left) / HGG (Right). One iteration contains M = 50 episodes.

used in this ablation study is provided in Table [l Since the
task FetchPickNoObstacle has no obstacles, we mainly discuss
the results from the other three environments. The blue lines
in the plots correspond to the minimal number of vertices
required to satisfy the vertex density criterion (I9) of the
respective environment. §, = 0.05 in our environments and

can be perceived as a kind of critical length of the environment.

We can find from all the results that the number of vertices n
has an impact on the sample efficiency but less impact on the
final successful rate. Even for the minimum number of vertices,
G-HGG still manages to solve the task and the success rate is
comparable to the other tests. The green lines were computed
with parameter choices from our main results (See Figure
[6). The orange lines correspond to minimal configurations
following a rule of thumb that we recommend for choosing the
appropriate number of vertices: n., 1y, n, should be chosen
such that 1) the vertex density criterion is met and 2) such
that A, Ay, A, < J,, where J, is the distance threshold for
considering a target goal. We would suggest that a dense graph

TABLE I: G-HGG parameters for ablation study on n in
FetchPushLabyrinth and FetchPickObstacle environment. Note
that 0540 = 0.3 and 64 = 0.05 in all runs.

Environment | n ny n.| Ag A, A,

| ne

FetchPushLabyrinth 532 14 19 2 | 0038 0.039 0.200
FetchPushLabyrinth 1330 | 14 19 5 | 0.038 0.039 0.050
FetchPushLabyrinth | 10571 | 31 31 11 | 0.017 0.023 0.020
FetchPickObstacle 120 3 10 4 | 0250 0.077 0.133
FetchPickObstacle 1485 | 11 15 9 | 0.050 0.050 0.050
FetchPickObstacle 10571 | 31 31 11 | 0.017 0.023 0.040
FetchPickNoObstacle | 120 3 10 4| 0250 0.077 0.133
FetchPickNoObstacle | 1485 | 11 15 9 | 0.050 0.050 0.050
FetchPickNoObstacle | 10571 | 31 31 11 | 0.017 0.023 0.040
FetchPickAndThrow | 11616 | 44 44 6 | 0.020 0.0016 0.080
FetchPickAndThrow | 18207 | 51 51 7 | 0.0017 0.014 0.067
FetchPickAndThrow | 73960 | 86 86 10 | 0.010 0.008 0.044

generally leads to better performances compared to a sparse
graph, but at the same time it will lead to computation burden
due to the calculation of the distances in the graph.

C. Improvement Based on HGG With Hand-Crafted Distance
Metric

In the original paper of HGG, the authors proposed a hand-
crafted distance metric for HGG to solve tasks with obstacles,
which was called grid-distance HGG. The authors of HGG
indicated that it would be a future direction to investigate ways
to obtain or learn a good metric instead of using hand-crafted
metrics such a polygonal line. Our G-HGG provides a general
solution to find good metrics in complex manipulation tasks
and further improve on the basis of HGG. Our work G-HGG
further improved the performances from three aspects.

1) The biggest disadvantage of the grid-base distance in HGG
is the fact that it is hand-crafted and thus not applicable
for different tasks or different goals from the same task.
G-HGG proposed a method to compute a graph-based
distance automatically regardless of different goals in the
same environment and also enable it to be applicable
to different tasks. We give two examples to show this
disadvantage of HGG. The first example is illustrated in
Figure For the FetchPickObstacle task, if we use a
hand-crafted distance metric as HGG did (orange solid
line), we can solve the task when the goal appears at the
first red point. But for a multi-goal setting, the goal can
be generated at any place in the square area and if the
goal is far away from the first goal (orange dash line),
it will require a different distance metric. We take the
FetchPickAndThrow as the second example. Since this
task has two rows of targets, it is impossible to solve the
multi-goal task with hand-crafted distance metrics. Thus,
we can demonstrate the hand-crafted distance metric from
HGG is not applicable in this task.

2) The grid-based distance was not accurate or valid when
there was an obstacle in the scenario. A detailed example
can be found in Figure [[T] HGG calculated the distance
between one initial point to the goal point with two parts,
namely, the minimal distance from the initial point to the
grid, and the distance to the goal point along the grid.
Take P; as an example, the distance is the combination
of di, di, d}, and d}, which is correct in this case. But
for a point P2, the distance is the combination of d?, d2,
d2, and d3, which is not the shortest distance to the goal.
From the figure we can find that a better distance metric
to the goal is the distance combination of dzl1 and d2/2.

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

FetchPushLabyrinth

1.0

0.8

0.6

0.4

0.2

FetchPickObstacle

= G-HGG (bstop =0.1)
=== G-HGG (stop = 0.3)
= G-HGG (6stop = 0.6)
= G-HGG (85st0p = 0.9)

0 100 300 400

200,
Iteration

(b) FetchPushObstacle

11

FetchPickNoObstacle FetchPickAndThrow
1.0 o5 — GHGG (6upy=03)
" —— G-HGG (6st0p > 0.5)
08 0.4 — HGG (Busp=0.3)
—— HGG (6stop > 0.5)
0.6
0.3
0.4 —— G-HGG (6st0p=0.3) 0.2
02 —— G-HGG (65t0p = 0.6)
: —— G-HGG (6spp=09) 01
—— G-HGG (6stop=1
0.0 (Ostop =1) 0.0
0 50 100 150 200. 250 300 350 400 0 100 200, 300 400 500 600
Iteration Iteration

(c) FetchPushNoObstacle (d) FetchPickAndThrow

Fig. 8: Ablation study on d.p for G-HGG and HGG in all four environments.

1.0
[
0.8
5o0.
?
0.6
[}
1)
Foa —— G-HGG (65top = 0.3)
s —— G-HGG (650 = 0.6)
go.z —— G-HGG (Bstop = 0.9)
2 —— G-HGG (6stop = 1)
0.0 —— HGG (6st0p > 0.1)
0 50 100 150 200, 250 300 350 400
Iteration
(a) FetchPushLabyrinth
FetchPushLabyrinth
1.0
[
0.8
o.
7
00.6
(9]
o
=}
0no.4
c
.©
50.2 —— G-HGG (n=532)
g —— G-HGG (n =1330)
0.0 —— G-HGG (n=10571)

Iterati

0 50 100 150 2000230 300 350 400

(a) FetchPushLabyrinth

Fig. 9: Ablation study on n for G-HGG in all four environments.

1.0

0.8

0.6

0.4

0.2

FetchPickObstacle

= G-HGG (n=120)
= G-HGG (n = 1485)
= G-HGG (n=10571)

0 50 100 150 200 250 300 350 400
Iteration

(b) FetchPickObstacle

(a) FetchPickObstacle.

(b) FetchPickObstacle.

Fig. 10: Illustration of two hand-crafted distance metrics in

the FetchPickObstacle task.

d3
A ey
dt d? 2 daz dl
2|| 2 | 4| di
d} 2!
[S 4
Py 4 p,

Fig. 11: Illustration of the hand-crafted distance metric from

HGG paper.

3) Although it can be easily extended to 3D scenarios,
the grid-based distance in HGG only provided a simple
example in a 2-D scenario. While all the tasks with
obstacles that G-HGG solves in this work are 3-D.

FetchPickAndThrow

FetchPickNoObstacle

1.0
0.5
0.8
0.4
0.6
0.3
0.4 02
0.2 —— G-HGG (n = 120) 01 —— G-HGG (n = 11616)
—— G-HGG (n = 1485) ' ~—— G-HGG (n = 18207)
0.0 —— G-HGG (n = 10571) 0.0 —— G-HGG (n = 73960)
0 50 100 150 200, 250 300 350 400 0 100 200 300 400 500 600
Iteration Iteration

(c) FetchPickNoObstacle (d) FetchPick AndThrow

A detailed overview on used parameters is provided in Tablem

FetchPickObstacle-v1

by
o

° — G-HGG e
o —— HGG+grid distance
o 0.8
n
Q
206
v}
=)
n 0.4
c
o
© 0.2
(9]
=
0.0

0 50 100 150 200 250 300 350 400
Iteration
Fig. 12: Median test success rate of G-HGG and the HGG with
the hand-crafted distance metric for the FetchPickObstacle task
(threshold 0, = 0.03).

As discussed before, the grid distance used in HGG was hand-
crafted, thus it will be impossible to design such a grid distance
for every possible goal even in a simple scenario such as the
FetchPickObstacle. Thus, we only compare the performances
between G-HGG and HGG without the hand-crafted distance
metric.

Although the grid-based HGG is not generally applicable for
tasks with multi-goal setting and has to be created manually,
we still present the results of HGG with a hand-crafted distance
metric for the FetchPickObstacle task and compare it to G-
HGG for illustration (See Figure @) For this task, the default
distance threshold ¢, is 0.05 and the performance of HGG
with hand-crafted distance is shown in Figure 4 of the original
HGG paper. The grid-distance based HGG can solve it with
a success rate close to 100%. One of the important reasons

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

that the grid-distance based HGG can solve the task is the
high density of the target goals. Once the agent reaches real
target goals, the algorithm will learn quickly. However, if the
target goals are sparsely generated, this inaccurate grid-distance
metric will have great difficulties to reach real target goals.
In order to simulate a scenario that the target goals are more
sparsely distributed, we make the region of target goals smaller
by setting the distance threshold ¢, as 0.03. We find that, for
this very specific case, grid-based HGG performs worse than
G-HGG. With the guidance of the hand-crafted distance metric,
grid-based HGG starts to learn slower than G-HGG and only
ends at a success rate around 80%. This is because some of
the target goals are still far from the hand-crafted distance
metric and cannot be reached. However, with the guidance of
the automatic graph-based distance metric, G-HGG is able to
solve the task better.

VII. CONCLUSION

We proposed a novel automatic hindsight goal generation
algorithm G-HGG on the basis of the HGG for robotic object
manipulation in environments with obstacles, by which the
selection of valuable hindsight goals is generated with a graph-
based distance metric. We formulated our solution as a graph
construction and shortest distance computation process as pre-
training steps. Experiments on four different challenging object
manipulation tasks demonstrated superior performance of G-
HGG over HGG and HER in terms of both maximum success
rate and sample efficiency.

Future research could concentrate on improvement, extension,
and real-world deployment of G-HGG. First, it would be
an important advance to bridge the gap between theory and
practice by deploying a policy learned with G-HGG to a
physical robot. Second, we are positive that G-HGG could
as well be applied to more diverse tasks. One possible idea
would be to extend G-HGG to more general goal spaces
G C R™,m > 3, for example a six-dimensional goal space in
object manipulation including both position and rotation of the
object. Last, it would be interesting to investigate how to further
increase the performance of G-HGG in sparse-reward robotic
object manipulation tasks in environments with obstacles.

APPENDIX A
EXPERIMENT SETTINGS

A. Experiment Settings

For all environments presented in this work, the number of
episodes per iteration of HER, HGG or G-HGG is M = 50,
with 7" = 100 timesteps per episode. The distance threshold
04 for successfully achieving a target goal is d, = 0.06 in
FetchPickAndThrow and §, = 0.05 in all other environments.
G-HGG parameters for each environment as defined in Section
and used in Section [V] are provided in Table

B. Evaluation Details

o All curves in this work are plotted from five runs with
random task initializations and seeds.

o Shaded regions indicate a 50% population around the
median.

TABLE II: G-HGG parameters for different environments

Environment Ny Ny Ny Ostop ‘ n A, A, A,
FetchPushLabyrinth 31 31 11 0.3 10571 0.017 0.023 0.020
FetchPickObstacle 31 31 11 0.3 10571 0.017 0.023 0.040
FetchPickNoObstacle 31 31 11 0.3 | 10571 0.017 0.023 0.040
FetchPickAndThrow 51 51 7 0.9 | 18207 0.017 0.014 0.067

o All curves are plotted using the same parameters described
in sections [A-A] and except the ablation section.

C. Overall Computation Time

In Table we list the average computation times of our
experimental runs from Section [V] The experiments were run
on hardware described in [B-A] Notably, computation time
is highly dependent on hardware, implementation, and other
factors. Therefore, the informative value of this table is limited
to giving an impression of the order of magnitude and the
relationship between computation times of different algorithms.

TABLE III: Computation times (in hours) of experimental
runs of G-HGG, HGG, and HER, in different environments.
Parameters are described in Sections [V} Appendix [A} and [B]

Environment HER HGG G-HGG
FetchPushLabyrinth 6.5 7 9
FetchPickObstacle 6.5 7 8

FetchPickNoObstacle 6.5 6.5 10
FetchPickAndThrow 10 11 29
APPENDIX B

IMPLEMENTATION DETAILS
A. Hardware and Software

We carried out experiments on an 8-core machine with
16GB of RAM. We implemented G-HGG in Tensorflow
(version 1.14) and ran it on Ubuntu 16.04 with Python
3.5.2. The implementation of G-HGG is based on the HGG
implementation given by [30]].

B. Hyper-Parameters

Hyper-parameters using DDPG and HER are kept the same
as in the results of [30]. These parameters are equal to the ones
used for benchmark results given by [1] and [29], except for the
number of MPI workers and the buffer size. Hyper-parameters
related to graph generation, the details on Data Processing, and
training of G-HGG are documented in the github repository at
https://videoviewsite.wixsite.com/ghgg.

ACKNOWLEDGMENT

This project/research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement No.945539
(Human Brain Project SGA3).

https://videoviewsite.wixsite.com/ghgg

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[1

—

[2

—

[3

[t}

[5

=

[6

=

[7]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and
Wojciech Zaremba. Hindsight experience replay. In Advances in Neural
Information Processing Systems, volume 2017-Decem, pages 5049-5059,
2017.

Kavosh Asadi, Dipendra Misra, and Michael L. Littman. Lipschitz
continuity in model-based reinforcement learning. 35th International
Conference on Machine Learning, ICML 2018, 1(1):419-435, 2018.

A Aubret, L Matignon, and S Hassas. A survey on intrinsic motivation
in reinforcement learning. 2019.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1798-1828, 2013.

Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan
Schaal, and Sergey Levine. Path integral guided policy search. Pro-
ceedings - IEEE International Conference on Robotics and Automation,
pages 3381-3388, 2017.

Cédric Colas, Pierre Founder, Olivier Sigaud, Mohamed Chetouani, and
Pierre Yves Oudeyer. CURIOUS: Intrinsically motivated modular multi-
goal reinforcement learning. In 36th International Conference on Machine
Learning, ICML 2019, volume 2019-June, pages 2372-2387, 2019.
E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik 1, 1959.

Ran Duan and Hsin Hao Su. A scaling algorithm for maximum weight
matching in bipartite graphs. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 14131424, 2012.

Manfred Eppe, Sven Magg, and Stefan Wermter. Curriculum goal
masking for continuous deep reinforcement learning. 2019 Joint IEEE 9th
International Conference on Development and Learning and Epigenetic
Robotics, ICDL-EpiRob 2019, pages 183-188, 2019.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the
replay buffer: Bridging planning and reinforcement learning. In Advances
in Neural Information Processing Systems, pages 15220-15231, 2019.
Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhang Zhengyou.
Curriculum-guided Hindsight Experience Replay. NeurlPS 2019, (3):1-
12, 2019.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Auto-
matic Goal Generation for Reinforcement Learning Agents. Proceedings
of the 35th International Conference on Machine Learning, PMLR 80,
2018.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and
Pieter Abbeel. Reverse Curriculum Generation for Reinforcement
Learning. 1Ist Conference on Robot Learning, CoRL 2017, pages 1—
14, 2017.

Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically
Motivated Goal Exploration Processes with Automatic Curriculum
Learning. 2017.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable
representations with goal-conditioned policies. ArXiv, abs/1811.07819,
2019.

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal,
Timothy Lillicrap, Sergey Levine, Hugo Larochelle, and Yoshua Bengio.
Recall traces: Backtracking models for efficient reinforcement learning.
7th International Conference on Learning Representations, ICLR 2019,
pages 1-19, 2019.

Z. Huang, X. Xu, H. He, J. Tan, and Z. Sun. Parameterized batch
reinforcement learning for longitudinal control of autonomous land
vehicles. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
49(4):730-741, 2019.

Bahare Kiumarsi, Kyriakos G Vamvoudakis, Hamidreza Modares, and
Frank L Lewis. Optimal and autonomous control using reinforcement
learning: A survey. [EEE transactions on neural networks and learning
systems, 29(6):2042-2062, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-
end training of deep visuomotor policies. Journal of Machine Learning
Research, 17:1-40, 2016.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and
Tengyu Ma. Algorithmic framework for model-based deep reinforcement
learning with theoretical guarantees. 7th International Conference on
Learning Representations, ICLR 2019, pages 1-27, 2019.

Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano
Vassanelli. Applications of deep learning and reinforcement learning
to biological data. IEEE transactions on neural networks and learning
systems, 29(6):2063-2079, 2018.

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. On
the effectiveness of least squares generative adversarial networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(12):2947—
2960, 2019.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba,
and Pieter Abbeel. Overcoming Exploration in Reinforcement Learning
with Demonstrations. Proceedings - IEEE International Conference on
Robotics and Automation, pages 6292-6299, 2018.

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang. Autonomous inverted helicopter flight via reinforcement
learning. Experimental Robotics IX, pages 363-372, 2006.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell.
Curiosity-driven exploration by self-supervised prediction. 34th Inter-
national Conference on Machine Learning, ICML 2017, 6:4261-4270,
2017.

Alexandre Péré, Sebastien Forestier, Olivier Sigaud, and Pierre Yves
Oudeyer. Unsupervised learning of goal spaces for intrinsically motivated
goal exploration. 6th International Conference on Learning Representa-
tions, ICLR 2018 - Conference Track Proceedings, pages 1-26, 2018.
Jan Peters and Stefan Schaal. Reinforcement learning of motor skills
with policy gradients. Neural Networks, 21(4):682—-697, 2008.
Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew,
Bowen Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek
Chociej, Peter Welinder, Vikash Kumar, and Wojciech Zaremba. Multi-
Goal Reinforcement Learning: Challenging Robotics Environments and
Request for Research. pages 1-16, feb 2018.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,
Richard Y. Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin
Andrychowicz. Parameter space noise for exploration. In 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, pages 1-18, 2018.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng.
Exploration via Hindsight Goal Generation. 33rd Conference on Neural
Information Processing Systems, NeurIPS 2019, 2019.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert,
Jonas Degrave, Tom Van De Wiele, Volodymyr Mnih, Nicolas Heess,
and Tobias Springenberg. Learning by playing - Solving sparse reward
tasks from scratch. 35th International Conference on Machine Learning,
ICML 2018, 10(2017):6910-6919, 2018.

Ludger Riischendorf. The wasserstein distance and approximation
theorems. Probability Theory and Related Fields, 70(1):117-129, 1985.
Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized experience replay. In 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, pages 1-21,
2016.

Satinder Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically
motivated reinforcement learning. Advances in Neural Information
Processing Systems, 2005.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Universal planning networks: Learning generalizable
representations for visuomotor control. In International Conference on
Machine Learning, pages 4732-4741, 2018.

Z.Sui, Z. Pu, J. Yi, and S. Wu. Formation control with collision avoidance
through deep reinforcement learning using model-guided demonstration.
IEEE Transactions on Neural Networks and Learning Systems, pages
1-15, 2020.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve,
Arthur Szlam, and Rob Fergus. Intrinsic motivation and automatic
curricula via asymmetric self-play. 6th International Conference on
Learning Representations, ICLR 2018 - Conference Track Proceedings,
(i):1-16, 2018.

Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy
continuation with hindsight inverse dynamics. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Z. Wan, C. Jiang, M. Fahad, Z. Ni, Y. Guo, and H. He. Robot-assisted
pedestrian regulation based on deep reinforcement learning. [EEE
Transactions on Cybernetics, 50(4):1669-1682, 2020.

Y. Wang, H. He, and C. Sun. Learning to navigate through complex
dynamic environment with modular deep reinforcement learning. /EEE
Transactions on Games, 10(4):400-412, 2018.

X. Yang, H. He, and D. Liu. Event-triggered optimal neuro-controller
design with reinforcement learning for unknown nonlinear systems. /EEE
Transactions on Systems, Man, and Cybernetics: Systems, 49(9):1866—
1878, 2019.

Wei Zhang, Xuanyu He, Weizhi Lu, Hong Qiao, and Yibin Li. Feature
aggregation with reinforcement learning for video-based person re-

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

identification. IEEE transactions on neural networks and learning
systems, 30(12):3847-3852, 2019.

Rui Zhao, Xudong Sun, and Volker Tresp. Maximum entropy-regularized
multi-goal reinforcement learning. In 36th International Conference on
Machine Learning, ICML 2019, volume 2019-June, pages 13022-13035,
2019.

Rui Zhao and Volker Tresp. Energy-Based Hindsight Experience
Prioritization. 2nd Conference on Robot Learning, CoRL 2018, 2018.
Rui Zhao and Volker Tresp. Curiosity-Driven Experience Prioritization via
Density Estimation. 32nd Conference on Neural Information Processing
Systems, NIPS 2018, 2019.

[43]

[44]

[45]

Zhenshan Bing received his doctorate degree in
Computer Science from the Technical University of
Munich, Germany, in 2019. He received his B.S
degree in Mechanical Design Manufacturing and
Automation from Harbin Institute of Technology,
China, in 2013, and his M.Eng degree in Mechanical
Engineering in 2015, at the same university. Dr. Bing
is currently a postdoctroal researcher with Informatics
6, Technical University of Munich, Munich, Germany.
His research investigates the bio-robot which is
controlled by RL and its related applications.

Matthias Brucker Matthias Brucker received his

B. Sc. Degree in Engineering Science at Technical

University of Munich, Germany, in 2020. He is

e currently studying Robotics, Systems and Control
- at the Swiss Federal Institute of Technology in
Zurich, Switzerland. His research interest is artificial

intelligence on robotics implementations, especially

v with reinforcement learning algorithms.

Fabrice O. Morin received an engineering degree
from the Ecole Nationale Supérieure des Mines
de Nancy (Nancy, France) in 1999, a Master’s
Degree in Bioengineering from the University of
Strathclyde (Glasgow, United Kingdom) in 2000,
and a Ph.D. in Materials Science from the Japanese
Advanced Institute of Science and Technology (Nomi-
Shi, Japan) in 2004. After several post-docs at the
University of Tokyo (Japan) and the IMS laboratory
(University of Bordeaux, France), in 2008 he joined
Tecnalia, a nonprofit RTO in San Sebastidn (Spain),
first as a senior researcher, then as a group leader. He worked on various projects
in Neurotechnology and Biomaterials, funded both by public programs and
private research contracts. Since 2017, he has worked as a scientific coordinator
at the Technical University of Munich (Germany) where, in the framework of
the Human Brain Project, he oversees the development of software tools for
embodied simulation applied to Neuroscience and Artificial Intelligence.

Rui Li received the B.Eng degree in automation
engineering from the University of Electronic Science
and Technology of China (UESTC), Chengdu, China,
in 2013 and the Ph.D. degree from the Institute of
Automation, Chinese Academy of Science (CASIA),
Beijing, China in 2018, respectively. He visited
Informatics 6, Technical University of Munich as
a guest postdoc researcher in 2019. Currently he
is a assitant researcher with School of Automation,
Chongging University. His research interests include
intelligent robot system and high-precision assembly.

Xiaojie Su (SM’18) received the PhD degree in
Control Theory and Control Engineering from Harbin
Institute of Technology, China in 2013. He is
currently a professor and the associate dean with
the College of Automation, Chongqing University,
Chongging, China. He has published 2 research
monographs and more than 50 research papers in
international referred journals.

His current research interests include intelligent
control systems, advanced control, and unmanned
system control. He currently serves as an Associate

Editor for a number of journals, including IEEE Systems Journal, IEEE Control
Systems Letters, Information Sciences, and Signal Processing. He is also an
Associate Editor for the Conference Editorial Board, IEEE Control Systems
Society. He was named to the 2017, 2018 and 2019 Highly Cited Researchers
list, Clarivate Analytics.

Kai Huang joined Sun Yat-Sen University as a
Professor in 2015. He was appointed as the director
of the Institute of Unmanned Systems of School of
Data and Computer Science in 2016. He was a senior
researcher in the Computer Science Department, the
Technical University of Munich, Germany from 2012
to 2015 and a research group leader at fortiss GmbH
in Munich, Germany, in 2011. He earned his Ph.D.
degree at ETH Zurich, Switzerland, in 2010, his
MSc from University of Leiden, the Netherlands, in
2005, and his BSc from Fudan University, China, in
1999. His research interests include techniques for the analysis, design, and
optimization of embedded systems, particularly in the automotive and robotic
domains. He was awarded the Program of Chinese Global Youth Experts
2014 and was granted the Chinese Government Award for Outstanding Self-
Financed Students Abroad 2010. He was the recipient of Best Paper Awards
ESTC 2017, ESTIMedia 2013, SAMOS 2009, Best Paper Candidate ROBIO
2017, ESTMedia 2009, and General Chairs’ Recognition Award for Interactive
Papers in CDC 2009. He has served as a member of the technical committee
on Cybernetics for Cyber-Physical Systems of IEEE SMC Society since 2015.

N

&

Alois Knoll (Senior Member) received his diploma
(M.Sc.) degree in Electrical/Communications Engi-
neering from the University of Stuttgart, Germany,
in 1985 and his Ph.D. (summa cum laude) in Com-
puter Science from Technical University of Berlin,
Germany, in 1988. He served on the faculty of the
Computer Science department at TU Berlin until
1993. He joined the University of Bielefeld, Germany
as a full professor and served as the director of
the Technical Informatics research group until 2001.
Since 2001, he has been a professor at the Department
of Informatics, Technical University of Munich (TUM), Germany . He was
also on the board of directors of the Central Institute of Medical Technology
at TUM (IMETUM). From 2004 to 2006, he was Executive Director of the
Institute of Computer Science at TUM. Between 2007 and 2009, he was
a member of the EU’s highest advisory board on information technology,
ISTAG, the Information Society Technology Advisory Group, and a member
of its subgroup on Future and Emerging Technologies (FET). His research
interests include cognitive, medical robotics, multi-agent systems, data fusion,
adaptive systems, multimedia information retrieval, model-driven development
of embedded systems with applications to automotive software and electric
transportation, as well as simulation systems for robotics and traffic.

	Introduction
	Related Work
	Prioritized Experience Replay
	Demonstrations for Improved Exploration
	Curriculum Learning
	Representation Learning

	Preliminaries
	Goal-Conditioned RL
	Hindsight goal generation

	Methodology
	Problem Statement
	G-HGG
	Graph Construction
	Shorted Distance Computation
	Algorithm

	Stop Condition

	Experiments
	Environments
	FetchPushLabyrinth
	FetchPickObstacle
	FetchPickNoObstacle
	FetchPickAndThrow

	Results

	Discussion
	Stop Condition Parameter
	Number of Vertices
	Improvement Based on HGG With Hand-Crafted Distance Metric

	Conclusion
	Appendix A: Experiment Settings
	Experiment Settings
	Evaluation Details
	Overall Computation Time

	Appendix B: Implementation Details
	Hardware and Software
	Hyper-Parameters

	References
	Biographies
	Zhenshan Bing
	Matthias Brucker
	Fabrice O. Morin
	Rui Li
	Xiaojie Su
	Kai Huang
	Alois Knoll

