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ABSTRACT1

Dynamic Car-Passenger Matching is a variant of the Dial-a-Ride Problem (DaRP) and a crucial part of op-2

erating an On-Demand Mobility (ODM) service. The ODM fleet management algorithm has to be able to3

find close-to-optimal solutions quick and reliable in order to provide a high quality service to the users of4

the service. In this work, an approach is presented that combines customer requests for immediate pick-ups5

(online) and reservations for pick-ups in the near future. This approach is based on the method of Global6

Optimization with Time Windows (GOTW), which is able to benefit from both a very fast accept/reject7

response with an estimated pick-up time window generated by a greedy Nearest Neighbor Policy (NNP)8

heuristic as well as the optimization potential of a periodically executed Tabu Search. This work also intro-9

duces List-Based Assignments (LBAs) as a replacement of the initial NNP in order to shorten computational10

times of optimization without loosing any feasible solution. The solutions provided by the algorithm using11

this new approach generate up to 67.7% less empty mileage compared to the solutions found by NNP. This12

advantage outweighs the slightly higher number of rejections and longer waiting times for most of the eval-13

uated scenarios. Especially in settings considering reservations, the new methodology clearly outperforms14

the benchmark algorithm by up to around 36% in terms of the overall quality of solution.15

Keywords: Dynamic Car-Passenger Matching, On-Demand Mobility, Global Optimization with Time16

Windows, List-Based Assignments, Reservations17

INTRODUCTION18

In today’s urban traffic travelers face many problems and inconveniences, among others congestion and the19

lack of space due to many parking cars. On-Demand Mobility (ODM) is an increasingly popular concept20

that tries to tackle these challenges by allowing people to profit from individual urban mobility without21

owning a car. The enhanced use of shared mobility services and the increased utilization of vehicles in cities22

would lead to less space occupied by parking cars without loosing the benefits of always available mobility.23

To operate a fleet with many cars and customers, a management algorithm is necessary to match service24

requests and vehicles of the fleet dynamically. It must be able to quickly find a reliable and time efficient25

solution for the whole system. Such a problem is called Dial-a-Ride-Problem (DaRP)(1). As a general-26

ization of the Traveling Salesman Problem it is NP-hard, which means finding optimal solutions requires27

exponentially rising computational time with increasing problem size. Due to the dynanism of the problem28

and the necessity of short response time to customers of the service, heuristics are often used to circumvent29

these long computational times. An often used method is called Nearest Neighbor Policy (NNP), which30

matches cars to new customers immediately based on the respective arrival times. Instead of local optimiza-31

tion (NNP), more sophisticated approaches like metaheuristics aim to optimize the whole fleet, but avoid32

exponential computational times by smart exploration of the solution space. Osman and Kelly (2) defined33

a metaheuristic as ’[...] an iterative generation process which guides a subordinate heuristic by combining34

intelligently different concepts for exploring and exploiting the search spaces using learning strategies to35

structure information in order to find efficiently near-optimal solutions’.36

The significance of metaheuristics to solve the DaRP for the ODM use case led to an increasing interest37

in this research area recently. The static version of the problem has been discussed in (3) by Cordeau and38

Laporte in which they use a metaheuristic procedure called Tabu Seach (TS). Brandão used TS for the39

heterogeneous fixed fleet vehicle routing problem in (4). In (5), Prodhon and Prins present and compare the40

most important heuristics and metaheuristics for the Vehicle Routing Problem, in which they emphasize the41

good performances of TS algorithms. Pandi et al. (6) used a GPU-accelerated TS algorithm to solve the42

DaRP, which produced comparable results upto 30 times faster than a single-core CPU-based TS algorithm.43

The models used in simulations to test the algorithms vary significantly, since there are countless44

specifics an ODM service may offer to its customers. Alonso-Mora et al. (7) considered the ride-sharing45

use case for immediate-pick-up requests using constraint optimization. Hyland and Mahmassani (8) focus46

on the ride-hailing use case. They compare six assignment strategies, four of which assign requests only47

once and could therefore provide information rather quickly to the customers. In (9), Sheridan et al. propose48
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a dynamic nearest neighbor policy to find good solutions for highly dynamic problems in a very fast way.1

Though, none of the mentioned papers considers both reservations and online requests as possible ways for2

customers to request a pick-up.3

However, the incorporation of reservations into the dynamic optimization of online requests is an impor-4

tant task for mobility services offering both options to their customers, like Uber (10) and Lyft (11). Short5

accept/reject response times are as important for reservations as for online requests. Therefore, this initial6

decision should be made by a fast heuristic and the optimization should only take place periodically instead7

of each time a new request occurs. Hence, this work is based on an approach called Global Optimization8

with Time Windows (12) which combines the quick response times of NNP with the optimization potential9

of TS. The new approach considers reservations as well as online request to find nearly optimal solutions10

for the combined problem. It focuses on the so called ride-hailing use case in which at most one customer11

occupies a car.12

The objective of this work is to present a method to combine ODM requests for immediate pick-ups13

(online) with reservation requests in a close-to-optimal way using TS. To guarantee a fast response to the14

customers, a heuristic based on the idea of a NNP is used to determine if a request is accepted or not. The15

benefits of applying the presented methods in a model which uses the New York Taxi Data Set (13) will be16

evaluated and compared to results found using only NNP, as it is an often used standard for the problem in17

real world applications.18

PROBLEM FORMULATION19

The DaRP has been formulated in different variants since it first was established. In this work, a very20

common formulation is used with constraints found in e.g. (7), (8) and (14).21

A solution for the DaRP is considered to be optimal if both the fleet costs and the dissatisfaction of the22

customers are minimal over a given period of time. As fleet costs are mainly produced by the movement and23

corresponding fuel consumption of vehicles in the fleet, the overall distance between all visited locations24

in the solution should be as short as possible. More specifically, the empty mileages between drop-off25

locations and pick-up locations should be minimized, as the demanded routes from a customer’s pick-up26

location to his or her destination are independent of the assignments and should therefore not be part of the27

optimization.28

In the dynamic version of the DaRP, new online customer requests occur eventually. These requests are29

not known ahead of time, so the operator can only solve the DaRP with a subset of active requests in order to30

find solutions shortly after customers apply for the service. Hence, this optimization of new requests should31

take place periodically after a certain time window tperiod in which new requests are accepted or rejected. On32

the one hand, tperiod - defined by the fleet operator - has to be short enough to guarantee quick response times33

to the customers. On the other hand, the longer tperiod is chosen to last, the more requests are optimized at34

once, increasing the optimization potential. So, the choice of this parameter is critical.35

Each time an optimization takes place, all eligible customers N with pick-up locations i ∈ [1, ..., N ]36

and drop-off locations j ∈ [N + 1, ..., 2N ] and an ODM fleet with M vehicles at their next idle locations37

m ∈ [2N + 1, ..., 2N + M ] are considered. The set of pick-up and drop-off locations of the customers is38

referred to as P and D respectively. The next idle location of a vehicle is either its actual position (if it is39

idle) or the drop-off location of the last request it is matched to. The set of all next idle locations is defined40

as C. V = P ∪ D ∪ C is the set of vertices of an undirected graph G = (V,A), with A the set of arcs41

containing all feasible pairs of locations (a, b), with a, b ∈ V .42

If in a solution a vehicle moves from a to b, the decision variable xma,b = 1, otherwise xma,b = 0. Every43

arc (a, b) is weighted with a cost ca,b proportional to the distance between a and b.44

In this work, the objective function consists of two terms, both of which ought to be minimized.45

min
(
fobj
)
= min

xm
a,b

(∑
m∈M

∑
a∈D∪C

∑
b∈P

ca,b × xma,b +
∑
i∈N

di
(
xma,b
))

, (1)
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FIGURE 1 Penalty model: customer dissatisfaction tw× s if tw ≤ tmw or tmw× s× r otherwise (blue);
cars causing penalty equal to empty driven time in seconds (green).

The first term represents the empty driven mileage of all cars in the fleet. Each empty car is defined to1

produce a penalty of 1
s when on its way to pick up a customer.2

The second term is the sum of all customers’ dissatisfaction. The dissatisfaction di of each customer3

i ∈ N depends on the waiting time tw of this customer. With increasing waiting time, di rises linearly with4

slope s. In this work s = 3
sec , indicating the priority of customer satisfaction compared to fleet costs. If no5

car would be able to pick up a customer before his or her maximum waiting time tmw, the algorithm rejects6

the request immediately. If a request is rejected, di is set to a constant value, which is r times higher than the7

dissatisfaction at tmw. r is set to the value of 2, reflecting the expectation of customers not using the service8

in the future anymore when being rejected once. The penalty model is outlined in figure 1.9

While optimizing the solution, the following constraints must be satisfied at every time:10 ∑
i∈C∪D

∑
j∈P

xmi,j − xmj,j+N = 0 ∀m ∈M (2)

11 ∑
m∈M

xmi,j ≤ 1 ∀j ∈ P (3)

12
ti,p − ti,d < 0 ∀i ∈ N (4)

Equation 2 ensures that if a customer j ∈ N is picked up, the drop-off follows immediately and is13

done by the same car (pairing constraint). So, there is at most one customer in a car at each time (capacity14

constraint). In Equation 3, the constraint is formulated that every customer is served at most once. The15

precedence constraint is stated in equation 4 by only allowing pick-up times ti,p earlier than drop-off times16

ti,d for each customer i ∈ N respectively.17

Additionally, reservations are considered to be another type of service customers might request. They18

can be ordered some time before the desired pick-up time, which allows customers to plan trips in advance.19

Reservations always have to be served in time in the proposed model, which means cars need to arrive at the20

pick-up location no later than the requested pick-up time. If the operator cannot guarantee the service, the21

reservation request is rejected.22



Erdmann, Dandl, Kaltenhäuser, Bogenberger 5

METHODOLOGY1

After a short introduction to the Nearest Neighbor Policy, the Tabu Search procedure and Global Opti-2

mization with Time Windows, the methods of List-Based Assignments and the incorporation of reservation3

requests in online request optimization are explained in this section.4

5

Nearest Neighbor Policy6

The Nearest Neighbor Policy (NNP) is a simple heuristic designed to find feasible solutions of the DaRP7

very fast. Every time a new online request occurs, the distances from each of the vehicles’ next idle locations8

to the pick-up location of the new customer are calculated and the earliest possible pick-up times are derived.9

If the maximum waiting time of the customer is not surpassed, the vehicle that is able to pick up the new10

customer the earliest is matched permanently with that request, otherwise the request is rejected. The request11

is immediately added to the route of the car and it moves directly to the pick-up location if it is idle.12

The benefit of using the NNP is its ability to produce feasible solutions without any considerable delay13

as the computational time necessary to find solutions with it scales linearly with the fleet size. As it only14

considers the very next request, it tends to fail finding optimal solutions for the whole system. Nonetheless,15

in real world applications those solutions are used to operate ODM fleets. Hence, this heuristic is used as a16

generator of initial solutions and as the benchmark for the proposed algorithm.17

18

Tabu Search19

The concept of Tabu Search (TS) is a variant of the so called Local Search technique, which in general20

improves initial solutions by applying modifications (or moves) to it iteratively. The basic idea of the TS21

metaheuristic is to avoid local minima of the objective function value by allowing moves in a local search22

that produce worse solutions while forbidding already visited (tabu) solutions.23

In this work, a preliminary solution is generated with the NNP following the process explained in the24

previous section. At the end of each optimization period after tperiod, this becomes the initial solution of25

the optimization. Three types of local moves are then applied to it. The swap move switches requests26

(R1,...,RN ) within the route of one car ([R1, R2] → [R2, R1]), the shift move changes the position of a27

request from one car’s route to the end of another car’s route ([R1, R2] , [R3, R4] → [R1] , [R3, R4, R2]).28

The third move is called interchange and exchanges the positions of two requests in two different cars’29

routes ([R1, R2] , [R3, R4] → [R1, R4] , [R3, R2]). These moves are executed for all cars and pairs of cars30

of the fleet and the resulting solution is tested to be feasible. All feasible solutions are then defined as the31

neighborhood of the initial solution.32

The solutions in the neighborhood of the initial solution are sorted by their value of the objective func-33

tion. Beginning with the best solution, the so called Tabu List is checked, which indicates if a solution was34

already found recently. If so, the next solution is checked until a maximum number of solutions was checked35

and the search terminates. If a new solution was found before the search terminates, this solution becomes36

the initial solution of the next iteration. If this solution is better than the Best Solution Found (BSF) in this37

optimization step, it also becomes the BSF. The next iteration of optimization starts by applying local moves38

on the new solution. This procedure is repeated until a) the search terminates because it cannot find a solution39

that was not recently found or b) the search does not produce a BSF for a certain amount of iterations InoBSF40

or c) a maximum number of iterations Imax had been performed or d) the time limit set by the optimization41

period’s length is reached. After the TS terminated, the last BSF is the resulting solution of the optimization.42

43

Global Optimization with Time Windows44

Global Optimization with Time Windows (GOTW) is a method introduced in (12) which is able to benefit45

from both the response speed of the NNP as well as the optimization potential of the TS.46

At the beginning of each optimization period, an empty list Lopt is set up, which will contain all requests47

subject to optimization at the end of the optimization period. After the simulation of all cars’ movements48

according to their currently matched requests, at every simulation step new requests that are added to the49
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problem are preliminary matched to a car or rejected, following the NNP. Every accepted request is added1

to Lopt and if the preliminary matched car is idle, it moves to the pick-up location starting with the next2

simulation step. A customer is not allowed to be rejected after his or her request was initially accepted and3

is not allowed to be re-scheduled in a way he or she would have to wait longer than the maximum waiting4

time, defined by the fleet operator. By using the NNP as an initial decision maker for accepting or rejecting5

a request, it is possible to send a response to the customer very quick, either a rejection or a latest pick-up6

time.7

After adding new requests to the problem, it is checked if preliminary matched requests’ pick-up loca-8

tions are already reached by the respective cars. If so, those requests are matched permanently to the car,9

added to the actual solution and deleted from Lopt.10

This simulation circle is executed until the end of the current optimization period. At this point, all11

requests in Lopt are subject to a global optimization using TS as described in the previous section. The12

found solution is considered as permanent and the customer could now be informed about the exact pick-up13

modalities.14

Another optimization period begins by setting up a new Lopt. This procedure is performed periodically15

until the end of simulation.16

17

List-Based Assignments18

The idea of List-Based Assignments (LBAs) is to improve the initial solution by enhancing the simple NNP19

heuristic while decreasing the size of the solution space needed to be searched by the TS metaheuristic,20

without eliminating feasible solutions. A short example is presented to illustrate the approach.21

As described in section Nearest Neighbor Policy, the NNP searches for the vehicle that is able to pick22

up a customer i ∈ N fastest, once a new request is submitted. The other cars’ earliest pick-up times for23

that particular request are not stored. When another request j ∈ N is submitted, this car is considered to be24

occupied until the drop-off time of customer i, to guarantee a pick-up in time. If no other car is able to pick25

up customer j, this request is rejected.26

With the method of LBAs though, all cars that are able to pick up a customer i ∈ N before he or she27

had to wait longer than the maximum waiting time tmw are added to a list LLBA,i. This list is sorted by the28

earliest possible pick-up time and the fastest car is matched preliminary with the request. Thus, initially the29

same preliminary match is made for customer i as it would have been done following the NNP.30

However, when the aforementioned request j ∈ N occurs, the preliminary matched car is not considered31

to be occupied until it would drop off customer i. If it is able to pick up customer j before the respective32

maximum waiting time and if there is another car in LLBA,i which had not been preliminary matched to33

another request in the meantime and is still able to pick up customer i in time, the request of customer j can34

be accepted by preliminary matching it to the car, that was first sent to request i.35

By doing so, more online requests can be accepted in a respective optimization period compared to only36

using NNP without loosing the guarantee for accepted customers to be picked up in a time shorter than the37

maximum waiting time and without considerable additional computational effort.38

Furthermore, as only vehicles in the list LLBA,i are able to pick up customer i, the TS can neglect solu-39

tions, in which i is matched to a vehicle that is not in LLBA,i. This decreases the number of possible solutions40

tremendously, which translates to a much faster optimization. As this version of the DaRP is very dynamic,41

this advantage is crucial for the success of the proposed algorithm in real world applications.42

43

Optimization of Reservations44

As customer i ∈ N requesting a ride at an exact point in time in the future tres,i wants to be informed about45

his or her acceptance or rejection as quick as possible, the initial decision is made by the NNP as for online46

requests. In contrast to online requests, matched requests are not added to the actual route of the respective47

car m ∈M , but instead stored in another list, denoted as Lres,m.48

As explained in section Problem Formulation, requests in Lres,m are not part of optimization and cars49
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FIGURE 2 Concept of GOTW with LBAs, considering both online requests and reservations.

are not moving to the pick-up location of the next request on the list in the model proposed in this work.1

Instead, at the end of each optimization period with length tperiod the list of reservations Lres,m is checked2

for every car m ∈ M : if a car m has to start moving to the pick-up location of its next reservation request3

i before the next optimization period in order to arrive there in time, the request is deleted from Lres,m4

and added to the route of the car. In the proposed algorithm it becomes subject to optimization (in the5

benchmarking algorithm using only NNP, car m has to perform the service). If request i is scheduled to be6

served by another car m′ after the optimization and this car is not needed to start immediately to pick up7

the customer in time, the request is deleted from that car’s route and added to Lres,m′ . Therefore, car m′ can8

potentially serve future online requests or reservations i ∈ N with earlier reservation times tres,j < tres,i, as9

long as the pick-up of customer i at tres,i is still guaranteed.10

This procedure maximizes the time cars are able to perform other tasks before picking up customers11

that requested the service in advance. It also produces significantly less empty driven miles, since it allows12

considering the spatial distribution of cars closer to the actual pick-up time. By optimizing reservation13

requests only when they become urgent a given time budget for optimization can be used more efficiently14

since the TS can focus on the solution space involving more relevant assignments of the near future, resulting15

in shorter computational times.16

In figure 2 the principle of the GOTW with LBAs is depicted, considering online requests as well as17

reservations.18

CASE STUDY19

In this section, the simulation settings will be explained in detail before the presentation, evaluation and20

discussion of the results.21

22

Simulation Settings23

In this work, the open source New York Taxi Data (13) is used to simulate the demand. Because computa-24

tional time for solving the problem increases with growing problem size, only 5% of all requests are taken25
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TABLE 1 Summary of optimization and simulation settings
TS local moves swaps, shifts, interchanges

InoBSF 10 iterations
Imax 100 iterations

penalty for empty driven mileage s 1 per second
waiting time penalty factor s 3 per second

rejection penalty factor r 2

online customer maximum waiting time tmw 300 seconds
operator acceptance/rejection time immediate

optimization period 60 seconds
reservation announcement time 10− 60 minutes

reservation customer maximum delay 0 seconds
reservation percentages 0%, 50%, 100%

average number of customers per hour 1000 customers
fleet sizes 20, 40,..., 300 cars

warm up period 60 minutes
simulation period 60 minutes

simulation time step 1 second

into account in this work in order to generate a meaningful number of runs to evaluate the statistical effect1

of the proposed methods. In each run, the selection of requests taken into account is randomly sampled.2

The simulations start at 6 p.m. and last until 7 p.m. of each day from Monday, June 20th 2016 to Thursday,3

June 23rd 2016, where around 1000 requests per simulated hour must be handled. The time of simulation4

is chosen to test the algorithms during the evening demand peaks in weekdays. This is the last full week5

the data source provides GPS information on pick-up and drop-off locations of the requests. Before each6

simulation, a one-hour warm up phase is run to ensure a realistic distribution of vehicles in service at the7

start of the simulation.8

The positions of cars as well as pick-up and drop-off locations are projected on a simplified grid, mea-9

suring distances between two points on it by adding horizontal and vertical differences in position (Man-10

hattan distance). The grid space is set to ten meters and vehicles in the simulation are able to move this11

distance in one simulation step which is equivalent to one second of simulated time. This leads to a constant12

simulated velocity of 36 kilometers per hour.13

To compare the results of the proposed algorithm and the NNP, each simulation is initialized twice14

with the same set of cars and customers, one following the NNP only, as described in section Nearest15

Neighbor Policy, the other one using the methods explained in sections Tabu Search, Global Optimization16

with Time Windows, List-Based Assignments and Optimization of Reservations to find optimized solutions17

at each optimization step. To find the benefits of both the list-based assignments (only for online requests,18

as described in section List-Based Assignments) and the incorporation of reservations (only for scheduled19

requests, as described in section Optimization of Reservations), simulations are run using three reservation20

percentages: 0%, 50% and 100%.21

The optimization periods are 60 seconds long which is considered as a reasonable amount of time a22

customer is willing to wait for the exact information when he or she will be picked up. The same applies for23

the maximum waiting time of online customers, which is set to 300 seconds. Reservations can be made 1024

to 60 minutes in advance. Simulations including reservations last until every request becomes permanently25

matched and therefore contributes to the objective function value. The key performance indicators (KPIs)26

are measured at the end of each one hour simulation time window.27

The number of available ODM fleet vehicles varies from 20 to 300 in 15 isometric steps to evaluate28
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(a) Qualities of solutions found with GOTW compared to
NNP, representing relative values of the objective func-
tion in percent.

(b) Computational times for Tabu Search optimization in
seconds.

FIGURE 3 Qualities of solutions and computational times for optimization for scenarios with 0%
(green), 50% (blue) and 100% (red) reservations using GOTW (solid) and NNP (dashed).

the behavior of the algorithms with different ratios of demand (number of requests) and supply (number of1

cars).2

Each set up is simulated ten times for each of the chosen simulation dates, leading to a total of 40 runs3

per setting and an overall number of 3600 simulations taken into account in this work. These simulations4

are run on a twelve-core Intel Xeon E5-2687W 3.0GHz processor. An overview of the scenarios is given in5

table 1.6

In addition to that evaluation, to quantify the benefit of LBAs in terms of computational times, two sets7

of simulations with the same settings are initialized without the termination criterion (d) in the Tabu Search,8

that terminates the search after the optimization period’s length. One set of simulations uses LBAs to cut9

the solution space at each optimization step, the other set searches the solution space defined by all cars of10

the fleet. The simulations consider scenarios with 50% of all requests being reservations.11

12

Results13

The solution qualities as well as the computational times for the simulations using optimization are presented14

in figure 3 to evaluate the overall performances of both methods. Error bars indicate the 95%-confidence15

interval of the respective measurement. The quality of a solution (QoS) found with GOTW relative to16

solutions generated with NNP is defined as17

QoS =

{
1− fobj,GOTW

fobj,NNP
if fobj,GOTW > fobj,NNP

fobj,NNP
fobj,GOTW

− 1 otherwise.
(5)

Additionally the average values for rejection percentages, average waiting times of customers, total18

empty mileages per car and fleet utilization are compared for both approaches, as shown in figure 4. To19

avoid confusion in the graphs, error bars are hidden in this figure.20

In the case of no reservations, the overall impact of the new approach is the smallest for all ratios of21

available cars and customers. The rejection percentages are very similar over all simulated numbers of22

cars and fall below one percent in scenarios with more than 140 cars. The differences in driven and empty23

mileages are small in general, but the GOTW algorithm produces less empty mileage in every setting. In24
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(a) Rejection rates in percent. (b) Average customer waiting time in seconds.

(c) Empty driven mileage in kilometers. (d) Fleet utilization in percent.

FIGURE 4 KPIs for scenarios with 0% (green), 50% (blue) and 100% (red) reservations using GOTW
(solid) and NNP (dashed).

scenarios with fleet sizes short of meeting the demand, the difference in produced empty mileage peaks,1

leading to slightly better overall solutions. With 100 cars, GOTW produces solution qualities which are2

1.49% higher than those generated with NNP. On the other hand, GOTW is outperformed by the NNP in3

scenarios in which the rejection percentage is smaller than one percent. The worst performance is measured4

with 180 cars, where GOTW is 1.87% worse than NNP on average. This result is caused by the difference5

of around 2 seconds in average waiting time per accepted customer, which outweighs the slight benefit of6

saved empty mileage for fleet sizes sufficient to hold rejection rates under one percent.7

When reservations are considered though, the overall solution qualities produced with GOTW are gen-8

erally higher than solutions generated with NNP. If only reservations are requested (100%-reservation case),9

the objective function value is the sum of the penalties induced by rejections and empty miles. Each cus-10

tomer is either picked up at the requested pick-up time or is rejected and therefore produces no penalty due11

to individual waiting time. Compared to NNP, solutions found with GOTW imply generally less driven12

mileage per car and specifically less empty mileage. With increasing number of vehicles in the fleet, the13

empty mileage produced with solutions found by GOTW decreases much faster than in NNP-solutions, up14

to the maximum simulated fleet sizes with 300 cars. In these scenarios GOTW produces 1.66 km average15
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empty mileage, compared to 5.14 km with NNP, a relative improvement of 67.7%. At the same time, the re-1

jection rate in simulations using the GOTW approach is considerably higher compared to the NNP method if2

only reservations are considered. This behavior becomes more and more obvious with increasing fleet sizes3

up to the point when the demand is met, in the case of GOTW at around 300 vehicles.The empty mileage4

becomes increasingly dominant with more cars in the fleet, because the number of rejections decreases.5

Since the difference in empty mileage produced in the GOTW and NNP solutions also increases, the results6

found with GOTW become more and more superior to the benchmark up to maximum fleet size of 300 cars7

with an improvement of 36.69%. A local minimum in the solution quality is found only when the difference8

in rejections peaks at around 260 cars, where in solutions with NNP around 0.91% of all requests had been9

rejected, while with GOTW 5.11% of the customers were rejected.10

In the mixed case with one half of all requests reservations, the other half customers which want to be11

picked up as soon as possible, the behaviors of both aforementioned cases are recognizable in the resulting12

KPIs. The produced empty mileage becomes more dominant with increasing number of cars, as it is the13

case when only reservations are considered. As the GOTW approach produces solutions with less empty14

mileage than in NNP’s solutions and the difference in this aspect grows with increasing fleet size, the overall15

solutions found with GOTW tend to become better the more cars are part of the fleet. Also, this trend is16

only retarded when the difference in rejections reaches its peak shortly before the demand is met, as it was17

observed before in the 100%-reservation case. Though, the number of cars necessary to meet the demand is18

much more similar to the one found in the use case considering only online requests (approximately 140),19

with around 180 vehicles instead of between 260 and 300. The differences in average waiting times of online20

customers are even higher than in the 0%-reservation case for fleet sizes meeting the demand. Still, these21

differences are not as critical for the objective function values as the empty mileage is the dominant term22

in this genre. In scenarios with fleet sizes not matching the demand, the average customer waiting times23

produced in solutions with GOTW tend to be shorter than in those found with NNP.24

The computational times for simulations rise exponentially as expected due to the kind of the optimiza-25

tion problem. The converging behavior for bigger fleet sizes is caused by the termination condition (d) of26

the Tabu Search (see section Tabu Search) which terminates the search after a wall-clock time equal to the27

optimization period’s length. The higher the reservation percentage of an evaluated set up at a certain fleet28

size, the longer the computational time becomes. That behavior can be explained by the method of taking29

reservations into account in optimization: requests might be part of optimization more often than once until30

they are matched permanently. Online requests on the other hand are matched just once and thereafter are31

not part of optimization, leading to lower average numbers of requests per optimization and therefore shorter32

computational times in total.33

In figure 5, the computational times taken for the sets of simulations using Tabu Search optimization not34

limited by the termination criterion (d) are compared. It is apparent that using LBAs reduces the computa-35

tional effort significantly. With rising fleet size and therefore more solutions to evaluate in the optimization,36

the total difference in computational time taken to find solutions increases. For same fleet sizes and settings,37

solutions produced with LBAs are found between 7.5% (280 cars) and 31.4% (60 cars) faster compared to38

the equivalent algorithm without LBAs, with an average of 20.0%.39

40

Discussion and Future Work41

The results shown in the previous section give indications for strengths and weaknesses of the proposed42

algorithm.43

A clear disadvantage is the performance in scenarios without reservations. In these scenarios, the44

proposed LBAs were expected to improve the solution quality by increasing the number of accepted requests45

compared to the simple NNP algorithm. However, due to longer average waiting times for customers the46

objective function values produced with LBAs and periodic optimization are worse than those found with47

NNP. One explanation for this behavior is the nature of the dynamic DaRP. At each optimization step, the48

goal of the optimization algorithm is to find the best car-passengers matches at this point in time. The49
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FIGURE 5 Computational times without time-out termination criterion in TS with (green) and with-
out (blue) LBAs.

future vehicle distribution changes according to origin-destination patterns of served demand and the made1

assignments. While an optimal assignment at one point in time is clearly beneficial for the currently known2

requests, the assignments might be worse considering not yet revealed future requests. That behavior was3

described in detail by Dandl et al. in (15).4

A similar explanation holds for the higher number of rejections in the cases with reservations. In these5

scenarios, cars are preliminary matched with requests for reservations as long as the cars do not need to start6

moving to pick up the customer in time. In that case, an optimization takes place which might find another7

car which is closer to the pick-up location. This procedure is repeated until no closer car is found. Then the8

match becomes permanent and the car starts moving to the pick-up location. As for the online scenario, the9

results can be explained by the dynamic problem combined with the centralized distribution of requests in10

the evaluated data. Cars which are able to pick up customers faster than other cars are more often close to the11

center, since that is where the most new requests occur. That means that those cars tend to be matched with12

more and more reservation requests until they do not have any capacity left to accept new ones. The NNP13

does not search for closer cars when a car needs to start moving in order to pick up a customer in time. This14

leads to much longer ways to the pick-up locations - represented by the significantly higher empty mileages15

in these solutions - but it also decreases the density of requests in the schedule of cars near the center which16

are therefore able to serve new requests more often.17

The benefits of the proposed methods are clearly found in scenarios considering reservations. Especially18

if the fleet size is chosen to be sufficient to meet the demand and the rejection rate is very low, the approach19

presented in this work outperforms the NNP due to the empty mileage saved.20

Using LBAs in order to avoid considering infeasible solutions in the optimization causes a signifi-21

cant improvement in terms of computational run time necessary to find solutions with the Tabu Search22

metaheuristic. This advantage allows more iterations per optimization period, potentially leading to better23

solutions and decreases the time necessary to find these solutions, resulting in shorter response times to24

customers, a crucial feature in highly dynamic problems.25

Future work should further enhance the degree of realism increasing the problem scale to the actual26

demand and the actual sizes of ODM fleets in cities like New York City as well as using real maps, traffic27
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information and routing instead of a simplified grid. Another emphasis could be the improvement of the1

search procedure itself to find better solutions in deeper solution spaces as well as the combination of the2

proposed model with a repositioning algorithm, which would increase the solution qualities by reducing the3

number of rejections and shortening individual customer waiting times.4

CONCLUSION5

This work’s objective was to introduce an approach which is able to combine online requests of customers,6

which want to be picked up as soon as possible by a vehicle of an ODM fleet and reservation requests,7

in which customers demand a pick-up at a certain point in the future by cars of the same fleet. The pro-8

posed method is based on the concept of Global Optimization with Time Windows (GOTW). It combines9

the benefits of a quick initial decision, determining whether a request is accepted or rejected by a simple10

insertion heuristic based on the Nearest Neighbor Policy (NNP), and the optimization potential of a Tabu11

Search metaheuristic, which optimizes the matching of new requests and vehicles in the fleet periodically.12

The presented methodology of List-Based Assignments (LBAs) is able to reduce the computational13

time of the Tabu Search procedure by 20% on average due to exclusion of infeasible solutions before the14

actual optimization takes place.15

The proposed method to take requests for reservation into account in the optimization of the car-16

passenger matches generates less empty mileage driven by the ODM fleet than the NNP (up to 67.7%17

in scenarios with 300 cars and 100% reservations). This benefit outweighs the higher rejection rates in so-18

lutions found with the proposed algorithm compared to the benchmark solutions following the NNP by up19

to 36.69%.20

Upcoming work should evaluate the shortcomings of the presented approaches in scenarios with no21

reservations, where the average customer waiting time is higher than in the benchmark solutions. Also,22

repositioning of idle cars to decrease average waiting times and rejection rates should be considered.23
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