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ABSTRACT

C
rashworthiness is one of the most important functions of a vehicle structure. It

directly impacts the occupant safety and is therefore thoroughly tested by various

governmental and independent institutions worldwide. A crashworthy vehicle

means the structure needs to absorb the impact energy, therefore reducing the decel-

eration load on the occupants. Furthermore, due to environmental considerations and

stringent emission legislation, vehicle emissions are becoming increasingly important.

Vehicles need to get more economical by using less fuel and because of that the au-

tomotive industry currently prioritizes the development of Battery Electric Vehicles

(BEVs). Batteries, however, take up permanent space and weight and require significant

structural strength for safety reasons, which in turn requires more structural mass.

Currently it is common to use metals for Body In White (BIW) and crash absorbing

vehicle architectures. The increasing need for weight reduction and the importance of

crash performance are a major design driver for using advanced composite materials.

This material has shown to be lightweight, more robust an may have superior crash

performance. However, the introduction of laminated composites into the design process

of vehicle architectures, also introduces greater design complexity. Especially concerning

the field of passive safety and the optimization for crash-worthiness.

This dissertation introduces a novel method to methodically handle different issues

concerning the optimization of the crashworthiness of the structure. The proposed

novel design work-flow addresses different aspect of the optimization process; shape

optimization and complexity reduction. A two part method is introduced. The first part

is concerned with the optimization of load paths, taking crash loads and composite crush

behavior into consideration. Also the translation from 3D crash scenarios to 2D shape

optimization domains and back is researched and a solution is presented. The second

part introduces a complexity reduction work-flow that can be applied to the design from

the first part.

The presented methods are applied on two distinct problems, relevant in the field of

automotive crashworthiness. First is the optimization of the Carbon Fiber Reinforced

Plastic (CFRP) composite support structure for the impact loaded front architecture of a

novel vehicle design. Second is the optimization of a S-Rail before and after the complexity

reduction. The results are promising. The results of the first application validate the

proposed methods by generating functioning crashworthy composite structures. The

second application example shows a significant increase in computational efficiency

when optimizing the benchmark example after the complexity reduction is performed.
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1
INTRODUCTION

It is well known that non-linear dynamic response optimization using a conventional

optimization algorithm is fairly difficult and expensive for the gradient or non-gradient

based optimization methods because many non-linear dynamic analyses are required.

Therefore, it is quite difficult to find practical large scale examples with many design

variables and constraints for non-linear dynamic response structural optimization. (Kim

& Park, page 1 [61])

The quotation above points out a major challenge in many real world optimization

problems. Take the design of crashworthy vehicle structures as an example [8, 41, 46, 92].

Designing for crashworthiness implies non-linear (geometric, contact, and material non-

linearity) transient structural behavior subject to multiple load-cases and restricted by

many implicit and explicit constraints, both geometrical and dynamic. Furthermore,

optimization of non-linear and dynamic problems is computationally expensive, because

of the time dependent properties and small time-increments needed to solve them. That

is why these problems are rarely presented in their entirety in scientific literature. Crash

problems are often broken down in manageable isolated tasks and solved for single or

already less often for two load-cases.

This thesis does the same; a crash problem is significantly simplified and a work-flow

is developed to methodically handle different issues concerning the optimization of the

crash-worthiness of the structure. However, an added complexity is the introduction of

advanced composite laminates as the main structural material. Also, the proposed work-
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flow addresses different aspects of the optimization process, in particular complexity

reduction and topology optimization.

This chapter starts with an introduction to the optimization of vehicle structures for

crash-worthiness using advanced composites materials. Then, an overview of topology

optimization using the Level Set Method is given. It is followed by an introduction to

methods that are concerned with the reduction of problem complexity. The chapter is

concluded with outlining the motivation for this research, defining the problem and

proposing a novel set of methods and work-flow to solve it.
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1.1 Optimization of advanced composite vehicle

architectures

Due to environmental considerations and stringent emission legislation, vehicle emis-

sions are becoming increasingly important. Vehicles need to get more economical by

using less fuel and weight reduction of the BIW is one of the most efficient ways of doing

that. For the same environmental reasons, the Battery Electric Vehicle (BEV) is rapidly

becoming a popular alternative to its Internal Combustion Engine (ICE) counterpart.

This causes the automotive industry to prioritize the development of BEVs. Batteries,

however, take up permanent space and weight. The power density of batteries is signifi-

cantly lower than that of the commonly used fossil fuels such as gasoline. Lithium-ion

battery packs typically achieve around 0.864 MJ/kg (≈240 Wh/kg) [112], gasoline around

48 MJ/kg. Even when an ICE only achieves around 15% efficiency, and an electric motor

80%, the ICE is still a little over 10 times more efficient in terms of energy per kg. The

consequence is that BEVs are significantly heavier compared to their ICE counterpart.

Achieving an acceptable driving range with a BEV requires a significant increase in

battery mass. This in turn requires a further increase in weight of the auxiliary BIW,

due to increased requirements on stiffness and strength. This parasitic weight cycle is a

major challenge and it directly increases the cost of the vehicle and reduces its efficiency.

Therefore, reducing the weight of the BIW can significantly impact the total mass of a

BEV, making it a worthwhile design driver.

Another important function of the BIW is to absorb the energy of the impact during a

crash. Because occupant safety is regarded as one of the most important design drivers, it

is extensively tested and assessed by various governmental and independent institutions

world wide, such as the National Highway Traffic Safety Administration (NHTSA) and

United Nations Economic Commission for Europe (UNECE), two major test programs

are the Euro- and US-New Car Assessment Program (NCAP).

Currently it is common to use metals for BIW and crash absorbing vehicle architec-

tures in the automotive industry. Their more or less isotropic nature, available extensive

material databases and thoroughly researched elastic, plastic, and failure behavior make

it a well understood material to design with [11]. Because metal components have been

used in the automotive industry for more than 100 years, design methodologies, opti-

mization work-flows and concept development are focused around the use of metallic

(sub)structures.

The increasing need for weight reduction and the importance of crash performance
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drive the research into new materials for vehicle design, such as, advanced laminated

composite materials, specifically advanced Carbon Fiber Reinforced Plastics (CFRP). In

automotive structures, these materials have a high potential; they have been shown to be

lightweight, more robust and may have superior crash performance [21, 33]. Advanced

CFRP composites that are being used today show typical Specific Energy Absorption

(SEA) values between 60 to 70 kJ/kg [69], see Section 1.2 for a detailed explanation.

Compared to commonly used metals, these values are two to three times higher. The high

SEA together with the high specific strength and specific stiffness of advanced composites

may have a significant influence on the overall weight reduction in automotive structures.

However, the introduction of laminated composite materials into the design process of

vehicle architectures, also generates greater design complexity. Especially concerning

the fields of passive safety and optimization for crash-worthiness.

The optimization for crash-worthiness is a well-know and relatively broad topic in

literature. Topics go from full vehicle optimization to research focused on local effects

and optimization. Furthermore, topics present a variety of different methods; size op-

timization of structural members or shape or topology optimization of rough vehicle

architectures or dynamically loaded sub-structures.

In contrast to crash-worthiness optimization with isotropic materials, such as several

common types of metal, the optimization of advanced composite structures for crash-

worthiness is a relatively rare topic. In the following some examples are given found in

this research field.

Recently, Fang et al. [32] did a relatively extensive literature review on the state

of the art on design optimization for structural crash-worthiness. They clustered their

findings based on different topics; design criteria, crash-worthiness criteria, optimization

strategies for size, shape and topology (single- & multi-objective, with/without uncertain-

ties), and area of industrial application. They concluded based on their findings, among

other aspects, that:

1. In most cases, surrogate modeling is the method of choice to approximate the

response of a crash-worthiness problem. The main reason for this choice is to

reduce the significant computational effort it requires to accurately calculate this

response.

2. When optimizing a single component, its individual role as an integrated compo-

nent within the vehicle architecture should be addressed and included into the

optimization process. This will increase the overall performance of the component.
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3. Novel structures and materials, such as advanced composites have been studied.

However, only limited research is available. The existing literature only consid-

ers geometrical parameters as design parameters. It remains unclear if crash-

worthiness optimization can be used for problems with other material and process

parameters; and from this viewpoint, composite structures have considerable room

for advancement.

The available literature on optimization of advanced composite vehicle architectures

is limited. The research focuses either on the shape optimization of crush or energy ab-

sorption performance of a single component or optimization of the laminate composition

itself.

Lanzi et al. [66] used a Genetic Algorithm (GA) on a combination of explicit Finite

Element Analysis (FEA) and a system of Radial Basis Functions (RBFs) to optimize

the shape of a conical fiber-composite cylinder. The cylinder was subjected to vertical,

20◦ and 30◦ impacts, with three shape variables. The optimization objectives were to

minimize cylinder weight and maximize the energy absorption. In essence, this means

that Lanzi et al. optimized the SEA.

Zarei et al. [120] optimized the SEA of a square CFRP composite tube, using a

sequential Response Surface Model (RSM) method work-flow. As variables the tube

thickness, width and length were chosen.

Belingardi et al. [13] optimized the cross-sectional shape, wall thickness and trans-

verse curvature of a bumper made of pultruded E-Glass. They achieved energy absorption

comparable with steel components, however with better progressive failure mode and a

reduced peak load.

Duan et al. [27] researched the influences of the thickness and radius on crash-

worthiness of a CFRP composite tape sinusoidal specimen. They considered the max-

imization of the SEA and minimization of the initial impact peak force as criteria for

their optimization scheme.

More recently, Castro et al. and Fontana et al. [22, 35] optimized a CFRP composite

impact attenuator for a formula student car. The attenuator is impacted perfectly axially

by a rigid surface being perfectly clamped at the other end. After comparing it to

different alternatives, they decided to use the FEA software Abaqus [2] in combination

with CZONE [12] to calculate the structural response and simulate the progressive

crushing of the specimen. They analyzed that this simulation set-up provides better and

more robust results than other alternatives, such as Cohesive Zone Modeling (CZM).

They split the attenuator into different zones, where every zone was allowed a different
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layup design. Castro et al. optimized the layup for each zone for two objectives; minimize

attenuator weight and maximize deceleration. Fontana et al. improved upon this by

introducing a work-flow script that allowed for geometrical changes, such as variable

curved walls and different zone lengths, as well as a variable layup design. They both

used the Direct Multi-Search (DMS) optimization algorithm to handle the multi-objective

design problem. They found designs that performed significantly better in terms of

weight and acceleration than the previously implemented aluminum impact attenuator.

The use of curved walls was concluded to be very import for both, better SEA and more

robust designs.

All the research presented above regards examples of component optimization that

represent either size or material optimization or a combination thereof. When looking

for research that aims to optimize the overall shape or even topology of simple vehicle ar-

chitectures with isotropic materials for crash-worthiness, less is found. Indeed, research

containing the shape or topology optimization of composite vehicle architectures under

crash loading conditions is even more scarce. Some examples of topology optimization for

crash-worthiness with isotropic materials follow.

Early advances were made by Mayer et al. [72]. He and his colleagues devised a

method using optimality criteria optimization method together with the homogenization

technique to optimize the distribution of material in a 3D FE structure, in order to

maximize the internal energy of the component. Non-linear elasto-plastic material was

applied with an explicit Finite Element Method (FEM) to calculate the sensitivities and

response of the structure. In order to constrain the solution, a maximum volume was

defined. The idea is that by maximizing the internal energy, the energy absorption of

the structure is improved as well. Energy absorption in an impact scenario is a time

dependent problem. Mayer et al. incorporated this time dependency by modifying the

objective function to a summation of weighted objective functions at specified times. They

applied the method on a rear S-Rail of a typical car and found that they could improve

the energy absorption of the initial design. A downside of the proposed method is that

the final structure is very similar to the initial structure in shape and size, with the

addition of ‘holes’.

Pedersen [86] went a different route to solve topology optimization for non-linear

time dependent problems. He first proposed a method to optimize a certain initial two-

dimensional frame structures, called ground structure. He used beam elements with

plastic hinges with a formulation that allowed for large rotations. The objective was

to minimize the error between a prescribed single nodal force-displacement diagram
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and the actual response at that node. A quasi-static FEA was developed to calculate

the response of the frame structure. The height of each element was considered as the

variable, which is similarly done in the element material density method. By using this

setup, the sensitivity could be calculated analytically and a mathematical programming

method could be used as the optimization algorithm, in this case the Method of Moving

Asymptotes (MMA). Results showed frame structures that came close to the desired

load-displacement requirement, although measures needed to be implemented to mit-

igate collapse modes. Pedersen improved on this method in further research [87, 88].

He implemented for example methods to optimize crash-worthiness, by defining an

acceleration over displacement or time as the objective, constrained by structure weight

and optionally maximum displacement. An example of a largely simplified 2-D vehicle

front-end showed the ability of the method to match the required deceleration over

displacement very accurately. One downside of the method proposed by Pedersen is that

only his developed beam elements can be used, meaning only isotropic materials can be

modeled. A positive aspect is the ability of the method to actually do full-scale topology

optimization of non-linear problems, thereby finding possible new and better optimal

load paths.

Ortmann et al. [77] devised a graph and heuristic based approach to optimize the

topology of crash loaded structures. Their method is comprised of two different optimiza-

tion loops. The outer loop controls the design space, defined by the outer topology and

shape of the structure. The inner loop performs the shape and size optimization. The

method is a frame-work, allowing for the connection to commercially available FEA and

optimization software. Heuristic rules derived from expert knowledge use the results of

FE simulations like velocities or energies to alter the topology of the structure. Currently,

their method can only optimize a 2-D topological design of cross-sections, although the

structural response to be optimized can come from a 3-D structure. Their method is

therefore an interesting example of a method where the topology optimization takes

place in 2-D, to increase the performance of the 3-D representation. Thereby decreasing

the problem complexity.

Patel et al. [84, 85] based their method for topology optimization for crash loaded

structures on the Hybrid Cellular Automaton (HCA) method. They introduced a heuristic

and non-gradient method for continuum-based topology optimization method. The HCA

method is used to generate 3-D solid structural design concepts. Their goal was to

maximize the energy absorption of the structure whilst constraining the maximum

intrusion of the impacting element. They achieved this by using the material update
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rule within the HCA framework to distribute the internal energy throughout the entire

structure. Therefore, the result is in a certain way similar to a fully-stressed design. The

method starts with an explicit FEA to get the stress-strain states of all elements in a

crash scenario. The HCA method is used to update the material distribution by changing

the element densities. Convergence is tested and if not reached, the loop starts again

at the FEA. Their method has the benefit of being able to do 3-D continuous topology

optimization for crash-worthiness. However, only solid structures can be designed by

the current implementation. Furthermore, the method only works for material that

dissipates energy by plastic deformation and strain hardening. To the knowledge of the

author of this thesis, failure criteria were not yet considered for this approach.

Duddeck et al., Hunkeler and Zeng et al. [28, 50, 121, 122] improved on the research

by Patel et al. They proposed an approach based on HCA for crashworthiness topology

optimization with a special focus on thin-walled structures. First, they developed a

two stage method for the optimization of cross-sections for thin-walled beam-like super

structures. In further research by Zeng et al. [122] they extended the method to 3D

thin-walled beam-like structures. To validate their method, they optimized well-known

3D bending problems for minimal intrusion.

The shape and topology optimization methods proposed above for crash-worthiness,

introduced approaches that should overcome some of the difficulties that are intrinsic

to this field of problems. Examples being the complicated deformation conditions, large

number of design variables, bifurcations within the structure and complex sensitivity cal-

culation. Most methods however rely on the dissipation of energy by plastic deformation

and thus require metallic materials. The method proposed by Ortmann et al. could in

theory be applied to other materials, however this is not yet pursued. A method to opti-

mize the load-paths of a structure to increase crash-worthiness via topology optimization

using composite materials could not be found in literature. Furthermore, what is not

discussed in these papers but what can be considered a downside of the ‘classic’ topology

optimization, is that often thin-membered ‘truss’ structures are generated. For metallic

structures this may be a plausible and desired design direction. For composite structures

however, this is not optimal. The ability to have a larger control over the shape evolution

can be considered beneficial.

Another approach besides the commonly used homogenization or Solid Isotropic

Material with Penalization (SIMP) method is the Level Set Method (LSM). The LSM

allows for larger control over the design evolution during optimization. The LSM is a

relatively unknown concept in comparison to SIMP method, therefore an introduction to

8



1.1. OPTIMIZATION OF ADVANCED COMPOSITE VEHICLE ARCHITECTURES

the method and its benefits is given in Section 1.3.

Research on the LSM for shape & topology optimization is plentiful. However, the

implementation of the LSM within a optimization work-flow for crash-worthiness is

not plentiful. Bujny et al. [18, 19, 90, 119] did various research on solving dynamic

crash problems with the LSM. They proposed a topology optimization approach based on

evolutionary algorithms and a low-dimensional level-set representation; EA-LSM. This

method allows for an optimization of arbitrary quantifiable criteria using high-fidelity

explicit crash simulations. They solved various well known linear elastic static problems,

showing the potential of the method. However, the main goal was to use EA-LSM to

solve nonlinear crash cases. To validate the usefulness of their methods, they applied it

to optimize the frequently studied 2D and 3D bending problem for minimization of the

intrusion. The method proved to be as good or slightly better than HCA. Finally they

applied their optimization work-flow to optimize a 3D-printed metal joint in a hybrid

S-rail structure, with good results. In theory, this method can be applied to all problems

including highly non-linear crash load cases. One of the practical difficulties is the

handling of higher number of variables, which is especially for composite optimization

important.
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1.2 Mechanics of advanced composites under impact

The primary reason of choosing advanced composite materials for use in crash-absorbing

structures is the relatively low weight with respect to the amount of energy that can

be absorbed from an impact. Therefore, before the theory behind the energy absorption

mechanics of composites is explained, the method of measure for energy absorption

efficiency should be explained. With these metrics the performance can be objectively

compared between different structures and materials.

There are two popular metrics available; Specific Energy Absorption (SEA) and Crush

Force Efficiency (CFE) [69]. The SEA is calculated as follows:

SEA=
W

ρAs
=

∫s
0 Fdδ

ρAs
(1.1)

where W is the total absorbed energy by the specimen, ρ is the mass density of the

material, A is the cross-sectional area, s is the total displacement of the impactor into

the specimen or crush distance, δ the crush distance variable and F is the crush force.

Commonly, the mean force during the crushing phase is taken as the crush force F,

shown in Figure 1.1 as P.

The CFE is the ratio of the maximum force, or peak force, Fpeak, and the mean force F.

An example of the peak force Fpeak is shown in Figure 1.1 as Pmax. The CFE is calculated

as follows:

CFE=
Fmean

Fpeak

. (1.2)

The CFE gives a measure of the efficiency of the structure to go into its main energy

absorption mode. The initiation phase as shown in Figure 1.1 shows the initial force

required by the structure before the absorption phase can occur. If the force peak is equal

to or only slightly higher than Fmean, the CFE equals 1. This is a desirable property, as it

means the auxiliary or supporting structures behind the crush-members do not be overly

strong, requiring more material and thus mass. It also means the crash-member itself

needs less material or has a lower risk of going into a undesired buckling mode. The peak

force is in most cases the result of the elastic properties of the structure before fracture

and can be influenced by implementing a crush-trigger in the design of the member. The

next part will explain this further.

The mechanics behind energy absorption with advanced composites is significantly

different than that of metals. Metals dissipate a large part of the impact energy by plastic

deformation. Take for example a steel cylinder, or a similar closed cross-sectional tubular

structure, that is impacted in axial direction by a flat rigid surface. With sufficient
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FIGURE 1.1. Typical load-displacement curve of a CFRP composite tube under-

going progressive crushing under impact. I: Crush initiation and formation

of the crush-zone, II: Absorption or progressive crushing phase, III: End of

material or compaction of debris. [49]

load and under ideal conditions, the cylinder will buckle and fold unto itself, see Figure

1.2. The formation of these folds requires local plastic deformation of the steel, thereby

dissipating the impact energy. More specifically, the energy is dissipated through plastic

folding, work hardening and adiabatic losses during heating [69]. In stark contrast to

metallic structures, advanced composite materials dissipate the impact energy through

extra- and intra-laminar friction, fiber bending and fragmentation of the laminate

[57, 69]. The process behind the energy absorption mechanics of metals and advanced

composite structures can be divided into four categories [49]:

• Global buckling

• Progressive folding

• Progressive crushing

– Progressive splaying

– Progressive fragmentation

Generally, the first mode of deformation, global buckling, absorbs very little energy and is

therefore unwanted for energy absorption purposes. This mode of deformation can also be
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FIGURE 1.2. Typical example of progressive plastic folding in a metallic speci-

men [69].

easily avoided by choosing appropriate structural dimensions. Progressive folding is the

common mode of deformation for metallic structures with crash application, as described

above. However, it can also occur in structures made of ductile Fiber Reinforced Plastic

(FRP) and metal/FRP hybrid materials. The SEA of crash-members that primarily show

progressive folding can reach intermediate values; SEA average between 15 and 30 kJ/kg.

They do not, however, reach the higher levels that progressive crushing can achieve,

because they lack the extra mechanisms for energy dissipation [69]. Progressive crushing

shows the highest values for SEA and is commonly seen in advanced composite materials

such as CFRP. This mode of deformation consists of a “front” of individual layers in

a laminate that permanently deform in crushing. During the progressive crushing a

stable crush zone is formed that initiates at the point of contact and progresses down the

structure with the impacting element, away from the point of initial contact.

Progressive crushing can consist of splaying or fragmentation or a combination of

both modes. Splaying is generated by a wedge made of debris from the initial impact.

This wedge is pushed through the layers of the laminate of the specimen, causing a combi-

nation of failure modes, one of which is intralaminar shear cracking. The separate layers

that have a mainly longitudinal fiber direction splay in- and outward. The dominant
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(a) Crush initiation and forming

of initial cracks and material

debris.

(b) Material debris

forms a wedge,

initiating laminae

bending and fracture

in the front.

(c) Fully established crush zone, propagat-

ing downward.

FIGURE 1.3. Example of the forming of a crush zone in an advanced composite

specimen [57].

failure modes are laminar tension, compression and shear fraction, and interlaminar

fracture in tension and shear. The precise combination of these failure modes is highly

dependent on the design and composition of the composite laminate.

Progressive fragmentation is recognizable by the forming of fragments in the crush

zone that are forced inside and outside of the specimen. These fragments are relatively

small and have typical shapes. Hull [49] showed that the formation of either splaying

or fragmentation in the crush zone is a result of the competition between different

microfracture mechanisms. Fragmentation is critically dependent on the shear failure

process, thus if splaying does not occur the stresses in the crush zone build up. If a certain

critical shear fracture stress value is reached, fragmentation occurs. This means the

crush load depends on laminate configuration, elastic properties and failure strengths of

the individual laminae. Figure 1.3 shows an example of the initiation and progression of

a crush zone in a composite specimen with a dominant fragmentation mode.

The combination of several failure modes in a relatively large percentage of the

specimen’s volume is the reason that progressive crushing can consume such a high

amount of energy per unit weight. An overview of SEA from literature for typical

advanced composite specimens with different fiber materials is given in Figure 1.4.
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FIGURE 1.4. An overview of SEA values from literature for typical advanced

composite specimens with different fiber materials. The typical range of

SEA for metallic structures is given for comparison [69].
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1.3 Level Set Method for Topology Optimization

It was explained in Section 1.1 that in the field of topology optimization, the density

based methods, like the SIMP method, are the popular choice. However, recently the LSM

was adapted to use as a method in topology optimization. Sethian and Wiegmann [94]

first did research in this direction. They used the versatility of the LSM and developed a

structural optimization method based on the LSM. In their approach they combined level

set and finite difference techniques for constructing designs subject to certain design

constraints. Using ad-hoc criteria based on the von-Mises stress, an initial design is

evolutionarily updated by adding material at high stress areas around the boundary and

removing material al low stress areas. The boundaries in the design domain, described

by the Level Set Equation (LSE), are moved by a velocity function based on these ad-hoc

criteria. This method does not rely on shape sensitivity analysis.

The Level Set Method (LSM) is a method for describing an N −1 dimensional surface

in an N dimensional space. The zero level contour of a Level Set Function defines the

boundary of the surface. The inside and outside definitions of the surface are defined

by the sign of the LSF. Osher and Sethian [78] first developed this method to follow

surface boundaries propagating with curvature-dependent speed. The surface boundary

can be moved over time by solving a variant of the Hamilton-Jacobi Partial Differential

Equation (PDE). In this context, this equation is also called the LSE. By using an

appropriate normal velocity, the boundary is moved normal to the interface. One of the

advantages of the LSM is the ability to depict all variety of shapes in all dimensions with

large control over the geometrical properties during the surface chance over time, such

as the amount of curvature. Secondly the LSM allows for natural topological merging

and breaking of surface boundaries. The LSM found a broad application in different

areas, because of its versatility and computational efficiency. Areas of application are

among others, fluid mechanics, phase transitions, image processing and solid modeling

in Computer-Aided Design (CAD).

Level set based topology optimization using sensitivity analysis was first introduced

by Osher and Santosa [79]. They used the LSM to optimize a two-phase mass distribu-

tion over a drum with constant tension. The shape sensitivity of this two-phase mass

distribution was used as the normal velocity of the boundary. The LSF was updated by

solving the LSE with an upwind numerical Finite Difference (FD) scheme.

Both Allaire et al. [6, 7] and Wang et al. [109] independently developed a generalized

structural optimization method based on the level-set framework and classical shape
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sensitivity analysis. Their method is considered a combination of the developments

mentioned before and made the LSM more generally applicable to a wider range of

structural optimization problems by coupling the method with FEM. Wang et al. and

Allaire et al. used the upwind scheme to solve the LSE and move the boundary. The

velocity field was determined by deriving the shape derivatives of a Lagrangian, used to

transform the constrained into an unconstrained optimization problem. The structural

performance of the intermediate solutions was assessed by the FEM. They both used the

“ersatz material” approach to map the level set domains onto an FE based discretization.

However Wang et al. used a relaxed Heaviside approach, whereas Allaire et al. inter-

polated the boundary to determine the element volume fraction occupied by the level

set material domain. They both solved a selection of typical optimization problems, for

example compliance minimization, confirming the potential of the LSM for structural

optimization.

The LSM based structural topology optimization as presented by Allaire and Wang

shows in essence a significant similarity to other, more common, density based methods,

such as the SIMP method. Both depend heavily on the FE discretization and FEM for

the calculation of the shape sensitivities and the level of geometrical detail for numerical

simulation of the structure. However, whereas for the SIMP method the geometrical

detail is based on the FE grid, the LSM can describe the geometry continuously. Further-

more, because of the LSE, more properties of the surface boundary and geometry can

be controlled, such as the level of curvature and the (for 2D) nucleation of topological

changes. The moving boundary property of the LSM therefore provides interesting con-

trol possibilities. Downside of the method in comparison to SIMP, is the larger number

of problem specific parameters involved with the optimization. Curvature control is

necessary to avoid artifacts in boundary shape, but can reduce convergence speed and

optimality. The solution of the second order PDE LSE is an extra complicating step.

Another property that can be considered a downside, is that the choice of optimization

algorithms is limited. Almost always a variant of the indirect search method with the

steepest-descent approach based on the Optimality Criteria (OC) is used [7, 109, 114].

The direct search method starts with an estimate and searches the design space for

optimum points, iteratively improving the design until the OC are satisfied [8], where

the OC are the conditions a function must satisfy at its minimum point [8] (e.g. Karush-

Kuhn-Tucker (KKT) conditions). Algorithms that try to find solutions to these conditions

are often called OC or indirect methods.

The LSMs introduced above rely on solving the Hamilton-Jacobi equation, or LSE,
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to advance the level set boundary. Computationally expensive numerical techniques,

such as the upwind scheme, are necessary to accomplish this task. Without modification,

this application is unable to nucleate new material boundaries, which many consider

a downside. The latter problem was solved by Allaire et al. [4] with the introduction of

a topological derivative, based on previous research by Eschenauer and Schumacher

[31, 93]. In principle, their method operates by nucleating very small new boundaries if

the topological gradient for decreasing an objective function matches certain minimal

requirements.

Direct search methods, such as Sequential Quadratic Programming (SQP) and MMA

[80], work well when the response functions are explicit functions of the design variables,

such as the element densities in the SIMP method. However, the behavior of the response

functions as a function of the level set variables is often very different. The reason is the

non-linear relation between the LSF and the material domain [106]. The Hamilton-Jacobi

PDE or LSE are both space and time dependent, with a velocity component driving the

evolution of the equation. By introducing a pseudo-time component, the normal velocity

of the level set boundary can be related to the shape derivative of the material domain.

However, this relation is implicit in nature and leaves indirect search methods as the

favorable method for conventional LSMs.

A significant downside of the indirect OC method is the difficulty to include multiple

design constraints. The sensitivities collected in the sensitivity field over the design

domain can be used directly to construct the Hamilton-Jacobi velocity field. If design

constraints are introduced, the constrained optimization problem needs to be transformed

into an unconstrained one. The popular choices are penalty or augmented Lagrange

multiplier formulations. Classically, the use of these methods has difficulty handling a

large number of design constraints. The penalty method was implemented by Allaire et

al. [4, 7]. They referred to the penalty factor as a fixed Lagrange multiplier. However,

this method is unable to enforce the constraints exactly and therefore requires trial and

error for setting the desired penalty factor. The augmented Lagrange multiplier method

is considerably more popular, mainly due to its ability to converge to good optima while

matching constraints values exactly. Furthermore, it can be shown that the augmented

Lagrange method converges faster than commonly used penalty methods [8]. It is well-

known for its numerical stability. Different variants of the method were used by Challis

[23], Luo et al. [70], van Dijk et al. [106] and Otomori et al. [81].

An alternative to solving the Hamilton-Jacobi equation for boundary propagation, is

available by using a so-called parameterized LSM. Early developments on this idea were
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done by Ruiter and van Keulen [25]. They used a Topology Description Function (TDF)

with a cut-off plane to describe the geometry within a design domain, very similar to

the LSF description. The design variables of the TDF are parameters that determine a

function on the design domain, the performance of the design is determined by applying

the FEM. The difference with the common LSM is that with the parameterized approach,

the geometry description is entirely decoupled from the finite element discretization. To

update the LSF with the conventional LSMs, the Hamilton-Jacobi equation is solved.

Parameterization of the LSF allows the Hamilton-Jacobi equation to be discretized into

a system of mathematically more convenient coupled Ordinary Differential Equations

(ODEs). This means, the sensitivities can be determined explicitly and a larger variety

of optimization algorithms can be applied, e.g., stochastic methods such as genetic algo-

rithms [24] or mathematical programming such as the MMA method [80]. Appropriate

basis functions for the TDF are required. Popular choices are RBFs [25, 110] and Com-

pactly Supported Radial Basis Functions (CSRBFs) [70]. The parameterized approach to

the level set based topology optimization shows promising results. However, the type of

parameterization and the number of parameters influence the maximum level of detail

of the material boundary that can be represented.
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1.4 Complexity Reduction Methods

The introduction of advanced composite materials into the design of automotive struc-

tures increases the complexity of the already complex design development. This section

focuses on three major factors increasing this design complexity; parameters, mechanical

behavior and computational cost, listed below.

Parameters The number of design parameters plays a large role in the complexity

of structural design. They can describe both the geometry and material configuration

of a component or structure. Typical geometry parameters are for example: size and

shape of the cross-section and length of structural members. Material parameters can be:

thickness of certain composite laminates, material properties such as Young’s modulus

and mass density of matrix and fiber materials, composite laminate layup design and

stacking sequence. For real structures, the amount of design parameters can increase

rapidly. This is especially the case when advanced or laminated composites are used.

Mechanical behavior Stiffness, deformation modes and complex structural inter-

action of a design are examples of mechanical behavior. The energy absorbing charac-

teristics of a vehicle structure and the required deformation resistance of the safety

cell are primarily defined by the stiffness and failure modes of a structure. Together

with the geometric design of the structure, they form the basis of the crash performance.

Metallic crash structures absorb energy in crash principally by plastic deformation,

work hardening and partially by failure. The primary energy absorption mechanism in

advanced composite structures is by fragmentation of the material in the impact zone

[57]. Ideally the composite material is completely destroyed for maximum impact energy

dissipation. In addition and in contrast to metals, laminated composites go through a

higher number of often more distinctive failure modes than metals [21, 53, 71]. The non-

linear and discontinuous character of the failure mechanisms and process contributes

to the functional complexity of the structure. Due to the failure properties of laminated

composites and significant lack of plasticity, the failure and collapse of the structure

can happen suddenly. The result is that for small variations in design parameter values,

the change of the structural response can be relatively large. This is especially the case

when compared to metallic structures. This failure behavior of advanced laminated

composites can be described as not robust and increases the complexity of designing

CFRP components and structures.

Computational cost Transient dynamic analysis methods are often used for the

accurate simulation of impact or crash events, for example with the explicit FEM.
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However, these methods are notably computationally expensive. This is limiting the

efficiency when evaluating different design concepts. The introduction of laminated

composite materials increases the material complexity and can therefore increase the

computational effort required even more. The increase in simulation time will reduce

the number of design concepts that can be evaluated and therefore restricts the number

of possible iterations.

The goal is to increase the efficiency in the design process for vehicle crash-worthiness

with advanced composite materials. In order to achieve this, some of the complexity

increasing factors discussed above should be reduced. In the following sections some of

the methods that are proposed to achieve this are introduced.

1.4.1 Sensitivity Analysis & Parameter Importance Hierarchy

In the previous section, the great amount of parameters in the design process was

established as one of the main complexing factors. And indeed, to limit the complexity of

the problem, commonly a choice is made to limit the number of parameters at the start

of the design. Complexity increases with more design parameters. Especially with strong

non-linear crash problems, engineers often choose to limit the design parameter count [27,

48, 66]. A downside of limiting the design variables at the start is that the engineer can

lose a significant part of the design space, where interesting and relevant design optima

could present themselves. One approach to methodically limit the design parameters, is

to apply a Sensitivity Analysis (SA). The SA of the output of a model aims to quantify

the relative importance of each model input parameter in determining the value of an

assigned output variable [47]. With this information, a parameter importance hierarchy

can be established by deriving the parameter importance factors. This hierarchy can help

the engineer to make a calculated choice in variables out of a larger set of parameters,

while arguably keeping the loss of valuable design space to a minimum.

Customarily methods of SA are classified into two categories [102]; local and global

SA. Local SA focuses on the local influence of a parameter value change on the system.

This sensitivity is calculated by taking the gradient of the response with respect to its

parameter around a nominal value. This gradient can be derived in different manners,

among others; finite difference schemes, direct differentiation or adjoint methods [20].

Local sensitivities are often used for mathematical optimization. An example of this are

the shape sensitivities for structural optimization methods, such as shape and topology

optimization [7, 96, 109].
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Global SA aims to derive the influence of the input parameters (independently or in

combination) on the output for the entire design space. Therefore, it is more suited in the

derivation of a parameter hierarchy. Methods for performing a global SA can generally

be divided into two groups [102]:

1. regression-based methods, such as the Pearson or Spearman correlation coefficient;

2. variance-based methods, such as the linear or quadratic Analysis of Variance

(ANOVA) and Sobol indices [97].

Regression-based methods only provide accurate importance information when the

model is linear (Pearson) or monotonic (Spearman). In case of non-linearity and non-

monotonicity, they fail to represent the response sensitivities; then variance-based

methods are a better choice. Yet, the variance-based methods require a relative large

sample count to compute. In case of computationally expensive models, an RSM is usually

derived on which the variances are computed [27, 48, 66, 102].

An interesting implementation of sensitivity analysis on a vehicle crash scenario can

be found in Bojanowski et al. [15]. They investigated two impact scenarios on a transit

bus; side impact and roll-over. They applied two different sensitivity analysis methods,

Analysis of Variance (ANOVA) and Sobol analysis, to identify the most relevant structural

elements that contributed to the strength of the bus frame. These identified parameters

were used in an optimization using multi-objective GA. The goal was to find an optimum

configuration and increase the crash-worthiness of the bus while minimizing its weight.

Bojanowski et al. used sequentially updated RSMs with Radial Basis Function (RBF) in

the GA approach. The RSMs were also used for the sensitivity analysis. Results showed

that the sensitivity analysis was capable of clearly identifying the most influential

parameters. Unfortunately, no conclusion was given on which type of sensitivity analysis

performed better.

In a research by Reuter et al. [91], they compared three different sensitivity analysis

techniques on a non-linear structure model; Pearson, linear ANOVA and Sobol. They

conclude that only the Sobol indices are able to identify the relevant input variables for

non-linear and non-monotonic problems.

It seems that the Sobol indices provide a robust method for the derivation of the

influence factors in non-linear models, taking into account the effect of parameter

combinations or higher order effects on the response [9, 47].
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1.4.2 Surrogate Modeling

Surrogate models are techniques to approximate the outcomes of interest of certain

systems. Often an outcome of interest cannot be easily measured, so a surrogate model

is used instead. As explained before, in the case of determining the crash response of a

structure, simulation methods such as Explicit FEM are used. However, depending on the

problem, a single purpose built vehicle crash simulation can take more than 24 hours to

complete on an advanced processing cluster. A method to alleviate this efficiency problem

is by making a surrogate model. This model then approximates selected outcomes as

closely as possible, but is computationally significantly cheaper. Surrogate models are

constructed using data from the system or simulation of interest. They are based on

modeling the response of the detailed FE model to a limited number of intelligently

chosen data points, determined by some Design of Experiments (DoE). This method of

construction is a bottom-up approach. The inner workings of the system or simulation

of interest does not need to be known, it is considered a so-called Black-Box, only the

input/output behavior is assessed.

Surrogate models are sometimes also referred to as meta-models or RSM. There are

different approaches to construct an RSM. Among the large field of approaches, three

popular techniques are [36]:

1. polynomial regression analysis (such as linear or quadratic regression);

2. interpolative methods (such as Kriging);

3. supervised learning models, such as RBF networks, Random Tree Forest (RTF),

SVM and artificial neural networks.

Not every technique is suitable for accurately modeling the response of a crash simulation.

The transient dynamic, non-linear and discontinuous property of a structural impact is

hard to approximate. Techniques, such as the regression based analysis, make prognosis

based on continuous and often linear approximation between sample points and cannot

capture the complete behavior of the simulation. However, by choosing an adequate

approximation technique, the RSM method is suitable for modeling non-linear problems.

The Response Surface Approximation (RSA) is derived from the RSM technique and

is computationally inexpensive to evaluate and usable for non-linear design problems.

Therefore, this is often used in structural optimization for crash [10, 37, 43, 113]. Opti-

mization is applied either directly on the RSA or done by successively updating the RSA

[98].
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The RSM technique is also a popular method for crash performance optimization

of composite structures. Hou et al. [48] used the RSM with quadratic polynomials as

basis functions to approximate the SEA and peak force of axial impacted FRP composite

tape sinusoidal specimens. In their research two input variables are applied; the ply

and wave count. With these they change the laminate thickness and segment radius of

the specimen. They then used multi-objective genetic algorithms to minimize the peak

force and maximize the SEA. The results showed that their applied method was able

to produce good results. Duan et al. [27] proposed a resembling approach to optimize

the SEA and peak force of tapered composite tubes. However, instead they used the

Multi-objective Particle Swarm Optimization (MOPSO) method for their optimization

algorithm. Lanzi et al. [66] performed a study on tapered composite cylinders under

axial impact. They optimized the structure for high energy absorption and minimal

weight. As input variables they chose three shape parameters: lower edge major axis,

lower edge eccentricity and taper ratio. They used a combination of RSM with RBF and a

multi-objective GA to approach the optimization problem. They also considered different

impact angles.

The biggest benefit of the surrogate modeling technique with RSM is the increased

computational efficiency and, with the right approach, its capability to approximate

non-linear responses. However, a significant downside is the large dependency on the

type of DoE and the amount of samples used to construct the RSM. It is clear that other

researchers have used surrogate modeling to simplify the structural design problems for

crash, especially in an optimization framework. For composite structures, the surrogate

modeling technique proved useful, but no design problems were assessed where the

structural stability was part of the problem design space. It can be concluded that

it is common to only use a limited number of design variables in crash optimization.

Furthermore the variables are bounded such that structural instability is mitigated,

simplifying the design optimization problem.
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1.5 Motivation

This chapter describes that, because of increased environmental concerns and higher

safety standards from both social and governmental perspectives, vehicles need to lose

weight and at the same time provide increasing safety standards for the occupants.

Towards that goal, this chapter showed the methods and theories from literature that

give an overview of the state-of-the-art on the crash-worthiness optimization of vehicles

components, structures and architecture, the optimization of fiber composite components

under impact and the energy absorption mechanics of composite materials. Many au-

thors in this field indicated the increased complexity in terms of design variables and

computational requirements as a significant challenge. This complexity only increases

further when including fiber composites as a material choice. The introduction therefore

also summarized state-of-the-art methods to address the issue of complexity.

It can be concluded that many advances in this field have been made, however no

methods on the shape or topology optimization of crash-worthy composite structures

could be found. This is a relatively empty research field and the author believes progress

can be made here.

In the case of optimization problems where the crash performance is considered as

the objective, the preferred method is a selection of RSM techniques, used to approximate

the responses. Nonetheless, the parameter space is significantly limited in these cases.

At present the larger part of research goes into solving specific optimization problems,

mitigating a large part of the design complexity by simplifying the problem at the start.

Furthermore, the derived RSM is only accurate if the structure is assumed stable, i.e. no

collapse. As a consequence the RSM technique becomes less useful when the structural

stability is part of the problem’s design space.

Generally, global sensitivity methods are applied to collect information on the param-

eter space and to reduce the number of parameters. Still, also here, no attempt is made

to differentiate between the structure’s failure modes, i.e. stable or unstable behaviors.

This raises the question whether there is a more efficient manner to reduce complexity

for the design of composite components with respect to crash, one which can be used in

an industrial product development.

This dissertation presents novel methods to handle the specific issues of shape

optimization with relevance to 3-D composite designs and the reduction of optimization

problem complexity. Thereby adding new insights in this new field of optimization of

crash-worthy composite vehicle architectures. A design optimization work-flow using
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shape optimization is suggested for 3-D early phase composite architectures subjected to

multiple load-cases. Furthermore, a method is presented that reduces the complexity of

the subsequent size optimization problem.
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BACKGROUND THEORY

This chapter explains some of the methods, theories and algorithms that are used in this

research. First, the algorithm of the Level Set Method (LSM) as it is implemented in this

research is explained. Then, the Classical Laminate Theory (CLT) is summarized and

used to introduce the theory behind Lamination Parameters (LPs). Finally, the methods

used to simulate advanced composites in crash are introduced.
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2.1 Level Set Method for Topology Optimization

The content of this section was partially published by the author in the journal

Structural and Multidisciplinary Optimization [45]

In this section, the principles behind the Level Set Method (LSM) are explained. For a

more thorough explanation of the method, the reader is referred to works by [7, 107, 109].

Let D be a bounded reference domain and ∂D is the corresponding boundary of D.

Then, Ω is a domain filled with solid material within D, such that Ω⊂ D. The comple-

mentary domain representing a void that exists, i.e. a void domain is then expressed

as D\Ω. In the level set framework, the material domain or design boundary ∂Ω is

embedded implicitly as the zero level set of a one-dimensional-higher level set function

φ(~x), where ~x stands for a position within D. Each part in the design domain is then

defined as follows:

φ(~x)< 0 ∀ ~x ∈Ω\(∂Ω\∂D);

φ(~x)= 0 ∀ ~x ∈ ∂Ω\∂D;

φ(~x)> 0 ∀ ~x ∈ D\Ω.

(2.1)

With the level set function as presented in Equation (2.1), any design of any topology of

any dimension of the material domain Ω can be represented within the reference domain

D. Commonly only two- and three-dimensional designs are considered when applying the

LSM, for clarification the two-dimensional case is considered here to explain the method.

In the definition from Equation (2.1); φ> 0, represents a void domain, φ< 0 represents a

material domain and φ= 0 represents the design boundary. The different material states

are depicted in Figures 2.1 and 2.2a. It is possible to reverse the relation in Equation (2.1)

and have the domain description such that φ> 0 represents the material domain. This

choice has no influence on the LSM as a whole and is left up to the developer. However,

it does require some changes in the geometric mapping scheme and derivation of the

shape sensitivities, so careful consideration should be made to ensure consistency. In

this dissertation the relations such as explained in Equation (2.1) are used.

To represent shape and topology changes in the material domain Ω a fictitious time t

is introduced. It is assumed that the level set function is also implicitly a function of t.

That is, as time t is advanced, the boundary ∂Ω on φ(~x)= 0 is updated and a new design

generated. In the LSM framework, the moving boundary can be updated by solving the
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D

φ> 0

φ= 0

φ< 0

φ(x)

FIGURE 2.1. An LSF with a level-set representing the material domain D [45].

D\Ω

Ω

(a) The geometry boundary in the 2D level

set domain corresponding to the LSF.

D\Ω

Ω

(b) The FE representation after density-

based mapping.

FIGURE 2.2. Example of a material domain description with the LSM (figure a)

and the FE description of the material domain (figure b) [45].
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Hamilton-Jacobi PDE, also called the Level Set Equation (LSE):

∂φ(~x, t)

∂t
+∇φ(~x, t)

d~x

dt
= 0 (2.2)

where φ(~x, t) is the time dependent LSF. This equation is somewhat abstract, it is helpful

to rewrite the equation and introduce the normal velocity of the boundary. The boundary

normal velocity VN(~x, t) of the material boundary can be derived as follows:

VN(~x, t)= ~V (~x, t)
∇φ(~x, t)

∣

∣∇φ(~x, t)
∣

∣

with: ~V (~x, t)=
d~x

dt
.

(2.3)

The normal velocity VN from equation (2.3) is substituted into the LSE from equation

(2.2) to produce:
∂φ(~x, t)

∂t
+VN(~x, t)

∣

∣∇φ(~x, t)
∣

∣= 0. (2.4)

The normal velocity is a function of the location vector ~x, meaning the boundary

can be updated locally. The normal velocity is related to the sensitivity of the objective

function with respect to the boundary variation. Hence, updating the LSF φ(~x) by solving

the LSE is equivalent to moving the material boundary along the normal direction.

The LSM was developed to track propagating boundaries. To use it for structural

optimization, appropriate velocity function values VN (~x, t) for use in equation (2.4) should

be provided.

2.1.1 Procedure & Signed Distance Function

It was mentioned in the introduction that solving the LSE for the LSM requires compu-

tationally expensive numerical techniques. Different approaches for solving this PDE

are currently being researched; popular and commonly used is the upwind-scheme

[7, 23, 109]. This scheme solves the LSE from equation (2.4) both temporally and spa-

tially. Conventionally the LSF is updated by providing appropriate values for VN and

numerically solving the LSE in equation (2.4).

First, the Signed Distance Function (SDF) and its property is introduced. This

property can significantly reduce the complexity of solving the LSE. The SDF is written

as in Equation (2.5):
∣

∣∇φ(~x)
∣

∣= 1 ∀ ~x ∈ D. (2.5)

This means the norm of the gradient of the LSF is equal to 1 everywhere on the design

domain. This is a very useful property as will be shown in the implementation of the
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up-wind scheme. The SDF does require initialization of the LSF, which will be further

discussed in a separate section.

Assume the SDF from Equation (2.5) holds true at all times t, then the LSE from

Equation (2.4) can be rewritten as follows:

∂φ(~x, t)

∂t
+VN(~x, t)= 0. (2.6)

Now the Hamilton-Jacobi equation or LSE is transformed into a set of ODEs. This means

that instead of solving the LSE both in time and spatially, the LSE needs only to be

solved in time. This useful observation was first applied by Yamasaki et al. [114]. The

explicit method can be used to do the following update step for the LSF:

φ(~x, t+∆t)−φ(~x, t)

∆t
+VN(~x, t)= 0;

φ(~x, t+∆t)=−VN(~x, t)∆t+φ(~x, t).

(2.7)

This is an explicit, forward in time, solving scheme. Therefore a maximum time step,

∆tcrit, is introduced to ensure numerical stability. This condition is known as the Courant-

Friedrichs-Lewy (CFL) condition and described as follows:

∆tcrit ≤
lcrit

max(VN)
(2.8)

where lcrit is the critical element side length, e.g. the minimal side length in the design

domain. To further increase the stability of the overall optimization, the critical time

step determined by the CFL condition is multiplied with a positive factor, tfac ≤ 1. The

minimal time step explicitly controls the speed of the Level Set boundary moving through

the design domain. Depending on the initial design, the convergence speed is therefore

in part controlled by this time step from Equation (2.8).

2.1.2 Structural Performance & Geometry Mapping

With the LSM as a changing mathematical entity, the structural shape and topology

can be described. However, in order to optimize the structure, structural performance

criteria need to be calculated. A common way to do this is with the FEM. Therefore a way

to transfer the geometry description is needed; from the LSM to the FE discretization

needed for the numerical simulation. This is called mapping and there are many different

methods to achieve this.

Here, we regard two distinct mapping methods necessary for use within the LSM:
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• Geometry mapping is concerned with mapping the evolving geometry to the

mechanical model. Multiple mapping techniques are common with LSM for struc-

tural optimization, among others: Conforming discretization, Immersed boundary

techniques and Density-based approaches [107]. In this research, the FEM tech-

nique is used for the mechanical model, as common choice for the type of problem

presented here. The Extended-FEM or X-FEM technique is a popular choice for the

Immersed boundary approach, largely due to its capacity to accurately model the

continuous surface boundary produced by the LSM [63, 111]. With the standard

linear implicit FEM, the mesh remains unchanged when solving for structural

problems. As a result, the FE mesh is unable to accurately model the evolving

zero-level set boundary. This means this LSM surface boundary practically flows

through the elements during the update procedure and needs to be interpolated to

the numerical model.

• LSF discretization is commonly done with a Finite Difference (FD)-based ap-

proach, meaning a FD-grid is required. In principle both, the FD-grid and FE-grid,

can have different designs. However, for simplicity and ease of implementation,

the FD-grid for the LSF discretization is equal to the FE-grid for the structural

simulation. This means, the LSF discretization has its nodes coincide with the

FE-mesh nodes.

As explained, the surface boundary described by the LSM is not limited to the FE-grid

and therefore crosses the elements. To adequately assess the structural performance of

the design, an accurate interpolation of the design to the discretization for the FEM is

required. In this research, the surface boundary is interpolated onto the FE-grid by an

intermediate density field, i.e. ersatz material, indicating the amount of material at each

point of the design domain. This approach is similar to the approach by the Solid Isotropic

Material with Penalization (SIMP) method [14]. However, the surface boundary from the

LSM allows for adjusting the element density only around the surface boundary. This

means the material density is either one or zero everywhere except within a predefined

bandwidth around the domain boundary. Benefits of this approach are explained in a

later section.

The function used to determine the material density should be differentiable in

order to derive the shape sensitivities consistently. The Heaviside function provides that

capability and is therefore often used in LSMs. The Heaviside function can be used to
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determine the material density ρ(φ) as follows:

ρ(φ)= H
(

φ(~x)
)

(2.9)

where H is defined as the exact Heaviside function:

H
(

φ(~x)
)

=

{

1 ∀ φ≤ 0

0 ∀ φ> 0
. (2.10)

The derivative of the Heaviside function is the Dirac delta function:

δ
(

φ(~x)
)

=

{

δ→∞ ∀ φ= 0

0 ∀ φ 6= 0
. (2.11)

However, the exact definition of the Heaviside function in Equation (2.10) is discontinu-

ous and can lead to numerical issues during optimization. The binary definition of the

material density reduces the accuracy of the LSF update procedure. In order to solve

this problem, a relaxed Heaviside function definition, based on the work by [109], is

introduced:

H̃
(

φ(~x)
)

=



















1 ∀ φ<−h

1
4

(

φ

h

)3
−

3
4

(

φ

h

)

+
1
2

∀ −h ≤φ≤ h

0 ∀ φ> h

(2.12)

The derivative of H̃
(

φ(~x)
)

in Equation (2.12) is the relaxed Dirac delta function δ̃
(

φ(~x)
)

:

δ̃
(

φ(~x)
)

=







3
4

(

φ2

h3

)

−
3

4h
∀ −h ≤φ≤ h

0 ∀ φ<−h, φ> h
(2.13)

It should be noted that the definition in Equation (2.9) can result in an element

density of zero. This leads to singularities in solving the mechanical problem during

the FE-analysis. A commonly used solution to this issue is to rewrite the definition in

Equation (2.9) as follows:

ρ(φ)= ǫ+ (1−ǫ)H
(

φ(~x)
)

(2.14)

where ǫ is a small number representing a minimum density. Another solution which

can be used with the LSM and not with SIMP is to delete the element definitions in

the FE-grid with a zero density. Elements can be created again as soon as the surface

boundary crosses into the corresponding FD-grid element. This goes naturally if the

interpolation scheme is correctly applied. This way no singularities can arise and no

minimal material density is required. Artifacts due to the presence of low density ‘void’

elements are avoided as well.
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2.1.3 Calculating the volume fraction

With the mapping methods described in the previous section, a problem becomes ap-

parent. The LSF is discretized on the FE-grid with the LSF values on the nodes. Con-

sequently the relaxed Heaviside values, H̃
(

φ(~x)
)

, are also given on the nodes. Yet, for

the element volume fraction we need to calculate ρ(φ) on an element level. Because of

this, it is necessary to calculate H̃
(

φ(~x)
)

on element level. This necessity is unfortunately

often left out in literature and left up to the user to realize, although van Dijk et al. [106]

mention this issue shortly in their paper.

A good way of solving this issue is to average the nodal Heaviside values to the

element level. Care has to be taken, because while φ(~x) might be linearly interpolated on

the element (with use of the element shape functions ~N), the Heaviside function, H̃
(

φ(~x)
)

,

is and cannot. This is because the relation between H̃ and φ is not linear. For small

values of the bandwidth, h, large areas of the element might have a constant value for H̃

of 1 or 0. This could mean that while the boundary is moving over the element, nodal

values of H̃
(

φ(~x)
)

of that element do not change. Simply taking the average can lead to

an unchanging element density, while the change in nodal LSF values, φ, should suggest

a change in density. To ensure a consistent sensitivity calculation, the element volume

fraction should be calculated by integrating H̃
(

φ(~x)
)

over the element and dividing by

the total element volume:

H̃
(

φ(~x)
)∣

∣

e
=

∫

De
H̃

(

φ(~x)
)

dDe
∫

De
dDe

. (2.15)

This is unfortunately a computationally intensive procedure, often solved with FEM,

and slows the optimization process considerably. With a sufficiently large bandwidth h,

the averaging method will provide results with a relatively small error compared to the

integration method. The bandwidth should be at least larger than the critical element

side length.

2.1.4 Reinitialization

In order to ensure the property from Equation (2.5), the LSF needs to be transformed,

however without changing the shape of the surface boundary or zero level set contour.

The goal of the LSM is to be able to track and control a moving boundary shape, enforcing

an SDF property of the LSF does not interfere with the shape results. The process of

transforming the LSF into an SDF is often called reinitialization.
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2.1. LEVEL SET METHOD FOR TOPOLOGY OPTIMIZATION

Conventionally, in the field of LSMs, this process is applied, because the convergence

of an LSM can deteriorate when the magnitude of the spatial gradient of the LSF strongly

varies along the surface boundary or zero-level contour [107]. Imagine a steep LSF, i.e.

the spatial gradient ∇φ(~x) is high, around the boundary, an update of the LSF would

result in a small boundary displacement. For a flat LSF, i.e. low spatial gradient, around

the boundary, the opposite is true. In order to avoid this problem, the LSF is reinitialized

as an SDF where the zero-level contour or material boundary is maintained.

During the update procedure of the LSE, the LSF is changed to allow for a movement

of the zero-level contour, i.e. the material boundary. The challenge lies in reinitializing

the LSF into an SDF while maintaining the zero-level contour as accurately as possible.

Different reinitialization schemes have been proposed over the years, but the calculation

is often complex and computationally expensive.

The reinitialization in this dissertation fulfils another important function; it ensures

the signed distance property of the LSF in order to reliably use the explicit update method

from Equation (2.7). The method used for reinitialization should therefore provide very

accurate results. To avoid inaccuracy, a computationally expensive but very accurate

novel geometry-based reinitialization scheme, developed by Yamasaki et al. [114], is

introduced here.

This schemes takes the LSF values on the FE grid nodes and interpolates, using the

element shape functions ~N, NP points on the zero-level contour inside and on the edges

of the element. These interpolated points are collected in set P. The points in P form the

surface boundary created by the zero level set contour. In the next step, each LSF value

on each node on the FE grid is compared with all the interpolated points in set P. The

value of the shortest distance between the node and a point is used as the new value for

the LSF at that node. The sign of the new LSF is equal to that of the old one. This way

an LSF is created with a slope very close or equal to 45◦ on all points. This method can

be summarized as follows:

φnew
i = sgn(φold

i )× inf
~p∈P

d(~xi,~p) (2.16)

where the superscripts ‘old’ and ‘new’ denote φ before and after reinitialization, the

subscript i denotes the i-th node,~xi are the coordinates of the i-th node. The operator

d(~xi,~p) gives the Euclidean distances between~xi and ~p, where ~p are the coordinates of

the interpolated points in set P. This reinitialization method creates interpolated points

inside each element and can thus be expected to provide very accurate computation of the

LSF values. Naturally, the method is shown to perform better than other commonly used
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schemes based on the PDE in Equation (2.4) [114], since these other methods use only

the nodal LSF values. For an in-depth discussion on the method, the reader is referred

to the work by Yamasaki et al. in [114].

The reinitialization technique described above is computationally expensive, since

every grid point is compared to all points in set P. Previously the relaxed Heaviside

method was described, see section 2.1.2, which is used for the geometrical mapping of the

LSF. Consequently only LSF values in the vicinity of the surface boundary described by

φ= 0 are updated. This is because of the Dirac delta function within the shape sensitivity,

where the value for bandwidth h determines the area of influence around the boundary.

Knowing this, the computational effort required for the reinitialization method can be

substantially reduced. Instead of comparing the nodal LSF values on all grid points, only

the grid points located within the bandwidth h of the material boundary φ= 0 have to be

reinitialized. The method is described below and depicted in Algorithm 1.

Firstly, all elements that are intersected by the material boundary are collected in

set Ebound. Secondly, for element e ∈ Ebound, the connected elements are collected and

the nodes that define these elements are put in a set. Then, the unique nodes from this

set are collected in set Ne. The nodes n in Ne are compared to the points p in Pe, where

Pe is a subset of P containing all interpolated points from the boundary element e. The

smallest Euclidean distance is taken as the new LSF value for node n and multiplied

with the sign of the LSF value. This process is repeated for all e ∈ Ebound. As some nodes

will be compared more than once, the smallest distance has to be taken for the LSF value.

The process described here works when the bandwidth parameter h is smaller than the

critical element side length, otherwise relevant nodes, with non-zero velocity values, are

disregarded. The algorithm can be extended to include a larger band of elements around

the boundary, depending on the size of h. This of course has a negative influence on the

required computational effort.

For the remainder of the research presented in this dissertation, it is recommended

to perform a total domain reinitialization at least every 10 iterations. This is to ensure a

consistent material boundary description over the design domain.

2.1.5 Regularization

Regularization is often employed during the update procedure of the LSF to remove

numerical artifacts, simplify the problem, improve the convergence behavior and avoid

convergence to local minima with poor performance [107].
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1 for e ← e ∈ all elements on boundary, called Ebound do

2 create set of nodes connected to e, called Nel;

3 for n ← n ∈ Nel do

4 create set of element connected to n, called Enode;

5 for el ← el ∈ Enode do

6 add nodes of el to set Ne

7 end

8 end

9 Ne ← unique(Ne);

10 Pe are the points inside element e, a subset of P;

11 for n ← n ∈ Ne do

12 φ
tmp
n = sgn(φold

n )× inf
~p∈Pe

d(~xn,~p);

13 φnew
n =min

[

φnew
n ,φ

tmp
n

]

14 end

15 end

Algorithm 1: Narrow band algorithm for SDF reinitialization.

Here, two different approaches of regularization are presented. The first method

is designed to smooth the sensitivities before updating the LSE and is based on the

Helmholtz-type PDE [60, 115]. The second type adds a penalty function based on the

zero level-set perimeter. Both approaches are discussed in the following:

Helmholtz-type regularization This approach is based on the Helmholtz equation

and functions as a convolution filter. In other words, it diffuses or smoothens the velocity

field on and around the zero level-set interface. The Helmholtz equation derived below is

based on the work by Yamasaki et al. [115]:

(~L+ ~H)~̃VN =~L~VN (2.17)

where ~VN is the nodal value vector of boundary normal velocities, i.e. the shape sensitivi-

ties. The variable ~̃VN is the nodal value vector of the smoothed velocities. The matrices ~L

and ~H in Equation (2.17) are defined as follows:

~L =

Ne
⋃

e=1

∫

De

~N~NTdDe; (2.18)

~H =

Ne
⋃

e=1

∫

De

R2
(

~Nx
~NT

x + ~Ny
~NT

y

)

dDe (2.19)
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with: ~Nx =
∂~N

∂~x
, ~Ny =

∂~N

∂~y
(2.20)

where Ne is the total number of elements in the FE-discretization, De the element

domain and R the regularization coefficient. For R = 0 no smoothing takes place and

~̃VN = ~VN , for R →∞ the Equation (2.17) becomes the Poisson’s equation, i.e. the velocities

are perfectly smoothed and equal. Equation (2.17) can be easily solved using the FEM,

taking care that a four point Gaussian integration scheme is used.

Parameter penalty regularization This approach is based on penalizing shape

updates that increase the total perimeter of the geometry. It is a common method of

regularization and found for example in the works by Allaire et al. and Luo et al. [7, 70].

The perimeter is defined as:

P(Ω)=

∫

∂Ω
dS. (2.21)

The perimeter P(Ω) is constrained by including it in the Lagrange formulation of the

optimization problem as a penalty constraint. The shape sensitivity of the perimeter is

equal to the mean curvature of the boundary, which is equal to the divergence of the

boundary normal:

κ= div

(

∇φ(~x)
∣

∣∇φ(~x)
∣

∣

)

. (2.22)

The total shape sensitivity is then formed by extending the current velocity field with

the mean curvature field,~κ, multiplied by a certain penalty constant, β:

~V new
N = ~V old

N +β~κ. (2.23)

The sharper a curve, the higher the curvature value is at that point. The sign of the

curvature is positive in the direction of the curve center, hence by adding this parameter

to the shape sensitivity, the boundary local velocity will be reduced depending on the

amount of curve. This effectively smoothens the boundary and the parameter β dictates

how much.
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2.2 Classical Lamination Theory and Lamination

Parameters

In this section the derivation of the stiffness parameters of a composite material will be

explained. The method of determining the stiffness properties is commonly done using

the Classical Laminate Theory (CLT). The theory assumes that the plies that make

up the composite laminate are perfectly bonded by an infinitely thin adhesive layer.

Furthermore the plies are either isotropic or orthotropic and thus have constant stiffness

properties.

2.2.1 Classical Lamination Theory

The stresses in a single ply, loaded along its principal axes, can be related to ply strains

via the following constitutive relation:















σ1

σ2

τ12















=









Q11 Q12 0

Q12 Q22 0

0 0 Q66























ǫ1

ǫ2

γ12















(2.24)

with σi and ǫi are the plane stresses and strains and where the Q i j ’s are defined as:

Q11 =
E1

1−ν12ν21

, Q12 =
ν21E1

1−ν12ν21

, Q22 =
E2

1−ν12ν21

, Q66 =G12. (2.25)

The relations given in Equations (2.24) and (2.25) describe the stiffness properties of

a single ply in its principal directions. In Equation (2.25), E1, E2, G12 and ν12 are the

constitutional material properties: principal Young Moduli and Poisson ratios. During

stacking of plies into a laminate, the plies can be rotated from their principal direction,

changing the stiffness properties in the global laminate directions; x and y. This gives

rise to the following ply stress-strain relation in the global laminate x, y coordinate

system:














σx

σy

τxy















=









Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66









k















ǫ◦x + zκx

ǫ◦y + zκy

γ◦xy + zκxy















. (2.26)

In Equation (2.26) k denotes the kth ply in the laminate starting from the bottom most

layer, z denotes the distance of a ply edge from the mid-plane of the laminate, see Figure

2.3 for a description. In Equation (2.26), the Q i j ’s are the ply stiffness components, in
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Laminate

mid-plane

Figure 2.3: schematic view of a composite laminate consisting of N plies with orientations

θk, thickness tk and located at distance zk from the mid-plane. (source: Ijsselmuiden

[51])

the global coordinate system, they are defined as:

Q11 = U1 +U2 cos2θk +U3 cos4θk;

Q12 = U4 −U3 cos4θk;

Q22 = U1 −U2 cos2θk +U3 cos4θk;

Q66 = U5 −U3 cos4θk;

Q16 = (U2 sin2θk +2U3 sin4θk) /2;

Q26 = (U2 sin2θk −2U3 sin4θk) /2.

(2.27)

In Equation (2.27) use is made of laminate invariants U. This set of five invariants

completely describe the material properties of the laminate and are invariants with

respect to the orientation angle. They are defined as:

U1 = (3Q11 +3Q22 +2Q12 +4Q66) /8;

U2 = (Q11 −Q22) /2;

U3 = (Q11 +Q22 −2Q12 −4Q66) /8;

U4 = (Q11 +Q22 +6Q12 −4Q66) /8;

U5 = (Q11 +Q22 −2Q12 +4Q66) /8.

(2.28)

To describe the stress resultants through the thickness, the stresses from Equation (2.26)

are integrated over the thickness:

Ni =

∫ h
2

−
h
2

σidz, Mi =

∫ h
2

−
h
2

σi zdz. (2.29)
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In Equation (2.29) we have for the subscript i = x, y or xy. Ni are the in-plane stress

resultants of the laminate and Mi are the moment resultants. When the relations from

Equation (2.26) are substituted into Equation (2.29) the following relations are derived:

N = A ·ǫ+B ·κ;

M = B ·ǫ+D ·κ.
(2.30)

In Equation (2.30) the following relations are derived:

A i j =

N
∑

k=1

(

Q i j

)

k (zk − zk−1) ;

Bi j =
1
2

N
∑

k=1

(

Q i j

)

k

(

z2
k − z2

k−1

)

;

D i j =
1
3

N
∑

k=1

(

Q i j

)

k

(

z3
k − z3

k−1

)

.

(2.31)

The A, B and D matrices are the symmetrical stiffness matrices of the fully stacked

laminate that describe the stress/strain relations in the global coordinates. The A matrix

describes the in-plane ore membrane stiffness, the D matrix describes the out-of-plane

or bending stiffness and the B matrix describes the coupling between the out-of-plane

and in-plane strains to the in-plane and out-of-plane stresses, respectively.

2.2.2 Lamination Parameters

The Classical Laminate Theory (CLT), as presented in section 2.2.1, is commonly used to

describe the stiffness behavior of an advanced composite laminate. There is however a

different way to describe a laminate; Lamination Parameters (LPs). The LPs describe

the stiffness properties invariantly of the ply orientation angles and thicknesses, which

significantly reduces the amount of design variables. The LPs were first introduced by

Tsai and Hahn [42].

The LPs are defined in Equation (2.32):

(V1A,V1A,V1A,V1A) =

∫ 1
2

−
1
2

(cos2θ,sin2θ,cos4θ,sin4θ)dz;

(V1B,V1B,V1B,V1B) = 4

∫ 1
2

−
1
2

z (cos2θ,sin2θ,cos4θ,sin4θ)dz;

(W1,W2,W3,W4) = 12

∫ 1
2

−
1
2

z2
(cos2θ,sin2θ,cos4θ,sin4θ)dz.

(2.32)

In Equation (2.32), VA, VB and W are the in-plane, coupling and bending LPs and z is

the dimension normalized through the thickness.

41



CHAPTER 2. BACKGROUND THEORY

The A, B and D matrices can be derived from the LPs with the following relation:

A = h (Γ0 +Γ1V1A+Γ2V2A+Γ3V3A+Γ4V4A) ;

B =
h2

4 (Γ0 +Γ1V1B+Γ2V2B+Γ3V3B+Γ4V4B) ;

D =
h3

12 (Γ0 +Γ1W1 +Γ2W2 +Γ3W3 +Γ4W4) .

(2.33)

The Γ matrices in Equation (2.33) are composed of only the laminate invariants and are

formulated in Equation (2.34).
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(2.34)

Now, the A, B and D matrices are completely described by the LPs V and W . For balanced

and symmetric laminates, the LPs required to describe to stiffness properties reduce to:

V1,V3,W1 and W3. Due to the invariant nature of the LPs, the stiffness matrices can be

derived for any laminate with an arbitrary amount of plies and arbitrary thicknesses.

This means a great computational advantage concerning the optimization of advanced

composites for stiffness.

In this document, parameters for stiffness (or layup & stacking sequence) of the com-

posite laminate(s) are based on the LPs [51, 104]. LPs considerably simplify the modeling

of FRP composites and assist in decreasing the complexity of the whole design process.

The answer of an FRP composite structure or laminate is a function of the stiffness

matrices of the laminates, usually derived with the CLT. Typically, layer thicknesses,

orientations and stacking order are regarded as design variables in the optimization

of such laminates. The difficulty of this process of the description of a laminate is the

high number of variables that have a partially discrete character. Alternatively, the LPs

can be used as the design variables that entirely define the stiffness of the laminate

properties.

As is customary for composite engineering, the laminates are supposed to be balanced

and symmetrical in this research, resulting in a decrease of a maximum of twelve

to four LPs to characterize all stiffness characteristics. This leaves the LPs ViA and

ViD with i = 1,3, for membrane and bending stiffness respectively. The LPs ViD are

omitted as laminates in a traditional vehicle design, designed for crash absorption, are

predominantly loaded in the plane. The comparatively large closed cross-sections from
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the normally used tubular construction provides the bending resistance. For future

applications, where the bending stiffness of the laminate has a greater influence on

the structural reaction, LP ViD should be included. In addition, due to manufacturing

constraints, the number of available ply orientations are constrained to ±45◦, 0◦ and 90◦.

This decreases the achievable range of the LPs space to [51, 75]:

2V1A −1≤V3A;

−1≤ViA ≤ 1 (i = 1,3) .
(2.35)

See Figure 3.24 for a visualization of the feasible area.
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2.3 Simulation of Fiber Reinforced Composites in

Crash

Non-linear transient dynamic analysis is an important method for the assessment of

crash-worthiness. Often, numerical simulation tools such as FEM are used to apply this

method and indeed, all research work presented in the introduction apply numerical

simulation in one form or another. The same methods are used to simulate crash me-

chanics on fiber reinforced composites, however the modeling of the damage mechanics

with composite materials is especially complex and different methods than for example

with metals are needed. There are numerous publications on such simulations methods,

for example [12, 16, 73]. Yet, none of them provides the accuracy and flexibility that are

currently achieved for metals.

Two types of simulation methods are generally used for solving fiber reinforced

composite problems with damage mechanics: Micro- and macro-mechanical simulations.

With micro-mechanical simulation, details on the level of fiber/matrix interactions are

simulated. Usually, micro-mechanical simulation focuses on fracture analysis and crack

growth simulation, for example with the Extended-FEM (X-FEM) [55], phantom node

method [74] and the Boundary Element Method (BEM) [103]. These simulations are

generally carried out with implicit time step schemes and address mainly small scale

problems on meso-scale up to the scale of coupon-like components. Other simulation

types, such as the Virtual Crack Growth Technique (VCCT) [64], are suited for explicit

FEM. The method requires predefined crack growth areas with a very fine mesh, which in-

creases the computational effort significantly. Because of these reasons, micro-mechanical

simulation methods are usually not used for crash analysis.

Macro-mechanical simulation generalizes the micro-mechanical material behavior

into simplified constitutive models and material parameters, i.e. plies are modeled as

one homogenized material. This type of simulation is often used in crash analysis of

composite structures. A distinction of four general simulation types is proposed here:

1. The first type is using composite failure criteria in combination with explicit FEA,

such as Tsai-Wu, Hashin and Puck [44, 89, 105].

2. The second type is using constitutive models based on Continuum Damage Me-

chanics (CDM) [56]. This method can be used together with the composite failure

criteria.
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3. The third type is CZM [52, 82], where inter-laminar behavior, for example de-

laminations, can be modeled. It should be noted that CZM can also be used in

micro-mechanical simulations of crack growth [116], but also here a very fine mesh

is required and simulation is computationally expensive.

4. The fourth type is CZONE [12, 68], which may be considered as a combination of

CDM and an extra analysis step especially for the crush type failure.

CZONE uses crush stress parameters, which are determined by running carefully de-

signed crush experiments on material coupons. The method is then able to interpolate

the crush behavior for different layup designs. The advantage of CZONE is the com-

putational efficiency, which allows for early phase and rough concept assessments. The

downside is that extra material data is needed, which might not be available in the early

design phase.

In this dissertation, a CDM damage model called Abq_Ply_Fabric with CZONE is

used for modeling the damage behavior of carbon fiber composite materials.

An important consideration is that the responses should be chosen to adequately

assess the crash performance of a structure. Some are maximum deflection, energy ab-

sorbed, acceleration on key locations (e.g. B-pillar) and minimal mass criteria. Maximum

deflection can also be described by maximum intrusion of the impacting barrier and

energy absorption is often quantified by the Specific Energy Absorption (SEA).

45





C
H

A
P

T
E

R

3
METHODS

In this chapter, a novel design work-flow for advanced composite crash structures is

presented. The proposed methods are divided into two main parts. The first part concerns

the optimization of load paths taking crash loads and composite crush behavior into

consideration. The second part introduces a complexity reduction work-flow that can be

applied to the design from the first part.

The first part is based on a Level Set type shape optimization for crash. Here, shape

optimization is used to improve the structural stability of crash loaded composite struc-

tures in the early phase development. The method uses shape and topology optimization

to create structural solutions with clear and smooth material boundaries. An early stage

composite vehicle concept is assessed using non-linear explicit simulation. This vehi-

cle model and the simulation results are used in a multi-stage optimization work-flow

to create load cases for optimization in the 2-D domain. The method provides control

over shape development using a novel local volume constraint method. Some of the

properties of the method are a novel coupling of explicit crash model and implicit LSM

model using novel mapping methods and using a variation of the Equivalent Static Load

(ESL) method to transform impact behavior into corresponding load cases. The resulting

optimized material boundaries are described in terms of finite elements and continuous

splines.

The second part is called design complexity reduction for automotive composite struc-

tures with respect to crashworthiness. Here, a combination of a novel physical surrogate

model and sensitivity analysis are used to reduce the number of design parameters with-
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out compromising the possible solution space. The Lamination Parameter (LP) method

is used to efficiently characterize composite laminates. The Solution Space Identification

(SSI) methodology is used to identify optimal boundaries for the remaining parameters.
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Problem Initialization

Initial  Structure

Mapping to 2D

Define Load Lines

3D Transient Dynamic Domain

Explicit Crash 

Simulaion

Deformations at 

Time T of first 

Instability

Done

Structurally

Stable?

no

yes

2D Static linear Domain

LSM Multi-load Shape 

optimization with local 

volume control 

Optional Boundary 

Smoothing

Deriving Equivalent 

Static load cases at 

time T

Add to existing 

Load Cases

Outer Optimization Loop

Mapping to 3D

Inner Optimization Loop

Establish 2D design domain for static linear optimization phase

Iteration 0

Iteration k

FIGURE 3.1. Overview of the proposed work-flow for crashworthiness shape

optimization.

3.1 Work-flow for Crashworthiness Shape

Optimization

In this section, the implementation of the LSM is explained, which is used to find optimal

load paths for an initial composite vehicle structure. The background theory of the LSM

for shape optimization is described in detail in Section 2.1. Now, this method is used for

the optimization of load paths in a new framework.

The starting point of the optimization is some basic initial vehicle design with some

essential structural components integral for the crashworthiness of the vehicle. These

components are necessary components to absorb crash energy, for example longitudinal

front rails, fire wall, which are pre-specified from prior decisions and knowledge. Nor-

mally, they are initially structurally unstable in crash and therefore do not fulfill their

function as energy absorbing components. In section 1.2, the mechanics of composite

crush and energy absorption are explained in detail. In order to have stable and progres-

sive crush behavior, the components have to have a high level of structural stability. The

novel framework presented in this section serves to find an optimal structural support

system (load paths) to support these primary components in their optimal crash function

for the duration of the crash and for multiple crash load cases.

This section is structured as follows. First, a method to map a 3D structure to a

2D representation of the design space is explained. This enables the identification of

optimal orientations of the basic structures. Second, we explain how a new variant of the

equivalent static load method [61] is used to transfer the 3D transient dynamic load case
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to a linear elastic 2D representation. Third, we show how the LSM is used to optimize

the load paths for composite structures. Finally, the method to map the 2D optimization

results back to the 3D vehicle structure is explained. See Figure 3.1 for an overview of

the work-flow.
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FIGURE 3.2. Basic 3D shell structure as example for the proposed mapping to

2D design domains.

3.2 Mapping Approach from 3D to 2D

In this section, the proposed method to map the components from a 3D vehicle structure

representing the principal load paths to a 2D design domain is explained. Take for

example the 3D shell structure as shown in Figure 3.2. The first step is to select a plane

to project the component on. Convenient planes are the orthogonal planes in a Cartesian

coordinate system. Then, a mesh is specified on the projection plane. This mesh will

function later as part of the design space. A regular, quadrilateral mesh is a convenient

choice, as many shape optimization methods only allow regular grids. Looking in the

direction of the projection, through the component and onto the 2D grid, the result could

be something like the image shown in Figure 3.3a.

A method is needed to check which elements in the structured grid should be filled.

To do this, the center point of each element in the structured grid is taken and compared

with the elements from the component’s projected irregular mesh.

Take a point p(x, y), which is the midpoint of a regular quadrilateral element from a

predefined structured grid, see Figure 3.4. The triangles T1, T2 are formed by dividing

the irregular quadrilaterals from the projected mesh into two triangles. To check if point

p(x, y) is inside triangle T1,2(p1, p2, p3), a method based on the Barycentric coordinate

system is used, see Equation (3.1).

x = ax1 +bx2 + cx3;

y = ay1 +by2 + cy3;

1 = a+b+ c

(3.1)

where x and y are the coordinates of point p(x, y). The triangle Ti is defined by three
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(a) Projected mesh on structured

grid.

(b) Result after mapping.

FIGURE 3.3. Example of a projection of a 3D irregular mesh onto a structured

grid.

𝑇1𝑇2
𝑝(𝑥, 𝑦)𝑝1 𝑝2

𝑝3
𝑥

𝑦𝑝(𝑥, 𝑦)
Irregular ElementQuadrilateral Element 𝑝4

FIGURE 3.4. Irregular element projection on square element; illustration on

how to find out if point p(x, y) is in triangle T. The irregular quadrilateral

is divided into two triangles, the element belonging to p is considered filled.
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points pi(x, y) with i = 1,2,3, with coordinates xi, yi. The coefficients a,b and c are

derived as follows:

a =
(y2 − y3)(x− x3)+ (x3 − x2)(y− y3)

(y2 − y3)(x1 − x3)+ (x3 − x2)(y1 − y3)
;

b =
(y3 − y1)(x− x3)+ (x1 − x3)(y− y3)

(y2 − y3)(x1 − x3)+ (x3 − x2)(y1 − y3)
;

c = 1−a−b.

(3.2)

The point p(x, y) is in Triangle T1,2 if the relation in Equation (3.3) holds true.

p ∈ T1,2 if: 0≤ a ≤ 1, 0≤ b ≤ 1, 0≤ c ≤ 1. (3.3)

This check for midpoint p(x, y) is performed for all elements in the structured grid. The

result for the situation illustrated in Figure 3.3a is shown in Figure 3.3b.
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(a) Two composite beams impacted at 30◦. The

beams are clamped at their right ends.

(b) The structures mapped onto a 2D design

domain.

FIGURE 3.5. Two composite beams impacted at 30◦. Both, the 3D structure and

2D representation are shown.

3.3 Defining the Load Case

In this section, the method to derive a load case for the LSM optimization is explained.

A 3D basic composite structure is subjected to one or more impact scenarios. These

impacts generate deformation and failure behavior. The goal of the proposed load path

optimization is to find a basic structure that stiffens the impacted structure to increase

its crashworthiness. To explain the method, let us look at the scenario in Figure 3.5.

Here two hollow composite beams are shown. The exact properties of these beams are

not considered at this moment, only the behavior of the 3D structure after impact

is considered. The beams are clamped at their right ends and impacted with a 30◦

rigid barrier. The resulting deformations of this impact are shown in Figure 3.6. The

deformations due to the impact are non-linear, both the material and geometry show

discontinuous, transient dynamic behavior over time. To translate the load case to a static

linear environment, a snapshot is made at a certain time after impact. This snapshot

represents the first moment the structure shows undesirable behavior. This snapshot is

the main result that is transported in the outer optimization loop, see Figure 3.1. The

assumption is made that in subsequent loops the structure remains stable for a longer

period of time, generating a next snapshot at a later time point.

What is considered undesirable structural behavior needs to be assessed by the

engineer and is not considered part of this research. In the situation presented in Figure

3.6, at 10 ms, the beam shows significant deflection away from the rigid barrier; the
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T = 0ms T = 10ms T = 20ms T = 30ms

Non-acceptable deformation with low energy absorptionUndesired Deformation

FIGURE 3.6. Non-linear impact analysis result of the initial basic structure in

3D; deformation result at 0, 10, 20 and 30 ms after impact.

structural rigidity is severely compromised. The preferable behavior would be that

the beam remains stiff and absorbs the impact energy through progressive crushing.

Therefore, this time point, 10 ms, is taken as the first snapshot.

The deformation state at the chosen time point is translated to a linear elastic and

static load case via a modified ESL method. ESL is used, because it can relate the non-

linear deformation of a structure to its equivalent load distribution on that structure in a

linear system. The equivalent static loads are defined as the linear static load sets which

generate the same response field in linear static analysis as that from non-linear dynamic

analysis [61]. The ESLs are made from the results of non-linear dynamic analysis and

used as external forces in linear static response optimization. The load distribution

results in the exact same response field, or deformations as in the example load case,

when solved. This way, a load case can be defined for a shape optimization based on static

linear simulation that minimizes the compliance, such that the represented deformation

is minimized as well. More on this method can be found in Kang & Park et al. [58, 59]

and Kim & Park et al. [61]. However, commonly this method is applied such that the

design domain and FEM mesh are the same between the dynamic and static analysis.

The response field is taken from all nodes in the design domain and ESL are generated

for all those nodes. This approach is not suitable for the presented example, where there

are two distinct design spaces and a change from a 3D to 2D domain is realized. Here, a

variation of the common ESL method is introduced.

Instead of using the complete response field, only a part of it is used. The load case is
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FIGURE 3.7. Example of load lines for transferring the displacements onto the

2D design domain.

derived for the 2D representation of these beams in the 2D design domain. Therefore,

only a part of the response field from the 3D dynamic analysis can be used for calculating

the ESLs. Furthermore, the crash structure that is assessed in the dynamic analysis,

is part of the boundary of the design space for the shape optimization and not part of

the shape optimization itself. The objective is to optimize a support structure changing

in time for the main crash structure, therefore the behavior of the crash structure to be

optimized should be related to by other means.

Here, a method is proposed that pre-defines certain regions on the 3D structure from

which the deformations are taken; they are then mapped to the equivalent regions in

the 2D representation. These regions are called ‘load-lines’; for this example, they are

defined as shown in Figure 3.7.

The load line should be chosen such that the same line can be represented in the 2D

design domain. The load lines in Figure 3.7 are chosen on an edge that runs parallel

to the projection plane. The in-plane and only the in-plane displacements of each node

on this line are collected and mapped onto the 2D design domain. The displacements

have to be interpolated because the 3D and 2D mesh are not identical. The mesh of the

2D design domain is significantly finer than the mesh of the 3D structure, therefore

the interpolation of the displacements onto their counterpart load line in the 2D design

domain is possible without making significant errors.

The displacements are normalized and applied on the beams in the 2D representation.

The normalization is necessary to mitigate numerical error in the static linear optimiza-

tion. Normalization is possible, because it will not affect the deformation distribution

and subsequent optimum in the static linear domain. The modified ESL method works

by solving this mechanical system to calculate the reaction forces on the nodes where
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(a) Original deformed beam

in the 3D space.

(b) Displacements normal-

ized and mapped on LSM

design space with initial-

ized 2D design domain.

(c) Resulting equivalent

static loads in the 2D

domain.

FIGURE 3.8. Displacements and the ESL based on the impact case shown in

Figure 3.6 at 10 ms.

the displacements are applied. These reaction forces are the equivalent static loads

corresponding to the displacements; i.e. applying these loads to the linear system and

solving for the nodal displacements, will result in the same displacements obtained in

the original non-linear system. The result is shown in Figure 3.8.

Commonly, the design domain in between the beams, where the optimized load paths

should be calculated, is left empty in the process of calculating the ESLs. However, doing

this would mean that the two beams do not ‘see’ each other. There is no mechanical

connection between the two beams. Therefore, when loads are applied to only one of them,

the other will not react. More important, if the ESL is calculated with an empty design

domain, the initial design with applied ESL for optimization will show a significantly

different displacement behavior. Therefore, the ESLs are calculated with the same initial

geometry design as is used to initialize the shape optimization, i.e. with initial material

in the optimization domain. Two examples are shown in Figure 3.9.

At this stage a design domain for the shape optimization is defined and the load case

or load cases are derived for the first snapshot and therefore first iteration of the outer

optimization loop (see Figure 3.1).
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Displacement Distribution Equivalent Load Distribution

(a) The ESL distribution without initial material in optimization domain.

Displacement Distribution Equivalent Load DistributionAdded initialmaterial

(b) The ESL distribution with initial material in optimization domain.

FIGURE 3.9. Different ESL distributions for two initial design domains; without

and with initial material.
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3.4 Level Set Method with Crush Constraints

The content of this section was partially published by the author in the journal

Structural and Multidisciplinary Optimization [45]

Over the past decade the LSM has gained a broader interest. Yet relatively little

research was done on including multiple constraints, especially when it concerns the

conventional implementation of structural optimization with the LSM. The majority

of the multi-constrained optimization problems in topology optimization are concerned

with stress or strength constraints, where the strength is maximized by limiting local

stresses. For the density based SIMP method, different examples can be found that solve

a structural optimization problem with local stress constraints [17, 30, 67, 83, 117]. For

the LSM however, the research is limited and involves a different variant of the problem.

In many cases a stress-minimization problem is solved to achieve a similar effect;

mitigating the difficulties due to the introduction of many stress-based design constraints

by reformulating the objective function and deriving new sensitivities [5, 54, 108]. To

transfer the standard ideas to the problem of crush optimization of composites several

modifications are necessary which are presented in the following.

3.4.1 Definition of the Optimization Problem

In this section, a modified definition of the structural optimization problem is introduced.

Here, we consider a standard objective, the minimization of the compliance of a design,

with a novel set of constraints controlling local volumes. This is especially important for

composite design where the crushing force measured in the complete area relates to a

crush stress, a material constant, and the current area undergoing the crushing process

at a certain time.

Single, Global Volume Constraint The standard optimization problem of minimiz-

ing the structural compliance subject to a single volume constraint is defined as follows:

Minimize: c(φ(~x))

Subject to: g(φ(~x))=V (φ(~x))−Vmax ≤ 0;

~̃K ·~u−~f ext =~0;

φ ∈Ψ.

(3.4)
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In Equation (3.4) c is the compliance, V equals the normalized volume fraction of the

material domain Ω on D and Vmax equals the maximum allowed normalized volume

fraction of Ω on the design domain D. The global stiffness matrix is denoted by ~̃K , ~u

is the nodal displacement vector and Ψ is the space of allowable LSF values φ. The

structural problem is only subjected to traction forces ~f ext at the boundaries and is not

subjected to body forces. The inequality constrained optimization problem from Equation

(3.4) needs to be transformed into an unconstrained problem. This transformation is

achieved by deriving the Lagrangian L :

L (φ(~x))= c(φ(~x))+λ
(

g(φ(~x))+ s2
)

(3.5)

where s is a slack variable which converts the inequality into an equality constraint.

The Karush-Kuhn-Tucker (KKT) optimality conditions using shape derivatives, can be

summed as follows:

• Gradient conditions:
∂L

∂Ω
= 0,

∂L

∂λ
= 0; (3.6)

• Feasibility check for inequalities:

s2
≥ 0, or equivalently: g(φ(~x))≤ 0; (3.7)

• Switching conditions:
∂L

∂s
= 2λs = 0; (3.8)

• Non-negativity of the Lagrange multiplier for the inequality constraint:

λ≥ 0. (3.9)

Next, the formulation for the shape sensitivity can be derived. We set the compliance

equal to the total strain energy:

c =~uT
·
~̃K ·~u. (3.10)

The stiffness matrix ~̃K(~ρ) is determined as follows:

~̃K(~ρ)=
Ne
⋃

e=1

ρe(φ)~Ke (3.11)

where
⋃

denotes the assembly of element components, Ne is the total number of elements,

~Ke is the element stiffness matrix and ρe is the element mass density determined by the
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LSF values. The strain energy density is determined as follows:

c =
∑Ne

e=1
ρe(φ)~uT

e · ~Ke ·~ue

=
∑Ne

e=1
H̃

(

φ(~x)
)

~uT
e · ~Ke ·~ue

(3.12)

where H̃
(

φ(~x)
)

is the relaxed Heaviside function, see the part on Structural Performance

& Geometry Mapping 2.1.2 in the methods background chapter.

The shape derivative of the Lagrangian L is derived as the Fréchet derivative with

respect to φ as follows:
dL

dΩ
=

〈

dL

dφ
,ψ

〉

(3.13)

where ψ is the variation of the level set function such that ψ ∈Ψ. Combining Equations

(3.5) and (3.13), the following is derived:

dL

dΩ
=

dc

dΩ
+λ

dg

dΩ
. (3.14)

For a more detailed derivation of the shape derivatives of the objective and constraints,

see Appendix A. The final formulation of the sensitivities are as follows. For the shape

sensitivity of the compliance, we get:

dc

dΩ
=−

Ne
∑

e=1

δ̃
(

φ(~x)
)

~uT
e · ~Ke ·~ueψ. (3.15)

For the shape sensitivity of the inequality constraint g:

dg

dΩ
=

Ne
∑

e=1

δ̃
(

φ(~x)
)

ψ. (3.16)

Based on the discussion in a paper by Wang et al. [109], the normal velocity VN from

the LSE (Equation (2.4)) is expressed as follows:

VN(~x, t)=
dL

dφ
. (3.17)

The shape derivative of the Lagrangian can now be defined by substituting the results

from Equations (3.15) and (3.16) into Equation (3.14) and taking the derivative with

respect to the LSF values:

dL

dφ
=

Ne
∑

e=1

δ̃
(

φ(~x)
)

[

−~uT
e · ~Ke ·~ue +λ

]

. (3.18)

The Lagrangian formulation of the optimization problem contains a slack variable s

to account for the inequality constraint. The switching condition from Equation (3.8) can

be satisfied in two ways:
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• λ = 0: This implies that the inequality condition is inactive, meaning that the

suggested optimum features a lower volume fraction than Vmax. However, for

problems with fixed boundary conditions and fixed loads, not considering body

forces, the compliance is minimized when the design domain is completely filled

with material. This fact makes this case physically irrelevant.

• s = 0: Zero slack implies an active inequality constraint, g(φ)= 0, indicating that

V (φ)=Vmax for the optimum solution.

These cases show that the optimum will always lie at V (φ) = Vmax. As a result of this,

one could define the volume constraint in Equation (3.4) as an equality constraint. The

slack variable s is now redundant and omitted.

Multi-domain or Local Volume Constraints We introduce a method to constrain

multiple local volume domains. With this method the user can assert more control over

the topological development during optimization. By restraining the volume in sub-

domains, the optimization algorithm is forced to find different solutions. This extended

control can be used to create optimal topology, which better fit the intended application

of the user. In this case constant volume areas can be created which allow for control

over the crush force of the entire structure. Also, by controlling the local volume, slender

members can be enforced, which can benefit the crashworthiness of the structure.

For this method, three possible domain descriptions are introduced:

1. Dloc, eq: This is the combined domain of all local volume domains, D
loc, eq

j
, that are

controlled via equality volume fraction constraints.

2. Dloc, ineq: This is the combined domain of all local volume domains, D
loc, ineq

h
, that

are controlled via inequality volume fraction constraints.

3. Dglob: This is the domain that is left after all local domains are established.

The volume fraction of the entire design domain is still controlled by the previously

introduced Lagrange multiplier λ, which will now be denoted λglob. Extra multipliers

λloc
i

for i = 1 . . . Ndom are introduced for Ndom volume domains. The local volume domains

are controlled in much the same way as the global volume constraint; the multiplier

belonging to a volume domain is updated with the same update method as the global

multiplier, with the difference that the update is based on the difference between the

local volume fraction V loc
i

and a local required V
loc, req

i
or allowed maximum volume

fraction V
loc, max

i
for i = 1 . . . Ndom.
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Two scenarios are possible; we can define local volume domains with equality or

with inequality constraints. The local equality constraint is handled much the same

way as the global constraint, as the same physical relation between volume fraction and

compliance is true. The equality and inequality constraints are defined as follows:

h j(φ(~x))=V loc
j −V

loc, req

j
= 0; (3.19)

gl(φ(~x))=V loc
l −V

loc, max

l
≤ 0. (3.20)

Contrary to the global inequality constraint, which behaves like an equality constraint,

local inequality volume constraints are now physically sensible. This is due to the fact

that each local volume domain also contributes to the global volume fraction, which is

constrained as well. It is therefore possible that a local domain with low strain energy

reduces in volume in favor of an area where the strain energy is higher, as long as the

global volume constraint is met. This could result in local volume domains having a

lower than maximum volume fraction at optimum. This behavior might be preferable

and therefore a method is introduced to allow for local inequality volume constraints.

The method works by comparing the local multiplier with the global one and taking the

maximum, which allows to drive the local volume fraction further down if required.

Now the Lagrangian formulation of the optimization problem is described as follows:

L (φ(~x))= c(φ(~x))+λglob g(φ(~x))

. . .+

N
eq

dom
∑

j=1

λloc
j h j(φ(~x))

. . .+

N
ineq

dom
∑

l=1

max
[

λloc
l ,λglob

]

gl(φ(~x))

(3.21)

where λloc
j

and λloc
l

are the local Lagrange multipliers for N
eq

dom
equality and N

ineq

dom
in-

equality constrained local volume domains. This optimization problem can be interpreted

as finding a configuration, which exhibits a stationary Lagrangian L (φ(~x)) with respect

to shape Ω and Lagrange multipliers λglob, λloc
j

and λloc
l

. In order to find such a configu-

ration, the KKT optimality conditions must hold. The boundary normal velocity VN can

now be derived as:

VN = δ̃
(

φ(~x)
)

[

−~uT~K~u+Λ

]

with: Λ=















λglob ∀~x ∈ Dglob

λloc, eq ∀~x ∈ Dloc, eq

max
(

λglob,λloc, ineq
)

∀~x ∈ Dloc, ineq

(3.22)
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Equation (3.22) shows three distinct cases.

• Dglob: Only the multiplier λglob is applied in this domain.

• Dloc, eq: Only the multipliers λloc
j

are applied in these sub-domains. The volume of

sub-domain j at optimum will be equal to V
loc,req

j
.

• Dloc, ineq: Both, the multipliers λloc
l

and λglob are applied in these sub-domains. The

volume of sub-domain l at optimum will be equal to or lower than V
loc,max

l
. The

inequality is handled by the interaction between both multipliers.

3.4.2 Proposed Optimization Methods

In this section, two different methods are explained for optimizing the problems stated

in the previous section 3.4.1.

First, a normalization parameter C is introduced, based on research by Otomori et al.

[81]. This parameter normalizes the sensitivities, such that it makes the proposed LSM

framework largely problem independent:

VN = δ̃
(

φ(~x)
)

[

−C(~uT~K~u)+Λ

]

. (3.23)

The normalization parameter C is defined as:

C =
Nn

∑Ne

e=1
ρe~u

T
e
~Ke~ue

(3.24)

where Nn is the number of nodes in the LSF discretization and Ne the number of

elements.

The sub-domain volumes are all normalized by their respective total sub-domain

volume to form local volume fractions.

V loc
i

=

∫

D i
ρ(φ)dD

∫

D i
dD

(3.25)

where D i defines a sub-domain of D. This makes all volume constraints, local and

global, directly comparable and therefore their sensitivities as well. Hence, no further

normalization is necessary for the constraints.

This research uses two separate update procedures for the Lagrange multipliers:

Method one is used for the optimization case where only the global volume inequality

constraint is active and method two when the local constraints (both equality and

inequality) are active.
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Method One, Secant Method The first multiplier update method uses the well-

known secant method [8]. A small optimization is performed to find the best candidate

multiplier λ∗ for each level set update. The implementation used in the presented

research is shown in Equation (3.26).

λ{k+1}
=λ{k}

−
λ{k} −λ{k−1}

h{k}(φ)−h{k}(φ)
h{k}(φ) (3.26)

for k = 2, . . . , N where λ{k+1} is the multiplier suggestion for λ∗ at the k-th iteration

within the secant based optimization. The function h{k}(φ) is defined as follows:

h{k}(φ)=V {k}(φ)−V {k}
max (3.27)

where V {k}(φ) is the current material volume ratio in the design domain and V {k}
max is the

maximum allowable volume ratio at iteration k. The value for V {k}
max is slowly decreased

from the initial volume ratio Vini to the set maximum of Vmax. This steady decrease is

required for stable convergence. Without it, the material volume would reduce too rapidly,

not allowing for an optimal distribution driven by the compliance based sensitivity. This

method of steady decrease is a type of constraint relaxation and its form is based on the

findings by Otomori et al. [80]. The slope of the relaxation is set by the parameter Nvol,

see Equation (3.28).

V {k}
max =Vmax + (Vini −Vmax)max

[

0,1−
k

Nvol

]

. (3.28)

The advantage of this secant based update method is that the constraint value is met

almost perfectly for every iteration. The disadvantage is that the current volume has to be

evaluated for every iteration k. The optimization is terminated either when a threshold

is reached, e.g.
∣

∣h{k}(φ)
∣

∣< 1 ·10−4, or when the maximum of iterations is reached. The

method is initialized with: λ{1} = 10 and λ{2} = 0 for the first LSM iteration. In subsequent

iterations, the secant based method has to be initialized, we propose λ{1} = λold and

λ{2} = 0, where λold is the multiplier from the previous LSM iteration.

Method Two, Augmented Method The common augmented Lagrangian function

for the equality-constrained problem is defined as [8]:

L (~x,h(~x), r)= f (~x)+
N
∑

i=1

[

λihi(~x)+
1

2
rh2

i (~x)

]

(3.29)

where h(~x) is the set equality constraints, N the number of these equality constraints,

λi the Lagrange multiplier for the i-th equality constraint and r the penalty parameter.

65



CHAPTER 3. METHODS

Remember that the inequality constraint problem is actually an equality constraint

problem in the case of compliance minimization with a single global volume constraint.

Based on the general description from Equation (3.29), the Lagrangian from Equation

(3.5) is rewritten as follows [23, 70]:

L (φ(~x))= c(φ(~x))+λh(φ(~x))+
1

2τ{k}
(h(~x))

2 . (3.30)

The Lagrange multiplier is updated as follows:

λ{k+1} = λ{k} +
1

τ{k} h(~x);

τ{k+1} = max
(

ατ{k},τmin

)

(3.31)

with the proposed hyperparameters α= 0.9 and τmin = 0.1. Initial values for the Lagrange

multiplier and penalty are necessary for each optimization problem. Good initial guesses

are: λ{1} = 4. and τ{1} = 100.

Optimization Flowchart An overview of the complete optimization procedure is

shown in the flowchart in Figure 3.10.

3.4.3 Benchmark Problems

In this section, typical example problems are solved to validate the presented methods;

note that more problem related applications are given later in the results chapter,

Section 4.1. The mechanical simulation is performed with CALCULIX [26], an open

source FEM program. The material used is a quasi-isotropic material with normalized

values for the mechanical properties: E1 = 1.542, E2 = 1.542, G12 = 0.206 and ν12 = 0.12.

In both examples the bandwidth parameter h is set to 0.5 times the element side length.

Convergence is reached when the compliance does not change more than 0.1% in five

subsequent iterations and the relative constraint failure is below 0.05%.

Example One This example is concerned with the compliance minimization of a

centrally loaded cantilever beam, see Figure 3.11. The beam length over width ratio is

L/B = 1.515, the mesh for the mechanical simulation consists of 100×66 quadrilateral 8

degrees of freedom shell elements. The unit load is applied downward at the center of

the right edge of the beam, the left edge is fully clamped. The initial level set boundaries

are distributed as a pattern of circular holes, also known as the “Swiss cheese” design.

The optimization hyperparameters are as follows: parameter penalty factor β= 0. and
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Define global

and sub-domains

Define LSF,

φ(~x), on Domain

Re-initialization of LSF

Heaviside Integration

Geometry Mapping

FE-Analysis

Convergence?

Update LSE

Helmholtz Regularization

Lagrange Mul-

tiplier Update

Sensitivity Analysis

End
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Figure 3.10: Optimization Flowchart.

CFL time step factor ∆tfac = 0.9. With β = 0. the parameter penalty is switched off,

meaning no boundary smoothing. For the Lagrange multiplier update, the parameters

are as follows: no local constraints (secant method), Nvol = 25, with local constraints

(augmented method), τ0 = 100 and λ0 = 4.

The definition of the sub-domains for this problem is shown in Figure 3.12. The local

volume fractions belonging to these sub-domains are, V {N}
loc

, with N equal to the number

of sub-domains. Starting at the right edge, the first sub-domain with volume fraction,

V {1}
loc

, of width, 1
N

Lloc, is defined, with a height equal to B. The next sub-domain with

volume, V {2}
loc

, sits immediately next to the previous domain. This is repeated until N

domains are created. For this example, we choose Lloc =
L
2

and N = 25.

There are several ways to examine the difference between the method without and

with local volume constraints. First a comparison is made between an optimization

with only a global volume inequality constraint, V glob ≤V
glob
max and an optimization with

both, a global and local inequality constraints, V N
loc

≤ V N
max. Secondly, the optimization

without local constraints is compared to the optimization with local equality constraints,
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Figure 3.11: Centrally loaded cantilever and initial topology.

F

ΩB

1234· · ·N

Lloc

Figure 3.12: Definition of the local constraint domains for the centrally loaded cantilever

beam.

TABLE 3.1. Overview of example cases and normalized optimal compliance

values, Pnorm, for the Cantilever Beam problem.

V
glob
max V N

max V N
req Pnorm

0.3 - - 1.21

0.3 0.3 - 1.21

0.3 - 0.3 1.23

V N
loc

=V N
req; see Table 3.1 for an overview.

Figure 3.13 shows the results for the first comparison case. The results show typical

solutions to the cantilever beam problem. The optimum result without local volume

constraints is taken as a reference solution and is shown in Figure 3.13a. All compliance

values are normalized with respect to the initial compliance value, for an overview see

Table 3.1. All cases are started with the same initial design. The normalized optimum
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(a) Optimum with only a global constraint,

V
glob
max ≤ 0.3.

(b) Optimum with local inequality constraints,

V N
max ≤ 0.3, for N = 1 . . .25.

(c) Optimum with local equality constraints,

V N
req = 0.3, for N = 1 . . .25.

FIGURE 3.13. LSM based optima of the cantilever beam problem for both,

without and with local volume constraints, V
glob
max ≤ 0.3 and V N

req = 0.3, for

N = 1 . . .25

compliance of the reference is 1.21. With local inequality constraints active, the optimum

results look significantly different, see Figure 3.13b. The proposed LSM successfully ap-

plied the local inequality constraints, resulting in different topology. The global constraint

with V
glob
max = 0.3 ensured a total volume ratio equal to that of the reference example. The

optimal compliance for this case is 1.21. The lack of strong topological / geometric changes

on the boundaries between the sub-domains signifies the robust and smooth interaction

between global and local constraints. The result with local equality constraints active,

shown in Figure 3.13c, has a similar topology compared to Figure 3.13b. The effect of the

equality constraint is most notable in the nose area of the cantilever structure. The nose

shows a constant thickness distribution, because of the equality condition and required
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(a) Optimization history with V

glob
req ≤ 0.3.
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(b) Optimization history with V N
req ≤ 0.3, for N =

1 . . .25.
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(c) Optimization history with V N
req = 0.3, for N =

1 . . .25.

FIGURE 3.14. Optimization histories for case 1, corresponding to the results

shown in Figure 3.13. The objective value is normalized with respect to the

initial design.

volume of 0.3 per column. The optimal compliance for this case is 1.23, which is the

highest of the three. An explanation is that here the design space is constrained the

most, when compared to the other optimizations, leaving a less optimal result as the

optimum. However, the increase in compliance due to this effect is small. The optimiza-

tion histories belonging to the optimizations shown in Figure 3.13 are shown in Figure

3.14. The history for the reference case without local constraints active, Figure 3.14a,

shows a different behavior for the constraint value than the other two. This is because

of the Lagrange multiplier update scheme, which is different than for the cases with
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(a) Optimum of case 2, with V
glob
max ≤ 0.3 and

V RH
req = 0.2.

(b) Optimum of case 2, with V
glob
max ≤ 0.2 and

V RH
req = 0.3.

FIGURE 3.15. LSM based optima of the cantilever beam problem for case 2.

F

Ω
B

L

Figure 3.16: Description of the Three-Point-Bending structure problem and initial bound-

aries.

local constraints, as explained in Section 3.4.2. It can be seen, however, that the applied

update method works as expected, showing a pre-set slope to the constraint value of

0.3 in 25 iterations (parameter Nvol). During this time, the objective value increases as

expected and steadily optimizes towards convergence at constant volume. The amount of

iterations required when the local constraints are active increases significantly, from 80

to 117 for the local inequality and equality constraints. The optimization histories show

robust and stable convergence behavior.
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F

ΩB

Lloc,3Lloc,2Lloc,1

Figure 3.17: Definition of the local constraint domains for the Three-Point-Bending

structure problem.

Example Two In this example, a classical Three-Point-Bending structure is solved.

The general problem description is depicted in Figure 3.17. The design domain dimen-

sions and mesh are the same as in Section 3.4.3, with L/B = 1.515 and 100×66 quadri-

lateral elements. The local volume domains are specified as: Lloc,1 = 0.35L, Lloc,2 = 0.3L

and Lloc,3 = 0.35L. The optimization hyperparameters are as follows: β = 0., R = 1.2

and ∆tfac = 0.9. This setup is similar to the setup in example one. However, now bound-

ary smoothing is included by applying the Helmholtz regularization method by setting

R = 1.2. The bandwidth parameter h is set to 0.5 times the element side length. For the

Lagrange multiplier update, the parameters are as follows: case one (secant method),

Nvol = 40, case two and three (augmented method), τ0 = 100 and λ0 = 3. The results are

shown in Figure 3.19. The design domain, mesh, load case and boundary conditions are

the same for all three results. The global volume constraint, V
glob
max , equals 0.3 for all three

cases. In the first case, no local constraints are active. The second case has inequality

constraints, V
1,3
max ≤ 0.2, for sub-domains Lloc,1 and Lloc,3, the center domain Lloc,2 is

inactive. The third case has an inequality constraint, V 2
max ≤ 0.2, on the sub-domain

Lloc,2, the other two sub-domains are inactive. The cases are summarized in Table 3.2.

The results show clear differences in optimal topology. The normalized optimal

compliance values are presented in Table 3.2. The result of case one is a typical, well-

known, optimal topology for the Three-Point-Bending structure. The normalized minimal

compliance is 0.82. Case two shows the decrease in material volume in both outer local

sub-domains, resulting in an increase of material in the central domain, as a result of

the global volume requirement of 0.3. The normalized minimal compliance is 0.90, which
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3.4. LEVEL SET METHOD WITH CRUSH CONSTRAINTS

Table 3.2: Overview of example cases and normalized optimal compliance values, Pnorm,

for the Michell structure problem.

V
glob
max V

1,3
max V 2

max Pnorm

Case 1 0.3 - - 0.82

Case 2 0.3 0.2 - 0.9

Case 3 0.3 - 0.2 0.96
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Figure 3.18: Iteration history of the local volume constraints for case 2 and 3.

is higher than in case one. This is to be expected as the same amount of material is

distributed less optimal due to the introduced local constraints. The third case generated

a different topology compared to case one and two to compensate for the lower allowed

volume in the central sub-domain. The normalized minimal compliance is 0.96, which

is higher than in both other cases. However, this is a logical consequence of the applied

load case in combination with less material in the central sub-domain, due to the applied

constraints. The optimization histories for these three cases are shown in Figure 3.20

and an overview of intermediate optimization results are shown in Figure 3.21. It

should be noted that for the optimization with local constraints active, the convergence

criteria were not met. Instead the optimization was terminated, because the pre-scribed

number of iterations was reached. However, the optimization history shows reasonable

stable behavior for the last 30 iterations with relative small oscillations, which is here

considered as converged behavior. Similar histories can be seen for the local volume

constraints, see Figure 3.18.
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(a) Case 1: Optimum Three-Point-Bending

structure with only a global constraint,

V
glob
req ≤ 0.3.

(b) Case 2: Optimum Three-Point-Bending

structure with local inequality constraints,

V N
req ≤ 0.2, for N = 1,3.

(c) Case 3: Optimum Three-Point-Bending

structure with local inequality constraints,

V N
req ≤ 0.2, for N = 2.

FIGURE 3.19. LSM based optima of the Three-Point-Bending structure for both,

without and with local volume constraints.
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(a) Case 1.
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(b) Case 2.
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(c) Case 3.

FIGURE 3.20. Optimization histories for the cases shown in Figure 3.19. The

objective value is normalized with respect to the initial design.
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(a) Iteration 20. (b) Iteration 40. (c) Iteration 60. (d) Iteration 80.

(e) Iteration 30. (f) Iteration 60. (g) Iteration 90. (h) Iteration 120.

(i) Iteration 20. (j) Iteration 40. (k) Iteration 60. (l) Iteration 80.

FIGURE 3.21. LSM iteration history for the Three-Point-Bending design prob-

lem; case 1 (a to d), case 2 (e to h) and case 3 (i to l).
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3.5 Mapping Approach from 2D to 3D

To determine if the optimal load paths work in the 3D initial vehicle structure, the 2D

load paths are transformed back into the 3D simplified vehicle structure, presented

in Sections 3.1 and 3.2. Information on the out-of-plane behavior of the 2D load paths

is absent, therefore only simple transformations to 3D are performed. Even so, this

transformation is only possible when some important assumptions are made:

• Structure consists of fixed thickness thin walls.

• Cross-sectional shape is fixed: the general cross-sectional shape remains fixed, for

instance square or ellipsoid.

• Cross-sectional height is fixed: the new load bearing structure has a fixed height.

• Perfect connections between structure elements: joints, attachments and bonds are

assumed perfect.

The transformation from 2D to 3D is done in several stages; 1) Extracting the level-set

iso-contour, 2) Smoothing of the level-set iso-contour, 3) parsing the iso-contour to a

FEM pre-processing tool, 4) meshing of the enclosed geometry and 5) extruding to 3D

structure. The process will be explained in detail in the next paragraphs.

Smoothing

The initial level-set iso-contour can be rough, with high local curvatures and possibly

local artifacts, such as ‘bubbles’. Artifacts and/or non-smooth boundaries will later result

in an inferior mesh quality and geometry for the 3D structure. This will have a significant

effect on the structural stability during the crash simulations. The resulting structural

instability is an unwanted side-effect from the 2D to 3D transformation and has very

little to do with the optimal structures derived by the LSM. It should therefore be

mitigated or reduced significantly.

There are several techniques available to control the amount of curvature on the

level-set boundary during optimization, perimeter control among others. However, these

techniques restrain the shape optimization. Therefore implementing a smoothing al-

gorithm in a later stage has some benefits over applying shape constraints during

optimization.

The smoothing algorithm used here consists of a maximum of two processes. The

main process is to smooth the zero level-set iso-contour. The optional second process is
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used to remove any ‘bubbles’ that might have occurred during the LSM optimization.

These ‘bubbles’ are artifacts created by areas where the LSF varies around the zero

level-set boundary, resulting in local multiple small iso-contours. First the main process

is explained.

The quadrilateral mesh on which the LSF is discretized is transformed into a tri-

angular mesh by splitting the quadrilaterals. We can now use an existing algorithm

to generate an iso-contour with a bi-linear spline description. We extract the points

describing the iso-contour path and create a new bi-linear spline over these points. By

creating this new spline, we have control over its smoothness. The smoothness parameter

controls the amount of local curvature over the spline path; a higher parameter value

creates a spline with a lower maximum local curvature. The bi-linear spline description

of the iso-contour is also necessary to transfer the optimized geometry to a CAD program.

The optional second process is applied to remove the ‘bubble’-like artifacts and can

be applied on top of the main smoothing process. This process is a pre-processing before

the main smoothing step explained above. First, an offset is added to the discrete LSF

values:

φΓ(~x)=φ(~x)+Γ (3.32)

where φ(~x) is the original LSF, Γ is the offset value and φΓ(~x) is the temporary new LSF.

The original LSF should be equal to the signed distance function before applying this

smoothing step:
∥

∥∇φ(~x)
∥

∥= 1. (3.33)

With a negative offset value, Γ, the iso-contour portraying the new zero level-set of φΓ(~x)

is effectively expanded outward into the void domain, equivalently to having a boundary

normal velocity, VN , being constant everywhere on the boundary. The signed distance

property of the LSF ensures that the level set boundary contracts or expands equally

over the total boundary. The effect is that the material volume is increased and that all

small artifacts around the original boundary disappear. The level of artifact removal can

be determined by increasing the value for Γ. However, the larger this value, the more of

the original contour is lost and at very high values new topologies may be created. For

instance, at sufficiently large values of Γ boundaries could merge and distinct topologies

may get lost. This over-crossing of geometrical features can cause a significant deviation

of the optimal topological layout. Therefore, care should be taken in determining an

adequate value for Γ. At this stage the main smoothing procedure is applied to smooth

the new zero level-set iso-contour. The new LSF is re-initialized as an SDF, as explained

in Section 2.1. The smoothing procedure changes the shape of the boundary, therefore
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the re-initialization procedure is needed to ensure the new level set values have the

signed distance property. The re-initialization makes sure the artifacts are removed.

Then, the offset procedure can be applied again in reverse, with an offset value −Γ. The

new LSF has a material volume close to the original, but all artifacts are removed and

the boundary is smoothed.

Applying these smoothing procedures makes the original level-set boundary better

suited for structural implementation. However, the smoothing procedures also modify

slightly the topology of the optimum load paths. This may also change the volume by

a small amount, leading to a possible failing of the volume constraint or constraints.

This could be mitigated by iterating over the second step of the offset procedure, reverse

offset, updating Γ until the same global volume is achieved as at optimum. This would

not work with multiple volume constraints however. An overview of the smoothing steps

can be seen in Figure 3.22.
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(a) Initial zero level-set with optimization arti-

facts visible around the inner top and outer

bottom corners.

(b) First step: the initial zero level-set (dotted

line) with an added offset, removing the ar-

tifacts and increasing the volume.

(c) Second step: the zero level-set with offset

smoothed with the spline based method. The

LSF shown is then re-initialized.

(d) Third step: Inverse offset of the smoothed

zero level-set from step two (dotted line).

FIGURE 3.22. Smoothing process applied on Three-Point-Bending optimization

result.
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Parameterization
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FIGURE 3.23. Diagram of the complexity reduction work-flow.

3.6 Complexity Reduction

The content of this section was partially published by the author in the journal of

Composite Structures. [46]

The introduction of advanced composite materials into the design of crashworthy au-

tomotive structures increases the complexity of the already complex design development.

The number of design parameters, the complex non-linear mechanical behavior and the

high computational costs are compelling arguments for complexity reduction. In Section

1.4 more details are given.

In this section, a new systematic approach to reduce design complexity is introduced.

This is the second part of the proposed design work-flow, as presented at the beginning

of this Chapter 3. The method touches on the three complexity increasing factors as

discussed in the introduction 1.4; the high number of design variables, mechanical

behavior and computational cost. The approach consists of a novel work-flow, where

the complexity is reduced in two stages. In the first stage, a parameter importance

hierarchy is derived. In a second stage, a Solution Space Identification (SSI) method is

used, adapted from the work proposed in [34, 38]. Both stages are designed to reduce the

design space complexity. On top of this, a Physical Surrogate Model (PSM) is developed

to approximate a Limit State Function (LiSF) that is applied in both stages to reduce

the mechanical behavior complexity and increase the computational efficiency.
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3.6.1 Methodology

The approach presented here is shown in Figure 3.23 and follows two major stages:

The Design Generation stage and the Complexity Reduction stage. The work-flow is

implemented using the optimization software NOESIS OPTIMUS [1].

In the design generation stage, a set of parameters is chosen as design variables

for the problem to be considered. These parameters can be divided into geometry and

material variables. Values for the parameters are parsed to a geometry modeler and

a material handler. In this research SFE CONCEPT [29, 95] is used as the geometry

modeler. With SFE CONCEPT a structure is designed with parameterized geometry; by

changing a parameter value, the geometry of the structure is changed and all dependent

structural parts as well. The parameter variables can be assigned a value by other

programs, for example optimization algorithms. By running SFE CONCEPT in batch

modus and parsing the updated parameter values, the structure can be adapted. SFE

CONCEPT can do the same for many material properties. When a numerical structural

analysis is required in the work-flow, as is the case in this research, SFE CONCEPT

can generate a FE mesh compatible to various FEM solvers. The meshed design and

material parameters are parsed in this work to an ABAQUS/EXPLICIT template input

deck for numerical analysis. CZONE, see Section 2.3, is used to simulate the progressive

crushing behavior in the crush-front of the composite structure. A separate FE model

is generated for the PSM approach. Here ABAQUS/IMPLICIT is used for the buckling

analyses. Both the explicit and implicit analyses can be run in parallel or one of them

can be omitted. The results are extracted by Python classes and stored in data files

which are parsed back to OPTIMUS. The crash-worthiness is derived from the explicit

numerical analyses. The responses of interest are the maximum intrusion of the barrier

into the structure, δmax, and the total weight of the structure, Mstruc. This weight can

conveniently be directly calculated from the parameters that define the geometry and

the laminate thicknesses, i.e. M = M(Φ) where Φ equals the set of available parameters.

The second stage, the complexity reduction, forms the main part of this method and

will be explained in the following sections.

Implementation of Lamination Parameters In Section 2.2 the background of LP

is explained.

LPs considerably simplify the modeling of FRP composites and assist in decreasing

the complexity of the whole design process. The answer of an FRP composite structure or

laminate is a function of the stiffness matrices of the laminates, usually derived with the
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CLT. The main challenge that comes from using the CLT to describe the laminate is the

high number of required variables. Furthermore, the ply orientations are usually chosen

from a set of available orientations, which leads to variables having partially discrete

properties. Alternatively, the LPs can be used as design variables that entirely define

the stiffness of the laminate properties. As is customary and good engineering practice,

the laminates used in this project are assumed to be balanced and symmetric, resulting

in four from the total of 12 possible LPs. The LP set then consists of ViA and ViD with

i = 1,3, for membrane and bending stiffness respectively.

The LPs ViD are omitted as laminates in a traditional vehicle design, designed for

crash absorption, are predominantly loaded in-plane. The comparatively large closed

cross-sections from the normally used tubular construction provide the bending resis-

tance. For future applications, where the bending stiffness of the laminate has a greater

influence on the structural reaction, LP ViD can and should be included. The balanced

and symmetric condition decreases the achievable range of LP to [51, 75]:

2V 2
1A

−1≤V3A;

−1≤ViA ≤ 1 (i = 1;3) .
(3.34)

The domain described by Equation (3.34) is shown in Figure 3.24. In addition, due to

manufacturing constraints, the number of available ply orientations are constrained

to ±45◦, 0◦ and 90◦. When using the CLT approach, this leads to discrete variables,

which may cause problems when running optimization algorithms. However, for LPs this

orientation constraint is handled by constraining the feasible LP domain from Equation

(3.34) to:

2V1A −1≤V3A;

−1≤ViA ≤ 1 (i = 1;3) .
(3.35)

The LPs V1A and V3A are used as design variables. It is preferable to directly translate

the LPs to stiffness information for use in the FE analyses. However, the material models

used in ABAQUS and CZONE require specific layup information. Therefore, the LPs need

to be translated into a laminate layup design with a certain stacking sequence and layer

orientations. This process can be complex, as there is in theory an infinite number of

possible layups that fit a certain set of LPs. This problem has three possible variables:

(1) the amount of layers, (2) the orientation of a layer, and (3) the thickness of a layer.

Depending on the application, different methods are suitable. If the application is a real

world laminate layup design, the thickness of each layer is usually kept constant, defined

by the fabric specification. The total laminate thickness together with the ply orientations
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FIGURE 3.24. Miki diagram of feasible region for LPs for balanced and symmet-

ric laminates, [51].

determine the final stiffness properties. This leads to an optimization problem where the

objective is to match the LPs of the trail laminate layup to the desired LPs. This can be

cumbersome and an exact fit may not exist. This could lead to discontinuity problems in

the proposed work-flow.

If the application, however, is a material definition for an FEM solver the layup

does not have to be physically realistic. Hence, a method is developed here to derive a

laminate layup definition that exactly matches the desired LPs.

The method uses a variable thickness distribution of the plies in a template laminate

design. This template laminate is established first, a convention layup is chosen:

[

±45◦, 0◦, 90◦, ±45◦, 0◦, 90◦
]

s
(3.36)

The combination of a thickness distribution and a laminate template is possible, as

laminate bending stiffness is not considered a design variable. Naturally, any template

can be chosen, important is that all available ply orientations are included. The propor-

tional contributions pθ with θ = 45◦,0◦,90◦ of each ply is determined by the LPs. The

Miki diagram, as shown for example in Figure 3.24, is used to derive these proportional

contributions. The Miki diagram gives the feasible domain of the LPs V1A and V3A and

how they relate to a certain laminate layup. For instance, when (V1,V3)= (1,1) the only

possible laminate would consist of only 0◦ plies. Point G is positioned exactly half way

between the 90◦ and 0◦ ply orientations, meaning that (V1,V3)= (0,1) will correspond to

a layup consisting of equal parts 90◦ and 0◦ ply orientations. This physical perception
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of the relation between LPs and layup designs is interesting for parameterization of

composite laminate properties. In this case, where only the ±45◦, 0◦ and 90◦ orientations

are available, the relation between the LPs and the proportionality contributions pθ can

be derived as shown in Equation (3.37).

p45 = −
V3

2
+

1

2
;

p0 =
V1

2
+

V3

4
+

1

4
;

p90 = −
V1

2
+

V3

4
+

1

4
.

(3.37)

The variable thickness for each ply in the template layup from Equation (3.36) is deter-

mined by deriving their respective proportions as follows:

tθ = ttot pθ. (3.38)

The complete thickness distribution is then defined as follows:

1

4
[t45, t0, t90, t45, t0, t90]s . (3.39)

Implementation of the Limit State Function The proposed method for complexity

reduction uses the implementation of a Limit State Function (LiSF), as used for example

by Stocki et al. in their reliability analysis of a crashed thin-walled S-Rail [99]. The

LiSF is a design method that is often used in structural engineering. It is applied where

a system has a certain capacity or resistance and on the other hand is subjected to

some sort of demand or loading. If at a certain point the demand or loading exceeds the

capacity or resistance of the system, the system reaches its limit state and fails. Hence,

the system does not display its intended behavior. The transition between accepted and

unwanted behavior (also denoted as “system instability failure” or “system instability”)

is characterized by the LiSF.

The LiSF is implemented here as follows. The limit state is expressed as the point

where the composite structure transitions from stable progressive crush behavior to a

global structural instability, for example buckling, and collapses. This is relevant for

the crash-worthiness of FRP composite structures: a stable progressive crush front is

essential for adequate energy absorption. The initiation and progression of a crush front

and the crush-stress generate a load on the structure. If the structure is unable to provide
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enough stability to support the peak and crush load, the structure is unable to absorb

the required energy. Structural stability is therefore used to describe the limit state and

is here defined as follows:

G(R,S) = R−S

with: G(R,S)> 1 : stable

G(R,S)< 1 : unstable

(3.40)

where G is the LiSF, R is the resistance of the system and S is the load on the system. It

should be emphasized, that in contrast to most other applications found in literature,

the LiSF is not used in this research for reliability analysis. Rather it is used for variable

screening and the corresponding complexity reduction as a preparation for optimization.

Normally, the evaluation of an LiSF is very complex, different examples of this were

discussed in section 1.4. Hence, a modeling based on physical surrogates is developed

in order to reduce the complexity related to computational effort and the number of

parameters. The Physical Surrogate solution is proposed next.

Implementation of the Physical Surrogate A model is needed to implement the

LiSF method. Here the concept of a Physical Surrogate Model (PSM) is proposed to

model the behavior, or more specific, the structural stability of the structure. The LiSF

differentiates between two distinct structural behaviors, therefore the proposed model

should provide this information. Commonly, Response Surface Approximation (RSA)

techniques are used to approximate the LiSF for specified structural behaviors, see

for example research by Kurtaran et al., Gu et al., Yang et al. [40, 65, 118] and the

previously mentioned research by Stocki et al. [99]. Here, a method is proposed where

a simplified simulation model is used to directly approximate the structural stability

of a certain design, instead of using the RSA technique. The term “Physical surrogate

modeling” is chosen, because a physical model is used to estimate the structural stability.

Another reason the term is introduced is to avoid confusion with RSA methods. The term

PSM underlines that the surrogate represents part of the physical characteristics of the

assessed structure.

It was mentioned before that a progressive crush front is desirable and that global

instability should be avoided. It is assumed that a linear elastic buckling analysis can

be used to determine the onset of a primary structural instability. A perfect assessment

is not necessary, as the PSM used in conjunction with the LiSF is used to establish

a Parameter Hierarchy (explained in the next paragraph). Remember, the goal is to
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reduce the complexity of the crash-worthiness optimization problem. For establishing a

hierarchy of parameters or for filtering solution spaces (explained later in this Section),

it can be accepted that the PSM only covers partially the actual investigated structural

behavior.

The assumption is that a linear elastic buckling analysis can give an adequate

prediction of the impact force threshold at which the structure becomes unstable. The

underlining thought is that local or global buckling weakens the structure, while stresses

are not reduced. This in turn results in collapse and eventually local failure of the

laminate.

A typical crash load-case is a component, which is impacted by or on a rigid flat

surface, see for example Figure 3.25. The PSM for use in the LiSF is implemented as

follows. The rigid surface is replaced by a unit-force perturbation force in the same

direction and location of the impact. Then, the critical buckling load Pcrit is derived by

the static linear buckling analysis. This Pcrit is compared to the crush force Fcrush of the

composite component. The crush force can be analytically derived. This is important, as

an explicit numerical FE analysis would defeat the purpose of this method in terms of

computational efficiency. The procedure to analytically derive the crush force is explained

later. The comparison is illustrated in Equation (3.41). If the critical buckling load is

higher than the approximated crush load, the structure is deemed stable and behavior is

as intended.

Pcrit >max[Fcrush(x)] → Stable (3.41)

where x stands for the cross-sectional geometric properties of the impacted component.

The first buckling mode and corresponding eigenvalue are taken as the critical buckling

mode, subsequently the corresponding critical buckling force Pcrit is calculated.

Using Equation (3.41) to modify the general description of the LiSF in Equation

(3.40), results in:

G(Pcrit,Fcrush(x))= Pcrit −max[Fcrush(x)] (3.42)

As mentioned earlier, the crush force Fcrush can be analytically derived. The material

specific crush stress data, determined a priori for the CZONE simulation model, is used

to calculate Fcrush. The crush stress is normally given in tabular form, with specific crush

stresses for corresponding material orientation with respect to the impacting surface.

The crush force can be interpolated from this data for a specific cross-sectional area

parallel to the impact surface or for projected cross-sectional area. Figure 3.25 shows

how the projected cross-sectional area is determined. The crush stress σcrush can be

87



CHAPTER 3. METHODS
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Figure 3.25: Typical load case for a composite specimen, impacted by a rigid surface.

Determination of the impact surface projected cross-sectional area on the crushable

structure.

calculated by interpolating the tabulated crush stress with laminate layup definition,

see reference [76].

Implementation of the parameter importance hierarchy In Section 1.4.1, the

use of an importance hierarchy is discussed. This method can help reducing the number

of parameters in a structural optimization problem by giving an objective and mathemat-

ically derived influence of each parameter relative to the others. Important information

might be lost if a small set of parameters is selected beforehand for a certain optimization

problem, which is commonly the case. Therefore deriving an importance hierarchy can

significantly reduce the complexity of the problem allowing a flexible consideration of

parameters. The implementation of such a method in the proposed work-flow is presented

here.

For the accurate derivation of the importance of each parameter a Global Sensitivity

Analysis (SA) is performed. This is done by calculating the variance-based importance

measures of the input variables with respect to the required outputs, for instance the

maximum deformation and mass responses. The variational analysis is performed with

the Sobol decomposition method [97]. This method derives the Sobol indices, which are in

essence the global sensitivities of the parameters. In other words, the Sobol indices show

the relative importance of the individual input parameters over the entire design domain,

both in first and higher order dependencies. The exact derivation is well-documented and

therefore not necessary to repeat here, a thorough explanation is given in the research

by Arwade et al. [9].

For a practical problem, such as the structural crash-worthiness optimization prob-

lem in this research, numerical integration is necessary to obtain the Sobol indices, as
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an exact form of the response is not available. On often used method is Monte Carlo

Sampling (MCS). The MCS is used to approximate the integrals. However, this method

requires a large amount of samples for an accurate approximation. Using design experi-

ments for the MCS integration would require too much computational effort. Therefore a

RSA is derived on which the MCS integration can be performed. Many RSA methods are

available and detailed explanations of each one with their positives and negatives can

easily be found in literature. In this research, a Support Vector Machine (SVM) method is

used after comparing it to other candidates. It proved to provide good correlation for this

type of crash simulation with composite materials in combination with CZONE analysis.

The Sobol indices provide an importance measure for the respective design parame-

ters. In this research, the total Sobol indices are used, as they also cover higher order

dependencies between parameters.

The design generation stage in the presented work-flow is used to execute a Design

of Experiments (DoE) as the basis for the RSA. MCS is used to generate the DoE.

The relatively simple Monte Carlo (MC) method is chosen here, because of its high

flexibility. Other, more advanced methods, such as Latin Hypercube and Full Factorial,

can provide a better, i.e. more uncorrelated, dispersion of samples. However, they also

do not allow for the addition of samples at a later stage. The MCS also is insensitive

to failed samples, which can be easily removed without making the MCS unusable.

For a simulation environment with the presented crash-worthiness design problem,

a relatively large number of simulations fails, for instance due to numerical issues.

Furthermore, it should be assured that the feasible domain for the LP is not violated,

see Figure 3.24 and Equation (3.35). To ensure that the DoE generates samples within

these bounds, dependent constraints are set on the LP bounds. The method for enforcing

these bounds should not interfere with the uniform random sampling distribution, or

false correlations might occur. Therefore, each time the MC DoE picks a sample outside

the feasible domain, the sample is disregarded and a new sample is tried in its place.

With the generated DoE, an SVM-based RSA is made for each desired response. In

the case of the presented problem, the maximum deformation and structural mass are

chosen. In first instance, the RSA for the maximum deformation response shows both

system behaviors, stable and unstable, in unknown quantities. The approximation is not

told how to differentiate between the two behaviors and therefore considers them the

same. This results in some interesting sensitivities. If the dominant structural behavior

within the design space of the DoE is unstable, the Sobol derived parameter hierarchy

will prefer the parameters influencing that behavior. It is therefore essential to help
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the method differentiate between these behaviors. This is done with the help of the

previously presented implementation of the PSM and LiSF. The PSM is used to filter

the samples of the DoE and create a second RSA, which is based on this filtered design

space. Subsequently, the Sobol analysis is performed on this filtered RSA as well. The

result is three hierarchies, one total and two filtered hierarchies for the chosen responses.

The comparison of the hierarchies provides important information on which parameters

should be kept and which could potentially be omitted in the design problem formation.

In a final step, a relatively simple guide line is used to determine which design

parameters are kept. This guide line is as follow: a parameter hierarchy X is built, which

sums for each response the total Sobol indices to a certain minimal total influence factor.

This minimum is chosen such that a significant part of the solution space is represented.

A value between 0.7 and 1.0 is considered appropriate. Finally, the parameters are

compared between the unfiltered and PSM filtered RSMs and a final reduced design

parameter set is chosen.

Implementation of the Solution Space Identification method At this point in

the complexity reduction work-flow the design parameter hierarchy is known and a

reduced set of parameters is chosen. Now, a method is presented to reduce the problem

complexity based on determination of the bounds for this reduced set of parameters.

Zimmermann and Graff [38, 39] have developed the Solution Space Identifica-

tion (SSI) method for maximizing the volume of an axis-parallel hyper-box in high-

dimensional space under the constraint that the objective values of all enclosed designs

are below a given threshold. Here, it is proposed to use the limit state formulation and

the PSM approximation in combination with the SSI method, in order to find a design

space that predominantly shows the desired stable structural behavior of the component.

For clarity, the theory behind the SSI method is explained first.

Let f (x) be a function with design space ΩDS ⊆Rd. Here x̂ and x̌ are the upper and

lower bounds for all design points x, where x̂i ≥ x̌i for i = 1 . . .d. Then, the volume of the

hyper-box Ωbox =Ωbox(x̂, x̌) is denoted as µ(Ωbox) and fc is some critical value.

The constrained optimization problem P can be defined as:

find x̂, x̌ ∈ΩDS with x̂i ≥ x̌i, for i = 1 . . .d

such that µ(Ωbox)→ max, s.t. f (x)≤ fc∀x ∈Ωbox

}

(P). (3.43)

The algorithm only requires function evaluations and can therefore be considered as

non-intrusive.
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FIGURE 3.26. Schematic representation of the SSI method phase 1, exploration.

The algorithm uses differential evolution [101] to identify a design, x, which fulfils the

inequality f (x)≤ fx. When this design is found, an initial or candidate hyper-box, Ωcand,

is defined around this design. This entails the start of the algorithm, which consists of

two phases: 1) Exploration and, 2) Consolidation.

The exploration phase is shown schematically in Figure 3.26. In the exploration

phase, four steps are recognizable: Sampling, Evaluation, Cutting and Growing. In

the Sampling step, the fraction of “good” designs within the generated population x j,

is calculated. Good designs are those designs which fulfil f (x j) ≤ fc, the fraction ã is

determined by the ratio Ng/N of Ng good designs and total number N samples. With the

fraction known, the Bayesian 95%-confidence interval is calculated for ã.

During the cutting step, the candidate hyper-box Ωcand is shrunk such that only good

points remain in the new hyper-box. To find the biggest new candidate hyper-box, a fast

cutting algorithm is used. In the growing step, the hyper-box is modified such that it

can evolve towards regions with increasing hyper-box size in connection with the cutting
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Figure 3.27: Schematic representation of the SSI method phase 2, consolidation.

step. This is done by modifying the boundaries with a certain growth factor β(k):

[x̌i]
(k+1) := [x̌i]

(k) −β(k)
(

[x̂i]
(k) − [x̌i]

(k)
)

∀ i = 1 . . .d;

[x̂i]
(k+1) := [x̂i]

(k) +β(k)
(

[x̂i]
(k) − [x̌i]

(k)
)

∀ i = 1 . . .d.

(3.44)

The growth factor β(k+1) is determined based on the fraction ã, such that good design

points will be included in the new hyper-box candidate. The growing hyper-box and

subsequent cutting moves the hyper-box to areas of increasing hyper-box size. This

continues until the hyper-box is not growing or moving any more, the algorithm then

switches to the consolidation phase.

The consolidation phase is shown schematically in Figure 3.27. In the consolidation

phase, three steps are present: Sampling, Evaluation and Cutting. They are in essence

the same as in the Exploration phase with the exception that the candidate hyper-box

will not grow or move. Therefore the consolidation phase will decrease the candidate

hyper-box size by re-sampling and cutting until the fraction ã is equal to one and the

probability that Ωcand only contains good designs is high enough.

The goal of the implementation of the SSI method is to reduce further the complexity

of the optimization problem. This is done by finding new bounds for the remaining design
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(a) Flow diagram of phase 2 of the complexity reduction method; identifying the optimal solution space.

This diagram is a simplification of the processes shown in Figures 3.26 & 3.27, but with the PSM

method integrated. A detailed view of the PSM box can be found in (b).
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(b) The PSM process in more detail.

FIGURE 3.28. Flow diagrams explaining the work-flow of the SSI implementa-

tion.

parameters. The parameters after the parameter reduction are used.

The PSM is used in the SSI method to approximate the LiSF and implemented in

the software CLEARVU [3]. The work-flow of the presented implementation is shown in

Figure 3.28. The LiSF function from Equation (3.42) is used as the constraint equation

in the SSI method. The constraint is then set as:

G(Pcrit,Fcrush)> 0. (3.45)

This way, the method will try to find a solution space, represented with a hyper-box, that

holds within its domain the largest amount of feasible, stable designs. The complexity of

the SSI method, and with that the computational efficiency, is strongly reduced with a

lower parameter number and the use of the computationally efficient PSM. The other,

fixed parameters, should be set to their nominal values.
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Result and benefit of the complexity reduction At this point the original design

problem is significantly reduced in complexity. The optimization of the problem is less

difficult, because:

1. Only the most influential parameters are used as the optimization variables. Less

variables increases the convergence speed and increases the chance to find a global

optimum.

2. The variable bounds and thereby the design domain of the problem will mostly

consist of feasible, stable design. This increases the stability of the optimization

and increases again the convergence speed and chance of finding a global optimum.

The application of the method on an S-rail problem and the structural optimization in

the application chapter, Section 4.2, justify the two points made above.
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4
APPLICATION AND TEST OF METHODS

In this chapter, the methods presented previously are applied. Two main applications

are in focus. First is the optimization of the CFRP composite support structure for the

impact loaded front architecture of a novel vehicle design. Second is the optimization of

an S-Rail before and after the complexity reduction.
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FIGURE 4.1. Early phase design of a novel CFRP composite vehicle front archi-

tecture. All parts are made of CFRP composites, except the motor

4.1 Optimization of Composite Vehicle for Crash

In Figure 4.1, an early phase design of a novel CFRP composite vehicle front architecture

is introduced. The goal of this exercise is to optimize a composite supportive structure

that enables a crash-worthy front vehicle design for two typical crash load cases. The

load cases are a full overlap frontal impact on a rigid wall perpendicular to the impact

and an impact on a rigid 30◦ oblique wall. These are both load-cases that are part of the

regulatory requirements in the USA and part of the FMVSS208 regulations.

4.1.1 Mapping to the 2D Design Domain

The optimization work-flow presented in Chapter 3, Sections 3.1 to 3.5, starts with

simplifying the problem and mapping the main structural components to the 2D plane.

The results of the mapping process are shown in Figure 4.2. The process of mapping is

not trivial and engineering choices are required. Firstly, only the longitudinal stiffeners

are mapped to the XY-plane. The optimization of a support structure is done in a 2D

design domain. If therefore there exist multiple structural components perpendicular

to the mapping plane, a decision must be made which components need to be stabilized

by the later optimization stage. In this case, as displayed in Figure 4.2a and 4.2b, the
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(a) Vehicle front with the two mapping

planes, XY-plane and XZ-plane.

(b) Map of the longitudi-

nal stiffeners on the

XY-plane.

(c) Map of the longitudi-

nal stiffener and upper

load-path on the XZ-

plane.

FIGURE 4.2. Mapping results on the composite vehicle front.

choice is made to focus on the longitudinal stiffener. This choice is supported by the

fact that these stiffeners classically perform the bulk of the energy absorption in a

crash and provide a large part of the structural rigidity in the vehicle front. The upper

load paths, portrayed by the beams attached to the upper part of the A-pillar, can be

part of a separate optimization stage and optimized in parallel to the other mapped

components. For reasons of scope and simplicity this chapter focuses on the optimization

of the longitudinal stiffeners. Figure 4.2c shows the upper load-path and longitudinal

stiffener mapped on the XZ-plane.

4.1.2 Defining the Load Case

The next step is to define the load case for the shape optimization of the supporting

structure. The method applies an adapted form of the ESL method, as explained in section

3.3. It is possible to define the load-lines directly on the entire structure as presented

in Figure 4.1 and assess the transient dynamic response of the FMVSS208 load cases

on it. However, this is relatively complex and not necessary to validate the methods.

Therefore, the scenario is simplified and the longitudinal stiffeners are “flattened” as

shown in Figure 4.3. This simplification has an influence on the structural behavior of

the stiffeners, this influence is ignored for now.

The load lines are defined as seen in Figure 4.4. These load lines represent the location

from which the displacements are assessed during the transient dynamic response
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(a) Longitudinal Stiffeners in their original

shape.

(b) Flattened Stiffeners to 2D XY-Plane.

FIGURE 4.3. Flattening of the Longitudinal Stiffeners to the 2D XY-Plane.

LSM Design Domain Clamped

Load lines
Single-load optimization.

(a) Load lines for the 0◦ impact load case.

This is a single load case.

LSM Design Domain Clamped

Load lines
Multi-load optimization.

(b) Load lines for the 30◦ impact load case. These are

two separate load cases (multi-load).

FIGURE 4.4. Definition of the load lines for the two impact cases, resulting in

three separate load cases.

simulation. Figure 4.5 shows the location of the load lines on the 3D representation

of the longitudinal stiffeners. The load lines for the 0◦ impact case are placed on the

curved section of the stiffeners and not over the entire length of the stiffener. The load

lines should be placed on locations that will undergo the most deformation and therefore

need to be supported in subsequent optimization steps. This assessment is done by

engineering judgement. In the symmetrical 0◦ impact case the deformations obviously

take place where the structure undergoes moment forces, i.e. in the curved section.

Now the stiffeners are assessed in an explicit crash simulation for both load cases.

The 30◦ load case is symmetrical around the X-axis and therefore needs to be simulated

once for one impact side. The other side is mirrored and handled as an extra load case.
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FIGURE 4.5. 3D location of the load lines on the longitudinal stiffeners.

The deformation results are shown in Figure 4.6.

In Section 3.3 it was explained that a snapshot of the dynamic structural behavior at

a certain time should be chosen. In the case of the 30◦ impact, the deformation status at

3 ms shows significant deflection away from the rigid barrier, as seen in the deformation

plot in Figure 4.18a. The preferable behavior would be that the beams remain stiff and

absorb the impact energy through progressive crushing, hence the structural rigidity

is compromised. Therefore the deformation at 3 ms is taken as initial snapshot. The

deformation as a result from the 0◦ impact is not that clearly visible. However, from the

plotted deformation of the load lines at 3 ms, seen in Figure 4.18b, it can be said that the

deformation is still significant. The lateral displacement of the stiffener at x =−200 mm

is comparable to the lateral deformation resulting from the 30◦ impact at x =−200 mm.

The snapshot of the dynamic structural behavior is translated into a load case

for the two-dimensional representation of the structure, see Figure 4.2b. First, the

displacements assessed on the loadlines are interpolated on the corresponding FE nodes

of the 2D representation, see Figures 4.9a and 4.9b. Then, via the ESL method, the

equivalent loads are derived, see Figures 4.9c and 4.9d. The ESL are calculated on a

FE model with an initial material distribution, which was explained in Section 3.3. The

initial FE model can be found in Figure 4.8.

4.1.3 Solving the shape optimization problem

With the load cases defined, the LSM based shape optimization, as explained in Section

3.4, is applied. However, the optimization of the support structure presents a challenge to

the overall crash-worthiness problem. The forward portion of the longitudinal stiffeners

is designed to absorb the impact energy of the crash. Section 1.2 explained that the

amount of energy absorbed by the advanced composite material is proportional to the
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(a) 0◦ impact at 0ms (b) 0◦ impact at 10ms (c) 0◦ impact at 20ms (d) 0◦ impact at 30ms

(e) 30◦ impact at 0ms (f) 30◦ impact at 10ms (g) 30◦ impact at 20ms (h) 30◦ impact at 30ms

FIGURE 4.6. Deformation results after simulating both impact scenarios for

30ms.

(a) Displacement [mm] of the loadline for the

30◦ load case.

(b) Displacement [mm] of the loadline for the 0◦

load case.

FIGURE 4.7. Displacement of the loadlines for both load cases at 3 ms without

optimized structural support.
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30°

2

1

FIGURE 4.8. Load case definition and initial material distribution for the longi-

tudinal stiffener structural optimization problem.

amount of material perpendicular to the crash front. Also, the ability of the composite to

produce a stable progressive crush-front, and thus absorb energy, is dependent on the

stability of the local composite material and structure near the crush-front. The reaction

forces during the impact are therefore largely dependent on the crush force. By adding

material in the impact or crush zone, the reaction force is potentially increased and

thus the deceleration of the vehicle is increased as well. The level of deceleration largely

determines the level of injury on the vehicle occupants. Another way to look at it is the

minimum required overall vehicle deformation by applying the conservation of energy

equation:

TK
= TP (4.1)

where TK is the kinetic energy at the moment of impact and TP is the potential energy

of the vehicle structure. After substituting:

0.5mV 2
= m ·a ·L (4.2)

with m the vehicle mass, V the initial velocity, L the overall deformation length and a

the vehicle average deceleration. Now rewriting for deformation, results in:

L =
V 2

2a
. (4.3)
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(a) Displacement distribution resulting from

the 30◦ load case interpolated on the 2-D

projection of the longitudinal stiffener.
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(b) Displacement distribution resulting from

the 0◦ load case interpolated on the 2-D pro-

jection of the longitudinal stiffener.
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(c) The ESL distribution for the 30◦ load case.
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(d) The ESL distribution for the 0◦ load case.

FIGURE 4.9. Nodal displacement distributions of the 2-D FE model of the

longitudinal stiffener and their ESL distributions resulting from the crash

load cases.

The USNCAP load case (0◦ impact) requires a controlled deceleration, as in this case the

impact is most severe and the requirements on the injury criteria are the hardest. As a

rule of thumb, 30g is considered a good maximum for the deceleration. The impact speed

for the USNCAP load case is equal to 56 km/h. Equation (4.3) can easily be solved if we

assume a perfect, constant, deceleration:

L =
V 2

2a
=

15.562

2 · g ·30
= 411 mm (4.4)

The deformation of 411 mm is the minimum required deformation in order to achieve a

vehicle deceleration that evolves around the maximum of 30g (the deceleration will never

be constant in realistic crash scenarios). By adding a support structure for the stiffeners
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in the presented optimization problem, the deformation length might be reduced. By

providing partial control over the geometry during the shape optimization of the structure

in the crush zone the deceleration, also known as vehicle crash pulse, can be reduced.

In this research, this control is provided by the Local Volume method as presented in

Section 3.4. This was partially published by the author of this thesis in [45].

The goal is to provide a constant cross-sectional area, perpendicular to the 0◦ impact

barrier, and to create relatively thin structural members. The optimization problem

set-up is shown in Figure 4.10. The local volume domain consists of 15 local volume

columns, COLl for l = 1 . . .15, in the area that contains the minimal deformation depth.

By dividing the design domain in slender columns and setting subsequent constraints,

the volume in perpendicular direction to these columns can be compelled to a predefined

distribution. The mesh for the mechanical simulation consists of approximately 6,000

shell elements with eight degrees of freedom. The right edges of the beams are fully

clamped. The initial level set boundaries are distributed as a pattern of circular holes, as

shown in Figure 4.8.

The optimization problem, as described by Equations (3.4) and (3.20), is defined as

follows. The global maximum volume constraint, Vmax = 0.2, the local maximum volume

constraints, V
loc, max

l
= 0.2 for l = 1 . . .12 and V

loc, max

l
= {0.3, 0.4, 0.5} for l = {13, 14, 15}.

The increasing constraint value in the last three columns is to allow for a smooth geom-

etry transition between the local and global volume domains. The parameters for the

optimization algorithm are set as follows: β= 0., which means the parameter regulariza-

tion method is disabled. In addition, we choose for the Helmholtz-type regularization

smoothing parameter, R = 20, and the Courant-Friedrichs-Lewy (CFL) time step multi-

plication factor, tfac = 0.9. For the Lagrange multiplier update method, the parameters

are as follows: τ0 = 100 and λ0 = 7. The bandwidth parameter h is set to 0.8 times the

critical element side length. The critical element side length is here: lcrit ≈ 15,4mm. The

parameters for the optimization algorithm are summarized in Table 4.1.

The optimization result is shown in Figure 4.11a and the iteration histories of the

objective and global volume constraint are given in Figure 4.12. The iteration history of

the local volume constraints is shown in Figure 4.13. The local volume history shows that

all constraints are met. The local volumes can be lower as their set maximum, because

inequality constraints are used. This effect is seen in the first three columns. However, the

compliance minimization drives most local volumes towards their maximum. Therefore,

columns 4 to 12 show a convergence to 0.2. This result gives the required constant volume

distribution in x-direction.
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Local volume design domain

𝐿1 𝐿2

𝑥

COL 1… COL 12 COL 15COL 𝑁 … …
𝐿𝑡𝑜𝑡

Clamped

Clamped

FIGURE 4.10. Problem set up and definition of the design domains. Each local

volume column, COLN , has a width of ≈ 31mm, L1 ≈ 370mm, L2 ≈ 463mm

and L tot = 1157mm. A total of N = 15 local volume domains is used.

TABLE 4.1. Parameter set-up for the optimization algorithm.

Parameter Symbol Value Unit

Bandwidth h 0.8 [-]

Maximum Iteration – 600 [-]

Lagrangian Method – Augmented [-]

Minimum Element Density ǫ 1.e-4 [-]

Parameter Regularization Penalty β 0. [-]

Initial Penalty Factor τ0 100.0 [-]

Penalty Multiplier α 0.9 [-]

Initial Lagrangian Multiplier λ0 7.0 [-]

Helmholtz-type Regularization R 20.0 [-]

CFL Time Step Factor tfac 0.9 [s]
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(a) Optimal shape with local volume constraints

active.

(b) Optimal shape with only the global volume

constraint active.

FIGURE 4.11. Shape optimization results for longitudinal stiffener structural

optimization problem.
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FIGURE 4.12. Optimization history for the objective and global volume values.
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FIGURE 4.13. Optimization history for the local volume values.

To exemplify the effect of the local constraints, the optimization is rerun with only

the global volume constraint active, V max
glob

= 0.2. The result is shown in Figure 4.11b.

The resulting optimal shape looks similar to the optimum with local constraints active.

However, looking at the volume ratios in the local domains in Figure 4.14, the differences

become clear. With only the global constraint active, the volumes in most domains are

significantly higher than 0.2. More importantly, the local volume ratios change notably

over the domains, resulting in a discontinuous cross-sectional impact area. The volume

ratios with local constraints active show a largely constant value of 0.2, going upwards in

domains 13, 14 and 15. This is a result of the higher constraint value in those domains,

as described earlier.

4.1.4 Mapping to the 3D Design Domain

In this stage of the optimization work-flow the optimized composite support structure

from the previous section is mapped back to the 3D design domain. In Section 3.5 the

assumptions and sequence of methods necessary are explained. First the raw shape

optimized result is smoothed. The result in Figure 4.11a shows some rough edges and

minor shape artifacts that are undesired and difficult to translate into a 3D FE-model.
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FIGURE 4.14. Comparison of the local normalized volume values. Light gray:

only global constraint active. Dark gray: Global and local constraints active.

The smoothing is done by transforming the iso-contour to a bi-linear spline description.

In this step, the smoothness of the splines are controlled by a smoothing parameter.

The bi-linear splines are exported to a DXF format, which is a familiar CAD geometry

description. The geometry is imported by a pre-processor for developing the 3D FEM

mesh, in this case HYPERMESH from Altair is used. The bi-linear spline description of

the optimized structure and the subsequent transformation to a 3D shell structure is

shown in Figure 4.15.

The result from Figure 4.15f is then integrated in the initial crash problem (see Figure

4.4), the final structure is shown in Figure 4.16. Both load-cases are simulated with the

optimized support structure. The results are shown in Figure 4.17. When compared to the

deformations shown without structural support in Figure 4.6, the results are significantly

better. In Figure 4.18, the displacements at 3ms of the nodes at the loadlines for both load

cases are plotted. Progressing further in the 30◦ crash case, the longitudinal stiffener

becomes unstable again. The lateral support is crushed and the stiffener is allowed to

deform unhindered. Therefore, no progressive crushing takes place and only little energy

is taken out of the impact. This result could be expected, as the static linear optimization

107



CHAPTER 4. APPLICATION AND TEST OF METHODS

(a) Smoothed bi-linear spline

representation of optimized

structure.

(b) CAD surface definition be-

tween splines.

(c) Splitting surface on X-axis

to prepare for symmetric

modeling.

(d) Offsetting the surface to cre-

ate a 3D box.

(e) Automatic meshing on the

surface of the box.

(f) Duplicating on symmetry

axis.

FIGURE 4.15. Process of creating the 3D representation on the basis of the 2D

optimized results.

of the support structure is based on the ESL of the deformations at 3ms into the impact.

The proposed optimization work-flow solves this problem by introducing an outer loop

of the optimization. The results are assessed and a new time point is defined where the

structure becomes unstable. The 0◦ load case is stable and needs no further optimization.

Upon further investigation of the deformation behavior, the 30◦ load case now shows

significant structural instability starting at 16ms. At this time the left longitudinal

stiffener starts to move inward. The second iteration of the optimization process starts

at the ESL load case definition. This creates two new load cases: the symmetric 30◦

impact. It is important to notice that at 16ms, a portion of the longitudinal stiffeners

is crushed. This phenomenon is incorporated by leaving this part of the stiffener out in

the calculation of the new ESL. The two new load cases are added to the current three,

leading to five loadcases to consider in the multi-objective shape optimization stage. The
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process and settings are the same as in the first iteration of the outer loop. The resulting

optimized structure and its comparison to the first iteration result is shown in Figure

4.19.

An interesting result is the rearward shift of the forward “legs” of the supporting

structure. Also, the attachment to the stiffeners is broader. The angle of the legs are

a bit steeper. This second iteration result is again subjected to both crash load cases,

the results are presented in Figure 4.20. These results clearly show a better performing

structure in case of the 30◦ impact. The left longitudinal stiffener stays stable throughout

the impact. Also, more energy is absorbed by the stable progressive crush of the CFRP

composite material. This is visible by the progress of the impact barrier at 50ms, which

is significantly less compared to the previous iteration. However, the stability after

30ms might also be a result of the left leg of the support structure that, after it lost

its attachment to the stiffener, still provides support. This is of-course not a result

incorporated within the optimization work-flow.

The 0◦ impact load case does not show the ideal behavior. Part of the longitudinal

stiffeners break away due to crush forces. This is likely a result of local failure caused

by stress concentrations at the base of the attachment between the forward legs of

the support structure and the longitudinal stiffeners. These stresses are induced by

the relatively large connecting area and the way the joint is modeled. Further local

optimization of the joint is necessary.

The local volume constraints in both outer loop iterations influenced mainly the

shape of the forward legs. I both cases, the direct influence on the crush force by having a

constant cross-sectional area in X-direction is minimal, as the legs buckle and move away

without significant crushing. However, the local volume constraints do influence the

slenderness of the forward legs, without compromising on the global volume constraint.

This result was already seen in Figure 4.11. This in turn does influence the overall

crash response of the structure. The slender members break or buckle away from the

crush-front easier as soon as the crush-front passes the joint area on the stiffeners. And

consequently, this reduces the overall impact on the deceleration pulse of the vehicle. In

Chapter 5 we further discuss the results of the local volume constraint method.
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FIGURE 4.16. Longitudinal stiffeners with the optimized support structure.

(a) Time = 10ms. (b) Time = 15ms. (c) Time = 20ms. (d) Time = 30ms. (e) Time = 50ms.

(f) Time = 10ms. (g) Time = 15ms. (h) Time = 20ms. (i) Time = 30ms. (j) Time = 50ms.

FIGURE 4.17. Crash results of the 30◦ (top row) and 0◦ (bottom row) load-cases

on the optimized longitudinal stiffeners.
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(a) Displacement [mm] of the loadline at 3ms

for the 30◦ load case.

(b) Displacement [mm] of the loadline at 3ms

for the 0◦ load case.

FIGURE 4.18. Displacement [mm] of the loadlines for both load cases at 3 ms

with the optimized structural support.

(a) Longitudinal stiffeners with the optimized sup-

port structure after a second optimization itera-

tion.

(b) Comparison of the results from the first

(in the back) and second (in front) loop

iteration: first loop at 3ms, second loop

at 16ms.

FIGURE 4.19. Longitudinal stiffeners with the optimized support structure.
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(a) Time = 10ms. (b) Time = 15ms. (c) Time = 20ms. (d) Time = 30ms. (e) Time = 50ms.

(f) Time = 10ms. (g) Time = 15ms. (h) Time = 20ms. (i) Time = 30ms. (j) Time = 50ms.

FIGURE 4.20. Crash results of the 30◦ (top row) and 0◦ (bottom row) load-cases

on the optimized longitudinal stiffeners from the second outer loop iteration.
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4.2 Optimization of an S-Rail

4.2.1 Complexity Reduction on an S-rail problem

The content of this section was partially published by the author in the journal of

Composite Structures. [46]

In this section, a vehicle typical crash-worthiness problem is solved to validate the

presented methods. The example is relatively simple for a design problem, but shows

enough complexity, including combinations of bending, local and global buckling, and

axial crush of the composite material. The complexity of the problem is deemed sufficient

to validate the presented methods.

Problem Description: S-Rail The design problem, which can be considered a bench-

mark for this field, is a parametric tubular structure with a single S-shaped bend, repre-

senting a simplified vehicle S-rail. The S-rail is a typical and important sub-structure of

every modern automotive vehicle. It is located in the front of the car and has generally

the following three main purposes:

• Energy absorption: It is the major component in the vehicle front, carrying most of

the drive-train and reaching almost to the front of the vehicle. It should therefore

absorb a significant part of the energy resulting after impact.

• Passenger protection: it should increase the overall stability and deformation

resistance of the safety cell.

• Functionality: it should provide sufficient stiffness and strength to carry the motor

and other core vehicle components.

The S-rail is shaped as an ‘S’ to bridge the bumper height (partly determined by law)

and the vehicle undercarriage, thus guiding the impact forces to the stiffest parts of

the vehicle main body. The ‘S’ shape is also a result of the vehicle front package, such

as spring-damper systems. A typical example of the S-rail is given in Figure 4.21. The

simplified S-rail is shown in Figure 4.22 and Figure 4.23.

The simplified S-rail is fully clamped at its roots (cross-section CS1, see Figure 4.23a).

An rigid 400 kg impactor impacts the S-rail with 8.2 m/s. This simulation represents a

full frontal impact scenario, with the impact energy scaled down for the solitary S-rail

with respect to a full vehicle. The impact energy should be absorbed fully within a certain
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FIGURE 4.21. Example of an S-rail structure in a current vehicle (marked in

white).

FIGURE 4.22. Setup of the design problem, showing the two important design

requirements.
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(a) side view of the S-rail. (b) cross-section view of

the S-rail.

FIGURE 4.23. Problem description; parameterized tubular structure with single

S-shaped bend.

maximum available deformation length. This is a common requirement in automotive

crash-worthiness design. The shape of the S-rail causes large bending moments at its

root, increasing the problem of structural stability.

The S-rail has two main design requirements: (1) Stable progressive crushing over a

certain maximum deformation length. (2) Structural stability to support this behavior

without collapse. Figure 4.22 summarizes the problem set-up. The S-rail is considered

structurally stable when stable progressive crush is possible until all impact energy is

absorbed. Structural instability is defined as the collapse or global buckling of the S-rail

during impact. The limit state is now defined as the point in between these two stability

criteria.

The S-rail geometry and composite material properties are parameterized. The

structure is divided into four sections and five cross-sections. The geometry parameters

are shown in Figure 4.23 and SFE CONCEPT is used to parameterize the design. Here,

Lfront, Lend, Htotal and Wtotal are initial parameters and are not varied. Cross-sections

CSi are parameterized such that the dimensions Lwidth and Lheight can be changed

symmetrically about their respective symmetry axis. The corner radius Rcorner remains

unchanged at 8 mm. The total height and width of the cross-sections CSi are calculated

by: 2R+L. A 3rd order Bézier curve is used to shape the curved sections, making sure

that the structure will stay smooth with the correct tangents at all cross-sections. A

summary of the initial set-up parameters and their respective values can be found in

Table 4.2 and a summary of the design variable parameters with their bounds can be
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TABLE 4.2. Summary of the initial set-up of the S-rail, determined by the initial

set-up parameters.

nr. Name Value [mm]

1 Ltotal 900

2 Wtotal 0

3 Htotal 180

4 Lend 400

5 Lfront 200

(a) S-rail showing structural instability by col-

lapse.

(b) S-rail showing stable progressive crush.

FIGURE 4.24. Two typical simulation results, showing structurally stable (right)

and unstable (left) behavior.

found in Table 4.3.

Implementation of FEA for impact simulation The crush behavior of the compos-

ite S-rail is simulated with ABAQUS/EXPLICIT and CZONE. The simulation is run until

all energy is absorbed or the impactor has moved through the S-rail in its entirety. A

simulation takes on average 15 minutes to run using one Intel Xeon CPU E5-2640 core

at 2.5GHz on a 12 core workstation. Two examples of the simulated structural behavior

are shown in Figure 4.24. An example of a structural instability is shown in Figure 4.24a

and an example of stable progressive crushing in Figure 4.24b.

PSM for the S-rail The PSM approximates the LiSF from Equation (3.42) by predict-

ing the onset of structural instability using global buckling.
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TABLE 4.3. Summary of the design variable parameters used in the S-rail

composite crash simulation.

nr. Name Bounds [mm] Description

x̌ x̂

1 CS1_Y 10 44

symm. increase of CS on y-axis or z-axis.

Controls dimensions Lheight (Y ) and Lwidth

(Z). Values in mm.

2 CS1_Z 94 134

3 CS2_Y 10 70

4 CS2_Z 50 110

5 CS3_Y 10 70

6 CS3_Z 50 110

7 CS4_Y 10 64

8 CS4_Z 44 104

9 CS5_Y 10 64

10 CS5_Z 44 104

15 V1_I – –

Lamination Parameters per material sec-

tion. Feasible domain is described in sec-

tion 2.2.

16 V3_I – –

17 V1_II – –

18 V3_II – –

19 V1_III – –

20 V3_III – –

21 V1_IV – –

22 V3_IV – –

23 tI 2 15

Thickness of the laminate per material sec-

tion in mm.

24 tII 2 15

25 tIII 2 15

26 tIV 2 15

Numerical buckling analysis is used to calculate Pcrit in Equation (3.42). The mesh

generated by the parameterized model in SFE-CONCEPT is parsed to an ABAQUS

template where a linear static buckling analysis is performed on the model. The mesh

is the same one used for the transient dynamic analysis from the previous step. It is

important to note that the type of mesh and element size influence the buckling analysis

significantly. To assess this influence, a simple mesh convergence study was performed.

The results from this analysis are shown in Figure 4.25. The convergence study shows

that there is some convergence. However, the critical buckling load will always decrease

with smaller mesh sizes. A trade-off was made between computational efficiency and

accuracy, resulting in the choice of an average mesh size of 18 mm. For the section of

the S-rail where the impact occurs (material section IV) an average element size of 10
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FIGURE 4.25. Mesh Convergence Study.

TABLE 4.4. Validation results of the PSM method.

Total DoE 599

Validated stable designs 173 (28.88 %)

Predicted stable designs 123

correctly predicted 103 (83.74 %)

Valid stable designs neglected 70 (40.46 %)

mm was chosen. This should facilitate accurate simulation results when cone forming

occurs in this section. This happens when for instance cross-section CS5 is significantly

decreased with respect to CS4.

The PSM is set-up as follows: a static perturbation force of P = 1 is placed at the

center of cross-section CS5 and is parameterized with the model. This perturbation force

reflects the force into the structure caused by the barrier impact.

To validate that the PSM model reflects the structural stability of the S-rail accurately

enough, the following experiment was performed. Both the transient dynamic and PSM

simulation were run in parallel, each time using the same design instance of the S-rail

model. To create a sufficiently large and diverse data set, a DoE was set up to collect

600 samples. The DoE used the MCS method and was constrained by the bounds as

described in Table 4.3. The results of the PSM validation experiment are shown in

Table 4.4. The results in Table 4.4 show that initially 173 designs (28.88 %) of the 599

experiments showed stable progressive crushing. One experiment failed to simulate
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completely. After the assessment of the LiSF, 123 designs are deemed structurally stable,

which is a reduction in the number of samples in the DoE of 71.12 %. Of comparing with

the data from the transient dynamic simulations, 103 designs are correctly predicted

structurally stable. In essence, a filtered design space is created out of the original DoE

using the PSM as the filter. The filtered set of 123 designs has 83.74 % stable designs,

showing improvement over the 28.88 % stable designs in the original 599 sample DoE

set. The results show that the PSM method works as intended. It can be concluded that

in this case the LiSF approximated by the PSM is correct up to 83.7%. It should be noted

however, that after filtering, 70 stable designs are neglected, this is equal to 40.46 % of

all stable designs. As a consequence the engineer should make a trade-off between the

loss of valid designs over increased computational efficiency using the PSM. It is noted

here, that this loss of valid designs is not a problem for most industrial design problems.

That level of accuracy is not required here.

Creating the parameter importance hierarchy The goal is to find the parameter

influence on the two major responses of the S-rail; the maximum deformation δmax and

the S-rail mass Mrail. The S-rail design space is filtered for structurally stable designs

with the PSM. This results in a significantly different response surface compared to the

unfiltered design space. To reflect the difference, it is important to derive the parameter

importance for both the complete design space and the filtered one. Sobol decomposition

is used to derive the design parameter importance hierarchy. The derivation of the Sobol

indices is a form of variation analysis. To remain computationally efficient, this decom-

position requires some form of RSM to derive integrals necessary for this variational

analysis. The SVM method is used to derive the RSM. A DoE is performed to generate

the input for the SVM method. For convenience the same 600 sample DoE for validating

the PSM and its results is used as input for the SVM.

The quality of the model is verified by deriving the Pearson correlation values:

r(X ,Y )=

∑n
i=1 (X i − x) (Yi − y)

√

∑n
i=1 (X i − x)

2 ∑n
i=1 (Yi − y)

2
(4.5)

where X and Y form two data sets, observed output and fitted model respectively, with

individual values X i and Yi for i = 1 . . . N (Data set size). x and y are the mean values

of both data sets. Table 4.5 presents the correlation values belonging to both the SVM

models with and without Cross Validation (CV). The Pearson correlation values without

cross validation show the quality of the SVM model with respect to the actual transient
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TABLE 4.5. Correlation coefficients for validation of the SVM, with and without

CV. For both the complete and filtered data set.

Data

set

Response Correlation

w/o CV with CV

All
Intrusion, δmax 0.8956 0.7487

S-rail mass, Mrail 0.9541 0.9355

Filtered
Intrusion, δmax 0.9591 0.7274

S-rail mass, Mrail 0.968 0.9112
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FIGURE 4.26. Total Sobol indices with respect to the maximum deformation

response, δmax.

dynamic simulation and the values with CV (leave-one-out method) show the predictive

quality of the SVM model [62]. The SVM model shows satisfying results with and

without CV. CLEARVU ANALYTICS [3] is used to generate the SVM response surface

approximation and derive the Sobol indices. The results of the Sobol decomposition on the

SVM based RSM model are shown in Figures 4.26 and 4.27. On comparing the results

between the two responses, it becomes clear that the indices for the mass response are

very similar for both PSM filtered and unfiltered response surfaces. For the maximum

deformation response however, the results differ significantly. This is explained by that
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FIGURE 4.27. Total Sobol indices with respect to the S-rail mass response, Mrail.

the mass of the S-rail structure is a direct function of the design parameters, therefore

the influence of a parameter stays the same. It is also noticeable that for the laminate

thicknesses t1,2,3 the sequence in hierarchy changes between the filtered and unfiltered

design space. However, the changes are small and can be attributed to the quality of the

RSM. Due to the reduction of the number of samples in the filtered design space, the

accuracy of the RSM decreases. Table 4.6 presents the parameter importance hierarchy

in the form of a top 6. Because of previously explained reasons, only the parameter

hierarchy based on the complete design space is shown for the mass response. A more

detailed discussion of the results follows, first for the unfiltered and second for the filtered

design space. An overview of how the parameter hierarchy is derived and how the PSM

is integrated is given by the flow diagram in Figure 4.28.

The hierarchy for the S-rail mass response from Table 4.6 and the results presented

in Figure 4.27 show that the influence of laminate thickness t4 on the S-rail mass is

significantly higher than that of the others. This result is trivial and can easily be

explained by the fact that section IV of the S-rail has the largest surface area of the 4

sections. Also, a change in laminate thickness increases the mass more than a change in

cross-sectional area. This is true for all laminate thickness parameters presented here.
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CHAPTER 4. APPLICATION AND TEST OF METHODS

TABLE 4.6. Top 6 in the parameter hierarchy for set 1 and 2 and corresponding

total Sobol indices STi
for the intrusion and mass response.

Maximum Deformation S-rail Mass

Complete Filtered Complete

nr. Par STi
Par STi

Par STi

1 t2 0.33 t4 0.37 t4 0.50

2 t1 0.26 V1_S4 0.12 t1 0.16

3 V1_S1 0.09 t2 0.11 t2 0.15

4 V1_S2 0.08 t1 0.08 t3 0.10

5 t3 0.08 V1_S2 0.06 CS4_Z 0.03

6 CS2_Z 0.06 CS2_Z 0.04 CS4_Y 0.02

Total 0.9 0.78 0.96
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FIGURE 4.28. Flow diagram of phase 1 of the complexity reduction method;

derivation of the parameter hierarchy and subsequent reduction of the

parameter number. The PSM process in more detail can be found in Figure

3.28b.

Obviously the LPs do not have an influence on the mass and should therefore not appear

in the hierarchy. The two small occurrences for V1_S1 and V1_S4 are only present in the

filtered design space and can be attributed to the somewhat reduced quality of the RSM.

The mass of the S-rail can directly be derived from the design parameters and therefore

the derivation of the influence hierarchy is trivial and the results as expected. There is a

reason the mass response of the S-rail was assessed by the presented methods. By using

the same method as for all responses, it can be concluded that the Sobol indices for the

mass response serve as a partial validation of the method.

The hierarchy for the S-rail maximum deformation response from Table 4.6 and the

graph in Figure 4.26 present some interesting results. It is notable that the influence

of both laminate thickness parameters t1 and t2 for the unfiltered design space are

dominant. Parameters t1 and t2 are important for the structural stiffness in S-rail
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4.2. OPTIMIZATION OF AN S-RAIL

sections I and II. They directly influence the buckling resistance by increasing the

structural bending stiffness and laminate membrane stiffness. Additionally the LPs V1_S1

and V1_S2 are ranked third and fourth in the Sobol hierarchy. LP V1 has a significant

influence on the amount of either 90 or 0 degree orientated plies in the laminate layup.

This results in a large influence on the principal stiffness directions as well. Subsequently

V1 has a significant influence on the structural bending stiffness in those material

sections. The design parameters t3 and CS2_Z are ranked fifth and sixth in the hierarchy.

The presence of the laminate thickness t3 in this hierarchy might not be intuitive.

However, note that when sections I and II are strong and stiff enough, S-rail section II is

the next weak link. The cross-sectional height CS2_Z is last in the top 6 hierarchy.

It is noticeable that the parameters for the laminate thickness have a significantly

higher influence on the maximum deformation response than the cross-sectional dimen-

sion. It is known that for thin-walled structures (Lheight >> tlam), the area moment of

inertia is mainly determined by a change in thickness. This is easily checked by looking

at the area moment of inertia equation for a hollow, thin walled, rectangular cross-section

and its partial derivatives:

I = b(6h2t+2t3)/12;

∂I

∂h
= bht;

∂I

∂t
= b(h2 + t2)/2

(4.6)

where h and b are the cross-sectional height and width respectively and t the wall

thickness. The partial derivatives reveal that a change in thickness has a larger effect on

I than a change in cross-sectional height. This explains the fact that laminate thickness

has a higher importance than the cross-sectional height of the S-rail.

The Sobol indices show that the design parameters influencing the rear most part

of the S-rail structure, away from the impact zone, are the most influential. It can be

concluded that for the response surface over the complete, unfiltered, design space the

design is driven by structural stability and that the parameters, t1, t2, V1_S1 and V1_S2

have the highest influence on that stability.

However, looking at the indices for the filtered design space, see Figure 4.26 and

Table 4.6, we see a different hierarchy than with the unfiltered design space. The Sobol

indices indicate that section thickness t4 is the most influential parameter. When the

S-rail allows for stable progressive crushing, the maximum deformation is determined by

the crush resistance of the material in section IV. The laminate thickness t4 has a large
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TABLE 4.7. Final parameters and their Sobol indices.

nr Parameter Max deformation Mass

Compl. Filt. Compl.

1 t1 0.26 0.08 0.16

2 t2 0.33 0.11 0.15

3 t3 0.08 0.1

4 t4 0.37 0.5

5 V1_S1 0.09

6 V1_S2 0.08 0.06

7 V1_S4 0.12

8 CS2_Z 0.06 0.04

Total 0.9 0.78 0.91

influence on this crush resistance. Second in the hierarchy is LP V1_S4. This supports the

fact that crush resistance is driving the deformation value in this filtered design space.

It is noted that parameters t2, t1 and V1_S2 are present in the top 6. This shows that

the PSM was not able to filter the complete design space perfectly for only structurally

stable designs.

On further inspection of the results from Table 4.6, it is noted that there are design

parameters in common between the three hierarchies. The parameters CS4_Y and CS4_Z

are omitted as they are both almost insignificant and only marginally influential for the

mass response. This leads to eight unique parameters: With the parameters presented

in Table 4.7 both, the maximum deformation and mass response behavior of the S-rail

structure can be captured for both structural stability behaviors around the limit state.

It is noted, however, that the sum of Sobol indices using the PSM at the maximum

deformation response is relatively low. A value of 0.78 can be interpreted that about

78% of the behavior is captured with the parameters that are chosen for this set. The

engineer is responsible for deciding whether that value is sufficient for the problem

at hand. For the other sets, more than 90% of the corresponding behavior is captured.

It is concluded that the proposed parameter influence hierarchy method resulted in

a reduction of variable design parameters from 26 to 8 parameters in an automated

manner and with only limited loss of design behavior.

Applying the SSI method The SSI method was explained in Section 3.6.1. The

results of the SSI analysis, the new parameter bounds, are shown in Figure 4.29.

The results show that the bounds of laminate thickness parameter t4 are significantly
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FIGURE 4.29. Design variable upper and lower bounds generated with the SSI

method.

reduced. Relative thick laminates for section IV are not prohibited. Laminate thickness

for sections I to III, t1,2,3, show smaller but still significant reductions. However, the

laminates for sections I, II and III are now constraint to a higher minimum thickness.

These findings relate well to the findings in the parameter influence hierarchy. There,

it was concluded that the laminate thickness in sections I, II and somewhat less in III

influence the stability of the structure. In other words, thicker laminates mean higher

stability. Furthermore, it was concluded that only laminate thickness t4 has an influence

on the maximum deformation at stable progressive crush behavior. A lower laminate

thickness in this section means lower crush stresses and therefore higher deformation.

This results in that less force is introduced in the component. This, in turn, reduces the

chance of collapse. Noticeable is the reduced lower bound on the cross-sectional height

parameter CS2_Z . In the parameter importance hierarchy, the influence was relatively

low compared to that of the other parameters. It seems the PSM shows a more significant

reaction to a change in this parameter.

Validation of the presented method with the S-rail benchmark At this point

the original design problem is significantly reduced in complexity. Originally, the problem

consisted of 26 design variables and arbitrarily chosen bounds. After derivation of the

design parameter hierarchy and using the proposed PSM, the parameter number was

automatically reduced to 8 suitable parameters. The SSI method, also using the proposed
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TABLE 4.8. SSI validation.

behavior nr %

Stable 171 85.5

Unstable 29 14.5

PSM, enabled the automated reduction of the parameter bounds to a design space with

required structural responses. To validate the new design problem, a new DoE of 200

experiments is performed with the bounds adjusted to the newly derived values and only

the 8 design parameters from Table 4.7 are variable.

The results in Table 4.8 show that 85.5% of the experiments are stable. When

compared to the first DoE, see Table 4.4, it is a significant improvement. It should

be noted however that “stable” means stable progressive crush behavior within S-rail

section IV, without the S-rail collapsing during impact. Some other unwanted behavior

is still possible with this definition. A more detailed discussion on this is given in the

critical reflection.

4.2.2 Optimization of the S-rail problem

In this section, the S-rail is optimized to validate the method for complexity reduction.

The original problem started with 26 design variables with arbitrarily chosen bounds.

After applying the complexity reduction work-flow the design variables are reduced to

8 with optimized variable boundaries to maximize valid designs. Optimizing the S-rail

should show the benefits of the proposed methods.

The optimization problem is formulated as follows: minimize the total S-rail mass

constrained by a maximum intrusion of 350 mm. See Figure 4.22 for a description of the

crash scenario.

Differential Evolution (DE) is used as the optimization algorithm [100]. This al-

gorithm is part of a family of stochastic search algorithms and does not require the

calculation of sensitivities. It is widely used in literature and generally provides good

results in terms of convergence speed and finding global optima for NP-hard problems.

It is therefore well-suited for our current problem.

To test the complexity reduction, two different settings for the DE algorithm are

applied to the S-rail problem, both before and after the complexity reduction. The

settings for the DE algorithm differ in the population number of allowed iterations.

These two parameters define how many function evaluations are made per iteration
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4.2. OPTIMIZATION OF AN S-RAIL

TABLE 4.9. Setup parameters for the DE algorithm, all units are dimensionless.

Parameter Value

Population Size 10 or 40

Maximum Iterations 30 or 25

Maximum Function Evaluations 300 or 1000

Weight Factor 0.7

Step Width 0.5

Average Stop Width 0.01

Inverse Crossover Probability 0.85

(population) and the total possible evaluations (population x iterations). The choice for the

optimization parameters is often a trade-off between a robust optimization performance

and computational efficiency. More evaluations per iteration will generally provide a

higher chance of finding a global optimum, at the cost of computational time. The number,

however, should be higher than 7, otherwise the algorithm gets stuck in an endless loop.

The population size and maximum number of iterations are chosen such that both, a

quick but narrow (low number of evaluations) and slow but broad search (large number

of evaluations) are performed. The other setup parameters are chosen based on common

praxis. The DE setup parameters are summarized in Table 4.9.

First, the optimization with the large population per iteration is performed. This

setup reflects an robust optimization, but one that is computationally less efficient, i.e.

requiring a relatively large number of evaluations. The optimization is performed on the

S-rail before complexity reduction (Figure 4.30) and after complexity reduction (Figure

4.31). When comparing both cases, the following is noted. The optimization on the original

S-rail problem results in a better optimum (lower mass) than after complexity reduction

(see Figures 4.30a and 4.31a). This is explained by the fact that certain valid design

possibilities are lost after removing less influential parameters and setting narrower

variable bounds. However, it is also noted that far less invalid designs are evaluated on

the problem after complexity reduction. Also the convergence behavior (bandwidth of

evaluations as iterations progress) is better after complexity reduction. Nevertheless,

the DE algorithm was able to find a better optimum quicker with the original S-rail (in

less iterations) than when performed on the S-rail after complexity reduction. This could

have been expected, because the DE algorithm performs best when allowed to evaluate

high numbers of designs in each iteration.

To show the benefit of the complexity reduction scheme, the optimization is performed
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FIGURE 4.30. The evaluation history of the objective and constraint functions

for the original (unadapted) S-rail problem. The difference between valid

(constraint is met) and invalid designs is made visible.
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for the S-rail problem after complexity reduction. The difference between

valid (constraint is met) and invalid designs is made visible.
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again, but this time with settings that benefit computational efficiency. Now, the pop-

ulation per iteration is set to 10 and again the optimization is performed on the S-rail

before and after complexity reduction. The results are shown in Figures 4.32 and 4.33.

After comparing the results, again the optimization on the S-rail after complexity reduc-

tion shows significantly less invalid evaluations. Furthermore, the optimization finds a

better optimum in less evaluations than when performed on the S-rail before complexity

reduction. Also noted are the “cleaner” histories in Figure 4.33 when compared to Figure

4.32.

By applying the complexity reduction to the S-rail problem, the optimization algo-

rithm was able to find a good optimum efficiently (less evaluations), than when performed

on the original. This is of significant benefit when design evaluations require high com-

putation times, such as in the case of composite structure crash simulations. Indeed,

when allowing for larger number of evaluations, the optimization can find better optima

comparably quick on the original problem. However, the presented S-rail problem is of

relatively low complexity, when compared to actual industry relevant design problems.

The benefits of the proposed work-flow are expected to increase with increasing problem

complexity.
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FIGURE 4.32. The evaluation history of the objective and constraint functions

for the original (unadapted) S-rail problem. The difference between valid
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FIGURE 4.33. The evaluation history of the objective and constraint functions

for the S-rail problem after complexity reduction. The difference between
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5
DISCUSSION & OUTLOOK

5.1 Shape Optimization

5.1.1 Implementation of the LSM with local volume constraints

The shape optimization with the LSM as presented in the methods chapter in Section 3.4

works well, but is not without challenges. Some of these challenges are discussed next.

Oscillatory behavior In some cases oscillatory behavior around the optimum could

be seen, on both the objective and constraint values. Especially in the first example,

with the three-point-bending problem, this issue was present. It was expected that the

introduction of extra Lagrange Multipliers would increase instability in the convergence

history. Two possible solutions might mitigate this issue:

• A method to decrease the time step ∆t in the LSM update procedure as soon as

oscillatory behavior is detected. This method was used in the application of the

method on the composite vehicle front in the application chapter.

• Development and use of better Lagrange multiplier update methods. This thesis

provides a first look into the use of sub-domain specific volume constraints. The

presented multiplier update methods work well for this purpose. However, the

author realizes that better update algorithms are available and future research on

this topic should reflect that.
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Problem Initialization The distribution and size of the holes for the problem initial-

ization has a significant effect on the final optimized topology. Indeed, any kind of initial

geometry / shape description will show its influence on the final results. The introduction

of local volume constraints increases the sensitivity to problem initialization. The de-

pendence of the problem’s initial design on the shape / topology optimization result is a

well known issue within this field of research. It can be expected that the introduction of

extra constraints increases this dependence. The research presented here did not focus

on this issue and its effects, which are left for future developments.

Mesh Size The mesh used for both validation examples is the same and consists of

relatively large elements. It is expected that a smaller mesh size will improve the results

considerably, removing many of the artifacts shown in the topology results.

5.1.2 Mapping between 3D transient dynamic and 2D static

linear domains

In this thesis, the composite structure, or parts of it, including its relevant structural

behavior during impact, need to be translated onto a 2D domain for shape optimization. In

the proposed methods, the structure undergoes several simplifications, such as flattening

of the longitudinal stiffeners to remove the out-of-plane curvature. For the sake of scope,

these simplifications are allowable. However, valuable mechanical information is of

course lost. The author researched using 3D LSM based shape optimization, but the

benefit of using the LSM is largely lost in this case. Geometrical boundary crossing

is much more present in 3D as in 2D and, therefore shape control is comparably less.

Furthermore, 3D shape optimization with the LSM is, as is with the SIMP method, only

possible with solid elements. Hollow shell structures, such as composite beams, cannot be

directly represented. However, in hindsight, the local volume method should work just as

well in 3D, although stable convergence would be a challenge. The local volume method

could also enforce relative constant cross-sectional designs. These constant cross-sections

would be subject to the same problems as in 2D (see the next section). However, they

could allow for a significantly better translation into hollow shell profiles. This idea

should be pursued in further research.

134



5.2. COMPLEXITY REDUCTION

5.1.3 Composite crush relevant constraints with local volumes

The idea behind the addition of local volume constraints in the shape optimization

is to gain more control over the shape evolution during optimization. This way, the

optimization can be steered to find structures that benefit the dynamics behind composite

crush and energy absorption. The theory behind this idea was explained in the methods

chapter. However, the behavior relevant discrepance between the highly non-linear crush

mechanics of a CFRP composite beam profile and a 2D representation in the static

linear domain is very large. Therefore, many of the mechanical characteristics are lost

in the transition. The methods proposed in this thesis provide a very first step in this

direction, but should be further developed. The local volume method was able to steer

the shape optimization to develop slender, constant cross-section, beam-like structures

in the energy absorbing part of the design domain. The constant cross-section helps

in the manufacturability and the slenderness of the beams means that they only take

up minimal energy when impacted. Be that as it may, the constant cross-section did

not provide the constant crush force during impact as was intended. This is of course a

result of the instability of the optimized members of the support structure. As they are

impacted, their angle towards the impacting surface does not allow for a stable crush

front. As a result, the members buckle and bend away. Although this behavior is not

necessarily negative, it is not part of the explicitly intended optimization goals. Indeed, it

is more of a side effect, which, however, can be steered with the local volume constraints.

The author therefore does not consider the method to be without purpose or a failure.

Nevertheless, more research is necessary.

5.2 Complexity Reduction

The structural stability is approximated comparably well with the PSM method of the

LiSF. Nevertheless, this only takes collapse and global buckling type failure into account.

It should be noted again, that here no transient dynamic crashworthiness assessment

is made of the structure. Another form of undesired structural behavior is that stable

crushing continues up to the end of section IV. At this point the impactor encounters a

new material which may increase the impacting force resulting in structural failure or

allow continued crushing. Both are undesirable as either failure occurs or the maximum

allowed deformation is exceeded. Taking these considerations into account, some new

definitions on structural behavior type are created:
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• Limit State All experiments which showed a structural response below the

limit state for the S-rail benchmark. This is equal to the limit of what the PSM can

predict.

• Stable All experiments which showed stable crush behavior with a maximum

deformation of 400 mm, the length of section IV.

• Semi Stable All experiments which showed stable crush behavior up until and

over a maximum of 400 mm. This means the crushing is continued into section III.

The S-rail does not collapse.

• Unstable All experiments which showed unstable behavior. In these cases the

S-rail collapsed during impact without reaching a maximum deformation of 400

mm.

• Semi unstable All experiments which showed unstable behavior when the

crush front reached into section III, meaning the maximum of 400 mm deformation

was exceeded.

The validation DoE (see Table 4.8) is reevaluated with these new definitions on

structural behavior. The results are shown in Table 5.1. The results show that here 63%

Table 5.1: SSI validation.

Behavior nr %

Limit State 193 96.5

Stable 126 63

Semi Stable 45 22.5

Unstable 7 3.5

Semi Unstable 22 11

of the experiments can be considered fully stable, meaning 37% showed some kind of

instability. Considering that the methodology performed on the S-rail benchmark does

not account for such a thorough behavior assessment, the results may be considered

good. Furthermore, the reduced design problem is most likely used in an optimization

framework, as the one applied in Section 4.2.2. Here, a constraint can be set on the

maximum deformation, for instance the 350 mm that was applied previously. This will

result in mitigating both the semi-stable and semi-unstable results. However, this would

mean invalid designs are still a possibility in the reduced design space of the S-rail

problem. These invalid designs were therefore also part of the solution space during

optimization on the complexity reduced S-rail.
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CONCLUSION

In this thesis a work-flow is presented to methodically handle different issues concerning

the optimization of the crashworthiness of automotive structures. The structural prob-

lems make use of advanced composite laminates as the main structural material, adding

complexity to the optimization problem. The proposed novel design work-flow addresses

different aspect of the optimization process; shape optimization and complexity reduction.

A two part method is introduced. The first part is concerned with the optimization of

load paths, taking crash loads and composite crush behavior into consideration. Also the

translation from 3D crash scenarios to 2D shape optimization domains and back is re-

searched and a solution is presented. The second part introduces a complexity reduction

work-flow that can be applied to the design from the first part.

The first part is based on a Level Set type shape optimization for crash. Shape opti-

mization is used to improve the structural stability in the early phase of development of

crash loaded composite structures. Use is made of shape optimization to create structural

solutions with clear and smooth material boundaries. A composite vehicle concept and

the non-linear explicit crash-simulation results are used in a multi-stage optimization

work-flow to create load cases for optimization in the 2-D domain. A novel local volume

constraint method is introduced to provide control over shape development. This en-

hanced control supports the creation of shapes that are beneficial for reducing force

peaks during the energy absorption phase of the impact. Other properties of the novel

optimization framework are a coupling of the explicit 3D crash domain to an implicit

2D Level Set Method (LSM) optimization domain using new mapping methods and a
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variation of the Equivalent Static Load (ESL) method to transform impact behavior into

corresponding load cases. The resulting optimized material boundaries are described in

terms of finite elements and continuous splines.

The second part introduces a complexity reduction method for automotive composite

structures with respect to crashworthiness. A combination of a new type of physical

surrogate model and sensitivity analysis are used to reduce the number of design para-

meters without significantly compromising the possible solution space. The Lamination

Parameter (LP) method is used to efficiently characterize composite laminates. The

Solution Space Identification (SSI) methodology is used to identify optimal boundaries

for the remaining parameters.

The optimization framework introduced in the first part is applied on a basic initial

vehicle design with some essential structural components integral for the crashwor-

thiness of the vehicle. These components are necessary components to absorb crash

energy, for example longitudinal front rails, which are pre-specified from prior decisions

and knowledge. These structures are initially unstable in crash and cannot fulfill their

function as energy absorbing components. The components have to have a high level of

structural stability, in order to have stable and progressive crush behavior. The presented

optimization framework serves to find an optimal structural support system (load paths)

to support these primary components in their optimal crash function for the duration of

the crash and for multiple crash load cases. The method implements an outer and an

inner optimization loop. The outer loop starts with a non-linear explicit crash simulation

to assess the structural stability. A time point (snap-shot) is determined at which the

structure becomes unstable. Then, a method to map a 3D structure to a 2D represen-

tation of the design space is applied. An adapted ESL method is introduced and used

to derive a (multi)-load case from the snap-shot. The inner loop applies the LSM in the

2D domain to find an optimal shape of the supportive composite structure to stabilize

the vehicle concept. Finally, a method to map the 2D optimization results back to the 3D

vehicle structure is introduced. The result is crashed in an explicit simulation and the

outer loop starts again, until the structure is stable for the duration of the crash.

The second part of the proposed design optimization work-flow is concerned with

the reduction of complexity of crashworthiness optimization problems. The introduction

of advanced composite materials into the design of crashworthy automotive structures

increases the complexity of the already complex design development. The number of

design parameters, the complex non-linear mechanical behavior and the high compu-

tational costs are the reason a new systematic approach to reduce design complexity
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is introduced. The method touches on the three complexity increasing factors; the high

number of design variables, mechanical behavior, and computational cost. The approach

consists of a novel work-flow, where the complexity is reduced in two stages. In the first

stage, a parameter importance hierarchy is derived. In the second stage, a Solution

Space Identification (SSI) method is used to define new parameter boundaries. Both

stages are designed to reduce the design space complexity. On top of this, a Physical

Surrogate Model (PSM) is developed to approximate a Limit State Function (LiSF) that

is applied in both stages to reduce the mechanical behavior complexity and increase the

computational efficiency.

As a result of this method the original design problem is significantly reduced in

complexity. Firstly, only the most influential parameters are used as the optimization

variables. Less variables increases the convergence speed and increases the change to

find a global optimum. Secondly, the variable bounds and thereby the design domain of

the problem will mostly consist of feasible, stable design. This increases the stability

of the optimization and increases again the convergence speed and chance of finding a

global optimum. Because of these results the optimization of the problem is now less

difficult.

The presented methods are applied on two distinct problems, relevant in the field of

automotive crashworthiness. First is the optimization of the CFRP composite support

structure for the impact loaded front architecture of a novel vehicle design. Second is the

optimization of an S-rail before and after the complexity reduction.

The load cases for the first application are a full overlap frontal impact on a rigid

wall perpendicular to the impact and an impact on a rigid 30◦ oblique wall. These are

both load-cases that are part of the regulatory requirements in the USA and part of the

FMVSS208 regulations. The application of the presented optimization methods shows

promising results. The design work-flow is able to find supportive structures that enable

progressive crushing of the vehicle front for the duration of the impact. Two outer loop

iterations were necessary to achieve this. The local volume constraints in both iterations

influenced mainly the shape of the structure in the deformation area. In both cases, the

direct influence on the crush force by having a constant cross-sectional area in X-direction

is minimal, as parts of the optimized support structure buckle and move away without

significant crushing. However, the local volume constraints do influence the slenderness

of the optimized shape, without compromising on the global volume constraint. This in

turn does influence the overall crash response of the structure. The slender members in

the optimized structures break or buckle away from the crush-front easier as soon as the
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crush-front passes the joint area to the initial vehicle concept. And consequently, this

reduces the overall impact on the deceleration pulse of the vehicle.

The second application problem is solved with the complexity reduction method and

consists of a parametric tubular structure with a single S-shaped bend. This represents

a simplified vehicle S-rail. The example is relatively simple for a design problem, but

shows enough complexity, including combinations of bending, local and global buckling

and axial crush of the composite material. The simplified S-rail is fully clamped at its

roots and is impacted by a rigid surface.

The initial problem setup has 26 design variables with arbitrarily chosen bounds.

After applying the complexity reduction work-flow, the parameter number was auto-

matically reduced to 8 suitable parameters. The SSI method, also using the proposed

PSM, enabled the automated reduction of the parameter bounds to a design space with

required structural responses. To validate the new design problem, a new DoE of 200

experiments was performed with the bounds adjusted to the newly derived values and

only the 8 design variables. The results show that 85.5% of the experiments are stable,

which is a significant improvement.

To test the effectiveness of the complexity reduction, a Differential Evolution (DE)

based optimization is applied to the S-rail problem, both before and after the complexity

reduction. Two different setups, with either high or low computational effort required,

for the DE algorithm are applied.

First, the optimization with the large population per iteration is performed. This

setup reflects a robust optimization, but one that is computationally less efficient. The

results show a better optimum (lower mass) for the S-rail before complexity reduction.

However, it is also noted that far less invalid designs are evaluated on the problem

after complexity reduction. Also the convergence behavior (bandwidth of evaluations as

iterations progress) is better after complexity reduction. Nevertheless, the DE algorithm

was able to find a better optimum quicker with the original S-rail (in less iterations)

than when performed on the S-rail after complexity reduction.

Secondly, the optimization is performed again, but this time with settings that benefit

computational efficiency. After comparing the results, again the optimization on the S-

rail after complexity reduction shown significantly less invalid evaluations. Furthermore,

the optimization finds a better optimum in less evaluations than when performed on

the S-rail before complexity reduction. Also noted are the cleaner optimization histories

when compared to the histories before complexity reduction.

By applying the complexity reduction to the S-rail problem, the optimization algo-
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rithm was able to find a good optimum efficiently (less evaluations), than when performed

on the original. This is of significant benefit when design evaluations require high com-

putation times, such as in the case of composite structure crash simulations.
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The Lagrangian L is derived in order to transform the inequality constrained optimiza-

tion problem into an unconstrained problem:

L (φ(~x))= c(φ(~x))+λ
(

g(φ(~x))+ s2
)

(A.1)

where s is a slack variable which converts the inequality into an equality constraint. The

optimum is defined by meeting the KKT optimality conditions.

Let us take the compliance equal to the total strain energy:

c =~uT
·
~̃K ·~u. (A.2)

The stiffness matrix ~̃K(~ρ) is determined as follows:

~̃K(~ρ)=
Ne
⋃

e=1

ρe(φ)~Ke (A.3)

where
⋃

denotes the assembly of element components, Ne is the total number of elements,

~Ke is the element stiffness matrix and ρe is the element density determined by the LSF

values. The strain energy density can be determined as follows:

c =
∑Ne

e=1
ρe(φ)~uT

e · ~Ke ·~ue

=
∑Ne

e=1
H̃

(

φ(~x)
)

~uT
e · ~Ke ·~ue.

(A.4)

The shape derivative of the Lagrangian L is derived as the Fréchet derivative with

respect to φ as follows:
dL

dΩ
=

〈

dL

dφ
,ψ

〉

(A.5)
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where ψ is the variation of the level set function such that ψ ∈Ψ. Combining Equations

(A.1) and (A.5), we get:
dL

dΩ
=

dc

dΩ
+λ

dg

dΩ
. (A.6)

A.1 Shape Derivative of the Compliance

Now let us define the shape derivative of the strain energy density as the Fréchet

derivative with respect to φ:
dc

dΩ
=

〈

dc

dφ
,ψ

〉

. (A.7)

Now by rule of total derivative, Equation (A.7) can be rewritten as follows:

〈

dc

dφ
,ψ

〉

=

〈

∂c

∂φ
,ψ

〉

+

〈

∂c

∂~u

d~u

dφ
,ψ

〉

=

〈

∂c

∂φ
,ψ

〉

+

〈

∂c

∂~u
,~w

〉

.

(A.8)

The partial derivatives from Equation (A.8) are derived as follows:

∂c

∂φ
=

∑Ne

e=1
δ̃

(

φ(~x)
)

~uT
e · ~Ke ·~ue;

∂c

∂~u
=

∑Ne

e=1
H̃

(

φ(~x)
)

2~Ke ·~ue.

(A.9)

The Fréchet derivatives for the condition ~̃K~u−~f ext = 0 are as follows:

d~f ext

dΩ
= 0;

d~a

dΩ
=

〈

d~a

dφ
,ψ

〉

=

〈

∂~a

∂φ
,ψ

〉

+

〈

∂~a

∂~u
,~w

〉

(A.10)

where ~a =
~̃K~u. The partial derivatives from Equation (A.10) are derived as follows:

∂~a

∂φ
=

∑Ne

e=1
δ̃

(

φ(~x)
)

~Ke ·~ue;

∂~a

∂~u
=

∑Ne

e=1
H̃

(

φ(~x)
)

~Ke.

(A.11)
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From combining Equations (A.10) and (A.11) follows:

〈

∂~a

∂~u
,~w

〉

=−

〈

∂~a

∂φ
,ψ

〉

;

∑Ne

e=1
H̃

(

φ(~x)
)

~Ke ·~w = . . .

−
∑Ne

e=1
δ̃

(

φ(~x)
)

~Ke ·~ueψ.

(A.12)

Now combining Equations (A.8) and (A.9) and substituting Equation (A.12), we get the

following:

dc

dΩ
=

∑Ne

e=1
δ̃

(

φ(~x)
)

~uT
e · ~Ke ·~ueψ+ . . .

∑Ne

e=1
H̃

(

φ(~x)
)

2~Ke ·~ue ·~w

=
∑Ne

e=1
δ̃

(

φ(~x)
)

~uT
e · ~Ke ·~ueψ− . . .

∑Ne

e=1
2δ̃

(

φ(~x)
)

~uT
e · ~Ke ·~ueψ.

(A.13)

This leads to the following relation for the shape derivative of the strain energy density:

dc

dΩ
=−

Ne
∑

e=1

δ̃
(

φ(~x)
)

~uT
e · ~Ke ·~ueψ. (A.14)

A.2 Shape Derivative of the Global Volume

Constraint

The derivation of the shape derivative of the volume constraint follows the same proce-

dure as with the compliance. The volume V is expressed as follows:

V (φ(~x))=
Ne
∑

e=1

H̃
(

φ(~x)
)

. (A.15)

The shape derivative of the constraint g(φ(~x)) is derived as follows:

dg

dΩ
=

〈

dg

dφ
,ψ

〉

=

〈

∂g

∂φ
,ψ

〉

. (A.16)

This leads to the following definition of the constraint shape derivative:

dg

dΩ
=

Ne
∑

e=1

δ̃
(

φ(~x)
)

ψ. (A.17)
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A.3 Shape Derivative of the Lagrangian

The shape derivative of the Lagrangian can now be defined by substituting the results

from Equations (A.14) and (A.17) into Equation (A.6) and taking the derivative with

respect to the LSF values:

dL

dφ
=

Ne
∑

e=1

δ̃
(

φ(~x)
)

[

−~uT
e · ~Ke ·~ue +λ

]

. (A.18)

The boundary normal velocity VN(~x, t) can now be defined as:

VN(~x, t)=
dL

dφ
. (A.19)

The Lagrangian formulation of the optimization problem contains a slack variable s

to account for the inequality constraint. The switching condition from the KKT conditions

can be satisfied in two ways:

• λ = 0: This implies that the inequality condition is inactive, meaning that the

suggested optimum features a lower volume fraction than Vmax. However, for

problems with fixed boundary conditions and fixed loads, not considering body

forces, the compliance is minimized when the design domain is completely filled

with material. This fact makes this case physically irrelevant.

• s = 0: Zero slack implies an active inequality constraint, g(φ)= 0, indicating that

V (φ)=Vmax for the optimum solution.

These cases show that the optimum will always lie at V (φ) = Vmax. As a result of this,

one could define the volume constraint in Equation (3.4) as an equality constraint. The

slack variable s is now redundant and omitted.
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