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Summary

Finding and understanding the pathomechanism in rare genetic diseases is important
for diagnosis, genetic counseling, treatment, and development of therapies. This re-
quires pinpointing the underlying genetic cause and its downstream effects. Over the
last decades, whole-exome sequencing and whole-genome sequencing revolutionized the
diagnostic field by increasing the diagnostic yield, shortening the turnover time, and
accelerating the discovery of novel disease genes. Nonetheless, this still leaves most indi-
viduals with a suspected Mendelian disease undiagnosed due to our current limitations
in predicting and interpreting the effect for most of the variants an individual harbors.
In this thesis, I will address these limitations by presenting how RNA sequencing as a
complementary avenue can be used to improve further the diagnostic yield by directly
probing the functional effects of genetic variation. Further, I will present robust statis-
tical algorithms to detect aberrant gene expression and splicing events to support RNA
sequencing-based diagnostics.

First, I systematically investigated in a pilot study together with colleagues how RNA
sequencing can be used to detect aberrant gene expression, aberrant splicing events, and
mono-allelic expression of a rare variant. To this end, I adapted algorithms developed
for differential gene expression and splicing analysis to the rare disease scenario. I
applied these algorithms to RNA sequencing data of 105 individuals to detect aberrant
events. This led to the diagnosis in 10% of previously undiagnosed cases by revealing
the underlying genetic cause and pathomechanism.

In a diagnostic setting, it is important to have robust, reproducible, and trustworthy
predictions. Therefore, I developed OUTRIDER and FRASER, specialized algorithms
to detect aberrant gene expression and splicing events in RNA sequencing data. I im-
plemented denoising autoencoders to control for known and unknown confounders and
used appropriate distributions to assess the significance of aberrant events. I exten-
sively tested, compared, and benchmarked the developed methods using simulated and
experimental datasets.

Altogether, with this work, I have demonstrated the benefits and complementarity of
RNA sequencing-based diagnostics and developed robust algorithms to detect aberrant
events in RNA sequencing data. With this, I have directly contributed to the diagnosis
of more than 40 individuals over the past several years. As RNA sequencing-based diag-
nostics are rapidly adopted by the rare disease community, my open-source packages are
being used worldwide to improve the diagnostic rate. Complementary RNA sequencing-
based diagnostics ultimately improve the quality of life of patients through molecular
diagnosis and thus genetic counseling, treatment, and development of therapies.






Publications

Major contributions:

Genetic diagnosis of Mendelian disorders via RNA sequencing
Ref. Kremer et al. [2017]

Laura S. Kremer,* Daniel M. Bader,* Christian Mertes, Robert Kopajtich, Garwin
Pichler, Arcangela Iuso, Tobias B. Haack, Elisabeth Graf, Thomas Schwarzmayr, Cate-
rina Terrile, Eliska Konafikova, Birgit Repp, Gabi Kastenmiiller, Jerzy Adamski, Peter
Lichtner, Christoph Leonhardt, Benoit Funalot, Alice Donati, Valeria Tiranti, Anne
Lombes, Claude Jardel, Dieter Glaser, Robert W. Taylor, Daniele Ghezzi, Johannes
A. Mayr, Agnes Rotig, Peter Freisinger, Felix Distelmaier, Tim M. Strom, Thomas
Meitinger, Julien Gagneur, and Holger Prokisch

(2017) Nature Communications, DOI: 10.1038 /ncomms15824.

Author contribution T.M., J.G. and H.P. planned the project. J.G. and H.P. over-
viewed the research. H.P. designed the experiments. C.L., B.F., A.D., V.T., A.L., D.G.,
R.W.T., D.G., JJAM., AR., P.F., F.D. and T.M. reviewed the phenotypes, performed
sample collection and biochemical analysis. L.S.K., D.M.B., C.M., T.M.S. and H.P.
curated and analysed the data. J.G. devised the statistical analysis. L.S.K., R.K.,
A.l, C.T., E.K. and B.R. performed the cell biology experiments. L.S.K., R.K., E.G.,
T.S., P.L. and T.M.S. performed exome, genome and RNA-seq. L.S.K., R.K., T.B.H.
and H.P. performed the exome analysis. L.S.K. and G.P. performed the quantitative
proteomics experiments. L.S.K., G.K. and J.A. performed the metabolomics studies.
L.S.K., D.M.B., C.M., J.G. and H.P. wrote the manuscript. L.S.K., D.M.B. and C.M.
visualized the data. Critical revision of the manuscript was performed by all authors.

Vil


https://doi.org/10.1038/ncomms15824

OUTRIDER: A Statistical Method for Detecting Aberrantly
Expressed Genes in RNA Sequencing Data

Ref. Brechtmann et al. [2018]

Felix Brechtmann,* Christian Mertes,* Agné Matusevicitite*, Vicente A. Yépez, Ziga
Avsec, Maximilian Herzog, Daniel M. Bader, Holger Prokisch, and Julien Gagneur.

(2018) American Journal of Human Genetics, DOI: 10.1016/j.ajhg.2018.10.025.

Author contribution J.G. conceived the project and overviewed the research with the
help of Z.A., H.P., and V.AY.. F.B., A M., C.M. analyzed the data. F.B., C.M. and
A.M. developed the software. D.M.B. M.H contributed to the software development
and early stage data analysis. J.G. and Z.A. devised the statistical analysis. F.B.,
V.AY., C.M., and J.G. made the figures. F.B., C.M., A.M., V.A.Y. and J.G. wrote the

manuscript. All authors performed critical revision of the manuscript.

Detection of aberrant splicing events in RNA-seq data with
FRASER

Ref. Mertes et al. [2021]

Christian Mertes,* Ines F. Scheller,* Vicente A. Yépez, Muhammed H. Celik,
Yingjiqiong Liang, Laura S. Kremer, Mirjana Gusic, Holger Prokisch, and Julien
Gagneur

(2021) Nature Communications, DOI: 10.1038/s41467-020-20573-7.

Author contribution C.M. and J.G. conceived the method. C.M. and L.S. imple-
mented the package and performed the full analysis. V.A.Y. contributed to the package
development and to the analysis. M.H.C. performed the MMSplice analysis of GTEx.
C.M. and Y.L. performed the rare variant enrichment analysis. L.S.K. and M.G. ana-
lyzed the results of the rare disease cohort. J.G and H.P. supervised the research. C.M.,
[.S, and J.G. wrote the manuscript with the help of V.A.Y. All authors revised the
manuscript.

viil


https://doi.org/10.1016/j.ajhg.2018.10.025
https://doi.org/10.1038/s41467-020-20573-7

Minor contributions:

Chromatin-remodeling factor SMARCD2 regulates transcrip-
tional networks controlling differentiation of neutrophil gran-
ulocytes

Ref. Witzel et al. [2017]

Maximilian Witzel, Daniel Petersheim, Yanxin Fan, Ehsan Bahrami, Tomas Racek,
Meino Rohlfs, Jacek Puchatka, Christian Mertes, Julien Gagneur, Christoph Ziegen-
hain, Wolfgang Enard, Asbjorg Stray-Pedersen, Peter D. Arkwright, Miguel R. Abboud,
Vahid Pazhakh, Graham J. Lieschke, Peter M. Krawitz, Maik Dahlhoff, Marlon R.
Schneider, Eckhard Wolf, Hans-Peter Horny, Heinrich Schmidt, Alejandro A. Schéffer,
and Christoph Klein

(2017) Nature Genetics, DOI: 10.1038/ng.3833.

Author contribution M.W. designed, performed, and interpreted experiments and
wrote and edited the manuscript. D.P. performed ATAC—seq and RNA—seq, Y.F., E.B.,
T.R., and M.R. were involved in genomic and biochemical analyses, J.P. led the com-
putational biology efforts, C.M. and J.G. analyzed ATAC-seq and RNA-seq data, and
C.Z. and W.E. performed mouse RNA-seq and digital gene expression analysis. A.S.-P.,
P.D.A., and M.R.A. provided clinical care for patients, V.P. and G.J.L. generated and
analyzed zebrafish models, and P.M.K. analyzed whole-exome sequencing in initial pa-
tients. M.D., M.R.S., and E.W. generated mice. H.-P.H. performed immunohistochem-
istry analysis of bone marrow biopsies, H.S. provided expert clinical genetic consulting,
and A.A.S. guided bioinformatics studies and helped write and edit the manuscript.
C.K. designed and guided the study, supervised M.W., provided laboratory resources,
and wrote the manuscript.

Mutations in MDH2, Encoding a Krebs Cycle Enzyme, Cause
Early-Onset Severe Encephalopathy

Ref. Ait-El-Mkadem et al. [2017]

Samira Ait-El-Mkadem, Manal Dayem-Quere, Mirjana Gusic, Annabelle Chaussenot,
Sylvie Bannwarth, Bérengere Francois, Emmanuelle C. Genin, Konstantina Fragaki,
Catharina L.M. Volker-Touw, Christelle Vasnier, Valérie Serre, Koen L.I. van Gassen,
Francoise Lespinasse, Susan Richter, Graeme Eisenhofer, Cécile Rouzier, Fanny Mochel,
Anne De Saint-Martin, Marie-Thérese Abi Warde, Monique G.M. de Sain-van der Velde,
Judith J.M. Jans, Jeanne Amiel, Ziga Avsec, Christian Mertes, Tobias B. Haack, Tim

1X


https://doi.org/10.1038/ng.3833

Strom, Thomas Meitinger, Penelope E. Bonnen, Robert W. Taylor, Julien Gagneur,
Peter M. van Hasselt, Agnes Rotig, Agnes Delahodde, Holger Prokisch, Sabine A. Fuchs,
and Véronique Paquis-Flucklinger

(2017) American Journal of Human Genetics, DOI: 10.1016/j.ajhg.2016.11.014.

Author contribution Z.A. and C.M. developed and implemented GenePROF. C.M.
and M.G. analyzed results of GenePROF. All authors revised the manuscript.

Somatic alterations compromised molecular diagnosis of DOCKS
hyper-IgE syndrome caused by a novel intronic splice site mu-
tation

Ref. Hagl et al. [2018]

Beate Hagl, Benedikt D. Spielberger, Silvia Thoene, Sophie Bonnal, Christian Mertes,
Christof Winter, Isaac J. Nijman, Shira Verduin, Andreas C. Eberherr, Anne Puel,
Detlev Schindler, Jiirgen Ruland, Thomas Meitinger, Julien Gagneur, Jordan S. Orange,
Marielle E. van Gijn, and Ellen D. Renner

(2018) Scientific Reports, DOI: 10.1038/s41598-018-34953-z.

Author contribution B.H., B.D.S.,; S.T., S.B., A.C.E., A.P., D.S., performed research
and analyzed data; C.M., CW., [.LJ.N., S.V., J.R., T.M., J.G., J.5.0., M.E.v.G. analyzed
data; B.H., B.D.S., E.D.R. analyzed clinical data; B.H., B.D.S. performed STAT3 anal-
ysis and post-sort gDNA sequencing; B.H. performed ¢cDNA analysis, minigene analysis
and isolated fibroblasts, B.D.S. performed T subpopulation, DOCKS protein expression
and autoantibody analysis; B.H., B.D.S.,; E.D.R. designed the research and were the
principal writers of the manuscript. All of the authors reviewed the manuscript and
contributed in writing.


https://doi.org/10.1016/j.ajhg.2016.11.014
https://doi.org/10.1038/s41598-018-34953-z

Detection of aberrant gene expression events in RN A sequencing
data

Ref. Yépez et al. [2021Db]

Vicente A. Yépez, Christian Mertes, Michaela F. Miiller, Daniela S. Andrade, Leon-
hard Wachutka, Laure Frésard, Mirjana Gusic, Ines F. Scheller, Patricia F. Goldberg,
Holger Prokisch, and Julien Gagneur

(2020) Nature Protocols, DOI: 10.1038/s41596-020-00462-5

Author contribution Participated in the design of the workflow: V.AY., C.M.,
M.F.M., and J.G.. Contributed to the computational workflow: V.A.Y., C.M., M.F.M.,
D.S.A., LS., and P.F.G.. Implemented the candidate prioritization workflow: L.F.. De-
signed and implemented wBuild: L.W.. Wrote the manuscript: V.A.Y. and J.G.. All
authors revised the manuscript.

Integration of proteomics with genomics and transcriptomics
increases the diagnostic rate of Mendelian disorders

Ref. Kopajtich et al. [2021]

Robert Kopajtich,* Dmitrii Smirnov,* Sarah L. Stenton,* Stefan Loipfinger, Chen Meng,
Ines F. Scheller, Peter Freisinger, Robert Baski, Riccardo Berutti, Jiirgen Behr, Martina
Bucher, Felix Distelmaier, Mirjana Gusic, Maja Hempel, Lea Kulterer, Johannes Mayr,
Thomas Meitinger, Christian Mertes, Metodi D. Metodiev, Agnieszka Nadel, Alessia
Nasca, Akira Ohtake, Yasushi Okazaki, Rikke Olsen, Dorota Piekutowska-Abramczuk,
Agnes Rotig, René Santer, Detlev Schindler, Abdelhamid Slama, Christian Staufner,
Tim Strom, Patrick Verloo, Jiirgen-Christoph von Kleist-Retzow, Saskia B. Wortmann,
Vicente A. Yépez, Costanza Lamperti, Daniele Ghezzi, Kei Murayama, Christina Lud-
wig, Julien Gagneur, and Holger Prokisch

(2021) medRyiv, DOI: 10.1101/2021.03.09.21253187
Author contribution Conceived and supervised the study, H.P; performed experi-
ments, R.K, L.K, C.Lu, D.G, and M.M; analyzed and interpreted results, D.S, S.L, L.S,

C.M, V.Y, D.G, M.M, R.K, S.L.S, J.G, H.P; provided essential materials, all authors;
wrote the manuscript, S.L.S, H.P, J.G, R.K, and D.S; edited manuscript, all authors.

x1


https://doi.org/10.1038/s41596-020-00462-5
https://doi.org/10.1101/2021.03.09.21253187

Clinical implementation of RNA sequencing for Mendelian dis-
ease diagnostics

Ref. Yépez et al. [2021a]

Vicente A. Yépez,* Mirjana Gusic,* Robert Kopajtich, Christian Mertes, Nicholas
H. Smith, Charlotte L. Alston, Riccardo Berutti, Holger Blessing, Elzbieta Ciara, Fang
Fang, Peter Freisinger, Daniele Ghezzi, Susan J. Hayflick, Yoshihito Kishita, Thomas
Klopstock, Costanza Lamperti, Dominic Lenz, Christine C. Makowski, Johannes A.
Mayr, Signe Mosegaard, Michaela F. Miiller, Gerard Munoz-Pujol, Kei Murayama, Ag-
nieszka Nadel, Akira Ohtake, Yasushi Okazaki, Dorota Piekutowska-Abramczuk, Elena
Procopio, Antonia Ribes, Agnes Rotig, Thomas Schwarzmayr, Christian Staufner, Sarah
L. Stenton, Tim M. Strom, Robert W. Taylor, Caterina Terrile, Frederic Tort, Rudy Van
Coster, Matias Wagner, Saskia B. Wortmann, Manting Xu, Thomas Meitinger, Julien
Gagneur, and Holger Prokisch

(2021) medRyiv, DOI: 10.1101/2021.04.01.21254633

Author contribution Conceptualization: JG, HP. Data Curation Management: VAY,
MG, RK, AN. Formal Analysis: VAY, MG, RK, CM. Investigation: MG, RK, AN.
Resources: CLA, HB, EC, FF, PF, DG, SJH, YK, TK, CL, DL, CCM, JAM, SM, GMP,
KM, AO, YO, DPA, EP, ARi, ARo, CS, RWT, CT, FT, RVvC, MW, SW, MX. Software:
VAY, CM, NHS, MFM, RB, TS. Supervision: JG, HP. Validation: MG, RK, SLS, HP.
Visualization: VAY, MG, JG, HP. Writing — Original Draft Preparation: VAY, MG, JG,
HP. Writing — Review and Editing: all authors.

xii


https://doi.org/10.1101/2021.04.01.21254633

Contents

Acknowledgments

Summary

Publications

1

Introduction

1.1 Rare diseases and rare genetic disorders . . . . . . . ... ... ...
1.2 Finding the needle in the haystack: molecular diagnosis in rare diseases .
1.3 DNA sequencing in diagnostics . . . . . . . .. ... ...
1.4 Limitations of DNA sequencing in diagnostics . . . . . ... ... .. ..
1.5 RNA sequencing in diagnostics . . . . . . . .. ... ... ...
1.6 Quantification of gene and splicing metrics . . . . . . . . ... ... ...
1.7 Outlier detection . . . . . . . . . ..
1.8 Autoencoders . . . . ...
1.9 Aims and scope of this thesis . . . . . . ... ... ... .. ... ... .

Exploring the utility of RNA sequencing in rare disease diagnosis

2.1 Motivation . . . . . . ..

2.2 Evaluating RNA-seq based diagnostics in a mitochondrial disease cohort
2.2.1 Detection of aberrant gene expression levels . . . . . ... . ...
2.2.2  Detection of aberrant splicing . . . . . .. ... ... ... .. ..
2.2.3  Mono-allelic expression . . . . . ... ... oL

2.3 Weak splicing . . . . . . ..

2.4 Short summary . . . . . . . ...

Detection of aberrant gene expression with OUTRIDER

3.1 Motivation . . . . . . . ..
3.2 Dataset description . . . . . . ... Lo
3.3 Statistical modeling . . . . . ... L
3.4 Controlling gene expression for confounding effects. . . . . . . .. .. ..
3.5 Detection of expression outliers with the negative binomial distribution .
3.6 Benchmarking gene expression outlier detection methods . . . . . . . ..
3.7 Rare variant enrichment in GTEx . . . . . ... ... ... ... .....
3.8 Reanalysis of the Kremer dataset using OUTRIDER . . . ... ... ..
3.9 Short summary . . . . . ...

vii

DD UL = -

12
14
15

17
17
19
20
21
25
27
30

41

xiil



Contents

4 Detection of aberrant splicing events in RNA-seq data with FRASER 51
4.1 Motivation . . . . . . . .. 51
4.2 Statistical modeling . . . . . .. ... oL 52
4.3 Controlling the splice metric with denoising autoencoders . . . . . . . .. 58

4.4 Detection of aberrant splicing events with the beta-binomial distribution 61
4.5 Benchmarking aberrant splicing detection methods by in silico injection . 61

4.6 Rare splicing variant enrichment in GTEx . . . .. ... ... ... ... 64
4.7 Reproducibility of aberrant splicing events in GTEx . . . . . . ... ... 66
4.8 Reanalysis of the Kremer dataset using FRASER . . . .. ... ... .. 66
4.9 Short summary . . . . . ... 67
5 Solving rare disease cases via RNA sequencing 71
5.1 Exon truncation in TAZ caused by a synonymous variant . . . . . . . .. 71
5.2 Identification of the expression of a pathogenic cryptic exon in MRPS30 73
5.3 Mono allelic expression of a pathogenic missense variant in RRM2B . . . 73
6 Conclusion 77
6.1 Outlook . . . . . . . 82
A Appendix 87
A1 Webresources . . . . . . . . . ... 87
A.2 Appendix: Supplemental Figures . . . . ... ... ... ... ...... 88
List of Figures 101
Acronyms 115
References 117

Xiv



1 Introduction

Nature is nowhere accustomed more openly to display her se-
cret mysteries than in cases where she shows tracings of her
workings apart from the beaten paths; mor is there any bet-
ter way to advance the proper practice of medicine than to
give our minds to the discovery of the usual law of nature, by
careful investigation of cases of rarer forms of disease.

William Harvey, 1657

It is estimated that worldwide between 263-446 million people are living with one of
the 6000-8000 defined rare diseases.[Nguengang Wakap et al., 2020] This means between
3.5-5.9% of the world’s population is living with a disease that is severe and disabling
(66%), life-limiting (50%), and in most cases untreatable or curable (94%).[Boycott and
Ardigé, 2018] Children are the most vulnerable demographic population as every second
affected individual is a child. Hence, multiple national and international efforts are rais-
ing awareness, facilitating rare disease research and drug development, and making rare
diseases a public health priority (US” Orphan Drug Act, 1983; EU’s Orphan Medicinal
Products, 1999;) EURORDIS, 2005;[Rode, 2005] IRDiRC, 2011[Boycott et al., 2017]).
As more than 50% of the individuals living with a rare disease do not receive a molecular
diagnosis,[Neveling et al., 2013; Wortmann et al., 2015; Wright et al., 2018b; Retterer
et al., 2016] the IRDiRC has the ambitious goal to provide a diagnosis to any individ-
ual with a known rare disease within a year.[Boycott et al., 2017] To achieve this, new
technologies and strategies have to be developed and implemented, which is the aim of
my thesis through advancing RNA sequencing (RNA-seq)-based diagnostics.

1.1 Rare diseases and rare genetic disorders

Rare diseases are rare in themselves, but together they are common with a prevalence of
3.5-5.9%.[Nguengang Wakap et al., 2020] Despite the estimated 263-446 million people
living with a rare disease worldwide, no common definition for it exists.[Richter et al.,
2015] The EU defines a rare disease as life-threatening or chronically debilitating condi-
tions where less than 1 in 2,000 people are affected.! In the US, it is defined in absolute

'Regulation (EC) No 141/2000 of the European parliament and of the council of 16 December 1999
on orphan medicinal products. http://ec.europa.eu/health//sites/health/files/files/
eudralex/vol-1/reg_2000_141_cons-2009-07/reg_2000_141_cons-2009-07_en.pdf


http://ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/reg_2000_141_cons-2009-07/reg_2000_141_cons-2009-07_en.pdf
http://ec.europa.eu/health//sites/health/files/files/eudralex/vol-1/reg_2000_141_cons-2009-07/reg_2000_141_cons-2009-07_en.pdf
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terms with fewer than 200,000 affected people translating to 1 in ~ 1,600.2 We do not
know the full spectrum of rare diseases yet, but till now more than 6000 known rare
diseases are defined and the number is growing each year.[Amberger et al., 2019]? It is
estimated that 69.9% of them are exclusively pediatric onset, while 71.9% are genetic,
i.e. caused by alterations in the genome that lead to harmful changes in the function
of single genes.[Nguengang Wakap et al., 2020] The latter subgroup of rare diseases is
referred to as rare genetic disorders, Mendelian diseases, or monogenic diseases. Since
this thesis focuses on rare genetic diseases, I will use the term rare diseases interchange-
ably for this subset in the following for simplicity. Being affected by or diagnosed with a
rare disease can be devastating, since most of them have an enormous negative impact
on the well-being of the affected person himself, but also on those around him. But
the reality of rare diseases is even worse with two-thirds being disabling, three-quarters
affecting children, over half being life-limiting, and most without a treatment.[Boycott
and Ardigd, 2018] In addition, it is estimated that in half of the rare genetic diseases,
the underlying etiology has yet to be discovered.[Boycott et al., 2017] A timely molec-
ular diagnosis is important in many ways. The early understanding of the disease can
improve the disease management through targeted therapies and hence reduce or delay
long-term complications. Moreover, it is essential to know the underlying mechanism in
order to develop targeted drugs. Currently, only 6% of the rare diseases have approved
treatments.[Austin et al., 2018] A proper molecular diagnosis also reduces prognostic
uncertainty and provides better means for genetic counseling. Thus, one of IRDiRC’s
ambitious goals is to provide a diagnosis for all individuals with a known rare genetic
disease, as the rate of diagnosis is directly related to the successful implementation of
precision medicine.[Boycott et al., 2019]

1.2 Finding the needle in the haystack: molecular
diagnosis in rare diseases

Molecular diagnostics is a broad term for analyzing biomarkers in human samples in a
clinical setting.[Poste, 2014] Some of the most used techniques in molecular diagnostics
are next-generation sequencing (NGS), mass spectrometry, enzyme-linked immunosor-
bent assays (ELISA), and fluorescence in situ hybridization (FISH). In the context of
rare genetic diseases, the molecular diagnosis is often referred to as the identification of
the causal genetic defect on the DNA-level (deoxyribonucleic acid) through whole-exome
sequencing (WES) or whole-genome sequencing (WGS). Hence, it is also called genetic
diagnosis. Sequencing the patient’s DNA is often the first step in the diagnostic process.
As each individual carries 4-5 million single nucleotide variants (SNVs) or small inser-
tions or deletions of bases (INDELs) in its entire genome, a cascade of filtering steps
need to be applied to narrow down the variant call set to the potentially disease-causing

2United States Congress. (2002). Rare Diseases Act of 2002. https://www.gpo.gov/fdsys/pkg/
PLAW-107publ280/html/PLAW-107publ280.htm

30rphanet: an online database of rare diseases and orphan drugs. Copyright, INSERM 1997. Available
at https://www.orpha.net
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Figure 1.1: Basic variant filtering steps in NGS-based rare disease diagnostics. (a)
A standard variant filtering cascade used in clinical diagnostics is presented. The
aim of the filtering cascade is to narrow down the variant call set to potentially
disease-causing ones by using information like allele frequency, functional con-
sequence, clinical gene-phenotype relation, mode of inheritance. (b) Scheme of
variant and genotypes in diploid organisms. From top to bottom: homozygous,
heterozygous, and compound heterozygous. The gray line depicts the alleles of
a given gene and the red dot depicts the change. Adapted from Wright et al.
[2018b].

variant.[The 1000 Genomes Project Consortium, 2015; Wright et al., 2018b] Using WES
instead of WGS yields up to 100,000 variants, depending on the target region, since only
the coding part is sequenced, which is less than 2% of the genome. To be considered as
a potential disease-causing variant, several criteria must be met, which can be directly
translated into the following filter steps (Fig. 1.1a). First, variants have to be rare and
should have a predicted high impact on the gene function. Second, the gene in which
the variant is found has to be associated with the phenotype of interest or at least its
function. Third, depending on the mode of inheritance, both alleles have to be affected
(recessive) or only one allele (dominant). In the recessive case, it does not need to be the
same variant (homozygous). The two variants can be at different positions as long as
they affect the same gene and both alleles (compound heterozygous, Fig. 1.1b). Finally,
the variants can be filtered for their segregation status, if parental information are avail-
able. Application of these filter steps typically results in 1-4 disease-causing candidate
variants that are manually investigated and assessed for their clinical relevance before a
molecular diagnosis is made.

It might look easy to apply 4 or 5 filters, but identifying a variant as disease-causing
can be a very complex process as the underlying pathomechanism is not always clear
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and can be itself complex. Interpreting genetic variants is often challenging, especially
because the evidence for disease causality is not always given. Therefore, standards and
guidelines for interpreting genetic variants in the clinical context of rare diseases are pro-
vided by the American College of Medical Genetics and Genomics (ACMG).[Richards
et al., 2015] ACMG recommends to categorize variants based on evidence into pathogenic,
likely pathogenic, uncertain significance, likely benign, and benign (Fig. A.1). Specifi-
cally, a nonsense or splice site variant is not enough to be classified as pathogenic as
multiple sources of evidence have to be present. In the case of nonsense variants, it
is known that they can escape nonsense mediated decay (NMD), if located in the last
exon.[Popp and Maquat, 2013] Even though splice site variants lead most likely to exon
skipping or altered donor/acceptor usage, it does not mean that the resulting protein
product is non-functional as only a few bases in-frame could be deleted in an unimpor-
tant region. Hence, additional functional evidences are required like RNA-seq or protein
quantifications.[Richards et al., 2015]

Sequence-based computational methods like VEP, [McLaren et al., 2016] SIFT,[Kumar
et al., 2009] PolyPhen-2,[Adzhubei et al., 2013] CADD,[Kircher et al., 2014] Max-
EntScan,[Eng et al., 2004] SpliceAl,[Jaganathan et al., 2019] and MMSplice[Cheng
et al., 2019] are helpful to prioritize candidate genes in a research setting, but are
not enough to establish disease causality. Here, additional curated online databases
are crucial. The Genome Aggregation Database (gnomAD) stores allele frequencies of
over 140,000 unrelated individuals and can be used to filter for rare or unseen vari-
ants.[Karczewski et al., 2020] ClinVar is a public database of human genetic variants
and interpretations of their significance to disease that can be used to filter out be-
nign variants or to prioritize already known pathogenic variants.[Landrum et al., 2018]
Currently, it contains 1.4 million submissions from 1,880 submitters around the world
for 929,054 variants in 33,122 genes.? Not only variant-level information can be used
to prioritize variants. Also gene-phenotype associations can inform about the clinical
relevance of a given variant. Online Mendelian Inheritance in Man (OMIM) is a curated
public database that stores genes and phenotypes and their relationships.[McKusick,
2007] It contains 4,422 genes that cause 6,863 phenotypes, which of 5,797 are monogenic
disorders.® The registered genes, phenotypes, and relationships increased over the years
and is expected to grow further (Fig. 1.2).[Amberger et al., 2019] While Orphanet main-
tains a similar database with also similar numbers to OMIM, it includes relationships
to orphan drugs.?

Overall, these resources are helpful and increase the diagnostic rate. However, the
application of ACMG guidelines often leads to variant of unknown significance (VUS),°
especially for genes that have yet to be discovered as disease causing.[Richards et al.,
2015] Thus, leaving the majority without diagnosis after WES or WGS.[Neveling et al.,
2013; Wortmann et al., 2015; Wright et al., 2018b; Retterer et al., 2016] Hence, comple-

4Accessed: 25 April 2021, https://www.ncbi.nlm.nih.gov/clinvar/submitters/

5Accessed: 25 April 2021, https://omim.org/statistics/geneMap

SA variant of unknown significance is defined as a variation in a genetic sequence for which the
association with disease risk is unclear. https://www.cancer.gov/publications/dictionaries/
genetics—-dictionary?cdrid=556493
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Figure 1.2: Growth of gene-phenotype relationships. The pace of disease gene dis-
covery as cataloged by OMIM. As of 29 September 2018, there were over 6259
disorders spread across 3961 genes. (a) Cumulative number of registered gene
and phenotypes in OMIM. (b) Approximate number of gene discoveries made
by NGS-based approaches, WES and WGS, versus conventional approaches since
2010 Adapted from Chong et al. [2015] and Amberger et al. [2019].

mentary means to WES and WGS are needed to assess the functional impact of variants
to provide additional evidence of disease causality.

1.3 DNA sequencing in diagnostics

In 1953, James Watson and Francis Crick started a new era in the filed of genomics by dis-
covering the double-helix structure of the DNA, the blue print of our organism.[Watson
and Crick, 1953] The discovery was based on the crystallized X-ray structures produced
by Rosalind Franklin and Maurice Wilkins.|[Zallen, 2003] Since then, researchers tried
to find ways of reading out the DNA, our genetic information, which is build using the
four nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). It took till
1977 and the development of the chain-termination method by Sanger and collegues, to
enable the readout, the so called sequencing, of the genetic code for a given locus, e.g.
gene, in base-resolution.[Sanger et al., 1977] The Sanger sequencing is referred to as first
generation DNA sequencing technology. In the rare disease community, Sanger sequenc-
ing was quickly adapted and used to establish molecular diagnosis but also to discover

disease-causing genes and their variants (Sanger sequencing = conventional sequencing,
Fig. 1.2).



1 Introduction

Concurrently with the development of the human genome project[Lander et al.,
2001], the next-generation sequencing (NGS) technologies emerged.[Ronaghi et al.,
1996; Mardis, 2011] With this technology the DNA is fragmented into small molecules
and then sequenced massivlely in parallel. Today, with this technique, 48 complete
human genomes can be sequenced in under two days.” As the high-throughput and
cost-efficient alternative to Sanger sequencing, the NGS technology was quickly adapted
by the rare disease community.[Sikkema-Raddatz et al., 2013; Bamshad et al., 2011;
Gilissen et al., 2012] In diagnostics, three different NGS approaches exist: gene panel
sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS).
In order to reduce sequencing costs, a targeted sequencing approach is used where
the DNA is enriched for the coding regions for predifined genes (gene panel) or for
all genes (WES) before sequencing. In contrast, WGS provides the full view over the
genome. Despite the success of WES and WGS, Sanger sequencing continues to play an
important role in diagnostics to confirm findings or to analyze rapidly and cost-effective
the segregation of the variant.[Hagemann, 2015]

In 2010, WES was used for the first time to discover a disease-causing gene.[Ng et al.,
2010] Since then, WES and WGS became the technology used in disease gene discovery.
Already in 2015, most of the newly reported disease-gene associations were discovered
through NGS (Fig. 1.2). Overall, the NGS technology revolutionized rare disease diag-
nostics by increasing the diagnostic yield and by accelerating discovery of novel disease
genes.[Boycott et al., 2017; Neveling et al., 2013] Using WES over the last years allowed
to pinpoint the causing variant in 25-50% cases.[Neveling et al., 2013; Wortmann et al.,
2015; Wright et al., 2018b; Retterer et al., 2016] This number is hard to estimate and
also changes depending on the underlying disorder.[Wright et al., 2018a] Despite this im-
mense success, it also means that 50-75% of the cases are still missing a genetic diagnosis
after initial WES.

1.4 Limitations of DNA sequencing in diagnostics

The continuous discovery of new gene-disease associations depicts the success of WES in
rare disease diagnostics.[Chong et al., 2015; Amberger et al., 2019] Nevertheless, WES
but also DNA sequencing as a whole has its shortcomings. As WES targets only the
coding regions, which is less than 2% of the genome, WES is blind to the majority of
variants. This limitation can be overcome by using WGS, which in principle detects
most of the variants in the genome. Through its even coverage and its technical design,
it even increases the sensitivity in large deletion calls. But due to our limitations in
predicting the effect of and interpreting variants in non-coding regions, the 4-5 million
revealed SNVs and small INDELs by WGS bring often no further insights. Hence, WGS
did not increase much the diagnostic yield over WES.[Taylor et al., 2015; Clark et al.,
2018; Mattick et al., 2018] Taylor et al. [2015] demonstrated in their study that 15% of
the cases (5/33 variants) would have been missed by WES.

"Using the Illumina Novaseq 6000. https://www.illumina.com/systems/sequencing-platforms/
novaseq.html


https://www.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/systems/sequencing-platforms/novaseq.html
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The reason why WES and WGS can be inconclusive is many-fold. Current challenges
of these techniques include variant detection, classification, predictive power, and gene-
disease as well as function-disease associations. As there is no gold standard on how
to call variants, the variant detection rate can be improved through better alignments,
variant calling, and filtering steps.[Boycott et al., 2017; Shamseldin et al., 2017] But
even with the perfect analysis pipeline, the interpretation of the variant is the most
challenging part without functional evidences. On the one hand, a variant classified as
nonsense will not trigger NMD and hence not be disease causing, if it is in an isoform
that is not expressed in the disease-relevant tissue.[Cummings et al., 2020] This is true
for any other potentially protein changing variant class. On the other hand, a variant
that is predicted to be synonymous and hence should not change the protein sequence,
can still be deleterious by impacting splicing or gene expression.[Sauna and Kimchi-
Sarfaty, 2011; Zeng and Bromberg, 2019] Especially for intronic and other non-coding
regions, our ability to predict the impact on gene function is limited. An example are
splice-effecting variants. Despite advances in sequence-based splicing prediction models
through machine learning,[Xiong et al., 2015; Rosenberg et al., 2015; Cheng et al., 2019;
Jaganathan et al., 2019; Cheng et al., 2021] accurate classifications remain limited. This
is especially true for deep intronic variants.[Jaganathan et al., 2019] Due to this limita-
tions in interpreting variants, the ACMG and other genetic diagnosis guidelines require
additional functional evidence before a variant can be classified as pathogenic.[Richards
et al., 2015; MacArthur et al., 2014] Another limitation of sequence-based predictive
models is that they are based on assumptions and design decisions and are often op-
timized for a specific task. In the case of splicing models, this leads to a high rate of
missing predictions or ignored variants, especially for deep intronic variants.[Jian et al.,
2014] Another problem is the candidate gene prioritization based on phenotypic data.
As genes are filtered based on disease association or functional relevance, extensive anno-
tations are required but also a comprehensive phenotypic characterization of the patient.
Both are often incomplete or even missing as the continuum of pathologies in rare dis-
eases are difficult to objectively segment into discrete disease entities.[Boycott et al.,
2017]

Overall, these limitations highlight the need for alternatives but foremost comple-
mentary technologies in rare disease diagnostics. The many omics research fields offer a
variety of promising technologies that need to be systematically investigated for their po-
tential to further improve the diagnostic yield. These include especially transcriptomics,
proteomics, and metabolomics, among others.

1.5 RNA sequencing in diagnostics

Like DNA, ribonucleic acid (RNA) is one of the four major macromolecules essential to
all known life forms. RNA is a chain of nucleotides similar to DNA. The main differences
to DNA is the use of ribose in the backbone, the use of uracil (U) instead of thymine,
and that it is found mostly single stranded in nature. In cellular organisms, genes
are translated into messengers RNA and then used as template to synthesize proteins
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by translating the codons into amino acids. The building block for RNA-seq was laid
in 1971, when the reverse transcriptase was discovered.|Gallo, 1971] Using the reverse
transcriptase, Shaffer et al. [1990] were the first to measure gene expression by using
the reverse transcription-polymerase chain reaction (RT-PCR) method. Shortly after
NGS was established for DNA sequencing, the protocols were adapted for sequencing
the RNA in the early 2000s.[Weber, 2015] The main steps for RNA-seq are converting
RNA to DNA using the reverse transcriptase followed by a amplification of the DNA
molecules through polymerase chain reaction (PCR) followed by NGS. Depending on the
application an enrichment step in the beginning can be used to discard ribosomal RNA or
target specific transcripts (Fig. 1.3).[Wang et al., 2009] It is important to keep these steps
in mind, as they are sources of technical biases like lower abundance of transcripts having
a high G/C content or containing long homopolymer stretches.|Risso et al., 2011; Hansen
et al., 2012; Weber, 2015] Despite the technical biases, RNA-seq superseded technologies
like RT-PCR or microarrays[Schena et al., 1995] as RNA-seq has multiple advantages:
(i) it does not depend on prior sequence knowledge, (ii) it provides a direct measure
of RNA abundance and splicing, and (iii) simultaneous sequence discovery including
variant calling and quantification.[Weber, 2015]

One of the first studies using RNA-seq were done on prostate cancer cell lines and
plants starting in 2006.[Bainbridge et al., 2006; Cheung et al., 2006; Emrich et al.,
2007; Weber et al., 2007] In diagnostics, RNA-seq was initially used for validation or
as further evidence rather than as a primary detection tool.[Wang et al., 2013; Van
Keuren-Jensen et al., 2014] Later it was also used in single gene studies to detect aberrant
events.[Chandrasekharappa et al., 2013; Kernohan et al., 2017] But prior to this work, no
systematic study on the utility of RNA-seq as a diagnostic tool in rare diseases has been
performed. Since 2017, when two studies independently and in parallel demonstrated
the utility and complementarity of RNA-seq to WES, RNA-seq has been increasingly
used in the diagnosis of rare inherited diseases (Fig. 1.4).[Cummings et al., 2017; Kremer
et al., 2017] One of the two pioneering studies is part of this thesis. Over the course of
time, RNA-seq proved to increase the diagnostic rate in WES or WGS inconclusive cases
by 10-36%.[Cummings et al., 2017; Kremer et al., 2017; Gonorazky et al., 2019; Frésard
et al., 2019; Lee et al., 2019; Maddirevula et al., 2020; Rentas et al., 2020; Murdock et al.,
2021] The bioinformatic methods and approaches used throughout the studies differed
considerably, but ultimately RNA-seq was used to find three different classes of events:
aberrant gene expression, aberrant splicing, and monoallelic expression of the rare allele.
The latter is also referred to as allelic imbalance.[Cummings et al., 2017; Mohammadi
et al., 2019] The proportion of classes detected in the studies differed, which can be
attributed to the underlying disease but also to the use of the methods. In addition,
Gonorazky et al. [2019] successfully used RNA-seq to call variants by identifying the
disease-causing variant previously missed by WES. The relevant methods and studies
(Fig. 1.4) are introduced and discussed within this work in the appropriate sections
(Section 2, 3, and 4, 6).
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Figure 1.4: Timeline of studies that advancing RN A-seq-based rare disease diag-
nostics. The timeline depicts the relevant studies in the field of RNA-seq-based
rare disease diagnostics together with their main contribution and methodology.
Out of the 9 studies 3 focused on the development of specialized methodologies
to detect aberrant events in RNA-seq data. The other 6 studies focused on using
RNA-seq to diagnose WES and WGS inconclusive cases. N: number of samples,
DR: diagnostic rate. Courtesy of Vicente Yépez.

1.6 Quantification of gene and splicing metrics

Gene expression quantification The simplest thing to do with RNA-seq is to quantify
gene expression. This essentially amounts to counting reads that are aligned within a
region in the genome. The region can be the gene body or only the exonic part of a
gene. As genes can overlap and reads can span multiple genomic features (e.g. exons)
or extent into the intron or even map to multiple regions, decisions have to be made
on how and what should be counted. Over the years multiple tools where developed
to quantify gene expression in RNA-seq data.[Li and Dewey, 2011; Anders et al., 2015;
Bray et al., 2016; Patro et al., 2017] Quantifying gene expression usually results in a
count matrix of size p x N where the rows are the genes or genomic features (p) and the
columns are the samples (V). Kallisto[Bray et al., 2016] and Salmon[Patro et al., 2017]
use the pseudoalignment and quasi-mapping idea where no alignment is needed and gene
expression is estimated by mapping parts of each read against a pre-build index based
on the transcriptome. To reduce noise and signal from premature mRNAs, reads that
overlap intronic parts or align to multiple loci are usually discarded by the traditional
methods.

Splicing quantification Compared to gene expression quantification where reads are
counted falling within the boundary of the gene or exon, splicing can be quantified in two
ways: (i) globally at the isoform level per gene or (ii) locally at the exon or intron level.
Regardless of the quantification methods, reads that span exon-exon boundaries, so
called split reads, are used mainly as evidence of splicing.[Sultan et al., 2008] Quantifying
isoforms is a challenging task because the short reads generated by RNA-seq usually can
not be uniquely assigned to an isoform. Therefore, heuristics or statistical models must
be applied to estimate isoform expression.[Li and Dewey, 2011; Trapnell et al., 2010;

10
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Figure 1.5: The exon- and intron-centric percent spliced in (1)) metric (a) The exon-
centric percent spliced in metric ¥ is defined as the number of reads supporting
exon inclusion as the fraction of the combined number of reads supporting inclu-
sion and exclusion.[Katz et al., 2010] It requires the gene model a priori to know
which split reads to consider. (b) The intron-centric 5’ percent spliced in value
(15) is calculated purely based on split reads as the number of reads supporting
the splicing event from D to A relative to the combined number of reads support-
ing splicing from D to any acceptor site A’. The splice-site-centric donor splicing
efficiency (65) uses the the non-spliced reads overlapping the donor site over the
full coverage at the donor, total number of split and non-spliced reads. The )3
and 3 is calculated analogously. The intron or splice site of interested is colored
in red and orange, respectively. Adapted from Katz et al. [2010] and Pervouchine
et al. [2013].

Roberts and Pachter, 2013; Patro et al., 2014, 2017] Alternative splicing can also be
quantified on the local level in an exon-centric view by calculating the inclusion of an
exon (Fig. 1.5a).[Katz et al., 2010; Tilgner et al., 2012] Katz et al. [2010] defined the
percent spliced in W value as the number of reads supporting exon inclusion as the
fraction of the combined number of reads supporting inclusion and exclusion. This
metric focuses on a particular splicing pattern, namely the skipping of a single exon.
This requires a priori knowledge of the gene model to identify the exon-exon boundaries
used for quantification. It also simplifies the biology of splicing by ignoring potentially
additional exon-exon boundaries.

An annotation-free quantification of splicing can be achieved with the intron-centric
splicing metrics 5’ and 3’ splicing index (5 and v3), also called 5’ and 3’ percent spliced
in, which is related to the percent spliced in value (Fig. 1.5b). Specifically, Pervouchine
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et al. [2013] define the intron-centric splicing metrics as:

s(D, A) = % and (1.1)
Us(D, A) = % (1.2)

where D is a donor site and A is an acceptor site. n(D,; A) denotes the number of
reads spanning the given intron from D to A. The summands in the denominators are
computed over all acceptors A" that spliced with the donor D of interest (Eq. 1.1) and
all donors D’ that spliced with the acceptor A of interest (Eq. 1.2) Assuming uniform
read coverage across the gene, one can estimate the exon-centric version as:[Pervouchine
et al., 2013]

@:%;%. (1.3)

The percent spliced in values only consider alternative splicing events and ignore by
design the splicing efficiency. Splicing efficiency is calculated by computing the ratio
of reads that were not spliced and hence align to both sides of a given splice site over
split reads similar to 15 and 13 (Fig. 1.5). Multiple related definitions exist including 3’
splice site ratio,[Khodor et al., 2011] completeness of splicing index,[Tilgner et al., 2012]
and percent intron retained.[Braunschweig et al., 2014] Pervouchine et al. [2013] defined
splice-site-centric splicing efficiency as:

Yy
%= 0D) s yu0, ) 14
0 = > p (D, A) (1.5)

n(A) + 3 p (D", A)’

where n(D) is the number of non-split reads spanning the exon-intron boundary of
donor D, and n(A) is defined as the number of non-split reads spanning the intron-exon
boundary of acceptor A.

1.7 Qutlier detection

Outlier detection is the process of finding observations in the data that are significantly
deviating from other observations. This process is also known as novelty detection or
anomaly detection. Over the last centuries many different methods and criteria for out-
lier classification have been proposed.[Chauvenet, 1863; Dean and Dixon, 1951; Grubbs,
1969; Cook, 1977; Hodge and Austin, 2004 As early as 1863, William Chauvenet pro-
posed the Chauvenet criterion that is based on defining a probability band in which
data points should be lying based on the normal distribution.[Chauvenet, 1863] This
is similar to the widely used z score approaches. Today outlier detection is an active
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research field and has practical use cases in many real world problems like credit card
fraud, machine failure in production pipelines, statistical research, and sport event anal-
ysis.[Zimek and Filzmoser, 2018] It is used mainly in two ways: (i) the detection of an
aberrant event in the data in order to remove it, learn from it, or act on it and (ii) to
robustly estimate distribution parameters by removing or downweighting the influence
of the outlier event, if present, on the model. These two classes are also called accommo-
dation methods and discordancy tests.[Barnett and Lewis, 1974] Since outlier detection
is based on an a priori specified distribution or model, one cannot be sure whether the
assumptions, and thus the underlying model, need to be changed or the observation is a
true outlier. Therefore, classifying an observation as an outlier is ultimately a subjective
task.[Collett and Lewis, 1976; Zimek and Filzmoser, 2018; Leys et al., 2019]

A simple and widely used approach to identify outliers is the usage of a z score cutoff.
This assumes that the underlying data is based on a normal distribution. z scores are
defined based on the mean Z and standard deviation o(z) of all observations and is
defined as:

(1.6)

Outlier data points are then identified by choosing a cutoff that is usually 2 or 3 standard
deviations away from the mean (|z;| > 2 and |z;| > 3, respectively). However, this
is a subjective and arbitrary definition with no assessment of the significance of the
respective event. Alternative ways that assesses the significance of an outlier exists like
the Grubbs test[Grubbs, 1969] or Dixon’s Q test.[Dean and Dixon, 1951] Further, in
differential gene expression analysis, to obtain robust estimates, suspect observations
are completely excluded during model fitting based on Cook’s distance[Love et al., 2014]
or their influence on the model is reduced with weights based on Pearson residuals.[Zhou
et al., 2014]

When measuring gene expression data across samples, outlier data points can be de-
fined on the gene level across the samples or as a whole for a given sample across all
genes. This refers to the difference between univariate and multivariate outlier detection,
respectively. While the multivariate case is interesting for testing whether an experi-
ment has failed for a given sample, the univariate case is interesting for the use in rare
diseases where only a single event is expected in a given sample, while the majority
of the remaining genes are assumed to have similar expression levels compared to the
population. Even though, outliers are detected in both cases, the underlying methods
differ. While outliers in the univariate case are detected as values that differ signifi-
cantly from a robust central tendency estimator (the mean in the case of z scores), an
ellipse in the 2-dimensional space or a complex multidimensional cloud in a high di-
mensional space has to be modeled before the outlier can be detected.[Cousineau and
Chartier, 2010; Leys et al., 2019] To calculate the distance of a given data point in a
multidimensional space to the centroid, a cloud defined by the majority of observations
in the data, the Mahalanobis distance is often used.[Mahalanobis, 1930; Leys et al.,
2019; Filzmoser and Gregorich, 2020] Similar to the z score, the Mahalanobis distance

13



1 Introduction

does not provide an assessment of the significance of the finding. To assess this, empir-
ical P values need to be calculated, as recently done by Ferraro et al. [2020] to detect
splice outliers. Alternatively, if the underlying data of each variable follows a Student’s
t distribution, Hotelling’s T-squared distribution (7) can be used to detect outliers in
a multidimensional space.[Hotelling, 1931]

1.8 Autoencoders

An autoencoder is an artificial neural network that is used to learn efficient encodings of
high dimensional data. By learning a small and compressed representation of the data,
also called the latent space or encoding, it extracts essential features. Thus, it can be
used for dimensionality reduction. Autoencoders were introduced around 1990 by Lecun
[1987]; Bourlard and Kamp [1988]; Hinton and Zemel [1994]. The autoencoder has to
sides, the encoder which maps the input data to the representation and a decoder which
reconstructs the data using the compressed representation (Fig. 1.6a). Specifically an
autoencoder is defined by the two functions:

fo: X — H,and (1.7)
Jor H — X, (18)

where X is the input matrix, H the latent space, and X the reconstruction. The param-
eters # and ' of the encoder and the decoder, respectively, are optimized by minimizing
the reconstruction error. To force the autoencoder to learn a true representation in-
stead of the identity matrix, the latent space is usually magnitudes smaller than the
input, which represents the so called bottle neck. The encoder and decoder can each be
composed of multiple layers with non-linear function and hence is in principle capable
of learning representations for high dimensional and complex data. Thus, autoencoders
and its variations can be applied to various data types from language processing,|Grozdic
and Jovicic, 2017] image processing,[Dai and Wang, 2018| object detection,[Park et al.,
2018a] and biometric recognition.[Yu et al., 2018] As example, Way and Greene demon-
strated that autoencoders can be used to extract meaningful biological features from
gene expression data.[Way and Greene, 2018]

Denoising autoencoders Initially, autoencoders were used to learn compressed rep-
resentations in an unsupervised fashion. But recent research showed that they can be
used to reconstruct or denoise input data. By adding noise to the input data before
mapping it to the latent space, autoencoders are trained to recover the original data by
removing the noise (Fig. 1.6b).[Vincent et al., 2008] This subclass of autoencoders are so
called denoising autoencoders. Noise functions can be arbitrary, but three types of noise
are usually applied depending on the use case: (i) adding Gaussian noise, (ii) masking

8Arden Dertat, Oct 3, 2017; Accessed on 29. April 2021: https://towardsdatascience.com/applied-
deep-learning-part-3-autoencoders-1c083af4d 798
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Figure 1.6: Schematic architecture of a (denoising) autoencoder. (a) Usage of a
simple autoencoder to learn the encoding of numbers. The input (X) is mapped
with the encoder (fp) to the latent space (H) and reconstructed to X by the
decoder (gp). (b) Adding noise to the input before mapping it to the latent
space turns the autoencoder into a denoising autoencoder. In both approaches,
the parameters of the encoder and decoder are optimized by minimizing the error
between the original input and the reconstruction (L(X,X)). Adapted from
Arden Dertat® with input from Stefan Loipfinger.

a fraction of data points by setting them to zero, and (iii) setting a fraction of data
points to their minimum or maximum at random, which is known as salt-and-pepper
noise.[Vincent et al., 2010] In single cell genetics, Eraslan et al. [2019] and Badsha et al.
[2020] showed successfully how such denoising autoencoders can be applied to denoise
gene expression data and to impute missing values.

1.9 Aims and scope of this thesis

The overall aim of this thesis is to improve the genetic diagnosis of rare diseases through
the detection of aberrant events in RNA-seq data. The contribution of my work is four-
fold: (i) a systematic evaluation of the utility of RNA-seq in rare disease diagnostics,
(ii) the development of a robust gene expression outlier detection method, (iii) the
development of a robust aberrant splicing detection method, and (iv) the finding of new
disease-causing events in 3 cases leading to a molecular diagnosis.
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1 Introduction

Systematic evaluation of the utility of RNA-seq in rare disease diagnostics. At the
beginning of this work, RNA-seq was used mainly in clinical studies as validation or in
single-gene studies. But a systematic evaluation of its utility for rare disease diagnostics
in general and for WES or WGS inconclusive cases in particular, was missing.

Therefore, together with my colleagues, I investigated the usability of RNA-seq in
rare disease diagnostic, by developing tools to detect aberrant gene expression, aberrant
splicing events and mono-allelic expression (MAE) of the alternative allele. By providing
5 new genetic diagnoses in WES inconclusive cases, I proved its power and complemen-
tarity to WES and WGS. Further, I showed that weak splicing is a frequent cause of
aberrant expression of cryptic exons caused by rare variants effecting splicing.

Detection of aberrant gene expression with OUTRIDER As RNA-seg-based rare
disease diagnostic is a relative new research field, no specialized method existed to de-
tect gene expression outliers. As the first part of this work highlighted together with
other studies the need for robust detection methods, I, together with Felix Brechtmann
and Agné Matuseviciuté, developed OUTRIDER (OUTlier in RNA-seq fInDER), an
autoencoder-based gene expression outlier detection method to fill this gap. To eval-
uate OUTRIDER, I developed new benchmark strategies using the Genotype-Tissue
Expression (GTEx) dataset.[The GTEx Consortium et al., 2015]

Detection of aberrant splicing events with FRASER The initial studies, which used
RNA-seq to detect aberrant splicing, highlighted the needs for improved outlier detec-
tion. In particular, it became evident that splicing data must be controlled for con-
founding effects and that intron retention has to be taken into account.

To this end, together with Ines Scheller, I developed FRASER (Find RAre Splicing
Events in RNA-seq), which follows the same principles of OUTRIDER. It uses an au-
toencoder to control the data for confounders and uses a beta-binomial (BB) distribution
to identify aberrant splicing events. Again I developed benchmarking strategies utilizing
the GTEx dataset.[The GTEx Consortium et al., 2015]

Solving WES inconclusive cases using RNA-seq While being developed, OUT-
RIDER and FRASER were continuously applied on new incoming data. This provided
in total over 40 new diagnoses over the last years. The result of this ongoing study
was published recently by Vicente Yépez, Mirjana Gusic, and colleagues.[Yépez et al.,
2021a] In this part, I will highlight some interesting cases, to showcase the importance
and complementarity of RNA-seq in rare disease diagnostics.
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2 Exploring the utility of RNA
sequencing in rare disease diagnosis

With rare disease research, we are not following a well-trodden
path; we’re making the path. There is usually no effective
standard of care and no drug has gone through the requlatory
process.

Phil Vickers, Ph.D., 2015

The methodology, results, and figures presented in this chapter are part of the
manuscript “Genetic diagnosis of Mendelian disorders via RNA sequencing” from Kre-
mer et al. [2017]. The author’s contributions are included in it. In short, I performed
the splicing analysis, weak splice site modelling and mono-allelic expression analysis
with the help of Daniel Bader and the supervision of Julien Gagneur.

2.1 Motivation

Over the last decade, the NGS technology transformed the way diagnostics is done in
the field of Mendelian disorders by increasing the diagnostic yield and by accelerating
discovery of novel disease genes.[Boycott et al., 2017; Neveling et al., 2013] Sequencing
the full coding part of the genome in a high throughput manner allowed to pinpoint the
causing variant in 25-50% cases.[Neveling et al., 2013; Wortmann et al., 2015; Wright
et al., 2018b; Retterer et al., 2016] Despite this immense success, it also means that
50-75% of the cases are still missing a genetic diagnosis after initial WES. Even though
WES might detect the disease-causing variant, the variant is often not prioritized due
to the labeling as a VUS!. VUS classification is not the only reason a WES can be
inconclusive. Current challenges include variant detection, predictive power of sequence-
based algorithms, prioritization, and interpretation. As WES only covers 2% of the
genome WGS can in principle overcome some shortfalls of WES by detecting most of
the variants in the genome. But due to the sheer amount of variants WGS is revealing
and our limitations in predicting the effect of and interpreting variants in non-coding

TA variant of unknown significance is defined as a variation in a genetic sequence for which the
association with disease risk is unclear. https://www.cancer.gov/publications/dictionaries/
genetics-dictionary?cdrid=556493
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regions, WGS did not increase much the diagnostic yield over WES.[Taylor et al., 2015;
Clark et al., 2018; Mattick et al., 2018]
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Figure 2.1: Strategy for genetic diagnosis using RINA-seq. The approach we followed
started with RNA-seq of fibroblasts from unsolved WES patients. Three strate-
gies to facilitate diagnosis were pursued: Detection of aberrant expression (for
example, depletion), aberrant splicing (for example, exon creation) and mono-
allelic expression of the alternative allele (for example, A as alternative allele).
Candidates were validated by proteomic measurements, lentiviral transduction of
the wild-type (wt) allele or, in particular cases, by specific metabolic supplemen-
tation. Taken from Kremer et al. [2017].

With this study, we aimed to overcome some of the limitations of the solely sequence-
based approaches by probing functional consequences of genetic variants using RNA-
seq. As RNA-seq captures gene expression, splicing patterns, as well as allele specific
expression, it is complementary to the WES and WGS approaches and can directly
help to interpret the effect of a given variant and can even pinpoint the underlying
pathomechanism in some cases. Here, we focused on three extreme situations to prioritize
putative disease-causing genes for rare diseases (Fig. 2.1): (i) aberrant gene expression
levels, where the gene counts lie outside the normally observed range, (ii) aberrant
splicing events, where e.g. a cryptic exon is aberrantly expressed due to a deep-intronic
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2.2 Evaluating RNA-seq based diagnostics in a mitochondrial disease cohort

SNV, (iii) MAE of the allele harbouring the rare variant, where the other allele can be
silenced due to e.g. a heterozygous deleterious variant in the promotor region leaving
only the observed allele expressed.

2.2 Evaluating RNA-seq based diagnostics in a
mitochondrial disease cohort

By the time I started my PhD in 2016, RNA-seq was not yet evaluated in a systematic
study nor its power in facilitating molecular diagnosis was accessed. Even sophisticated
tools to detect aberrant events in RNA-seq data did not exist. Hence, we considered
investigating the power of RNA-seq for molecular diagnosis with a panel of patients
diagnosed with a mitochondrial disorder and to prototype tools to guide the diagnosis.
We started our study with a mitochondrial disease cohort as it has three advantages for
such a pilot study: (i) collectively it represent one of the most frequent inborn errors of
metabolism affecting 2 in 10,000 individuals,[Gorman et al., 2016] (ii) the broad range of
unspecific clinical symptoms and the genetic diversity in mitochondrial diseases makes
molecular diagnosis difficult with more than 300 disease-causing genes and WES often
resulting in VUS,[Mayr et al., 2015; Wortmann et al., 2017] (iii) the access to fibroblast
cell lines in the patient cohort and the ease to validate candidate variants by perturbation
and complementation assays in fibroblasts.[Haack et al., 2010].

For this pilot study, we selected 105 patients with suspected mitochondrial disease in
whom fibroblast cell lines were available. In 48 times of these cases, the WES was incon-
clusive and failed to provide a genetic diagnosis. The other 57 cases received a molecular
diagnosis after WES and were included in the study to validate the performance and
demonstrate the added value of RNA-seq. In short, the 119 fibroblast cell lines from
the 105 cases included 6 controls and 8 replicates were subjected to non-strand specific,
polyA-enriched RNA-seq. After initial RNA isolation and quality controls, the library
was prepared as described in the Low Throughput protocol of the TruSeq RNA Sample
Prep Guide (Illumina). The RNA libraries were then sequenced as 100 bp paired-end
runs on an Illumina HiSeq2500 platform. After demultiplexing, the FASTQ files were
mapped against the hgl9 genome assembly|[Casper et al., 2018] with STAR[Dobin et al.,
2013] (version 2.4.2a). To increase the detection of novel introns and gene fusions the
following two parameters were changed from the defaults: chimSegmentMin = 20 and
twopassMode = Basic. The downstream analysis was restricted to properly aligned read
pairs (read mates from opposite strands), the standard chromosomes 1-22, X, Y, and M,
as well as to the 27,682 UCSC Known Genes.[Hsu et al., 2006] A more detailed descrip-
tion of the method can be found in Kremer et al. [2017]. In the this thesis, this datasets
will be referred to as the Kremer dataset.

The next sections describe in detail the three strategies we developed and then used to
systematically prioritize potential disease-causing genes in RNA-seq data: (i) detection
of aberrant gene expression levels (2.2.1); (ii) detection of aberrant splicing patterns
(2.2.2); (iii) detection of mono-allelic expression of an alternative rare variant (2.2.3).
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2 Exploring the utility of RNA sequencing in rare disease diagnosis

The sections are divided into two parts, the first describing the methodology and meth-
ods, followed by the second describing the results.

2.2.1 Detection of aberrant gene expression levels

The aberrant expression analysis was mainly performed by Daniel Bader and described
in Kremer et al. [2017]. Nevertheless, I will include it in this thesis for completeness.

Starting with the binary alignment map (BAM) files, we considered any read pair
that overlapped completely a given gene body on either strand orientation. We
used the summarizeOverlaps function provided by the R/Bioconductor GenomicAlign-
ments[Lawrence et al., 2013] package to extract the gene count k;; of the gene j = 1,...,p
in sample ¢ = 1,..., N. While counting the reads, we used the following parameter
settings: mode = intersectionStrict, singleEnd = FALSE, ignore.strand = TRUE, and
fragments = FALSE. In order to remove noisy, non-expressed, and non-detected genes,
we filtered out genes, if their 95" percentile of fragment counts across all samples were
below 10. After quality control, we identified 12,680 transcribed genes in 119 RNA-seq
samples (Fig. A.2) and got a gene count matrix k with the dimension p x N. Hierarchi-
cal clustering of the resulting count matrix revealed three top level clusters that could
not be linked to any biological or technical properties of the samples. Therefore, we
considered them as technical variation of unknown origin (Fig. A.3). As the samples
were taken from different body parts, we corrected additionally the counts using the
5 most viable HOX genes as they are important regulators in the development of the
human body parts.[Lewis, 1978]

To detect aberrant gene expression levels, we adapted the methodology from DE-
Seq2[Love et al., 2014] an R/Bioconductor package developed for the purpose of dif-
ferential gene expression analysis. Instead of comparing two groups of samples as it is
done in differential gene expression, we compared one individual against the rest of the
cohort. Specifically, we modelled the read count k;; with a generalized linear model:

Kij ~ NB(Sl X qij, Oéj)

_ 10 condition ,condition batch ,batch sex . .sex hox _hox
10g2<qij>_6j+ j Lij 2 A7 S i O I 7 e i O I

(2.1)

with NB being the negative binomial distribution, «; the dispersion parameter of gene
7, s; the size factor of sample 7, and B;-) the intercept parameter for gene j. The value of
xf;-’ndition was set to 1 for all RNA samples i of the case of interest, thereby allowing for
biological replicates, and 0 otherwise. The resulting value 5{°"%"" represents the log,-
fold change of gene j for a given case against all others. The z scores were computed by
dividing the fold changes by the standard deviation of the normalized expression levels of
the respective gene. Finally, the negative binomial P values were corrected for multiple
testing per sample using Hochberg’s family-wise error rate (FWER) method.[Hochberg,
1988]

Overall, only a few aberrant gene expression events were detected. More specifically,
1 event was detected in median, whereas 90% of samples had < 10 events and only 4
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2.2 Evaluating RNA-seq based diagnostics in a mitochondrial disease cohort

samples had > 100 events with a large effect (|z score| > 3) and significant differential
expression (Hochberg adjusted P value < 0.05, Fig. 2.2). Among the most aberrantly
expressed genes across th WES inconclusive cases, we found 2 genes encoding mito-
chondrial proteins, MGST1 (one case) and TIMMDC1 (two cases) to be significantly
down-regulated (Fig. 2.2b—d). In each case, WES did not identify any variants in the re-
spective gene that could explain this down-regulation. Quantitative proteomics was used
to validate but also evaluate the consequences of the down-regulation. Patient #73804
showed ~ 2% of control MGST1 level, whereas the lack of detection of TIMMDCI1 in
both patients (#35791 and #66744) confirmed an even stronger effect on protein ex-
pression, indicating loss of function (Kremer et al. [2017] Fig. 2e and supplemental Fig.
4).

MGST1, a microsomal glutathione S-transferase, is involved in the oxidative stress
defense.[Lee et al., 2008] Despite the fact that WES and subsequent WGS analysis
failed to detect a rare variant in MGST1 that could explain the effect at the RNA and
protein level, it provides the likely cause of the infantile-onset neurodegenerative disor-
der.[Holzerova et al., 2016] The evidence of down-regulation of MGSTI even suggests
treatment with antioxidants.

Both cases with the aberrant down-regulation of TIMMDC'1 presented with muscular
hypotonia, developmental delay and neurological deterioration, which led to death in
the first 3 years of life. Quantitative proteomics analysis showed not only the lack of
TIMMDC1 but also reduction of complex I sub units in fibroblasts, which is consistent
with the described function of TIMMDCI1 as a respiratory chain complex I assembly
factor.[Guarani et al., 2014; Andrews et al., 2013] In addition, we were able to increase the
levels of complex I sub units through re-expression of TIMMDC1 wildtype. Altogether,
this underlines the disease-causing effect of TIMMDC1-deficiency and the important role
of TIMMDCT in the assembly of the complex I. The identification of homozygous deep
intronic rare variants in TIMMDC1 in both cases through the analysis of the RNA-seq
data let us to the aberrant splicing analysis.

2.2.2 Detection of aberrant splicing

We followed the same idea as in the aberrant gene expression analysis (Section 2.2.1).
We adapted LeafCutter, which was developed to detect differential splicing,[Li et al.,
2018] to find aberrant splicing events in RNA-seq data by testing each patient against
the rest of the cohort. Leafcutter is designed as an annotation-free algorithm and as
such can detect splice sites de novo. But due to this design of only looking at split
reads, LeafCutter is intrinsically blind to intron retention events and therefore we put
our focus on alternative splicing in this analysis. First, we modified the split read
counting and clustering parameters in order to detect rare clusters, capture local gene
fusion events and to detect sample-specific introns. Specifically, we used minclureads
= 30, mazintronlen = 500,000, and mincluratio = 1e-5. After filtering and cluster-
ing of the split read counts, each sample was tested against the rest of the cohort us-
ing min_samples_per_group = 1 and min_samples_per_intron = 1. Finally, the resulting
Dirichlet-Multinomial-based P values were corrected for multiple testing per sample us-
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2 Exploring the utility of RNA sequencing in rare disease diagnosis

Aberrantly expressed genes

-Log,, nominal P -value

Figure 2.2: Aberrant expression detection in RNA-seq data. (a) Aberrantly expressed
genes (Hochberg corrected P value < 0.05 and |Z-score| > 3) for each patient
fibroblasts. (b) Gene-wise RNA expression volcano plot of nominal P values (-
log1p P value) against Z-scores of the patient #35791 compared against all other
fibroblasts. Z-scores with absolute value > 5 are plotted at +5, respectively. (c)
Same as b for patient #73804. (d) Sample-wise RNA expression is ranked for the
genes TIMMDCI1 (top) and MGST1 (bottom). Samples with aberrant expression
for the corresponding gene are highlighted in red (#35791, #66744, and #73804).

ing Hochberg’s FWER method.[Hochberg, 1988] As LeafCutter is reporting the P value
on the cluster level and does not perform any classification of the event, we inspected
manually all significant splicing events (Hochberg adjusted P value < 0.05) of the 48
undiagnosed cases and classified them as exon skipping, exon truncation, exon elon-
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2.2 Evaluating RNA-seq based diagnostics in a mitochondrial disease cohort

gation, new exon, complex splicing (any other splicing event or a combination of the
aforementioned ones), and false positives.

Applying our adaptation of LeafCutter for rare diseases resulted in a median of 5
abnormal events per sample, whereas 90% of samples had < 16 events and only 4
samples had > 100 events (Hochberg adjusted P value < 0.05, Fig. 2.3a). A total
of 189 aberrantly spliced genes were detected in the 48 undiagnosed cases, with exon
skipping and differential expression being the main cause of aberrant splicing followed
by the creation of new exons, while LeafCutter incorrectly predicted aberrant splicing
in 14 cases (Fig. 2.3b). Searching for genes encoding mitochondrial proteins, we found
CLPP and TIMMDC1 among the 20 most significant aberrantly spliced genes. In the
case of CLPP #58955 showed an exon-skipping event, where 82 out of 136 split reads
skipped exon 5, while 14 additional reads truncated exon 5 on the 3’ end, resulting
in 13 = 29.4% wildtype CLPP (3’ percent spliced in[Pervouchine et al., 2013]). The
likely genetic cause of these two splice defects is a rare homozygous variant in exon 5 of
CLPP affecting the last nucleotide of exon 5 (¢.661G>A, p.Glu221Lys, 2.6 x 10~° minor
allele frequency (MAF) with only heterozygous variant states reported in the gnomAD
database[Karczewski et al., 2020]). Both the exon skipping and exon truncation event
result in truncated CLPP and western blots corroborated the complete loss of full-length
CLPP (Kremer et al. [2017] Supplementary Fig. 5 and 11). Initially this variant was
classified as VUS and was only as candidate gene reported among 30 other potentially
bi-allelic candidate genes. Only with this additional information on a functional level
through the splicing analysis and the confirmed loss of expression by western blotting
provides enough evidence to reclassify this variant as disease causing. In top of this,
CLPP encodes a mitochondrial ATP-dependent endopeptidase[Halperin et al., 2001]
and CLPP-deficiency causes Perrault syndrome[Jenkinson et al., 2013, 2012] (OMIM
#601119) which is overlapping with the clinical presentation of the patient investigated
here including microcephaly, deafness and severe psychomotor retardation. Moreover,
a study published around the same time showed that Clpp-/- mice are deficient for
complex IV expression,[Szczepanowska et al., 2016] in line with complex IV deficiency
of this patient.

As TIMMDC1 was already found as aberrantly expressed gene, the splicing analysis
provided additional information on the pathomechanism of this event. In both cases,
the RNA-seq analysis revealed that primarily a TIMMDC1-isoform was expressed that
included a new exon deep in intron 5 (Fig. 2.3¢). This new exon introduces a frameshift
yielding a premature stop codon (p.Gly199_Thr200ins5*, Fig. 2.3d). Moreover, this
new exon contained a rare variant (c.596+2146A>G) not listed in the 1,000 Genomes
Project[The 1000 Genomes Project Consortium, 2015] nor in gnomAD.[Karczewski et al.,
2020] We used Sanger sequencing to validate the presence of the homozygous variant in
each case. WGS did not identify any other rare variant in and around TIMMDC1 but
confirmed the new variant 6bp inside the new exon. Only 2 out of 6 splicing prediction
tools predicted an impact of this variant on splicing.[Piva et al., 2012; Dogan et al., 2007;
Timmermans et al., 2010; Desmet et al., 2009; Yeo et al., 2004b; Burge and Karlin, 1997]
Specifically, SpliceAid2 predicted multiple binding sites for splice enhancers, |[Piva et al.,
2012] while SplicePort predicted the usage of the new acceptor and donor sites (feature
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Figure 2.3: Aberrant splicing detection and quantification. (a) Aberrant splicing

events (Hochberg corrected P value < 0.05) for all fibroblasts. (b) Aberrant
splicing events (n = 175) in undiagnosed patients (n = 48) grouped by their splic-
ing category after manual inspection. (c¢) TIMMDCI sashimi plot of a cryptic
exon creation event in TIMMDC1-affected and TIMMDC1-unaffected fibroblasts
(red and orange, respectively). The RNA coverage is given as the log;g RPKM-
value and the number of split reads spanning the given intron is indicated on the
exon-connecting lines. At the bottom the gene model of the RefSeq annotation
is depicted and the aberrant event is coloured in red. (d) Coverage tracks (light
red) for patients #35791, #66744, and #91324 based on RNA and WGS. For
patient #91324 only WGS is available. The homozygous SNV ¢.596+2146>4G
is present in all coverage tracks (vertical orange bar). The top tracks show the
genomic annotation: genomic position on chromosome 3, DNA sequence, amino
acid translation (grey, stop codon in red), the RefSeq gene model (blue line),
the predominant additional exon of TIMMDC1 (blue rectangle) and the SNV
annotation of the 1000 Genomes Project (each black bar represents one variant).
Adapted from [Kremer et al., 2017].

generation algorithm score 0.112 and 1.308, respectively). [Desmet et al., 2009] A reeval-
uation of our in-house WGS database revealed another case with the same homozygous
variant. In this family three affected siblings presented with similar clinical symptoms
although without a diagnosis of a mitochondrial disorder (Fig. 2.3d). Two siblings died
before the age of 10 while the youngest brother (#96687) was still alive at age of 6. The
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2.2 Evaluating RNA-seq based diagnostics in a mitochondrial disease cohort

discovery of the same intronic TIMMDC'1 variant in three unrelated families from three
different ethnic groups with similar clinical presentations together with the detected
splicing defects in RNA-seq provide convincing evidence for the causality of this variant
for TIMMDCT loss of function.

2.2.3 Mono-allelic expression

To detect MAE, we started with the variant calls from WES data. We applied the
same variant filters as described in Kremer et al. [2017]. In order to get a full picture
of MAE, we selected only heterozygous SNVs and did not apply any variant frequency
filter. We filtered out any SNV where multiple alleles at the same position was detected
to reduce noisy calls. For all remaining SNVs, we used the pileLettersAt function from
the R/Bioconductor package GenomicAlignments|Lawrence et al., 2013] to extract the
RNA-seq coverage. After counting, we discarded any variant that was not covered by
at least 10 reads. Then, we used the DESeq2 package[Love et al., 2014] to assess the
significance of the allele-specific expression. To this end, we compared within each
sample the coverage of the wildtype allele with the coverage of the alternative allele. For
simplicity, we treated each SNV as independent event and ignored the fact that some
variants could be in linkage. Specifically, we used a generalized linear model per sample
to fit k;;, the number of reads of the variant j in condition i € {wildtype, alternative},
as:
kij ~ NB(s; X ¢i5, )

_ 0 allele allele
log,(gij) _ﬂj + 07X

(2.2)

where NB is the negative binomial distribution and s; is the size factor of the condi-
tion. We set a global dispersion parameter to a = 0.05, which resembles the average
dispersion value based on the aberrant expression analysis (Section 2.2.1). f] is the
intercept parameter for variant j, while x?}lele was set to 1 for the alternative allele and
0 for the wildtype allele. The resulting B?Hele represents the logs-fold changes for the
alternative allele against the reference allele. Due to our DESeq2 design, we disabled
the independent filtering (independentFiltering = FALSE) to keep all variants in the re-
sult table independent of their coverage. Each variant was classified as mono-allelically
expressed if | Bj“ele] > 2, which corresponds to an allele frequency > 0.8, and was said to
be significant if it had a multiple testing corrected P value < 0.05. We controlled for the
false discovery rate (FDR) per sample across all variants with the Benjamini-Hochberg
method.[Benjamini and Hochberg, 1995]

Screening for MAE in the 85 samples with matching WES and RNA-seq, we found
per sample in median 34,064 heterozygous SNVs detected by WES. In median, 7,529 of
them passed our RNA-seq coverage filter (coverage > 10), while only 20 showed MAE
(FDR adjusted P value < 0.05 and allele frequency > 0.8), of which 6 were rare variants
(MAF < 0.001 (Fig. 2.4a). The MAE analysis 610 events in total for 85 samples, but
did not reveal any extreme outlier sample as happened in the aberrant expression and
splicing analysis; 25 of rare MAE events in one sample was the maximum. Amongst the
18 rare MAE events in patient #80256, the VUS in ALDH18A1 caught our attention
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Figure 2.4:

RNA fold change

Detection of mono-allelic expression of rare variants. (a) Distribution of
heterozygous SNVs across samples for different consecutive filtering steps. Het-
erozygous SNVs detected by WES (black), SNVs with RNA-seq coverage of > 10
reads (grey), SNVs with an alternative allele frequency > 0.8 and a Benjamini-
Hochberg corrected P value < 0.05, blue), and subsetted to rare SNVs (ExAC
MAF < 0.001, red). (b) Fold change between alternative (ALT+1) and refer-
ence (REF+1) allele read counts for the patient #80256 compared to total read
counts per SNV within the sample. Points are coloured according to the groups
defined in a. (c) RNA fold changes plotted against protein fold changes for case
#80256. The position of ALDHI18A1 is highlighted. Reliably detected proteins
that were not detected in this sample are shown separately with their correspond-
ing RNA fold changes (points below solid horizontal line). (d) Intron retention
for MCOLNT1 in patient #62346. Tracks from top to bottom: genomic position
on chromosome 19, amino acid translation (red for stop codons), RefSeq gene
model, coverage of WES of patient #62346, RNA-seq based coverage for patients
#62346 and #85153 (red and orange shading, respectively). SNVs are indicated
by non-reference coloured bars with respect to the corresponding reference and
alternative nucleotide. Adapted from Kremer et al. [2017].

(c.1864C>T, p.Arg622Trp, Fig. 2.4b). ALDH18A1 encodes an enzyme involved in mi-
tochondrial proline metabolism.[Adams and Frank, 1980] This particular VUS had been
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picked up by WES in conjunction with a nonsense variant (¢.1988C>A, p.Ser663*, Fig.
2.4b). Because at the time of the WES analysis ALDH18A1 was associated only with
curtis laxa IIT (OMIM #138250),[Baumgartner, 2000; Fischer-Zirnsak et al., 2015] which
the patient did not present, the compound heterozygous variants were not followed up.
Due to the re-prioritization through the MAE analysis, we investigated the causality
of the ALDH18A1 variants. Quantitative proteomics showed almost complete loss of
functional ALDH18A1 (~ 2% of normal ALDH18A1 protein abundance, Fig. 2.4c¢) high-
lighting the potential effect of the rare VUS on the protein abundance. Metabolomics
profile of blood plasma was in accordance with a defect in proline metabolism (Kremer
et al. [2017] Fig. 4d) and the following changes in urea cycle. In addition, we were able
to rescued the growth rate of the fibroblasts through supplementation of proline, link-
ing the impaired proline metabolism to the detected MAE variants. Finally, in another
study, ALDH18A1-deficiency was linked to spastic paraplegia without cutis laxa (OMIM
#138250),[Coutelier et al., 2015] matching the patient’s clinical presentations validating
these ALDH18A1 variants as disease-causing.

While lowering the filtering thresholds and combining the information from the three
analysis to find even more candidates, we noticed MCOLN1 in case #62346. As the most
down-regulated gene in case #62346, it was not prioritized with our stringent cutoffs
despite its reduced expression level (paq; = 0.065 and z score = —2.97). In addition, the
MAE analysis revealed two rare variants in a true compound heterozygous state, one
expressing the reference allele (12 REF vs 1 ALT reads, ¢.832C4T, p.GIn278*) and the
other expressing the alternative allele (1 REF vs 10 ALT reads, ¢.681-19A>C) indicating
that only one allele is expressed. Due to the low coverage, both events did not reach
significance but were prioritized due to their extreme allele frequencies (0.08 and 0.91,
respectively). The loss of expression of one allele is probably due to nonsense-mediated
decay as response to the nonsense variant. Further investigation of the intronic variant
showed that it was part of an intron retention that introduced a nonsense codon (p.
Lys227_Leu228ins16*, Fig. 2.4d). The compound heterozygous variants were initially
missed by WES analysis because the intronic variant was classified as VUS, although
mucolipidosis (OMIM #605248),[Sun, 2000] an associated phenotype of MCOLN1, was
matching the patient’s clinical presentation. Also additional enzymatic tests available
at the time for mucolipidosis types I, II, and III did not show any enzyme deficiency
in blood leukocytes. In contrast to WES, RNA-seq enabled the detection of the two
loss-of-function alleles in MCOLN1 and therefore established the genetic diagnosis in
patient #62346.

2.3 Weak splicing

It is already known that cryptic splice sites are actively expressed at low levels and
that they can be activated by a single point mutation.[Kapustin et al., 2011] This is
inline with our observation in all non-TIMMDC1 deficiency samples as they expressed
in low levels the intron-junction to and from the new cryptic exon that is activated by
a SNV (Fig. 2.3c). To systematically assess this phenomenon of cryptic splice sites and
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their linkage to cryptic exons in a genome-wide fashion, we modelled all intron-centric
Y (percent spliced in) values [Pervouchine et al., 2013]. To this end, we only considered
reads spanning an exon-exon junction, so called split reads, with a mapping quality of
> 10 to reduce the false-positive rate due to mapping issues. The intron-centric 5 and
13 values were computed according to Eq. 1.1 and 1.2 as described by Pervouchine
et al. [2013] across all samples for a given dataset. By modelling the distribution of
the 1 values with three components, we classified the splice sites into: background,
weak, and strong. To link the introns to a specific category, we used the annotation
status provided by GENCODE.[Harrow et al., 2012] We used GENCODE release 24
to group the introns into: (i) both sites annotated where both splice sites of the given
intron are present in GENCODE, (ii) one site annotated where only on of the sites are
annotated in GENCODE;, and (iii) no side annotated where neither of the splice sites are
annotated in GENCODE. We specifically modelled the number of split reads n(D, A) of
a intron conditioned on the total number of reads N(D, A) = >, n(D, A’) for ¢5 and
N(D,A) =>",n(D', A) for ¢ as:

P(D(DaA)|N(D7A)) = Z Z 71'c,sBB (D(D7A)|N(D7A)7O‘c;ﬁc) ) (23)

ce{bg,wk,st} s€{0,1,2}

where c is the component index, s the number of annotated sites (group index) and BB
the beta-binomial distribution. Hence, the components were modelled to have the same
parameters o, and [, in all three groups but their mixing proportions 7. s to be group-
specific. Fitting was performed using the expectation-maximization (EM) algorithm.
For the initial step, the data points were classified as background (¢ < 0.001), weak
spliced (0.001 < ¢ < 0.1) and canonical (¢ > 0.1). After convergence of the clustering
the obtained parameters were used to estimate the probability for each side of the
intron to belong to a given class. In order to validate our findings from the Kremer
dataset, we applied the same algorithm to each tissue of the genotype-tissue expression
(GTEx) dataset (V7).[The GTEx Consortium et al., 2015] As the GTEx dataset includes
more than 12,000 postmortem RNA-seq samples from 714 assumed healthy donors from
different origins over 53 different tissues, it servers as a good reference for the expected
expression levels. A more detailed summary of the GTEx dataset can be found in Section
3.2.

In the Kremer dataset, we computed genome-wide the 15 and 3 values for the
1,603,042 observed splicing events in 119 RNA-seq samples after quality filtering. Mod-
elling the v distribution resulted in the classification of splicing events to be strong, weak,
and background in 20%, 16%, and 64% of the events with the 1) boundaries v > 5.29%,
0.16% < ¥ < 5.29%, and < 0.16%, respectively (Fig. 2.5 and A.5a-b). Looking at the
average In-likelihood of our fit confirms that our EM algorithm converged within 250
iterations (Fig. 2.5¢). Using these classifications, we looked at all detected private exons
and discovered that 17 out of the 24 events (70% which is 4.4-fold more than by chance)
originated from weak splice sites (Fig. 2.5 bottom). To confirm these results in a healthy
cohort, we used the GTEx dataset and run the same analysis. The global 1) distribution
shifted for all groups slightly towards higher ¢ values compared to the Kremer dataset
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Figure 2.5: Weak splicing leading to cryptic exons. Percent spliced in (¥) distribution
for different splicing classes and genes. Top: histogram of the genome-wide dis-
tribution of both 5 and 3 values based on all reads over all samples. Middle:
The shaded horizontal bars represent the densities (black for high density) of the
background, weak and strong splicing class, respectively. Bottom: 1 values of
the predominant donor and acceptor splice sites connecting cryptic exons (aber-
rantly expressed in at most two samples) computed over all other samples. The
dashed lines represent the lower and upper boundaries for the weak splicing class.
Adapted from Kremer et al. [2017].

(Fig. 2.6a-c). The most notable change was in the no side annotated group from an
unimodal towards bimodal distribution with two peaks around 0.1% and 100% 4, re-
spectively. This means that in GTEx overall more novel introns were detected compared
to the Kremer dataset. Fitting the model revealed that the geometric mean across all
GTEx tissues for the lower boundary of the weak splicing class with 1 = 0.22% did
not change much from the ¢» = 0.16% in the Kremer dataset (Fig A.6). But the upper
boundary did change from ¢ = 5.29% to ¢ = 52.21%, which is probably due to the shift
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2 Exploring the utility of RNA sequencing in rare disease diagnosis

of the global v distribution. Despite the change of the upper boundary, 19 out of the
24 (79%) detected cryptic splicing events were still classified as a weak splice site (Fig.
2.6b). These findings with the Kremer and GTEx dataset confirm that weakly spliced
cryptic exons are loci more susceptible to become strongly spliced sites over other deep
intronic regions. Often, these weak splice sites require only a single nucleotide variant
to activate the site and incorporate the cryptic exon into the major isoform, which can
have tremendous impact on the phenotype like the full down-regulation of TIMMDCI.
In standard RNA-seq analysis pipelines only the major isoforms and annotated introns
are considered, while such weakly spliced introns are removed as noisy data. But our
analysis show that in the case of rare disease diagnostics, the annotation of weak splice
sites through accumulation of reads across multiple samples can help to prioritize deep
intronic VUSs detected by WGS.

2.4 Short summary

We demonstrated the power of RNA-seq to support molecular diagnostics in rare diseases
in three ways: (i) discovery of a new disease-associated gene, (ii) diagnosis of 10% (5 of
48) of undiagnosed cases, and (iii) identification of a limited number of strong candidates.
This was achieved by combining the high-throughput RNA-seq technology with newly
developed outlier detection algorithms able to detect aberrant gene expression, aberrant
splicing events, and mono-allelic expression of the rare variants. Our significance-based
algorithms detected in median 1, 5, and 6 outlier events per sample, respectively, a
manageable size of candidate genes for manual inspection and validation. Overall, we
identified strong candidate genes in known disease-causing or mitochondrial protein-
coding genes in 36 of 48 cases. Through the identification of aberrant expression events,
classification of weak splice sites, and the reclassification of multiple VUS, we highlight
the benefits of using RNA-seq to improve the interpretation of variants for rare diseases
but also in general. Overall, we proved the relevance and complementarity of RNA-seq
for rare disease diagnostics. This study also revealed the need for specialized algorithms
to detect aberrant events in RNA-seq data.
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Figure 2.6: Weak splicing in GTEx tissues. (a) Density (y-axis) of the genome-wide
distribution of both 5 and 13 values (x-axis) for exon-exon junctions based on
all reads over all samples per GTEx tissue (gray lines). The red line shows the
distribution presented by Kremer et al. [2017]. The data is stratified by the exon-
exon junction’s annotation status based on GENCODE[Harrow et al., 2012]: (i)
both ends are present in GENCODE, only one end is present in GENCODE,
neither ends are present in GENCODE. (b) ¢ value distribution across GTEx
tissues for exon-exon junctions leading to aberrantly expressed cryptic exons in
Kremer et al. [2017]. The v values are computed on all reads over all samples per
tissue. The red points depict the v value observed by Kremer et al. [2017] across
the non-effected samples. The dashed line depicts the lower and upper boundary
for the weak splicing class averaged across all GTEx tissues.
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3 Detection of aberrant gene
expression with OUTRIDER

The methodology, results, and figures presented in this chapter are part of the manuscript
“OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA
Sequencing Data” from Brechtmann et al. [2018]. The author’s contributions are in-
cluded in it’s preprint on bioRyw!. In short, I developed the software together with Felix
gether with the other co-authors. The manuscript was written by Felixz Brechtmann, me,
and Julien Gagneur with the help of Vicente Yépez and Agné Matuseviciute.

3.1 Motivation

In our pilot study (Section 2), we were able to increase the diagnostic rate by 10%
through the detection of aberrant events in RNA-seq data.[Kremer et al., 2017] In paral-
lel, Cummings et al. [2017] also investigated the potential of using RNA-seq in diagnostic
and confirmed that RNA-seq is complementary to WES and WGS by providing func-
tional interpretation of regulatory defects. Cummings et al. [2017] even improved the
diagnostic rate by 35% over WES/WGS by revealing splicing defects, mono-allelic ex-
pression of heterozygous loss-of-function variants, and gene expression outliers. As no
sophisticated method was available to detect aberrant events in RNA-seq data at the
time, the two studies differed in their approaches despite the same goals. Cummings
et al. [2017] detected expression outliers by computing z scores on log-transformed gene-
length-normalized read counts by subtracting the mean count and dividing by the stan-
dard deviation. Then a z score cutoff of |zscore| > 3 was used to identify expression
outliers without a formal statistical assessment of the events. This approach did not
reveal any convincing pathogenic expression outlier candidates. Cummings et al. [2017]
concluded that the cohort was too small and hence underpowered to detect any expres-
sion outliers. In contrast, we were able to find 4 out of 6 disease-causing aberrant events
as expression outliers in our pilot study (Section 2.2.1) even with a smaller cohort size
(n = 119 versus n = 230 samples in Kremer et al. [2017] and Cummings et al. [2017],
respectively). As described in Section 2.2.1, we applied a stringent significance test to-
gether with the z score cutoff approach (FWER adjusted p < 0.05 and |zscore| > 3). We
used DESeq2[Love et al., 2014], a method developed for differential expression analysis,

IBrechtmann, F. et al. OUTRIDER: A statistical method for detecting aberrantly expressed genes in
RNA sequencing data. bioRxiv 322149; doi: 10.1101/322149
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to test each sample against the rest of the cohort using a negative binomial (NB) dis-
tribution to assess the significance. Based on the results of the two studies, it remained
unclear what caused the difference. Some of the uncertainty can be attributed to the
small number of individuals diagnosed, the lack of ground truth, a direct comparison of
methods, and adequate benchmarking of the methods themselves.

Another big difference between the two studies is how biases and confounders in the
RNA-seq data were controlled for. Cummings et al. [2017] only controlled for variation
in sequencing depth by using reads per kilobase per million mapped reads (RPKM)
values in the z score calculation while ignoring other potential confounders. As age, ge-
netic factors, sex, RNA integrity number (RIN), technical biases, and other known and
unknown confounders can influence the downstream analysis, it was shown in multiple
studies that accounting for them and controlling the read counts accordingly improves
the outcome.[Leek and Storey, 2007; Dillies et al., 2013; Stegle et al., 2012] For exam-
ple, down-regulation of a Y chromosome-encoded gene in males would not be detectable
unless one would control for the sex of the samples. Therefore, we manually controlled
for sex, biopsy site, and technical variations inferred from hierarchical clustering in
our study (Section 2.2.1). In another study that also detected expression outliers by
computing z scores, Li et al. [2017] controlled for sex, the top three genotype principal
components, as well as for hidden confounding effects estimated by the probabilistic esti-
mation of expression residuals (probabilistic estimation of expression residuals (PEER))
method.[Stegle et al., 2012]. While all three studies controlled in one way or another for
covariations in the RNA-seq read count data, none of them assessed or tuned it for the
detection of aberrantly expressed genes.

Therefore, we developed OUTRIDER (Outlier in RNA-Seq Finder), an algorithm that
provides a statistical test for outlier detection in RNA-seq samples while controlling for
covariations among the gene read counts (Fig. 3.1). OUTRIDER uses a denoising
autoencoder to automatically model known and unknown confounders and assess the
significance with the NB distribution allowing for overdispersed RNA-seq read count
data. Further, we evaluated the added value of each of the two components towards
expression outlier detection accuracy and developed and applied a benchmark strategy
to compare OUTRIDER against the state-of-the-art methods at the time utilizing sim-
ulated data and the two experimental datasets from Kremer et al. [2017] and the GTEx
consortium.[The GTEx Consortium et al., 2015]

3.2 Dataset description

To develop, test, and benchmark the OUTRIDER approach, we considered 4 different
datasets covering different scenarios. The first dataset is composed of the RNA-seq sam-
ples of the rare disease cohort used in the pilot study described in Section 2.2. We used
this dataset to benchmark the methods in a rare disease diagnostic setting. For the sec-
ond experimental dataset we used the RNA-seq samples from the GTEx project.[GTEx
Consortium, 2017]. All samples are collected postmortem but the donors are assumed
healthy with no underlying condition and were not under treatment. Nevertheless,
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Figure 3.1: OUTRIDER overview (A) Context-dependent outlier detection. The algo-
rithm identifies gene expression outliers whose read counts are significantly aber-
rant given the covariations typically observed across genes in an RNA-seq dataset.
This is illustrated by a read count (left panel, fifth column, second row from the
bottom) that is exceptionally high in the context of correlated samples (left six
samples) but not in absolute terms for this given gene. To capture commonly seen
biological and technical contexts, an autoencoder models covariations in an un-
supervised fashion and predicts read-count expectations. Comparing the earlier
mentioned read count with these context-dependent expectations reveals that it
is exceptionally high (right panel). The lower panels illustrate the distribution of
read counts before and after controlling for covariations for the relevant gene. The
red dotted lines depict significance cutoffs. (B) Schema showing the differences
in the experimental designs for differential expression analyses and outlier detec-
tion analyses; relevant analysis packages are mentioned. Taken from Brechtmann
et al. [2018].

aberrant gene expression in these samples has been reported.[Li et al., 2017] The GTEx
dataset, as we will call it from now on, will serve as the healthy control benchmark set.
To have comparable results, we focused if not stated differently on the 250 suprapubic
skin samples as they are the closest to the fibroblast cell lines from the Kremer dataset.
The gene read counts were downloaded from the GTEx portal (V6P, counted with RNA-
SeQC v1.1.8[DeLuca et al., 2012]) and only samples with a RIN > 5.7 were considered.
Genes were considered expressed and kept for downstream analysis if at least 5% of the
samples had a fragments per kilobase per millions of reads (FPKM) value greater than
1 and more than 25% of the samples at least 1 read (Fig A.2d and 3.2a). The FPKM
values were calculated with DESeq2,[Love et al., 2014] where the gene length was defined
as the aggregated length of all exons. This resulted in 119 and 249 samples and 10,556
and 17,065 genes for the Kremer and GTEx dataset, respectively. The third and fourth
dataset was simulated by drawing from a NB and log-normal distribution, respectively.
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Figure 3.2: Dataset overview of the GTEx suprapubic skin tissue. (a) Histogram
of the FPKM values grouped according to the filter status. Green indicates the
genes that passed the filter and gray those that were filtered out. (b) Size factor
plotted against the rank. Each dot represents a sample. (c) Correlation matrix
of row-centered log-transformed read counts (249 samples and 17,065 genes). Red
indicates a positive correlation and blue a negative correlation. The dendrogram
represents the sample-wise hierarchical clustering. Colored horizontal and ver-
tical tracks display sequencing center, cause of death (DTHHRDY, Hardy scale
classification), RNA integrity number (RIN), gender, and age of the samples.

Before drawing the read counts, we fixed the latent space to have ten dimension. In the
case of the log-normal distribution, we rounded the final number to the closest integer.

3.3 Statistical modeling

Based on the knowledge from previous studies,[Kremer et al., 2017; Cummings et al.,
2017] we aimed to tackle two major limitations. The first one was to control the RNA-
seq data for known and unknown confounders as they, if not removed, can dramatically
lower the statistical power. The second limitation was that no specialized method was
developed to assess the statistical significance of expression outlier events in RNA-seq
data.

To control for known and unknown covariation in the read count data, we applied
a normal and denoising autoencoder schema. Autoencoders are used to find a rep-
resentation, also called encoding, in a lower dimension and so are typically used in
dimensionality reduction in high-dimensional data in an unsupervised manner.|[Lecun,
1987; Bourlard and Kamp, 1988; Hinton and Zemel, 1994] They have been shown to
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be useful for extracting meaningful biological features as well as for imputing missing
values in bulk and single cell RNA-seq data.[Way and Greene, 2018; Eraslan et al., 2019;
Lopez et al., 2018; Kinalis et al., 2019] Denoising autoencoders are a subclass of autoen-
coders where the input is reconstructed while being corrupted by typically zeroing out
up to 50% of the data points or adding noise.[Vincent et al., 2008, 2010] While we used
a denoising autoencoder to optimize the hyperparamter ¢, the dimension of the latent
space, by recalling corrupted read counts, a normal autoencoder was used to control the
common covariation patterns among genes by learning the latent space of the input data
(Fig. 3.1a).

In a rare disease diagnostic setting, the experimental design differs from the well
established differential expression analysis workflows. In rare diseases, every case has
its own individual genetic cause of disease even though the resulting phenotype can
be similar. Also replicates are often not available. Hence, a typical case versus control
comparison as done in differential expression analysis[Love et al., 2014; Zhou et al., 2014]
can not be applied. It is more common to have several samples up to hundreds that
serve as the population and each sample is then tested per gene if it deviates from its
population (Fig. 3.1b). It is noteworthy that DESeq2[Love et al., 2014] and edgeR[Zhou
et al., 2014] already have procedures to mark or downweight outlier points using Cook’s
distance and Pearson residuals, respectively. But the purpose of these procedures are
to increase the robustness of the model fit by removing outliers instead of assessing the
significance of them, which is the aim in rare disease diagnostics. This ultimately leads
to outlier detection for the univariate case, where the distribution of the population is
modeled jointly while each data point is subsequently tested to assess whether it deviates
significantly from the fitted distribution (Fig 3.1b).

We assume that the count £;; of gene j = 1,...,p in sample i = 1,..., N follows a
NB distribution accounting for overdispersed count data.[Whitaker, 1914] Specifically,

P (kij) = NB (kij|pij = ciz,0;) (3.1)

s =i (34) (5%3)

where 0; is a gene-specific dispersion parameter and c¢;; the expected count. The variance

of the NB distribution is given by Var = u + “6—2. To prevent convergence issues in
the lower range and overfitting in the upper range, we limited 6; to the interval [0.01,
1000]. The expected count ¢;; is the product of the sample-specific size factor s; and the
exponential of the factor y;;:

cij = Si - exp(yij)- (3.2)

We use the size factor s; to control for technical variations in sequencing depth. The
size factors are robustly estimated with the estimateSizeFactor function implemented
in DESeq2.[Love et al., 2014]. The factors y;; capture covariations across genes and are
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3 Detection of aberrant gene expression with OUTRIDER

modeled with an autoencoder of encoding dimension 1 < ¢ < min(p, N). Specifically,

y;=hW;+Db, (3.3)
h, = %, W., (34)

where the p x ¢ matrix W, is the encoding matrix, the ¢ x p matrix Wy is the decoding
matrix, the g-vector h; is the encoded representation, and the p-vector b is a bias term.
Having a decoding matrix that is not the transpose of the encoding matrix, unlike for
principal-component analysis (PCA), turned out to be important, most likely because
the property that the matrix inverse equals the matrix transpose does not generalize to
the NB loss function. The input vector to the autoencoder X; is centered by gene and
computed as follows:

fij = ZL‘Z‘]‘ — i’j, (35)

.f‘j = 1mean; (IU) N (3
ki +1

z;; = log (]8—+> : (3.7)

where we add 1 to prevent computing the logarithm of 0 and control for the sequencing
depth by dividing by s;. The combination of equations 3.2-3.7 is what we call the
autoencoder implementation in OUTRIDER, in short, ¢;; = AEourriper (kij)-

Fitting the autoencoder and negative-binomial distribution parameters Fitting the
autoencoder is implemented as an iterative three-step procedure in which the parameters
W., W, and ¢; are iteratively updated until convergence. The autoencoder is initialized
(i) by setting the encoder and decoder matrices to the loadings of a PCA using the
pca function from the package pcaMethods,[Wold, 1966; Oba et al., 2003; Troyanskaya
et al., 2001] (ii) by setting the bias vector to the mean of z;; per gene (Eq. 3.6), (iii)
by estimating the dispersion #; with the method of moments, (iv) an initial fit of all
gene-specific parameters including the decoder matrix W, and the dispersion ;. The
autoencoder is then fitted through repetition of the following three update steps: (i) the
encoder matrix is updated, (ii) the decoder matrix is updated, and (iii) the dispersion
parameters are refitted. The steps ii and iii are parallelized over the genes. In each
update step, the average negative log-likelihood is minimized with respect to the current
parameters by the optimization method L-BFGS as implemented in optim.[Byrd et al.,
1995; Team, 2021] Detailed derivations of the used loss functions and the respective
gradients can be found in the Supplemental Data of Brechtmann et al. [2018]. The
fitting procedure is stopped when the average negative log-likelihood of each step in one
iteration does not differ more than the convergence threshold of 107° from the last step
of the previous iteration or the maximum of 15 iterations is reached.

Fitting the optimal encoding dimension To find the optimal hyperparameter ¢, the
latent space dimension, we applied a denoising autoencoder scheme. To this end, we
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3.3 Statistical modeling

injected with a frequency of 1072 corrupted counts k;; into the read count data and mea-
sured the performance of the autoencoder to recall them. We computed the corrupted
counts as follows:

7

k; = round (s; - uigteto(uy)y (3.9)

where o(u;) is the standard deviation of the size factor normalized counts of gene j in
the log space and z, the amplitude of the corrupted count. z is drawn from a normal
distribution characterized by a mean of log(3) and a standard deviation of log(1.6). The
sign of the shift is randomly selected. The optimal dimension ¢ is then selected as the
dimension maximizing the area under the precision-recall curve for identifying corrupted
counts.

P value computation For every pair of gene j and sample 4, we test the null hypothesis
that the count k;; follows a NB distribution as described by Equation 3.1. To detect
down and up regulation of genes, we compute two-sided P values as:

k:ij—l

[
G

Due to the nature of the discrete NB distribution, both one-sided P values can exceed
1/2 at the same time, for which we introduced the 1/2 term.

As we test per sample all expressed genes at the same time, we correct the P values
for multiple testing using the FDR method. We use the Benjamini-Yekutieli procedure
because it applies under positive dependence,[Benjamini and Yekutieli, 2001] which is
necessary because gene expression is highly regulated and therefore genes in the same
sample can be correlated, even after controlling for confounding effects by the autoen-
coder.

Z score computation 7 scores z;; are computed on a logarithmic scale as follows:

-
=2l al.uj’ (3.11)
J

lij = logy((kij + 1)/ (cij + 1)) (3.12)

where [;; is the log-transformed controlled count and ,ug and aé- the mean and standard
deviation of /;; for gene j, respectively.

Alternative control methods To evaluate the performance of the autoencoder in
a broader picture, we implemented two alternative state-of-the-art methods namely

PEER|[Stegle et al., 2012] and PCA.[Wold, 1966; Oba et al., 2003; Troyanskaya et al.,
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3 Detection of aberrant gene expression with OUTRIDER

2001] The two methods were used in replacement of the autoencoder to control the co-
varation in the data. In the case of PCA, we obtained the matrix of expected counts
by setting the encoder and decoder matrices W, and Wy to the first ¢ loadings while
using the gene mean as bias term b. In the case of PEER, we set the number of factors
to one-fourth of the number of samples as suggested by Stegle et al. [2012]. We then
subtracted the residuals from the log-transformed counts and multiplied the size factors
to obtain ¢;;. For PEER, we used the provided residuals to compute Z scores to avoid
numerical inaccuracies due to conversion to counts. For both PCA and PEER, we fit-
ted a NB model with an additional per-gene adjustment parameter a;, which captures

deviations between the estimated mean from the log-normal and NB model, to obtain
NB P values. Specifically:

P(kij) = NB (kij|pi; = a; - cij,0;) . (3.13)

3.4 Controlling gene expression for confounding effects

In the Kremer dataset, we already observed a strong correlation structure and showed
that controlling manually for some covariats can lower the correlations (Fig. A.3). Also
in GTEx, we observed correlation structures in each tissue (Fig. 3.2c and 3.3a). While
some of the structures in the GTEx tissues can be explained by known covariates such
as the sequencing center and Hardy scale classification, unknown confounders are still
present in the data (Fig. 3.2c).[Li et al., 2017] Additional unknown sources of vari-
ations in RNA-seq data can arise from origin of the tissue, population structure, or
hidden confounders such as poorly understood systematic technical variations. Apply-
ing the autoencoder on the counts allowed covariations to be estimated and controlled
for across all GTEx tissues (Fig. 3.3a). The autoencoder even managed to remove
almost all correlation structures across all GTEx tissues without prior knowledge by
reducing the correlation from 0.20 4+ 0.06 to 0.04 £ 0.01 (mean of the mean absolute
sample-wise correlation across all GTEx tissues £ standard deviation). The dimension
q of the autoencoder was fitted for each dataset with a denoising autoencoder by select-
ing the dimension maximizing the area under the precision-recall curve for identifying
corrupted counts. This resulted in an estimated latent space dimensions ¢ of 45 and 21
for the suprapubic skin tissue and the Kremer dataset, while using the PCA approach
yielded 54 and 24, respectively. In general, ¢ increased proportional with the sample
size, while the number of expressed genes did not have an impact on the dimension
(Fig. 3.3b-c). Changing the corruption amplitude and scheme had little impact on the
optimal dimension. Only a very low amplitude required a higher dimension in the ex-
perimental datasets, probably due to the fact of genuine outliers present already in the
data (Supplemental Fig. S3 in Brechtmann et al. [2018]).
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Figure 3.3: Controlling for known and unknown confounders in GTEx tissues. (a)
Boxplots of absolute values of between-sample correlations of gene-centered log-
transformed read counts for 48 GTEx tissues before (orange) and after (green)
correction for the latent space. (b) Optimal encoding dimension q (x-axis) plotted
against the cohort size (y-axis). The lighter the color the higher the number of
expressed genes in the given tissue. Each point represents a GTEx tissue. (c)
Same as b, but where the number of genes is on the y-axis and the color encodes
the cohort size.

3.5 Detection of expression outliers with the negative
binomial distribution

After managing to remove confounders in the count data with different approaches, we
aimed to understand the impact of the modeling on the performance of outlier detection.
Working with count data from RNA-seq, we assume that the counts follow a NB distri-
bution where the mean is provided by the given model as a count expectation.[Whitaker,
1914; Love et al., 2014; Robinson et al., 2010]. Using the expectations ¢;; and a gene-
specific dispersion parameter 6;, expression outliers are detected if the observed counts
are significantly deviating from these expected values. While our autoencoder approach
uses a NB loss function, PCA and PEER assume a normal distribution and therefore
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Figure 3.4: An NB-based autoencoder recovers better expected counts on simu-
lated data than log-normal-based models. Boxplots of squared differences
between expected counts and simulated means in logs space binned into 9 loga-
rithmically spaced mean gene expression bins for OUTRIDER, PCA, and PEER
on simulated data. The data is stratified by the simulation scheme: negative
binomial and log-normal, respectively. Adapted from Brechtmann et al. [2018].

require some transformation of the count data, typically the log-transformation. To this
end, we used the two NB and log-normal based simulated datasets (Section 3.2) fol-
lowing the OUTRIDER and the PCA/PEER assumptions, respectively. The expected
counts fitted by OUTRIDER were closer to the simulated means than the fitted ex-
pectations by PCA and PEER in the NB simulations across the count spectrum (Fig.
3.4. On the log-normal simulated data, the algorithms performed similar well. Notably,
the autoencoder model outperformed PCA and PEER on the lower and higher end of
simulated counts in both cases. These observations emphasize the relevance of using a
count distribution for fitting the expected counts, especially in the low count range.
Investigating the quantile-quantile plots per gene indicated that our autoencoder mod-
eled the data well even in the presence of outliers (Fig. A.7) across datasets rendering
the P values usable for outlier detection. By exchanging the underlying model with
PCA and PEER, the P values decreased across the datasets potentially inflating the
type I error (Fig. 3.5A-B). In line with these findings, the detected expression outliers
per sample at an FDR < 0.05 was more uniform for the autoencoder approach than for
PCA and PEER for both datasets (Fig. 3.5C-D). In addition, the autoencoder produced
no aberrant sample compared to PCA and PEER. Aberrant samples were defined as a
sample having more than 0.5% expression outlier genes. Accumulated over all GTEx
tissues, we found 9, 18, and 214 out of 8,166 samples to be aberrant by using the autoen-
coder, PCA, and PEER as model, respectively. While in most cases all three methods
had similar results, the autoencoder did not find any outlier genes in some samples with
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3.6 Benchmarking gene expression outlier detection methods

a high number of outlier genes called by PCA and PEER (Fig. 3.5E-F). Overall, this
demonstrates that our OUTRIDER implementation of combining an autoencoder with
a NB significance test is appropriate for detecting expression outlier genes in RNA-seq
data. It also highlights the importance of working directly on count data with the ap-
propriate NB distribution, rather than assuming a log-normal distribution that requires
transformation of the input data.

3.6 Benchmarking gene expression outlier detection
methods

While developing a method, one has to evaluate its performance and also compare it with
the state-of-the-art alternatives. Unfortunately, in the case of rare diseases and outlier
detection, there was neither a gold standard dataset nor a benchmark scheme that was
available. Therefore, we developed a process to assess the sensitivity and specificity
by injecting artificial outliers into experimental data while monitoring the performance
of recalling them. We note that this approach is underestimating the performance, as
experimental data can include already genuine outliers.[Kremer et al., 2017; Li et al.,
2017; Ferraro et al., 2020] We have implemented a similar approach as for the denoising
autoencoder (Section 3.3). Specifically, with a pre-specified amplitude on the logarithmic
scale (z scores), we injected outlier counts k; with a frequency of 1074 as:

kg, = round (s; - 2977 ) (3.14)

where @; is the mean of u;; (Eq. 3.8) for gene j in the log space.

We applied this benchmark strategy to the GTEx suprapubic skin tissue. To disentan-
gle the impact of the amplitude and directionality of the aberrant events on the outlier
detection performance, we injected outlier counts according to three scenarios with four
different amplitudes (z € {2,3,4,6}): (i) only underexpression, (ii) only overexpression,
and (iii) equally distributed under- and overexpression. This resulted in 381 injected
outliers across all samples. We benchmarked OUTRIDER against seven different algo-
rithms and monitored for each the recall of injected read-count outliers and the precision.
The precision was defined as the number of injected outliers among the reported outliers
for each method. The applied methods included OUTRIDER, PCA, and PEER ranked
by NB based P values and z scores. For completeness, we included Cook’s distance and
Pearson residuals as implemented in DESeq2[Love et al., 2014] and edgeR,[Zhou et al.,
2014] respectively, normalized with the available covariates of sex, age, and ischemia
time. The precision-recall curves showed that the P value based OUTRIDER ranking
outperformed ranking by z scores, except in the case of simulated outliers with a high
amplitude (z = 6, Fig. 3.6). Notably, the two commonly used z score cutoffs |z| > 2[Li
et al., 2017; Frésard et al., 2019] and |z| > 3[Cummings et al., 2017] recalled almost all
the outliers (median = 97%) regardless of the method, but at the cost of a high FDR
(precision < 0.05). The NB P value based methods performed similar with a slight
advantage for OUTRIDER towards outliers with a smaller amplitude. Using a P value
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Figure 3.5: RNA-seq expression outlier detection (A) Quantile-quantile plot for the
GTEx dataset. Observed P values are plotted against the expected P values
for three different methods. The diagonal marks the expected distribution under
the null hypothesis with 95% confidence bands (gray). (B) Same as A but for
the Kremer datasets. (C) Number of aberrantly expressed genes (FDR < 0.05)
per sample for the data shown in A. The dashed line represents the abnormal
sample cutoff (> 0.5% aberrantly expressed). (D) Same as C but for the data in
B. (E) P values versus z scores for a representative abnormal sample in PEER.
Genes with significantly aberrant read counts are marked in red. (F) Same as E
but controlled with the autoencoder in OUTRIDER. Adapted from Brechtmann
et al. [2018].

based cutoff (FDR < 0.05) increased the precision up to 0.52 especially for OUTRIDER
in the scenario of under expression outliers, but at the cost of reduced recall. Ranking
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Figure 3.6: Outlier detection benchmark in GTEx. The proportion of simulated outliers
among reported outliers (precision) plotted against the proportion of reported
simulated outliers among all simulated outliers (recall) for 8 different ranking
methods. The 8 ranking methods are OUTRIDER (green solid), PCA (orange
solid), and PEER (blue solid) sorted by P value with FDR < 0.05, OUTRIDER
(green dashed), PCA (orange dashed), and PEER (blue dashed) sorted by z score,
DESeq2 normalization with known covariates sorted by Cook’s distance (pink
dotted), and DESeq2 normalization with known covariates sorted by absolute
value of Pearson residuals (olive green dashed and dotted). Plots are provided
for four simulated amplitudes (by row, with simulated absolute z scores of 2,
3, 4, and 6, top to bottom, respectively) and for three simulation scenarios (by
column for aberrantly high and low counts, for aberrantly high counts only, and
for aberrantly low counts only, left to right, respectively). The ranking of outliers
was bootstrapped to obtain 95% confidence areas. Adapted from Brechtmann
et al. [2018].

by Cooks’ distance and Pearson residual performed poorly in all cases, rendering them
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3 Detection of aberrant gene expression with OUTRIDER

as inadequate alternatives for the detection of expression outliers in rare diseases. To
understand why some events were not recovered by the P value based methods, we strat-
ified the precision-recall curves by the mean expression levels of the genes. As expected,
this revealed that outliers in genes with low expression levels are difficult to call. Still
OUTRIDER recalled 39% of the events with a precision of 0.49 for genes with a mean
expression below 58 outperforming the z score ranking (Fig. A.8), which is in line with
our results from the simulations (Fig. 3.4). Applying the same benchmark strategy on
the Kremer dataset yielded similar results while injecting 113 artificial outliers (Fig. S7
in Brechtmann at al).[Brechtmann et al., 2018] Altogether, this analysis delineates the
importance of using a count distribution and a P value based strategy in two ways:
(i) P values provide a principled way to establish a cutoff that accounts for statistical
significance and multiple testing and (ii) z scores can be unstable, especially for genes
with low expression levels.

3.7 Rare variant enrichment in GTEx

Another way of benchmarking a method is by evaluating the results in its domain specific
context. To this end, we performed an enrichment of rare variants among outliers. The
underlying assumption is that if you observe a non-synonymous rare variant in a gene,
you are likely to observe aberrant expression in that gene than if you do not have such a
rare variant. This assumption is inline with results by Zeng et al. [2015]; Li et al. [2017],
where rare variants were linked to aberrant gene expression in humans. To obtain the
set of potentially expression changing variants, we selected from the GTEx WGS data
(V7)[The GTEx Consortium et al., 2015] only rare variants with a MAF < 0.05 within
the 635 GTEx samples as well as in gnomAD.[Karczewski et al., 2020] In addition, we
filtered for variants predicted to have moderate or high impact according to the Variant
Effect Predictor (VEP).[McLaren et al., 2016] To make our analysis comparable with Li
et al. [2017], we selected the same 441 individuals to compute the enrichment score. The
enrichment was computed for rare variants found within outlier genes as the proportion
of outliers having a rare variant over the proportion of non-outliers having a rare variant
as described by Li et al. [2017].

On all GTEx tissues, we applied OUTRIDER, PCA, and PEER. We computed for
the rare variant enrichment for three P value cutoffs and for three z score cutoffs. For
all cutoffs, OUTRIDER achieved the highest enrichment compared to the alternative
approaches, regardless of whether P values or z scores were used (Fig. 3.7). As expected,
the enrichment correlated positively with the stringency of the cutoff. Interestingly, for
the P value based enrichment OUTRIDER performed even better with a more stringent
cutoff compared to PCA and PEER. Together with the benchmark results, this indicates
that OUTRIDER can not only detect expression outliers, but that its results can be
associated with genetic variants and thus interpreted biologically.
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Figure 3.7: Expression outlier based rare variant enrichment in GTEx. Enrich-

ment of rare (MAF < 0.05), moderate, and high impact variants (according
to VEP[McLaren et al., 2016]) computed on genes found to be aberrantly ex-
pressed using OUTRIDER plotted against enrichments computed on genes found
to be aberrantly expressed using z scores published by Li et al. [2017], PCA, and
PEER for all GTEx tissues using three P value and z score cutoffs. Adapted
from Brechtmann et al. [2018].

3.8 Reanalysis of the Kremer dataset using OUTRIDER

As the ultimate aim of OUTRIDER is to be applied in diagnostics of rare diseases,
we used the Kremer dataset as a reference. Applying OUTRIDER resulted in a recall
of 61 events (9.9%) identified by the adapted DESeq2 approach in the previously 48
undiagnosed individuals (Section 2.2.1). Although OUTRIDER detected 85 new ex-
pression outliers, none of them led to a new diagnosis. Interestingly, OUTRIDER was
able to recall all six pathogenic events, even if they were not identified as such a priori
(three expression outliers, one mono-allelic expression, and two splicing defects, Fig.
3.8). By identifying the misspliced CLPP and MCOLNT1 as expression outliers show the
increased sensitivity of OUTRIDER and the importance of controlling for confounding
effects. Replacing the autoencoder with PCA and PEER resulted in 3.8 and 7.8 times
more outliers while missing 2 and 1 pathogenic events, respectively (Kremer et al. [2017]
Fig. S9).

As in rare diseases often only a few samples are available, it is crucial to understand
the impact of the sample size on the sensitivity. To this end, we randomly subsetted the
Kremer dataset, retaining the six pathogenic events and monitoring their normalized P
values. As expected, the P values were negatively correlated with the sample size (Fig.
3.8). While the autoencoder approach needed all 119 samples to recall all six events, 60
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Figure 3.8: Sample size analysis. Negative log;g P values are plotted against the num-
ber of samples in the subset of the Kremer dataset, for the 6 pathogenic genes
validated by Kremer et al. [2017]. For each subset size, five random sets of sam-
ples containing the samples with the known outliers were drawn. Genes that
are genome-wide significant (FDR < 0.05) are marked darker. Adapted from
Brechtmann et al. [2018].

samples were enough to recall 2/3 of the events missing the 50% reduced ALDHI18A1
and the second TIMMDC1 case. PCA and PEER in contrast needed 90 samples to
recall at least 2/3 of the known cases.

3.9 Short summary

We have introduced here OUTRIDER, a software package for detecting aberrant gene
expression in RNA-seq data in the context of rare disease diagnostics. It uses a denoising
autoencoder scheme to provide expected expression levels while automatically controlling
for known and unknown confounders. OUTRIDER uses a NB distribution to test for
significance based on expected counts and a gene-wise dispersion parameter. Further,
we introduced a benchmark strategy to evaluate the performance of expression outlier
detection by injecting artificial outlier counts into experimental data. In addition, we
evaluated OUTRIDER’s performance by computing enrichments for rare variants in
GTEx. OUTRIDER outperformed alternative methods in both benchmarks by achieving
better precision recall curves and by having higher enrichments. Overall, we highlight the
importance of assessing the significance by using P values over z scores and demonstrate
that OUTRIDER is capable to retrieve biologically relevant information. Through the
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relevance of OUTRIDER for the diagonstic of rare diseases and the packaging of the
software into an R/Bioconductor package, we foresee that it will be implemented to
support RNA-seq based rare disease diagnostics.
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4 Detection of aberrant splicing events
in RNA-seq data with FRASER

The methodology, results, and figures presented in this chapter are part of the manuscript
“Detection of aberrant splicing events in RNA-seq data with FRASER” from Mertes
et al. [2021]. The author’s contributions are included in it. In short, I conceived the
method together with Julien Gagneur. I developed the software and analysed the data
together with Ines Scheller. The loss functions and the corresponding gradients were
mainly derived by Ines Scheller. The manuscript was written by me, Ines Scheller, and
Julien Gagneur.

4.1 Motivation

Genetic variants affecting splicing are known to be a major cause of rare diseases. It is
estimated that up to 30% of Mendelian disease causing variants are linked to or causing
aberrant splicing.[Lépez-Bigas et al., 2005; Wang and Cooper, 2007; Park et al., 2018b;
Taylor and Sobezak, 2020; Ellingford et al., 2019] The underlying mechanisms include
exon skipping, truncation, and elongation but also intron retention.[Wang and Burge,
2008; Scotti and Swanson, 2015] The variants that affect splicing can be located any-
where from donor and acceptor sites to known regulatory splicing elements to deeply
intronic regions. With the increased implementation of WGS based diagnostics, deep
intronic variants are now easily identifiable, but most of them are just ignored or still
remain as VUS as their prioritization is still limited.[Jian et al., 2014; Jaganathan et al.,
2019] Even advances in predicting the effect of variant effects on splicing with machine
learning techniques did not overcome these challenges.[Xiong et al., 2015; Rosenberg
et al., 2015; Cheng et al., 2019; Jaganathan et al., 2019; Cheng et al., 2021] Therefore,
genetic diagnosis guidelines require additional functional evidence to classify a variant as
pathogenic.[MacArthur et al., 2014; Richards et al., 2015] One such functional evidence
can be provided by RNA-seq. Over the last years, RNA-seq has been proven effective in
detecting disease-causing aberrant splicing events.[Kremer et al., 2017; Cummings et al.,
2017; Frésard et al., 2019; Gonorazky et al., 2019; Murdock et al., 2021]. RNA-seq can
not only be used to validate or invalidate a link of a VUS to aberrant splicing[Cummings
et al., 2017] but also to call de novo aberrant splicing events transcriptome-wide, includ-
ing the activation of deep intronic cryptic splice sites.[Kremer et al., 2017; Cummings
et al., 2017; Gonorazky et al., 2019; Murdock et al., 2021]
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

At the time, three methods have been developed to diagnose rare disease by detect-
ing aberrant splicing events in RNA-seq.[Kremer et al., 2017; Cummings et al., 2017;
Frésard et al., 2019; Gonorazky et al., 2019] In addition, SPOT[Ferraro et al., 2020] and
LeafCutterMD[Jenkinson et al., 2020] were developed recently as dedicated splicing out-
lier detection tools. All five methods rely on the split reads to identify splicing events.
Split reads are RNA-seq reads aligned to a given chromosome with at least one gap that
usually matches an annotated intron. Calling aberrant splicing beyond annotations is
important as creations of novel splice sites have a strong pathogenic potential by leading
to frameshifts, ablation of protein sequences, or creation of nonfunctional protein se-
quences. The method developed by Cummings et al. [2017] and adapted by Gonorazky
et al. [2019] applied only cutoffs on absolute and relative split read counts which has
the limitation of not assessing the statistical significance of the events nor being data
driven. In contrast, we assess the significance of aberrant splicing by adapting Leaf-
Cutter[Li et al., 2018] to splicing outlier calling (Section 2.2.2). This approach, along
with the more recent LeafCutterMD[Jenkinson et al., 2020] and SPOT,[Ferraro et al.,
2020] which are also multivariate approaches, allowed controlling for FDR but not for
possible covariation structure. Frésard et al. [2019] showed that strong covariations do
exists in split-read-based splicing metrics and that it is beneficial to control for them by
performing a PCA. The origins of such covariations can be the same as for gene expres-
sion like sex, genetic variation, RIN, and technical biases. Splicing outliers where then
identified by a z score cutoff (|z| > 2) making it impossible to control for FDR. Despite
the development of multiple approaches to detect aberrant splicing, each method had
limitations. In addition, by focusing solely on split reads, these methods are all blind to
intron retention as intron retention reduces the number of split reads covering the given
intron, but not the splice ratios.

Therefore, we developed FRASER (Find RAre Splicing Events in RNA-seq) to address
the limitations in aberrant splicing detection by using splice ratios and splicing efficiency
as metric, providing an automated mechanism to control for known and unknown con-
founders in them, and assessing each event for significance based on the BB distribution
(Fig. 4.1). We applied the same strategy as in OUTRIDER (Section 3.3) by using
an autoencoder to control for covariations. Extensive benchmarking using the GTEx
dataset shows the advantage of FRASER over the alternative methods. The clinical
relevance of using FRASER for aberrant splicing detection is highlighted by detecting a
splice defect in TAZ by reanalysing the Kremer dataset.

4.2 Statistical modeling

Learning from previous studies,[Kremer et al., 2017; Cummings et al., 2017; Frésard
et al., 2019; Brechtmann et al., 2018] we aimed to tackle three major limitations, which
are similar to the ones described in OUTRIDER (Section 3.3). First, as split reads
alone can not detect intron retention, we used the intron-centric splicing efficiency (6) in
addition to the percent spliced in (¢) metric.[Pervouchine et al., 2013|, Second, we em-
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Figure 4.1: The FRASER aberrant splicing detection workflow. The workflow starts
with RNA-seq aligned reads and performs splicing outlier detection in three steps.
First (left column), a splice site map is generated in an annotation-free fashion
based on RNA-seq split reads. Split reads supporting exon—exon junctions as well
as non-split reads overlapping splice sites are counted. Splicing metrics that quan-
tify alternative acceptors (1)5), alternative donors (13), and splicing efficiencies
at donors (05) and acceptors (#3) are then computed. Second (middle column), a
statistical model is fitted for each splicing metric that controls for sample covaria-
tions and overdispersed count ratios. Third (right column), outliers are detected
as data points that deviate significantly from the fitted model. Candidates are
then visualized using a genome browser. D donor site, A acceptor site. Made in
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ployed a autoencoder scheme to control for covariation the splice metrics. And third, we
assessed the statistical significance of aberrant splicing events using the BB distribution.

Read counting and splicing metrics. Introns and their respective acceptor and donor
splice sites were defined by the data instead of relying on existing annotations. Using
an annotation-free approach enables the detection of novel introns. Introns were defined
by the alignment gaps of the RNA-seq split reads. Split reads were extracted from
the BAM files and counted using the R/Bioconductor packages GenomicAlignments
and GenomicRanges.[Lawrence et al., 2013]. For non-strand specific RNA-seq data the
strand of the given intron was predicted by the dinucleotides of the splice site.[Reyes
et al., 1996]. Based on the set of acceptor and donor site, non-split reads overlapping
the splice sites were counted to compute the splicing efficiency to enable the detection
of intron retention. Specifically, the non-split reads were counted for each splice site
using the R/Bioconductor Rsubread package.[Liao et al., 2019]. For non-split reads,
we requiring an alignment of at least 5 nt on each side of the splice site for robustness
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

against mapping errors of very short overhangs, as described by Braunschweig et al.
[2014]. Using the split reads, we computed the intron-centric percent spliced in metrices
15 and 13 as described by Pervouchine et al. [2013] per sample according to Equation
1.1 and 1.2, respectively. To enable the detection partial or full intron retention, we
used the splice site specific splicing efficiency metric 05 and 03 computed the same way
as 15 and 13 according to Equation 1.4 and 1.5, respectively.[Pervouchine et al., 2013]
While we calculated 6 specifically for the donor and acceptor site, 5 and 63 were not
distinguished later in the modeling step. Therefore, we call the splicing efficiency metrics
jointly as #. To remove noise from the read count data and to improve the modeling,
we applied two filters: (i) we kept only introns supported by at least 20 split reads in at
least one sample and (ii) we removed introns from the analysis where more than 95% of
the samples had zero coverage.

Autoencoder-based beta-binomial hypothesis testing The metrics 15, 13, and 0 are
count proportions. For each of these metrics, we model the distribution of the numerator
conditioned on the value of the denominator using the BB distribution. As we used the
NB distribution for gene read counts to account for overdispersion (Section 3.3), we use
the BB distribution instead of the binomial distribution. As we model each metric the
same way, we use the term v to refer to 15, 13, and 0. Specifically, for a given 1) metric,
we assume that the split read count &;; of the intron j =1,... ,pinsample¢=1,..., N
follows a BB distribution with an intron-specific intra-class correlation parameter p; and
a sample- and intron-specific proportion expectation p;;:

P(kij) = BB (kijInij, pij, pj) (4.1)

where n;; defines the total number of split reads having the same donor site than intron
J. pij and p; are both limited to the range [0,1]. A more detailed parametrization of
here used BB distribution can be found in the Supplementary Note 3 of Mertes et al.
[2021].

The proportion expectations p;; are modeled with an autoencoder of encoding di-
mension 1 < ¢ < min(p, N) that captures covarations beween samples similar to the
autoencoder in OUTRIDER (Eq. 3.2-3.7). Specifically, we model:

exp(¥i;)
ij = 0Yij) = —————, 4.2
IUJ ( J) 1 +€Xp(y7;j) ( )
y;, = hyW;+ b, (4.3)
h, = X;W., (4.4)

where the vectors h; are the rows of the matrix H, the N x ¢ projection of the data
onto the ¢-dimensional latent space, W, is the p x ¢ encoding matrix, Wy is the ¢ x p
decoding matrix, and the p-vector b is a bias term. The input vector X; is given by the
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4.2 Statistical modeling

intron centered logit-transformed pseudocount ratios. It is defined as:

Tij = Tij — Ty, (4.5)

T; = mean;(x;;), 4.6
(ki +1

logit(a) = log (1 i a) . (4.8)

We add a pseudocount to prevent the division by zero in Eq. 4.7 and hence add 1
to the nominator while adding 2 to the denominator. The combination of equations
4.2-4.8 is what we call the autoencoder implementation in FRASER, in short, pu,;; =

AEpgraser (kij)-

Fitting the autoencoder and beta-binomial distribution parameters In our statis-
tical model, we have four parameters to fit: (i) W, and (ii) Wy, the en- and decoding
matrix, (iii) b the bias term, and (iv) p the intra-class correlations per gene of the
BB distribution. The fitting of these parameters is achieved in two steps. In the first
step, W, and Wy is fitted using a PCA on X as implemented in the pcaMethods pack-
age.[Stacklies et al., 2007] Specifically, we set W, and the transposed Wy to be the first
q loadings of the PCA and the bias term b is set to X. In the second step, the intra-class
correlation parameters p; are fitted per intron j given the count proportion expectations
pi; using a BB loss function. Specifically, we use the optimize function from R[Team,
2021] and minimize the average negative BB log-likelihood in parallel across introns.
Detailed derivations of the used loss functions and the respective gradients can be found
in the Supplemental Notes 3 of Mertes et al. [2021].

Finding the optimal encoding dimension To find the optimal hyperparameter ¢, the
latent space dimension, we applied again a denoising autoencoder scheme as done in
OUTRIDER (Section 3.3). As the fitting takes more time for the BB distribution and
here only the hyperparameter ¢ is optimized, we subsetted first the input matrix X to
15,000 random introns out of the top 30,000 most variable introns having at least a mean
total coverage of 5. Then we injected with a frequency of 10~2 corrupted read counts
k7; into the data and measured the performance of the autoencoder to recall them. We
injected the corrupted read count as described in the next paragraph 4.2. Finally, the
optimal dimension ¢ is then selected as the dimension maximizing the area under the
precision-recall curve for identifying the corrupted read counts.

In silico injection of artificial outliers. To fit the FRASER hyperparameter as well
as to compare the splicing outlier detection performance between FRASER and other
methods, we developed a procedure to inject artificial outliers into a given dataset. As
the splice metrics derived from introns sharing the same donor or acceptor are dependent,
we injected only one outlier per splice site and sample and we considered only positions
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

with a total coverage of at least 10 to be able to inject actual outliers. We injected
corrupted read counts kf; with a frequency of 1072 and 1072 for the optimization of the
encoding dimension and the benchmark, respectively. The corrupted read count kf; is
injected by changing the original read count £;; such that the value of 1);; changes by
Avg. We draw Avpg; from a uniform distribution as:

AYgs ~ £U(0.2, Ayi™), (4.9)
max _ Yij, %f down—regu'lation. (4.10)
J 1 — 15, if up-regulation.

where A2 is the maximal possible Avy; for intron j in sample ¢ dependent on the
injection direction, which is random. To ensure that an aberrant splice ratio can be
injected the direction is switched if Ayj7* < 0.2. Taking the pseudocounts into account,

the outlier count kf; is then given by
ki = round((i; & AYy;) - (ni; +2) — 1). (4.11)

In order to provide a biologically realistic outlier injection scheme that preserves the
total amount of reads, the counts for the introns [ sharing the same donor or acceptor,
respectively, with kf; are changed accordingly, where the Ay?; change is distributed
equally over all secondary introns [, as follows:

Ay = Ay T

5 = round((vy + AYY) - (ng +2) — 1). (4.13)

and (4.12)

P value computation For every pair of intron 5 and sample i, we test the null hypoth-
esis that the count £;; with n;; trials follows a BB distribution as described by Equation
4.1. To detect down and up regulation of a given intron, we compute two-sided P values
using the probability estimates ji;; and the fitted intra-class correlation p; as:

k’ k‘"—l
. 1 3] 1]
Pij = 2-min 5, ;OBB(kij|nijaMijvpj)> 1- kz_o BB<kij’nijaﬂijapj> . (4-14)

Due to the nature of the discrete BB distribution, both one-sided P values can exceed
1/2 at the same time, for which we introduced the 1/2 term.

As already mentioned, introns sharing the same donor or acceptor are not indepen-
dent. Therefor, we correct the P values for each splice site with the FWER using Holm’s
method, which holds under arbitrary dependence assumptions,[Holm, 1979] and report
the minimal corrected P value per splice site. If gene-level P values are requested,
an additional FWER step is performed at the gene level. On top of the FWER cor-
rection, we correct P values per sample for multiple testing using the FDR method
transcriptome-wide. We use the Benjamini-Yekutieli procedure because it applies under
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4.2 Statistical modeling

positive dependence,[Benjamini and Yekutieli, 2001] which is necessary because introns
within and beyond a gene can be co-regulated and hence be correlated, even after con-
trolling for covariations by the autoencoder.

Z score and A7 calculation 7 scores z;; are computed per intron on the difference on
the logit scale between the measured v;; value including pseudocounts and the proportion
expectation fi;; as follows:

51']' — mearl; ((%)

o 4.1
ZW Sdz((sj) ) ( 5)
ki1 .
b;; = logit <an n 2) — logit(p5), (4.16)

The At values are calculated as the difference between the observed v;; value on the
natural scale including pseudocounts and the proportion expectations f;;:

kij + 1

Atpyy = ij — pij = S
i

Alternative control methods In addition to the above described autoencoder ap-
proach, we implemented two alternative approaches to fit the decoder matrix W, and
the bias term b given the latent space H. We used an iterative approach similar to the
one used by OUTRIDER (Section 3.3) to fit W, together with b and p using a negative
BB log-likelihood loss function. The initialization of the parameters is done as described
above. As the parameters of W, b, and p are independent across introns, they can be
optimized in parallel. We start by optimizing p; given the decoder coefficients w;l and
the bias b; (step 1). Subsequently, we optimize w;l and b; given p; in step 2. Steps 1
and 2 are repeated until the average negative log-likelihood of each step in one iteration
does not differ by more than the convergence threshold of 1075 from the last step of the
previous iteration, or until 15 iterations are reached. For the optimization, we use the
L-BFGS method implemented in the R function optim to fit the decoder coefficients and
the bias.[Byrd et al., 1995]

Since outlier data points can have a strong impact on the fit of a given distribution,
downweighting such outlier data points during the fit can make it more robust. In the
diagnostic setting, we do expect to have such events and therefore, we incorporated
weights as described by Zhou et al. [2014] into the negative BB log-likelihood loss func-
tion. Specifically, we defined the weight wy; for each observation based on its Pearson
residual. The Pearson residual r;; of the observed data point z;; (Eq. 4.7) with respect
to the BB distribution including the pseudocounts is defined as follows:

observerd — expected Tij — [hij (4.18)
Ty = = .
’ \/ Var(expected) \/uu(lfuz'j)(lJrémrl)pj)
nij+
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

The weights wy; for sample ¢ and intron j are obtained from these residuals using the
Huber function:[Huber, 1964]

otherwise.

1, iflry| > k.
wy; :{ Hlrg] 2 (4.19)

7351

where we use k = 1.345 as suggested in the edgeR package,[Zhou et al., 2014] which
leads to the downweighting of about 5% of the data points. These weights are then
included in the calculation of the negative log-likelihood yielding the average weighted
negative log-likelihood L":

1
w _ r
= xw ;wz‘ij (4.20)
Li; = —log (BB(kij|nij, i, ps)) (4.21)

where L;; is the negative BB log-likelihood of sample 7 and intron j. Detailed derivations
of the used loss functions and the respective gradients can be found in the Supplementary
Note 3 by Mertes et al. [2021].

Alternative splicing outlier detection methods To evaluate the performance of the
autoencoder in a broader picture, we implemented five alternative methods, namely (i)
a naive BB regression, (ii) a PCA-based z score approach similar to Frésard et al. [2019],
(iii) the LeafCutter adaptation (Section 2.2.2), (iv) LeafcutterMD,[Jenkinson et al., 2020]
and (v) SPOT.[Ferraro et al., 2020] The naive BB regression served as baseline. The
parameters were estimated with the VGAM package[Yee, 2015] in R and the data was
not corrected for any covariates. PCA-based z scores were computed according to Eq.
4.15. Instead of regressing out the top ¢ principal components accounting for 95% of
the variation within the data as done by Frésard et al. [2019], only the top ¢ principal
components maximizing the precision-recall of in silico injected splicing outliers were
used in the regression. In addition to the Leafcutter adaptation developed in Section
2.2.2, we applied the Dirichlet multinomial based approaches LeafcutterMD|[Jenkinson
et al., 2020] and SPOT[Ferraro et al., 2020] on the RNA-seq data as recommended with
default parameters.

4.3 Controlling the splice metric with denoising
autoencoders

To assess the performance of FRASER, we used the same GTEx dataset as used for
the development of OUTRIDER (Section 3.2) resulting in 7,842 RNA-seq samples from
48 tissues of 543 assumed healthy donors after quality filtering. Although we assume
that all donors are healthy, we expect the presence of aberrant splicing, just as we
have observed aberrant gene expression (Section 3.5).[Li et al., 2017; Ferraro et al.,
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4.3 Controlling the splice metric with denoising autoencoders

2020] We quantified for all samples per tissue the intron-centric splice metrics. We
chose the intron-centric splicing metrics 15 and s[Pervouchine et al., 2013] over the
exon-centric percent spliced in metric developed by Katz et al. [2015] as they can be
quantified without prior knowledge of gene annotations and are capable of detecting
novel introns. In addition, we used the splice efficiency metrics #3 and 63 to identify
partial or complete intron retention events, as these values are lower when splicing is
compromised. After filtering for expressed introns per tissue, we detected on average
137,058 (£5,848 standard deviation across tissues) donor sites and 136,743 (+5,920)
acceptor sites (Fig. A.9). Less then 2% of the detected splice sites were not annotated
by GENCODE (release 28).[Harrow et al., 2012] As with gene expression, we observed
sample correlations in the intron-centered logit-transformed splice metrics for all GTEx
tissues (Fig. 4.2a-c). Overall, the average absolute sample correlation was not as strong
as with gene expression with 0.10 instead of 0.20 (0.05 and +0.06 standard deviation
across tissues, respectively, Fig. 4.2d). Sample correlations were tissue specific and were
detected across all splice metrics. Increasing the mean expression filter on the introns for
the hierarchical clustering increased the correlations ruling out an impact of pseudocount
on the correlations. While some of the clusters matched with existing annotations like
the RIN (heart) or death classification (blood), not all of the clusters could be explained
by known covariates. These is consistent with Frésard et al. [2019] observations and
highlights the importance of controlling for confounders that can arise from common
genetic variation, sex, technical artifacts, or other unknown factors.

To control for those between-sample covariations, we applied our autoencoder ap-
proach per tissue and splice metric by modeling a low-dimensional latent space in the
logit space. As we optimize the encoding dimension ¢ by maximizing the area under
the precision-recall curve of recalling injected aberrant splicing counts, we investigated
the impact of different injections scenarios. Using a fixed Ay for injection showed that
a higher dimension is needed for smaller amplitudes (Fig. A.10a). We followed the ap-
proach of OUTRIDER (Section 3.3) and used a uniform distribution for the Ay values
to be independent of the amplitude. The choice of ¢ was robust as each of the injec-
tion scenarios plateaued around the optimal encoding dimension. Using the uniform
injection approach resulted in an optimal encoding dimension of 15, 16, and 12 for s,
13, and 6, respectively, on average across the GTEx tissues. As for gene expression, the
optimal encoding dimension correlated positively with the number of samples within the
tissue (Fig. A.10b). Controlling for the latent space, we showed that the autoencoder
managed to remove almost all correlation structures across all GTEx tissues without
prior knowledge by reducing the absolute between-sample correlations from 0.10 = 0.05
down to 0.02 4 0.01 (mean + standard deviation across tissues, Fig. 4.2d).
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Figure 4.2: Tissue-specific correlation structure for 3 (a) Intron-centered and logit-
transformed 3 values of the 10,000 most variable introns clustered by samples
(columnsand rows) for the GTEx suprapubic skin tissue (n=222). Red and blue
depict relative high and low intron usage, respectively. Colored horizontal tracks
display sequencing center, batch, RNA integrity number (RIN), gender, age, and
cause of death (DTHHRDY, Hardyscale classification) of the samples. (b) Same
as a but for the left ventricle heart tissue (n=211). (c) Same as a but for the whole
blood tissue (n=369). (d) Boxplots of absolute values of between-sample corre-
lations of row-centered logit-transformed 3 for 48 GTEx tissues before (orange)
and after (green) correction for the latent space. The intron-centered 13 values
were clipped to the [0.01,0.99] interval before logit-transformation. Adapted from

Mertes et al. [2021].
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4.4 Detection of aberrant splicing events with the beta-binomial distribution

4.4 Detection of aberrant splicing events with the
beta-binomial distribution

After establishing the effectiveness of the autoencoder in removing between-sample co-
variations, we investigated the impact of the model on the detection of aberrant splicing
events using a BB distribution to assess significance. Assessing the significance in splic-
ing data can be done in two ways: (i) using a Dirichlet-multinomial distribution per gene
and (ii) using a BB distribution per intron. The rational of using a Dirichlet-multinomial
distribution per gene is that all introns within a gene are dependent as ratios of each
splice sites are defined by the expression ratios of the different isoforms. The drawback
of this is that the introns have to be assigned to genes by annotation or clustered if an
annotation-free approach is used as done in LeafCutter, LeafcutterMD, and SPOT. [Li
et al., 2018; Jenkinson et al., 2020; Ferraro et al., 2020] To reduce the complexity, we
chose to test each intron assuming a BB distribution using the expected count ratios
modeled by the autoencoder. To detect up and down regulation of introns, we computed
two-sided P values for each observation using the Equation 4.14. To have only one P
value per splice site, we corrected them with Holm’s FWER method.[Holm, 1979] To
demonstrate the applicability of the BB distribution, we used again the GTEx supra-
pubic skin tissue as an example as done in the expression outlier analysis. Investigating
the quantile-quantile plots per intron indicated that our autoencoder modeled the data
well even in the presence of outliers (Fig. 4.3a-d) rendering the P values suitable for
splicing outlier detection. Despite the spread in the usage of the 17th intron of SRRT
across the population, which is captured by p;; and p;, the aberrant splicing count is
detected as significant (P = 5.83 x 10—11, Fig. 4.3c-d). Looking at all introns per
splice metric, P values tended to be conservative in general (Fig. 4.3e). Since we expect
genuine aberrant splicing in the data,[Ferraro et al., 2020] it is expected that we do see
an excessively low P value in every ten thousandth test. Running the same analysis
across the GTEx tissues, resulted in similar observations.

4.5 Benchmarking aberrant splicing detection methods
by in silico injection

To assess the performance of FRASER in general and in contrast to other methods,
we followed the same strategy developed for the expression outlier benchmark (Section
3.6. We used the GTEx suprapubic skin tissue to inject aberrant splicing counts with
a frequency of 1073, uniformly drawn amplitude, and random direction yielding 25,988,
26,153, and 49,169 outliers for 5, 13, and 6, respectively. Since we jointly model 65
and 63, we have twice as many events for § compared to 5 and 3. Using this injection
schema, we benchmarked FRASER against four different approaches and hence, mon-
itored for each the recall of injected aberrant splicing counts and the precision. The
precision was defined as the number of injected outliers among the reported outliers
for each method. The applied methods included FRASER, a naive BB regression, a
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Figure 4.3: Splicing outlier detection based on the beta-binomial distribution. (a)
Intron split read counts (y-axis) against the total donor split read coverage (x-
axis) for the seventh intron of SRGAP2. (b) Observed negative log-transformed
P values (y-axis) against expected ones (x-axis) of the 5 metric for the data
shown in a. Under the null hypothesis, the data are expected to lie along the
diagonal (red, 95% confidence bands in gray). (c) Same as a for the 17*" intron
of SRRT, showing an outlier (FDR < 0.1, red). (d) Same as b for the 17" intron
of SRRT. The outlier is marked in red. (e) Same as b across all introns and splice
sites for ¥5 (green), ¥3 (orange), and splicing efficiency (0, purple). a-e are based
on the suprapubic skin tissue from GTEx (n=222). Adapted from Mertes et al.
2021].

PCA with BB regression using P values and z scores, and a pure PCA using z scores.
The benchmark results showed three interesting points (Fig. 4.4). First, the naive BB
approach, which does not account for any covariation structure in the data, performed
purely across all benchmark scenarios. Second, methods using P values to assess sig-
nificance while controlling for covariation outperformed z score based methods. And
third, using a z score cutoff equal to 2 over a FDR based cutoff equal to 0.1 yielded
two orders of magnitude more outliers and a drastic drop in precision (5% vs. 92% with
FRASER) for a small increase in recall (98% vs. 84% with FRASER (Fig. 4.4b). These
results are resembling the findings from the gene expression outlier detection benchmark
and demonstrate the strong advantage of assessing the significance using an appropriate
count distribution over absolute z scores cutoffs.

We used this benchmark not only to evaluate the performance of FRASER but to
investigate alternative ways of fitting the decoder given the latent space. Specifically,
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Figure 4.4: Splicing outlier detection benchmark in the GTEx suprapubic skin tis-

sue. (a) The proportion of simulated outliers among reported outliers (precision,
y-axis) plotted against the proportion of reported simulated outliers among all
simulated outliers (recall, x-axis) for different aberrant splicing detection methods
(color) for the 15 metric only. All events with |Aw| < 0.1 are ranked last. Plots
are stratified equally by injected amplitudes (A, by row) and junction coverage
(by column). The points indicate commonly applied cutoffs (FDR < 0.1 and
< 0.05 and absolute z scores > 2 and > 3). The darker lines mark the precision-
recall curves computed for the full dataset while the light ribbons around the
curves depict 95% confidence bands estimated by bootstrapping. (b) Same as
a but stratified by splice metrics and not binned. Adapted from Mertes et al.
[2021].

we investigated 3 methods, namely a least squares regression and a naive and robust BB
regression. Interestingly, all methods achieved similar performance when combining it
with a significance test with the naive BB regression having just a slight lower recall (Fig.
4.4a). Combining the different controlling methods with a z score approach showed a
drastic drop of precision for the naive BB regression as it was too sensitive to outliers in
the data. Despite the small advantage of the robust BB regression over the least squares
regression of logit-transformed splicing metrics, we opted for the latter to estimate the
expected count ratios f1;; due to the computational speed of the least squares regression.
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

FRASER tests each splice site independently. In principle, looking at all introns within
a gene simultaneously could provide greater statistical power. This can be achieved
by modeling the data using a Dirichlet-multinomial distribution as done in LeafCut-
terMD,[Jenkinson et al., 2020] SPOT,[Ferraro et al., 2020] and our LeafCutter adap-
tation (Section 2.2.2). To fairly assess this, we benchmarked the methods by injecting
aberrant splicing events by swapping out all read counts of a given sample and gene from
the brain cortex tissue into the suprapubic skin tissue. First, we selected 40 random in-
dividuals sequenced in both tissues. On those samples, we applied LeafCutter|[Li et al.,
2018] with the default parameters to detect alternative splicing. From the top 100 Leaf-
Cutter hits, we selected 60 random sample-gene pairs and injected for each pair the read
counts from the brain into the skin tissue. We applied then all methods on the altered
suprapubic skin tissue. Despite the theoretical advantage of the Dirichlet-multinomial
approaches, FRASER outperformed them, as shown by the precision-recall curves (Fig.
A.11). This could be due to the fact that no method, except FRASER, is offering to
control the data for confounders.

4.6 Rare splicing variant enrichment in GTEx

Another way to benchmark a method is to evaluate the results in their domain-specific
context. We used the same strategy as for the gene expression analysis in Section 3.7.
To this end, we performed an enrichment of rare variants that potentially affect splicing
among splice outliers. The underlying assumption is that if one observes a rare variant
in the conserved splicing region or a rare variant predicted to affect the splicing of
a gene, one is more likely to observe aberrant splicing in that given gene than if no
such rare variant is observed. This assumption is inline with results by Ferraro et al.
[2020], where rare variants were linked to aberrant splicing in humans. We created
two sets of potentially splicing affecting variants. First, we selected from the GTEx
WGS data (V7)[The GTEx Consortium et al., 2015] only rare variants with a MAF
< 0.05 within the 635 GTEx samples as well as in gnomAD.[Karczewski et al., 2020]
For the first set, we used VEP[McLaren et al., 2016] to filter for variants located around
a splice site, specifically 1-3 bases within the exon and 1-8 bases within the intron.
For the second set, we applied MMSplice[Cheng et al., 2019] on all rare variants £100
bp around an annotated splice site and filtered for those predicted to affect splicing
(|Alogit(v)| > 2). We found on average 299.4 + 207.6 and 66.0 £+ 48.0 (mean =+
standard deviation) variants for the splice site and the MMSplice variant set. We then
computed enrichments as in Section 3.7. As splice affecting variants can have long
ranging effects within a gene,[Drexler et al., 2020] we computed the enrichment on the
gene level. Specifically, we computed enrichments for rare splicing variants found within
splicing outlier genes as the proportion of outliers having a rare splicing variant over the
proportion of non-outliers having a rare splicing variant.

To compare FRASER on the gene-level with the Dirichlet-multinomial based meth-
ods, we computed gene-level P values for FRASER using an extra FWER correction
across all splice sites within a gene. For all four methods we computed enrichments
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Figure 4.5: Enrichment for rare variants predicted to affect splicing. (a) Enrichment
using FRASER (y-axis) against enrichment (x-axis) using different aberrant splic-
ing detection methods (columns) for rare variants located in a splice region. The
enrichment is calculated for different nominal P value cutoffs (rows). The applied
methods are a naive beta-binomial regression, the LeafCutter adaptation (Sec-
tion 2.2.2), LeafCutterMD,[Jenkinson et al., 2020] and SPOT'.[Ferraro et al., 2020]
Each dot represents a GTEx tissue (n = 48). (b) Same as a but the enrichment
is computed for rare variants predicted to affect splicing by MMSplice.[Cheng
et al., 2019] (c¢) Violin plots of splice-site-based rare MMSplice variant enrich-
ments (x-axis) for different correction methods (y-axis) and various variant range
cutoffs (facets). BB beta-binomial. Adapted from Mertes et al. [2021].

across the 48 GTEx tissues. By achieving higher enrichments across the GTEx tissues,
variant sets, and different nominal P value cutoffs, FRASER outperformed all methods
including our LeafCutter adaptation, LeafCutterMD, SPOT, and non-corrected BB P
values (Fig. 4.5a-b). Notably, the MMSplice variant set showed 2-10 times higher en-
richments across all methods compared to the splice region variant set. Using a splice
site specific enrichtment based on the MMSplice variant set, achieved even higher en-
richments (Fig. 4.5¢). Overall, this emphasizes on the biological site the importance of
considering exonic or deep intronic variants as potential splice-affecting candidates and
on the statistical site the importance of controlling for covariations within the data.
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4 Detection of aberrant splicing events in RNA-seq data with FRASER

4.7 Reproducibility of aberrant splicing events in GTEx

Assessing the reproducibility of aberrant splicing calls using existing datasets is hard, as
most of the datasets do not contain replicates. As GTEx contains many samples across
tissues from the same donor, one can use this as a proxy to estimate the reproducibility
of detecting aberrant splicing. To this end, we selected from the GTEx dataset donors
with samples being sequenced in at least 20 tissues resulting in 195 donors. To make
sure that an aberrant splicing event can be detected we filtered for sample-gene pairs
where the gene passed the filtering criteria in at least 10 tissues. We then classified a
given aberrant splicing event reproducible if it reached a nominal P value of p < 1073 in
one or more additional tissues. We then computed the rare splicing variant enrichment
on the entire dataset, using only the reproducible aberrant splice events.

Interestingly, the vast majority of the aberrant splicing events were not reproducible in
any other tissue in GTEx regardless of the method used (Fig. 4.6a-b). This observation
was also reported by Ferraro et al. [2020] when applying SPOT on the same data tuned
specifically for this purpose. Compared to the other methods, FRASER achieved the
highest percentage of reproducible aberrant splicing calls with increased reproducibility
for events with lower P values (Fig. 4.6b). For instance, FRASER had a reproducibility
rate of 22% compared to SPOT with 11% forfor outlier calls at a nominal P value
of 1077 in a given tissue that was reproducible in at least one additional tissue with
p < 1073, In addition, the enrichment analysis of rare variants potentially affect splicing
revealed that the enrichment increased with increasing reproducibility. This was true
for all methods (Fig. 4.6¢). These results suggest that non-reproducible splicing outliers
exhibit a higher false positive rate compared to reproducible splicing calls. However,
manual investigation of such tissue-specific aberrant splicing events with the Integrative
Genomics Viewer (IGV)[Robinson et al., 2011] confirmed the outlier calls. Therefore, to
understand and estimate this excess of tissue-specific outlier calls, biological replicates
are needed.

4.8 Reanalysis of the Kremer dataset using FRASER

We started the development of FRASER with the aim to boost RNA-seq based rare
disease diagnostics by robustly identifying aberrant splicing events. To demonstrate
the performance of FRASER in this context, we reanalyzed the Kremer dataset using
FRASER. In the clinical context, results are often manually examined by filtering for
phenotypically relevant genes. Hence, we suggest to work with gene-level rather than
splice-site-level statistics because they are easier to handle and only later, when the
actual splice defect has to be localized after the identification of a putative disease-
causing gene, splice-site statistics are helpful. Another common filter is the effect size,
as larger effects are more likely to have strong downstream effects potentially resulting
in physiological changes. FRASER identified a median of 12, 7, and 10 genes with
at least one aberrant splicing event per sample for 5, 13, and 6, respectively, at a
significance level of FDR < 0.1 and an effect size |A)| > 0.3 (absolute difference between
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observed and expected value, Fig. 4.7a). These numbers are consistent with the results
obtained for all 48 GTEx tissues using the same cutoffs. With a total of 1,666 events,
FRASER reported slightly fewer aberrant splicing events compared with the LeafCutter
adaptation (1,725 events, Section 2.2.2). Nevertheless, FRASER identified all novel
pathogenic splicing events, including those detected by other means in our pilot study
(Fig. 4.7b). In particular, the intron retention event in MCOLNI detected through
MAE (Section 2.2.3) was missed by the LeafCutter adaptation because it does not
consider non-split reads. Moreover, FRASER reprioritized an exon truncation event in
TAZ which ultimately led to a genetic diagnosis that is discussed in the next Section
5.1. Overall, testing simultaneously for alternative splicing using the 5 and 3 metrics
and splicing efficiency using 6 increased the number of detected events on the gene-level
by two-fold over testing for alternative splicing alone.

We further investigated the impact of sample size on sensitivity with the same strategy
as for OUTRIDER (Section 3.8). The purpose of this analysis is to provide guidance on
study design and required sample size in the clinical setting. To this end, we randomly
subsetted the Kremer data while keeping the samples with the 13 known pathogenic
splicing events. After applying FRASER to the subsets, we monitored the recovery rate
of those 13 events and their nominal P value. As expected, we observed the same drop
of recovery rate and higher P values with smaller sample sizes as in OUTRIDER (Fig.
A.12). Only 30 samples were needed to recover on average 85% of the events (11 out of
13). While FRASER recovered all events already with 50 samples for some subsets, 100
samples were needed to robustly recover them every time.

Altogether, these findings show the importance of using both alternative splicing and
splicing efficiency metrics as well as dedicated statistical models in RNA-seq based diag-
nostics to boost sensitivity. In addition, these results demonstrate that 30 samples can
be enough to detect the majority of disease-causing splicing defects.

4.9 Short summary

We have introduced here FRASER, an R/Bioconductor package for detecting aberrant
splicing events in RNA-seq data in the context of rare disease diagnostics. It builds upon
the developed architecture in OUTRIDER. It uses a denoising autoencoder scheme to
provide expected read count proportions while automatically controlling for known and
unknown confounders. FRASER detects aberrant splicing using splice site metrics and a
BB distribution with a splice-site specific dispersion parameter. Further, we adapted the
benchmark strategy developed for gene expression outlier detection to aberrant splicing
to benchmark FRASER and proved its superior over other approaches. Through the
application of FRASER on the Kremer dataset, we not only established a new diagnosis
but also highlighted the importance of integrating the splicing efficiency metric to detect
intron retention events.

67



4 Detection of aberrant splicing events in RNA-seq data with FRASER

no rare variant rare splice variant

1e+05 4

1e+03 4

le+014 "'
T
0

Number of events

lIO 2‘0 6 lIO 2‘0

30
Number of tissues outlier is present (P < 107° )

T
30

P <10” P <107 P<10°

Percentage
within Method
o & 3 o

- ‘-—____;_7_ S — -
1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10>0 1 2 3 4 5 6 7 8 9 10 >10
Number of tissues outlier is present

‘—..._._____i_ . m i-_._._____,_,_,‘ | .
— —

Splice region Splice region Splice region MMSplice MMSplice MMSplice
naive BB LeafcutterMD SPOT naive BB LeafcutterMD SPOT Method
1004 ;
. ﬂ T B Fraser
10 4 &' ,ﬁ . naive BB
E:\ l . LeafcutterMD
L
0 1 H sror
§ 100
8 p o
w L : A
= 101 ('F
E ] -
< .
Q i Minimum of
2 100 ot e
c d T reproducibility
w a, Pt A
10{ B o1
q o2
1 - : e 10

1 10 12001 10 100 1 10 100 1 10 100 1 10 100 1 10 100
Enrichment (other method)

Figure 4.6: Reproducibility of splicing outlier calls and their rare splicing variant
enrichment across GTEx tissues. (a) Barplot of the number of gene-level
events (y-axis) against their reproducibility (x-axis) across GTEx tissues. The
reproducibility is defined as the number of tissues an event is observed at a nom-
inal P value p < 1073 given it was observed at least once at p < 107°. The data
is stratified by associated variant status and grouped by the different methods:
FRASER (green), naive BB (orange), LeafcutterMD (purple), and SPOT (pink).
(b) Same as a but plotted as the proportion (y-axis) of reproducible gene-level
splicing outlier calls in GTEx tissues (number of tissues, x-axis) stratified by
the primary outlier call cutoff. (c) Enrichment using FRASER (y-axis) against
enrichment using the same methods as in a (x-axis, columns) stratified by the
variant set (columns), namely rare splice site and MMSplice, respectively. The
enrichment is calculated for different nominal P value cutoffs (rows) and increased
reproducibility cutoff (color). Each dot represents a GTEx tissue. Adapted from
Mertes et al. [2021].
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5 Solving rare disease cases via RNA
sequencing

Knowing is not enough; we must apply.
Willing 1s not enough; we must do.

Johann Wolfgang von Goethe

Content of this chapter is based on ongoing studies done jointly with Mirjana Gu-
sic, Vicente Yépez, Robert Kopajtich with the guidance of Julien Gagneur and Holger
Prokisch. The data presented is mostly unpublished. Clinicians from different institutes
helped to gather the data. Mirjana Gusic, Robert Kopajtich, and Agnieszka Nadel pre-
pared and sequenced the samples. Vicente Yépez helped to obtain and analyze the data.
The results were interpreted jointly.

Since the initial pilot study in 2016, our rare disease cohort grew from 105 cases to
currently 309 cases and is still growing. The methods developed in this thesis were
continuously applied to every new incoming WES inconclusive case in a more and
more standardized and automated way.[Yépez et al., 2021a] Ultimately, this RNA-seq
based diagnostic strategy led to more than 40 molecular diagnoses in total over the
last years.[Kremer et al., 2017; Mertes et al., 2021; Kopajtich et al., 2021; Yépez et al.,
2021a] In this section, I will showcase three more cases in which RNA-seq was crucial to
pinpoint the disease-causing variant or to prioritize candidate genes and to functionally
interpret the underlying pathomechanism.

5.1 Exon truncation in TAZ caused by a synonymous
variant

The reanalysis of the Kremer dataset with FRASER reprioritized a splicing defect in
TAZ, Tafazzin. Specifically, it revealed a truncation of the fourth exon by aberrant
alternative donor usage in individual #74116 (A3 = —0.88 and FDR = 1.98x 1077, Fig.
5.1). Tafazzin catalyzes the maturation of cardiolipin, a major lipid constituent of the
inner mitochondrial membrane that is involved in energy production and mitochondrial
shape maintenance.[Houtkooper et al., 2009] A synonymous variant (c.348C>T) located
22 bp inside the fourth exon created a new upstream donor site. This homozygous variant
in individual #74116 led to a nearly loss of wildtype TAZ by truncating the protein by
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Figure 5.1: Detection of a pathogenic splicing defect in TAZ using FRASER. (a)
Gene-level significance (-logio(P), y-axis) versus effect (A, x-axis) for alterna-
tive donor usage for individual #74116. Six genes (red dots) passed both the
genome-wide significance cutoff (horizontal dotted line) and the effect size cut-
off (vertical dotted lines). (b) Number of split reads spanning from the fourth
to fifth exon (y-axis) against the total number of split reads at the acceptor
site of the fifth exon (x-axis) of TAZ. Sample #74116 (red) deviates from the
cohort trend (red dot). (c) Observed (y-axis) against FRASER-predicted (x-
axis) 13 values for the data shown in b. (d) Quantile-quantile plot of observed
P values (-logjo(P), y-axis) against expected P values (-logio(P), x-axis) and
95% confidence band (gray) for the data shown in b. (e) Sashimi plot of the
exon-truncation event in RNA-seq samples of the TAZ-affected (red) and three
representative TAZ-unaffected (orange) individuals. The RNA-seq read coverage
is given as the log1g RPKM-value (y-axis) and the number of split reads spanning
an intron is indicated on the exon-connecting line. Underneath, the gene model
of the RefSeq annotation is depicted in black and the aberrantly spliced exon is
colored in red. The insert depicts the donor site-creating variant of the affected
individual #74116. Adapted from Mertes et al. [2021].

8 amino acids (Fig. 5.1e). This event was overlooked in our pilot study even though our
LeafCutter adaptation found it significant. It was not prioritized as it was not indexed
in ClinVar|[Landrum et al., 2018] at the time and due to its classification as synonymous.
The reprioritization triggered a new literature survey, which revealed that Ferri et al.
[2016] associated the same splicing defect in TAZ with cardiomyopathy at the same
time as our pilot study. Cardiomyopathy is consistent with the myopathic facies and
arrhythmias presented by individual #74116, thereby establishing the genetic diagnosis.
Without the detection of the splicing defect in the RNA-seq data, the genetic variant
would not have been reprioritized and clinically reclassified from VUS to pathogenic.
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5.2 Identification of the expression of a pathogenic
cryptic exon in MRPS30

In the second case, a newborn was presented with a mitochondrial complex V deficiency,
cardiomyopathy, and metabolic acidosis. The young boy died in the same year due to
heart failure. As WES on a skin biopsy sample did not reveal any candidates, RNA-seq
was performed. OUTRIDER and FRASER both prioritized MRPS30 as down-regulated
gene expression and splicing outlier (Fig. 5.2). The overall expression of MRPS30 was
reduced by 75%. Inspecting the aberrant splicing calls, revealed the expression of a
cryptic exon in the first intron. Variant calling on RNA-seq identified a homozygous deep
intronic variant (¢.602-468T>@G) inside the cryptic exon that created a new acceptor side
(Fig. 5.2e). Both SpliceAlI (0.4 acceptor gain) and CADD (6.6) did not prioritized this
variant as damaging. As MRPL30 (OMIM #611838) is one of the 70 components of the
mitochondrial ribosomes[Kenmochi et al., 2001] together with the matching phenotype
and low percentage of wildtype expression, these findings are establishing the genetic
diagnosis of individual #127272. As in silico prediction tools misclassified the variant
by predicting no or low effect on translation while WES completely missed the variant,
RNA-seq was needed to detect the expression of the cryptic exon and to interpret the
functional effect of the deep intronic variant.

5.3 Mono allelic expression of a pathogenic missense
variant in RRM2B

In the third case, a young boy was presented with general hypotonia, profound global
developmental delay and sensorineural hearing impairment, periventricular white mat-
ter hyperdensities, and diffuse optic disc pallor. Biochemical analysis of the urine, re-
vealed high lactic acid and protein levels and the excretion of glucose. WES prioritized
a heterozygous pathogenic missense in RRM2B (c¢.328C>T, p.Argl10Cys). But since
all other variants in the gene were benign (¢.207C>T, p.Val69=) or intronic, the gene
was not followed up as potentially disease-causing. As individual #126118 remained
inconclusive after WES, RNA-seq was performed. OUTRIDER reported RRM2B as
expression outlier with a 42% reduction, which matched the expectations due to the
heterozygous pathogenic missense variant (Fig. 5.3a-b). But interestingly, the MAE
analysis found two hits in RRM2B including the pathogenic variant (Fig. 5.3c) mean-
ing that the reduction in gene expression can not be linked to the pathogenic variant
and hence is caused by other means. Unfortunately, WGS analysis did not reveal any
additional potentially disease-causing variants and also the aberrant splicing analysis
was negative. To investigate the pathogenicity of the missense variant, proteomics was
performed. This confirmed the loss of function as only 28% of RRM2B was detected har-
boring the pathogenic amino acid change. The nuclear encoded RRM2B is important in
the DNA synthesis and hence, RRM2B-deficiency (OMIM #604712) is linked with the
mitochondrial DNA depletion syndrome[Bourdon et al., 2007] but also linked to multiple
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distinct clinical characteristics[Pitceathly et al., 2012] matching some of the presenta-
tions of individual #126118. Taking together the RNA-seq based and proteomics based
evidences, the MAE of the pathogenic missense variant in RRM2B is the molecular
cause of the disease, but as the evidence for the loss of expression of the second allele is
still unclear, further investigations are needed to fully understand the pathomechanism.
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Figure 5.2: Expression of a pathogenic cryptic exon in MRPS30. (a) Gene-level
significance (-log1o(P)) versus effect (z score) for individual #127272 for gene
expression using OUTRIDER. Each dot represents a gene and red dots indicate
genome-wide significance. (b) Normalized gene expression versus sample rank
for MRPS30. (c) Gene-level significance (-logio(P)) versus effect (Aes) for indi-
vidual #127272 for alternative acceptor usage using FRASER. The red dashed
lines represent the genome-wide significance cutoff (horizontal) and the effect size
cutoff (vertical). (d) Number of split reads spanning the canonical intron (y-axis)
against the total number of split reads at the donor site (x-axis) of MRPS30. (e)
Sashimi plot of the cryptic exon event in RNA-seq samples of individual #127272
(red) and two non-affected individuals (blue and green). The bottom depicts the
RefSeq annotation.
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Figure 5.3: Mono-allelic expression of rare missense variant in RRM2B. (a) Gene-
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level significance (-logio(P)) versus effect (z score) for individual #126118 for gene
expression using OUTRIDER. Each dot represents a gene and red dots indicate
genome-wide significance. (b) Normalized gene expression versus sample rank for
RRM2B. (c) Alternative allele ratio (y-axis) versus total coverage of heterozygous
SNVs (x-axis) for the sample #126118. Significant MAE in common and rare
variants are shown in orange and red, respectively. MAE variants in the disease-
causing gene are highlighted by different shapes.



6 Conclusion

Over the past decade, NGS has revolutionized the clinical diagnostics of rare diseases.
Rapid technology development and drastically reduced sequencing costs made WES and
eventually WGS the entry point for molecular diagnosis of rare diseases. The clinical
implementation of WES and WGS yields a diagnostic rate between 25-50% depend-
ing on the disease.[Neveling et al., 2013; Wortmann et al., 2015; Wright et al., 2018b;
Retterer et al., 2016] To increase this diagnostic rate and to solve the remaining cases,
the community is turning to the next omics level, namely the RNA.[Cummings et al.,
2017; Kremer et al., 2017; Gonorazky et al., 2019; Frésard et al., 2019; Murdock et al.,
2021] This new development and endeavor allowed me, in this thesis and beyond, to
systematically investigate the utility and complementarity of RNA-seq in rare disease
diagnostics. Further in this thesis, I have developed statistical methods to increase sen-
sitivity, specificity, and robustness in detecting aberrant gene expression and splicing
events using RNA-seq data to support molecular diagnosis.

Establishment of RNA-sequencing-based rare disease diagnostics In the first part
of this work, we aimed to demonstrate the utility of RNA-seq and its complementarity
to WGS in rare disease diagnostics. By adapting methods developed for differential
expression[Love et al., 2014] and splicing analysis,[Li et al., 2018] we were able to pro-
vide a molecular diagnosis for 10% (5 out of 48) of WES inconclusive cases. With the
significance-based tests for aberrant gene expression and splicing events and MAE of rare
variants, we limited the number of outlier events per individual to a median of 1, 5, and
6, respectively. Such a small number of candidate genes per sample is important to not
overwhelm and importantly not distract clinicians with too many non-disease-relevant
hits while manually inspecting the results. To minimize the number of covariates and
confounders and hence the extensive normalization of the data later, the same sample
preparation and sequencing protocols were used. Still, three covariates were needed to
normalize the data to an acceptable level including sex, biopsy site, and an unknown
probably technical bias. Despite this knowledge of existing covariates, the splicing analy-
sis was performed without normalization as LeafCutter did not provide the functionality
at the time.[Li et al., 2018] As more data will be generated over time and across hos-
pitals,[Gahl et al., 2015; Thompson et al., 2014; Frésard et al., 2019] including healthy
cohorts such as GTEx,[The GTEx Consortium et al., 2015] the need to control for con-
founders became evident and led us to the development of more robust statistical models
for aberrant gene expression and splicing events.

In the case of MAE, we did not control for any biases as potential covariates are
reduced to a bare minimum. This is due to the test within a single biological sample
between the two alleles. The mapping bias towards reference alleles can be addressed
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by mapping in a variant aware fashion using WASP.[van de Geijn et al., 2015] Another
approach to test for MAE is to estimate the allelic imbalance per gene across a con-
trol population and then test each sample for significant divergence from it as done by
Mohammadi et al. [2019]. This enables individual transcriptome comparison to previ-
ously generated reference data, but with the caveat of loosing many genes where no
estimates could be fitted due to lack of expression or non-existing heterozygous variants
in the reference cohort. Therefore, a combination of the proposed analysis using the
expression variation dosage outlier test (ANEVA-DOT) for genes where estimates can
be established while using the DESeq2-based|Love et al., 2014] NB test for the remaining
ones.

Interestingly, I observed many aberrant splicing defects in our pilot dataset causing
loss of function that were ultimately leading to a molecular diagnosis in 4 cases. This
finding was in line with the results from Cummings et al. [2017] were the majority of
disease-causing events were linked to splicing defects found in individuals affected by
a primary muscle disorder using muscle biopsies. This confirms the important role of
mis-splicing in Mendelian[Sibley et al., 2016; Abramowicz and Gos, 2018] as well as
in common diseases.[Li et al., 2016; Scotti and Swanson, 2015] To detect these events
DNA sequencing is not enough as predicting the effect of variants on splicing is still
challenging,[Jian et al., 2014] especially for deep intronic variants.[Jaganathan et al.,
2019] An example of this is the splicing defect in TIMMDC1 and MRPSS30, where a
single deep intronic variant caused aberrant expression of a cryptic exon that was neither
detected by WES nor prioritized by prediction models.[Jaganathan et al., 2019; Cheng
et al., 2019] Here RNA-seq was crucial to pin-point the disease-causing event as well as
the underlying variant. By investigating these cryptic exon events, I discovered that over
70% of such events originated from splice sites expressed below 1% in the population. As
these weak splice sites are more likely to be activated to create a cryptic exon by a single
variant as the data suggest, GTEx could be used to identify these sites. Such a weak
splicing map can be used to improve variant filtering but also be used to train splicing
models like MMSplice and SpliceAl even in a tissue-specific manner.[Cheng et al., 2019;
Jaganathan et al., 2019]

It is known that splicing and gene expression is tissue specific.GTEx Consortium,
2017; Yeo et al., 2004a; Castle et al., 2008] This naturally raises the question if clinically
accessible but unaffected tissue can be used to detect a disease-causing event.[Aicher
et al., 2020] In this study patient derived dermal fibroblast cell lines were used as a
proxy instead of affected tissue for mitochondrial diseases as most mitochondrial genes
are expressed in fibroblasts.[Vafai and Mootha, 2012; Yépez et al., 2021a] In contrast,
Cummings et al. [2017] and Gonorazky et al. [2019] demonstrated that muscle biop-
sies are needed in neuromuscular diseases, as disease relevant genes would otherwise
be missed due to missing expression. One way to use clinical accessible tissues is to
transdifferentiate patient derived fibroblasts into the target tissue as proven effective for
neuromuscular diseases by Gonorazky et al. [2019]. In fact, it can be argued that using
unaffected tissue over affected tissue may actually be advantageous because regulatory
effects are limited to other genes as long as the gene of interest is expressed, making
causal defects more likely to be outliers.
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Over the time, multiple studies showed the advantage of using RNA-seq to diagnose
WES or WGS inconclusive cases.[Cummings et al., 2017; Gonorazky et al., 2019; Frésard
et al., 2019; Murdock et al., 2021; Yépez et al., 2021a] While all studies had the same
aim and concluded that RNA-seq was beneficial, the approaches and especially the way
aberrant events were detected differed. Rather than using the cohort itself as a control, as
done in this study, Cummings et al. [2017] compared expression and splicing profiles with
tissue-matched control samples from GTEx. Specifically, gene expression outliers were
identified using a cutoff on z scores (|z| > 3) calculated on the log-transformed RPKM
values without controlling for covariations. This approach was adapted by Gonorazky
et al. [2019] with a lower cutoff (|z| > 1.5). While the first study did not identified any
gene expression outliers claiming that the analysis was statistically underpowered with
more than 180 samples,[Cummings et al., 2017] the latter study was able to diagnose
patients with this approach.[Gonorazky et al., 2019] To account for covariates in the
data, Frésard et al. [2019] controlled the RNA-seq data using PCA before applying a z
score cutoff.[Frésard et al., 2019] This was important, not only because the samples were
sequenced in different centers across multiple batches and projects but also to control
for hidden factors. This was similar to the approach by Li et al. [2017] in the context of
the general impact of rare variants on gene expression, where the data was controlled for
genotype, sex, and hidden confounders found by PEER.[Stegle et al., 2012] Compared
to the one-against-the-rest DESeq2 approach, all methods used some log transformation
of the raw read counts while assessing the outlier status based on z scores instead of
significance.

Comparing the aberrant splicing detection approaches across the studies, revealed
major differences in the methodology.[Cummings et al., 2017; Gonorazky et al., 2019;
Frésard et al., 2019; Murdock et al., 2021; Yépez et al., 2021a] Nevertheless, all found
disease-causing aberrant splicing events. Cummings et al. [2017] and Gonorazky et al.
[2019] used a similar approach based on cutoffs on absolute and relative RNA-seq split
read counts. Because the cutoffs were chosen manually and not evaluated in other scenar-
ios, it is questionable whether they generalize across cohorts and diseases. In particular,
filtering for introns not expressed or expressed in fewer than five unaffected samples
would not detect any cryptic exons arising from weak splice sites such as TIMMDC1 or
MRPS30. Frésard et al. [2019] adapted the z score approach from the gene expression
analysis by using PCA controlled splice ratios to compute z scores. These methods are
in contrast with the approach I developed by adapting LeafCutter to the outlier test,
as they do not assess the significance per event or provide data driven cutoffs. Follow-
ing this idea, LeafCutter was recently extended to test properly for aberrant splicing
based on the Dirichlet-multinomial distribution without a thorough evaluation against
alternative methods.|Jenkinson et al., 2020]

Development and benchmarking of robust gene expression and splicing outlier de-
tection methods All these studies including the pilot study I described here, had at
least two out of the four following limitations: (i) no assessment of the significance of
outlier events, (ii) no controlling for known or unknown confounders, (iii) no usage of
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appropriate count distributions, and (iv) no thorough evaluation of the methods using
simulated or experimental data. These limitations led us to the development of the two
software packages OUTRIDER and FRASER and to the new benchmark strategies for
gene expression and splicing outlier detection in RNA-seq, respectively. Both methods
are using an autoencoder to control in an automated fashion for confounding effects in the
RNA-seq data by providing expression or splice ratio estimates. Using these estimates
appropriate count distributions, namely NB and BB, are fitted per feature across sam-
ples accounting for overdispersion in RNA-seq count data. Outliers are then identified
as read counts or split read counts that significantly deviate from the fitted distribution.
The number of detected confounders to control for, is estimated by optimization of the
model’s ability to recall corrupted counts using a denoising autoencoder scheme. With
the newly developed benchmark strategies, I demonstrated that each method outper-
formed alternative methods in recalling simulated outliers and pathogenic events in the
Kremer dataset. Calling aberrant expression events with OUTRIDER and FRASER
yielded in higher enrichments for rare moderate and high impact variants as well as
for rare splice effecting variants across the GTEx tissues.[The GTEx Consortium et al.,
2015] Both methods are developed as open source R package and made available through
Bioconductor.[Team, 2021; Huber et al., 2015] The packaging of the software together
with the comprehensive vignettes and user documentation, makes the adaptation of the
tools as easy as possible for the end-user and a full analysis on RNA-seq data can be
done in only a few lines of code.

Controlling for confounders in RNA-seq data can be achieved in multiple ways. In the
DESeq2-based expression outlier detection approach presented in this study, manually
identified covariates were regressed out. Another way is to use PEER[Stegle et al.,
2012] in conjunction with known covariates like sex and genotype [Li et al., 2017; Pala
et al., 2017; Lappalainen et al., 2013] or PCA[Pickrell et al., 2010; Frésard et al., 2019]
to control gene expression. Not only gene expression but also splicing metrics need
to be controlled, as demonstrated by Frésard et al. [2019] using a PCA, despite the
initial misconception that splice ratios have implicit normalization.[Li et al., 2018] All
of these approaches transform the data into the log space or into ratios assuming a
log-normal or normal distribution, respectively. This is suboptimal when working with
overdispersed count data. Indeed, using PCA or PEER on simulated data instead of
the autoencoder, increased the error of inferring the expectations especially for genes
with low or high expression values. Even though it was not much, for the splice metrics
performance increased when a BB loss function was used for the decoder. Instead of
changing the methodology one can also change the architecture of the autoencoder. 1
did not explore more complex architectures with multiple layers for the autoencoder to
capture nonlinear relationships as the single layer autoencoder already removed almost
all existing correlations. This is in line with the work by Way and Greene el al., who
demonstrated that an autoencoder with a single layer for the encoder and decoder was
enough to learn biologically relevant features from gene expression data in cancer.[Way
and Greene, 2018]

In addition to the modelling of the covariations in the data, I demonstrated the ben-
efits of using P values over z scores to identify aberrant data points through extensive
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benchmarking. Until now, aberrant gene expression and splicing was detected by z
score cutoffs only.[Cummings et al., 2017; Frésard et al., 2019; Gonorazky et al., 2019;
Li et al., 2017] Only recently with the development of LeafCutterMD[Jenkinson et al.,
2020] and SPOT,[Ferraro et al., 2020] aberrant splicing events were detected via sta-
tistical means. The advantage of using P values is two fold. First, P values can be
corrected for multiple testing,[Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001] which is important as more than 10,000 test per sample are performed. Second, by
using z scores the input data is transformed assuming a normal distribution resulting in
overall lower precision. Using P values allows to apply appropriate count distributions,
which is especially important for features not well expressed.

In differential expression analysis, two conditions are usually compared, each with at
least three replicates.[Love et al., 2014; Zhou et al., 2014; Li et al., 2018] This is quite
different to the experimental setup of outlier detection in rare diseases where no replicates
are performed. It is assumed that the disease-causing event has such an effect on the
expression that no replicates are needed to identify it. As the past showed, no technical or
biological replicates were performed in the context of rare disease diagnostic.[Cummings
et al., 2017; Frésard et al., 2019; Gonorazky et al., 2019; Murdock et al., 2021; Yépez
et al., 2021a] OUTRIDER and FRASER as well as all the other methods assume that
disease-causing events are ultra rare and hence are not replicated in the data, because this
could render the event undetectable. In this context, replicates can be interpreted in two
ways: (i) technical/biological where two samples are sequenced for a single individual or
(ii) event-based were two individuals have the same underlying genetic cause resulting in
the same aberrant event. The event-based replicates can occur, especially when families
with multiple affected children are analyzed. To not lower the statistical power, the
autoencoder implementation allows for exclusion in the modeling step of such real or
pseudo-replicates. While all samples are tested independently for outlier events, the user
can leverage such replicates by pairing the them using Fisher’s method of combining P
values[Fisher, 1970] by assuming independence of the read counts conditioned on the
expectation predicted by the autoencoder. Alternatively, methods from studies where
family structures were present can be leveraged.[Pala et al., 2017; Li et al., 2014] But to
evaluate the overall benefit of using replicates, more investigations are needed.

It is known that splicing is a very sophisticated process that can generate tens of
isoforms per gene with complex splicing patterns even in the same tissue.[Mortazavi
et al., 2008; Vaquero-Garcia et al., 2016] To keep the model simple, as well as to simplify
the interpretation of the results, I developed FRASER using the intron-centric splicing
metrics which are defined at the level of individual splice sites. Using the intron-centric
percent spliced in values (¢5 and v3)[Pervouchine et al., 2013] has also the advantage
that they can be computed without a gene annotation. This is in contrast to existing
differential splicing analysis tools that uses exon-centric ¢ values or exon and intron
quantifications to model alternative splicing and intron retention.[Anders et al., 2012;
Shen et al., 2014; Trincado et al., 2018] Using the 15 and 3 values also enabled me
directly to use the splicing efficiency metrics (65 and 63)[Pervouchine et al., 2013] with the
same autoencoder architecture since they are computed in the same way as count ratios.
Alternatively, aberrant splicing can be modelled on the gene level using a Dirichlet-
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multinomial distribution.[Li et al., 2018; Jenkinson et al., 2020; Ferraro et al., 2020]
Theoretically, this should increase sensitivity over a BB model as all split reads across
the gene contribute to the test statistic. Nevertheless, FRASER with its splice-site-level
statistics outperformed the gene-level approaches. In addition, the gene-level approaches
have two drawbacks. First, to assign each intron to a gene, a complex clustering must
be performed or a known gene model is required a priori.[Li et al., 2018] Second, since
only split reads are considered, by design the Dirchilet-multinomial approach is blind to
intron retention, which is proven to be important in clinical diagnostics.

In summary, by developing dedicated statistical models to detect aberrant expression
events in RNA-seq, I directly contributed to the diagnoses of more than 40 individuals
over the last years. This has likely not only improved the quality of life of each patient
but also demonstrated how RNA-seq can be used to support rare disease diagnostics but
also variant interpretation in general by providing complementary information through
aberrant expression event detection. With the falling costs for RNA-seq, the increased
implementation of RNA-seq-based diagnostics, and the advantage of OUTRIDER and
FRASER over alternative approaches, I foresee that they will become important tools
in the field of rare diseases.

6.1 OQOutlook

This work began with a systematic evaluation of the utility of RNA-seq in clinical rare
disease diagnostics. This exposed the lack of dedicated statistical models to detect outlier
events in RNA-seq, which I addressed by developing OUTRIDER and FRASER. Even
though, these methods outperformed alternative methods in the benchmarks, there is
room for further improvement and possible adaptations to new fields and problems.

Improving the autoencoder model by incorporating known covariates and robust
estimates The autoencoder implementation does not allow the usage of known co-
variates. As long as the data is homogeneous, e.g from the same tissue or produced
through the same pipeline, the autoencoder is capable of remove any covariations. But
when combining more heterogeneous datasets like the Kremer and GTEx dataset, some
structure is left even after the autencoder correction.[Yépez et al., 2021b] Adding known
covariates like sequencing center and protocol, sex, and age to the autoencoder model
could be achieved by adding them along with the latent factors before the decoder layer.

The dispersion parameters are fitted on the full data including the outlier, if present.
As outlier data points can have high impacts on the fitted parameters, it could be
investigated if a weighting scheme as implemented in the edgeR package[Zhou et al.,
2014] can further improve the results. This of course introduces some sort of circularity
and hence has to be evaluated.

From single- to multi-omics outlier detection This study focuses primarily on three
aspects of RNA-seq sequencing to guide and support the diagnostics of rare disease:
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aberrant expression and splicing and MAE. Through the rapid advances in technology,
new avenues are arising each with its own advantages and drawbacks. The undiagnosed
disease network (UDN) for example, used metabolomics and lipidomics to prioritize and
identify disease-causing events.[Webb-Robertson et al., 2020] Multiple studies used pro-
teomics to validate candidate genes,[Kremer et al., 2017; Lake et al., 2017; Borna et al.,
2019] but it can also be used directly to identify the disease-causing event.[Kopajtich
et al., 2021] Instead of looking at the population of cells as a whole, one can even go
down to the level of a single cell.[Regev et al., 2017] Nomura et al. [2018] used single-cell
transcriptomics and epigenomics to identify functional signature in cardiac hypertrophy.
In another study,! transcriptomics and proteomics on the single-cell-level are used to
understand muscle dystrophy.

We already adopted successfully the autoencoder approach to proteomics data.[Kopajtich
et al., 2021] But more work is needed to adapt it to other omics and single cell data and
to go truly multi-omics by jointly modeling the different omics datasets. Argelaguet
et al. [2018, 2020] already demonstrated the possibility and actual benefits of learning
across omics and single-cell datasets. This is promising as it may increase sensitivity
but also interpratability, as the effect of a disease-causing variant can be detected at
multiple levels. For example, downregulation of ALDHI18A1 expression leads to aber-
rant changes in metabolites of the proline synthesis or the splicing defect in TIMMDC'1
leads to downregulation of mitochondrial complex I subunits at the protein level.

Community outreach Just developing methods and proving their superior over alter-
native methods is not enough to improve rare disease diagnostics and hence the patient’s
quality of live. It needs outreach, accessibility, training, documentation, support, and
foremost a user community. This is an ongoing process. By making the source code open
access and integrating it into the Bioconductor[Huber et al., 2015] and bioconda|Griining
et al., 2018] ecosystem with detailed vignettes, we made it accessible and provide doc-
umentation. The methods developed in this thesis are even integrated into DROP a
end-to-end workflow for aberrant event detection in RNA-seq to ease the implementa-
tion of the tools in diagnostics.[Yépez et al., 2021b] With the growing interest in using
RNA-seq in diagnostics, I organized jointly with colleagues from the field interactive
workshops to bioinformaticians and clinicians to provide best practices but also to start
the conversions with the community on how to use RNA-seq for rare disease diagnos-
tics.2®% Such events are important to foster community where best practices, ideas,
and challenges are communicated and discussed. They also help to widen the user base
and to create new collaborations that ultimately help patients. Such an example is the
study by Murdock et al. [2021] that resulted in a collaboration and the adaptation of
the DROP pipeline after the attendance of the interactive workshop at ASHG 2019.

IMYOCITY (Ref: EJPRD19-118), a multidimensional single-cell approach to understand muscle dys-
trophy

Interactive workshop at ASHG 2019: RNA-seq for Mendelian Diseases Diagnostics (Session ID: 710)

3Interactive workshop at ASHG 2020: RNA-seq for Mendelian Diseases Diagnostics (Session ID: 133)

4Interactive workshop at eMed 2020: Detecting aberrant expression in RNA-seq
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6 Conclusion

Improving diagnostics by sharing NGS-based data at large scale Sharing of
knowledge and data is the key to success in rare diseases.[Boycott et al., 2017] Hence
multiple local communities and databases were connected to match individuals based
on genotype or phenotype in a global scale through the Matchmaker Exchange plat-
form to build evidence for causality.[Philippakis et al., 2015; Brookes and Robinson,
2015] This effort amplified and accelerated disease-gene discovery and include projects
such as LOVD,[Fokkema et al., 2011] DECIPHER,[Swaminathan et al., 2012] RD-
connect,[Thompson et al., 2014] and UDN,[Brownstein et al., 2015] just to name a few.
Another evidence of this is the great success of the global variant frequency databases
ExAC and gnomAD that contains thousands of WES and WGS samples collected
across the world and is now used as the gold standard to filter out non-disease-causing
rare variants.[Lek et al., 2016; Karczewski et al., 2017, 2020] Therefore, over the last
years multiple large scale national and international projects started to take the chal-
lenge of improving rare disease diagnostics by sequencing DNA and RNA at large
while sharing the data with the research community, which includes the 100k genomes
project,[Genomics England, 2017] All of Us,[All of Us, 2019] GHGA,> genomDE.® and
MEGA." All of these projects include phenotypic data to varying degrees, which opens
up new research opportunities, but also unique challenges. In the lens of RNA-seq-
based diagnostics, having more data allows better distribution estimates resulting in
higher sensitivity in expression outlier detection. Registering the disease-causing event
in the case of molecular diagnosis, will turn such efforts into great benchmark and
training sets with thousands of validated data points. Similar to ClinVar at the variant
level,[Landrum et al., 2018] but for variants directly effecting the transcriptome coupled
with the original RNA-seq data. Currently outlier detection methods are developed and
benchmarked on GTEx and in-house datasets with only a hand full of known disease
causing events which can lead to overfitting to a particular use case. Hence, sharing
thousands of WGS and matching RNA-seq samples across a variety of rare diseases will
boost the development of such methods.

Increasing the available cohort size from hundreds to thousands or even to millions
brings unique challenges for the data analysis, applied methods, visualization, workflows,
privacy, and the underlying IT infrastructure. The cloud is in this case not always
the right answer, as long-term costs and privacy concerns arise. Therefore, federated
systems are implemented to allow and account for country- and state-specific laws and
regulations. Incorporating data across such a federated system and from multiple sources
at this scale requires appropriate and sophisticated quality control and quality metrics
next to well maintained metadata to allow researchers to filter datasets for downstream
analysis according to their research needs. On top of this, the methods developed for
outlier detection in RNA-seq data have never been performed with more than 1000
samples, let alone applied in a federated way. Running them in such a federated system
on thousands of samples require adaptations and further development.

®Deutsches Humangenom-Phenomarchiv — GHGA (DFG Proj: 441914366)
5Die deutsche Genom-Initiative — genomDE
71+ Million European Genomes Initiative - MEGA
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6.1 Outlook

Despite the unique challenges, these large-scale national and international efforts will
advance rare disease diagnostics by increasing the diagnostic rate through data sharing.
They will provide an unmatched treasure trove of biomedical data for the rare disease
and research community, and will therefore transform the way rare disease diagnostics,
as well as basic research, are conducted by bringing them closer together.
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A Appendix

A.1 Webresources

GTEx Portal, https://www.gtexportal.org/home

OMIM, http://www.omim.org

OUTRIDER package, http://bioconductor.org/packages/0UTRIDER/

OUTRIDER analysis pipeline, https://github.com/gagneurlab/0UTRIDER-analysis
FRASER package, http://bioconductor.org/packages/FRASER/

FRASER analysis pipeline, https://github.com/gagneurlab/FRASER-analysis

DROP source, http://github.com/gagneurlab/drop
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A Appendix

A.2 Appendix: Supplemental Figures
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Figure A.1: ACMG Evidence Framework The following chart organizes each of the cri-
teria by the type of evidence as well as the strength of the criteria for a benign
(left side) or pathogenic (right side) assertion. Evidence code descriptions can be
found in Richards et al. [2015] Table 3 and 4. Abbreviations: BS, benign strong;
BP, benign supporting; FH, family history; LOF, loss-of-function; MAF, minor
allele frequency; path., pathogenic; PM, pathogenic moderate; PP, pathogenic
supporting; PS, pathogenic strong; PVS, pathogenic very strong Taken from
Richards et al. [2015].
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Figure A.2: QC and filtering statistics for the Kremer dataset (a) The estimated size
factor plotted against its rank. (b) Number of expressed genes cumulative across
all samples. Colors represent the union of all detected genes (blue), genes that
passed the raw read count filter described in Section 2.2.1 as a group (violet),
genes that are expressed in each sample (red), and the intersection of expressed
genes (green). (c) Histogram of the FPKM values grouped according to the
filter status described in Section 2.2.1. Green indicates the genes that passed
the filter and gray those that were filtered out. (d) Same as ¢, but according to
the filtering steps as described in Section 3.2.
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RNA-seq normalization in Kremer et al. [2017]. (a) Spearman correla-
tion heat map of size-factor normalized gene expression between all fibroblasts
(n=119) including biological replicates (left side color code). The dendrogram
represents the sample-wise hierarchical clustering. The color code on the top
depicts the top three clusters. The color key of the spearman rho value (top left)
includes a histogram based on the values (green line). (b) Same as a after nor-
malization for the technical variation, sex variation, and four HOX gene groups.
Adapted from Kremer et al. [2017].
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Figure A.4: Exon skipping in CLPP (A) CLPP Sashimi plot of exon skipping and trunca-
tion events in affected and unaffected fibroblasts (red and orange, respectively).
The RNA coverage is given as the logig RPKM-value and the number of split
reads spanning the given intron is indicated on the exon-connecting lines. At the
bottom the gene model of the RefSeq annotation is depicted. The aberrantly
spliced exon is colored in red. (B) Pedigree of the family with mutations in
CLPP showing the mutation status. Adapted from Kremer et al. [2017].
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Figure A.5: Percent spliced in distributions. (a) The densities of genome-wide 15 and
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13 (percent spliced in) values grouped by their GENCODE annotation status:
both sites of the junction are annotated (green), only one site of the junction
is annotated (orange), and no site of the junction is annotated (blue). (b)
The splice class model fitted by expectation maximization (EM) based on the
GENCODE annotation status. Each line represents the probability density of
belonging to a splice class given a 1 value. The dash lines depict the lower
and upper boundary of the weak splicing class (c) The convergence of the EM
algorithm. Each point represents the average In likelihood of the EM fit after a
given iteration cycle (n=250). Adapted from Kremer et al. [2017].
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Figure A.6: Weak splicing in GTEx. (a) The density of the splicing class probability
for background, weak and strong are shown, respectively. The darker the gray
the higher the density being the given class. The dashed lines depict the lower
and upper boundaries of the weak splicing class. It is faceted by the choosen
representative GTEx tissues: muscle skeleton, suprapubic skin, and whole blood.
(b) Lower and upper boundary distributions of the weak splicing class across all
GTEx tissues. The red point depicts the boundaries observed by Kremer et al.
[2017]. (c) The convergence of the EM algorithm for each GTEx tissue. Each
line represents the course of the average In likelihood of the EM fit in a given
GTEx tissue over all iteration cycles (n=250). The red line depicts the average
In likelihood presented by Kremer et al. [2017].
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Figure A.7: Using the NB distribution for significance assessment (a) Normalized
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RNA-seq read counts plotted against their rank for ALDH18A1 in the Kremer
dataset. Expression outliers are shown in red (FDR < 0.05). (b) Quantile-
quantile plots of observed P values against expected P values with 95% confi-
dence bands for data in a. (c¢) Same as a but for CDCA7 in the GTEx suprapubic
skin tissue. (d) Same as b but for the data in c.
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Figure A.8: Expression level dependent recall. Precision versus recall for artificially
injected high and low expression outliers with a z score of 4 for OUTRIDER
ranked by P values with FDR < 0.05 (solid) and ranked by z score (dashed).
(A) For all the injected outliers. (B) Splitted into 9 bins, with equal number of
read counts per bin, according to the mean expression level of the genes. Only
a small fraction of the injected outliers was significant for the lowest bin, with a
mean expression level smaller than 58. Adapted from Brechtmann et al. [2018].
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Figure A.9: Supplementary FiguresFigure S1: (a) Histogram of the raw intron coverage per
sample-intron pair for the Kremer data set grouped according to the intron filter
status. Green indicates that the intron passed the filter and orange indicates
that the intron was filtered out. (b) Same as a but for the GTEx suprapubic
skin tissue. (c) Same as a but for the GTEx left ventricle heart tissue. (d)
Same as a but for the GTEx whole blood tissue. (f) Barplots of the number
of introns passed the filtering, splice sites passed the filtering, observed introns,
and samples per tissue within the GTEx dataset. Adapted from Mertes et al.

[2021].
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Figure A.10: Finding the optimal latent space dimension ¢. (a) Area under the
precision-recall curve for recalling artificially injected outliers (y-axis) against
latent space dimension ¢ (x-axis) stratified by splicing metrics (rows) and three
representative GTEx datasets (columns). Simulated outliers are generated us-
ing different scenarios: By shifting the splicing metrics away from its observed
value (plain) or from its average across samples (dashed) and with shift of var-
ious amplitudes: 0.2 (green), 0.3 (orange), 0.5(purple) or 0.7 (pink) as well
as with amplitudes drawn uniformly in [0.2,1] (black). For each scenario, the
optimal latent space dimension ¢ is marked with a thicker dot. (b) For each
of the 48 GTEx tissues, the number of samples are plotted against the esti-
mated latent space dimension. The data is stratified by the splicing metrics
(columns). The blue line represents a linear regression fit and the gray band
around it defines the 95% confidence interval of the fit. Adapted from Mertes
et al. [2021].
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Figure A.11: Recall analysis of injected outliers by interchanging read counts of
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alternatively spliced genes between tissues. Proportion of simulated
outliers among reported outliers (precision, y-axis) against the proportion of
reported simulated outliers among all simulated outliers (recall, x-axis) for
increasing BB P values computed using count ratio expectations based on
FRASER (green) and on raw count ratios (orange, naive BB) and Dirichlet-
Multinomial P values computed using the LeafCutter adaptation (purple, Sec-
tion 2.2.2) and the methods LeafcutterMD (pink) and SPOT (light green). The
darker lines mark the precision-recall curves computed for the full dataset while
the light ribbons around the curves depict 95% confidence bands estimated by
bootstrapping. Abbreviations: BB, beta-binomial. Adapted from Mertes et al.
[2021].



A.2 Appendix: Supplemental Figures

a 100 A oo o o0 o000 Preey eccoe
T ~
[SXD) ° 00 o0 oo0 ° .
5
3 é oo oo
5&’ 80 ™
— O
o5
8o
8 o 60
c £
o &
40 - 3
20 30 40 50 60 70 80 90 100
Sample size
b 15
°
o®
B » ° o0 8
"6 —
22 10- . kR
05 o0 esoce
T o o000 °
o2 P
£ - .
O D ;:
=
O-
20 30 40 50 60 70 80 90 100
Sample size
C
~ 301
[}
=]
©
>
3‘5 20+
>
o
n o
10- & &
20 30 40 50 60 70 80 90 100
Sample size
G e CLPP e DPYD e MCOLN1 e SFXN4 ® TANGO2 e TIMMDCA1
ene

® COASY e LPIN1 e PANK2 e TALDO1 e TAZ

Figure A.12: Sample size analysis in the Kremer dataset. (a) The percentage of
the recovered known disease-causing splicing outliers in the Kremer dataset
(y-axis) is plotted against the used sample size (x-axis). The random sample
selection was repeated 5 times (dots). (b) The median of splicing outliers across
all samples (y-axis) is plotted against the used sample size (x-axis). (c) The
negative logyp P value for all known disease-causing splicing outliers (y-axis) is
plotted against the used sample size (x-axis). The color depicts the gene with a
known splice defect. The violin depicts the density of the data points. Adapted
from Mertes et al. [2021].
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1.1

1.2

1.3

1.4

Basic variant filtering steps in NGS-based rare disease diagnos-
tics. (a) A standard variant filtering cascade used in clinical diagnostics
is presented. The aim of the filtering cascade is to narrow down the vari-
ant call set to potentially disease-causing ones by using information like
allele frequency, functional consequence, clinical gene-phenotype relation,
mode of inheritance. (b) Scheme of variant and genotypes in diploid or-
ganisms. From top to bottom: homozygous, heterozygous, and compound
heterozygous. The gray line depicts the alleles of a given gene and the
red dot depicts the change. Adapted from Wright et al. [2018b]. . . . . .
Growth of gene-phenotype relationships. The pace of disease gene
discovery as cataloged by OMIM. As of 29 September 2018, there were
over 6259 disorders spread across 3961 genes. (a) Cumulative number of
registered gene and phenotypes in OMIM. (b) Approximate number of
gene discoveries made by NGS-based approaches, WES and WGS, versus
conventional approaches since 2010 Adapted from Chong et al. [2015] and
Amberger et al. [2019]. . . . ..o
A typical RNA-Seq experiment Briefly, long RNAs are first con-
verted into a library of cDNA fragments through either RNA fragmenta-
tion or DNA fragmentation (see main text). Sequencing adaptors (blue)
are subsequently added to each cDNA fragment and a short sequence is
obtained from each ¢cDNA using high-throughput sequencing technology.
The resulting sequence reads are aligned with the reference genome or
transcriptome, and classified as three types: exonic reads, junction reads
and poly(A) end-reads. These three types are used to generate a base-
resolution expression profile for each gene, as illustrated at the bottom; a
yeast ORF with one intron is shown. Taken from Wang et al. [2009].
Timeline of studies that advancing RN A-seq-based rare disease
diagnostics. The timeline depicts the relevant studies in the field of
RNA-seq-based rare disease diagnostics together with their main contri-
bution and methodology. Out of the 9 studies 3 focused on the develop-
ment of specialized methodologies to detect aberrant events in RNA-seq
data. The other 6 studies focused on using RNA-seq to diagnose WES
and WGS inconclusive cases. N: number of samples, DR: diagnostic rate.
Courtesy of Vicente Yépez. . . . . . . . . . . . . ... ... ... ...
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1.5

1.6

2.1

2.2

The exon- and intron-centric percent spliced in (1) metric (a)
The exon-centric percent spliced in metric ¥ is defined as the number of
reads supporting exon inclusion as the fraction of the combined number
of reads supporting inclusion and exclusion.[Katz et al., 2010] It requires
the gene model a priori to know which split reads to consider. (b) The
intron-centric 5 percent spliced in value (¢5) is calculated purely based
on split reads as the number of reads supporting the splicing event from
D to A relative to the combined number of reads supporting splicing from
D to any acceptor site A’. The splice-site-centric donor splicing efficiency
(05) uses the the non-spliced reads overlapping the donor site over the full
coverage at the donor, total number of split and non-spliced reads. The
13 and f3 is calculated analogously. The intron or splice site of interested
is colored in red and orange, respectively. Adapted from Katz et al. [2010)]
and Pervouchine et al. [2013]. . . . . .. ... oL
Schematic architecture of a (denoising) autoencoder. (a) Usage
of a simple autoencoder to learn the encoding of numbers. The input (X)
is mapped with the encoder (fy) to the latent space (H) and reconstructed
to X by the decoder (gg). (b) Adding noise to the input before mapping it
to the latent space turns the autoencoder into a denoising autoencoder. In
both approaches, the parameters of the encoder and decoder are optimized
by minimizing the error between the original input and the reconstruction

(L(X, X)) Adapted from Arden Dertat® with input from Stefan Loipfinger. 15

Strategy for genetic diagnosis using RNA-seq. The approach we
followed started with RN A-seq of fibroblasts from unsolved WES patients.
Three strategies to facilitate diagnosis were pursued: Detection of aber-
rant expression (for example, depletion), aberrant splicing (for example,
exon creation) and mono-allelic expression of the alternative allele (for ex-
ample, A as alternative allele). Candidates were validated by proteomic
measurements, lentiviral transduction of the wild-type (wt) allele or, in
particular cases, by specific metabolic supplementation. Taken from Kre-
mer et al. [2017]. . . ..o
Aberrant expression detection in RNA-seq data. (a) Aberrantly
expressed genes (Hochberg corrected P value < 0.05 and |Z-score| > 3) for
each patient fibroblasts. (b) Gene-wise RNA expression volcano plot of
nominal P values (-log1g P value) against Z-scores of the patient #35791
compared against all other fibroblasts. Z-scores with absolute value > 5
are plotted at £5, respectively. (c) Same as b for patient #73804. (d)
Sample-wise RNA expression is ranked for the genes TIMMDCI1 (top) and
MGST1 (bottom). Samples with aberrant expression for the correspond-
ing gene are highlighted in red (#35791, #66744, and #73804). Adapted
from Kremer et al. [2017]. . . . . . ... oo
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2.3 Aberrant splicing detection and quantification. (a) Aberrant splic-
ing events (Hochberg corrected P value < 0.05) for all fibroblasts. (b)
Aberrant splicing events (n = 175) in undiagnosed patients (n = 48)
grouped by their splicing category after manual inspection. (c¢) TIM-
MDCT1 sashimi plot of a cryptic exon creation event in TIMMDC1-affected
and TIMMDC1-unaffected fibroblasts (red and orange, respectively). The
RNA coverage is given as the log;g RPKM-value and the number of
split reads spanning the given intron is indicated on the exon-connecting
lines. At the bottom the gene model of the RefSeq annotation is de-
picted and the aberrant event is coloured in red. (d) Coverage tracks
(light red) for patients #35791, #66744, and #91324 based on RNA
and WGS. For patient #91324 only WGS is available. The homozygous
SNV ¢.596+2146>4G is present in all coverage tracks (vertical orange
bar). The top tracks show the genomic annotation: genomic position on
chromosome 3, DNA sequence, amino acid translation (grey, stop codon
in red), the RefSeq gene model (blue line), the predominant additional
exon of TIMMDC1 (blue rectangle) and the SNV annotation of the 1000
Genomes Project (each black bar represents one variant). Adapted from
[Kremer et al., 2017]. . . . . . ... L 24

2.4 Detection of mono-allelic expression of rare variants. (a) Dis-
tribution of heterozygous SNVs across samples for different consecutive
filtering steps. Heterozygous SNVs detected by WES (black), SNVs with
RNA-seq coverage of > 10 reads (grey), SNVs with an alternative allele
frequency > 0.8 and a Benjamini-Hochberg corrected P value < 0.05,
blue), and subsetted to rare SNVs (ExAC MAF < 0.001, red). (b) Fold
change between alternative (ALT+1) and reference (REF+1) allele read
counts for the patient #80256 compared to total read counts per SNV
within the sample. Points are coloured according to the groups defined
in a. (c) RNA fold changes plotted against protein fold changes for case
#80256. The position of ALDHI18A1 is highlighted. Reliably detected
proteins that were not detected in this sample are shown separately with
their corresponding RNA fold changes (points below solid horizontal line).
(d) Intron retention for MCOLNTI in patient #62346. Tracks from top
to bottom: genomic position on chromosome 19, amino acid translation
(red for stop codons), RefSeq gene model, coverage of WES of patient
#62346, RNA-seq based coverage for patients #62346 and #85153 (red
and orange shading, respectively). SNVs are indicated by non-reference
coloured bars with respect to the corresponding reference and alternative
nucleotide. Adapted from Kremer et al. [2017]. . . . .. ... ... ... 26
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2.5

2.6

3.1

Weak splicing leading to cryptic exons. Percent spliced in (V) dis-
tribution for different splicing classes and genes. Top: histogram of the
genome-wide distribution of both 15 and 13 values based on all reads over
all samples. Middle: The shaded horizontal bars represent the densities
(black for high density) of the background, weak and strong splicing class,
respectively. Bottom: v values of the predominant donor and acceptor
splice sites connecting cryptic exons (aberrantly expressed in at most two
samples) computed over all other samples. The dashed lines represent
the lower and upper boundaries for the weak splicing class. Adapted
from Kremer et al. [2017]. . . . . . ... ..
Weak splicing in GTEx tissues. (a) Density (y-axis) of the genome-
wide distribution of both 5 and 3 values (x-axis) for exon-exon junc-
tions based on all reads over all samples per GTEx tissue (gray lines).
The red line shows the distribution presented by Kremer et al. [2017].
The data is stratified by the exon-exon junction’s annotation status based
on GENCODE[Harrow et al., 2012]: (i) both ends are present in GEN-
CODE, only one end is present in GENCODE, neither ends are present in
GENCODE. (b) 1 value distribution across GTEx tissues for exon-exon
junctions leading to aberrantly expressed cryptic exons in Kremer et al.
[2017]. The v values are computed on all reads over all samples per tissue.
The red points depict the 1 value observed by Kremer et al. [2017] across
the non-effected samples. The dashed line depicts the lower and upper
boundary for the weak splicing class averaged across all GTEx tissues.

OUTRIDER overview (A) Context-dependent outlier detection. The
algorithm identifies gene expression outliers whose read counts are signif-
icantly aberrant given the covariations typically observed across genes in
an RNA-seq dataset. This is illustrated by a read count (left panel, fifth
column, second row from the bottom) that is exceptionally high in the
context of correlated samples (left six samples) but not in absolute terms
for this given gene. To capture commonly seen biological and technical
contexts, an autoencoder models covariations in an unsupervised fashion
and predicts read-count expectations. Comparing the earlier mentioned
read count with these context-dependent expectations reveals that it is
exceptionally high (right panel). The lower panels illustrate the distri-
bution of read counts before and after controlling for covariations for
the relevant gene. The red dotted lines depict significance cutoffs. (B)
Schema showing the differences in the experimental designs for differen-
tial expression analyses and outlier detection analyses; relevant analysis
packages are mentioned. Taken from Brechtmann et al. [2018]. . . . . .
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3.2 Dataset overview of the GTEx suprapubic skin tissue. (a) His-
togram of the FPKM values grouped according to the filter status. Green
indicates the genes that passed the filter and gray those that were filtered
out. (b) Size factor plotted against the rank. Each dot represents a sam-
ple. (c) Correlation matrix of row-centered log-transformed read counts
(249 samples and 17,065 genes). Red indicates a positive correlation and
blue a negative correlation. The dendrogram represents the sample-wise
hierarchical clustering. Colored horizontal and vertical tracks display se-
quencing center, cause of death (DTHHRDY, Hardy scale classification),
RNA integrity number (RIN), gender, and age of the samples. . . . . . . 36

3.3 Controlling for known and unknown confounders in GTEx tis-
sues. (a) Boxplots of absolute values of between-sample correlations of
gene-centered log-transformed read counts for 48 GTEx tissues before
(orange) and after (green) correction for the latent space. (b) Optimal
encoding dimension q (x-axis) plotted against the cohort size (y-axis).

The lighter the color the higher the number of expressed genes in the
given tissue. Each point represents a GTEx tissue. (c) Same as b, but
where the number of genes is on the y-axis and the color encodes the
cohort size. . . . . . . 41

3.4 An NB-based autoencoder recovers better expected counts on
simulated data than log-normal-based models. Boxplots of squared
differences between expected counts and simulated means in logy space
binned into 9 logarithmically spaced mean gene expression bins for OUT-
RIDER, PCA, and PEER on simulated data. The data is stratified by
the simulation scheme: negative binomial and log-normal, respectively.
Adapted from Brechtmann et al. [2018]. . . . . .. ... ... ... ... 42

3.5 RNA-seq expression outlier detection (A) Quantile-quantile plot for
the GTEx dataset. Observed P values are plotted against the expected
P values for three different methods. The diagonal marks the expected
distribution under the null hypothesis with 95% confidence bands (gray).

(B) Same as A but for the Kremer datasets. (C) Number of aberrantly
expressed genes (FDR < 0.05) per sample for the data shown in A. The
dashed line represents the abnormal sample cutoff (> 0.5% aberrantly
expressed). (D) Same as C but for the data in B. (E) P values versus
z scores for a representative abnormal sample in PEER. Genes with sig-
nificantly aberrant read counts are marked in red. (F) Same as E but
controlled with the autoencoder in OUTRIDER. Adapted from Brecht-
mann et al. [2018]. . . ... 44
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3.6

3.7

3.8

4.1

Outlier detection benchmark in GTEx. The proportion of sim-
ulated outliers among reported outliers (precision) plotted against the
proportion of reported simulated outliers among all simulated outliers
(recall) for 8 different ranking methods. The 8 ranking methods are OUT-
RIDER (green solid), PCA (orange solid), and PEER (blue solid) sorted
by P value with FDR < 0.05, OUTRIDER (green dashed), PCA (orange
dashed), and PEER (blue dashed) sorted by z score, DESeq2 normaliza-
tion with known covariates sorted by Cook’s distance (pink dotted), and
DESeq2 normalization with known covariates sorted by absolute value of
Pearson residuals (olive green dashed and dotted). Plots are provided for
four simulated amplitudes (by row, with simulated absolute z scores of
2, 3, 4, and 6, top to bottom, respectively) and for three simulation sce-
narios (by column for aberrantly high and low counts, for aberrantly high
counts only, and for aberrantly low counts only, left to right, respectively).
The ranking of outliers was bootstrapped to obtain 95% confidence areas.
Adapted from Brechtmann et al. [2018]. . . . . ... ... ... ...
Expression outlier based rare variant enrichment in GTEx. En-
richment of rare (MAF < 0.05), moderate, and high impact variants
(according to VEP[McLaren et al., 2016]) computed on genes found to
be aberrantly expressed using OUTRIDER plotted against enrichments
computed on genes found to be aberrantly expressed using z scores pub-
lished by Li et al. [2017], PCA, and PEER for all GTEx tissues using

three P value and z score cutoffs. Adapted from Brechtmann et al. [2018].

Sample size analysis. Negative log;y P values are plotted against
the number of samples in the subset of the Kremer dataset, for the 6
pathogenic genes validated by Kremer et al. [2017]. For each subset size,
five random sets of samples containing the samples with the known out-
liers were drawn. Genes that are genome-wide significant (FDR < 0.05)
are marked darker. Adapted from Brechtmann et al. [2018]. . . . . . ..

The FRASER aberrant splicing detection workflow. The workflow
starts with RNA-seq aligned reads and performs splicing outlier detection
in three steps. First (left column), a splice site map is generated in an
annotation-free fashion based on RNA-seq split reads. Split reads sup-
porting exon—exon junctions as well as non-split reads overlapping splice
sites are counted. Splicing metrics that quantify alternative acceptors
(15), alternative donors (13), and splicing efficiencies at donors (f5) and
acceptors (f3) are then computed. Second (middle column), a statistical
model is fitted for each splicing metric that controls for sample covaria-
tions and overdispersed count ratios. Third (right column), outliers are
detected as data points that deviate significantly from the fitted model.
Candidates are then visualized using a genome browser. D donor site,
A acceptor site. Made in (C)BioRender - biorender.com. Adapted from
Mertes et al. [2021]. . . . . ...
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Tissue-specific correlation structure for ¢; (a) Intron-centered and
logit-transformed 13 values of the 10,000 most variable introns clustered
by samples (columnsand rows) for the GTEx suprapubic skin tissue
(n=222). Red and blue depict relative high and low intron usage, respec-
tively. Colored horizontal tracks display sequencing center, batch, RNA
integrity number (RIN), gender, age, and cause of death (DTHHRDY,
Hardyscale classification) of the samples. (b) Same as a but for the
left ventricle heart tissue (n=211). (c) Same as a but for the whole
blood tissue (n=369). (d) Boxplots of absolute values of between-sample
correlations of row-centered logit-transformed 13 for 48 GTEx tissues
before (orange) and after (green) correction for the latent space. The
intron-centered 13 values were clipped to the [0.01,0.99] interval before
logit-transformation. Adapted from Mertes et al. [2021]. . . . . . . . ..
Splicing outlier detection based on the beta-binomial distribu-
tion. (a) Intron split read counts (y-axis) against the total donor split
read coverage (x-axis) for the seventh intron of SRGAP2. (b) Observed
negative log-transformed P values (y-axis) against expected ones (x-axis)
of the 15 metric for the data shown in a. Under the null hypothesis, the
data are expected to lie along the diagonal (red, 95% confidence bands
in gray). (c) Same as a for the 17" intron of SRRT, showing an outlier
(FDR < 0.1, red). (d) Same as b for the 17*" intron of SRRT. The outlier
is marked in red. (e) Same as b across all introns and splice sites for 5
(green), 13 (orange), and splicing efficiency (6, purple). a-e are based on
the suprapubic skin tissue from GTEx (n=222). Adapted from Mertes
et al. [2021]. . ...
Splicing outlier detection benchmark in the GTEx suprapubic
skin tissue. (a) The proportion of simulated outliers among reported
outliers (precision, y-axis) plotted against the proportion of reported sim-
ulated outliers among all simulated outliers (recall, x-axis) for different
aberrant splicing detection methods (color) for the 15 metric only. All
events with |A¢| < 0.1 are ranked last. Plots are stratified equally by
injected amplitudes (A, by row) and junction coverage (by column).
The points indicate commonly applied cutoffs (FDR < 0.1 and < 0.05
and absolute z scores > 2 and > 3). The darker lines mark the precision-
recall curves computed for the full dataset while the light ribbons around
the curves depict 95% confidence bands estimated by bootstrapping. (b)
Same as a but stratified by splice metrics and not binned. Adapted from
Mertes et al. [2021]. . . . . . ..o
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4.5

4.6

4.7

Enrichment for rare variants predicted to affect splicing. (a)
Enrichment using FRASER (y-axis) against enrichment (x-axis) using
different aberrant splicing detection methods (columns) for rare vari-
ants located in a splice region. The enrichment is calculated for dif-
ferent nominal P value cutoffs (rows). The applied methods are a naive
beta-binomial regression, the LeafCutter adaptation (Section 2.2.2), Leaf-
CutterMD,[Jenkinson et al., 2020] and SPOT.[Ferraro et al., 2020] Each
dot represents a GTEx tissue (n = 48). (b) Same as a but the en-
richment is computed for rare variants predicted to affect splicing by
MMSplice.[Cheng et al., 2019] (c) Violin plots of splice-site-based rare
MMSplice variant enrichments (x-axis) for different correction methods
(y-axis) and various variant range cutoffs (facets). BB beta-binomial.
Adapted from Mertes et al. [2021]. . . . ... ...
Reproducibility of splicing outlier calls and their rare splicing
variant enrichment across GTEx tissues. (a) Barplot of the number
of gene-level events (y-axis) against their reproducibility (x-axis) across
GTEx tissues. The reproducibility is defined as the number of tissues an
event is observed at a nominal P value p < 1073 given it was observed
at least once at p < 107°. The data is stratified by associated variant
status and grouped by the different methods: FRASER (green), naive
BB (orange), LeafcutterMD (purple), and SPOT (pink). (b) Same as
a but plotted as the proportion (y-axis) of reproducible gene-level splic-
ing outlier calls in GTEx tissues (number of tissues, x-axis) stratified by
the primary outlier call cutoff. (c) Enrichment using FRASER (y-axis)
against enrichment using the same methods as in a (x-axis, columns)
stratified by the variant set (columns), namely rare splice site and MM-
Splice, respectively. The enrichment is calculated for different nominal P
value cutoffs (rows) and increased reproducibility cutoff (color). Each dot
represents a GTEx tissue. Adapted from Mertes et al. [2021]. . . . . . .
Aberrant splicing detection in the Kremer dataset. (a) Number
of aberrantly spliced genes within the Kremer dataset (FDR < 0.1 and
|Atp| > 3) per sample ranked by the number of events for ¥5 (orange), 13
(green), and @ (purple). (b) Venn diagram of the aberrant splicing events
detected by FRASER using alternative splicing (orange, 1) or splicing
efficiency (violet, #) only and detected by Kremer et al. [2017] (green).
Pathogenic splicing events are labeled with the gene name. Adapted from
Mertes et al. [2021]. . . . . ...
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5.1 Detection of a pathogenic splicing defect in TA Z using FRASER.
(a) Gene-level significance (-logio(P), y-axis) versus effect (A, x-axis)
for alternative donor usage for individual #74116. Six genes (red dots)
passed both the genome-wide significance cutoff (horizontal dotted line)
and the effect size cutoff (vertical dotted lines). (b) Number of split
reads spanning from the fourth to fifth exon (y-axis) against the total
number of split reads at the acceptor site of the fifth exon (x-axis) of
TAZ. Sample #74116 (red) deviates from the cohort trend (red dot).
(c) Observed (y-axis) against FRASER-predicted (x-axis) 13 values for
the data shown in b. (d) Quantile-quantile plot of observed P values
(-log1o(P), y-axis) against expected P values (-logyo(P), x-axis) and 95%
confidence band (gray) for the data shown in b. (e) Sashimi plot of the
exon-truncation event in RNA-seq samples of the TAZ-affected (red) and
three representative TAZ-unaffected (orange) individuals. The RNA-seq
read coverage is given as the log;g RPKM-value (y-axis) and the number
of split reads spanning an intron is indicated on the exon-connecting line.
Underneath, the gene model of the RefSeq annotation is depicted in black
and the aberrantly spliced exon is colored in red. The insert depicts the
donor site-creating variant of the affected individual #74116. Adapted
from Mertes et al. [2021]. . . . . . . ... 72

5.2 Expression of a pathogenic cryptic exon in MRPS30. (a) Gene-
level significance (-log;o(P)) versus effect (z score) for individual #127272
for gene expression using OUTRIDER. Each dot represents a gene and red
dots indicate genome-wide significance. (b) Normalized gene expression
versus sample rank for MRPS30. (c) Gene-level significance (-logyo(P))
versus effect (Aws) for individual #127272 for alternative acceptor usage
using FRASER. The red dashed lines represent the genome-wide signifi-
cance cutoff (horizontal) and the effect size cutoff (vertical). (d) Number
of split reads spanning the canonical intron (y-axis) against the total num-
ber of split reads at the donor site (x-axis) of MRPS30. (e) Sashimi plot
of the cryptic exon event in RNA-seq samples of individual #127272 (red)
and two non-affected individuals (blue and green). The bottom depicts
the RefSeq annotation. . . . . . . ... ... ... ... ... ... .. 75

5.3 Mono-allelic expression of rare missense variant in RRM2B. (a)
Gene-level significance (-logio(P)) versus effect (z score) for individual
#126118 for gene expression using OUTRIDER. Each dot represents a
gene and red dots indicate genome-wide significance. (b) Normalized
gene expression versus sample rank for RRM2B. (c) Alternative allele
ratio (y-axis) versus total coverage of heterozygous SNVs (x-axis) for the
sample #126118. Significant MAE in common and rare variants are shown
in orange and red, respectively. MAE variants in the disease-causing gene
are highlighted by different shapes. . . . . . . ... ... ... ... ... 76
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Al

A2

A3

A4

ACMG Evidence Framework The following chart organizes each of
the criteria by the type of evidence as well as the strength of the criteria
for a benign (left side) or pathogenic (right side) assertion. Evidence code
descriptions can be found in Richards et al. [2015] Table 3 and 4. Abbre-
viations: BS, benign strong; BP, benign supporting; FH, family history;
LOF, loss-of-function; MAF, minor allele frequency; path., pathogenic;
PM, pathogenic moderate; PP, pathogenic supporting; PS, pathogenic
strong; PVS, pathogenic very strong Taken from Richards et al. [2015].
QC and filtering statistics for the Kremer dataset (a) The esti-
mated size factor plotted against its rank. (b) Number of expressed genes
cumulative across all samples. Colors represent the union of all detected
genes (blue), genes that passed the raw read count filter described in Sec-
tion 2.2.1 as a group (violet), genes that are expressed in each sample
(red), and the intersection of expressed genes (green). (c) Histogram of
the FPKM values grouped according to the filter status described in Sec-
tion 2.2.1. Green indicates the genes that passed the filter and gray those
that were filtered out. (d) Same as ¢, but according to the filtering steps
as described in Section 3.2. . . . . .. ..o
RNA-seq normalization in Kremer et al. [2017]. (a) Spearman
correlation heat map of size-factor normalized gene expression between all
fibroblasts (n=119) including biological replicates (left side color code).
The dendrogram represents the sample-wise hierarchical clustering. The
color code on the top depicts the top three clusters. The color key of the
spearman rho value (top left) includes a histogram based on the values
(green line). (b) Same as a after normalization for the technical variation,
sex variation, and four HOX gene groups. Adapted from Kremer et al.
[2017]). .« .
Exon skipping in CLPP (A) CLPP Sashimi plot of exon skipping and
truncation events in affected and unaffected fibroblasts (red and orange,
respectively). The RNA coverage is given as the log;g RPKM-value and
the number of split reads spanning the given intron is indicated on the
exon-connecting lines. At the bottom the gene model of the RefSeq an-
notation is depicted. The aberrantly spliced exon is colored in red. (B)
Pedigree of the family with mutations in CLPP showing the mutation
status. Adapted from Kremer et al. [2017]. . . . . . ... ... ... ..
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A5 Percent spliced in distributions. (a) The densities of genome-wide
15 and 13 (percent spliced in) values grouped by their GENCODE an-
notation status: both sites of the junction are annotated (green), only
one site of the junction is annotated (orange), and no site of the junc-
tion is annotated (blue). (b) The splice class model fitted by expectation
maximization (EM) based on the GENCODE annotation status. Each
line represents the probability density of belonging to a splice class given
a ¢ value. The dash lines depict the lower and upper boundary of the
weak splicing class (c) The convergence of the EM algorithm. Each point
represents the average In likelihood of the EM fit after a given iteration
cycle (n=250). Adapted from Kremer et al. [2017]. . . . ... ... ... 92
A.6 Weak splicing in GTEx. (a) The density of the splicing class prob-
ability for background, weak and strong are shown, respectively. The
darker the gray the higher the density being the given class. The dashed
lines depict the lower and upper boundaries of the weak splicing class. It
is faceted by the choosen representative GTEx tissues: muscle skeleton,
suprapubic skin, and whole blood. (b) Lower and upper boundary distri-
butions of the weak splicing class across all GTEx tissues. The red point
depicts the boundaries observed by Kremer et al. [2017]. (c) The conver-
gence of the EM algorithm for each GTEx tissue. Each line represents
the course of the average In likelihood of the EM fit in a given GTEx
tissue over all iteration cycles (n=250). The red line depicts the average
In likelihood presented by Kremer et al. [2017]. . . . .. ... ... ... 93
A.7 Using the NB distribution for significance assessment (a) Normal-
ized RNA-seq read counts plotted against their rank for ALDH18A1 in
the Kremer dataset. Expression outliers are shown in red (FDR < 0.05).
(b) Quantile-quantile plots of observed P values against expected P val-
ues with 95% confidence bands for data in a. (c) Same as a but for
CDCA7 in the GTEx suprapubic skin tissue. (d) Same as b but for the
datain c. . .. .. 94
A.8 Expression level dependent recall. Precision versus recall for arti-
ficially injected high and low expression outliers with a z score of 4 for
OUTRIDER ranked by P values with FDR < 0.05 (solid) and ranked by
z score (dashed). (A) For all the injected outliers. (B) Splitted into 9
bins, with equal number of read counts per bin, according to the mean
expression level of the genes. Only a small fraction of the injected outliers
was significant for the lowest bin, with a mean expression level smaller
than 58. Adapted from Brechtmann et al. [2018]. . . . . ... ... ... 95
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A.9 Supplementary FiguresFigure S1: (a) Histogram of the raw intron cover-

age per sample-intron pair for the Kremer data set grouped according to
the intron filter status. Green indicates that the intron passed the filter
and orange indicates that the intron was filtered out. (b) Same as a but
for the GTEx suprapubic skin tissue. (c) Same as a but for the GTEx
left ventricle heart tissue. (d) Same as a but for the GTEx whole blood
tissue. (f) Barplots of the number of introns passed the filtering, splice
sites passed the filtering, observed introns, and samples per tissue within
the GTEx dataset. Adapted from Mertes et al. [2021]. . . . . ... ...

A.10 Finding the optimal latent space dimension ¢. (a) Area under

the precision-recall curve for recalling artificially injected outliers (y-axis)
against latent space dimension ¢ (x-axis) stratified by splicing metrics
(rows) and three representative GTEx datasets (columns). Simulated
outliers are generated using different scenarios: By shifting the splicing
metrics away from its observed value (plain) or from its average across
samples (dashed) and with shift of various amplitudes: 0.2 (green), 0.3
(orange), 0.5(purple) or 0.7 (pink) as well as with amplitudes drawn uni-
formly in [0.2,1] (black). For each scenario, the optimal latent space
dimension ¢ is marked with a thicker dot. (b) For each of the 48 GTEx
tissues, the number of samples are plotted against the estimated latent
space dimension. The data is stratified by the splicing metrics (columns).
The blue line represents a linear regression fit and the gray band around
it defines the 95% confidence interval of the fit. Adapted from Mertes
et al. [2021]. . . ..o

A.11 Recall analysis of injected outliers by interchanging read counts

of alternatively spliced genes between tissues. Proportion of simu-
lated outliers among reported outliers (precision, y-axis) against the pro-
portion of reported simulated outliers among all simulated outliers (recall,
x-axis) for increasing BB P values computed using count ratio expecta-
tions based on FRASER (green) and on raw count ratios (orange, naive
BB) and Dirichlet-Multinomial P values computed using the LeafCutter
adaptation (purple, Section 2.2.2) and the methods LeafcutterMD (pink)
and SPOT (light green). The darker lines mark the precision-recall curves
computed for the full dataset while the light ribbons around the curves
depict 95% confidence bands estimated by bootstrapping. Abbreviations:
BB, beta-binomial. Adapted from Mertes et al. [2021]. . . . . . .. ...
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A.12 Sample size analysis in the Kremer dataset. (a) The percentage
of the recovered known disease-causing splicing outliers in the Kremer
dataset (y-axis) is plotted against the used sample size (x-axis). The
random sample selection was repeated 5 times (dots). (b) The median
of splicing outliers across all samples (y-axis) is plotted against the used
sample size (x-axis). (c) The negative log;y P value for all known disease-
causing splicing outliers (y-axis) is plotted against the used sample size
(x-axis). The color depicts the gene with a known splice defect. The
violin depicts the density of the data points. Adapted from Mertes et al.
[2021]. . . . 99
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Acronyms

BAM binary alignment map. 20, 53
BB beta-binomial. 16, 28, 52-58, 61-63, 67, 80, 82

DNA deoxyribonucleic acid. 2, 5-8

FDR false discovery rate. 25, 39, 42, 43, 52, 56, 62
FPKM fragments per kilobase per millions of reads. 35
FWER family-wise error rate. 20, 22, 33, 56, 61, 64

GTEx genotype-tissue expression. 28, 29, 34

INDEL  insertion or deletion of bases. 2, 6

MAE mono-allelic expression. 16, 19, 25, 27, 67, 73, 74, 77,

78, 83
MAF minor allele frequency. 23, 25, 26, 64, 103

NB negative binomial. 25, 34, 35, 37, 39-43, 48, 54, 78,
80
NGS next-generation sequencing. 2, 6, 8, 17, 77

OMIM Online Mendelian Inheritance in Man. 4, 23, 27, 73

PCA principal-component analysis. 38, 40-43, 45-48, 52,
55, 58, 62, 79, 80, 105, 106
PEER probabilistic estimation of expression residuals. 34,

39-48, 79, 80, 105, 106

RIN RNA integrity number. 34, 35, 52, 59

RNA ribonucleic acid. 7, 8, 19, 21, 77

RNA-seq RNA sequencing. 1, 4, 8, 10, 15, 16, 18-21, 25-28,
30, 33, 34, 36, 40, 41, 43, 48, 49, 51-53, 58, 66, 67,
71-73, 77-80, 82-84, 103

RPKM reads per kilobase per million mapped reads. 34

SNV single nucleotide variant. 2, 6, 19, 25-27, 103
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VUS variant of unknown significance. 4, 17, 19, 23, 25-27,
30, 51, 72

WES whole-exome sequencing. 2-8, 16-19, 21, 25-27, 33,
71, 73, 77-79, 84, 103

WGS whole-genome sequencing. 2-8, 16-18, 21, 23, 24, 30,
33, 51, 73, 77, 79, 84
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