Empirically Evaluating Readily Available Information for
Regression Test Optimization in Continuous Integration

Daniel Elsner
Florian Hauer

Alexander Pretschner
daniel.elsner@tum.de
florian.hauer@tum.de

alexander.pretschner@tum.de
Technical University of Munich
Munich, Germany

ABSTRACT

Regression test selection (RTS) and prioritization (RTP) techniques
aim to reduce testing efforts and developer feedback time after a
change to the code base. Using various information sources, includ-
ing test traces, build dependencies, version control data, and test
histories, they have been shown to be effective. However, not all
of these sources are guaranteed to be available and accessible for
arbitrary continuous integration (CI) environments. In contrast,
metadata from version control systems (VCSs) and CI systems are
readily available and inexpensive. Yet, corresponding RTP and RTS
techniques are scattered across research and often only evaluated
on synthetic faults or in a specific industrial context. It is cum-
bersome for practitioners to identify insights that apply to their
context, let alone to calibrate associated parameters for maximum
cost-effectiveness. This paper consolidates existing work on RTP
and unsafe RTS into an actionable methodology to build and evalu-
ate such approaches that exclusively rely on CI and VCS metadata.
To investigate how these approaches from prior research compare in
heterogeneous settings, we apply the methodology in a large-scale
empirical study on a set of 23 projects covering 37,000 CI logs and
76,000 VCS commits. We find that these approaches significantly
outperform established RTP baselines and, while still triggering
90% of the failures, we show that practitioners can expect to save
on average 84% of test execution time for unsafe RTS. We also find
that it can be beneficial to limit training data, features from test
history work better than change-based features, and, somewhat
surprisingly, simple and well-known heuristics often outperform
complex machine-learned models.

CCS CONCEPTS
- Software and its engineering — Software testing and debug-
ging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °21, July 11-17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8459-9/21/07...$15.00
https://doi.org/10.1145/3460319.3464834

491

Silke Reimer
sre@ivu.de
IVU Traffic Technologies
Berlin, Germany

KEYWORDS

software testing, regression test optimization, machine learning

ACM Reference Format:

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021.
Empirically Evaluating Readily Available Information for Regression Test
Optimization in Continuous Integration. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
'21), July 11-17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3460319.3464834

1 INTRODUCTION

Regression test selection (RTS) aims at identifying tests that are
affected by a change to the code base, when executing every test in
the test suite is prohibitively expensive [25, 76]. Effective traditional
RTS techniques safely exclude those tests that cannot fail by relying
on language-specific white-box program analyses, e.g., recording
test-specific execution traces through code instrumentation [26, 42,
58, 65, 66, 70, 79]. However, they are often too costly in large-scale
code bases with rapid continuous integration (CI) testing [21, 45,
62], not capable of collecting test dependencies across language
boundaries in multi-language software [12, 45, 55], and cannot trace
third-party libraries [41]. Regression test prioritization (RTP) aims
to detect faults earlier by reordering tests through “surrogates” [76].
However, traditional RTP techniques that rely on code coverage
surrogates suffer similar limitations [21, 71].

To address these limitations specifically in CI environments,
researchers have proposed numerous lightweight, less intrusive
RTP and unsafe RTS techniques: They use different surrogates and
machine learning (ML) models to rank tests by their likelihood
to fail and, in the case of RTS, select a subset based on some cut-
off criterion [8, 11, 45, 60, 71]. The underlying ranking models ex-
ploit different information sources. These include CI test execution
logs [3, 11, 21, 71], version control system (VCS) metadata (e.g.,
number of changed files in commit) [37, 62], (textual) differences
in code churn [8, 49, 60, 67], and project- or organization-specific
information such as static build dependencies [45], flaky test de-
tection signals [45, 60, 62], or a black-box model of the program
inputs [29]. Arguably, access to the latter types of information can-
not be guaranteed for arbitrary CI environments. Since CI and VCS
metadata are automatically generated throughout the development
process, they are generally available and inexpensive. Unsafe RTS

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1145/3460319.3464834

ISSTA °21, July 11-17, 2021, Virtual, Denmark

and RTP techniques that solely use this information are language-
agnostic, easy to transfer and to evaluate, and do not require pro-
gram or code access. Methodologically, they both rely on ranking
tests [8, 11]. Hence, in the following, we collectively refer to tech-
niques as CI-RTP/S, if their ranking models only use CI and VCS
metadata.

Even though the effectiveness of CI-RTP/S is demonstrated in
various studies, they have the following limitations: First, while
studies show the effectiveness on single projects 3, 16, 21, 38, 43, 68]
and variations across projects [37, 44, 71, 81], we find sensitivity
to be another important attribute after consulting with our indus-
try partner IVU Traffic Technologies': How sensitive is the cost-
effectiveness of CI-RTP/S to size, timeliness, and variety of data
they were calibrated on? Or, since calibration can be challenging,
how much cost-effectiveness is sacrificed when using a ranking
model that is only semi-optimally calibrated? Existing studies that
discuss related issues were carried out in a specific industrial con-
text and it is thus unclear, if the measured sensitivity carries over
to other industrial and open-source projects. Second, empirical re-
sults of CI-RTP/S cost-effectiveness are often obtained on datasets
with seeded faults instead of real-world failures [8, 13] or drawn
from inaccessible industrial contexts which impedes reproducibil-
ity [11, 45, 62]. A recently published dataset, RTPTorrent [50, 51],
closely resembles real-world development activity. Though it has
not yet been used in related studies, this dataset bears the potential
to improve transparency and thus transferability of results from
CI-RTP/S studies. Last, in pursuit of ever more effective CI-RTP/S,
aspects of the design and evaluation of techniques are scattered
across existing work. Overall, findings in the literature are neither
unequivocal, nor directly comparable. It is a cumbersome task for
practitioners to identify insights that apply to their context, let alone
to calibrate associated parameters for maximum cost-effectiveness.

Addressing these limitations, we consolidate existing ideas from
prior research into a methodology to build and evaluate approaches
for RTP and unsafe RTS that exclusively rely on CI and VCS meta-
data. We identify an approach by three parameters, namely (i) how
much (i.e., amount of training data) of (ii) which information (i.e.,
choice of features) is used to (iii) rank tests (i.e., choice of rank-
ing model). Our methodology does not propose new techniques,
but provides a clear, generic process that first guides practition-
ers from exploiting their readily available CI and VCS metadata
to building candidate CI-RTP/S approaches (from prior research)
for their project. Then, the subsequent comparative evaluation of
candidates yields not only the most cost-effective approaches, but
also gives insights on how an approach’s performance changes if
any of the three parameters is varied, i.e., on its cost-effectiveness
sensitivity. From a practitioners view, this methodology enables
simple adoption of RTP and unsafe RTS without having to man-
ually investigate existing techniques and their applicability. We
thus address the practical questions of which data to gather, how
to perform feature engineering and predictive modeling, how to
comparatively evaluate different candidate approaches, and how to
choose the project-specific best approach.

VU Traffic Technologies is one of the world’s leading providers of public transport
software solutions: https://www.ivu.com/

492

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

To estimate performance trade-offs, we apply our methodology
in a large-scale empirical study on real test failures from CI and
VCS histories of 23 industrial and open-source projects. We then
conduct rigorous statistical analyses, yielding guidelines on which
candidate approaches are, empirically, the most promising ones.

In summary, our contributions are as follows:

e Methodology. We consolidate existing research into an ac-
tionable methodology to build and evaluate approaches for
RTP and unsafe RTS exclusively using CI and VCS metadata.

o Empirical Study. First, we analyze the sensitivity of cost-
effectiveness to the parameters (i) training data amount, (ii)
choice of features, and (iii) choice of ranking model. Second,
we estimate performance trade-offs in RTP and unsafe RTS:
Cost-effectiveness fluctuates across projects underlining the
need for project-specific assessment using our methodology.
In the studied projects, approaches chosen by our methodol-
ogy help to save on average 84% of test execution time while
detecting 90% of the failures for unsafe RTS and significantly
outperform established RTP baselines.
Guidelines. (1) It can be beneficial to limit training data, (2)
features on test history work particularly well compared to
change-based features, and (3) inexpensive simple heuristics
of the kind “skip test if not failed in the last ten runs” often
outperform complex ML models from prior work.
Dataset. To foster comparable and evidence-based studies
on CI-RTP/S, we publish our dataset consisting of 23 hetero-
geneous software projects from industry (3) and open-source
development (20). It covers more than 37,000 CI test logs
with real failures and 76,000 VCS commits. The open-source
projects are drawn from the recently published RTPTorrent
dataset [50, 51] which embodies CI test logs that we further
enrich and process for CI-RTP/S.

2 METHODOLOGY

We have motivated our goal to build approaches useful for both,
unsafe RTS and RTP, that solely rely on CI and VCS metadata
(CI-RTP/S). Before providing details about the methodology, we
describe the problem more formally and introduce notations used
throughout this paper: Let P be a program, A be a modification
introduced to P to create P/, and 7 be a test suite. For each test
T € T, the ranking model, M, first predicts T’s failure score by
using a set of features, F. Second, these scores are used to rank tests
in 7, yielding an intermediary 7%, i.e., a test order as aimed at by
RTP. Then, based on a cut-off criterion only a subset 7/ C 7 * is
selected as part of RTS. Depending on the desired strategy (RTP or
RTS), 7* or 7'/ can be used to test P’ [11, 18, 45, 65].

We identify four consecutive process steps when creating and
evaluating CI-RTP/S approaches which are shown in Fig. 1: Exploit-
ing available data sources, engineering features from the collected
data, building predictive ranking models, and evaluating CI-RTP/S.
Since each of these steps involves methodological subgoals, we
address them in the following subsections. Notably, this schematic
process is inspired by the Cross-Industry Standard Process for Data
Mining (CRISP-DM) [73].

Dataset, source code, and detailed evaluation results are part of the supplemental
material available at [22].

https://www.ivu.com/

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

Predictive
Modeling

Feature
Engineering

Data Source
Exploitation

> 14

‘ > ‘ Evaluation

Figure 1: Schematic process of the methodology to build and
evaluate CI-RTP/S approaches.

2.1 Data Source Exploitation

Goal: Exploit generally available data sources to collect raw data
useful for failure prediction.

Modern software projects are developed in code repositories that
use some sort of VCS. While there are various flavors of VCS, such as
distributed (e.g., Git) or centralized (e.g., Apache Subversion), they
share the notion of a commit, i.e., a code revision made by a single
author. It will contain at least the following information: Identifier,
author, commit timestamp, commit message, and a changeset. The
changeset in turn includes all the added, modified, or deleted files.

Meanwhile, regression testing is typically performed in CI en-
vironments. CI tools, such as Jenkins or Travis CI, allow users to
configure CI pipelines, which are regularly executed. We refer to a
CI run at timestamp t as R;. Most pipelines contain multiple stages,
including a build stage, where artifacts necessary to run the tests
are generated (e.g., compilation), a test stage, where (regression)
tests are executed, and a deploy stage, which comprises of scripts
to publish and deploy tested artifacts. After the test stage in Ry, a
test log (also called test report) is typically generated from which
the following information can be extracted per test T; ; in the exe-
cuted test suite 7; = {T;,1, ..., Tr,n }: Test identifier (e.g., test class
name?), result (e.g., passed or failed), and duration. It is thus a
requirement to derive test result and duration information from
the CI environment. However, most testing frameworks and CI
systems (or plugins) already provide structured test logs in sev-
eral output formats, but they can also be parsed from raw textual
CI logs, e.g., by using regular expressions [50]. Depending on the
configuration, a CI run R; may be triggered to start either after
each commit, after the previous run R;_; has finished, or whenever
required (hardware) resources are available. The set of introduced
commits between two CI runs, Ry and Ry—1, A, will at least contain
one commit, as it would be pointless to trigger a CI run without
any modification except to detect flaky tests (see Sec. 3.6.1).

Fig. 2 shows how the outlined entities commit and test log are part
of the software development process. The union of all available Rs
with their 7~ and A constitutes the input for the feature engineering
process described in the next section.

2.2 Feature Engineering

Goal: Craft features for failure prediction from collected raw data
that capture specific defect hypotheses.

For a given test T, ranking models use features to predict a failure
score. These features are numerical representations of characteris-
tics of T. For example, considering T’s failure behavior, if T failed
ten times in previous test runs, the feature failure count will have
the value 10. A good feature is one that improves the model’s predic-
tive performance, hence, one that captures a valid defect hypothesis.

3We follow prior RTS research by analyzing tests at class (or file) rather than module
or method granularity level [27, 70, 78].

493

ISSTA °21, July 11-17, 2021, Virtual, Denmark

T
Testlogs | Tein w © 28
1, ’ 37s
1, ' O 5ls
> ,
® CIRun .
® Commit |~ —@-o—9—@— Time 5
Ry Clrunatt : Ry 4 | R,
- Testlogs and
Commits | Bob Bob Alice 8 P
2020-09-01 08:03 | | 2020-09-0111:32 | | 2020-09-01 13:14 commit data
,Fixed Bug #1...” | | ,Test fixed...” ,Feature done...”
M foolClassA.cpp | | M foolFileAl | M foolClassA.cpp
M foolFileA.cpp A bar/ClassCh

D bar/ClassB: |
A;:Introduced commits for R,

Figure 2: Exploiting VCS history and CI test logs used as in-
put for feature engineering.

Note that we use defect as an umbrella term for failures, faults, or
errors.

Feature engineering is concerned with deriving these defect
hypotheses and computing respective features through a feature
function ¢. If applied to the collected raw data, i.e., to each test in all
7 s with their respective A, we can construct a dataset, D, suitable
for building and evaluating ranking models. More formally, for a
given test T3 ; in the test suite 7 available for R;, we can calculate a
vector of m features, x;; = (xz,i1, ..., %tim), from raw data using
the feature function ¢(T;;, {71, ..., Tr—=1}, {A1, ..., At}). Note that
this captures reality, where at timestamp ¢ before regression testing,
there are only historical test logs and commits available as well as
the newly introduced set of commits A;. To create D, this is done
for every test suite 7~ of the collected CI runs.

Hereafter, we describe 16 features for CI-RTP/S from existing
work. For each feature, we state the underlying defect hypothesis,
briefly explain how it is computed from outlined raw CI test logs
and VCS commits, and reference prior research which already used
it. Aligned with prior work, we semantically group them into four
feature sets, F = {Fy, ..., F4}, to increase comprehensiveness [4, 62].
The k-th feature in feature set j is denoted by f; x.

Feature Engineering F F
For each test fi1 fia
in each test log ’ '

- o ~Trqq |- X-11fa Xe-11f,, 0 (@)

" Ri_1J Teaz @) 5
4 T 1©

B |::> “ 3 Feature Matrix © °§
: <%
L—7 Ty X 1©) g
Testlogs and R, 4 T2 0(@) e

commit data Tes 1)

Dataset D

Figure 3: Structure of a dataset D for CI-RTP/S. Rows are
chronologically ordered, i.e., from test executions of the ear-
liest to the most recent CI run.

Fig. 3 illustrates how we derive D by computing F for all test exe-
cutions in the test logs, e.g., test Tz 1 in CI run R;, and labeling them
with their respective test results as the ground truth, Y, e.g., 1 for
failed. Based on the total amount of collected CI runs with test logs,
r = |R|, D will have N rows, with N = | }_; 77|, and M+1 columns,
with M = | U;l.:l Fj|, including one column for Y € {0, 1}VX1 The

ISSTA °21, July 11-17, 2021, Virtual, Denmark

feature matrix, denoted by X € RN*M | stacks all computed feature
values for each test execution Ty, xz.; = (X£,i1, ., X£,i M)-

Test History Features (F1): This feature set contains features
computed only from CI test logs, i.e., for a test T in 7; we consider
its individual execution history from {Ry,...,Rs—1}.

The first hypothesis is: Tests that previously failed will test error-
prone code and are therefore likely to fail again [28, 74, 76].

o Failure count (fi,1) [4, 45, 54, 56, 57, 60]: Total number of
times T failed.

e Last failure (f1,2) [4, 21, 34, 47]: Amount of CI runs since last
failure, i.e., for Ry, if T last failed in Ry, the value of fj » will
bet—1.

A test transition occurs if a test changes its test result between
two CI runs. For instance, if a test failed in R;—; and passed in the
subsequent run R; (or vice versa), the test transitioned in R;.

The second hypothesis is: Tests that previously transitioned will
test critical code and are therefore likely to fail.

o Transition count (fj 3) [43]: Total number of times T transi-
tioned.

e Last transition (f1,4) [43]: Amount of CI runs since last tran-
sition, analogous to the feature fj 2.

The third hypothesis is: Tests with high execution duration in-
volve complex, time-consuming tasks (e.g., networking, file access)
which are prone to fail (e.g., timeout) [62]. Additionally, on the one
hand, longer running tests might cover larger parts of the program
which simultaneously increases the chance of covering a fault. On
the other hand, fast-running tests might reveal faults more quickly,
making test execution time a potentially useful feature [13, 60].

o Average test duration (fi5) [13, 60]: Average test execution
duration of T across previous CI runs.

(Test, File)-History Features (F2): The idea of this feature set
is to identify associations between tests and files, often referred
to as test-to-code traceability links [72]. Therefore, we record his-
torical co-occurrences of test failures or transitions with changed
files in a contingency table [37]. For example re-consider Fig. 2,
if test T; 3 failed in R; where the combined changeset {foo/FileA.h,
foo/ClassA.cpp, bar/ClassC.h} was introduced, we increment the co-
occurrence frequencies of (T3, foo/FileA.h), (T; 3, foo/ClassA.cpp),
and (T3, bar/ClassC.h). These co-occurrences are referred to as
(test, file)-failures, the same applies to (test, file)-transitions.

The first hypothesis is: Files that were in the changeset when
a test failed, are related to this test’s outcome. More precisely, if
certain files are in the changeset of a commit, they might imply
higher failure likelihood for specific tests.

e Maximum (test, file)-failure frequency (f2,1) [3, 37, 54, 62, 68]:
Given a test T in Ry, for each file in the combined change-
set, we first obtain the total (7, file)-failure frequency from
{71,...,Ti-1}. Then, we determine the maximum across all
files, as the combined changeset is as risky for T as its riskiest
file.

e Maximum (test, file)-failure frequency (relative) (f22) [3, 37,
54, 62, 68]: The relative frequency is calculated by dividing
the (T, file)-failure frequencies by the number of times T has
failed so far. For example, if test T failed a hundred times

494

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

before R;, and a file was part of the combined changeset
half of the times, the relative frequency will be 0.5. Again,
we determine the maximum across all files. This feature
allows to discriminate between systematic and arbitrary co-
occurrence of a changed file and a test failure.

The second hypothesis is: Files that were in the changeset when
a test transitioned, are related to this test’s outcome.

e Maximum (test, file)-transition frequency (f2,3): Given a test
T in Ry, we take the maximum (7, file)-transition frequency
across all files in the combined changeset.

e Maximum (test, file)-transition frequency (relative) (f2,4):
We take the maximum relative (T, file)-transition frequency
across all files in the combined changeset.

Even though we are not aware of prior work that proposes
features f; 34, they build on the existing understanding of test
transitions [43] and failure-based features f5 1.

(Test, File)-Similarity Features (F3): These features embody
lexical similarities between names and paths of a test and files in
the changeset. This similarity proxies human perceived affiliation
between a file and a test [45]. The hypothesis is: Conventions lead
to tests and tested files with similar names and paths [72].

e Minimum file path distance (f3,1) [11, 72]: We use the Lev-
enshtein distance as proposed by White et al. [72] for test-
to-code traceability links. Then, we determine the minimum
distance, i.e., maximum similarity, across all files in the com-
bined changeset.

e Maximum file path token similarity (f32) [43, 45]: Based on
the intuition of shared directories [43], we split file paths
into tokens and count common tokens among test and file
path. We determine the maximum similarity across all files
in the combined changeset.

e Minimum file name distance (f33) [72]: Similar to f3 1, we
use the minimum Levenshtein distance between a test name
and each file name in the combined changeset.

Change Features (F4): While the features described so far di-
rectly concern predicting the outcome of a specific test in a CI run
R;, there are also features that express how the introduced commits
(i.e., changes), A, affect the failure likelihood level of all tests.

The first hypothesis is: Changes involving a larger number of
distinct authors are more likely to cause failures [43, 52].

e Distinct authors (f3 1) [43, 45]: Number of distinct authors
within A4, i.e., across all commits.

The second hypothesis is: Large changes are more difficult to
review and therefore more error-prone [45].

e Changeset cardinality (f3,2) [4, 45, 62]: Number of files in the
combined changeset.

e Amount of commits (f33) [4, 34]: Amount of commits in A,
i.e., since last CI run.

The third hypothesis is: Certain file types are more likely to cause
failures than others. As we want to provide a general methodology,
we rather consider the variety of file extensions in a change, than
specific file types [45, 62].

o Distinct file extensions (f3,4) [45, 62]: Number of distinct file
extensions in the combined changeset.

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

2.3 Predictive Modeling

Goal: Select and build effective and efficient ranking models.

In the following, we explain how we use a constructed dataset D
to build ranking models for CI-RTP/S. Similar to related work, we
target point-wise ranking models [11, 45]: Given a vector of feature
values, i.e., one row in X, x; ;, the model outputs a score, 7J, between 0
and 1. § can be interpreted as a test’s estimated likelihood to fail [45]
and should be close to 1 for tests which are likely to fail. § is used
to relatively rank tests yielding a test order as needed for RTP. For
unsafe RTS, we can derive a cut-off value, 6 € R[O,l] , based on some
cut-off criterion (see Sec. 2.4.2). It defines the decision boundary to
select the test for execution, if § > 0, or skip it otherwise. As any
modeling technique that learns an accurate mapping from X to Y
is suitable, we apply the following set of heuristic ranking models,
Mp,f; and supervised ML classification algorithms, Mj_s.

2.3.1 Heuristic Ranking Models (Mp, fi). Heuristic ranking models
are widely applied across RTP and unsafe RTS research (e.g., [11,
13, 21, 60]; partly only used as baselines). The intuition is that these
models, My, fiueo predict a failure likelihood solely by considering
a single feature f; . For example, a heuristic could select only
those tests that have failed within the previous n CI runs [21].
The underlying ranking model orders tests only by the last failure
feature, fi 2, and selects tests based on a cut-off value n.

As the ranking model ultimately has to output a score § € Ryg 17,
each value x € R of the selected f; x needs to be transformed. This
x-min(fjx)

max (fjx)—min(fjx)
this inexpensive mathematical transformation requires close to

no training effort, heuristic ranking models are naturally efficient.
Consequently, in the given example, n must also be transformed by
the scaler for fj 2 to obtain 0.

is done by using a min-max-scaler: §j = . Since

2.3.2 Supervised Machine Learning (M;—s). We draw the following
five supervised ML classification algorithms from existing work on
RTP and unsafe RTS based on how frequently they were used before
(at least from two distinct authors): Logistic regression [57, 62]
(M), Multi-layer perceptron [1, 46, 62] (Mz), Linear support vector
machine (SVM) [11, 62]* (M3), Random decision forest [2, 8] (Mj),
Gradient boosted trees [45, 62] (Ms).

These models’ optimal performance will most likely depend on
project-specific hyper-parameter tuning. There are manual, sys-
tematic, and random search techniques for finding the best set of
hyper-parameters [7]. We show a straight-forward approach with-
out hyper-parameter tuning in our empirical study (see Sec. 3.2).

2.4 Evaluation

Goal: Measure the cost-effectiveness of CI-RTP/S approaches for a
given dataset D.

2.4.1 Cost-Effectiveness. Early RTS research classifies techniques
among other attributes as safe and precise, if they select all poten-
tially fault-revealing test cases in a modified program (i.e., effective-
ness) by ignoring unnecessary test cases (i.e., cost) [64]. Similarly,
the average percentage of faults detected per cost (APFD,) metric is

“4Note that SVMs are non-probabilistic since they separate points into classes through
hyperplanes. Yet, probability estimates, i.e., scores between 0 and 1, can be derived,
e.g., by performing internal cross-validation [63].

495

ISSTA °21, July 11-17, 2021, Virtual, Denmark

usually used to evaluate the fault detection capability (i.e., effective-
ness) of RTP techniques with respect to test execution cost [17, 23].
More recent studies additionally employ traditional classification
performance metrics, such as accuracy, F; score, or Area-Under-the-
ROC-Curve (i.e., effectiveness) [4, 46, 62] and measure end-to-end
test run-time including analysis overhead (i.e., cost) [26, 42, 79].
Furthermore, research on Pareto efficient multi-objective regres-
sion test optimization aims to find the optimal trade-off between
multiple objectives, e.g., code coverage, historical fault detection
capability, or execution cost [28, 74, 76, 77].

In line with these insights from research and discussions with
practitioners from IVU Traffic Technologies, we conclude: Evalua-
tion of CI-RTP/S cost-effectiveness requires considering the trade-
off between the time (i.e., cost) invested in testing and the thereby
achieved level of fault detection safety (i.e., effectiveness).

There is one caveat to this understanding which is the missing
fault-to-failure mapping as we do not seed faults into programs,
but use observed real-world failures, i.e., failing tests. We therefore
rely entirely on detecting failures rather than faults, assuming a
one-to-one mapping as proposed by previous research [50, 60, 69].

Evaluation — Evaluation Metrics

Gain curve
Test 9 - 183 _____ b) 99y
— pvea 2 1 trade-off
T3 098 X 7 |
TS 096 N\ ER :
T1 085 ™\ Possible cut-off & 2 | 2 APED,
“7] values (6) o 8 |
T7 073 // g% !
ﬂ’/ g i 70% savings

30
Test Run-time [%]
(cost)

100
9: Predicted score (i.e., likelihood to fail)

in descending order

Figure 4: Process to derive the used evaluation metrics for
a set of n tests with predicted failure scores (§ € Rh’;'ll]) by

using the gain curve.

2.4.2 Evaluation Metrics. Fig. 4 illustrates how evaluation metrics
from prior research can be derived that reflect the cost-effectiveness
trade-offs for CI-RTP/S: First, for a test suite scheduled for a CI run
at timestamp ¢, 77, we obtain the failure scores, 7, predicted by
the ranking model that is under evaluation. Second, these scores
are ranked in descending order, creating a prioritized test suite
7;". Third, for each possible cut-off value # we draw a point into a
coordinate system where the x-axis is the percentage of test run-
time and the y-axis is the percentage of detected failures, both
compared to retest-all, i.e., executing all tests. From these points,
we can derive the following two commonly used metrics, (a) one
for evaluating the total ranking as used for RTP and (b) one for
unsafe RTS via some cut-off value 6:

(a) APFD,.. Connecting the points yields the so-called (cumula-
tive) gain curve which can be further reduced to the area under the
gain curve, a single aggregation measure between 0 and 1. This area
is referred to as the APFD. where test costs, meaning the subscript
c, are solely reflected by the test run-time [17]. Since the APFD, is
an established cost-aware evaluation metric for RTP, we use it to
assess the quality of the overall ranking model [13, 23, 60].

ISSTA °21, July 11-17, 2021, Virtual, Denmark

(b) Cut-off Trade-offs. Yet, in the case of unsafe RTS, as opposed
to RTP, reporting only the APFD. metric is insufficient, as we must
ultimately select a subset of tests, 7/ C 7 *. Setting the cut-off
value 0 depends on the acceptance criteria of a project’s developers:
For higher empirical safety”, they will set the value of 6 close to
0, whereas for low safety, but high time savings, it should be near
1. Therefore, to derive expected RTS cost-effectiveness trade-offs,
we further measure the test run-time savings for three different
empirical failure detection safety levels (90, 95, and 100%), i.e., three
different cut-off values (09o%, 0954, and O100%). These levels are
chosen based on the idea of empirical safety (100%), following
Facebook’s example (95%) [45], and using safety acceptance criteria
expressed by our industry partner IVU (90%). Notably, this cut-off
criterion is based on the idea of empirical safety levels [45] rather
than cutting off tests based on time constraints [8, 71].

2.4.3 Model Training and Testing. The proposed ranking models
need to be trained on a subset of D before evaluating the trained
model on a different hold-out subset of D. We delineate this process
of model training and testing in the following four steps: Defining
training and test splits, model training, model testing, and ran-
domness. Note that testing in this context means that the model
is examined for its performance on a hold-out test dataset, i.e., on
data that was not available during model training.

Training and Test Splits. There is a myriad of ways to split a
dataset into training and test set. For instance, for unsafe RTS,
Machalica et al. [45] use the most recent week of their three months
dataset for testing. Philip et al. [62] train on one year and test on
two months of data. There is no general rule, neither about how
much data should be used for training and testing, nor about the
ratio. Yet, in practice, we need to decide whether to use all available
historical data for training or stick to more recent data, which might
resemble the current failure behavior more accurately [3].

Fig. 5 shows the training-test-splits which we use to measure
these possible influences: We divide a time-ordered dataset, D, into
5 equal-sized folds by CIruns. This is based on the widespread 5 fold
split in ML research (e.g., [9]). One could also use absolute amounts
of data for splitting, e.g., always test on one month of data, but there
is no argumentation to pick one over another. Notably, we cannot
perform cross-validation since there are temporal dependencies
between results of CI runs: Training models on past data and testing
on more recent data is realistic and most suitable in practice [62].

We obtain different training-test-splits as follows: First, to inves-
tigate the best ratio of training to test folds, we vary the amount of
training folds while keeping the test set at the most up-to-date fold.
The derived splits (S1—3) with different ratios use 100, 75, and 50% of
historical data for training. Recall that we regard the training-test-
ratio, i.e., amount of training data, as the first (i) of three parameters
of any CI-RTP/S approach that needs to be calibrated.

Second, to examine the sensitivity of a CI-RTP/S approach to
data timeliness, we extend S1_3 by three additional training-test-
splits. The intuition is that the up-to-date fold, which we use as
a test set, might not be representative. However, if the CI-RTP/S
approach works well across test sets with different timeliness, we

>Due to the lack of deterministic test execution traces or static dependencies, CI-RTP/S
can only give empirical, i.e., statistical evidence-based, safety guarantees.

496

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

Evaluation - Training and Test Splits Train []
Dataset D with r CI runs Variation of: Test
5 folds with size g Train/test Testset timeliness
7
v,
4:1 (S Up-to-date
LT e wes —
_-- 3:1(S2) Up-to-date training data to use?
% 2:1(S3) Up-to-date
% 3:1 Recent
2.1s CI-RTP/S stable
g A ‘ 2:1 Recent over time?
LT 4 1 1 2 Aged

Time

Figure 5: Splitting D into different training and test sets.

can provide better predictability of CI-RTP/S to practitioners, due
to stable performance over time. Alternative test sets, i.e., with
timeliness recent and aged (see Fig. 5), may also allow to derive a
performance estimation in case there are no failures in the up-to-
date fold, which disallows constructing the gain curve.

In total, this leaves us with 6 different training-test-splits which
we need to evaluate. We refer to a training set as D*"*" and to a
test set as D'®? in the following.

Model Training. The heuristic ranking models, Mj, f;> are cre-

ated by fitting min-max-scalers on each of the 16 features in D!"4"
as described in Sec. 2.3.1. These scalers are then used to predict the
failure score for each test T;; in D*¢S? solely based on fjkin Dest,
All scores are clipped to be between 0 and 1 resulting in a score
§ € Ryg,1] for each test. Since a feature might follow an inverse
scoring order, where a high feature value indicates a low failure
score, we calculate APFD. values for § and 1 — § on the training
set and only use the better performing one for model testing.
Additionally, for each project, we train a ranking model for each
ML algorithm and feature set as well as on the composition of
all four feature sets. This results in (4 + 1) x5 = 25 (feature set,
model)-combinations to be evaluated per training-test-split.

Model Testing. Each created ranking model is used to predict
the failure score of each test Ty, i.e., each row, in D?¢S?, If the
predicted failure scores of two tests are equal, the test with the
shorter last execution duration is executed first, since the last test
duration has proven to be a reasonable baseline [13, 60]. Thereby,
we obtain a test ranking for each CI run in D*¢!, We follow prior
research [11, 50, 60] by reporting our evaluation metrics averaged
across all CI runs in D¢5! that contained failures: Avg. APFD, (RTP)
and avg. test time savings (RTS).

Randomness. Several ML algorithms involve randomization. We
repeat the experiments with 30 different random seeds to reduce
the impact of randomness [23, 71]. Results in our empirical study
(see Sec. 3.3) report the mean of evaluation metrics.

3 EMPIRICAL STUDY

We perform an empirical study to evaluate CI-RTP/S approaches
built and calibrated using our methodology; and to derive evidence-
based guidelines and cost-effectiveness expectations for practition-
ers. Therefore, we strive to answer the following research ques-
tions (RQs):

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

e RQ;: How sensitive is the cost-effectiveness of CI-RTP/S to
different parameterizations regarding amount of training
data, choice of features, and ranking model?

e RQy: How do CI-RTP/S approaches built with our method-
ology compare against baseline RTP and RTS techniques in
terms of cost-effectiveness?

3.1 Study Subjects

Table 1 lists the selected 23 software projects from industry (3) and
open-source development (20).

3.1.1 Industrial Projects. These are provided by our industry part-
ner IVU Traffic Technologies, each counting several millions of
source lines of code (SLOC). One project is primarily written in
C/C++ (P1), two in Java (P2—3). Additionally, web-based and na-
tive graphical user interface (GUI) clients are part of these code
bases which are programmed in different domain specific languages
(DSLs) or other general purpose programming languages (GPLs)
such as JavaScript. Their test suites, besides unit testing, involve
integration- as well as system-level testing often performed across
project boundaries. Developers commit their changes directly to the
main VCS development line, where the company-internal Jenkins
CI system collects commits and triggers a new retest-all CI run once
the previous run has finished. Once a test run is finished, a Jenkins
plugin aggregates all XUnit test results into a structured test report
in XML or JSON format®.

3.1.2 Open-source Projects. These are part of a recently published
dataset for RTP, RTPTorrent (Mattis et al., Zenodo, CC BY 4.07),
that aims to deliver a representative sample of all Java projects on
GitHub [50, 51]. We discovered that most of them (14/20) addition-
ally use more GPLs other than Java (e.g., C++, Python) or DSLs (e.g.,
SQL, YAML). As RTPTorrent is yet missing some required links be-
tween CI runs and respective VCS commits, we used the underlying
massive TravisTorrent [6] CI dataset to extend RTPTorrent. If there
are multiple VCS branches that are tested in the CI system, we use
historical data from all of these branches. The same applies for mul-
tiple sub-stages in a test stage, where different sub-stages, e.g., for
different compiler versions, might report the same failures. In the
worst case, this leads to an over- or undersampling of failures. We
still keep these data to not waste potentially valuable information.

3.1.3 Datasets. We argue that this set of projects resembles reality,
where RTP and RTS techniques have to cope with multi-language
software of varying size as well as test-levels, i.e., unit-, integration,
or system-level [12, 80]. More than 37,000 CI test logs and 76,000
VCS commits were analyzed. We publish the resulting 23 datasets,
Dp, ,,, as part of our supplemental material.

3.2 Experimental Setup

Recall that we identify CI-RTP/S approaches as triples of the param-
eters (i) training data amount (i.e., training-test-ratio), (ii) features,
and (iii) ranking model. All studied settings for these parameters de-
scribed in Sec. 2 are summarized in Table 2. Due to the combinatorial

6Jenkins JUnit Plugin: https://plugins.jenkins.io/junit/
7CC Attribution 4.0 International: https://creativecommons.org/licenses/by/4.0/

497

ISSTA °21, July 11-17, 2021, Virtual, Denmark

explosion of assessed study subjects, random seeds, training-test-
splits, features (or feature sets), and ranking models, the experi-
ments were run on a highly parallelized cluster infrastructure. The
measured total CPU time was more than 50,000 hours.

Since we aim to constitute a generic example of applying our
methodology, we do not perform elaborate hyper-parameter grid
search for ML algorithms. Instead, we follow Chen et al. [13] and
stick to the default model hyper-parameters provided in the scikit-
learn package [59], but use the LightGBM package for a more light-
weight implementation of gradient boosting [35]. Notably, before
model training each feature is normalized.

In our supplemental material, we provide the source code neces-
sary to reproduce our results from the created 23 datasets, Dp, ,,.

3.3 Results

In the following, we discuss the empirical results and address the
RQs. Detailed results are provided with the supplemental material.

3.3.1 RQy: Cost-Effectiveness Sensitivity Analysis. We aim to ana-
lyze how sensitive the cost-effectiveness of the CI-RTP/S approaches,
built with our methodology, is to the parameters (i)-(iii) and find
calibrations that are empirically superior to others (see Table 2).
When comparing different parameter settings, we use the APFD,
as calculated for each CI run in a project’s test dataset D*¢5! and
average it over these runs to obtain the avg. APFD,. This metric
is then considered across projects for sensitivity analysis. We run
a one-way analysis of variance (ANOVA) for each parameter to
investigate its individual influence on the avg. APFD.. Therefore,
we vary its value, while having the other two parameters at their
project-specific best setting. Our approach for sensitivity analysis
of parameterization follows related work on RTS and RTP [8, 60].

(i) Training Data Amount. To check how much training data
is beneficial for CI-RTP/S, we study whether there are significant
differences in the means of the avg. APFD, across projects for S1_3.
To choose the appropriate statistical test for the ANOVA, we first
perform the Shapiro-Wilk test with Bonferroni correction to check
for normality which cannot be rejected with a minimal p-value of
0.045 (significance level @ = 0.05 corrected by |S| = 3 is anorm =
0.017). We then use Bartlett’s test for homoscedasticity, which is
also not rejected at a p-value of 0.977. Hence, with normal and
homoscedastic data we can perform a repeated measures ANOVA.
We fail to reject the null hypothesis (p-value = 0.717), indicating
no significant difference between the mean values of Sy, Sz, and Ss.
Among them, S; shows the highest mean avg. APFD, of 0.896.

Prior research has trained ranking models only on faulty CI
runs [11], that is runs that contain at least one test failure, or by
using all available CI runs [45]. To check if there are any significant
differences, we repeated all experiments a second time, but this time
we only trained on those CI runs in the training set that contained
failures. Using the same procedure as before, we find that differences
in means are insignificant (p-value = 0.284) by using a paired t-test,
which is suitable as data is normally distributed (p-value = 0.059)
and we have two populations, that is only faulty and all CI runs.

Overall, we can summarize that using less training data does
not harm cost-effectiveness of CI-RTP/S. Even limiting ourselves to
only using faulty CI runs did not negatively impact the avg. APFD,.

https://plugins.jenkins.io/junit/
https://creativecommons.org/licenses/by/4.0/

ISSTA °21, July 11-17, 2021, Virtual, Denmark

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

Table 1: Study subject statistics

Pip Project #SLOC .Tlme # Commits # CI runs # Failing CI runs # Test runs # Tests # Failures Ave. h?St stage Avg./m.en.ilan # failures
period [days] duration [sec] per failing test stage
Py IVU_Cpp > 1M 267 8,632 3,996 2,841 3,608.4K 1,240 25,973 5,454 9.1/3.0
Py IVU_Java_1 > 1M 313 7,747 943 876 178.7K 279 14,568 65,557 16.6/6.0
P3 IVU_Java_2 > 1M 699 7,965 3,209 1,521 3,526.3K 1,278 7,603 5,330 5.0/2.0
Py jcabi-github 64K 872 1,050 809 205 398.1K 201 740 778 2.2/2.0
Ps jadedj 10K 1,539 400 358 59 35.9K 46 1,323 4 13.8/19.0
Pg optiq 243K 395 560 458 38 55.3K 63 110 2,168 1.6/1.0
Py buck 562K 307 2,517 846 339 586.1K 864 1,511 1,650 4.5/1.0
Pg jetty.project 346K 63 237 192 174 63.9K 787 415 508 1.3/1.0
Py jsprit 59K 368 326 267 14 91.8K 107 123 23 2.4/1.0
Pio LittleProxy 13K 1,580 353 271 62 11.0K 50 172 134 2.8/2.0
P11 dynjs 57K 1,163 517 385 25 68.5K 83 496 15 12.1/1.0
P12 sling 673K 213 13,376 1,403 812 268.1K 304 1,158 420 1.4/1.0
P13 HikariCP 13K 661 1,787 1,575 125 44.0K 23 383 58 3.1/1.0
Py wicket-bootstrap 42K 1,245 1,150 904 342 41.4K 91 9,007 8 26.3/29.0
Pis okhttp 69K 1,423 3,518 3,412 744 236.5K 266 939 108 1.2/1.0
P16 titan 59K 747 621 384 157 43.3K 107 551 2,366 2.2/2.0
Py7 deeplearning4j 138K 727 1,071 982 566 14.6K 174 908 477 1.6/1.0
Pig cloudify 132K 909 6,048 4,973 496 283.6K 116 602 92 1.2/1.0
Pig graylog2-server 127K 1,381 5,414 3,891 165 798.5K 250 403 792 1.6/1.0
Py Achilles 54K 1,114 904 642 23 139.9K 627 162 139 6.0/2.0
Py DSpace 384K 1,043 2,489 1,929 82 122.1K 83 1,697 130 20.7/35.0
Py sonarqube 661K 532 7,899 4,286 488 6,696.0K 3,122 2,156 334 3.5/1.0
Py3 jO0Q 351K 961 1,525 1,318 403 81.5K 51 573 13 1.1/1.0

Table 2: Parameters of CI-RTP/S approaches: (i) Training
data amount S, (ii) features F, (iii) ranking models M

S1 100% of available historical data
Sa 75% of available historical data
S3 50% of available historical data
F Failure count (fj,1), Last failure (f 2), Transition count (f 3)
Last transition (fj,4), Avg. test duration (f5)
Fy Max. (test, file)-failure freq. (f2,1), Max. (test, file)-failure freq. (rel.) (f3,2),
Max. (test, file)-transition freq. (f2,3), Max. (test, file)-transition freq. (rel.) (f2,4),
F3 Min. file path distance (f3 1), Max. file path token similarity (f32),
Min. file name distance (f3,3)
Fy Distinct authors (f3 1), Changeset cardinality (f3,2),
Amount of commits (f3,3), Distinct file extensions (f3,4)
M Logistic regression
M Multi-layer perceptron
M3 Linear SVM
My Random decision forest
Ms Gradient boosted trees
Mh’fj,k Heuristic ranking models
Fan ——sTr—— cD
F4 f—————————————r—— 5 4 3 2 1
F3 Rt ‘ ‘
Fy4 © mean — °ow® -
Fy 4f— median ——] Fo] L F
02 03 04 05 06 07 08 09 1.0 F3 Fy
Avg. APFD, F2

(a) Avg. APFD. across projects (b) Pairwise comparison

Figure 6: Sensitivity analysis of features F (ii)

(ii) Features. In Sec. 2.2 we described how features are grouped
into feature sets F1_4 to increase comprehensiveness. This allows us
to study their individual cost-effectiveness and empirical differences
among them. Fig. 6a shows the distribution of the avg. APFD,
for each feature set Fi_4 and F,j;. Again, we assume normality
after conducting a Shapiro-Wilk test with Bonferroni correction
which yields a minimal observed p-value of 0.023 (anorm = 0.01).
Bartlett’s test for homoscedasticity is further rejected at p-value
0.02, assuming heteroscedasticity. Thus, we use the non-parametric
ANOVA Friedman test to check for differences in the means of
avg. APFD,. It is rejected at p-value 0.002 indicating that there

498

are significant differences which we further explore with the post
hoc Nemenyi test as proposed by Demsar [14]: It compares all
feature sets pairwise based on the absolute differences of their avg.
rankings. For a a critical difference (CD) is determined, if the avg.
ranking difference is greater than CD, the null hypothesis that
they have equal performance is rejected. Fig. 6b visualizes these
pairwise differences in the avg. ranks through a CD diagram: If
two feature sets are connected by a horizontal bar, they are not
significantly different to each other [32]. The diagram indicates that
Fy is significantly worse than F,;; (best in pairwise comparison)
and F; (best among Fi_4), questioning the usefulness of features
in F4. Further, we find that even though differences in avg. ranks
are not significant, F; and F,;; have higher mean avg. APFD, than
other feature sets by at least 0.05. This emphasizes the usefulness
of features from test history (Fy).

As heuristic ranking models do not rely on entire feature sets
but only on single features, we conduct the sensitivity analysis
for all single features fj,k as well, i.e., their respective heuristic
ranking models My, ¢, . The ANOVA shows that there are no sig-
nificant differences between features (Shapiro-Wilk test rejected at
p-value 0.001; Friedman test not rejected at p-value 0.063). How-
ever, from the five features with highest mean rank and median avg.
APFDg, three are from feature set F1 (fi,4, fi,1, f1,5), and two from
F> (f2,1, f2,2), with the best one being f5 1, i.e., max. (test,file)-failure
frequency. Again, this emphasizes that features using test history
correlate with better cost-effectiveness. There seems to be some
combination of features that leads to superiority of F; over Fy4. This
observation motivates the use of more elaborate statistical feature
selection techniques in the future (see Sec. 3.6).

(iii) Ranking Model. To investigate the cost-effectiveness of each
ranking model M, we perform ANOVA twice, with the response
variables avg. APFD. and training time, respectively. We consider
the latter as a reasonable proxy for model efficiency as our experi-
mental results show that model inference time is negligibly small
(see experiment results in supplemental material). Fig. 7 shows the
distributions of the avg. APFD, and the training times of ranking

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

Mpd o mean ——o————— My { 340 0o

Ms | — median L S——— Ms —{T34¢ @0

M, oT 1 M, HT—3+ o @0

Ms b M — =35 o

M, L S— —— My { © mean ——D ® ooo0
My ———o T M, |~ median T30 00 o

0.6 0.7 0.8

Avg. APFD.

107 102 107! 10° 10!
Training time [s]

10? 103

(a) Avg. APFD, across projects (b) Training time across projects

Figure 7: Sensitivity analysis of ranking models M (iii)

models across all projects. For the first ANOVA, we perform a re-
peated measures ANOVA, as the data is normal (p-value = 0.087)
and homoscedastic (p-value = 0.953). Since the null hypothesis
is not rejected at p-value 0.066, we assume that there are no sta-
tistically significant differences in the mean avg. APFD.. M5 (gra-
dient boosted trees) and M have the highest mean avg. APFD,
(both 0.874). The second ANOVA shows significant differences
in training time: We reject the Friedman test at p-value <0.001
(non-parametric ANOVA due to non-normality at p-value <0.001).
Without further inspection, it is obvious that M}, (as expected) is
far more efficient than the ML algorithms as its training procedure
is simply a mathematical transformation. Yet, despite its simplicity,
the cost-effectiveness of My, is still comparable.

While prior research also finds M5 to be particularly effective [45],
interestingly, these findings rather suggest focusing on existing sim-
ple heuristic ranking models (M},) instead of investing the effort in
training complex ML models from prior research.

RQ1: We find that CI-RTP/S cost-effectiveness is sensitive to
the choice of features, but is not significantly impacted by the
amount of training data or the ranking model. We empirically
determine that the best approaches contain features from test
history and use heuristic ranking models.

3.3.2 RQy: Comparative RTP and RTS Performance. We aim to pro-
vide estimations on the cost-effectiveness of CI-RTP/S approaches
for RTP and unsafe RTS. We have motivated in Sec. 1 that it is
of particular interest for practitioners to know how much cost-
effectiveness is sacrificed if using only a semi-optimally calibrated
approach. Thus, we compare the following CI-RTP/S approaches
including four baselines for RTP and unsafe RTS.

e ML: Empirically best ML ranking model from RQy, i.e., Ms
(gradient boosted trees) with F,;; on Sz (75% training data)

e H: Empirically best heuristic ranking model from RQy, i.e.,
Mp,f, | (max. (test,file)-failure freq.) on Sz (75% training data)

e Opt: Always uses optimally calibrated approach from our
methodology for each project; implies high effort in practice,
as all combinations of parameter settings are computed.

® B, .ndom: Baseline ranking tests in random order [11, 17, 20]

® Bj,s:: Baseline ranking tests in ascending order by the time
since the last failure (i.e., f1,2) [21, 71]

® Bpjstory: Baseline ranking tests in descending order by the
amount of historical failures (i.e., fi 1) [3, 60]

® B¢ost: Cost-only baseline ranking tests in ascending order
by their last execution time [13, 60]

499

ISSTA °21, July 11-17, 2021, Virtual, Denmark

L s e — —
—

ML o mean
A | — median
Opt

Brandom

2o

Blast
Brandom Opt
Blast H
ML

—_—
——

Bhistory 10

Beost

Bhistory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Avg. APFD, Beost

(a) Avg. APFD, across projects (b) Pairwise comparison

Figure 8: Comparison of RTP cost-effectiveness

The distribution of their avg. APFD, across projects is shown in
Fig. 8a, reflecting the cost-effectiveness for RTP. To compare the
median values, we perform the non-parametric ANOVA Fried-
man test assuming non-normality at minimal p-value of 0.001
(anorm = 0.007). It is rejected at p-value <0.001 indicating that
there are significant differences. Again, we use the post hoc Ne-
menyi test for pairwise comparison of avg. ranks and report the
results in Fig. 8b. We can see that Opt significantly outperforms
all other approaches, which is also reflected by the highest median
avg. APFD, of 0.919 with the lowest median absolute deviation of
0.1. Although not statistically significant, the medians of the semi-
optimally calibrated approaches ML (0.855) and H (0.787) are also
better than all baselines. Notably, the spread of the avg. APFD,. for
H with respect to median absolute deviation is considerably smaller
(0.177) than the one for ML (0.239). Similar to prior research [60],
Beost seems to be the best performing baseline (median: 0.757), yet
not statistically significant across studied projects. Moreover, all
approaches and baselines (partly significantly) outperform random
ordering (B, qndom)> Which is also in line with previous results (see
Fig. 8b) [11, 18, 19, 71]. Interestingly, we found that for 5 and 11
projects, respectively, the baselines Bp;s;opyy and By, performed
worse than My ¢ and My, , which use the same features, but
followed an inverse scoring order in these projects.

Regarding RTS, Fig. 9a shows the distribution of the avg. time
savings for RTS across projects when setting the cut-off value to
0907, i.e., 90% empirical failure detection safety. The ANOVA, re-
ported in Fig. 9b, has similar results (Shapiro-Wilk: p-value 0.029;
Bartlett: p-value <0.001; Friedman: p-value <0.001), which is not
surprising, as we generally expect good RTP to correlate with good
RTS approaches. Though the project-specific best approach used
for Opt is not necessarily the same for RTS and RTP: For 69y, 19
out of 23 projects have the same best project-specific approach.

Overall, using Opt we are able to save 84% of testing time on
average across projects. However, even with the semi-optimally
calibrated approaches, H and ML, savings of on average >70% are
achieved. While the baselines have relatively high average savings
as well (up to 61.7%), they suffer a large spread across projects.
For 0954 and 01997, we find 83.1 + 13.8% and 82.8 + 14.4% average
test time savings with Opt, respectively. H and ML achieve average
savings of 69.8+10.2% and 69.7 +14.2% for 954, and 69.4+10.5% and
69.4 + 14.3% for 0100 The overall conclusions regarding relative
performance of the seven compared approaches (including four
baselines) remain similar. All numbers and figures for 0954 and
0100 are part of the provided supplemental material.

Finally, we investigate to what extent the ranking performance
of Opt, H, and ML (as they have been calibrated on the up-to-date

ISSTA °21, July 11-17, 2021, Virtual, Denmark

ML] o mean H—————T——

—
H { — median —_———
opt 7 6 5 4 3 2 1
—_——r . s ‘
Brandom [—] I
Blast —_—— e ———
Bhistory T Brandom Opt
Bast H

L ey S————

0 10 20 30 40 50 60 70 80 90 100
Time savings [%]

Beost

Bhistory ML

Beost

(a) Avg. savings across projects (b) Pairwise comparison
Figure 9: Comparison of RTS cost-effectiveness for 0y,

Table 3: Time stability measured by avg. APFD,. across 6 dif-
ferent training-test-splits (¢ + o)

Pip Opt H ML

Py (Faz1, M) T 0.97£0.00 | 0.74+0.02 | 0.94+0.02
P, (fi2o Mp) | 0.90+0.03 | 0.80+0.02 | 0.88+0.03
P (Fa;, Ma) | 0.95+0.01 | 0.77+0.03 | 0.810.06
Py (F1, My) 0.84+0.07 | 0.81£0.08 | 0.64+0.15
Ps (3. Mp) | 0.87+0.16 | 0.72+0.07 | 0.65+0.22
Pg (fias Mp) | 0.64%0.11 | 0.70£0.11 | 0.65+0.23
P; (fiss Mp) | 0.98+0.01 | 0.91+0.02 | 0.87%0.10
Py (Fa1, Mp) | 0.86+0.10 | 0.75+0.12 | 0.81+0.08
Py (Fa1, Mp) | 0.70£0.30 | 0.81+0.09 | 0.72+0.25
Py | (Fy, My) 0.63+0.10 | 0.63+0.10 | 0.42+0.10
Py (f33. Mp) | 0.80£0.21 | 0.83+0.17 | 0.46 +0.30
Piz | (Fa,Ms) | 0.86+0.09 | 0.76 £0.12 | 0.86 = 0.09
P13 | (Fy, Ms) 0.79 £0.05 | 0.69+0.06 | 0.56+0.08
Py | (fizoMp) | 0.79+£0.04 | 0.80+0.02 | 0.72+0.08
Pis (F1, My) 0.82+0.05 | 0.81+0.02 | 0.77 +0.09
Pis (F1, My) 0.69+0.09 | 0.70 £0.06 | 0.68 +0.04
Py (fi,1.Mp) | 0.79+0.11 | 0.80£0.07 | 0.76 +0.10
Pis (Faz7.Ms) | 0.85+0.10 | 0.61+0.10 | 0.85+0.10
Py | (f33.Mp) | 0.90+0.17 | 0.90+0.18 | 0.81+0.15
Py | (f51.Mp) | 0.90+0.07 | 0.84+0.08 | 0.67+0.30
Py | (F1, Ms) 0.70£0.14 | 0.75+0.04 | 0.56+0.14
Py | (Fa, M) 0.67£0.06 | 0.72+0.03 | 0.53+0.06
Py3 | (Fa,Ms) | 0.96+0.00 | 0.86+0.03 | 0.92+0.00
Avg. 0.82 +0.07 0.77 + 0.04 0.72 £ 0.08

test set) is stable over different test sets in time (see Fig. 5). Table 3
lists the mean and standard deviation of their avg. APFD, for each
project, if applied across all 6 available training-test-splits. While
Opt is always the best approach on the up-to-date test set, it is not
necessarily the best one averaged across all training-test-splits. If
there were two approaches performing equally well on the up-to-
date test set in terms of their avg. APFD,, hence being candidates for
Opt, we decide in favor of the one with smaller standard deviation
of the APFD,. The cost-effectiveness oscillates considerably over
time with an average o of 0.07 for Opt, o of 0.08 ML, and 0.04 for
H. Hence, we conclude that re-adaptation intervals should be kept
short, as optimal calibration of CI-RTP/S fluctuates over time.

RQy: We find that CI-RTP/S approaches outperform established
baselines and save on average 84% of test run-time while retain-
ing 90% of empirical failure detection safety. However, CI-RTP/S
is unstable over time, thus requiring regular adaptation.

3.4 Guidelines and Expectations for Practice

In summary, we derive the following practical implications from
the findings of our empirical study:

(1) CI-RTP/S does not need large amounts of training data per se.

It suffices to use the most recent or even only faulty CI runs.
This speeds up re-adaptation and decreases required storage.

500

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

(2) Features from test history are frequently performing well, yet,
in our experiments, adding VCS metadata can increase cost-
effectiveness: F,;; has been the best feature set.

(3) Rather naive, inexpensive heuristic ranking models often out-
perform sophisticated ML algorithms.

(4) Calibrating the project-specific optimal (Opt) CI-RTP/S approach
gives significant cost-effectiveness benefits over semi-optimally
calibrated approaches or baseline models.

(5) CI-RTP/S approaches are not stable over time. Frequently re-
adapting CI-RTP/S to more recent development is advisable.

(6) Unsafe RTS, even if solely based on metadata from CI and VCS,
can achieve considerable test run-time savings (on average 84%
while detecting 90% of failures across projects from our study).

3.5 Application in Industry

Besides the empirical results on the performance expectations of
CI-RTP/S reported above, we share some initial experiences and
challenges from deploying our methodology at IVU Traffic Tech-
nologies who supported and partially sponsored this research.

We implemented our methodology as a web service that is de-
ployed in the company’s infrastructure and integrated with their
Jenkins CI system. As described in Sec. 3.1.1, the existing main Jenk-
ins pipelines continuously execute all regression tests. Depending
on the project this is either done in random order, to detect and
prevent test order dependencies (see [39]), or by the alphabetical
naming order of tests. In addition to the existing pipeline, we created
a parallel RTS pipeline for project P, from our empirical study: This
pipeline first queries the web service with the introduced changeset
since the last CI run and a desired empirical safety level (the default
is 90%) and then only executes the subset of tests retrieved from
the web service. The reason why we choose this parallel setup for
now;, is to build up trust in the RTS mechanism among developers.
They can directly compare results from the existing (safe) retest-all
to the RTS pipeline, which makes test time savings transparent.

In this industry setting, we decided to only include heuristic
ranking models (Mp, ") for the following reasons: First, as we have
shown empirically, these heuristics often outperform complex ML
algorithms and require low training effort in both time and compu-
tation resources. They are also non-randomized, which eliminates
the need for costly repeated experiments. Second, they are easily
interpreted by developers, who are not necessarily experts in pre-
dictive modeling, which might increase overall acceptance of the
used models. As our guidelines from the empirical study suggest,
the web service re-adapts all ranking models every night including
the new data from the last day which are fetched from Jenkins.
For the subsequent day, the web service will then only use the
best performing model to rank tests. We follow the assumption by
Facebook [45] that model performance on our test dataset is a good
approximation of the model’s general performance on unseen data.
Still, to regularly check this assumption, we store trained models
and inspect in hindsight how they performed on the following day,
i.e., if the empirical safety level carried over from the test set.

Our parallel RTS pipeline has been in use in project P for six
weeks. This project contains a large fraction of relatively long run-
ning Java tests that operate across language boundaries (Java and
C++) and often have long test setup times for database schemas.

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

During the considered time period, the RTS pipeline executed 366
CI runs, where 176 included at least one failure. Across those fail-
ing CI runs, the realized test time savings were on average 19.8%
with 93.4% of failures being detected. We observe that the empirical
safety level was only notably violated (below 90%) when the code
base underwent major refactorings which were accompanied by
a sudden increase in failures. However, the test time savings are
considerably smaller than what we achieved for P, during the em-
pirical study and for the open-source projects. There are (at least)
two possible reasons for this observation: First, we found that the
setup times often significantly impact the test execution time and
created database schemas are cached and re-used for subsequent
tests. Hence, even if certain tests are excluded, the considerable
impact of the test setup time will still be prevalent if any of the tests
requiring that setup is executed. Second, if multiple tests failed
in a CI run, we observed an increase in the number of selected
tests on the following days. We expect this to be a consequence of
our decision to rely on heuristic ranking models only: Mp, ; , has
been the best for P, and thus, if multiple tests fail once, they will
be selected for execution throughout the subsequent days which
negatively affects the test time savings.

Even though these initially realized time savings are smaller
than in the empirical study, IVU engineers are positive about the
achieved results and will deploy parallel RTS pipelines for more
projects. They expect test setup times to have significantly less
impact in their other projects. In fact, the test setup caching mech-
anism is very project-specific and little prior research exists on test
dependency aware RTP and RTS [39]. Thus, while our empirical
study of open-source projects establishes comparability, context-
specific practical challenges can impact CI-RTP/S cost-effectiveness
and we will further investigate how to address them at IVU.

In the next step, we aim to reduce the frequency of retest-all
cycles. Instead of parallel execution, the RTS pipeline will be the
default CI pipeline. Re-executing all tests in certain intervals will
still be required as the thereby obtained test outcome data are
necessary for re-adapting ranking models.

3.6 Threats to Validity

3.6.1 External Validity. The main threats to external validity con-
cern the representativeness of results. We address them by studying
a heterogeneous set of real-world projects, but cannot, by nature of
empirical studies, easily generalize our findings beyond our dataset.
Since this is a known limitation of ML models as they always depend
on the dataset quality, we followed established data mining and ML
practices for splitting data, repeating randomized experiments, and
training and testing models to mitigate these threats.

The investigated time periods of CI and VCS history might con-
tain irregular development behavior, e.g., unusual maintenance
activities. Therefore, we create multiple training-test-splits and
investigate time stability of performances.

Since we rely on test execution time as reported in the CI logs,
there is a threat from fluctuations within one CI test run due to
irregular workload on the build machine. Tests are usually run in
isolation inside CI environments to reduce such side-effects, but it
might still affect the concrete values of reported evaluation metrics.
Similar to prior work [60], we address this threat by our large

501

ISSTA °21, July 11-17, 2021, Virtual, Denmark

dataset of CI runs and by conducting rigorous statistical analyses
to ensure that findings are significant across projects.

Furthermore, we deliberately exclude an automated feature se-
lection process or model hyper-parameter tuning. While this might
limit the performance of ML algorithms compared to more sensible
tuning, it enables us to perform fine-grained sensitivity analyses.
We deem the investigation of automated feature selection tech-
niques as an important future task to prune our current feature
sets. In addition, while we focus on point-wise ranking models,
there are recent studies on other approaches such as reinforcement
learning (RL), which are beyond the scope of this work [8, 71].

As described in Sec. 2.4.1, we rely on a one-to-one failure-to-
fault mapping similar to previous research [50, 60, 69]. While this
assumption might distort results since faults often cause multiple
failures, prior research on RTP shows that different mappings still
lead to similar overall conclusions [60].

Finally, the presence of flaky tests may impact the effectiveness
of CI-RTP/S. Existing research is not unequivocal regarding the ex-
pected effect of flaky tests: While at Facebook [45], the presence of
flaky tests does not preclude the applicability of CI-RTP/S, Peng et
al. [60] see substantial impact for some RTP techniques. We argue
that flaky test detection requires special efforts and can be per-
formed on top of our methodology. Due to resource constraints, we
cannot re-run more than 37,000 CI test histories multiple times to de-
flake each dataset as proposed by prior work [45]. AtIVU, flaky tests
are currently not documented, yet developers are encouraged to fix
such tests immediately when they behave non-deterministically.

3.6.2 Internal Validity. We identify the integrity of exploited data
sources as well as the correctness of the implemented feature en-
gineering and evaluation analysis as the main internal threat. To
address this, we wrote run-time assertions and unit tests that dis-
cover invalid data and check feature computations. Furthermore,
we manually checked results for their validity with IVU engineers.

4 RELATED WORK

Several RTP and unsafe RTS techniques have been proposed which
incorporate other information than traditional white-box program
analyses to predict test failures and rank tests. Throughout this
paper, we have referenced existing research that we have consol-
idated into our methodology. While we focus on techniques that
solely rely on CI and VCS metadata (CI-RTP/S), there is also signif-
icant related work which uses other additional information that is
non-guaranteed in CI settings.

Studies on techniques that use such additional information be-
yond CI and VCS metadata have shown their effectiveness in spe-
cific contexts (i.e., single projects or organizations) [1, 2, 4, 11, 45,
47, 48, 54, 57, 62] as well as across multiple projects [5, 8, 13, 29, 33,
36, 40, 46, 49, 53, 56, 57, 60, 67]. We consider the following to be
most relevant for our work: Machalica et al. [45] report a reduction
of testing infrastructure cost by 50% and test executions by >66%
at Facebook while retaining 95% empirical failure detection safety.
They train a failure prediction ML model on features from CI and
VCS metadata as well as static build dependencies and project iden-
tifiers. Busjaeger and Xie [11] train a linear SVM on black- and
white-box (i.e., code coverage) features obtained from Salesforce’s
code repository and CI system. By ranking and selecting tests, they

ISSTA °21, July 11-17, 2021, Virtual, Denmark

achieve a trade-off of executing 3% of all tests to detect 75% of the
failures. Chen et al. [13] train ML models to predict the effectiveness
of RTP techniques by using features from test coverage and testing
time. They find that there are no universally optimal RTP tech-
niques across projects which supports findings in the related field
of defect prediction [82]. Bertolino et al. [8] compare ten ML algo-
rithms for ranking tests to provide guidelines on when to choose RL
over supervised ML or vice versa. They use features from white-box
code and dependency analysis as well as test history, and evaluate
algorithms’ performance on six open-source subjects with artificial
faults. Henard et al. [29] provide an experimental comparison of 10
white-box and 10 black-box RTP techniques from prior research.
In their study on five C programs from the software infrastructure
repository [15] with seeded faults, they find that black-box tech-
niques based on combinatorial interaction testing [10, 61] and test
input diversity [24, 30, 31] perform comparably well to white-box
approaches. While these black-box techniques are also applicable if
there is no source code access, they require either a program’s test
inputs or a model thereof, which goes beyond CI and VCS meta-
data. Yoo and Harman [74, 75, 77] introduce the concept of Pareto
efficient multi-objective regression test optimization to account for
trade-offs between test criteria for different types of testing (e.g.,
structural and functional). Defect hypotheses and associated fea-
tures in our methodology are drawn from their work (see Sec. 2.2),
but we cannot directly apply their techniques due to the lack of
required coverage information. Similarly, we cannot directly ap-
ply the unsafe RTS approach by Kim and Porter [36], who were
among the first to create statistical ranking models for tests based
on past-fault coverage, i.e., tests” history, and function coverage.
Peng et al. [60] empirically study information retrieval (IR) tech-
niques for RTP as first proposed by Saha et al. [67]. Their hybrid
technique combines features from textual program changes and,
similar to our work, test execution time and test failure history.
It outperforms coverage-based RTP techniques and the baselines
Beost and Bhjgzory (see Sec. 3.3.2) on a real-world dataset, and they
argue for the “necessity [...] to better balance textual, cost, and
historical information for more powerful test prioritization” [60].
We deem our approach with advanced feature engineering and pre-
dictive modeling to be one step in that direction, albeit excluding
white-box textual analysis. Notably, analyzing textual code changes
is possible, if CI and VCS metadata contain code diffs and tests’
source code is accessible. However, going beyond the scope of our
methodology, effective IR techniques further employ programming
language-specific analysis (e.g., building an abstract syntax tree) or
computationally expensive topic modeling [49, 60, 67].

Similarly, effectiveness for specific contexts [3, 16, 21, 38, 43, 68]
and across projects [37, 44, 71, 81] has been studied for CI-RTP/S.
However, none of the studies that investigate multiple projects uses
VCS metadata; they exclusively rely on historical test execution
information (i.e., CI logs). Using both kinds of data, as done in our
study, indicates that features from CIlogs alone are indeed powerful,
but including VCS features can further increase cost-effectiveness.
We are not aware of related work that uses both kinds of data and
individually measures associated features’ cost-effectiveness across
projects. We consider the following papers to be most relevant for
our work: Elbaum et al. [21] were the first to apply CI-RTP/S at

502

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

industry scale: They used the simple heuristic B;,; (see Sec. 3.3.2)
to cost-effectively prioritize and select tests in Google’s pre- and
post-submit testing process. Spieker et al. [71] use RL for CI-RTP/S.
On ABB’s and Google’s CI test history, their approach achieves
competitive performance to simple RTP heuristics (e.g., Bj,s; from
Sec. 3.3.2). They formulate unsafe RTS as a time-constrained RTP
problem, where the cut-off value is determined by the available
test time. In contrast, we define cut-off values by empirical failure
detection safety levels.

Finally, we have alluded to why sensitivity of cost-effectiveness
to size, timeliness, and variety of data is important for CI-RTP/S.
Prior work has investigated how much historical data can be ben-
eficial [3, 8, 71]. Research conducted at Microsoft further showed
fluctuating cost-effectiveness over time [33]. The impact of data
variety has been studied by analyzing performance of predictive
features [4, 8, 11, 45]. However, these studies either focus on specific
industrial contexts or use more information than only CI and VCS
metadata. In summary, we are not aware of prior work on CI-RTP/S
approaches that studies how sensitive their cost-effectiveness is
to associated parameters, performs cost-aware evaluation on real-
world failures from industrial and open-source projects, and derives
empirical guidelines for calibrating CI-RTP/S in practice.

5 CONCLUSION

Unsafe RTS and RTP techniques that exclusively rely on CI and VCS
metadata (CI-RTP/S) are attractive alternatives to traditional, more
intrusive techniques: They are inexpensive, language-agnostic, easy
to transfer—no program or code access is necessary—, and have
been shown to work well in different contexts. However, aspects of
their design and evaluation are scattered across research, leaving
practitioners to identify insights that apply to their context. Besides,
adequately calibrating these techniques often requires high effort
and experience with predictive modeling. Still, empirical calibration
guidelines are not available. Instead of proposing new techniques,
we consolidate existing RTP and unsafe RTS research into a method-
ology for building and evaluating CI-RTP/S approaches.

In our empirical study, we show that (1) limiting the training
data to the most recent or even only faulty CI test runs often suf-
fices, (2) features on test history work particularly well, and (3)
naive heuristics often outperform complex ML models from prior
work. Practitioners can use these empirical guidelines to reduce the
amount of effort for selecting and calibrating the best CI-RTP/S ap-
proaches for their project. Across studied projects, the approaches
chosen by our methodology significantly outperform established
RTP baselines. On average, practitioners can thereby expect to save
84% of the testing time while still detecting 90% of the failures when
selecting tests. If CI and VCS metadata are available, the methodol-
ogy is universally applicable, allowing practitioners to comfortably
build and calibrate cost-effective RTP and RTS approaches.

ACKNOWLEDGMENTS

We thank Maria Graber, René Dammer, Markus Schnappinger, and
the anonymous reviewers who provided helpful feedback to im-
prove this paper. This work was partially funded by IVU Traffic
Technologies and the German Federal Ministry of Education and
Research (BMBF), grant “SOFIE, 011S18012A”.

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration

REFERENCES

(1]

&

Khaled Walid Al-Sabbagh, Miroslaw Staron, Regina Hebig, and Wilhelm Med-
ing. 2019. Predicting Test Case Verdicts Using Textual Analysis of Committed
Code Churns. In Joint Proceedings of the International Workshop on Software
Measurement and the International Conference on Software Process and Product
Measurement, Vol. 2476. 138-153.

Khaled Walid Al-Sabbagh, Miroslaw Staron, Miroslaw Ochodek, Regina Hebig,
and Wilhelm Meding. 2020. Selective Regression Testing based on Big Data:
Comparing Feature Extraction Techniques. In Proceedings of the International
Conference on Software Testing, Verification and Validation Workshops. 322-329.
https://doi.org/10.1109/ICSTW50294.2020.00058

[3] Jeff Anderson, Saeed Salem, and Hyunsook Do. 2014. Improving the effective-

(4]

(5

=

(6

=

ness of test suite through mining historical data. In Processings of the Working
Conference on Mining Software Repositories. 142—151. https://doi.org/10.1145/
2597073.2597084

Jeff Anderson, Saeed Salem, and Hyunsook Do. 2015. Striving for Failure: An
Industrial Case Study about Test Failure Prediction. In Proceedings of the Interna-
tional Conference on Software Engineering. 49-58. https://doi.org/10.1109/ICSE.
2015.134

Maral Azizi and Hyunsook Do. 2018. ReTEST: A Cost Effective Test Case Selection
Technique for Modern Software Development. In Proceedings of the International
Symposium on Software Reliability Engineering. 144-154. https://doi.org/10.1109/
issre.2018.00025

Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the International Conference on Mining Software Repositories.
447-450. https://doi.org/10.1109/msr.2017.24

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

8

=

[10]

(11

[12]

[13]

[14]

[15]

=
&

[17]

[18]

[19

[20

[21]

optimization. Journal of Machine Learning Research 13, 1 (2012), 281-305.
Antonia Bertolino, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
Breno Miranda, and Roberto Pietran-Tuono. 2020. Learning-to-Rank vs Ranking-
to-Learn: Strategies for Regression Testing in Continuous Integration. In Pro-
ceedings of the International Conference on Software Engineering. 1-12. https:
//doi.org/10.1145/3377811.3380369

Leo Breiman and Philip Spector. 1992. Submodel Selection and Evaluation in
Regression. The X-Random Case. International Statistical Review / Revue Interna-
tionale de Statistique 60, 3 (1992), 291-319. https://doi.org/10.2307/1403680
Renée C. Bryce and Charles J. Colbourn. 2006. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information and Software
Technology 48, 10 (2006), 960-970. https://doi.org/10.1016/j.infsof.2006.03.004
Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: An indus-
trial case study. In Proceedings of the International Symposium on the Foundations
of Software Engineering. 975-980. https://doi.org/10.1145/2950290.2983954
Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-
gression test selection across JVM boundaries. In Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 809-820. https://doi.org/10.1145/3106237.3106297
Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing test prioritization via test distribution
analysis. In Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 656-667.
https://doi.org/10.1145/3236024.3236053

Janez Dems3ar. 2006. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research 7 (2006), 1-30.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering 10, 4 (2005), 405-435.
https://doi.org/10.1007/s10664-005-3861-2

Edward Dunn Ekelund and Emelie Engstrom. 2015. Efficient regression testing
based on test history: An industrial evaluation. In Proceedings of the International
Conference on Software Maintenance and Evolution. 449-457. https://doi.org/10.
1109/icsm.2015.7332496

Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In Proceedings
of the International Conference on Software Engineering. 329-338. https://doi.org/
10.1109/icse.2001.919106

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Prioritiz-
ing test cases for regression testing. In Proceedings of the International Symposium
on Software Testing and Analysis. 101-112. https://doi.org/10.1145/347324.348910
Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test
case prioritization: A family of empirical studies. IEEE Transactions on Software
Engineering 28, 2 (2002), 159-182. https://doi.org/10.1109/32.988497

Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky.
2004. Selecting a cost-effective test case prioritization technique. Software Quality
Journal 12, 3 (2004), 185-210. https://doi.org/10.1023/b:5qjo.0000034708.84524.22
Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.

503

[22

[23

[24

[25

[26

[27

~
20,

[30

[31

@
S

[33

[34

[35

[37

(38]

(39]

=
=

[41

ISSTA °21, July 11-17, 2021, Virtual, Denmark

In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235-245. https://doi.org/10.1145/2635868.2635910

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021.
Supplemental Material for: "Empirically Evaluating Readily Available Infor-
mation for Regression Test Optimization in Continuous Integration". https:
//doi.org/10.6084/m9.figshare.13656443

Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical evaluation of Pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the International Symposium on Software Testing and
Analysis. 234-245. https://doi.org/10.1145/2771783.2771788

Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test Set Diameter:
Quantifying the Diversity of Sets of Test Cases. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 223-233. https:
//doi.org/10.1109/ICST.2016.33

Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421-426.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713-716. https://doi.org/10.1109/icse.2015.230

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211-222. https://doi.org/10.1145/
2771783.2771784

Mark Harman. 2011. Making the case for MORTO: Multi objective regression test
optimization. In Proceedings of the International Conference on Software Testing,
Verification, and Validation Workshops. 111-114.

Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In Proceedings of
the International Conference on Software Engineering. 523-534. https://doi.org/
10.1145/2884781.2884791

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. 2014. Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test configurations for software
product lines. IEEE Transactions on Software Engineering 40, 7 (2014), 650-670.
https://doi.org/10.1109/TSE.2014.2327020

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. 2013. Assessing software product line testing via model-based mutation:
An application to similarity testing. In Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops. 188-197. https://doi.
org/10.1109/ICSTW.2013.30

Steffen Herbold. 2020. Autorank: A Python package for automated ranking
of classifiers. Journal of Open Source Software 5, 48 (2020), 2173-2173. https:
//doi.org/10.21105/j0ss.02173

Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
art of testing less without sacrificing quality. In Proceedings of the International
Conference on Software Engineering. 483-493. https://doi.org/10.1109/icse.2015.66
Xianhao Jin and Francisco Servant. 2020. A cost-efficient approach to building in
continuous integration. In Proceedings of the International Conference on Software
Engineering. 13-25. https://doi.org/10.1145/3377811.3380437

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie Yan Liu. 2017. LightGBM: A highly efficient gradient boosting
decision tree. In Proceedings of the International Conference on Neural Information
Processing Systems. 3149-3157.

Jung Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Proceed-
ings of the International Conference on Software Engineering. 119-129. https:
//doi.org/10.1145/581339.581357

Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Soder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting Continuous Integration by Code-Churn Based
Test Selection. In Proceedings of the International Workshop on Rapid Continuous
Software Engineering. 19-25. https://doi.org/10.1109/rcose.2015.11

Jung Hyun Kwon and In Young Ko. 2018. Cost-Effective Regression Testing
Using Bloom Filters in Continuous Integration Development Environments. In
Proceedings of the Asia-Pacific Software Engineering Conference. 160-168. https:
//doi.org/10.1109/apsec.2017.22

Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
2020. Dependent-Test-Aware Regression Testing Techniques. In Proceedings of
the International Symposium on Software Testing and Analysis. 298-311. https:
//doi.org/10.1145/3395363.3397364

Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012.
Prioritizing test cases with string distances. In Automated Software Engineering,
Vol. 19. 65-95. https://doi.org/10.1007/s10515-011-0093-0

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583-594. https://doi.org/10.1145/2950290.
2950361

https://doi.org/10.1109/ICSTW50294.2020.00058
https://doi.org/10.1145/2597073.2597084
https://doi.org/10.1145/2597073.2597084
https://doi.org/10.1109/ICSE.2015.134
https://doi.org/10.1109/ICSE.2015.134
https://doi.org/10.1109/issre.2018.00025
https://doi.org/10.1109/issre.2018.00025
https://doi.org/10.1109/msr.2017.24
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.1145/3377811.3380369
https://doi.org/10.2307/1403680
https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.1145/3106237.3106297
https://doi.org/10.1145/3236024.3236053
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1109/icsm.2015.7332496
https://doi.org/10.1109/icsm.2015.7332496
https://doi.org/10.1109/icse.2001.919106
https://doi.org/10.1109/icse.2001.919106
https://doi.org/10.1145/347324.348910
https://doi.org/10.1109/32.988497
https://doi.org/10.1023/b:sqjo.0000034708.84524.22
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.6084/m9.figshare.13656443
https://doi.org/10.6084/m9.figshare.13656443
https://doi.org/10.1145/2771783.2771788
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1109/ICST.2016.33
https://doi.org/10.1109/icse.2015.230
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1109/ICSTW.2013.30
https://doi.org/10.1109/ICSTW.2013.30
https://doi.org/10.21105/joss.02173
https://doi.org/10.21105/joss.02173
https://doi.org/10.1109/icse.2015.66
https://doi.org/10.1145/3377811.3380437
https://doi.org/10.1145/581339.581357
https://doi.org/10.1145/581339.581357
https://doi.org/10.1109/rcose.2015.11
https://doi.org/10.1109/apsec.2017.22
https://doi.org/10.1109/apsec.2017.22
https://doi.org/10.1145/3395363.3397364
https://doi.org/10.1145/3395363.3397364
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1145/2950290.2950361

ISSTA °21, July 11-17, 2021, Virtual, Denmark

[42]

[43

[44

[45]

[46]

[47

[48

[49

[50]

[51]

[52]

[54]

[55]

[56]

[57

[58

[59

[60]

(61

Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949-954. https://doi.org/10.1109/ase.2017.8115710

Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing Transition-Based Test Selection Algorithms at Google.
In Proceedings of the International Conference on Software Engineering: Software
Engineering in Practice. 101-110. https://doi.org/10.1109/icse-seip.2019.00019
Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining pri-
oritization: Continuous prioritization for continuous integration. In Proceed-
ings of the International Conference on Software Engineering. 688—698. https:
//doi.org/10.1145/3180155.3180213

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91-100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

Dusica Marijan, Arnaud Gotlieb, and Abhijeet Sapkota. 2020. Neural Network
Classification for Improving Continuous Regression Testing. In Proceedings of
the International Conference On Artificial Intelligence Testing. 123-124. https:
//doi.org/10.1109/AITEST49225.2020.00025

Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization
for continuous regression testing: An industrial case study. In Proceedings of the
International Conference on Software Maintenance. 540-543. https://doi.org/10.
1109/icsm.2013.91

Dusica Marijan and Marius Liaaen. 2018. Practical selective regression testing
with effective redundancy in interleaved tests. In Proceedings of the International
Conference on Software Engineering. 153-162. https://doi.org/10.1145/3183519.
3183532

Toni Mattis and Robert Hirschfeld. 2020. Lightweight Lexical Test Prioritization
for Immediate Feedback. The Art, Science, and Engineering of Programming 4, 3
(2020), 12:1-12:32. https://doi.org/10.22152/programming-journal.org/2020/4/12
Toni Mattis, Patrick Rein, Falco Diirsch, and Robert Hirschfeld. 2020. RTP-
Torrent: An Open-source Dataset for Evaluating Regression Test Prioritiza-
tion. In Proceedings of the Conference on Mining Software Repositories. 385-396.
https://doi.org/10.1145/3379597.3387458

Toni Mattis, Patrick Rein, Falco Diirsch, and Robert Hirschfeld. 2020. RTPTorrent:
An Open-source Dataset for Evaluating Regression Test Prioritization. https:
//doi.org/10.5281/zenodo.3610998

Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In Proceed-
ings of the International Conference on Software Engineering: Software Engineering
in Practice. 233-242. https://doi.org/10.1109/icse-seip.2017.16

Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
Proceedings of the International Conference on Software Engineering. 222-232.
https://doi.org/10.1145/3180155.3180210

Armin Najafi, Weiyi Shang, and Peter C. Rigby. 2019. Improving Test Effectiveness
Using Test Executions History: An Industrial Experience Report. In Proceedings
of the International Conference on Software Engineering: Software Engineering in
Practice. 213-222. https://doi.org/10.1109/icse-seip.2019.00031

Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. 2011. Regression testing in the presence of non-code changes. In Proceedings
of the International Conference on Software Testing, Verification, and Validation.
21-30. https://doi.org/10.1109/icst.2011.60

Tanzeem Bin Noor and Hadi Hemmati. 2016. A similarity-based approach for test
case prioritization using historical failure data. In Proceedings of the International
Symposium on Software Reliability Engineering. 58-68. https://doi.org/10.1109/
issre.2015.7381799

Tanzeem Bin Noor and Hadi Hemmati. 2017. Studying test case failure prediction
for test case prioritization. In Proceedings of the International Conference on
Predictive Models and Data Analytics in Software Engineering. 2-11. https://doi.
org/10.1145/3127005.3127006

Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241-251. https://doi.org/10.1145/1029894.
1029928

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825-2830.

Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revis-
iting and Enhancing IR-Based Test-Case Prioritization. In Proceedings of the
International Symposium on Software Testing and Analysis. 324-336. https:
//doi.org/10.1145/3395363.3397383

Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. 2013. Efficiency and
early fault detection with lower and higher strength combinatorial interaction

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

testing. In Proceedings of the Joint Meeting on Foundations of Software Engineering.
26-36. https://doi.org/10.1145/2491411.2491436

Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Mad-
dila, and Nachiappan Nagppan. 2019. FastLane: Test Minimization for Rapidly
Deployed Large-Scale Online Services. In Proceedings of the International Confer-
ence on Software Engineering. 408-418. https://doi.org/10.1109/icse.2019.00054
John Platt. 1999. Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods. Advances in large margin classifiers 10,
3(1999), 61-74.

Gregg Rothermel and Mary Jean Harrold. 1994. A Framework for Evaluating Re-
gression Test Selection Techniques. In Proceedings of the International Conference
on Software Engineering. 201-210. https://doi.org/10.1109/ICSE.1994.296779
Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2(1997), 173-210. https://doi.org/10.1145/248233.248262

Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression test
selection for C++ software. Software Testing, Verification and Reliability 10, 2
(2000), 77-109.

Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An information retrieval approach for regression test prioritization based on
program changes. In Proceedings of the International Conference on Software
Engineering. 268-279. https://doi.org/10.1109/icse.2015.47

Mark Sherriff, Mike Lake, and Laurie Williams. 2007. Prioritization of regression
tests using singular value decomposition with empirical change records. In
Proceedings of the International Symposium on Software Reliability Engineering.
81-90. https://doi.org/10.1109/issre.2007.25

August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating Test-Suite Reduction in Real Software Evolution. In Proceedings
of the International Symposium on Software Testing and Analysis. 84-94. https:
//doi.org/10.1145/3213846.3213875

August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228-238.
https://doi.org/10.1109/issre.2019.00031

Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in con-
tinuous integration. In Proceedings of the International Symposium on Software
Testing and Analysis. 12-22. https://doi.org/10.1145/3092703.3092709

Robert White, Jens Krinke, and Raymond Tan. 2020. Establishing Multilevel
Test-to-Code Traceability Links. In Proceedings of the International Conference on
Software Engineering. 861-872. https://doi.org/10.1145/3377811.3380921
Riidiger Wirth and Jochen Hipp. 2000. CRISP-DM : Towards a Standard Process
Model for Data Mining. In Proceedings of the International Conference on the
Practical Application of Knowledge Discovery and Data Mining. 29-39.

Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case
selection. In Proceedings of the International Symposium on Software Testing and
Analysis. ACM Press, 140-150. https://doi.org/10.1145/1273463.1273483

Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for Pareto efficient
multi-objective test suite minimisation. Journal of Systems and Software 83, 4
(2010), 689-701. htips://doi.org/10.1016/j.js5.2009.11.706

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67-120. https://doi.org/10.1002/stv.430

Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster Fault Finding at
Google Using Multi Objective Regression Test Optimisation. In Proceedings of
the International Symposium on the Foundations of Software Engineering.
Tingting Yu and Ting Wang. 2018. A Study of Regression Test Selection in Con-
tinuous Integration Environments. In Proceedings of the International Symposium
on Software Reliability Engineering. 135-143. https://doi.org/10.1109/ISSRE.2018.
00024

Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199-209. https://doi.org/10.
1145/3180155.3180198

Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. 2019. TestSage: Regression
test selection for large-scale web service testing. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 430-440. https:
//doi.org/10.1109/icst.2019.00052

Yuecai Zhu, Emad Shihab, and Peter C. Rigby. 2018. Test re-prioritization in
continuous testing environments. In Proceedings of the International Conference
on Software Maintenance and Evolution. 69-79. https://doi.org/10.1109/icsme.
2018.00016

Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-project defect prediction: A large scale experiment
on data vs. domain vs. process. In Proceedings of the Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
91-100. https://doi.org/10.1145/1595696.1595713

https://doi.org/10.1109/ase.2017.8115710
https://doi.org/10.1109/icse-seip.2019.00019
https://doi.org/10.1145/3180155.3180213
https://doi.org/10.1145/3180155.3180213
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/AITEST49225.2020.00025
https://doi.org/10.1109/AITEST49225.2020.00025
https://doi.org/10.1109/icsm.2013.91
https://doi.org/10.1109/icsm.2013.91
https://doi.org/10.1145/3183519.3183532
https://doi.org/10.1145/3183519.3183532
https://doi.org/10.22152/programming-journal.org/2020/4/12
https://doi.org/10.1145/3379597.3387458
https://doi.org/10.5281/zenodo.3610998
https://doi.org/10.5281/zenodo.3610998
https://doi.org/10.1109/icse-seip.2017.16
https://doi.org/10.1145/3180155.3180210
https://doi.org/10.1109/icse-seip.2019.00031
https://doi.org/10.1109/icst.2011.60
https://doi.org/10.1109/issre.2015.7381799
https://doi.org/10.1109/issre.2015.7381799
https://doi.org/10.1145/3127005.3127006
https://doi.org/10.1145/3127005.3127006
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/3395363.3397383
https://doi.org/10.1145/3395363.3397383
https://doi.org/10.1145/2491411.2491436
https://doi.org/10.1109/icse.2019.00054
https://doi.org/10.1109/ICSE.1994.296779
https://doi.org/10.1145/248233.248262
https://doi.org/10.1109/icse.2015.47
https://doi.org/10.1109/issre.2007.25
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1145/3213846.3213875
https://doi.org/10.1109/issre.2019.00031
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1145/3377811.3380921
https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1016/j.jss.2009.11.706
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/ISSRE.2018.00024
https://doi.org/10.1109/ISSRE.2018.00024
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1109/icst.2019.00052
https://doi.org/10.1109/icst.2019.00052
https://doi.org/10.1109/icsme.2018.00016
https://doi.org/10.1109/icsme.2018.00016
https://doi.org/10.1145/1595696.1595713

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Source Exploitation
	2.2 Feature Engineering
	2.3 Predictive Modeling
	2.4 Evaluation

	3 Empirical Study
	3.1 Study Subjects
	3.2 Experimental Setup
	3.3 Results
	3.4 Guidelines and Expectations for Practice
	3.5 Application in Industry
	3.6 Threats to Validity

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

