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Abstract— Many hand gesture recognition systems use radar
to sense the motion of the hand due to its independence of
lighting and its inherent privacy. As in the case of cameras,
complex signal processing chains consisting of classical al-
gorithms and neural network-base approaches are necessary
to evaluate the incoming data stream. Especially on mobile
devices, the reduction of the total energy consumption of the
recognition system is crucial as it would lead to an increased
battery life. Spiking neural networks have been shown to
consume much less energy than current networks by operating
event-driven and using time as the main information carrier.
However, practical applications in which they are on par with
classical approaches are rare. In this paper we utilize spiking
neural networks to perform hand gesture recognition in radar
data. We show that the temporal affinity of spiking networks
and the possibility to binarize the radar-generated range-
Doppler images without large loss of information introduces
a promising synergy. Using simple networks consisting of 75
recurrently connected spiking neurons, we are able to reach
current state-of-the-art performance on two public datasets.
With this approach, gesture recognition systems can operate
much more energy-efficient, making spiking neural networks
viable alternatives to current solutions.

I. INTRODUCTION

In many fields, human-computer interaction evolves to-
wards dynamic interactions which are more intuitive for
humans. One possible natural method for humans are hand
gestures, which are sensed and recognized by machines. The
applications for this type of interaction are various: smart
home, car entertainment, mobile phones, robot control, or
even interactive display panels in smart cities.

The gestures are commonly detected using cameras [19],
[28], however, multiple other approaches have been pro-
posed. Human attached sensors, such as an armband to
detect muscle activity, showed successful classification of
6 different classes [4]. Gesture recognition can also be
extended to full body movements as shown by [6], where a
neural network (NN) classifies the micro-Doppler signatures
of sonar sensors.

Radar-based gesture recognition provides many advan-
tages compared to other solutions like the independence of
lighting, atmospheric conditions, and the inherent privacy
because it neglects the object’s optical properties. Radar
systems can detect range, velocity, and angle of arrival
of nearby targets independent of environmental conditions.

We thank Infineon Technologies AG for supporting this research.

Therefore, a variety of classification algorithms based on
NNs have been proposed [1], [9], [13], [21], [25], [27].

For all applications, a high classification accuracy as well
as a low energy consumption are of major importance.
Especially for mobile devices, a low energy consumption of
the sensor itself and the attached signal processing is crucial
for a long battery life.

Taking the next step in energy-efficiency of neural
network-based processing and following recent research of
biological inspired NNs, spiking neural networks (SNNs)
gained traction in the research community. SNNs commu-
nicate via short all-or-nothing pulses and leverage time as
the main information carrier. Compared to today’s standard
neural networks based on continuous-valued activation func-
tions, SNNs have shown superior computational power [14].

The potential energy efficiency of SNNs can be reached
particularly on specialized hardware, called neuromorphic
hardware. Through optimized communication paths and
compute units or analog implementations, neuromorphic so-
lutions can be 100 times more efficient than comparable solu-
tions [5], [18]. Reconfigurable neuromorphic multi-purpose
chips like TrueNorth [16], Loihi [8], or SpiNNaker [12], [15]
are constantly being improved for future applications.

In this work we introduce the utilization of SNNs for
radar-based hand gesture recognition. The event-driven and
energy-efficient nature of SNNs make them a perfect fit for
the analysis of sequence data, especially in mobile environ-
ments. Radar data is particularly suited as input since we
assume that only the nearest recognized objects are relevant
for the recognition, which makes a binarization of the input
feasible. We therefore propose a network architecture com-
prising spiking neurons for radar-based gesture recognition.
We additionally analyze different input encoding approaches,
which introduce the trade-off between accuracy and network
activity. We evaluate our architecture on two public datasets
[21], [25] which are based on the same set of 11 gestures
performed in front of a radar sensor. There, our approach
shows superior classification performance while additionally
being potentially much more energy efficient. The code of
our simulations is available on GitHub*.

*https://github.com/GustavEye/
spiking-radar-gestures978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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II. BACKGROUND

A. Radar-Based Gesture Sensing
Frequency modulated continuous wave (FMCW) radars

emit continuous electromagnetic waves which are reflected
by nearby objects [26]. The reflected signal contains infor-
mation about the distance and relative velocity between the
sensor and the targets. During a measurement, the frequency
of the emitted signal is swept with a very large slope.
Accordingly, the frequencies of the transmitted and received
signal are different. Since the Doppler effect is negligible
at these high rates, the frequency difference is directly
proportional to the time of flight of the signal and with that
to the range of the target. Multiple of these measurements,
chirps, can be used to obtain the velocity of the target by
evaluating the phase change of the respective complex range
components. The resulting two-dimensional matrix is called
Range-Doppler map (RDM) which contains the received
signal strength at each combination of ranges and velocities.

If the used radar system has multiple receive channels,
multiple RDMs are generated and can be used to additionally
determine the angle of the perceived targets. This is enabled
by the physical positioning of different antennas. The posi-
tions result in phase differences of the received signals due
to slight variations – in the order of fractions to multiple
wavelengths – in the distance to the targets.

B. Spiking Neural Networks
The leaky integrate-and-fire (LIF) neuron model [10] used

in this work, accumulates the weighted inputs in a stateful
hidden variable. When the hidden variable reaches the firing
threshold, the binary activation function is activated and
the hidden state variable is reset. An exponential decay
(leakage) of the hidden variable over time adds the fading
of information which is not frequently updated. Despite the
biological evidence, this simple behavior results in several
technical characteristics:

• the computationally cheaper summation of the inputs
instead of multiply-accumulate (MAC) operations due
to the binary activation function [7],

• event-based processing, since neurons only need to be
updated if non-zero inputs are present [11], and

• pattern detection in data sequences due to the inherent
memorization property of the hidden state [10].

Learning algorithms for spiking networks, however, have
not shown comparable performance to backpropagation in
artificial neural networks (ANNs) for a long time [23]. A
promising approach has been to train ANNs with backprop-
agation and use the weights in spiking networks resulting in
a conversion of ANNs to SNNs [20]. Recent developments
introduced pseudo gradients to overcome the problem of the
non-existent derivatives of the discrete spike events, which
makes the direct training of SNNs using backpropagation a
viable option [3], [17].

C. Related Radar-Based Gesture Recognition Solutions
Most gesture recognition systems use classical signal

processing algorithms to generate RDMs and use subsequent

neural networks to classify the sensed gesture. Often, the
networks are separated in two parts: spatial feature gener-
ation and temporal sequence recognition. The former part
is achieved using convolutional layer structures to extract
meaningful features from the incoming range-Doppler im-
ages [9], [25], [27]. The latter part then analyzes sequences
of extracted features to recognize the actual movement of
the hand and fingers. These temporal dependencies are
evaluated using either temporal convolutions [21] or long-
short term memory (LSTM) layers [25], [27]. Alternative so-
lutions based on convolutional NNs omit the second Fourier
transform to generate the RDMs and instead evaluate the
temporal development of the distance metric using multiple
convolutional layers [22].

SNN-based radar processing has been shown to perform
well on the recognition of whole body gestures [2]. There,
the authors use convolutional structures to extract features
from the spectral input data. Additionally, they use the bio-
inspired spike timing dependent plasticity learning rule to
adapt the network weights based on the relative timing
between spikes. However, they use comparatively large con-
volutional NNs to classify large body movements in a small
dataset. Despite the similar domain and neuron type, the
approaches vary in many aspects. Our approach differs in
the network size, layer connectivity schemes, the learning
algorithm, and the complexity of the task to be solved.

III. NETWORK ARCHITECTURE

A. Range-Doppler Map Encoding

The input to the network consists of RDMs, which repre-
sent the received signal strength in a range-velocity system
(Fig. 1b). If the used radar system has multiple receive
channels, multiple RDMs are generated and can be used to
additionally determine the angle of the perceived targets. The
maps can either be fed directly into the network by convert-
ing the values of the RDMs directly to the input currents of
the spiking neurons, sometimes called current injection, or
be encoded into spikes to match the information exchange
format of the binary activated networks (Fig. 1c). In this
work, we use and compare two different schemes to encode
the data: (i) the activation of the highest valued entries of the
RDMs, and (ii) the activation of every value which is larger
than the average. In both cases, the binarization is performed
for each input channel individually to prevent the dominance
of a single channel due to different characteristics of the
channels. The resulting channel-wise binary encoded RDMs
are stacked and form a 4-dimensional tensor of the format
[time, range, velocity, channel]. Accordingly, the encoding
scheme converts the amplitude values in the RDMs along the
range and Doppler axis vr,d for each time step and channel
into a binary form δinput,r,d.

In the first encoding scheme, the highest valued entries of
the RDMs are activated. The activation threshold α defines
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Fig. 1: Examined network architecture consisting of an encoding layer, a fully recurrently connected population of binary
activated neurons, and an integrating output layer with softmax activation.

the fraction of bins which are active at any time

δinput,r,d =

{
1, if vr,d ∈ {x | x in α largest values of v}
0, otherwise.

(1)

The second scheme does not require hyperparameters. For
each frame and channel the RDMs are averaged and each
bin which has a value larger than the average is activated:

δinput,r,d =

{
1, if vr,d > mean(v)

0, otherwise.
(2)

B. Hidden Binary Activated Layers

The hidden layers consist of populations of LIF neurons.
There, the hidden variable Vi of each neuron is updated in
every time step:

Vi[t+ 1] = e−1/τiVi[t] + Ii,charge[t]− Ii,reset[t] (3)

δi[t+ 1] =

{
1, if V [t+ 1] > θ

0, otherwise
(4)

Ii,charge[t] =
∑

wi,jδj [t] (5)

Ii,reset[t] = δi[t]Vi[t]. (6)

Subsequently, the non-differentiable binary activation func-
tion is applied to compute the neuron’s output δi. The two
currents Ii,charge and Ii,reset, in accordance to an equivalent
electrical circuit, comprise the weighted inputs of other neu-
rons and the reset of the hidden variable after an activation,
respectively.

Different to classical network architectures, binary acti-
vated spiking networks allow simple but rich lateral com-
munication between neurons within the same layer using
recurrent connections. The hidden layers of the proposed
architecture (Fig. 1d) therefore consist of populations of neu-
rons with full connectivity to the preceding as well as within
the same layer. Each neuron therefore has N = Npre+Nrec

trainable weights with Npre being the number of afferent
neurons (inputs from the feedforward connections) and Nrec

being the number of neurons within the same population. To
incorporate the recurrent connections, equation 5 extends to

Ii,charge[t] =
∑

wi,jδj [t] +
∑

ri,kδk[t]. (7)

The matrices w and r hold the feedforward and recurrent
connection weights, respectively.

The fully recurrently connected populations can be stacked
as any other layer in a neural network. However, in our exper-
iments networks consisting of one single hidden population
led to the best results.

The pseudo gradient ψ used in this work is linearly
dependent on the current value of the hidden variable V of
each neuron:

ψi = max

(
1−

∣∣∣∣Viθ − 1

∣∣∣∣ , 0) . (8)

The resulting gradients are used to optimize the connection
weights wi,j and ri,k between the neurons. Additionally,
the time constant τ and the firing threshold θ can be
optimized for each neuron individually or jointly for the
whole layer. We use the layer-wise joint optimization to
prevent overfitting but enable the population to adapt to the
characteristics of the dataset.

C. Output Layer

The output neurons are modeled by simple integrators
without any leakage or firing characteristics. The latent
variable of each output neuron corresponds to the probability
of its represented class to be present at the input. A softmax
activation function is applied to normalize the output across
the layer (Fig. 1e). By that, a meaningful loss can be
computed between the true and the inferred class label.

IV. EXPERIMENTS

A. Setup

The datasets used in the experiments consist of 11 different
gestures which are specifically designed to assess the per-
formance of gesture recognition systems [25]. The gestures
comprise small finger movements (pinch pinky, pinch index
finger), larger movements of the whole hand (push, pull),
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TABLE I: Dataset parameters from the papers Interfacing
Soli [25] and TinyRadarNN [21].

Parameter Interfacing Soli TinyRadarNN

# of channels 4 2
Chirp frequency 32 · 40 Hz 160 Hz
Range bins 32 492
Velocity bins 32 32

Recording length ≈ 1 s ≤ 3 s
# of persons 10 26
Recordings per gesture 25 · 10 35 · 26
Total recordings 2750 10010

and gestures with different speed of movement (slow and
fast swipe).

The initial version of the dataset [25] uses Google’s
project Soli sensor [13]. A second, independent version uses
Acconeer’s A1 RADAR sensors to record the same set of
gestures [21]. Although both datasets consist of the same set
of gestures, the classification accuracies reached during the
evaluation can not be compared directly. The two sensors
produce quite different data streams due to their different
designs. Additionally, the datasets differ significantly in the
size of the available training data. The relevant differences of
the datasets are summarized in table I. We apply the proposed
networks to both datasets to achieve the best comparability
of the specific algorithms.

B. Preprocessing

For both datasets we use zero padding to reach a constant
number of frames for each gesture. Therefore, empty RDMs
are added at the end of each recording. In contrast, [13] uses
temporal interpolation to achieve constant sequence lengths.
However, as this stretches or compresses the sequence,
temporal relationships are altered.

The TinyRadarNN dataset is available in a raw format,
leaving the freedom to choose the parameters to generate
the RDMs. The chirps in the dataset provide information
about nearly 500 range bins with a resolution of below a
millimeter. To reduce the data rate and to prevent overfitting,
each chirp is subsampled using average pooling with a kernel
size of four. Subsequently, the Fourier transform is applied to
generate the velocity axis of the RDMs. The window size of
the Fourier transform is chosen to be 16 chirps to avoid the
smearing on the range axis due to too long evaluation time
windows. To reduce the size of the input data further and
to increase the generalization, an additional max pooling is
performed on the range dimension of the generated RDMs.

C. Evaluation Metrics

In [25], the authors differentiate between the per-sequence
and the per-frame accuracy. In the former accuracy metric,
the information of the completed gesture is present at the
time of evaluation and classification. In the latter case, only
the instantaneous RDM is presented without the specific
information of the start and the end of the sequence. Since
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Fig. 2: Relation between the classification accuracy and the
number of neurons of the population in the hidden layer on
the TinyRadarNN dataset.

the definition of a frame is ambiguous [21], we report the per-
sequence accuracy only. The reported accuracies are based
on the multi-user leave-one-out (LOO) cross-validation tests.
There, the networks are trained using the data of all but
one subject and are evaluated on the unseen data. This is
repeated for every subject and the resulting accuracy values
are averaged, hence the cross-validation. This is the most
realistic scenario since it is very unlikely that each user’s
gesture data is also part of the training set.

V. RESULTS

A. Classification Performance

The resulting classification accuracies are shown in table
II. The binary activated stateful network is thus able to
outperform previous works [21], [25], on both datasets. Our
results show that on both datasets, our binarized inputs
lead to higher classification accuracies. The two reported
accuracies per network correspond to the test accuracy of the
final trained network and the best intermediate performance,
respectively. With a discrepancy of two to three percentage
points between those values, there might still be room
for improvements. Because the best intermediate accuracy
is reached at different stages during the cross-validation,
however, these values can not be used for comparison with
other publications.

The final network’s neuron population in the hidden
layer consists of 75 recurrently connected neurons. On both
datasets, this size marks the optimum whereas larger net-
works tend to overfit with growing number of neurons while
reaching lower test accuracies. Fig. 2 depicts this relation.

The network activity during the inference of the gesture
“finger slider” is shown in fig. 3. The differences in the
spike activity between the binarization approaches is clearly
visible. The average spike activity of the hidden layer is
not affected much by the chosen binarization method. We
therefore depict only the activity of a population with the
input of one of the possible schemes. However, as table II
shows, the final classification accuracy varies based on the
binarization.

The confusion matrix shown in Fig. 4 illustrates the
links between the false classifications of one exemplary
cross-validation test. Especially small finger movements –
pinch index and pinch pinky – are easily mistaken. Also a
steady hand is often confused with gestures involving finger
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TABLE II: Comparsion between the Interfacing Soli [25], TinyRadarNN [21], and the proposed spiking architectures for
the corresponding dataset. We benchmark the accuracy by using multi-user leave-one-out cross-validation.

Interfacing Soli TinyRadarNN

Wang et al. (2016) [25] 88.27% -
Scherer et al. (2020) [21] - 78.85%

current injection 86.24% best: 88.58% 79.15% best: 82.22%
α=0.05 max binarization 87.4% best: 89.53% 76.43% best: 79.43%
α=0.10 max binarization 86.71% best: 88.98% 79.02% best: 81.47%
mean binarization 88.2% best: 89.82% 80.31% best: 82.98%

Fig. 3: Exemplary network evaluation of the gestures “finger
slider”. (a) Input encoded by α = 0.05 max binarization.
(b) Input encoded by α = 0.10 max binarization. (c) Input
encoded by mean binarization. (d) Spikes emitted by the
hidden layer. (e) Class probability provided by the output
of the network.

movements as in both cases, most of the hand does not
move at all. The distinction between a fast and slow swipe
gesture is also often misclassified, suggesting a too coarse
time resolution or too vague data in the training set due to
different interpretations of “fast” and “slow” by the recorded
persons. Most gestures, however, can be recognized with low
to no error.

B. Input Encoding

t-distributed Stochastic Neighbor Embedding (t-SNE) vi-
sualization plots [24] are handy tools to graphically analyze
nonlinear relationships within multi-dimensional data where
the low-dimensional representation projects the neighboring
probability of the higher dimensional data clusters. In our
case, we use it to get an understanding of the separability
of the raw RDMs as well as the spike train representations

Fig. 4: Confusion matrix of one LOO cross-validation test
(accuracy: 84.67%) using the TinyRadarNN dataset. Mis-
classifications mainly concern small finger movements and
gestures of different speeds.

of the two input binarization methods and the activity of the
hidden layer. Fig. 5 shows the clustering of all classes with
color indications where each dot corresponds to a gesture in
the test set.

The visualization shows, that using a non-linear unsuper-
vised clustering algorithm, the different gestures performed
by a single person can be separated. Though, a perfect
separability of the raw input data is not necessarily given.
The binarization encoding does not affect the clustering
much, thus suggesting that no relevant information is lost.
Some clusters are hard to distinguish in both, the raw and the
binarized format. Note the distance between data points in
t-SNE is only a representation of clusters, it is not suited to
make quantitative statements. The hidden layer shows a clear
separation between most of the clusters, highlighting the
capabilities of the recurrently connected neuron population
to extract temporal patterns from the input signal. The two
blue shaded clusters which are not separable in all four
t-SNE plots correspond to the gestures “pinch index” and
“pinch pinky”. As already seen in the confusion matrix, the
distinction between those two gestures is in most cases not
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Fig. 5: t-SNE visualization plots for raw data, α = 0.05
max binarization, mean binarization, and spike events of
the hidden layer. Based on arbitrary LOO test set from the
TinyRadarNN dataset.

possible for the network.

C. Analysis of the Computational Complexity

One major motivation for the utilization of spiking neural
networks is based on their energy-saving potential [8]. Rea-
sons for that are among others the event-based processing of
amplitude-less spike events (see section II-B). This enables
the network to only compute the parts of the network which
received a non-zero input and to perform additions instead of
MAC operations [7]. The latter is possible as the input of a
neuron does not have to be multiplied with the connection’s
weight, but the weight can directly be added to the hidden
variable. To exploit these properties already at the input of
the network, we binarize the RDMs as shown in section III.

During the processing of one gesture encoded by α =
0.05 max binarization, 890 spikes are exchanged on average.
570 spikes are thereby emitted by the encoding layer and
320 by the neurons in the hidden layer. If n α = 0.10 max
binarization or mean binarization is used, the average number
of emitted spikes increases to 1500 and 3000, respectively. In
a network with one hidden layer consisting of 75 recurrently
connected neurons, each spike emitted by the encoding layer
leads to 75 add operations to adapt the hidden variables of the
neurons of the hidden layer. Spikes emitted by the neurons
in the hidden layer lead to 75 additions at their recurrently
connected neurons within the population and 12 additions in
the output layer.

Accordingly, using the α = 0.05 max binarization approx-
imately 70,500 addition operations are required to classify
a gesture, not taking the encoding itself and the activation
functions of the neurons into account. This number however
already shows the energy saving potential of these type of

networks compared to classical approaches. In comparison,
[21] reports a total of 20·106 multiply-accumulate operations
for a convolutional neural network-based solution to the same
dataset with a slightly worse classification performance.

VI. CONCLUSION

In this work, we demonstrate the successful utilization of
binary activated spiking neural networks for the recognition
of hand gestures in radar data. The proposed network archi-
tecture thereby outperforms the results achieved by classical
ANN-based approaches on two public datasets. We showed
that for radar-based gesture recognition, higher classification
accuracies can be reached if the input range-Doppler images
are binarized before being analyzed by the SNN. The unique
characteristics of SNNs make it possible to replace the
huge amount of MAC operations required by large classical
networks with an order of magnitude smaller number of addi-
tions. This promises a large potential for energy saving while
maintaining or even increasing the network’s classification
performance when executed on neuromorphic hardware.
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